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TAMENESS IN GEOMETRY
AND ARITHMETIC:
BEYOND O-MINIMALITY

GAL BINYAMINI AND DMITRY NOVIKOV

ABSTRACT

The theory of o-minimal structures provides a powerful framework for the study of geo-
metrically tame structures. In the past couple of decades a deep link connecting o-minima-
lity to algebraic and arithmetic geometry has been developing. It has been clear, however,
that the axioms of o-minimality do not fully capture some algebro-arithmetic aspects of
tameness that one may expect in structures arising from geometry. We propose a notion

of sharply o-minimal structures refining the standard axioms of o-minimality, and outline
through conjectures and various partial results the potential development of this theory in
parallel to the standard one.

We illustrate some applications of this emerging theory in two main directions. First, we
show how it can be used to deduce Galois orbit lower bounds—notably including in non-
abelian contexts where the standard franscendence methods do not apply. Second, we show
how it can be used to derive effectivity and (polynomial-time) computability results for
various problems of unlikely intersection around the Manin—-Mumford, André—Oort, and
Zilber—Pink conjectures.
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1. TAME GEOMETRY AND ARITHMETIC

1.1. O-minimal structures

The theory of o-minimal structures was introduced by van den Dries as an attempt
to provide a framework of tame topology in the spirit of Grothendieck’s “Esquisse d’un
Programme” [42]. We refer the reader to this book for a general introduction to the subject
and its history. For us, an o-minimal structure will always be an expansion of the ordered real
field ]Ra]g = {R, +, -, <}. Briefly, such an expansion is o-minimal if all definable subsets of
R consist of finite unions of points and intervals.

Despite their apparent simplicity, it turns out that the axioms of o-minimality pro-
vide a broad framework of tame topology. In particular, one has good notions of dimension,
smooth stratification, triangulation, and cell-decomposition for every definable set in an
o-minimal structure. On the other hand, several natural and important structures turn out
to be o-minimal. A few examples of particular importance for us in the present paper are
Raig, Ran, Ran,exp, and Rpgasr. We will say a bit more on these in later sections.

1.2. Pila—Wilkie counting theorem

In [37], Pila and Wilkie discovered a “counting theorem” that would later find deep
applications in arithmetic geometry. The theorem concerns the asymptotic density of rational
(or algebraic) points in a definable set—as a function of height. We introduce this first, to
motivate a broader discussion of the connection between tame geometry and arithmetic.

For x € QQ, we denote by H (x) the standard height of x. For a vector x € Q", we
denote by H(x) the maximum among the heights of the coordinates of x. Fora set A C R”,
we denote the set of Q-points of 4 by A(Q) = A N Q" and denote

AQ.H):={x € AQ): H(x) < H}. (1.1)

For a set A C R”, we define the algebraic part A¥¢ of A to be the union of all connected
semialgebraic subsets of A of positive dimension. We define the transcendental part A"
of Atobe A\ A%,

Theorem 1 (Pila and Wilkie [37]). Let A C R™ be a set definable in an o-minimal structure.
Then for every € > 0 there exists a constant C (A, €) such that for every H = 1,

#4"(Q, H) = C(A, €)HE. (1.2)

1.3. Transcendence methods, auxiliary polynomials

The use of transcendental (as opposed to algebraic) methods in the study of arith-
metic questions has a long history. A common theme in these methods, running through the
work of Schneider, Lang, Baker, Masser, and Wiistholz to name a few, is the use of auxiliary
polynomials. We refer to [28] for a broad treatment of this subject.

The usefulness of polynomials in this context stems from their dual algebraic/ana-
lytic role. Suppose one is interested in the set A(Q, H) for some analytic set A. On the one
hand, if a polynomial P, say, with integer coeflicients, is evaluated at x € A(Q, H) then
P (x) is again rational, and one can estimate its height in terms of H and the height of P. On
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the other hand, polynomials are extremely well-behaved analytic functions, and a variety of
analytic methods may be used to prove upper bounds on the restriction of P to an analytic
set A assuming it is appropriately constructed (say to vanish to high order at some points
of A). One concludes from such an argument that P must vanish at every point in A(Q, H),
for otherwise the height bound would contradict the upper bound.

The proof of the Pila—Wilkie counting theorem follows this classical line. However,
it is fairly unique in the realm of transcendence methods in that the degrees of the auxil-
iary polynomials P are independent of the height, depending in fact only on &. It is this
unusual feature that makes it possible to prove the Pila—Wilkie theorem in the vast general-
ity of o-minimal structures: polynomials of a given degree form a definable family, and the
general machinery of o-minimality gives various finiteness statements uniformly for all such
polynomials.

1.4. Beyond Pila—Wilkie theorem: the Wilkie conjecture

By contrast with the Pila—Wilkie theorem, most transcendence methods require
the degrees of the auxiliary polynomials to depend on the height H of the points being
considered—sometimes logarithmically and in some cases, such as the Schneider—Lang
theorem, even linearly. A famous conjecture that seems to fall within this category is due
to Wilkie.

Conjecture 2 (Wilkie [37]). Let A C R™ be a set definable in Rexp. Then there exist constants
C(A),«(A) such that for all H = 3,

#A"S(Q, H) = C(A)(log H)*. (1.3)

The conclusion of the Wilkie conjecture is known to fail for general o-minimal struc-
tures, for instance, in R, [4e]. To achieve such asymptotics, it seems one would have to use
auxiliary polynomials of degrees d = (log H)?, and o-minimality places no restrictions on
the geometric complexity as a function of d.

In formulating his conjecture, Wilkie was probably influenced by Khovanskii’s
theory of fewnomials [25]. The latter implies fairly sharp bounds for the number of con-
nected components of sets defined using algebraic and exponential functions (and more
generally Pfaffian functions) as a function of the degrees of the equations involved. Below
we attempt to axiomatize what it would mean for an arbitrary o-minimal structure to satisfy
such sharp complexity bounds.

2. SHARPLY O-MINIMAL STRUCTURES

In this section we introduce sharply o-minimal structures, which are meant to endow
a standard o-minimal structure with an appropriate notions comparable to dimension and
degree in the algebraic case, and provide suitable control over these parameters under the
basic logical operations. We first introduce the notion of a format-degree filtration (abbrevi-
ated FD-filtration) on a structure §. This is a collection @ = {Q# p}# pen such that each
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Qg p is a collection of definable sets (possibly of different ambient dimensions), with
Qe p CQyFy1,p NQe py1 YF,DeN 2.1

and |z p € is the collection of all definable sets in §. We call the sets in Qg p sets of
Sformat ¥ and degree D. However, note that the format and degree of a set are not uniquely
defined since €2 is a filtration rather than a partition.

We now come to the notion of a sharply o-minimal structure.

Definition 3 (Sharply o-minimal structure). A sharply o-minimal structure is a pair
Y = (8, Q) consisting of an o-minimal expansion of the real field § and an FD-filtration
; and for each ¥ € N, a polynomial Pg (-) such that the following holds:

If A € Qg p then

(1) if A C R, it has at most Pg (D) connected components,

(2) if A C R then ¥ = ¢,

(3) A%, my—1(A),AxR,and R x A liein Q% 4+1,p.
Similarly if Ay, ..., Ax C R® with A; € Qg, p, then

@ J4ieQrp. (6 [4i€Qsri1p.
i i

where ¥ := max; ¥; and D = 3 _; D;. Finally,
(6) if P € R[xq,...,x¢]then {P =0} € Qp geep-

Given a collection { A4} of sets generating a structure §, and associated formats and
degrees ¥, Dy one can consider the minimal FD-filtration €2 satisfying the axioms (2)—(6)
above. We call this the FD-filtration generated by {(Aq, ¥4, Dy)}. This will be sharply o-
minimal if and only if axiom (1) is satisfied.

Definition 4 (Reduction of FD-filtrations). Let 2, Q’ be two FD-filtrations on a structure .
We say that Q is reducible to Q' and write Q < Q' if there exist functions a : N — N and
b : N — N|[D] such that

Qb C Uy psgoy VFD €N 2.2)
We say that 2, Q' are equivalent if 2 < Q' < Q.

We will usually try to prove that certain measures of complexity of definable sets
depend polynomially on the degree, thinking of the format as constant. If one can prove such
a statement for Q’-degrees, and Q < Q’, then the same statement holds for Q-degrees and
in this sense Q is reducible to .

Remark 5 (Effectivity). One can require further that a sharply o-minimal structure is effec-
tive, in the sense that the polynomial Pg (D) in Definition 3 is given by some explicit
primitive recursive function of %. Similarly, one may require a reduction Q < Q' to be
effective. Unless otherwise stated, all constructions in this paper are effective in this sense.
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2.1. Examples and nonexamples

2.1.1. The semialgebraic structure

Consider the structure R, with the FD-filtration £2 generated by all algebraic hyper-
surfaces { P = 0} with the format given by the ambient dimension and the degree given by
deg P. Then (Ryyg, €2) is a sharply o-minimal structure. This is not an immediate statement:
it follows from the results on effective cell decomposition, or elimination of quantifiers, in
semialgebraic geometry [3].

Perhaps a more natural notion of format and degree in the semialgebraic category is
as follows. Define Q’y,- p to be the subsets of R withe < & , that can be written as a union
of basic sets

{Pr=-+=P,=0, 01>0,...,0; >0} (2.3)

with the sum of the degrees of the P; and Q;, over all basic sets, bounded by D. This is
not sharply o-minimal according to our definition because it does not satisfy axiom (3), for
instance. However, it is equivalent to 2 defined above.

2.1.2. The analytic structure R,,

Not surprisingly, R,, is not sharply o-minimal with respect to any FD-filtration.
Assume the contrary. Let w; = 1 and w,+1 = 297, and let I’ = {y = f(z)} C C? denote
the graph of the holomorphic function f(z) = Z,oi1 z% restricted to the disc of radius 1/2
(which is definable in R,;). Then by axioms (1), (5) and (6), the number of points in

n
Fﬂ{yze—l—Zz‘”f} (2.4)
j=1
should be polynomial in wj,, with the exact polynomial depending on the format and degree
of I". But it is, in fact, w,+1 = 2" for 0 < ¢ < 1, and we have a contradiction for n > 1.

2.1.3. Pfaffian structures

Let B C R* be a domain, which for simplicity we take to be a product of (possibly
infinite) intervals. A tuple f1,..., fm : B — R of analytic functions is called a Pfaffian chain
if they satisfy a triangular system of algebraic differential equations of the form

dfi .
i=P()cl,...,)q;,fl,...,fi), Vi, J. (2.5)
ij
They are called restricted if B is bounded and f, ..., f;, extend as real analytic functions
to B. A Pfaffian function is a polynomial Q(x1,...,X¢, fi...., fm). We denote the structure

generated by the Pfaffian functions by Rpy.¢r, and its restricted analog by R pe,sy.

Khovanskii [25] proved upper bounds for the number of connected components of
systems of Pfaffian equations. This was later extended by Gabrielov and Vorobjov to sets
defined using inequalities and quantifiers [21]. However, their results fall short of establishing
the sharp o-minimality of R;pg,y. The problem is that for Gabrielov—Vorobjov’s notion of
format and degree, if A € Q¢ p then they are only able to show that A° € Qp. (p),Ps (D)
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rather than A¢ € Q# 1 p, (p) as required by our axioms. This is a fundamental difficulty,
as it is essential in our setup that the format never becomes dependent on the degree.

In [13] the first author and Vorobjov introduce a modified notion of format and degree
and prove the following.

Theorem 6. There is an FD-filtration Q2 on R pgg that makes it into a sharply o-minimal

structure. Moreover, Gabrielov—Vorobjov’s standard filtration is reducible to 2.

We conjecture that this theorem extends to the structure Rpy,g, and this is the sub-
ject of work in progress by the first author and Vorobjov utilizing some additional ideas of
Gabrielov [19].

2.2. Cell decomposition in sharply o-minimal structures

We recall the notion of a cell in an o-minimal structure. A cell C C R is either a point
or an open interval (possibly infinite). A cell C € R¢*! is either the graph of a definable
continuous function f : C’ — R where C’ C R* is a cell, or the area strictly between two
graphs of such definable continuous functions f, g : C’ — R satisfying f < g identically
on C’. One can also take f = —oo and g = oo in this definition.

We say that a cell C C R is compatible with X C R¥ if it is either strictly contained,
or strictly disjoint from X. The following cell decomposition theorem can be viewed as the
raison d’étre of the axioms of o-minimality.

Theorem 7 (Cell decomposition). Let X, ..., Xy C R¢ be definable sets. Then there
is a decomposition of R into pairwise disjoint cells that are pairwise compatible with
X1, Xk

Given the importance of cell decomposition in the theory of o-minimality, it is nat-
ural to pose the following question.

Question 8. If § is sharply o-minimal and X1, ..., Xz have format ¥ and degree D, can
one find a cell-decomposition where each cell has format const(¥"), and the number of cells
and their degrees are bounded by poly & (k, D)?

We suspect the answer to this question may be negative. Since cell decomposition
is perhaps the most crucial construction in o-minimality, this is a fundamental problem. The
following result rectifies the situation.

Theorem 9. Let (S, Q) be sharply o-minimal. Then there exists another FD-filtration Q'
with (8, Q") sharply o-minimal such that Q < Q', and in Q' the following holds.

Let Xq1,..., Xy € Q/'F,D’ all subsets ofIRé. Then there exists a cell decomposition
of Rt compatible with each X i such that each cell has format const(¥"), the number of cells
is poly & (k, D), and the degree of each cell is poly ¢ (D).

In the structure Ripgr, Theorem 9 is one of the main results of [13]. The general
case is obtained by generalizing the proof to the general sharply o-minimal case, and is part
of the PhD thesis of Binyamin Zack-Kutuzov.
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2.3. Yomdin—-Gromov algebraic lemma in sharply o-minimal structures
Let I := (0,1).For f : I" — R™ a C"-smooth map, we denote

£ i= sup max | £@(0)]. 26)
xeln lalsr

The Yomdin—Gromov algebraic lemma is a result about C”-smooth parametrizations of
bounded norm for definable subsets of /”. A sharply o-minimal version of this lemma is
as follows.

Lemma 10. Let (S, 2) be sharply o-minimal. Then there is a polynomial Pg ,(-) depending
on the pair (¥ ,r), such that for every A € Qg p the following holds. There exist a collection
of maps { fo : 1" — A} of size at most Pg (D) such that\ ), fo(I"*) = A; and | fo|r <1
and ny < dim A for every a.

In the algebraic case, this result is due to Gromov [23], based on a similar but slightly
more technically involved statement by Yomdin [44]. In the general o-minimal case, but with-
out complexity bounds, the result is due to Pila and Wilkie [37]. In the restricted Pfaffian case,
this result is due to the first author with Jones, Schmidt, and Thomas [6] using Theorem 9 in
the R prir case. The general case follows in the same way.

The following conjecture seems plausible, though we presently do not have an
approach to proving it in this generality.

Conjecture 11. In Lemma 10, one can replace P# (D) by a Pg (D, r), i.e., by a polyno-
mial in both D and r, depending only on ¥ .

In the structure Ry, this was conjectured by Yomdin (unpublished) and by Burguet
[14], in relation to a conjecture of Yomdin [45, CONJECTURE 6.1] concerning the rate of decay
of the tail entropy for real-analytic mappings. The conjecture was proved in [9] by complex-
analytic methods. We will say more about the possible generalization of these methods to
more general sharply o-minimal structures in Section 3.

2.4. Pila—Wilkie theorem in sharply o-minimal structures
We now state a form of the Pila—Wilkie counting theorem, Theorem 1, with explicit
control over the asymptotic constant.

Theorem 12. Let (S, 2) be sharply o-minimal. Then for every € > 0 and ¥ there is a
polynomial Pg ¢(-) depending on (S, S2), such that for every A € Qg p and H = 2,

#A"(Q,H) = Pg (D) - HE. 2.7)

This result is based on Lemma 10, in the same way as the classical Pila—Wilkie
theorem is based on the o-minimal reparametrization lemma. This reduction is carried out
in [6] using Theorem 9 in the R;pg,¢r case. The general case follows in the same way.
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2.5. Polylog counting in sharply o-minimal structures
We state a conjectural sharpening of the Pila—Wilkie theorem, in line with the Wilkie
conjecture, in the context of sharply o-minimal structures. For A C R¥, let

A(g.h) = {x e AnQ": [QW): Q] < g.h(x) < h, 2.8)
where /(-) denotes the logarithmic Weil height.

Conjecture 13. Let (S, 2) be sharply o-minimal. Then there is a polynomial Py (-, -, ")
depending only on (S, 2) and ¥, such that for every A € Q& p and g, h = 2,

#A"" (g, h) < Py (D, g, h). (2.9)

The conjecture sharpens Pila—Wilkie in two ways. First, we replace the subpolyno-
mial term H ¢ by a polynomial in & ~ log H. Second, we count algebraic points of arbitrary
degree, and stipulate polynomial growth with respect to the degree as well.

Conjecture 13 is currently known only for the structure of restricted elementary
functions RRE := (R, +, -, <,exp |[o,1]. 8in |o,~]) Where it is due to [8] (with a minor technical
improvement in [5]).

Combining the various known techniques in the literature, it is not hard to see that
Conjecture 11 implies Conjecture 13 in a general sharply o-minimal structure. In Section 5
we will see that Conjecture 13 has numerous applications in arithmetic geometry, going
beyond the standard applications of the Pila—Wilkie theorem. We also discuss some partial
results in the direction of Conjecture 13 in Section 4.4.

3. COMPLEX ANALYTIC THEORY

In this section we consider holomorphic analogs of the standard cell decomposition
of o-minimality. We fix a sharply o-minimal structure (§, 2) throughout. We also assume
that § admits cell-decomposition in the sense of Theorem 9, as we may always reduce to this
case.

3.1. Complex cells
We start be defining the notion of a complex cell. This is a complex analog of the
cells used in o-minimal geometry.

3.1.1. Basic fibers and their extensions
For r € C (resp. r1, rp € C) with |r| > 0 (resp. |r2| > |r1| > 0), we denote
D(r) = {|Z| < |r|} Do(r) := {0 <lz| < |r|} Doo(r) = {|r| <|z| < oo}

A(ry.rp) i={Ir1] < |z| < Ir2l}. % :={0}.
3.1

For any 0 < § < 1, we define the §-extensions by
Di(r):= D(7'r), Di(r):=Ds(67'r), D (r):= Duos(6r),

3.2
As(rl, 72) = A(5r1,5_1r2), *8 = %, ( )

1447 TAMENESS IN GEOMETRY AND ARITHMETIC: BEYOND O-MINIMALITY



For any 0 < p < oo, we define the {p}-extension ¥ of ¥ to be F¢ where §
satisfies the equations

278
p=1 f(gz for ¥ of type D,
3 (3.3)
o= m for ¥ of type Do, Do, A.

The motivation for this notation comes from the following fact, describing the
hyperbolic-metric properties of a domain ¥ within its {p}-extension.

Fact14. Let ¥ be a domain of type A, D, Do, Doo and let S be a component of the boundary
of ¥ in '}, Then the length of S in '} is at most p.

3.1.2. The definition of a complex cell
Let X, ¥ be sets and F : X — 2¥ be a map taking points of X to subsets of ¥.
Then we denote
XO0F = {(x,y):xex,ye?(x)}. (3.4)

If r : X — C \ {0} then for the purpose of this notation we understand D(r) as the map
assigning to each x € X the disc D(r(x)), and similarly for Do, Do, A.

We now introduce the notion of a complex cell of length £ € Z>¢. If U C C" isa
definable domain, we denote by O, (U) the space of definable holomorphic functions on U .
As a shorthand we denote z; ¢ = (21, ..., 2Zg).

Definition 15 (Complex cells). A complex cell € of length zero is the point C°. A com-
plex cell of length £ + 1 has the form €,y © ¥ where the base €;_; is a cell of length £,
and the fiber ¥ is one of x, D(r), Do(r), Doo(r), A(r1, r2) where r € O4(€; ) satisfies
Ir(z1.0)| > 0forz; ¢ € €1 g;and ri,r2 € Oq(Cy ¢) satisfy 0 < [r1(z1.¢)| < [r2(21..¢)| for
210 € Cry.

Next, we define the notion of a §-extension (resp. {p}-extension).

Definition 16. The cell of length zero is defined to be its own §-extension. A cell € of
length £ + 1 admits a §-extension el .= ‘Gf__ (OF § if €, , admits a §-extension, and if the
function r (resp. rq, r3) involved in ¥ admits holomorphic continuation to ‘E’f” , and satisfies
|7 (z1.¢)| > 0 (resp. 0 < |r1(z1.¢)| < |r2(z1.¢)|) in this larger domain. The {p}-extension €@}
is defined in an analogous manner.

As a shorthand, when say that €% is a complex cell (resp. €{#}) we mean that € is
a complex cell admitting a § (resp {p}) extension.

3.1.3. The real setting

We introduce the notion of a real complex cell €, which we refer to simply as real
cells (but note that these are subsets of C%). We also define the notion of real part of areal
cell € (which lies in RY), and of a real holomorphic function on a real cell. Below we let
R denote the set of positive real numbers.
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Definition 17 (Real complex cells). The cell of length zero is real and equals its real part.
Acell € ;=€ ¢ © F isreal if €, 4 is real and the radii involved in ¥ can be chosen to
be real holomorphic functions on €;_g; The real part R€ (resp. positive real part R, €)
of € is defined to be R€; y © RF (resp. R+ €y ¢ © R4+ F) where RF := F N R (resp.
R4 F := F NR;) except the case F = *, where we set R« = R * = *; A holomorphic
function on € is said to be real if it is real on R€.

3.2. Cellular parametrization
We now state a result that can be viewed as a complex analog of the cell decompo-
sition theorem. We start by introducing the notion of prepared maps.

Definition 18 (Prepared maps). Let €, € be two cells of length £. We say that a holomorphic
map [ : € — € is prepared if it takes the form w; = z;l-‘" + ¢ (z1..j—1) where ¢; € 04 (€. )
forj=1,...,¢

Since our cells are always centered at the origin, it is the images of cellular maps
that should be viewed as analogous to the cells of o-minimality. The additional exponent g;
in Definition 18 is needed to handle ramification issues that are not visible in the real context.

Definition 19. For a complex cell € and F € O;(€) we say that F is compatible with € if
F vanishes either identically or nowhere on €. For a cellular map f : € — €, we say that
f is compatible with F if f*F is compatible with €.

We will be interested in covering (real) cells by prepared images of (real) cells.

Definition 20. Let €} be a cell and { fi: f’;a} — €1P}) be a finite collection of cellular
maps. We say that this collection is a cellular cover of € if € C (J;(f;(€;)). Similarly, we
say it is a real cellular cover if R4 € C Uj (fi(R4E))).

Finally, we can state our main conjecture on complex cellular parametrizations.

Conjecture 21 (Cellular Parametrization Theorem, CPT). Let p, o € (0, oo). Let €1#}
be a (real) cell and Fi, ..., Fy € Og(€%Y) (real) holomorphic functions, with €}
and each F; having format ¥ and degree D. Then there exists a (real) cellular cover
{fi: ‘C’;O} — €} such that each [ is prepared and compatible with each Fy. The number
of cells is polygz(D, M, p, 1/0), and each of them has format const(¥) and degree

poly (D).

The main result of [9] is that Conjecture 21 holds in the structure R,e (we assume
there for technical convenience that the functions are bounded rather than just definable, but
this does not seem to be a serious obstacle). We remark that there are significant difficulties
with extending this proof to the general sharply o-minimal case.

3.3. Analytically generated structures
We say that a sharply o-minimal structure (§, 2) is analytically generated if there

is a collection of complex cells {€,} admitting a 1/2-extension, and associated formats and
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degrees (Fo, Dy) such that § is generated by {€,} and 2 is generated by {(€y, Fo, Dy)}-
We fix such a structure § below. Assuming the CPT, one can prove the following analog of
Theorem 9 giving a cell decomposition by real parts of complex analytic cells.

Theorem 22. Let (S, 2) be sharply o-minimal and assume that it satisfies the CPT. Then
there exists another FD-filtration Q' with (S, Q') sharply o-minimal such that Q < Q', and
in Q' the following holds.

Let Xq,..., X} € Q’?’D, all subsets of RE. Then there exists a real cellular cover
{fi: ‘C’]{a} — C*Y such that each J; is prepared, and each fj(R+‘€;U}) is compatible with
each X;. The number of cells is poly (D, k, 1/0), and each of them has format const(¥")
and degree poly (D).

In particular, the cells f; (R4+€;) C R¢ form a cell-decomposition of R¢ compatible
with X1, ..., Xx. In addition, each cell admits “analytic continuation” to a complex cell €;
with a {0 }-extension.

In [9]it is shown that from a parametrization of the type provided by Theorem 22 one
can produce C"-smooth parametrizations, with the number of maps depending polynomially
on both D and r. In particular, the conclusion of Theorem 22 implies Conjectures 11 and 13.
It therefore seems that proving the CPT in a general analytically-generated sharply o-minimal
structure provides a plausible approach to these two conjectures.

We remark that a different complex analytic approach, based on the notion of Weier-
strass polydiscs, was employed in [8] to prove the Wilkie conjecture in the structure RRE. This
may also give an approach to proving Conjecture 13 in general, but it does not seem to be
applicable to Conjecture 11.

3.4. Complex cells, hyperbolic geometry, and preparation theorems

The main motivation for introduction the notion of {p}-extensions of complex cells
is that one can use the hyperbolic geometry of € inside €{#} to control the geometry of
holomorphic functions defined on complex cells. This is used extensively in the proof of the
algebraic CPT in [9], but also gives statements of independent interest. We illustrate two of
the main statements.

For any hyperbolic Riemann surface X, we denote by dist(-, -; X) the hyperbolic
distance on X. We use the same notation when X = C and X = R to denote the usual
Euclidean distance, and when X = C P! to denote the Fubini—Study metric normalized to
have diameter 1. For x € X and r > 0, we denote by B(x, r; X) the open r-ball centered at
x in X.For A C X, we denote by B(A, r; X) the union of r-balls centered at all points of A.

Lemma 23 (Fundamental lemma for C \ {0, 1}). Let €%} be a complex cell and let
f et 5 €\ {0, 1} be holomorphic. Then one of the following holds:

f(€) C B({0, 1,00}, ™22, CPY)  or diam(f(€);C \{0,1}) = O¢(p). (3.5

The fundamental lemma for C \ {0, 1} implies the Great Picard Theorem: indeed,
taking € to be a small punctured disc D, around the origin, it implies that any function
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f : Do — C \ {0, 1} has an image of small diameter in C P!, hence is bounded away from
some w € C P!, and it follows elementarily that f is meromorphic at the origin.

If £ :¢€ - C\ {0} is a bounded holomorphic map then we may decompose it
as f = 2%) . U(z), where U : €#} — C \ {0} is a holomorphic map and the branches of
log U : €%} — C are univalued. The following lemma shows that U enjoys strong bound-
edness properties when restricted to €.

Lemma 24 (Monomialization lemma). Ler 0 < p < oo and let f : €} — C \ {0} be
a holomorphic map. If €°}, f € Q #.D then there exists a polynomial Pg (-) such that
le(f)| < Py (D) and

diam(log U(€); C) < Pg(D)-p, diam(Imlog U(€):R) < Py (D). (3.6)

The monomialization lemma is proved in this form for the structure R, in [9], but
the proof extends to the general sharply o-minimal case. It is also shown in [9] that the mono-
mialization lemma in combination with the CPT gives an effective version of the subanalytic
preparation theorem of Parusinski [33] and Lion—Rolin [26], which is a key technical tool in
the theory of the structure R,,,.

3.5. Unrestricted exponentials

One of the milestones in the development of o-minimality is Wilkie’s theorem on the
model-completeness of Ry, [43], which, together with Khovanskii’s theory of fewnomials,
established the o-minimality of R.,. Wilkie’s methods were later used by van den Dries and
Miller to establish the o-minimality of R, exp. This latter structure plays a key role in many of
the applications of o-minimality to arithmetic geometry, since it contains the uniformizing
maps of (mixed) Shimura varieties restricted to an appropriate fundamental domain. We
conjecture a sharply o-minimal version of the theorems of Wilkie and van den Dries, Miller
as follows.

Conjecture 25. Let (S, 2) be an analytically generated sharply o-minimal structure. Let
Sexp denote the structure generated by S and the unrestricted exponential, and let Qcx, be
the FD-filtration of Scy, generated by Q2 and by the graph of the unrestricted exponential
(say with format and degree 1). Then (Sexp, Qexp) is sharply o-minimal.

It is perhaps plausible to make the same conjecture even without the assumption
of analytic generation. However, the analytic case appears to be sufficient for all (currently
known) applications, and the availability of the tools discussed in this section make the con-
jecture seem somewhat more amenable in this case. In particular, Lion—Rolin [26] have a
geometric approach to the o-minimality of Ry exp using the subanalytic preparation theorem
as a basic tool. The CPT provides a sharp version of the subanalytic preparation theorem,
thus suggesting a possible path to the proof of Conjecture 25.

1451 TAMENESS IN GEOMETRY AND ARITHMETIC: BEYOND O-MINIMALITY



4. SHARPLY 0-MINIMAL STRUCTURES ARISING FROM GEOMETRY

The fundamental motivation for introducing the notion of sharply o-minimal struc-
tures is the expectation that structures arising naturally from geometry should indeed be tame
in this stronger sense. We start by motivating the discussion with the example of Abel-Jacobi
maps, and then state some general conjectures.

4.1. Abel-Jacobi maps

Recall that for C a compact Riemann surface of genus g and wy, ..., @, a basis of
holomorphic one-forms on C, there is an associated lattice of periods A C C&, a principally
polarized abelian variety Jac(C) ~ C& /A and, for any choice of base point py € C, an
Abel-Jacobi map

p
uc : C —Jac(C), uc(p) =/ (w1,...,wg) mod A. 4.1
Po

To discuss definability properties of uc, we choose a semi-algebraic (or even semi-linear)
fundamental domain A C C# for the A-action and consider u¢c asamap uc : C — A.

Proposition 26. There is an analytically generated sharply o-minimal structure where every
uc is definable.

Indeed, after covering C by finitely many charts ¢; : D — C, where ¢; are algebraic
maps extending to some neighborhood of D, it is enough to show that the structure generated
by these ¢]’."uc is sharply o-minimal. Moreover, it is enough to show instead that the lifts

z
tic,j : D — Cé, ﬂc,j(z)z/ " (w1,...,0g) 4.2)
0

are definable. Indeed, tic,; (D) being compact meets finitely many translates of A, and the
further projection C& — A restricted to some ball containing iic, ; (D) is thus definable
in any sharply o-minimal structures (even in Ryjg). The sharp o-minimality of the structure
generated by all these iic,; follows from Theorem 6, since these functions, as indefinite
integrals of algebraic one-forms, are restricted-Pfaffian (see, e.g., [27] for the elliptic case).

The construction above, however, is not uniform over C of a given genus. More
precisely, while we do have ii; c € Qg p for some uniform ¥, D, the number of algebraic
charts ¢; : D — C may tend to infinity as C approaches the boundary of the moduli space
M, of compact genus g curves. However, we do have the following.

Proposition 27. There is a sharply o-minimal structure where every uc € Qg p for some
uniform ¥ = ¥ (g) and D = D(g).

To prove this, we replace the covering ¢; : D — C by a covering ¢; : E’jl/ 2., C,
where each €; is a one-dimensional complex cell and ¢; (€;) covers C. By the removable
singularity theorem, we may assume each €; is either a disc or an annulus. Moreover, #{¢, }
and their degrees are polyg (g) by the algebraic CPT. Here we use the fact that a genus

g curve can always be realized as an algebraic curve of degree d = poly(g). The same
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construction as above now shows thateach iic ; : € — C&, if univalued, is restricted Pfaffian
of format ¥ = ¥ (g) and degree D = poly, (D). In general, we have

iic,j(z) = uc ;(2) + (ac,ji, ... ac,jg)logz 4.3)

where u’c j is univalued and ac,j k is the residue of ¢j’."a)k around the annulus. Since log z,
understood for instance as having a branch cut in the negative real line, is restricted Pfaffian
with uniform format and degree over every annulus, this proves the general case.

Finally, one should check that the projection C& — A, restricted to qgj (€;) is defin-
able (say in Ry) with format and degree depending only on g. Equivalently, one should
check that ¢ 7 (€;) meets finitely many translates of A, with the number of translates depend-
ing only on g (if ¢  (€;) is multivalued then one should take one of its branches). This indeed
holds, provided that the fundamental domains A are chosen appropriately. It can be deduced,
albeit ineffectively, from the definability of theta functions (in both 7 and z) on an appropri-
ate fundamental domain [34]. In the case g = 1, an explicit upper bound for these constants
is given in [24].

The appearance of logarithmic factors in (4.3) is the reason that the structure we
obtain is not analytically generated. However, the construction does prove the following.

Proposition 28. There is an analytically generated sharply o-minimal structure (S, Q)
where every uc € (Qexp) 7 ,D for some uniform ¥ = ¥ (g) and D = D(g).

According to Conjecture 25 the structure .y, is indeed sharply o-minimal as well,
but this remains open.

4.2, Uniformizing maps of abelian varieties

One can essentially repeat the construction above replacing Jac(C) by an arbi-
trary (say principally polarized) abelian variety A of genus g. We similarly have a map
u: A — A where A C C¢ is a semilinear fundamental domain for the period lattice of A4,
corresponding to some fixed basis of the holomorphic ones-forms w;, ..., s on A. Propo-
sitions 26, 27, and 28 extend to this more general context with essentially the same proof.

4.3. Noetherian functions

We have seen in Sections 4.1 and 4.2 that Abel-Jacobi maps and uniformizing maps
of abelian varieties live in a sharply o-minimal structure (in fact, uniformly over all curves
or abelian varieties of a given genus). This eventually boils down to the fact that the relevant
maps are definable in R ppr. However, we do not believe that all functions arising from
geometry are definable in this structure. For instance, we conjecture that the graph of the
modular invariant j(7) restricted to any nonempty domain is not definable in Rper. We do
not know how to prove this fact, but Freitag [17] has recently at least shown that j(7) it not
itself Pfaffian, on any nonempty domain, as a consequence of the strong minimality of the
differential equation satisfied by j(t) [18].

One natural extension of the notion of Pfaffian functions are the Noetherian func-
tions. Let B C R be a product of finite intervals. A tuple f1,..., fin : B — R of analytic
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functions is called a restricted Noetherian chain if they satisfy a system of algebraic differ-
ential equations of the form

afi .
i=P(xl,...,)qg,fl,...,fm), Vi, j. “4.4)
ax j

We denote the structure generated by the restricted Noetherian functions by R noether- Since

all restricted Noetherian functions are restricted analytic, R Noether iS 0-minimal.

Conjecture 29. The structure RNoether IS Sharply o-minimal with respect to some FD-
filtration.

Gabrielov and Khovanskii have considered some local analogs of the theory of
fewnomials for nondegenerate systems of Noetherian equations in [2e], and made some (still
local) conjectures about the general case. These conjectures are proved in [7] under a tech-
nical condition. However, these results are all local, bounding the number of zeros in some
sufficiently small ball.

Despite the general Conjecture 29 being open, an effective Pila—Wilkie counting
theorem was obtained in [4] for semi-Noetherian sets.

Theorem 30. Let A be defined by finitely many restricted Noetherian equalities and inequal-
ities. Then for every ¢ > 0, we have

#A"(g, H) < Cg 4H® 4.5)

where Cq 4 can be computed explicitly from the data defining A.

Of course, provided Conjecture 29 an effective Pila—Wilkie theorem with better
bounds (for instance, polynomial in the degree of A) would follow from Theorem 12. More
generally, as a consequence of Conjecture 13 we would expect sharper polylogarithmic
bounds as well. Some results in this direction are discussed in the following section.

4.4. Bezout-type theorems and point counting with foliations

One can think of the graphs of Noetherian functions equivalently as leafs of alge-
braic foliations. Partial results in the direction of Conjecture 29 have been obtained in [5] in
this language. To state the result we consider an ambient quasi-projective variety M and a
nonsingular m-dimensional foliation ¥ of M, both defined over Q. For p € M denote by
&£, the germ of the leaf passing through p. For a pure-dimensional variety V' C M, denote

Sy = {p e M : dim(V N £,) > m — codimpg V}. 4.6)
If V is defined over Q, we denote by 8y the sum of the degree deg V, the log-height (),
and the degree of the field of definition of V over Q. Here the log-height is taken, for instance,

to be the log-height of the point representing V' in an appropriate Chow variety. In terms of
this data we have the following Bezout-type theorem.

Theorem 31 ([5, THEOREM 1]). Let V C M be defined over a number field and suppose
codimys V = m. Let K be a compact subset of a leaf of ¥ . Then

#(K NV) < polyg (v, logdist ' (K, Zy)). %))
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In fact, the bound in Theorem 31 can be made more explicit giving the precise
dependence on ¥ and on K, and this is important in some applications, but we omit the
details for brevity. The same bound without the dependence on (V') and log dist™! (K, Zy/)
would be a consequence of Conjecture 29, and establishing such a bound is probably the
main step toward proving the conjecture.

As a consequence of Theorem 31 one can deduce some polylogarithmic point-
counting results in the spirit of Conjecture 13. We state the simplest result of this type for
illustration below.

Theorem 32 ([5, COROLLARY 6]). Suppose &£, contains no germs of algebraic curves, for any
p € M. Let K be a compact subset of a leaf of . Then

#K(g.h) = polyg(g.h). (4.8)

Once again, the dependence on K can be made explicit in terms of the foliation ¥
and this plays a role in some applications. In practice, Theorem 32 and its more refined forms
can be used to deduce the conclusion of Conjecture 13 in most arithmetic applications, since
the sets appearing in such applications are always defined in terms of leafs of some highly
symmetric foliations.

4.5. Q-functions

Many important functions arising from geometry, such as period integrals, are
Noetherian. Indeed, such functions arise as horizontal sections of the Gauss—Manin con-
nection and can thus be viewed as solutions of a linear systems of differential equations.
However, the structure R noemer Only contains the restrictions of such maps to compact
domains. If we consider general Noetherian functions on noncompact domains, the result
would not even be o-minimal (as illustrated by the sine and cosine functions, for instance).
If one is to obtain an o-minimal structure, one must restrict singularities at the boundary.

One candidate class is provided by the notion of Q-functions considered in [1e,11].
Let P C C" be a polydisc, ¥ C C” a union of coordinate hyperplanes, and V the connection
on P x C* given by

Vv=dv—4-v “4.9)

where A is a matrix of one-forms holomorphic in P \ X. Suppose that the entries of A
are algebraic and defined over Q, that V has regular singularities along ¥, and that the
monodromy of V is quasiunipotent. Finally, let P° be a simply-connected domain obtained
by removing from P \ ¥ abranch cut {Arg x; = ¢; } for each of the components {x; = 0} of
and for some choice of o; € R mod 2. Every solution of Vv = 0 extends as a holomorphic
vector-valued function in P°. We call each component of such a function a Q-function.
Denote by Rqr the structure generated by all such Q-functions. This structure contains, as
sections of the Gauss—Manin connection, all period integrals of algebraic families.

By the classical theory of regular—singular linear equations, every Q-function is
definable in Ry exp, and Rqr is thus o-minimal.
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Conjecture 33. The structure Rq is sharply o-minimal with respect to some FD-filtration.

Some initial motivation for Conjecture 33 is provided by the results of [1e], which
give effective bounds for the number of zeros of Q-functions restricted to any algebraic curve
in P. However, treating systems of equations in several variables, and obtaining sharp bounds
with respect to degrees, is still widely open.

5. APPLICATIONS IN ARITHMETIC GEOMETRY

In this section we describe some applications of sharply o-minimal structures in
arithmetic geometry. For some of these, Theorem 12 suffices, while for others Conjecture 13
is necessary—in some suitable sharply o-minimal structure, such as the one conjectured to
exist in Conjecture 33. However, in all cases discussed below one can actually carry out the
strategy using known results, mostly Theorem 32 and its generalizations, in place of these
general conjectures (though various technical difficulties must be resolved in each case). We
thus hope to convince the reader that the strategy laid out below is feasible, on the one hand,
and fits coherently into the general framework of sharply o-minimal structures, on the other.

5.1. Geometry governs arithmetic

Geometry governs arithmetic describes a general phenomenon in the interaction
between geometry (for instance, algebraic geometry) and arithmetic: namely, that arithmetic
problems often admit finitely many solutions unless there is an underlying geometric reason
to expect infinitely many. Perhaps the most famous example is given by Mordell’s conjecture,
now Falting’s theorem [16]: an algebraic curve C C IP? contains finitely many rational points,
unless it is rational or elliptic. The two exceptions in Falting’s theorem may be viewed as
geometric obstructions to the finitude of rational solutions: the rational parametrization in the
former, and the group law in the latter, are geometric mechanisms that can produce infinitely
many rational points on the curve.

The Pila—Wilkie theorem itself may be viewed as an instance where geometry
(namely the existence of an algebraic part) controls arithmetic (namely the occurrence of
many rational points, as a function of height). A general strategy by Pila and Zannier [38]
reduces many unlikely intersection questions to the Pila—Wilkie theorem. This has been used
to prove the finiteness of solutions, under natural geometric hypotheses, to a large number
of Diophantine problems. For instance, the finiteness of torsion points on a subvariety of an
abelian variety (Manin—-Mumford) [38]; the finiteness of maximal special points on subvari-
ety of a Shimura variety (André—Oort) [35,41]; the finiteness of “torsion values” for sections
of families of abelian surfaces (relative Manin—Mumford) [3e]; the finiteness of the set of
t € C for which a Pell equation P? — DQ? = 1 with given D € Q¥2[X, ] is solvable in
P, Q € C[X][2,31,32]; the finiteness of the set of values t € C where an algebraic one-form
fr = f(¢, x)dx is integrable in elementary terms [32]; and various other examples.
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5.2. The Pila—Zannier strategy

Below we briefly explain the Pila—Zannier strategy in the Manin—Mumford case. Let
A be an abelian variety and V' C A an algebraic subvariety containing no cosets of abelian
subvarieties, both defined over a number field K.

Let 7 : [0, 1]?86 — A be the universal covering map of A written in period coor-
dinates, so that rational points with common denominator N in [0, 1]>¢ correspond to N-
torsion points in A. One checks that under our assumptions, X := 7~ !(V) has no algebraic
part (this can be done with the help of the Pila—Wilkie theorem as well, following a strategy
of Pila in [35]). The Pila—Wilkie theorem then implies that the number of torsion points in
V is at most C(X, ) N¢ where C(X, ¢) is the Pila—Wilkie constant.

On the other hand, there is ¢ > 0 such that if p € A is an N-torsion point then
[Q(p) : Q] >4 NF€ by aresult of David [15]. Here the implied constant depends effectively
on A. This is an example of a Galois lower bound, which in the Pila—Zannier strategy plays
the yin to Pila—Wilkie’s yang.

Choose ¢ = ¢/2 and suppose that IV contains an N -torsion point p. Then it contains
a fraction of [K : Q]™! of its Galois conjugates, and we obtain a contradiction as soon as
N >4v C(X, e/ 2)2/¢. We thus proved a bound for the order of any torsion point in V', and
in particular the finiteness of the set of torsion points.

5.3. Point counting and Galois lower bounds

Traditionally in the Pila—Zannier strategy, the Pila—Wilkie theorem is used to obtain
an upper bound on the number of special points, while the competing Galois lower bounds
are obtained using other methods—usually involving a combination of height estimates and
transcendence methods, such as the results of David [15] or Masser—Wiistholz [29].

In [39] Schmidt suggested an alternative approach to proving Galois lower bounds,
replacing the more traditional transcendence methods by polylogarithmic counting results
as in Conjecture 13. We illustrate again in the Manin—-Mumford setting. Let A be an abelian
variety over a number field K and let p € A be a torsion point. Consider now X given
by the graph of the map & defined in the previous section, which is easily seen to contain
no algebraic part. The points p,2p, ..., Np correspond to N points xy, ..., X, on this
graph. Recall that the height of a torsion point in A is O4(1) (since the Neron-Tate height
is zero), and the height of the corresponding point in [0, 1]?¢ is at most N. It follows that
h(xj) <4 log N. On the other hand, the field of definition of each x; is, by the product law
of A, contained in K(p). We thus have

N < #X ([K(p) : Q].log N) = poly,([K(p) : Q].log N) (5.1)

by Conjecture 13, and this readily implies [Q(p) : Q] >4 N€ for some ¢ > 0, giving a new
proof of the Galois lower bound for torsion points—and with it a “purely point-counting”
proof of Manin—Mumford. This has been carried out in [5] using Theorem 32.

The main novelty of this strategy is that it applies in contexts where we have polylog
counting result, and where the more traditional transcendence techniques are not available.
In [12] this idea was applied in the context of a general Shimura variety S. It is shown that if
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the special points p € S satisfy a discriminant-negligible height bound
h(p) s disc(p)®, Ve>0 (5.2)

where disc(p) is an appropriately defined discriminant, then they also satisfy a Galois bound
[Q(p) : Q] > disc(p)€ for some ¢ > 0. Further, it was already known by the work of many
authors based on the strategy of Pila [35] that this implies the André—Oort conjecture for S.

In the case of the Siegel modular variety S = #Ag, the height bound (5.2) was
proved by Tsimerman [41] as a simple consequence of the recently proven averaged Colmez
formula [1,46]. Tsimerman deduces the corresponding Galois bound from this using Masser—
Wiistholz’ isogeny estimates [29]. However, these estimates are proved using transcendence
methods applied to abelian functions, and have no known counterpart applicable when the
Shimura variety S does not parameterize abelian varieties (i.e., is not of abelian type). The
result of [12] removes this obstruction.

A few months after [12] appeared on the arXiv, Pila—Shankar-Tsimerman have
posted a paper [36] (with an appendix by Esnault, Groechenig) establishing the conjec-
ture (5.2) for arbitrary Shimura varieties (by a highly sophisticated reduction to the # case
where averaged Colmez applies). In combination with [12] this establishes the André—Oort
conjecture for general Shimura varieties (as well as for mixed Shimura varieties by the work
of Gao [22]). It is interesting to note that the proof of André—Oort now involves three distinct
applications of point-pointing: for functional transcendence, for Galois lower bounds, and
for the Pila—Zannier strategy.

5.4. Effectivity and polynomial time computability

In each of the problems listed at the end of Section 5.1, it is natural to ask, when the
data defining the problem is given over Q, whether one can effectively determine the finite
set of solutions; and whether one can compute the set in polynomial time (say, in the degrees
and the log-heights of the algebraic data involved, for a fixed dimension). In most cases
mentioned above, the use of the Pila—Wilkie theorem is the only source of ineffectivity in
the proofs. In fact, for all examples above excluding the André—Oort conjecture, definability
of the relevant transcendental sets in an (effective) sharply o-minimal structure is expected to
imply the (effective) polynomial time computability of these finite sets. This has been carried
out using Theorem 12 for Manin—-Mumford [6] and using Theorem 32 for a case of relative
Manin—Mumford [5], giving effective polynomial time decidability of these problems. We
see no obstacles in similarly applying [5] to the other problems listed above, though this is
yet to be verified in each specific case.

In the André—Oort conjecture Siegel’s class number bound introduces another
source of ineffectivity in the finiteness result. Nevertheless, in [5] Theorem 32 is used to
prove the polynomial time decidability of André—Oort for subvarieties of C” (i.e., by a
polynomial-time algorithm involving a universal, undetermined Siegel constant). This is
expected to extend to arbitrary Shimura varieties.
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1. INTRODUCTION

Ramsey theory is a beautiful subject which interrelates with a multitude of mathe-
matical fields. In particular, since its inception, developments in Ramsey theory have often
been motivated by problems in logic; in turn, Ramsey theory has instigated some seminal
developments in logic. The intent of this article is to provide the general mathematician
with an introduction to the intriguing subject of Ramsey theory on homogeneous structures
while being detailed enough to describe the state-of-the-art and the main ideas at play. We
present historical highlights and discuss why solutions to problems on homogeneous struc-
tures require more than just straightforward applications of finite structural Ramsey theory.
In the following sections, we map out collections of recent results and methods which were
developed to overcome obstacles associated with forbidden substructures. These new meth-
ods involve applications from logic (especially forcing but also ideas from model theory),
topological Ramsey spaces, and category theory.

The subject of Ramsey theory on infinite structures begins with this lovely theorem.

Theorem 1.1 (Ramsey, [58]). Given positive integers k and r and a coloring of the k-element
subsets of the natural numbers N into r colors, there is an infinite set of natural numbers
N C N such that all k-element subsets of N have the same color.

There are two natural interpretations of Ramsey’s theorem in terms of infinite struc-
tures. First, letting < denote the standard linear order on N, Ramsey’s theorem shows that
given any finite coloring of all linearly ordered substructures of (N, <) of size k, there is
an isomorphic substructure (N, <) of (N, <) such that all linearly ordered substructures
of (N, <) of size k have the same color. Second, one may think of the k-element subsets
of N as k-hyperedges. Then Ramsey’s theorem yields that, given any finite coloring of the
k-hyperedges of the complete k-regular hypergraph on infinitely many vertices, there is an
isomorphic subgraph in which all k-hyperedges have the same color.

Given this, one might naturally wonder about other structures.

Question 1.2. Which infinite structures carry an analogue of Ramsey’s theorem?

The rational numbers (Q, <) as a dense linearly ordered structure (without end-
points) was the earliest test case. It is a fun exercise to show that given any coloring of the
rational numbers into finitely many colors, there is one color-class which contains a dense
linear order, that is, an isomorphic subcopy of the rationals in one color. Thus, the rationals
satisfy a structural pigeonhole principle known as indivisibility.

The direct analogy with Ramsey’s theorem ends, however, when we consider pairs
of rationals. It follows from the work of Sierpinski in [65] that there is a coloring of the
pairs of rationals into two colors so that both colors persist in every isomorphic subcopy of
the rationals. Sierpinski’s coloring provides a clear understanding of one of the fundamen-
tal issues arising in partition theory of infinite structures not occurring in finite structural
Ramsey theory. Let {g; : i € N} be a listing of the rational numbers, without repetition, and
for i < j define c({g;,q;}) = blue if ¢; < qj, and c({g;,q,}) = red if g; < g;. Then in
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each subset O C Q forming a dense linear order, both color classes persist; that is, there are
pairs of rationals in Q colored red and also pairs of rationals in Q colored blue. Since it is
impossible to find an isomorphic subcopy of the rationals in which all pairsets have the same
color, a direct analogue of Ramsey’s theorem does not hold for the rationals.

The failure of the straightforward analogue of Ramsey’s theorem is not the end,
but rather just the beginning of the story. Galvin (unpublished) showed a few decades later
that there is a bound on the number of unavoidable colors: Given any coloring of the pairs
of rationals into finitely many colors, there is a subcopy of the rationals in which all pairs
belong to the union of two color classes. Now one sees that Question 1.2 ought to be refined.

Question 1.3. For which infinite structures S is there a Ramsey-analogue in the following
sense: Let A be a finite substructure of S. Is there a positive integer 7' such that for any
coloring of the copies of A into finitely many colors, there is a subcopy S’ of S in which
there are no more than 7" many colors for the copies of A?

The least such integer 7', when it exists, is denoted 7' (A) and called the big Ramsey
degree of A in S, a term coined in Kechris—Pestov—Todorcevic (2005). The “big” refers to
the fact that we require an isomorphic subcopy of an infinite structure in which the number
of colors is as small as possible (in contrast to the concept of small Ramsey degree in finite
structural Ramsey theory).

Notice how Sierpiniski played the enumeration {g; : i € N} of the rationals against
the dense linear order to construct a coloring of pairsets of rationals into two colors, each of
which persists in every subcopy of the rationals. This simple, but deep idea sheds light on
a fundamental difference between finite and infinite structural Ramsey theory. The interplay
between the enumeration and the relations on an infinite structure has bearing on the number
of colors that must persist in any subcopy of that structure. We will see examples of this at
work throughout this article and explain the general principles which have been found for
certain classes of structures with relations of arity at most two, even as the subject aims
towards a future overarching theory of big Ramsey degrees.

2. THE QUESTIONS

Given a finite relational language £ = {R; : i < k} with each relation symbol R;
of some finite arity, say, n;, an £-structure is a tuple A = (A, RS‘, e, R£_1 ), where A # @
is the universe of A and for each i < k, R;‘ C A™ . For L-structures A and B, an embed-
ding from A into B is an injection e : A — B such that for all i < k, R;‘(al, ceesdp) ©
R?(e(al), ...,e(ay,;)). The e-image of A is a copy of A in B. If e is the identity map, then A
is a substructure of B. An isomorphism is an embedding which is onto its image. We write
A < B exactly when there is an embedding of A into B, and A = B exactly when A and B
are isomorphic.

A class X of finite structures for a relational language £ is called a Fraissé class
if it is hereditary, satisfies the joint embedding and amalgamation properties, contains (up
to isomorphism) only countably many structures, and contains structures of arbitrarily large
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finite cardinality. Class K is hereditary if whenever B € K and A < B, then also A € X;
K satisfies the joint embedding property if for any A, B € X, there is a C € K such that
A < CandB < C; X satisfies the amalgamation property if for any embeddings f : A — B
and g : A — C, with A, B, C € X, there is a D € KX and there are embeddings r : B — D
and s : C — Dsuchthatr o f = s o g. A Fraissé class KX satisfies the strong amalgamation
property (SAP) if given A, B, C € X and embeddings ¢ : A — B and f : A — C, there
is some D € K and embeddings ¢/ : B — D and f’: C — D such thate’ ce = f'o f,
and ¢'[B] N f'[C] = €' o e[A] = f' o f[A]. We say that K satisfies the free amalgamation
property (FAP) if it satisfies the SAP and, moreover, D can be chosen so that D has no
additional relations other than those inherited from B and C.

Let A, B, C be £-structures such that A < B < C. We use (E) to denote the set of all
copies of A in B. The Erd§s—Rado arrow notation C — (B)z means that for each coloring of
(2) into k colors, thereisaB’ € (C

/ B) such that (i) is monochromatic, meaning every member
of (]Z) has the same color.

Definition 2.1. A Fraissé class K has the Ramsey property if for any two structures A < B
in K and any k > 2, there is a C € KX with B < C such that C — (B)z.

Many Fraissé classes, such as the class of finite graphs, do not have the Ramsey
property. However, by allowing a finite expansion of the language, often by just a linear order,
the Ramsey property becomes more feasible. Letting < be a binary relation symbol not in
the language £ of K, an £ U {<}-structure is in K = if and only if its universe is linearly
ordered by < and its £-reduct is a member of J. A highlight is the work of NeSetfil and
Radl in [51] and [52], proving that for any Fraissé class K with FAP, its ordered version X =
has the Ramsey property. The recent paper [4e] by Hubicka and NeSetfil presents the state-
of-the-art in finite structural Ramsey theory. Examples of Fraissé classes with the Ramsey
property include the class of finite linear orders, and the classes of finite ordered versions
of graphs, digraphs, tournaments, triangle-free graphs, posets, metric spaces, hypergraphs,
hypergraphs omitting some irreducible substructures, and many more.

A structure K is called universal for a class of structures K if each member of
K embeds into K. A structure K is homogeneous if each isomorphism between finite sub-
structures of K extends to an automorphism of K. Unless otherwise specified, we will write
homogeneous to mean countably infinite homogeneous, such structures being the focus of
this paper. The age of an infinite structure K, denoted Age(K), is the collection of all finite
structures which embed into K. A fundamental theorem of Fraissé from [31] shows that each
Fraissé class gives rise to a homogeneous structure via a construction called the Fraissé limit.
Conversely, given any countable homogeneous structure K, Age(K) is a Fraissé class and,
moreover, the Fraissé limit of Age(K) is isomorphic to K. The Kechris—Pestov—Todorcevic
correspondence between the Ramsey property of a Fraissé class and extreme amenability of
the automorphism group of its Fraissé limit in [41] propelled a burst of discoveries of more
Fraissé classes with the Ramsey property.

First we state an esoteric but driving question in the area.
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Question 2.2. What is a big Ramsey degree?

What is the essential nature of a big Ramsey degree? Why is it that given a Fraissé
class K satisfying the Ramsey property, its Fraissé limit usually fails to carry the full ana-
logue of Ramsey’s Theorem 1.1 (i.e., all big Ramsey degrees being one)? A theorem of
Hjorth in [37] showed that for any homogeneous structure K with |Aut(K)| > 1, there is a
structure in Age(K) with big Ramsey degree at least two. While much remains open, we now
have an answer to Question 2.2 for FAP and some SAP homogeneous structures with finitely
many relations of arity at most two, and these results will be discussed in the following
sections.

We say that S has finite big Ramsey degrees if T (A) exists for each finite substructure
A of S. We say that exact big Ramsey degrees are known if there is either a computation of
the degrees or a characterization from which they can be computed. Indivisibility holds if
T(A) = 1 for each one-element substructure A of S. The following questions progress in
order of strength: A positive answer to (3) implies a positive answer to (2), which in turn
implies a positive answer to (1).

Question 2.3. Given a homogeneous structure K,

(1) Does K have finite big Ramsey degrees? That is, can one find upper bounds
ensuring that big Ramsey degrees exist?

(2) If K has finite big Ramsey degrees, is there a characterization of the exact big
Ramsey degrees via canonical partitions? If yes, calculate or find an algorithm
to calculate them.

(3) Does K carry a big Ramsey structure?
Part (2) of this question involves finding canonical partitions.

Definition 2.4 (Canonical Partition, [44]). Given a Fraissé class X with Fraissé limit K, and
given A € K, apartition {P; :i <n}of (ﬁ) is canonical if the following hold: For each finite
coloring of (E), there is a subcopy K’ of K such that for each i < n, all members of P; N (Ii)
have the same color; and persistence: For every subcopy K’ of K and each i < n, P; N (I:)
is nonempty.

Canonical partitions recover an exact analogue of Ramsey’s theorem for each piece
of the partition. In practice such partitions are characterized by adding extra structure to K,
including the enumeration of the universe of K and a tree-like structure capturing the rela-
tions of K against the enumeration.

Part (3) of Question 2.3 has to do with a connection between big Ramsey degrees
and topological dynamics, in the spirit of the Kechris—Pestov—Todorcevic correspondence,
proved by Zucker in [76]. A big Ramsey structure is essentially a finite expansion K* of K so
that each finite substructure of K* has big Ramsey degree one, and, moreover, the unavoid-
able colorings cohere in that for A, B € Age(K) with A embedding into B, the canonical
partition for copies of B when restricted to copies of A recovers the canonical partition for
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copies of A. Big Ramsey structures imply canonical partitions. The reverse is not known
in general, but certain types of canonical partitions are known to imply big Ramsey struc-
tures (Theorem 6.10 in [8]), and it seems reasonable to the author to expect that (1)—(3) are
equivalent.

Canonical partitions and big Ramsey structures are really getting at the question
of whether we can find an optimal finite expansion K* of a given homogeneous structure
K so that K* carries an exact analogue of Ramsey’s theorem. In this sense, big Ramsey
degrees are not quite so mysterious, but are rather saying that an exact analogue of Ramsey’s
theorem holds for an appropriately expanded structure. The question then becomes: What is
the appropriate expansion?

3. CASE STUDY: THE RATIONALS

The big Ramsey degrees for the rationals were determined by 1979. Laver in 1969
(unpublished, see [1e]) utilized a Ramsey theorem for trees due to Milliken [5e] (Theorem 3.2)
to find upper bounds. Devlin completed the picture in his PhD thesis [1e], calculating the
big Ramsey degrees of the rationals. These surprisingly turn out to be related to the odd
coefficients in the Taylor series of the tangent function: The big Ramsey degree for n-element
subsets of the rationals is 7'(n) = (2n — 1)!c2,—1, Where ¢ is the kth coefficient in the Taylor
series for the tangent function, tan(x) = Y 7o, cxx¥. As Todorcevic states, the big Ramsey
degrees for the rationals “characterize the Ramsey theoretic properties of the countable dense
linear ordering (Q, <) in a very precise sense. The numbers 7 (1) are some sort of Ramsey
degrees that measure the complexity of an arbitrary finite coloring of the n-element subsets
of Q modulo, of course, restricting to the n-element subsets of X for some appropriately
chosen dense linear subordering X of Q.” (page 143, [66], notation modified)

We present Devlin’s characterization of the big Ramsey degrees of the rationals and
the four main steps in his proof. (A detailed proof appears in Section 6.3 of [66].) Then we
will present a method from [8] using coding trees of 1-types which bypasses nonessential
constructs, providing what we see as a satisfactory answer to Question 2.2 for the rationals.

We use some standard mathematical logic notation, providing definitions as needed
for the general mathematician. The set of all natural numbers {0, 1, 2, ...} is denoted by
. Each natural number k € o is equated with the set {0, ...,k — 1} and its natural linear
ordering. For us k € w and k < w are synonymous. For k € w, k=% denotes the tree of
all finite sequences with entries in {0, ...,k — 1}, and ©=® denotes the tree of all finite
sequences of natural numbers. Finite sequences with any sort of entries are thought of as
functions with domain some natural number. Thus, for a finite sequence ¢ the length of t,
denoted |¢[, is the domain of the function ¢, and for i € dom(t), #(i) denotes the ith entry
of the sequence ¢. For £ € w, we write ¢ | £ to denote the initial segment of ¢ of length £ if
£ < |t|, and ¢ otherwise. For two finite sequences s and ¢, we write s T ¢ when s is an initial
segment of ¢, and we write s ¢ when s is a proper initial segment of 7, meaning that s C ¢
and s # t. We write s A t to denote the meet of s and ¢, that is, the longest sequence which
is an initial segment of both s and . Given a subset S of a tree of finite sequences, the meet
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closure of S, denoted cl(.5), is the set of all nodes in S along with the set of all meets s Az,
fors,t € S.

A Ramsey theorem for trees, due to Milliken, played a central role in Devlin’s work
and has informed subsequent approaches to finding upper bounds for big Ramsey degrees.
In this area, a subset T C w=? is called a tree if there is a subset LT C w such that T =
{t M:t €T, e Lt} Thus,atreeis closed under initial segments of lengths in L, but not
necessarily closed under all initial segments in w=%. The height of a node ¢ in T, denoted
htr (¢), is the order-type of the set {s € T : s C t}, linearly ordered by C. We write T'(n) to
denote {t € T : hty(t) = n}.Fort € T,letSucer(t) ={s | (|t| +1):s € T and ¢ C s},
noting that Succr(#) € T only if |[t| + 1 € L7.

A subtree S C T is a strong subtree of T if Ls C L1 and each node s in S branches
as widely as T will allow, meaning that for s € S, for each ¢ € Succy (s) there is an extension
s’ € S such that ¢ C s’. For the next theorem, define ]_[i <g Ti (n) to be the set of sequences

(to,...,tq—1) where t; € T;(n), the product of the nth levels of the trees 7;. Then let
Q1= J]]rm. 3.1
i<d n<wi<d

The following is the strong tree version of the Halpern—L&uchli theorem.

Theorem 3.1 (Halpern—Lauchli, [34]). Let d be a positive integer, T; C w=® (i < d) be
finitely branching trees with no terminal nodes, and r > 2. Given a coloring ¢ : @, ., T; =,
there is an increasing sequence (my : n < w) and strong subtrees S; < T; such that for all
i <dandn <o, Sj(n) C T;(my,), and c is constant on Q; _; Si.

The Halpern—Lauchli theorem has a particularly strong connection with logic. It
was isolated by Halpern and Lévy as a key juncture in their work to prove that the Boolean
Prime Ideal Theorem is strictly weaker than the Axiom of Choice over the Zermelo—Fraenkel
Axioms of set theory. Once proved by Halpern and Liuchli, Halpern and Lévy completed
their proof in [35].

Harrington (unpublished) devised an innovative proof of the Halpern—L&uchli theo-
rem which used Cohen forcing. The forcing helps find good nodes in the trees 7; from which
to start building the subtrees S;. From then on, the forcing is used @ many times, each time
running an unbounded search for finite sets S; (n) which satisfy that level of the Halpern—
Liuchli theorem. Being finite, each S;(n) is in the ground model. The proof entails neither
passing to a generic extension nor any use of Shoenfield’s Absoluteness Theorem.

A k-strong subtree is a strong subtree with k many levels. The following theorem
is proved inductively using Theorem 3.1.

Theorem 3.2 (Milliken, [50]). Ler T C w=% be a finitely branching tree with no terminal
nodes, k > 1, and r > 2. Given a coloring of all k-strong subtrees of T into r colors, there
is an infinite strong subtree S C T such that all k-strong subtrees of S have the same color.

For more on the Halpern—Lauchli and Milliken theorems, see [21, 46, 66]. Now we
look at Devlin’s proof of the exact big Ramsey degrees of the rationals, as it has bearing on
many current approaches to big Ramsey degrees.
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The rationals can be represented by the tree 2<% of binary sequences with the lexi-
cographic order < defined as follows: Given s,¢ € 2=® with s # ¢, and letting u denote s Az,
define s < ¢ to hold if and only if (Ju| < |s| and s(|u]) = 0) or (Ju| < |¢t] and ¢(Ju]) = 1).
Then (2<%, <) is a dense linear order. The following is Definition 6.11 in [66], using the
terminology of [62]. For |s| < |¢|, the number ¢ (|s]) is called the passing number of t at s.

Definition 3.3. For A, B C w=®, we say that A and B are similar if there is a bijection
f :cl(A) — cl(B) such that for all 5, ¢ € cl(A4),

(a) (preserves end-extension) s C ¢ < f(s) CE f(¢),

(b) (preserves relative lengths) |s| < |t| < | f(s)| < |f ()],

(c) s€ A& f(s) e B,

(d) (preserves passing numbers) 1(|s|) = f(¢)(| f(s)]) whenever |s| < |].

Similarity is an equivalence relation; a similarity equivalence class is called a sim-
ilarity type. We now outline the four main steps to Devlin’s characterization of big Ramsey
degrees in the rationals. Fix n > 1.

I. (Envelopes) Given a subset A C 2<% of size n, let k be the number of levels in
cl(A). An envelope of A is a k-strong subtree E(A) of 2<% such that A C E(A). Given any
k-strong subtree S of 2=, there is exactly one subset B C S which is similar to 4. This
makes it possible to transfer a coloring of the similarity copies of A in 2= to the k-strong

2<% in a well-defined manner.

subtrees of

II. (Finite Big Ramsey Degrees) Apply Milliken’s theorem to obtain an infinite
strong subtree 7 C 2<% such that every similarity copy of A in T has the same color. As
there are only finitely many similarity types of sets of size n, finitely many applications
of Milliken’s theorem results in an infinite strong subtree S C 2<% such that the color-
ing is monochromatic on each similarity type of size n. This achieves finite big Ramsey
degrees.

III. (Diagonal Antichain for Better Upper Bounds) To obtain the exact big Ramsey
degrees, Devlin constructed a particular antichain of nodes D C 2=¢ such that (D, <) is a
dense linear order and no two nodes in the meet closure of D have the same length, a property
called diagonal. He also required (x): All passing numbers at the level of a terminal node
or a meet node in cl(D) are 0, except of course the rightmost extension of the meet node.
Diagonal antichains turn out to be essential to characterizing big Ramsey degrees, whereas
the additional requirement () is now seen to be nonessential when viewed through the lens
of coding trees of 1-types.

IV. (Exact Big Ramsey Degrees) To characterize the big Ramsey degrees, Devlin
proved that the similarity type of each subset of D of size n persists in every subset D’ C D
such that (D’, <) is a dense linear order. The similarity types of antichains in D thus form
a canonical partition for linear orders of size n. By calculating the number of different
similarity types of subsets of D of size n, Devlin found the big Ramsey degrees for the
rationals.
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FIGURE 1
Coding tree S(Q) of 1-types for (Q, <) and the linear order represented by its coding nodes.

Now we present the characterization of the big Ramsey degrees for the rationals
using coding trees of 1-types. Coding trees on 2<% were first developed in [13] to solve
the problem of whether or not the triangle-free homogeneous graph has finite big Ramsey
degrees. The presentation given here is from [8], where the notion of coding trees was honed
using model-theoretic ideas. We hope that presenting this view here will set the stage for a
concrete understanding of big Ramsey degree characterizations discussed in Section 5.

Fix an enumeration {qq,q1, - ..} of Q. Forn < w, we let Q ' n denote the substruc-
ture ({q; : i € n}, <) of (Q, <), which we refer to as an initial substructure. One can think of
Q | n as a finite approximation in a construction of the rationals. The definition of a coding
tree of 1-types in [8] uses complete realizable quantifier-free 1-types over initial substruc-
tures. Here, we shall retain the terminology of [8] but (with apologies to model-theorists)
will use sets of literals instead, since this will convey the important aspects of the construc-
tions while being more accessible to a general readership. For now, we call a set of formulas
sC{(gi<x):ientU{(x <gq;):i en}al-typeover Q | nif (a)foreachi < n exactly
one of the formulas (¢; < x) or (x < g;) is in s, and (b) there is some (and hence infinitely
many) j > n such that g; satisfies s, meaning that replacing the variable x by the rational
number ¢; in each formula in s results in a true statement. In other words, s is a 1-type if s
prescribes a legitimate way to extend Q | n to a linear order of size n + 1.

Definition 3.4 (Coding Tree of 1-Types for Q, [8]). For a fixed enumeration {qo, ¢1, ...} of
the rationals, the coding tree of 1-types S(Q) is the set of all 1-types over initial substructures
along with a function ¢ : @ — S(Q) such that ¢(n) is the 1-type of g, over Q | n. The tree-
ordering is simply inclusion.
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Given s € S(Q) let |s| = j + 1 where j is maximal such that one of (x < ¢;) or
(gj < x)isins. Foreachi < [s|, we let s(i) denote the formula from among (x < g;) or
(gi < x) which is in s. The coding nodes c(n), in practice usually denoted by ¢, are special
distinguished nodes representing the rational numbers; ¢, represents the rational g, , because
¢y is the 1-type with parameters from among {¢; : i € n} that ¢, satisfies. Notice that this
tree S(Q) has at most one splitting node per level. The effect is that any antichain of coding
nodes in S(Q) will automatically be diagonal. (See Figure 1, reproduced from [8].)

Fix an ordering <jx on the literals: For i < j, define (x < q;) <iex (¢i < X) <lex
(x < g;). Extend <jex to S(Q) by declaring for s, € S(Q), s <iex ¢ if and only if s and ¢
are incomparable and fori = [s A t], (i) <iex 1(i).

Definition 3.5. For A, B sets of coding nodes in S(Q), we say that A and B are similar if
there is a bijection f : cl(4) — cl(B) such that for all s, ¢ € cl(A), f satisfies (a)—(c) of
Definition 3.3 and (d') s <jex ¢ <= f(5) <iex f(1),

When B is similar to A, we call B a similarity copy of A. Condition (d) in Defini-
tion 3.3 implies that the lexicographic order on 2<% is preserved, and, moreover, that passing
numbers at meet nodes and at terminal nodes are preserved. In (d’) we only need to preserve
lexicographic order.

Extending Harrington’s method, forcing is utilized to obtain a pigeonhole principle
for coding trees of 1-types in the vein of the Halpern—Lauchli Theorem 3.1, but for colorings
of finite sets of coding nodes, rather than antichains. Via an inductive argument using this
pigeonhole principle, we obtain the following Ramsey theorem on coding trees.

Theorem 3.6 ([8]). Let S(Q) be a coding tree of 1-types for the rationals. Given a finite set
A of coding nodes in S(Q) and a finite coloring of all similarity copies of A in S(Q), there
is a coding subtree S of S(Q) similar to S(Q) such that all similarity copies of A in S have
the same color.

Fix n > 1. By applying Theorem 3.6 once for each similarity type of coding nodes
of size n, we prove finite big Ramsey degrees, accomplishing step II while bypassing step I in
Devlin’s proof. Upon taking any antichain D of coding nodes in S(Q) representing a dense
linear order, we obtain better upper bounds which are then proved to be exact, accomplishing
steps III and IV.

Big Ramsey degrees of the rationals. In [8], we show that given n > 1, the big Ramsey
degree T'(n) for linear orders of size n in the rationals is the number of similarity types of
antichains of coding nodes in S(Q).

What then is the big Ramsey degree T (1) in the rationals? It is the number of differ-
ent ways to order the indexes of an increasing sequence of rationals {g;, < ¢;, <+ <¢i,_,}
with incomparable 1-types along with the number of ways to order the first differences of
their 1-types over initial substructures of Q. The first difference between the 1-types of the
rationals ¢; and ¢; occurs at the least k such that g; < gz and gx < g, or vice versa.
This means that ¢; and g; are in the same interval of Q | k but in different intervals of
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Q ! (k 4 1). Concretely, T'(n) is the number of <-isomorphism classes of (2n — 1)-tuples of
integers (ip, .. .,in—1,ko, ..., kn—2) with the following properties: {gi, <qi, <+ <¢i,_,}
is a set of rationals in increasing order, and for each j <n — 1, gi; < qk; < qi;,, Where
k; < min(ij, ij41) and is the least integer satisfying this relation.

4. HISTORICAL HIGHLIGHTS, RECENT RESULTS, AND METHODS

We now highlight some historical achievements, and present recent results and
the main ideas of their methods. For an overview of results up to the year 2000, see the
appendix by Sauer in Fraissé’s book [32]; for an overview up to the year 2013, see Nguyen
Van Thé’s habilitation thesis [54]. Those interested in open problems intended for under-
graduate research may enjoy [18].

The Rado graph is the second example of a homogeneous structure with nontrivial
big Ramsey degrees which has been fully understood in terms of its partition theory. The
Rado graph R is up to isomorphism the homogeneous graph on countably many vertices
which is universal for all countable graphs. It was known to Erdds and other Hungarian
mathematicians in the 1960s, though possibly earlier, that the Rado graph is indivisible. In
their 1975 paper [3e], ErdGs, Hajnal, and Pésa constructed a coloring of the edges in R into
two colors such that both colors persist in each subcopy of R. Pouzet and Sauer later showed
in [57] that the big Ramsey degree for edge colorings in the Rado graph is exactly two. The
complete characterization of the big Ramsey degrees of the Rado graph was achieved in a
pair of papers by Sauer [62] and by Laflamme, Sauer, and Vuksanovic [44], both appearing
in 2006, and the degrees were calculated by Larson in [45]. The two papers [62] and [44]
in fact characterized exact big Ramsey degrees for all unrestricted homogeneous structures
with finitely many binary relations, including the homogeneous digraph, homogeneous tour-
nament, and random graph with finitely many edges of different colors. Milliken’s theorem
was used to prove existence of upper bounds, alluding to a deep connection between big
Ramsey degrees and Ramsey theorems for trees. These results are discussed in Section 5.1.

In [43], for each n > 2, Laflamme, Nguyen Van Thé, and Sauer calculated the big
Ramsey degrees of QQ,,, the rationals with an equivalence relation with n many equivalence
classes each of which is dense in Q. This hinged on proving a “colored version” of Milliken’s
theorem, where the levels of the trees are colored, to achieve upper bounds. Applying their
result for Q», they calculated the big Ramsey degrees of the dense local order, denoted S(2).
In his PhD thesis [38], Howe proved finite big Ramsey degrees for the generic bipartite graph
and the Fraissé limit of the class of finite linear orders with a convex equivalence relation.

A robust and streamlined approach applicable to a large class of homogeneous struc-
tures, and recovering the previously mentioned examples (except for S(2)), was developed
by Coulson, Patel, and the author in [8], building on ideas in [13] and [12]. In [8], it was shown
that homogeneous structures with relations of arity at most two satisfying a strengthening
of SAP, called SDAP™, have big Ramsey structures which are characterized in a simple
manner, and therefore their big Ramsey degrees are easy to compute. The proof proceeds
via a Ramsey theorem for colorings of finite antichains of coding nodes on diagonal coding
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trees of 1-types. This approach bypasses any need for envelopes, the theorem producing of
its own accord exact upper bounds. Moreover, the Halpern-Lauchli-style theorem, which is
proved via forcing arguments to achieve a ZFC result and used as the pigeonhole principle in
the Ramsey theorem, immediately yields indivisibility for all homogeneous structures satis-
fying SDAP™, with relations of any arity. These results and their methods are discussed in
Section 5.1.

The k-clique-free homogeneous graphs, denoted Gg, k > 3, were constructed by
Henson in his 1971 paper [36], where he proved these graphs to be weakly indivisible. In
their 1986 paper [42], Komjath and R6dl proved that G3 is indivisible, answering a question
of Hajnal. A few years later, El-Zahar and Sauer gave a systematic approach in [24], proving
that for each k > 3, the k-clique-free homogeneous graph Gy, is indivisible. In 1998, Sauer
proved in [6e] that the big Ramsey degree for edges in G3 is two. Further progress on big
Ramsey degrees of G3, however, needed a new approach. This was achieved by the author
in [13], where the method of coding trees was first developed. In [12], the author extended
this work, proving that Gy has finite big Ramsey degrees, for each k > 3. In [13] and [12],
the author proved a Ramsey theorem for colorings of finite antichains of coding nodes in
diagonal coding trees. These diagonal coding trees were designed to achieve very good upper
bounds and directly recover the indivisibility results in [42] and [24], discovering much of
the essential structure involved in characterizing their exact big Ramsey degrees. (Milliken-
style theorems on nondiagonal coding trees which fully branch at each level do not directly
prove indivisibility results, and produce looser upper bounds.) In particular, after a minor
modification, the trees in [13] produced exact big Ramsey degrees for G3, as shown in [14].
Around the same time, exact big Ramsey degrees for G3 were independently proved by
Balko, Chodounsky, Hubicka, Konec¢ny, Vena, and Zucker, instigating the collaboration of
this group with the author.

Given a finite relational language £, an £-structure A is called irreducible if each
pair of its vertices are in some relation of A. Given a set ¥ of finite irreducible &£-structures,
Forb(¥') denotes the class of all finite &£-structures into which no member of ¥ embeds.
Fraissé classes of the form Forb(¥') are exactly those with free amalgamation. Zucker in
[71] proved that for any Fraissé class of the form Forb(¥'), where ¥ is a finite set of irre-
ducible substructures and all relations have arity at most two, its Fraissé limit has finite
big Ramsey degrees. His proof used coding trees which branch at each level and a forcing
argument to obtain a Halpern—Lauchli-style theorem which formed the pigeonhole prin-
ciple for a Milliken-esque theorem for these coding trees. An important advance in this
paper is Zucker’s abstract, top-down approach, providing simplified and relatively short
proof of finite big Ramsey degrees for this large class of homogeneous structures. On the
other hand, his Milliken-style theorem does not directly recover indivisibility (more work is
needed afterwards to show this), and the upper bounds in [71] did not recover those in [13]
or [12] for the homogeneous k-clique-free graphs. However, by further work done in [6], by
Balko, Chodounsky, Hubicka, Kone¢ny, Vena, Zucker, and the author, indivisibility results
are proved and exact big Ramsey degrees are characterized. Thus, the picture for FAP classes
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with finitely many relations of arity at most two is now clear. These results will be discussed
in Section 5.2.

Next, we look at homogeneous structures with relations of arity at most two which
do not satisfy SDAP' and whose ages have strong (but not free) amalgamation. Nguyen
Van Thé made a significant contribution in his 2008 paper [53], in which he proved that
the ultrametric Urysohn space Qg has finite big Ramsey degrees if and only if S is a finite
distance set. In the case that S is finite, he calculated the big Ramsey degrees. Moreover, he
showed that for an infinite countable distance set S, Qg is indivisible if and only if S’ with
the reverse order as a subset of the reals is well ordered. His proof used infinitely wide trees
of finite height and his pigeonhole principle was actually Ramsey’s theorem. All countable
Urysohn metric spaces with finite distance set were proved to be indivisible by Sauer in [63],
completing the work that was initiated in [55] in relation to the celebrated distortion problem
from Banach space theory and its solution by Odell and Schlumprecht in [56].

Masulovi¢ instigated the use of category theory to prove transport principles show-
ing that finite big Ramsey degrees can be inferred from one category to another. After proving
a general transport principle in [47], he applied it to prove finite big Ramsey degrees for many
universal structures and also for homogenous metric spaces with finite distance sets with a
certain property which he calls compact with one nontrivial block. MaSulovi¢ proved in [48]
that in categories satisfying certain mild conditions, small Ramsey degrees are minima of big
Ramsey degrees. In the paper [49] with Sobot (not using category theory), finite big Ramsey
degrees for finite chains in countable ordinals were shown to exist if and only if the ordinal
is smaller than w®. Dasilva Barbosa in [9] proved that categorical precompact expansions
grant upper bounds for big and small Ramsey degrees. As an application, he calculated the
big Ramsey degrees of the circular directed graphs S(n) for all n > 2, extending the work in
[43] for S(2).

Hubicka recently developed a new method to handle forbidden substructures utiliz-
ing topological Ramsey spaces of parameter words due to Carlson and Simpson [7]. In [39],
he applied his method to prove that the homogeneous partial order and Urysohn S-metric
spaces (where S is a set of nonnegative reals with 0 € S satisfying the 4-values condition)
have finite big Ramsey degrees. He also showed that this method is quite broad and can be
applied to yield a short proof of finite big Ramsey degrees in G3. Beginning with the upper
bounds in [39], the exact big Ramsey degrees of the generic partial order have been charac-
terized in [5] by Balko, Chodounsky, Hubicka, Kone¢ny, Vena, Zucker, and the author. Also
utilizing techniques from [39], Balko, Chodounsky, Hubicka, Kone¢ny, NeSettil, and Vena in
[2] have found a condition which guarantees finite big Ramsey degrees for binary relational
homogeneous structures with strong amalgamation. Examples of structures satisfying this
condition include the S-Urysohn space for finite distance sets .S, A-ultrametric spaces for a
finite distributive lattice, and metric spaces associated to metrically homogeneous graphs of
a finite diameter from Cherlin’s list with no Henson constraints.

For homogeneous structures with free amalgamation, a recent breakthrough of
Sauer proving indivisibility in [64] culminates a long line of work in [25-28, 61]. Comple-
mentary work appeared in [8], where it was proved that for finitely many relations of any
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arity, SDAP™ implies indivisibility. On the other hand, big Ramsey degrees of structures
with relations of arity greater than two has only recently seen progress, beginning with
[3] and [4], where Balko, Chodounsky, Hubic¢ka, Kone¢ny, and Vena found upper bounds
for the big Ramsey degrees of the generic 3-hypergraph. Work in this area is ongoing and
promising.

5. EXACT BIG RAMSEY DEGREES

This section presents characterizations of exact big Ramsey degrees known at the
time of writing. These hold for homogeneous structures with finitely many relations of arity
at most two. Two general classes have been completely understood: Structures satisfying a
certain strengthening of strong amalgamation called SDAP™ (Section 5.1) and structures
whose ages have free amalgamation (Section 5.2). Lying outside of these two classes, the
generic partial order has been completely understood in terms of exact big Ramsey degrees
and will be briefly discussed at the end of Section 5.2. These characterizations all involve the
notion of a diagonal antichain, in various trees or spaces of parameter words, representing a
copy of an enumerated homogeneous structure. Here, we present these notions in terms of
structures, as they are independent of the representation.

Let K be an enumerated homogeneous structure with universe {v, : n < w}. Let
A < K be a finite substructure of K, and suppose that the universe of A is {v; : i € I} for
some finite set I € w. We say that A is an antichain if for each pairi < j in I there is a
k(i, j) < i such that the set {k(i, j) :i,j € [ andi < j} is disjoint from 7, and

K Mg £ <k@. /)y Ufvi}) =K} (og: € <k, j)} U}, (6.1
K (Que:€=k@@. )y U{vip) 2K P ({ue: €= k(@ j)}ULv)). (52

An antichain A is called diagonal if {k(i, j) : i < j < m} has cardinality m. We call k(i, )
the meet level of the pair v;, v;.

The notion of diagonal antichain is central to all characterizations of big Ramsey
degrees obtained so far. It seems likely that antichains will be essential to all characteriza-
tions of big Ramsey degrees. However, preliminary work shows that some homogeneous
binary relational structures, such as two or more independent linear orders, will have char-
acterizations in their trees of 1-types involving antichains which are not diagonal, but could
still be characterized via products of finitely many diagonal antichains.

The indexing of the relation symbols { R, : £ < L} in the language £ of K induces a
lexicographic ordering on trees representing relational structures. Here, we present this idea
directly on the structures. For m # n, we declare v, <jex v, if and only if {v,,, v,} is an
antichain and, letting k be the meet level of the pair v,,, v,, and letting £ denote the least
index in L such that v,, and v,, disagree on their Ry-relationship with vy, either Ry (v, vy)
holds while Ry (v, v,,) does not, or else Ry (vy,, vx) holds while Ry (v,,, vi) does not.

Two diagonal antichains A and B in an enumerated homogeneous structure K are
similar if they have the same number of vertices, and the increasing bijection from the uni-
verse A = {vm, :i < p} of A to the universe B = {v,, : i < p} of B induces an isomorphism
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from A to B which preserves <jx and induces a map on the meet levels which, for each
i < j < p,sendsk(m;,m;)tok(n;,nj). This implies that the map sending the coding node
Cm; 10 ¢y; (i < p) in the coding tree of 1-types S(K) (see Definition 3.4) induces a map on
the meet-closures of {¢,, : i < p}and {cp, : i < p} satistying Definition 3.5.

Similarity is an equivalence relation, and an equivalence class is called a similarity
type. We say that K has simply characterized big Ramsey degrees if for A € Age(K), the
big Ramsey degree of A is exactly the number of similarity types of diagonal antichains
representing A. In the next subsection, we will see many homogeneous structures with simply
characterized big Ramsey degrees.

5.1. Exact big Ramsey degrees with a simple characterization

The decades-long investigation of the big Ramsey degrees of the Rado graph cul-
minated in the two papers [62] and [44]. These two papers moreover characterized the big
Ramsey degrees for all unrestricted binary relational homogeneous structures. Unrestricted
binary relational structures are determined by a finite language &£ = { Ry, . . ., R;—; } of binary
relation symbols and a nonempty constraint set € of &£-structures with universe {0, 1} with
the following property: If A and B are two isomorphic &£-structures with universe {0, 1}, then
either both are in € or neither is in €. We let He denote the homogeneous structure such
that each of its substructures with universe of size two is isomorphic to one of the structures
in €. Examples of unrestricted binary relational homogeneous structures include the Rado
graph, the generic directed graph, the generic tournament, and random graphs with more
than one edge relation.

Given a universal constraint set €, letting k = |€|, Sauer showed in [62] how to form
a structure, call it Ug, with nodes in the tree K <® as vertices, such that He embeds into Ue.
Fix a bijection A : € — k. Given two nodes s,¢ € k=% with |s| < |¢|, declare that ¢ (|s|) = j
if and only if the induced substructure of U on universe {s, ¢} is isomorphic to the structure
A(j) in €, where the isomorphism sends s to 0 and ¢ to 1. For two nodes 5,7 € k=% of the
same length, declare that for s lexicographically less than 7, the induced substructure of Ue
on universe {s, ¢} is isomorphic to the structure A(0) in €, where the isomorphism sends s
to 0 and ¢ to 1. As a special case, a universal graph is constructed as follows: Let each node
in 2<% be a vertex. Define an edge relation E between vertices by declaring that, for s # ¢ in
2<% s Et if and only if |s| # |¢t| and (|s| < || = t(]s|) = 1). Then (2<%, E) is universal
for all countable graphs. In particular, the Rado graph embeds into the graph (2<%, E), and
vice versa.

In trees of the form k=%, the notion of similarity is exactly that of Definition 3.3, and
steps I-1V discussed in Section 3 outline the proof of exact big Ramsey degrees contained
in the pair of papers [62] and [44]. Milliken’s theorem was used to prove existence of upper
bounds via strong tree envelopes. For step III, Sauer constructed in [62] a diagonal antichain
D C k=% such that the substructure of U restricted to universe D is isomorphic to He,
achieving upper bounds shown to be exact in [44], finishing step IV. The big Ramsey degree
of a finite substructure A of He is exactly the number of distinct similarity types of subsets
of D whose induced substructure in Ug is isomorphic to A.
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The work in [62] and [44] greatly influenced the author’s development of coding
trees and their Ramsey theorems in [13] and [12] (discussed in Section 5.2). Those papers
along with a suggestion of Sauer to the author during the Banff 2018 Workshop on Unifying
Themes in Ramsey Theory, to try moving the forcing arguments in those papers from coding
trees to structures, informed the approach taken in the paper [8], which is now discussed.

Let K be an enumerated Fraissé structure with vertices {v, : n < w}. Forn < w, we
let K,, denote K | {v; : i < n}, the induced substructure of K on its first n vertices, and call
K, an initial substructure of K. We write 1-type to mean complete realizable quantifier-free
1-type over K, for some n.

Definition 5.1 (Coding Tree of 1-Types, [8]). The coding tree of 1-types S(K) for an enu-
merated Fraissé structure K is the set of all 1-types over initial substructures of K along with
a function ¢ : @ — S(K) such that c¢(n) is the 1-type of v, over K,,. The tree-ordering is
simply inclusion.

A substructure A of K with universe A = {v,, ..., Vy,,} is represented by the set
of coding nodes {c(ny), . ..,c(nm,)} as follows: For each i < m, since c(n;) is the quantifier-
free 1-type of v,, over K,,, substituting v, for the variable x into each formula in ¢ (n;)
which has only parameters from {v,, : j < i} uniquely determines the relations in A on the
vertices {vn; : j < i}. In[8], we formulated the following strengthening of SAP in order to
extract a general property ensuring that big Ramsey degrees have simple characterizations.

Definition 5.2 (SDAP). A Fraissé class K has the Substructure Disjoint Amalgamation
Property (SDAP) if K has strong amalgamation, and the following holds: Given A, C € X,
suppose that A is a substructure of C, where C extends A by two vertices, say v and w. Then
there exist A’, C' € K, where A is a substructure of A’ and C’ is a disjoint amalgamation of
A’ and C over A, such that letting v’, w’ denote the two vertices in C’ \ A’ and assuming (1)
and (2), the conclusion holds:

(1) Suppose B € X is any structure containing A’ as a substructure, and let o and
7 be 1-types over B satisfying o } A’ = tp(v'/A") and 7 } A’ = tp(w’/A’),

(2) Suppose D € K extends B by one vertex, say v”, such that tp(v”’/B) = o.

Then there is an E € K extending D by one vertex, say, w”, such that tp(w”/B) = 7 and
E AU w"}) =C.

This amalgamation property can, of course, be presented in terms of embeddings,
but the form here is indicative of how it is utilized. A free amalgamation version called SFAP
is obtained from SDAP by restricting to FAP classes and requiring A’ = A and C’ = C. Both
of these amalgamation properties are preserved under free superposition. A diagonal subtree
of S(K) is a subtree such that at any level, at most one node branches, the branching degree
is two, and branching and coding nodes never occur on the same level. Diagonal coding
trees are subtrees of S(K) which are diagonal and represent a subcopy of K. The property
SDAP™ holds for a homogeneous structure K if (a) its age satisfies SDAP, (b) there is a
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diagonal coding subtree of S(K), and (c) a technicality called the Extension Property which
in most cases is trivially satisfied. Classes of the form Forb(¥') where ¥ is a finite set of
3-irreducible structures, meaning each triple of vertices is in some relation, satisfy SFAP;
their ordered versions satisfy SDAP™ .

A version of the Halpern—Lauchli theorem for diagonal coding trees was proved in
[8] using the method of forcing to obtain a ZFC result, with the following theorem as an
immediate consequence.

Theorem 5.3 ([8]). Let K be a homogeneous structure satisfying SDAP™, with finitely many
relations of any arity. Then K is indivisible.

For relations of arity at most two, an induction proof then yields a Ramsey theo-
rem for finite colorings of finite antichains of coding nodes in diagonal coding trees. This
accomplishes steps I-III simultaneously and directly, without any need for envelopes, pro-
viding upper bounds which are then proved to be exact, finishing step IV.

Theorem 5.4 ([8]). Let K be a homogeneous structure satisfying SADPT, with finitely many
relations of arity at most two. Then K admits a big Ramsey structure and, moreover, has
simply characterized big Ramsey degrees.

Theorem 5.4 provides new classes of examples of big Ramsey structures while
recovering results in [1e,38,43,44] and special cases of the results in [71]. Theorem 5.3 provides
new classes of examples of indivisible Fraissé structures, in particular for ordered structures
such as the ordered Rado graph, while recovering results in [24,27,42] and certain cases of
Sauer’s results in [64] for FAP classes, while providing new SAP examples with indivisibility.

5.2. Big Ramsey degrees for free amalgamation classes

An obstacle to progress in partition theory of homogeneous structures had been
the fact that Milliken’s theorem is not able to handle forbidden substructures, for instance,
triangle-free graphs. Most results up to 2010 had either utilized Milliken’s theorem or a
variation (as in [43,62]) or else used difficult direct methods (as in [6e]) which did not lend
naturally to generalizations. The idea of coding trees came to the author during the her stay
at the Isaac Newton Institute in 2015 for the programme, Mathematical, Foundational and
Computational Aspects of the Higher Infinite, culminating in the work [13]. The ideas behind
coding trees included the following: Knowing that at the end of the process one will want a
diagonal antichain representing a copy of Gs, starting with a tree where vertices in G3 are
represented by special nodes on different levels should not hurt the results. Further, by using
special nodes to code the vertices of G3 into the trees, one might have a chance to prove
Milliken-style theorems on a collection of trees, each of which codes a subcopy of G3.

The author had made a previous attempt at this problem starting early in 2012. Upon
stating her interest this problem, Todorcevic (2012, at the Fields Institute Thematic Program
on Forcing and Its Applications) and Sauer (2013, at the Erdés Centenary Meeting) each
told the author that a new kind of Milliken theorem would need to be developed in order to
handle triangle-free graphs, which intrigued her even more. Though unknown to her at the
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time, a key piece to this puzzle would be Harrington’s forcing proof of the Halpern—L&uchli
theorem, which Laver was kind enough to outline to her in 2011. (At that time, the author was
unaware of the proof in [67].) While at the INI in 2015, BartoSova reminded the author of her
interest in big Ramsey degrees of G3. Having had time by then to fill out and digest Laver’s
outline, it occurred to the author to try approaching the problem first with the strongest tool
available, namely forcing.

Forcing is a set-theoretic method which is normally used to extend a given universe
satisfying a given set of axioms (often ZFC) to a larger universe in which the same set of
axioms hold while some other statement or property is different than in the original universe.
The beautiful thing about Harrington’s proof is that, while it does involve the method of
forcing, the forcing is only used as a search engine for an object which already exists in the
universe in which one lives. In the context of the Fraissé limit K of a class Forb(¥"), where
F is a finite set of finite irreducible structures, by carefully designing forcings on coding
trees with partial orders ensuring that new levels obtained by the search engine are capable
of extending a given fixed finite coding tree to a subcoding tree representing a copy of K, one
is able to prove Halpern—Liuchli-style theorems for coding trees. These form the pigeonhole
principles of various Milliken-style theorems for coding trees.

As the results and main ideas of the methods in [12,13,71] have been discussed in the
previous section, we now present the characterization of big Ramsey degrees in [6].

Theorem 5.5 ([¢]). Let K be a homogeneous structure with finitely many relations of arity at
most two such that Age(K) = Forb(F") for some finite set ¥ of finite irreducible structures.
Then K admits a big Ramsey structure.

Given a Fraissé class K = Forb(¥') with relations of arity at most two, where ¥
is a finite set of finite irreducible structures, let K denote an enumerated Fraissé limit of K.
Coding trees for K appearing in various papers are all essentially coding trees of 1-types.
The proof of Theorem 5.5 uses the upper bounds of Zucker in [71] as the starting point. It then
proceeds by constructing a diagonal antichain of coding nodes which represent the structure
K, with additional requirements if there are any forbidden irreducible substructures of size
three or more. While the exact characterization in its full generality is not short to state, the
simpler version for the structures Gy include the following: All coding nodes ¢, € A code
an edge with v,, for some m < n and have the following property: If B is any finite graph
which has the same relations over G | |c,| as ¢, does, then B has no edges. Furthermore,
changes in the sets of structures which are allowed to extend a given truncation of A (as a
level set in the coding tree) happen as gradually as possible. From the characterization in [6],
one can make an algorithm to compute the big Ramsey degrees.

As a concrete example, we present the exact characterization for triangle-free
graphs. In Figure 2, on the left is the beginning of G3; with some fixed enumeration of
the vertices as {v, : n < w}. The nth coding node in the tree S = S(G3) C 2<% represents
the nth vertex v, in G3, where passing number O represents a nonedge and passing number 1
represents an edge. Equivalently, S is the coding tree of 1-types for G3, as the left branch at
the level of ¢, represents the literal (x Zv,) and the right branch represents (x Ev,,).
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FIGURE 2
Coding tree S(G3) and the triangle-free graph represented by its coding nodes.

Given an antichain A C K, we say that A is a diagonal substructure if, letting I be
the set of indices of vertices in A, the following hold: (a) For each i € I, v; has an edge with
v for some m < i; let m; denote the least such m. (b) If i < j are in [ with v; Zv; and
mj < i, then there is some n € i such that v; Ev, and v; Ev,, and the least such n, denoted
n(i, j) isnotin 7. (c) For each i, j, k,£ € I (not necessarily distinct) with i < j, k < £,
(i, j) # (k,£),n; <i,and ny < k, we have n(i, j) # n(k,£). Given a finite triangle-free
graph A, the big Ramsey degree 7'(A) in G is the number of different diagonal substructures
representing a copy of A.

We conclude this section by mentioning the exact big Ramsey degrees in the generic
partial order in [5]. This result begins with the upper bounds proved by Hubicka in [39] and
then proceeds by taking a diagonal antichain D representing the generic partial order with
additional structure of interesting levels built into D. A level £ of D is interesting if there
are exactly two nodes, say s, ¢, in that level so that () for exactly one relation p € {<,>, L},
given any s’, ¢’ € D extending s, ¢, respectively, s’ p¢’, while there is no such relation for the
pairs P (£ —1),z | (£ —1). Since an interesting level for a pair of nodes s, t predetermines the
relations between any pair s, ¢’ extending s, ¢, respectively, passing numbers are unnecessary
to the characterization. The big Ramsey degree of a given finite partial order P is then the
number of different diagonal antichains A € D representing P along with the order in which
the interesting levels are interspersed between the splitting levels and the nodes in A.

6. OPEN PROBLEMS AND RELATED DIRECTIONS

Section 2 laid out the guiding questions for big Ramsey degrees. Here we discuss
some of the major open problems in big Ramsey degrees and ongoing research in cognate
areas.
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Problem 6.1. For which SAP Fraissé classes does the Fraissé limit have finite big Ramsey
degrees?

Subquestions are the following: Given an SAP Fraissé class with finitely many rela-
tions and a finite set of forbidden substructures, does its Fraissé limit have finite big Ramsey
degrees? Results in [4e] give evidence for a positive answer to this question. For such classes
with relations of arity at most two, do big Ramsey degrees always exist? We would like a
general condition on SAP classes characterizing those with finite big Ramsey degrees. We
point out that Problem 6.1 in its full generality is still open for small Ramsey degrees

Problem 6.2. For results whose proofs use the method of forcing, find new proofs which
are purely combinatorial.

This has been done for the triangle-free graph by Hubicka in [39], but new methods
will be needed for k-clique-free homogeneous graphs for k > 4 and other such FAP classes.

The next problem has to do with topological dynamics of automorphism groups of
homogeneous structures. The work of Zucker in [7e] has established a connection but not a
complete correspondence yet.

Problem 6.3. Does every homogeneous structure with finite big Ramsey degrees also
carry a big Ramsey structure? Is there an exact correspondence, in the vein of the KPT-
correspondence, between big Ramsey structures and topological dynamics?

The hope in Problem 6.3 is to obtain as complete a dynamical understanding of big
Ramsey degrees as we have for small Ramsey degrees, where a result of [69] shows that given
a Fraissé class K with Fraissé limit K, then X has finite small Ramsey degrees if and only
if the universal minimal flow of Aut(K) is metrizable.

Finally, we mention several areas of ongoing study related to the main focus of this
paper. Computability-theoretic and reverse mathematical aspects have been investigated by
Angles d’Auriac, Cholak, Dzhafarov, Monin, and Patey. In their treatise [1], they show that
the Halpern—Liuchli theorem is computably true and find reverse-mathematical strengths
for various instances of the product Milliken theorem and the big Ramsey structures of the
rationals and the Rado graph. As these structures both have simply characterized big Ramsey
degrees, it will be interesting to see if different reverse mathematical strengths emerge for
structures such as the triangle-free homogeneous graph or the generic partial order.

Extending Harrington’s forcing proof to the uncountable realm, Shelah in [59]
showed that it is consistent, assuming certain large cardinals, that the Halpern—L&uchli
theorem holds for trees 2<%, where k is a measurable cardinal. DZamonja, Larson, and
Mitchell applied a slight modification of his theorem to characterize the big Ramsey degrees
for the k-rationals and the k-Rado graph in [22] and [23]. Their characterizations have as
their basis the characterizations of Devlin and Laflamme—Sauer—Vuksanovic for the ratio-
nals and Rado graph, respectively, but also involve well-orderings of each level of the tree
2=k necessitated by x being uncountable. The field of big Ramsey degrees for uncountable

1481 RAMSEY THEORY OF HOMOGENEOUS STRUCTURES: CURRENT TRENDS AND OPEN PROBLEMS



homogeneous structures is still quite open, but the fleshing out of the Ramsey theorems on
trees of uncountable height has seen some recent work in [19, 20, 68].
The next problem comes from a general question in [41].

Problem 6.4. Develop infinite-dimensional Ramsey theory on spaces of copies of a homo-
geneous structure.

For a set N C w, let [N]® denote the set of all infinite subsets of N, and note
that [w]® represents the Baire space. The infinite-dimensional Ramsey theorem of Galvin
and Prikry [33] says that given any Borel subset X of the Baire space, there is an infinite
set N such that [N]? is either contained in X or is disjoint from X. Ellentuck’s theorem
in [29] found optimality in terms of sets with the property of Baire with respect to a finer
topology. The question in [41] asks for extensions of these theorems to subspaces of [w]?,
where each infinite set represents a copy of some fixed homogeneous structure. A Galvin—
Prikry-style theorem for spaces of copies of the Rado graph has been proved by the author
in [17]. By a comment of Todorcevic in Luminy in 2019, the infinite-dimensional Ramsey
theorem should ideally also recover exact big Ramsey degrees. Such a theorem is being
written down by the author for structures satisfying SDAP™ with relations of arity at most
two. This is one instance where coding trees are necessitated to be diagonal in order for the
infinite dimensional Ramsey theorem to directly recover exact big Ramsey degrees.

We close by mentioning that structural Ramsey theory has been central in inves-
tigations of ultrafilters which are relaxings of Ramsey ultrafilters in the same way that big
Ramsey degrees are relaxings of Ramsey’s theorem. An exposition of recent work appearing
in [16] will give the reader yet another view of the power of Ramsey theory.
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1. INTRODUCTION

Measurable graph combinatorics focuses on finding measurable solutions to combi-
natorial problems on infinite graphs. This study involves ideas and techniques from combi-
natorics, ergodic theory, probability theory, descriptive set theory, and theoretical computer
science. We survey some recent progress in this area, focusing on the study of locally finite
graphs: graphs where each vertex has finitely many neighbors. We also discuss applications
to the study of hyperfiniteness of Borel actions of groups, and measurable equidecomposi-
tions.

Without any constraints such as measurability conditions, combinatorial problems
on locally finite graphs often simplify to studying their restriction to finite subgraphs. This is
the case with the problem of graph coloring. Recall that if G = (V, E) is a graph, a (proper)
Y -coloring of G is a map c¢: V — Y so that for every two adjacent vertices {x, y} € E,
the colors assigned to these two vertices are distinct, c(x) # ¢(y). The chromatic number
x(G) of G is the smallest cardinality of a set Y so there is a Y -coloring of G. A classical
theorem of De Bruijn and Erdd§s states that for a locally finite graph G, the chromatic number
of G is equal to the supremum of the chromatic number of all finite subgraphs of G. That
is, Y(G) = supgie g ¢ X (H). The proof of this theorem is a straightforward compactness
argument using the Axiom of Choice.

In contrast, many phenomena can influence measurable chromatic numbers beyond
just the constraints imposed by finite subgraphs. We illustrate this change in behavior with
a simple example. Let S 1 e the circle, let T: S — S! be an irrational rotation, and let 7!
be Lebesgue measure on S'. Consider the graph G with vertex set S and where x, y are
adjacent if T'(x) = y or T(y) = x. Every vertex in Gt has degree 2 and every connected
component of G is infinite. Hence, by alternating between two colors, it is easy to see that
the classical chromatic number of Gt is 2. However, there can be no Lebesgue measurable
2-coloring of G7. Suppose ¢: S! — {0, 1} was a Lebesgue measurable coloring of Gr, and
Ao = {x : c(x) =0} and A7 = {x : c(x) = 1} were the two color sets. Then since the
coloring must alternate between the two colors, we must have 7 (A4g) = A1, and since T is
measure preserving and Ao and A; are disjoint and cover S!, we therefore have A(Ag) =
A(Ay) = % However, the transformation 7'2 is also an irrational rotation and hence T2 is
ergodic, meaning any set invariant under 72 must be null or conull. Since T2(4¢) = Ay,
A must be null or conull. Contradiction!

In this paper we focus on the study of combinatorial problems on Borel graphs:
graphs where the set V' of vertices is a standard Borel space and where the edge relation
E is Borel as a subset of V' x V. In the setting where each vertex has at most countably
many neighbors, this is equivalent to saying that there are countably many Borel functions
fo, f1,...:V — V that generate G in the sense that x £ y if and only if f;(x) = y for
some i. The equivalence follows from the Lusin—Novikov theorem [28, 18.15]. An important
example of a Borel graph is the following type of Schreier graph. If a is a Borel action of a
countable group I" on a standard Borel space X and S is a symmetric set of generators for I,
then let G(a, S) be the graph on the vertex set V' = X where x, y € V are adjacent if there
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isay € § such that y - x = y. For example, the graph associated to the irrational rotation
described above is a graph of this form.

For more comprehensive surveys of this area, the reader should consult the papers
[39,44]. A notable recent development we will not discuss is the connections that have been
found between measurable combinatorics and the study of distributed algorithms in theoret-
ical computer science, particularly the LOCAL model. This model of computing takes place
on a large graph where each vertex represents a computer which is assigned a unique iden-
tifier, and each edge is a communication link. These processors execute the same algorithm
in parallel, communicating with their neighbors in rounds to construct a global solution to
some combinatorial problem. Recent work [2, 3, 6,17] has established some precise connec-
tions between measurable combinatorics and LOCAL algorithms which have already led to
new theorems in both areas (see, e.g., [2,4]).

2. MEASURABLE COLORINGS

If G is a Borel graph, we define the Borel chromatic number yp(G) of G to be
the smallest cardinality of a standard Borel space Y so that there is a Borel measurable Y -
coloring of G. We clearly have that y(G) < yp(G) where y(G) is the classical chromatic
number of G. Borel chromatic numbers were first studied in a foundational paper of Kechris,
Solecki, and Todorcevic [32].

Let G = (V, E) be a graph. If x € V is a vertex, we let N(x) = {y : {x,y} € E}
denote the set of neighbors of x. The degree of x is the cardinality of N(x). We say that a
graph is A-regular if every vertex has degree A. A basic result about graph coloring is that,
given any finite graph G of finite maximum degree A, there is a (A + 1)-coloring of G. This
is easy to see by coloring the vertices of G one by one. If we have a partial coloring of G,
then any uncolored vertex x has at most A neighbors so there must be a color from the set
of A + 1 colors we can use to extend this partial coloring to x. The analogous fact remains
true about Borel colorings:

Theorem 2.1 (Kechris, Solecki, Todorcevic [32, PROPOSITION 4.6]). If G is a Borel graph of
finite maximum degree A, then G has a Borel (A + 1)-coloring.

One method of proving this theorem is to adapt the greedy algorithm described
above. Recall that a set of vertices is independent if it does not contain two adjacent vertices.
First, we may find a countable sequence of Borel sets A, such that each A4, is independent,
and their union is all vertices | J, A, = V(G). Then we can iteratively construct a coloring
of G in countably many steps where at step n we color all the elements of 4, the least color
not already used by one of its neighbors. In general, the connection between algorithms for
solving combinatorial problems and measurable combinatorics is deep. Many techniques
for constructing measurable colorings are based on algorithmic ideas, since algorithms for
solving combinatorial problems will often yield an explicitly definable solutions to them.

The upper bound given by Theorem 2.1 is tight; a complete graph on A + 1 vertices
has maximum degree A and chromatic number A + 1. Surprisingly, the upper bound of
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Theorem 2.1 is also optimal even in the case of acyclic Borel graphs. Hence, for bounded
degree Borel graphs, the Borel chromatic number and classical chromatic number may be
very far apart since any acyclic graph has classical chromatic number at most 2.

Theorem 2.2 (Marks [38]). For every finite A, there is an acyclic Borel graph of degree A
with no Borel A-coloring.

The graphs used to establish Theorem 2.2 are quite natural, and arise from Schreier
graphs of actions of free products of A many copies of Z/2Z. Theorem 2.2 is proved using
Martin’s theorem of Borel determinacy [41] which states that in any infinite two-player game
of perfect information with a Borel payoff set, one of the two players has a winning strategy.
The direct use of Borel determinacy to prove this theorem leads to an interesting question
of reverse mathematics since Borel determinacy requires a great deal of set-theoretic power
to prove: the use of uncountably many iterates of the powerset of R [19]. We currently do
not know of any simpler proof of Theorem 2.2 that avoids the use of Borel determinacy or
can be proved in second-order arithmetic (which suffices for most theorems of descriptive
set theory).

Problem 2.3. Is Theorem 2.2 provable in the theory Z, of full second-order arithmetic?

Recently, Brandt, Chang, Grebik, Grunau, Rozhoii, and Vidnydnszky [6] have shown
that characterizing the set of Borel graphs of maximum degree A > 3 that have no Borel
(A + 1)-coloring is as hard as possible in a precise sense: the set of such graphs is Z;
complete. Here Zé completeness is a logical measurement of the complexity of this problem.
The proof of their theorem combines the techniques of [39] with earlier work of Todorcevic
and Vidnydnszky [48] proving Zé completeness for the set of locally finite Borel graphs
generated by a single function that have finite Borel chromatic number. In contrast to the
work of [6] for A > 3, in the case A = 2, a dichotomy theorem of Carroy, Miller, Schrittesser,
and Vidnydnszky [8] characterizes the 2-colorable Borel graphs in a simple way as those
for which there is no Borel homomorphism from a canonical non-Borel-2-colorable graph
known as L.

This type of theorem—proving it is hard to characterize the set of graphs with
some combinatorial property—is familiar in finite graph theory via computational com-
plexity theory. For example, it is a well-known theorem that the set of finite graphs that
are k-colorable for k > 3 is NP-complete. Indeed, there are some surprising newly found
connections between computational complexity theory and complexity in measurable com-
binatorics. Thornton [47] has used techniques adapted from the celebrated CSP (constraint
satisfaction problem) dichotomy theorem [7,51] in theoretical computer science to bootstrap
the results of [6] to show many other natural combinatorial problems on locally finite Borel
graphs are either Z; complete or a II i The CSP dichotomy theorem concerns a certain
class of natural problems in NP: general constraint satisfaction problems like graph color-
ing with k colors, k-SAT, or, more generally, computing the set of finite structures X that
have a homomorphism to a given fixed finite structure D. The CSP dichotomy states that all
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such constraint satisfaction problems are either in P (like 2-coloring or 2-SAT), or they are
NP-complete (like 3-coloring or 3-SAT).

The results in [6] rule out any simple theory for understanding Borel chromatic
number for locally finite Borel graphs in general. In contrast, if we weaken our measur-
ability condition to study pu-measurable colorings with respect to some Borel probability
measure u instead of Borel colorings, the theory of p-measurable colorings appears to have
a much closer connection to finite graph theory. If u is a Borel measure on the vertex set of
a Borel graph G, let y,,(G) be the least size of a set Y so there is a y-measurable coloring
of G. So x(G) < x.(G) < xB(G), since every Borel function is ;-measurable.

For finite graphs of maximum degree A, a theorem of Brooks characterizes those
connected graphs which have chromatic number of A 4 1. They are precisely the complete
graphs on A + 1 vertices, and odd cycles in the case A = 2. Analogously, we have the
following generalization of Brooks’s theorem for p-measurable colorings:

Theorem 2.4 (Conley, Marks, Tucker-Drob [13]). Suppose that G is a Borel graph with
degree bounded by a finite A > 3. Suppose further that G contains no complete graph
on A + 1 vertices. If u is any Borel probability measure on V(G), then G admits a [i-
measurable A-coloring.

Several important open problems in descriptive set theory concern whether there
is a difference between being able to find a Borel solution to a problem versus being able
to find a p-measurable solution with respect to every Borel probability measure u (e.g., the
hyperfiniteness vs measure hyperfiniteness problem [29, PROBLEM 8.29]). Theorems 2.2 and 2.4
are encouraging in this context because they point the way towards tools that may be able to
resolve these types of questions.

The proof of Theorem 2.4 is based on a technique for finding one-ended spanning
subforests in Borel graphs: acyclic subgraphs on the same vertex set where each connected
component has exactly one end. More recently, these techniques for finding one-ended span-
ning subforests were applied to prove new results in the theory of cost: a real valued invariant
of countable groups arising from their ergodic actions [9].

Bernshteyn has substantially strengthened Theorem 2.4 by showing for k within
a factor of +/A of A, there is a u-measurable k-coloring of G if and only if there is any
k-coloring of G.

Theorem 2.5 (Bernshteyn [2]). There is a Ao so that if G is a Borel graph with finite max-
imum degree A > Ag and | is a Borel probability measure on V(G), then if ¢ satisfies
¢ <D —5/2, then G has a (A — ¢)-coloring if and only if G has a p-measurable (A — ¢)-
coloring.

The above results give cases where the p-measurable chromatic number behaves
similarly to the classical chromatic number. These two quantities may still differ by a large
amount, however. Let [F,, be the free group on n generators and let S, € [, be a free sym-
metric generating set. Let a,, be the action of IF,, on the space [0, 1]¥» via the Bernoulli shift:
(y - x)(8) = x(y~'8) restricted to its free part. Let G, = G(ay, Sy) be the Schreier graph
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of this action, and let j,, = AF be the product of Lebesgue measure A on [0, 1]. Since G, is
acyclic, the classical chromatic number is x(G,) = 2. However, x, (Gn) > mg% which can
be shown using results about the size of independent sets in random (2#)-regular graphs and
an ultraproduct argument. This argument was first suggested by [36]; see [3e] for a detailed
proof. Bernshteyn has recently proven an upper bound on y, (G,) which is within a factor
of two of this lower bound [1]. However, it remains an open problem to compute the precise
rate of growth of y,,, (Gn).

Bernshteyn’s Theorem 2.5 and the above upper bound on y,, (G,) are based on an
adaptation of the powerful Lovasz Local Lemma (LLL) to the setting of measurable combi-
natorics. The LLL is a tool of probabilistic combinatorics which can show the existence of
objects which are described by constraints that are local in the sense that each constraint is
independent of all but a small number of other constraints, and each constraint has a high
probability of being satisfied. Precisely, the symmetric LLL states that if Ay, ..., A, are
events in a probability space which each occur with probability at most p, each event A;
is independent of all but at most d of the other events, and ep(d + 1) < 1, then there is a
positive probability none of these events occur.

The LLL is a pure existence result, and since the desired object typically exists
with exponentially small probability, it was a major open problem to find an algorithmic
way to quickly find satisfying assignments where none of the events A4, ..., A, happen.
In particular, a naive attempt to randomly sample from the probability distribution until a
solution is found would take at least exponential time. In a breakthrough result in 2009,
Moser and Tardos [42] gave an efficient randomized algorithm that can quickly compute
satisfying assignments for the LLL.

Adaptations of the Moser—Tardos algorithm and the LLL to the setting of measur-
able combinatorics began with work of Kun [33], who used a version of the Moser—Tardos
algorithm to find spanning subforests to prove a strengthening of the Gaboriau—Lyons [26]
theorem in ergodic theory. More recently, Csoka, Grabowski, Mathe, Pikhurko, and Tyros
[14] have proved a Borel version of the symmetric LLL for Borel graphs of subexponential
growth, and Bernshteyn has proved p-measurable versions for Bernoulli shifts of groups, and
probability measure preserving Borel graphs [1,2]. These results, combined with the large
literature in combinatorics using the LLL to construct colorings of graphs, are the main tool
in the proof of Theorem 2.5.

It is known that there cannot be a Borel version of the symmetric LLL for bounded
degree Borel graphs in general [12]. Indeed, the existence of such a theorem combined with
standard coloring techniques using the LLL would contradict Theorem 2.2. However, an
interesting special case remains open: a Borel version of the symmetric LLL for Borel
Schreier graphs generated by Borel actions of amenable groups, which are defined in the
next section. Such a version of the local lemma could be a useful tool for making progress
on the open problems discussed in the next section.

The theorems we have described above are a small selection of what is now known
about measurable chromatic numbers. We hope they give the reader some sense of the variety
of results and tools of the subject.
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3. CONNECTIONS WITH HYPERFINITENESS

A major research program in modern descriptive set theory has been to understand
the relative complexity of equivalence relations under Borel reducibility. Precisely, if E
and F are equivalence relations on standard Borel spaces X and Y, say that E is Borel
reducible to F if there is a Borel function f: X — Y such that for all x, y € X, we have
xEy < f(x) F f(»).Sucha function induces a definable injection from X/Eto Y/ F.
If we think of E and F as classification problems, this means E is simpler than F in the
sense that any invariants that can be used to classify F can also be used to classify E. In the
study of Borel reducibility of equivalence relations, there has been success both in under-
standing the abstract structure of all Borel equivalence relations under Borel reducibility,
and also in proving particular nonclassification results of interest to working mathemati-
cians. For example, Hjorth’s theory of turbulence [26] gives a precise dichotomy for when an
equivalence relation generated by a Polish group action can be classified by invariants that
are countable structures, and turbulence has been applied to prove nonclassifiability results
in C* algebras [18].

A Borel equivalence relation E is said to be countable if every E-class is countable.
The countable Borel equivalence relations are an important and well-studied subclass of
Borel equivalence relations with rich connections with operator algebras and ergodic theory.
One reason for this is the Feldman—Moore theorem [31, THEOREM 1.3], which states that every
countable Borel equivalence relation is induced by a Borel action of a countable group.
Results proved about the dynamics of measure preserving actions of countable groups have
played a played an important role in our understanding of the theory of countable Borel
equivalence relations.

Understanding how the descriptive-set-theoretic complexity of countable Borel
equivalence relations is related to the dynamics of the group actions that generate them
is a deep problem. An important simplicity notion for Borel reducibility is hyperfiniteness:
a Borel equivalence relation is hyperfinite if it can be written as an increasing union of
Borel equivalence relations whose classes are all finite. The hyperfinite equivalence rela-
tions are the simplest nontrivial class of Borel equivalence relations as made precise by the
Glimm-Effros dichotomy of Harrington, Kechris, and Louveau [25]. Weiss has asked if the
group-theoretic notion of amenability precisely corresponds to hyperfiniteness:

Problem 3.1 (Weiss, [5e]). Suppose E is a Borel equivalence relation generated by a Borel
action of a countable amenable group. Is E hyperfinite?

Amenability was defined by von Neumann in reaction to the Banach—Tarski para-
dox. It is a group-theoretic notion of dynamical tameness. Precisely, a group I' is amenable
if and only if for every ¢ > 0 and every finite S C I there exists some nonempty finite ¥ C T’
suchthat |[SFAF|/|F| < e.Such an F is called an (e, S)-Fglner set. Examples of amenable
groups include finite, abelian, and solvable groups, while the free group on two generators
is nonamenable. If Weiss’s question has a positive answer, then amenability precisely char-
acterizes hyperfiniteness since every nonamenable group has a nonhyperfinite Borel action.
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Evidence that Weiss’s question has a positive answer is given by a theorem in ergodic theory
of Ornstein and Weiss [43] that every measure preserving action of an amenable group on a
standard probability space is hyperfinite modulo a nullset.

Progress on Weiss’s question has grown out of progress on the problem of finding
Borel tilings of group actions by Fglner sets. Precisely, if a: I' ~, X is an action of a finitely
generated group I', and F1, ..., F,, C I are finite subsets of I', a filing of a by the shapes
F,..., F,isacollection of subsets Ay,..., A, C X sothatthe sets Fy - Aq,..., F, - A, are
pairwise disjoint and form a partition of X . Finding tilings of a group action can be thought
of as a generalized coloring problem or constraint satisfaction problem of the type often stud-
ied in measurable combinatorics, and can be approached using many of the same tools. For
example, Jackson, Kechris, and Louveau [27] have shown that Weiss’s question has a posi-
tive answer for groups of polynomial volume growth. Their argument uses Voronoi regions
around Borel maximal independent sets to make Borel tilings with desirable properties. Gao
and Jackson [21] have shown that Weiss’s question has a positive answer for abelian groups.
Their argument centers around a more refined inductive argument to find tilings of Z" by
hyperrectangles. These tilings are found by iteratively adjusting the location of the bound-
aries of hyperrectangular tiles that cover the space until their parallel boundaries are far apart.
Schneider and Seward have extended Gao and Jackson’s machinery to all locally nilpotent
groups [45]. All these tilings are the building blocks out of which witnesses to hyperfiniteness
are constructed.

A positive answer to the following open problem would be progress towards a pos-
itive solution to Weiss’s question:

Problem 3.2. Let I be an amenable group with finite symmetric generating set S and
a:T' ~, X be a free Borel action of a on a standard Borel space X. For every ¢ > 0, do
there exist (g, S)-Fdlner sets Fy, ..., F, C T such that the action a has a Borel tiling with
shapes Fi,..., F,?

The existence of such tilings without any measurability conditions was only recently
established by Downarowicz, Huczek, and Zhang [15]. A key step in their proof is to use
Hall’s matching theorem to match untiled points in a Ornstein—Weiss style quasitiling [43]
to construct an exact tiling. Recall that if G = (V, E) is a graph, a perfect matching of G is
a subset M C E of edges so that each vertex x € V is incident to exactly one edge in M.
Hall’s matching theorem states that a bipartite graph with bipartition A, B C V has a perfect
matching if and only if for every finite set F € Aor F C B,

IN(F)| = |F].

Recently, Problem 3.2 has been shown to have a positive answer modulo a nullset [10]. A
key part of the proof is a measurable matching result proved using an idea of Lyons and
Nazarov [36] that was originally used to find factor of i.i.d. perfect matchings of regular trees.
Lyons and Nazarov’s argument uses the Hungarian matching algorithm (repeatedly flipping
augmenting paths) to show that if a bipartite Borel graph G satisfies a certain measure-
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theoretic expansion condition strengthening Hall’s condition, then it has a measurable perfect
matching.
Conley, Jackson, Marks, Seward, and Tucker-Drob have proven the following:

Theorem 3.3 (Conley, Jackson, Marks, Seward, Tucker-Drob [11]). Let I" be a countable
group admitting a normal series where each quotient of consecutive terms is a finite group
or a torsion-free abelian group with finite Q-rank, except that the top quotient can be any
group of uniform local polynomial volume-growth or the lamplighter group Z, ? Z. Then
every free Borel action of T is hyperfinite.

By combining this with prior work of Seward and Schneider [45, cor. 8.2] they obtain
the following corollary:

Corollary 3.4. Weiss’s question has a positive answer for polycyclic groups.

This is the best partial result on Weiss’s question that is currently known. Sig-
nificantly, Corollary 3.4 applies to groups of exponential volume growth such as certain
semidirect products of Z". All the previous work on Weiss’s question applied only to groups
locally of polynomial volume growth, and this seemed an inherent limitation to previous
methods.

The central idea of [11] is to adapt the machinery of Gromov’s theory of asymptotic
dimension of groups to the setting of descriptive set theory, making a theory of Borel asymp-
totic dimension. These ideas were implicitly hidden in all previous work on Weiss’s question,
but were first made explicit in [11]. Asymptotic dimension was introduced by Gromov as a
quasiisometry invariant of metric spaces, used to study geometric group theory. The asymp-
totic dimension of a metric space (X, p) is the least d such that for every r > O there is a
uniformly bounded cover U of X so that every closed r-ball intersects at most d + 1 sets
in U. Essentially, asymptotic dimension is a “large-scale” analogue of Lebesgue covering
dimension. There are actually several different ways to define asymptotic dimension whose
equivalences are nontrivial to prove. Proving that these different definitions still define the
same notion in the Borel context is one of the keys to the work in [11]. Alternate definitions
allow the conversion between Voronoi cell-type tilings patterned on the work of Jackson,
Kechris, and Louveau, and covers with far apart facial boundaries pioneered by Gao and
Jackson.

Resolving Weiss’s question for all amenable groups appears to be a difficult prob-
lem. In general, we have a poor understanding of the geometry and structure of Fglner sets in
arbitrary amenable groups. Problem 3.1 for arbitrary amenable groups seems to either require
significant advances in our geometric understanding of amenable groups, or completely dif-
ferent descriptive-set theoretic tools for attacking the hyperfiniteness problem. One question
which gets at the heart of this difficulty is the following:

Problem 3.5. Suppose G is a bounded degree Borel graph having uniformly bounded poly-
nomial growth. Is the connectedness relation of G hyperfinite?
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The obstacle in resolving Problem 3.5 is that while polynomial growth groups have
tight both upper and lower bound on their growth, Problem 3.5 only posits an upper bound
on the growth of G, which may consequently have much less uniformity in its growth than
the Schreier graph associated to an action of a polynomial growth group. This lack of a
lower bound on growth means that the techniques of Jackson, Kechris, and Louveau for
proving hyperfiniteness of groups of polynomial growth cannot resolve Problem 3.5 Finding
techniques for resolving Problem 3.5 where there is far less regular geometric structure would
be one way of making progress towards resolving Weiss’s question in general since we know
little about any regular geometric structure in arbitrary amenable groups.

4. MEASURABLE EQUIDECOMPOSITIONS

Ifa:T" ~, X is an action of a group I" on a space X, then we say sets A, B € X
are a-equidecomposable if there are a finite partition {Ay, ..., A, } of A and group elements
Y0, .-, Vn € ' sothat y9Ay, ..., VsA, is a partition of B. For example, in this language,
the Banach—Tarski paradox says that one unit ball is equidecomposable with two unit balls
under the group action of isometries of R3. In the last few years several new results proved
about these types of geometrical paradoxes with the unifying theme that the “paradoxical”
sets in many classical geometrical paradoxes can surprisingly be much nicer than one would
naively expect.

A classical generalization of the Banach—Tarski paradox states that any two bounded
sets A, B C R? with nonempty interior are equidecomposable. Of course, the pieces used
in these equidecompositions must be nonmeasurable in general, since A and B may have
different measure. However, a remarkable theorem of Grabowski, Mathé, and Pikhurko states
that there is always an equidecomposition using measurable sets when A and B have the same
Lebesgue measure.

Theorem 4.1 (Grabowski, Mathé, Pikhurko [24]). If A, B € R3 are bounded sets with
nonempty interior and if additionally A and B are assumed to have the same Lebesgue
measure, then A and B can be equidecomposed using Lebesgue measurable pieces.

It is an open problem whether Theorem 4.1 can be strengthened to yield a Borel
equidecomposition, assuming A and B are Borel.

Key to Theorem 4.1 and other advances in measurable equidecompositions has been
progress made on measurable matching problems. The connection comes from the following
graph-theoretic reformulation of equidecompositions as perfect matchings. Leta: I' ~, X be
a Borel action of a group I" on a space X, let A, B, C X be subsets of X, andlet S C T
be finite. Let G(A, B, S) be the graph whose set of vertices is the disjoint union 4 U B and
where x € A and Y € B are adjacent if there is a y € S so that y - x = y. Then it is easy
to see that A, B are equidecomposable using group elements from S if and only if there is a
perfect matching of the graph G(4, B, S).

Theorem 4.1 and other new results about measurable equidecompositions rely on
combining process made on measurable matching problems with modern results about the
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dynamics of the group actions being studied. For example, Theorem 4.1 uses the local
spectral gap of Boutonnet, loana, and Salehi Golsefidy [5] for certain lattices in the group
SO3(R) of rotations in R3. This result is used to check that the graph G (A4, B, S) satisfies the
expansion condition of Lyons and Nazarov [36] which ensures the existence of a measurable
matching.

Some other recent theorems about measurable equidecompositions concern Tarski’s
famous circle squaring problem from 1925: the question of whether a disk and square of the
same area in R? are equidecomposable by isometries. Tarski’s circle squaring problem arose
from the fact that the analogue of the Banach—Tarski paradox is false in R2. This is because
there are so-called Banach measures in R?: finitely additive isometry-invariant measures that
extend Lebesgue measure. Their existence is proved using the amenability of the isometry
group of R2. Hence, if Lebesgue measurable sets A, B C R? are equidecomposable, they
must have the same Lebesgue measure. The real thrust of Tarski’s circle squaring problem is
the converse of this: the general problem of to what extent there is an equivalence between
equidecomposability and having the same measure.

In 1990, Laczkovich [34] (see also [35]) gave a positive answer to Tarski’s circle
squaring problem using the Axiom of Choice. His proof involved sophisticated tools from
Diophantine approximation and discrepancy theory to prove strong quantitative bounds
on the ergodic theorem for translation actions of the torus, as well as the graph-theoretic
approach to equidecomposition described above.

Marks and Unger have shown that there is a Borel solution to Tarski’s circle squaring
problem, building on an earlier result of Grabowski, Mathé, and Pikhurko, [23] that the circle
can be squared using Lebesgue measurable pieces.

Theorem 4.2 (Marks, Unger [4e]). Tarski’s circle squaring problem has a positive solution
using Borel pieces. More generally, for alln > 1, if A, B C R” are bounded Borel sets with
the same positive Lebesgue measure whose boundaries have upper Minkowski dimension
less than n, then A and B are equidecomposable using Borel pieces.

Hence, for Borel sets whose boundaries are not wildly fractal, having the same mea-
sure is actually equivalent to having an explicitly definable Borel equidecomposition.

Theorem 4.2 uses new techniques for constructing Borel perfect matchings in Borel
graphs based on first finding a real-valued Borel flow as an intermediate step. Precisely, if
f:V — Ris a function on the vertices of a graph G, then an f-flow on G is a real-valued
function ¢ on the edges of G such that ¢ (x, y) = —¢(y, x) for every directed edge (x, y)
of G, and such that for every x € V the flow ¢ satisfies Kirchofl’s law,

f@) = Y ¢lx.y).
yEN(x)

Given a circle and square 4, B C [0, 1)2 of the same area, the first step in the proof of The-
orem 4.2 is finding an explicit (14 — 1p)-flow of an appropriate Borel graph whose vertices
are all the elements of [0, 1)? and whose edges are generated by finitely many translations.
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The advantage of working with the generality of flows is twofold. First, a flow can be
constructed in countably many steps, making the error in Kirchoff’s law above continuously
approach 0 whereas the error in a partial matching that makes it imperfect is discrete. Second,
the average of f-flows is an f-flow and so it is possible to integrate families of definable
flows to get another definable flow. Finally, there are well known combinatorial equivalences
between flows and matchings which are used in the last step of the proof of Theorem 4.2 to
“round” areal-valued flow into an integer valued flow and then use it to construct a matching.

Another key ingredient in the proof of Theorem 4.2 is the hyperfiniteness of Borel
actions of abelian groups. In particular, the proof of Theorem 4.2 uses a recent refinement
due to Gao, Jackson, Krohne, and Seward [22] of Gao and Jackson’s [21] theorem that Borel
actions of abelian groups are hyperfinite. These witnesses to hyperfiniteness are used to
ensure that the Ford—Fulkerson algorithm converges when it is used to round the Borel real-
valued flow described above into a Borel integer-valued flow.

This flow approach to equidecomposition problems may be useful for attacking
other open questions such as the Borel-Ruziewicz problem:

Problem 4.3 (Wagon [49]). Suppose n > 2. Is Lebesgue measure the unique finitely additive
rotation invariant probability measure defined on the Borel subsets of the n-sphere S”?

This question is inspired by a theorem of Margulis [37] and Sullivan [46] (n > 4), and
Drinfeld [16] (n = 2, 3), who proved that Lebesgue measure is the unique finitely additive
rotation invariant measure on the Lebesgue measurable subsets of S”. Wagon’s proposed
strengthening would be a more natural result since the Borel sets are the canonical o-algebra
to measure.
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1. INTRODUCTION

To prove a statement about natural numbers, we usually rely explicitly or implicitly
on reasoning by mathematical induction. In the setting of mathematical logic, the axiomatic
system for natural numbers consists of the axioms for discrete ordered semirings and the
scheme of mathematical induction, which is known as Peano Arithmetic (PA). Within PA,
one can prove many theorems in number theory or finite combinatorics, such as the existence
of infinitely many prime numbers or the following finite Ramsey theorem (FRT):

(FRT) Foranyn,k,m,a € N, there exists b € N such thatforany f :[[a,b)N]" — k
there exist H C [a,b)n and ¢ < k such that [H]" € f~'(c¢) and |H| = m.

(Here, [a,b)y ={x e N:a <x <b}and [X]* ={F C X : |F| = n} where | F| denotes
the cardinality of F. We write k for the set [0, k)n.) Thus, the question might arise: can we
prove all true numerical statements within PA?

The answer is known to be negative. The famous incompleteness theorem by Kurt
Godel says that there is a numerical statement which is independent from PA (i.e., cannot be
proved or disproved from PA). Such an independent statement is provided by diagonalization
or self-reference as the liar paradox, and in particular, the numerical statement which intends
to say “PA is consistent” is independent from PA. This leads to another question whether
there is a “mathematical” statement which is independent from PA. The Paris—Harrington
principle (PH) [33] is one of the earliest and most important such examples. It is a variant of
the finite Ramsey theorem which states the following:

(PH) For any n,k,a € N, there exists b € N such that for any f : [[a,b)N]" — k
there exist H C [a,b)y and ¢ < k such that [H]" € f~!(c) and |H| > min H .

Here, a set H is said to be relatively large if |H| > min H, so PH says “for any ¢ € N,
there exists a large enough finite set X above a such that any coloring on X for the Ramsey
theorem has a solution which is relatively large.” By some standard coding of finite sets of
natural numbers as single natural numbers (e.g., by binary expansion), PH can be considered
as a purely numerical statement. By easy combinatorics, one can prove PH from the infinite
Ramsey theorem (RT), thus PH is a frue statement about natural numbers.

So how can we know that PH is not provable from PA? The reason is again provided
by the Gddel incompleteness, namely, PA + PH implies the consistency of PA and thus it
is not provable from PA. Indeed, Paris and Harrington showed that PH is equivalent over
PA to the correctness of PA with respect to Y3-sentences (the statement “any V3-sentence
provable from PA is true”), which is a strengthening of the consistency of PA.

On the other hand, many variants of the infinite Ramsey theorem are widely studied
in the setting of second-order arithmetic. This is one of the central topics in the project named
reverse mathematics whose ultimate goal is to determine the logical strength of mathematical
theorems in various fields and classify them from viewpoints of several fields in logic. Typi-
cally, the strength of variants of the infinite Ramsey theorem is precisely calibrated from the
viewpoints of computability and proof theory. Particularly, precise analyses for variants of
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the Paris—Harrington principle are important approaches to identify the consistency strength
of variants of the infinite Ramsey theorem.

In this article, we will overview the relations between the Paris—Harrington prin-
ciple, the infinite Ramsey theorem and correctness statements (also known as reflection
principles) mainly in the setting of second-order arithmetic. For this purpose, we will work
with nonstandard models of arithmetic and relate the finite and infinite Ramsey theorem
in them. A brief idea here is that if a nonstandard model satisfies some variant of finite
Ramsey theorem with a solution of nonstandard size, then it should include a model for infi-
nite Ramsey theorem. This can be realized by the theory of indicators introduced by Kirby
and Paris [23]. We reformulate their argument and connect variants of PH with the correctness
of the infinite Ramsey theorem.

The structure of this article is the following. In Section 2, we set up basic definitions
and review the studies on the Ramsey theorem in arithmetic. We give several formulations
of the Paris—Harrington principle and their equivalents within second-order arithmetic in
Sections 3 and 4. In Section 5, we see how the Paris—Harrington principle is related to the
infinite Ramsey theorem by means of indicators. Some proofs in Section 5 require basic
knowledge of nonstandard models of arithmetic.

2. FIRST- AND SECOND-ORDER ARITHMETIC AND THE RAMSEY

THEOREM

In this section, we introduce fragments of first- and second-order arithmetic and set
up basic definitions. For precise definitions, basic properties and other information, see, e.g.,
[16,21] for first-order arithmetic and [17,39] for second-order arithmetic.

We write £ for the language of first-order arithmetic, which consists of constants
0, 1, function symbols +, x, and binary relation symbols =, <, and write £, for the lan-
guage of second-order arithmetic which consists of &£; plus another binary relation €. We
use x, y, z, ... for first-order (number) variables and X, Y, Z, ... for second-order (set) vari-
ables. An £,-formula ¢ is said to be bounded or = if it does not contain any second-order
quantifiers and all first-order quantifiers are of the form Vx < ¢ or 3x < ¢, and it is said to
be 22 (resp. Hg) if it is of the form Jx; Vx5 ... Qx,60 (resp. Vx13x; ... Qx,0) where
is 2. An £,-formula g is said to be arithmetical or Z} if it does not contain any second-
order quantifiers, and it is said to be E}, (resp. H,l,) if it is of the form 3X1 VX, ... 0X,0
(resp. VX13X, ... 0X,0) where 6 is E(l). If a Eg-formula (resp. Hg-formula) ¢ does not
contain any set variables (i.e., ¢ is an £;-formula), it is said to be X, (resp. I1,). We can
extend £, with unary relation symbols U= Ui, ..., Uk. Here, we identify U;’s as second-
order (set) constants and consider £; U U -formulas as E(l)—formulas (with extra constants).
Then, an £, U U -formula is said to be E,l? (resp. H,?) if it is 22 (resp. Hg).

For our discussions, we need to distinguish the actual (“standard”) natural numbers
from natural numbers formalized in axiomatic systems. Here, we use Jt for the set of stan-
dard natural numbers, and N for natural numbers formalized in the system. When we write
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“n=2,3,4,..., itis intended that n ranges over It and n > 2, while “n > 2” means that
n ranges over N and n > 2.

2.1. The Paris—Harrington principle in first-order arithmetic

We adopt the elementary function arithmetic (EFA) for our base system of first-order
arithmetic. It consists of the axioms of discrete ordered semirings, the totality of exponenti-
ation' and the induction axiom (IND) of the form

(IND) ¢(0) A Vx(p(x) = @(x + 1)) > Vxe(x)

for each Xo-formula ¢(x). Then, the system IX,, is defined as EFA plus the induction axioms
for X,,-formulas, and the Peano arithmetic (PA) is defined as PA = |, cq 1Z5. Weﬁmay also
expand EFA with unary predicates. If U=U 1,..., U are unary predicates, EFAU consists
of EFA plus the induction axioms for Ef)} -formulas.

Within EFA, finite sets of natural numbers, finite sequences of natural numbers,
functions on finite sets, or other finite objects on N are coded by numbers. We write [N]<N
for the set of all (codes) of finite subsets of N. For each F € [N]<N, we can define | F| as
the (unique) smallest m € N such that there is a bijection between F' and m = [0, m)N. In
the context of the Ramsey theorem, a function of the form ¢ : [X]" — k is often called a
coloring. (Recall that [X]" = {F € [N|*N :|F| =n A F C N}.) Then, aset H C X is said
to be c-homogeneous if there exists i < k such that [H]" € ¢71(i).

We first define the key notion introduced by Paris [32]. The following definition can
be made within EFA.

Definition 2.1 (Density). Letn > 1 orn = oo and k > 2 or k = oco. For given m € N, we
define m-density for (n, k) as follows:

* afinite set F is said to be 0-dense(n, k) if | | > min F (F is relatively large),

« a finite set F is said to be (m + 1)-dense(n, k) if for any ¢ : [F]" — k' where
n’ < min{n, min F} and k' < min{k, min F}, there exists a c-homogeneous set
H C F such that H is m-dense(n, k). (Here, we set min{oco,a} = a fora € N.)

Although the notion is defined inductively, the statement that F is m-dense(n, k)
is X, in other words, there exists a Xo-formula v (n, k, F,m) such that ¢ (n, k, F, m) holds
if and only if F is m-dense(n, k).

Definition 2.2 (The Paris—Harrington principle). Letn > 1orn = oo,k > 2 or k = oo and
m € N. Then, the Paris—Harrington principle, mPH;, and ItPHy, is defined as follows:

* mPH}: Va3b > a([a, b)N is m-dense(n, k)).

 ItPH} := YmmPHJ.

1 Technically, it is not easy (but possible) to define the exponential function in this setting,
see [16]. Alternatively, one may safely add an extra function symbol exp(x) = 2* and its
recursive definition.
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We simply write PH} for 1PH}. Additionally, we usually omit oo and write PH" for PHZ_,
PH for PHSS, and so on.

It is known that 13 proves PH;Jrl — PH"”. Thus there is a hierarchy of implications
PH' <PH3 <PH3 <--- <PH? <PH} <PH} <-.- <PH?® <PHj <
It is known that this hierarchy is strict above PH? over X, whereas I1X,, proves PHZ+1 for
k =2,3,... On the other hand, calibrating the strength of mPHZ for m > 2 is much harder,
except for the implication mPH} — PHy, , | which directly follows from the definition.

We next formalize the correctness of theories of arithmetic. Within EFA, basic
notions of first-order logic such as (well-formed) formulas, formal proofs (by the Hilbert-
style proof system or other formal systems) are formalizable by means of Gédel numbering.
Typically, we can encode the provability for first- and second-order arithmetic within EFA,
namely, there exists a X1 -formula Prov(7, x) which means that a formula (encoded by) x is
provable from a theory (i.e., a finite or recursive set of sentences) T .2 On the other hand, we
can also formalize the truth on N, but only partially. By formalizing Tarski’s truth definition,
for each tuples of variables Z and Z z, there exists a HO formula zr(Z Z, x) such that for any
unary predicates U and a EU formula ¢(Z), EFAU proves Vz(n(U ,To]) < ¢(Z)) where
[¢] is the Godel number encoding ¢. Then, for n = 1,2, ..., there exists a [19-formula
Trp (Z Z, x) such that for any unary predicates U and a HU-formula o(2), EFAU proves
VZ(Tr, (U ,Z, [@]) <> @(Z)). This formula is called the IT, -truth predicate. The formalized
correctness statements (also known as reflection principles) are defined as follows. (For-
mally, = and Tr, depend on the number of variables, but we may assume that Z and Z
contains all variables which will appear in the entire discussion. We may ignore variables
not appearing in the formula encoded by x by substituting O into them.)

Definition 2.3 (Correctness). Letn = 1,2,...,and let T be an £;- or £;-theory. Then the
I1,-correctness of T (I1,-corr(T)) is the following statement:

Vx(“x is (a Godel number of) a IT,,-sentence” A Prov(7, x) — Tr,(x)).

Note that IT,-corr(T') is a IT,-statement, and it implies the consistency of T since
it implies =(0 = 1) — —Prov(T, [0 = 1]).
Now we are ready to state the theorem by Paris and Harrington.

Theorem 2.1 (Paris and Harrington [32,33]). The following are equivalent over 1Z°:
1. PH.
2. ItPHy (n =3,4,...,k =2,3,... ork = o0).
3. TI,-corr(PA).
2 We encode T, e.g., by its recursive index.

In [32], Paris showed that ItPH% is independent of PA, while his argument implies the
equivalence of statements 2 and 3. See Section 5.2.

[#]
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Here, ItPHg is the original statement independent of PA introduced by Paris [32].
The equivalence of ItPH% and PH can be proved in a combinatorial way, while we see that
both are equivalent to IT,-corr(PA) in Section 5. Moreover, the [1,-correctness of fragments
of PA can be characterized by PH as well.

Theorem 2.2 (Paris, see [16]). Letn = 1,2,.... Then I1,-corr(1X,) is equivalent to pPH”t1

over 127.

There are many other combinatorial or other numerical principles known to be inde-
pendent of PA such as the Kanamori—-McAloon theorem (KM) [2e] and the termination of the
Goodstein sequence [15]. Many of them are equivalent to the IT,-correctness of PA, while
some others are strictly stronger. A typical such example is a finite variant of Kruskal’s tree
theorem introduced by Friedman. See [13,38].

2.2. Second-order arithmetic and the infinite Ramsey theorem

The system of second-order induction 1% ; consists of EFA plus the induction axioms
for X -formulas. It is not difficult to see that IX? is a conservative extension of 1X,,, in other
words, they prove the same £;-sentences. Our base system for second-order arithmetic is
RCA,, which consists of IE(I’ plus the following recursive comprehension axiom (RCA): for
each pair of £9-formulas ¢(x), ¥ (x),

Vx(p(x) < ¥(x)) > IXVx(x € X < ¢(x)).

The next system is WKLy, which consists of RCAq plus weak Kénig’s lemma (WKL). Here,
we define WKL in a slightly stronger form (but still equivalent to the original definition over
RCA,, see [39, LEMMA 1v.1.4]). A tree T is a family of functions of the form p : [0,m)y — N
(m € N) such that forany p € T and £ € N with [[0,{)N]" € dom(p), p MN[0, {)n]" is also
a member of 7. A tree T is said to be bounded if there exists a function 2 : N — N such
that p(i) < h(i) forany p € T andi € dom(p). Then WKL asserts the following:

for any infinite bounded tree T, there exists a function (a path of T') f such that
f MO, m)N € T forany m € N.

Finally, the system ACA, consists of RCAq plus the arithmetical comprehension axiom
(ACA): for each E(l)-formula o(x),

AXVx(x € X < ¢(x)).

The strength of these three systems is precisely known and WKL, is strictly in-
between RCAy and ACAg. On the other hand, the £;-consequences of RCAy and WKL, are
the same and they coincide with those of 13, while the &£-consequences of ACA, coincide
with those of PA.

Over RCA,, the infinite Ramsey theorem is directly formalizable as follows.

Definition 2.4 (The infinite Ramsey theorem). The infinite Ramsey theorem RT}, is defined
as follows:

1509 PARIS—HARRINGTON PRINCIPLE IN SECOND-ORDER ARITHMETIC



* RT}: for any ¢ : [N]" — k, there exists an infinite set # € N such that H is
c-homogeneous (n > 1 and k > 2).

« RTY, := VART!, RT := VnRT",.
We usually omit oo and write RT" for RT%, RT for RTSS.

Within RCA,, it is known that RT} implies RT}  ; and RT2! implies RT". Be
aware that the former does not imply RT} — RT” because of the lack of induction. So, we
have the hierarchy

RT) <RT! <RT5 <RT? <RT; <---.

However, this hierarchy collapses at the level of n = 3.

Theorem 2.3 (Jockusch [19], reformulated by Simpson [39]). Let n = 3,4, ..., and let
k=2,3,... ork = oo. Then, over RCA,, RTZ is equivalent to ACA,.

On the other hand, the full infinite Ramsey theorem RT is strictly stronger than ACA,.
This is unavoidable since RT implies PH over RCAy, and thus it implies the consistency of
PA. To prove RT, we need the system ACA] which consists of ACA, plus the assertion that
for any n € N and any set X, the nth Turing jump of X exists.

Theorem 2.4 (McAloon [29], see also [17]). Over RCAq, RT is equivalent to ACA,.

The situations of RT3 and RT? are complicated. There are many important results
on the reverse mathematical and computability theoretic strength of RT3 or RT? such as
[7,8,30,37]. Typically, RT% and RT? are strictly in between RCA, and ACA,, but still different
from WKL, even with full induction.

Theorem 2.5 (Jockusch [19], Liu [28]). RT% and RT? are incomparable with WKLy over
RCA, + 1T, (where IS = {IZ, : n € M}).

The I1}-consequences (or equivalently, £1-consequences with second-order con-
stants) of RT3 and RT? are also studied precisely. A T1}-formula VX7 ... QX0 is said to
be restricted T}, (rT1}) if 6 is 9 and n is odd or 6 is T13 and » is even, and r=} -formulas
are defined in the dual way.

Theorem 2.6. 1. RCA, + RT% proves BEg and it is H%-conservative over
RCA, + IEg (i.e., any H%-sentences which are provable from RCA, + RT% are
provable from RCAy + IEg ). (Hirst [18]1 and Cholak/Jockusch/Slaman [71)*

2. RCA + RT3 is rT1!-conservative over RCA,. (Patey/Yokoyama [34], see also
Kolodziejczyk/Yokoyama [25])

3. RCA, + RT? proves BEg and it is Hi-conservative over RCAq + BZg. (Hirst
[18] and Slaman/Yokoyama [4e])

4 BES is called a bounding principle, see [16] for the definition.
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The above theorem decides the consistency strength (or proof-theoretic strength)
of RT3 and RT?, and more precise studies have been carried out for RT3 with respect to
the size of proofs [24,25]. However, the exact &£1-consequences of RCAy + RT% are still not
identified. Meanwhile, several hybrid approaches of computability and proof/model-theory
are currently being developed such as [9,18] which may help to calibrate the &£ {-consequences
of various combinatorial principles.

3. THE PARIS—HARRINGTON PRINCIPLE IN SECOND-ORDER

ARITHMETIC

In this section, we consider the Paris—Harrington principle in the setting of second-
order arithmetic. The main difference is that we can now consider the Paris—Harrington
principle within an infinite set. Then, Theorems 2.1 and 2.2 are reformulated as Theo-
rems 3.2-3.6.

3.1. Second-order formulations of PH

Recall that PH} asserts that there exists an arbitrary large finite set which is
1-dense(n, k). Indeed, a 1-dense(n, k) set should exist within any infinite subset of N by
the infinite Ramsey theorem (see the proof of Proposition 3.1 below). We reformulate PH},
based on this idea in second-order arithmetic.

Definition 3.1 (The Paris—Harrington principle, second-order form). Letn > 1 orn = oo,
k > 2 or k = oo and m € N. Then, the Paris—Harrington principle, mﬁz and Itﬁz, is
defined as follows:

o mmZ: for any infinite set X, there exists a finite set ' C Xy such that F is
m-dense(n, k).

. Itﬁz = meﬁg.
Just like for PH, we write PH} for 1PH}, PH” for PHZ, and so on.

We first see that any of these variants of the Paris—Harrington theorem are true
since they are consequences of the infinite Ramsey theorem by the following “compactness”
argument.

For given n > 1 and k > 2, an (n, k)-coloring tree T on a set X is a family of
functions of the form p : [m N X]* — k (m € N) such that for any p € T and £ € N
with [¢ N X]* € dom(p), p ['[£ N X]" is also a member of 7. Then, WKL, proves that any
infinite (n, k)-coloring tree 7 on an infinite set X has a path f : [X]® — k in the sense that
fMmnNX])* eT forany m € N.

Proposition 3.1. Letn > 1orn =00, k > 2o0rk = coandm € N. WKL, + RTZ proves
mﬁz —m + lﬁz. In particular, WKLy + RT} proves PH?, and WKL, + RT; + IE%
proves Itmz.
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Proof. We prove for the case n > 1 and k > 2. Assume that m + lﬁz fails on some infinite
set X. Let T be an (n, k)-coloring tree on X such that p € T if and only if there is no p-
homogeneous set which is m-dense(n, k). Then, T is infinite since any finite subset of X is
not m + 1-dense(n, k), and thus it has a path f : [X]* — k. By RTY, there is an infinite set
H C X whichis f-homogeneous. Then mPHy, fails on H by the definition of f. ]

Proving ﬁz just from the induction is much harder, butif n = 1,2, ..., IZg still
proves ﬁg“ for k = 2,3,... On the other hand, stronger induction does not help with the
absence of the infinite Ramsey theorem. Indeed, RCA, + IEéo does not prove PH or even
PH.’

Within RCA,, the statement of rT1}-correctness of a theory 7 (rT1}-corr(7')) can
be defined like in Definition 2.3, and rI1}-corr(7') is an rT1}-statement. Second-order ver-
sions of the Paris-Harrington principle are closely related to rIT}-correctness of the infinite
Ramsey theorem and other systems, and also related to well-orderedness of ordinals, which
is naturally formalizable within RCA,. Here we summarize the relations between the Paris—
Harrington principles, rI1 { -correctness and well-foundedness of ordinals.

Theorem 3.2. The following are equivalent over RCAy:
1. PH2.
2. ItPH3.
3. rI}-corr(1Z9).
4. rTl}-corr(WKL, + RT?).
5. Well-foundedness of o®.
Theorem 3.3. The following are equivalent over RCAy:
1. PH3.
2. ItPH2.
3. rI}-corr(1Z9).
4. rIl}-corr(WKL, + RT?).
5. Well-foundedness of o®” .
Theorem 3.4. The following are equivalent over RCAq (forn = 1,2,...):
1. PH" L
2. rIj-corr(1X?).

3. Well-foundedness of @y, +1.
5 Indeed, WKLy + IXJ},o isa H}—conservative extension of RCAg + IEgo.
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Theorem 3.5. The following are equivalent over RCAy:
1. PH.
2. ItPH} (n =3,4,..., k =2,3,...,00).
3. rI1}-corr(ACAy).
4. Well-foundedness of g.
Theorem 3.6. Over RCA,, ItPH is equivalent to rT1}-corr(ACA}).

Over ACA,, any IT}-formula is equivalent to a rIT}-formula. Thus, ACA, + PH
implies IT,-corr(PA) for any n € I, in other words, the £1-correctness schema of PA.

Many of the equivalences in the above theorems have been known to experts in one
formulation or another for a long time, although at least some of them are hard to find in the
literature. On the other hand, 3 <> 4 of Theorems 3.2 and 3.3 are more recent, and not easy
since they correspond to the study of the first-order strength of the infinite Ramsey theorem
for pairs, which we have seen in Theorem 2.6. The equivalences between variants of PH
and the well-orderedness of ordinals are obtained by measuring the largeness of finite sets
using ordinals, as presented in the next subsection. In Section 5, we explain how to prove
the equivalences between variants of PH and the correctness statements by the method of
indicators.

3.2. PH and the notion of «-largeness

The Paris—Harrington principle is closely related to a notion of largeness for finite
sets defined using ordinals. In [22], Ketonen and Solovay introduced the notion of a-largeness
for ordinal o < &9 and calibrated how large set is needed for PH.

Definition 3.2 («-largeness, within RCA,°). Fora < g9 andm € N, define a[m] = 0if ¢ =0,
afml = Bifa=p+ 1, aml =B+’ -mifa =p + o', and a[m] = B + o’ if
a = B + w” and y is a limit ordinal. Then a finite set X = {xo <--- < x¢—1} € N ({x;};
is the increasing enumeration of X) is called «-large if a[x¢]. .. [x¢—1] = 0.

The well-foundedness of ordinals and the notion of «-largeness is closely related. Indeed, if
« is well-founded and X = {x¢ < x; < ---} is infinite, then a[x¢][x1] ... should terminate
at 0 within finitely many steps, which means that X contains an «-large set. It is not difficult
to see the converse, and we have the following.

Proposition 3.7. Let o < g¢. The following assertions are equivalent over RCAy:
1. Any infinite set contains an «-large finite subset.

2. « is well-founded.

6 Indeed, this definition still works within EFA with primitive recursive descriptions of ordi-
nals.
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The relations between PH and «-largeness are well-studied and have been the topic

of ordinal analysis; see, e.g., [3-5,22,25,27,41]. Here we list several (digested) results from

1

those papers. Let ©F = o and 02, | = ©®7, and let w, = .

Theorem 3.8. The following are provable within RCAq. Let F C N be a finite set with
min F > 3, and letn,k > 1 and m > 0.

1. If Fis a)k+4-large, then F is 1-dense(2, k). (Ketonen/Solovay [22])
2. If F is 1-dense(2, k + 1), then F is w*-large. (folklore)
3. If F is w®**1.large, then F is 1-dense(n + 1, k). (essentially [22])

4. If F is 1-dense(n + 1, 3"), then F is wy-large. (Kotlarski/Piekart/Weiermann
[271)

5. If F is 3% -large, then F is m-dense(2, 2). (Kotodziejczyk/Yokoyama [25])
6. If F is wsm+2-large, then F is m-dense(3, 2). (Bigorajska/Kotlarski [4])

Many implications of Theorems 3.2-3.5 follow from the above theorem. Indeed,
1 <> 2 <> 5 of Theorem 3.2 follows from statements 1, 2 and 5 of the above, and 5 — 1 of
Theorem 3.3, 3 — 1 of Theorem 3.4, and 1 <> 4 — 2 of Theorem 3.5 follow from statements
3,4, and 6. We see other implications in Section 5.

Well-foundedness of ordinals is also heavily related with correctness statements and
their relations are widely studied. For the recent developments, see, e.g., [1,31].

4. GENERALIZATIONS OF PH

In this section, we see several generalizations of the Paris—Harrington principle by
modifying the relative largeness condition “| H| > min H.” They are still natural strength-
enings of the finite Ramsey theorem and quickly follow from the infinite Ramsey theorem
and a compactness argument of the kind presented in Proposition 3.1. Nonetheless, a strong
enough form of the Paris—Harrington principle recovers the infinite Ramsey theorem (The-
orem 4.5) and its iterations provide the rIT}-correctness of the infinite Ramsey theorem
(Theorems 4.6—4.8).

4.1. Phase transition

A natural generalization of PH}, would be provided by changing the relative large-
ness condition |H| > min H to |H| > f(min H) for some function f. We write PH} r
or PHZ’ r for the statement defined as PHj. or PH} but with |H| > min H replaced by
|H| > f(min H). Unfortunately, this does not make PH stronger in most cases. Indeed,

one can easily prove the following.

Proposition 4.1. 1. Letn =2,3,... orn = oo, and let f be a primitive recursive
function. Then |Zy + PH" proves PHY.
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2. Let f be a provably recursive function of PA. Then 151 + PH proves PHy.

3. Letn =1,2,... orn = ocoandletk =2,3,... ork = oco. Then RCA; + PH}
proves that for any function f, ﬁz f holds.

On the other hand, PHy can be weaker if f is slower growing than the identity
function. Indeed, if f is a constant function, then PHy is just the finite Ramsey theorem,
and thus it is provable within PA. Weiermann [44] revealed the border of the provability and
unprovability in this context as part of his research program called phase transition.

Theorem 4.2 (Weiermann [44]). Let log, be the inverse function of the nth iterated expo-
nential function exp”(x) where exp(x) = 2%, and let log, be the inverse function of the
superexponential (tower) function 2.

1. PHiqg, is not provable from PA for any n > 1.
2. PHyo, is provable from PA.

A sharper border is revealed in [44], and similar analyses have been done for KM
and other principles as well [35].

4.2. PH with generalized largeness

To obtain further generalization of PH, we want to consider some condition of the
form |H| > f(H) where f assigns some “required size” for each finite set. Inspired by
Terrence Tao’s blog [43], Gaspar and Kohlenbach [14] introduced several “finitary” versions
of the infinite pigeonhole principle (RT! in our terminology) which are formulated based on
this idea. Then, Pelupessy generalizes it to the infinite Ramsey theorem as follows.

Definition 4.1 (Gaspar/Kohlenbach [14], Pelupessy [36]). A function f : [N]*N — N is
said to be asymprotically stable if for any increasing sequence of finite sets Fo C F; C ---
{f(Fi)}ien converges. Then, the finitary infinite Ramsey theorem FIRT}, states the follow-

ing:

* FIRT}: for any asymptotically stable function 1 : [N]*N — N, there exists r € N
such that for any ¢ : [[0, r)n]* — k, there exists a homogeneous set H C [0, r)N
such that |H| > f(H).

* FIRT}, = VkFIRT}, FIRT = VnFIRT}.
The finitary infinite pigeonhole principle FIPP; in [14] is the same as FIRTéO.

Gaspar/Kohlenbach and Pelupessy showed that FIRT}, is equivalent to RT} over
WKL, (we will see this in detail later). Thus, FIRT] could be considered as a “finitary”
rephrasing of infinite combinatorics.

Remark 4.3. In [14], another form of the finitary infinite pigeonhole principle FIPP; is also
studied, and the question is raised which is more appropriate as the finitary version of infinite
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pigeonhole principle. However, FIPP; is equivalent to ACA, [45], and it does not fit with the
general form of the Ramsey theorem.

Then, can we consider more general statements? Remember that the original idea
of the finite Ramsey theorem or the Paris—Harrington principle is that if a large enough set
is given, one must find a homogeneous set which is still “large” in some sense. Here, we
consider a general concept of largeness for finite sets as follows.

Definition 4.2 (Largeness notion). A family of finite sets I. C [N]=N is said to be a prelarge-
ness notion if it is upward closed, in other words, Fop € L and Fy C F; implies F; € L.
A prelargeness notion L is said to be a largeness notion if for any infinite set X C N, there
exists a finite set F € X such that F € L.

The idea of the above definition is that an infinite set is always large enough and
thus it should contain a “large finite set” in the sense of L. For example, L, = {F €
[N]=N : |F| > min F} is a largeness notion. Note that “LL is a prelargeness notion” is just a
H]{“-statement and thus it is available within EFAL. On the other hand, “L is a largeness
notion” is an rH%-statement, so it strictly requires the second-order language. Next, we
generalize the density notion. The following definition can be made within EFAL.

Definition 4.3 (Density with respectto ). Letn > 1 orn = oo and k > 2 or k = oo. Let
L be a prelargeness notion. We define the density for (n, k, L) as follows:

« afinite set F is said to be O-dense(n, k,L) if F € L,

« a finite set F is said to be m + 1-dense(n, k, L) if for any ¢ : [F]* — k’ where
n’ < min{n, min F} and k' < min{k, min F}, there exists a c-homogeneous set
H C F such that H is m-dense(n, k,IL).

The statement that F is m-dense(n, k, L) is S5

Now we define the generalized Paris—Harrington principle. The following definition
can be made within RCA,.

Definition 4.4 (Generalized PH). Letn > lorn = 0o,k >2ork = oo and m € N. Then,
the generalized Paris—Harrington principle, mGPH;, and ItGPH}, is defined as follows:

» mGPHY: for any largeness notion IL. and for any infinite set X, there exists a finite
set F' C Xy such that F is m-dense(n, k, IL).

* ItGPH], := VmmGPH}.
Just like for PH, we write GPH};, for IGPH;,, GPH" for GPHZ_ and so on.

Unlike ﬁz, GPHZ is “iterable.” Indeed, GPHZ states that if IL is a largeness notion,
then the family of all 1-dense(n, k, IL) sets is also a largeness notion, and thus GPHZ can
be applied to it again. Furthermore, any infinite subset X C N is “isomorphic to N in the
following sense; if # : N — X is a monotone increasing bijection and LL is a largeness notion,
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then h~1(IL) is a largeness notion and for any F Cg, N, F is 1-dense(n, k, h~'(IL)) if and
only if h(F) is 1-dense(n, k,IL). Using these ideas, we can get the following.

Proposition 4.4. Letn = 1,2,3,.... The following are equivalent over RCAy:
1. mGPHy (k =2,3,4,...,m=1,2,3,...).

2. GPH} on N: for any largeness notion L, there exists a finite set F € N such
that F is 1-dense(n, 2, 1L).

To give a characterization of GPH, we consider the following variants of the infinite
Ramsey theorem which was originally introduced by Flood [11].

Definition 4.5 (Ramsey-type weak Kénig’s lemma). An infinite homogeneous function for
an infinite (n, k)-coloring tree T on Xy is a function & : [X]" — k such that X € X is
infinite and for any m € N, there exists p € T such that 2 MX Nm]" = p [ X N m]".

We define two forms of the Ramsey-type weak Kénig’s lemma, RWKL} and
RWKL}™, as follows:

* RWKL};™: for any infinite (n, k)-coloring tree T on N, there exists an infinite
homogeneous function for T (n > 1 and k > 2),

« RWKL" = VARWKL?~, RWKLY™ = VnRWKL?S,

. RWKLZ: for any infinite (7, k)-coloring tree T on N, there exists a constant infi-
nite homogeneous function for 7 (n > 1 and k > 2),

« RWKL”, = VKRWKL?, RWKLY = VnRWKL,.

Note that the original definition of Ramsey-type weak Kénig’s lemma by Flood is
our RWKL;.7 Over RCA,, it is strictly in-between WKL and DNR (see [11,12]). Variants of
Ramsey-type weak Kénig’s lemma with homogeneous functions are introduced and studied
by Bienvenu, Patey, and Shafer in [2] and the definition of RWKL}™ is inspired by them.

Theorem 4.5. Letn > 1 orn = oo and k > 2 or k = oo. The following are equivalent over
RCAO

1. GPH.
2. FIRT}.
3. RWKL].
4. RT; +RWKL} ™.
Proof. Ttis enough to show the equivalence for the case n > 1 and k > 2. Equivalence 3 <> 4

is easy from the definition. If £ : [N]<N — N is asymptotically stable, then L = {F : 3G C

7 The original name in [11] was “Ramsey-type Kénig’s lemma”, but “Ramsey-type weak
Kénig’s lemma” turned to be the standard name in the later works.
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F|G| > f(G)} is a largeness notion, which implies 1 — 2. Conversely, if LL is a largeness
notion, then a function f defined as f(F) = min{|G|—1:G C F AG € L} U{|F|} is
asymptotically stable and F € L <> |F| > f(F). This implies 2 — 1. Implication 3 — 1 is
a standard compactness argument which we have seen in Proposition 3.1. To show 1 — 3, let
T be an infinite (1, k)-coloring tree on N with no infinite constant homogeneous function.
Define I as F € L if there is no p € T such that p is constant on [F]". Then, one can
check that [L is a largeness notion, and hence by 1, there exists a finite set Fy € N which is
1-dense(n, k,L). Take some p € T so that dom(p) 2 [Fp]", then there must exist H C Fy
such that H € L and p is constant on [H]"*, which is a contradiction. |

Incasen = 3,4,5,..., any of the statements in the above theorem is just equivalent
to ACA,, so we mostly interested in the case n = 1 and 2. On the other hand, unlike RT; or
PH., the principle GPH] is still not trivial since RWKLJ (which is equivalent to RWKL}™)
is not provable within RCA,. This may be interpreted as saying that the generalized version of
the Paris—Harrington principle cannot be proved without using some compactness argument.
In general, RWKL} ™ is easily implied by WKLo, but we do not know whether it is strictly
weaker than WKL over RCA, or not in case n > 2.

4.3. Iterations of generalized PH and correctness statements
The iterated version of GPH can be related to stronger correctness statements.

Theorem 4.6. Letk = 2 ork = oo. Then ItGPHi is equivalent to rT13-corr(WKLo + RT,%)
over WKL,.

Over ACA;, any Hé-formula (of possibly nonstandard length) is equivalent to a
rH%—formula, and thus rT1 %-truth predicate is actually the truth predicate for all Hé-formulas.
Furthermore, It is known that rIT}-corr(ACA,) is equivalent to ACA}.® So we simply write
M }-corr(T) for rITi-corr(T) if T 2 ACA,.

Theorem 4.7. The following are equivalent over RCAy:
1. RT.
2. GPH.
3. tGPHy (n =3,4,...,k =2,3,...,00).
4. T1}-corr(ACAy).
Theorem 4.8. Over RCAq, ItGPH is equivalent to T1}-corr(ACA)).

We will see the proofs of these theorems using indicators in the next section.

The strength of ItGPH3 or ItGPH? is rather unclear. It is not difficult to check that
RCA, + ItGPH% implies RT? and WKL, + RT3 + I=! implies ItGPH? as in the proof of
Proposition 3.1. (Note that even ItGPH does not imply IE% since IE} is never implied from

8 This follows from the proof of [39, THEOREM IX.4.5].
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any true I1}-statement.) In particular, they are true in any w-models of WKL, + RT%. Mean-
while, the following questions are still open.

Question 4.6. 1. Is ItGPH3 equivalent to RT? over WKLy?

2. Does ACA, imply ItGPH? or ItGPH2?

5. INDICATORS AND CORRECTNESS STATEMENTS

The notion of indicators is introduced by Kirby and Paris [23, 32] to show several
independence results from PA, and its theory is organized systematically by Kaye [21]. The
argument of indicators can connect first-order objects with second-order objects by means
of nonstandard models. Recently, indicators have been used to calibrate the proof-theoretic
strength of the infinite Ramsey theorem in the context of reverse mathematics [6, 24, 34, 46].

5.1. Models of first- and second-order arithmetic

To introduce the argument of indicators, we first set up basic model theory of first-
and second-order arithmetic. For the details, see [16,21,26,39]. A structure for £ is a 6-tuple
M = (M;0M 1M M M M) (We often omit the superscript M if it is clear from
the context.) An £1-structure It = (N0, 1, +, X, <) where 0, 1, +, X, < are usual is called
the standard model, and an £1-structure is said to be nonstandard if it is not isomorphic
to . When we consider an expanded language &£; U U where U = Uy, ..., Uy are second-
order constants, an &£ U (7 -structure is a pair (M N (} M ) where M is an £1-structure and
U; € M. We may consider N as a special second-order constant which satisfies Vxx € N, in
other words, NM = M for any M . For second-order arithmetic, we use Henkin semantics.
A structure for £, is a pair (M, S) where M is an £-structure and S € £ (M ). Thus, any
L1 U U -structure can be considered as an é‘iz-sgructure.

Let M be a nonstandard model of EFAY . We write [M]<M for the set of all “finite
sets in M (also called M -finite sets), in other words, [M]<M = (IN]=N)M A nonempty
proper subset / & M is said tobe a cutifa <b Ab € I impliesa € [ foranya,b € M
(denotedby I €, M)anda + 1 € [ foranya € [.If I is acutand ¢(x) is a Eg-formula
suchthat M |= ¢(a) forany a € I (resp.a € M \ I), then there existsa € M \ [ (resp.a € I)
such that M |= @(a). This principle is called overspill (resp. underspill). A cut I C, M is
said to be semiregular if for any F € [M]M with |F| < min F, F N I is bounded in 7.

In our study, models of WKL, play central roles. Here are two important theorems.

Theorem 5.1 (Harrington, see Section IX.2 of [39]).

1. Forany countable model (M, S) = RCA,, there exists S D S such that (M, S) =
WKL,.”

2. WKL, is H%-conservative over RCA,.
9 Model (M, S) is said to be countable if both of M and S are countable.

1519 PARIS—HARRINGTON PRINCIPLE IN SECOND-ORDER ARITHMETIC



Theorem 5.2 (see, e.g., Theorems 7.1.5 and 7.1.7 of [26]). Let M be a model of EFA and
I Ce M be a cut. Then, I is semiregular if and only if (I, Cod(M/I)) = WKLo, where
Cod(M/I)={FNI:F e[M]"M).

5.2. Indicators
Now we give the definition of indicators. Here, we slightly arrange the definition in
[21] so as to fit better with second-order arithmetic.

Definition 5.1 (Indicators). Let U= Ui, ..., Ui be second-order constants, and let 7 2 EFA
be an £;-theory.

1. Let M be a countable nonstandard model of EFAf]. A Eg] -definable function
Y : [M|™™ — M is said to be an indicator for T on M if for each
F.F' e MM Y(F) <max F,Y(F) < Y(F')if F C F’, and

(cut) Y(F) > m for any m € 9t if and only if there exists a cut / &, M and
S € Cod(M/I) such that (1,S) = T, UiM N1 € S foreach U; € U and
F N[ isunbounded in /.

2. A 267 -formula Y (F, m) is said to be an indicator for T if for any countable
nonstandard model M = EFAY with U cVv ((7 is a subtuple of 17), Y defines
an indicator for 7 on M.

For a given indicator Y, we define two statements “Y > m” and “yint > p” ag
follows:

Y >m = VXo(Xp is infinite — IF g Xo Y(F) > m),
Y™ >m= VYa3dbY([a,b)N) > m.
Note that Y > misa rHi-statement while Y™™ > m is a [1,-statement.
Theorem 5.3. Define Xo-formulas Ypyr (F, m), Ypu(F, m), and YItPHZ (F,m) as follows:
e Ypuyr (F,m) < m = max{k’ <max F : F is I-dense(n,k’)} U{0} (n =2,3,...),
e Ypu(F,m) <> m = max{n’ < max F : F is 1-dense(n’, 2)} U {0},

* Yiewy (F.m) <& m =max{m’ <max F : F ism’-dense(n,k)} U{0} (n =2,3,...
orn=occandk =2,3,4,... ork = o).

Then, we have the following:
1. Ypyr is an indicator for RCAq + IZg_l.
2. Ypy is an indicator for ACA,.
3. YhPHZ is an indicator for WKLy + RT}.

In addition, these facts are provable within WKL,.

1520 K. YOKOYAMA



Proof. For statements 1 and 2, one can reformulate the discussions of [21, SECTION 14.3]. State-
ment 3 is essentially due to Paris [32, EXAMPLE 2] (see also [6, THEOREM 1] and [34, LEMMA 3.2]).
We sketch the proof for statement 3 for the case n = 2,3,... and k = 2,3,...

It is enough to check the condition (cut) for YhPHZ' The right-to-left direction fol-
lows from Proposition 3.1 and overspill. For the left-to-right direction, let M be a countable
nonstandard model of EFAU and let F ¢ [M]=M be m-dense(n, k) for any m € N. By over-
spill, take d € M \ 9t such that F is d-dense(n, k). We will construct a countable decreasing
sequence of M -finite sets { F; };eqn such that F; is (d — i)-dense(n, k) and

(i) if Ee[M]*M and |E| < E, then E N [min F;, max F;)n = @ for some i € N,
(i) if p e [M]“™ and p : [F]" — k, then for some i € N, F; is p-homogeneous.

Once such a sequence is constructed, put / = {a € M : 3i € N(a < min F;)}. Then, F; N 1
is unbounded in / and UiM N1 € Cod(M/I). By Theorem 5.2, (I,Cod(M/1)) E WKLy
since / is a semiregular cut by (i), and (ii) implies (/, Cod(M/I)) = RT}.

]<M

Finally, we construct { F; };em. Since [M is countable, it is enough to show:

(G if E e [M]™™,|E| <minE and F is £ + 1-dense(n, k) then there exists
F’ C F which is £-dense(n, k) such that E N [min F;, max F;)Ny = @,

(i) if p e [M]M, p:[F]* — k and F is £ + 1-dense(n, k) with £ > 1, then there
exists F' C F which is £-dense(n, k) such that F is p-homogeneous.

Indeed, (ii)’ is trivial from the definition of density. For (i)', define ¢ : [F]?> — 2asc({x,y}) =
0 < [x,y)n N E = @, and take a c-homogeneous set F’ C F such that F is £-dense(n, k).
If[F']? Cc71(1), thenput F” = F’\ {min F’} and we have | F”'| < |E| < min E < min F”,
but F” must be relatively large since it is at least 0-dense(, k). Hence [F']?> € ¢~1(0), which
we are done. |

For the next theorem, we want to formalize model-theoretic arguments within
second-order arithmetic. Within WKL, one can set up basic (countable) model theory for
first-order logic, and then prove Godel’s completeness theorem [39, SECTIONS II.8 AND IV.3].
Standard techniques for countable nonstandard models of arithmetic such as the compact-
ness theorem, over/underspill, back and forth, recursive saturation and forcing are naturally
formalizable once a countable model with a full evaluation function (truth definition) is
provided. On the other hand, it is not possible in general to consider N itself as a model of

10

first-order arithmetic since its truth definition is too complicated, * hence it is not easy to

guarantee that a family of true sentences are consistent. Still, we can deal with the consistency
of T1,-sentences as follows.

10 Some strong enough system such as ACA('," can do this, but WKL, is not enough.

1521 PARIS—HARRINGTON PRINCIPLE IN SECOND-ORDER ARITHMETIC



Lemma 5.4. RCA, proves the following. Let A= A1, ..., Ay be sets, and let T be a set of

true H‘z“—sentences. Then, T is consistent (with considering A as second-order constants)."!

Proof. We work within RCAy and show that N (together with ff) is a weak model of T" in the
sense of [39, DEFINITION 11.8.9]. It is enough to construct a function f : ST — 2 which satisfies
Tarski’s truth definition, where ST is the set of all sqbstitution instances of subformulas of 1:‘
Let S{ be the set of all substitution instances of > 4-subformulas of I'. Since there is a IT4-
formula which defines the truth of all Eé—formulas, one can take a function f : Sg -2
which satisfies the truth definition. Then f can be expanded to § T by putting the truth value
1 for all sentences in ST \ Sg . (They are 2‘1‘1 or 1'[;1 and always true.) |

Theorem 5.5. Let T O RCAq be an £,-theory, and let Y be an indicator for T
1. For any rT1{-sentence ¢, T\ ¢ if and only if RCAg + {Y > m :m € N} I ¢.
2. For any Tly-sentence ¢, T = ¢ ifand only if IZ1 + {Y™ >m :m € N} F ¢."?
If Y is an indicator for T provably in WKLy, we also have the following:
3. Over RCA, rT1}-corr(T) is equivalent to YmY > m.
4. Over %y, Iy-corr(T) is equivalent to YmY™ > m.

Proof. We show statements 1 and 3. (Statements 2 and 4 can be shown similarly.)

The right-to-left direction of statement 1 follows from Theorem 5.1.1 and Tanaka’s
self-embedding theorem [42]. Indeed, if (M, S) is a countable nonstandard model of T,
then there exists a model (M, §) which is isomorphic to (M, S) such that M <, M and
S C Cod(M/M).If X € S is infinite in (M, S) and m € N, then there exists F € [1\;1]<M
such that X = F N M. By the condition (cut), Y(F ) > m, hence there exists a set
F € [M]™M such that F € X and Y(F) > m by underspill.

For the left-to-right direction of statement 1, it is enough to show that if

{VxEIyG(U,x,y)} URCAULY >m:m e N}
is consistent with a second-order constant U and a Eg -formula 6, then
{VxEIyQ(U,x, y)} urt
is consistent. Let (M, S) be a countable nonstandard model of
{Vx3yO(U,x,y)} URCA U{Y =m :m € N}.

Then there exists an infinite set A in (M, S) such that for any a,b € A with a < b,
Vx <ady < bO(U, x, y). By overspill, there exists an M -finite set F € A with Y(F) > m

11 This lemma also follows from (the relativization of) the fact that 12 is equivalent to
I3-corr(EFA). See [1].
12 For statements 1 and 2, the base theories RCAq and |Z can be weakened to RCA; and

EFA 4 BX (the proof still works using recursively saturated models).
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for any m € 9. By (cut), take I S, M and S” € Cod(M/I) suchthat (I,S") =T and F N1
is unbounded in 7. The latter implies (1, S’) = Vx3yO(U, x, y).

For the left-to-right direction of statement 3, we first formalize the right-to-left direc-
tion of statement 1 within WKL,. In other words, “for eachm € N, Y > m is provable in T
is provable within WKLy. Thus it is provable within RCA, by Theorem 5.1.2 since it is a
Hg-statement, and hence rH%-corr(T) implies VmY > m.

For the right-to-left direction, again we first work within WKL,. It is enough to show
thatif Vx3y#(U, x, y) holds for some set U and a =5 -formula 6, then {Vx3y (U, x, y)} UT
is consistent. Take an infinite set 4 such that A is AY-definable and for any a, b € A with
a <b,Vx <ady < bO(U, x, y). Then, by the assumption, for any m € N, there exists
a finite set F C A such that Y(F) > m. Thus, by Lemma 5.4, a set of Hg—sentences
I =EFAY U{Va e FYbe F(a<b— Vx <ady <b8(U,x,y)) U{Y(F)>m :m € N}
is consistent (consider F as a new number constant). Take a countable nonstandard model
of I' and formalize the argument for the left-to-right direction of statement 1, then we see
that {Vx3yO(U, x, y)} U T is consistent.

The above argument actually showed that for any set U, “VYmY > m with respect to
any infinite set A <7 U” implies =¥ -corr(T'). This is a I1}-statement provable in WKLo, so
it is also provable within RCAq by Theorem 5.1.2. Thus RCA, proves that VimY > m implies
rT11-corr(T). ]

Theorems 5.3 and 5.5 directly connect PH and the correctness statements, and The-
orems 2.1 and 2.2 are direct consequences of them. They also imply conservation theorems.
Indeed, Theorem 2.6.2 is a direct consequence of Theorems 5.3 and 5.5 plus Theorem 3.8.5
(see [25]).

Proofs of Theorems 3.2-3.6. By definitions, PH”, PH, and Itmz are equivalent to
VYmYpyr > m, YmYpy > m and Vm thH; > m, respectively. Then, equivalences between
variants of PH and corresponding rI1}-correctness statements (1 <> 3 and 2 <> 4 of Theo-
rems 3.2 and 3.3, 1 <> 2 of Theorem 3.4, 1 <> 2 <> 3 of Theorem 3.5 and Theorem 3.6) follow
from Theorems 5.3 and 5.5. Implications between variants of PH and well-foundedness state-
ments follow from Theorem 3.8 (see the paragraph below Theorem 3.8). Other implications
can be shown as follows: 3 — 5 of Theorem 3.3 and 2 — 3 of Theorem 3.4 are implied
from the formalization of the fact that RCA, + IZ9 proves well-foundedness of @¥ for each
k € M, and 3 < 4 of Theorem 3.3 is implied from the formalization of the conservation
result for WKL, + RT? in [46]. |

5.3. Indicators corresponding to largeness notions

To obtain a characterization of rT1}-correctness, we modify Theorem 5.5 using indi-
cators which can preserve largeness notions.

Given two finite sets Fo = {xo <--- < x¢—1} and F; = {xy <--- < x},_,}, define
Fo < Firas{ </{ and x; > xlf for any i < £. A prelargeness notion L is said to be normal if
Fy e L and Fy < F; implies F; € L. It is not difficult to check that L., is a normal largeness
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notion. For a given prelargeness notion L, put L™ = {F € L : VG C [0,max F]n(G > F —
G € 1L)}. Then L™ is a normal prelargeness notion.

Lemma 5.6. The following is provable within WKL,. For any largeness notion IL, LY is a
largeness notion.

Proof. Assume that IL is a prelargeness notion and there exists an infinite set X = {x¢ <
X1 < ---} such that no finite subset of X is a member of LT.Defineatree T C N<NasogeT
if and only if o is strictly increasing, {o (i) :i < |o|} > {x; :i <|o|}and{o(i):i < |o|} ¢ L.
Then, T is a bounded tree and T is infinite. Take apath & € [T],then Y = {h(i) :i € N} is
an infinite set and any finite subset of Y is not a member of LL. |

Now we generalize the notion of semiregularity with a normal (pre)largeness notion
and consider a variant of Theorem 5.5.

Definition 5.2 (L-semiregularity). Let M be a nonstandard model of EFAL, and let IL be a
normal prelargeness notion in M. Then, acut I S, M is said to be L.-semiregular if for any
finite set F' ¢ I, F N [ is bounded in /, or equivalently, I. N [ is a normal largeness notion
in (1, Cod(M/1)).

A Y -formula YL =Y (L, F,m) (where L € U) s said to be an L-semiregular indi-
cator for an £,-theory T if for any countable nonstandard model M = EFAY with U cVv
such that IL is a normal prelargeness notion in M, Y defines an indicator for 7 on M but
the condition (cut) replaced by

(L-cut) Y(F) > m for any m € 9t if and only if there exists an [L-semiregular cut
I CeMandS CCod(M/I)suchthat (I,S)E=T, UiM NI eSforeachlU; elU
and F N [ is unbounded in /.

Theorem 5.7. Let T O WKLq be an £,-theory, and let Y L be an L-semiregular indicator
for T provably in WKLy. Then the following assertions are equivalent over WKLy

1. rI1i-corr(T).
2. Forany L, if L is a normal largeness notion, then YmY™ > m.

Proof. Implication 1 — 2 follows from the same discussion as the proof for Theorem 5.5.
To show 2 — 1, we reason within WKL, and show that, assuming statement 2 is true, if 6(U)
holds for some set U and an rI1}-formula 6(U), then {#(U)} U T is consistent. By [34,
PROPOSITION 2.5], take a Eg-formula n(G, F) such that WKL, proves

YV(O(V) < YZ(Z is infinite — IF gy, Zn(V N [0, max FN, F))).

Define Lo € [N]*N as G € Ly <> 3F € Gn(U N[0, max F]y, F), and let L = Lg . Since
6(U) holds, LL is a normal largeness notion. By assumption, we have Y™ > m for any m € N.
Thus, by Lemma 5.4, a set of Hg L sentences I' = EFAU'L U {L is a normal prelargeness
notion} U{YG(G € L — 3G'n(U N[0, max G']n,G"))} U{YL(F) > m :m € N} is con-
sistent (consider F' as a new number constant).
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Take a countable nonstandard model M = T'. Then, M = Y™ (FM) > m for any
m € N and thus there exists an L-semiregular cut / &, M and S € Cod(M/I) such that
Ul=UMnNIeS, LI =LMnIeSand(I,S) | T.Since I is LM -semiregular, L7 is
a largeness notion in (1, S). Since M E VG(G € L — 3G'n(U N [0, max G']n, G')), we
have (1,S) = 6(U7). |

Theorem 5.8. Letn =2,3,4... orn =ocoandk = 2,3,4,... or k = cc. Define X-

L .
SJormula YItGPHZ as follows:

Yigery (L, Fym) <> m = max{m’ < max F : F ism’-dense(n,k,L N L)} U{0}.

Then, YI][IE}PHZ is an L-semiregular indicator for WKLy + RT}. Moreover, this fact is provable

within WKL,.

Proof. Essentially the same as the proof for Theorem 5.3.3. We additionally need to show
the following (which is an analogous of (i)'):

If IL is a normal prelargeness notion, F is £ 4+ 1-dense(n, k, L N IL,) with £ > 1
and G is a finite set such that G ¢ 1L, then there exists F’ C F such that F’ is
£-dense(n,k,L NL,) and [min F/,max F')y N G = @.

Given{, L, F and G as above, define ¢ : [F]>? = 2asc({x,y}) =1 < [x,y)n N G # 0. Take
ac-homogeneous set F’ C F such that F' is {-dense(n,k,IL N 1L,).If[F’]> € ¢~ (0), we are
done, so assume [F']> € ¢~ 1(1).Put G’ = G N [min F/,max F')y and F” = F’\ {min F’}.
Then F” is at least O-dense(n, k,IL. N L) and thus F” € IL. On the other hand, G’ > F” by
the definition of ¢, and thus G’ € L. This is a contradiction since G’ C Gand G ¢ L. N

Proofs of Theorems 4.6, 4.7, and 4.8. By Lemma 5.6, ItGPH}_ is equivalent to the statement
that if IL is a normal largeness notion, then Vm YI]EZ;PHZ > m. Then, implications between

ItGPH], and rT1}-corr(WKLy + RT}) follow from Theorems 5.7 and 5.8. [ |
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CONSTRAINT
SATISFACTION PROBLEM:
WHAT MAKES

THE PROBLEM EASY

DMITRIY ZHUK

ABSTRACT

The Constraint Satisfaction Problem is the problem of deciding whether there is an assign-
ment to a set of variables subject to some specified constraints. Systems of linear equa-
tions, graph coloring, and many other combinatorial problems can be expressed as Con-
straint Satisfaction Problems for some constraint language. In 1993 it was conjectured

that for any constraint language the problem is either solvable in polynomial time, or NP-
complete, and for many years this conjecture was the main open question in the area. After
this conjecture was resolved in 2017, we finally can say what makes the problem hard

and what makes the problem easy. In the first part of the paper, we give an elementary
introduction to the area, explaining how the full classification appeared and why it is for-
mulated in terms of polymorphisms. We discuss what makes the problem NP-hard, what
makes the problem solvable by local consistency checking, and explain briefly the main
idea of one of the two proofs of the conjecture. The second part of the paper is devoted to
the extension of the CSP, called Quantified CSP, where we allow using both universal and
existential quantifiers. Finally, we discuss briefly other variants of the CSP, as well as some
open questions related to them.
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1. INTRODUCTION

Probably the main question in theoretical computer science is to understand why
some computational problems are easy (solvable in polynomial time) while others are dif-
ficult (NP-hard, PSpace-hard, and so on). What is the difference between P and NP? Why
a system of linear equations can be solved in polynomial time by the Gaussian elimination
but we cannot check whether a graph is 3-colorable in polynomial time (if we believe that
P # NP). What is the principal difference between these two problems? To work on this
question, first we would like to classify the problems by whether they are solvable in polyno-
mial time (tractable) or NP-complete. Even for very simple decision problems, sometimes
we do not know the answer.

For example, a system of linear equations in Z, can be solved by Gaussian elim-
ination, but if we are allowed to add one linear equation with usual sum for integers then
the problem becomes NP-complete [26]. Surprisingly, the complexity is not known if we can
add one equation modulo 24 to a system of linear equations in Z, (variables are still from
{0, 1}) [17]. In the paper we give a formal definition to such problems and discuss why some
of them can be solved in polynomial time, while others are NP-hard.

2. CONSTRAINT SATISFACTION PROBLEM
The above problems are known as the Constraint Satisfaction Problem (CSP), which
is the problem of deciding whether there is an assignment to a set of variables subject to

some specified constraints. Formally, the Constraint Satisfaction Problem is defined as a
triple (X, D, C), where

e X ={x1,...,x,}is a set of variables,
e D={Dy,...,D,}is aset of the respective domains,
e C={Cy,...,Cy} is aset of constraints,

where each variable x; can take on values in the nonempty domain D;, every constraint
C; e Cis apair (#;, R;) where ¢; is a tuple of variables of length m;, called the constraint
scope, and R; is an mj-ary relation on the corresponding domains, called the constraint
relation.

The question is whether there exists a solution to (X, D, C), that is, a mapping that
assigns a value from D; to every variable x; such that for each constraint C; the image of
the constraint scope is a member of the constraint relation.

To simplify the presentation, we assume that the domain of every variable is a finite
set A. We also assume that all the relations are from a set I', which we call the constraint
language. Then the Constraint Satisfaction Problem over a constraint language I', denoted
CSP(T), is the following decision problem: given a conjunctive formula

Rl(vl,l» ceey Ul,nl) ASRRRAN RS(vS,17 cee Us,ns)’
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where Ry,..., Ry € I',and v; ; € {x1,...,x,} forevery i, j, decide whether this formula
is satisfiable. Note that in the paper we do not distinguish between relations and predicates,
and in the previous formula we write relations meaning predicates.

2.1. Examples

It is well known that many combinatorial problems can be expressed as CSP(I")
for some constraint language I". Moreover, for some I" the corresponding decision problem
can be solved in polynomial time; while for others it is NP-complete. It was conjectured that
CSP(T) is either in P or NP-complete [29]. Let us consider several examples.

System of linear equations. Let A = {0, 1} and
= {alxl +aszxy + - +agxp = ag | ag,ay,....ax € Zz},

i.e., " consists of all linear equations in the field Z,. Then CSP(T") is equivalent to the prob-
lem of solving a system of linear equations, which is solvable by the Gaussian elimination
in polynomial time, thus, CSP(T") is in P.

Graph 2-coloring. To color a graph using two colors, we just need to choose a color of every
vertex so that adjacent vertices have different colors. We assign a variable to each vertex, and
encode the two colors with 0 and 1. For an edge between the ith and jth vertices, we add
the constraint x; # x;. For instance, the 5-cycle is equivalent to the CSP instance

(x1 # x2) A (x2 # x3) A (X3 7# X4) A (Xa # X5) A (X5 # X1).

Hence, the problem of graph 2-coloring is equivalent to CSP(T") for A = {0, 1} and
I' = {#}. This problem can be solved locally. We choose a color of some vertex, then we
color their neighbors with a different color, and so on. Either we will color all the vertices,
or we will find an odd cycle, which means that the graph is not colorable using two colors.
Thus, this problem is solvable in polynomial time.

Graph 3-coloring. Similarly, the problem of coloring a graph using 3 colors is equivalent to
CSP(T") for A = {0, 1,2} and I' = {z#}. Unlike the graph 2-coloring, this problem is known
to be NP-complete [1].

NAE-satisfability and 1IN3-satisfability. Suppose A = {0, 1}. NAE is the ternary not-
all-equal relation, that is, NAE = {0, 1} \ {(0,0,0), (1, 1, 1)}. 1IN3 is the ternary 1-in-3
relation, that is, 1IN3 = {(0,0, 1), (0, 1,0), (1,0,0)}. As it is known [4e], both CSP({NAE})
and CSP({1IN3}) are NP-complete.

The main goal of this paper is to explain why the first two examples are in P, while
the others are NP-hard.

2.2. Reduction from one language to another

To prove the hardness result, we usually reduce a problem to a known NP-hard prob-
lem. Let us show how we can go from one constraint language to another. CSP(I") can be
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viewed as the problem of evaluating a sentence
Elx1 . EIx,,(Rl(vl,l, ey vl,nl) VANRRRIVAN RS(USJ, RPN Us,ns))» (2])

where all variables are existentially quantified. Hence, if we could express one language
using conjunctions and existential quantifiers from another language, then we get a reduction
from one CSP to another. Let us explain how it works on a concrete example.

Let NA1 = {0, 1}3\ {(1,1, 1)}, that is, a ternary relation that holds whenever not
all elements are 1. Let A = {0, 1}, 'y = {NAI, #}, and I, = {1IN3}. Let us show that
CSP(I'y) and CSP(I';) are (polynomially) equivalent. We may check that

(x # y) = Ju3v 1IN3(x, y,u) A 1IN3(u, u, v). 2.2)
If fact, from 1IN3(u, u, v) we derive that u = 0, hence x # y. Similarly, we have

NAl(x,y,z) = 3x'3y'3z'Ax"3y"3z" 1IN3(x', y', 2")
A 1IN3(x, x", x") A 1IN3(y, y', ¥") A 1IN3(z, 2/, 2). (2.3)

If x =y =z=1,then x’ = y' = z/ = 0, which contradicts 1IN3(x’, y’, z). In all other
cases, we can find an appropriate assignment.

Any instance of CSP(I";) can be reduced to an instance of CSP(I",) in the following
way. We replace each constraint (x; # x;) by the right-hand side of (2.2) introducing two new
variables. Also, we replace each constraint NA1(x;, x;, xx) by the right-hand side of (2.3)
introducing six new variables. This reduction is obviously polynomial (and even log-space).
Similarly, we have

1IN3(x, y, z) = 3x'3y'3z’(NA1(x, y, y) ANAL(y,z,z) ANAL(z, x, x)
NG #E ) A G # ) A #2) ANALKE, Y. 2),

which implies a polynomial reduction from CSP(I'y) to CSP(I';).

Let us give a formal definition for the above reduction. A formula of the form
dy;...3y, P, where ® is a conjunction of relations from I' is called a positive primitive
SJormula (pp-formula) over T'. If R(x1,...,Xx,) = 3y1...3y, P, then we say that R is pp-
defined by this formula, and Jy; ... 3y, ® is called its pp-definition.

Theorem 2.1 ([35]). Suppose 'y and 'y are finite constraint languages such that each
relation from Ty is pp-definable over T'. Then CSP(I'y) is polynomial time reducible to
CSP(T).

2.3. Polymorphisms as invariants

If we can pp-define a relation R from a constraint language I' and CSP({R}) is
NP-hard, then CSP(T") is also NP-hard. How to show that such a relation cannot be pp-
defined? To prove that something cannot be done, we usually find some fundamental property
(invariant) that is satisfied by anything we can obtain. For the relations, the operations play
the role of invariants.
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We say that an operation f : A" — A preserves a relation R of arity m if for any
tuples (@1,1,.--,a1,m)s---(@n,1s--.,an,m) € R the tuple

(fary. .. an)s. oo f@ims - anm))

is in R. In this case we also say that f is a polymorphism of R, and R is an invariant of f.
We say that an operation preserves a set of relations T if it preserves every relation in I". In
this case we also write f is a polymorphism of T or f € Pol(T"). It can be easily checked
that if f preserves I', then f preserves any relation R pp-definable from I'. Moreover, we
can show [15, 31] that Pol(I";) € Pol(I';) if and only if I'; is pp-definable over I'y, which
means that the complexity of CSP(I") depends only on Pol(T").

Example 1. Let R be the linear order relation on {0, 1, 2}, i.e.,
R— 0 001 1 2 ’
o1 21 2 2

where columns are tuples from the relation. Then “an n-ary operation f preserves R” means
that for all
a a
.17 er,
bl bn
that is, a; < b;, we have

ay ax ... ap\ . ([ flai,....an)
f(bl by ... b,,) = (f(bl,...,b,,))eR’

that is, f(ay,...,ay) < f(b1,...,by). In other words, f is monotonic. For instance, the
operations max and min are monotonic. By the above observation, we know that any relation
pp-definable from R is also preserved by min and max.

Example 2. Let A = {0, 1}. Let us show that 1IN3 cannot be pp-defined from NA1 and
x < y. We can check that the conjunction x A y (an operation on {0, 1}) preserves both
NAT and x < y. However, x A y does not preserve 1IN3 as we have

1 0 0
olal1|=|0]¢1N3.
0 0 0

For more information on polymorphisms and how they can be used to study the
complexity of the CSP, see [6].

2.4. Local consistency

The first step of almost any algorithm solving a CSP instance is checking local
consistency. For instance, if a constraint forces a variable to be equal to 0, then we could
substitute 0 and remove this variable.

Suppose we have a CSP instance

Rl(vl,l, ey 1)1’"1) VANRERIVAN RS(US’I, ey Us,ns)~ (24)
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This instance is called I-consistent (also known as arc-consistent), if for any variable x any
two constraints R; (vi,1, ..., Vi) and R;j(vj1, ..., jx;) having this variable in the scope
have the same projection onto this variable. This means that for every variable x there exists
D, C A, called the domain of x, such that the projection of any constraint on x is D.
Sometimes we need a stronger consistency (similar to singleton-arc-consistency in

[36]). We say that z; — Cy — zp —--- — Cj—; — z; is a path in a CSP instance d if z;, zj 4
are in the scope of the constraint C; for every i € {1,2,...,] — 1}. We say that a path
z1 —Cy — 2y —-+--— Cj_1 — z; connects b and c if there exist ay, a,, ...,a; € A such that

ay = b, a; = c, and the projection of each C; onto z;, z; +1 contains the tuple (a;, aj+1).
A CSP instance d is called cycle-consistent if it is 1-consistent and for every variable z and
a € D, any path starting and ending with z in d connects a and a.

It is not hard to find a polynomial procedure making the instance 1-consistent or
cycle-consistent. For 1-consistency, the idea is to find a variable where the consistency is vio-
lated, then reduce the domain D of this variable and reduce the corresponding relations. We
repeat this while some constraints violate consistency. Finally, we either get a 1-consistent
instance, or we get a contradiction (derive that D, = &). For cycle-consistency, we should
go deeper. For every variable x and every value a € D, we reduce the domain of x to {a}
and check whether the remaining instance can be made 1-consistent. If not, then x cannot
be equal to a, and a can be excluded from the domain D.

Later we will show that in some cases 1-consistency and cycle-consistency are
enough to solve a CSP instance, that is, any consistent instance has a solution. See [5, 36]
for more information about local consistency conditions.

2.5. CSP over a 2-element domain
The complexity of CSP(I") for each constraint language I" on {0, 1} was described
in 1978 [4e]. This classification can be formulated nicely using polymorphisms.

Theorem 2.2 ([34,40]). Suppose A = {0, 1}, T is a constraint language on A. Then CSP(T")
is solvable in polynomial time if

(1) O preserves I, or

(2) 1 preserves I, or

(3) x Vv y preserves I, or

(4) x Ay preserves T, or

(5) xy v yz Vv xz preserves T, or
(6) x + y + z preserves I

CSP(I') is NP-complete otherwise.
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Let us consider each case and explain how the polymorphisms make the problem
easy. Note that the cases (1) and (2), (3) and (4) are dual to each other, that is why we consider
only one in each pair in detail.

0 preserves I'. This case is almost trivial. “The constant O preserves a relation R € I'”
means that R(0,0, ..., 0) holds. If 0 preserves all relations from I, then (0,0, ..., 0) is
always a solution of a CSP instance, which makes the problem CSP(T") trivial.

x Vv y preserves I'. Let us show how to solve an instance of CSP(T") if x v y € Pol(T").
First, we make our instance 1-consistent. Then, unless we get a contradiction, every variable
x has its domain D, which is either {0}, or {1}, or {0, 1}. We claim that if we send the
variables with domain {0} to 0, and the variables with the domain {1} and {0, 1} to 1, then
we get a solution. In fact, if we apply x V y to all the tuples of some constraint, we obtain a
tuple consistent with the solution. Thus, 1-consistency guarantees the existence of a solution
in this case.

xy Vv yz v xz preserves I'. The operation xy V yz Vv xz returns the most popular value
and is known as a majority operation. It is not hard to check [2] that any relation preserved
by a majority operation can be represented as a conjunction of binary relations, and we may
assume that I" consists of only binary relations. As it is shown in Section 2.8, for a 2-element
domain this gives a polynomial algorithm for CSP(I"). Additionally, we can show [36, 47]
that any cycle-consistent instance of CSP(I") has a solution. Hence to solve an instance, it is
sufficient to make it cycle-consistent, and unless we obtain an empty domain (contradiction)
the instance has a solution.

x + y + z preserves I'. It is known (see Lemma 2.8) that x 4+ y + z preserves a relation
R if and only if the relation R can be represented as a conjunction of linear equations. Thus,
CSP(I') is equivalent to the problem of solving of a system of linear equations in the field
7.5, which is tractable.

2.6. CSP solvable by local consistency checking

As we see in the previous section all tractable CSPs on a 2-element domain can be
solved by two algorithms. The first algorithm just checks some local consistency
(1-consistency, cycle-consistency) and, if a sufficient level of consistency achieved, we
know that the instance has a solution. The second algorithm is the Gaussian elimination
applied to a system of linear equations. In this section we discuss when the first algorithm
is sufficient and why some instances can be solved by a local consistency checking, while
others require something else.

To simplify the presentation in this section, we assume that all constant relations
X = a are in the constraint language. In this case any polymorphism f of T is idempotent, that
is, f(x,x,...,x) = x. This restriction does not affect the generality of the results because
we can always consider the core of the constraint language and then add all constant relations
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(see [34]). Consider the following system of linear equations in Z:

X1+ x2 = x3 +0,

X3+ 0=x4 + x5,
3 4 5 @.5)
X4 +0=Xx1 + Xe,

X5 + x¢ = X2 + 1.

If we calculate the sum of all equations, we will get 0 = 1, which means that the system does
not have a solution. Nevertheless, we may check that the system is cycle-consistent, which
means that the cycle-consistency does not guarantee the existence of a solution for linear
equations. In fact, we can show that there does not exist a local consistency condition that
guarantees the existence of a solution of a system of linear equations (see [5]).

As it was shown in [5,47] if CSP(I") cannot be solved by cycle-consistency checking
then we can express a linear equation modulo p using I". Since our constraint language is on a
domain A, we could not expect to pp-define the relation x; 4+ x, = x3 + x4 (mod p). Instead,
we claim that there exist S € A and a surjective mapping ¢ : A — Z, such that the relation

{(a1.a2.a3,a4} | a1, a2,a3,a4 € S, p(a1) + ¢(az2) = ¢(az) + ¢(as)} (2.6)

is pp-definable. This means that the linear equation is defined on some S modulo some
equivalence relation defined by ¢. To avoid such a transformation, we could introduce the
notion of pp-constructability and say that x; 4+ x, = x3 4+ x4 (mod p) is pp-constructable
from I'. To keep everything simple, we do not define pp-constructability and use it infor-
mally hoping that the idea of this notion is clear from our example. For more details about
pp-constructability, see [7].

If such a linear equation cannot be pp-defined (pp-constructed) then there should
be some operation that preserves I" but not the linear equation modulo p. An operation f is
called a Weak Near Unanimity Operation (WNU) if it satisfies the following identity:

F,x,x,....,x) = f(x,y,x,...,x) == f(x,x,...,x,¥).

It is not hard to check that an idempotent WNU of arity p does not preserve a nontrivial
linear equation modulo p (see Lemma 4.9 in [47]). Thus, the existence of an idempotent
p-ary WNU polymorphism of I guarantees that a linear equation modulo p cannot be pp-
defined (pp-constructed). That is why a relation satisfying (2.6) is called p-WNU-blocker.
Hence, if I has WNU polymorphisms of all arities then no linear equations can appear. The
following theorem confirms that nothing but linear equations could be an obstacle for the
local consistency checking.

Theorem 2.3 ([47]). Suppose I is a constraint language containing all constant relations.
The following conditions are equivalent:

(1) every cycle-consistent instance of CSP(I) has a solution,
(2) T has a WNU polymorphisms of all arities n > 3;

(3) there does not exist a p-WNU-blocker pp-definable from I.
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Thus, the fact that we cannot express (pp-define, pp-construct) a nontrivial linear
equation makes the problem solvable by the cycle-consistency checking.

2.7. CSP Dichotomy Conjecture

In this subsection, we formulate a criterion for CSP(I") to be solvable in polynomial
time. This criterion is known as the CSP Dichotomy Conjecture, it was formulated almost
30 years ago [28,29] but was an open question until 2017 [19, 2e, 42, 44].

Theorem 2.4 ([19,20,42,44]). Suppose I is a constraint language on a finite set A. Then
(1) CSP(T) is solvable in polynomial time if T is preserved by a WNU,;
(2) CSP(T") is NP-complete otherwise.

The reason why the existence of a WNU polymorphism makes the problem easy
is the fact that we cannot pp-define a strong relation giving us NP-hardness. A relation
R = (ByU B;)3\ (Bg U Bf’), where By, By C A, By # @, B1 # @,and By N B; = @,
is called a WNU-blocker. Such relations are similar to the not-all-equal (NAE) relation
on {0, 1}, where By means 0 and B; means 1. Instead of the existence of a pp-definable
WNU-blocker, we could say that the relation NAE is pp-constructable from I'. Note that
CSP({NAE}) and CSP({R}) for a WNU-blocker R are NP-complete problems.

We can check (see Lemma 4.8 in [47]) that a WNU operation does not preserve a
WNU-blocker. Moreover, we have the following criterion.

Lemma 2.5 ([47]). A constraint language T containing all constant relations is preserved
by a WNU if and only if there is no WNU-blocker pp-definable from T'.

Thus, CSP(I") is solvable in polynomial time if and only if a WNU-blocker cannot
be pp-defined. Hence, the fact that we cannot pp-construct the not-all-equal relation makes
the problem easy, and a WNU is an operation that guarantees that this relation cannot be
pp-constructed.

2.8. How to solve CSP if pp-definable relations are simple

Below we discuss how the fact that only simple relations can be pp-defined from
I" can help to solve CSP(I") in polynomial time. In this case we can calculate the sentence
explicitly eliminating existential quantifiers one by one. I believe that a similar idea should
work for any I' preserved by a WNU, which will give us a simple algorithm for CSP(I").

CSP(I") can be viewed as the following problem. Given a sentence

g A (Ri(its o Vi) A A Rg(Usy1s vy Vo))
we need to check whether it holds. To do this, let us remove the quantifiers one by one. Let
Ap—1(X1, ..., Xp—1) = EIx,,(Rl(vl,l, e Vi) A AR (Us,1s - vs,ns)).
In general, A, _; could be any relation of arity n — 1, and even to write this relation we need

| A"~ bits. Nevertheless, we believe that if CSP(T") is tractable then the relation A,_; (or

1538 D. ZHUK



the important part of it) has a compact representation and can be efficiently computed. Then
we calculate A, 5, Ay—3,...,Ag, where A;_1(x1,...,x;—1) = Ax; Aj (x1,...,x;), and the
value of A is the answer we need.

We may check that on a 2-element domain we have

Hx,,(Rl(vl,l, ey vl,nl) VANREEIVAN Rs(vs,l, ey vs,ns))

= /\ (Elan,-(v,-,l,...,vi,ni)/\Rj(vjyl,...,vj,nj)). (2.7)
i,j€{1,2,...,s}

The implication = is obvious. To prove <= assume that the left-hand side does not hold. Then

the conjunctive part does not hold on both (x1,...,x,—1,0) and (xq,...,x,—1, 1). Hence,
there exist i and j such that R;(v; 1, ..., v; ;) does not hold on (x1, x2, ..., x,—1,0) and
R;(vj1,..., vj,,,j) does not hold on (x1, x2,...,X,—1, 1). Hence, the (7, j)-part of the right-

hand side does not hold.

There are two problems if we use (2.7) to solve the CSP. First, as we mentioned
above, the relation R; ;(...) = 3x, R; (Vi1, ..., Vin,) AR ()1, ..., vj’,,j) probably does
not have a compact representation. Second, if we remove the quantifiers 3x;,, 3x,—1,...,3x;
one by one, potentially we could get an exponential number of relations in the formula. Let
us show how these problem are solved for concrete examples on a 2-element domain.

2.9. System of linear equations in Z,
Let A = {0, 1} and let I" consist of linear equations in Z,. Suppose that for every i
we have

i i i i
Ri(ig,...,Vipn) = (aixy +ayxs + -+ + a,x, = ag).
For a), = aj =1, we have

Rij(...)
= EIx,,(Ri (v,"l, ey v,-,,,i) N R_,-(vj,l, Ceey v_,-,,,j))

i i i i ] J J J
= (alxl +asxo+--+a, Xp—1+ag=ayx1+ayx2+---+a,_Xn-1+ ao).

If afl = 0 then the constraint R; (v; 1, ..., V; ;) does not depend on x,, so we keep it as it is
when remove the quantifier. Hence, in every case we have a compact representation of A,_;.
To avoid the exponential growth of the number of the constraints, we use the idea from the
Gaussian elimination. Choose k such that a,’f = 1, then calculate only Ry i, ..., Rg s and
ignore all the other relations. Thus, in this case we have

Ap—1(X1, ..o Xpm1) = I (R, - oo V1) Ao A Re(Vg 1, Usiny)
= N\ @R k) AR W1 vjmy)). (28)
je{1,2,....5}
Proceeding this way, we calculate A,_», A,_3,..., Ag. Note that (2.8) holds not

only for linear equations but whenever a variable x;, is uniquely determined by the other
variables in R (Vk,1,. .., Vkn,)-
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2.10. 2-satisfability

Let A = {0, 1} and let I" consist of all binary relations. In this case R; ; is also
binary, which means that we do not have a problem with a compact representation. Also,
every time we eliminate a quantifier and caclulate A;, we remove the repetitive constraints.
Therefore, in each A; we cannot have more than 7 -7 - 22% constraints because we have i
different variables and 22” different binary relations on {0, 1}.

As we see, the main question in both examples is the existence of a compact repre-
sentation. In the first example we represent any relation as a conjunction of linear equations,
in the second we represent as a conjunction of binary relations. We could ask when such a
compact representation exists. Let sp () be the number of pp-definable from I relations of
arity n. If log, sr () grows exponentially then we need exponential space to encode relations
of arity n and we cannot expect a compact representation. We say that I" has few subpowers
if log, st(n) < p(n) for a polynomial p(n). It turns out that there is a simple criterion for
the constraint language to have few subpowers. An operation ¢ is called an edge operation it
it satisfies the following identities:

XX, 0,9, 0, 0,0, Y) =,
LY, X, 0,0, YY) =,
LY,y Y. XY, 0. Y) =),
LY. Y. 0.0 % ..y, ) =),

LY Y Y Veeen X, ¥) =,
t(y,%y,y,y,...,y,x) :y

Theorem 2.6 ([9]). A constraint language I" containing all constant relations has few sub-
powers if and only if it has an edge polymorphism.

We can show that if I" has few subpowers then the pp-definable relations have a
natural compact representation, which gives a polynomial algorithm for CSP(I") [33]. Note
that two examples of an edge operation were given earlier in this paper. The first example
is a majority operation satisfying m(y, y, x) = m(y, x, y) = m(x, y, y) = y. By adding
3 dummy variables in the beginning, we get the required properties of an edge operation.
Another example is x + y + z on {0, 1}. By adding dummy variables at the end, we can
easily satisfy all the identities. Very roughly speaking, any few subpowers case is just a
combination (probably very complicated) of the majority case and the linear case.

2.11. Strong subuniverses and a proof of the CSP Dichotomy Conjecture

In this subsection, we consider another simple idea that can solve the CSP in poly-
nomial time. This idea is one of the two main ingredients of the proof of the CSP Dichotomy
Conjecture in [42,44].

Assume that for every variable x whose domain is Dy, |Dy| > 1, we can choose a
subset B, & D, such that if the instance has a solution, then it has a solution with x € B,.

-
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In this case we can reduce the domains iteratively until the moment when each domain has
exactly one element, which usually gives us a solution.

As we saw in Section 2.5, if T is preserved by x V y and the instance is 1-consistent
then we can safely reduce the domain of a variable to {1}. Similarly, if " is preserved by
the majority operation xy Vv yz V xz and the instance is cycle-consistent, then we can safely
reduce the domain {0, 1} to {0} and {1} [47]. It turns out that this idea can be generalized for
any constraint language preserved by a WNU operation.

A unary relation B C A is called a subuniverse if B is pp-definable over I'. It can
be easily checked that all the domains D, that appear while checking consistency (see Sec-
tion 2.4) are subuniverses. Let us define three types of strong subuniverses:

Binary absorbing subuniverse. We say that B’ is a binary absorbing subuniverse of B if
there exists a binary operation f* € Pol(T") such that f(B’, B) € B" and f(B, B") C B’. For
example, if the operation x Vv y preserves I then {1} is a binary absorbing subuniverse of
{0, 1} and x V y is a binary absorbing operation.

Ternary absorbing subuniverse. We say that B is a ternary absorbing subuniverse of B if
there exists a ternary operation f € Pol(T") such that f(B’, B’,B) C B, f(B’,B,B’) C B/,
and f(B, B’, B') C B’. For example, if the majority operation xy V yz V xz preserves I,
then both {0} and {1} are ternary absorbing subuniverses of {0, 1}. Since we can always add
a dummy variable to a binary absorbing operation, any binary absorbing subuniverse is also
a ternary absorbing subuniverse.

To define the last type of strong subalgebras we need some understanding of the
Universal Algebra. We do not think a concrete definition is important here, that is why if a
reader thinks the definition is too complicated, we recommend to skip it and think about the
last type as something similar to the first two.

PC subuniverse. A set F of operations is called Polynomially Complete (PC) if any oper-
ation can be derived from F and constants using composition. We say that B’ is a PC
subuniverse of B if there exists a pp-definable equivalence relation 0 € B x B such that
Pol(T") /o is PC.

A subset B’ of B is called a strong subuniverse if B’ is a ternary absorbing subuni-
verse or a PC subuniverse.

Theorem 2.7 ([47]). Suppose I" contains all constant relations and is preserved by a WNU
operation, B C A is a subuniverse. Then

(1) there exists a strong subuniverse B’ € B, or

(2) there exists a pp-definable nontrivial equivalence relation ¢ on B and
f € Pol(T) such that (B; f)/o = (Z*:x — y + z).

As it follows from the next lemma, the second condition implies that any pp-
definable relation (modulo o) can be viewed as a system of linear equations in a field.
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Lemma 2.8 ([32]). Suppose R C Z;, preserved by x — y + z. Then R can be represented
as a conjunction of relations of the form a1 x1 + -+ + apx, = ag (mod p).

For CSPs solvable by the local consistency checking, strong subuniverses have the
following property.

Theorem 2.9 ([47]). Suppose
(1) T is a constraint language containing all constant relations;
(2) T is preserved by a WNU of each arityn > 3;
(3) d is a cycle-consistent instance of CSP(I");
(4) Dy is the domain of a variable x;
(5) B is a strong subalgebra of D.
Then d has a solution with x € B.

Thus, strong subuniverses have the required property that we cannot loose all the
solutions when we restrict a variable to it. As it was proved in [44], a similar theorem holds
for any constraint language preserved by a WNU operation (with additional consistency con-
ditions on the instance). We skip this result because it would require too many additional
definitions.

As we see from Theorem 2.7, for every domain D, either we have a strong subuni-
verse and can reduce the domain of some variable, or, modulo some equivalence relation,
we have a system of linear equations in a field. If I" has a WNU polymorphism of each arity
n > 3, then we always have the first case; hence, we can iteratively reduce the domains until
the moment when all the domains have just one element, which gives us a solution. That
is why any cycle-consistent instance in this situation has a solution. If we always have the
second case then this situation is similar to a system of linear equations, but different linear
equations can be mixed which makes it impossible to apply usual Gaussian elimination.
Nevertheless, the few subpowers algorithm solves the problem [33].

For many years the main obstacle was that these two situations can be mixed and
at the moment we do not know an elegant way how to split them. Nevertheless, the general
algorithm for tractable CSP presented in [44] is just a smart combination of these two ideas:

« if there exists a strong subalgebra, reduce
« if there exists a system of linear equations, solve it.
For more information about this approach as well as its connection with the second

general algorithm see [3].

2.12. Conclusions
Even though we still do not have a simple algorithm that solves all tractable Con-
straint Satisfaction Problems, we understand what makes the problem hard, and what makes
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the problem easy. First, we know that in all the hard cases we can pp-construct (pp-define) the
not-all-equal relation, which means that all the NP-hard cases have the same nature. Second,
if the CSP is not solvable locally then we can pp-construct (pp-define) a linear equation in
a field. Moreover, any domain of a tractable CSP either has a strong subalgebra and we can
(almost) safely reduce the domain, or there exists a system of linear equations on this domain.
This implies that any tractable CSP can be solved by a smart combination of the Gaussian
elimination and local consistency checking, and emphasizes the exclusive role of the linear
case in Universal Algebra and Computational Complexity.

Note that both CSP algorithms in [2e, 44] depend exponentially on the size of the
domain, and we could ask whether there exists a universal polynomial algorithm that works
for any constraint language I' admitting a WNU polymorphism.

Problem 1. Does there exist a polynomial algorithm for the following decision problem:
given a conjunctive formula Ry (v1,1,...,V1,4,) A+ A Rg(vs,1, - - ., Vg, ), Where all rela-
tions Ry, ..., Ry are preserved by a WNU, decide whether this formula is satisfiable.

If the domain is fixed then the above problem can be solved by the algorithms from
[19,42]. In fact, we know from [4, THEOREM 4.2] that from a WNU on a domain of size k we can
always derive a WNU (and also a cyclic operation) of any prime arity greater than k. Thus,
we can find finitely many WNU operations on a domain of size k such that any constraint
language preserved by a WNU is preserved by one of them. It remains to apply the algorithm
for each WNU and return a solution if one of them gave a solution.

3. QUANTIFIED CSP

A natural generalization of the CSP is the Quantified Constraint Satisfaction Prob-
lem (QCSP), where we allow to use both existential and universal quantifiers. Formally, for
a constraint language I", QCSP(I") is the problem to evaluate a sentence of the form

V)C]Elyl . VanIy,, Rl(vl,lv RN Ul,nl) VARERIVAN Rs(vs,l, ey Us,ns),

where Ry,...,Ry e ',and v; j € {x1,...,Xp, Y1...., yn} forevery i, j (see[16,23,24,37]).
Unlike the CSP, the problem QCSP(I") can be PSpace-hard if the constraint language I' is
powerful enough. For example, QCSP({NAE}) and QCSP({1IN3}) on the domain A = {0, 1}
are PSpace-hard [25,27], and QCSP({#}) for | A| > 2 is also PSpace-hard [16]. Nevertheless, if
I" consists of linear equations modulo p then QCSP(I") is tractable [16]. It was conjectured by
Hubie Chen [22,24] that for any constraint language I" the problem QCSP(T") is either solvable
in polynomial time, or NP-complete, or PSpace-complete. Recently, this conjecture was dis-
proved in [48], where the authors found constraint languages I" such that QCSP(I") is coNP-
complete (on a 3-element domain), DP-complete (on a 4-element domain), @5 -complete
(on a 10-element domain). Despite the whole zoo of the complexity classes, we still hope to
obtain a full classification of the complexity for each constraint language I".
Below we consider the main idea that makes the problem easier than PSpace.
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3.1. PGP reduction for II, restrictions
For simplicity let us consider the IT,-restriction of QCSP(T"), denoted QCSP?(T"),
in which the input is of the form

Vx1...Vx,3yr o 3y RGO A ARG(-. ). 3.1

Such an instance holds whenever the conjunctive formula Ry (...) A--- A Rg(...) is solvable
for any evaluation of x1, ..., x,, which gives us a reduction of the instance to | A|" instances
of CSP(I'*), where by I'* we denote I' U {(x = a) | a € A}. If we need to check |A|” tuples,
which is exponentially many, this does not make the problem easier. Nevertheless, sometimes
it is sufficient to check only polynomially many tuples. Let us consider a concrete example.

System of linear equations. Suppose A = {0, 1} and I" consists of linear equations in Z,.
Let us check that the instance (3.1) holds for (x1,...,x,) = (0,...,0), and (x1,...,x,) =
0,...,0,1,0,...,0) for any position of 1. To do this, we solve the CSP instance R (...) A
AR A /\:’zl(x,- = 0), and for every j € {1,2,...,n} we solve the instance
Ri(..)ANAR;(.H)N(x; =1 A /\i?éj(xi = 0). Each instance is a system of linear
equations and can be solved in polynomial time. If at least one of the instances does not have
a solution, then the instance (3.1) does not hold. Assume that all of them are satisfiable, then
consider the relation A defined by the following pp-formula over I":

AX1, ..o, Xxz) =3y Ay RGO A ARg(LLL).

Since I is preserved by x + y + z, A is also preserved by x + y + z. Applying
this operation to the tuples (0,0,...,0),(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1) € A
coordinatewise, we derive that A = {0, 1}", that is, A contains all tuples and (3.1) holds.
Thus, we showed that QCSP?(T") is solvable in polynomial time.

This idea can be generalized as follows. We say that a set of operations F' (or an
algebra (A4; F)) has the polynomially generated powers (PGP) property if there exists a poly-
nomial p(n) such that A” can be generated from p(n) tuples using operations of F'. Another
behavior that might arise is that there is an exponential function f* so that the smallest gen-
erating sets for A" require size at least f(n). We describe this as the exponentially generated
powers (EGP) property. As it was proved in [43] these are the only two situations we could
have on a finite domain. Moreover, it was shown that the generating set in the PGP case can
be chosen to be very simple and efficiently computable. As a generating set of polynomial
size, we can take the set of all tuples with at most k switches, where a switch is a position
in (ai,...,a,) such that a; # a;4,. This gives a polynomial reduction of QCSP?*(I") to
CSP(I'*) if Pol(T") has the PGP property.

3.2. A general PGP reduction

Let us show that the same idea can be applied to the general form of QCSP(T"). First,
we show how to move universal quantifiers left and convert an instance into the IT,-form.
Notice that the sentence y13y, ...y YVx is equivalent to

Valvx? . vxl3y 3y, 3y, A Dy A A D,
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where each ®; is obtained from ® by renaming x by x’. In this way we can convert any
instance 3y Vxy ...3y,Vx; P of QCSP(I") into the I1,-restriction by moving all universal
quantifiers left:

2 t
2% ...Vx|1A|\7’x21 ...Vx|2A| S Vx} ...Vx‘,Al

4] |-

(3.2)
3y, .3y 3y Ay B A DA A Dy,

where each ®; is obtained from ® by renaming the variables. The only problem with this
reduction is that the number of variables and constraints could be exponential. Nevertheless,
we can apply the PGP idea to this sentence. If Pol(I") has the PGP property then there exists
a constant k such that it is sufficient to check (3.2) only on the tuples with at most k switches.
Those k switches appear in at most k original x-variables and all the remaining variables
can be fixed with constants. This allows reducing QCSP(T") to a sentence with a constant
number of universal quantifiers or even remove all of them.

Theorem 3.1 ([45]). Suppose Pol(I") has the PGP property. Then QCSP(I") is polynomially
equivalent to the modification of QCSP?(I") where sentences have at most | A| universally
quantified variables.

Theorem 3.2 ([45]). Suppose Pol(T") has the PGP property. Then QCSP(T") is polynomially
reduced to CSP(I'*).

This idea gives us a complete classification of the complexity of QCSP(I") for a
two-element domain.

Theorem 3.3 ([25,27]). Suppose T is a constraint language on {0, 1}. Then QCSP(T") is
solvable in polynomial time if T is preserved by an idempotent WNU; QCSP(I") is PSpace-
complete otherwise.

It is known [39] that if I" admits an idempotent WNU, then it is preserved by
x+y+z,xVvVy,x Ay,orxyV yzV xz.Hence, to prove the above theorem, it is sufficient
to check that these operations guarantee the PGP property, which by Theorem 3.2 gives a
polynomial reduction to a tractable CSP. To show the PGP property, we verify that the tuples
0,0,...,0), (1,1,...,1), (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1) generate {0, 1}"
using any of the above operations.

3.3. Does EGP mean hard?

Thus, if Pol(I") has the PGP property then we have a nice reduction to CSP, and
QCSP(I") belongs to NP. What can we say about the complexity of QCSP(T") if Pol(I")
has the EGP property? Hubie Chen conjectured in [24] that QCSP(I") is PSpace-complete
whenever Pol(I") has the EGP property.

For constraint languages I" containing all constant relations, a characterization of
Pol(T") that have the EGP property is given in [43], where it is shown that I" must allow the
pp-definition of relations 7, with the following special form.
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Definition 3.4. Let @ U 8 = A, yet neither o nor 8 equals D.Let S = o3 U 83 and 1, be
the 3n-ary relation given by \/7_, S(xi, yi, zi).

The complement to S represents the not-all-equal relation and the relations t,, allow
for the encoding of the complement of Not-All-Equal 3-Satisfiability (where o \ B is 0 and
B\ « is 1). Thus, if one has polynomially computable (in n) pp-definitions of ,, then it
is clear that QCSP(I") is co-NP-hard [22]. In light of this observation, it seemed that only a
small step remained to proving the actual Chen Conjecture, at least with coNP-hard in place
of PSpace-complete.

3.4. Surprising constraint language and the QCSP on a 3-element domain

As we saw in Section 2.7, the CSP is NP-hard if and only the we can pp-define
(pp-construct) the not-all-equal relation. In the previous subsection, we mentioned that in
the EGP case we can always pp-construct the complement to Not-All-Equal 3-Satisfability,
which almost guarantees coNP-hardness. Surprisingly, two constraint languages I" on
A = {0, 1,2} were discovered in [48] for which any pp-definition of , is of exponential
size, which makes it impossible to use this reduction.

Theorem 3.5 ([48]). There exists a constraint language T" on {0, 1,2} such that
(1) Pol(I") has the EGP property,
(2) 1, is pp-definable over T’

(3) any pp-definition of t, for « = {0, 1} and B = {0, 2} has at least 2" variables,

and
(4) QCSP(T') is solvable in polynomial time.

The algorithm in (4) consists of the following three steps. First, it reduces an instance
to a [Tp-form Vx; ... Vx,3y; ...y, ®. Then, by solving polynomially many CSPs, it cal-
culates polynomially many evaluations to (x1, ..., x,) we need to check. Finally, it checks
that @ has a solution for each of these evaluations. It is proved in [48] that this test guarantees
that the instance holds.

This result was shocking because of several reasons. Not only it disproved the widely
believed Chen Conjecture but showed that we need to worry about the existence of an efficient
pp-definition. Before, if we could pp-define a strong relation (such as ;) then the problem
was hard. Another surprising thing is that we have to calculate the evaluations of (x1,. .., x,)
we need to check, In fact, if we do not look inside ® then we have to check all the tuples
from {0, 1}".

Despite the fact that we are far from having a full classification of the complexity
of the QCSP, we know the complexity for any constraint language on a 3-element domain
containing all constant relations. This classification is given in terms of polymorphisms.
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Theorem 3.6 ([48]). Suppose T is a finite constraint language on {0, 1, 2} containing all
constant relations. Then QCSP(T") is either solvable in polynomial time, NP-complete, coNP-
complete, or PSpace-complete.

3.5. Conclusions
Unlike the CSP where the complexity is known for any constraint language I" here
the complexity is wide open.

Problem 2. What is the complexity of QCSP(I")?

Moreover, we do not even have a conjecture describing the complexity. We know that
for some constraint languages I' the problem QCSP(I") is DP-complete and ®§J -complete,
but we do not know whether there are some other complexity classes and whether we have
finitely many of them.

Problem 3. What complexity classes (up to polynomial equivalence) can be expressed as
QCSP(I') for some constraint language I'?

Now it is hard to believe that there will be a simple classification, that is why it
is interesting to start with a 3-element domain (without constant relations) and 4-element
domain. Probably, a more important problem is to describe all tractable cases assuming
P # NP.

Problem 4. Describe all constraint languages I" such that QCSP(I") is solvable in polyno-
mial time.

4. OTHER VARIANTS OF CSP
The Quantified CSP is only one of many other variations and generalizations of the
CSP whose complexity is still unknown. Here we list some of them.

4.1. CSP over an infinite domain

If we consider CSP(I") for a constraint language on an infinite domain, the situa-
tion changes significantly. As was shown in [11], every computational problem is equivalent
(under polynomial-time Turing reductions) to a problem of the form CSP(T"). In [14] the
authors gave a nice example of a constraint language I' such that CSP(I") is undecidable.
Let I" consist of three relations (predicates) x + y = z, x - y = z and x = 1 over the set of
all integers Z. Then the Hilbert’s 10th problem can be expressed as CSP(I"), which proves
undecidability of CSP(I"). Nevertheless, there are additional assumptions that send the CSP
back to the class NP and make complexity classifications possible [8,12]. For more informa-
tion about the infinite domain CSP and the algebraic approach, see [1e,14].
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4.2. Surjective Constraint Satisfaction Problem

A natural modification of the CSP is the Surjective Constraint Satisfaction Problem,
where we want to find a surjective solution. Formally, for a constraint language I" over a
domain A, SCSP(T") is the following decision problem: given a formula

Ri(..)A---ARs(...),

where all relations Ry, ..., Ry are from I', decide whether there exists a surjective solution,
that is, a solution with {x1, ..., x,} = A. Probably, the most natural examples of the Surjec-
tive CSP are defined as the surjective graph homomorphism problem, which is equivalent to
SCSP(I") where I consists of one binary relation that is viewed as a graph. An interesting
fact about the complexity of the Surjective CSP is that its complexity remained unknown for
many years even for very simple graphs and constraint languages. Three most popular exam-
ples of such long-standing problems are the complexity for the reflexive 4-cycle (undirected
having a loop at each vertex) [38], the complexity for the nonreflexive 6-cycle (undirected
without loops) [41], and the complexity of the No-Rainbow-Problem (SCSP({N}) where
A={0,1,2} and N = {(a,b,c) | {a, b, c} # A}) [46]. Even though these three problems
turned out to be NP-complete, the complexity seems to be unknown even for graphs of size
5 and cycles.

Problem 5. What is the complexity of SCSP(I")?

It was shown in [46] that the complexity of SCSP(I") cannot be described in terms
of polymorphisms, which disproved the only conjecture about the complexity of SCSP(I")
we know. This conjecture, formulated by Hubie Chen, says that SCSP(I") and CSP(I"*) have
the same complexity. Nevertheless, this conjecture still can hold for graphs.

Problem 6. Is it true that SCSP({R}) and CSP({R}*) have the same complexity for any
binary relation R?

For more results on the complexity of the SCSP, see the survey [13].

4.3. Promise CSP
A natural generalization of the CSP is the Promise Constraint Satisfaction Problem,
where a promise about the input is given (see [18,21]). Let ' = {(RA, Rf), A (RA, RtB)},

where RIA and RiB are relations of the same arity over the domains A and B, respectively.
Then PCSP(T") is the following decision problem: given two conjunctive formulas

A A
Ril (Ul,l» cees Ul,nl) ARRRIA Ris (Us,l» cees Us,ns)»
B B
Ri1 (1)1’1, ey Ul,nl) VANRRRIVAN Ris (Us,lv ey Us,nx)v
where (Ri/_, Ri;) are from I" for every j and v; ; € {x1,...,x,} for every i, j, distinguish

between the case when both of them are satisfiable, and when both of them are not satisfiable.
Thus, we are given two CSP instances and a promise that if one has a solution then another has
asolution. Usually, it is also assumed that there exists a mapping (homomorphism) 4 : A — B
such that h(Rf) - RIB for every i. In this case, the satisfiability of the first formula implies
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the satisfiability of the second one. To make sure that the promise can actually make an
NP-hard problem tractable, see Example 2.8 in [21].

The most popular example of the Promise CSP is graph (k, [)-colorability, where
we need to distinguish between k-colorable graphs and not even /-colorable, where k < [.
This problem can be written as follows.

Problem 7. Let |A| =k, |B| =1, T = {(#4, #p)}. What is the complexity of PCSP(I")?

Recently, it was proved [21] that (k, [)-colorability is NP-hard for / = 2k — 1 and
k > 3 but even the complexity of (3, 6)-colorability is still not known.

Even for a 2-element domain the problem is wide open, but recently a dichotomy
for symmetric Boolean PCSP was proved [36].

Problem 8. Let A = B = {0, 1}. What is the complexity of PCSP(I")?
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1. INTRODUCTION

Locally compact groups have attracted sustained attention because, on the one hand,
rich classes of these groups have fruitful connections with other fields and, on the other,
they have a well-developed theory that underpins those connections and delineates group
structure. Salient features of this theory are the existence of a left-invariant, or Haar, measure;
and the decomposition of a general group into pieces, many of which may be described
concretely and in detail.

Haar measure permits representations of a general locally compact group by oper-
ators on spaces of measurable functions, and is thus the foundation for abstract harmonic
analysis. Connections with partial differential equations, physics, and number theory come
about through these representations. Locally compact groups are the largest class for which
an invariant measure exists and for which harmonic analysis can be done in this form, as was
shown by A. Weil [81].

The decomposition theory of an arbitrary locally compact group G begins with the
short exact sequence

0—->G°—-G—G/G°—0,

in which the closed normal subgroup G° is the connected component of the identity. The
Gleason—Yamabe theorem [73, TH. 6.0.11] applies to G° to show that it is a projective limit of
connected Lie groups, and powerful tools from the theory of Lie groups may thus be brought
to bear on G°. Groups occurring in physics and differential equations are often Lie groups.
The quotient G/ G° is a totally disconnected locally compact group (abbreviated tdlc group).
Lie groups over local fields are important examples of tdlc groups having links to number
theory and algebraic geometry (see, for example, [49,69]). Unlike the connected case however,
many other significant tdlc groups, such as the automorphism groups of locally finite trees
first studied in [76], cannot be approximated by Lie groups. While substantial progress has
been made with our understanding of tdlc groups much remains to be done before it could be
said that the structure theory has reached maturity. This article surveys our current state of
knowledge, much of which is founded on a theorem of van Dantzig, [77], which ensures that
atdlc group G has a basis of identity neighborhoods consisting of compact open subgroups.

Decompositions of general tdlc groups are described in Section 2. This section
includes a discussion of the so-called elementary groups, which are those built from dis-
crete and compact groups by standard operations. Discrete and compact groups are large
domains of study in their own right and it is seen how elementary groups can be factored out
in the analysis of a general tdlc group. Simple groups are an important aspect of any decom-
position theory and what is known about them is summarized in Section 3. This includes
a local structure theory and the extent to which local structure determines the global struc-
ture of the group. Section 4 treats scale methods, which associate invariants and special
subgroups to abelian groups of automorphisms and which in some circumstances substitute
for the Lie methods available for connected groups. A unifying theme of our approach is
the dynamics of the conjugation action: Section 2 is concerned with the conjugation action
of G on its closed subnormal subgroups, Section 3 uses in an essential way the conjugation
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action of G on its closed subgroups, especially those that are locally normal, while Section 4
concerns the dynamics of the conjugation action of cyclic subgroups (and, more generally,
flat subgroups) on the topological space G. Section 5 highlights a few open questions and
directions for further research.

2. DECOMPOSITION THEORY

2.1. Normal subgroup structure

Finite groups, Lie groups, and algebraic groups constitute three of the most impor-
tant classes of groups. Their respective structure theories are deep and far-reaching. One of
the common themes consists in reducing problems concerning a given group G in one of
these classes to problems about simple groups in the corresponding class, and then tackling
the reduced problem by invoking classification results. Striking illustrations of this approach
in the case of finite groups can be consulted in R. Guralnick’s ICM address [43].

Since the category of locally compact groups contains all discrete groups, hence all
groups, developing a similar theory for locally compact groups is hopeless. Nevertheless, the
possibility to construct meaningful “decompositions of locally compact groups into simple
pieces” has been highlighted in [23]. Wide-ranging results have subsequently been estab-
lished by C. Reid and P. Wesolek in a series of papers [63,64], some of whose contributions
are summarized below. A more in-depth survey can be consulted in [62].

Given closed normal subgroups K, L of a locally compact group G, the quotient
group K /L is called a chief factor of G if L is strictly contained in K and for every closed
normal subgroup N of G with L < N < K, wehave N = L or N = K. Given a closed
normal subgroup N of G, the quotient Q = G/ N is a chief factor if and only if Q is fopolog-
ically simple, i.e., Q is nontrivial and the only closed normal subgroups of Q are {1} and Q.
More generally, every chief factor Q = K/ L is topologically characteristically simple, i.e.,
the only closed subgroups of Q that are invariant under all homeomorphic automorphisms
of Q are {1} and Q. A topological group is called compactly generated if it has a compact
generating set.

Theorem 2.1 (See [64, TH. 1.3]). Every compactly generated tdlc group G has a finite series
{1} = Gy < G; < Gy <--- <Gy =G of closed normal subgroups such that for all
i =1,...,n, the quotient G;/G;_1 is compact, or discrete infinite, or a chief factor of

G which is noncompact, nondiscrete, and second countable.

A normal series as in Theorem 2.1 is called an essentially chief series. The theorem
obviously has no content if G is compact or discrete. Let us illustrate Theorem 2.1 with two
examples.

Example 2.2. Let I be a set and for each i € I, let G; be a tdlc group and U; < G; be a
compact open subgroup. The restricted product of (G;, U;)ier, denoted by ; c;(Gi. U;),
is the subgroup of [[;.; G; consisting of those tuples (g;)ier such that g; € U; for all
but finitely many i € I. It is endowed with the unique tdlc group topology such that
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the inclusion [[;c; Ui = @;c;(Gi, U;) is continuous and open. Given a prime p, set
M(p) = @, (PSL2(Q,), PSL2(Z,)). The cyclic group Z naturally acts on M(p) by
shifting the coordinates. The semidirect product G(p) = M(p) x Z is a compactly gener-
ated tdlc group, with an essentially chief series given by {1} < M(p) < G(p). The group
M(p) is not compactly generated. It has minimal closed normal subgroups, but does not
admit any finite essentially chief series, which illustrates the necessity of the compact gen-
eration hypothesis in Theorem 2.1.

Example 2.3. A more elaborate construction in [63, §9] yields an example of a compactly
generated tdlc group G'(p) with an essentially chief series given by {1} < H(p) < G'(p)
such that G'(p)/H(p) = Z and H(p) has a nested chain of closed normal subgroups
(H(p)n) indexed by Z, permuted transitively by the conjugation G’(p)-action, and such
that H(p)n/H(p)n—1 = M(p) foralln € Z.

A tdlc group is compactly generated if and only if it is capable of acting continu-
ously, properly, with finitely many vertex orbits, by automorphisms on a connected locally
finite graph. For a given compactly generated tdlc group G, vertex-transitive actions on
graphs are afforded by the following construction. Given a compact open subgroup U < G,
guaranteed to exist by van Dantzig’s theorem, and a symmetric compact generating set X of
G, we construct a graph I" whose vertex set is the coset space G/ U by declaring that the
vertices gU and hU are adjacent if h~!g belongs to U XU. The fact that ¥ generates G
ensures that I" is connected. Moreover, G acts vertex-transitively by automorphisms on I".
Since U is compact open, the set U XU is a finite union of double cosets modulo U; this
implies that I" is locally finite, i.e., the degree of each vertex is finite. Notice that all vertices
have the same degree since I' is homogeneous. The graph I is called a Cayley—Abels graph
for G, since its construction was first envisaged by H. Abels [1, BEISPIEL 5.2] and specializes
to a Cayley graph when G is discrete and U = {1}. The proof of Theorem 2.1 proceeds by
induction on the minimum degree of a Cayley—Abels graph.

2.2. Elementary groups

By its very nature, Theorem 2.1 highlights the special role played by compact and
discrete groups. A conceptual approach to studying the role of compact and discrete groups in
the structure theory of tdlc groups is provided by P. Wesolek’s notion of elementary groups.
That concept is inspired by the class of elementary amenable discrete groups introduced by
M. Day [33]. It is defined as the smallest class & of second countable tdlc groups (abbreviated
tdlcsc) containing all countable discrete groups and all compact tdlcsc groups, which is stable
under the following two group theoretic operations:

* Given atdlcsc group G and a closed normal subgroup N,if N € & and G/N € &,
then G € &. In other words & is stable under group extensions.

* Given atdlcsc group G and a directed set (O;);ey of open subgroups, if O; € &
foralli andif G = | J; O;, then G € &. In other words & is stable under directed

unions of open subgroups.
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(The class & has a natural extension beyond the second countable case, see [29, §6]. For sim-
plicity of the exposition, we stick to the second countable case here.) Using the permanence
properties of the class &, it can be shown that every tdlcsc group G has a largest closed
normal subgroup that is elementary; it is denoted by R (G) and called the elementary rad-
ical of G. It indeed behaves as a radical, in the sense that it contains all elementary closed
normal subgroups, and satisfies Rg(G/Rs(G)) = {1}, see [82, §7.2]. Further properties of
the quotient G/ R ¢(G) will be mentioned in Section 3 below.

Similarly as for elementary amenable discrete groups, the class & admits a canon-
ical rank function £ : & — w1, taking values in the set w; of countable ordinals, called the
decomposition rank. It measures the complexity of a given group G € &. By convention,
the function £ is extended to all tdlcsc groups by setting £(G) = w; for each nonelementary
tdlcsc group G. We refer to [82], [83] and [62, §5]. Let us merely mention here that the class &
has remarkable permanence properties (e.g., it is stable under passing to closed subgroups
and quotient groups), that the rank function has natural monotonicity properties, and that a
nontrivial compactly generated group G € & has a nontrivial discrete quotient. It follows in
particular that if G is a tdlcsc group having a closed subgroup H < G admitting a nondiscrete
compactly generated topologically simple quotient, then G ¢ &. Therefore, the only com-
pactly generated topologically simple groups in & are discrete. On the other hand, the class
& contains numerous topologically simple groups that are not compactly generated, e.g.,
simple groups that are regionally elliptic, i.e., groups that can be written as a directed union
of compact open subgroups. Those groups have decomposition rank 2. Explicit examples
appear in [88, §3] or [19, §6].

2.3. More on chief factors

The existence of essentially chief series prompts us to ask whether the chief factors
of G depend upon the choice of a specific normal series in Theorem 2.1. It is tempting
to tackle that question by invoking arguments a la Jordan—-Holder. A technical obstruc-
tion for doing so is that the product of two closed normal subgroups need not be closed.
More generally, given closed subgroups A, N in G such that N is normal, the product
AN need not be closed so that the natural abstract isomorphism A/A N N — AN/N
need not be a homeomorphism. It is a continuous injective homomorphism of the locally
compact group A/A N N to a dense subgroup of the locally compact group AN /N.
This illustrates the necessity of considering dense embeddings of locally compact groups.
We shall come back to this theme in Section 3.1 below. In the context of chief factors,
this has led Reid—Wesolek to define an equivalence relation on nonabelian chief factors
of G, called association, defined as follows: the chief factors Ky /L1 and K,/L, are asso-
ciated if KiL, = KoL1 and K; N L{L, = L; for i = 1,2. In that case K,/L; and
K> /L, both embed continuously as dense normal subgroups in m/m We also
recall that the quasicenter of a locally compact group G, denoted by QZ(G), is the collec-
tion of elements whose centralizer is open. It is a topologically characteristic (not necessarily
closed) subgroup of G containing all the discrete normal subgroups. It was first introduced
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by M. Burger and S. Mozes [14]. Every nontrivial tdlcsc group with a dense quasicenter is
elementary of decomposition rank 2 (see [62, LEM. 5]).

Theorem 2.4 (See [62, cOr. 5]). Let G be a compactly generated tdlc group and let
{I})=Ag <A1 <Ay << Ap,=Gand {1} =By < By <By<---< B, =G be
essentially chief series for G. Then for each i € {0, 1, ... ,m}, if A;j/A;_1 is a chief factor
with a trivial quasicenter, there is a unique j such that Bj/Bj_y is a chief factor with a
trivial quasicenter that is associated with A; | Aj—1. In other words, the association relation
establishes a bijection between the sets of chief factors with a trivial quasicenter appearing
respectively in the two series.

The natural next question is to ask what can be said about chief factors. By the
discussion above, one should focus on properties that are invariant under the association
relation. Following Reid—Wesolek, an association class of nonabelian chief factors is called
a chief block, and a group property shared by all members of a chief block is called a
block property. The following are shown in [63] to be block properties: compact genera-
tion, amenability, having a trivial quasicenter, having a dense quasicenter, being elementary
of a given decomposition rank.

As mentioned above, every chief factor is topologically characteristically simple. In
particular, a compactly generated chief factor is subjected to the following description.

Theorem 2.5 (See [23, cor. b] and [22, REM. 3.10]). Let G be a compactly generated nondis-
crete, noncompact tdlc group which is topologically characteristic simple. Then there is a
compactly generated nondiscrete topologically simple tdlc group S, an integer d > 1 and
an injective continuous homomorphism S = S x --- x S — G of the direct product of d
copies of S, such that the image of each simple factor is a closed normal subgroup of G, and

the image of the whole product is dense.

In the setting of Theorem 2.5, we say that G is the quasiproduct d copies of the
simple group S. Theorem 2.5 provides a major incentive to study the compactly generated
nondiscrete topologically simple tdlc groups. We shall come back to this theme in Section 3
below.

Developing a meaningful structure theory for topologically characteristically simple
tdlc groups that are not compactly generated is very challenging. Remarkably, significant
results have been established by Reid—Wesolek [63] under the mild assumption of second
countability (abbreviated sc). In spite of the noncompact generation, they introduce an appro-
priate notion of chief blocks, and show that there are only three possible configurations for
the arrangement of chief blocks in a topologically characteristically simple tdlcsc group G,
that they call weak type, semisimple type, and stacking type. Moreover, if G is of weak type,
then it is automatically elementary of decomposition rank < @ + 1. The topologically char-
acteristically simple groups M(p) and H(p) appearing in Examples 2.2 and 2.3 above are
respectively of semisimple type and stacking type. We refer to [63] and [62] for details.
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3. SIMPLE GROUPS

Let . be the class of nondiscrete, compactly generated, topologically simple locally
compact groups and .4 be the subclass consisting of the totally disconnected members
of .. By the Gleason—Yamabe theorem [73, TH. 6.0.11], all elements of .’ \ .4 are connected
simple Lie groups. Prominent examples of groups in .4 are provided by simple algebraic
groups over non-Archimedean local fields, irreducible complete Kac—-Moody groups over
finite fields, certain groups acting on trees and many more, see [28, APPENDIX A]. A systematic
study of the class .4 as a whole has been initiated by Caprace—Reid—Willis in [28], and
continued with P. Wesolek in [29] and with A. Le Boudec in [22]. We now outline some of
their contributions. Another survey of the properties of nondiscrete simple locally compact
groups can be consulted in [17]; the present account emphasizes more recent results.

3.1. Dense embeddings and local structure

As mentioned in Section 2.3 above, the failure of the second isomorphism theorem
for topological groups naturally leads one to consider dense embeddings, i.e., continuous
injective homomorphisms with dense image. If G, H are locally compact groups and i :
H — G isadense embedding, and if G is a connected simple Lie group or a simple algebraic
group over a local field, then H is discrete or v is an isomorphism (see [29, §31). This property
however generally fails for groups G € .%; see [se] for explicit examples. Nevertheless, as
soon as the group H is nondiscrete, it turns out that key structural features of G are inherited
by the dense subgroup H. To state this more precisely, we recall the definition of the class
Z of robustly monolithic groups, introduced in [29]. A tdlc group G is robustly monolithic
if the intersection M of all nontrivial closed normal subgroups of G is nontrivial, if M
is topologically simple and if M has a compactly generated open subgroup without any
nontrivial compact normal subgroup. The class Z contains .#4 and that inclusion is strict.
The following result provides the main motivation to enlarge one’s viewpoint by considering
Z instead of the smaller class ..

Theorem 3.1 (See [29, TH. 1.1.2]). Let G, H be tdic groups and ¥ : H — G be a dense
embedding. If G € Z and H is nondiscrete, then H € .

We emphasize that in general H is not topologically simple even in the special case
where G € Y.

The approach in studying the classes .4 and Z initiated in [28] is based on the
concept of locally normal subgroup, defined as a subgroup whose normalizer is open. To
motivate it, recall once more that if M, N are closed normal subgroups of a tdlc group G,
then the normal subgroup M N need not be closed. On the other hand, if U < G is a compact
open subgroup, then M N U and N N U are closed normal subgroups of the compact group
U (hence they are both locally normal), so that the product (M N U)(N N U) is closed.
This observation motivates the definition of the structure lattice £N (G) of a tdlc group G,
first introduced in [27], defined as the set of closed locally normal subgroups of G, divided
by the local equivalence relation ~, where H ~ K if H N K is relatively open both in H
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and in K. The local class of a closed locally normal subgroup K is denoted by [K]. We also
set 0 = [{1}] and oo = [G]. The structure lattice carries a natural G-invariant order relation
defined by the inclusion of representatives. The poset £V (G) is a modular lattice (see [27,
LEM. 2.3]). The greatest lower bound and least upper bound of two elements «, 8 € LN (G) are
respectively denoted by & A B and o Vv . When G is a p-adic Lie group, the structure lattice
LN (G) can naturally be identified with the lattice of ideals in the Q,-Lie algebra of G. The
theory developed in [27] reveals that the structure lattice is especially well-behaved when
the tdlc group G is [A]-semisimple, i.e., QZ(G) = {1} and the only abelian locally normal
subgroup of G is {1}. That term is motivated by the fact that if G is a p-adic Lie group, then
it is [A]-semisimple if and only if QZ(G) = {1} and the Q,-Lie algebra of G is semisimple,
see [27, PROP. 6.18]. An important result of P. Wesolek is that the quotient G/ R (G) of every
tdlcsc group G by its elementary radical is [A]-semisimple (see [82, COR. 9.15]), so that every
nonelementary group has a nontrivial [A]-semisimple quotient. The following result shows
that [A]-semisimplicity is automatically fulfilled by groups in Z.

Theorem 3.2 (See [28, TH. A] and [29, TH. 1.2.5]). Every group G € X is [A]-semisimple.

Given an [A]-semisimple tdlc group G, two closed locally normal subgroups H,
K < G that are locally equivalent have the same centralizer; moreover, they commute
if and only if their intersection is trivial (see [27, TH. 3.19]). This ensures that the map
EN(G) = EN(G) : [K] — [K]* = [Cg(K)] is well defined, and that « A ot = 0 for
all € £N(G). This allows one to define the centralizer lattice of G by setting £E(G) =
{at |« € £N(G)). If G is [A]-semisimple, the centralizer lattice £€(G) is a Boolean
algebra (see [27, TH. 11]). We denote its Stone dual by Q2. Thus Q¢ is a totally disconnected
compact space endowed with a canonical continuous G-action by homeomorphisms. In gen-
eral, the G-action on Q¢ need not be faithful. Actually, if £€(G) = {0, co} then Q¢ is a
singleton. This happens if and only if any two non-trivial closed locally normal subgroups
of G have a nontrivial intersection. The following result shows that the dynamics of the
G-action on 2 has remarkable features.

Theorem 3.3 (See [28, TH. 3] and [29, TH. 1.2.6]). Let G € %. Then the G-action on Qg is
minimal, strongly proximal, and has a compressible open set. Moreover, the G -action on Qg

is faithful if and only if £€(G) # {0, oo}.

Recall that a compact G-space X is called minimal if every G-orbit is dense. It is
called strongly proximal if the closure of each G-orbit in the space of probability measures
on X contains a Dirac mass. A nonempty subset o of X is called compressible if for every
nonempty open subset 8 C X there exists g € G with ga C 8. Obviously, if X is a minimal
strongly proximal compact G-space and if G fixes a probability measure on X, then X is a
singleton. Therefore, the following consequence of Theorem 3.3 is immediate.

Corollary 3.4. Let G € Z. If G is amenable, then £€(G) = {0, co}.

A local isomorphism between tdlc groups G, G is a triple (¢, Uy, Uy) where U;
is an open subgroup of G; and ¢ : U; — U, is an isomorphism of topological groups. We
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emphasize that the structure lattice and the centralizer lattice are local invariants: they only
depend on the local isomorphism class of the ambient tdlc group. However, for a group
G € Z, the compact G-space Q2 can also be characterized by global properties among all
compact G-spaces. In order to be more precise, let us first recall some terminology. Given an
action of a group G by homeomorphisms on a Hausdorff topological space X, we define the
rigid stabilizer Ristg(U) of a subset U C X as the pointwise stabilizer of the complement
of U in X. The G-action on X is called microsupported if for every nonempty open subset
U C X with U # X, the rigid stabilizer Ristg (U) acts nontrivially on X. The term “micro-
supported” was first coined in [28], although the notion it designates has frequently appeared
in earlier references, notably in the work of M. Rubin on reconstruction theorems (see [67]
and references therein). A prototypical example of a microsupported action of a tdlc group is
given by the action of the full automorphism group Aut(7") of alocally finite regular tree T of
degree > 3 on the compact space 97 consisting of the ends of 7. The following result shows
that for a general group G € %, the G-action on Qg shares many dynamical properties with
the Aut(7T)-action on 07 .

Theorem 3.5 (See [28, TH. J], [29, TH. 7.3.3] and [22, TH. 7.5]). Let G € Z. Then the G-action
on Qg is microsupported. Moreover, for each nonempty microsupported compact G-space
X on which the G-action is faithful, there is a G-equivariant continuous surjective map
Qg — X. In particular, the G-action on X is minimal, strongly proximal, and has a com-
pressible open set.

This shows that Qg is universal among the faithful microsupported compact
G-spaces; in particular, the purely local condition that £€(G) = {0, oo} ensures that G
does not have any faithful microsupported continuous action on any compact space. Theo-
rem 3.5 was first established for totally disconnected compact G-spaces in [28,29], and then
extended to all compact G-spaces in [22], using tools from topological dynamics. Further
properties of the G-space Q2 and on the algebraic structure of groups in & can be consulted
in those references.

We now present another aspect of the local approach to the structure of simple tdlc
groups. We define the local prime content of a tdlc group G, denoted by 7(G), to be the set
of those primes p such that every compact open subgroup U < G contains an infinite pro-p
subgroup.

Theorem 3.6 (See [28, TH. H] and [29, COR. 1.1.4 AND TH. 1.2.1]). The following assertions hold
for any group G € X

(1)  The local prime content 7w (G) is finite and nonempty.

(ii)  Foreach p € w(G), there is a group G(py € X that is locally isomorphic to
a pro-p group, and a dense embedding G,y — G.

(iii) If H is a tdlc group acting continuously and faithfully by automorphisms on
G, then H is locally isomorphic to a pro-n(G) group.
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Roughly speaking, Theorem 3.6(ii) asserts that every group in % can be “approx-
imated” by a locally pro-p group in %. The restriction on the automorphism group of a
group in &% from Theorem 3.6(iii) should be compared with the automorphism group of
the restricted product M(p) from Example 2.2. Indeed, the Polish group Sym(Z) embeds
continuously in Aut(M(p)) by permuting the simple factors, and every tdlcsc group con-
tinuously embeds in Sym(Z). In some sense, the construction of stacking type chief factors
in Example 2.3 crucially relies on the hugeness of the group Aut(M(p)). Theorem 3.6(iii)
shows that the automorphism group of a group in % is considerably smaller.

Let us finish this subsection with a brief discussion of classification problems. The
work of S. Smith [72] shows that .#}4 contains uncountably many isomorphism classes; his
methods of proof suggest that the isomorphism relation on .#4 has a similar complexity
as the isomorphism relation on the class of finitely generated discrete simple groups. This
provides evidence that the problem of classifying groups in .44 up to isomorphism is ill-
posed. The recent results on the local structure of groups in .4 or in % may be viewed as a
hint to the fact the local isomorphism relation might be better behaved (see [29, TH. 1.1.5]). At
the time of this writing, we do not know whether or not the groups in .#4 fall into countably
many local isomorphism classes. However, classifying simple groups up to isomorphism
remains a pertinent problem for some significant subclasses of .#4. To wit, let us mention
that, by [3e, COR. 1.4], a group G € .%,4 is isomorphic to a simple algebraic group over a local
field if and only if it is locally isomorphic to a linear group, i.e., a subgroup of GL, (k) for
some integer d and some locally compact field k. Lastly, a remarkable classification theorem
concerning an important class of nonlinear simple groups acting on locally finite trees has
been obtained by N. Radu [61]. It would be highly interesting to extend Radu’s results by
classifying all groups in .4 acting properly and continuously by automorphisms on a given
locally finite tree 7" in such a way that the action on the set of ends of 7" is doubly transitive.
That class is denoted by .. Results from [25] ensure that the isomorphism relation restricted
to . is smooth (see [37, DEFINITION 5.4.1]), which means that it comes at the bottom of the
hierarchy of complexity of classification problems in the formalism established by invariant
descriptive set theory (see [37, cH. 15]). Let us close this discussion by mentioning that we do
not know whether there is a tree 7 such that .#7 contains uncountably many isomorphism
classes.

3.2. Applications to lattices

The study of lattices in semisimple Lie and algebraic groups has known tremendous
developments since the mid-20th century, with Margulis’ seminal contributions as corner-
stones. Remarkably, several key results on lattices have been established at a high level of
generality, well beyond the realm of linear groups. An early illustration is provided by [13].
More recently, Y. Shalom [7e] and Bader—Shalom [5] have established an extension of Mar-
gulis’ Normal Subgroup Theorem valid for all irreducible cocompact lattices in products of
groups in ., while various analogues of Margulis’ superrigidity for irreducible lattices in
products have been established for various kinds of target spaces, see [3,4,31,36,38,55,56,70].
Those results have in common that they rely on transcendental methods: they use a mix
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of tools from ergodic theory, probability theory, and abstract harmonic analysis, but do not
require any detailed consideration of the algebraic structure of the ambient group. Another
breakthrough in this field was accomplished by M. Burger and S. Mozes [15], who con-
structed a broad family of new finitely presented infinite simple groups as irreducible lattices
in products of nonlinear groups in .#4. Their seminal work involves a mix of transcendental
methods together with a fair amount of structure theory developed in [14].

The following two recent results rely in an essential way on the properties of the
class .#4 outlined above.

Theorem 3.7 (See [21, TH. A]). Let n > 2 be an integer, let G1,...,G, € Syand T < G =
G X -+ X Gy, be a lattice such that the projection p; (') is dense in G; for all i. Assume that
I" is cocompact, or that G has Kazhdan’s property (T). Then the set of discrete subgroups of
G containing T is finite.

Theorem 3.8 (See [21, TH.¢]). Letn > 2 be an integer and let G1,. . ., Gy, € %4 be compactly
presented. For every compact subset K C G = G X -+ X Gy, the set of discrete subgroups
I' < G with G = KT and with p; (') dense in G; for all i, is contained in a union of finitely
many Aut(G)-orbits.

For a detailed discussion of the notion of compactly presented locally compact
groups, we refer to [32, CH. 8].

Theorems 3.7 and 3.8 can be viewed as respective analogues of two theorems of
H. C. Wang [78,79] on lattices in semisimple Lie groups and reveal the existence of positive
lower bounds on the covolume of certain families of irreducible cocompact lattices. It should
be underlined that the corresponding statements fail for lattices in a single group G € S,
see [6, TH. 7.1]. Theorem 3.8 is established by combining Theorem 3.7 with recent results on
local rigidity of cocompact lattices in arbitrary groups, due to Gelander—Levit [39].

3.3. Applications to commensurated subgroups

The structure theory of tdlc groups provides valuable tools in exploring the so-called
commensurated subgroups of an abstract group. In this section, we recall that connection and
illustrate it with several recent results. Further results on commensurated subgroups will be
mentioned in Section 4 below.

Let I" be a group. Two subgroups A1, A, < T are called commensurate if their inter-
section A1 N A, has finite index both in A and in A,. The commensurator of a subgroup
A < T, denoted by Commp(A), is the set of those y € I" such that A and yAy~! are com-
mensurate. It is easy to see that Commr (A) is a subgroup of I containing the normalizer
Nr(A). The commensurator has naturally appeared in group theory; one of its early occur-
rences is in Mackey’s irreducibility criterion for induced unitary representations (see [51]).
It also appears in a celebrated characterization of arithmetic lattices in semisimple groups
due to Margulis [53, CH. IX, TH. (B)]. A commensurated subgroup of I" is a subgroup A < T’
such that Commr(A) = I'. Clearly, every normal subgroup of ' is commensurated; more
generally, every subgroup that is commensurate to a normal subgroup is commensurated.
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Those commensurated subgroups are considered as trivial. For example, finite subgroups
and subgroups of finite index are always commensurated subgroups. It is however impor-
tant to underline that commensurated subgroups are not all of this trivial form. Indeed, an
easy but crucial observation is that compact open subgroups are always commensurated. In
particular, in the simple group PSL,(Q)), the subgroup PSL,(Z,) (which is obviously not
commensurate to any normal subgroup of PSL,(Q))) is commensurated.

Let us next remark that if U is a commensurated subgroup of a group G and
¢ : T — G is a group homomorphism, then ¢~!(U) is a commensurated subgroup of T'.
This is the case in particular if G is a tdlc group and U < G is a compact open subgroup.
A fundamental observation is that all commensurated subgroups of I' arise in this way.
More, precisely, a subgroup A < I' is commensurated if and only if there is a tdlc group
G, a compact open subgroup U < G, and a homomorphism ¢ : I' — G with dense image
such that =1 (U) = A. Indeed, given a commensurated subgroup A < I, then A acts on
the coset space I'/A with finite orbits, so that the closure of the natural image of I" in the
permutation group Sym(I"/A), endowed with the topology of pointwise convergence, is
a tdlc group containing the closure of the image of A as a compact open subgroup. That
tdlc group is called the Schlichting completion of the pair (I', A), denoted by T'//A. We
refer to [68], [71, SECTION 3] and [65] for more information. Let us merely mention here that
a commensurated subgroup A < I' is commensurate to a normal subgroup if and only if
the Schlichting completion G = T'// A is compact-by-discrete, i.e., G has a compact open
normal subgroup (see [22, LEM. 5.1]).

The occurrence of nontrivial commensurated subgroups in finitely generated groups
with few normal subgroups (e.g., simple groups, or just-infinite groups, i.e., groups all of
whose proper quotients are finite) remains an intriguing phenomenon. On the empirical basis
of the known examples, it seems to be rather rare. The following result provides valuable
information in that context.

Theorem 3.9 (See [22, TH. 5.4]). Let T be a finitely generated group. Assume that all normal
subgroups of T are finitely generated, and that every proper quotient of I is virtually nilpo-
tent. Let also X be a compact T'-space on which the T'-action is faithful, minimal and
microsupported. Assume that at least one of the following conditions is satisfied:

(1) T is residually finite.
(2) T fixes a probability measure on X.
Then every commensurated subgroup of I is commensurate to a normal subgroup.

This applies to all finitely generated branch groups, as well as to numerous finitely
generated almost simple groups arising in Cantor dynamics, and whose study has known
spectacular recent developments (see [34,59] and references therein). We refer to [22] for
details and a more precise description of those applications.

Let us briefly outline how the proof of Theorem 3.9 works in the case where I" fixes
a probability measure on X . Let A < I" be a commensurated subgroup and G = I"// A be the
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corresponding Schlichting completion. That I' is finitely generated implies that G is com-
pactly generated. The hypotheses made on the normal subgroup structure of I' yield some
restrictions on the essentially chief series of G afforded by Theorem 2.1. More precisely,
assuming by contradiction that A is not commensurate to a normal subgroup, then the upper
most chief factor K /L with trivial quasicenter in an essentially chief series for G must be
compactly generated. Its structure is therefore described by Theorem 2.5. A key point in the
proof, relying on various ingredients from topological dynamics and involving detailed con-
siderations of the Chabauty space of closed subgroups of I' and G, is to show that the given
I"-action on X gives rise to a continuous, faithful, microsupported G/ L-action on a com-
pact space Y which is closely related to the original space X. Invoking (a suitable version
of) Theorem 3.5 for the chief factor K /L ensures that Y has a compressible open set, from
which it follows that X has a compressible open set for the I"-action. This finally contradicts
the hypothesis of existence of a I'-invariant probability measure.

4. SCALE METHODS

The scale of a tdlc group endomorphism, «, is a positive integer that conveys infor-
mation about the dynamics of the action of «. Roughly speaking, o contracts towards the
identity on one subgroup of G and expands on another, and the scale is the expansion factor.
This section gives an account of properties of the scale and descriptions of the action of «
on certain associated subgroups of G which, when applied to inner automorphisms, answer
questions about group structure.

Let o : G — G be a continuous endomorphism. The scale of « is

s(a) = min{[ot(U) ra(U)N U] | U < G compact and open}.

This value is a positive integer because «(U) N U is an open subgroup of the compact group
a(U). Subgroups at which the minimum is attained are said to be minimizing for a. The
following results from [85,86,89] relate minimizing subgroups to the dynamics of «.

Theorem 4.1. Let o be a continuous endomorphism of the tdlc group G and let U < G be
compact and open. Define subgroups
Uy = {u e U | Huntnso C U withug = u and u, = oz(u,,+1)},
U-={ueU|a"(u)eU foraln = 0}.
Also define the subgroup U__ = Unzo a "(U-) of G.
Then U is minimizing for o if and only if

(TA) U =UrU- and (TB) U-__isclosed.

A compact open subgroup U satisfying TA and 7B is said to be tidy for «, and
s(a) = [¢(Uy) : U4] for any such subgroup U. Tidiness has two further dynamical inter-
pretations: (1) an a-trajectory {&” (g)}»>0 cannot return to a tidy subgroup once it departs;
and (2) when « is an automorphism, U is tidy for « if and only if the orbit {&" (U)}, ez is a
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geodesic for the metric d(U, V) = log[U : U N V] + log[V : U N V] on the set of compact
open subgroups of G.

Note that every compact open subgroup of G has a subgroup U for which TA
holds and, if « is the inner automorphism ag (x) := gxg~!, then property TA implies that
Ug"Ug"U = Ug™*"U for all m,n > 0. These points were already used in [12] in the proof
that a reductive group over a locally compact field of positive characteristic is type I, where
they were observed to hold in such groups.

In the following compilation of results from [54, 85,86,89], A denotes the modular
function on the automorphism group of G.

Theorem 4.2. The scale s : End(G) — Z7 satisfies:

(1) s(x) =1 if and only if there is a compact open subgroup U < G with
aU) <U;

(i)  s(o) =limyse[a™(V) 1™ (V)N V]% for every compact open V < G, and
s(a@™) = s(a)" for everyn > 0; and

(iii) if o is an automorphism, then A(a) = s(a)/s(a™ ).

1

The function s o ae : G — L7, with ag (x) = gxg™", is continuous for the group topology

on G and the discrete topology on Z.".

Continuity of s o «e is implied by the fact that, if U is tidy for g, then U is also tidy
forall h € UgU and s(h) = s(g), [85, THEOREM 3].

Questions about the structure of tdlc groups may be answered with scale and tidy
subgroup techniques. K. H. Hofmann and A. Mukherjea conjectured in [45] that all locally
compact groups are “neat’—a property involving the conjugation action by a single ele-
ment g. They used approximation by Lie groups to reduce to the totally disconnected case,
and subgroups tidy for g are used in [47] to show that all groups are neat. Answering another
question of K. H. Hofmann, the set per(G), comprising those elements of G such that the
closure of (g) is compact, is shown in [84] to be closed by appealing to the properties of the
scale given in Theorem 4.2.

The scale and the subgroup U associated with it in Theorem 4.1 are given a con-
crete representation in [9]. Put Uy = |, @" (U4). Then U, 4 is closed if U is tidy and
U+ x {a) acts on a regular tree with Valen_cy s(a) + 1: the image of U4 % («) is a closed
subgroup of the isometry group of the tree; is transitive on vertices; and fixes an end of the
tree. The resulting isometry groups of trees correspond to the self-replicating groups stud-
ied in [58]. Moreover, the semidirect product Uy x {(«) also belongs to the family of focal
hyperbolic groups studied in [18].

4.1. Contraction and other groups

Subgroups of G defined in terms of the action of « are related to the scale and tidy
subgroups. It is convenient to confine the statements to automorphisms here. Extensions to
endomorphisms may be found in [16,89].
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The contraction subgroup for o € Aut(G) is
con(a) = {x €eGla*(x) > lasn— oo}

The next result, from [9, 46], relates contraction subgroups to the scale.

Theorem 4.3. Let o € Aut(G). Then (\{U—-— | U is ridy for o} is equal to con(w), and
s(a™Y) is equal to the scale of the restriction of ="' to con(a). Hence s(a™') > 1 if and

only if con(«) is not compact.

If G is a p-adic Lie group, then con(«) is closed for every «, [8e], but that is not the
case if, for example, G is the isometry group of a regular tree, or a certain type of complete
Kac—Moody group [7], or if £€(G) # {0, oo} [28]. The closedness of con(x) is equivalent,
by [9, THEOREM 3.32], to the triviality of the nub subgroup,

nub(a) = m{U | U tidy for ac}.

The nub for « is compact and is the largest «-stable subgroup of G on which « acts ergodi-
cally, which sharpens the theorem of N. Aoki in [2] that a totally disconnected locally compact
group with an ergodic automorphism must be compact. P. Halmos had asked in [44] whether
that was so for all locally compact groups. See [48, 9@] for the connected case, and also [6e].

The structure of closed contraction subgroups con(«) is described precisely in [4e].
If con(«) is closed, there is a composition series

{1} = Go<--- <Gy = con(a)

of a-stable closed subgroups of con(«) such that the factors G;41/G; have no proper, non-
trivial «-stable closed subgroups. The factors appearing in any such series are unique up
to permutation and isomorphism, and their isomorphism types come from a countable list:
each torsion factor being a restricted product ;. (G;, U;) with G; = F, a finite simple
group, and U; = F if i > 0 and trivial if i < 0, and the automorphism the shift; and each
divisible factor being a p-adic vector group and the automorphism a linear transformation.
Moreover, con(«) is the direct product 7 x D with T a torsion and D a divisible «-stable
subgroup. The divisible subgroup D is a direct product D, x --- x D, with D, a nilpo-
tent p-adic Lie group for each p;. The torsion group 7" may include nonabelian irreducible
factors but, should it happen to be locally pro- p, then it is nilpotent too, see [42]. The number
of nonisomorphic locally pro- p closed contraction groups is uncountable [41].

Contraction groups correspond to unipotent subgroups of algebraic groups and, fol-
lowing [751, the Tits core, G¥, of the tdlc group G is defined to be the subgroup generated by
all closures of contraction groups. It is shown in [26] that, if G is topologically simple, then
GT is either trivial or is abstractly simple and dense in G.

The correspondence with algebraic groups is pursued in [9], where the parabolic
subgroup for @ € Aut(G) is defined to be

par(e) = {x € G | {&" (x)},,., has compact closure},

and the Levi factor to be lev(a) = par(ar) N par(ee™!). Then par(e), and hence lev(c), is
closed in G, [85, PROPOSITION 3]. It may be verified that con(w) < par(e) and shown, see [9],
that par(«) = lev(a) con().
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4.2. Flat groups of automorphisms

A group, J, of automorphisms of G is flat if there is a compact open subgroup,
U < G, thatis tidy for every o € J. The stabilizer of U in # is called the uniscalar subgroup
and denoted #,,. The factoring of subgroups tidy for a single automorphism in Theorem 4.1
extends to flat groups as follows.

Theorem 4.4 ([87]). Let # be a finitely generated flat group of automorphisms of G and
suppose that U is tidy for J. Then J, < J and there is r > 0 such that

H)Hy, =7

* There are ¢ > 0 and closed groups U; < U, j € {0,1,...,q} such that
a(Uop) = Uy; a(Uj) is either a subgroup or supergroup of U; for every
je{l,....q}yand U = UyUy ---U,.

. Uj = Uyeq @(Uj) is a closed subgroup of G for each j € {1,....q}.

* There are, for each j € {1,...,q}, an integer s; > 1 and a surjective homomor-
phism p; : H — (Z,+) such that A(a|ﬁj) = S]/"j(a)'

» The integers r and q, and integers s; and homomorphisms pj for each
j €{l,...,q}, are independent of the subgroup U tidy for ¥ .

The number r in Theorem 4.4 is the flat rank of J. The singly-generated group (o)
has flat rank equal to O if « is uniscalar and 1 if not. Flat groups of automorphisms with
rank at least 1 correspond to Cartan subgroups in Lie groups over local fields and may be
interpreted geometrically in terms of apartments in isometry groups of buildings [8].

More generally, flatness of groups of automorphisms may be shown by the following
converse to the fact that flat groups are abelian modulo the stablizer of tidy subgroups.

Theorem 4.5 ([871[71]). Every finitely generated nilpotent subgroup of Aut(G) is flat, and
every polycyclic subgroup is virtually flat.

Flatness is used—in combination with bounded generation of arithmetic groups
[57,74], the fact that almost normal subgroups are close to normal [11], and the Margulis
normal subgroup theorem [53]—to prove the Margulis—Zimmer conjecture in the special
case of Chevalley groups in [71] and show that there are no commensurated subgroups of
arithmetic subgroups other than the natural ones.

5. FUTURE DIRECTIONS

The contributions to the structure theory of tdlc groups surveyed in this article
highlight that, for a general tdlc group G, as soon as the topology is nondiscrete, its inter-
action with the group structure yields significant algebraic constraints. As mentioned in the
introduction, we view the dynamics of the conjugation action as a unifying theme of our
considerations. The results we have surveyed reveal that those dynamics tend to be richer
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than one might expect. This is especially the case among tdlc groups that are nonelementary.
We hope that further advances will shed more light on this paradigm in the future.

Concerning decomposition theory, it is an important open problem to clarify what
distinguishes elementary and nonelementary tdlc groups. A key question asks whether every
nonelementary tdlcsc group G contains a closed subgroup H admitting a quotient in ..
Concerning simple groups, our results yield a dichotomy, depending on whether the central-
izer lattice is trivial or not. The huge majority of known examples of groups in .#4 (listed in
[28, APPENDIX A]) have a nontrivial centralizer lattice, the most notable exceptions being the
simple algebraic groups over local fields. Finding new groups in .#{y with a trivial centralizer
lattice would be a decisive step forward. A fundamental source of examples of tdlc groups
is provided by Galois groups of transcendental field extensions with finite transcendence
degree (see [66, TH. 2.9], highlighting the occurrence of topologically simple groups), but this
territory remains largely unexplored from the viewpoint of structure theory of tdlc groups.
Concerning scale methods, the structure of tdlc groups all of whose elements are uniscalar
(i.e., have scale 1) is still mysterious. In particular, we do not know whether every such
group is elementary. This is equivalent to asking whether a tdlc group, all of whose closed
subgroups are unimodular, is necessarily elementary. A positive answer would provide a
formal incarnation to the claim that the dynamics of the conjugation action is nontrivial for
all nonelementary tdlc groups. We refer to [24] for a more extensive list of specific problems.

We believe that a good measurement of the maturity of a mathematical theory is
provided by its ability to solve problems arising on the outside of the theory. For the struc-
ture theory of tdlc groups, the Margulis—Zimmer conjecture appears as a natural target. As
mentioned in Section 4, partial results in the nonuniform case, relying on scale methods on
tdlc groups, have already been obtained in [71].

Another source of external problems is provided by abstract harmonic analysis. As
mentioned in the introduction, the emergence of locally compact groups as an independent
subject of study coincides with the foundation of abstract harmonic analysis. However, fun-
damental problems clarifying the links between the algebraic structure of a locally compact
group and the properties of its unitary representations remain open. The class of amenable
locally compact groups is defined by a representation theoretic property (indeed, a locally
compact group is amenable if and only if every unitary representation is weakly contained
in the regular), but purely algebraic characterizations of amenable groups are still missing.
In particular, the following nondiscrete version of Day’s problem is open and intriguing:
Is every amenable second countable tdlc group elementary (in the sense of Section 2)? The
unitary representation theory also reveals a fundamental dichotomy between locally compact
groups of type I (roughly speaking, those for which the problem of classifying the irreducible
unitary representations up to equivalence is tractable) and the others (see [1e, 35,52]). Alge-
braic characterizations of type I groups are also desirable. In particular, we underline the
following question: Does every second countable locally compact group of type I contain a
cocompact amenable subgroup? For a more detailed discussion of that problem and related
results, we refer to [2e].
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1. INTRODUCTION
“Polynomials and power series
May they forever rule the world.” —Shreeram S. Abhyankar, 1970 [4]

Right from the beginning of the 19th century, mathematicians have been involved in studying
polynomial rings (over C and over R). Some of the early breakthroughs on polynomial rings
have led to the foundation of Commutative Algebra. One such result is the Hilbert Basis
Theorem, a landmark result on the finite generation of ideals, which solved a central problem
on invariant theory. This was followed by the Hilbert Nullstellensatz which connects affine
varieties (zero locus of a set of polynomials) with rings of regular functions on varieties and
thus enables one to make use of the algebraic machinery of commutative algebra to study
geometric properties of varieties.

Affine Algebraic Geometry deals with the study of affine spaces (and certain closed
subspaces), equivalently, polynomial rings (and certain quotients). There are many funda-
mental problems on polynomial rings which can be formulated in an elementary mathe-
matical language but whose solutions remain elusive. Any significant progress requires the
development of new and powerful methods and their ingenious applications.

One of the most challenging problems in Affine Algebraic Geometry is the Zariski
Cancelation Problem (ZCP) on polynomial rings (Question 1’ below). In this article, we
shall discuss the solution to the ZCP in positive characteristic, various approaches taken so
far towards the possible solution in characteristic zero, and several other questions related
to this problem. For a survey on problems in Affine Algebraic Geometry, one may look at
[42,62,69].

Throughout the article, all rings will be assumed to be commutative with unity
and k will denote a field. For a ring R, R* will denote the group of units of R. We
shall use the notation R[™ for a polynomial ring in n variables over a commutative ring
R. Thus, E = R will mean that E = R[t1,...,t,] for some elements 7y, ...,¢, in E
which are algebraically independent over R. Unless otherwise stated, capital letters like
X1, X0, ..., Xn, Y1,..., Yy, X, Y, Z, T will be used as variables of polynomial rings.

2. CANCELLATION PROBLEM

Let A be an affine (finitely generated) algebra over a field k. The k-algebra A is said
to be cancellative (over k) if, for any k-algebra B, A[X] = B[X] implies that A =~ B.
A natural question in this regard is: which affine domains are cancellative? More precisely:

Question 1. Let A be an affine algebra over a field k. Suppose that B is a k-algebra such
that the polynomial rings A[X] and B[X] are isomorphic as k-algebras. Does it follow that
A = B? In other words, is the k-algebra A cancellative?
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A special case of Question 1, famously known as the Zariski Cancellation Problem,
asks whether affine spaces are cancellative, i.e., whether any polynomial ring in n variables
over a field k is cancellative. More precisely:

Question 1'. Suppose that B is an affine k algebra satisfying B[X]| = k[X1, ..., Xn+1]
for some positive integer n. Does it follow that B =~ k[X1,..., X»]? In other words, is the
polynomial ring k[ X1, ..., X,] cancellative?

Abhyankar, Eakin, and Heinzer have shown that any domain A of transcendence
degree one over any field k is cancellative [3]. In fact, they showed that, for any UFD R, the
polynomial ring R[X] is cancellative over R. This was further generalized by Hamann to a
ring R which either contains QQ or is a seminormal domain [52].

In 1972, Hochster demonstrated the first counterexample to Question 1 [53]. His
example, a four-dimensional ring over the field of real numbers R, is based on the fact that
the projective module defined by the tangent bundle over the real sphere with coordinate ring
S =R[X,Y,Z]/(X? + Y? + Z? — 1) is stably free but not a free S-module.

One of the major breakthroughs in 1970s was the establishment of an affirmative
answer to Question 1’ for the case n = 2. This was proved over a field of characteristic zero
by Fujita, Miyanishi, and Sugie [43,7e] and over perfect fields of arbitrary characteristic by
Russell [74]. Later, it has been shown that even the hypothesis of perfect field can be dropped
[20]. A simplified proof of the cancellation property of k[X, Y] for an algebraically closed
field k is given by Crachiola and Makar-Limanov in [22].

Around 1989, Danielewski [26] constructed explicit two-dimensional affine domains
over the field of complex numbers C which are not cancellative over C. New examples of
noncancellative varieties over any field k have been studied in [9,32,49]. This addresses the
Cancellation Problem, as formulated in Question 1, for all dimensions.

In [45] and [47], the author settled the Zariski Cancellation Problem (Question 1”)
completely for affine spaces in positive characteristic. She has first shown in [45] that a
certain threefold constructed by Asanuma is a counterexample to the ZCP in positive char-
acteristic for the affine three space. Later in [46], she studied a general threefold of the form
x™y = F(x, z, t), which includes the Asanuma threefold as well as the famous Russell cubic
defined below. A major theorem of [46] is stated as Theorem 5.4 of this article. In [47], using a
modification of the theory developed in [46], she constructed a family of examples which are
counterexamples to the ZCP in positive characteristic in all dimensions greater than 2. The
ZCP is still a challenging problem in characteristic zero. A few candidate counterexamples
are discussed below.

The Russell cubic. Let A = C[X,Y, Z, T]/(X?Y + X + Z2 + T3),V = Spec A and let
x denote the image of X in A. The ring A, known as the Russell cubic, is one of the simplest
examples of the Koras—Russell threefolds, a family of threefolds which arose in the context
of the problem of determining whether there exist nonlinearizable C*-actions on C3. It was
an exciting open problem for some time whether A = C[3]. It was first observed that the ring
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A (respectively the variety V) has several properties in common with C 3! (respectively C3),
for instance,

(i)  Aisaregular UFD.

(ii)  There exists an injective C-algebra homomorphism from A to C3. Note that
CBl— 4.

(iii) The variety V is homeomorphic (in fact, diffeomorphic) to RS.
(iv) V has logarithmic Kodaira dimension —oo.

These properties appeared to provide evidence in favor of the surmise that A = C[3],
The establishment of an isomorphism between A and Cl would have led to counterexam-
ples to the “Linearization Conjecture” on C? (stated in [58]) and the Abhyankar—Sathaye
Conjecture for n = 3 (stated in Section 5 of the present article). Indeed, if A were isomor-
phic to (CB], as was then suspected, it would have shown the existence of nonlinearizable
C*-actions on C3. Moreover, note that

(v) A/(x =) = CPl forevery A € C*.
(vi) 4/(x) # CPL.

Therefore, if A were isomorphic to C[3!, then property (vi) would show that x — A
cannot be a coordinate in A for any A and then, by property (v), it would have yielded a
counterexample to the Abhyankar—Sathaye Conjecture for n = 3.

However, Makar-Limanov proved [65] that A # C [3]; for this result, he introduced a
new invariant which distinguished between A and C (3], This invariant, which he had named
AK-invariant, is now named Makar-Limanov invariant and is denoted by ML. It is defined
in Section 3. Makar-Limanov proved that

(vii) ML(A) = C[x] (Makar-Limanov [65]).

However, the Makar-Limanov invariant of C[" is C for any integer n > 1. Thus
A % CBI. Subsequently, other Koras—Russell threefolds were shown to be not isomorphic to
the polynomial ring. Eventually, Kaliman—Koras—Makar-Limanov—Russell proved that every
C*-action on C3 is linearizable (cf. [55]).

Now for ZCP in characteristic zero, a crucial question, still open, is whether
Al = C¥, Because if Al = C#), then 4 would be a counterexample to the ZCP in
characteristic zero for n = 3. In this context, the following results have been proved:

(viii) ML(A) = C (Dubouloz [3e)).
(ix) V is Al-contractible (Dubouloz—Fasel [31], also see [33,54]).

Note that A = C*! would imply that ML(A!)) = C and Dubouloz’s result (viii)
shows that the latter indeed holds. On the other hand, Asok had suggested a program for
showing that the variety V' is not A!-contractible and hence A is not a stably polynomial
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ring (see [54]). However, Hoyois, Krishna, and @stver have proved [54] that a step in his
program does not hold for V. They had further shown that V is stably A!-contractible. In a
remarkable paper [31], Dubouloz and Fasel have established that V' is in fact A I_contractible,
which seems to provide further evidence in favor of Al'l = CI4l. The variety V is in fact the
first example of an A !-contractible threefold which is not algebraically isomorphic to C3.

Nonrectifiable epimorphisms and Asanuma’s rings. Let m < n be two integers.
A k-algebra epimorphism ¢ : k[ X1, ..., X,] = k[Y1,. .., Yy]is said to be rectifiable if there
exists a k-algebra automorphism v of k[ X1, ..., X] such that oy (X;) = Y; for 1 <i <m
and ¢o(X;) = 0form + 1 < j <n.Equivalently, over an algebraically closed field k, a k-
embedding ® : AY' < A} is said to be rectifiable if there exists an automorphism W of A}
such that W, ® is the canonical embedding mapping (y1,..., Ym) = (V1,--+5 Ym.0,...,0).

A famous theorem of Abhyankar—-Moh and Suzuki proves that any epimorphism
¢ k[X,Y] — k[T] is rectifiable in characteristic zero [5,86]. On the other hand, in positive
characteristic, there exist nonrectifiable epimorphisms from k[ X, Y] to k[T] (see Segre [83],
Nagata [71]). It is an open problem whether there exist nonrectifiable epimorphisms over the
field of complex numbers (see [38]).

Asanuma has described an explicit method for constructing affine rings which are
stably polynomial rings, by making use of nonrectifiable epimorphisms ([7], also see [38,
PROPOSITION 3.7]). Such rings are considered to be potential candidates for counterexamples
to the ZCP. For instance, when k is of positive characteristic, nonrectifiable epimorphisms
from k[X, Y] to k[T] yield counterexamples to the ZCP.

Let ¢ : R[X, Y, Z] — R[T] be defined by

(X)) =T>-3T, ¢Y)=T*—4T% ¢(Z)=T°—-10T.

Shastri constructed the above epimorphism ¢ and proved that it defines a nonrectifiable
(polynomial) embedding of the trefoil knot in A% [84]. Using a result of Serre [63, THEO-
REM 1, P. 281], one knows that ker(¢) = (f, g) for some f, g € k[X,Y, Z]. Using f and g,
Asanuma constructed the ring B = R[T][X.Y, Z, U, V]/(T?U — f, T4V — g) and proved
that B!l = R[T][*] = RI5] (cf. [7, coroLLARY 4.2]). He asked [7, REMARK 7.8]:

Question 2. Is B = R[4I?

The interesting aspect of the question is that once the problem gets solved, irrespec-
tive of whether the answer is “Yes” or “No,” that is, either way, one would have solved a
major problem in Affine Algebraic Geometry. Indeed:

If B = R, then there exist nonlinearizable R*-actions on the affine four-space A]‘f{.

If B # R then clearly B is a counterexample to the ZCP!!

3. CHARACTERIZATION PROBLEM
The Characterization Problem in affine algebraic geometry seeks a “useful charac-
terization” of the polynomial ring or, equivalently (when the ground field is algebraically
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closed), an affine n-space. For instance, the following two results give respectively an alge-
braic and a topological characterization of k! (or A}C ).

Theorem 3.1. Let k be an algebraically closed field of characteristic zero. Then the poly-
nomial ring k1 is the only one-dimensional affine UFD with A* = k*.

Theorem 3.2. Let k be the field of complex numbers C. Then the affine line Aé: is the only

acyclic normal curve.

While the Characterization Problem is one of the most important problems in affine
algebraic geometry in its own right, it is also closely related to some of the challenging
open problems on the affine space like the “Cancellation Problem.” For instance, each of the
above characterizations of k[l immediately solves the Cancellation Problem in dimension
one: Al = kPl — 4 = k'], The complexity of the Characterization Problem increases
with the dimension of the rings.

In his attempt to solve the Cancellation Problem for the affine plane, Ramanujam
obtained a remarkable topological characterization of the affine plane C? in 1971 [72]. He
proved that

Theorem 3.3. C? is the only contractible smooth surface which is simply connected at infin-
ity.
Ramanujam also constructed contractible surfaces which are not isomorphic to C2.

Soon, in 1975, Miyanishi [67] obtained an algebraic characterization of the polynomial ring
k1. He proved that

Theorem 3.4. Let k be an algebraically closed field of characteristic zero and A be a two-
dimensional affine factorial domain over k. Then A = k! if and only if it satisfies the
following:

() A* = k*.
(ii) There exists an element f € A and a subring B of A such that A[f~'] =

—1q[1]

Bl

This algebraic characterization was used by Fujita, Miyanishi, and Sugie [43,7e] to
solve the Cancellation Problem for k[X, Y]. In 2002 [se], using methods of Mumford and
Ramanujam, Gurjar gave a topological proof of the cancellation property of C[X, Y].

Remarkable characterizations of the affine three space were obtained by Miyanishi
[68] and Kaliman [56] (also see [69] for a beautiful survey). We state below the version of
Kaliman.

Theorem 3.5. Let A be a three-dimensional smooth factorial affine domain over the field of
complex numbers C. Let X = Spec A. Then A = C (31 if and only if it satisfies the following:

() A*=C*

(i) Hi3(X,Z) =0, or X is contractible.
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(iii) X contains a cylinder-like open set V such that V = U x A2 for some curve U
and each irreducible component of the complement X \ 'V has at most isolated
singularities.

When Al = CH it is easy to see that A possesses properties (i) and (ii) of Theo-
rem 3.5. Thus, by Theorem 3.5, the ZCP for C (3] reduces to examining whether condition (iii)
necessarily holds for a C-algebra A satisfying Al!l = C[4],

In [29], we have obtained another characterization of the affine three-space using
certain invariants of an affine domain defined by locally nilpotent derivations. We state it
below.

Locally nilpotent derivations and a characterization of CI3]. Let B be an affine domain
over a field k of characteristic zero. A k-linear derivation D on B is said to be a locally
nilpotent derivation if, for any a € B there exists an integer n (depending on a) satisfying
D" (a) = 0. Let LND(B) denote the set of all locally nilpotent k-derivations of B and let

LND*(B) = {D € LND(B) | Ds = 1 for some s € B}.
Then we define
ML(B) := ﬂ kerD and ML*(B):= ﬂ ker D.
DELND(B) DELND*(B)

The above ML(B), introduced by Makar-Limanov, is now called the Makar-Limanov invari-
ant of B; ML*(B) was introduced by Freudenburg in [41, p. 237]. We call it the Makar-
Limanov-Freudenburg invariant or ML-F invariant. If LND*(B) = @, we define ML*(B)
to be B. We have obtained the following theorem [29, THEOREM 4.6].

Theorem 3.6. Let A be a three-dimensional affine factorial domain over an algebraically
closed field k of characteristic zero. Then the following are equivalent:

D A=kBl
(1) ML*(A) = k.
(II1) ML(A) = k and ML*(A) # A.

A similar result has also been proved in dimension two under weaker hypotheses [29,
THEOREM 3.8]. The above characterization of the affine three-space does not extend to higher
dimensions [29, EXAMPLE 5.6]. So far, no suitable characterization of the affine n-space for
n > 4 is known to the author.

4. AFFINE FIBRATIONS
Let R be a commutative ring. A fundamental theorem of Bass—Connell-Wright and
Suslin [1e, 85] on the structure of locally polynomial algebras states that:
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Theorem 4.1. Let A be a finitely presented algebra over a ring R. Suppose that for each
maximal ideal m of R, A,, = R,[,’f] for some integer n > 0. Then A = Sympg (P) for some
finitely generated projective R-module P of rank n.

Now for a prime ideal P of R, let k(P) denote the residue field Rp/PRp. The
area of affine fibrations seeks to derive information about the structure and properties of an
R-algebra A from the information about the fiber rings A ® g k(P)(= Ap/PAp) of A at
the points P of the prime spectrum of R, i.e., at the prime ideals P of R.

An R-algebra A is said to be an A" -fibration over R if A is a finitely generated flat
R-algebra and for each prime ideal P of R, A @ g k(P) = k(P)I".

The most important problem on A”-fibrations, due to Veisfeiler and Dolgacev [87],
can be formulated as follows:

Question 3. Let R be a Noetherian domain of dimension d and A be an A”-fibration over R.

(i) If Risregular,is A = Symyg(Q) for some projective module Q over R? (In par-
ticular, if R is regular local, is then A = R["]?)

(ii) In general, what can one say about the structure of A?

Question 3 is considered a hard problem. When n = 1, it has an affirmative answer
for all d. This has been established in the works of Kambayashi, Miyanishi, and Wright
[59,60]. Their results were further refined by Dutta who showed that it is enough to assume
the fiber conditions only on generic and codimension-one fibers ([34]; also see [14,17, 40]).

In case n = 2, d = 1, and R contains the field of rational numbers, an important
theorem of Sathaye [81] gives an affirmative answer to Question 3 (i). To prove this theorem,
Sathaye first generalized the Abhyankar—-Moh expansion techniques originally developed
over k[[x]] to k[[x1, ..., Xxn]] [86]. The expansion techniques were used by Abhyankar—Moh
to prove their famous epimorphism theorem. The generalized expansion techniques were
further developed by Sathaye [82] to prove a conjecture of Daigle and Freudenburg. The
result was a crucial step in Daigle—Freudenburg’s theorem that the kernel of any triangular
derivation of k[X1, X2, X3, X4] is a finitely generated k-algebra [23].

When the residue field of R is of positive characteristic, Asanuma has shown in
[6, THEOREM 5.1] that Question 3 (i) has a negative answer for n = 2, d = 1, and the author
has generalized Asanuma’s ring [47] to give a negative answer to Question 3 (i) for n = 2
and any d > 1 (also see [48]). In Theorem 5.4, the author proved that in a special situation
AZ2-fibration is indeed trivial.

However, ifn =2, d = 2, and R contains the field of rational numbers, Question 3 (i)
is an open problem. A candidate counterexample is discussed in Section 7.

In the context of Question 3 (ii), a deep work of Asanuma [6] provides a stable struc-
ture theorem for A. As a consequence of Asanuma’s structure theorem, it follows that if R
is regular local, then there exists an integer m > 0 such that A/ = RI"+7] Thus it is very
tempting to look for possible counterexamples to the affine fibration problem in order to
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obtain possible counterexamples to the ZCP in characteristic zero. One can see [12,24,36,37]
and [38, SECTION 3.1] for more results on affine fibrations.

So far we have considered affine fibrations where the fibre rings are polynomial
rings. Bhatwadekar and Dutta have obtained some nice results on rings whose fiber rings
are of the form k[X, 1/X] [15,16]. Later Bhatwadekar, the author, and A. Abhyankar studied
rings whose fiber rings are Laurent polynomial algebras or rings of the form k[X, 1/ f(X)],
or of the form k[X,Y,1/(aX + b),1/(cY + d)] for some a, b, c,d € k [1,2,18,19, 44].
One of the results of Bhatwadekar and the author provides a Laurent polynomial analogue
of Theorem 4.1 and the affine fibration problem Question 3. More generally, we have [19,
THEOREMS A AND C]:

Theorem 4.2. Let R be a Noetherian normal domain with field of fractions K and A be a
faithfully flat R-algebra such that

(i) A®rK = K[X1, 5. Xn. 1)
(ii) for each height-one prime ideal P of R, A Qg k(P) = k(P)[X1, XLI’

Xn, 3]
Then A is a locally Laurent polynomial algebra in n variables over R, i.e.,
1 1
Ay = Rm[Xla — s Xn, _]
X1 Xn

and is of the form B[I '], where B is the symmetric algebra of a projective R-module Q of
rank n, Q is a direct sum of finitely generated projective R-modules of rank one, and I is an
invertible ideal of B.

5. EPIMORPHISM PROBLEM
The Epimorphism Problem for hypersurfaces asks the following fundamental ques-
tion:

Question 4. Let k be a field and f € B = k"] for some integer n > 2. Suppose
B/(f) = k"1,
Does this imply that B = k[ f]"~1, i.e.,is f a coordinate in B?

This problem is generally known as the Epimorphism Problem. It is an open problem
and is regarded as one of the most challenging and celebrated problems in the area of affine
algebraic geometry (see [38,69,75,77] for useful surveys).

The first major breakthrough on Question 4 was achieved during 1974—1975, inde-
pendently, by Abhyankar—Moh and Suzuki [5,86]. They showed that Question 4 has an affir-
mative answer when k is a field of characteristic zero and n = 2. Over a field of positive char-
acteristic, explicit examples of nonrectifiable epimorphisms from k[X, Y] to k[T] (referred
to in Section 2) and hence explicit examples of nontrivial lines had already been demon-
strated by Segre [83] in 1957 and Nagata [71] in 1971. However, over a field of characteristic
zero, we have the following conjecture:
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Abhyankar-Sathaye Conjecture. Let k be a field of characteristic zero and f € B = k"]
for some integer n > 2. Suppose that B/(f) = k"=, Then B = k[ f]"~11.

In case n = 3, some special cases have been solved by Sathaye, Russell, and Wright
[73,76,79,89]. In [79], Sathaye proved the conjecture for the linear planes, i.e., polynomials F
of the form aZ — b, where a, b € k[X, Y]. This was further extended by Russell over fields
of any characteristic. They proved that

Theorem 5.1. Let F € k[X,Y, Z] be such that F = aZ — b, where a(#£ 0), b € k[X, Y],
and k[X,Y, Z]/(F) = k2. Then there exist Xo, Yo € k[X, Y] such that k[X,Y] = k[ Xy, Yo]
witha € k[Xo] and k[X,Y, Z] = k[X,, F]1'.

When k is an algebraically closed field of characteristic p > 0, Wright [89] proved
the conjecture for polynomials F of the form aZ™ — b with a,b € k[X, Y], m > 2 and
p 4+ m. Das and Dutta showed [28, THEOREM 4.5] that Wright’s result extends to any field k.
They proved that

Theorem 5.2. Let k be any field withchk = p (> 0)and F = aZ™ — b € k[X, Y, Z] be
such that a(#£ 0), b € k[X,Y], m > 2and p ¥ m. Suppose that k[X,Y, Z]/(F) = k). Then
there exists Xo € k[X, Y] such that k[X, Y] = k[Xo, b] with a € k[Xo] and k[X,Y, Z] =
k[F, Z, Xo)-

The condition that p } m is necessary in Theorem 5.2 (cf. [28, REMARK 4.6]).

Most of the above cases are covered by the following generalization due to Russell
and Sathaye [76, THEOREM 3.6]:
Theorem 5.3. Let k be a field of characteristic zero and let

F=anZ" +amZ™ '+ +a1Z +ap €k[X,Y, Z]
where ay, .. .,ay, € k[X,Y] are such that GCD (ay,...,am) ¢ k. Suppose that
k[X.Y,Z]/(F) = k?.

Then there exists Xo € k[X, Y] such that k[X, Y] = k[Xo, b] with a,, € k[Xy]. Further,
k[X,Y,Z] = k[F]P.

Thus, for k[ X, Y, Z], the Abhyankar—Sathaye conjecture remains open for the case
when GCD(a;,...,am) = 1.

A common theme in most of the partial results proved in the Abhyankar—Sathaye
conjecture for k[ X, Y, Z] is that, if F is considered as a polynomial in Z, then the coordinates
of k[X, Y] can be so chosen that the coefficient of Z becomes a polynomial in X. The
Abhyankar—Sathaye conjecture for k[ X, Y, Z] can now be split into two parts.

Question 4A. Let k be a field of characteristic zero and let
F=anZ" +amZ™ '+ +a1Z +ap €k[X,Y, Z]

where aq, ..., am € k[X, Y]. Suppose that k[X, Y, Z]/(F) = k™. Does there exist
Xo € k[X, Y] such that k[X, Y] = k[Xo]M with a,,, € k[Xo]?
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Question 4B. Let k be a field of characteristic zero and suppose
F=an(X)Z™ +am 1 Z™ ' + ...+ a1Z +ag €k[X,Y,Z]

where aq, ..., am_1 € k[X,Y]and a,, € k[X]. Suppose that k[X, Y, Z]/(F) = k!?. Does
this imply that k[X, Y, Z] = k[F]P1?

Sangines Garcia in his PhD thesis [78] answered Question 4A affirmatively for the
case m = 2. In [21], Bhatwadekar and the author have given an alternative proof of this result
of Garcia.

When k is any field, as a partial generalization of Theorem 5.1 and Question 4B
in four variables, the author proved the Abhyankar—Sathaye conjecture for a polynomial F
of the form X™Y — F(X,Z,T) € k[X,Y, Z, T]. This was one of the consequences of her
general investigation on the ZCP [46]. In the process, she related it with other central prob-
lems on affine spaces like the affine fibration problem and the ZCP. The author has proved
equivalence of ten statements, some of which involve an invariant introduced by Derksen,
which is called the Derksen invariant.

The Derksen invariant of an integral domain B, denoted by DK(B), is defined as
the smallest subring of B generated by the kernel of D, where D varies over the set of all
locally nilpotent derivations of B.

Theorem 5.4. Let k be a field of any characteristic and A an integral domain defined by
A=k[X,Y, Z, T]/(XmY —F(X,Z,T)), wherem > 1.

Let x, y, z, and t denote, respectively, the images of X, Y, Z, and T in A. Set f(Z,T) :=
F,Z,T)and G := X™Y — F(X, Z,T). Then the following statements are equivalent:

() k[X.Y.Z, T]=k[X,G]Pl.

(i) k[X.Y,Z,T]=k[G]PL

(i) A = k[x]2.

(v) A=kBl.

v)  AY = kI3 for some integer £ > 0 and DK(A) # k[x, z,1].
(vi) A is an A2-fibration over k[x] and DK(A) # k[x, z,1].

(vil) A is geometrically factorial over k, DK(A) # k[x, z, t] and the canonical
map k* — K;(A) (induced by the inclusion k — A) is an isomorphism.

(viii) A is geometrically factorial over k, DK(A) # k[x,z,t] and (A/xA)* = k*.
(ix)  k[Z,T]=k[f]".

x)  k[Z,T1/(f) = kM and DK(A) # k[x, z,1].

The equivalence of (ii) and (iv) provides an answer to Question 4 for the special case

of the polynomial XY — F(X, Z, T). The equivalence of (i) and (iii) provides an answer
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to a special case of Question 4’ (stated below) for the ring R = k[x]. The equivalence of (iii)
and (vi) answers Question 3 in a special situation. For more discussions, see [48].

In a remarkable paper Kaliman proved the following result over the field of complex
numbers [56]. Later, Daigle and Kaliman extended it over any field k of characteristic zero
[25].

Theorem 5.5. Let k be a field of characteristic zero. Let F € k[X,Y, Z] be such that
k[X,Y,Z]/(F — ) = k™ for almost every A € k. Then k[X,Y, Z] = k[F].

A general version of Question 4 can be asked as:
Question 4'. Let R be aring and f € A = R for some integer n > 2. Suppose
A/(f) = R
Does this imply that A = R[f]"~1, i.e.,is f a coordinate in A?

There have been affirmative answers to Question 4’ in special cases by Bhatwadekar,
Dutta, and Das [11,13,28]. Bhatwadekar and Dutta had considered linear planes, i.e., poly-
nomials F of the form aZ — b, where a, b € R[X, Y] over a discrete valuation ring R and
proved that special cases of the linear planes are actually variables. Bhatwadekar—Dutta have
also shown [12] that a negative answer to Question 4’ in the case when n = 3 and R is a dis-
crete valuation ring containing Q will give a negative answer to the affine fibration problem
(Question 3 (i)) for the case n = 2 and d = 2. An example of a case of linear planes which
remains unsolved is discussed in Section 7.

6. A"-FORMS

Let A be an algebra over a field k. We say that A is an A”-form over k if
A ®y L = L") for some finite algebraic extension L of k. Let A be an A”-form over a
field k.

When n = 1, it is well known that if L|; is a separable extension, then A = Kl
(i.e., trivial) and that if L | is purely inseparable then A need not be k1. An extensive study
of such purely inseparable algebras was made by Asanuma in [8]. Over any field of positive
characteristic, the nontrivial purely inseparable A!-forms can be used to give examples of
nontrivial A”-forms for any integer n > 1.

When n = 2 and L[ is a separable extension, then Kambayashi established that
A = k1 [571. However, the problem of existence of nontrivial separable A3-forms is open
in general. A few recent partial results on the triviality of separable A3-forms are mentioned
below.

Let A be an A3-form over a field k of characteristic zero and k be an algebraic
closure of k. Then A = k[ if it satisfies any one of the following:

(1) A admits a fixed point free locally nilpotent derivation D (Daigle and Kaliman
[25, COROLLARY 3.3]).
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(2) A contains an element f which is a coordinate of 4 ®y k (Daigle and Kaliman
[25, PROPOSITION 4.9]).

(3) A admits an effective action of a reductive algebraic k-group of positive dimen-
sion (Koras and Russell [61, THEOREM c]).

(4) A admits either a fixed point free locally nilpotent derivation or a nonconfluent
action of a unipotent group of dimension two (Gurjar, Masuda, and Miyanishi
[51]).

(5) A admits a locally nilpotent derivation D such that rk(D ® 1z) < 2 (Dutta,
Gupta, and Lahiri [39]).

Now let R be a ring containing a field k. An R-algebra A is said to be an A”-form
over R with respect to k if A ®x k = (R Qi k)™, where k denotes the algebraic closure
of k. A few results on triviality of separable A”-forms over a ring R are listed below.

Let A be an A”-form over a ring R containing a field k£ of characteristic 0. Then:

(1) If n = 1, then A is isomorphic to the symmetric algebra of a finitely generated
rank one projective module over R [35, THEOREM 7].

(2) If n = 2 and R is a PID containing Q, then A = R [35, REMARK 8].
(3) If n = 2, then A is an A2-fibration over R.

(4) If n = 2 and R is a one-dimensional Noetherian domain, then there exists a
finitely generated rank-one projective R-module Q such that A ~ (Sym R(Q))[l]
[39, THEOREM 3.7].

(5) If n = 2 and A admits has a fixed point free locally nilpotent R-derivation over
any ring R, then there exists a finitely generated rank one projective R-module
Q such that 4 = (Symy(Q))[! [39, THEOREM 3.8].

The result (3) above shows that an affirmative answer to the A2-fibration problem
(Question 3 (i)) will ensure an affirmative answer to the problem of A2-forms over general
rings. Over a field F of any characteristic, Das has shown [27] that any factorial Al-form A
over aring R containing F is trivial if there exists a retraction map from A to R.

We cannot say much about A 3-forms over general rings till the time we solve it over
fields.

7. AN EXAMPLE OF BHATWADEKAR AND DUTTA

The following example arose from the study of linear planes over a discrete valuation
ring by Bhatwadekar and Dutta [12]. Question 5 stated below is an open problem for at least
three decades. Let

A=C[T,X,Y,Z] and R=C[T,F]C A,

where F = TX?Z + X + T?Y + TXY?2.
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Let

P:=XZ+7Y?
G:=TY + XP,

and
H:=T?Z -2TYP — XP?

Then, we can see that
XH +G*=T?P

and F = X + TG. Clearly, C[T, T"'|[F,G, H] € C[T, T7'][X.Y, Z].
Then the following statements hold:

(i) C[T.T Y[X.Y.Z]=C|T.T™',F,G,H] = C[T, T~ [F]?.

(i) C[T.X.Y, Z]is an A2-fibration over C[T, F].

(i) C[T.X.Y,z|" =c[r, F)B.

(iv) C[T.X.Y,Z]/(F)=cC[T])?! =Bl

(v) CI[T.X.Y,Z]/(F — f(T)) = C[T]™ for every polynomial f(7T) € C[T].
(viy CI[T,X.,Y,Z][l/F]=CIT, F,1/F,G].

(vii) For any u € (T, F)R, A[l/u] = R[1/u]¥, ie., C[T, X, Y, Z][1/u] =
C[T, F,1/u].

Question 5. (a) Is A = C[T, F]&(= RB)?
(b) Atleastis A = C[F]P?1?
If the answer is “No” to (a), then it is a counterexample to the following problems:
(1) A2-fibration Problem over C[2 by (ii).
(2) Cancellation Problem over C (2] by (iii).
(3) Epimorphism problem over the ring C[T] (see Question 4') by (iv).

If the answer is “No” to (b) and hence to (a), then it is a counterexample also to the
Epimorphism Problem for C[* — €3,

Though the above properties have been proved in several places, a proof is presented
below. A variant of the Bhatwadekar—Dutta example was also constructed by Vénéreau in
his thesis [88]; for a discussion on this and related examples, see [24, 41, 64].

Proof. (i) We show that

C[T,T7'IX.Y.Z] = C[T,T"][F. G, H]. (1)
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Note that

2
X=F-71G, p=XHtC
T2

Y = (G- XP)/T,

and
Z =(H +2TYP + XP?)/T?,

and hence equation (1) follows.

(ii) Clearly, A is a finitely generated R-algebra. It can be shown by standard argu-
ments that A is a flat R-algebra [66, THEOREM 20.H]. We now show that A @ k(p) = k(p) (2]
for every prime ideal p of R. We note that F — X € TA and hence the image of ' in A/TA
is same as that of X. Now let p be a prime ideal of R. Theneither T € por T ¢ p. If T € p,
then A ®g k(p) = k(p)[Y. Z] = k(p)!2. If T ¢ p, then image of T in k(p) is a unit and the
result follows from (i).

(iii) Let D = A[W] = C[T. X, Y, Z, W] = C!3). We shall show that

D = C[T, F¥1 = RBL.

Let
Wy :=TW + P,
G—FW
Gl::%=Y—XW—(TY+XP)(TW+P)=Y—XW—GWl,
H +2GW, — (F — GT)W?
gy = ‘Tg W 7 oyw — xw,
Now let

Gri=G1+FWE = —XW)—TWi (Y —XW —GW)) =Y — XW — TW,G,

and
W, = M1 (HITF +G) _y +2GWi(Y — XW) —GHy — TG*W?
Then, it is easy to see that
D[T™'|=C[T.T7"]|[X.Y.Z, W]
=C[T.T7'|[F.G.H W]
= C[T.T7"|[F.G1. Hi. W]
= C[T,T7'][F, G2, Hi, Wa]

and that C[T, F,G,, H{,W5] C D.Let D/TD = C|x, y, z, w], where x, y, z, w denote the
images of X, Y, Z, W in D/ TD. We now show that D € C|[T, F, G,, Hy, W>]. For this, it
is enough to show that the kernel of the natural map ¢ : C[T, F, G,, Hy, Wo] — D/TD is
generated by 7. We note that the image of ¢ is

C[x,y —xw,z 4+ 2yw —xw?, w+2p(y —xw —xp?)(y — xw) —xp(z + 2yw —xwz)],
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which is of transcendence degree 4 over C. Hence the kernel of ¢ is a prime ideal of height
one and is generated by T'. Therefore, D = C[T, F, G,, Hy, W5].

(iv)-(v) Let B = C[T, X, Y, Z]/(F — f(T)) for some polynomial f € C[T] and
S = CJ[T]. By (ii), it follows that B is an A2-fibration over S. Hence, by Sathaye’s theorem
[81], B is locally a polynomial ring over S and hence by Theorem 4.1, B is a polynomial
ring over S.

(vi) Let Hy := FHAG® Then

_ (X +TG)T?Z —2TYP — XP?) + (TY + XP)?
- T

H, =TP + GH.

3
Let Hy := % Then

(X + TG)(TP + GH) + G?
T
T(G?H + TGP + XP) + G(XH + G?)
T
T(G?H + TGP + XP) + GT?P
T
G?H + XP + 2TGP.

H, =

Let H3 := F(HZ_TGHGA Then

F(G?H + XP +2TGP — XP - TY) + G*

3 =

T
_ FQTGP —TY)+ G*(FH + G?)
- T
_ TFQGP —Y) + TH,G?>

T
= FQGP —Y) + H,G>.

Now it is easy to see that

C[T.x. Y.z, F'|[T7"]

c[r. T '|[F.F'.G,H]

c[r. T '][F.F~'.G, Hi]
C[r. T '][F.F".G, H,]
=C[1.T7'][F. F~, G, H3],

and that the image of C[T, F, F~1, G, H,]in A[F~']/ TA[F~']is of transcendence degree 3.
Hence A[F~'] = C[T,F, F~',G, Hs] = C[T, F, F~!, G]1.

(vii) Let m be any maximal ideal of R other than (7, F). Then either T ¢ m or
F ¢ m. Thus, in either case, from (i) and (vi), we have 4,, = R,[f].

Let u € (T, F)R. Then a maximal ideal of R[1/u] is an extension of a maximal
ideal of R other than (7, F)R. Hence A[1/u] is a locally polynomial ring in two variables
over R[1/u]. Further any projective module over R[1/u] is free. Thus, by Theorem 4.1, we
have A[1/u] = R[1/u]. [
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ABSTRACT

The formal model of semi-infinite flag manifold is a variant of an affine flag variety that
was recognized from the 1980s but not studied extensively until the late 2010s. In this
note, we exhibit constructions and ideas appearing in our recent study of the formal model
of semi-infinite flag manifold of a simple algebraic group. Our results have some impli-
cations to the theory of rational maps from a projective line to partial flag manifolds, and
also on the structures of quantum cohomologies and quantum K-groups of partial flag
manifolds.
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1. INTRODUCTION

Compact complex-analytic spaces that admit homogeneous Lie group actions are
quite rare in nature, and their classification reduces into three primitive classes: finite groups,
tori, and (partial) flag manifolds. The first have discrete topology and the role of geometric
consideration is rather small, in general. The second, particularly those admit polarizations,
offer a major subject known as abelian varieties. The third, the (partial) flag manifolds of
compact simple Lie groups, are ubiquitous in representation theory of semisimple algebraic
groups and quantum groups. By the universal nature of general linear groups, flag manifolds
of unitary groups are extensively studied from the geometric perspective.

In representation-theoretic considerations, we usually consider flag manifolds as
projective algebraic varieties defined over an algebraically closed field (that form a family
over Spec Z). This definition naturally extends to an arbitrary Kac—Moody setting, but the
resulting objects have at least two variants, thin flag varieties and thick flag manifolds
(defined by Kac—Peterson [75] and Kashiwara [4e], respectively). In case the Kac—-Moody
group is of affine type, we have a loop realization of the corresponding Kac—Moody group,
essentially identifying the corresponding group with the set of K(z))-valued points of a
simple algebraic group over a field k. This motivates us to consider yet other versions of flag
manifolds of affine type that can be understood as an enhancement of arc schemes of usual
flag manifolds. These are the semi-infinite flag manifolds that originate from the ideas of
Lusztig [63, §11] and Drinfeld [22]. Lusztig’s original idea is to construct varieties that natu-
rally encode representation theory of simple algebraic groups over finite fields. The Lusztig
program (see, e.g., [44,63]) adds representation theory of quantum groups at roots of unity
and representation theory of affine Lie algebras at negative rational levels into the picture,
and Feigin—Frenkel [19] put representation theory of affine Lie algebras at the critical level
into the picture. The semi-infinite flag manifolds itself have two realizations, that we refer to
as the ind-model and the formal model. The geometry of the ind-model of semi-infinite flag
manifolds, also known as the space of quasimaps from a projective line to a flag manifold,
was studied extensively by Braverman, Finkelberg, Mirkovi¢, and their collaborators (see
[8,18,21,22]).

One instance of the ind-model of semi-infinite flag manifold is the space of prin-
cipal bundles on an algebraic curve equipped with some reduction. This interpretation
realizes some portion of the above representation-theoretic expectations [2,31]. The formal
model of semi-infinite flag manifolds is expected to add a concrete understanding of related
representation-theoretic patterns [19,22,63]. Unfortunately, such an idea needs to be polished
as its implementation faces difficulty due to its essential infinite-dimensionality. This forces
us to employ affine Grassmannians instead of semi-infinite flag manifolds in some cases (see
[26,30,78]) at the moment, that is possible by some tight connections [27,7e].

Meanwhile, it is realized that the semi-infinite flag manifold is a version of the loop
space of a flag manifold, and hence it is related to its quantum cohomology [32]. In fact, the
ind-model of a semi-infinite flag manifold offers a description of the quantum K-theoretic
J -function of a flag manifold [9] that encodes its small quantum K-group.
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In both contexts of the above two paragraphs, the Peterson isomorphism [59, 74],
that connects the quantum cohomology of a flag manifold with the homology of an affine
Grassmannian, should admit an interpretation using a semi-infinite flag manifold. However,
such an interpretation is not known today (though we have Corollary 7.3).

The main goal of this note is to explain a realization of the formal model of semi-
infinite flag manifold [46,50,52], that is reminiscent to the classical description of the original
flag manifolds. Our realization is supported by recent developments in representation theory
of affine Lie algebras [14,15,51], that is also reminiscent to the representation theory of simple
Lie algebras. It turns out that the study of the formal model of the semi-infinite flag mani-
fold has implications to the corresponding ind-model [5e], as well as the study of quantum
K-groups of partial flag manifolds and the K-groups of affine Grassmannians [45, 47, 48].
This includes an interpretation (and a proof) of the K-theoretic analogue of the Peterson
isomorphism using semi-infinite flag manifolds (Theorem 8.2).

The results presented here describe the formal model of semi-infinite flag manifolds
in a down-to-earth fashion, and also provide first nontrivial conclusions deduced from them.
However, we have not yet reached our primary goal to understand representation theory from
this perspective in a satisfactory fashion. We hope to improve this situation in the near future.

The organization of this note is as follows: We first recall the construction of flag
manifolds that is parallel to our later construction in Section 2. We explain the role of quan-
tum groups in the structure theory of Kac—Moody algebras and exhibit two versions of flag
varieties of Kac—-Moody groups in Section 3. In Section 4, we exhibit some representation
theory of affine Lie algebras. Based on it, we explain our construction of the formal model of
semi-infinite flag manifolds in Section 5. This enables us to present our idea on the Frobenius
splitting of semi-infinite flag manifolds in Section 6. We explain the connection between its
Richardson varieties and quasimap spaces in Section 7, and explain how they fit into the
study of quantum cohomology of flag manifolds. We exhibit the K-theoretic Peterson iso-
morphism in Section 8. We discuss the functoriality of the quantum K-groups of partial flag
manifolds in Section 9. We finish this note by discussing some perspectives in Section 10.

We assume that every field K has characteristic # 2. A variety is some algebraic-
geometric object that admits singularity, and a manifold is a variety that is supposed to be
smooth in some sense. An algebraic variety is a separated scheme of finite type defined over
a field (i.e., our variety is not necessarily irreducible or reduced). We set N := Z .

2. FLAG MANIFOLDS VIA REPRESENTATION THEORY

Let G be a simply connected semisimple algebraic group over an algebraically
closed field k. Let T C B be its maximal torus and a Borel subgroup (maximal solvable
subgroup). Let W (= Ng(T)/T) be the Weyl group of G. Let X be the set of one-
dimensional rational T -characters (the set of T -weights), that admits a natural W -action. We
set Xy = Z;=1 Nw;, where w1, ..., w, € X are fundamental weights with respect to B.
The set of isomorphism classes of irreducible rational representations {L(A)}, of G is
labeled by X in such a way that each L(A) contains a unique (up to scalar) B-eigenvector
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v, with its T-weight A. We refer A (€ X ) as the highest weight of L(A). The flag manifold
B := G/B of G is the maximal G-homogeneous space that is projective.
In case k = C, we have

B=U\E)T,

where ¥ is an affine algebraic variety with (G x T')-action whose ring C[¥] of regular func-
tions is written as

Cl¥ = @ L(A)* (as G x T-modules), 2.1)

reXy

and £ C ¥ is the locus where the T-action is not free. Here, the G-action on C[¥] is the
natural actions on L(A), and the T -action on C[¥] comes from the grading X4+ C X in the
RHS of (2.1). These data, together with the condition E # ¥, essentially determine C[¥]
as C-algebras generated by L(w;)* for 1 <i < r. Consider a point xo € ¥ given by {v,},,
seen as linear maps on {L(A)*},. The image [x¢] of this point x¢ has its G-stabilizer equal
to B. This induces an inclusion

,
G/B— B C [[P(L(w)
i=1

induced from B/B + [xg] by the G-action. (One needs additional representation-theoretic
analysis to conclude G/B =~ $.) This consideration transfers all geometric statements rel-
evant to B to algebraic statements on the space in (2.1) in principle, but most of the geo-
metric results on B and its subvarieties were proved for the first time by other methods (see,
e.g., [56]).

Note that the vector space (2.1) does not acquire the structure of a ring when chark =
p > 0. The reason is that we do not have a map L(1)* ® L(u)* — L(A + p)*, or equiva-
lently, L(A 4+ p) = L(A) ® L(p) for general A, u € X4 . One way to improve the situation is
to replace {L (1)} ex, Wwith a suitable family of modules {Y(1)}1ex, with larger members
such that the G-module map

YO+ 1) = YO ® Y(u) (2.2)

exists uniquely (up to constant) for every A, u € X4. It yields an analogous ring of (2.1)
that should be closely related to 8. A standard choice of Y(1) (A € X ) is the Weyl module
V(A) of G, that is, the projective cover of L(A) in the categories of rational G-modules
whose composition factors are in {L ()} 1> ,ex, » Where > is the dominance ordering on X.
This produces B for all characteristics.

Theorem 2.1 (Orthogonality of Weyl modules, [36, 11 §4.13]). For each A, u € X4, we have
Exty; (V(A), V(1)*) = k®5odnur,

where W* is the highest weight of L(i)*. By taking the Euler—Poincaré characteristic, this
Ext-orthogonality implies the orthogonality of the T -characters of V(A). In particular, the
T -characters of V(L) do not depend on k.
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Note that L(A) = V(L) for char kK = 0 by the semisimplicity of representations,
and hence Theorem 2.1 is Schur’s lemma in such a case. As V(1) = k ®z Vz (1) holds for
a collection of free Z-modules Vz(1) (A € X4), we find that B extends to a scheme flat
over Z. Another possible choice of Y (1) (A € X), the Verma module M (1) of the (divided
power) enveloping algebra of Lie G, produces an open dense B-orbit in 5.

3. KAC—MOODY FLAG VARIETIES
Let us keep the setting of the previous section.

3.1. Reminder on Kac—-Moody algebras and their quantum groups

Let gc be the Kac—Moody algebra associated to a symmetrizable generalized
Cartan matrix (= GCM) C (see [38]). In case char k = 0, we have the notion of the highest
weight integrable representations of g¢ parametrized by the set of dominant weights Py
defined similarly to X . Let L(A) denote the highest weight integrable representation of
gc corresponding to A € P.

We have the quantum group (or the quantized enveloping algebra) U, (gc) of gc
originally defined by Drinfeld and Jimbo in the 1980s [17,37]. It is an algebra defined over
Q(g), and the specialization g > 1 recovers the universal enveloping algebra U(gc) of g¢.
Kashiwara [41] and Lusztig [63] defined the canonical/global bases (of the positive/negative
parts qu (ac)) of Uy(gc) and their integrable representations that generate their Q[q]-
lattices. The construction of Lusztig [64] clarified that quantum groups are, in fact, defined
over Z[g*!] (or even over N[¢*!] if one can say). In the 2010s, the categorification theo-
rems of a quantum group and its integrable representations appeared [39,53,76,77], and there
every algebra that admits a categorification has a suitable Z[g]-integral structure with dis-
tinguished bases, being the Grothendieck group of a module category of a finitely-generated
graded algebras (called KLR algebras or quiver Hecke algebras). Therefore, the following is
now widely recognized:

Theorem 3.1 (Lusztig [63, 64, 66] and Kashiwara [41-43]). Assume that K = C. The (lower)
global bases of qu (gc) induce a Z-integral form Uz (gc) of U(gc) via g +— 1. For each
A € Py, we have a Z-lattice L(M\)z of L(A) obtained from the (lower) global base of the
corresponding integrable highest weight module of Uy (ac ). In addition, L(A)z is generated
by the Uz (gc)-action from a highest weight vector of L(M\).

By a specialization of L(A)z, we obtain a highest weight integrable module L(A)
over an arbitrary field K. The module L (A) is no longer irreducible when chark > 0 (in gen-
eral), and hence it is a g¢-analogue of Weyl modules rather than L(A) for G; it is a lack of
brevity of the author to choose this notation here. We close this subsection by noting that the
integral forms at the end of Section 2 coincide with the integral forms in Theorem 3.1.
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3.2. Thin and thick flag varieties

Presentations of the flag varieties for general Kac—-Moody groups § associated to a
GCM C are similar to those in the previous section. A triangular decomposition of g¢ yields
an analogous group 4 to the Borel subgroup. Let 7 be a (standard) maximal torus of 4. The
highest weight vector in L(A) is precisely an J-eigenvector with its 7 -weight A. Therefore,
the construction in the previous section produces §/d via the ring

P L)y c P Lw (3.1)
AePy AePy
where L(A)* is the vector space dual of L(A), and L(A)Y is the restricted dual of L(A),
defined to be the direct sum of (finite-dimensional) vector space duals offered by the 7 -weight
decomposition of L(A).

In this case, both vector spaces in (3.1) are naturally rings. This corresponds to the
choice of §. The former ring defines :Bg‘“k = §/J [40,49,71] if we take § to be a version of
the Kac—Moody group that is completed with respect to the opposite direction to . (This is
the maximal Kac—Moody group, but the completion is taken in the opposite way as in the
literature.) The latter ring can be seen as the projective limit of finitely-generated algebras,
and the union of the spectrums of these rings yields i)’g‘i“ = §/d [56,75] if we take § as
the uncompleted Kac—Moody group (the Kac—Peterson group or the minimal Kac—Moody
group), or as the maximal Kac—-Moody group completed with respect to the direction of 4.
In other words, we have variants of flag manifolds of Kac—Moody groups associated to a
GCM C as:

| 8&h = B8E" ¢ BE*. (3.2)
n

The scheme i)"émk is a union of infinite-dimensional affine spaces, and hence is smooth.
However, :Bgmk is not compact in an essential way [24]. This picture is compatible with the
fact that the Kac—Peterson group is defined by one-parameter generators (and relations), and
hence O‘Bg‘i“ is a union of finite-dimensional subvarieties !82‘“,‘[ consisting of points presented
by a product of at most n generating elements. As such, each scheme 582“2 is singular, and
hence D’Bg‘i“ is understood to be singular. In fact, it does not admit an inductive limit descrip-
tion by finite-dimensional smooth pieces [24].

4. GLOBAL WEYL MODULES AND THEIR PROJECTIVITY
Let us consider the untwisted affine Kac—Moody case hereafter, with the same con-
ventions as in the previous sections. In particular, our Kac—Moody groups are extensions of
the groups
G(2) := G(k(z)) and G[z*']:=G(k[zF"])

by the loop rotation G,,-actions (that we denote by Go') and the central extension G,,-
actions. (These correspond to the maximal/minimal realizations of the Kac—Moody groups
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in the previous section.) These are not (pro-)algebraic groups, and it sometimes causes dif-
ficulty. Nevertheless, each rational representation V' of G induces representations

V(z) ==V @kk(z) and V[E']:=V @ k[z*]

of G((z)) and G[z*'], respectively. These representations are not of highest weight, but still
integrable representations when we lift them to the central extensions of G((z)) and G[z*]
by letting the center G, act trivially (i.e., they are level-zero integrable representations
viewed as representations of affine Lie algebras).

In addition to the T -action, the representation V' [z+!] carries G!o'-action. Let § be
the degree-one character of GJ°', and set g := 8. By abuse of notation, we might consider g”
(n € Z) as the functor that twists the G}°"-action by degree n. We define a graded character

of a semisimple (7 x G}2")-module U as

gchU = Z Z q”e)L dim Homy ot (C) 15, U).
neZ AeX
Then, gch V[zil] makes sense as all the coefficients are in Z. However, if we take the second
symmetric power S2(V [z£1]) of V[z%!] over k, then it contains an infinity as a coefficient.
To avoid such a complication, we sometimes restrict ourselves to the subgroups

G[z] := G(K[z]) € G(z) and Glz]:= G(K[z]) C G[z*'].

We sometimes use the subgroup I C G[z] defined by the pullback of B under the evaluation
map evg : G[z] = G at z = 0. The group I is the Iwahori subgroup obtained from (the
completed version of) 4 by removing G' and quotient out by the central extension.

By the quotient map k[z] — k (and k[z] — k) sending z +> 0, we can regard every
rational G-module V" as a G[z]-module or a G [z]-module with (trivial) G o"-action through
evo. We also have a G[z]-module structure (without a G['-action) on V[z] := V ® K][z]

that surjects onto V.

Definition 4.1 (global Weyl modules). Let € (1) be the category of rational G [z]-modules
M that admits a decreasing filtration

M =FoM > F{M > F;M S -+ suchthat () FeM = {0}
k>0

and each FyM/F;_ M (k > 1) belongs to {¢g" L(it)}mez, r>pnex, - Foreach 1 € X, we
define the global Weyl module W (1) of G|[z] as the projective cover of L(A) in €(A).

Note that W (1) automatically acquires a G5'-action by its universality (as it exists).

Theorem 4.2. For each A € Xy with A = Y ;_, m; w;, we have
r
Endgr:) W(A) = Q) klxi1. ... xim %"
i=1

where each X; 1, ..., Xim; is of degree one with respect to the G3"-action. In addition, the
action of Endgz;] W(X) on W(Q) is free.
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Theorem 4.2 was proved by Fourier-Littelmann [25] (for k = C and G of type ADE),
Naoi [72] (for K = C and G of type BCFG), and it was transferred to chark > 0 in [5] using
results from the global bases of quantum affine algebras [4, 42].

By Theorem 4.2, we factor out the positive degree parts of Endgz;; W(A) to obtain

W) := K ®Endg wy WAR), A eXy.

We call it a local Weyl module of G|z].
The following result clarifies that our global/local Weyl modules are the best possi-
ble analogues of Weyl modules for G (see Theorem 2.1):

Theorem 4.3 (Chari-Ion [14] for char K = 0, and [50] + & for char K > 0). For each
A, € X4, we have
Extig (W (L), W(p)*) == k®%o0diue, .1

where |W* is the highest weight of L(j1)*. By taking the graded Euler—Poincaré characteristic,
(4.1) implies the orthogonality of Macdonald polynomials with respect to the Macdonald
pairing specialized to t = 0. In particular, gch W(A) and gch W (1) do not depend on k.

The proof of Theorem 4.3 in [5e, §3.3] relies on the adjoint property of the Demazure
functors observed in [2e, PROPOSITION 5.7] and systematically utilized in [15]. The case A = u*
and i > 1 in Theorem 4.3 is not recorded in [5e], and might appear elsewhere.

5. SEMI-INFINITE FLAG MANIFOLDS
We keep the setting of the previous section. In view of the projectivity of W (4)’s
in €(4)’s, we find unique degree-zero G[z]-module maps

WA +u) > WRA) @ W(n), AeXi. (5.1)
Therefore, the recipe described in Section 2 equips

Rg = P wWR)"

AeX 4

with a structure of a commutative algebra compatible with the action of G[z] x G[2' x T.
Since the GJo'-degree of R¢ is bounded from the above, the G[z]-action on R automatically
extends to the G [z]-action. We set

QG := (Spec Rg \ E)/T,

where E is a closed subset of Spec Rg on which the 7 -action is not free. Let us consider
the G((z))-orbit of

(Vo l}iy € [TP (V@) (=), (5.2)

i=1
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viewed as a set of points, that we denote by @ . By examining the coefficients of the defining
relations of B with its K((z))-valued points, we find that the intersection

r r r
Qo N [[P(V(@lzlz™) c [[P(V(@olz]z") c [[P(V(@:) (=) (5.3)
i=1 i=1 i=1

defines a closed subscheme for any choice of m1, ..., m, € Z. We denote this subscheme
by Qg (tg), where f = Z:=1 mja; is an element of the dual lattice (coroot lattice) XV of
X equipped with a basis {o;"}/_, such that o/ (w;) = §; ; (i.e., &’ is a simple coroot). We
note that P(V (w;)[z]z™) is a scheme, but it is not of finite type, and Qg (g) is also of
infinite type.

Lemma 5.1. We have Qg (tg) = Qg (t,) for each pair B,y € XV as schemes equipped with
G z]-actions. Hence, the union

Q& = JQa(ip)
B

is a pure ind-scheme of ind-infinite type equipped with the action of G[z] x G'. Moreover,
the set of G[z]-orbits in Q' is in bijection with X" .

In effect, we have an open dense G [z]-orbit Og (tg) C Qg (tg) that is isomorphic to
G[z]/(T - N[z]). By the Bruhat decomposition, we divide Og (zg) into the disjoint union
of I-orbits as | |,y O(wig) such that O(tg) C Og (g) is open dense. Identifying g € XV
with g, we set Wy := W x XV. We define

Qc(w) :=0(w) CQF, w e Wyy.

The inclusion relation on {Qg(w)}wew, is described by the generic Bruhat
order [62]. We refer to the partial order on W, induced from this closure ordering by < % as
in [50,52] (there we sometimes called 5% as the semi-infinite Bruhat order).

Theorem 5.2. The scheme Qg (w) is normal for each w € Wy. In addition, the ind-scheme
‘G‘“ is a strict ind-scheme in the sense that each inclusion is a closed immersion. The ind-

scheme Q& coarsely ind-represents the coset G((2))/(T - N((2))).

The first two statements are proved in [52] when char K = 0. The proof valid for
chark # 2, as well as the last assertion, are contained in [5e]. This last assertion says that
the (ind-)scheme QrGat is the universal one that maps to every (ind-)scheme whose points
yield @¢. It follows that if we take a family {Y (1)}, ex, instead of {W (1)} ex, to define
Qg (t). then the corresponding coordinate ring R; admits a map to Rg. Let us point out
that this can be thought of as a family version of the properties of global Weyl modules
discussed in Section 4, and we indeed have several reasonable choices of {Y (1)}, ex.. other
than {W(A)},ex, including the coordinate ring of the arc scheme of G/N . For simplicity,
we may refer to Qg (¢9) as Qg below.

The inclusion

Q¢ C [[P(V(@)z]) (5.4)

i=1
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induces a line bundle Oq; (w;) on Qg, that is, the pull-back of @(1) from P (V(w;)[z]).
By taking the tensor products, we have Qg (A) := Q) _; Oq, (@:)®" forA =Y I _ njw;
(n; € Z). By Lemma 5.1, we have (90181 (A) (A € X) on Q' that yields Qg (A) by restriction.

Theorem 5.3 ([52] for char K = 0, and [se] for chark # 2). For each A € X, we have

W), i=0021¢eXy,

H'(Qg, 00, (V)" =
( Qe ) {0}, otherwise.

The proof of Theorem 5.3 depends on the freeness of Rg over an infinitely-many-
variable polynomial ring, that yields a regular sequence of infinite length. Such a situation
never occur for finite type schemes, or infinite type schemes like Bg‘mk. In case G = SL(2),
Theorem 5.3 reduces to an exercise in algebraic geometry by Qg = P (k?[z]).

Theorem 5.3 has an ind-model counterpart proved earlier [10]. The Frobenius split-
ting of Qg (explained later) and Theorem 5.3 imply this ind-model counterpart. However,
the author is uncertain whether [1e] implies Theorem 5.3 (even in case char k = 0) since the
natural ring coming from the ind-model is a completion of R¢, and the completion operation
of a ring loses information in general. We have an analogue of Theorem 5.3 for all I-orbit
closures, proved for the ind-model in [46,50] and for the formal model in [5e, 52].

6. FROBENIUS SPLITTINGS

We continue to work in the setting of the previous section. We fix a prime p > 0. For
ascheme X over [F,,, we have a Frobenius morphism Fr : ¥ — X induced from the pth power
map. We have a natural map Fr*@x — Ox that induces a map Ox — Fr,.O% by adjunction.
The Frobenius splitting ¢ : Fr.Ox — Ox is an Ox-module map such that the composition

Ox — Fr.O0z > Ox

is the identity. If X is projective (and is of finite type) and @x admits a Frobenius splitting,
then X is reduced and an ample line bundle has the higher cohomology vanishing [68].

For generality on Frobenius splittings, as well as their applications to 8 and Bg‘m,
we refer to Brion—Kumar [12] (note that [12] has a finite type assumption, that we drop in
case the proof does not require it. In the paragraph above, reducedness does not require
the finite type assumption, while the higher cohomology vanishing requires the finite type
assumption through the Serre vanishing). Frobenius splitting of 8B in chark = p is useful
in proving that Schubert and Richardson varieties are reduced, normal, and have rational
singularities. There are two major ways to construct a Frobenius splitting of $: one is to
investigate the global section of the (1 — p)th power of the canonical bundle, and the other
is to use a Bott—Samelson—-Demazure—Hansen (=BSDH) resolution of 3.

Since Bg‘i“ is no longer smooth, we cannot use the canonical bundle to construct a
Frobenius splitting. Nevertheless, a (partial) BSDH resolution does the job. The situation of
BEK is a bit worse. The canonical bundle of B&'* makes some sense, but the author does
not know whether it has enough power to produce a Frobenius splitting. The scheme 321“1‘
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admits a BSDH resolution, but it is a successive P !-fibration over an infinite-type scheme.
Thus, we cannot equip Bgmk with a Frobenius splitting by either of the above means at
present. Despite this, we can transfer a Frobenius splitting of B&™ to BE* by using the
compatible splitting property of a point [49], following an idea of Mathieu.

Frobenius splitting of QrGa‘ (or rather each of its ind-piece Qg (w)) is used below, and
hence we need a recipe to produce one. However, the situation of the BSDH resolution is
similar to that of B ‘é‘iCk, and the canonical bundle on Q' simply does not make sense naively
(e.g., its T-weight at a point must be infinity). Therefore, we need a new proof strategy. Our
strategy in [5e] is to regard R as a subalgebra of the corresponding coordinate ring of i)’glid‘,
and prove that a Frobenius splitting of :Bg‘mk preserves Rg. For this, we first see that each
W(mA) (m € Z-y, A € X;) is a quotient of L(mA) for some A € Py by twisting the
G|z~ !]-action into a G[z]-action as z™! + z. Let 7, : L(mA) — W (mA) be the quotient
map. This embeds (a suitable Z-graded subalgebra of) Rg into (3.1) as an algebra with
G[z] x G2'-action. We need to show that the map ¢ obtained by dualizing the Frobenius
splitting of i)’gmk induces a map ¢ in the following diagram:

LimA) —2 = L(pmA) —= L(mA) 6.1)

W(mA) —%& W(pmdA) —— W (md).

This is equivalent to seeing that ¢V (ker 7r,,) C ker .. We use the projectivity of W (mA)
in €(mA) to assume that the G[z]-module generators of ker 7, have T-weights that do
not appear in W (mA). In view of the fact that ker 7,,, contains all the 7-weight spaces in
L(pmA) whose T-weights do not appear in W (pmA), we have necessarily ¢V (ker 7r,) C
ker 7y, by the T-weight comparison of the generators.

In fact, every L(A) admits a filtration by global Weyl modules when chark = 0 if
we twist the action of G[z] on global Weyl modules into G [z~!] [51]. Therefore, we indeed
obtain a Frobenius splitting of Q¢ via a novel proof based on the “universality” of the global
Weyl module W (1) explained in Section 4. In conclusion, we have:

Theorem 6.1 ([58, THEOREM B]). The ind-scheme QrGal admits a Frobenius splitting that is
compatible with all 1-orbits when chark > 2.

7. CONNECTION TO THE SPACE OF RATIONAL MAPS

Keep the setting as in Section 5. Let us consider the vector space embedding
k((z)) € k[z,z~!] into the formal power series with unbounded powers. The space k[z,z 1]
no longer forms a ring. Nevertheless, we have an automorphism of K[z, z~!] by swapping
z with z71. Together with the Chevalley involution of G (an automorphism of G that sends
each element of T to its inverse), it induces an involution 8 on the ambient space

Q¢ c l_[ P(V(w)[z.z7']).

i=1
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We remark that € induces an automorphism of G such that B N 8(B) = T. Let wq be the
longest element in W'.

Theorem 7.1 ([50, THEOREM B]). For all w, v € Wy, the scheme-theoretic intersection
Qg (w) N B(Qg(vwy)) is reduced (we denote this intersection by Qg(w, v) and call it
a Richardson variety of Q% below). It is normal when chark = 0 or chark > 0.

The scheme @¢g(w, v) is always of finite type, and the case w, v € W yields a
Richardson variety of 8. The normality part of the proof of Theorem 7.1 goes as follows:
Our Frobenius splitting of Q' induces a Frobenius splitting of @ (w, v). In particular, it is
reduced and weakly normal in chark > 2. (Here a weakly normal ring is essentially a normal
ring up to topology.) Then, we lift the weak normality to characteristic zero and prove the
normality of the intersection by a geometric consideration. Once we deduce the normality
in characteristic zero, we can reduce it to chark 3> 0 by a general result.

Let us exhibit some relevant geometric considerations here. To this end, we assume
k = C in the rest of this section. Recall that H,(8,Z) = X". Let § 8, g (resp. B, g) be the
space of genus-zero stable maps with two marked points to (P! x B) (resp. B) whose image
has class (1, 8) € Hy(P! x 8,7Z) (resp. B € H,(B, 7)), regarded as an algebraic variety
with rational singularities [28]. We have a subvariety gi)’g’ 8 such that the first marked point
lands in 0 € P! and the second marked point lands in oo € P! through the composition

(C.{x1.x2)) S P x 8™ P,

Consider the Schubert variety (a B-orbit closure) 8(w) C B corresponding to w € W and
the opposite Schubert variety (a 8(B)-orbit closure) 8°P(v) C 8B corresponding to v € W.
Let ev; : ﬁr@g’ > B (i = 1,2) denote the evaluation at the point x; on C. We
define
§Bp(w,v) :=ev ' (B(w)) Nevy' (B(v)).

Similarly, lete; : B, g — B (i = 1,2) be the evaluation maps. Forallw,v € W and g € XV,
we set Bg(w, v) 1= (e7(B(w)) N e;(B®(v))). Let (,?Zg(,B) denote the space of maps
from P! to B of degree 8. By adding the identity map to P!, each point of (:‘)ZG (B) yields a
map P! — (P! x B) of degree (1, B). In addition, the identification of two P 1’s completely
determines the marked points. Hence we have an inclusion (,?ZG B) C ﬁ!B;, FE

Let Qg (B) (B € XV) denote the space of quasimaps from P! to B of degree S [22],
that is, a natural compactification of Q?ZG (B) such that

QB = || @B-» <@,
0<y=<p
where y < fisdefinedas f —y € Y/, Z>oa,’, and

r

PY = [[(®)"/Gm;) wherey =Y miay.

i=1 i=1
Here (P')” records the place where the degree of the genuine map drops in which degree
components (without ordering). By adding extra P! components and (compatible) maps to
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BtoPlin(f:P!' - B) e (,?Zc(ﬁ — y) at the places (and total degrees) recorded by (P!)”
(for each 0 < y < f), we obtain a map of topological spaces

T8 5 — Qa(p).

o
that is an identity on @ (8). Givental’s main lemma asserts that this is a birational morphism
of integral algebraic varieties.

Proposition 7.2 ([5e, §5.2]). For each € XV, we have
Qg (B) = Qgle,1p)
as schemes. In addition, 1 restricts to a birational morphism
Tgwyv  §Bg(w,v) = Qg(w,vtg), w,veW

In particular, we have § Bg(w, v) # @ if and only if w << vig, and its dimension is given
by the distance between w and vtg with respect to <sg.

In other words, the Richardson varieties of Q' are precisely the spaces of quasi-

maps, possibly with additional conditions imposed by the space of stable maps. According to
Buch—Chaput-Mihalcea—Perrin [13], the variety § Bg(w, v) is irreducible and has rational
singularities if it is nonempty. Hence, we find that @g(w, vtg) is irreducible in general.
Proposition 7.2 and properties of the maps 7g ,, ,, are used in our proof of Theorem 7.1.

Proposition 7.2 implies that Qg (w, vtg) is the closure (in @g(B)) of the space
of maps from P! to 8 such that 0, co € P! land in B(w) and B°(v), respectively. By
examining the natural map § Bg (w, v) — Bg(w, v) (obtained by forgetting the map to P!),
we obtain:

Corollary 7.3. Forall w,v € W and 0 # B € XV, we have
dim Bg(w,v) =dim&FBg(w,v) — 1 ifFBg(w,v) # 0,
and Bg(w,v) # @ if and only if § Bg(w, v) # 0. Moreover, we have
Bg(w,v) #0 and dim Bg(w,v) =0

if and only if w << vig are adjacent with respect to <. In such a case, Bg(w, v) is a
point.

Thanks to the dimension axiom in quantum correlators [54, (2.5)], Corollary 7.3
describes which (primary) two-point cohomological Gromov—Witten invariant of 8 with
respect to the Schubert bases is nonzero (we can also tell its exact value). By the divisor
axiom [54, §2.2.4] and the classical Chevalley formula [16], we find the Chevalley formula in
quantum cohomology of B from this [29]. This clarifies the role of @ (w, vtg) in the study
of quantum cohomology of B from our perspective.

Theorem 7.4 ([471). Let B € XV and w,v € W. The variety Qg (w, vtg) has rational sin-
gularities.

1612 S. KATO



Theorem 7.4 is proved by Braverman—Finkelberg [9,1e] for the case w = e, v = wy
by an analysis of Zastava spaces, which does not extend to general w, v. Theorem 7.4 is the
most subtle technical point in [47] and its induction steps become possible by Theorem 7.1.

8. K-THEORETIC PETERSON ISOMORPHISM

We follow the setting of the previous section with k = C. We understand that
the K-groups appearing here contain a suitable class of line bundles supported on sub-
varieties equipped with some group actions, and its scalar is extended from Z to C. Let
Grg = G((z))/ G[z] be the affine Grassmannian of G. The set of I-orbits in Grg is in bijec-
tion with XV, while the set of G[z]-orbits of Grg is in bijection with X¥ C XV formed by
the set of antidominant coroots. For 8 € XV, we set Cc‘;rG (B) C Grg as the corresponding
I-orbit and set Grg () := érG (B) C Grg. We normalize so that Grg () is G-stable when
B € XY, and we have dim Grg (8) = —2|B]| in such a case, where || := >/, B(w).

We define

Kr(Grg) == | ) Kr(Grg()) and Kg(Grg) := (] Kg(Gra(B)).
BeXY BeXY

These spaces are equipped with the convolution product, defined by the diagram
G x Grg £ G(2) x Grg > G((2) x1 Gig ' Grg

as follows: For all cycles a, b € K7 (Grg) = Ki(Grg), we find a left I-equivariant class
(a,b) on G((z)) x1 Grg such that

p*(a®b) =q*(a,b)

and set
a®'b:= (~1)'[R multi(a.b)] € Ki(Grg).
i>0

This yields an associative product structure on K7 (Grg) that contains a zero divisor. If we
restrict ourselves to K (Grg), then the algebra structure given by © becomes commuta-
tive and integrally closed. Using an isomorphism K7 (pt) ®x,; o) K6 (Grg) = K7 (Grg) of
K7 (pt)-modules, we find a multiplication ® of K7(Grg) that extends @’ on K¢ (Grg) as
a K7 (pt)-algebra. This product ® coincides with a K-theoretic analogue of the Pontrjagin
product (by the calculations in [47, §2.2]). In addition, we have

[O6r6 B+1)] = [Ocis®)] © [Oargy] for By e XL,

This yields a multiplicative system in K7(Grg), whose localization is denoted by
K7 (Grg)ioc-
The (localized) small T'-equivariant quantum K-group of B is defined as a vector
space
4K7(B)ioc := K7(B) ® CXY (= K7(8B) ®c CH2(B.Z)).
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We denote the variable corresponding to g € XV as O#. The quantum K -theoretic product
* is a binary operation on ¢K7 (8)oc, defined by Givental [33] and Lee [61], whose value
(a priori) belongs to a completion of K7 (B)jec- It is one of the consequence of our analy-
sis that x preserves g K1 (8B)ioc- This is usually referred to as the finiteness of the quantum
K-theoretic product (for 8) in the literature [1,13], and is one of the most fundamental ques-
tions in the study of ¢ K7 (8). Lam-Li—Mihalcea—Shimozono [58] conjectured that:

Theorem 8.1 ([471). We have an isomorphism of commutative algebras
KT (GrG)loc : qKT (‘B)loc

such that
[O6r6 wp)] © [Ocig ] ™' = [08w)] 0P

Jor B,y € XY such that B(w;) < 0 foreveryl <i <r.

Note that a presentation of the ring K7 (8) for G = SL(n) can be read-off from
Givental-Lee [34], and a presentation of the ring K7(Grg) is obtained in Bezrukavnikov—
Finkelberg—Mirkovi¢ [6]. However, these are not enough to yield Theorem 8.1 (for
G = SL(n)) as the correspondence between Schubert bases is unclear.

We have an action of the nilpotent version J#¢"! of the double affine Hecke alge-
bra (associated to G) on K7(Grg), coming from Kostant—-Kumar [55]. In [47], we defined
the 7-equivariant K-group K7(Qg') of Q' based on the construction of the (7' x GJ')-
equivariant K -group of Q&' in [s2]. The I-action on Q' induces a J#¢"!-action on K7 (Qg).

The object K7(Q{') needs a completion in order to admit an action of the line
bundle twists by (9Qr5t (A) (A € X). It reflects the fact that the right-hand side of Theo-
rem 5.3 (i.e., a global Weyl module) is infinite-dimensional in general, and hence the effect
of ®(9Qr(a;m(w,~) (1 <i < r)requires infinitely many terms to describe.

Our main idea in the proof of Theorem 8.1 is to put Q' into the picture:

Theorem 8.2 ([47, THEOREM c]). We have a commutative diagram

K7(Qg)

L/ X)
KT(GrG)loc qKT(B)loc

that respects the Schubert bases in each object. In addition, the map ¥V is an embedding of

representations of JH™, and the map WV intertwines the tensor product with (9QrGal (—;) in
K71 (QE) and the quantum product of O g(—w;) on gK1(B)1oc for each 1 <i <r.

The completion of K7 (QF') is compatible with the standard completion of K7 (B)
via the map W. Theorem 8.2 implies that the inverse of the operation »© g (—w; ) makes sense
only after the completion of g K7 (8)ioc.

Since the quantum K -theoretic correlators (see [33,61]) satisfy neither the dimension
axiom nor divisor axiom as in the theory of quantum cohomology, the proof of Theorem 8.2
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must be necessarily different from Corollary 7.3. Our construction of the map W is based on
the following two observations:

* an interpretation of the (G,,-equivariant) quantum K -theoretic correlator

X(Qw, wotg), Oaw.wors) V) = X(§8Bp (W, wo), 75 4y 1o O@(w.wors) D)),
(8.1)
valued in C[T][g%!] = C[T x G,], foreachw € W, 8 € XV, 1 € X ;

* an interpretation of its asymptotic behavior

ﬁlifgo 1(Q(w, wotp), Ogw,wory)A)) = x(Q6 (W), Oggw)(A)) € C(g~NIT]
(8.2)
for each w € W, A € X as an element of K7(Qg).

*
B w,wo
ators of line bundles in quantum K-theory [35, PROPOSITION 2.13], and hence we obtain an

Here we can further interpret x(§8g(w, wo), w O@(w,wotg)(4)) using the shift oper-
(abstract) presentation of gK7(8) from (8.1) by the reconstruction theorem [35, PROPOSI-
TION 2.12]. The identity (8.1) is a consequence of Theorem 7.4, and (8.2) is a consequence
of compatible Frobenius splitting properties of @ (w, v)s and Q' in chark > 2 (see the
explanation about the proof of Theorem 7.1).

There is a noncommutative version of Theorem 8.2, meaning that we include G;‘,’t
(the variable “q” above) in each item [49].

9. FUNCTORIALITY OF QUANTUM K-GROUPS

We continue to work in the setting as in the previous section. In [5e], we have pre-
sented analogues of Theorems 5.2, 5.3, and 7.1 for partial flag manifolds of G. Let us find a
standard parabolic subgroup B C P C G and consider Bp := G/ P. Our parabolic version of
the semi-infinite flag manifold QrGa‘ p has its set of k-valued points G(z))/(T - [P, P](2)).
The fiber of the natural map

™1 QF ~ O

is isomorphic to the semi-infinite flag manifold of [L, L], where L C P is the maximal
semisimple subgroup of P that contains 7" (the standard Levi subgroup). We also have the
higher cohomology vanishing of equivariant line bundles on QrGm p (orrather mp (Qg)) as in
Theorem 5.3. These are enough to yield a morphism

K7y (QE) = Krxge(QE p)

obtained by the push-forward by p (up to technical reservations neglected here and below).
By transferring Theorem 7.4 to Richardson varieties of QrGat p» we find a map

Wp 1 gK7(Bp)ioc — K7 (QE. p).
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that intertwines appropriate line bundle twists (and analogous quantum multiplications).

This yields a diagram
£

qKT (B)10c K1(Qg)

|
| l(”P)*
y v

qK7(Bp)ioc — K7(Qqg,P)

where we set Qg,p := 7p(Qg).

The resulting map gKr7(8B) — gK1(Bp) is, in fact, an algebra map [48], and is easy
to describe. Note that we cannot have an analogous map between ordinary K -groups because
of the higher direct images. It turns out this map sends Q"‘iv to 1 for a simple coroot o’
belonging to L, and hence is not compatible with a naive generalization of the corresponding
map in the Peterson isomorphism in homology [59].

We also have a restriction map ¢K7(8) — ¢gK7(8%), where 8L := L/(L N B)
is the flag manifold of a standard Levi subgroup. This map extends to algebra maps [45]

KGXG;;:I(GrG) e d KLXG;;;‘ (GrL) e d KTXG;;:I(GrT)

anticipated in Finkelberg and Tsymbaliuk [23].

10. SOME PERSPECTIVES

Compared with the theory of flag manifolds, many precise results and constructions
for QF' are still missing. The most accessible set of problems might be to spell out ana-
logues of numerous explicit formulas in classical Schubert calculus purely combinatorially
by admitting geometric conclusions from [3,45,47,48,52] partly explained in the previous two

sections. We close this note by briefly discussing some of other problems.

10.1. Categorifications of the coordinate rings

The homogeneous coordinate rings of Schubert varieties of a usual flag manifold,
that are B-stable quotient rings of (2.1), can be seen as the Grothendieck groups of suitable
categories equipped with cluster structures ([68]; see also Section 3.1). Hence, it is natural
to expect categorifications of the homogeneous coordinate rings of Q'(w) and IBg“Ck. See
also [21] and [43] for related problems and partial answers.

10.2. Peterson isomorphism in quantum cohomology
The Peterson isomorphism in quantum cohomology [59,74] is an analogue of Theo-
rem 8.1 for homology. We may apply Corollary 7.3 to [69] (that is an essential ingredient in
rat

[59)) to utilize Q' in its proof (that looks similar to the original strategy in [74]). However,
we do not know an analogue of Theorem 8.2 as we lack a proper definition of H*(Qg).

10.3. Constructible sheaves on semi-infinite flags
In representation-theoretic analysis on B, we sometimes encounter constructible

sheaves that are not N -equivariant. Also, we want some notion of (co)homology of Qg in
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Section 10.2. Therefore, it is desirable to understand constructible sheaves on Q¢ following
[71. The resulting objects should have connection to [3e]. Note that the combinatorics that
should be satisfied by the I-equivariant sheaves (equipped with Frobenius endomorphisms)
have been worked out in detail [62, 65].

10.4. Tensor product decompositions
The tensor product decomposition of rational representations of G is deeply con-
nected with our whole story due to the presentation (2.1). In [57], the geometry of flag
varieties is used to deduce subtle information on the tensor products beyond the classical
rat

Littlewood-Richardson rule. It would be interesting to pursue their analogues in Q' possi-
bly utilizing some modular interpretation [11] and connecting with the perspectives in [5].

10.5. The cotangent bundle of semi-infinite flags

A version of the cotangent bundle of Q' would make it possible to compare our
results with the perspectives in [21, 67,73]. In addition, its quantization should realize some
numerics in Section 10.3. The author hopes to say a bit more on this in St. Petersburg.
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APPLICATIONS
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ABSTRACT

Let G be a finite simple group, y an irreducible complex character, and g an element of G.
It is often desirable to have upper bounds for | x(g)| in terms of y(1) and some measure of
the regularity of g. This paper reviews what is known in this direction and presents typical
applications of such bounds: to proving certain products of conjugacy classes cover G, to
solving word equations over G, and to counting homomorphisms from a Fuchsian group
to G.
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1. INTRODUCTION

Let G be a finite group, y the character of an irreducible complex representation
p of G, and g an element of G. As the eigenvalues of p(g) are roots of unity, the bound
|x(g)| < x(1)istrivial. For central elements g, no stronger upper bound than y (1) is possible.
However, according to Schur, we know that

> x(@x@) =G,

geG

and since y(x) = y(g) for all x in the conjugacy class g@, we obtain the centralizer bound

mmng%:w%@»

Other known upper bounds typically hold only for special classes of groups.
This paper reviews what is known about character bounds when G is a finite simple

group or is closely related to such a group. There is a substantial literature on upper bounds

lx(2)l.
x(1) >
in the case of groups of Lie type. These bounds are typically weakest for characters y of low

for character ratios see Martin Liebeck’s survey [29] for recent results and applications
degree, which points to the desirability of exponential bounds, that is, bounds of the form
lx(2)] < x(1)*®), where the size of a(g) is typically related to the size of the centralizer
of g compared to |G|. The next two sections focus on alternating groups and groups of Lie
type, respectively. The remaining sections give some applications of these results and present
some open problems.

2. SYMMETRIC AND ALTERNATING GROUPS
Motivated by questions in probability theory, a number of people have considered
character ratio bounds for symmetric groups. In this series of groups, unlike groups of Lie

type, character ratios for nontrivial elements and nontrivial characters can be arbitrarily close
n—3
n—1’

a character of degree n — 1. Persi Diaconis and Mehrdad Shahshahani considered the case

to 1. The worst case for G = S, is the ratio achieved when g is a transposition and y is
that g is a transposition and y is any irreducible character, proving in [4] that if both the
first row and the first column of the Young diagram for y = x, have length < n/2, then the
character ratio is less than 1/2, while if, for instance, the first row satisfies A; > n/2, then

28 A =D+ - D —A —2) -2
x() ~ n(n—1) ‘
A similar bound was given by Leopold Flatto, Andrew Odlyzko, and David Wales [8, THEO-

0

REM 5.2].
Yuval Roichman [39] gave a character bound of the form

lx(2)l , supp(g)
=2 <max(A;/n,A/n,c ,
) < max(i/n.2i/n.c)

where supp(g) denotes the number of elements of {1,...,n} not fixed by g, and ¢ < 1
is an absolute constant. This reflects the fact that elements with high support tend to have
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small centralizers. The bound is quite good when y has small degree. However, for large n,
most characters of S, have degree greater than A” for any fixed A4, and for such characters,
Roichman’s bound is weaker than the centralizer bound for most elements g € G.

Philippe Biane [3] gave character ratio bounds for elements of bounded support and
“balanced” characters, namely those where A1//n and A} /+/n are bounded. By the work
of Logan—Shepp [34] and VerSik—Kerov [44], high degree characters are typically balanced.
To be more precise, this is true for characters chosen randomly, weighted by the Plancherel
measure. Amarpreet Rattan and Piotr Sniady [38] generalized Biane’s character bound so it
applies whenever supp(g) is small enough compared to n; if g cannot be expressed as the
product of less than m transpositions, then

x(@l _ (D maX(l,Jrz/n))’r
(O Vn ’

where D depends on the sizes of A1/+/n and A}/ /n. Valentin Féray and Sniady [7] proved
a bound of the form . .
Xl _ (a max(Aq, A}, n))

(1 ~ n
which simultaneously improves on the results of [39] and [38].

Thomas Miiller and Jan-Christoph Schlage-Puchta gave a character bound of expo-
nential type [37, THEOREM B] which is good in a wide variety of situations. They proved that
1)) < x()*®, where

12logn ) -1
log(n/fix(g))
Being exponential, it works well whether y(1) is large or small. The exponent is optimal,

alg) =1— ((1 — (l/logn))_l

up to a multiplicative constant, for elements g consisting of many cycles, for instance, for
involutions. However, it can be greatly improved upon for elements consisting of few cycles.
In particular, «(g) is no smaller when g is an n-cycle than when it is of shape 2"/2,

Sergey Fomin and Nathan Lulov [9] gave a bound specifically for elements g of the
shape 7"/". For fixed r and varying n, it takes the form

2] = 0(n'> x(1)7),

so it is essentially a bound of exponential type. Aner Shalev and I gave an exponential bound
[22] for elements g of arbitrary shape 141292 ... which is roughly comparable in strength to
the Fomin—Lulov bound. Define the sequence e, 3, . .. such that for all k > 1,

k
pertr 2 g,
i=1

Then
x(e)| < y(D)Zi=reili+o)

This result is stronger than the exponential bound of Miiller—Schlage-Puchta for almost all
elements but inferior to it when the number of fixed points of g is very large.
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None of these bounds can compete with the centralizer bound for elements con-
sisting of very few cycles, for instance, for n-cycles, where the centralizer bound gives
|x(g)| < +/n. For such elements, the Murnaghan—Nakayama rule asserts | y(g)| < 1, which
is obviously optimal.

From symmetric group bounds, we easily obtain alternating group bounds of com-
parable strength. Recall that for A # A/, the characters y; and yj restrict to the same
irreducible character of A,. All other irreducible characters of A, arise from partitions sat-
isfying A = A’; for each such A, the restriction of y, to A, decomposes as a sum of two
irreducibles y; and y3. The x} take the character value y;(g)/2 forall g € S, \ C, where
C is a single S,-conjugacy class which decomposes into two A,-conjugacy classes. For
elements of C, a theorem of Frobenius gives character values, which are of the form

1+ /Eny---ng
2 9

where n; = A; —i for 1 <i < k. Character degree estimates, like those in [22], now imply
that | Xil (2)] < xa(1)® whenever n is sufficiently large compared to & > 0.

3. GROUPS OF LIE TYPE

Character estimates for finite simple groups of Lie type go back to the work of David
Gluck [13-15]. Unlike in the case of alternating and symmetric groups, there is a uniform
bound [15] on character ratios for nontrivial characters and nontrivial g, namely

lx(@)l _ 19
x(1) 720
When the cardinality g of the field of definition of G is large, this upper bound can be
improved; Gluck [14] gives an upper bound of the form C/,/q for large g. The g-exponent
+1 g—1

is optimal, since for odd ¢, PSL,(g) has characters of degree qT or 5=, and the value of

+1£V(—1) % q
—_—

If G is a finite simple group of bounded rank, then y(1) < |G| = O(¢?), where D
denotes the dimension associated to the Lie type of G. Therefore, the Gluck bound C/ /g
can be converted to an exponential bound | y(g)| < y(1)%, where & < 1 depends only on the

such a character at a nontrivial unipotent element g is

rank. To achieve exponential bounds in general, therefore, it suffices to limit our attention
to the case that G is a classical group, that is, one of PSL,4;(¢), PSU,+1(q), Pinr (q),
PSp,,(q), or PQar41(q).

We cannot expect that character ratios go to 0 as the order of a classical group goes
to infinity. For instance, let G = PSL, 1 (¢). The permutation representation associated with
the action of G on PF; can be expressed as x + 1, for y irreducible. Let g be the image of a
transvection in SL, 1 (IF;) in G. Then the fixed points of g form a hyperplane in PF/, and
1) =q¢"""+¢">+--- 4 q. Thus,

(g 1
n X8

1 = .
n—>oo y(1) ¢
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Defining the support supp(g) as the smallest codimension of any eigenspace of g for
the natural projective representation of G, the elements g in the above example have constant
support 1 even as the rank of G goes to infinity. Shalev, Pham Huu Tiep, and I proved [24,
THEOREM 4.3.6] that as the support goes to infinity, the character ratio goes to 0:

@I _ g~ Vurp(e)/481
x( ~

This falls well short of a uniform exponential character bound, even for elements
of maximal support. Robert Guralnick, Tiep, and I found uniform exponential bounds for
elements g whose centralizer is small compared to the order of G. For instance, we proved
[16, THEOREM 1.4] that if G is of the form PSL,(¢) or PSU,(¢) and |Cg(g)| < ¢"*/'2, then
lx(g)| < x(1)¥°. More generally, but less explicitly, we proved [17, THEOREM 1.3] that for all
& > 0, there exists § > 0 such that |Cg(g)| < |G|® implies |x(g)| < x(1)¢. However, the
method of these papers applies only to elements with small centralizer, for instance, it does
not give any bound at all for involutions.

This defect was remedied in the sequel [28], which proved that for all positive § < 1
there exists & < 1 such that |Cg (g)| < |G |® implies | y(g)| < x(1)°. More precisely, | y(g)| <

1(1)%®) where
log|Cg (gl

log|G|

and ¢ > 0 is an absolute constant, which can be made explicit (but is, unfortunately, extremely

afg)=1—c+c

small). This theorem holds more generally for quasisimple finite groups of Lie type.

For many elements g in a classical group of rank r, much better exponents are avail-
able, thanks to the work of Roman Bezrukavnikov, Liebeck, Shalev, and Tiep [2]. For g odd,
if the centralizer of g is a proper split Levi subgroup, then |x(g)| < f(r)x(1)*®, where
a(g) is an explicitly computable rational number which is known to be optimal in many
cases. This idea was further developed by Jay Taylor and Tiep, who proved [43], among
other things, that for every nontrivial element g € PSL,,(¢),

|2(2)] < h(r)x(1)r=.

All of these estimates are poor for elements with small centralizers, such as regular
elements. A general result, due to Shelly Garion, Alexander Lubotzky, and myself, which
sometimes gives reasonably good bounds for regular elements, is the following [1e, THE-
oReM 3]. Let G be a finite group, not necessarily simple, and g an element of G whose
centralizer A is abelian. Suppose A1, ..., A, are subgroups of A not containing g such
that the centralizer of every element of A \ | J; 4; is A. Then, for every irreducible character
of G,

[x(®)] = 4/V3)"[Ne(4) : 4].

For example, this gives an upper bound of 2(n — 1)2/+/3 for | x(¢)| when G = PSL,,(¢) and
g is the image of an element with irreducible characteristic polynomial. It would be nice to
have optimal upper bounds for | y(g)| for general regular semisimple elements g.
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4. PRODUCTS OF CONJUGACY CLASSES

If Cq,...,C, are conjugacy classes of a finite group G, then the number N of n-
tuples (g1,...,8n) € C1 X --+ x Cy, satisfying g1g2 --- g, = 1 is given by the Frobenius
formula

|C1] -+ [Cal x X(C1) -+ 4(Cn)
N = ,
G 2 e

where y ranges over all irreducible characters of G. In conjunction with upper bounds for

X

the | y(C;)|, this can sometimes be used to prove that N # 0, as the contribution from y =1
often dominates the sum. Exponential bounds for the x(C;) are especially convenient, since
results of Liebeck and Shalev [32] give a great deal of information about when we can expect

> o~ <1

x#1

A well-known conjecture attributed to Thompson asserts that for every finite simple
group G, there exists a conjugacy class C such that C? = G. Thanks to work of Erich Ellers
and Nikolai Gordeev [6], we know that this is true except for a list of possible counter-
examples, all finite simple groups of Lie type with ¢ < 8. Tiep and I used our uniform
exponential bounds to show that several of the infinite families on this list, in particular,
the symplectic groups for all ¢ > 2, can be eliminated in sufficiently high rank [28, THEO-
REM 7.7]. It would be interesting if these results could be extended to the remaining families
on the list, giving an asymptotic version of Thompson’s conjecture.

Andrew Gleason and Cheng-hao Xu [18,19] proved Thompson’s conjecture for alter-
nating groups, using the conjugacy class of an n-cycle if n is odd or a permutation of shape
21(n — 2)! if n is even. In [22, THEOREM 1.13], Shalev and I proved that in the limit n — oo
the probability that a randomly chosen g € A, belongs to a conjugacy class with C? = A,
rapidly approaches 1.

The analogous claim cannot be true for all finite simple groups since C? = G
implies that C = C~1, and for, e.g., PSL3(g) as ¢ — oo, the probability that a random
element is real goes to 0. However, there are several variants of this question which do not
have an obvious counterexample. As the order of G tends to infinity, does the probability
that a random real element belongs to a conjugacy class with C2 = G approach 1? Does
the probability that a random element g belongs to a conjugacy class C with C2 U {1} = G
approach 1? Also, as the order of G tends to infinity, does the probability that a random
element belongs to a conjugacy class with CC~! = G approach 1?

The weaker claim that every element g € G lies in CC ™! for some conjugacy class
(depending, perhaps, on g) is equivalent to the statement that every element of G is a com-
mutator. This was was an old conjecture of Ore and is now a theorem of Liebeck, Eamonn
O’Brien, Shalev, and Tiep [3e].

One can also ask about S2 where S is an arbitrary conjugation-invariant subset
of G. On naive probabilistic grounds, it might seem plausible that given & > 0 fixed, for G

sufficiently large, every normal subset of G with at least |G| elements satisfies S? = G.
However, a moment’s reflection shows that, unless & > %, there is no reason to expect 1 € S 2,
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Is it true, for G sufficiently large, that S? U {1} = G? For alternating groups and for groups

of Lie type in bounded rank, the answer is affirmative [26], but we do not know in general.
In a different direction, given a conjugacy class C, how large must n be so that

the nth power C” is all of G? More generally, given conjugacy classes Cy, ..., C, with

sufficiently strong character bounds, the Frobenius formula can be used to show that each

[C1||Cal
Gl

ways. For instance, it follows from the exponential character bounds given above that there

element of G is represented as a product g; - - - g5, with g; € C;, in approximately

exists an absolute constant k& such that if G is a finite simple group of Lie type and Cy,. .., Cy,
are conjugacy classes in G satisfying |Cy|---|C,| > |G|¥, then for each g € G,
Cyl---|C
|{(g1,...,g,,) €eCyx--xCy| g1 -8n= g}| = (l +0(1))%
Via Lang—Weil estimates, this further implies thatif C,, ..., C, are conjugacy classes of a

simple algebraic group G, and
dimC; +---+dimC, > kdimG,

then the product morphism of varieties C; x --- x C, — G has the property that every fiber
is of dimensiondimC; + -+ +dimC, —dimG.

In the special case that C; = --- = C,, = C, the question of the distribution of
products g1 -+ gn, g € C, can be expressed in terms of the mixing time of the random walk
on the Cayley graph of (G, C). A consequence of the exponential character bounds [28] is
that for groups of Lie type, the mixing time of such a random walk is O(log |G|/ log |C]).
This is the same order of growth as the diameter of the Cayley graph, thus settling conjectures
of Lubotzky [35, P. 179] and Shalev [42, CONJECTURE 4.3].

The situation is different for alternating groups G = A,. For instance, if C is the
class of 3-cycles and n > 6, then log |G|/ log |C| < n, and C"/2] = G [5, THEOREM 9.1].
However, for any fixed k, the probability that the product of kn random 3-cycles g; fixes 1 is

k as n — oco. Thus

at least the probability that each individual g; fixes 1, which goes to e 3
the expected number of fixed points of g; - - - g, grows linearly with n. It would be interesting

to know, for general C C A,, what the mixing time is.

5. WARING’S PROBLEM

Waring’s problem for finite simple groups originally meant the following question.
Does there exist a function f: N — N such that for all positive integers n and all sufficiently
large finite simple groups G (in terms of n), every element of G is a product of f(n) nth
powers? Positive solutions were given by Martinez—Zelmanov [36] and Saxl-Wilson [4e].

This can be extended as follows. Let w denote a nontrivial element in any free group
F,;. For every finite simple group G, w determines a function G¢ — G. We replace the nth
powers with word values, that is, elements of G in the image of w. Liebeck and Shalev
proved [31] that for G sufficiently large (in terms of w), every element of G can be written as
a product of a bounded number of word values (where the bound may depend on w, just as
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in the classical version of Waring’s problem, the minimum number of the nth powers needed
to represent a given integer may depend on n).

It was therefore, perhaps, surprising when Shalev proved [41] that the Waring
number for finite simple groups is uniform in w and is, in fact, at most three. This has
now been improved to the optimal bound, two [23,24]. More generally, for any two nontrivial
words w; and ws, if G is a sufficiently large finite simple group, every element of G is a
product of their word values. In fact, it is even possible [27] to choose subsets S and S, of
the sets of word values of w; and w, such that $15, = G and |S;| = O(|G|*/?1og"/?|G|).
The set of values of any word is a union of conjugacy classes, and the basic strategy of the
proof is to try to find conjugacy classes C7 and C, contained in the word values of w; and
ws, respectively, such that C;C, = G and very few elements of G have significantly fewer
representations as such products than one would expect. Then a random choice of subsets
S; C C; of suitable size can almost always be slightly modified to work.

In general, the probability distribution on the word values of w obtained by eval-
uation at a uniformly distributed random element of G4 is far from uniform. For instance,
for g € A3, uniformly distributed, the probability that g3 = 1 is at least |As,|~! times the
number of elements of shape 3", i.e.,

Bn—1)0Bn—-2)-Bn—-4)Bn—-5)---(2)(1) > 3n — 1)!% - |A3n|%_i

for n sufficiently large. Thus, setting w; = w, = x3, the probability that the product of cubes
of two randomly chosen elements is 1 is at least |As,|~2/372/3" which, for large n, makes
the distribution far from uniform, at least in the L*° sense.

Using exponential character estimates, Shalev, Tiep, and I proved [25, THEOREM 4]
that for any word w, there exists k such that as |G| — oo, the L°°-deviation from uniformity
in the product of k independent randomly generated values of w goes to 0. The dependence
of k on w is unavoidable, as the above example suggests. On the other hand, the L!-deviation
from uniformity goes to 0 in the product of two independent randomly generated values of
w, for any nontrivial word w [25, THEOREM 1]. I do not know what to expect for L?-deviation
forl < p < o0.

6. FUCHSIAN GROUPS
For g,m >0, letdy,...,dy, > 2 be integers. For

dy d
F=(xl,...,xm,yl,...,yg,zl,...,zg | X1t xom,

X1 Xm[y1z1] - g Ze)),
define the Euler characteristic
m
e=2-2¢—> (1-d").
i=1
Assume e < 0, so I is an oriented, cocompact Fuchsian group. Let G be a finite group, and
let Cq, ..., Cy denote conjugacy classes in G of elements whose orders divide dy, ..., dp,
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respectively. The Frobenius formula can be regarded as the g = 0 case of a more general
formula for the number of homomorphisms I' — G mapping x; to an element of C; for all 7,

_ x(C1) - x(Cp)
Homyc,y (T, G)| = |G|*7|Cy] -+ |Cnil ZW
X

In favorable situations, one can prove that the y = 1 term dominates all the others
combined, in which case one has a good estimate for the number of such homomorphisms.
Using this, Liebeck and Shalev proved [32, THEOREM 1.5] that if g > 2, and G is a simple of
Lie type group of rank r, then

[Hom(T", G)| = |G| ~¢ T/,

By the same method, employing the character bounds of [28], one obtains the same estimate
whenever e is less than some absolute constant, regardless of the value of g. It would be
interesting to know whether this is true in general for e < 0. Some evidence in favor of this
idea is given in [21,33], but for small g the problem is open.

An interesting geometric consequence of the method of Liebeck—Shalev is that if
G is a simple algebraic group of rank r and g > 2, the morphism G?¢ — G given by the
word [y1,z1] -+ [Vg. Z¢] has all fibers of the same dimension, (2g — 1) dim G. This has been
refined by Avraham Aizenbud and Nir Avni, who proved [1] that for g > 373, the fibers of this
morphism are reduced and have rational singularities. It would be interesting to extend this to
the case of general Fuchsian groups. For instance, does there exist an absolute constant k such
that for all simple algebraic groups G and conjugacy classes C,, ..., C,, withdimC,; +
-+ +dimC,, > kdim G, all fibers of the multiplication morphism C; x---x C, — G are
reduced with rational singularities The ideas of Glazer—Hendel [11,12] may be applicable.

For g = 1, we can no longer hope for equidimensional fibers, since the generic fiber
dimension is dim G, while the fiber over the identity element has dimension r + dim G.
However, Zhipeng Lu and I proved [2e] that for G = SL,, all fibers over noncentral elements
have dimension G. It would be interesting to know whether this is true for general simple
algebraic groups G.
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ABSTRACT

Small, finite entities are easier and simpler to manipulate than gigantic, infinite ones. Con-

sequently, huge chunks of mathematics are devoted to methods reducing the study of big,

cumbersome objects to an analysis of their finite building blocks. The manifestation of this

general pattern, in the study of derived and triangulated categories, dates back almost to

the beginnings of the subject—more precisely to articles by Illusie in SGA6, way back in

the early 1970s.

What is new, at least new in the world of derived and triangulated categories, is that one

gets extra mileage from analyzing more carefully and quantifying more precisely just how

efficiently one can estimate infinite objects by finite ones. This leads one to the study of

metrics on triangulated categories, and of how accurately an object can be approximated

by finite objects of bounded size.
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1. INTRODUCTION

In every branch of mathematics, we try to solve complicated problems by reducing
to simpler ones, and from antiquity people have used finite approximations to study infinite
objects. Naturally, whenever a new field comes into being, one of the first developments is
to try to understand what should be the right notion of finiteness in the discipline. Derived
and triangulated categories were introduced by Verdier in his PhD thesis in the mid-1960s
(although the published version only appeared much later in [38]). Not surprisingly, the idea
of studying the finite objects in these categories followed suit soon after, see Illusie [13-15].

Right from the start there was a pervasive discomfort with derived and triangulated
categories—the intuition that had been built up, in dealing with concrete categories, mostly
fails for triangulated categories. In case the reader is wondering: in the previous sentence the
word “concrete” has a precise, technical meaning, and it is an old theorem of Freyd [1e, 11]
that triangulated categories often are not concrete. Further testimony, to the strangeness of
derived and triangulated categories, is that it took two decades before the intuitive notion of
finiteness, which dates back to Illusie’s articles [13-15], was given its correct formal defini-
tion. The following may be found in [23, DEFINITION 1.1].

Definition 1.1. Let.7 be a triangulated category with coproducts. An object C € 7 is called
compact if Hom(C, —) commutes with coproducts. The full subcategory of all compact
objects will be denoted by .77¢.

Remark 1.2. T have often been asked where the name “compact” came from. In the preprint

version of [23], these objects went by a different name, but the (anonymous) referee did not

like it. I was given a choice: I was allowed to baptize them either “compact” or “small.”
Who was I to argue with a referee?

Once one has a good working definition of what the finite objects ought to be, the
next step is to give the right criterion which guarantees that the category has “enough” of
them. For triangulated categories, the right definition did not come until [24, DEFINITION 1.7].

Definition 1.3. Let .7 be a triangulated category with coproducts. The category .7 is called
compactly generated if every nonzero object X € .7 admits a nonzero map C — X, with
C € J acompact object.

As the reader may have guessed from the name, compactly generated triangulated
categories are those in which it is often possible to reduce general problems to questions
about compact objects—which tend to be easier.

All of the above nowadays counts as “classical,” meaning that it is two or more
decades old and there is already a substantial and diverse literature exploiting the ideas.
This article explores the recent developments that arose from trying to understand how effi-
ciently one can approximate arbitrary objects by compact ones. We first survey the results
obtained to date. This review is on the skimpy side, partly because there already are other,
more expansive published accounts in the literature, but mostly because we want to leave
ourselves space to suggest possible directions for future research. Thus the article can be
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thought of as having two components: a bare-bone review of what has been achieved to date,
occupying Sections 2 to 6, followed by Section 7 which comprises suggestions of avenues
that might merit further development.

Our review presents just enough detail so that the open questions, making up Sec-
tion 7, can be formulated clearly and comprehensibly, and so that the significance and poten-
tial applications of the open questions can be illuminated. This has the unfortunate side effect
that we give short shrift to the many deep, substantial contributions, made by numerous math-
ematicians, which preceded and inspired the work presented here. The author apologizes in
advance for this omission, which is the inescapable corollary of page limits. The reader is
referred to the other surveys of the subject, where more care is taken to attribute the ideas
correctly to their originators, and give credit where credit is due.

We permit ourselves to gloss over difficult technicalities, nonchalantly skating by
nuances and subtleties, with only an occasional passing reference to the other surveys or to
the research papers for more detail.

The reader wishing to begin with examples and applications, to keep in mind
through the forthcoming abstraction, is encouraged to first look at the Introduction to [31].

2. APPROXIMABLE TRIANGULATED CATEGORIES—THE FORMAL

DEFINITION AS A VARIANT ON FOURIER SERIES

It is now time to start our review, offering a glimpse of the recent progress that was
made by trying to measure how “complicated” an object is, in other words, how far it is from
being compact. What follows is sufficiently new for there to be much room for improvement:
the future will undoubtedly see cleaner, more elegant, and more general formulations. What
is presented here is the current crude state of this emerging field.

Discussion 2.1. This section is devoted to defining approximable triangulated categories,
and the definition is technical and at first sight could appear artificial, maybe even forbidding.
It might help therefore to motivate it with an analogy.

Let S! be the circle, and let M(S') be the set of all complex-valued, Lebesgue-
measurable functions on S!. As usual we view S! = R/Z as the quotient of its universal
cover R by the fundamental group Z; this identifies functions on S! with periodic functions
on R with period 1. In particular the function g(x) = e?** belongs to M(S'). And, for
each £ € Z, we have that g(x)* = e2"** also belongs to M(S'). Given a norm on the
space M(S!), for example, the L?-norm, we can try to approximate arbitrary f € M(S')
by Laurent polynomials in g, that is, look for complex numbers {A, € C | —n < £ < n} such
that

f =Y Aeg)t

{=—n

<é&

— H f(x) _ Z AeEZﬂifx
D

L=—n

p
with &€ > 0 small. This leads us to the familiar territory of Fourier series.
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Now imagine trying to do the same, but replacing M (S!) by a triangulated category.

Given a triangulated category .7, which we assume to have coproducts, we would like to

pretend to do Fourier analysis on it. We would need to choose:

6]

2

3)

Some analog of the function g(x) = e?™*. Our replacement for this will be
to choose a compact generator G € 7. Recall that a compact generator is a
compact object G € .7 such that every nonzero object X € .7 admits a nonzero
map G[i] - X forsome i € Z.

We need to choose something like a metric, the analog of the L”-norm on
M(S1). For us this will be done by picking a t-structure (7<%, 72°% on 7.
The heuristic is that we will view a morphism E — F in .7 as “short” if, in
the triangle E — F — D, the object D belongs to .7 =" for large n. We will
come back to this in Discussion 6.10.

We need to have an analog of the construction that passes, from the function
g(x) = e?™* and the integer n > 0, to the vector space of trigonometric Laurent
polynomials Y j__, A,e27tx.

As it happens our solution to (3) is technical. We need a recipe that begins with the object

G and the integer n > 0, and proceeds to cook up a collection of more objects. We ask the

reader to accept it as a black box, with only a sketchy explanation just before Remark 2.3.

Black Box 2.2. Let .7 be a triangulated category and let G € .7 be an object. Let n > 0 be
an integer. We will have occasion to refer to the following four full subcategories of .7

D

2

3)

The subcategory (G), C .7 is defined unconditionally, and if .7 has coprod-

ucts one can also define the larger subcategory (G),. Both of these subcate-

gories are classical, the reader can find the subcategory (G), in Bondal and

n
Van den Bergh [6, THE DISCUSSION BETWEEN LEMMA 2.2.2 AND DEFINITION 2.2.3], and

the subcategory (G),, in [6, THE DISCUSSION BETWEEN DEFINITION 2.2.3 AND PROPO-
SITION 2.2.4].

If the category 7 has coproducts, we will also have occasion to consider the
full subcategory @(_m’n]. Once again this category is classical (although the
name is not). The reader can find it in Alonso, Jeremias, and Souto [1], where it

would go by the name “the cocomplete pre-aisle generated by G[—n]”.

Once again assume that .7 has coproducts. Then we will also look at the full
subcategory @,[1_”’”]. This construction is relatively new.

Below we give a vague description of what is going on in these constructions; but when it

comes to the technicalities, we ask the reader to either accept these as black boxes, or refer

to [29, REMINDER @.8 (vII), (xI) AND (x11)] for detail. We mention that there is a slight clash of

notation in the literature: what we call (G),, in (1), following Bondal and Van den Bergh,
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goes by a different name in [29, REMINDER @.8 (x1)]. The name it goes by there is the case
A = —oo and B = oo of the more general subcategory @n i

Now for the vague explanation of what goes on in (1), (2), and (3) above: in a trian-
gulated category .7, there are not many ways to build new objects out of old ones. One can
shift objects, form direct summands, form finite direct sums (or infinite ones if coproducts
exist), and one can form extensions. In the categories (G),, and (G) ), of (1), there is a bound
on the number of allowed extensions, and the difference between the two is whether infinite
coproducts are allowed. In the category @(_Oo’n of (2), the bound is on the permitted shifts.
And in the category @L_n’n] of (3), both the shifts allowed and the number of extensions
permitted are restricted.

Remark 2.3. The reader should note that an example would not be illuminating, the cate-
gories (G),,. (G)
ple, let R be an associative ring, and let 7 = D(R) be the unbounded derived category of

o @(_ "7, and @L_n’n] are not usually overly computable. For exam-

complexes of left R-modules. The object R € .7, that is, the complex which is R in degree
zero and vanishes in all other degrees, is a compact generator for 7 = D(R).
(R, (R) ", and (R}

n’ n

But if we wonder what the categories (R),,, (=l might
turn out to be, only the category W(_Oo’n] is straightforward: it is the category of all cochain
complexes whose cohomology vanishes in degrees > n. The three categories (R),,, Wn,

and WE,_"’"] are mysterious in general. In fact, the computation of (G),, is the subject of

n
conjectures that have attracted much interest. We will say a tiny bit about theorems in this
direction in Section 4, and will mention one of the active, open conjectures in the discussion

between Definition 7.7 and Problem 7.8.

Remark 2.4. In the definition of approximable triangulated categories, which is about to
come, the category @Ejn’n] will play the role of the replacement for the vector space of
trigonometric Laurent polynomials of degree < n, which came up in the desiderata of Dis-
cussion 2.1(3). The older categories (G),,, (G),,, and @(_w’n] will be needed later in the
article.

Remark 2.5. Let us return to the heuristics of Discussion 2.1. Assume we have chosen
the t-structure (.7=°, .729) as in Discussion 2.1(2), which we think of as our replacement
for the L?-norm on M(S'). And we have also chosen a compact generator G € .7 as in
Discussion 2.1(1), which we think of as the analog of the exponential function g(x) = e?%i*.
We have declared that the subcategories @L_n’n] will be our replacement for the vector
space of trigonometric Laurent polynomials of degree < n, as in Discussion 2.1(3). It is now
time to start approximating functions by trigonometric Laurent polynomials.

Let us therefore assume we start with some object F € .7, and find a good approx-
imation of it by the object E € @E; m’m], meaning that we find a morphism £ — F such
that, in the triangle E — F — D, the object D belongs to .7 ="M for some suitably large M.

Now we can try to iterate, and find a good approximation for D. Thus we can look for
amorphism E” — D, with E” @[ e , and such that in the triangle E” — D — D’ the

n
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object D’ belongs to 7=~V with N > M even more enormous than M. Can we combine
these to improve our initial approximation of F'?

To do this, let us build up the octahedron on the composable morphisms F —
D — D’. We end up with a diagram where the rows and columns are triangles

EéE/éE//

|

E——F——=D

L

D/ D/
and in particular the triangle E’ — F — D’ gives that E’ is an even better approximation

of F than E was. We are therefore interested in knowing if the triangle E — E’ — E”,
coupled with the fact that E € @En_ o) and E” € @[_

n.nl . . .
M , gives any information about

where E’ might lie with respect to the construction of Black Box 2.2(3). Hence it is useful
to know the following.

Facts 2.6. Let .7 be a triangulated category with coproducts. The construction of Black
Box 2.2(3) satisfies

(1) If E is an object of @L_n’n], then the shifts E[1] and E[—1] both belong to
——[-n—1,n+1]
(Gl

oy

(2) Givenanexacttriangle E — E' — E”,with E € (G),;m’m] and E” € @[_n’n]
——[—-m—n,m+n]

it follows that E’ € (G)

n El
m+n
Combining Remark 2.5 with Facts 2.6 allows us to improve approximations through

iteration. Hence part (2) of the definition below becomes natural, it iterates to provide arbi-
trarily good approximations.

Definition 2.7. Let 7 be a triangulated category with coproducts. It is approximable if there
exist a t-structure (.7 =%, .729), a compact generator G € .7, and an integer n > 0 such that

(1) G belongs to 7 =" and Hom(G, ="") = 0;

(2) Every object X € 7= admits an exact triangle E — X — D with E €
(G)L_n’n] and with D € 7=71,

Remark 2.8. While part (2) of Definition 2.7 comes motivated by the analogy with Fourier
analysis, part (1) of the definition seems random. It requires the t-structure, which is our
replacement for the L?-norm, to be compatible with the compact generator, which is the
analog of g(x) = e?™*. As the reader will see in Proposition 5.5, this has the effect of
uniquely specifying the t-structure (up to equivalence). So maybe a better parallel would be
to fix our norm to be a particularly nice one, for example, the L2-norm on M(S?!).

Let me repeat myself: as with all new mathematics, Definition 2.7 should be viewed
as provisional. In the remainder of this survey, we will discuss the applications as they now
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stand, to highlight the power of the methods. But I would not be surprised in the slightest if
future applications turn out to require modifications, and/or generalizations, of the definitions
and of the theorems that have worked so far.

3. EXAMPLES OF APPROXIMABLE TRIANGULATED CATEGORIES

In Section 1 we gave the definition of approximable triangulated categories. The def-
inition combines old, classical ingredients (t-structures and compact generators) with a new
construction, the category @L_n’n] of Black Box 2.2(3). The first thing to show is that the
theory is nonempty: we need to produce examples, categories people care about which sat-
isfy the definition of approximability. The current section is devoted to the known examples
of approximable triangulated categories. We repeat what we have said before: the subject is

in its infancy, there could well be many more examples out there.

Example 3.1. Let .7 be a triangulated category with coproducts. If G €  is a compact
generator such that Hom(G, G[i]) = 0 for all i > 0, then the category .7 is approximable.

This example turns out to be easy, the reader is referred to [29, EXAMPLE 3.3] for the
(short) proof. Special cases include

(1) 7 = D(R-Mod), where R is a dga with H'(R) = 0 fori > 0;
(2) The homotopy category of spectra.

Example 3.2. If X is a quasicompact, separated scheme, then the category Dgc(X) is
approximable. We remind the reader of the traditional notation being used here: the cat-
egory D(X) is the unbounded derived category of complexes of sheaves of & -modules,
and the full subcategory Dyc(X) C D(X) has for objects the complexes with quasicoherent
cohomology.

The proof of the approximability of Dgc(X) is not trivial. The category has a stan-
dard t-structure, that part is easy. The existence of a compact generator G needs proof, it may
be found in Bondal and Van den Bergh [6, THEOREM 3.1.1(11)]. Their proof is not constructive,
it is only an existence proof, but it does give enough information to deduce that part (1) of
Definition 2.7 is satisfied by every compact generator (indeed, it is satisfied by every compact
object). See [6, THEOREM 3.1.1(1)]. But it is a challenge to show that we may choose a compact
generator G and an integer n > 0 in such a way that Definition 2.7(2) is satisfied.

If we further assume that X is of finite type over a noetherian ring R, then the
(relatively intricate) proof of the approximability of Dgc(X) occupies [33, SECTIONS 4 AND 5].
The little trick, that extends the result to all quasicompact and separated X, was not observed
until later: it appears in [29, LEMMA 3.5].

Example 3.3. Itis a theorem that, under mild hypotheses, the recollement of any two approx-
imable triangulated categories is approximable. To state the “mild hypotheses” precisely:
suppose we are given a recollement of triangulated categories

X 5 g
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with #Z and .7 approximable. Assume further that the category .7 is compactly generated,
and any compact object H € .¥ has the property that Hom(H, H[i]) = 0 for i > 0. Then
the category .¥ is also approximable.

The reader can find the proof in [7, THEOREM 4.1], it is the main result in the paper. The
bulk of the article is devoted to developing the machinery necessary to prove the theorem—
hence it is worth noting that this machinery has since demonstrated usefulness in other
contexts, see the subsequent articles [27,28].

There is a beautiful theory of noncommutative schemes, and a rich literature study-
ing them. And many of the interesting examples of such schemes are obtained as recollements
of ordinary schemes, or of admissible pieces of them. Thus the theorem that recollements of
approximable triangulated categories are approximable gives a wealth of new examples of
approximable triangulated categories.

Since this ICM is being held in St. Petersburg, it would be remiss not to mention that
the theory of noncommutative algebraic geometry, in the sense of the previous paragraph,
is a subject to which Russian mathematicians have contributed a vast amount. The seminal
work of Bondal, Kontsevich, Kuznetsov, Lunts, and Orlov immediately springs to mind. For
a beautiful introduction to the field, the reader might wish to look at the early sections of
Orlov [34]. The later sections prove an amazing new theorem, but the early ones give a lovely
survey of the background. In fact, the theory sketched in this survey was born when I was
trying to read and understand Orlov’s beautiful article.

4. APPLICATIONS: STRONG GENERATION
We begin by reminding the reader of a classical definition, going back to Bondal
and Van den Bergh [6].

Definition 4.1. Let .7 be triangulated category. An object G € .7 is called a strong gen-
erator if there exists an integer £ > 0 with .7 = (G),, where the notation is as in Black
Box 2.2(1). The category .7 is called regular or strongly generated if it contains a strong
generator.

The first application of approximability is the proof of the following two theorems.

Theorem 4.2. Let X be a quasicompact, separated scheme. The derived category of perfect
complexes on X, denoted here by DP*™(X), is regular if and only if X has a cover by open
subsets Spec(R;) C X, with each R; of finite global dimension.

Remark 4.3. If X is noetherian and separated, then Theorem 4.2 specializes to saying that
DPf(X) is regular if and only if X is regular and finite-dimensional. Hence the terminology.

Theorem 4.4. Let X be a noetherian, separated, finite-dimensional, quasiexcellent scheme.
Then the category D?(Coh(X)), the bounded derived category of coherent sheaves on X, is
always regular.
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Remark 4.5. The reader is referred to [33] and to Aoki [4] for the proofs of Theorems 4.2
and 4.4. More precisely, for Theorem 4.2 see [33, THEOREM 0.5]. About Theorem 4.4: if we add
the assumption that every closed subvariety of X admits a regular alteration then the result
may be found in [33, THEOREM e.15], but Aoki [4] found a lovely argument that allowed him to
extend the statement to all quasiexcellent X .

There is a rich literature on strong generation, with beautiful papers by many
authors. In the introduction to [33], as well as in [26] and [31, SECTION 7], the reader can
find an extensive discussion of (some of) this fascinating work and of the way Theorems 4.2
and 4.4 compare to the older literature. For a survey taking an entirely different tack, see
Minami [22], which places in historical perspective a couple of the key steps in the proofs
that [33] gives for Theorems 4.2 and 4.4.

Since all of this is now well documented in the published literature, let us focus the
remainder of the current survey on the other applications of approximability. Those are all
still in preprint form, see [27-29], although there are (published) surveys in [31, SECTIONS 8
AND 9] and in [3e]. Those surveys are fuller and more complete than the sketchy one we are
about to embark on. As we present the material, we will feel free to refer the reader to the
more extensive surveys whenever we deem it appropriate.

5. THE FREEDOM IN THE CHOICE OF COMPACT GENERATOR AND

T-STRUCTURE

Definition 2.7 tells us that a triangulated category .7 with coproducts is approx-
imable if there exist, in .7, a compact generator G and a t-structure (.7 =9, .729) satisfying
some properties. The time has come to explore just how free we are in the choice of the
compact generator and of the t-structure. To address this question we begin by formulating:

Definition 5.1. Let .7 be a triangulated category. Then two t-structures (9150, %ZO) and
(9250, 9220) are declared equivalent if there exists an integer n > 0 such that

zs—n C %SO C 2511.

Discussion 5.2. Let .7 be a triangulated category with coproducts. If G € 7 is a compact
object and @(_w’o] is as in Black Box 2.2(2), then Alonso, Jeremias, and Souto [1, THEO-
REM A.1], building on the work of Keller and Vossieck [16], teaches us that there is a unique
t-structure (.7 =%, .729%) with 70 = @(_Oo’n]. We will call this the #-structure generated
by G, and denote it (Z=°, (7020).

In Black Box 2.2(2) we asked the reader to accept, as a black box, the construction
passing from an object G € .7 to the subcategory @(_OO’O]. If G is compact, then [1, THEO-
REM A.1] allows us to express this as ﬂGfO for a unique t-structure. We ask the reader to accept

on faith that:

Lemma 5.3. If G and H are two compact generators for the triangulated category 7, then
the two t-structures (=2, fGZO) and (31_150, 91_120) are equivalent as in Definition 5.2.
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As it happens, the proof of Lemma 5.3 is easy, the interested reader can find it in
[29, REMARK 0.15]. And Lemma 5.3 leads us to:

Definition 5.4. Let 7 be a triangulated category in which there exists a compact generator.
We define the preferred equivalence class of t-structures as follows: a t-structure belongs to
the preferred equivalence class if it is equivalent to ( szoy 350) for some compact generator
G € 7, and by Lemma 5.3 it is equivalent to (ﬂHSO, szo) for every compact generator H .

The following is also not too hard, and may be found in [29, PROPOSITIONS 2.4 AND 2.6].

Proposition 5.5. Let .7 be an approximable triangulated category. Then for any t-structure
(720, 729 in the preferred equivalence class, and for any compact generator H € 7,
there exists an integer n > 0 (which may depend on H and on the t-structure), satisfying

(1) H belongs to =" and Hom(H, =7") = 0;

(2) Every object X € 7=° admits an exact triangle E — X — D with E €
(H)-"" and with D € 7=,

n

Moreover, if H is a compact generator, (7=°, 72%) is a t-structure, and there exists an
integer n > 0 satisfying (1) and (2) above, then the t-structure (7 =°, 7 =°) must belong to

the preferred equivalence class.

Remark 5.6. Strangely enough, the value of Proposition 5.5 can be that it allows us to find
an explicit t-structure in the preferred equivalence class.

Consider the case where X is a quasicompact, separated scheme. By Bondal and Van
den Bergh [6, THEOREM 3.1.1(11)], we know that the category Dqc (X ) has a compact generator,
but in Example 3.2 we mentioned that the existence proof is not overly constructive, it does
not give us a handle on any explicit compact generator. Let G be some compact generator.
From Alonso, Jeremias, and Souto [1, THEOREM A.1], we know that the subcategory @(_m’o]
of Black Box 2.2(2) is equal to ﬂGSO for a unique t-structure (9(;50, ﬁGZO) in the preferred
equivalence class. But this does not leave us a whole lot wiser—the compact generator G is
not explicit, hence neither is the t-structure.

However, the combination of [33, THEOREM 5.8] and [29, LEMMA 3.5] tells us that the
category Dgc(X) is approximable, and it so happens that the t-structure used in the proof,
that is, the t-structure for which a compact generator H and an integer n > 0 satisfying (1)
and (2) of Proposition 5.5 are shown to exist, happens to be the standard t-structure. From
Proposition 5.5, we now deduce that the standard t-structure is in the preferred equivalence
class.

6. STRUCTURE THEOREMS IN APPROXIMABLE TRIANGULATED

CATEGORIES

An approximable triangulated category .7 must have a compact generator G, and
Definition 5.4 constructed for us a preferred equivalence class of t-structures—namely all
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those equivalent to (,7(;50, 950). Recall that, for any t-structure (.7 =9, 729), it is custom-
ary to define

g =Jg=. gt=J7*¥". =7 ngt
n=1 n=1

It is an easy exercise to show, directly from Definition 5.1, that equivalent t-structures give
rise to identical .7 ~, .7+, and .7?. Therefore triangulated categories with a single compact
generator, and in particular approximable triangulated categories, have preferred subcate-
gories 7=, 7+, and .7, which are intrinsic—they are simply those corresponding to any
t-structure in the preferred equivalence class. In the remainder of this survey, we will assume
that 7, 7+, and Z° always stand for the preferred ones.

In the heuristics of Discussion 2.1(2), we told the reader that a t-structure
(729, 729 is to be viewed as a metric on 7. In Definition 6.1 below, the heuristic is
that we construct a full subcategory 7.~ to be the closure of .7°¢ with respect to any of the
(equivalent) metrics that come from t-structures in the preferred equivalence class.

Definition 6.1. Let .7 be an approximable triangulated category. The full subcategory .7~
is given by
For every integer n > 0 and for every t-structure
Ob(T) = 1 F e (70, ?ZO) in the p.referred equivalence cllass,
there exists an exact triangle £ — F — D in
with E € S€and D € ="

The full subcategory .72 is defined to be .72 = 7.~ N F7.

Remark 6.2. Let .7 be an approximable triangulated category. Aside from the classical,
full subcategory .7¢ of compact objects, which we encountered back in Definition 1.1, we
have in this section concocted five more intrinsic, full subcategories of .7: they are .,
gt gb g~ ,and Zb . It can be proved that all six subcategories, that is, the old .7¢ and
the five new ones, are thick subcategories of .7. In particular, each of them is a triangulated

category.

Example 6.3. It becomes interesting to figure out what all these categories come down to
in examples.

Let X be a quasicompact, separated scheme. From Example 3.2, we know that
the category .7 = Dg(X) is approximable, and in Remark 5.6 we noted that the stan-
dard t-structure is in the preferred equivalence class. This can be used to show that, for
T = Dyc(X), we have

T~ =Dg(X). Tt =Df(X). ZT°=DL(X).

T =DPN(X), I =Dg(X), TP =D, (X),
where the last two equalities assume that the scheme X is noetherian, and all six categories
on the right of the equalities have their traditional meanings.

The reader can find an extensive discussion of the claims above in [31], more pre-
cisely in the paragraphs between [31, PROPOSITION 8.10] and [31, THEOREM 8.16]. That discussion
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goes beyond the scope of the current survey, it analyzes the categories ﬂcb C Z, inthe gen-
erality of non-noetherian schemes, where they still have a classical description—of course,
not involving the category of coherent sheaves. After all coherent sheaves do not behave well
for non-noetherian schemes.

Remark 6.4. In this survey we spent some effort introducing the notion of approximable
triangulated categories. In Example 3.2 we told the reader that it is a theorem (and not a trivial
one) that, as long as a scheme X is quasicompact and separated, the derived category Dqc(X)
is approximable. In this section we showed that every approximable triangulated category
comes with canonically defined, intrinsic subcategories .7, I+, 7 b ge ,~,and Zb,
and in Example 6.3 we informed the reader that, in the special case where .7 = Dgc (X ), these
turn out to be Dy, (X), DL (X), D5 (X), DPT(X), D, (X), and D2, (X)), respectively.
Big deal. This teaches us that the traditional subcategories Dy (X), D;rc (X), Dgc (X),
Drerf(X), D, (X), and Dfoh (X) of the category Dg(X) all have intrinsic descriptions. This

might pass as a curiosity, unless we can actually use it to prove something we care about that
we did not use to know.

Discussion 6.5. To motivate the next theorem, it might help to think of the parallel with
functional analysis.

Let M (R) be the vector space of Lebesgue-measurable, real-valued functions on R.
Given any two functions f, g € M(R), we can pair them by integrating the product, that is,
we form the pairing

(f.8) = [ fedu.
where u is Lebesgue measure. This gives us a map

(=)

M(R) x M(R) R U {oo},

where the integral is declared to be infinite if it does not converge.

We can restrict this pairing to subspaces of M(R). For example, if f € L?(R) and
g € L1(R) with % + é = 1 then the integral converges, that is, ( f, g) € R, and we deduce
a map

L?(R) Hom(L4(R), R)

which turns out to be an isometry of Banach spaces.

The category-theoretic version is that on any category .7 there is the pairing sending
two objects A, B € 7 to Hom(A, B). Of course, this pairing is not symmetric, we have to
keep track of the position of A and of B in Hom(A4, B). If R is a commutative ring and .7
happens to be an R-linear category, then Hom(A, B) is an R-module and the pairing delivers
a map

g x 7 —1mCD R Mod.

where the op keeps track of the variable in the first position. And now we are free to restrict
to subcategories of 7.
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If .7 happens to be approximable and R-linear, we have just learned that it comes
with six intrinsic subcategories 7, 7T, T b gec, .~, and Zb. We are free to restrict
the Hom pairing to any couple of them. This gives us 36 possible pairings, and each of those
yields two maps from a subcategory to the dual of another. There are 72 cases we could

study, and the theorem below tells us something useful about four of those.

Theorem 6.6. Let R be a noetherian ring, and let 7 be an R-linear, approximable trian-
gulated category. Suppose there exists in  a compact generator G so that Hom(G, G[n])
is a finite R-module for all n € Z. Consider the two functors

W : 7 — Homg([7°]", R-Mod), % :[7.]™ — Homg(Z, R-Mod)

c

defined by the formulas % (B) = Hom(—, B) and @(A) = Hom(A, —), as in Discussion 6.5.
Now consider the following composites:

DAL " Fm —2 > Homg([7¢]", R-Mod),

c c

[7]"———[77]" —— Homg(7. R-Mod).

We assert:

(1) The functor & is full, and the essential image consists of the locally finite homo-
logical functors (see Explanation 6.7 for the definition of locally finite functors).
The composite % o i is fully faithful, and the essential image consists of the finite
homological functors (again, see Explanation 6.7 for the definition).

(2) With the notation as in Black Box 2.2(1), assume' that 7 = mn for some inte-
gern > 0and some object H € Zb . Then the functor Y is full, and the essential
image consists of the locally finite homological functors. The composite Y oiis
Sfully faithful, and the essential image consists of the finite homological functors.

Explanation 6.7. In the statement of Theorem 6.6, the locally finite functors, either of the
form H : [7¢]°° — R-Mod or of the form H : ﬂcb — R-Mod, are the functors such that

(1) H(A[i]) is a finite R—module for every i € Z and every A in either 7€ or ﬂcb ;
(2) For fixed A, in one of .7 or Zb, we have H(A[i]) = 0ifi < 0.

The finite functors are those for which we also have
(3) H(A[i]) =0foralli > 0.

Remark 6.8. The proof of part (1) of Theorem 6.6 may be found in [29], while the proof of
part (2) of Theorem 6.6 occupies [28]. These are not easy theorems.

Let J = Dg(X), with X a scheme proper over a noetherian ring R. Then the
hypotheses of Theorem 6.6(1) are satisfied. We learn (among other things) that the natural

1 What’s important for the current survey is that, if X is a noetherian, separated scheme, then
T = Dgqc(X) satisfies this hypothesis provided X is finite-dimensional and quasiexcellent.

1648 A. NEEMAN



functor, taking an object B € D2 (X) to the R-linear functor Hom(—, B) : DP*f(X)” —

coh

Mod-R, is a fully faithful embedding

% oi
D}, (X) :

Hom (Dperf(X )", R—Mod)

whose essential image is precisely the finite homological functors.

If we further assume that the scheme X is finite-dimensional and quasiexcellent
then the hypotheses of Theorem 6.6(2) are also satisfied. We learn that the functor, taking
an object A € DP*(X) to the R-linear functor Hom(A, —), is a fully faithful embedding

Yol

prerf(x)* Homy (D2, (X), R-Mod)

whose essential image is also the finite homological functors.

In [31, HISTORICAL SURVEY 8.2] the reader can find a discussion of the (algebro-
geometric) precursors of Theorem 6.6. As for the applications, let us go through one of
them.

Remark 6.9. Let X be a scheme proper over the field C of complex numbers, and let X"
be the underlying complex analytic space. The analytification induces a functor we will call
2 Dfoh(X) - Dgoh
braic sheaves on X to the analytification, which is a bounded complex of coherent analytic
sheaves on X", The pairing sending an object A € DP*{(X) and an object B € D2 (X"

coh
to Hom(.Z(A), B) delivers a map

X, it is the functor taking a bounded complex of coherent alge-

Db, (X™) Hom g (DP*f(X)™, C-Mod).

Since the image lands in the finite homological functors, Theorem 6.6(1) allows us to factor
this uniquely through the inclusion % o i, that is, there exists (up to canonical natural iso-
morphism) a unique functor & rendering commutative the triangle

Db Xan)

coh \

Nz Hom  (DPrf(X)™, C-Mod).

And proving Serre’s GAGA theorem reduces to the easy exercise of showing that .# and &%

v
Do (X)

are inverse equivalences, the reader can find this in the (short) [29, SECTION 8 AND APPENDIX A].

The brilliant inspiration underpinning the approach is due to Jack Hall [12], he is the
person who came up with the idea of using the pairing above, coupled with representability
theorems, to prove GAGA. The representability theorems available to Jack Hall at the time
were not powerful enough, and Theorem 6.6 was motivated by trying to find a direct path
from the ingenious, simple idea to a fullblown proof.

Discussion 6.10. In preparation for the next theorem, we give a very brief review of metrics
in triangulated categories. The reader is referred to the survey article [3e] for a much fuller
and more thorough account.
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Given a triangulated category .7, a metric on .7 assigns a length to every morphism.
In this article the only metrics we consider are the ones arising from t-structures. If .7 is an
approximable triangulated category we choose a t-structure (.7 =%, .72%) in the preferred
equivalence class, and this induces a metric as follows. Given a morphism f : X — Y, we

may complete to an exact triangle X i) Y — D, and the length of f is given by the formula

. 1
Length (f) = 1nf{ 7

neZandDeﬂS_”}.

In this survey we allow the length of a morphism to be infinite; if the set on the right is empty
then we declare Length ( f) = oo.

This metric depends on the choice of a t-structure, but not a lot. As all t-structures
in the preferred equivalence class are equivalent, any two preferred t-structures will give rise
to equivalent metrics (with an obvious definition of equivalence of metrics).

Note that if .7 is a triangulated category and . is a triangulated subcategory, then
a metric on .7 restricts to a metric on .. In particular, if .7 is approximable, the metric
on .7 of the previous paragraph restricts to give metrics on the full subcategories .7°¢ and
Zb . Once again these metrics are only defined up to equivalence. And, of course, a metric
on . is also a metric on .”’°P, thus we have specified (up to equivalence) canonical metrics
on 7¢, Zb, [7¢]°, and [Zb]"l’.

Suppose . is a triangulated category with a metric. A Cauchy sequence in .7 is a
sequence of morphisms £y — E, — E3 — --- which eventually become arbitrarily short.
If o/ # is the category of abelian groups, then the Yoneda embedding Y : . — Mod-.¥
embeds . into the category Mod—% of additive functors P — & /. In the category
Mod-.¥ colimits exist, allowing us to define

(1) The category £(.¥) is the full subcategory of Mod—.%, whose objects are the
colimits of Yoneda images of Cauchy sequences in .%;

(2) The full subcategory &(.¥) C £(.¥) has for objects those functors F € (%) C
Mod-.# which take sufficiently short morphisms to isomorphisms. In symbols,
F € £() belongs to &(.¥) if there exists an &€ > 0 such that

{Length (f) < 8} = {F(f) is an isomorphism};

(3) The exact triangles in &(.) are the colimits in Mod—.% of Yoneda images of
Cauchy sequences of exact triangles in ., where the colimits happen to lie
in 6(¥).

A word of caution about (3): if we are given in . a Cauchy sequence of exact triangles, we
can form the colimit in Mod—% of its Yoneda image. This colimit is guaranteed to lie in
£(¥), but will not usually lie in the smaller &(.). If it happens to lie in S(.%) then (3)
declares it to be an exact triangle in &(.¥).

And now we are ready for the theorem.
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Theorem 6.11. Let . be a triangulated category with a metric. Assume the metric is good,
this is a technical term, see [38, DEFINITION 18] for the precise formulation. Then

(1) The category &(.%) of Discussion 6.10(2), with the exact triangles as defined
in Discussion 6.10(3), is a triangulated category.

Now let & be an approximable triangulated category. In Discussion 6.10 we constructed (up
to equivalence) ametric on 7, and hence on its subcategories 7€ and [ T21°°. Those metrics
are all good, and the theorem goes on to give natural, exact equivalences of triangulated
categories

(2) &(T°) = FL. This equivalence is unconditional.

(3) If the approximable triangulated category 7 happens to be noetherian as in
[27, DEFINITION 5.1, then 6([2”]01’) >~ [.TC]°P.

Remark 6.12. First of all, in Theorem 6.11(3) we assumed that the approximable triangu-
lated .7 is noetherian as in [27, DEFINITION 5.1]. The only observation we want to make here
is that if X is a noetherian, separated scheme then the approximable triangulated category
T = Dyc(X) is noetherian. Thus, for noetherian, separated schemes X, Theorem 6.11 gives
exact equivalences of triangulated categories

&(DP(X)) = DE, (X), @(Db (X)) = prerf( ),

coh

The research paper [27] contains the proofs of the assertions in Theorem 6.11. The reader can
find a skimpy survey in [31, SECTION 9] and a more extensive one in [3e]. In [31, HISTORICAL
SURVEY 9.1] there is a discussion of precursors of the results.

7. FUTURE DIRECTIONS

New scientific developments are tentative and unpolished; only with the passage
of time do they acquire the gloss and elegance of a refined, varnished theory. And there is
nothing more difficult to predict than the future. My colleague Neil Trudinger used to joke
that my beard makes me look like a biblical prophet—the reader should not be deceived,
appearances are notoriously misleading, the abundance of facial hair is not a reliable yard-
stick for measuring the gift of foresight that marks out a visionary, and I am certifiably not
a clairvoyant. All I do in this section is offer a handful of obvious questions that spring to
mind. The list is not meant to be exhaustive, and might well be missing major tableaux of the
overall picture. It is entirely possible that the future will see this theory flourish in directions
orthogonal to those sketched here.

Let us begin with what is freshest in our minds: we have just seen Theorem 6.11,
part (1) of which tells us that, given a triangulated category . with a good metric, there is
a recipe producing another triangulated category &(.¥), which, as it happens, comes with
an induced good metric. We can ask:
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Problem 7.1. Can one formulate reasonable sufficient conditions, on the triangulated cate-
gory . and on its good metric, to guarantee that S(S()P) = .#°P? Who knows, maybe
even necessary and sufficient conditions?

Motivating Example 7.2. Let .7 be an approximable triangulated category and put
< = 7€, with the metric of Discussion 6.10. Theorem 6.11(2) computes for us that
G(T°) =~ Zb. I ask the reader to believe that the natural, induced metric on G(.7€) agrees
with the metric on ,Zb C  given in Discussion 6.10. Now Theorem 6.11(3) goes on to tell
us that, as long as the approximable triangulated category .7 is noetherian, we also have that
6([9}’ [°P) = [T€]°P; as it happens, the induced good metric on @([Zb ]°P) also agrees, up
to equivalence, with the metric that Discussion 6.10 created on [.7 €]°P. Combining these we
have many examples of exact equivalences of triangulated categories G(&(.)P) = /P,
which are homeomorphisms with respect to the metrics. Thus Problem 7.1 asks the reader
to find the right generalization.

Next one can wonder about the functoriality of the construction. Suppose
F .Y — 7 is atriangulated functor, and that both .% and .7 have good metrics. What are
reasonable sufficient conditions which guarantee the existence of an induced functor &G(F),
either from &(.) to ©(.7) or in the other direction? So far there is one known result of this
genre, the reader can find the statement below in Sun and Zhang [37, THEOREM 1.1(3)].

Theorem 7.3. Suppose we are given two triangulated categories . and .7, both with good
metrics. Suppose we are also given a pair of functors F: —= 7:G with F 4G,
meaning that F is left adjoint to G. Assume further that both F and G are continuous with
respect to the metrics, in the obvious sense.

Then the functor F : Mod-7 — Mod—% induced by composition with F, that is,
the functor taking the T —module H : T — of / to the . —module (H o F) : ./ — o /,
restricts to a functor which we will denote S(F) : G(.7) — &(%). That is, the functor S(F)
is defined to be the unique map making the square below commute

&7) =L, &)

Mod-7 —L~ Mod—.7
where the vertical inclusions are given by the definition of ©(?) C £(?) C Mod-? of Discus-
sion 6.10 (1) and (2).
Furthermore, the functor S(F) respects the exact triangles as defined in Discus-
sion 6.10(3).

Sun and Zhang go on to study recollements. Suppose we are given a recollement of
triangulated categories
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If all three triangulated categories come with good metrics, and if all six functors are con-
tinuous, then the following may be found in [37, THEOREM 1.2].

Theorem 7.4. Under the hypotheses above, applying © yields a right recollement
&(I) &)

&) e) &)

G(Z%) &(7).

In the presence of enough continuous adjoints, we deduce that a semiorthogonal
decomposition of . gives rise to a semiorthogonal decomposition of ©(.¥). In view of the
fact that there are metrics on DPf(X) and D2 (X) such that

coh
B(DP(X)) = DL, (X),  &(DL, (X)) = DPf(x)”™,

it is natural to wonder how the recent theorem of Sun and Zhang [37, THEOREM 1.2] compares
with the older work of Kuznetsov [19, SECTION 2.5] and [20, SECTION 4].

The above shows that, subject to suitable hypotheses, the construction taking &
to &(.¥) can preserve (some of) the internal structure on the category ."—for example,
semiorthogonal decompositions. This leads naturally to

Problem 7.5. What other pieces of the internal structure of . are respected by the con-
struction that passes to ©(.%’)? Under what conditions are these preserved?

Problem 7.5 may sound vague, but it can be made precise enough. For example,
there is a huge literature dealing with the group of autoequivalences of the derived categories
Dfoh (X). Now, as it happens, the metrics for which Remark 6.12 gives the equivalences

S(DP(X)) 2= D2, (X),  &(DL, (X)) 2= DPr(x)™

coh coh

can be given (up to equivalence) intrinsic descriptions. Note that the way we introduced these
metrics, in Discussion 6.10, was to use a preferred t-structure on 7 = Dgc(X) to give on
7 a metric, unique up to equivalence, and hence induced metrics on .7¢ = DPef(X) and
on ﬂcb = Dfoh (X) which are also unique up to equivalence. But this description seems to
depend on an embedding into the large category 7. What I am asserting now is that there
are alternative descriptions of the same equivalence classes of metrics on .7¢ and on Zb,
which do not use the embedding into .7. The interested reader can find this in the later
sections of [27]. Anyway, a consequence is that any autoequivalence, of either DP*(X) or
of Dfoh (X), must be continuous with a continuous inverse. Hence the group of autoequiva-
lences of Dgoh(X ) must be isomorphic to the group of autoequivalences of DP(X'). Or more
generally, assume .7 is a noetherian, approximable triangulated category, where noetherian
has the meaning of [27, DEFINITION 5.1]. Then the group of exact autoequivalences of 7€ is
canonically isomorphic to the group of exact autoequivalences of Zb .

Are there similar theorems about t-structures in . going to t-structures in &(.%)?
Or about stability conditions on . mapping to stability conditions on &(.¥)?

We should note that any such theorem will have to come with conditions. After all,
the category ch’oh (X) always has a bounded t-structure, while Antieau, Gepner, and Heller [3,
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THEOREM 1.1] show that DPef(X') does not in general. Thus it is possible for .# to have a
bounded t-structure but for G(.%’) not to. And in this particular example, the equivalence
class of the metric has an intrinsic description, in the sense mentioned above.

Perhaps we should remind the reader that the article [3], by Antieau, Gepner, and
Heller, finds a K-theoretic obstruction to the existence of bounded t-structures, more pre-
cisely if an appropriate category & has a bounded t-structure then K_; (&) = 0. Hence the
reference to [3] immediately raises the question of how the construction passing from .# to
&(.¥) might relate to K-theory, especially to negative K -theory. Of course, one has to be a
little circumspect here. While there is a K-theory for triangulated categories (see [25] for a
survey), this K-theory has only been proved to behave well for “nice” triangulated categories,
for example, for triangulated categories with bounded t-structures. Invariants like negative
K-theory have never been defined for triangulated categories, and might well give nonsense.
In what follows we will assume that all the K-theoretic statements are for triangulated cat-
egories with chosen enhancements, and that K-theory means the Waldhausen K-theory of
the enhancement. We recall in passing that the enhancements are unique for many interest-
ing classes of triangulated categories, see Lunts and Orlov [21], Canonaco and Stellari [9],
Antieau [2] and Canonaco, Neeman, and Stellari [8].

With the disclaimers out of the way, what do the results surveyed in this article have
to do with negative K-theory?

Let us begin with Schlichting’s conjecture [36, CONJECTURE 1 OF SECTION 18]; this con-
jecture, now known to be false [32], predicted that the negative K-theory of any abelian
category should vanish. But Schlichting also proved that (1) K_;(%7) = 0 for any abelian
category <7, and (2) K_, («/) = 0 whenever </ is a noetherian abelian category and n > 0.
Now note that the K (o) = K(27°P), hence the negative K -theory of any artinian abelian cat-
egory must also vanish. And playing with extensions of abelian categories, we easily deduce
the vanishing of the negative K-theory of a sizeable class of abelian categories. So while
Schlichting’s conjecture is false in the generality in which it was stated, there is some large
class of abelian categories for which it is true. The challenge is to understand this class.

It becomes interesting to see what relation, if any, the results surveyed here have
with this question.

Let us begin with Theorems 4.4 and 4.2. Theorem 4.4 tells us that, when X is a
quasiexcellent, finite-dimensional, separated noetherian scheme, the category Di’oh (X) is
strongly generated. This category has a unique enhancement whose K -theory agrees with the
K-theory of the noetherian abelian category Coh(X), hence the negative K -theory vanishes.
Theorem 4.2 and Remark 4.3 tell us that the category DP®(X) has a strong generator if and
only if X is regular and finite-dimensional—in which case it is equivalent to D? _ (X) and

coh
its unique enhancement has vanishing negative K-theory. This raises the question:

Problem 7.6. If .7 is a triangulated category with a strong generator, does it follow that any
enhancement of .7 has vanishing negative K-theory?

Let us refine this question a little. In Definition 4.1 we learned that a strong genera-
tor, for a triangulated category .7, is an object G € .7 such that there exists an integer £ > 0
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with 7 = (G),. Following Rouquier, we can ask for estimates on the integer £. This leads
us to:

Definition 7.7. Let 7 be a triangulated category. The Rouquier dimension of 7 is the
smallest integer £ > 0 (we allow the possibility £ = c0), for which there exists an object
G with .7 = (G), ;. See Rouquier [35] for much more about this fascinating invariant.

There is a rich and beautiful literature estimating this invariant and its various

cousins—see Rouquier [35] for the origins of the theory, and a host of other places for subse-

b
coh

is conjectured to be equal to the Krull dimension of X . But by a conjecture of Weibel [39],

quent developments. For this survey we note only that, for D? | (X)), the Rouquier dimension
now a theorem of Kerz, Strunk, and Tamme [18], the Krull dimension of X also has a K-
theoretic description: the groups K, of the unique enhancement of DP¢*f(X) vanish for all
n < —dim(X). Recalling that . = Dfoh (X) is related to DP(X) by the fact that the con-

struction & interchanges them (up to passing to opposite categories, which has no effect on
K-theory), this leads us to ask:

Problem 7.8. Let . be a regular (= strongly generated) triangulated category as in Def-
inition 4.1, and let N < oo be its Rouquier dimension. Is it true that K,, vanishes on any
enhancement of G(%), for any metric on . and whenever n < —N?

In an entirely different direction, we know that the construction & interchanges
DPerf(X) and D2 (X), and that these categories coincide if and only if X is regular. This

coh
leads us to ask:

Problem 7.9. Is there a way to measure the “distance” between .¥” and (%), in such a way
that resolution of singularities can be viewed as a process reducing this distance? Who knows,
maybe there is even a good metric on . = DPf(X) and/or on .7’ = Dfoh (X) such that the
construction & takes either . or .#/ to an &(.%) or &(.#”’) which is DP(Y) = Dfoh(Y)
for some resolution of singularities Y of X.

While on the subject of regularity (= strong generation):

Problem 7.10. Is there some way to understand which are the approximable triangulated
categories .7 for which .7¢ and/or .7 are regular?

Theorems 4.2 and 4.4 deal with the case .7 = Dgq(X). Approximability is used in
the proofs given in [33] and [4], but only to ultimately reduce to the case of .7¢ = DPef(X)
with X an affine scheme—this case turns out to be classical, it was settled already in Kelly’s
1965 article [17]. And the diverse precursors of Theorems 4.2 and 4.4, which we have hardly
mentioned in the current survey, are also relatively narrow in scope. But presumably there are
other proofs out there, yet to be discovered. And new approaches might well lead to general-
izations that hold for triangulated categories having nothing to do with algebraic geometry.

Next let us revisit Theorem 6.6, the theorem identifying each of [.77¢]°P (respectively
Zb ) as the finite homological functors on the other. In view of the motivating application,
discussed in Remark 6.9, and of the generality of Theorem 6.6, it is natural to wonder:
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Problem 7.11. Do GAGA-type theorems have interesting generalizations to other approx-
imable triangulated categories? The reader is invited to check [29, SECTION 8 AND APPENDIX A]:
except for the couple of paragraphs in [29, EXAMPLE A.2] everything is formulated in gorgeous
generality and might be applicable in other contexts.

In the context of Di’oh

there was a wealth of different-looking GAGA-statements before Jack Hall’s lovely paper [12]

(X), where X is a scheme proper over a noetherian ring R,

unified them into one. In other words, the category Dfoh(X ) = Zb had many different-
looking incarnations, and it was not until Hall’s paper that it was understood that there was
one underlying reason why they all coincided.

Hence Problem 7.11 asks whether this pattern is present for other ,Zb, in other words
for ﬂcb C .7 where Z are some other R-linear, approximable triangulated categories.

And finally:
Problem 7.12. Is there a version of Theorem 6.6 that holds for non-noetherian rings?

There is evidence that something might be true, see Ben-Zvi, Nadler, and Preygel [5,
secTIoN 3]. But the author has no idea what the right statement ought to be, let alone how to
go about proving it.
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1. INTRODUCTION

Research on free resolutions is a core and beautiful area in Commutative Algebra.
It contains a number of challenging conjectures and open problems; some of them are dis-
cussed in the book [1e1].

For simplicity, we will work throughout over the polynomial ring S = C[xq,. .., x,],
which is standard graded by deg(x;) = 1 for every i. Many of the results work in much bigger
generality; for example, over any field, or over some graded quotient rings of S. We leave it
to the interested reader to look for the precise generality of the results using the references.
We focus on some main ideas about finite resolutions which are present over polynomial
rings.

The idea to describe the structure of a module by a free resolution was introduced
by Hilbert in his famous paper [76]; this approach was present in the work of Cayley [35] as
well. Every finitely generated S-module 7 has a free resolution. If 7" is graded, there exists
a minimal free resolution Fr which is unique up to an isomorphism and is contained in any
free resolution of 7. Hilbert’s insight was that the properties of the minimal free resolution
Fr are closely related to the invariants of the resolved module 7'. The key point is that the
resolution can be interpreted as an exact complex of finitely generated free modules F; so
that

minimal minimal
relations relations
d>=| on the di=| on the minimal
relations generators do=| generators
in dy of T of T
- —> F2 F 1 F() T —

1.1
Thus, the resolution is a way of describing the structure of 7.

The condition of minimality is important. The mere existence of free resolutions
suffices for computing Hilbert functions and for foundational issues such as the definition of
Ext and Tor. However, without minimality, resolutions are not unique, and the uniformity of
constructions of nonminimal resolutions (like the Bar resolution) implies that they give little
insight into the structure of the resolved modules. In contrast, the minimal free resolution Fr
encodes a lot of properties of T'; for example, the Auslander—Buchsbaum formula expresses
the depth of T in terms of the length (called projective dimension) of Fr, while nonminimal
resolutions do not measure depth.

Free resolutions have applications in mathematical fields as diverse as Algebraic
Geometry, Combinatorics, Computational Algebra, Invariant Theory, Mathematical Physics,
Noncommutative Algebra, Number Theory, and Subspace Arrangements. For many years,
they have been both central objects and fruitful tools in Commutative Algebra.

The connections of resolutions to Algebraic Geometry are especially rich, and the
book [51] is focussed on that. One of the most challenging open problems in this area,
which remains open to this date, is Green’s conjecture; see the recent paper by Aprodu—
Farkas—Papadima—Raicu—Weyman [5] for more details on this problem.
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It should be noted that the world of minimal free resolutions is much wider and
diverse than graded resolutions over polynomial rings. Resolutions are studied in other major
situations, and there are many important and exciting results and open problems there. For
example, there is an extensive research in the multigraded case, which contains resolutions of
monomial ideals, resolutions of toric ideals, and resolutions of binomial edge ideals. Another
fascinating and important area is the study of minimal free resolutions over quotient rings;
such resolutions are usually infinite (by a theorem of Serre) and so their properties are quite
different than what we see in finite resolutions over a polynomial ring. An interesting new
idea is the recent introduction of virtual resolutions by Berkesch-Erman—Smith [13].

2. FREE RESOLUTIONS
A free resolution of a finitely generated S-module 7 is an exact sequence

F: ...—> FzzFli>Foﬁ>T—>O
of homomorphisms of free finitely generated S-modules F;. The maps d; are called differ-
entials.
If T is graded, there exists a minimal free resolution F7 which is unique up to
an isomorphism and is contained in any free resolution of 7" (see [1e1, THEOREM 7.5], [101,
THEOREM 3.5]). Minimality can be characterized in the following simple way: F is minimal if

div1(Fi+1) C (x1,...,xp)F; foralli >0,

that is, no invertible elements appear in the differential matrices.

Hilbert’s intuition was that the properties of the minimal free resolution Fr are
closely related to the invariants of the resolved module 7. The key point is that the map
do : Fo — T sends a basis of Fy to a minimal system § of generators of T, the first differ-
ential d; describes the minimal relations (R among the generators &, the second differential
d, describes the minimal relations on the relations R, etc.; see (1.1). Hilbert’s Syzygy The-
orem 4.1 is a fundamental result on the structure of such resolutions and leads to many
applications. It shows that every finitely generated graded S-module has a finite free resolu-
tion (that is, F; = 0 for j > 0).

The submodule Im(d;) = Ker(d;—1) of F;_; is called the ith syzygy module of T,
and its elements are called ith syzygies.

3. BETTI NUMBERS

Let T be a graded finitely generated S-module. The differentials in the minimal
free resolution Fr of T are often very intricate, and so it may be more fruitful to focus on
numerical invariants. The rank of the free module F; in F7 is called the ith Betti number
and is denoted by b; (T'). It may be expressed as

b;(T) = dim Tor? (T, C) = dim Ext}(T, C).
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The Betti numbers are extensively studied numerical invariants of 7', and they encode a lot
of information about the module.

Note that in the graded case we have graded Betti numbers b; ;(T'): Since T is
graded, it has a graded minimal free resolution, that is, the differentials preserve degree
(they are homogeneous maps of degree 0). Thus, we have graded Betti numbers

b; j(T) = dim Tor? (T, C); = dim Exts (T, C);.

Hilbert showed how to use them in order to compute the Hilbert series y_;_, t! dimc (T;)
which measures the size of the module 7'; see [101, THEOREM 16.2].

The graded Betti numbers can be assembled in the Betti table B(T), which has
entry b; j+; = b; ;4 ;(T) in position i, j . Following the conventions in the computer algebra
system Macaulay?2 [68], the columns of 8(T") are indexed from left to right by homological
degree, and the rows are indexed increasingly from top to bottom. For example, if 7" is gen-
erated in nonnegative degrees then the Betti table (7") has the form:

0 1 2
0: boo b1y bap
I: boy bip bas
2 bop b1z bra

The main general open-ended question on Betti numbers is:

Question 3.1. How do the properties of the (graded) Betti numbers relate to the structure
of the minimal free resolution of 7" and/or the structure of 7?7

The BEH Conjecture is a long-standing open conjecture on Betti numbers:

BEH Conjecture 3.2 (Buchsbaum-Eisenbud, Horrocks, [2e,73]). If T is a finitely generated
graded artinian S-module (artinian means that the module has finite length), then

bi(T) > (’l’) fori > 0.

Essentially, the conjecture states that the Koszul resolution (see [101, SECTION 14]) of
the residue field C is the smallest minimal free resolution of an artinian module.

If the above conjecture holds, then it easily follows that we get a lower bound on the
Betti numbers for any module (not necessarily artinian) in terms of its codimension; see [17].
The expository papers [17] by Boocher—Grifo and [36] by Charalambous—Evans provide nice
overviews on the scarce positive results that are known so far; for example, Herzog—Kiihl
[74] proved the desired inequalities for linear resolutions. The best currently known result is:

Theorem 3.3 (Walker, [188]). If T is a finitely generated graded artinian S-module, then

n
Y bi(T) = 2",
i=0
and equality holds if and only if T is a complete intersection.
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People have wondered how sharp the above bound is when the module is not a
complete intersection (that is, 7" is not a quotient ring by a regular sequence):

Question 3.4 (Charalambous—Evans—Miller, [37]). If T is a finitely generated graded artinian
S-module that is not a complete intersection, then do we have

n
D bi(T) = 2" +2"1
i=0
There are many questions that one may ask and study about Betti numbers when

restricted to special classes of modules; most ambitiously, we would like to have a char-
acterization of the sequences that are Betti numbers. A recent result of this kind is the
Boij—Soderberg theory, which was conjectured by Boij—Soderberg [16], and proved soon
after that. Eisenbud—Flgystad—Weyman proved the characteristic-zero case in [52] and then
Eisenbud-Schreyer dealt with any characteristic in [56]. Later, efficient methods for such
constructions were given by Berkesch, Kummini, Erman, Sam in [14] and by Flgystad in [61,
secTIoN 3]. The expository papers [68, 62] provide nice overviews of this topic.

4. PROJECTIVE DIMENSION

Projective dimension and regularity are the main numerical invariants that measure
the complexity of a minimal free resolution. We will discuss regularity in the next section.

The projective dimension of a graded finitely generated S-module 7 is

pd(T) = max{i | b;(T) # 0},

and it is the index of the last nonzero column of the Betti table 8(T), so it measures the
width of the table.

Hilbert’s Syzygy Theorem 4.1 (see [101, THEOREM 15.2]). The minimal graded free resolution
of a finitely generated graded S-module is finite, and its projective dimension is at most n

(recall that n is the number of variables in the polynomial ring S ).

Hilbert’s Syzygy Theorem 4.1 provides a nice upper bound on the projective dimen-
sion in terms of the number of variables in the polynomial ring. One may wonder if the
number of minimal generators of an ideal can be used to get another nice upper bound on
projective dimension. The answer turns out to be negative. A construction of Burch [21] and
Kohn [79] produces ideals with 3 generators whose projective dimension is arbitrarily large.
Later Bruns [18] showed that the minimal free resolutions of three-generated ideals capture
all the pathology of minimal free resolutions of modules. However, the degrees of the gener-
ators in these constructions are forced to grow large. Motivated by computational complexity
issues, Stillman raised the following question:

Question 4.2 (Stillman, [162, PROBLEM 3.14]). Fix anm > 1 and a sequence of natural numbers
ai,...,apy. Is there a number p such that pd(/) < p for every homogeneous ideal / with
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a minimal system of generators of degrees ay, ..., a, in a polynomial ring? Note that the
number of variables in the polynomial ring is not fixed.

A positive answer is provided by:
Theorem 4.3 (Ananyan—Hochster, [4]). Stillman’s Question 4.2 has a positive answer.

Other proofs were later given by Erman—Sam—Snowden [58] and Draisma—Lasori—
Leykin [se]. Yet, there are many open questions motivated by a desire to get better upper
bounds since the known bounds are quite large. See the recent paper by Caviglia—Liang [29]
for some explicit bounds.

Families of ideals with large projective dimension were constructed by McCullough
in [89] and by Beder, McCullough, Nifiez-Betancourt, Seceleanu, Snapp, Stone in [12]. Such
constructions indicate that finding tight bounds could be difficult. Many results dealing
with special cases are known in this direction. The expository papers [62,94] provide nice
overviews of this topic.

5. REGULARITY
Let L be a homogeneous ideal in S. The height of the Betti table of L is measured
by the index of the last nonzero row, and is called the (Castelnuovo—Mumford) regularity
of L, so
reg(L) = max{; | there exists an i such that b; ;4; (L) # 0}.

Note that reg(L) < oo by Hilbert’s Syzygy Theorem 4.1. An important role of regularity is
that it measures the complexity of the minimal free resolution of L, in the sense that it shows
up to what degree we have nonvanishing Betti numbers. It has several other important roles.
The definition of regularity implies that it provides an upper bound on the generating
degree, namely
reg(L) > maxdeg(L),

where maxdeg(L) is the maximal degree of an element in a minimal system of homogeneous
generators of L.

Another role of regularity is that it identifies how high we have to truncate an ideal
in order to get a linear resolution; we say that a graded ideal has an r-linear resolution it
the ideal is generated in degree r and the entries in the differential maps in its minimal free
resolution are linear.

Theorem 5.1 (see [101, THEOREM 19.7]). Let L be a graded ideal in S. If r > reg(L) then

Lsy:=1LnN (@ S,-)

i>r

has an r-linear minimal free resolution, equivalently,

reg(Lsr) = 7.
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Another role of regularity is related to Grobner basis computation. Many computer
computations in Commutative Algebra and Algebraic Geometry are based on Grobner basis
theory. It is used, for example, in the computer algebra systems Cocoa [1], Macaulay?2 [é8],
Singular [49]. It is proved by Bayer—Stillman [9] that in generic coordinates and with respect
to revlex order, one has to compute up to degree reg(L) in order to compute a Grobner
basis of L. This means that reg(L) is the degree-complexity of the Grébner basis computa-
tion.

Yet another role of regularity is that it can be defined in terms of vanishing of local
cohomology modules. See the expository paper [19] for a detailed discussion.

The expository papers [38,39] provide nice overviews of the properties of regularity.

In the rest of this section, we discuss bounds on regularity.

The projective dimension pd(L) of L is bounded above by the number of variables
n in S by Hilbert’s Syzygy Theorem 4.1. This bound is very nice in several ways: it is small,
involves only one parameter, and is given by a simple formula. One may hope that similarly,
a nice upper bound on regularity exists. In contrast, the upper bound on regularity involv-
ing n is doubly exponential. Bayer—Mumford (see [8, THEOREM 3.7]) and Caviglia—Sbarra [32]
proved:

Theorem 5.2 (Bayer—Mumford [8], Caviglia—Sbarra [32]). Let L be a graded ideal in S.
Then

’

reg(L) < (2 maxdeg(L))zn_2

where maxdeg(L) is the maximal degree of an element in a minimal system of homogeneous
generators of L.

This bound is nearly sharp. The Mayr—Meyer construction [88] leads to examples of
families of ideals attaining high regularity. The following three types of families of ideals
attaining doubly exponential regularity were constructed by Bayer—Mumford [8], Bayer—
Stillman [1e], and Koh [78]:

Theorem 5.3. (1) (Bayer—Stillman, [1e, THEOREM 2.6]) For r > 1, there exists a
homogeneous ideal I, (using d = 3 in their notation) in a polynomial ring with
107 + 11 variables for which

maxdeg([;) = 5,
reg(l,) > 327

(2) (Bayer—Mumford, [8, PROPOSITION 3.11]) For r > 1, there exists a homogeneous
ideal I, in 10r + 1 variables for which

maxdeg(/,) = 4,
reg(l;) > 2%
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(3) (Koh, [78]) For r > 1, there exists a homogeneous I, generated by 22r — 2
quadrics in a polynomial ring with 22r variables for which

maxdeg(/;) = 2,
reg(l;) > 227

Further examples of ideals with high regularity were produced by Beder et. al. [12],
Caviglia [23], Chardin—Fall [41], and Ullery [1e7].

Despite these examples of high regularity, there are many important and interesting
cases where regularity is bounded by (or equal to) a nice formula and is not dramatically
large. As always, the following open-ended problem is of high interest:

Problem 5.4. Find important and interesting cases where regularity is bounded by (or equal
to) a nice formula and is not dramatically large.

6. REGULARITY OF PRIME IDEALS

Regularity was studied in Algebraic Geometry as well. In that setting, much better
bounds than the doubly-exponential bound discussed in Theorem 5.2, are expected for the
regularity of the defining ideals of geometrically nice projective varieties. Lazarsfeld’s book
[86, sECTION 1.8] and the introduction of the paper [84] by Kwak—Park provide nice overviews
of that point of view. In fact, the concept of regularity was introduced by Mumford [98]
and generalizes ideas of Castelnuovo. The relation between the definitions of regularity of a
coherent sheaf and regularity of a graded ideal (or module) is given in Eisenbud—Goto [53],
and may be also found in [51, PROPOSITION 4.16].

Consider a nondegenerate projective variety X C P~ that is, X does not lie on
a hyperplane in P,

Some nice bounds were proved in the smooth case. The following bound follows
from a more general result by Bertram—Ein—Lazarsfeld [15]:

Theorem 6.1 (Bertram—Ein-Lazarsfeld, [15]). Let X C P"~! be a smooth irreducible pro-

Jective variety. If X is cut out scheme-theoretically by hypersurfaces of degree < s, then
reg(X) <1+ (s — 1) codim(X).
This result was generalized in [42] and [48]. See also [38] for an overview.

Theorem 6.2 (Mumford, [8, THEOREM 3.12]). If X C P*lisa nondegenerate smooth pro-

Jjective variety, then
reg(X) < (dim(X) + 1)(deg(X) — 2) + 2.
This bound was improved by Kwak—Park as follows:

Theorem 6.3 (Kwak—Park, [84, THEOREM c]). If X C P"~! is a nondegenerate smooth pro-
Jjective variety with codim(X) > 2, then

reg(X) < dim(X)(deg(X) — 2) + 1.
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In the influential paper [8], Bayer and Mumford wrote:

“...the main missing piece of information between the general case and the geo-
metrically nice smooth case is that we do not have yet a reasonable bound on the
regularity of all reduced equidimensional ideals.”

Note that the bounds in the above theorems involve two parameters; for example, dim(X)
and deg(X) are used in Theorem 6.2. The following bound involving only deg(X) was first
considered in the smooth case:

reg(X) < deg(X).

It was conjectured by Eisenbud—Goto [53] for any reduced and irreducible nondegenerate
variety, and they expected that it might even hold for reduced equidimensional X which are
connected in codimension 1 [8]. In fact, they conjectured the more refined bound

reg(X) < deg(X) — codim(X) + 1,

which is sharp as equality holds for the twisted cubic curve. This is called the Regularity
Conjecture. In particular, it yields the following regularity conjecture for prime ideals:

Conjecture 6.4 (Eisenbud—Goto [53], 1984). If L is a homogeneous prime ideal in S, and
L C(x1,...,%,)% then
reg(L) = deg(L).

In particular, L is generated in degrees < deg(L).

The condition L C (x1,...,x,)? is equivalent to requiring that the projective variety
V(L) is not contained in a hyperplane in P*~!. Prime ideals that satisfy this condition are
called nondegenerate.

The Regularity Conjecture is proved for curves by Gruson—Lazarsfeld—Peskine [69],
completing fundamental work of Castelnuovo [22]; see also [67]. It is also proved for smooth
surfaces by Lazarsfeld [85] and Pinkham [1e3]. In the smooth case, Kwak [81-83] gives bounds
for regularity in dimensions 3 and 4 that are only slightly worse than the optimal ones. The
conjecture also holds in the Cohen—Macaulay case by a result of Eisenbud—Goto [53]. Many
other special cases and related bounds have been proved as well.

In [92] Jason McCullough and I construct counterexamples to the Regularity Con-
jecture. We provide a family of prime ideals P,, depending on a parameter r, whose degree
is singly exponential in r and whose regularity is doubly exponential in r. Our main theorem
is much stronger:

Theorem 6.5 (McCullough—Peeva, [92]). The regularity of nondegenerate homogeneous
prime ideals is not bounded by any polynomial function of the degree (multiplicity), i.e.,
for any polynomial f(x) € R[x] there exists a nondegenerate homogeneous prime ideal Y
in a standard graded polynomial ring over C such that reg(Y) > f(deg(Y)).

For this purpose, we introduce in [92] an approach which, starting from a homo-
geneous ideal 7, produces a prime ideal P whose projective dimension, regularity, degree,
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dimension, depth, and codimension are expressed in terms of numerical invariants of /. Our
approach involves two new concepts:

(1) Rees-like algebras (inspired by an example by Hochster published in [11]) which,
unlike the standard Rees algebras, have well-structured defining equations and
minimal free resolutions;

(2) A step-by-step homogenization technique which, unlike classical homogeniza-
tion, preserves graded Betti numbers.

Further research in this direction was carried out by Caviglia—Chardin—-McCul-
lough—Peeva—Varbaro in [24]. Our expository paper [93] provides an overview of counterex-
amples and the techniques used to prove them.

The bound in the Regularity Conjecture is very elegant, so it is reasonable to expect
that work will continue on whether it holds when we impose extra conditions on the prime
ideal: for example, for smooth varieties or for toric ideals (in the sense of the definition in
[101, SECTION 65]).

Instead of trying to repair the Regularity Conjecture by imposing extra conditions,
one may wonder:

Question 6.6 (McCullough—Peeva, [93]). What is an optimal function f(x) such that
reg(L) < f(deg(L)) for any nondegenerate homogeneous prime ideal L in a standard graded
polynomial ring over C?

Since Theorem 5.2 gives a doubly exponential bound on regularity for all homoge-
neous ideals, and in view of Theorem 6.5, the following question is of interest:

Question 6.7 (McCullough—Peeva, [93]). Does there exist a singly exponential bound for
regularity of homogeneous nondegenerate prime ideals in a standard graded polynomial ring
over C, in terms of the multiplicity alone?

In [8, COMMENTS AFTER THEOREM 3.12] Bayer and Mumford wrote:
“We would conjecture that if a linear bound doesn’t hold, at the least a single
exponential bound, i.e. reg(L) < maxdeg(L)®™, ought to hold for any reduced
equidimensional ideal. This is an essential ingredient in analyzing the worst-case
behavior of all algorithms based on Grobner bases.”

For prime ideals, their conjecture is:

Conjecture 6.8 (Bayer—Mumford, [8, COMMENTS AFTER THEOREM 3.12]). If L is a homogeneous
non-degenerate prime ideal in S = C[xy,..., Xxy], then

reg(L) < maxdeg(L)°®™,

where maxdeg(L) is the maximal degree of an element in a minimal system of homogeneous

generators of L.
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7. REGULARITY OF THE RADICAL

Ravi [1e4] proved that in some cases the regularity of the radical of an ideal is no
greater than the regularity of the ideal itself. For a long time, there was a folklore conjecture
that this would hold for every homogeneous ideal. However, counterexamples were con-
structed by Chardin—D’Cruz [4e]. They obtained examples where regularity of the radical is
nearly the square (or the cube) of that of the ideal.

Theorem 7.1 (Chardin—-D’Cruz, [4e, EXAMPLE 2.51). Form > 1 and r > 3, the ideal

+1 r r+1 1

Imr = O™u* —x"zv, 27— xu” T = xv”, y™u" — X zu" )

in the polynomial ring C[x, y, z,u, v] has
reg(Jm,r) =m+2r + 1,
reg(v/ JIm,r) = m@r?—2r—1)+ 1.

The existence of a polynomial bound is very unclear, so perhaps it is reasonable to
focus on the following folklore question which is currently open:

Question 7.2. Ts there a singly exponential bound on reg(~/7) in terms of reg(/) (and pos-
sibly codim(/) or n) for every homogeneous ideal / in a standard graded polynomial ring
over C?

In order to form reasonable conjectures, it would be very helpful to develop methods
for producing interesting examples. In [86, REMARK 1.8.33] Lazarsfeld wrote:

“...the absence of systematic techniques for constructing examples is one of the
biggest lacunae in the current state of the theory.”

8. SHIFTS
Let T be a graded finitely generated S-module. The (upper) shifts are refinements
of the numerical invariant regularity. The (upper) shift at step i is

t:(T) = max{j | b;,;(T) # 0}
and the adjusted shift is
ri(T) = max{j | bii+;(T) # 0},

SO
ri(T) =t;(T) —1i.

Note that ro(7") is the maximal degree of an element in a minimal system of generators of T',
and
reg(T) = max{r,- (T)}.
14
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Let L be a graded ideal in S. The a, b-subadditivity condition for L is
la+p(S/L) < 1a(S/L) +15(S/L). 8.1)
Note that it is equivalent to
Ta+p(S/L) < 1a(S/L) + rp(S/L).

We say that L satisfies the general subadditivity condition if (8.1) holds for every a, b. We
say that L satisfies the initial subadditivity condition if (8.1) holds for » = 1 and every a.
We say that L satisfies the closing subadditivity condition if (8.1) holds for every a, b with
a + b = pd(L). Gorenstein ideals failing the subadditivity condition were constructed by
McCullough—Seceleanu in [95].

Problem 8.1. (1) (McCullough, [91]) It is expected that the general subadditivity
condition holds for every monomial ideal L.

(2) (Avramov—Conca-lIyengar, [7]) It is conjectured that the general subadditivity
condition holds if S/L is a Koszul algebra.

(3) (McCullough, [91]) It is expected that the general subadditivity condition holds
for every toric ideal L.

There are supporting results in special cases; the expository paper [91] provides
a nice overview of the current state of these problems. For monomial ideals, Herzog—
Srinivasan [75] proved that the initial subadditivity condition holds.

Another interesting direction of using shifts is:

Problem 8.2. Find good upper bounds on regularity using the shifts in part of the minimal
free resolution.

The following result shows how this may work:
Theorem 8.3 (McCullough, [9e]). Let L be a homogeneous ideal in S. Set ¢ = f%'| Then

[y 6(S/1)

reg(S/L)SZti(S/1)+ (c—1)!

i=1

9. THE EGH CONJECTURE

We start with a brief introduction to Hilbert functions and lex ideals. If I is a homo-
geneous ideal in S, then the quotient R := S/ inherits the grading by R; = S;/I; for all i.
The size of a homogeneous ideal J in R is measured by its Hilbert function

HﬂbR/J(i) = dimC(R,-/J,-) fori € Z.

Hilbert’s insight was that Hilbg, s is determined by finitely many of its values. He proved
that there exists a polynomial (called the Hilbert polynomial) g(t) € Q|t] such that

Hile/J(i) = g(l) fori > 0.
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If S/J (here R = S) is the coordinate ring of a projective algebraic variety X, then the
degree of the Hilbert polynomial equals the dimension of X; the leading coefficient of the
Hilbert polynomial determines another important invariant — the degree (multiplicity) of X.
Hilbert functions for monomial ideals in the ring C[xy, ..., x,]/(x?, ..., x2) have been
extensively studied in Combinatorics since each such Hilbert function counts the number of
faces in a simplicial complex.

Lex ideals are fruitful tools in the study of Hilbert functions. They are monomial
ideals defined in a simple way: Denote by >, the lexicographic order on the monomials in
S extending x; > --- > x,. A monomial ideal L in S is lex if the following property holds:
if m € L is amonomial and g >;,, m is a monomial of the same degree, then ¢ € L (that is,
for each i > 0 the vector space L; is either zero or is spanned by lex-consecutive monomials
of degree i starting with x}).

A core result in Commutative Algebra is Macaulay’s Theorem 9.1, which charac-
terizes the Hilbert functions of homogeneous ideals in the polynomial ring S

Theorem 9.1 (Macaulay, [87]). For every homogeneous ideal in S there exists a lex ideal
with the same Hilbert function.

The Hilbert function of a lex ideal is easy to count. This leads to an equivalent formu-
lation of Macaulay’s Theorem 9.1 which characterizes numerically (by certain inequalities)
the Hilbert functions of homogeneous ideals; see [101, SECTION 49].

Lex ideals also play an important role in the study of Hilbert schemes. Grothendieck
introduced the Hilbert scheme #, ¢ that parametrizes subschemes of P” with a fixed Hilbert
polynomial g. The structure of the Hilbert scheme is known to be very complicated. In [71]
Harris and Morrison state Murphy’s Law for Hilbert schemes:

“There is no geometric possibility so horrible that it cannot be found generically
on some component of some Hilbert scheme.”

The main structural result on #, ¢ is Hartshorne’s Theorem:
Theorem 9.2 (Hartshorne, [72]). The Hilbert scheme J; ¢ is connected.

The situation is that every homogeneous ideal with a fixed Hilbert function # is
connected by a sequence of deformations to the lex ideal with Hilbert function 4. A defor-
mation connects two ideals J;—¢ and J;=1 in the sense that we have a family of homogeneous
ideals J; varying with the parameter ¢ € [0, 1] so that the Hilbert function is preserved; in
this case, the ideals J; form a path on the Hilbert scheme. Hartshorne’s proof [72] relies on
deformations called “distractions” which use generic change of coordinates and polarization.
Analyzing the paths on a Hilbert scheme may shed light on whether there exists an object
with maximal Betti numbers.

Theorem 9.3 (Bigatti—-Hulett—Pardue, see [1ee]). A lex ideal in S has the greatest Betti num-

bers among all homogeneous ideals in S with the same Hilbert function.
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This result was quite surprising when it was discovered since counterexamples were
known in which no ideal with a fixed Hilbert function attains minimal Betti numbers. It yields
numerical upper bounds on Betti numbers as follows: the minimal free resolution of a lex
ideal is the Eliahou—Kervaire resolution [57] (see [101, SECTION 28]), and it provides numerical
formulas for the Betti numbers of a lex ideal.

It is natural to ask if similar results hold over other rings. For starters, we need rings
over which Theorem 9.1 holds. It actually fails over most graded quotient rings of S. For
example, there is no lex ideal in the ring C[x, y]/(x2y, xy?) with the same Hilbert function
as the ideal (xy).

Theorem 9.4. Macaulay’s Theorem 9.1 holds over the following rings:
(1) (Kruskal, Katona, [77,8e]) an exterior algebra E over C.

(2) (Clements—Lindstrom, [45]) a Clements—Lindstrom ring C := C[x1,...,x,]/ P,
where P is an ideal generated by powers of the variables.

(3) (Gasharov—Murai—Peeva, [66]) a Veronese ring V := S/ J, where J is the defin-
ing ideal of a Veronese toric variety.

Proving analogues of Theorem 9.3 for the above rings is difficult since minimal
resolutions over exterior algebras, Clements—Lindstrom rings, or Veronese rings are infi-
nite (in contrast, Theorem 9.3 is about finite resolutions) and so they are considerably more
intricate. It was proved that every lex ideal has the greatest Betti numbers among all homo-
geneous ideals with the same Hilbert function over the following rings: over E by Aramova—
Herzog—Hibi [6], over C by Murai—Peeva [99], and over V' by Gasharov—Murai—Peeva [66].

Hilbert functions of ideals containing (xf, ..., x2) are characterized numerically
(by certain inequalities) by Kruskal-Katona’s Theorem [77, 8e], which is a natural analogue
of Macaulay’s Theorem; see Theorem 9.4(1,2). Eisenbud—Green—Harris conjectured that
the same numerical inequalities for the Hilbert function hold for all ideals in .S containing a
quadratic regular sequence:

Conjecture 9.5 (Eisenbud—Green—Harris, [54]). Let L C S be a homogeneous ideal contain-
ing a regular sequence of n quadratic forms. There exists an ideal N containing x%, O s

with the same Hilbert function as L.

Kruskal-Katona’s Theorem was generalized by Clements—Lindstrom [45] to a char-
acterization of the Hilbert functions of ideals containing powers of the variables; see Theo-
rem 9.4(2). In view of this, Eisenbud—Green—Harris noted in [54] that Conjecture 9.5 can be
extended to cover all complete intersections as follows:

Conjecture 9.6 (Eisenbud—Green—Harris, [54]). Let L C S be a homogeneous ideal contain-
ing a regular sequence of forms of degrees a; < --- < a,. There exists an ideal N containing
x{', ..., xp" with the same Hilbert function as L.
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Conjecture 9.5 is considered to be the main case of the Eisenbud—Green—Harris
Conjectures, called the EGH Conjectures.

In their original form in [54], the EGH Conjectures are stated in terms of numerical
inequalities for the Hilbert function. We give an equivalent form, which follows immediately
from the Clements—Lindstrom Theorem 9.4(2).

Eisenbud, Green, and Harris were led to the EGH Conjectures by extending a series
of results and conjectures in Castelnuovo Theory in [54]. After that, they made the connection
to the Cayley—Bacharach Theory in [55]. They provide in [55] a nice survey of the long history
of Cayley—Bacharach theory in Algebraic Geometry.

The EGH Conjectures turned out to be very challenging. Some special cases, appli-
cations, and related results are proved in [2,3,25,27,30,33,34,43,44,46,47,54,55,59,70,96,105,106].
One of the strongest results is the recent paper [26] by Caviglia—DeStefani.

We now focus on Betti numbers related to the EGH Conjectures. Let L C S be a
homogeneous ideal containing a regular sequence of forms of degrees a; < --- < a,. The
concept of a lex ideal can be generalized to the concept of a lex-plus-powers ideal which
is a monomial ideal containing x‘l“, ..., x2n and otherwise is like a lex ideal. G. Evans
conjectured the more general Lex-Plus-Powers Conjecture that, among all graded ideals with
a fixed Hilbert function and containing a homogeneous regular sequence of degrees a; <
-++ < ay, the lex-plus-powers ideal (which exists according to the EGH Conjectures) has the
greatest Betti numbers. This conjecture was inspired by Theorem 9.3.

Theorem 9.7 (Mermin—-Murai, [97]). The Lex-Plus-Powers Conjecture holds for ideals con-
taining pure powers.

The general Lex-Plus-Powers Conjecture (for ideals containing a homogeneous reg-
ular sequence) is very difficult. Some special cases are proved in [31,59, 63, 64,105,106]. The
expository papers by Caviglia—DeStefani—Sbarra [28] and by Francisco-Richert [65] provide
nice overviews of this challenging topic.
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ABSTRACT

Arithmetic dynamics is a relatively new field in which classical problems from number
theory and algebraic geometry are reformulated in the setting of dynamical systems. Thus,
for example, rational points on algebraic varieties become rational points in orbits, and
torsion points on abelian varieties become points having finite orbits. Moduli problems
also appear, where, for example, the complex multiplication points in the moduli space

of abelian varieties correspond to the postcritically finite points in the moduli space of
rational maps. In this article we give a survey of some of the major problems motivating
the field of arithmetic dynamics, and some of the progress that has been made during the
past 20 years.
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1. INTRODUCTION

This article is a survey of the comparatively new field of Arithmetic Dynamics, a field
where arithmetic and dynamics join forces.' But the word “arithmetic” in “arithmetic dynam-
ics” is itself short for “arithmetic geometry,” a field where the venerable subjects of number
theory and algebraic geometry meet. Thus arithmetic dynamics is a melting pot filled with
ingredients from three classical areas of mathematics.

Dynamical
Systems
Arith;nétic DWmics
Number . . Algebraic
Theory Geometry

In this article we will discuss arithmetic dynamics over global fields, which for the
sake of exposition we will generally take to be number fields, i.e., finite extensions of Q.
Our primary focus will be dynamical analogues and generalizations of famous theorems and
conjectures in arithmetic geometry, centered around the following five major topics that have
helped drive the development of arithmetic dynamics over the past few decades:

* Topic #1: Dynamical Uniform Boundedness

* Topic #2: Dynamical Moduli Spaces

* Topic #3: Dynamical Unlikely Intersections

* Topic #4: Dynatomic and Arboreal Representations
 Topic #5: Dynamical and Arithmetic Complexity

Remark 1.1. Of course, our chosen five topics do not fully cover the varied problems that
fall under the rubric of arithmetic dynamics over global fields. And there are also highly
active areas of arithmetic dynamics in which people study dynamical systems defined over
non-archimedean fields such as Q, and C,, and over finite fields IF,. We refer the interested
reader to the survey article [1e] for a more extensive discussion.

1 As Jung might have said: “The meeting of two mathematical fields is like the contact of two
chemical substances: if there is any reaction, both are transformed.”
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2. DEFINITIONS AND TERMINOLOGY
An abstract dynamical system is simply an object X and an endomorphism (self-
map)’
f:X-X

The iterates of [ are denoted by

ft=fofo--0f,
S —
n copies of f

and the (forward) f-orbit of an element x € X is its image for the iterates of f,’
Or(x) ={f"(x) :n >0}
We say that x € X is f-periodic if
f"(x) =x forsomen > 1,

in which case the smallest such 7 is the (exact) period of x. A point x € X is f -preperiodic
if its f-orbit O (x) is finite, or equivalently, if f™ (x) is periodic for some m > 0.

Two dynamical systems f1, f> : X — X are isomorphic if there is an automor-
phism ¢ € Aut(X) such that

f=fl=¢ofiog. (2.1)

Note that (2.1) is a good notion of isomorphism for dynamics, since it respects iteration,
([ =(p o fop) =9 o fMop=(f")"

In particular, orbits and (pre)periodic points of the isomorphic dynamical systems f and f¢
are more-or-less identical, since

Ope(x) =g (Or(p(x))), Per(f*)= ! (Per(f)), PrePer(f%)= ! (PrePer(f)).

We conclude this section with a brief discussion of endomorphisms f : P! — P!
i.e., rational functions of one variable. For P € P!, we choose a local parameter zp at P
and define P to be a critical point of f if

ﬁ(P) =0. (2.2)
dZP

The vanishing condition (2.2) is independent of the choice of zp, and counted with appro-
priate multiplicities, the map f has 2 deg( f) — 2 critical points.*

2 To avoid complications, we always work in a subcategory of the category of sets, i.e., all of
our objects are sets.

3 More generally, let ¥ = {f1, ..., fr} be a set of endomorphisms of X, and let (¥') be the
semigroup of maps generated by arbitrary composition of elements of ¥ . Then the ¥ -orbit
of xistheset O (x) = {f(x): f € (F)}.

4 More precisely, this is true as long as f is separable, so in particular it is always true in
characteristic 0.
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Arithmetic Geometry

rational and integral
points on varieties

torsion points on
abelian varieties

abelian varieties with

complex multiplication

Dynamical Systems

rational and integral
points in orbits

periodic and preperiodic
points of rational maps

postcritically finite
rational maps

TABLE 1
A dictionary for Arithmetic Dynamics [82, §6.5]

The critical points of an endomorphism f of P! are the points at which f fails to
be locally bijective. Their location crucially affects the dynamics of f.

Definition 2.1. A (separable) endomorphism f : P! — P! is postcritically finite (PCF) if
all of its critical points are preperiodic. PCF maps play a key role in the study of dynamics
on P!

3. A DICTIONARY FOR ARITHMETIC DYNAMICS

Table 1 gives three fundamental analogies that are used to travel between the worlds
of arithmetic geometry and dynamical systems. The associations described in the first two
lines of Table 1 are fairly tight, in the sense that they may be used to reformulate many stan-
dard results and conjectures in arithmetic geometry as dynamical statements. The following
two examples illustrate these connections.

Example 3.1. Let A be an abelian group, let P € A, and let fp : A — A be the translation-
by-P map, i.e., fp(Q) = Q + P. Then the subgroup of A generated by P is the union of
two orbits

ZP = 0f(0)UOr ,(0).

More generally, for any finite set of elements Py,..., P, € A,welet? ={+Py,..., =P},
and then the subgroup () generated by Py, ..., P, is the generalized orbit

(P) = 02(0)={fp(0): P € (P)}.

In this way, statements about finitely generated subgroups of abelian varieties may be refor-
mulated as statements about orbits.

Example 3.2. Let G be a group, let d > 2, and let f; : G — G be the d-power map
f1(g) = g?. Then it is an easy exercise to check that

PrePer(f) = Giors,
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i.e., the elements of G that are preperiodic for the d-power map are exactly the elements
of G having finite order. In this way statements about torsion points on abelian varieties may
be reformulated as statements about preperiodic points for the multiplication-by-d map.

Remark 3.3. Examples 3.1 and 3.2 help to justify the associations described in the first two
lines of Table 1. The third line is a bit more nebulous. It is a rough analogy based on the
following reasoning:’

* The CM points in the moduli space #, of abelian varieties of dimension g are
associated to abelian varieties that have a special algebraic property, namely
their endomorphism ring is unusually large. The set of CM points is a count-
able, Zariski-dense set of points in 4, whose coordinates are algebraic numbers.

* The PCF points in the moduli space ‘M[II of endomorphisms of P! are associated
to maps that have a special dynamical property, namely the orbits of their critical
points are unusually small. The set of PCF points is a countable, Zariski-dense
set of points in ‘M¢11 whose coordinates are algebraic numbers.

Section 6 describes some progress that helps to justify the third analogy in Table 1. But
we must also note that the analogy is not perfect. In particular, CM abelian varieties are
abundant in all dimensions, i.e., CM points are Zariski-dense in 4, for all g > 1. However,
evidence suggests that for N > 2, PCF maps are not Zariski dense in the moduli space M év
of endomorphisms of PN cf. [34].

4. TOPIC #1: DYNAMICAL UNIFORM BOUNDEDNESS
The prototype and motivation for the dynamical uniform boundedness conjecture is
the following famous theorem.

Theorem 4.1 ([54]). Let E/Q be an elliptic curve defined over Q. Then
#E(Q)tors = 16.

Remark 4.2. Mazur’s theorem was generalized by Kamienny [37] to number fields of small
degree, and then by Merel [58], who proved that for all number fields K /Q and for all elliptic
curves E /K, there is a uniform bound

#E(K)os < C, where C depends only on the degree [K : Q].

A long-standing conjecture says that the same should be true for abelian varieties A/ K of
any dimension, where the upper bound depends on [K : Q] and dim(A).

Using the dictionary in Table 1, the theorems of Mazur—Kamienny—Merel and the
conjectural abelian variety generalization lead us to a major motivating problem in arithmetic
dynamics.

5 See Section 5 for the construction of the moduli space M év .
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Conjecture 4.3 (Dynamical uniform boundedness conjecture, [62]). Fix integers N > 1,
d > 2, and D > 1. There is a constant C(N, d, D) such that for all degree-d morphisms
f PN — PN defined over a number field K of degree [K : Q] = D, the number of
K-rational preperiodic points is uniformly bounded,

#PrePer(f, P (K)) < C(N,d, D).

Remark 4.4. See also [79] for an earlier dynamical uniform boundedness conjecture for K3
surfaces admitting noncommuting involutions.

Remark 4.5. Although Conjecture 4.3 only deals with preperiodic points in projective
space, it can be used to prove the uniform boundedness conjecture for abelian varieties
alluded to in Remark 4.2 [21].

Remark 4.6. Conjecture 4.3 has been generalized to cover quite general families of dynam-
ical systems; see [72, QUESTION 3.2].

Conjecture 4.3 seems out of reach at present. Indeed, even quite special cases present
challenges that have not been overcome. We briefly summarize what is known and conjec-
tured in the simplest nontrivial case, which is quadratic polynomials over Q.

Theorem/Conjecture 4.7. Forc € Q, let f.(x) = x% +c.

(a) Theorem. Foreachn €{l1,2,3}, there are infinitely many ¢ € Q such that f.(x)
has a Q-rational point of period n.

(b) Theorem. For all ¢ € Q, the polynomial f.(x) does not have a Q-rational

point ...
— of order 4 [680];
— of order 5 [25];

— of order 6, conditional on the Birch—Swinnerton-Dyer conjecture
[86].

(c) Conjecture. For all n > 4, the polynomial f.(x) does not have a Q-rational
point of period n; see [911° and [25].

Remark 4.8. Just as there are elliptic modular curves X {'(n) whose points classify pairs
(E, P) consisting of an elliptic curve E and an n-torsion point P, there are so-called
dynatomic modular curves X f "(n) whose points classify pairs (c, «) such that « is a point
of period n for the polynomial f.(x) = x? + ¢. Mazur’s method for proving Theorem 4.1
is to show that X{!"(n) has no (noncuspidal) Q-rational points by mapping X{'(n) into a
carefully chosen quotient A of its Jacobian variety and showing that the group A(Q) is

[ Although in fairness it should be noted that [91] suggests the opposite conclusion, stating:
“Are there any rational periodic orbits of a quadratic x> + ¢ of period greater than 3? The
results for periods 1, 2, and 3 would lead one to suspect that there must be.”
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finite. The proof of Theorem 4.7 starts similarly using X {*"(n) instead of X¢(), but in this
situation, the Jacobian generally does not have a quotient whose group of rational points is
finite. Current methods, such as Chabauty—Coleman, for explicitly determining the rational
points on curves of high genus (barely) suffice to handle X f *(n) for n < 6. The difficulty,
or more concretely the difference, between the elliptic curve and dynamical settings centers
around the lack of a theory of Hecke correspondences in the dynamical case. (Mea culpa:
This simplified explanation is not entirely accurate, but it is meant to convey the overall
strategy of the proofs.)

Remark 4.9. Contingent on an appropriate version of the abcd-conjecture, the uniform
boundedness conjecture has been proven for the family of polynomials x¢ + ¢ [47], and
more recently for all polynomials [46]. An alternative proof, also using the abc-conjecture
and only valid over Q, says that if d is sufficiently large and ¢ # —1, then x¢ + ¢ has no
Q-rational periodic points other than fixed points [68].”

Remark 4.10. A function field analogue of the uniform boundedness conjecture for x? + ¢
is proven in [17,18]. In the function field setting, the uniformity in the degree [K : Q] described
in Conjecture 4.3 is replaced by a bound that depends on the gonality® of the field extension.

5. TOPIC #2: DYNAMICAL MODULI SPACES

We fix a field K and consider parameter and moduli spaces for the set of rational
self-maps of ]P’I]{V. A rational map f : IP’II(V -—> IP’II(V of degree-d is specified by an (N + 1)-
tuple of degree-d homogeneous polynomials,

f:[f()""’fN]’ fo,...,fNeK[X(),...,Xn],

such that fy, ..., fv have no common factors. The map f is a morphism if fy, ..., fx
have no common roots in P (K). We label the coefficients of fy. ..., fy in some specified
orderasai(f),az(f),...,a,(f),wherev =v(N,d) := (N;rd)(N + 1). Then each such f
determines a point

f=la(f)..an(f)] e PP

There is a homogeneous polynomial R € Z[ay,...,a,] called the Macaulay resultant having
the property that

f =1fo,---, fn]is amorphism <> R(al(f),...,av(f)) # 0.

The parameter space of degree-d endomorphisms of PV is

End) = {f e P! R(f) #0}.

7 We remark that it is easy to prove uniform boundedness for x4 + ¢ over Q when d is odd,
and more generally over any field K /Q with a real embedding. Indeed, it is an elementary
fact that if f : R — R is any nondecreasing function, then f has no nonfixed periodic
points; cf. [64].

8 The gonality of an algebraic curve X, or its function field, is the minimal degree of a non-
constant map X — P1.
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The isomorphism class of dynamical systems associated to f is the set of all conjugates, i.e.,
the set of all

f?=¢ o fop, wheregeAut(P’)=PGLy,.
Conjugation gives an algebraic action of PGLy; on the parameter space Endév via
PGLy41 xEnd) — End), (¢, f)~ f¢, (5.1)
and this action extends naturally to P”.

Definition 5.1. The moduli space of degree-d dynamical systems on PV is the quotient
space of Endy for the conjugation action (5.1),

MY =End) /PGLy 4 . (5.2)

It is natural to ask whether the quotient (5.2) can be given some nice sort of structure.
Geometric invariant theory (GIT) [63] provides a powerful tool for studying quotients of a
variety (or scheme) X by an infinite algebraic group G. GIT says that there are stable and
semistable loci X® C X* C X such that there exist quotient varieties (or schemes) X*//G
and X% //G having many agreeable properties.’

Theorem 5.2. Let N > 1 and d > 2.

(a) The quotient space ijv (C) = Endﬁiv (C)/ PGLy +1(C) has a natural structure
as an orbifold over C [59].

(b) The quotient space ngiV = Endfjv / PGLN +1 has a natural structure as a GIT
quotient scheme over Z; see [8el for N = 1 and [44,691 for N > 1.1°

It is clear that Mfiv is unirational, i.e., it is rationally finitely covered by a projec-
tive space, since Endflv is itself an open subset of a projective space. A subtler question is
whether M év is rational.

Theorem 5.3. Letd > 2.

(@) There is an isomorphism M} = A2, and the semi-stable GIT compactification
of M} as the quotient of the semi-stable locus in P> is isomorphic to P2 [59,8e].

(b) The space M}i is rational, i.e., there exists a birational map P29=2 ——» Mtli
[44].

Question 5.4. Is Mflv rational foralld > 2andall N > 1?

9 For example, over C the stable GIT quotient satisfies (X*//G)(C) = X*(C)/G(C), i.e.,
the geometric points of the stable quotient X*// G are the G(C)-orbits of the geometric
points of X. And the semistable GIT quotient has the property that (X**//G)(C) is proper,
i.e., it is compact, so it provides a natural compactification of the stable quotient.

10 More precisely, the parameter space EndfiV is in the GIT stable locus for the action
of SLy 41 on PY linearized relative to the line bundle @pv (1), and thus the quotient M 9’
exists as a GIT quotient scheme over Z.
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Just as is done with the moduli space of abelian varieties, it is advantageous to add
level structure to dynamical moduli spaces by specifying maps together with points or cycles
of various shapes. We start with the case of a single periodic point, and then consider more
complicated level structures.

Definition 5.5. For N > 1,n > 1, and d > 2, we write
Endfiv[n] = {(f, P)e Endfiv xP™ : P has exact f-period n}

Thus the points of Endfl,V [1] classify maps with a marked point of exact period n.

More generally, we define a (preperiodic) portrait P to be the directed graph of
a self-map of a finite set of points. (See Figure 1 for an example of a portrait.) Then for a
portait & having k vertices, we let'!

Py, ..., Py are f-preperiodic and
Endy [P] = { (f. Pr..... Px) € End] (V)1 f (P Py > (Pro..., Pi)
is a model for the portrait 5

There is a natural action of ¢ € PGLy 4+ on Endfiv [P] given by
(f P PO = (07 (Py). 07 (Ph)
We denote the resulting quotient space by
MY [P] = End) [#]/ PGLy 11 . (5.3)

If €, is a portrait consisting of a single n-cycle, then Endé,v (€] = Endé,v [n], and we
write Mfiv[n] for Mév [Cy].

.4\—.4—. * ¢+— 0
oO———> 06— O o ———> 0

FIGURE 1
A portrait consisting of a 3-cycle, a 4-cycle, and three other preperiodic points

Theorem 5.6 ([20]). Let P be a preperiodic portrait.'” Then the quotient space :Mfiv [P]
described in (5.3) exists'® as a GIT geometric quotient scheme over Z.

11 This definition of Endfl.v [#] conveys the right idea; see [20] for a rigorous definition.

12 More generally, one can construct the moduli space M 9’ [P] associated to a portrait J that
includes nonpreperiodic points and/or whose vertices are assigned multiplicities.

13 There is a precise combinatorial-geometric characterization of the portraits & for
which ‘lei [P1(C) # B, but analogous characterizations for N > 2 and/or in positive
characteristic are not currently known.
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It is known [87] that the moduli space +, of principally polarized abelian varieties
is of general type for all g > 9. Analogous results for dynamical moduli spaces are still
unknown, but our dictionary yields some conjectures.'*

Conjecture 5.7. Let N > 1 and d > 2.
(a) Foralln > 1, the moduli space :Mfiv [n] is irreducible.

(b) For all sufficiently large n, depending on N and d, the moduli space M{Ijv [n] is
a variety of general type.

Remark 5.8. The moduli space M} [n] of degree-2 endomorphisms of P! is a finite cover
of M% =~ A2, soitis a surface. It is known to be irreducible for all n > 1[48]. For 1 <n < 5,
the surface M [n] is a rational surface, while M}[6] is a surface of general type [12].

Remark 5.9. Tai’s proof [87] that +, is of general type relies on the theory of theta func-
tions, which are used to create sections of the canonical bundle. There are similarly naturally
defined functions on Mév , and more generally on M fiv [n], that are defined using multiplier
systems.'> For N = 1, it is known that a multiplier system of sufficiently high degree gives a

16 onto its image [55]. So although the anal-

map M; — A" that is (essentially) finite-to-one
ogy between theta functions on 4, and multiplier system functions on Mfiv is tenuous at
best, the latter currently provide one of the most natural ways to create dynamically defined

functions on dynamical moduli spaces.

Amap f e Endfiv (K) defined over K with a K -rational n-periodic point P € P¥(K)
gives a K-rational point ( f, P) € eMéV [7](K). The dynamical uniform boundedness conjec-
ture (Conjecture 4.3) is thus closely related to the question of K -rational points on dynamical
moduli spaces. We formulate a uniform boundedness conjecture for such spaces.

Conjecture 5.10 (Dynamical uniform boundedness conjecture: version 2). Fix integers
N >1,d >2,and D > 1. There is a constant C' (N, d, D) such that for all number fields K
of degree [K : Q)| = D and all preperiodic portraits P,

(#{vertices of P} = C'(N,d, D)) = MY [PI(K) = 0.

14 See [18, CONJECTURE 10.13] for a generalization of Conjecture 5.7 that deals with quite
general dynamical moduli spaces that classify families of maps with marked periodic points
of large period, including bounds on their number of components, Kodaira dimension, and
gonality.

15 Briefly, for N = I, letk > 1,let f € End}i, and let Py, ..., P, be the periodic points
of f with period dividing k. The derivatives (fk)’(P,-) are PGL;-conjugate independent,
and the k-level multiplier system of f is the list Ay (/) of the elementary symmetric func-
tions of (/%) (P1),...,(f*) (P;). Then Ag(f) gives a well-defined morphism Ay (f)
M}i — AT,

16 More precisely, the map is finite-to-one unless # is a square, in which case it maps the ;-
line of flexible Lattes maps to a single point. This is thus one of those results that’s “true
except in the obvious cases where it is false.”
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Remark 5.11. It is clear that Conjecture 5.10 implies Conjecture 4.3. The opposite impli-
cation is also true, but the proof is more difficult due to the Field-of-Moduli versus Field-of-
Definition Problem. The key step, proven in [19] and [2e, SECTIONS 16-17], is to show that every
pointin M 9’ [P](K) is represented by a point in Endfl,v [P](L) defined over an extension L/ K
whose degree is bounded solely by d and N. When N = 1, one can take [L : K] < 2 [32],
but for N > 2 it is an open question whether [L : K] needs to depend on d .

—N
Within M fiv and its GIT semistable compactification M ; lie many interesting sub-

varieties. For example:

* The space of polynomial maps'’

Polyilv = {f € Mflv : f comes from a morphism AY — AN}

is a subvariety of MY satisfying dim(Poly}) = 3 dim(MY).

e Jteration of dominant rational maps presents its own interesting challenges; see
Section 8 for some examples. The set of degree d dominant rational maps
PN ——> PV is a Zariski open subvariety of P*~!(C) [s1, PROPOSITION 7], but
the locus of points in (ﬂfj ~ eMéV )(C) arising from dominant rational maps is

not well understood; cf. [42].

The spaces of polynomial maps and dominant rational maps have large dimension.
At the other extreme are various 1-parameter families of maps that have been much studied,
starting with the ubiquitous family of quadratic polynomials

felx) = x>+

that gives a line A in Mj =~ A2. Adding level structure leads to a dynamical analogue of the
classical elliptic modular curve X£!'(n) that classifies pairs (E, P) consisting of an elliptic
curve E and an n-torsion point P. In the dynamical setting, we replace the n-torsion point
with a point of period n, but the following example shows that some care is needed.

Example 5.12. The polynomial f(x) = x? — % has no points of exact period 2, since
f(x)—x=02x+1)2x—-3) and [f2(x)—x=(2x+1)3}Q2x-3).

But since % = (2x + 1)2, we say that x = —% is a point of formal period 2 for f(x).'®
17 For example, the space Poly}, C M} is the space of polynomials x? +ax4=2 + -+ +a,4

modulo the conjugation x — ¢x for a primitive (d — 1)-root of unity ¢, so Poly}i is a quo-
tient of A9~ by a finite group.

18 In general, points of formal period n for the polynomial f(x) are roots of the dynatomic
polynomial
. d
7 (x) = [](£4 ) = x) /D,
dln

where p is the Mobius function. Dynatomic polynomials are thus dynamical analogues of
classical cyclotomic polynomials, but with the caveat that @ (x) may have roots of mul-
tiplicity greater than 1, even in characteristic 0. In higher dimension, the points of formal
period n give a dynatomic 0-cycle whose effectivity is proven in [33].
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Definition 5.13. The level n dynatomic curve'® (associated to x* + ¢) is the affine curve
Y (n) = {(c.a) € A? : « is a point of formal period n for f.(x) = x> + c}.

The desingularized projective completion of ¥;>"(n) is denoted X{*" (). The points in the
complement X f MTm)NY ld "(n), which correspond to degenerate maps, are called cusps.””

Points in Yld "(n)(K) classify quadratic polynomials defined over K having a

K -rational point of period n, so a version of Theorem/Conjecture 4.7 says that
Exercise Xfyn(n) =~ P! forne{l1,2,3),
Theorem X|*"(n)(Q) = {cusps} forn € {4,5,6},
Conjecture X fyn(n)((@) = {cusps} foralln > 4.

Much is known about the geometry of X f *"(n), as summarized in the next result,
although we note that even the proof that X f "(n) is geometrically irreducible relies on
dynamical properties of x2 + ¢ as reflected in the geometry of the Mandelbrot set.

Theorem 5.14. Let X fy"(n) be the smooth projective dynatomic curve associated to
2
X< +c.

(a) The dynatomic modular curve X fyn (n) is geometrically irreducible over C [13,
41,761.%!

(b) There is an explicit, but rather complicated, formula for the genus of

X (n) 1611, In any case, genus(X " (n)) — oo as n — oo.

(c) The gonality” of X f "(n) goes to 0o as n — oo [18].

6. TOPIC #3: DYNAMICAL UNLIKELY INTERSECTIONS
The guiding philosophy of unlikely intersections in arithmetic geometry is the fol-
lowing general, albeit somewhat vague, principle.

19 There are dynatomic curves associated to many other interesting 1-parameter fami-
lies of maps, including, for example, the family of degree-d unicritical polynomials
Jac(x) = x? + ¢ and the family of degree-2 rational maps gp(x) = x/(x2 + b) that
admit a nontrivial automorphism g5 (—x) = —gp(x).

20 We mention that there is a natural action of f on Yldy"(n) defined by (¢, @) — (c, f(@)),
and that the quotient curve Y(;i M(n) = Yld Y (n)/(f) and its completion X, gy "(n) provide
analogues of the elliptic modular curve X, 8" (n).

21 More generally, the dynatomic modular curves associated to the family of unicritical poly-
nomials x¢ + ¢ are irreducible. However, the dynatomic modular curves associated to the
family x/(x2 + b) turn out to be reducible for even 7; see [48].

22 The gonality of an algebraic curve X is the minimal degree of a nonconstant map X — P1.
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The Tao of Unlikely Intersections
Let X be an algebraic variety, let Y € X be an algebraic subvariety

of X, and let I' C X be an “interesting” countable subset of X. Then
' N'Y is sparse (except when it is “obviously” not).

Slightly more precisely, if I' N Y is Zariski dense in Y, then there
should be a geometric reason that explains its density.

We recall two famous unlikely intersection theorems from arithmetic geometry,
which we initially state in an intuitively appealing, though somewhat whimsical, manner.

Theorem 6.1 (Mordell-Lang conjecture, [23,90]). Let A/C be an abelian variety, let Y C A
be a subvariety of A, and let T' C A(C) be a finitely generated subgroup of A. Then>

I’ NY is not Zariski dense in Y (except when it “obviously” is).

Theorem 6.2 (Manin—-Mumford conjecture, [73,74]). Let A/C be an abelian variety, and
let Y C A be a subvariety of A. Then

Awors N Y is not Zariski dense in Y (except when it “obviously” is).

The actual statements of Theorems 6.1 and 6.2 explain quite precisely that if ¥ is
saturated with special points, then there is a geometric reason for that saturation.

Theorem 6.3 (Rigorous formulation of Theorems 6.1 and 6.2). If T NY or As NY is
Zariski dense in Y, then Y is necessarily a translate of an abelian subvariety of A by a
torsion point of A.

Remark 6.4. Theorems 6.1 and 6.2 may be combined and strengthened by replacing the
abelian variety A with a semi-abelian variety and by replacing I" with its divisible sub-

group (J,,>.o[n] =" (I); see [561.

Theorem 6.1 says that points in a finitely generated subgroup I" generally do not lie
on a subvariety. According to Table 1, for the dynamical analogue of Theorem 6.1 we should
replace the group I with the points in an orbit. This leads to our first dynamical unlikely
intersection conjecture.

Conjecture 6.5 (Dynamical Mordell-Lang conjecture). Let X/C be a smooth quasipro-
Jjective variety, let | : X — X be a regular self-map of X, let P € X(C) be a point with
infinite f-orbit, and let Y C X be a subvariety of X. Then

Or(P) MY is not Zariski dense in Y (except when it “obviously” is).

Rigorous Formulation #1. If Oy (P) NY is Zariski dense, then Y is f -periodic.”*

23 The proof of Theorem 6.1 uses methods from Diophantine approximation. An earlier proof
in the case that Y is a curve of genus at least 2 used moduli-theoretic techniques [22].
24 We says that Z is f-periodic if there is an integer n > 0 such that /" (Z) = Z.
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Rigorous Formulation #2. The set
{n >0: f"(P) e Y}
is a finite union of one-sided arithmetic progressions [291.%

Example 6.6. Among the known cases of the dynamical Mordell-Lang conjecture, we cite
the following:

Unramified maps. Conjecture 6.5 is true for étale morphisms of quasiprojective
varieties [7]. See the monograph [8] for additional information.

Endomorphisms of A2. Conjecture 6.5 is true for all endomorphisms of A2
defined over Q [92].

Split endomorphisms. Conjecture 6.5 is true for split endomorphisms of (P1)”,
which are maps of the form f1(P1) X --- X fn(Py) [11], and more generally for
certain skew-split endomorphisms [31].

Remark 6.7. The dynamical Mordell-Lang conjecture has also been investigated in charac-
teristic p, although the statement may need a tweak. For example, if f is a projective surface
automorphism or a birational endomorphism of A? whose dynamical degree (see Section 8)
satisfies 8f > 1, then Conjecture 6.5 is true in all characteristics [94]. For other results in
finite characteristic, see, for example, [8,14,26].

We now turn to Theorem 6.2, which asserts that torsion points generally do not
lie on a subvariety. According to Table 1, for the dynamical analogue we should replace the
torsion points with preperiodic points, leading to our second dynamical unlikely intersection
conjecture.

Conjecture 6.8 (Dynamical Manin—-Mumford conjecture). Let X/C be a smooth quasi-
projective variety, let f : X — X be a regular self-map of X, andletY C X be a subvariety
of X. Then

PrePer(f) NY is not Zariski dense in Y (except when it “obviously” is).

Unfortunately, the following natural rigorous formulation of Conjecture 6.8 turns
out to be false.

Incorrect Ri mulation of Conje
If PrePe isZariski dense in Y, then Y iodic.

See [30] for a counterexample, and for an alternative formulation of Conjecture 6.8
that requires more stringent hypotheses on f and Y.

Both the Mumford—Manin and Mordell-Lang conjectures concern how special
points lie on subvarieties of a given variety. The André—Oort conjecture has a similar flavor,

25 A one-sided arithmetic progression is a set of integers of the form {ak + b : k € N} for
some fixed a, b € N. N.B. We allow a = 0.
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but the ambient variety is a moduli space and the specialness of the points comes from the
properties of the objects that they represent. The André—Oort conjecture is easy to state as
long as we are willing to sweep some quite technical definitions under the rug!*®

Conjecture 6.9 (André—Oort conjecture). Let S be a Shimura variety, let ' C § be a set of
special points of S, and let Y C S be an irreducible subvariety such that I' N'Y is Zariski
dense in Y. Then Y is a special subvariety of §.

The rough idea is that § is a moduli space whose points classify a certain class of
abelian varieties, a collection of special points 7 C § consists of points whose associated
abelian varieties have an additional special structure, and a special subvariety is one in which
every associated abelian variety has the 7 property for geometric reasons. The André—Oort
conjecture has been proven in many cases, including for § = Ai’ [7eland for § = A, [71,88].

We describe two sample dynamical unlikely intersection theorems that take place
in the moduli space of unicritical polynomials, which are polynomials of the form x? + c.
We view the first as a mixed unlikely intersection, because it involves one moduli parameter
and two orbit parameters.

Theorem 6.10 ([31). Let d > 2, and let a, b € C be complex numbers with a> # b?. Then

{ c € C  :aandb are both preperiodic for x4 + c} is a finite set.
——
moduli parameter special orbit parameters

The second result has more of the flavor of the André—Oort conjecture in that it
involves only moduli parameters and follows the dictionary in Table 1 by replacing complex
multiplication abelian varieties with postcritically finite rational maps.

Theorem 6.11 ([28]). Let d > 2, and let Y C A? be an irreducible curve that is not a line
of one of the following forms:

vertical line {(a,t) 1t € A'Y; horizontal line {(t,b) : t € A'};
shifted diagonal line {(1,¢t) : t € A", where £971 = 1.

Then
{(a, b) € Y : x%> + a and x> + b are both PCF} is a finite set.

special moduli parameters

A conjectural generalization of Theorem 6.10 allows both the map x? + ¢ and the
points @ and b to vary simultaneously.

Conjecture 6.12 ([15,27]). Let d > 2, let T be an irreducible curve, and let
«:T—>P' B:T—>P' and f:T — End}

be morphisms, i.e., @ and B are 1-parameter families of points in P and f is a 1-parameter

26 See, for example, [89] for the precise definition of Shimura variety, special point, and spe-
cial subvariety.
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family of degree-d endomorphisms of P. Assume that the families o and B are not f-
dynamically related.”’ Then

{t € T : oy and B; are both preperiodic for f;} is a finite set.

Formulating a general dynamical André—Oort conjecture is more complicated. The
first step is to construct an appropriate moduli space of rational maps with marked critical
points:?8

f €End} and P1,..., Py

MG = (fiP1y..., Pag—s):
d (/. Py 2d-2) are critical points of f

/PGL, .
Conjecture 6.13 (Dynamical André—Oort Conjecture, [4,82]). LetY C MZ,”‘ be an algebraic
subvariety such that the PCF mapsin Y are Zariski densein Y. Then Y is cut out by “critical
orbit relations. ”

Formulas of the form f™(P;) = f™(P;) define critical point relations,”® but other
relations may arise from symmetries of f, and even subtler relations may come from “hidden
relations” due to subdynamical systems. See [82, REMARK 6.58] for an example due to Ingram.
Thus for now we do not have a good geometric description of the phrase “critical orbit
relations” in general, but there is such a description for 1-dimensional families, i.e., for
Conjecture 6.13 with dim(Y) = 1 [4]. In this case the conjecture has been proven for 1-
dimensional families of polynomials [24], but it remains open for rational maps.

7. TOPIC #4: DYNATOMIC AND ARBOREAL REPRESENTATIONS

The focus of this section is on the arithmetic of fields generated by the coordinates of
dynamically interesting points. We let K /Q be a number field, and we start with a motivating
result from arithmetic geometry. Let £/ K be an elliptic curve, and let

P k.0 - Gal(K/K) — Aut(Ty(E)) = GL,(Z) (7.1)

be the representation that describes the action of the Galois group on the £-power torsion

points of E. A famous theorem characterizes the image.*"

27 Intuitively, the families & and B are f-dynamically related if there is a relationship between
the f-orbits of & and § that holds identically for all parameter values in 7. However, there
are some subtleties; see [18, DEFINITION 11.2] for a discussion and the precise, albeit
somewhat technical, definition.

28 It is easy to construct the GIT quotient for maps f having 2d — 2 distinct marked critical
points, but some care is needed to handle maps having higher multiplicity critical points;
see [20].

29 One might view these f”(P;) = f™ (P;) relations as dynamical analogues of Hecke corre-
spondences, although the analogy is somewhat tenuous.

30 A 19th century precursor to Serre’s theorem is a fundamental result on cyclotomic fields. It

says that the cyclotomic representation p®° : Gal(K/K) — Aut(jtpe0) = Z7 describing
the action of the Galois group on £-power roots of unity is surjective when K = Q, and that
the image of p¥°!° has finite index in Zj forall K.
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Theorem 7.1 (Serre’s Image-of-Galois Theorem, [77,78]). Assume that E does not have
complex multiplication.

(a) For all sufficiently large primes £, the Galois representation p%l KL is surjec-
tive.

(b) For all primes {, the image of the Galois representation pill KL is a subgroup
of finite index in GL,(Zy).

There are analogous conjectures, and some theorems, for the Galois representations
associated to higher-dimensional abelian varieties. We consider two analogues in arithmetic
dynamics.

7.1. Topic #4(a): Dynatomic representations
Let
f PN PN
be a morphism of degree d > 2 defined over K, and let
Peri(f) = {P € PN(K): P is f-periodic with exact period 7}.

The action of f on Per); () splits it into a disjoint union of directed n-cycles, and the action
of Gal(K/K) on Per}; (f) respects the cycle structure. The analogue of GL, in (7.1) is thus
the group of automorphisms of the graph

Pn,» = adisjoint union of v directed n-gons.

The abstract automorphism group of the directed graph 5, , is naturally described as a
wreath product in which an automorphism of $, , is characterized as a permutation of the v
polygons combined with a rotation of each polygon:

AP, ) = (Z/nZ)?2 Sy = (Z/nZ)" S,

Definition 7.2. Let f € Endﬁi\, (K). The n-level dynatomic representation of f over K is the
homomorphism

d _ 1
pKy;’f : Gal(K/K) — Aut(Py u(r)), where v(f) = ;#PerZ(f).

The analogue of Serre’s theorem would assert that if f has no automorphisms,?!

then piy]:l ! is surjective for sufficiently large n. It seems too much to ask that this be true
for all maps, so we pose the following challenge:

Question 7.3 (Dynatomic Image-of-Galois Problem). Let K/Q be a number field, let
N > 1, and let d > 2. Characterize the maps f € Endfl,V (K) for which there is a con-
stant C( /') such that foralln > 1,

Image(pignfn) has index at most C(f') in Aut($Py ,(r))-
31 The automorphism group of f is Aut(f) = {¢ € PGLy41 : ¢ Lo f op = f}. The ele-

ments of Gal(K /K) commute with the action of Autg (1), so if Autg (f) # (1), then the
image of p;l(y':’ 7 is restricted, just as the image of pill/K ¢ is restricted if E has CM.
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7.2. Topic #4(b): Arboreal representations

The dynatomic extensions described in Section 7.1 are generated by points with
finite orbits. In this section we consider arboreal extensions, which are extensions generated
by backward orbits.

Example 7.4. We illustrate with the map f(x) = x¢.

Dynatomic extension. Field generated by roots of x¢" = x forn > 1. 7.2)
Arboreal extension. Field generated by roots of x¢" = a forn > 1. '

Thus (7.2) suggests that dynatomic extensions resemble cyclotomic extensions, while the
arboreal extensions resemble Kummer extensions; although we readily admit that this is far
from a perfect analogy.

Definition 7.5. Let f : PY — PV be a morphism of degree d > 2 defined over K, and
let P € PN (K). The inverse image tree of f rooted at P is the (disjoint) union of the
inverse images of P by the iterates of f:

7e=J @)= J{Q e PV(&K): f7(Q) = P}.
n>0 n>0

We say that f is arboreally complete at P if #f~"(P) = d"V for all n > 0, in which
case Ty p is a complete rooted dN-ary tree, where f maps the points in f~"~!(P) to the

points in f~"(P). Figure 2 illustrates a complete inverse image tree for a degree-2 map
f Pl - Pl

VY VY YV WYY
AV VA V4
N N

A complete binary inverse image tree

The points in the iterated inverse image of P generate a (generally infinite) algebraic
extension of K, so the Galois group Gal(K/K) acts on the points in T%p. And since the
action of the Galois group commutes with the map f, the action of Gal(K/K) on Trp
preserves the tree structure. Thus in this case, the analogue of GL, in (7.1) is the group of
automorphisms of the tree 77 p, which leads us to our primary object of study.
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Definition 7.6. Let f € Endflv(K), and let P € PN (K). The arboreal representation
(over K) of f rooted at P is the homomorphism

P p : Gal(K/K) — Aut(7}p).

The Odoni* index over K of f at P is the index of the image in the full tree automorphism
group,
ix(f, P) = [Aut(’f}’p) : Image(pg(y’nﬁl,)].

As in the dynatomic case, it is again too much to hope that the image of p(;g”f p has
finite index in Aut(7%, p) for all f, but we might expect this to be true for most f. This leads
to a number of fundamental questions.

Question 7.7 (Arboreal Image-of-Galois Problem). (a) Let K/Q be a number
field, and let N > 1 and d > 2. Characterize the maps f € Endfiv (K) and
points P € PV (K) whose Odoni index tx ( f, P) is finite, especially when f
is arboreally complete at P.

(b) (Generalized Odoni conjecture) For all number fields K/Q and all N > 1
and d > 2, does there exist a point P € PV (K) and a map f € Endfiv (K)
that is arboreally complete at P such that ix (f, P) = 1?

(c) Fix a number field K/Q and integers N > 1 and d > 2. Is it true that
tg (f, P) =1 for “almost all” pairs (f, P) in Endy (K) x PN(K) for some
appropriate sense of density?

Remark 7.8. Odoni’s original conjecture was both more restrictive and stronger than Ques-
tion 7.7(b) in that he considered only N = 1 and polynomial maps. Odoni asked if for
all K/Q and all d > 2, there exists a degree-d monic polynomial f(x) € K[x] and a
point o € K such that 7%, is a complete d-ary tree and such that (5 ( f, @) = 1. Odoni’s con-
jecture was proven over Q for prime values of d in [45], and then in full generality in [85]. We
mention that Odoni originally conjectured that the statement should hold for all Hilbertian
fields, but this was recently resolved in the negative [36].

Remark 7.9. We close with the well-known observation that the automorphism group of
an n-level complete rooted regular tree (labeling the levels 0, 1,2, ..., n) is an n-fold wreath
product of the symmetric group. Hence if f is arboreally complete at P, then the automor-
phism group of 7%, p is the inverse limit

Aut('ff,p) = l(iilSdN IR P REEERE FI

n-fold iterated wreath product with n — oo

32 Named in honor of R. W. K. Odoni, who appears to have been the first to seriously
study such problems in a series of papers [65—67], in one of which he proves that
LQ(XZ —x+1,0)=1.
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The profinite group G(K/K) then acts continuously on the profinite group Aut(T7,p), just
as in arithmetic geometry G(K /K) acts continuously on the Tate module Ty (A4) = LlT Al
of an abelian variety A/ K.

8. TOPIC #5: DYNAMICAL AND ARITHMETIC COMPLEXITY
We informally define the complexity of a mathematical object to be a rough estimate
for how much space it takes to store the object:

h(X) = complexity of object X
= # of basic storage units (e.g., bits, scalars) required to describe X.

Example 8.1. The complexity of a nonzero integer ¢ € Z is the number of bits needed to
describe ¢, so roughly log|c|.

Example 8.2. The complexity of a nonzero polynomial f(x) € K[x] is the number of coef-
ficients needed to describe f, so roughly deg( /).

For a sequence of objects X = (X,),>1 wWhose complexity is expected to grow
exponentially, we define the sequential complexity of X% to be the limit**

(%) = lim h(X)™.

Example 8.3. Let f : PV ——> P¥ be a degree-d dominant rational map, i.e., a map given
by homogeneous degree-d polynomials [ fy, ..., fx]in C[x, ..., xy] having no common
factors. Then 2( /) = deg(f) = d. The sequential complexity of the sequence of iterates f”
is called the dynamical degree of f and is denoted

8¢ :ngngo(degf”)l/”. (8.1)

Example 8.4. Let P = [co,...,cny] € PV (Q) be a point written with relatively prime inte-
ger coordinates. Then

h(P) = logmax |c;|. (8.2)

More generally, if K/Q is a number field, then there is a well-defined Weil height function®*
h:PN(K) = [0, 00) (8.3)

33 In cases where the limit is not known to exist, we may consider the upper and lower sequen-
tial complexities

(%) = limsup h(X,)"/" and o (X) = liminfh(X,)"/".
n—o0 n—00
34 The Weil height of a point P = [ag, ...,ay] € PV (K) may be defined as follows: Let
d = [K : Q], write the fractional ideal generated by ao, .. ., ay as AB~! with relatively

prime integral ideals 2 and B, and let o1, . . ., 04 : K — C be the distinct complex embed-
dings of K. Then

d
1 1
h(P) = —log|Nk/@(B)| + ;1ogogja§xN o1 @)1
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that generalizes (8.2). The height of a point P € PV (K) measures the complexity of the
coordinates of P.

Now let K/Q be a number field, let P € PV (K), and let f : PY -——> PN be a
dominant rational map defined over K. Then the sequential complexity of the orbit O (P)
is called the arithmetic degree of the f -orbit of P and is denoted

af(P) = nli)ngoh(f”(P))l/". (8.4)

The notation in Table 2 will be used throughout the remainder of this section. We
will generalize the complexity measures from Examples 8.3 and 8.4 and describe a number
of results and questions.

Definition 8.5. The (first) dynamical degree of a dominant rational map f : X --> X is
. 1/n
8 = lim (degy (f™)"". (8.5)
The limit (8.5) converges and is independent of the choice of the ample divisor H
used to define degy [161.% Dynamical degrees on P¥ were first studied in the 1990s [2,9,75].
A long-standing question concerning the algebraicity of the dynamical degree was recently
answered in the negative.

Theorem 8.6 ([5,6]). For all N > 2, there exist dominant rational maps f : PN —-> PN
defined over Q such that 8¢ is a transcendental number. For N > 3, there exist such maps
that are birational automorphisms of PN .

K a number field with algebraic closure K

X a smooth projective variety of dimension d defined over K

f a dominant rational map f : X --» X defined over K

Xy ={P € X(K) : f is well-defined at f"(P) all n > 0}

degy (f) = (f*H)- H?!, where H is an ample divisor on X, and this formula
is a d-fold intersection index

hx the height on X coming from a projective embedding ¢ : X < PV ie.,
hyx = h o, where h is the Weil height (8.3) on PN

h;(' = max{l, hx}

TABLE 2

Notation for Section 8

35 The convergence of (8.5) when X = P¥ is a fun exercise using deg(f o g) <
(deg f)(deg g).
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There is an arithmetic analogue of the dynamical degree that measures the average
arithmetic complexity of the algebraic points in an orbit. But since rational maps may not be
defined everywhere, the next definition must restrict attention to X r, the points in X where
the full forward orbit of f is well defined.*®

Definition 8.7. Let f : X --> X be a dominant rational map defined over K, and let P €
Xr (K). The arithmetic degree of the f-orbit of P is

ar(P) = lim hf(f"(P))

Question 8.8. Does the limit (8.6) always exist?

in, (8.6)

In any case, we may consider the upper and lower arithmetic degrees a;(P) and
oy (P) defined using, respectively, the liminf and the limsup. It is not hard to show that
these quantities are independent of the choice of the complexity function h; It is also easy
to show that @y (P) is finite, but more difficult to show that there is a uniform geometric
bound, as in the next result.

Theorem 8.9 ([5e]). Let f : X --> X be a dominant rational map defined over K, and
let P € Xz (K). Then
ar(P) <dy.

Moral of Theorem 8.9. The arithmetic complexity of an orbit is no worse

than the dynamical complexity of the map.

Theorem 8.9 suggests a natural question. When do the arithmetic and dynamical
complexities coincide?

Conjecture 8.10 ([39,401)). Let f : X —--> X be a dominant rational map defined over K,
andlet P € Xy (K). Then

Oy (P) is Zariski dense in X = oy (P) = 6r.

Moral of Conjecture 8.10. An orbit with maximal geometric complexity

also has maximal arithmetic complexity.

Question 8.11. Does X(K) always contain a point with Zariski dense f-orbit? The answer
is clearly no. For example, if there exists a dominant rational map ¢ : X --» P! satisfying
@ o f =¢,theneach f-orbitlies in a fiber of ¢. Xie asks whether this is the only obstruction.
An affirmative answer for certain maps in dimension 2 is given in [35,93].

36 The complement X ~ Xy is a countable union of proper subvarieties, so cardinality consid-
erations show that X (C) is nonempty; but the situation is less clear for a countable field
such as Q. It is shown in [1] that X 7 (Q) is Zariski dense in X.
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Example 8.12. It is easy to prove Conjecture 8.10 for morphisms f of PV, since in that
case §y = deg( f), and the theory of canonical heights implies that

deg(f) if#0Of(P) = oo,

ap(P) =
4 1 if P is f-prepediodic.

More generally, a similar argument works for endomorphisms of any smooth projective vari-
ety whose Néron—Severi group has rank 1 [38]. But the conjecture is still open for dominant
rational maps of P?, and for morphisms of more general varieties.

Example 8.13. The past decade has been significant progress on various cases of Conjec-
ture 8.10, especially in the case of morphisms, using an assortment of tools ranging from
linear-forms-in-logarithms to canonical heights for nef divisors to the minimal model pro-
gram in algebraic geometry. In particular, Conjecture 8.10 has been proven for

* group endomorphisms (homomorphisms composed with translations) of semi-
abelian varieties (extensions of abelian varieties by algebraic tori) [39,52,83,84],

» endomorphisms of (not necessarily smooth) projective surfaces [38,53,57],
« extensions to PV of regular affine automorphisms of AV [3s],
» endomorphisms of hyperkihler varieties [43],

* endomorphisms of degree greater than 1 of smooth projective threefolds of
Kodaira dimension 0 [43],

« endomorphisms of normal projective varieties such that Pic® ®Q = 0 and with
nef cone generated by finitely many semi-ample integral divisors [49], and

« smooth projective threefolds having at least one int-amplified®’ endomorphism,
and surjective endomorphisms of smooth rationally connected projective varieties
[51].

Remark 8.14. Various generalizations of Conjecture 8.10 have been proposed. We mention
in particular the Small Arithmetic Non-Density Conjecture [51], which says that points of
small arithmetic degree are not Zariski dense when f is a morphism. However, as the authors
observe, their conjecture is only for morphisms, since it may fail for dominant rational maps.
The authors of [51] prove the SAND conjecture for many of the cases listed in Example 8.13.

Conjecture 8.10 is a relatively coarse estimate for the height growth of points in
Zariski-dense orbits. An affirmative answer to the following question would yield a quanti-
tative version of the conjecture.

37 A morphism f : X — X is int-amplified if there exists an ample Cartier divisor H such
that f* H — H is also ample.
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Question 8.15 ([1e, QUESTION 14.5]). Let f : X —--> X be a dominant rational map defined
over K, and let P € Xf(15) be a point whose orbit O (P) is Zariski dense in X . Do there
exist (integers) 0 < £y < N and ky > 0 such that

h(f™(P)) =< 8% -n" - (logn)*/
where the implied constants depend on f and P, but not on n? If 65 > 1, is it further true

that k; = 0?
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ABSTRACT

This paper reports on some recent progress that have been made on the so-called Gan—
Gross—Prasad conjectures through the use of relative trace formulae. In their global
aspects, these conjectures, as well as certain refinements first proposed by Ichino—Ikeda,
give precise relations between the central values of some higher-rank L-functions and
automorphic periods. There are also local counterparts describing branching laws between
representations of classical groups. In both cases, approaches through relative trace for-
mulae have shown to be very successful and have even lead to complete proofs, at least in
the case of unitary groups. However, the works leading to these definite results have also
been the occasion to develop further and gain new insights on these fundamental tools of
the still emerging relative Langlands program.
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In broad terms, the Gan—Gross—Prasad conjectures concern two interrelated ques-
tions in the fields of representation theory and automorphic forms. On the one hand, these
conjectures predict highly-sophisticated descriptions of some branching laws between repre-
sentations of classical groups (that is, orthogonal, symplectic/metaplectic, or unitary groups)
over local fields which can be seen as direct descendants of classical results of H. Weyl on
similar branching problems for compact Lie groups. The predictions are given in terms of
the recently established local Langlands correspondence for these groups that provides a
parameterization of the irreducible representations in terms of data of arithmetic nature. On
the other hand, the Gan—Gross—Prasad conjectures also give far-reaching higher-rank gener-
alizations of certain celebrated relations between special values of L-functions and period
integrals. We start this paper by discussing two, by now well-known, examples of the former
kind of relations.

First, we briefly review Hecke’s integral representation for L-functions of modular
forms. Let S>(I"1 (V)) be the space of cuspidal modular form of weight 2 for the group

Iy (N) = {y eSLy(Z) |y = (é :) mod N}.

It consists in the holomorphic functions f : H — C, where H = {x +iy | x,y € R,y > 0}
is Poincaré upper half-plane, satisfying the functional equation

az+b\ 5 a b
f(cz+d)—(cz+d) f(2), V(C d) e I'1(N) 0.1)

and that are “vanishing at the cusps,” a condition imposing in some sense means that f is
rapidly decreasing modulo the above symmetries. Another more geometric way to describe
S>(T'1(N)) is as a space of holomorphic differential forms: for f € S>(I'1(N)), the form
wr = f(z)dz descends to the open modular curve Y (N) = I't (NV)\H (a Riemann surface
as soon as N > 3) and the vanishing at the cusps condition translates to the fact that this form
extends holomorphically to the canonical compactification X; (N) of Y7 (N). Moreover, the
map f > wy yields an isomorphism S»(I'1 (N)) ~ Q!(Xo(N)).

It follows from the functional equation (0.1) that every f € S»(I'1(N)) is periodic
of period 1 and thus admits a Fourier expansion

f=Y ang". q=e*", 0.2)
n=1
where the fact that the sum is restricted to positive integers is part of the assumption that f
vanishes at the cusps. The Hecke L-function of f is then defined as the Dirichlet series

L(s, f) = ;‘—

n=1
converging absolutely in the range 9 (s) > 2. Hecke has shown that this can also essentially
be expressed as the Mellin transform of the restriction of f to the imaginary line,

@) T()LGs. f) = /0 Fiy)y*\dy. 03)
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This formula implies at once two essential analytic properties of L(s, f): its analytic con-
tinuation to the complex plane and a functional equation of the form s <> 2 — 5. Moreover,
it also has interesting arithmetic content: when specialized to the central value s = 1 and
combined with a theorem of Drinfeld and Manin, it allows showing that the ratio between
the central value of the L-function of a (modular) elliptic curve and its (unique) real period
is always rational as predicted by a refinement of the Birch—Swinnerton-Dyer conjecture.

The above formula of Hecke can be reformulated (and slightly generalized) in the
language of adelic groups and automorphic forms as follows. Let & be a cuspidal auto-
morphic representation of PGL,(A), where A = R x ]_[; Qp denotes the adele ring of the
rationals. This roughly means that 7 is an irreducible representation realized in a space of
smooth and rapidly decreasing functions on PGL;(Q)\ PGL,(A). Then, for every ¢ € 7 we
have an identity of the following shape:

1
/ p(a)da ~ L(—, n), (0.4)
AQ\A(A) 2

where 4 = (* *) is the standard split torus in PGL, and L(s, i) is the L-function of ,
a particular instance of the notion of automorphic L-functions defined by Langlands. For
specific i’s, this recovers Hecke’s formula (0.3) for s = 1, although L (s, 7r) then coincides
with the L-functions of a modular form only up to a renormalization that moves its center
of symmetry to 1/2. Moreover, the ~ sign means that the equality only holds up to other,
arguably more elementary, multiplicative factors.

Let E/Q be a quadratic extension. In the 1980s, Waldspurger [46] has established
another striking formula for the central value of the base-change L-function

L(s,mg) = L(s,m)L(s, 7 ® xg)

where yg : AX/Q is the idele class character associated to the extension E/Q. Wald-
spurger’s formula roughly takes the following shape:

2 1
- L(z, nE) 0.5)

for ¢ € m, where T is a torus in PGL, isomorphic to Resg/r (G)/Gm (Resg,r denot-

o(t)dt

/T(Q)\T(A)

ing Weil’s restriction of scalars). This result has lead in the subsequent years to strik-
ing arithmetic applications such as to the Birch—Swinnerton-Dyer conjecture or to p-adic
L-functions.

Although of a similar shape, the two formulas (0.4) and (0.5) also have important
differences, e.g., the left-hand side of (0.5) is typically far more algebraic in nature, and
indeed sometimes just reduces to a finite sum, whereas the formula (0.4) can be deformed to
all complex number s, giving an integral representation of the L-function L (s, r) as Hecke’s
original formula, and typically carries information that is more transcendental.

The left-hand sides of (0.4) and (0.5) are particular instances of automorphic periods
that can be informally defined as the integral of an automorphic form over a subgroup. We
can also consider these two period integrals in a more representation-theoretic way as giving
explicit A(A)- or T'(A)-invariant linear forms on 7. This point of view rapidly leads to a local
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related problem which, given a place v of Q, aims to describe the irreducible representations
of PGL,(Qy) admitting a nonzero A(Qy)- or T (Q,)-invariant linear form. It turns out that
for the torus A the answer is always positive except for some degenerate one-dimensional
representations. On the other hand, the answer for the torus 7 is far more subtle and involves
local e-factors as shown by Tunnell and Saito [44].

A natural generalization of Hecke’s formula (0.4) is given by the theory of so-called
Rankin-Selberg convolutions as developed by Jacquet Piatetski-Shapiro and Shalika [31]. On
the other hand, the Gan—Gross—Prasad conjectures [23] aim to give far-reaching higher-rank
generalizations of the above result of Waldspurger as well as of the theorem of Tunnell-Saito.

There has been a lot of progress on these conjectures, as well as some refinements
thereof, in recent years, in particular in the case of unitary groups. In this paper, we will
survey some of these developments with a particular emphasis on the use of (various forms
of) relative trace formulae. Actually, a point I will try to advocate here is that the long journey
towards the Gan—Gross—Prasad conjectures was also the occasion to develop and discover
new features of these trace formulae.

The content is roughly divided as follows. In the first section, we review the local
conjectures of Gan—Gross—Prasad and discuss their proofs in some cases based on some local
trace formulae. Then, in Section 2, we introduce the global conjectures for unitary groups, as
well as their refinements by Ichino—Ikeda, and describe an approach to both of them through
a comparison of global relative trace formulae proposed by Jacquet and Rallis. The next two
sections, Sections 3 and 4, are devoted to explaining the various ingredients needed to carry
out this comparison effectively. In the final Section 5, we offer few thoughts about possible
future developments.

1. THE LOCAL CONJECTURES AND MULTIPLICITY FORMULAE

1.1. The branching problem

Let F be a local field (of any characteristic) and E be either a separable quadratic
extension of F' or F itself. In the case where [E : F] = 2, we let ¢ denote the nontrivial
F-automorphism of E and otherwise, to obtain uniform notation, we simply set c = 1. Let
V be a Hermitian or quadratic space over E i.e. a finite dimensional E-vector space equipped
with a nondegenerate c-sesquilinear form

h:VxV —>E

satisfying i (v, w) = h(w, v)€ forevery v,w € V.Let W C V be a nondegenerate subspace
and let U(V) (resp. U(W)) be the group of E-linear automorphisms g € GLg (V') (resp.
g € GLEg (W)) that preserve the form & and are of determinant one when £ = F. In other
words, U(V'), U(W) are the unitary groups associated of the Hermitian spaces V', W when
[E : F] = 2 and the special orthogonal groups of the quadratic spaces V, W when E = F.
Note that there is a natural embedding U(W) — U(V') given by extending the action of
g € U(W) trivially on the orthogonal complement Z = W+ of W in V. We assume that

Z is odd-dimensional and U(Z) is quasisplit. (1.1
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Concretely, this means that there exists a basis (z;)—r<i<r of Z and v € F* such that
h(zi,zj) =vé;—j for—r <i, j <r.Let N C U(V) be the unipotent radical of a parabolic
subgroup P C U(V) stabilizing a maximal flag of isotropic subspaces in Z, e.g., with a basis
as before, we can take the flag £z, C Ez, ® Ez,—1 C---C Ez, & --- & Ez;. Then, U(W)
normalizes N and Gan—-Gross—Prasad construct a certain conjugacy class of U(W )-invariant
characters £ : N — C*. Concretely, we can take

r—1
Ew) = w(Z h(uzi,z_i_l)), u €N,
i=0

where ¥ : F — C* is a nontrivial character.

The local GGP conjectures roughly address the following branching problems: for
smooth irreducible complex representations (77, V) and (o, V) of U(V') and U(W) respec-
tively, determine the dimension (also called multiplicity) of the following intertwining space:

m(m,0) = dimHomU(W)xN(V,,, Vo ® §). (1.2)

Here, when F is Archimedean by a smooth representation we actually mean an admissible
smooth Fréchet representation of moderate growth in the sense of Casselman—Wallach [19].
Moreover, in this case Vy, Vi, are Fréchet spaces and by definition Homyuwyxy (Vz, Vo @ &)
only consists in the continuous U(W') x N -equivariant intertwining maps.

By deep theorems of Aizenbud—Gourevitch—Rallis—Schiffmann [2] in the p-adic
case and Sun—Zhu [42] in the Archimedean case, the branching multiplicity m (7, o) is known
to always be at most 1 (at least when F is of characteristic 0, see [37] for the case of positive
characteristic). Thus, the question reduces to determine when m (7, o) is nonzero.

Gan, Gross, and Prasad formulated a precise answer to this question, under some
restrictions on the representations 7 and o, based on the so-called Langlands correspon-
dences for the groups U(V') and U(W). More precisely, these give ways to parametrize
smooth irreducible representations of those groups in terms of L-parameters which are cer-
tain kind of morphisms

¢: L >LUW) or FUW)

from a group £ r which can be taken to be either the Weil group W (in the Archimedean
case) or a product Wr x SL;(C) (in the non-Archimedean case) to a semidirect product
Lyw) = zT(V) x Wg or LUW) = (ﬁﬂ\/) X W known as the L-group. In the cases at
hand, the connected components U/(V) and (ﬁﬂ\/ ) turn out to be either complex general
linear groups (in the unitary case) or complex special orthogonal/symplectic groups (in the
orthogonal case) and the relevant sets of L-parameters can be more concretely described
as sets of complex representations of £ g of fixed dimension and satisfying certain proper-
ties of (conjugate-)self-duality. We refer the reader to [23, §8] for details and content ourself
to briefly sketch this alternative description for unitary groups: the L-parameters for U(V")
can be equivalently described as isomorphism classes of n = dim(V')-dimensional com-
plex semisimple representations ¢ : £g — GL(M) which are conjugate-self-dual of sign
(=1)""1. Here, ¢ is said to be conjugate-self-dual if there is an isomorphism T : M — M V°
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with its conjugate-contragredient ¢pV° : £ — GL(M V) obtained by twisting the contra-
gredient by any chosen lift o € £ \ £ g of ¢ and it is, moreover, said to be of sign ¢ € {£} if
the isomorphism 7" can be chosen so that ' T¢(6?) = T . Besides these L-parameters ¢, the
local Langlands correspondence is also supposed to associate to irreducible representations
irreducible characters of the finite group of components

S¢ = 1o (Centlﬁ)(qﬂ)

of the centralizer of the image of ¢ in l7(—l7) For the group considered here, Sy is always a
2-group and moreover, once again, it also admits a more concrete description, e.g., if U(V)
is a unitary group and we identify ¢ with a (—1)"~!-conjugate-self-dual representation of
£ g as before, this can be decomposed into irreducible representations as follows:

¢ =EPnigi Pmit; P ikt & ¢ (1.3)
iel jeJ keK
where the ¢;’s (resp. ¢;’s) are irreducible conjugate-self-dual of the same sign (—1)"~!
(resp. of opposite sign (—1)") whereas the ¢ ’s are irreducible but not conjugate-self-dual
and using this decomposition we have

Se =EPz/2Ze;. (1.4)
iel

We are now ready to state a version of the local Langlands correspondence, includ-
ing an essential refinement by Vogan [45], necessary for the local Gan—Gross—Prasad conjec-
ture. It turns out to be more easily described if we consider more than one group at the same
time: besides U(V) ! itself, we need to consider its pure inner forms which here consist
of the groups U(V') where V' runs over the isomorphism classes of Hermitian/quadratic
spaces of the same dimension as V' and of the same discriminant in the orthogonal case.
If F is non-Archimedean, and provided V' is not an hyperbolic quadratic plane, there are
always two such isomorphism classes of Hermitian/quadratic spaces and thus as many pure
inner forms whereas if F' is Archimedean, by their classification using signatures there are
dim(V') + 1 (resp. w for dim(V') odd, w for dim(V') even) pure inner
forms in the unitary case (resp. orthogonal case). For such a pure inner form, let us denote by
Irr(U(V')) the set of isomorphism classes of smooth irreducible representations of U(V").
Then, modulo the auxilliary choice of a quasisplit pure inner form U(V’) and a Whittaker
datum on it* that we will suppress from the notation, the local Langlands correspondence

posits the existence of a natural decomposition into finite sets called L-packets

| () =| | ).
Vv’ ¢

where the left union runs over all pure inner forms whereas the right union is over all
L-parameters ¢ : £ — LU(V) (the pure inner forms all share the same L-group) together

1 Of course, the following discussion also applies to U(W).
2 A Whittaker datum of U(V") is a pair (N, 0) consisting of a maximal unipotent subgroup
N C U(V') and a generic character § : N — C*. This datum only matters up to conjugacy.
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with bijections

T(¢) = S,

(1.5)
(P, x) <X,

with the character group S’; of Sg. Thus, in a sense the correspondence gives a way to
parameterize the admissible duals of all the pure inner forms of U(V') at the same time.
However, there is a precise recipe for the characters S‘;V' corresponding to the intersec-
tion IV’ (¢) = (¢) N TIrr(U(V')) and therefore this also induces a parameterization of
the individual admissible duals Irr(U(V’)). Moreover, the naturality condition can be made
precise through the so-called endoscopic relations that characterize the Langlands param-
eterization uniquely in terms of the known correspondence for GL,.? For real groups, the
correspondence was constructed long ago by Langlands and is known to satisfy the endo-
scopic relations thanks to the work of Shelstad. In his monumental work [7], Arthur has
established, among other things, the existence of this correspondence for quasisplit special
orthogonal or symplectic p-adic groups (with an important technical caveat for even special
orthogonal groups SO(2n) where the correspondence is only proven up to conjugation by
the full orthogonal group O(2n)). This work was subsequently extended in [39] and [34] to
include unitary groups (not necessarily quasisplit).

For the purpose of stating the local Gan—Gross—Prasad conjecture, we will also need
to vary the two groups U(V'), U(W'). However, we will need these to vary in a compatible
way in order for the multiplicity (1.2) to still be well-defined. More precisely, the relevant
pure inner forms of U(V') x U(W) are defined by varying the small Hermitian/quadratic
space W while keeping the orthogonal complement Z = W fixed: these are the groups of
the form U(V') x U(W’) where W' is a Hermitian/quadratic space of the same dimension
as W, and same discriminant in the orthogonal case, whereas V"’ is given by the orthogonal
sum V' = W’ @+ Z. Since the orthogonal complement Z is the same, for each relevant
pure inner form U(V') x U(W’) we can define as before a multiplicity function (7, o) €
Irr(U(V'")) x Ir(U(W)) + m(x, 0).

We are now ready to formulate the local Gan—Gross—Prasad conjecture except for
one technical but important detail: as alluded to above, the local Langlands correspondences,
and more particularly the bijections (1.5), depend on the choice of Whittaker data on some
pure inner forms of U(V') and U(W). Actually, it turns out that there exists a unique relevant
pure inner form U(V) x U(W,,) which is quasisplit and on which we can fix a Whittaker
datum through the choice of a nontrivial character ¥ : E — C* that is, moreover, trivial for
F in the unitary case (see [23, §12] for details). With these prerequisites in place, we can now
state:

Conjecture 1.1 (Gan—Gross—Prasad). Let ¢ : £ — LU(V) and ¢’ - £ — LUW) be
L-parameters for U(V') and U(W), respectively. Assume that the corresponding L-packets

3 This situation is peculiar to classical groups because those can be realized as twisted endo-
scopic groups of some GLy .
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I1(¢), T1(¢") are generic, that is, they contain one representation which is generic with
respect to each Whittaker datum. Then:

(1) There exists a unique pair
(r.0) e | |1V (¢) x T (¢).
W/

where the union runs over relevant pure inner forms, such that m(w,0) = 1.

(2) The unique characters y € 3; and y' € §¢7 such that w = w(p, x) and
o =7 (¢, x') are given by explicit formulas involving local root numbers, e.g.,
in the unitary case, identifying ¢, ¢’ with conjugate-self-dual representations of
£ g and using the description (1.4) of S¢/ in terms of the decomposition (1.3),
we have

x(ei) = e(pi ® ¢'.Y25), foralli €1. (1.6)

Here § stands for the discriminant of the odd dimensional Hermitian space
among (Vys, Wys), Vas5(2) := ¥ (26z) and e(¢; ® ¢', Was) denotes the local
root number of the Weil or Weil-Deligne representation ¢; ® ¢’ associated to
this additive character [43].

When (dim(V), dim(W)) = (3, 2) (quadratic case) or (dim(V'), dim(W)) = (2,1)
(Hermitian case), the above conjecture essentially reduces to the result of Tunnell and Saito
[44] on restrictions of irreducible representations of GL(2) to a maximal torus mentioned in
the introduction. There has been a lot of recent progress towards Conjecture 1.1 and here is
the status of what is currently known in the characteristic zero case:

Theorem 1.1. Assume that F is of characteristic 0. Then:

(1) Both (1) and (2) of Conjecture 1.1 hold true in the following cases: if V, W are
Hermitian spaces (i.e., in the unitary case) or if these are quadratic spaces and
F is p-adic.

(2) Conjecture 1.1 (1) is verified when V, W are quadratic spaces and F is
Archimedean.

The first real breakthrough on Conjecture 1.1 was made by Waldspurger who estab-
lished in a stunning series of papers [38,47-49], the last one in collaboration with Meeglin,
the full conjecture for p-adic special orthogonal groups under the assumption that the local
Langlands correspondence is known for those groups and have expected properties. In my
PhD thesis [8-16], I extended the method to deal with p-adic unitary groups therefore obtain-
ing the conjecture under the slightly weaker assumption that the parameters ¢, ¢’ are tem-
pered which means that the corresponding L-packets consist of tempered representations.
The extension to generic L-packets was carried out in the appendix to [24] using crucially a
result of Heiermann. Later, I revisited Waldspurger’s method which is based on a novel sort
of local trace formulae, putting it on firmer grounds, and in the monograph [12] I established
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part (1) of the conjecture (sometimes called the multiplicity one property for L-packets) for
unitary groups over arbitrary fields of characteristic 0, thus reproving part of my thesis in the
p-adic case, and still under the assumption that L-parameters are tempered which as we will
see is quite natural from the method. In the meantime, H. He [28] has developed a different
approach to the conjecture based on the local 6-correspondence and very special features of
the representation theory of real unitary groups (in particular, this approach cannot deal with
p-adic groups) which allowed him to prove the full conjecture for those groups whenever
¢ and ¢’ are discrete parameters (a stronger condition than being tempered). Recently, this
technique was enhanced by H. Xue [54] who was able to show the conjecture for real unitary
groups without any restriction. Finally, in the recent preprint [36] Z. Luo adapted my previ-
ous work to deal with real special orthogonal groups proving the multiplicity one property
for tempered L-packets.

1.2. Approach through local trace formulae

Let me give more details on the general structure of the approach taken by Wald-
spurger which was clarified and then further refined in [12]. It is mainly based on one com-
pletely novel ingredient that is a formula expressing the multiplicity m(m, o) in terms of
the Harish-Chandra characters of & and o. To be more specific, we recall a deep result of
Harish-Chandra asserting that the distribution-character of a smooth irreducible representa-
tion 7, i.e. the distribution f € CX°(U(V)) + Trace w(f), can be represented by a locally
L' function ®, known as its Harish-Chandra character. The aforementioned formula gives
an identity roughly of the form:

m(mw,0) = /::j " cr(X)ce (x " Vdx, 1.7

where I"(V, W) is a certain set of semisimple conjugacy classes in U(V') equipped with
some measure dx reminiscent of Weyl integration formula (although it is more singular
than measures coming from maximal tori, e.g., singular orbits are typically not negligible for
dx), ¢z (x) and ¢, (x 1) are renormalized values for the characters ®; and @, respectively
(although these characters are smooth on open dense subsets of regular semisimple elements,
they typically blow up at the singular conjugacy classes in I'(V, W); the renormalization is
based on further results of Harish-Chandra describing the local behavior of characters near
singular elements), and finally the “reg” sign indicates that the integral itself has sometimes
to be regularized in a certain way (or put another way, it is improperly convergent). Originally,
formula (1.7) was only proven to hold for fempered representations but through the process of
reducing the general conjecture to the tempered case, it was eventually shown a posteriori to
hold for every irreducible representations belonging to generic L-packets. In the degenerate
case where U(V') is compact, the right-hand side of the integral formula (1.7) reduces to
the L?-scalar product of ® |y(w) and O, and the formula itself is an easy consequence
of the orthogonality relations of characters, but in general the formula looks much more
mysterious.

Let us sketch very briefly how we can deduce from formula (1.7) the first part of
Conjecture 1.1 for tempered parameters (multiplicity one in tempered L-packets). The idea,
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due to Waldspurger, is to take advantage of inner cancellations in the sum

IDITLLED SEND SR | D G@ehdx (8)

W’ (z,0) w’ (JT,U)EHV/(¢)XHW/ %) VW)
that can be deduced from certain character relations (which are basic instances of the already

mentioned endoscopic relations). The first step is to rewrite the sum as
reg
)

Z/ cy (¥)ey (x""dx (1.9)
W YT W

where @Z, =2 renv'(g) On> @gf/ =Y sen (4 O and cg/ (x), cgf/ (x~1!) are renormal-
ized values for those characters as before. The first property of the Langlands correspondence
that we need is that @gl, ®3}f/ are stable, i.e., are constant on the union of semisimple regular
conjugacy classes that become the same over an algebraic closure (a so-called regular stable
conjugacy class). It follows from this stability property that the renormalized functions c Js/ /,
c;‘,ﬂ are also invariant under a suitable extension of stable conjugation for singular elements.

Consequently, the sum of multiplicities can be further rewritten as

reg

Y. mmo)=) cyg ey (v Hdy. (1.10)

W' (r.0) W T(V/,W’)/stab

where T'(V', W') /stab stands for the space of stable conjugacy classes in I'(V’, W’). At this
point, it is convenient to make the simplifying assumption that F is p-adic and W is not
a split quadratic space of dimension < 2. Then, there are exactly two relevant pure inner
forms U(V) x U(W) and U(V’) x U(W') with, say, the first one quasisplit. Moreover, the
character relations in this case read

OF (y) =evOy () (resp. OF (y) = ew®F ()
for certain signs ey, ey € {£1} satisfying eyeyr = —1 and for every regular stable con-
jugacy classes y, v’ in U(V), U(V’) (resp. in U(W), U(W’)) that are related by a cer-
tain correspondence (which is just an identity of characteristic polynomials except in the

even orthogonal case). This correspondence actually naturally extends to give an embedding
V', W’)/stab — T'(V,W)/stab, y’ > y, for which we have
cy ey () =—cy (V)ey (V).

This implies that in the right-hand side of (1.10), all the terms indexed by I'(V’, W’)/stab
can be cancelled with the corresponding terms coming from their images in I'(V, W) /stab.
The only remaining contribution, it turns out, is that of the trivial conjugacy class:

D) mro) =cy (e (1) (1.11)

W' (7,0)
which, by a result of Rodier, can be interpreted as the number of representations in the packet
MY (¢) ® W (¢') that are generic with respect to a certain Whittaker datum (actually really
an average of such numbers over all Whittaker data in the unitary case). By a third property of

tempered L-packets (existence and unicity of a generic representation for a given Whittaker
datum), this number is just 1 and this immediately implies the first part of Conjecture 1.1.
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The proof of the multiplicity formula (1.7), on the other hand, is much more
involved. Set G = U(W) x U(V) and H = U(W) x N that we see as a subgroup of G
through the natural diagonal embedding. Then, following the approach that I have devel-
oped in [12], (1.7) can be deduced from a certain simple trace formula for the “space”
X = (H,£)\G. More precisely, this trace formula is roughly seeking to compute the trace
of the convolution operators

¢ € L*(X.§) = (R()$)(x) Z/Gf(g)¢>(xg)dg, for f € C*(G).

where L2(X, £) denotes the Hilbert space of measurable functions ¢ on G satisfying
¢(hg) = E(h)p(g) for (h,g) € H x G and fH\G|qb(x)|2dx < oo. It is classical, and easy
to see, that these operators are given by kernels,

(R(f)¢)(X)=/XKf(X’y)¢(y)dy, for (f.¢) € C°(G) x L*(X. ).

where K¢ (x,y) = [5 f(x"'hy)&(h)dh. Thus, at a formal level (hence the quotation marks)
we have

“TraceR(f)z/ Kr(x,x)dx”.
X

However, neither of the two sides above make sense in general: the convolution operator is
not of trace-class and the kernel not integrable over the diagonal. The basic idea is then to
restrict oneself to a subspace of test functions for which at least one of the two expressions is
meaningful. A convenient such subspace is that of strongly cuspidal functions introduced by
Waldspurger in [47]: a function f € C°(G) is strongly cuspidal if for every proper parabolic
subgroup P = MU < G, we have

/f(mu)duzo, Ym e M.
U

Moreover, as is shown in [12], for f € C2°(G) strongly cuspidal, the integral

I = [ Krrnds

is absolutely convergent (the argument of [12] is given in the context of Gan—Gross—Prasad
for unitary groups but it can be adapted to a much more general context). Then, the afore-
mentioned simple local trace formula expands the distribution f — J(f) in two different

ways:

Theorem 1.2. For every strongly cuspidal f € C>°(G), we have the identities

reg R
/ cr(x)dx =J(f) = / m(IT)0r (IT)d 1T, (1.12)
T X(G)

VW)

where

* cy(x) is the renormalized value of a function x — 0 (x) constructed from
weighted orbital integrals of f in the sense of Arthur [3] and whose local behavior
is similar to that of Harish-Chandra characters on the group G;
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e X (G) is a certain space of virtual representations of G obtained by parabolic
induction from the so-called elliptic representations (as defined in [6]1) of Levi
subgroups and f +— 0r(I1) is a weighted character in the sense of Arthur [4];

e Finally, for an irreducible representation I1 = n ® o of G, m(I1) is defined as
the multiplicity m(m, V) with oV the smooth contragredient of o.

We refer the reader to [12] for precise definitions of all the terms and a proof in the
case of unitary groups. This was adapted in [36] to special orthogonal groups. The deduction
of the integral formula (1.7) roughly goes as follows: we first show the multiplicity formula
for representations that are properly parabolically induced by expressing both sides in terms
of the inducing data and applying an induction hypothesis whereas for the remaining rep-
resentations, the so-called elliptic representations, the formula can be obtained by applying
the trace formula (1.12) to some sort of pseudocoefficient.

Finally, let us say a word on how the more refined part (2) of Conjecture 1.1 can
be proven using this approach (so far it has only been done for p-adic groups in [49] and
[9], following the previous slightly different method of Waldspurger, but there is little doubt
that the techniques developed in [12] should allow to treat the case of real groups in a simi-
lar way). For Langlands parameters ¢, ¢’ as in Conjecture 1.1, as well as characters y € S;,
X € S’;r, combining the multiplicity formula (1.7) with the general endoscopic character rela-
tions that characterize the Langlands correspondences for U(V') and U(W), we can express
m(w(p, x),o(¢’, x')) as a sum of integrals of (renormalized) twisted characters on some
products GL, (E) x GL,,(E). The remaining ingredient is to relate these integrals of twisted
characters to the epsilon factors of pairs defined by Jacquet—Piatetski-Shapiro—Shalika in
[31]. More precisely, these expressions involve the twisted characters of tempered irreducible
representations 7%, 6L of general linear groups GL,, (E), GL,, (E), with n = m of distinct
parities, which are self-dual (in the orthogonal case) or conjugate-self-dual (in the unitary
case). These properties of (conjugate-)self-duality imply that 7" and ¢S extend to rep-
resentations 79", o of the nonconnected groups GL,(E) x (6,) and GL,,(E) x {6,
respectively, where 0; (k = n, m) denotes the automorphism g > “(g¢)~!. The twisted
characters in question are then the restrictions ® c. and ®;cL of the Harish-Chandra char-
acters of 7 and o6 to the nonneutral components GL, (E) =GL,(E)b, and GL,, (E) =
GL,, (E)6,,, respectively. Replacing the functions ¢, ¢y by similar suitable renormaliza-
tions of these twisted characters at singular semisimple conjugacy classes, there is a formula
very analogous to (1.7) for the e-factor of pair e(7S% x o, ).

For p-adic fields, this formula was established in [48] in the self-dual case and in [8]
in the conjugate-self-dual case. The proof follows closely that of (1.7) and is based on a local
trace formula very similar to that of Theorem 1.2 for the natural action of G := GL, (E) x
GL,,(E) on the homogeneous space X’ = H'\G’ where G’ = GL,(E) X GL,,(E) and
H’ = GL,,(E) x N'is the semidirect product with a unipotent subgroup N’ whose definition
is analogous to that of N. More precisely, there is also a similar unitary character & of
N’ that is GL,,(E)-invariant and the twisted trace formula we are mentioning is roughly
trying to compute the trace of convolution operators R(f) of functions f € C°(G’) on
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L?(X’,&'). Rather than describing it in details, let us just explain how the e-factors show up
in the analysis. As in Theorem 1.2, one of the main ingredient on the spectral side of this
trace formula is a twisted multiplicity m (7" ® oS%) which computes the trace of a natural
operator on the space of intertwiners

Hompg (7" ® oL, §). (1.13)

The operator in question is given by £ > £ o (7L ® 6%L) () where 6 € GL, (E) x GLy (E)
is a certain element stabilizing the pair (H, £) (which is anyway needed to extend the right
action of G’ on L2(X’, ') to an action of G'). Actually, it turns out that the space (1.13) is
always one-dimensional and a reformulation of the so-called local functional equation from
[31] shows that this operator is essentially acting (for suitable normalizations of 76L, gOL

and up to more elementary factors) as multiplication by the e-factor e( x o, V).

2. THE GLOBAL GAN—-GROSS—PRASAD CONJECTURES AND

ICHINO-IKEDA REFINEMENTS

2.1. Statements and results

We now move to a global setting. Let £/ F be a quadratic extension of number fields
and W C V be Hermitian spaces over E satisfying condition (1.1) (there are similar, and
actually prior, conjectures for orthogonal groups, but here we will concentrate on unitary
groups for which much more is known). By a construction similar to that from the previ-
ous section, we may obtain from these data a triple (G, H, §) where G = U(V) x U(W),
H = U(W) x N is a subgroup of G (which we will this time consider as algebraic groups
over F)and & : N(A ) — C* is acharacter on the adelic points of N trivial on the subgroup
N(F) and that extends to a character of H(A ) trivial on U(W)(AF).

The global analog of the previous branching problem is that of characterizing the
nonvanishing of the automorphic period associated to the pair (H, £). More precisely, if
T =my @MW = sasp(G(F)\G(AF)) is a cuspidal automorphic representation of G(A r ),
we consider the automorphic period

Prug:m—C,
Prelg) = / o()E(h)dh, @1
[H]

where here and throughout the rest of the paper, for a linear algebraic group R over F,
we denote by [R] = R(F)\R(AF) the corresponding automorphic quotient. On the other
hand, let 7 = 7y,g ® nw,E be the (weak) base-change of 7 to GL,(AEg) x GL,,(AE)
where (n, m) = (dim(V), dim(W)). Here, ny, g, 7w, g are automorphic representations
whose Satake parameters at almost every unramified places are the image by the base-change
homomorphisms LU (V) — LResE/F GL, E, Lyw) — LResE/F GL,,E (where Resg/ p
denotes Weil’s restriction of scalars) of the local Satake parameters of my, ww, respec-
tively. The existence of these weak base-changes in general is one of the main results of
[34,39]. Also, although 7y g, mw, g are not always cuspidal, they are isobaric sums of cusp-
idal representations which implies, by a result of Jacquet and Shalika, that they are uniquely
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determined by their Satake parameters at almost all places hence that the weak base-change
g is unique. We denote by

L(s,mg) = L(s,my,E X Tw,E)

the corresponding completed Rankin—Selberg L-function associated to wy, g and ww,g.

Define the automorphic L-packet of 7 as the set of cuspidal automorphic repre-
sentations 7’ of the various pure inner form G’ = U(V’) x U(W’) of G with the same
base-change 7y, = 7 as 7. By the Jacquet—Shalika theorem again and injectivity of base-
change homomorphisms at the level of conjugacy classes, it is equivalent to asking that &
and 7’ are nearly equivalent, that is, 7, >~ n{, for almost all places v (this makes sense since
G, ~ G/, for almost all v). Moreover, for a relevant pure inner form G’ of G, we can define a
pair (H', £’) in exactly the same way as (H, £). The global version of the Gan-Gross—Prasad
conjecture can now be stated as follows:

Conjecture 2.1 (Gan—Gross—Prasad [23]). Assume that wg is generic. Then, the following

assertions are equivalent:
(1) L(L, 7g) #0;

(2) There exists a relevant pure inner form G' = UW') x U(V') of G (see Sec-
tion 1.1 for the definition of a relevant pure inner form), a cuspidal automorphic
representation ' of G' (A F) in the same automorphic L-packet as w and a form
@' € i’ such that

Pr g (¢') # 0.

When (dim(V'), dim(W)) = (2, 1), the conjecture essentially reduces to the cele-
brated theorem of Waldspurger [46] on toric periods for GL,. Actually, as explained in the
introduction, Waldspurger’s result is more precise and gives an explicit identity relating (the
square of) #g (¢) to the central value L(%, TE).

There is also a similar conjecture for special orthogonal groups which actually
predates the one for unitary groups [26] (as well as other conjectures for the so-called Fourier—
Jacobi periods on unitary and symplectic/metaplectic groups stated in [23]). In [3e], Ichino
and Tkeda have proposed a refinement of this conjecture for SO(n) x SO(n — 1) in the form
of a precise identity generalizing Waldspurger’s formula. Subsequently, similar refinements
have been proposed by R. N. Harris [27], for U(n) x U(n — 1), and then by Y. Liu [35] for
general Bessel periods on orthogonal or unitary groups.

In order to state this refinement, we need to introduce two extra ingredients, namely
local periods and a certain finite group S, of endoscopic nature.

We start with the local periods. We endow H (A g) with its global Tamagawa mea-
sure dh (this is the measure with which we will normalize the period integral (2.1)) and
we fix a factorization dh = [[, dh, into a product of local Haar measures. We also fix a
decomposition 7 = ®; 1, of 7 into smooth irreducible representations of the localizations
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G, = G(Fy) as well as a factorization (-, -)pet = [, (-, -)» Of the Petersson inner product

2
(¢, @)pet =[ lo()|dg
G(F)\G(Ar)

(which we also normalize using the Tamagawa measure on G (A r)) into local invariant inner
products. The local periods are now given by the sesquilinear forms

reg
PH g Qv ® ¢l € Ty ® Ty > /H (o (ho)@v. @3), Ev(hy) dhy. 2.2)

The above integral of matrix coefficient is actually not convergent in general and has to be
regularized (hence the “reg” sign above the integral). This regularization is, moreover, only
possible under the extra assumption that the local component ,, is tempered. It is expected
(under the Generalized Ramanujan Conjecture) that the hypothesis of the base-change 7 g
being generic implies that each of the local component 7, is tempered, but this is far from
being known in general. Assuming now that 7, is tempered at every place v, an unramified

G(0y) .

computation shows that for almost all places v, if ¢, € is a spherical vector such that

{0y, @y)y = 1, we have

L(%7 T[E,U)

P , =A)—
H,E,v(‘Pv (Pv) vL(l,n'v,Ad)

where L(%, 7Ew), L(1, my, Ad) denote the local Rankin—Selberg and adjoint L-factors of
g and m, respectively, whereas A, stands for the product of local abelian L-factors

n
AU = 1_[ L(l’ nlEv/Fv)

i=1

with g, / F, the quadratic character associated to the local extension E, / F;, andn = dim(V).
The normalized local periods are then defined by

1 L, 7y, Ad)

Py e (@v-0v) = 1—

Hag’v U L ( 2, ,U)

Finally, writing the base-change 7y, and 7w g as isobaric sums

Hév(‘ﬂvv@v)

av,e =nyg B--Bryg, awe =awB---Bay,

of cuspidal automorphic representations of some general linear groups, we set
Sz = (Z/2Z)F+!. Tt serves as a substitute for the centralizer of the, yet nonexistent in
general, global Langlands parameter of 7.

Conjecture 2.2 (Ichino-Ikeda, N. Harris, Y. Liu). Assume that for every place v of F, my

is a tempered representation. Then, for every factorizable vector ¢ = ®:j @y € 1, we have

2 _ L( TTE)
|Pae@)]” =187 AL Ad)l"[ Phe.0(00- 90) 23)
where A = [1i_, L(i, r)iE/F) and L(s, 7w, Ad) =[], L(s, 7wy, Ad) denotes the completed
adjoint L-function of 7.
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Note that at a formal level, that is, formally expanding L-functions as Euler products
outside the range of convergence, the above formula can be rewritten in the more compact
way as

/
2 _
| Pre@)| = 18217 [ [ P (0. 00). 2.4)
v

where the prime symbol on the product sign indicates that it is not convergent and has to be
suitably reinterpreted “in the sense of L-functions” as identity (2.3).

Thanks to the work of many authors that we are going to summarize in the next
sections, it is now relatively easy to state the current status on these two conjectures:

Theorem 2.1. Both Conjectures 2.1 and 2.2 hold in full generality.

The rest of this paper is devoted to reviewing the long series of works leading to
the above theorem. They all stem from a strategy originally proposed by Jacquet and Rallis
[32] of comparing two relative trace formulae. Let us mention here that there has actually
been other fruitful approaches to the global Gan—Gross—Prasad conjecture among which
one of the most notable has been the method pioneered by Ginzburg—Jiang—Rallis [25] using
automorphic descent and that has recently seen much development with the work [33] of
Jiang and L. Zhang proving in full generality the implication (2) = (1) of Conjecture 2.1.

2.2. The approach of Jacquet—Rallis

In [32], Jacquet and Rallis have proposed a way to attack the Gan—Gross—Prasad
conjecture for unitary groups through a comparison of relative trace formulae. They only
consider the case where dim(W) = dim(V') — 1 (in which case H = U(W) and the character
& is trivial) and we assume throughout that this condition is satisfied. The global relative trace
formulae considered here are powerful analytic tools introduced originally by Jacquet and
that relate automorphic periods to more geometric distributions known as relative orbital
integrals.

Let us be more specific in the case at hand. For f € C>°(G(AF)), a global test
function, we let

Kr(x,y)= Y f&7'yy). x.y€GF\G(Ar),
yeG(F)

be its automorphic kernel which describes the operator R( f) of right convolution by f on
the space of automorphic forms. The first trace formula introduced by Jacquet and Rallis is
formally obtained by expanding the (usually divergent) expression

W= [ Kyl h)ddhs @5)
[H]x[H]

in two different ways. More precisely, but still at a formal level, this distribution can be
expanded as

4 > 06.)=J(fH= > 2a(R()Pu(@) +. (2.6)

S€eH(F)\G(F)/H(F) ¢’€¢A’cusp(G)
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where the right sum runs over an orthonormal basis for the space of cuspidal automorphic
forms whereas the left sum is indexed by the so-called regular semisimple double cosets
of H(F) in G(F). Here, an element § € G is called (relatively) regular semisimple if its
stabilizer under the H x H -action is trivial and the corresponding orbit is (Zariski) closed.

We denote by G, the nonempty Zariski open subset of regular semisimple elements and for
§ € Gi(F),

06. f) = f F(8h)dhidhs

H(Ap)xH(AF)
denotes the corresponding relative orbital integral of f at §. The left suspension points
in (2.6) represent the remaining contributions from singular orbits whereas the right suspen-
sion points indicate the contribution of the continuous spectrum (both of which are somehow
responsible for the divergence of the original expression (2.5)).
The second trace formula introduced by Jacquet and Rallis has to do with the fol-
lowing triple of groups:

H, = ResE/F GLn,E — G = ResE/F GLn+1,E XReSE/F GLn,E <~ H,
= GLp+1,F X GLy,F,

where n = dim(W), the first embedding is the diagonal one and the second embedding
is the natural one. Note that G’ is the group on which the base-change 7g “lives.” For
S’ € CX(G'(AF)), we write (again formally)

I(f/) = / Kf/(h],hz)ﬂ(hz)dh]dhz (27)
[H1]x[H>]

where K is the automorphic kernel of f” and n : [H,] — {#£1} is the automorphic character
defined by 7(gn, gnt+1) = NE,/F(detg,)" ' nE/F(det gn41)". This formal distribution can
be analogously expanded as

o > Onr. fY=1(fN= Y Pu,(R()0)Prp (@) + .
VEHI(F)\G;S(F)/HZ(F) ‘pE'A’cusp(G/)
(2.8)

where G stands for the open subset of regular and semisimple elements under the H; x Ho-
action, the relative orbital integrals are given by
0y 1) = | S/ hayhon(ha)didiy
Hy(Ap)xH2(AF)
and #g,, #H,,y denote the automorphic period integrals over [H] and [H5] twisted by 7,
respectively.

The discussion so far is, of course, oversimplifying and ignoring serious analyti-
cal and convergence issues (we will come back to this later). However, as a motivation for
considering this relative trace formula on G’, we have the following results on automorphic
periods:

e The period &Py, is a Rankin—Selberg period studied by Jacquet—Piatetskii-
Shapiro—Shalika that essentially represents the central value L(%, IT) on
IT— €74)cusp(G/);
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* The period $p,,, was studied by Rallis and Flicker who have shown that it detects
exactly the cuspidal automorphic IT’s that come by base-change from G (i.e., it
is nonzero precisely on those cuspidal representations of the form wg, for & a
cuspidal automorphic representation of G).

Thus, on a very formal and sketchy sense, the Gan—Gross—Prasad conjecture implies that
the spectral sides of I( f) should somehow “match” that of J( /). The idea of Jacquet and
Rallis was to make precise the existence of such a comparison, from which the global Gan—
Gross—Prasad conjecture was eventually to be deduced, by equalling the geometric sides
term by term. As a first step, they define a correspondence of orbits, which here takes the
form of a natural embedding between regular semisimple cosets

H(\Gr(k)/H (k) — Hi(k)\G (k)/Hz(k), 8> y. 29

for every field extension k/F. Using this correspondence, they then introduced a related
notion of local transfer (or matching): for a place v of F, two test functions f,, € C°(Gy)
and f; € C(G)) are said to be transfers of each other (simply denoted by f, < f, for
short) if for every § € H(Fy)\G(Fy)/H(F,) we have an identity

0(8» fv) = Qv(y)oﬂv (V’ fv/)v (210)

where y € Hy(Fy)\G,,(F,)/H2(Fy) is the image of § by the above correspondence,
O(8, fy) and Oy, (y, f,) are local relative orbital integrals defined in the same way as
their global counterparts (replacing in the domain of integration, adelic groups by the cor-
responding local groups) and y + €2,(y) is a certain transfer factor which in particular has
the effect of making the right-hand side above Hy(F,) x H,(F,)-invariant in y.

As in the usual paradigm of endoscopy, to make this notion useful and allow for
a global comparison we basically need two local ingredients: first the existence of local
transfer (i.e., for every f, € C°(Gy) there exists f, € C°(G)) such that f, < f, and
conversely, every f, admits a transfer f,) and then a fundamental lemma (saying, at least,
that 1g(0,) < 1g/(0,) for almost all v).

3. COMPARISON: LOCAL TRANSFER AND FUNDAMENTAL LEMMA

A first breakthrough on the Jacquet—Rallis approach to the Gan—Gross—Prasad con-
jecture was made in [57] by Wei Zhang who proved the existence of the local transfer at all
non-Archimedean places. His strategy for doing so roughly goes as follows:

» The first step is to reduce to a statement on Lie algebras using some avatar of
the exponential map (also known as Cayley map): we are then left with proving
the existence of a similar transfer between the orbital integrals for the adjoint
action of U(W,) on u(V,) = Lie(U(V},)) and for the adjoint action of GL,, (F})

on gl 1 (F).

e Then, a crucial ingredient in Zhang’s proof is to show that the transfer at the
Lie algebra level essentially commutes (i.e., up to some explicit multiplicative
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constants) with 3 different partial Fourier transforms %7, #,, and ¥3 that can nat-
urally be defined on the two spaces C°(u(Vy)), C°(gl, 1 (Fy)). One of them,
that we will denote by 7, is the Fourier transform with respect to “the last row and
column” on gl,, . ; (F) or u(V,) when realizing the latter in matrix form using a
basis adapted to the decomposition V,, = W,, & W,-. (Recall that we are assum-
ing that dim(WvL) = 1.) For this, Zhang develops some relative trace formulae
for the aforementioned actions on g[,, , ; (F,) and u(V}) and combines them with
a clever induction argument.

* Finally, the proof of the existence of transfer on Lie algebras is obtained by com-
bining the second step with a certain uncertainty principle due to Aizenbud [1],
which allows reducing the construction of the transfer to functions that are sup-
ported away from the relative nilpotent cones (i.e., the set of elements whose orbit
closure contains an element of the center of the Lie algebra), as well as a standard
descent argument whose essence goes back to Harish-Chandra.

It is noteworthy to mention that this result was subsequently extended, following the same
strategy, by H. Xue [53] to Archimedean places, although the final result there is slightly
weaker. (More precisely, Xue was only able to show that a dense subspace of test functions
admit a transfer but also observed that it is sufficient for all expected applications.)

The Jacquet—Rallis fundamental lemma for its part, was proven earlier by Yun
[55] in the case of fields of positive characteristic following and adapting the geometric-
cohomological approach based on Hitchin fibrations that was developed by Ngoé in the
context of the endoscopic fundamental lemma. This result was then transferred to fields
of characteristic zero, but of sufficiently large residual characteristic, using model-theoretic
techniques by Julia Gordon in the appendix of [55].

Later, in [14], I found a completely new and elementary proof of this fundamental
lemma. The argument, despite that of Gordon—Yun, works directly in characteristic zero and
is purely based on techniques from harmonic analysis. Thus, we have:

Theorem 3.1 (Yun—Gordon, Beuzart-Plessis). Let v be a place of F of residue character-
istic not 2 that is unramified in E and assume that the Hermitian spaces W, WvL both
admit self-dual lattices LYV and L,‘le. Set Ly =LY @ LII:Vi (a self-dual lattice in V,) and
K, = Stabg, (L, x LY) for the stabilizer in G, = U(V,) x U(W,) of the lattices L,
and LgV (a hyperspecial compact subgroup of Gy). Then, setting K, = GL,11(OF,) x
GL,(OE,), we have 1k, <> 1.

More precisely, in [14] I proved a Lie algebra analog of the Jacquet—Rallis funda-
mental lemma (of which the original statement can easily be reduced; at least in residual char-
acteristic not 2) stating that the relative orbital integrals of 1,,(z,) match those of 141, . (95,)
in a suitable sense (where u(L,) denotes the lattice in 11(V},) stabilizing L, ). The argument
is based on a hidden SL(2) symmetry involving a Weil representation. More specifically, we
consider the Weil representations of SL(2, F},) associated to the quadratic form ¢ sending a
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matrix of sizen + 1,

A b
X =
(C A')’

either in gl,, ;(Fy) or in u(V;), to g(X) = cb (where here, 4 is a square-matrix, b is
a column vector, and ¢ a row vector all of size n). Using the aforementioned result of
Zhang that the transfer commutes with the partial Fourier transform %7, it can be shown
that these representations descend to spaces of relative orbital integrals on C>°(u(V5))
and C°(gl,, ;. {(Fy)) and coincide on their intersections (identifying the spaces of regular
semisimple orbits through a correspondence similar to (2.9)). Consider then the difference

d:X e u(Vv)rs/U(WU) = O(X, lu(L},/)) — Wy (Y)O,]v (Y, 19[n+1((9Fv))’

where u(V;),s denotes the Lie algebra analog of the relative regular semisimple locus, Y is
the image of X by a correspondence of orbits 1u(Vy)/U(Wy) — gl (Fy)rs/ GLy (Fy)
similar to (2.9) and w,(Y') is the Lie algebra counterpart of the transfer factor. The funda-
mental lemma then states that ® is identically zero. The proof proceeds roughly in three
steps:

* First, we show that ®(X) = 0 for |g(X)| = 1. When |¢(X)| = 1, this requires an
inductive argument on n. Moreover, this vanishing can be reformulated by saying

that & is fixed by the subgroup ((1) pfvi ) through the Weil representation.

* Secondly, we remark that @ is also fixed by w = (9 7' ). This comes from the fact
that the action of w descends from the partial Fourier transform 7 which leaves

(for a suitable normalization) the functions lu( LYy 1g y invariant.

n+l(0Fv

* Finally, as SL,(F}) is generated by ((1) ”IF; ) and w, we infer that ® is fixed by

SL,(Fy) from which it is relatively straightforward to deduce & = 0.

It is also worth mentioning that in a very interesting work, Jingwei Xiao [51] has
shown that the Jacquet—Rallis fundamental lemma implies the (usual) endocospic funda-
mental lemma for unitary groups. Thus, combining his argument with the proof outlined
above yields a completely elementary proof of the Langlands—Shelstad fundamental lemma
for unitary groups!

The two previous results on smooth transfer and the fundamental lemma are already
enough to imply the Gan—Gross—Prasad Conjecture 2.1 under some local restrictions on the
cuspidal representation 7 (originating from the use of simple versions of the Jacquet—Rallis
trace formulae, allowing to bypass all convergence issues) as was done by W. Zhang in [57].
However, to derive the refinement of Conjecture 2.2 following the same strategy, we need an
extra local ingredient relating the local periods of Ichino—Ikeda to similar local distributions
associated to the Rankin—Selberg and Flicker—Rallis periods. More precisely, by the work of
Jacquet—Piatetskii-Shapiro—Shalika, on the one hand, and Flicker—Rallis, on the other hand,
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it is known that the two automorphic periods $x, and $p, , admit factorizations of the form

<7)1"11 (p) = l—[ j)Hl,v(Wq),v)7 3.1

1
’?Hz,n((p) = Z l_[ ?Hz,n,v(Ww,v) 3.2)
v

for ¢ a factorizable vector in a given cuspidal automorphic representation IT = I1,1; ® I1,
of G'(AF), where

Wi(g) = /[N,] oW (0" du = [ W)

denotes a factorization of the Whittaker function of ¢ (here N’ stands for the standard max-
imal unipotent subgroup of G’ and ¥’ is a nondegenerate character of [N']), P, v, P00
are explicit linear forms on the local Whittaker model W(IT,, ¥,) of IT, and the products
in (3.1), (3.2) are to be regularized and understood “in the sense of L-functions” in a way
similar to (2.4).

Based on the factorizations (3.1) and (3.2), the contribution of IT to the spectral
expansion (2.8) can be shown to itself admit a factorization roughly as the product of local
distributions (called relative characters) I, defined by

(/)= Y, Poo(L()DW)PrneWa),  f, € CX(Gy),
WyeW(Iy,¥ry)
where the sum runs over a suitable orthonormal basis of the Whittaker model. On the other
hand, from the Ichino-lkeda Conjecture 2.2, we expect the contribution of 7 <> Acysp(G)
to the spectral expansion of (2.6) to essentially factorize into the product of the local relative
characters (where again the sum is taken over an orthonormal basis)

I, (fo) = Z tr/)H,v(n'v(fv)(pvv(pv), So ECL?O(Gv)-
PvEMY

In [56], W. Zhang has conjectured that the local Jacquet—Rallis transfer f,, <> fv/
also satisfies certain precise spectral relations involving the above relative characters. This
is exactly the extra local ingredient needed to finish the proof of the Ichino—Ikeda conjecture
based on a comparison of the Jacquet—Rallis trace formulae. This conjecture was shown in
[56] to hold for unramified and supercuspidal representations, and the method was further
extended and amplified in [13], allowing to prove the conjecture for all (tempered) represen-
tations at non-Archimedean places. Later, in [15] [ gave a better proof of this conjecture which
also has the advantage of working uniformly at all places (including Archimedean ones). To
state the result, we introduce some terminology/notation: for a place v of F' and a smooth
irreducible representation m, of G,, we denote by g , the local base-change of m,, that is,
the smooth irreducible representation of G, whose L-parameter is given by composing that
of 7, with the natural embedding of L-groups *G, — LG;, and, moreover, we say that i,
is Hy-distinguished if Hompg, (7, C) # 0, that is, with the notation of Section 1.1, if the
multiplicity m(7wy) equals 1.
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Theorem 3.2. There exist explicit local constants (ky)y indexed by the set of all places of F
and satisfying the product formula [ |, ky = 1 such that the following property is verified: for
every place v, every tempered representation 1y of Gy which is H,-distinguished and every
pair (fy, f) € CX(Gy) x C(G)) of matching functions (that is, f, <> f,), we have

Iy 5 (fy) = kv, (fo)- (3.3)

Moreover, the above identities characterize the Jacquet—Rallis transfer, that is, if two func-
tions fy € CX(Gy), f, € CX(G,) satisfy (3.3) for every tempered irreducible representa-
tion 1ty of Gy that is H,-distinguished, then these functions are transfers of each other.

The proof given in [15] of the above theorem is mainly based on another ingredient
of independent interest which is an explicit Plancherel decomposition for the space G,/ H> ,
or rather, decomposing this quotient as a product in a natural way, for the symmetric vari-
ety GL,(Ey)/ GL, (Fy). This spectral decomposition is roughly obtained by applying the
Plancherel formula for the group GL, (E,) to a family of zeta integrals, depending on a
complex parameter s, introduced by Flicker and Rallis [22] and that represents local Asai
L-factors and taking the residue at s = 1 of the resulting expression. We will not describe
the exact process here, but just mention that this settles in the case at hand a general conjec-
ture of Sakellaridis—Venkatesh [41] on the spectral decomposition of spherical varieties. This
Plancherel formula is then used to write the explicit spectral expansion for a local analog of
the Jacquet—Rallis trace formula (2.8) which is then compared with a local counterpart of the
trace formula (2.6) yielding as a consequence Theorem 3.2 above. Moreover, as another by-
product of this local comparison, we also get a formula conjectured by Hiraga—Ichino-Ikeda
for the formal degree of discrete series [29] in the case of unitary groups.

4. GLOBAL ANALYSIS OF JACQUET—RALLIS TRACE FORMULAE

With all the local ingredients explained in the previous section in place, the only
remaining tasks to finish the program initiated by Jacquet and Rallis to prove the Gan—
Gross—Prasad and Ichino-Ikeda conjectures are global. More specifically, although simple
versions of the Jacquet—Rallis trace formulae have been successfully used to establish these
conjectures under some local restrictions [13,57], in order to detect all the relevant cuspi-
dal representations of unitary groups, we need more refined versions of the geometric and
spectral expansions of (2.6) and (2.8).

As a first important step in that direction, Zydor [58,59] has completely regularized
the singular contributions to the geometric sides. We can summarize his main results as fol-
lows: for all test functions f € C°(G(AF))and f' € C2°(G'(AF)), there exist “canonical”
regularization of the (usually divergent) integrals (2.5) and (2.7), that we will still denote by
J(f)and I(f"), as well as decompositions

J(fHy= > 06.[f) ad I(f)= > On(v. f). (D)

8e(H\G//H)(F) ye€(HI\G'//H2)(F)
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where H\G//H and H,\G'//H, stand for the corresponding categorical quotients and
0(6,-), Oy(y,-) are distributions supported on the union of the adelic double cosets with
images 6 and y in (H\G//H)(AF) and (H\G'//H>)(AF), respectively, which coincide
with the previously defined relative orbital integrals when § and y are regular semisimple.

Zydor obtains these regularized orbital integrals by adapting a truncation proce-
dure developed by Arthur in the context of the usual trace formula to the relative setting at
hand. It should be emphasized that contrary to what happens with Arthur’s trace formula,
the resulting distributions are directly invariant (in a relative sense, that is, here under the
natural action of H x H or H; x H3) and do not depend on any auxiliary choice (such as
that of a maximal compact subgroup). It is in this sense that the regularizations of Zydor are
really “canonical.” It should be mentioned that another, different, approach to such regular-
ization was proposed by Sakellaridis [4e] in the context of general relative trace formulae.
It is based on analyzing the exponents at infinity of generalized theta series together with a
natural procedure to regularize integrals of multiplicative functions when the corresponding
character is nontrivial.

Before we even consider the analogous, more subtle, regularization problem on the
spectral side, there appears the natural question of how to compare the singular contribu-
tions to the refined geometric expansions of (4.1). This issue was completely resolved in a
very long paper [20] by Chaudouard and Zydor. To state their main result, it is convenient
to again consider the relevant pure inner forms of G (as defined in Section 1.1): for every
Hermitian space W’ of the same dimension as W, we have a relevant pure inner form G W=
U(V')y x U(W') with its diagonal subgroup H"' = U(W') where V' = W' &1+ WL More-
over, the correspondence of orbits (2.9) extends to an isomorphism between categorical
quotients,

H\G//H ~ H\\G'//H,, 4.2)

and for every W' as before, HY'\G"'//HW' can naturally be identified with H\G//H.
With these preliminaries, the main result of Chaudouard and Zydor can now be stated as
follows:

Theorem 4.1 (Chaudouard—Zydor). Assume that | W — [ va/ eCX (G W' (AF)), where
W’ runs over all isomorphism classes of Hermitian spaces of dimension n, and
f =1Tl, fi € CX(G'(AF)) are factorizable test functions such that for every place v,
and each W', f' and f! are Jacquet-Rallis transfers of each other (that is, )" < f).
Then, for every § € (H\G//H)(F) with image y € (H1\G'//H3)(F) by (4.2), we have

Y06, 7)) = 0y £). (4.3)
Wl
It should be noted that when §, hence also y, is regular semisimple, the left-hand sum
in (4.3) only contains one nonidentically vanishing term but that in general more than one

relevant pure inner forms can contribute. Also, the above result extends to nonfactorizable
test functions, provided the wording is changed suitably.
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The next natural step would be to develop regularized spectral expansions similar
to (4.1). As a first result in that direction, Zydor has shown decompositions of the form

)= D ) and I(f)= Y Le(f) (44)
X€X(G) X' €X(G)
where X (G) and X (G’) stand for the set of cuspidal data of the groups G and G’ respec-
tively, that is the sets of pairs (M, o) where M is a Levi subgroup (of G or G’) and o is a
cuspidal automorphic representation of M (A ) taken up to conjugacy (by G(F) or G'(F)).
According to Langlands theory of pseudo-Eisenstein series, these sets index natural equiv-
ariant Hilbertian decompositions:

L’ (6) = @ Ly(6). L (6= P Ly(6").

XEX(G) X E€X(G)

The automorphic kernels Ky, Ky, decompose accordingly into series Ky = ZX Ky,
Ko=) v K,y where Ky, and Ky, are kernel functions representing the restrictions
R, (f) and R,/ (f') of the right convolution operators R(f) and R(f”) to L)Z(([G]) and
L)Z(,([G’ 1), respectively. The distributions f + J,(f) and f’ +— I,/(f’) are then roughly
defined by applying the same regularization procedure that Zydor used for the expressions
J(f) and I(f’) up to replacing the integrands by Ky, and Ky, respectively, that is, in
symbolic terms:

reg

Jy(f) = /H o Kz (hi,hy)dhidhs,
e 1] .5)
IX’(f/) = /[ Kf/’x/(hl,hz)?](hz)dhldhz.

H\]x[H>]

However, the expansions (4.4) are of little use as they stand and need to be suitably
refined to allow for a meaningful comparison of the trace formulae. In Arthur’s terminol-
ogy, (4.4) are coarse spectral expansions and we need refined spectral expansions for each
of the terms Jy (f) or I,/ (f").

This problem has so far proved to be a very difficult for general cuspidal data y
and y’. However, a recent result of mine in collaboration with Y. Liu, W. Zhang, and X. Zhu
[17] allows isolating in the coarse spectral expansions (4.4) the only terms that are eventually
of interest consequently reducing the problem to some very particular cuspidal data y’ of G'.

The result proved in [17] is very general so let us place ourself for one moment
in the framework of an arbitrary connected reductive group G over the number field F.
Let ¥ be a set of non-Archimedean places of F' (possibly infinite) such that for each v €
¥, the group G, is unramified and fix a hyperspecial compact subgroup K, C G, with
K, = G(Oy) for almost all v € 3. We let X'5(G) be the set of X-unramified cuspidal data
of G, that is, the cuspidal data represented by pairs (M, o) with o unramified at all places
of v € ¥ (with respect to K, or, rather, the hyperspecial subgroup it induces in M,,)). For
x € Xx(G), we define its X-near equivalence class, henceforth denoted by Nx(x), as the
set of all cuspidal data y’ € X'5;(G) such that if y and y’ are represented by pairs (M, o) and
(M’,0") respectively, then there exist automorphic unramified characters A and 1’ of M (A r)
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and M’(A ), respectively, with the property that for every v € X the Satake parameters of
the unique K,-unramified subquotients in / I?U V(0p ® Ay) and 1 gf (0, ® Al,) (where P, P’
are arbitrary chosen parabolics with Levi components M, M) are isomorphic. We also fix a
compact-open subgroup K =[], g X Ky of G(Af) (where Sy denotes the set of finite places
of F and K, coincides with the previous choice of hyperspecial subgroup when v € ) and
we define the Schwartz space of K -biinvariant functions on G(A ) as the restricted tensor
product

/
Sk(G(AF)) = 8(G(Foo)) ® X Ce(Ku\Go/Ky),
VESy

where C.(K,\G,/K,) denotes the space of bi-K,-invariant compactly supported func-
tions on G, (that is the K,-spherical Hecke algebra when v € X), Fy is the product of
the Archimedean completions of F and §(G(F)) stands for the Schwartz space of the
reductive Lie group G(F) in the sense of [19]. More precisely, § (G(Fx)) is the space of
smooth functions f : G(Fs) — C such that for every polynomial differential operator on
G(Fw), the derivatives Df is bounded or, equivalently, such that for every left- (or right-
)invariant differential operator X, X f" is decreasing faster than the inverse of any polynomial
on G(Fy).

The Schwartz space S (G (Fs)) is naturally a Fréchet algebra under the convolution
product and we also set

Moo(G) = Endeont, s (G (Foo))—bimod (S (G(Foo)))

for the space of continuous endomorphisms of § (G(Fwo)) seen as a bimodule over itself. This
is an algebra acting on any smooth admissible Fréchet representation of moderate growth of
G (Fw) in the sense of Casselman—Wallach. Moreover, as an application of a form of Schur
lemma, for every irreducible Casselman—Wallach representation o, of G(F) and every
Moo € Moo(G) there exists a scalar floo(7Too) € C such that oo (hoo) = Moo (o)l d. Thus,
Mso(G) can be seen as some big algebra of multipliers for §(G(Fs)). We also define the
algebra of X-multipliers as the restricted tensor product

!/
Mz (G) = Moo(G) Q) H (G, Ky).
vVEY
where, for v € X, #(Gy, Ky) = C.(Ky\G,/Ky) is the spherical Hecke algebra. Then,
Mx(G) acts naturally on the global Schwartz space Sx (G(AF)), and we shall denote this
action as the convolution product *. One of the main result of [17] can now be stated as
follows:

Theorem 4.2 (Beuzart-Plessis—Liu—Zhang—Zhu). Let y € Xx(G). Then, there exists a mul-
tiplier |1y, € Mx(G) such that for every Schwartz function f € Sx(G(AF)) and every other
cuspidal datum y' € Xx(G), we have

Ry (f) ifx € Ns().

Ry (py * f) = )
0 otherwise.
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The above theorem can be roughly paraphrased by saying that the multiplier
“isolates” the near-equivalence class Nx(y) from the other cuspidal data. A large part of
the proof given in [17] consists in establishing the existence of a large subalgebra of Moo (G)
which admits an explicit spectral description, that is, through its action on irreducible
Casselman—Wallach representations of G(Fs,). The algebra thus constructed generalizes
Arthur’s multipliers [5] and, moreover, builds on previous work of Delorme [21].

Going back to the setting of the Jacquet—Rallis trace formulae, the above theorem
can be applied to isolate in the expansions (4.4) the automorphic L-packet of a given cuspidal
automorphic representation 7z of G(A g), on the one hand, and the cuspidal datum y of G’
“supporting” its base-change 7 g, on the other hand. Moreover, essentially using the spectral
characterization of Theorem 3.2 for the transfer, this can be done by multipliers i, € Mx(G)
and u, € Mx(G’) that are compatible with the Jacquet-Rallis transfer in the following sense:
if f =11, fo € Sk(G(Af)) and f' =[], fy € Sk’(G'(AF)) are transfers of each other
then so are py * f and pu, * f’ (where here we take X to consist of almost all places
that split in E and for K, K’ arbitrary compact-open subgroups of G(Ar), G'(Ay) that are
hyperspecial at places in X). All in all, applying these multipliers to global test functions f
and f' that are transfers of each other, and comparing the geometric expansions (4.1), we
obtain an identity of the following shape:

Y Y T = L),

W' 5 Acp(GW)

np=nEg
where the outside left sum runs over isomorphism classes of Hermitian spaces of the same
dimension as W (or, equivalently, relevant pure inner forms of G). Besides, as a consequence
of the local Gan—Gross—Prasad conjecture, when m g is generic, the left-hand side contains at
most one nonzero term. Thus, as a final step to establish the Gan—Gross—Prasad and Ichino—
Ikeda conjectures, it only remains to analyze the distribution 7,,. When the base-change
g is itself cuspidal, that is, when y = {(G’, mg)}, by the works of Jacquet—Piatetski-
Shapiro—Shalika and Flicker—Rallis already recalled, I, essentially factors as the product
of the local relative characters I, and Theorem 3.2 then allows to conclude. However,
in general a similar factorization of [, is far from obvious and was actually established in
my joint work with Chaudouard and Zydor [16]. It is exactly of the shape predicted by the
Ichino-Ikeda conjecture. More precisely:

Theorem 4.3 (Beuzart-Plessis—Chaudouard—Zydor). Let 7w be a cuspidal automorphic rep-
resentation of G(A f) whose base-change g is generic. Let y be the cuspidal datum of G’
such that g contributes to the spectral decomposition of L)Z(([G/ D). Then, for every factor-
izable test function f' =[], f, € $(G'(AF)), we have

1 /
LN =150 [ 11, (£ (4.6)

where the product has to be understood, as for (2.4), “in the sense of L-functions.”
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In [16], two proofs are actually given of the above theorem: one using truncations
operators and the other one based on the global theory of Zeta integrals. For both methods,
a crucial step is to spectrally expand the restriction of the Flicker—Rallis period (that is, the
integral over [ H]) to functions ¢ € L)Z( ([G']) that are sufficiently rapidly decreasing. A con-
sequence of this computation is that this period only depends on the 7 g -component of ¢ and
it is mainly for this reason that the contribution of y to the Jacquet—Rallis trace formula 7 ( /)
is eventually discrete (although in the case at hand, L)Z(([G’ ]) usually has a purely continuous
spectrum). For this, the truncation method is based on the work of Jacquet—Lapid—Rogawski
who have defined and studied generalizations of Arthur’s truncation operator to the setting
of Galois periods and proved analogs of the Maass—Selberg relations in this context. On the
other hand, the other method starts by expressing the Flicker—Rallis period as a residue of
the integral over [H;] of ¢ against an Eisenstein series. Unfolding carefully this expression
as in the work of Flicker—Rallis, we can rewrite it as a Zeta integral of the sort that repre-
sents Asai L-functions. The precise location of the poles of these L-functions, as well as an
explicit residue computation of a family of distributions, then allows to conclude.

Finally, let me mention that in work in progress with P.-H. Chaudouard, we are able
to analyze the contributions to the Jacquet—Rallis trace formula of more general cuspidal data
x € X (G') than that appearing in Theorem [16]. The final result is similar to (4.6) except that
the right-hand side has to be integrated over a certain family of automorphic representations
7 of G(AF). More precisely, our results include some cuspidal data supporting the base-
changes of automorphic representations of G = U(V') x U(W) that are Eisenstein in the first
factor and cuspidal in the second. In this particular case, the contribution of the correspond-
ing cuspidal datum to the trace formula J( /) is absolutely convergent and a refined spectral
expansion can readily be obtained as an integral of Gan—Gross—Prasad periods between a
cusp form and an Eisenstein series. These last periods are related, by some unfolding, to
Bessel periods of cusp forms on smaller unitary groups. For this reason, our extension of
Theorem 4.3 with Chaudouard should have similar applications to the Gan—Gross—Prasad
and Ichino—Ikeda conjectures for general Bessel periods.

5. LOOKING FORWARD

As illustrated in the previous sections, various trace formula approaches to the Gan—
Gross—Prasad conjectures for unitary groups have been very successful. However, despite
these favorable and definite results, these developments also raise interesting questions or
have lead to fertile new research direction:

* First, there is the question of whether similar techniques can be applied to prove
the global Gan—Gross—Prasad conjectures for other groups. Indeed, the original
conjectures in [23] also include general Bessel periods on (product of) orthogonal
groups SO(n) x SO(m) (n # m [2]), as well as so-called Fourier—Jacobi periods
on unitary groups U(n) x U(m) (n = m [2]) or symplectic/metaplectic groups
Mp(n) x Sp(m). In the case of U(n) x U(n), a relative trace formula approach
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has been proposed by Y. Liu and further developed by H. Xue [52]. However,
the situation is not as complete as for the Jacquet—Rallis trace formulae in the
case of U(n + 1) x U(n). It would be interesting to see if the latest develop-
ments, in particular those from my joint work with Chaudouard and Zydor [16],
can be adapted to this setting. This could possibly lead to a proof of the Gan—
Gross—Prasad conjecture for general Fourier—Jacobi periods on unitary groups.
The situation for orthogonal and symplectic/metaplectic groups is much less sat-
isfactory and there is no clear approach through a comparison of relative trace
formulae, yet. This is due in particular to the fact that, instead of the Flicker—
Rallis periods, in these cases we are naturally lead to consider period integrals
originally studied by Bump—Ginzburg that detect cuspidal automorphic represen-
tations of GL(n) of orthogonal type. These period integrals involve the product
of two exceptional theta series on a double cover of GL(n) and do not have any
obvious geometric realizations (except when n = 2). This makes the task of writ-
ing a geometric expansion for the corresponding trace formulae quite unclear. It
would certainly be interesting to see if the recent Hamiltonian duality picture of
Ben Zvi—Sakellaridis—Venkatesh can shed some light on this matter (in particular,
by associating a Hamiltonian space to the Bump—Ginzburg periods).

In the local setting, the new trace formulae first discovered by Waldspurger [47]
and further developed in [12] seem to be of quite broad applicability to all kind
of distinction problems. Actually, similar trace formulae have already been estab-
lished in other contexts [11, 18, 58] with new applications in the spirit of “rela-
tive Langlands functorialities” each time. However, all these developments have
been made on a case-by-case basis so far and it would be very interesting and
instructive to elaborate a general theory. In particular, in view of the proposal
by Sakellaridis—Venkatesh [41] of a general framework for the relative Langlands
program, we could hope to establish general local relative trace formulae for the
L? spaces of spherical varieties X and relate those to the dual group construction
of Sakellaridis—Venkatesh.

Finally, in a slightly different direction the general isolation Theorem 4.2 clearly
has the potential to be applied in other context, e.g., it would be interesting to
see if it can be used as a technical device to simplify some other known com-
parison of trace formulae. Another intriguing question is to look for a precise
spectral description of the (abstract) multiplier algebra Moo (G) and in [17], we
actually argue that M, (G) should be seen as the natural Archimedean analog of
the Bernstein center for p-adic groups.
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In this article, we survey recent work on some vanishing conjectures for the cohomology
of Shimura varieties with torsion coefficients, under both local and global conditions.

We discuss the p-adic geometry of Shimura varieties and of the associated Hodge—Tate
period morphism, and explain how this can be used to make progress on these conjectures.
Finally, we describe some applications of these results, in particular to the proof of the
Sato-Tate conjecture for elliptic curves over CM fields.
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1. INTRODUCTION

Shimura varieties are algebraic varieties defined over number fields and equipped
with many symmetries, which often provide a geometric realization of the Langlands cor-
respondence. After base change to C, they are closely related to certain locally symmetric
spaces, but the beauty of Shimura varieties lies in their rich arithmetic.

To describe a Shimura variety, one needs to start with a Shimura datum (G, X).
Here, G is a connected reductive group over Q and X is a conjugacy class of homomor-
phisms /1 : Resc/rG, — Gr of algebraic groups over R. Both G and X are required to
satisfy certain highly restrictive axioms, cf. [22, §2.1]. In particular, this allows one to give
the conjugacy class X a more geometric flavor, as a variation of polarisable Hodge struc-
tures. One can show that such an X is a disjoint union of finitely many copies of Hermitian
symmetric domains.

Let K C G(Ay) be a sufficiently small compact open subgroup (the precise technical
condition is called “neat”). The double quotient G(Q)\X x G(Ar)/K, a priori a complex
manifold, comes from an algebraic variety Sx defined over a number field E, called the reflex
field of the Shimura datum. The varieties Sgx are smooth and quasiprojective. Their étale
cohomology groups (with or without compact support) H (t )(S x X Q, Qy) are equipped
with two kinds of symmetries. There is a Hecke symmetry coming from varying the level,
i.e., the compact open subgroup K, and considering various transition morphisms between
Shimura varieties at different levels. There is also a Galois symmetry, coming from the nat-
ural action of Gal(E/ E) on étale cohomology.

For this reason, Shimura varieties have played an important role in realizing
instances of the global Langlands correspondence over number fields. Indeed, a famous con-
jecture of Kottwitz predicts the relationship between the Galois representations occurring in
the £-adic étale cohomology of the Shimura varieties for G and those Galois representations
associated with (regular, C-algebraic) cuspidal automorphic representations of G. See [64,
REMARK 1.1.1] for a modern formulation of this conjecture.

There is a complete classification of groups that admit a Shimura datum. For exam-
ple, if G = GSp,,,, one can take X to be the Siegel double space

{Z €M, (C) | Z = Z"',Im(Z) positive or negative deﬁnite}. (1.1

The associated Shimura varieties are called Siegel modular varieties and they are moduli
spaces of principally polarized abelian varieties. Many other Shimura varieties — those of so-
called “abelian type” — can be studied using moduli-theoretic techniques, by relating them
to Siegel modular varieties. See [39] for an excellent introduction to the subject, which is
focused on examples.

In this article, we will be primarily concerned with the geometry of the Shimura vari-
eties Sk, after base change to a p-adic field, as well as with their étale cohomology groups
H (*C)(S x ¥ Q,F;) with torsion coefficients. These groups are much less understood than
their characteristic zero counterparts. We discuss certain conjectures about when these coho-
mology groups are expected to vanish, under both global and local conditions. Furthermore,
we explain how the geometry of the Hodge—Tate period morphism, introduced in [53] and
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refined in [17], can be used to make progress on these conjectures. Finally, we describe some
applications of these results, in particular to the proof of the Sato—Tate conjecture for elliptic
curves over CM fields [1].

2. A VANISHING CONJECTURE FOR LOCALLY SYMMETRIC SPACES

Let G/Q be a connected reductive group. We consider the symmetric space asso-
ciated with the Lie group G(R), which we define as X = G(R)/ K3, A%, . Here, K2 is the
connected component of the identity in a maximal compact subgroup Ko, C G(R), and A2,
is the connected component of the identity inside the real points of the maximal Q-split
torus in the center of G. Given a neat compact open subgroup K C G(Ar), we can form
the double quotient Xx = G(Q)\X x G(Ar)/K, which we call a locally symmetric space
for G. This is a smooth Riemannian manifold, which does not have a complex structure, in
general.

Example 2.1. If G = SL,/Q, we can identify X = SL,(R)/SO,(R) with the upper half-
plane H? = {z € C | Imz > 0} equipped with the hyperbolic metric, on which SL;(RR) acts
transitively by the isometries

b
az + forz € H> and a b € SL,(R).
d c d

cz +

Under this action, SO2(R) is the stabilizer of the point i. By strong approximation for
SL,/Q, for any compact open subgroup K < SL, (’Z), there is only one double coset
SL>(Q)\ SLa(Af)/K. Write I' = SL»(Q) N K, which will be a congruence subgroup
contained in SL,(Z). The locally symmetric spaces Xx can be identified with quotients
I'\H2. For I neat, these quotients inherit the complex structure on H? and can be viewed
as Riemann surfaces. Even more, these quotients arise from algebraic curves called modu-
lar curves, which are defined over finite extensions of Q. Modular curves are examples of
(connected) Shimura varieties. They represent moduli problems of elliptic curves endowed
with additional structures. Even though they are some of the simplest Shimura varieties (the
main complication being that they are noncompact), their geometry is already fascinating.

However, let F//Q be an imaginary quadratic field and take G = Resr/g@SL>. Then
we can identify the symmetric space X = SL,(C)/SU,(R) with 3-dimensional hyperbolic
space H3. Once again, we can identify the locally symmetric spaces Xx with quotients
I'\H3, where I' = SL,(F) N K is a congruence subgroup. In this case, the locally symmet-
ric spaces are arithmetic hyperbolic 3-manifolds and do not admit a complex structure. In
particular, we cannot speak of Shimura varieties in this setting.

In general, Shimura varieties are closely related to locally symmetric spaces, as
in the first example, though the latter are much more general objects. For example, the
locally symmetric spaces for G = Resr;qGL, do not arise from Shimura varieties if n > 3,
and, for n = 2, they can only be related to Shimura varieties if F is a totally real field. In
some instances, such as for Resp;oGL, with F a totally real field, one needs to replace
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G(R)/KZ, A2, by aslightly different quotient in order to obtain Shimura varieties.! We now
define the invariants

lo = tk(G(R)) — tk(Koo) — tk(Aos) and go = %(dimR(X) —1lp).

These were first introduced by Borel-Wallach in [5]. There, they show up naturally in
the computation of the (g, K )-cohomology of tempered representations of G(R). In the
Shimura variety setting, we consider the variants o = Io(G*®) and ¢¢ = qo(G*?) because of
the different quotient used. In this case, /o(G*) can be shown to be equal to 0 by the second
axiom in the definition of a Shimura datum.

As K varies, we have a tower of locally symmetric spaces (Xg )k, on which a spher-
ical Hecke algebra T for G acts by correspondences. The systems of Hecke eigenvalues
occurring in the cohomology groups H (”;) (Xk, C) or, equivalently, the maximal ideals of T
in the support of these cohomology groups, can be related to automorphic representations
of G(Ay) by work of Franke and Matsushima [29]. The goal of this section is to state a con-
jecture on the cohomology of locally symmetric spaces with torsion coefficients IFy, where £
is a prime number. This conjecture is formulated in [25] (see the discussion around Conjec-
ture 3.3) and in [12, coNJECTURE B]. Roughly, it says that the part of the cohomology outside
the range of degrees [qo, go + [o] is somehow degenerate. Note that this range of degrees is
symmetric about the middle % dimpg X of the total range of cohomology and, in the Shimura
variety case, it equals the middle degree of cohomology.

To formulate this more precisely, we use the notion of a non-Eisenstein maximal
ideal in the Hecke algebra, for which we need to pass to the Galois side of the global Lang-
lands correspondence. For simplicity, we will restrict our formulation to the case of G =
Resr/@GL,, for some number field F', although the conjecture makes sense more generally.
Let T be the abstract spherical Hecke algebra away from a finite set S of primes of F and
let mt C T be a maximal ideal in the support of H (";) (XK, F¢). Assume that there exists a
continuous, semisimple Galois representation py, : Gal(F'/F) — GL, (F¢) associated with
m: by this, we mean that py, is unramified at all the primes of F' away from the finite set
S, and that, at any prime away from S, the Satake parameters of m match the Frobenius
eigenvalues of py,. (The precise condition is in terms of the characteristic polynomial of py,
applied to the Frobenius at such a prime and depends on various choices of normalizations.
See, for example, [1, THEOREM 2.3.5] for a precise formulation.) Since the Galois representa-
tion is assumed to be semisimple and we are working with Res ;g GL, this property will
characterize py, by the Cebotarev density theorem and the Brauer—Nesbitt theorem. We say
that m is non-Eisenstein if such a py, is absolutely irreducible.

The existence of py, as above should be thought of as a mod £ version of the global
Langlands correspondence, in the automorphic-to-Galois direction; in the case F = Q, this

1 ‘We make a small abuse of notation by using X to denote both the conjugacy class from
the introduction, which is used in the definition of a Shimura datum, and the quotient
G(R)/ K3, A3, considered in this section. See [24, §2.4] for an extended discussion of
the various quotients.
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existence was conjectured by Ash [4]. The striking part of this conjecture is that it should
apply to torsion classes in the cohomology of locally symmetric spaces, not just to those
classes that lift to characteristic zero, and which can be related to automorphic representa-
tions of G. For general number fields, the existence of such Galois representations seems out
of reach at the moment, even for classes in characteristic zero!

However, let F be a CM field: using nonstandard terminology, we mean that F is
either a totally real field or a totally complex quadratic extension thereof. In this case, Scholze
constructed such Galois representations in the breakthrough paper [53]. This strengthened
previous work [33] that applied to cohomology with Qg-coefficients. Both these results
relied, in turn, on the construction of Galois representations in the self-dual case, due to
many people, including Clozel, Kottwitz, Harris—Taylor [34], Shin [61], and Chenevier—
Harris [21].

We can now state the promised vanishing conjecture for the cohomology of locally
symmetric spaces with Fy-coefficients.

Conjecture 2.2. Assume that m C T is a non-Eisenstein maximal ideal in the support of
H{ (Xk,Fe). Then H{ ,(Xk,Fe)wm # 0 only ifi € [g0,90 + lo].

In the two examples discussed in Example 2.1, this conjecture can be verified “by
hand,” since one only needs to control cohomology in degree O (the top degree of cohomol-
ogy can be controlled using Poincaré duality). In the case of GL, /@, one can show that the
systems of Hecke eigenvalues m in the support of H%(Xg,F,) satisfy

ﬁm =X 2] Xeyclo * X (21)

where y is a suitable mod £ character of Gal(Q/Q) and Xeyelo - Gal(Q/Q) — [F; is the
mod £ cyclotomic character. Later, we will introduce a local genericity condition at an auxil-
iary prime p # £ and we will see that the py, in (2.1) also fail to satisfy genericity everywhere.
In addition to these and a few more low-dimensional examples, one can also consider the ana-
logue of Conjecture 2.2 for H, (”;) (Xk,Qyg). This analogue is related to Arthur’s conjectures
on the cohomology of locally symmetric spaces [3] and can be verified for GL, over CM
fields using work of Franke and Borel-Wallach (see [1, THEOREM 2.4.9]).

Conjecture 2.2 is motivated by the Calegari—Geraghty enhancement [12] of the clas-
sical Taylor—-Wiles method for proving automorphy lifting theorems. The classical method
works well in settings where the (co)homology of locally symmetric spaces is concentrated
in one degree, for example, for GL,/Q after localizing at a non-Eisenstein maximal ideal,
or for definite unitary groups over totally real fields. In general, however, a certain numerical
coincidence that is used to compare the Galois and automorphic sides breaks down. Calegari
and Geraghty had a significant insight: they reinterpret the failure of the numerical coinci-
dence in terms of the invariant /o. More precisely, [y arises naturally from a computation
on the Galois side, and the commutative algebra underlying the method can be adjusted if
one knows that the cohomology on the automorphic side, after localizing at a non-Eisenstein
maximal ideal, is concentrated in a range of degrees of length at most /. For an overview of
the key ideas involved in the Calegari—-Geraghty method, see [1e, §10].
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In the case of Shimura varieties, Conjecture 2.2 predicts that the non-Eisenstein
part of the cohomology with [Fy-coefficients is concentrated in the middle degree. The ini-
tial progress on this conjecture in the Shimura variety setting had rather strong additional
assumptions: for example, one needed ¢ to be an unramified prime for the Shimura datum
and K to be hyperspecial, as in the work of Dimitrov [23] and Lan—Suh [4e, 41]. The theory
of perfectoid Shimura varieties and their associated Hodge—Tate period morphism has been
a game-changer in this area. For the rest of this article, we will discuss more recent progress
on Conjecture 2.2 and related questions in the special case of Shimura varieties, as well as
applications that go beyond the setting of Shimura varieties.

3. THE HODGE-TATE PERIOD MORPHISM

The Hodge-Tate period morphism was introduced by Scholze in his breakthrough
paper [53] and it was subsequently refined in [17]. It gives an entirely new way to think about
the geometry and cohomology of Shimura varieties. In the past decade, it had numerous
striking applications to the Langlands programme: to Scholze’s construction of Galois rep-
resentations for torsion classes, to the vanishing theorems discussed in Sections 4 and 5, to
the construction of higher Coleman theory by Boxer and Pilloni [8], and to a radically new
approach to the Fontaine—Mazur conjecture due to Pan [48].

For simplicity, let us consider a Shimura datum (G, X) of of Hodge type. By this, we
mean that (G, X') admits a closed embedding into a Siegel datum (G, X ), where G= GSp,,,,
for some n € Z>1, and X is as in (1.1). For example, (G, X) could be a Shimura datum of
PEL type arising from a unitary similitude group: the corresponding Shimura varieties will
represent a moduli problem of abelian varieties equipped with extra structures (polarizations,
endomorphisms, and level structures). This unitary case will be the main example to keep in
mind, as this will also play a central role in Section 4.

For some representative 1 € X, we consider the Hodge cocharacter

n = h XR (C|lst G, factor - Gm,C — G(C-

The axioms in the definition of the Shimura datum imply that w is minuscule. The reflex
field E is the field of definition of the conjugacy class {u}; it is a finite extension of Q
and the corresponding Shimura varieties admit canonical models over E. The cocharacter
W also determines two opposite parabolic subgroups Plitd and P,,, whose conjugacy classes
are defined over E. These are given by

P = {g € G| lim ad(u(t))g exists}, PH = {g € G | limad(u(r))g exists}.
t—>00 t—0

We let FI°Y and Fl denote the associated flag varieties, which are also defined over E.

Here is a more moduli-theoretic way to think about these the two parabolics. The
chosen symplectic embedding (G, X) < (G, X) gives rise to a faithful representation V of
G. The embedding also gives rise to an abelian scheme Ag over the Shimura variety Sk at
some level K = G(Ar) N K, obtained by restricting the universal abelian scheme over the
Siegel modular variety at level K c G(A ). The cocharacter p induces a grading of V¢,
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which in turn defines two filtrations on V¢, a descending one Fil® and an ascending one Fil,.
The parabolic Plitd is the stabilizer of Fil®, which is morally the Hodge—de Rham filtration
on the Betti cohomology of Ag. There is a holomorphic, G(R)-equivariant embedding

mar 1 X < FI'(C) = G(C)/ P} (3.1

called the Borel embedding, defined by & +— Fil®(uy). The axioms of a Shimura datum
imply that X is a variation of polarisable Hodge structures of abelian varieties. Moduli-
theoretically, wqr sends a Hodge structure, such as

H'(A,Q)®q C ~ H°(A,Q)) ® H'(A. Oy),

to the associated Hodge—de Rham filtration, e.g., H(4, Q}) € H'(4, Q) ®q C. The
embedding mgr is an example of a period morphism. Historically, it has played an impor-
tant role in the construction of canonical models of automorphic vector bundles over E (or
even integrally), such as in work of Harris and Milne.

On the other hand, the parabolic subgroup P, is the stabilizer of the ascending
filtration Fil,. This gives rise to an antiholomorphic embedding

X < FI(C) = G(C)/P,,. (3.2)

Morally, P, is the stabilizer of the Hodge—Tate filtration on the p-adic étale cohomology
of Ax. The Hodge—Tate period morphism will be a p-adic analogue of the embedding (3.1)
(or perhaps of the embedding (3.2), depending on one’s perspective).

Let p be a rational prime, p | p a prime of E, and let C be the completion of an
algebraic closure of E,. We consider the adic spaces S and % { over Spa(C, Oc) corre-
sponding to the algebraic varieties Sk and Fl over E. A striking result of Scholze shows that
the tower of Shimura varieties (Sk»k, )k, acquires the structure of a perfectoid space (in the
sense of [51]) as K, varies over compact open subgroups of G(Q,). More precisely, the fol-
lowing result was established in [53, §3,4] and later refined in [17, §2], by correctly identifying
the target of the Hodge—Tate period morphism.

Theorem 3.1. There exists a unique perfectoid space Sk p satisfying Sgp ~ LiﬂlK Skr K,,,z
p
in the sense of [55, DEFINITION 2.4.1], and a G(Qp)-equivariant morphism of adic spaces
JTHT - SKp — 4.

Moreover, myr is equivariant for the usual action of Hecke operators away from p on Sgr

and their trivial action on F (.

In the Siegel case G = GSp,,,/Q, one can describe the Hodge-Tate period mor-
phism sty from a moduli-theoretic perspective as follows. An abelian variety A/ C, equipped
with a trivialization T, A =~ Zf,” will be sent to the first piece of the Hodge—Tate filtration

Lie A C T)A®z, C ~ C?".

2 It is enough to consider the Shimura varieties as adic spaces over E and the tower still
acquires a perfectoid structure in a noncanonical way. We work over C for simplicity and
also because this gives rise to the étale cohomology groups we want to understand.
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Dually, one has the Hodge—Tate filtration on the p-adic étale cohomology of A:
0— H'(A,04) > H(A,Zp) ®z, C - H(A,Q),c)(=1) =0, (3.3)

where (—1) denotes a Tate twist (which is important for keeping track of the Galois action).
To show that the morphism defined this way on Spa(C, C T)-points comes from a morphism
of adic spaces, it is important to know that the filtration (3.3) varies continuously. At the
same time, to extend the result to Shimura varieties of Hodge type and to cut down the
image to .#{, one needs to keep track of Hodge tensors carefully. Both problems are solved
via relative p-adic Hodge theory for the morphism Ax — Sk, where Ak is the restriction
to Sk of a universal abelian scheme over an ambient Siegel modular variety. See [13, §3] for
an overview.

Theorem 3.1 can be extended to minimal and toroidal compactifications of Siegel
modular varieties, cf. [53] and [49]. Moreover, there is a natural affinoid cover of .%# ¢ such
that the preimage under syt of each affinoid in the cover is an affinoid perfectoid subspace
of §g,. The underlying reason for this is the fact that the partial minimal compactification
of the ordinary locus is affine. The perfectoid structure on Sz, and the affinoid nature of
the Hodge—Tate period morphism play an important role in Scholze’s p-adic interpolation
argument, that is key for the construction of Galois representations associated with torsion
classes. See also [44] for an exposition of the main ideas.

Theorem 3.1 can also be extended to minimal and toroidal compactifications of
Shimura varieties of Hodge type and even abelian type, cf. [32,58] and [8], although there
are some technical issues at the boundary. For example, the cleanest formulation currently
available in full generality is that the relationship Sz, = 1<iI—nK,, Sg» Ky for a perfectoid space

S I*(p, holds in Scholze’s category of diamonds [54].

Example 3.2. To see where the perfectoid structure on Sx» comes from, it is instructive to
consider the case of modular curves and study the geometry of their special fibers: we are
particularly interested in the geometry of the so-called Deligne—Rapoport model. Set G =
GL, /Q.Let K 1(,’ = GL>(Zp), the hyperspecial compact open subgroup and let §K PKY /Fp
be the special fiber of the integral model over Z ) of the modular curve at this level. This is
a smooth curve over [, that represents a moduli problem (£, o) of elliptic curves equipped
with prime-to- p level structures (determined by the prime-to- p level K?). The isogeny class
of the p-divisible group E[p®°] induces the Newton stratification

Skrks = Skrxs USKrks (3.4)
into an open dense ordinary stratum §,°§§ K? (where E[p®°] is isogenous to ppe X Qp/Zp)
and a closed supersingular stratum E;;p K9 consisting of finitely many points (where E[p™°]
is connected).

Now let K} C GL2(Q,) be the Iwahori subgroup and Skrk 1/Fp be the special fiber
of the integral model of the modular curve at this level. This represents a moduli problem
(E, a, D) of elliptic curves equipped with prime-to-p level structures and also with a level
structure at p given by a finite flat subgroup scheme D C E[p] of order p. Again, we have the
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. . . = —ord =SS .
preimage of the Newton stratification S g g1 = Sg» g} U S k» g} - The modular curve at this
level is not smooth, but rather a union of irreducible components that intersect transversely
at the finitely many supersingular points.

—ord

The open and dense ordinary locus S ;{rp k) isa disjoint union of two Kottwitz—
Rapoport strata: the one where D ~ u, and the one where D ~ Z/pZ. Both of these
Kottwitz—Rapoport strata can be shown to be abstractly isomorphic to the ordinary stra-

. . —ord —ord

tum at hyperspecial level. If we restrict the natural forgetful map S, K}~ N K9 to the
Kottwitz—Rapoport stratum where D >~ Z/ pZ, the map can be identified (up to an isomor-
phism) with the geometric Frobenius. (The restriction of the map to the Kottwitz—Rapoport
stratum where D >~ i, is an isomorphism.)

PO OO O & Q0"

SR

On the adic generic fiber, one can extend this picture to an anticanonical ordinary tower,

12

S
KrKy (3.5)

where the transition morphisms reduce modulo p to (powers of) the geometric Frobenius,
giving a perfectoid space in the limit. To extend beyond the ordinary locus, Scholze uses the
theory of the canonical subgroup, the action of GL,(Q)) at infinite level, and a rudimentary
form of the Hodge—Tate period morphism that is just defined on the underlying topological
spaces.

The above strategy generalizes relatively cleanly to higher-dimensional Siegel mod-
ular varieties, modulo subtleties at the boundary. To extend Theorem 3.1 to general Shimura
varieties of Hodge type, Scholze considers an embedding at infinite level into a Siegel modu-
lar variety. It is surprisingly subtle to understand directly the perfectoid structure on a general
Shimura variety of Hodge type (especially in the case when G, is nonsplit) and this is
related to the discussion in Section 5. This is also related to the fact that the geometry of the
EKOR stratification is more intricate when G, is nonsplit.

For simplicity, let us now assume that (G, X) is a Shimura datum of PEL type and
that p is an unramified prime for this Shimura datum. Recall the Kottwitz set B(G) classify-
ing isocrystals with G, -structure. The Hodge cocharacter u defines a subset B(G, whHc
B(G) of " !-admissible elements. The special fiber of the Shimura variety with hyperspe-
cial level at p admits a Newton stratification

Sk» K = |_| §II;P K9
beB(G,u™1)
into locally closed strata indexed by this subset. This stratification is in terms of isogeny
classes of p-divisible groups with G, -structure and generalizes the stratification (3.4) from
the modular curve case.

For each b € B(G, 1™ 1), one can choose a (completely slope divisible) p-divisible

group with G, -structure X3/ Fp and define the corresponding Oort central leaf. This is a
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b
smooth closed subscheme X of the Newton stratum S g, k- such that the isomorphism
class of the p-divisible group with Gg,-structure over each geometric point of the leaf is
constant and equal to that of Xj:

€% = {x € Sgoky | Agoal p™] x k(F) = Xp x (D)}

In general, there can be infinitely many leaves inside a given Newton stratum. Over each
central leaf, one has the perfect Igusa variety Igb /]ITP, a profinite cover of %X” which
parametrizes trivializations of the universal p-divisible group with Gq, -structure.

Variants of Igusa varieties were introduced in [34] in the special case of Shimura
varieties of Harris—Taylor type. They were defined more generally for Shimura varieties of
PEL type by Mantovan [43] and their £-adic cohomology was computed in many cases by
Shin using a counting point formula [59-61]. All these authors consider Igusa varieties as pro-
finite étale covers of central leaves, which trivialize the graded pieces of the slope filtration
on the universal p-divisible group. Taking perfection gives a more elegant moduli-theoretic
interpretation, while preserving £-adic cohomology. However, the coherent cohomology of
Igusa varieties is also important for defining and studying p-adic families of automorphic
forms on G, as pioneered by Katz and Hida. Taking perfection is too crude for this purpose.

While the central leaf €X¢ depends on the choice of X}, in its isogeny class, one can
show that the perfect Igusa variety Igb only depends on the isogeny class: this follows from
the equivalent moduli-theoretic description in [17, LEMMA 4.3.4] (see also [19, LEMMA 4.2.2],
which keeps track of the extra structures more carefully). In particular, the pair (G, p) is
not determined by the Igusa variety Igb — it can happen that Igusa varieties that are a priori
obtained from different Shimura varieties are isomorphic. See [19, THEOREM 4.2.4] for an exam-
ple and [57] for a systematic analysis of this phenomenon in the function field setting.

Because Igb / Fp is perfect, the base change Igb XF, Oc / p admits a canonical lift to
a flat formal scheme over Spf O¢. We let ¥ gb denote the adic generic fiber of this lift, which
is a perfectoid space over Spa(C, O¢). The spaces Igb and ¥ gb have naturally isomorphic
{-adic cohomology groups and they both have an action of a locally profinite group G, (Qp),
where Gy is an inner form of a Levi subgroup of G.

Foreach b € B(G, 1~ 1), one can also consider the associated Rapoport—Zink space,
amoduli space of p-divisible groups with G, -structure that is a local analogue of a Shimura
variety. Concretely in the PEL case, one considers a moduli problem of p-divisible groups
equipped with Ggq,-structure, satisfying the Kottwitz determinant condition with respect
to i, and with a modulo p quasiisogeny to the fixed p-divisible group Xj. This moduli
problem was shown by Rapoport-Zink [5e] to be representable by a formal scheme over
Spf O o where Ep is the completion of the maximal unramified extension of E,. We let
MP? denote the adic generic fiber of this formal scheme,’ base changed to Spa(C, Oc¢), and
let Mgo denote the corresponding infinite-level Rapoport—Zink space. The latter object can

3 As a consequence of the comparison with moduli spaces of local shtukas in [56], one
obtains a group-theoretic characterization of Rapoport—Zink spaces as local Shimura vari-
eties determined by the tuple (G, b, t). We suppress (G, (1) from the notation for simplicity.
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be shown to be a perfectoid space using the techniques of [55], by which the infinite-level
Rapoport-Zink space admits a local analogue of the Hodge—Tate period morphism

nhe s ME — L.

It turns out that the geometry of myr is intricately tied up with the geometry of its local
analogues nI}_’IT. The following result is a conceptually cleaner, infinite-level version of the
Mantovan product formula established in [43], which describes Newton strata inside Shimura
varieties in terms of a product of Igusa varieties and Rapoport—Zink spaces.

Theorem 3.3. There exists a Newton stratification

Ft= || #
beB(G,u™ 1)
into locally closed strata.
For each b € B(G, u™"), one can consider the Newton stratum SI‘}I}, as a locally

closed subspace of the good reduction locus Sg.,. There exists a Cartesian diagram of dia-
monds over Spd(C, Oc¢)

b b b
Mo Xspd(C,0¢) 3G — Mg,

R

b T b
Sgp ———— FUL°.
Moreover, each vertical map is a pro-étale torsor for the group diamond Gy, (identified with
Autg (Xp), in the notation of [17, §4]).

The decomposition into Newton strata is defined in [17, §3]. Morally, one first con-
structs a map of v-stacks .# £ — Bung, where the latter is the v-stack of G-bundles on the
Fargues—Fontaine curve. To construct this map of v-stacks, it is convenient to notice that
one can identify the diamond associated to .7 ¢ with the minuscule Schubert cell defined by
W inside the B&—Grassmannian for G. Once the map to Bung is in the picture, one uses
Fargues’s result that the points of Bung are in bijection with the Kottwitz set B(G), cf. [27]
(see also [2] for an alternative proof that also works in equal characteristic). Moreover, the
Newton decomposition is a stratification, in the sense that, for b € B(G, ), we have

Tt =| |7
b'>b
where > denotes the Bruhat order. The latter fact follows from a recent result of Viehmann,
see [63, THEOREM 1.1].

On rank one points, gt is compatible with the two different ways of defining the
Newton stratification: via pullback from S KrKg On Skr and via pullback from Bung on #¢.
The behavior is more subtle on higher rank points. This is related to the fact that the closure
relations are reversed in the two settings: the basic locus inside S g, k9 is the unique closed
stratum, whereas each basic stratum inside Bung is open. On the other hand, the (w)-ordinary
locus is open and dense inside S g, k9> Whereas it is a zero-dimensional closed stratum inside
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Z L. The infinite-level product formula is established in [17, §4], although it is formulated in
terms of functors on Perf B 4 This was extended to Shimura varieties of Hodge type by
Hamacher [31].

Assume that the Shimura varieties Sk are compact. We have the following conse-
quence for the fibers of 7ryr: let X : Spa(C, C ) — .Z£? be a geometric point. Then there is an
inclusion of ¥ gb into 77} (%), which identifies the target with the canonical compactification
of the source, in the sense of [54, PROPOSITION 18.6]. In [18, THEOREM 1.18], we extend the com-
putation of the fibers to minimal and toroidal compactifications of (noncompact) Shimura
varieties attached to quasisplit unitary groups. In this case, the fibers can be obtained from
partial minimal and toroidal compactifications of Igusa varieties. It would be interesting to

extend the whole infinite-level product formula to compactifications.

Example 3.4. We make the geometry of wyy explicit in the case of the modular curve, i.e.,
for G = GL, /Q. In this case, we identify .# ¢ = P-4 and we have the decomposition into
Newton strata

[t'p = S;,;)rd U ;(%p
S l
Pl,ad — ]P)l,ad(Qp) U Q.

The ordinary locus inside P1-* consists of the set of points defined over Q, and the basic /
supersingular locus is its complement €2, the Drinfeld upper half-plane.

The fibers of wyt over the ordinary locus are “perfectoid versions” of Igusa curves.
The infinite-level version of the product formula reduces, in this case, to the statement that the

ordinary locus is parabolically induced from 3 g™

, as in [19, s6]. The fibers of wyt over the
supersingular locus are profinite sets: the corresponding Igusa varieties can be identified with
double cosets D*\ D> (A]"f )/ K?,where D/Q is the quaternion algebra ramified precisely at
oo and p. This precise result is established in [35], although the idea goes back to Deuring—
Serre. One should be able to give an analogous description for basic Igusa varieties in much

greater generality — this is closely related to Rapoport—Zink uniformization.

4. COHOMOLOGY WITH MOD ¢ COEFFICIENTS

In this section, we outline some recent strategies for computing the cohomology of
Shimura varieties with modulo £ coefficients using the p-adic Hodge-Tate period morphism,
where £ and p are two distinct primes. We emphasize the strategies developed in [17-19,38].

We will assume throughout that (G, X) is a Shimura datum of abelian type and,
in practice, we will focus on two examples: the case of Shimura varieties associated with
unitary similitude groups and the case of Hilbert modular varieties. Let mt C T be a max-

4 The result precedes the notion of diamonds and, in order to ensure that S;’(bp is a diamond,
one needs to take care in defining it. At hyperspecial level, one should consider the adic
generic fiber of the formal completion of the integral model of the Shimura variety along
the Newton stratum indexed by b in its special fiber.
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imal ideal in the support of H(";)(SK (C), Fy). By work of Scholze (cf. [53, THEOREM 4.3.1])
and by the construction of Galois representations in the essentially self-dual case, we know
in many cases how to associate a global modulo £ Galois representation py, to the max-
imal ideal m. Therefore, the non-Eisenstein condition makes sense, and one can at least
formulate Conjecture 2.2. In order to make progress on this conjecture, we impose a local
representation-theoretic condition at the prime p, which we treat as an auxiliary prime.

Definition 4.1. Let I be a finite field of characteristic £.

(1) Let p # £beaprime, K/Q, be afinite extension, and 5 : Gal(K / K) — GL, (F)
be a continuous representation. We say that p is generic if it is unramified and
the eigenvalues (with multiplicity) a1, . . ., o, € F of p(Frobg) satisfy a; Joj #
|Ok /mk| fori # j.

(2) Let F be a number field and p : Gal(F /F) — GL,(F) be a continuous repre-
sentation. We say that a prime p # £ is decomposed generic for p if p splits
completely in F and, for every prime p | p of F, /5|Gal(fp JFp) is generic. We say
that p is decomposed generic if there exists a prime p # £ which is decomposed
generic for p. (If one such prime exists, then infinitely many do.)

Remark 4.2. The condition for the local representation p of Gal(K / K) to be generic implies
that any lift to characteristic 0 of p corresponds under the local Langlands correspondence
to a generic principal series representation of GL,, (K). Such a representation can never arise
from a nonsplit inner form of GL,, /K via the Jacquet-Langlands correspondence. For this
reason, a generic p cannot be the modulo £ reduction of the L-parameter of a smooth repre-
sentation of a nonsplit inner form of GL,, /K.

A semisimple 2-dimensional representation /5 of Gal(Q/Q) is either decomposed
generic or it satisfies (2.1): the case where p is a direct sum of two characters can be analyzed
by hand, and the case where p is absolutely irreducible follows from the paragraph after
Theorem 3.1 in [37]. More generally, the condition for a global representation p of Gal(F / F)
to be decomposed generic can be ensured when p has large image. For example, if £ > 2, F
is a totally real field, and p is a totally odd 2-dimensional representation with nonsolvable
image, then p is decomposed generic (cf. [19, LEMMA 7.1.8]).

Let F be an imaginary CM field. Let (B, *, V, (-,-)) be a PEL datum of type A, where
B is a central simple algebra with center F'. We let (G, X) be the associated Shimura datum.
For a neat compact open subgroup K C G(Ay), we let Sx/E be the associated Shimura
variety, of dimension d. The following conjecture is a slightly different formulation of [38,
CONJECTURE 1.2], with essentially the same content.

Conjecture 4.3. Let v C T be a maximal ideal in the support of H (’ o (Sk(C),Fy). Assume
that py, is decomposed generic. Then the following statements hold true:

(1) if H:(Sk(C).F)m # 0, theni < d;

() if H (Sk(C),Fo)m # 0, theni > d.
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If the Shimura varieties Sk are compact, or if we additionally assume 1 to be non-
Eisenstein, Conjecture 4.3 implies a significant part of Conjecture 2.2 for Shimura varieties
of PEL type A. Analogues of Conjecture 4.3 can be formulated (and are perhaps within
reach) for other Shimura varieties, such as Siegel modular varieties.

Theorem 4.4 ([17] strengthened in [38]). Assume that G is anisotropic modulo center, so

that the Shimura varieties Sg are compact. Then Conjecture 4.3 holds true.

Theorem 4.5 ([18] strengthened in [38]). Assume that B = F,V = F?" and G is a quasisplit
group of unitary similitudes. Then Conjecture 4.3 holds true.

Remark 4.6. The more recent results of [38] have significantly fewer technical assumptions
than the earlier ones of [17] and [18]. For example, Koshikawa’s version of Theorem 4.5
allows F to be an imaginary quadratic field. It seems nontrivial to obtain this case with
the methods of [18]. In the noncompact case, his results rely on the geometric constructions
in [18], in particular on the semiperversity result for Shimura varieties attached to quasisplit
unitary groups that is established there. As he notes, a generalization of this semiperversity
result should lead to a full proof of Conjecture 4.3 for Shimura varieties of PEL type A. The
more general semiperversity result will be obtained in the upcoming PhD thesis of Mafalda
Santos.

In the case of Harris—Taylor Shimura varieties, Theorem 4.4 was first proved by
Boyer [9]. Boyer’s argument uses the integral models of Shimura varieties of Harris—Taylor
type, but it is close in spirit to the argument carried out in [17] on the generic fiber. What
is really interesting about Boyer’s results is that he goes beyond genericity, in the following
sense. Given the eigenvalues (with multiplicity) «, . . ., & of Py (Froby), with p | p the rel-
evant prime of F,> one can define a “defect” that measures how far py, is from being generic
at p. Concretely, set 8,(u1) to be equal to the length of the maximal chain of eigenvalues
where the successive terms have ratio equal to |@ f, /m F, |. Boyer shows that the cohomol-
ogy groups H(ic) (Sk (C),F()m are nonzero at most in the range [d — §,(m), d + §,(m)]. As
noted by both Emerton and Koshikawa, such a result is consistent with Arthur’s conjectures
on the cohomology of Shimura varieties with C-coefficients and points towards a modulo £
analogue of these conjectures.

Let us also discuss the analogous vanishing result in the Hilbert case. Let F' be a
totally real field of degree g and let G = Resf;q GL,. For a neat compact open subgroup
K C G(Ay), we let Sk /Q be the corresponding Hilbert modular variety, of dimension g.

Theorem 4.7 ([19, THEOREM A]). Let £ > 2 and mi C T be a maximal ideal in the support of
H (ic) (S (C),Fy). Assume that the image of py s not solvable, which implies that py, is abso-
lutely irreducible and decomposed generic. Then H.(Sx(C),Fy)m = H'(Sx(C),Fy) is
nonzero only fori = g.

5 In this special case, one does not have to impose the condition that p splits completely in F,
and it suffices to have genericity at one prime p | p.
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The same result holds for all quaternionic Shimura varieties, and we can even prove
the analogue of Boyer’s result that goes beyond genericity in all these settings. As an applica-
tion, we deduce (under some technical assumptions) that the p-adic local Langlands corre-
spondence for GL,(Q) occurs in the completed cohomology of Hilbert modular varieties,
when p is a prime that splits completely in F. This uses the axiomatic approach via patching
introduced in [14] and further developed in [15, 38].

‘We now outline the original strategy for proving Theorem 4.4, which was introduced
in [17]. Let p be a prime and K = K? K, C G(Ay) be a neat compact open subgroup. The
Hodge-Tate period morphism gives rise to a T -equivariant diagram

Sk»r 4.1

/ T

SkrK, FL.

The standard comparison theorems between various cohomology theories allow us to iden-
tify H(*C)(SK(C), F¢)wm with H(”;)(SK, F¢)w. The arrow on the left-hand side of (4.1) is a
K,-torsor, so the Hochschild—Serre spectral sequence allows us to recover H (t )(S K> Fo)m
from H (‘;) (Sxr,F¢)m. The idea is now to compute H ("; ) (Skr,F¢)y in two stages: first under-
stand the complex of sheaves (Rmyr«F¢)w on % £, then compute the total cohomology using
the Leray—Serre spectral sequence.

Two miraculous things happen that greatly simplify the structure of (Rwyr«F¢)w.-
The first is that (Ryr«F¢)m behaves like a perverse sheaf on .%£. This is because myr is
simultaneously affinoid, as discussed after Theorem 3.1, and partially proper, because the
Shimura varieties were assumed to be compact. In particular, the restriction of (Rmwyr«F¢)m
to a highest-dimensional stratum in its support is concentrated in one degree. By the com-
putation of the fibers of myr, this implies that the cohomology groups RI'(3 gb, Zg)m
are concentrated in one degree and torsion-free. The second miracle is that, whenever
the group G5(Q)p) acting on J gb comes from a nonquasisplit inner form, the localiza-
tion R['(3 gb , Q¢)m vanishes. This uses the genericity of py, at each p | p and suggests
that the cohomology of Igusa varieties satisfies some form of local-global compatibility.
Finally, the condition that p splits completely in F' guarantees that the only Newton stratum
for which Gy, is quasisplit is the ordinary one. Therefore, the hypotheses of Theorem 4.4
guarantee that (Rmyr«F¢)y, is as simple as possible — it is supported in one degree on a
zero-dimensional stratum!

The computation of RT'(Ig?, Q¢)uw, at least at the level of the Grothendieck group,
can be done using the trace formula method pioneered by Shin [6e]. This is the method used
for Shimura varieties of PEL type A in [17] and [18]. For inner forms of Resr,;g GL,, with
F atotally real field, one can avoid these difficult computations, cf. [19]. In this setting, one
can reinterpret results of Tian—Xiao [62] on geometric instances of the Jacquet—Langlands
correspondence as giving rise to exotic isomorphisms between Igusa varieties arising from
different Shimura varieties. This is what happens for the basic stratum in Example 3.4. Then
one can conclude by applying the classical Jacquet—-Langlands correspondence.
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In [38], Koshikawa introduces a novel and complementary strategy for proving these
kinds of vanishing theorems. He shows that, under the same genericity assumption in Defi-
nition 4.1, only the restriction of (Rmyr«F¢)m to the ordinary locus contributes to the total
cohomology of the Shimura variety. To achieve this, he proves the analogous generic vanish-
ing theorem for the cohomology RT.(M?, Zg)m, of the Rapoport-Zink space, where m,
is a maximal ideal of the local spherical Hecke algebra at p. This relies on the recent work
of Fargues—Scholze on the geometrization of the local Langlands conjecture [28].

Koshikawa’s strategy is more flexible, allowing him to handle with ease the case
where F is an imaginary quadratic field. On the other hand, the original approach also
gives information about the complexes of sheaves (Ryr«F¢)wm, rather than just about the
cohomology groups H (’2 ) (Sg(C),F¢)m. These complexes should play an important role for
questions of local-global compatibility in Fargues’s geometrization conjecture, cf. [26, §7].

5. COHOMOLOGY WITH MOD p AND p-ADIC COEFFICIENTS

The most general method for constructing p-adic families of automorphic forms
from the cohomology of locally symmetric spaces is via completed cohomology. First intro-
duced by Emerton in [24], this has the following definition:

(K7 2,) = lim(lim H* (Xkrk, . 2/ "),
n K,

where K? C G(Ay) is a sufficiently small, fixed tame level, and K, C G(Q,) runs over
compact open subgroups. This space has an action of the spherical Hecke algebra T, built
from Hecke operators away from p, as well as an action of the group G(Q,). One can make
the analogous definition for completed cohomology with compact support, and a variant
gives completed homology and completed Borel-Moore homology. See [25] for an excellent
survey that gives motivation, examples, and sketches the basic properties of these spaces.

Motivated by heuristics from the p-adic Langlands programme, Calegari and Emer-
ton made several conjectures about the range of degrees in which one can have nonzero
completed (co)homology and about the codimension of completed homology over the com-
pleted group rings Z,[K,]. See [11, coNJECTURE 1.5] for the original formulation and [32,
CONJECTURE 1.3] for a slightly different formulation, which emphasizes the natural implica-
tions between the various conjectures. In particular, Calegari-Emerton conjectured that

HI(K?.Z,) = H' (K?.Z,) =0 fori > qo.

For Shimura varieties of preabelian type, the Calegari-Emerton conjectures were proved
by Hansen—Johansson in [32], building on work of Scholze who proved the vanishing of
completed cohomology with compact support for Shimura varieties of Hodge type [53].

We sketch Scholze’s argument, which illustrates the role of p-adic geometry in this
result. It is enough to show that

1:161 (Kp,Fp) = h_n)lHCl (SKPKI,((C)7]FP)
Ky
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vanishes for i > d = dimg Sk. Since (G, X) is a Shimura datum of Hodge type, we are
in the setting of Theorem 3.1 — in fact, we know that the minimal compactification Sz, is
perfectoid. The primitive comparison theorem of [52] gives an almost isomorphism between
HI(KP,F,) ® Oc/p and H}(S%,.d7/p), where 7 C O is the subsheaf of sections
that vanish along the boundary. On an affinoid perfectoid space, Scholze proved the almost
vanishing of the étale cohomology of @/ p in degree i > 0. With some care at the boundary,
one deduces that it is enough to prove that the analytic cohomology groups H ;n (Sgp.d */p)
are almost 0 in degree i > d. This final step follows from a theorem of Scheiderer on the
cohomological dimension of spectral spaces.

In [2e] and [16], we study Shimura varieties with unipotent level at p. More precisely,
assume that (G, X) is a Shimura datum of Hodge type and that Gq, is split. Choose a split
model of G and a Borel subgroup B over Z,, and let U C B be the unipotent radical.

Theorem 5.1 ([16, THEOREM 1.1]). Let H C U(Zp) be a closed subgroup. We have

lim H!(Skrk,(C).F,) =0 fori>d.
K,2H
This result is stronger than the Calegari—-Emerton conjecture for completed coho-
mology with compact support, since we can take H = {1} and recover Scholze’s result
discussed above. In addition to the argument sketched above, the key new idea needed for
Theorem 5.1 is that the Bruhat decomposition on the Hodge—Tate period domain .%# £ remem-
bers how far different subspaces of S¢, u(z,) &€ from being perfectoid.

Example 5.2. Assume that G = GL, /Q, so that we are working in the modular curve case.
The Bruhat decomposition is given by P12 = Al || {00}, with the two Bruhat cells in
natural bijection with the two components of the ordinary locus in (3.5). We have a morphism
of sites

THT/U(Z,) - (SE'PU(ZP))ét — [P1/U(Zy).

where we take the quotient [P1*d|/U(Z,) only as a topological space. The preimage of
AL/ U(Zp) in Skruz ,) is a perfectoid space, as proved by Ludwig in [42]. The preimage
of |oo|/U(Zp) has a Z,-cover that is an affinoid perfectoid space. This allows us to bound
the support of each R’ s Juz,) */p), and we conclude by the Leray spectral sequence.

More generally, the Bruhat decomposition G = | |, ¢y p. BwP,, gives a decom-
position F € = | |, cppu FL¥ into locally closed Schubert cells indexed by certain Weyl
group elements. For each .# (" /U(Z,), we can quantify how far its preimage in Sg, U,
is from being a perfectoid space, which depends on the length of the Weyl group element w.
The assumption that Gq, is split guarantees that all the Weyl group elements lie in the
ordinary locus inside .# ¢, which greatly simplifies the analysis. However, the analogue of
Theorem 5.1 may hold even without the assumption that Gq, is split, and even when the
ordinary locus is empty. There is some evidence in this direction, e.g., by using embeddings
into higher-dimensional Shimura varieties attached to split groups, or by using the results
of [36] to handle the Harris—Taylor case, as in the upcoming PhD thesis of Louis Jaburi.
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The Bruhat decomposition on .% £ has more recently been used by Boxer and Pilloni
to define a version of higher Coleman theory indexed by each w € W £ in [8]. The develop-
ment of higher Coleman and higher Hida theories shows that the geometric theory of p-adic
automorphic forms on Shimura varieties is much richer than previously expected. Further-
more, the Bruhat decomposition indicates the form a p-adic Eichler—Shimura isomorphism
should take, relating completed cohomology to these more geometric theories. In joint work
in progress with Mantovan and Newton, we use the geometry described in Example 5.2 to
give a new proof of the ordinary Eichler—Shimura isomorphism due to Ohta [46, 47]. Our
result decomposes the ordinary completed cohomology of the modular curve in terms of
Hida theory and higher Hida theory, the latter recently developed by Boxer and Pilloni in [7].

Theorem 5.1 seems far away from Conjecture 2.2, because it concerns Shimura
varieties with “infinite level” at p. However, one could ask whether a version of Theorem 5.1
holds already at level B(Z,), at least after applying an ordinary idempotent, as in Hida
theory. If that were the case, the control theorems in Hida theory (specifically the result
known as independence of level) and a careful application of Poincaré duality would imply
that an £ = p analogue of Conjecture 4.3 holds, with generic replaced by ordinary. More
precisely, in this case, the “auxiliary prime” p where we impose a representation-theoretic
condition is no longer auxiliary but rather equal to £.

6. APPLICATIONS BEYOND SHIMURA VARIETIES

While the focus of this article has been the cohomology of Shimura varieties, The-
orems 4.5 and 5.1 have surprising applications to understanding the cohomology of more
general locally symmetric spaces. For example, let F' be an imaginary CM field and G =
Resr;@ GL,. Then G can be realized as the Levi quotient of the Siegel maximal parabolic
of a quasisplit unitary group G. The Borel-Serre compactification X IB€S for the locally sym-
metric spaces associated with the unitary group G gives rise to a Hecke-equivariant long
exact sequence of the form

o> H(Xp, Z/0"2) - H (X, Z/0"Z) — H' (0X g, Z/L"Z)
- HYY (X, Z/O'Z) — -+, (6.1)

where 9 X = X 1B€S \ X g isthe bounda~ry of the Borel-Serre compactification. The usual and
compactly supported cohomology of X g can be simplified to some extent by applying either
of the two vanishing theorems. On the other hand, the cohomology of Xg can be shown to
contribute to the cohomology of X %> in some more or less controlled fashion.

Let mt C T be a non-Eisenstein maximal ideal in the support of RI'(Xk, Z;) and
let T (K)y denote the quotient of T that acts faithfully on RI'(Xg, Z¢)w- In addition to
the residual Galois representation py,, Scholze associates to m a deformation py, valued in
T (K)w/ I, for some nilpotent ideal /. This was subsequently shown by Newton and Thorne
in [45] to satisfy [ 4 = (. In [20], we used a variant of Theorem 5.1 together with the excision
sequence (6.1) to eliminate this nilpotent ideal entirely, under the assumption that £ splits
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completely in the CM field F. This leads to a more natural statement on the existence of
Galois representations in this setting.

The Galois representations py, are expected to satisfy a certain property known
as local-global compatibility, which is particularly subtle to state and prove at primes
above £. For example, after inverting ¢, the py, are expected to be de Rham, in the sense
of Fontaine, but it is less clear what the right condition should be for torsion Galois rep-
resentations. In another application, Theorem 4.5 is crucially used in [1] together with the
excision sequence (6.1) to prove that py, satisfies the expected local-global compatibility
at primes above £ in two restricted families of cases: the ordinary case and the Fontaine—
Laffaille case.® In joint work in progress with Newton, we should be able to extend these
methods to cover significantly more.

The local-global compatibility results established in [1] are already extremely
useful: they help us implement the Calegari—Geraghty method unconditionally for the first
time in arbitrary dimension. A striking application is the following result.

Theorem 6.1 ([1, THEOREM 1.0.1]). Let F' be a CM field and E/F be an elliptic curve that
does not have complex multiplication. Then E is potentially automorphic and satisfies the
Sato—Tate conjecture.

The potential automorphy of E was established at the same time in work of Boxer—
Calegari—Gee—Pilloni [6], who also showed the potential automorphy of abelian surfaces
over totally real fields. Their work relies on the Calegari—Geraghty method for the coherent
cohomology of Shimura varieties and uses a preliminary version of higher Hida theory, due
to Pilloni, as a key ingredient.
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ON THE BRUMER-STARK
CONJECTURE AND
REFINEMENTS

SAMIT DASGUPTA AND MAHESH KAKDE

ABSTRACT

We state the Brumer—Stark conjecture and motivate it from two perspectives. Stark’s per-
spective arose in his attempts to generalize the classical Dirichlet class number formula for
the leading term of the Dedekind zeta function at s = 1 (equivalently, s = 0). Brumer’s
perspective arose by generalizing Stickelberger’s work regarding the factorization of Gauss
sums and the annihilation of class groups of cyclotomic fields. These viewpoints were syn-
thesized by Tate, who stated the Brumer—Stark conjecture in its current form.

The conjecture considers a totally real field F' and a finite abelian CM extension H/ F .

It states the existence of p-units in H whose valuations at places above p are related to
the special values of the L-functions of the extension H/F at s = 0. Essentially equiva-
lently, the conjecture states that a Stickelberger element associated to H/F annihilates the
(appropriately smoothed) class group of H.

We describe our recent proofs of the Brumer—Stark conjecture away from 2. The con-
jecture has been refined by many authors in multiple directions. We state some of these
refinements and our results towards them. The key technique involved in the proofs is
Ribet’s method.

One of the refinements we discuss is an exact p-adic analytic formula for Brumer—Stark
units stated by the first author and his collaborators. We describe this formula and high-
light some salient points of its proof. Since the Brumer—Stark units along with other

easily described elements generate the maximal abelian extension of a totally real field,
our results can be viewed as an explicit class theory for such fields. This can be considered
a p-adic version of Hilbert’s 12th problem.
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1. BACKGROUND AND MOTIVATION

Dirichlet’s class number formula, conjectured for quadratic fields by Jacobi in 1832
and proven by Dirichlet in 1839, is one of the earliest examples of a relationship between
leading terms of L-functions and global arithmetic invariants. Let F' be a number field with
ring of integers Of. The Dedekind zeta function associated with F is defined as

{r(s) = Z Na™, Re(s) > 1,
0#aCOF
where a runs through the nonzero ideals in Of. The function ¢f (s) generalizes Riemann’s
zeta function and has a meromorphic continuation to the whole complex plane with only a
simple pole at s = 1. Dirichlet’s class number formula, which is proved using a “geometry
of numbers” approach, evaluates the residue at s = 1:

2n (2ﬂ)r2RFhF

wr+/|DF|

Here r; is the number of real embeddings of F' and 2r; is the number of complex embeddings

lim (s = DZF(s) =

of F. Further, hr and Rp denote the class number and regulator (defined below) of F,
respectively, while w denotes the number of roots of unity in " and D  is the discriminant
of F/Q. The meromorphic function { (s) satisfies a functional equation relating ¢ (s) and
Cr (1 —s). Using this functional equation, Dirichlet’s class number formula can be restated
as giving the leading term of the Taylor expansion of {r (s) at s = O:

hF RF ghitra—1

Cr(s) = — + O(s" 1), (1.1)

Artin described a theory of L-functions generalizing the Dedekind zeta function.
Let GF be the absolute Galois group of F. A Dirichlet character for F' (or a degree 1 Artin
character of F) is a homomorphism y : Gr — C* with finite image. Class field theory
identifies y with a function, again denoted by y, from the set of nonzero ideals of Of to C.
Define

L(y,s) = Z x(@Na™*, Re(s) > 1.
0#aCOF

Again L(y, s) has a meromorphic continuation to the whole complex plane with only a
simple pole at s = 1 if y is trivial. If H/F is a Galois extension with finite abelian Galois
group G = Gal(H/ F), then we can view any character y € G = Hom(G, C*) as a Dirichlet
character for F', and we have the Artin factorization formula

tu(s) =[] LGx.9). (1.2)
x€G

Dirichlet’s class number formula (1.1) for the field H gives the leading term of the
left-hand side of (1.2) at s = 0. Stark asked for an analogous formula for L(y,s) ats = 0 for
each character y, thereby giving a canonical factorization of the term hg Ry /wg . This led
to the formulation of the abelian Stark conjecture, which we state in Section 2. This statement
involves the choice of places of F that split completely in H . After stating Stark’s conjecture,
we restrict in the remainder of the paper to the case that the splitting places of F are finite.
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Since the associated L-values here are algebraic, one can make progress on the conjectures
through p-adic techniques such as p-adic Galois cohomology. To obtain nonzero L-values
(and hence have nontrivial statements), parity conditions force us to restrict to the setting
that F is a totally real field and H is a CM field.

Stark’s conjecture at finite places has a natural restatement in terms of annihilators
of class groups as formulated in the Brumer—Stark conjecture. We recall the statement and
its refinements in Sections 4-5. The rest of the paper is taken up in describing the statement
and proofs of our results toward the Brumer—Stark conjecture and its refinements.

2. STARK’S CONJECTURE
Let us first reformulate Dirichlet’s class number formula.

For any place w of F we normalize the absolute value | - |,, : F,; — Rby

[u| if w is real,
[uly = 3 |ul? if w is complex,
Nw~ 4w jf 1 is nonarchimedean.
For a finite set of places S of F, let Xg denote the degree zero subgroup of the free abelian
groupon S. Letuy, ..., ur 4r,—1 be a set of generators of the free abelian group OF /jiF.
Let S be the set of archimedean places of F.
The Dirichlet regulator map

Or/ur —> RXs,,, um Z log |uly - w
WESoo

induces an isomorphism RO} — RX_ . Here and throughout, RXs_, denotes R ®z X,
etc. Let wy, ..., Wy, 4+r, denote the archimedean places of F. Then

{wj—wy1:2<i<r+1}, r=r+rn-1 2.1

is an integral basis of Xg_ . Let Rr be the absolute value of the determinant of the isomor-
phism between RO and RX_, with respect to the bases {u1,...,ur r,—1} and (2.1),
respectively. Up to a sign, Dirichlet’s class number formula can be restated as follows:

(i) The rational structure QO% on the left-hand side corresponds to the structure
{g) (0)QXs,, on the right-hand side.

(ii) The integral structure O} / L on the left-hand side corresponds to the structure
¢ 1(.,{) (0)Xs,, on the right-hand side.

Motivated by this reformulation, we present Stark’s conjecture and its integral
refinement due to Rubin. For details, see [41]. Let F' be a number field of degree n and
let H/F be a finite Galois extension with G = Gal(H/F) abelian. Let S, T be two finite
disjoint sets of places of F satisfying the following conditions:
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(1) S contains the sets S, of archimedean places and Sy, of places ramified in H.

(2) T contains at least two primes of different residue characteristic or at least one
prime of residue characteristic larger than n 4+ 1, where n = [F : Q].

For any character y € G = Hom(G, C*), define the S-depleted, T-smoothed L-function
1 _
Ls(x.5) = l_[ = 7o) Np— 1—[(1 — x(P)Np'™),  Re(s) > 1.
o X(p)Np el

The function Lg (), s) extends by analytic continuation to a holomorphic function
on C. The Stickelberger element associated to this data is the unique group-ring element
Os.r(H/F,s) € C[G] satisfying

x(O®sr(H/F,5)) = Ls(x™",s) forally € G.
Let Sy denote the set of places of H above those in S, and similarly for 7x . Define
UsT = {x € H* :ordy(x) > Oforall w ¢ Sy and x = 1 (mod TH)}.
The condition on 7" ensures that Us 7 does not have any torsion. The Galois equivariant
version of Dirichlet’s unit theorem gives an R[G]-module isomorphism
A:RUst — RXg,,,
Au) = Z log(|u]w) - w. 22)

weSy

Suppose that exactly r places vy, ..., v, € S splitcompletely in H and #S > r + 1.
The order of vanishing of Lg 7(y,s) ats = 0 is given by

#HoeS: yw)y=1} ify#1,

r(x) = dime(CUs, 1)@ =
#S — 1 if y =1,

whence r(y) > r for all y € G. Stark’s conjecture predicts that the rth derivative
@g)T (H/ F,0) captures the “non-rationality” of the map A.

Conjecture 2.1 (Stark). We have

Oy (H/F.0)-Q )\ Xs, C A(Q N Us,T).

Concretely, this states that for each character y of G with r(y) = r, the nonzero

1

number L(Sr)T (x~1,s) lies in the one-dimensional Q-vector space spanned by A(/\" (U ;X%))

Let us reformulate Conjecture 2.1 in terms of the existence of special elements.
Write X5, = Hom(Xs,,,Z[G]). For ¢ € N X§,,» there is a determinant map
r r
N Xsy x )\ X5, — Z[G]
defined by

(X1 A AXr @1 A Agy) > @1 A Ar (X1 Ao Axy) = det(gi (%)), -
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We extend the determinant map to R-linearizations. We fix a place w; of H above each v;.
Letw/ € Xg  be induced by
H

wiw) = Y 7
yeG:ywi=w

Conjecture 2.2 (Stark). Put ¢ = w} A--- Aw. There existsu € Q \" Us,r such that
¢(Aw)) = O (H/F.0).

The equivalence of Conjectures 2.1 and 2.2 is proven in [41, PROPOSITION 2.4].

We are now ready to state the integral version of Stark’s conjecture. In the rank
r = 1 case, Stark proposed the statement that u in Conjecture 2.2 lies in Ug 7. This is the
famous “rank 1 abelian Stark conjecture.” In the higher rank case, the obvious generalization
u e /\r Us,r is not true, as was experimentally observed by Rubin [41]. Rubin defined a
lattice, nowadays called “Rubin’s lattice” and conjectured that it contains the element u.

Put U;,T = Homyg|g; (Us,r.Z[G)).

The rth exterior bidual of Ug 7 (see [7] for a more general study and the initiation
of this terminology) is defined by

(\Us.r = (/\ US*,T) ~ {x € /\QUs.r : p(x) € Z[G] forall g € /\ U;{T}.

We would like to consider only the “rank r”” component of this bidual. To this end,
for each character y € G consider the associated idempotent

ey x(g)g~" € C[G].

#G seC

Define e, = ) e, € Q[G], where the sum extends over the set

{XGG:LE{)T(X,O)yéO}:{Xeézx(Gv)#l,veS\{vl,...,vr}}.

Define Rubin’s lattice by

r r
£OUs T = (ﬂ US,T) Ne, (Q/\ U§’T).
The following is Rubin’s higher rank integral Stark conjecture.

Conjecture 2.3 ([41], Conjecture B*). Put ¢ = wi A--- Aw). There exists u € £ Us,T
such that
o(A(w)) = O (H/F.0).

3. STARK’S CONJECTURES AT FINITE PLACES

We now assume that the totally split places vy, ..., v, from the previous section are
all finite. This happens only when F is a totally real field and H is totally complex. In fact,
the fixed fields of characters with nonvanishing L-functions at 0 are CM fields, so we restrict
to the setting where F is totally real and H is CM for the remainder of the article. We also
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enact a slight notational change and write the set denoted S in the previous sections as S’,
and let S = S’ \ {v1,...,v,}. The reason for this is that we now still have S O Seo U Spam.

As we explain, in this setting Conjecture 2.2 for S’ follows from a classical ratio-
nality result of Klingen—Siegel, though the integral refinement in Conjecture 2.3 remains a
nontrivial statement. For a fixed place w of H, we have

log |u|y = — ordy, (1) log Nw. 3.1

Since the Euler factors at the v; are equal to (1 — Nv;¥) = (1 — Nw;™*), we also have

r
0% (H/F.0) = Os,r(H/F.0) - [ ] logNuw;. (3.2)

i=1

Theorem 3.1 (Klingen—Siegel). We have Os 1 := Os 1(H/F,0) € Q[G].
With e, as in the previous section, we are then led to define a map over Q
e (QUs.r) — e (QXsy). A) = ) ordy()-w.
w|v; some i

Note that e, (QX S;,) is the Q-vector space generated by the places of H above the v;. The
map Aq is a Q[G]-module isomorphism, and it induces an isomorphism on the free rank
one Q[G]-modules obtained by taking rth wedge powers. In view of (3.1), the map on rth
wedge powers induced by the map A of (2.2), when restricted to e,(Q A" Us' 1), is equal

to ([Ti=, log Nw;) - Aq. Conjecture 2.2 follows from this observation together with (3.2),
since Theorem 3.1 implies the existence of u € e,(Q A" Us’.7) such that

¢(Ao(u)) = Og. 7.

Here ¢ = wi A -+ A w/ as in the statement of the conjecture.

On the other hand, the integral statement in Conjecture 2.3 lies deeper. We first note
the following celebrated theorem of Deligne—Ribet [21] and Cassou-Nogues [8] refining the
Klingen—Siegel theorem. The condition on the set T stated in Section 2 is crucial in this
result. We remark that Deligne—RIbet prove their result using Hilbert modular forms, as an
integral refinement of the strategy of the strategy established earlier by Siegel. This theme
reappears in our own work described in §6.

Theorem 3.2. We have Os 1 € Z[G].
Conjecture 2.3 in this setting is known as the Rubin—Brumer—Stark conjecture:
Conjecture 3.3 (Rubin—Brumer—Stark). There exists u € £ Us',T such that
¢(Ao)) = Os,1.

We describe in Theorem 4.3 below a strong partial result toward this conjecture.
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4. THE BRUMER—-STARK CONJECTURE

Having stated the higher rank Rubin—-Brumer—Stark conjecture, we now wind back
the clock and focus on the case r = 1. This case had been studied independently by Brumer
and Stark and served as a motivation for Rubin’s work. Writing the splitting prime v; as p,
the conjecture may be stated as follows.

Conjecture 4.1 (Brumer-Stark). Fix a prime ideal p C O, p € S U T, such that p splits
completely in H. Fix a prime 8 C Oy above p. There exists a unique element u, € H*
such that |up|y = 1 for every place w of H not lying above p,

ordg (up) 1= Z ordg (0 (up))o™" = Os 1, 4.1)

oeG

andu =1 (mod q) forall q € Ty.

-1

Note that the condition |u|,, = 1 includes all complex places w, so c(up) = uy

for the unique complex conjugation ¢ € G.

As we have alread noted, Stark arrived upon this statement in the 1970s through
his attempts to generalize and factorize the classical Dirichlet class number formula (though
in a slightly different formulation; the statement above is due to Tate [46]). Prior to this,
in the 1960s, Brumer was interested in generalizing Stickelberger’s classical factorization
formula for Gauss sums in cyclotomic fields. Stickelberger’s result can be formulated as
stating that when H = Q(uy) is a cyclotomic field, the Stickelberger element annihilates
the class group of H. Let us consider Brumer’s perspective of annihilation of class groups
in the case of general H/ F.

4.1. Annihilation of class groups

LetC1” (H) denote the ray class group of H with conductor equal to the product of
primes in T . This is defined as follows. Let /7 (H) denote the group of fractional ideals of
H relatively prime to the primes in Tx . Let Py (H ) denote the subgroup of /7 (H ') generated
by principal ideals («) where @ € Op satisfies @« = 1 (mod q) for all ¢ € Ty. Then

Cl"(H) = It (H)/Pr(H).

This T-smoothed class group is naturally a G-module.
With the notation as in Conjecture 4.1, we have

POST = (uy). (4.2)

Such an equation holds for all p ¢ S U T that split completely in H. The set of primes of H
above all such p generate cl’ (H). Hence we deduce

Os.,r € Anngg)(C1" (H)). 4.3)

In fact, (4.3) is almost equivalent to Conjecture 4.1; given (4.2), the element u,, satisfies all
of the conditions necessary for Conjecture 4.1 except possibly ¢ (up) = u, 1 But of course
Vp = Up/c(uy) satisfies this condition and moreover satisfies 2957 = (v,). Therefore the
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only possible discrepancy between the statements is a factor of 2, which disappears when we
localize away from 2 as in the rest of this paper. Let us therefore define

R="Z[1/2][G]” = Z[1/2][G]/(c + 1),

and for any Z[G]-module M we write M~ = M Qgz[g] R. There exists an element
up € Of[1/p]* ® Z[1/2] satisfying Conjecture 4.1 if and only if

Os,r € Anng(Cl (H)™). 4.4

This is the Brumer—Stark conjecture “away from 2”.

Many authors have studied (4.4) as well as refinements. The works of Burns, Grei-
ther, Kurihara, Popescu, and Sano are particularly noteworthy [4-7,25-27,35]. Many of these
refinements involve Fitting ideals, whose definition we now recall.

Let R be a commutative ring and M an R-module with finite presentation:

RmiR"—>X—>0.

Here A is an n x m matrix over R. The ith Fitting ideal Fitt; g (M) is the ideal generated by

the n —i x n — i minors of A. It is a standard fact [37, CHAPTER 3, THEOREM 1] that Fitt; g (M)

does not depend on the chosen presentation of M. We write Fittg (M) for Fitto, g (M), and

when these is no ambiguity about the choice of i = 0, we call this the Fitting ideal of M.
The Fitting ideal of a finitely presented module is contained in its annihilator:

Fittg(M) C Anng(M). 4.5

In view of (4.4) and (4.5), it is therefore natural to ask whether ®s 7 lies in the Fitting ideal
of C17 (H)~ over R. It was noticed by Popescu in the function field case [38] and by Kurihara
in the number field case that while this holds sometimes, it does not always hold. Greither
and Kurihara [25,26] observed that the statement may be corrected by replacing a’ (H)™ by
its Pontryagin dual

Cl"(H)™Y = Homg(C1" (H)~,Q/Z).

We endow C17 (H)™*" with the contragradient G-action g - ¢(x) = ¢(g~'x). Denote by #
the involution on Z[G] induced by g + g~ ! for g € G.

Conjecture 4.2 (Kurihara, “Strong Brumer—Stark™). We have
®% 1 € Fittg (CIT (H)™Y).
Conjecture 4.2 leads to the following natural questions:
(1) What is the Fitting ideal of C17 (H)™V?
(2) What is the Fitting ideal of C17 (H)™?

(3) Is there a natural arithmetically defined R-module whose Fitting ideal is gener-
ated by ©g, 1 or ®§,T?
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The precise conjectural description of the Fitting ideal of cl’ (H/F)™ was given
by Kurihara [35]; we state this in Section 5.1 below. An important fact about this statement
is that when Sy is nonempty, the Fitting ideal of C17 (H/F)™" is in general not principal
(and in particular is not generated by G)*;T).

A conjectural answer to the second question above has recently been provided in a
striking paper by Atsuta and Kataoka [1]. They show that their conjecture is implied by the
Equivariant Tamagawa Number Conjecture.

The third question is answered by a conjecture of Burns, Kurihara, and Sano, and
is the topic of Section §5.3. We note that Fitting ideals of finitely presented R-modules
are rarely principal. It is therefore remarkable that Burns—Kurihara—Sano defined a natural
arithmetic object whose Fitting ideal is principal.

4.2. Our results
We now describe some of our results toward these conjectures [17, THEOREM 1.4].

Theorem 4.3. Kurihara’s exact formula for Fittg (C1T (H)™Y) holds (see Theorem 5.1). In
particular, we have the Brumer—Stark and Strong Brumer—Stark conjectures away from 2:

®% 1 € Fittg (CIT (H) ™)  Anng(CI” (H)7)".

Finally, Rubin’s higher rank Brumer—Stark conjecture holds away from 2: with notation as
in Conjecture 3.3, there exists u € £ Us'.t ® Z[1/2] such that p(Ag(u)) = Og,T.

Partial results in this direction had been obtained earlier by Burns [5] (including a
@ = 0 hypothesis and the assumption of the Gross—Kuz’min conjecture) and by Greither and
Popescu [27] (including a i = 0 hypothesis and imprimitivity conditions on §).

Our results in [17] do not seem to directly imply the conjecture of Atsuta and Kataoka
on Fittg(C1T (H)™) or the conjecture of Burns. However, we prove an analogous result
toward the latter, with (S, T') replaced by an alternate pair (2, X’), in Theorem 5.6. This
result turns out to be strong enough to deduce Theorem 4.3.

In §6 we give a detailed summary of the proof of Theorem 5.6. Key ingredients
are the Z[G]-modules Vg/(H ) defined by Ritter and Weiss, and Ribet’s method of using
modular forms to construct Galois cohomology classes associated to L-functions.

4.3. Explicit formula for Brumer-Stark units

We conclude this section by describing a further direction in the study of Brumer—
Stark units, that of explicit formulae and applications to explicit class field theory. This theme
was initiated by Gross in [28] and [29] and developed by the first author and collaborators over
a series of papers [9, 10,13, 15, 20].

Let p be as above and write S’ = S U {p}. Let L denote a finite abelian CM extension
of F containing H that is ramified over F only at the places in S’. Write ¢ = Gal(L/F) and
I' =Gal(L/H),so g/ = G.Let I denote the relative augmentation ideal associated to g
and G, i.e., the kernel of the canonical projection Aug : Z[g] — Z[G]. Then Og/ 7(L/F)
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lies in 7, since its image under Aug is
Os . 7(H/F)=0gs7(H/F)(1—0y) =0. (4.6)

Here o}, denotes the Frobenius associated to p in G, and this is trivial since p splits com-
pletely in H . Intuitively, if we view @/ (L /F) as a function on the ideals of Z[g], equation
(4.6) states that this function “has a zero” at the ideal I ; the value of the “derivative” of this
function at I is simply the image of g/ 7(L/F) in 1/1?. Gross provided a conjectural
algebraic interpretation of this derivative as follows. Denote by

recg : Hy — T
the composition of the inclusion H;f} < A%, with the global Artin reciprocity map
Ay —> T.

Throughout this article we adopt Serre’s convention [42] for the reciprocity map. Therefore
rec(w ') is a lifting to ng of the Frobenius element on the maximal unramified extension
of Fy if w € Fy is a uniformizer.

Conjecture 4.4 (Gross, [29, CONJECTURE 7.6]). Define

recg (up) = Z(recm o(up)— 1)1 el/I? 4.7)

oeG

where 6 € g is any lift of 0 € G. Then
recg (up) = @IS‘,“; inl/I%.
The main result of [18] is the following.

Theorem 4.5. Let p be an odd prime and suppose that p lies above p. Gross’s Conjecture 4.4
holds in (1/1%) ® Z,.

Our interest in this result is that by enlarging S and taking larger and larger field
extensions L/F, one can use (4.7) to specify all of the p-adic digits of u,. One therefore
obtains an exact p-adic analytic formula for u,. This formula can be described either using
the Eisenstein cocycle or more explicitly via Shintani’s method; the latter approach is fol-
lowed in Section 7.2. In Section 7.3, we describe the argument using “horizontal Iwasawa
theory” to show that Theorem 4.5 implies the conjectural exact formula. In Section 7.4 we
summarize the key ingredients involved in the proof of Theorem 4.5, including an integral
version of the Greenberg—Stevens .Z-invariant and an associated modified Ritter—Weiss
module V. In the setting of F real quadratic, Darmon, Pozzi, and Vonk have given an
alternate, elegant proof of the explicit formula for the units u,, (Section 7.5). Their approach
involves p-adic deformations of modular forms, rather than the tame deformations that we
consider.

One significance of the exact formula is that we show that the collection of Brumer—
Stark units, together with some easily described elements, generate the maximal abelian
extension of the totally real field F.
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Theorem 4.6. Let BS denote the set of Brumer—Stark units u, as we range over all possible
CM abelian extensions H/ F and for each extension a choice of prime p that splits completely
in H. Let {ay, ..., ay—1} denote any elements of F* whose signs in {£1}"/(—1,...,—1)
under the real embeddings of F form a basis for this 1./]2Z-vector space. The maximal
abelian extension of F is generated by BS together with \Jay, ..., J/0n—1:

F® = F(BS, Ja1...., J/an-1).

It is important to stress that the exact formula for u,, described in Sectin 7.2 can be
computed without knowledge of the field H, using only the data of F, p, and the conduc-
tor of H/F. Furthermore, we can leave out any finite set of primes p without altering the
conclusion of the theorem. In this way we obtain an explicit class field theory for F, i.e.,
an analytic construction of its maximal abelian extension F using data intrinsic only to
F itself. Explicit computations of class fields of real quadratic fields generated using our
formula are provided in [17, §2.3] and [23].

5. REFINEMENTS OF STARK’S CONJECTURE
In this section we recall various refinements of the strong Brumer—Stark conjecture.

5.1. The conjecture of Kurihara
In this section we describe the Fitting ideal of the minus part of the dual class group.
For each v in S;am, let I, C G, C G denote the inertia and decomposition groups, respec-
tively, associated to v. Write
1

1
= —NIJ[, = — € QG
€y #1, v #1, U%I:vo Q[G]

for the idempotent that represents projection onto the characters of G unramified at v. Let
oy € Gy denote any representative of the Frobenius coset of v. The element 1 — oy e, € Q[G]
is independent of choice of representative. Following [25], we define the Sinnott—Kurihara
ideal, a priori a fractional ideal of Z[G], by
SKu" (H/F) = ©%_7) [ NI..1—-0vey).
VESram

Kurihara proved using the theorem of Deligne—Ribet and Cassou-Nogues that SKu” (H/ F)
is a subset of Z[G] (see [17, LEMMA 3.4]). The following conjecture of Kurihara is proven in
[17, THEOREM 1.4].

Theorem 5.1. We have
Fittg (C17 (H) ™) = SKu” (H/F)~.

The definition of the Sinnott—Kurihara ideal is inspired by Sinnott’s definition of
generalized Stickelberger elements for abelian extensions of Q [44]. For a generalization of
Sinnott’s ideal to arbitrary totally real fields see [25, §2]. In general, Sinnott’s ideal contains
the Sinnott—Kurihara ideal but it may be strictly larger.
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The plus part of the Sinnott—Kurihara ideal is not very interesting as the plus part
of @f‘;w,T is 0. The plus part of the class group is much smaller than the minus part and
seems harder to describe; for example, Greenberg’s conjecture on the vanishing of lambda
invariants implies that the order of the plus part is bounded up the cyclotomic tower. For
abelian extensions of Q, the plus part is described by Sinnott using cyclotomic units.

5.2. The conjecture of Atsuta—Kataoka

It is, in fact, more natural to ask about the Fitting ideal of cf(H ), as opposed to the
Pontryagin dual. A conjectural answer to this question has been provided in a recent paper
of Atsuta—Kataoka [1] using the theory of shifted Fitting ideals developed by Kataoka [32].
We recall this notion now.

Let M be an R-module of finite length. Take a resolution

O->N—->P —>--—>P;—>M-—>0

with each P; of projective dimension < 1. Following [32], define the shifted Fitting ideal

d
Fitld (M) = (]_[ FittR(Pi)(‘”’) Fittg(N).

i=1
The independence of this definition from the choice of resolution is proven in [32, THEOREM 2.6
AND PROPOSITION 2.7]. Let

go =1—0y +#I, € Z[G/1,], hy =1—e,0, + NI, € Q[G].

Define the Z[G]-module
Ay = Z[G/1,]/(8v).

Conjecture 5.2 (Atsuta—Kataoka). We have

Fittg (CI7 (H)™) = ( [T » Fitt[,g](A;))@Sw,T.
WESram, H
In [1], the authors give an explicit description of the ideal /;; Fitt[Zl[]G], (A,) appear-
ing in Conjecture 5.2. Write I, = J; x - -+ x Js for cyclic groups J;, 1 <i < s. For eachi,
put
N; =NJ; = Z o € Z[G].
ogelJ;
Furthermore, put d = ker(Z[G] — Z[G/Gy]) for the relative augmentation ideal. For each
1 <i <s, put Z; for the ideal of Z[G] generated by N;, ---Nj _,, where (ji. ..., js—;) runs
through all tuples of integers satisfying 1 < j; <--- < js_; <s. Define

N
g=> zJ4""
i=1
Although Z; depends on the decomposition of I, into cyclic groups, the ideal ¢ is indepen-
dent (see [1, DEFINITION 1.2]).
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Theorem 5.3 (Atsuta—Kataoka). We have

hy Fitthi, (A7) = NIy, (1 — ey00) )

as fractional ideals of Z|G] ™.
Atsuta—Kataoka prove:

Theorem 5.4. The Equivariant Tamagawa Number Conjecture for H/F implies Conjec-
ture 5.2.

5.3. The conjecture of Burns—Kurihara-Sano

The refinements mentioned above do not involve principal ideals. The method of
Ribet, which attempts to show the inclusion of an arithmetically defined ideal into an ana-
lytically defined ideal, works well for principal ideals. From this point of view, it is natural
to ask if there is an arithmetically defined object whose Fitting ideal is generated by the
Stickelberger element ©g 7. Burns, Kurihara and Sano provided a conjectural answer to
this question [6]. A modification of this statement (Theorem 5.6 below) is the main technical
result in [17] from which all the results of Theorem 4.3 are deduced.

We now recall the statement of the conjecture of Burns—Kurihara—Sano. Let H. be
the group of x € H* such that ordy, (x — 1) > 0 for each prime w € Ty . Define

Sel§ (H) = Homz(H7.2)/ ] Z.
weSyUTy

where the implicit map sends a tuple (x,,) to the function ), xy, ord,,. The G-action on
Selg(H) is the contragradient G-action (gp)(x) = ¢(g™'x).

Conjecture 5.5 (Burns—Kurihara—Sano). We have
Fittg (Sel§ (H)™) = (0% 7).

We have proven a version of this result with altered sets S and 7. Fix an odd prime
p and put R, = Z,[G]™. Define

Y>=8S\{veS:v}p}

and
Y=Tuf{veS:vip}

Theorem 5.6 ([17, THEOREM 3.3]). Let Selg/(H); = Selgl(H) ®z[6] Rp. We have
Fittg, (Self (H);) = (0% x).

It turns out that Theorem 5.6 is strong enough to imply Kurihara’s conjecture (The-
orem 5.1). The key point is that there is a short exact sequence

0 — Self(H)™ —— Self (H)™ —— [Iyes;, (Om/w)*)"" — 0,
(.1)
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from which one deduces (see [17, THEOREM 3.7])

Fittg, (Selh (H),) = (©% 7))  [] (NL.1-0ye,).

VESram,v{ p

Since SelgOo (H)~ = C1IT (H)™, it then remains to calculate the effect of removing the
primes v € Sram, v | p from X. This is a delicate process using functorial properties of the
Ritter—Weiss modules discussed in §6, and one obtains (see [17, APPENDIX B]) the desired result

Fittg, (Sel (H);) = ©%_ ) [ (NI.1-ovey).

VESram

6. RITTER-WEISS MODULES AND RIBET’S METHOD
In this section we summarize the proof of Theorem 5.6.

6.1. Ritter—Weiss modules

The Z[G]-module that shows up in our constructions with modular forms is a cer-
tain transpose of Selg(H ) in the sense of Jannsen [31], denoted Vg(H ). This module was
originally defined by Ritter and Weiss in the foundational paper [4e] without the smoothing
set T'. We incorporated the smoothing set 7' and established some additional properties of
V§ (H) in [17, apPENDIX Al. To describe these properties, we work over R, = Z,[G]™ and
consider finite disjoint sets X, X’ satisfying the following:

e YO Sepand XU Y D Sam.
» Y/ satisfies the condition (2) on T in Section 2.
* The primes in X’ N S, have residue characteristic £ # p.

Note that the pair (S, 7') from Section 2 and the pair (2, ') considered in Section 5.3 both
satisfy these conditions. The module VE (H), = VE (H) ®z(q) R, satisfies the following:

* There is a short exact sequence of Rj,-modules
0 —— CIE(H), — VE(H), — (Xgy), — 0. (6.1)
Here c1§’ (H) denotes the quotient of cr* (H) by the image of the primes in X .
* Given a R,-module B, a surjective R,-module homomorphism
Vi (H), > B 6.2)

is equivalent to the data of a cocycle k € Z!(GF, B) and a collection of elements
Xy € B for v € ¥ satsifying the following conditions:

— The cohomology class [k] € H'(GF, B) is unramified outside X',
tamely ramified at X', and locally trivial at X.

— The x, provide local trivializations at X: k(o) = (0 — 1)x, foro € Gy.

— The x, along with the image of « generate the module B over R),.
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The tuples (k, {x,}) are taken modulo the natural notion of coboundary, i.e.,
(k. {xy}) ~ (k + dx, {xy + x}) for x € B.

¢ The module Vg/(H ); has a quadratic presentation, i.e., there exists an exact
sequence of R,-modules

My 25 My —— VE(H), — 0 (6.3)
where M; and M, are free of the same finite rank.

¢ The module Vg/(H ), is a transpose of Selg/(H ), » i.e., for a suitable quadratic
presentation (6.3) of Vg/(H ), » the cokernel of the induced map

Homg, (Ma, R,) A" Hompg, (M, R,) (6.4)

is isomorphic to Selg/ (H),, . Here we follow our convention of giving Hom spaces
the contragradient G-action.

The quadratic presentation property (6.3) implies that Fittg, (Vg/(H ),) = det(A4)
is principal. The transpose property (6.4) implies that

Fittg, (VE (H);) = Fittg, (SelE (H);)". (6.5)
Theorem 5.6 is therefore equivalent to
Fittg, (V5 (H),) = (O5,). (6.6)

We now fix (X, X’) to be the pair defined in Section 5.3. In the remainder of this section
we outline how (6.6) is proved using Ribet’s method. Throughout, an unadorned ® denotes
Oz, (and ©F denotes OF ).

6.2. Inclusion implies equality

An interesting feature of Ribet’s method is that it tends to prove an inclusion in one
direction, that of an algebraically defined ideal contained within an analytically defined ideal.
In our setting, we use it to prove

Fittg, (VS (H),) C (©), equivalently, Fittg, (Sel¥ (H);) C (6*). 6.7)

We then employ an analytic argument to show that this inclusion is an equality. It is important
to note that the inclusion (6.7) is the reverse direction of that required by the Brumer—Stark
and Strong Brumer—Stark conjectures. It is therefore essential for our approach that one actu-
ally has the statement of an equality rather than just an inclusion (and an analytic argument
to deduce the equality from the reverse inclusion). For this reason, the conjecture of Burns
stated in Section 5.3 (more precisely the analog of it stated in Theorem 5.6) plays an essential
role in our strategy.

Let us describe the analytic argument in the special case ¥ = S, i.e. there are no
primes above p ramified in H/F. In this case

Self (H), = CI¥ (H), (6.8)
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is finite and @ is a non-zero-divisor. Using (6.7), write

Fittg, (Selg(H);) = (®".z) forsomez € R,. (6.9)
‘We must show that z € R;. An elementary argument (see [17, §2.3]) shows that (6.9) implies
#Sel¥ (H), = (]_[ 1 (0F. z)) (6.10)
x€G ’
x odd

where the subscript p on the right denotes the p-power part of an integer. Yet the analytic
class number formula implies (see [17, §2.1])

[1x©% =] Le.o(x.0) =#C1¥ (H)~, (6.11)
x€G xeG
x odd x odd

where = denotes equality up to a power of 2. Combining (6.8), (6.10), and (6.11), one finds
that y(z) is a p-adic unit for each odd character y. It follows that z € R; as desired.

The generalization of this argument to arbitrary X requires a delicate induction and
is described in [17, §5].

6.3. Ribet’s method

We now describe our implementation of Ribet’s method to prove the inclusion (6.7).
The idea is to use the Galois representations associated to Hilbert modular forms to construct
an R,-module M and a surjection Vgl(H ), — M such that Fittg, (M) C (©). The prop-
erties of Fitting ideals imply that (6.7) follows from the existence of such a surjection. As
described in (6.2), a surjection from V%’ (H),, can be constructed by defining a cohomology
class [] € H'(GF, M) satisfying certain local conditions along with local trivializations
at the places in X.

Ribet’s method was described in great detail by Mazur in a beautiful article written
for the celebration of Ribet’s 60th birthday [36]. We borrow from this the following schematic
diagram demonstrating the general path one follows to link L-values (in our case, the Stick-
elberger element ®) to class groups (in our case, the Ritter—Weiss module Vg/(H )p)-

L-functions | -~~~ "~~~ | Class Groups

[ N\

Galois Cohomology

Eisenstein Series

Classes

\ /

Cusp Forms | —~____y [ Galois Representations

1783 ON THE BRUMER—STARK CONJECTURE AND REFINEMENTS



Let us now trace this path in our application.

6.3.1. L-functions to Eisenstein series

The key connection between L-functions and modular forms in Ribet’s method is
that L-functions appear as constant terms of Eisenstein series. We now define the space of
modular forms in which our Stickelberger element ® appears.

Let k > 1 be an integer such that

k=1 (mod(p—l)pN)

for a large value of N. Let n C OF denote the conductor of H/F. Let My (u; Z) denote the
group of Hilbert modular forms for F' of level n with Fourier coefficients in Z. For each odd
character y of G valued in C%, let

Mk(n, X) C Mk(II;Z) ® Cp
denote the subspace of forms of nebentypus y. Let
X Gr —> G — R;

denote the canonical character, where the first arrow is projection and the second is induced
by G — Z[G]*.

Definition 6.1. The space Mj(n, x; Rp,) of group-ring valued Hilbert modular
forms of weight k and level n over R, consists of those f € My(n;Z) ® R, such that
X(f) € Mi(n, y) for each odd character y. Let Si(u, x; R,) denote the subspace of cusp
forms. We define My (11, x; Frac(Rp)) and Sk (n, x; Frac(R,)) similarly.

Hilbert modular forms f are determined by their Fourier coefficients ¢ (1, f)
indexed by the nonzero ideals m C Op and their constant terms ¢, (0, f) indexed by
A € CIT(F), the narrow class group of F. For odd k > 1, there is an Eisenstein series
Ex(x,1) € My (n, y) whose Fourier coefficients are given by

c(m, Er(x, 1)) = Z X(m/a)Nak_l.

alm
(m/a,n)=1

To describe the constant coefficients of Ex (x, 1) we first set S to be minimal, i.e., the union
of Seo and Sy, Where the latter is the set of primes dividing 1. Next we assume for the
remainder of the article that n # 1; the case n = 1 causes no difficulties but the formulas

must be slightly modified. We then have

(O Ex( 1)) 0, k> 1,

oy, £1(X, =
27"e%, k=1.

Here ©5 = Og 4(H/F,0) € Q[G] denotes the S-depleted but unsmoothed Stickelberger
element. We have Ex(x,1) € My (n, x; Rp) fork > 1 and E1(x,1) € M;(n, x;Frac(Rp))
because of the possible nonintegrality of the constant term.
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6.4. Eisenstein series to cusp forms

In order to define a cusp form from the Eisenstein series, one is led to consider cer-
tain linear combinations of the analogues of Ex(x, 1) as H ranges over all its CM subfields
containing F'. This process also incorporates smoothing at the primes in 7. We avoid stating
the slightly complicated formula here (see [17, PROPOSITION 8.14]), but the end result is a group
ring form Wy (x, 1) whose constant terms are given by

0, k>1,

(0. We(x, D) = gt k]

(6.12)
where we remind the reader that ©% = (9#2,2,. Building off the computations of [19], we
calculate in [17, §8] the constant terms of the Wy (x, 1) at all cusps; the terms in (6.12) can
be viewed as the constant terms “at infinity.” Indeed, it is the attempt to cancel the constant
terms at other cusps that leads naturally to the definition of the Wy (x, 1).

In order to define a cusp form, we apply two important results of Silliman [43]. The
first of these generalizes a result of Hida and Wiles and is stated below.

Theorem 6.2 ([43, THEOREM 10.7]). Let m be a fixed positive integer. For positive integers
k =0 (mod (p — 1)p") with N sufficiently large, there is a Hilbert modular form Vi of
level 1, trivial nebentypus, and weight k defined over Z,, such that

Vi = 1 (mod p™),
and such that the normalized constant term of V. at every cusp is congruent to 1 (mod p™).

The idea to construct a cusp form is to fix a very large integer m and to consider
the product Wi(x, 1)Vk € Mg41(n, x, Rp) with Vi as in Theorem 6.2. This series has
constant terms at infinity congruent to 27 ®* modulo p™. One then wants to subtract off
27"®" Hy 1 (x) for some group ring valued form Hy41(x) € My41(n, x, Rp) to obtain a
cusp form. If there exists a prime above p dividing n (i.e., ¥ — S is nonempty), then this
strategy works. Silliman’s second result, which generalizes a result of Chai and is stated in
[43, THEOREM 10.10], implies that one can obtain a form that is cuspidal at the cusps “above
infinity at p” in this fashion. Applying Hida’s ordinary operator then yields a form that is
cuspidal.

Theorem 6.3 ([17, THEOREM 8.18]). Suppose gcd(n, p) # 1. For positive integers k = 1
(mod (p — 1)p™) and N sufficiently large, there exists Hy(x) € My (n, x, Rp) such that

Fr() = ey (Wi(x. DVie1 — O Hi ()
lies in S (up, R, x).
The significance of Theorem 6.3 is that we have now constructed a cusp form that
is congruent to an Eisenstein series modulo ©.
When ged(n, p) = 1, the construction of the cusp form is in fact more interesting,

and a new feature appears. In this case, the ordinary operator at p does not annihilate the form
Wi (x, 1), and it must be incorporated into our linear combination. Moreover, this apparent
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cost has a great benefit—we obtain a congruence between a cusp form and Eisenstein series
not only modulo ®, but modulo a multiple x - © for a certain x € R),. This element x has
an intuitive meaning—it represents the trivial zeroes of the p-adic L-function associated
to x, even the “mod p trivial zeroes.” The precise definition is as follows.

Lemma 6.4. Suppose ged(n, p) = 1. For positive k = 1 (mod (p — 1)p™) with N suffi-

ciently large, the element

_ Og (1 —k)
= —@Sw ) € Frac(R)

lies in R and is a non-zero-divisor.
The analogue of Theorem 6.3 for gcd(n, p) = 1 is as follows.

Theorem 6.5 ([17, THEOREM 8.17]). Suppose gcd(n, p) = 1. For positive integers k = 1
(mod (p — 1)p™) and N sufficiently large, there exists Hy(x) € My (n, x, Rp) such that

Fr(x) = ey (xWi (. DVt — Wie(x. 1) — xOF H (x))
lies in S (up, R, x).

The extra factor of x in our congruence between the cusp form Fj () and a linear
combination of Eisenstein series plays an extremely important role in showing that the Galois
cohomology classes we construct are unramified at p.

We conclude this section by interpreting the congruences of Theorems 6.3 and 6.5 in
terms of Hecke algebras. We consider the Hecke algebra T generated over R), by the operators
T, for primes q + np and Uy, for primes p | p. (We ignore the operators Ug forq | n,q + pin
order to avoid issues regarding nonreducedness of Hecke algebras arising from the presence
of oldforms.) We denote by T = el‘;rd (’i‘) Hida’s ordinary Hecke algebra associated to T. Let
€y - GF — Z; denote the p-adic cyclotomic character of F. Theorems 6.3 and 6.5 then
yield:

Theorem 6.6. Let x = 1 if gcd(u, p) # 1 and let x be as in Lemma 6.4 if gcd(nm, p) = 1.
There exists an R,/ x ©*-algebra W and a surjective R,-algebra homomorphism ¢ : T — W
satisfying the following properties:

e The structure map R,/x®" — W is an injection.
o(Tr) = €& () + x(0) for L { np.
¢(Up) = 1 forp | ged(u, p).

o Let

U= ] Wp—xm)eT.

plp.pin
Ify € Ryand (U)y = 0in W, then y € (©%).

The idea of this theorem is the usual one: the homomorphism 