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COMBINATORIAL
STATISTICS
AND THE SCIENCES

ELCHANAN MOSSEL

ABSTRACT

Combinatorial statistics studies inference in discrete stochastic models. Inference of such
models plays an important role in the sciences. We survey research in combinatorial statis-
tics involving the tree broadcast process. We review the mathematical questions that arise
in the analysis of this process and its inference via “belief propagation.” We discuss the
mathematical connections to statistical physics, the social sciences, biological sciences,
and theoretical computer science.
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1. INTRODUCTION

Discrete probability models are used in many of the hard and soft sciences. Often
the scientific challenges lead to novel mathematical questions in combinatorial statistics. The
mathematical questions involve inference in such models. The goal of this survey paper is to
discuss some of these processes, their inference, and their connections to the sciences. We
focus on the tree broadcast process, the mathematical questions that arise in the analysis of
this process and its inference via “belief propagation.” We review some of the mathematical
connections to statistical physics, the social sciences, biological sciences, and theoretical
computer science.

1.1. A simple model on trees

In its simplest form, the model in question will be parametrized by four parameters:
d,h,q,and 6. The model is defined on the d-ary tree of & 4 1 levels. Level O consists of the
root, which has d children. Level 1 of the tree consists of the d children of the root. Each
of the nodes at level 1 has d children. The collection of d? children of the nodes at level 1
makes level 2 of the tree, etc. We will denote the tree by T = (V, E) and the & + 1 levels by
Ly, ..., Ly. We will denote the level of node v by |v|. We will denote the root by 0.

We now define a discrete stochastic process indexed by the vertices V' of T. We
will give two equivalent definitions of this process. First, a recursive definition: the random
variable X is chosen uniformly at random from the set [¢] := {1, ..., g}. Now, for each
child v of the root 0, independently, we toss a coin that lands Heads with probability 6. If it
lands Heads, we let X, = Xj. If it lands Tails, we sample X, independently and uniformly at
random from [¢]. We then apply the same procedure recursively to each node at levels 2, 3,
etc.

A moment’s thought reveals that the vector X = (X, : v € V) has the following
probability distribution:

IP>[X=(xv:ueV)]:l ]_[ (l(xu:xv)ﬁ—i-ﬂ), (1.1)
(u,v)eE 4
where here and below all edges (u, v) are directed away from the root.

Note that the measure above is well defined for 1 > 8 > —1/(¢ — 1), which will
always be assumed. The extreme case § = —1/(¢ — 1) corresponds to the uniform measure
on g-colorings of the tree. Below we will always exclude the frozen measures, where the
root color determines all colors, by assuming § < 1,and 8 > —1,if g = 2.

There are many ways in which this process was generalized. Of particular interest
are the following two. First, we may consider the process on general rooted trees, random,
or deterministic. Second, we may consider more general broadcast processes from parent to
child. In particular, assuming the state space is [g], there is no reason that different edges
(u, v) will have the same conditional law of X,, given X,. Moreover, we can consider more
general conditional laws of X, given X,. Thus for a general, possibly random, finite tree
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V = (T, E) and a collection M ¢ of Markov chains on the state space [¢], we may define

P[X = (xy:v € V)] = 7(x0) l_[ M@V (xy,, xy), (1.2)
(u,v)eE

where 7 is a given probability distribution on [¢]. We will always assume all chains M ®-¥)
are ergodic and that 7 is not a delta measure.

A lot of what we know about model (1.1) carries over to the more general setting
of (1.2). For simplicity, we will mostly discuss (1.1), and sometimes comment on how things
generalize.

1.2. Belief propagation and the reconstruction problem

Note that we may define the process X = (X, : v € V) recursively also for a d-ary
tree T = (V, E) of infinitely many levels. Moreover, if we restrict to (X, : |v| < h), it will
be distributed according to (1.1).

We are interested in studying if the nodes at level / of the tree are asymptotically
independent of X as h — oo. We first note that by ergodicity of Markov chains we know
that X and X, are asymptotically independent as |v| — oo, where |v| denotes the level of
v (for model (1.2), we need to require a bit more; we will not get into the details). In the
language of statistical physics, this means that two point correlations decay exponentially as
they do for finite ergodic Markov chains. Instead, we look at point-to-set correlations. More
formally, let us denote by X}, the vectors of X, for v at level & of the tree,

Xp = Xy : v =h).

Then we are interested in the asymptotic independence of Xy and X}, as h — oo. To formalize
this question, let
q
Yo = Ze,-](xo =i)eRY,
i=1

where e; is the ith unit vector.
Definition 1.1. We say that the reconstruction problem is solvable if
Jim EJE[Yo|X,] — E[Yo]|l3 # 0. (13)
—00

In other words, the reconstruction problem is solvable if X; provides some non-
vanishing information on the value of Xy. There are many other equivalent definitions of
reconstruction including some involving the limiting mutual information limy_, o (X0, X)
or softer ones in terms of the tail-triviality of the sequence Xy, X7, ..., see, e.g., [34,43,92]
and the survey [68].

Interestingly, the quantity f(Xy) = E[Yo|Xy] can be computed recursively and effi-
ciently as a function of X}, via the belief propagation algorithm. This algorithm is used also
for nontree graphical models [8e] where it provides an approximation. The accuracy of belief
propagation on trees was observed earlier, in specific contexts such as ancestral inference
in phylogenetic trees [37,44] and the study of the Ising model on trees [83]. Note that if
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E[Yo|Xn] — E[Yo] (say in probability or a.s.) then for large values of 4, there is little point
in computing E[Yy| X}], as it is most likely trivial. Below we will often write BP instead of
belief propagation.

2. LINEAR THEORY AND THE KESTEN—STIGUM BOUND

While there is an easy recursive computation of the function f(x) = E[Yy| X} = x],
computing the limiting distribution or the limiting variance of f(X}) in (1.3) is in general
difficult, as f is highly nonlinear and the coordinates of X} are dependent. To remedy the
first difficulty, it is natural to ask if there is a way to linearize the problem so that it is more
amenable to analysis.

Interestingly, there are two approaches that lead to studying the same question:

(1) We can introduce an additional noise parameter 1 > 0 that will be applied only
for the nodes at level h. For a deterministic value xj of the nodes at level A,
define the random vector

Xp = (Xy @ Jv| = h), 2.1

where for nodes v with |v| = h, we let X, = x, with probability », and it is
independently and uniformly sampled from [¢] otherwise. We can then define
a new function f of the colors at level & by letting

~ d
S (xp) = d—n|n=oE[f(fh)]-

Using the chain rule, it is easy to see that this is a linear function of the vari-
ables in x;,. More formally, it is a linear function of the d”¢ indicator variables
(1(xy =1) :|v| =h,i €[q]). We can now study the correlation between f~(Xh)
and X instead of the variance in (1.3).

(2) Perhaps the most natural function of the X that one may study is
> Yn =2 yer, Yo, where

q
Yy =) eil(X, =i)€RI.

i=1
Of course, Y _ ¥}, is just the count of how many of each of the ¢ symbols appear
at level /.

It is not hard to see that both approaches lead to studying the correlation between ) _ ¥ and
X, see, e.g., [60]. In the work of Kesten and Stigum on multitype branching processes in
the 1960s, they proved a law of large numbers for Y _ ¥}, in [52] and then more refined limit
theorems [51] which in particular imply:

Theorem 2.1. For model (1.1),

d
L. do? <1 = normalized . Yy, h(—)) a normal law independent of Xy.
—>00
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d
II. d6%>>1 = normalized) Yy @, a nonnormal law dependent on Xp.
n—>oo

1. In particular, if d6% > 1 then the reconstruction problem is solvable.

The laws in parts I and II are nondegenerate. The results of [51] are in fact general
enough to cover the more general model (1.2) on the d-ary tree if all the M matrices are
identical and ergodic. In this case we let 6 := max(|A;| : A; # 1), where the A;s denote the
eigenvalues of M. The results further carry to random branching process trees with well-
behaved degree distributions, where now d denotes the average number of offsprings.

The original proof of Theorem 2.1 uses the Fourier transform approach though mar-
tingale approaches can also be used to prove it as is hinted in [73].

Given Theorem 2.1, it is natural to ask if part I of the theorem implies nonrecon-
struction when d#? < 1. One way for this to work out would be for the higher-order terms in
the expansion of BP, E[Yy|X},] to have a bounded contribution in probability. The recursive
nature of BP allows proving it in the case of ¢ = 2:

Theorem 2.2. If g = 2 and d6? < 1, then the reconstruction problem is not solvable.

This theorem was first proved by Bleher, Ruiz, and Zagrebnov [1e]. Since then many
other alternative proofs were presented. In particular, Theorem 2.2 was extended to general
infinite trees in [34], where the general definition of d is now in terms of the branching
number of the tree [56]. See also [81] for the analysis of the critical case for general trees.
Proofs by loffe [46, 47] are formulated in terms of the FK representation from percolation
theory, see, e.g., [41]. There are some recent short proofs based on information inequalities,
see, e.g., [1,82].

Beyond the case ¢ = 2, Sly [88] proved nonreconstruction if d9? < 1 for ¢ = 3 if
d > dmin, where dp;, is some constant, and [13] proved it in the case where all the M are
identical and given by 2 x 2 matrices that are almost symmetric.

In terms of the correlation between Y Y}, and Xo, in the paper [73] it is proven that
for all ¢ the distribution of }_ Y}, is asymptotically independent of the root when d6? < 1.
The paper [49] showed that in the noisy model (2.1), for all ¢, if d 92 < 1, then there exists a
constant amount of noise 7 > 0 such that X, is asymptotically independent of X so

lim E|E[Yo|X4] — E[Yo][3 = 0.
h—o00

The last two results say that if reconstruction is possible when d6? < 1 then (1) the infor-
mation retained about Xy is not in the count Y and (2) the information retained about Xj is
not robust against a fixed amount of noise.

3. NONLINEAR THEORY

Interestingly, for large values of g, reconstruction is possible even for some values
of 6 such that d6% < 1. First, as ¢ — oo, the reconstruction threshold 6, converges to 1/d
as proven in [67].
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Theorem 3.1. Fix d and let
0 = inf(@' > 0 : such that reconstruction is possible for parameters (d, q,6), V6 > 9’).
Thenlimy_o0 8, = 1/d.

This theorem is proven using branching process techniques. An easy and well-
known argument states that reconstruction is impossible when 6 < 1/d. Indeed, if we con-
sider the branching process, where each node has Bin(d, 6) children, then Zj, the population
at level &, counts the number of nodes whose colors have been copied from the root. More-
over, conditioned on Zj, all other colors are independent of the root. Therefore if Z;, — 0, X
and X}, are asymptotically independent. Since the branching process is subcritical (Z; — 0)
if and only if 46 < 1 (see, e.g., [7]), it follows that 8, > 1/d for all q.

When df > 1, Z;, — oo with positive probability. However, since we do not know
from X}, the location of the colors that were copied from the root, it is still possible that X},
and X, are asymptotically independent, as is the case when ¢ = 2 and 0 € (d~',d~"/?).
The proof of the harder direction of Theorem 3.1 uses the fact that for large ¢ if two recent
descendants of the same node have the same color, it is very likely that node has the same
color. Thus the proof uses a function that estimates the root to have a specific value i if a
certain fractal-like subtree containing the value i at all of its leaves appears in Xj.

On the other hand, taking the asymptotics as d — oo, Sly [88] proves:

Theorem 3.2. Fix q > 5 and let
64 := inf(@’ > 0 : such that reconstruction is possible for parameters (d, q,6), V6 > 9').
Then limg o0 d8 = Cy < 1.

Similar results are obtained for 6 < 0.

Theorem 3.2 is proven by using a central limit theorem to analyze the basic belief
propagation recursion and noting that the nonlinear terms shift the threshold.

A special case that attracted a lot of attention is the case of random coloring where
0 = —1/(g — 1). Interestingly, again, for large ¢ the relationship between the critical d and
0 is almost linear, see [87,89].

4. CONNECTIONS TO STATISTICAL PHYSICS

The reconstruction problem on trees was first studied in statistical physics. The case
q = 2 corresponds to studying the extremality or tail triviality of the Ising model on the
tree [92]. Reconstruction solvability for ¢ = 2 when d 62 > 1 was proven in [43], the author
of which was unaware that a more general result is implied by the results of Kesten and
Stigum [51].

Interestingly, nonreconstruction for ¢ = 2 when d? < 1 was first proven in a spin
glass variant [14,15,18]. In this context reconstruction means

Jim E|E[Yo| Xy = Ba] — E[Yo][13 # 0,
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where By, are i.i.d. Bernoulli taking each of the two colors with probability 1/2. The proof
in this case is a little easier since in the analysis of the recursion for spin glasses the contri-
butions coming from different subtrees are independent and identically distributed.

The interest in the reconstruction problem in statistical physics saw an explosion as
the cavity and replica method played a crucial role in analyzing problems on sparse random
graphs, see, e.g., [61-63,78,79]. At a very high level, for many combinatorial problems on
sparse random graphs, statistical physics predictions are based on analysis (often nonrigor-
ous) of the reconstruction problem or its variants on a corresponding tree. The connection
to the reconstruction problem as defined here was formally made in [61]. In particular, it was
conjectured in [61] that the Kesten—Stigum bound predicts the reconstruction threshold for
q = 2,3, and does not predict it for ¢ > 5. As mentioned earlier, this was partially proven [88].
We will not try to summarize the connections between belief propagation and its variants,
variants of the reconstruction problem and random constraint satisfaction problems. Some
key papers in this area are [2e,48,54,65]. This connection is also important in the work leading
to the proof of the SAT threshold [21,22,27-29,58].

We will now give more details of one example, the example of detection in the block
model. Here again we will see differences between the linear theory as reflected in the case
g = 2 vs. nonlinear theory when ¢ is large.

4.1. Detection in the block model

The block model is a random graph model generalizing the famous Erd&s—Rényi
random graph [33]. The block model is a special case of inhomogeneous random graphs,
see, e.g., [11]. The sparse block model may be defined as follows:

Definition 4.1 (The sparse block model). Let G(n,d, 0, q) denote the model of random, [g]-
labeled graphs in which each vertex u is assigned (independently and uniformly at random) a
label 0;, € [¢], and then each possible edge (u, v) is included with probability (d/n)(1 — )
if 0y, # 0y, and with probability (d/n)((1 — 6) + ¢0) if 6, = 0y.

We chose this parametrization so that for a fixed node, the distribution of the number
of neighbors of each type will asymptotically agree with the distribution of the number of
children of each type in model (1.2) with parameters ¢ and 6 on a random tree where each
node has a Poisson with parameter d number of children.

The block model was studied extensively in statistics as a model of communities [45],
see, e.g., [9,85,90], and in computer science as a model to study the average case behavior
of clustering algorithms, see, e.g., [19,23, 30,50,59] (interestingly there are very few citations
between the two communities of papers even in cases where very similar results are proven).
The papers above mostly concentrate on cases where the average degree is at least of order
log n, where n is the number of nodes in the graph.

The sparse case in Definition 4.1 became a major object of research due to a land-
mark paper in statistical physics [26] where the authors predicted that
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Conjecture 4.2. For the block model,

L. For all q, belief propagation on the graph G predicts the communities better
than random if d6? > 1.

1. Forq = 2,3, it is information-theoretically impossible to predict better than at
random if d6? < 1.

1. For g > 5, it is information-theoretically possible to predict better than at
random for some 0 with d9? < 1, but not in a computationally efficient way.

These predictions were based on a linearization of belief propagation for the tree
model.

4.2. ¢ = 2—linear theory

A major challenge in establishing the algorithmic efficiency of belief propagation for
block models stems from a fundamental difference between the application of belief propa-
gation to trees and block models. When applied to trees, the input to belief propagation is the
actual colors of the leaves. However, in the block model application, the colors are unknown.
So here belief propagation is applied to random colors at all nodes that are independent of
the actual colors.

In [55] it was conjectured that the global nonlinear operator that described one iter-
ation of belief propagation on the graph should be linearized around its trivial fixed point to
lead to a linear algebra based method to detect the communities. The resulting operator is
not normal and its spectrum is complex. It is closely related to the operators used to analyze
nonbacktracking walks [6,39,42,91].

This suggestion was followed up by an extensive body of work, including [2,5,12,72],
that led proofs that linearized versions of BP detect communities better than at random when
d6? > 1, which is in the spirit of part I of Conjecture 4.2.

The original statement of part I of Conjecture 4.2 states, furthermore, that belief
propagation is optimal for the problem in the stronger sense that it minimizes the fraction of
misclassified nodes. A combination of linearized belief propagation and belief propagation
is used in [71] to obtain an efficient algorithm that minimizes the misclassification error when
g = 2 and df? > C for some big constant C [71]. The main ingredient is proving that the
estimator in the noisy model (2.1) asymptotically agrees with the original model (1.1):

lim |E[Yo|X;] — E[Yo|X4]| = 0. (4.1)
h—o00

Even earlier, part II of Conjecture 4.2 was partially established as it was shown
in [7e] that for ¢ = 2 it is information-theoretically impossible to detect better than at random
if d9? < 1 based on coupling of the graph and tree processes. The case ¢ = 3 is still open.

4.3. Nonlinear theory
Parts of the nonlinear predictions in part III of Conjecture 4.2 were confirmed in [8]

and [4] which provided exponential-time algorithms to detect for some parameters when
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d0? < 1 wheng > 5 (also when g = 4 and 0 < 0,d6? < 1). Of course, we rarely know how
to prove that computational problems cannot be solved efficiently, so the support we have
for the predicted computational-statistical gap is quite limited, see [3] for a more detailed
discussion.

5. CONNECTIONS TO MOLECULAR BIOLOGY

The broadcast process on the tree was independently introduced in mathematical
biology as a model of evolution of genetic information such as DNA sequences [16,36,77].

Naturally, the reconstruction problem is interesting in this context. Given the detailed
evolutionary tree of some species, we want to infer as much as possible about the genetics
of extinct species from the genetics of extant species.

An even more interesting question from a biological perspective is recovering the
species tree from genetic data. Note that the details of this tree are required to study the
reconstruction problem and infer ancestral genetic data.

Since Darwin’s Origin of Species [24], a major goal of evolutionary biology is recov-
ering the relationship between different species. Since the 1970s, this is most often done
using genetic information collected from extant species. The models introduced in [16,36,77]
assume that the genetic distribution of traits (X, : v € V) is determined by a binary (rooted)
tree T = (V, E) and a collection g = (6, : e € E) via the following variant of (1.1):

P =ven]=o [T (1e=w+12%) 6
e=(u,v)eE 4

Note that 7" and 0 determine a distribution of traits X and therefore the distribu-
tion D(T, 0g) of X, = (X, : v is aleaf). A major goal of the phylogenetic reconstruction
problem is to estimate T and 6 from independent samples from the distribution D(T, 6g).
In particular, we are interested in knowing how many samples are needed to recover 7" with
good probability, as this translates to the data requirements needed for accurate estimation.

This ideal model that was introduced in the 1970s has since been generalized to
account for many additional biological factors and mechanisms. Key theoretical results in
this area include the identifiability of phylogenetic models [17] and efficient polynomial time
algorithms to reconstruct phylogenetic trees [31,32,74]. See, e.g., [38,86,93] for general refer-
ences on the phylogenetic problem.

The connection to the reconstruction problem was predicted by Steel [94] who con-
jectured that the amount of data needed to reconstruct phylogenetic trees crucially depends
on the reconstruction problem.

The easiest setting to understand the connection between phylogenetic inference and
the reconstruction problem is when ¢ = 2 and the trees are very symmetric. We call a tree an
h-level full binary tree if all the leaves are at level 4. In the symmetric phylogenetic problem,
we assume that the tree is an h-level full binary tree and that 6, = 0 foralle € E.
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To understand what is inferred in this setup, let us fix 2z = 2. In this case the data
given is
(X,’;:ve{a,b,c,d},l <i <n). (5.2)

This data can be thought of as four genetic sequences of length #, i.e., the genetic content
of species a, b, ¢, d, where a, b, ¢, d are the leaves of the tree. Alternatively, the two-
dimensional array (5.2) can be viewed as n i.i.d. samples from the process at the four leaves
a,b, c,d. The main goal of inference in this simple case is to determine which species are
siblings and which are cousins. The three possible sibling relationships are

{la.b}.{c.d}, a.c},{b.d}, {Ha.d}.{b.c).

Of course, when / is bigger, we want to determine not just the sibling relation but also
higher-order cousin relations.

Theorem 5.1. Consider the symmetric phylogenetic problem with g = 2 and n independent
samples from the distribution D(T, 0g), where T is an h-level full binary tree and 6, = 0
foralle € E.

1. If the reconstruction problem is solvable for binary trees at the parameter 0
(i.e., when 20% > 1) then there is an efficient algorithm that, given n = O(h)
samples, returns the correct tree with probability 1 — exp(—S2(h)).

II. If0 is strictly below the reconstruction threshold, 20% < 1, then it is information-
theoretically impossible to infer the correct tree with probability > 1/2 unless
n > exp(2(h)).

The theorem above was first proven in [68] in a more general (and biologically rel-
evant) setting.

For the proof of part I, the basic idea is that we may use correlation between different
coordinates in samples from D(T, 0g) to identify siblings, cousins, etc., in the tree. We
may then estimate the state of their ancestor somewhat accurately since the reconstruction
problem is solvable. We then use these estimates to find close relationships between the
newly identified nodes and continue recursively.

For part II, one proves that for a node v at distance ¢h from the root, X, has an
exponentially small in / correlation with X},. By taking ¢ sufficiently small, this implies that
the same is true for the correlation between X, and Xj,. Finally, this allows showing that,
unless n > exp(§2(h)), it is impossible to distinguish between the true tree and modifications
of it permuting the nodes at level ¢h and the trees below them.

More realistic phylogenetic problems are not symmetric and much of the work in [25,
68] and follow up work was devoted to extending part I of the theorem to asymmetric cases.

Note, moreover, that the proof sketch of part I extends to all (g, 6) such that the
reconstruction problem is solvable. However, the proofs in [25, 68] that do not have such a
strong symmetry assumption do not extend to all such (g, 8) as they require robustness in
various steps (the results trivially extend to even ¢ when 262 > 1). Interestingly, the results
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of part I were extended in [75] to large g for some values of # where 202 < 1 based on the
root estimator in [67]. The results of [75] require the tree to be symmetric but not that 6, = 6
for all e. The paper [75] also provided an extension of part II of Theorem 5.1 for (¢, 8) when
0 < 0’ and there is no reconstruction for parameter (¢, 6’).

It is natural to ask if there is a computational or information-theoretical barrier to
extending the more realistic phylogenetic results of [25, 68,84] to all 6’s above the recon-
struction threshold when ¢ > 5. An analog of Theorem 5.1 for the limiting case ¢ = oo is
established in [76] for general (asymmetric) trees where the critical value of 6 is 1/2.

6. CONNECTIONS TO THEORETICAL COMPUTER SCIENCE

We have already seen many connections of the reconstruction problem to theo-
retical computer science. The connections included the role it played in algorithms and
determining the satisfiability thresholds of random clustering, random graph, and random
constraint satisfaction algorithms in Section 4, and the role it played in the information the-
oretic and algorithmic analysis of phylogenetic reconstruction in Section 5. Moreover, as
belief propagation is a widely used algorithm, the analysis of the reconstruction problem
and the robustness of this algorithm provide average case understanding of this important
algorithm.

In this section we briefly discuss the computational complexity of the problem of
estimating Xy from X}, or approximately computing E[Yy|X}]. Furthermore, we review the
connections between this problem and the classical theory of noisy computation and its con-
nection to deep inference.

This question might seem strange as the belief propagation algorithm computes
E[Yo| Xy] exactly in linear time. Note, however, that despite the linear running time it has
two complex features:

(1) Tt uses real numbers. Indeed, the complexity is measured in terms of real arith-
metic, but the model we are interested in is discrete.

(2) Itis recursive. In other words, the circuit that computed BP has some depth. Is
the depth necessary?

6.1. Recursive bounded memory algorithms

Here we only consider the simple model (1.1) with ¢ = 2. In this case we know that
the reconstruction threshold is given by d6? = 1 and that ) ¥}, provides a good estimator
of Xo when d6? > 1.

Since the definition of the distribution of X7, is recursive, it is natural to ask if there
is a simple recursive algorithm that estimates X in a bottom up fashion, i.e., by a recursion
of the form X, = _f(XAw :w € L(v)), where L;(v) is the set of d* descendants of v exactly
t levels below v. The algorithm begins by initializing X, = X, for nodes v at the bottom
level Lj and terminates by estimating X by rounding X, in some fashion.
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As mentioned earlier, belief propagation can be written in this way for some real
valued function f. The majority estimator sgn(} _ ¥3) can also be written in this way by com-
puting the sum recursively. However, both of these require the domain of f to be unbounded.
Is it possible to estimate X in such recursive fashion using a function f that takes at most
a constant B values and a bounded ¢?

The case B = 2 was studied in [66] assuming f is antisymmetric. In this case we
can find the optimal function: f is the majority function. And the overall estimator of X is a
recursive majority function applied to X},. This in turn allows computing for each ¢ a critical
threshold 6, such that X, is correlated with X¢ asymptotically if 8 > 6, and is uncorrelated

12 and limy— oo 0; = d V2.

if 6 < 6;. The computation in [66] shows that for all ¢, 6, < d~

There is an interesting connection between the derivation of the thresholds 6;(d)
and a derivation of von Neumann in the context of noisy computation [35,95]. In his work
on noisy computation, von Neumann considered circuits with noisy gates with the goal of
designing circuits that, by duplicating inputs and applying majority gates to correct inter-
mediate computations, are robust to some amount of noise. The derivation of the amount
of noise that can be tolerated reduces to the question if the noisy recursive majority func-
tion with the all 1 inputs has limiting expectation bounded away from 1/2. Interestingly, the
broadcast model and the noisy computation model yields the same recursion and therefore
we derive the same threshold for 8 (d). In the noisy computation setting, the case d = 3
was derived by von Neumann [95], and was generalized to all d in [35]. The same recursion
also appears in other models of noisy broadcast, see, e.g., [57].

In the context of the reconstruction problem, it was conjectured in [34] that any
algorithm with bounded B cannot achieve the reconstruction threshold. This was recently
established in [48] where it is shown that with B bits of memory, the critical fp satisfies
B~€ < 0p — 0 < B~, for some positive constants C > ¢ > 0.

6.2. The complexity of P[X¢|X}]

Recent efforts are devoted to studying the complexity of inference of Xy from X,
in the linear regime when d6? > 1 vs. the nonlinear regime where d? < 1, ¢ is large, and
the reconstruction problem is solvable.

Part of the motivation for studying this problem is to identify natural data-generating
processes, where inference is possible but requires some nontrivial complexity.

The polynomial degree is one such measure of complexity. Thus we can ask if there
is a low degree polynomial of the d"q indicator variables (1(x, = i) : |v| = h,i € [g]) that
has nonvanishing correlation with Xy as # — oo. We can say that:

(1) In the linear regime where df? > 1, there is a linear function of the variables
in X}, that is correlated with X by Theorem 2.1.

(2) In [67]1 it is shown that for the model (1.2) on the d-ary tree, where M¢ = M
for all e, there are chains M with 6 = 0 for which the reconstruction problem
is solvable. The paper [53] shows that for such chains any polynomial of X}, of
degree < (2¢") are uncorrelated with X, for some positive constant c.
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(3) The authors of [53] ask if a similar phenomenon holds through the nonlinear
regime. For example, is it true that polynomials of bounded degree have van-
ishing correlation with X in the regime where d6? < 1?

In an earlier work [64], circuit complexity measures were used to study the inference
of X from Xj,. The conjectured gap between the linear and nonlinear cases is reflected in
the circuit class TC? vs. NC!:

(1) Since the class TC? of bounded depth circuits contains majority gates, it can
trivially estimate Xg better than at random when d6? > 1. Moreover, when-
ever (4.1) holds, TC? can estimate X, o With minimal error.

(2) Itis not too hard to show that the computation of BP can always be carried out
in NC!, the class of circuits of logarithmic depth. The paper [64] constructed a
chain M with 6 = 0 for which estimating X from X}, better than at random is
NC'-complete.

(3) It is conjectured in [64] that estimating better than at random is NC'-complete
when d6? < 1 and the reconstruction problem is solvable.

It is important to note that it is a major open problem to determine if NC! = TC?.

In an even earlier work, the paper [69] considered a semisupervised version of the
phylogenetic problem in the regime d6? < 1 and proved that in this regime it is information-
theoretically impossible to classify the unlabeled data for algorithms that ignore correlations
between features in the labeled data, while algorithms that do use high-order correlation can
classify the data accurately. Moreover, in the regime d6? > 1, high-order correlations are
not needed.

ACKNOWLEDGMENTS
Yuval Peres introduced me to the tree broadcast process at the beginning of my graduate
studies. I am indebted to Yuval for fascinating discussions and central insights. Much of
my work in this area has greatly benefited from collaborations with Mike Steel, Sebastien
Roch, Allan Sly, Joe Neeman, Frederic Koehler, and Colin Sandon. Thanks to Sebastien
Roch, Colin Sandon, Allan Sly, Nike Sun, Joe Neeman, and André Dixon for feedback on a
draft of this survey.

FUNDING
This work was partially supported by NSF grant DMS-2031883, Vannevar Bush Faculty
Fellowship ONR-N00014-20-1-2826 and Simons Investigator award (622132).

REFERENCES
[1] E. Abbe and E. Boix-Adsera, An information-percolation bound for spin synchro-
nization on general graphs. Ann. Appl. Probab. 30 (2020), no. 3, 1066—1090.

4182 E. MOSSEL



[2]

[3]

[4]

[5]

[6]

(7]

(8]

[9]

[1e]

[11]

[12]

[13]

[14]

[15]

[16]

4183

E. Abbe and C. Sandon, Community detection in general stochastic block models:
fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th
annual symposium on foundations of computer science, pp. 670-688, IEEE, 2015.
E. Abbe and C. Sandon, Detection in the stochastic block model with multiple
clusters: proof of the achievability conjectures, acyclic bp, and the information-
computation gap. 2015, arXiv:1512.09080.

E. Abbe and C. Sandon, Crossing the KS threshold in the stochastic block model
with information theory. In 2016 IEEE international symposium on information
theory (ISIT), pp. 840-844, IEEE, 2016.

E. Abbe and C. Sandon, Proof of the achievability conjectures for the general
stochastic block model. Comm. Pure Appl. Math. 71 (2018), no. 7, 1334-1406.
N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin, Non-backtracking random
walks mix faster. Commun. Contemp. Math. 9 (2007), no. 04, 585-603.

K. B. Athreya and P. E. Ney, Branching processes. Springer, New York, 1972.

J. Banks, C. Moore, J. Neeman, and P. Netrapalli, Information-theoretic thresh-
olds for community detection in sparse networks. In Conference on learning
theory, pp. 383-416, PMLR, 2016.

P. Bickel and A. Chen, A nonparametric view of network models and Newman—
Girvan and other modularities. Proc. Natl. Acad. Sci. 106 (2009), no. 50,
21068-21073.

P. M. Bleher, J. Ruiz, and V. A. Zagrebnov, On the purity of the limiting Gibbs
state for the Ising model on the Bethe lattice. J. Stat. Phys. 79 (1995), no. 1-2,
473-482.

B. Bollobds, S. Janson, and O. Riordan, The phase transition in inhomogeneous
random graphs. Random Structures Algorithms 31 (2007), no. 1, 3-122.

C. Bordenave, M. Lelarge, and L. Massoulié, Non-backtracking spectrum of
random graphs: community detection and non-regular Ramanujan graphs. In
Foundations of computer science (FOCS), 2015 IEEE 56th annual symposium on,
pp- 1347-1357, IEEE, 2015.

C. Borgs, J. Chayes, E. Mossel, and S. Roch, The Kesten—Stigum reconstruction
bound is tight for roughly symmetric binary channels. In Proceedings of IEEE
FOCS 2006, pp. 518-530, IEEE, 2006.

J. M. Carlson, J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Bethe
lattice spin glass: the effects of a ferromagnetic bias and external fields. I. Bifur-
cation analysis. J. Stat. Phys. 61 (1990), no. 5-6, 987-1067.

J. M. Carlson, J. T. Chayes, J. P. Sethna, and D. J. Thouless, Bethe lattice spin
glass: the effects of a ferromagnetic bias and external fields. II. Magnetized spin-
glass phase and the de Almeida—Thouless line. J. Stat. Phys. 61 (1990), no. 5-6,
1069-1084.

J. A. Cavender, Taxonomy with confidence. Math. Biosci. 40 (1978), no. 34,
271-280.

COMBINATORIAL STATISTICS AND THE SCIENCES


https://arxiv.org/abs/1512.09080

[17]

[18]

[19]

[2e]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

4184

J. Chang, Full reconstruction of Markov models on evolutionary trees: identifia-
bility and consistency. Math. Biosci. 137 (1996), 51-73

J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, A mean field spin glass
with short-range interactions. Comm. Math. Phys. 106 (1986), no. 1, 41-89.

A. Coja-Oghlan, Graph partitioning via adaptive spectral techniques. Combin.
Probab. Comput. 19 (2010), no. 2, 227-284.

A. Coja-Oghlan, F. Krzakala, W. Perkins, and L. Zdeborovd, Information-theoretic
thresholds from the cavity method. Adv. Math. 333 (2018), 694-795.

A. Coja-Oghlan and K. Panagiotou, The asymptotic k-SAT threshold. Adv. Math.
288 (2016), 985-1068.

A. Coja-Oglan and K. Panagiotou, Catching the k-NAESAT threshold. In Pro-
ceedings of the forty-fourth annual ACM symposium on theory of computing,

pp- 899-908, ACM, 2012.

A. Condon and R. Karp, Algorithms for graph partitioning on the planted parti-
tion model. Random Structures Algorithms 18 (2001), no. 2, 116-140.

C. Darwin, On the origin of species (1859).

C. Daskalakis, E. Mossel, and S. Roch, Evolutionary trees and the Ising model
on the Bethe lattice: a proof of Steel’s conjecture. PTRF 149 (2011), no. 1-2,
149-189.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborovd, Asymptotic analysis of the
stochastic block model for modular networks and its algorithmic applications.
Phys. Rev. E 84 (2011), 066106.

J. Ding, A. Sly, and N. Sun, Proof of the satisfiability conjecture for large k. In
Proceedings of the forty-seventh annual ACM symposium on theory of computing,
pp- 59-68, ACM, 2015.

J. Ding, A. Sly, and N. Sun, Maximum independent sets on random regular
graphs. Acta Math. 217 (2016), no. 2, 263-340.

J. Ding, A. Sly, and N. Sun, Satisfiability threshold for random regular NAE-SAT.
Comm. Math. Phys. 341 (2016), no. 2, 435-489.

M. Dyer and A. Frieze, The solution of some random NP-hard problems in poly-
nomial expected time. J. Algorithms 10 (1989), no. 4, 451-489.

P. L. Erd8s, M. A. Steel, L. A. Székely, and T. A. Warnow, A few logs suffice to
build (almost) all trees (part 1). Random Structures Algorithms 14 (1999), no. 2,
153-184.

P. L. ErdGs, M. A. Steel, L. A. Székely, and T. A. Warnow, A few logs suffice to
build (almost) all trees (part 2). Theoret. Comput. Sci. 221 (1999), 77-118.

P. Erd6s and A. Rényi, On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci. 5 (1960), no. 1, 17-60.

W. S. Evans, C. Kenyon, Y. Y. Peres, and L. J. Schulman, Broadcasting on trees
and the Ising model. Ann. Appl. Probab. 10 (2000), no. 2, 410-433.

W. S. Evans and L. J. Schulman, Signal propagation and noisy circuits. IEEE
Trans. Inf. Theory 45 (1999), no. 7, 2367-2373.

E. MOSSEL



[36]

[37]

[38]
[39]

[ae]

[41]

[42]

[43]

[a4]

[45]

[46]

[47]

[48]

[49]

[se]

[51]

[52]

[53]

[54]

4185

J. S. Farris, A probability model for inferring evolutionary trees. Syst. Zool. 22
(1973), no. 4, 250-256.

J. Felsenstein, Maximum-likelihood estimation of evolutionary trees from contin-
uous characters. Am. J. Hum. Genet. 25 (1973), no. 5, 471.

J. Felsenstein, Inferring phylogenies. Sinauer, New York, NY, 2004.

J. Friedman, A proof of Alon’s second eigenvalue conjecture and related problems.
Amer. Math. Soc., 2008.

A. Gershchenfeld and A. Montanari, Reconstruction for models on random
graphs. In Foundations of computer science, annual IEEE symposium on,

pp- 194204, IEEE Computer Society, 2007.

G. Grimmett, The random-cluster model. In Probability on discrete structures,
pp- 73—123, Encyclopaedia Math. Sci. 110, Springer, Berlin, 2004.

K-i. Hashimoto, Zeta functions of finite graphs and representations of p-adic
groups. In Automorphic forms and geometry of arithmetic varieties, pp. 211-280,
Elsevier, 1989.

Y. Higuchi, Remarks on the limiting Gibbs states on a (d + 1)-tree. Publ. Res.
Inst. Math. Sci. 13 (1977), no. 2, 335-348.

J. Hilden, GEN EX—An algebraic approach to pedigree probability calculus.
Clinical Genetics 1 (1970), no. 5-6, 319-348.

P. Holland, K. Laskey, and S. Leinhardt, Stochastic blockmodels: first steps. Soc.
Netw. 5 (1983), no. 2, 109-137.

D. lToffe, Extremality of the disordered state for the Ising model on general trees.
In Trees (Versailles, 1995), pp. 3—14, Progr. Probab. 40, Birkhiuser, Basel, 1996.
D. Ioffe, On the extremality of the disordered state for the Ising model on the
Bethe lattice. Lett. Math. Phys. 37 (1996), no. 2, 137-143.

V. Jain, F. Koehler, J. Liu, and E. Mossel, Accuracy-memory tradeoffs and phase
transitions in belief propagation. In Proceedings of the thirty-second conference
on learning theory, edited by A. Beygelzimer and D. Hsu, pp. 17561771, Proc.
Mach. Learn. Res. 99, PMLR, Phoenix, USA, 2019.

S. Janson and E. Mossel, Robust reconstruction on trees is determined by the
second eigenvalue. Ann. Probab. 32 (2004), 2630-2649.

M. Jerrum and G. Sorkin, The Metropolis algorithm for graph bisection. Discrete
Appl. Math. 82 (1998), no. 1-3, 155-175.

H. Kesten and B. P. Stigum, Additional limit theorems for indecomposable multi-
dimensional Galton—Watson processes. Ann. Math. Stat. 37 (1966), 1463—1481.
H. Kesten and B. P. Stigum, Limit theorems for decomposable multi-dimensional
Galton—Watson processes. J. Math. Anal. Appl. 17 (1967), 309-338.

F. Koehler and E. Mossel, Reconstruction on trees and low-degree polynomials,
2021. arXiv:2109.06915.

F. Krzakata, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborova,
Gibbs states and the set of solutions of random constraint satisfaction problems.
Proc. Natl. Acad. Sci. 104 (2007), no. 25, 10318-10323.

COMBINATORIAL STATISTICS AND THE SCIENCES


https://arxiv.org/abs/2109.06915

[55]

[56]

[57]

[s8]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[7e]

[71]

[72]

[73]

4186

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly Z. L, and P. Zhang, Spectral
redemption: clustering sparse networks. Proc. Natl. Acad. Sci. 100 (2013), no. 52,
20935-20940.

R. Lyons, The Ising model and percolation on trees and tree-like graphs. Comm.
Math. Phys. 125 (1989), no. 2, 337-353.

A. Makur, E. Mossel, and Y. Polyanskiy, Broadcasting on random directed acyclic
graphs. I[EEE Inf. Theory 66 (2020), no. 2, 780-812.

E. Maneva, E. Mossel, and M. J. Wainwright, A new look at survey propagation
and its generalizations. J. ACM 54 (2007), 41.

F. McSherry, Spectral partitioning of random graphs. In Foundations of computer
science, 2001. Proceedings 42nd IEEE symposium on, pp. 529-537, IEEE, 2001.
M. Mézard and A. Montanari, Reconstruction on trees and the spin glass transi-
tion. J. Stat. Phys. 124 (2006), 1317-1350.

M. Mézard and A. Montanari, Information, physics, and computation. Oxford
University Press, USA, 2009.

M. Mézard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of
random satisfiability problems. Science 297 (2002), no. 5582, 812-815.

M. Mezard and R. Zecchina, Random k-satisfiability: from an analytic solution to
an efficient algorithm. Phys. Rev. E 66 (2002).

A. Moitra, E. Mossel, and C. Sandon, Parallels between phase transitions and cir-
cuit complexity? In Conference on learning theory, pp. 2910-2946, PMLR, 2020.
A. Montanari, R. Restrepo, and P. Tetali, Reconstruction and clustering in
random constraint satisfaction problems. SIAM J. Discrete Math. 25 (2011),

no. 2, 771-808.

E. Mossel, Recursive reconstruction on periodic trees. Random Structures Algo-
rithms 13 (1998), no. 1, 8§1-97.

E. Mossel, Reconstruction on trees: beating the second eigenvalue. Ann. Appl.
Probab. 11 (2001), no. 1, 285-300.

E. Mossel, Survey: Information flow on trees. In Graphs, morphisms and statis-
tical physics. DIMACS series in discrete mathematics and theoretical computer
science, edited by J. Nestril and P. Winkler, pp. 155-170, 2004.

E. Mossel, Deep learning and hierarchal generative models. 2019,
arXiv:1612.09057.

E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted
partition model. Probab. Theory Related Fields 3—4 (2015), 431-461.

E. Mossel, J. Neeman, and A. Sly, Belief propagation, robust reconstruction,

and optimal recovery of block models. Ann. Appl. Probab. 26 (2016), no. 4,
2211-2256.

E. Mossel, J. Neeman, and A. Sly, A proof of the block model threshold conjec-
ture. Combinatorica 38 (2018), no. 3, 665-708.

E. Mossel and Y. Peres, Information flow on trees. Ann. Appl. Probab. 13 (2003),
no. 3, 817-844.

E. MOSSEL


https://arxiv.org/abs/1612.09057

[74]

[75]

[76]

[77]

[78]

[791

[se]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

[9e]

[91]

[92]

[93]

[94]

4187

E. Mossel and S. Roch, Learning nonsingular phylogenies and hidden Markov
models. In Proceedings of the thirty-seventh annual ACM symposium on theory of
computing, Baltimore (STOC’05), MD, USA, pp. 366-376, ACM, 2005.

E. Mossel, S. Roch, and A. Sly, On the inference of large phylogenies with long
branches: How long is too long? Bull. Math. Biol. 73 (2011), no. 7, 1627-1644.
E. Mossel and M. Steel, A phase transition for a random cluster model on phylo-
genetic trees. Math. Biosci. 187 (2004), no. 2, 189-203.

J. Neyman, Molecular studies of evolution: a source of novel statistical prob-
lems. In Statistical decision theory and related topics, edited by S. S. Gupta and
J. Yackel, pp. 1-27, Elsevier, 1971.

M. M. G. Parisi, A replica analysis of the travelling salesman problem. J. Phys. 47
(1986), 1285-1296.

M. M. G. Parisi, On the solution of the random link matching problem. J. Phys.
48 (1987), 1451-1459.

J. Pearl, Reverend Bayes on inference engines: A distributed hierarchical approach.
Cognitive Systems Laboratory, School of Engineering and Applied Science, 1982.
R. Pemantle and Y. Peres, The critical Ising model on trees, concave recursions
and nonlinear capacity. Ann. Probab. 38 (2010), no. 1, 184-206.

Y. Polyanskiy and Y. Wu, Application of the information-percolation method to
reconstruction problems on graphs. Math. Stat. Learn. 2 (2020), no. 1, 1-24.

C. J. Preston, Gibbs states on countable sets: Gibbs states and Markov random
fields. Cambridge University Press, 1974.

S. Roch and A. Sly, Phase transition in the sample complexity of likelihood-based
phylogeny inference. Probab. Theory Related Fields 169 (2017), no. 1, 3-62.

K. Rohe, S. Chatterjee, and B. Yu, Spectral clustering and the high-dimensional
stochastic blockmodel. Ann. Statist. 39 (2011), no. 4, 1878-1915.

C. Semple and M. Steel, Phylogenetics. Math. Appl. Ser. 22, Oxford University
Press, 2003.

A. Sly, Reconstruction of random colourings. Comm. Math. Phys. 288 (2009).

A. Sly, Reconstruction for the Potts model. Ann. Probab. 39 (2011), no. 4,
1365-1406.

A. Sly and Y. Zhang, Reconstruction of colourings without freezing. 2016,
arXiv:1610.02770.

T. Snijders and K. Nowicki, Estimation and prediction for stochastic blockmodels
for graphs with latent block structure. J. Classification 14 (1997), no. 1, 75-100.
S. Sodin, Random matrices, nonbacktracking walks, and orthogonal polynomials.
J. Math. Phys. 48 (2007), 123503.

F. Spitzer, Markov random fields on an infinite tree. Ann. Probab. 3 (1975), no. 3,
387-398.

M. Steel, Phylogeny: Discrete and random processes in evolution. SIAM, 2016.
M. Steel, My Favourite Conjecture, 2001, http://www.math.canterbury.ac.nz/
~mathmas/conjecture.pdf.

COMBINATORIAL STATISTICS AND THE SCIENCES


https://arxiv.org/abs/1610.02770
http://www.math.canterbury.ac.nz/~mathmas/conjecture.pdf
http://www.math.canterbury.ac.nz/~mathmas/conjecture.pdf

[95] J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In Automata studies, pp. 43-98, Ann. of Math. Stud. 34,
Princeton University Press, Princeton, NJ, 1956.

ELCHANAN MOSSEL
77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA, elmos @mit.edu

4188 E. MOSSEL


mailto:elmos@mit.edu

12. PROBABILITY



KPZ LIMIT THEOREMS

JINHO BAIK

ABSTRACT

One-dimensional interacting particle systems, 1+1 random growth models, and two-
dimensional directed polymers define 2D height fields. The KPZ universality conjecture
posits that an appropriately scaled height function converges to a model-independent uni-
versal random field for a large class of models. We survey limit theorems for a few models
and discuss changes that arise in different domains. In particular, we present recent results
on periodic domains. We also comment on integrable probability models, integrable differ-
ential equations, and universality.
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1. INTRODUCTION

The KPZ universality is concerned with, among others, one-dimensional interacting
particle systems, 1+1 random growth, and two-dimensional directed polymers. These models
define height functions h(x, t), two-dimensional random fields, where x represents the one-
dimensional spatial position and ¢ the time. A height function encodes the integrated current
for interacting particle systems, the height for random growth models, and the free energy
for directed polymer models. See Section 2 for an example. The KPZ universality conjecture
is that for a large class of models, the scaled height function

h(yT?/3,<T) — (T
hy(y.7) = (v Tfl/3) c(T) (LD

converges, up to scaling factors, to a model-independent universal 2D random field, which is

called the KPZ fixed point. Here ¢(7') is a nonrandom term determined by the macroscopic
limit of the height function. Since the height, position, and time scale as T Y 3, T2/ 3 and T,
respectively, we say that (1.1) is a 1:2:3 scaled height function. We also say that a KPZ
limit theorem holds if a 1:2:3 scaled height function converges in any suitable sense for the
problem at hand.

Several physics papers [45,50,58,87] conjectured the 1:2:3 scale for various models
in the mid-1980s. One of them is the paper [58] of Kardar, Parisi, and Zhang on a nonlin-
ear stochastic partial differential equation, now called the KPZ equation, from which the
term KPZ universality is derived. These papers were followed by extensive research in the
physics community. However, it remained unknown, even on a conjectural level, what the
limit should be.

The situation changed in 1999 with the publication of the paper [6] by Baik, Deift,
and Johansson, in which the authors considered the longest increasing subsequence problem
of random permutations. This problem is equivalent to the zero-temperature free energy of
a directed polymer model. The paper proved that the one-point distribution of an analog of
the height function converges in distribution. See Theorem 3.1 below. Moreover, the authors
found the limiting distribution explicitly, which turned out to be the Tracy—Widom distribu-
tion from random matrix theory. This connection between the KPZ universality and random
matrix theory was completely unexpected at that time. Soon after, Johansson [52] proved a
similar result for another model, giving yet another example of a KPZ limit theorem.

Exciting developments on KPZ limit theorems followed these results during the
next two decades. For example, one-point limit theorems were extended to equal-time, mul-
tiposition distributions, multitime distributions, and even to the 2D fields. Results were also
generalized to several, mostly isolated, models, and algebraic underpinning of these specific
models was studied. The 2D field limit, the KPZ fixed point, was determined, and various
properties of the limit were established. Limit theorems were also proved for infinite space,
half-infinite space, and recently finite space with periodic boundary condition.

In this article, we give a historical overview of some KPZ limit theorems and present
new results on the periodic domain case. We start by introducing the subjects of KPZ uni-
versality, interacting particle systems, random growth, and directed polymers, in Section 2,
focusing on one particular example. Then, we discuss some limit theorems on infinite spaces
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in Sections 3—4. After briefly discussing the half-infinite space case in Section 5, we present
new results on the periodic case in Section 6. Section 7 compares the formulas of the limiting
multipoint distributions for infinite and periodic cases, and Section 8 concerns differential
equations associated with distribution functions. We conclude the article with some com-
ments on universality in Section 9.

The research on the KPZ universality has been developing rapidly and extensively
over the last two decades. Hence, what is discussed in this article is only a small selection of
the activities. The reader may benefit from other excellent survey articles such as [32,34,70]
to see other aspects.

2. TASEP, CORNER GROWTH MODEL, AND EXPONENTIAL DLPP
This section discusses one of the most well-studied examples of one-dimensional
interacting particle systems, 1+1 random growth, and two-dimensional directed polymers.

2.1. TASEP

The totally asymmetric simple exclusion process (TASEP), introduced by Spitzer
[8e] in 1970, is a continuous-time Markov process on Z. At any given time, each integer site
of Z is occupied by at most one particle. A particle moves to the adjacent site to its right after
arandom waiting time, but only if it is empty. The waiting time is exponentially distributed of
mean 1, and the clock starts once the neighboring site becomes vacant. All waiting times are
independent of each other. Note that all moves are to the right (hence, totally asymmetric),
particles can move only one step at a time (simple), and no two particles occupy the same
site at the same time (exclusion). Figure 1 is an example of the configuration at a particular
time. Black dots denote particles, and white dots mark empty sites. In this configuration,
only three particles can move, and they do so independently of each other.

® ¢ 6 O 06 OO @@ @ @8 OO O O

FIGURE 1
TASEP.

The TASEP is an example of interacting particle systems. General systems may
allow, for example, left moves in addition to right moves, multirange moves, or several par-
ticles at each site.

One particular initial condition we focus on in this article is the step initial condition
that the sites in Z_ U {0} are occupied, and all sites in Z 4 are empty. The leftmost picture
in Figure 2 shows the step initial condition.

2.2. Corner growth model
The configuration space for the TASEP is {0, 1}Z where 1 represents the presence

of a particle and 0 an empty site. To each configuration, we can associate a zigzag graph in
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FIGURE 2
Corner growth model.

R? as in Figure 2. We assign a particle to a line segment of length V2 and slope —1, and an
empty site to a line segment of the same length and slope 1. Juxtaposing the line segments,
we obtain a zigzag graph as in Figure 2. We call the graph a height function h : R — R for
the configuration of the TASEP, and it is unique up to translations. The leftmost picture in
Figure 2 is a translation of h(x) = |x|, and it corresponds to the step initial condition.

The TASEP induces a stochastic evolution of the height function, h(x, ¢), in which
local valleys (corners) change to local peaks independently with rate 1. The resulting 1+1
random growth process defined by the height function is called the corner growth process.
See Figure 5 for a simulation.

2.3. Exponential DLPP

Consider the two-dimensional lattice Zi. Let (m,n) € Z%r. An up/right (i.e.,
directed) path from (1, 1) to (m, n) is a sequence p = (pi)f”:l”_l, where p; € Zi, p1 =
(1, 1), pm+4n—1 = (m,n), and p;+1 — pi € {(1,0), (0, 1)}. The thick lines in Figure 3 are
an example of a path in which we connected neighboring integer sites for visual aid. Let wy,
s € Zi, be a collection of independent random variables. The normalized free energy of the
directed polymer measure, introduced by Huse and Henley [5e], is

m+n—1

F(m,n;B) = %log(ZeﬁE(")) where E(p) = Z W, ,
p

i=1
the sum is over all directed paths p from (1, 1) to (m,n), and B > 0 is the inverse temperature.
The zero-temperature, 8 = oo, case is called the directed last passage percolation (DLPP).
In this case, the normalized free energy becomes

L(m,n) = IIl;lX E(p),

which we call the last passage time, interpreting £ (p) as the travel time using path p.
For the case when wy > 0, the DLPP is related to a random growth model. For z > 0,
define the subset of R? by

G, = U ((0 1 +s) where S; = {(m,n) € Z> : L(m,n) <t}
SES;
and we set L(m,n) = 0if m < 0orn < 0. See Figure 4. Since L(m, n) is greater than or
equal to both L(m — 1,n) and L(m,n — 1), we see that if (m,n) € G;, then both points
(m —1,n) and (m,n — 1) are in G;. The set G, grows with time ¢. If we regard G, in the
first quadrant as a stack of boxes, we can add a new box only at the corners.
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(m,n)

(1.1
FIGURE 3 FIGURE 4
Exponential DLPP. An example of G;.

A special case is the exponential DLPP in which wy are exponentially distributed
with mean 1. In this case, each corner of G; grows independently of rate 1, i.e., a unit box
can be added to each corner independent at rate 1. Thus, the boundary of G, is a rotation
of the height function of the corner growth process. More precisely, for the TASEP with the
step initial condition and the exponential DLPP,

h(m —n,t) >m+n ifandonlyif L(m,n) <t. 2.1

If the TASEP starts with a different initial condition, we need to consider the exponential
DLPP on a subset of Z2, determined by the initial condition.

2.4. Hydrodynamic limit and KPZ limit
The hydrodynamic limit of TASEP is about h(x, #) when x and ¢ are proportional.
For the step initial condition, h(x, 0) = |x|, Rost [75] showed in 1981 that
h(xT,tT)

h(x,t
T — h(x,1)

almost surely as T — oo, where h(x, ) = % for |x| <t and h(x, ) = |x| for |x| > 1.
See Figure 6 for the graph. The hydrodynamic limit h is deterministic, and it solves Burger’s
equation [61, 62].

The KPZ limit is about the next term, h(x7,tT) — l_l(x, t)T. Setting x = 0 for
convenience and following the 1:2:3 scale, the KPZ universality conjecture suggests that

h(yT?/3,¢T) —h(0,7)T
T1/3

converges to a 2D random field. If we do not set x = 0, then we should consider h(xT +
yT?/3,1T) —h(x, )T in the numerator. The limiting 2D field, the KPZ fixed point, depends
on the initial condition. The step initial condition for the TASEP becomes the so-called

narrow wedge initial condition for the KPZ fixed point.

TASEP has interpretations as an interacting particle system, a random growth pro-
cess, and a last passage percolation model. Each of these interpretations has natural exten-
sions and generalizations. The KPZ universality conjecture is that a large class of models
in these generalizations has a universal limit. The exact class is not known, but for random
growth models, three key features seem to be the locality of growth, some smoothing mech-
anism, and lateral growths. For directed last passage percolation, the universality is expected
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X

FIGURE § FIGURE 6

Simulation of the corner growth model. y = h(x, 1) for a few values of .

for all random variables wg with enough moments and without a large atom at the top of the
support of the distribution. The last condition is to prevent the situation that there is always
a path connecting (1, 1) and (m, n) using only the top value, making the last passage time
too concentrated.

3. ONE-POINT DISTRIBUTION
We discuss one-point KPZ limit theorems from [6] and [52] mentioned in the intro-
duction, and extensions to other models.

3.1. Poisson DLPP

Poisson directed last passage percolation is a variation of the exponential DLPP.
Consider a realization of a 2D Poisson process in Rﬁ_. An up/right path p this time is defined
as the graph of a continuous piecewise linear function of positive slopes connecting Poisson
points, as shown in Figure 7. Let E(p) denote the number of the Poisson points on p. For
(t,s) € R?, define

L(z.s) = supE(p),
p

where the supremum is taken over all up/right paths p from (0, 0) to (¢, s). The next theorem
follows from [6]. The main theorem of [6] is stated for the case of a fixed number of points,
but the paper proves the Poisson points case first, from which the main theorem follows.
Since L(z, 5) % L(+/fs, V/75), the next result applies to general points (z, 5).

(t.5)

FIGURE 7
Poisson DLPP.
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Theorem 3.1 ([6]). Forevery x € R,

(% < X) = Frw(x)

where Frw is the Tracy—Widom distribution.

lim P
t—>00

The 1/3-power in t'/3

is consistent with the height scale of the KPZ universality;
see (2.1). This result shows that the one-point marginal of the KPZ fixed point (for the narrow
wedge initial condition) must be distributed as the Tracy—Widom distribution. The Tracy—
Widom distribution is the limiting distribution of the largest eigenvalue of random Hermitian
matrices such as Gaussian unitary ensemble matrices [84]. The connection of the KPZ fixed
point and random matrix theory was surprising and unexpected. See Section 9.3 for more on

this connection.

3.2. Longest increasing subsequence

The Poisson DLPP is particularly interesting due to its connection to longest increas-
ing subsequences of random permutations. Note that finitely many points in a rectangle with
distinct x and y coordinates can be associated with a permutation by considering the rela-
tive orderings of the coordinates. For example, the points in Figure 7 are associated with the
permutation 7 = 475168293. For this permutation, the subsequence 45689 is an increasing
subsequence. Furthermore, it is the longest increasing subsequence, and its length, 5, is equal
to the last passage time L(z, s).

Let £y denote the length of longest increasing subsequences of a uniformly random
permutation of size N. Then, L(¢, s) has the same distribution as £, where N is a Pois-

son random variable of mean ¢s. Using this connection, Theorem 3.1 implies, after a de-
[N—Z«/N
N1/6

Poissonization argument, that converges in distribution to the Tracy—Widom dis-
tribution.

The problem of determining the large-N behavior of £, has a long history. The
existence of the almost sure limit of £y / V'N was proved by Hammersley in [49] using King-
man’s subadditive ergodic theorem. The fact that the limit is 2, known as Ulam’s problem,
was proved independently by two famous papers of VerSik—Kerov [88] and Logan—Shepp
[64] in 1977. However, the limiting distribution and the variance (which is of order N 2/ 3)
remained an open problem until the work [6]. Interested readers are encouraged to consult

[3,7,74,81].

3.3. Exponential DLPP

Soon after Theorem 3.1 was proved, Johansson showed that the exponential DLPP
model also satisfies a similar limit theorem [52]. We state the result in terms of the height
function of the TASEP.

Theorem 3.2 ([52]). Assume the step initial condition for the TASEP. Then, for every
(z,y,h) e Ry xR xR,

) h(yT?/3,2¢T)—<T h y?
Tlinoop( 7173 =h)=Fvl s s )
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Note from either side of the equation that the limit remains unchanged if we rescale
(h,y.7) — (ah,a?y,a’1) 3.1

for any a > 0.

3.4. Integrable models

The above theorems were obtained by explicitly computing the finite-time distribu-
tion function and then taking the large limit of the formula. In particular, for the TASEP,
the finite-time formula is given by the Fredholm determinant of an operator. After suitable
scaling and conjugation, the operator converges to the so-called Airy operator, the Fredholm
determinant of which is the Tracy—Widom distribution.

Johansson obtained the finite-time distribution formula for TASEP using a combi-
natorial interpretation similar to the longest increasing subsequence problem and connecting
to the so-called Schur measure [67]. The Schur measure on integer partitions is defined in
terms of the Schur function and contains many parameters. The one-point distribution of the
TASERP arises by taking a special limit of the parameters.

A different proof computes the transition probabilities of the TASEP explicitly and
then takes an appropriate sum over the configuration space to obtain the finite-time dis-
tribution. To find the transition probabilities, we solve the Kolmogorov forward equation,
which is a linear differential equation with nonconstant coefficients due to the exclusion
property of the particles. This equation was solved explicitly in [78] by applying the coor-
dinate Bethe ansatz method from mathematical physics [46,82], which consists of changing
the Kolmogorov equation to a linear differential equation with constant coefficients (the free
evolution equation) but with complicated boundary conditions. Taking the sum of transition
probabilities over particular configurations is more technical, and this part was done in [73]
to rederive the result of Johansson.

Both methods, which are algebraic and exact, are significantly extended to prove
a one-point KPZ limit theorem for many other models. The following is the list of some
of such integrable (exactly solvable) models. Of course, the list and references are far from
exhaustive.

¢ Interacting particle systems: PushASEP, ASEP, g-TASEP, g-Hahn ASEP [1s, 27,
28,86].

* Random growth models: KPZ equation, stochastic heat equation [4,24].

e DLPP and directed polymers: O’Connell-Yor semidiscrete polymer, log-gamma
polymer [23,26,66].

The underlying algebraic structures of these integrable models are generalized
greatly by Macdonald processes [22] and the stochastic six-vertex model [25, 35]. They are
umbrella models with many parameters whose specializations produce the above models.
Though many, these integrable models are still isolated examples. For instance, DLPP with
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general random variables, other than exponential and geometric random variables, does not
seem to be integrable. See Section 9 for some comments for nonintegrable models.

4. MULTIPOINT DISTRIBUTIONS

Prihofer and Spohn [68] and Johansson [54] extended the one-point distribution
results of Theorem 3.1 and 3.2 to equal-time, multiposition distributions for the Poisson
DLPP and the TASEP with step initial condition, respectively. Their results were further
extended to other models and initial conditions by [29-31,76] in 2005-2008. These results
confirmed, in particular, that the spatial correlations are of order 72/3 and identified the
equal-time slice of the KPZ fixed point for several initial conditions. See also [4e] for more
recent progress on other more difficult models.

On the other hand, multitime distributions and fully 2D multiposition distributions
remained uninvestigated for a while, though some short and long time correlations were
studied in [42], confirming that the time scale is 7. In a breakthrough paper [65], Mateski,
Quastel, and Remenik proved the convergence of the entire 2D height field of the TASEP
in 2017. The limiting 2D field, the KPZ fixed point, is constructed as a Markov process
with explicit transition probabilities. The result applies to general initial conditions. The
authors used the result of [29,76] on the transition probabilities of the TASEP for general
initial conditions and proved that they converge. Dauvergne, Ortmann, and Virdg gave an
alternative formulation of the KPZ fixed point in terms of a variational formula and proved
the field convergence for another model, the Brownian DLPP [36]. See also [89].

In the meantime, Johansson and Rahman [57] and Liu [63] computed the limit of
2D multipoint distributions of the discrete-time TASEP and the continuous-time TASEP,
respectively, in 2019. Their results give an explicit formula of multipoint distributions for
the KPZ fixed point with the narrow wedge initial condition. See Section 7 for the formula.
Two-time distributions were previously computed in [55,56].

5. HALF-INFINITE SPACE

We discussed so far models on infinite spaces. For example, the TASEP was defined
on Z. In this and the following sections, we consider different domains and their effects on
the limit.

Consider the TASEP on the half-infinite space Z 4+ U {0}. We introduce a parameter
o > 0 representing the injection rate at site O: if the origin is empty, a new particle is injected
with rate . Once injected, particles follow the usual TASEP rule. Suppose that we start with
the empty configuration. If we could inject particles freely without being blocked by existing
particles in the domain, then the height function at the origin would satisfy h(0,T)/ T — 2«
in probability as 7 — oo. However, due to the particles already in the domain, the height
grows at a slower rate, and the hydrodynamic limit at the origin turns out to be

h(0.7) — max{2a(1 —a), l}
T 2
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showing that the effective injection rate is max{a (1 — «), 1/4}. The formula changes at
a=1/2.

The papers [14, 15] obtained a one-point KPZ limit theorem at the origin for the
Poisson PNG and discrete-time TASEP models. The height scales as 7''/3 for @ > 1/2 and
as T'1/2 for a < 1/2. The limiting distribution is a variation of the Tracy—Widom distribution
for o > 1/2, another variation for « = 1/2, and the Gaussian distribution for ¢ < 1/2. The
result is extended to general positions and equal-time, multiposition distributions in [s,77] for
the Poisson PNG and the discrete and continuous-time TASEP. However, generalizations to
other models such as directed polymers and other interacting particle systems were missing,
even though some algebraic formulas were established. Recently, [17] was able to prove a
one-point KPZ limit theorem for the ASEP in which particles can move to the left as well as
to the right with asymmetric rates. However, in any of these models, multitime limit theorems
are not yet established.

6. RING DOMAIN

Consider the TASEP on the integer ring Z;, = Z/LZ = {0, 1, ..., L — 1} where
we identify sites L and 0. An equivalent model is the TASEP on Z that is spatially periodic,
which we may call the periodic TASEP. We call L the size of the ring or the period of the
periodic TASEP.

The number N of particles in the TASEP on the ring is preserved. We assume the
step initial condition shown in Figure 8. For the convenience of presentation, we assume that
L is an even integer and N = L /2 so that the particle density p = N/L = 1/2. The initial
height function of the periodic TASEP is the bottom curve in Figure 9. The other curves
are the hydrodynamic limits, as time ¢ and period L tend to infinity proportionally when
t/L=05nforn=1,2,...,6.

Consider two cases, one that t — oo with L fixed and the other that L — oo with ¢
fixed. If 1 — oo with L fixed, the periodic corner growth model becomes essentially a one-
dimensional growth model, and we expect that the height scales as /2 and converges to the
Gaussian distribution. On the other hand, if L — oo with ¢ fixed, then the periodic TASEP
becomes the usual TASEP on Z. Thus, the height scales as #1/3 if we let t — oo after taking

° o
° FIGURE 9

FIGURE 8 Hydrodynamic limits of periodic height function when

Step initial condition on an integer ring. t=0(@).
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L — oo. An interesting intermediate regime is when L, ¢ — oo simultaneously such that
t = O(L%?). (6.1)

Since the spatial scale for KPZ limit theorems on infinite spaces is #2/3, we expect that the
height functions at all positions on the ring of size L are correlated nontrivially. If (6.1)
holds, we say that we are in the relaxation time regime.

There were some results on transition probabilities and the spectral gap of the gener-
ator in the relaxation time regime, such as [48]. However, KPZ limit theorems were obtained
only recently. The physics paper [69], which is not completely rigorous, and the mathematics
paper [9] obtained a one-point KPZ limit theorem almost at the same time independently.
This result was further extended to 2D multipoint distributions in [1e, 11].

Theorem 6.1 ([10]). Consider the TASEP on a ring of size L with the step initial condition
and extend it to the periodic TASEP. Assume that L is even and p = N/L = 1/2 for the
convenience of presentation. Set

T = L2
Fori =1,...,m,let (yi,7i,h;) € R x Ry X R and assume that 1y < --- < tpy,. Then,
m
. h(i 727, 24T) — 4T pKPZ .
Th—r>n0°P<Q{ T3 ship | =m0y n)
i=

e . KPZ . . .
for an m-point distribution function Fy  described in the next section.

Like the infinite space case, we expect that the height field of the periodic models
in the relaxation time regime converges to a universal field, which we may call the periodic
KPZ fixed point. The function F},’,KPZ should be the m-point distribution of this conjectured
periodic KPZ fixed point with the (periodic) narrow wedge initial condition. It is naturally
periodic with respect to y; — y; + 1. However, unlike the KPZ fixed point, F2*% s not
invariant under the rescaling (3.1). Indeed, we conjecture that F,‘,’,KPZ interpolates the KPZ
fixed point and one-dimensional Brownian motion. Concretely, we expect that

;i—rf(l) F},’lKPZ(hS; v8,1%) = Fp(h;y, )  where (hf,y7, 1) = ((ri8)1/3h,-, (ri£)2/3y,-, 7;8)

i i

and F,, is the m-point distribution of the KPZ fixed point, and that

1/2_1/4
. KPZ (5. _ ) _ §
Sl;rgo FP22(0%5y,7%) = G(h;v)  where (hi, %) = (—s7; + Thi,sn)
and G, is the m-point distribution of a Brownian motion at times 1, . .., ;. These conjec-

tures were proved for m = 1 in [12], assuming y; = O for the ¢ — 0 case.
Theorem 6.1 is also proved for the discrete-time TASEP on a ring [6e]. However,
extending the result to other integrable models is yet to be done.
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7. FORMULA OF MULTIPOINT DISTRIBUTION FUNCTIONS

7.1. Formula for KPZ fixed point

Let F,, be the m-point distribution of the KPZ fixed point with the narrow wedge
initial condition. The result of [63] implies that

1 det(1 — K¢)
Fn(hiy,t =—9§9§ d¢y - dlm— (7.1)
(1D = Gy I Ry
where { = ({1, ..., n—1), and the contours are nested circles of radii less than 1 centered

at the origin. The operator K; acts on L?(X), where X is the union of 4m — 2 contours in
Figure 10 that extend to infinity with angle /5 from the x-axis. The kernel of K; can be
written [13] as a simple conjugation of the kernel

T T
ni D D(v)b
K, ) = 200 DG DWW (7.2)
u—v
which is zero for u = v. The (m + 1) x (m + 1) matrix
D(z) = diag(e_%”Zer%ylzerhlz, e 3T T YmZ iz 1).

The (m + 1) x 1 vectors a(z) and b(z) are simple and explicit, and they do not depend on
hi, ¥i, T;. Note that the exponent —%‘L’iZ?’ + %yizz + h;z in D(z) is unchanged if we rescale
as (3.1) and z > a~!z. This is consistent with the rescaling property of the KPZ fixed point.

7.2. Formula for the periodic case
The formula of [1e] for the conjectured m-point distribution of the periodic KPZ
fixed point is

FP¥PZ(h:y, 1) = 55 56 C(¢) det(1 — Ke)dEy -+ dym. (7.3)

This time there are m integrals and C () is an explicit function expressed in terms of polylog
functions. The kernel of the operator K¢ is of the same form as (7.2) but a(z) and b(z) are
slightly different. The key change is the space for K. It is £2(S), where S = S; U --- U S,
and S; is the discrete set of the roots of the equation

e = ¢, (7.4)

shown in Figure 11. See the following subsection for how this equation arises.

W& b

FIGURE 10 FIGURE 11
The space ¥ for KPZ fixed point when m = 3. The space S for periodic KPZ fixed when m = 3.
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7.3. Transition probabilities

We mentioned in Section 3.4 that one way of proving a KPZ limit theorem for the
TASEP is to compute the transition probabilities explicitly and then take an appropriate sum
to find the finite-time distribution functions. The summation part is often more technical, but
here we discuss the transition probabilities to see how the equation (7.4) arises.

Suppose that there are only N particles for the TASEP on Z. Let Wy =
{(ai.,....an) € ZN :ay < --- < ay) be the ordered set of the particle locations. Schiitz
[78] showed that

1 . . N
Py(X:t) = det|:—, 56 PRARRET IS D e”ds] (7.5)
27i ij=1
for X and Y in Wy, where the contour is a circle that encloses the points s = 0, —1.
For the periodic TASEP, the particle locations can be represented by the set

'WAL,z{(al,...,aN)eZN:al <--<ay <ay+L}.

Note that if we consider the TASEP on a ring, this set keeps track of global circulations of
the particles. We showed in [9] that

1 j—i+1 1)~Xityjti=j gtw N d
Pr(Xin) = | 3 D ¢ SN
L w+ N/L ij=12miz

w

for X,Y € "WJI\‘,, where the integral contour for z is any circle enclosing the origin, and the
sum inside is over the roots of the equation

wV¥(w + DEN =z, (7.7)

See Figure 12.
We now explain equation (7.7). Due to the periodicity, if A = (a1, ...,an) is
in Wy (L), then A’ = (aa,...,an,a; + L) also represents the same particle configura-

tion of the periodic TASEP. Thus, the transition probability should remain the same if we
replace (xq,...,xy) and (¥1,...,yN) by (x2,...,xn5,x1 + L) and (y2,...,yn,y1 + L),

FIGURE 12
Bethe roots when L = 24 and N = 8 for three values of z.

4202 J. BAIK



respectively. We can check directly that the determinant in (7.6) is unchanged thanks to equa-
tion (7.7). Equation (7.7) takes care of the labeling ambiguity in the periodic case. Here the
variable z could have been any fixed constant, but making it as a free parameter turns out
to be the right choice. Since (7.5) and (7.6) were found by solving the Kolmogorov forward
equation using the Bethe ansatz method, the roots of (7.7) are called the Bethe roots.

Now, if we set L = 2N, w = —% + 2jﬁ’ and z = (—4)_N§' in (7.7), and let

N — o0, then the equation becomes =52 = ¢, which is (7.4).

8. INTEGRABLE DIFFERENTIAL EQUATIONS

Distribution functions of the KPZ fixed point have connections to deterministic
integrable differential equations. As proved in 1994 [84], the Tracy—Widom distribution is
expressible in terms of the Painlevé II equation, one of a family of six special nonlinear
ordinary differential equations [43]. The papers [2,26e,71,85,90] also found differential equa-
tions for equal-time, multiposition distribution functions of the KPZ fixed point. We state
the following result for multipoint distributions for both infinite and periodic domains.

Define the parameters

t=1/3, yi=vi, x =h,

and let
m m m
8t=231i7 8y=Zayi, 8x=Zaxi'
i=1 i=1 i=1
Theorem 8.1 ([12,13]). Let K = K; be the operator in either (7.1) or (7.3). If det(1 — K) # 0,
which holds for all but at most countably many parameters, then

9% log det(1 — K) = —Tp

Jor complex-valued m x 1 vector functions p(t,y, x) and r(1,y, X) which satisfy the equations
1 1
ap = Eafp —prTp, dyr = —Eafr +rplr 8.1)

and
op + 8fp — 3(8xp)er — 3prT(8Xp) =0, or+ 8;”r - 3(8Xr)pTr — 3rpT(8xr) =0. (82

Equation (8.2) is a coupled system of vector-valued modified Korteweg—de Vries
(mKdV) equations. The scalar mKdV equation is 3, f + 93 f — 6(d, f) f? = 0. On the other
hand, equation (8.1) forms a coupled system of vector-valued nonlinear forward and back-
ward heat equations. They become vector-valued nonlinear Schrodinger (NLS) equations
if we change y; — iy;. NLS and mKdV equations are two of the most famous integrable
partial differential equations [1]. The above two systems of equations can be combined to
the Kadomtsev—Petviashvili (KP) equation, another integrable differential equation in three
variables. Theorem 8.1 was obtained using the fact that the operator is a so-called integrable
operator [37,51].
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Integrable differential equations have a long history starting with the work of Gard-
ner, Greene, Kruskal, and Miura in 1967. They found a scattering transform method, an
equation-specific nonlinear Fourier transform, to solve the Korteweg—de Vries equation. Like
the integrable models in the KPZ universality class, integrable differentiable equations are
isolated examples of nonlinear differential equations that can often be solved explicitly and
analyzed asymptotically. See, for example, [1,38]. It is intriguing that integrable probability
models are related to integrable differential equations.

9. COMMENTS ON UNIVERSALITY
KPZ limit theorems are proved for many isolated examples of integrable models. In
this final section, we discuss a few instances that universality is proved.

9.1. Thin DLPP

The universality should hold for the last passage time L (n,k) asn,k — oco. Itis easy
to prove it for thin rectangles. Recall from Section 2.3 that w, denotes the random variable
at site s € Z, representing the passage time through the site.

Theorem 9.1 ([16, 21]). Suppose that ws is an arbitrary random variable which has all
moments. Assume that the mean is zero and the variance is one. Then, for every x,

lim P(M vk <x

1 1
n,k—oo n2k”se

) = Frvo) fork = i)
withany 0 < a < 3/7.

The restriction a < 3/7 is technical. If we assume only finite p moments for p > 2,
then the result holds for thinner rectangles satisfying 0 < a < 3(’;—;2).
For the case of fixed k and large n, a directed path looks like that in Figure 13. Since

the sum of wy on each row converges to a Brownian motion, Donsker’s theorem implies that

Ln, k) k
~—~ = Dj where Dy = sup (B;i(t;) — Bi(ti—1))
NG 0=to<t; <-<tp=1 ; o o

and B;(t),i = 1,...,k, are independent Brownian motions. On the other hand, it is known
[19] that

lim P((Dg — 2vVk)k'/® < x) = Frw(x).

k—o00

(n.k)
0 hn tn n

FIGURE 13
Thin DLPP.
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This limit is a consequence of an explicit formula of the exponential DLPP by letting n — oo
first and then taking k — co. We prove Theorem 9.1 by showing that if n, k — oo but k grows
slowly enough, we can take n — oo first and k — oo later. This argument is achieved by
the Skorohod embedding or the Komlés—Major—Tusnddy embedding. However, the proof
breaks down if & > 3/7 since we cannot ignore the upward parts of the paths anymore. For
k = O(n), limit theorems are proved only for a few examples.

9.2. Interacting particle systems

The particles in the TASEP move only one site to the right. Consider a more general
finite-range exclusion process in which a particle at site 0 can potentially move to site v at rate
p(v). Assume that {v : p(v) > 0} is a finite set generating Z additively, and Y, vp(v) # 0. In
a recent paper [72], Quastel and Sakar proved a KPZ limit theorem for finite-range exclusion
processes started from a certain class of initial conditions. They compared the transition
probabilities of the general process with those of the TASEP using energy estimates. This
work is the first universality result in the k = O(n) regime. It is exciting to see how the
method generalizes further.

9.3. TASEP, Coulomb gas, and random matrices

In proving Theorem 3.2, Johansson also proved an unexpected connection of TASEP
to Coulomb gas and random matrices [52]. Consider the probability density function on R’}
given by

p(x1,...,xn) = cn,me2215i<f5" log |x; =il =3/ Ve y(x) =x — (m—n) logx, (9.1)

where ¢y, , is the normalization constant. Let Xy,x = max{xy, ..., X, }. Johansson proved
that for m > n, the last passage time L(m, n) of the exponential DLPP has the same distri-
bution as xmax. The density function (9.1) is said to define a Coulomb gas with potential V'
on R since the term log |x; — x| is the 2D Coulomb potential of two equal charges at x;
and x;. The function V' (x) represents the confining potential.

Let X be an n x m random matrix with entries that are independent complex normal
variables of mean zero and variance 1/2. The random matrix W = X X* is called the com-
plex Wishart matrix, and its eigenvalue density function is precisely (9.1) [44]. Thus, L (m,n)
has the same distribution as the largest eigenvalue of a complex Wishart matrix. See also [33].
The connection of the exponential DLPP to Coulomb gas and the random matrix is special,
and we do not expect to hold for general random variables wy.

There are universality results for both Coulomb gas and random matrices. The
Tracy—Widom limit theorem is proved for the Coulomb gases with a general potential V.
The paper [39] showed the limit theorem for generic analytic potentials, and [8] proved for
discrete Coulomb gases in which particles are restricted to be only on a discrete set.

Universality is a central question in random matrix theory, and there have been
remarkable successes. The largest eigenvalue of a large class of random Hermitian matri-
ces with independent entries converges to the Tracy—Widom distribution [41,59,79,83].
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9.4. Universality in many directions
We discussed that the TASEP with the step initial condition is connected to several
areas:

* interacting particle system

* 1+1 random growth process

* two-dimensional directed last passage percolation and directed polymer
¢ Coulomb gas

e random matrix

The TASEP also has interpretations as a random tiling model, and nonintersecting paths
[47,53]. We expect universality results to hold in all of these seven areas. The meaning of
universality is different in each area. For example, in random matrix theory, the largest eigen-
value of any random Hermitian matrix with independent and identically distributed entries
with 4+¢ finite moments converges to the same limit, the Tracy—Widom distribution. On the
other hand, the 2D field limit of interacting particle systems depends on the initial condition,
a special case of which has the Tracy—Widom distribution as its marginal.

Even though many universality results are proved for Coulomb gases and random
matrices, it remains to establish similar results for other areas and develop a general theory
that encompasses all of these areas and possibly more.
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ABSTRACT

Liouville quantum gravity (LQG) is a one-parameter family of models of random fractal
surfaces which first appeared in the physics literature in the 1980s. Recent works have
constructed a metric (distance function) on an LQG surface. We give an overview of the
construction of this metric and discuss some of its most important properties, such as the
behavior of geodesics and the KPZ formula. We also discuss some of the main techniques
for proving statements about the LQG metric, give examples of their use and discuss some
open problems.
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1. INTRODUCTION

Liouville quantum gravity (LQG) is a family of models of random “‘surfaces,” or
equivalently random “two-dimensional Riemannian manifolds” which are in some sense
canonical. The reason for the quotations is that, as we will see, LQG surfaces are too rough to
be Riemannian manifolds in the literal sense. Such surfaces were first studied in the physics
literature in the 1980s [15, 32, 60, 82]. The purpose of this article is give an overview of the
construction of the distance function associated with an LQG surface (Section 2), as well as
some of its properties (Section 3), and the main tools used for studying it (Section 4). We
also discuss some open problems in Section 5. In the rest of this section, we will give some
basic background on the theory of LQG and its motivations.

1.1. Definition of LQG

One can define LQG surfaces with the topology of any orientable surface (disks,
spheres, torii, etc.), and all have the same local geometry. We will be primarily interested in
the local geometry, so for simplicity we will focus on LQG surfaces with the topology of the
whole plane.'

To define LQG, we first need to define the Gaussian free field. The whole-plane
Gaussian free field (GFF) is the centered Gaussian process 7 with covariance®

max{|z|, 1} max{|w]|, 1}

Cov(h(z),h(w)) = G(z,w) :=log , Vz,weC.

|z —wl

Since limy,—,; G(z, w) = oo, the GFF is not a function. However, it still makes sense as a
generalized function (i.e., a distribution). That is, if ¢ : C — R is smooth and compactly
supported, then one can define the L? inner product (h, ¢) = Jeh(@)¢(2)d 2z as arandom
variable. These random variables have covariances

Cov((h. ). (h.¥)) :/c C¢>(Z)¢(w)G(Z,W)d22d2w.

The reader can consult [13, 88, 92] for more background on the GFF. We have included a
simulation of the GFF in Figure 1(left).

More generally, we say that a random generalized function s on C is a GFF plus a
nice function if h = h+ f, where h is the whole-plane GFF and f : C — R is a (possibly
random and ﬁ—dependent) function which is continuous except at finitely many points.

Let y € (0, 2], which will be the parameter for our LQG surfaces. A y-LQOG surface
parametrized by C is the random two-dimensional Riemannian manifold with Riemannian
metric tensor

e"h(z)(alx2 +dy?), forz =x+iy, (1.1)

where dx? + dy? denotes the Euclidean metric tensor and 4 is the whole-plane GFF, or,

more generally, a whole-plane GFF plus a nice function.

1 See [16,17,37,44,84] for constructions of canonical LQG surfaces with various topologies.
2 Our choice of covariance function corresponds to normalizing / so that its average over the
unit circle is zero; see, e.g., [98, SECTION 2.1.1].
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1.2. Area measure and conformal covariance

The Riemannian metric tensor (1.1) is not well-defined since /4 is not defined point-
wise, so e”" does not make sense literally. However, it is possible to make sense of various
objects associated with (1.1) rigorously using regularization procedures. The idea is to con-
sider a collection of continuous functions {k.}¢~¢ which converge to 4 in some sense as
& — 0, define objects associated with the Riemannian metric tensor (1.1) with /4, in place
of h, then take a limit as ¢ — 0. In this paper, we will discuss two objects which can be con-
structed in this way: the LQG area measure (to be discussed just below) and the LQG metric
(which is the main focus of the paper). Other examples include the LQG length measure on
Schramm-Loewner evolution-type curves [1, 891, Liouville Brownian motion [11,43], and
the correlation functions for the random “fields” e®” for & € R [61].

For simplicity, let us restrict attention to the case when /A is a whole-plane GFF.
A convenient choice of {h.} is the convolution of & with the heat kernel. For t > 0 and

—|z|?/2t

z € C, we define the heat kernel p,(z) := ﬁe and set

BE(z) = (% pap)(z) = [ hw)pep(z —w)d*w, VzeC,  (12)
C

where the integral is interpreted in the sense of distributional pairing.

The easiest nontrivial object associated with (1.1) to construct rigorously is the LQG
area measure, or volume form. This is a random measure uy on C which is defined as the
a.s. limit, with respect to the vague topology,’

Wh = 1iII(1) eV 12e7hE g2 (1.3)
e—

where d?z denotes Lebesgue measure on C. The reason for the normalizing factor e"’/2 is
that E[e?": ()] ~ £77”/2 The existence of the limit in (1.3) is a special case of the theory
of Gaussian multiplicative chaos (GMC) [58, 86]. There are a variety of different ways of
approximating p; which are all known to converge to the same limit; see [4e,87] for some
results in this direction.

The measure @y, is mutually singular with respect to Lebesgue measure. In fact, it is
supported on a dense subset of C of Hausdorff dimension 2 — y2/2; see, e.g.,
[4e, sECTION 3.3]. However, it has no atoms and assigns positive mass to every open subset
of C.

The LQG area measure also satisfies a conformal covariance property. Let U, U C C
be open and let f : U — U be a conformal (bijective, holomorphic) map. Let

2
,  where Q =—+Z. (1.4)
Y

};zhoq')—i—Qlog}(p’ 5

Then / is a random generalized function on U whose law is locally absolutely continuous
with respect to the law of /1, so j can be defined. It is shown in [4e, PROPOSITION 2.1] that a.s.

np(X) = /Lh(d’(X))» V Borelset X C U. (1.5)
3 In the case when y = 2, there is a log-correction in the scaling factor, see [38, 39, 83].
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We can think of the pairs (U, &|y) and (U, ﬁ) as representing two different parametrizations
of the same LQG surface. The relation (1.5) implies that the LQG area measure is an intrinsic
function of the surface, i.e., it does not depend on the choice of parametrization.

The main focus of this article is the LOQG metric, i.e., the Riemannian distance func-
tion associated with the Riemannian metric tensor (1.1). This metric can be constructed via a
similar regularization procedure as the measure, but the proof of convergence is much more
involved. See Section 2 for details.

Spanning

f’i’ f;f"‘
Jj/u) ’//
‘v

FIGURE 1

(Left) A simulation of the graph of a continuous function which approximates the GFF. (Middle) A planar map.
Equivalent representations of the same planar map can be obtained by applying an orientation-preserving
homeomorphism from C to C. (Right) A spanning tree on the planar map.

1.3. Motivation

LQG was first studied by Polyakov [82] in the 1980s in the context of string theory
(we discuss Polyakov’s motivation in Remark 2.11). LQG is also of interest in conformal field
theory since it is closely connected to Liouville conformal field theory, one of the simplest
nontrivial conformal field theories. See [9e] for an overview of recent mathematical work on
Liouville conformal field theory.

One of the most important applications of LQG theory is the so-called Knizhnik—
Polyakov—Zamolodchikov (KPZ) formula [6e], which gives a relationship between critical
exponents for statistical mechanics models in random geometries and deterministic geome-
tries.* For example, this formula was used by Duplantier to give nonrigorous predictions for
the Brownian intersection exponents [35] (the exponents were predicted earlier by Duplantier
and Kwon [36]). These predictions were later verified rigorously by Lawler, Schramm, and
Werner in [62-64] using SLE techniques. We discuss the KPZ formula in the context of the
LQG metric in Section 3.5.

Another reason to study LQG is that, at least conjecturally, it describes the large-
scale behavior of discrete random geometries, such as random planar maps. A planar map
is a graph embedded in the plane so that no two edges cross, viewed modulo orientation-
preserving homeomorphisms of the plane. See Figure 1(middle) for an illustration. There
are various interesting types of random planar maps, such as the following:

4 The KPZ formula discussed here has no relation with Kardar—Parisi—Zhang equation
from [59], except that the initials of the authors for the two papers are the same.
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¢ Uniform planar maps. Consider the (finite) set of planar maps with a specified
number n € N of edges and choose an element of this set uniformly at random.

 Uniform planar maps with local constraints, such as triangulations (resp. quad-
rangulations), where each face has exactly 3 (resp. 4) edges.

* Decorated planar maps. Suppose, for example, that we want to sample a uniform
pair (M, T') consisting of a planar map M with n edges and a spanning tree 7' on
M (i.e., a subgraph of M which includes every vertex of M and has no cycles).
Under this probability measure, the marginal law of M is not uniform; rather, the
probability of seeing any particular planar map with n edges is proportional to
the number of spanning trees it admits. One can similarly consider planar maps
decorated by statistical physics models (such as the Ising model or the FK model)
or by various types of orientations on their edges.

It is believed that a large class of different types of planar maps converge to LQG
in some sense. The parameter y depends on the type of planar map under consideration.
Uniform planar maps, including maps with local constraints, correspond to y = /8/3. This
case is sometimes called “pure gravity” in the physics literature. Other values of y corre-
spond to planar maps decorated by statistical physics models. This case is sometimes called
“gravity coupled to matter.” For example, the spanning tree-decorated maps discussed above
are expected to converge to LQG with y = /2.

For this article, the most relevant conjectured mode of convergence of random planar
maps toward LQG is the following. View a planar map as a compact metric space, equipped
with the graph distance. If we rescale distances in this metric space appropriately, then, as the
number of edges tends to oo, it should converge in the Gromov—Hausdorff sense to an LQG
surface equipped with its LQG metric. So far, this type of convergence has only been proven
fory = \/8/_3, see Section 2.4. However, weaker connections between random planar maps
and y-LQG have been established rigorously for all y € (0, 2) using the so-called mating of
trees theory. See [47] for a survey of this theory.

2. CONSTRUCTION OF THE LQG METRIC

2.1. Liouville first passage percolation

In analogy with the approximation scheme for the LQG measure in (1.3), for a
parameter £ > 0, we define

1
Di(z,w) := P:izn_fw/() PO Py dt, Yz,weC, Ye> 0, (2.1)

where the infimum is over all piecewise continuously differentiable paths P : [0, 1] — C from
z to w. The metrics Dj are sometimes referred to as e-Liouville first passage percolation
(LFPP).

We want to choose the parameter £ in a manner depending on y so that the LFPP
metrics (2.1) converge to the distance function associated with the metric tensor (1.1). To
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determine what £ should be, we use a heuristic scaling argument. From (1.3), we see that
scaling areas by C > 0 corresponds to replacing & by h + % log C. On the other hand,
from (2.1) we see that replacing 7 by h + % log C scales distances by a factor of C¢/7.
Hence £/y is the scaling exponent relating areas and distances. In other words, we want y/&
to be the “dimension” of an LQG surface.

It was shown in [22, 3e] that there is an exponent dy > 2 which arises in various
discrete approximations of LQG and which can be interpreted as the dimension of LQG. For
example, d,, is the ball volume exponent for certain random planar maps [22, THEOREM 1.6].
Once the LQG metric has been constructed, one can show that d,, is its Hausdorff dimen-
sion [54] (see Theorem 3.1). The value of d, is not known explicitly except that d vas =4
Computing d,, for general y € (0, 2] is one of the most important open problems in LQG
theory.

The above discussion suggests that one should take

4
&= d_y 2.2)
It is shown in [22, PROPOSITION 1.7] that £ is an increasing function of y, so for y € (0, 2], &
takes values in (0, 2/d,]. Estimates for d,, [22,53] show that 2/d, ~ 0.41.

The definition of LFPP in (2.1) also makes sense for & > 2/d,. In this regime,
LFPP metrics do not correspond to y-LQG with y € (0, 2]. Rather, as we will explain in
Section 2.3.2, LFPP for § > 2/d, converges to a metric which is related to LQG with matter
central charge in (1, 25), or equivalently y € C with |y| = 2.

Definition 2.1. We refer to LFPP with & <2/d,, & =2/d,, and &€ > 2/d, as the subcritical,
critical, and supercritical phases, respectively.

Remark 2.2. It is much more difficult to show the convergence of the approximating met-
rics (2.1) than it is to show the convergence of the approximating measures in (1.3). One
intuitive explanation for this is that the infimum in (2.1) introduces a substantial degree of
nonlinearity. The minimizing path in (2.1) depends on &, so one has to keep track of both the
location of the minimizing path and its length, whereas for the measure one just has to keep
track of the mass of a given set. One can think of the study of LFPP as the study of the extrema
of the path-indexed random field whose value on each path is given by the integral in (2.1).

Remark 2.3. The study of LFPP is very different from the study of ordinary first passage
percolation (FPP), say on Z2. In ordinary FPP, the weights of the edges are i.i.d. and the law
of the random environment is stationary with respect to spatial translations, neither of which
is the case for LFPP (the law of the whole-plane GFF is only translation invariant modulo
additive constant). However, for LFPP one has strong independence statements for the field
at different Euclidean scales and one can get approximate spatial independence in certain
contexts. See Sections 4.2 and 4.3. These independence properties are fundamental tools in
the proof of the convergence of LFPP and the study of the limiting metric.
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FIGURE 2

Simulation of LFPP metric balls for & = 0.2 (top left), & = 0.4 (top right), & = 0.6 (bottom left), and & = 0.8
(bottom right). The values £ = 0.2, 0.4 are subcritical and correspond to y & 0.46 and y & 1.48, respectively.
The values § = 0.6, 0.8 are supercritical. The colors indicate distance to the center point (marked with a black
dot) and the black curves are geodesics from the center point to other points in the ball. These geodesics have a
tree-like structure, which is consistent with the confluence of geodesics results discussed in Section 3.3. The
pictures are slightly misleading in that the balls depicted do not have enough “holes.” Actually, LQG metric balls
have infinitely many complementary connected components for all § > 0, and have empty Euclidean interior for
& > 2/d (Section 3.4). The simulation was produced using LFPP with respect to a discrete GFF on a

1024 x 1024 subset of Z2. It is believed that this variant of LFPP falls into the same universality class as the
variant in (1.2). The geodesics go from the center of the metric ball to points in the intersection of the metric ball
with the grid 20Z2. The code for the simulation was provided by J. Miller.

2.2. Convergence in the subcritical case

2.2.1. Tightness

To extract a nontrivial limit of the metrics D¢, we need to renormalize. We (some-
what arbitrarily) define our normalizing factor by

1
a, := median of inf / eEh:(P(’))|P’(t)| dt : P is aleft-right crossing of [0, 1] }, (2.3)
0

where a left-right crossing of [0, 1] is a piecewise continuously differentiable path
P :[0,1] — [0, 1]? joining the left and right boundaries of [0, 1]2.
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The value of a; is not known explicitly (in contrast to the case of the LQG measure),
but it is shown in [23, PROPOSITION 1.1] that for each £ > 0, there exists O = Q(§) > 0 such
that

ap = gl 782Foc() a9 50, (2.4)

The existence of Q is proven via a subadditivity argument, so the exact relationship between
Q and £ is not known. However, it is known that Q € (0, c0) for all £ > 0, Q is a continuous,
non-increasing function of &, limg_,o O (§) = 0o, and limg_, o, O (§) = 0[23,28]. See also [1,
53] for bounds for Q in terms of &.

In the subcritical and critical cases, one has £ = y/d,, for some y € (0, 2] and

O(y/dy) = % +L (2.5)

2

In other words, the value of O for LFPP is the same as the value of O appearing in the
LQG coordinate change formula (1.4). Furthermore, from (2.5) we see that determining the
relationship between O and £ in the subcritical case is equivalent to computing d,,.

The first major step in the construction of the LQG metric is to show that the re-
scaled metrics a; ! Dy, are tight, i.e., they admit subsequential limits in distribution. The first
paper to prove a version of this was [19], which showed that the metrics a; ! D ; are tight when
¢ is smaller than some nonexplicit constant. The proof of this result was simplified in [33]:
most importantly, [33] gave a simpler proof of the necessary RSW estimate (for all £ > 0)
using a conformal invariance argument. Finally, the tightness for the full subcritical regime
& € (0,2/d,) was proven in [18].

Theorem 2.4 ([18]). Assume that £ < 2/d,. The laws of the metrics {aS_IDZ}8>0 are tight
with respect to the topology of uniform convergence on compact subsets of C x C. Every pos-
sible subsequential limit is a metric on C which induces the same topology as the Euclidean

metric.

Although the subsequential limit induces the same topology as the Euclidean metric,
its geometric properties are very different. See Figure 2 and Section 3.

2.2.2. Uniqueness

The second major step is to show that the subsequential limit is unique. In fact, we
want a stronger statement than just the uniqueness of the subsequential limit, since we would
like to say that the limiting metric does not depend on the approximation procedure. To this
end, the paper [51] established an axiomatic characterization of the LQG metric. To state this
characterization, we need some preliminary definitions.

Let  be a metric on C. For a path P : [a, b] — C, we define its d-length by

#T
len(P: ) == sup Y d(P(t;). P(ti—1)) (2.6)

T =
where the supremum is over all partitions 7" : a =ty < --- < ta7 = b of [a, b]. We say that
D is a length metric if for each z, w € C, d(z, w) is equal to the infimum of the Dj-lengths

of all paths joining z and w.
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For an open set U C C, we define the internal metric of b on U by
b(z,w;U) = inf{len(P; D) : P is a path from z to w in U}, Vz,weU. 2.7

We note that d(z, w; U) can be strictly larger than the d(z, w) since all of the paths from z
to w of near-minimal d-length might exit U.
The following is the axiomatic definition of the LQG metric from [51].

Definition 2.5 (LQG metric). Let D’ be the space of distributions (generalized functions)
on C, equipped with the usual weak topology.® For y € (0,2), a y-LQG metric is a measur-
able function i +> Dy from D’ to the space of metrics on C which induce the Euclidean
topology with the following properties. Let s be a GFF plus a continuous function on C, i.e.,
h=h+ f where hisa whole-plane GFF and f is a possibly random continuous function.
Then the associated metric Dy, satisfies the following axioms:

L Length space. Almost surely, Dy, is a length metric.

II.  Locality. Let U C C be a deterministic open set. The Dj-internal metric
Dy (-,-; U) is a.s. given by a measurable function of /|y .

II.  Weyl scaling. Let £ be as in (2.2). For a continuous function f : C — R,
define
len(P;Dy)
- Dp)(z,w):= inf f PO g vz weC, (2.8)
P:z—w Jo
where the infimum is over all Dy,-continuous paths from z to w in C paramet-

rized by Dp-length. Thena.s. e/ - D, = Dy, # for every continuous function
f:C—->R.

IV.  Coordinate change for scaling and translation. Let r > 0 and z € C. Almost
surely,

Dyp(ru+z,rv +z) = Dyrgz)+010gr (U, ), Yu,v € C,
14

2
where Q = — + —.
y 2

The reason why we impose Axioms I. through III. is that we want Dy, to be the
Riemannian distance function associated to the Riemannian metric tensor (1.1). Axiom IV.
is analogous to the conformal coordinate change formula for the LQG area measure (1.5),
but restricted to translations and scalings. As in the case of the measure, it can be thought of
as saying that the metric Dy, is intrinsic to the LQG surface, i.e., it does not depend on the
choice of parametrization. The axioms in Definition 2.5 imply a coordinate change formula
for general conformal maps, including rotations; see [51, REMARK 1.6] and [5e].

The main result of [51] is the following statement, whose proof builds on [18,34, 48,
49].

5 We do not care about how Dy, is defined on any subset of £’ which has measure zero for
the law of any random distribution which is a GFF plus a continuous function.
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Theorem 2.6 ([51]). Foreachy € (0,2), there exists a y-LQG metric. This metric is the limit

of the rescaled LFPP metrics a
convergence on compact subsets of C x C. Moreover, this metric is unique in the following

1D,€l in probability with respect to the topology of uniform

sense: if Dy and Dy, are two y-LQOG metrics, then there is a deterministic constant C > 0
such that a.s. Dy(z, w) = C Dy(z, w) for all z, w € C whenever h is a whole-plane GFF

plus a continuous function.

Due to Theorem 2.6, we can refer to the LQG metric, keeping in mind that this
metric is only defined up to a deterministic positive multiplicative constant (the value of this
constant is usually unimportant).

Once Theorem 2.6 is established, it is typically easier to prove statements about
the LQG metric directly from the axioms, as opposed to going back to the approximation
procedure. We explain some of the techniques for doing so in Section 4.

2.2.3. Weak LQG metrics

The existence part of Theorem 2.6, of course, follows from the tightness result in
Theorem 2.4, but not as directly as one might expect at first glance. It is relatively easy to
check from the definition (2.1) that every possible subsequential limit of the rescaled LFPP
metrics a;lDfZ satisfies Axioms I., II., and III. in Definition 2.5. See [34, SECTION 2] for
details.

Checking Axiom IV. is much more difficult. The reason is that rescaling space
changes the value of ¢ in (2.1): for €, r > 0, one has [34, LEMMA 2.6]

Dy(rz,rw) = rDZZ_)(Z, w), Vz,weC.

So, since we only have subsequential limits of a IDZ, we cannot deduce that the subsequen-
tial limit satisfies an exact spatial scaling property.

To get around this difficulty, we consider a weaker property than Axiom IV. which
is sufficient for the proof of uniqueness. To motivate this property, let us consider how
Axiom IV. is used in proofs about the LQG metric.

Assume that % is a whole-plane GFF. For z € C and r > 0, let &, (z) be the average
of h over the circle dB, (z) (see [4e, sEcTION 3.1] for the definition and basic properties of the
circle average process). It is easy to see from the definition of the whole-plane GFF that for
any z € Cand r > 0,

h(r-+2) — hy(z) £ . 2.9)

Furthermore, from Weyl scaling and the LQG coordinate change formula (Axioms III.
and IV.), a.s.

Dhngrotz)—h, (z) (U, v) = e =80 D (ry 4z, rv 4+ 2), Vu,veC. (2.10)

By (2.9) and (2.10),
e @60 D (v 42 . 42) L Dy (2.11)

The relation (2.11) allows us to get estimates for Dj which are uniform across different
spatial locations and Euclidean scales. However, for many purposes one does not need an
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exact equality in law in (2.11), but rather just an up-to-constants comparison. This motivates
the following definition.

Definition 2.7 (Weak LQG metric). For y € (0, 2), a weak y-LQOG metric is a measurable
function i — Dy, from D’ to the space of metrics on C which induce the Euclidean topology,
which satisfies Axioms L., II., and III. in Definition 2.5 plus the following further axioms:

VI'.  Translation invariance. If h is a whole-plane GFF, then for each fixed deter-
ministic z € C, a.s. Dp(4z) = Dp(-+z,- + 2).

V. Tightness across scales. Suppose h is a whole-plane GFF and for z € C
and r > 0 let h,(z) be the average of h over the circle dB,(z). For each
r > 0, there is a deterministic constant ¢, > 0 such that the set of laws of
the metrics ¢; e 4O Dy (r-, r-) for r > 0 is tight (with respect to the local
uniform topology). Furthermore, every subsequential limit of the laws of
the metrics cr_le_gh'(o) Dy(r-,r-) is supported on metrics which induce the
Euclidean topology on C.

From (2.11), we see that every strong LQG metric is a weak LQG metric with
¢, = r¥2 . Furthermore, it is straightforward to check that every subsequential limit of LFPP
is a weak LQG metric [34]. In particular, Theorem 2.4 implies that there exists a weak LQG
metric for each y € (0, 2). We note that most of the literature requires rather weak a priori
bounds for the scaling constants ¢, in Definition 2.7, but the recent paper [26] shows that
these bounds are unnecessary.

It turns out that most statements which can be proven for LQG metrics can also be
proven for weak LQG metrics. Using this, [51] established the following statement.

Theorem 2.8 (Uniqueness of weak LQG metrics). Let y € (0,2) and let Dy, and Dy, be
two weak y-LQG metrics which have the same values of ¢, in Definition 2.7. There is a

deterministic constant C > 0 such that if h is a whole-plane GFF plus a continuous function,
then a.s. Dy, = C Dy,

Let us now explain why Theorem 2.8 implies Theorem 2.6 (see [51, SECTION 1.4]
for more details). If Dy, is a weak LQG metric and » > 0, then one can establish that
Diwby+010gb(+/b, -/b) is a weak LQG metric with the same scaling constants ¢, as Dj,.
From this, one gets that Dy )+ 010g5(-/b, -/b) is a deterministic constant multiple of Dy,.
One can check that the constant has to be 1. This shows that Dy, satisfies Axiom IV. in Def-
inition 2.5, i.e., Dy, is a strong LQG metric. In particular, Dy, is a weak LQG metric with
scaling constants r§2. This holds for any possible weak LQG metric, so we infer that every
weak LQG metric is a strong LQG metric and the weak LQG metric is unique up to constant
multiples.

Remark 2.9. There are a few other ways to approximate the LQG metric besides LFPP,
which are expected but not proven to give the same object. One possible approximation,
called Liouville graph distance, is based on the LQG area measure up: for € > 0 and
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z,w € C, we let 15;; (z, w) be the minimal number of Euclidean balls of wj-mass & whose
union contains a path from z to w. The tightness of the metrics {ﬁ; }e>0, appropriately
rescaled, is proven in [2e], but the subsequential limit has not yet been shown to be unique.

Another type of approximation is based on Liouville Brownian motion, the “LQG
time” parametrization of Brownian motion on an LQG surface [11,43]. Roughly speaking, the
idea here is that Liouville Brownian motion conditioned to travel a macroscopic distance in a
small time should roughly follow an LQG geodesic. No one has yet established the tightness
of any Liouville Brownian motion-based approximation scheme. However, the paper [3e]
shows that the exponent for the Liouville heat kernel can be expressed in terms of the LQG
dimension d,, which gives some rigorous connection between Liouville Brownian motion
and the LQG metric.

2.3. The supercritical and critical cases
2.3.1. Subsequential limits
Recall that LFPP is related to y-LQG for y € (0, 2) in the subcritical case, i.e.,
when § = y/d, <2/d, ~ 0.41,....1In this subsection, we will explain what happens in the
supercritical and critical cases, i.e., when § > 2/d5.
The tightness of supercritical LFPP was established in [23]. Subsequently, it was
shown in [27], building on [81], that the subsequential limit is uniquely characterized by a
list of axioms analogous to the ones in Definition 2.5 (see [27, sEcTION 1.3] for a precise
statement). Unlike in the subcritical case, in the supercritical case the limiting metric Dy, is
not a continuous function on C x C, so one cannot work with the uniform topology. However,
this metric is lower semicontinuous, i.e., for any (z, w) € C x C one has
Dy(z,w) < liminf Dy(z/, w"). (2.12)
(z/,w)—>(z,w)
In [23, secTION 1.2] the authors describe a metrizable topology on the space of lower semi-
continuous functions C x C — R U {£o00}, based on the construction of Beer [8]. With this
topology in hand, we can state the following generalization of Theorems 2.4 and 2.6.

Theorem 2.10 ([23,27,81]). Let £ > 0. The re-scaled LFPP metrics metrics {ae_lDfI bes0
converge in probability with respect to the topology on lower semicontinuous functions on
C x C. The limit Dy, is a metric on C, except that it is allowed to take on infinite values.
Moreover, Dy, is uniquely characterized (up to multiplication by a deterministic positive

constant) by a list of axioms similar to the ones in Definition 2.5.

Let us be more precise about what we mean by allowing the metric to take on infinite
values. For £ > 2/d5, it is shown in [23] that if Dy, is as in Theorem 2.10, then a.s. there is
an uncountable dense set of singular points z € C such that

Dp(z,w) =00, VYweC\{z}. (2.13)

However, a.s. each fixed z € C is not a singular point (so the singular points have Lebesgue
measure zero) and any two nonsingular points lie at a finite Dj-distance from each other.
Roughly speaking, if {h,(z) : z € C,r > 0} denotes the circle average process of &, then
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singular points correspond to points in C for which limsup,_, /,(z)/logr > Q, where Q
is as in (2.4) [81, PROPOSITION 1.11].

Due to the existence of singular points, for £ > 2 /d,, the metric Dy, is not continuous
with respect to the Euclidean metric on C x C, but one can still show that the Euclidean
metric is continuous with respect to Dy, [23].

In the critical case § = 2/d,, which corresponds to y = 2, it is shown in [24] that Dy,
induces the Euclidean topology on C. In particular, there are no singular points for & = 2/d5.
We expect that the rescaled LFPP metrics a;l Dj, converge uniformly to Dy, in this case (not
just with respect to the topology on lower semicontinuous functions), but this has not been
proven.

2.3.2. Central charge
For y € (0, 2], the matter central charge associated with y-LQG is

2
em = 25— 602 =25 — 6(% + g) € (=00, 1]. (2.14)
Note that y = \/m corresponds to ¢y = 0. From physics heuristics, one expects that it
should also be possible to define LQG, at least in some sense, in the case when the matter
central charge is in (1, 25). However, this regime is much less well understood than the
case when ¢y € (—o0, 1], even at a physics level of rigor. A major reason for this is that
the formula (2.14) shows that ¢y; € (1, 25) corresponds to y € C with |y| = 2, so various
formulas for LQG yield nonphysical complex answers when ¢y € (1, 25). See [3, 46] for
further discussion, references, and open problems concerning LQG with ¢y € (1, 25).

LFPP LFPP Coupling |Matter cen- Topology
Phase parameter | exponent constant |tral charge
Subcritical > 9 0.2 en € (—oo, 1 Bi-Holder w.r.t.
£ €(0,2/dy) Q 7€(0.2) M € ( ) Euclidean
_ _ -lidean topol-
iti = 2/d. Q=2 y=2 P Euc p
Critical §£=2/dy M ogy, not Holder
Supercritical §>2/dy Q€(0,2) V'/y\ (E)I;plex’ cum € (1,25) (3 singular points
FIGURE 3

Table summarizing the phases for the LQG metric.

In light of (2.5) and (2.14), it is natural to define the matter central charge associated
with LFPP for £ > 2/d, by
o = 25—-60(§)2, (2.15)

where Q(§) is the LFPP distance exponent as in (2.4). One has Q(§) € (0,2) for § > 2/d5,
so (2.15) gives ey € (1,25) for & > 2/d,. Hence, the limit of supercritical LFPP can be
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interpreted as a metric associated with LQG with ¢y € (1,25). Since £ — Q(§) is contin-
uous and non-increasing and limg_, o, O(§) = 0 [23, PROPOSITION 1.1], there is a § > 2/d>
corresponding to each ¢y € (1, 25).

See Figure 3 for an table summarizing the phases for the LQG metric.

Remark 2.11. From a physics perspective, an LQG surface with matter central charge ¢y
represents “two-dimensional gravity coupled to a matter field with central charge cys.” Equiv-
alently, an LQG surface parametrized by a domain U should be a “uniform sample from the
space of Riemannian metric tensors g on U, weighted by (det A g)_cM/ 2, where Ay is the
Laplace—Beltrami operator.” This interpretation is far from being rigorous (e.g., since there
is no uniform measure on the space of Riemannian metric tensors), but some partial progress
using on regularization procedures has been made in [3].

The central charge also comes up in Polyakov’s original motivation for LQG from
string theory. If ¢y is an integer, then, roughly speaking, an evolving string in R™~! traces
out a two-dimensional surface embedded in space-time R~ x R, called a world sheet.
Polyakov wanted to develop a theory of integrals over all possible surfaces embedded in R™
as a string-theoretic generalization of the Feynman path integral (which is an integral over all
possible paths). To do this, one needs to define a probability measure on surfaces. It turns out
that the “right” measure on surfaces for this purpose is LQG with matter central charge cy.
However, the most relevant case for string theory is ¢y = 25, which is outside the range of
parameter values for which LQG can be defined probabilistically.

2.4. Alternative construction and planar map connection for y = ‘/8/_3

In the special case when y = \/m , there is an earlier construction of the \/8/_3-
LQG metric due to Miller and Sheffield [76,77,79]. We will comment briefly on the main idea
of this construction. See Miller’s ICM paper [71] for a more detailed overview.

The idea of the Miller—Sheffield construction is to first construct a candidate for
LQG metric balls, then show that these balls are, in fact, the metric balls for a unique metric
on C. The candidates for LQG metric balls are generated using a random growth process
called quantum Loewner evolution (QLE), which is produced by “reshuffling” an SLE¢ curve
in a random manner depending on /. Both the construction of this growth process and the
proof that one can generate a metric from it rely crucially on special symmetries for \/8/_3-
LQG which are established in [37,78], so the construction does not work for any other value
of y.

The Miller—Sheffield metric satisfies the conditions of Definition 2.5, so Theo-
rem 2.6 implies that it agrees with the M—LQG metric constructed using LFPP. On the
other hand, the construction using QLE gives a number of properties of the \/%—LQG
metric which are not apparent from the LFPP construction, for example, various Markov
properties for LQG metric balls and the fact that d 575 = 4. These properties can be
proven directly using QLE, or can alternatively be deduced from analogous properties of
the Brownian map, together with the equivalence between the Brownian map and \/V -
LQG discussed just below.
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The papers [76,79] also establish a link between the /8/3-LQG metric and uniform
random planar maps. This link comes by combining two big results:

* Le Gall [66] and Miermont [7e] showed independently that certain types of uni-
form random planar maps (namely, uniform k-angulations for k = 3 or k even),
equipped with their graph distance, converge in the Gromov—Hausdorff sense to
a random metric space called the Brownian map. See [67,68] for a survey of this
work.

¢ Miller and Sheffield showed that there is a certain special variant of the GFF on C
(corresponding to the so-called quantum sphere) such that the sphere C U {oco},
equipped with the \/%—LQG metric, is isometric to the Brownian map. This is
done using the axiomatic characterization of the Brownian map from [74].

Remark 2.12. Building on the aforementioned work (and many additional papers), Holden
and Sun [56] showed the rescaled graph distance on uniform triangulations embedded into the
plane via the so-called Cardy embedding converges to the \/8/_3—LQG metric with respect to
a version of the uniform topology. This gives a stronger form of convergence than Gromov—
Hausdorff convergence.

3. PROPERTIES OF THE LQG METRIC

In this subsection, we will discuss several properties of the LQG metric which have
been established in the literature. Throughout, /2 denotes a whole-plane GFF and Dy, denotes
the associated LQG metric with a given parameter £ > 0. We also let Q be as in (2.4) and
for £ <2/d, welet y € (0,2) be such that § = y/d,,, sothat 0 =2/y + y/2 (2.5). We
also let £ and Q be as above, so that for y € (0,2) wehave £ = y/d, and Q =2/y +y/2.

3.1. Dimension
For A > 0, the A-Hausdorff content of a compact metric space (X, d) is

oo
inf {Z rjA : there is a covering of X be d-metric balls with radii {r; }_,-GN}
j=1

and the Hausdorff dimension of (X, d) is the infimum of the values of A for which the
A-Hausdorff content is zero.

The following theorem follows from the combination of [54, COROLLARY 1.7] and [81,
PROPOSITION 1.14].

Theorem 3.1. In the subcritical case, i.e., when y € (0,2) and § = y/d,, a.s. the Hausdorff
dimension of C, equipped with the y-LQG metric, is equal to d, (recall the discussion in
Section 2.1). In the supercritical case, i.e., when & > 2/d,, the Hausdorff dimension of C,
equipped with the LQG metric with parameter &, is 00. 00.

As noted above, the value of d,, is not known except that d /8/3 = 4, but upper
and lower bounds for dy have been proven in [1,22,53] (see Figure 5). It is shown in

4226 J. DING, J. DUBEDAT, AND E. GWYNNE



[22, THEOREM 1.2] that y — d, is increasing and lim, .o d,, = 2. Hence, Theorem 3.1 implies
that the LQG metric gets “rougher” as y increases. We expect that the dimension of C with
respect to the critical (y = 2) LQG metric is d, = lim, _,» d), &~ 4.8, but this has not been
proven.

It was shown in [2] that for y € (0, 2), the Minkowski dimension of (C, Dy,) is also
equal to d,,. We expect that in this case, the d,,-Minkowski content measure for Dy, exists and
is equal to the y-LQG area measure pj, from (1.3). Similarly, the Hausdorff measure asso-
ciated with Dy, for an appropriate gauge function, should exist and be equal to p;,. This has
been proven for the Brownian map (which is equivalent to \/8/_3-LQG, recall Section 2.4)
in [69].

3.2. Quantitative estimates

The optimal Holder exponents relating Dy, and the Euclidean metric can be com-
puted in terms of & and Q. For the subcritical (resp. supercritical) case, see [34, THEOREM 1.7]
(resp. [81, PROPOSITION 1.10]).

Proposition 3.2 (Holder continuity). Let U C C be a bounded open set. Almost surely, for
each § > 0 there is a random C > 0 such that

Clz —w[f@2D78 & <2/d,,

C_1|Z_7.U|E(Q+2)+8 S Dh(Z,UJ) S
oo, §>2/d>.

Furthermore, the exponents £(Q + 2) and £(Q — 2) are optimal.

In the critical case when § = 2/d,, equivalently Q = 2, the metric Dy, is continuous
with respect to the Euclidean metric but not Holder continuous. Rather, the optimal upper
bound for Dy (z, w) is a power of 1/log(|z — w|™!) [24].

We also have moment bounds for point-to-point distances, set-to-set distances, and
diameters. The following is a compilation of several results from [34,81].

Proposition 3.3 (Moments). For each distinct z, w € C, the distance Dy(z, w) has a
finite pth moment for all p € (—00,2Q/&). For any two disjoint compact connected sets
K1, K> C C which are not singletons, Dy(K1, K3) has finite moments of all positive and
negative orders. For & < 2/d,, for any nonsingleton compact set K C C, the Dy-diameter
sup, yex Dn(z, w) has a finite pth moment for all p € (—oo, 4d, /v?).

The moment bound for diameters is related to the fact that the LQG area measure
has finite moments up to order 4/y2 (see, e.g., [86, THEOREM 2.11]).

3.3. Geodesics

Using basic metric space theory, one can show that a.s. for any two points z, w € C
with Dy (z, w) < oo, there is a Dj-geodesic from z to w, i.e., a path of minimal Dj-length
(see, e.g., [14, COROLLARY 2.5.20] for the subcritical case and [81, PROPOSITION 1.12] for the super-
critical case). If z and w are fixed, then a.s. this geodesic is unique [72, THEOREM 1.2]. We give
a short proof of this fact in Lemma 4.2 below.
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It can be shown that the Dj-geodesics started from a specified point have a tree-like
structure: two geodesics with the same starting point and different target points stay together
for a nontrivial initial time interval. The property is called confluence of geodesics, and can
be seen in the simulations from Figure 2.

We emphasize that confluence of geodesics is not true for a smooth Riemannian
metric (such as the Euclidean metric). Rather, two geodesics for a smooth Riemannian metric
with the same starting points and different target points typically intersect only at their start-
ing point.

Confluence of geodesics for the LQG metric was established in the subcritical case
(§ < 2/d>) in [48] and for general £ > 0 in [25]. Let us now state a precise version of this
result, which is illustrated in Figure 4. For s > 0 and z € C, let B,(z; Dy,) be the Dj-metric
ball of radius s centered at z.

Bs(z§ Dh,)

FIGURE 4

Ilustration of the statement of Theorem 3.4. The red curves are Dy -geodesics going from z to points outside of
the LQG metric ball By (z; Dy,). The theorem asserts that these geodesics all coincide until their first exit time
from B;(z; D).

Theorem 3.4 (Confluence of geodesics). Fix z € C. Almost surely, for each radius s > 0
there exists a radius t € (0, s) such that any two Dy-geodesics from z to points outside of
Bs(z; Dy) coincide on the time interval [0, t].

Theorem 3.4 only holds a.s. for a fixed center point z € C. Almost surely, there
is a Lebesgue measure zero set of points in C where Theorem 3.4 fails. For example,
if P:[0,T] — C is a Dy-geodesic, then the conclusion of Theorem 3.4 fails for each
z € P((0,T)).

Confluence of geodesics is used in the proof of the uniqueness of the y-LQG metric
y € (0, 2) in [51]. Roughly speaking, confluence is used to establish near-independence for
events which depend on small neighborhoods of far-away points on a Dj-geodesic, despite
the fact that Dj-geodesics are non-Markovian and do not depend locally on /. See [51] for
details. The proof of the uniqueness of the LQG metric for general § > 0 in [27] does not use
confluence of geodesics.
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Remark 3.5. Confluence of geodesics was previously established by Le Gall [65] for the
Brownian map, which is equivalent to \/8/_3—LQG (see Section 2.4). This result was used in
the proof of the uniqueness of the Brownian map in [66,70]. Le Gall’s proof was very different
from the proof of Theorem 3.4.

Various extensions of the confluence property for y € (0, 2) are proven in [42,55]
and for y = \/8/_31n [73,80].

Little is known about the geometry of a single LQG geodesic. For example, we do
not know the Hausdorff dimension of such a geodesic with respect to the Euclidean metric
(the dimension with respect to the LQG metric is trivially equal to 1), and we do not have
any exact description of its law. The strongest current results in this direction are an upper
bound for the Euclidean dimension of an LQG geodesic [54, COROLLARY 1.10], which is not
expected to be optimal; and the fact LQG geodesics do not locally look like SLE, curves
for any value of « [72]. We do not have a nontrivial lower bound for the Euclidean Hausdorff
dimension of an LQG geodesic, but we expect that it is strictly greater than 1 (see [31] for a
closely related result for the geodesics for a version of LFPP). Finally, we mention the very
recent work [7], which constructs a local limit of the GFF near a typical point of an LQG
geodesic.

3.4. Metric balls

From the simulations in Figure 2, one can see that LQG metric balls have a fractal-
like geometry. Almost surely, the complement of each LQG metric ball has infinitely many
connected components, in both the subcritical and supercritical cases [55, 81]. In fact, a.s.
“most” points on the boundary of the ball do not lie on any complementary connected com-
ponent, but rather are accumulation points of arbitrarily small complementary connected
components [55, THEOREM 1.14], [25, THEOREM 1.4].

In the subcritical and critical cases, i.e., when £ = y/d, for y € (0, 2], the LQG
metric induces the same topology as the Euclidean metric so a.s. each closed LQG metric
ball is equal to the closure Euclidean interior. In contrast, in the supercritical case a.s. each
LQG metric ball has empty Euclidean interior but positive Lebesgue measure. This is a
consequence of the fact that the set of singular points from (2.13) is Euclidean-dense but has
Lebesgue measure zero.

In the subcritical case, it is shown in [41,55] that a.s. the Hausdorftf dimension of the
boundary of a y-LQG metric ball for y € (0, 2) with respect to the Euclidean (resp. LQG)
metric is 2 — £Q + £2/2 (resp. d, — 1). We expect that these formulas are also valid for
y = 2 (equivalently, § = 2/d5).

In the supercritical case § > 2/d>, the LQG metric Dy, does not induce the Euclidean
topology, so one has to make a distinction between the boundary with respect to the Euclidean
topology or with respect to Dj,. The boundary of a closed Dj-metric ball with respect to
the Euclidean topology is equal to the ball itself (since the ball is Euclidean closed and has
empty Euclidean interior), whereas the boundary with respect to Dy, is a proper subset of the
ball [25, SECTION 1.2]. It is shown in [81, PROPOSITION 1.14] that for £ > 2 /d5, a.s. the Euclidean
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boundary of a Dj-metric ball (i.e., the whole Dy-metric ball) is not compact with respect to
Dy, and has infinite Hausdorff dimension w.r.t. Dj. We expect that the same is true for the
Dy -boundary of a Dj-metric ball. The Hausdorff dimension of the Euclidean boundary of
a Dy-metric ball with respect to the Euclidean metric is 2 since the metric ball has positive
Lebesgue measure. The Hausdorff dimension of the Dj-boundary of a Dj-metric ball with
respect to the Euclidean metric has not been computed rigorously.

It is also of interest to consider the boundary of a single complementary connected
component of an LQG metric ball. The Hausdorff dimension of such a boundary component
with respect to the Euclidean or LQG metric is not known. However, it is known that, even
in the supercritical case, each boundary component is a Jordan curve and is compact and
finite-dimensional with respect to Dy, [25, THEOREM 1.4].

3.5. KPZ formula

The (geometric) Knizhnik—Polyakov—Zamolodchikov (KPZ) formula [6e] is a for-
mula which relates the “Euclidean dimension” and the “LQG dimension” of a deterministic
set X C C, or a random set independent from the GFF h. The first rigorous versions of the
KPZ formula appeared in [4e,85]. These papers defined the “LQG dimension” in terms of
the LQG area measure. There are several different versions of the KPZ formula in the liter-
ature which use different notions of dimension (see, e.g., [4,6,9,12,45]). Here, we state what
is perhaps the most natural version of the KPZ formula, where we compare the Hausdorff
dimensions of a set with respect to the LQG metric and the Euclidean metric. We start with
the subcritical case, which is [54, THEOREM 1.4].

Theorem 3.6 ([54]). Lety € (0,2) andrecallthaté =y/d, and Q =2/y +y/2.Let X CC
be a random Borel set which is independent from the GFF h and let Ay be the Hausdorff
dimension of X, equipped the Euclidean metric. Also let Ay, be the Hausdorff dimension
of X, equipped with the y-LQG metric Dy. Then a.s.

Ap=E1(Q — V0% —2A). (3.1)

Theorem 3.6 does not apply if X is not independent from 4. For example, the
KPZ formula does not hold for the Hausdorff dimensions of LQG metric ball boundaries
with respect to the Euclidean and LQG metrics, as discussed in Section 3.4. However, one
has inequalities relating the Hausdorff dimensions of an arbitrary set with respect to the
Euclidean and LQG metrics, see [54, THEOREM 1.8].

It is shown in [81, THEOREM 1.15] that the KPZ formula of Theorem 3.6 extends to
the case when £ > 2/d, (modulo some technicalities about the particular notion of “frac-
tal dimension” involved), with the following important caveat. When & > 2/d,, we have
0 € (0,2) and the right-hand side of the formula (3.1) is nonreal when Ay > Q2/2. The
extension of the KPZ formula to the supercritical case coincides with (3.1) when Ag < Q?/2,
and gives A;, = oo when Ag > Q2/2 (the case when Ag = Q?2/2 is not treated).
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4. TOOLS FOR STUDYING THE LQG METRIC

There are a few basic techniques which are the starting point of the majority of the
proofs of statements involving the LQG metric. In this subsection, we will discuss a few of
the most important such techniques and provide some simple examples of their applications.
Throughout, & denotes a whole-plane GFF and Dy, denotes an LQG metric in the sense of
Definition 2.5. For simplicity, we assume that we are in the subcritical case but our discussion
applies in the critical and supercritical cases as well, with only minor modifications.

4.1. Adding a bump function

Suppose that E is an event depending on the LQG metric Dj,. For example, maybe
we have two points z, w € C and E is the event that Dy (z, w) > 100, or that the Dj,-geodesic
from z to w stays in some specified open set. For many choices of E, it is straightforward to
show that P[E] > 0 via the following method. Let ¢ be a deterministic smooth, compactly
supported function. It is easy to see from basic properties of the GFF that the laws of /& and
h + ¢ are mutually absolutely continuous. See, e.g., [75, PROPOSITION 3.4] for a proof. Using
Weyl scaling (Axiom IIL.), we can choose ¢ so that with high probability, the event E occurs
with /2 + ¢ in place of /. The absolute continuity of the laws of & + ¢ and & then implies that
P[E] > 0. Let us illustrate this idea by showing that an LQG geodesic stays in a specified
open set with positive probability.

Lemmad.1. Let z,w € C and let U C C be a connected open set which contains z and w.
With positive probability, every Dy,-geodesic from z to w is contained in U.

Proof. Let V. C V' C U be bounded, connected open sets containing z and w such that
V c V' and 7, C U. It is a.s. the case that internal distance Dy (z, w; V') is finite and the
distance Dy, (V’, dU) is positive, so we can find C > 0 such that

P[Dp(z,w; V) < C,Dp(V'.0U) > C7'] = @.1)

N =

Let ¢ be a smooth, nonnegative bump function which is identically equal to % log C
on V and is identically equal to zero outside of V’. By Weyl scaling (Axiom III.) and since
¢ = 2logC onV, the Dy_g-internal metric on V is equal to C ~2 times the Dj-internal
metric on V. Furthermore, since ¢ = 0 outside V', we have Dy (V',0U) = Dj_y(V',0U).
Therefore, if the event in (4.1) occurs, then

Dp—y(z,w; V) = C2Dp(z,w; V) < C™' < D(3V',0U) = Djp—y(V',3U).

In particular, Dj_4(z, w) < Dp_g(z, 0U). Therefore, no Dj_4-geodesic from z to w can
exit U. This happens with probability at least 1/2. Since the laws of & — ¢ and & are mutually
absolutely continuous, the lemma statement follows. |

In a similar vein, it is sometimes useful to add a random bump function to 4 in
order to show that Dy, has certain “typical” behavior with probability 1. To be more precise,
again let ¢ be a smooth compactly supported bump function and let X be a random variable
which is uniform on [0, 1], sampled independently from /. Then the laws of # and & + X¢
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are mutually absolutely continuous. So, if E is an event depending on Dy, then to show that
P[E] = 0 it suffices to show that the probability that E occurs with &7 + X¢ in place of /4 is
zero. To show this latter statement, it suffices to show that a.s. the Lebesgue measure of the
setof x € [0, 1] such that £ occurs with /2 4+ x¢ in place of 4 is zero. Usually, it is possible to
show that this set consists of at most a single point. Let us illustrate this technique by proving
the uniqueness of Dj-geodesics between typical points.

Lemma 4.2. Fix distinct points z,w € C. Almost surely, there is a unique Dy,-geodesic from
Z to w.

Lemma 4.2 was first established in [72, THEOREM 1.2] via an argument which is similar
to, but more complicated than, that we give here. We emphasize that Lemma 4.2 applies only
for a fixed pair of points z, w € C. Almost surely, there are exceptional pairs of points which
are joined by multiple Dj-geodesics. See [42,73,80] for a discussion of these exceptional
pairs of points.

Proof of Lemma 4.2. Let U, V C C be bounded open sets lying at positive distance from z
and w such that V C U. Let E = E(U, V) be the event that the following is true: there are
distinct Dj-geodesics P, P from z to w such that P is disjoint from U and P enters V. If
there is more than one Dj,-geodesic from z to w, then E (U, V') must occur for some choice
of open sets U, V which we can take to be finite unions of balls with rational centers and
radii. Hence it suffices to fix U and V and show that P[E] = 0.

Let ¢ : C — [0, 1] be a smooth bump function which is identically equal to 1 on a
neighborhood of V' and which vanishes outside of U. For x € [0, 1], let E, be the event that
E occurs with & + x¢ in place of /. As explained above the lemma statement, it suffices to
prove that a.s. the Lebesgue measure of the set of x € [0, 1] for which E; occurs is 0. In fact,
we will show that a.s. there is at most one values of x € [0, 1] for which E occurs.

For this, it is enough to show thatif 0 < x < y < 1 and E occurs, then E, does
not occur. To see this, assume that £, occurs and let P, and f’x be the Dj,_x4-geodesics as
in the definition of E,. By Weyl scaling (Axiom III.) and since ¢ is nonnegative, we have
Dpyyy(u,v) > Dpyxe(u,v) for all u, v € C. Since P, does not enter U and ¢ vanishes
outside of U, we also have

Dityp(z,w) <len(Px; Dpyyg) = len(Px: Dpyxg) = Dhtxe(z, w),
where here we recall the notation for length with respect to a metric from (2.6). Hence
Dpyyp(z,w) = Dpyxe(z, w). (4.2)

Now suppose that P: [0, T] — C is any path from z to w which enters V. We will
show that P is nota D h+y¢-geodesic, which implies that £, does not occur. Indeed, there
must be a positive-length interval of times [a, b] such that P([a, b]) C ¢~1(1). We therefore
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have

len(P; Dpiye) = len(};|[0,a]u[b,T]§ Dhiye) + len(};|[a’b]; Dpyyg)
> len(P l10,a1uib,T1: Dhtx¢)
+ 50 len(P|pg.p); Diixp) (by Axiom IIL)
> len(P; Dpixg) + (6507 — 1) len(Pliap): Dhtxg)
> Dpyxg(z,w) (by Axiom L.)
= Dpiys(z.w)  (by (42)). "

Remark 4.3. If ¢ is a deterministic smooth bump function, then the proof of [75, PROPOSI-
TION 3.4] shows that the Radon—Nikodym derivative of the law of & + ¢ with respect to the
law of 4 is given by

exp 1,819 — 5,007

where (f, g)v = f(C V f(z) - Vg(z) d?z is the Dirichlet inner product. One can use this
explicit expression for the Radon—Nikodym derivative, together with arguments of the sort
discussed above, to estimate the probabilities of certain rare events for the LQG metric. For
example, this is the key idea in the computation of the dimension of a boundary of an LQG
metric ball in [41].

4.2, Independence across concentric annuli

Another key tool in the study of the LQG metric is the fact that the restrictions of
the GFF to disjoint concentric annuli (viewed modulo additive constant) are nearly indepen-
dent. In particular, suppose that we have a sequence of events {£,, }xen depending on the
restrictions of / to disjoint concentric annuli. If we have a lower bound for IP[E,,] which
is uniform in k, then for K € N the number of k € {1, ..., K} for which E,, occurs can
be compared to a binomial random variable. This leads to the following lemma, which is a
special case of [49, LEMMA 3.1].

Lemma 4.4. Fix0 < sy < sy < 1. Let z € C and let {ry }ren be a decreasing sequence of
positive real numbers such that ri11/rx < 51 for each k € N. Let { E;, }xeN be events such
that for each k € N, the event E,, is a.s. determined by the restriction of h — h;, (z) to the
Euclidean annulus By, (z) \ Bs,r,(2), where h;, (z) denotes the circle average.

(1) Foreacha > 0, there exist p = p(a,s1,s2) € (0,1) and c = c(a,sy1,52) >0
such that if
P[E,]>p, VkeN, 4.3)

then
P[3k € {1,..., K} such that E,, occurs] > 1 —ce K VK eN. 44

(2) Foreach p € (0,1), there exista = a(p, s1,52) > 0and ¢ = c(p, s1,52) >0
such that if (4.3) holds, then (4.4) holds.
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We emphasize that the numbers p and ¢ in assertion (1) and the numbers a and c is
assertion (2) do not depend on z or on {r} (except via s1, s2). The idea of Lemma 4.4 was
first used in [72], and the general version stated here was first formulated in [49]. To illustrate
the use of Lemma 4.4, we will explain a typical application, namely a polynomial upper
bound for the probability that a Dj-geodesic gets near a point.

Lemma 4.5. For eachy € (0,2), there exist @ = a(y) > 0 and ¢ = c(y) > 0 such that the
Jollowing is true. For each z € C and each € > 0, the probability that there is a Dy-geodesic
between two points in C \ B,i/2(z) which enters Bg(z) is at most c&®.

Roughly speaking, Lemma 4.5 says that “most” points in C are not hit by Dy-
geodesics except at their endpoints. Lemma 4.5 immediately implies that the Hausdorff
dimension of every LQG geodesic with respect to the Euclidean metric is strictly less than 2.
Similar (but more complicated) ideas to those in the proof of Lemma 4.5 are used in the
proof of confluence of geodesics in [25, 48].

Let us now proceed with the proof of Lemma 4.5. The first step is to define the
events for which we will apply Lemma 4.4. To lighten notation, we introduce the following
terminology.

Definition 4.6. For a Euclidean annulus A C C, we define Dj(across A) to be the Dy-
distance between the inner and outer boundaries of A. We define Dy, (around A) to be the
infimum of the Dj-lengths of paths in A which separate the inner and outer boundaries of A.

Both Dy (across A) and Dy, (around A) are determined by the internal metric of Dy,
on A, so by Axiom II. these quantities are a.s. determined by %|4.
Forz e Candr > 0, let

E.(z):= {Dh (around B3, (2) \ Bar (Z)) < Dy, (across By, (2) \ By (Z))} 4.5)

As noted above, Axiom II. implies that E,(z) is a.s. determined by /|p,, (-)\ B, (z)- In fact,
adding a constant to / results in scaling Dj-distances by a constant (Axiom IIIL.), so adding
a constant to s does not affect whether E,(z) occurs. Hence E,(z) is a.s. determined by

(h = har(2))|Bs, (2)\ B, (2)-
Lemma 4.7. There existoo = a(y) > 0 and ¢ = c(y) > 0 such that for each z € C and each
>0,

1
P[ar € [e, 181/2] such that E,(z) occurs) > 1 — ce“.

Proof. Using a “subtracting a bump function” argument as discussed in Section 4.1, one
can show that p := P[E(0)] > 0. From (2.11), we see IP[E,(z)] does not depend on z or r.
Hence P[E,(z)] = p foreach z € C and r > 0. We now apply Lemma 4.4 with ry, = 4%¢1/2
and K = [% log, e~ |. Thenry € [e, %81/2] foreachk € {1,..., K}, sopart (2) of Lemma4.4
shows that there exists a = a(y) > 0 and ¢ = ¢(y) > 0 such that

P[3r € [e,£'/?] such that E,(z) occurs] > 1 — cp?K.
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This last quantity is at least 1 — ce® for an appropriate o > 0 depending on p, a (hence
on ). |

Proof of Lemma 4.5. By Lemma 4.7, it suffices to show that if there is an r € [¢, 2£!/2] such
that E, (z) occurs, then no Dj-geodesic between two points in C \ B,1/2(z) can enter B¢ (z).
Indeed, assume that E, (z) occurs, let u,v € C \ B,i/2(z), and let P be a path from u to v
which hits B, (z) D B¢(z). We will show that P is not a Dj-geodesic. By the definition (4.5)
of E,(z), there is a path 7 in B3, (z) \ Ba,(z) which disconnects the inner and outer bound-
aries of this annulus and has Dj,-length strictly less than Dy (across By (z) \ B(z)). Leto
(resp. 7) be the first (resp. last) time that P hits 7. Since P hits B,(z) and u, v ¢ B3,(2),
the path P crosses between the inner and outer boundaries of B;,(z) \ B,(z) between times
o and t. Hence

(Dp-length of P|(5.7]) = Dy (across By, (2) \ By (Z)). (4.6)
But, since P(7), P(0) € m,

Dh(P(o), P(r)) < (Dp-length of ) < Dy, (across By (2) \ B, (z))
< (Dh-length of P |[U,,]). 4.7

This implies that P is not a Dy-geodesic since it is not the Dp-shortest path from P (o)
to P(7). |

4.3. White noise decomposition

A convenient way to approximate the GFF is by convolving the heat kernel with a
space-time white noise. To explain this, let W be a space-time white noise on C x [0, c0),
ie, {(W, f): f € L2(C x [0, 00))} is a centered Gaussian process with covariances
E[((W, NHW. 2] = Jc Jo~ f(z.5)g(z.5)ds dz.For f € L?(C x [0, 00)) and Borel mea-
surable sets A C C and I C [0, o0), we slightly abuse notation by writing

//f(z,s) W(dz,ds) := (W, flaxr).
AJI

As in (1.2), we denote the heat kernel by p;(z) := #e"“z/z’. Following [21, SEC-
TION 3], we define the centered Gaussian process

1
ﬁ,(z) = ﬁ/ / Ps2(z —w) W(dw,ds), Vtel0,1], Vz eC. 4.8)
C Je2

We write h = };0. By [21, LEMMA 3.1] and Kolmogorov’s criterion, each ﬁ, for t € (0, 1]
admits a continuous modification. The process h does not admit a continuous modification,
but makes sense as a distribution: indeed, it is easily checked that its integral against any
smooth compactly supported test function is Gaussian with finite variance.

The process h is in some ways more convenient to work with than the GFF thanks
to the following symmetries, which are immediate from the definition:

* Rotation/translation/reflection invariance. The law of {h; : ¢t € [0, 1]} is invariant
with respect to rotation, translation, and reflection of the plane.
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e Scale invariance. For § € (0, 1], one has {(ﬁ,g, — ﬁg)(S-) 1t €[0,1]} 4 {l;t RS
[0, 1]}.

* Independent increments. If 0 <ty <t, <t3 <t4 <1,then 5,2 — ﬁ,l and ﬁm — };t3

are independent.

One property which h does not possess is spatial independence. To get around this,
it is sometimes useful to work with a truncated variant of 7 where we only integrate over a
ball of finite radius. To this end, we let ¢ : C — [0, 1] be a smooth bump function which is
equal to 1 on the ball By/2(0) and which vanishes outside of Bj,10(0). For ¢ € [0, 1], we
define

A 1
hY(z) := ﬁ/ﬂ /C Psj2(z —w)p(z — w) W(dw, dr). (4.9)

We also set A := ﬁg As in the case of A, it is easily seen from the Kolmogorov continuity
criterion that each f;‘f for ¢ € (0, 1] a.s. admits a continuous modification. The process ht
does not admit a continuous modification and is instead viewed as a random distribution.

The key property enjoyed by At is spatial independence: if A, B C C with
dist(4, B) > 1/5, then {ﬁ‘ﬂA 1t €[0,1]} and {ﬁtﬂB :t € [0, 1]} are independent. Indeed,
this is because {ﬁ‘ﬂA 1t €10,1]} and {ﬁ‘,r|3 :t € [0, 1]} are determined by the restrictions
of the white noise W to the disjoint sets B1/19(A4) x Ry and Bj/19(B) x R, respectively.
Unlike ﬁ, the distribution /" does not possess any sort of scale invariance but its law is still
invariant with respect to rotations, translations, and reflections of C.

The following lemma, which is proven in the same manner as [22, LEMMA 3.1], tells us
that the distributions / and /" and the whole-plane GFF can all be compared up to constant-
order additive errors.

Lemma 4.8. Suppose U C C is a bounded open set. There is a coupling (h, h, ﬁtr) of a
whole-plane GFF normalized so that h1(0) = 0 and the fields from (4.8) and (4.9) such that
the following is true. For any h', h? € {h, h, l;"}, the distribution (h' — h?)|y a.s. admits a
continuous modification and there are constants cg, c1 > 0 depending only on U such that
for A > 1,

P[rzneal}( (h' = h)(2)| < A] > 1 — cpe™ 14, (4.10)

Lemma 4.8 implies that each of h and A" is a GFF plus a continuous function. Hence
we can define the LQG metrics D, and Dj,.. The metric Dj, is particularAly convenient to
work with due to the aforementioned finite range of dependence property of 4". This property
allows one to use percolation-style arguments in order to produce large clusters of Euclidean
squares where certain “good” events occur. We refer to [21,22,38,52] for examples of this sort
of argument.

The white noise decomposition also plays a key role in the proofs of tightness of
LFPP in [18,19,23,33]. In fact, these papers first prove the tightness of LFPP defined using
the white noise decomposition (4.8) in place of the functions %}, then transfer to /} using a
comparison lemma which is similar in spirit to Lemma 4.8 (see [18, SECTION 6.1]).
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5. OPEN PROBLEMS
Here we highlight some of the most important open problems concerning the LQG
metric. Much more substantial lists of open problems can be found in [46,51].

Problem 5.1. For y € (0, 2), compute the Hausdorff dimension d,, of C, equipped with the
y-LQG metric. More generally, for £ > 0 determine the relationship between the parameters
Q and £ of (2.4).

Due to (2.2) and (2.5), computing d,, for y € (0, 2) is equivalent to finding the
relationship between Q and £ for &€ € (0,2/d5). As noted above, the only known case is
d /573 = 4, equivalently O(1/ V6) = 5/+/6. One indication of the difficulty of computing
Q in terms of £ is that the relationship between Q and £ is not universal for LFPP defined
using different log-correlated Gaussian fields [29].

Many quantities associated with LQG surfaces and random planar maps can be
expressed in terms of d, (or £ and Q), such as the optimal Holder exponents relating the
LQG metric and the Euclidean metric [34], the Hausdorff dimension of the boundary of an
LQG metric ball [41], and the ball volume exponent for certain random planar maps [22].
Solving Problem 5.1 would lead to exact formulas for these quantities.

We do not have a guess for the formula relating Q and £, nor do we know whether
an explicit formula exists. The best-known prediction from the physics literature, due to
Watabiki [91], is equivalentto Q = 1/& — & for £ € (0,2/d5). The prediction was proven to
be false in [21], at least for small values of & (equivalently, small values of y). An alterna-
tive proposal, put forward in [22], is that O = 1/& — 1/+/6 for £ € (0, 2/d5). This formula
has not been disproven for any value of £ € (0,2/d>), but it (like Watabiki’s prediction) is
inconsistent with the result of [28], which shows that Q > 0 for all £ > 0. We expect that
both of the above predictions are false for all but finitely many values of &.

The best known rigorous bounds relating £ and Q are obtained in [1, 22,53]. See
Figure 5 for a graph of these bounds.

Q dy

0.0 0.0 0.5 1.0 1.5 ZOV

FIGURE 5
(Left) Plot of the best known upper (blue) and lower (red) bounds for Q as a function of £. (Right) Plot of the
best-known bounds for d,, as a function of y.
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Our next open problem concerns the relationship between LQG surfaces and random
planar maps.

Problem 5.2. Show that, for each y € (0, 2], appropriate types of random planar maps,
equipped with their graph distance (appropriately rescaled), converge in the Gromov—Haus-
dorff sense to y-LQG surfaces equipped with the y-LQG metric.

As discussed in Section 1.3, the value of y depends on the type of random planar
map under consideration. For example, uniform random planar maps correspond to
y = \/8/_3, planar maps weighted by the number of spanning trees they admit correspond
to y = +/2, and planar maps weighted by the partition function of the critical Ising model
on the map correspond to y = +/3. So far, Problem 5.2 has only been solved for y = \/%,
see Section 2.4.

Problem 5.2 can be made more precise by specifying the scaling factor for the planar
maps, as well as the particular types of LQG surfaces one should get in the limit. For con-
creteness, for n € N consider the case of a random planar map M,, with the topology of the
sphere, having n total edges. Then M,,, equipped with its graph distance rescaled by n~1/4r
should converge in the Gromov—Hausdorff sense to the quantum sphere, a special type of
LQG surface which is defined in [16,37] (the definitions are proven to be equivalent in [5]).
Similar statements apply for random planar maps with other topologies, such as the disk,
plane, or half-plane.

Finally, we mention a third open problem which has not appeared elsewhere. For o« €
R, let 7, be the set of a-thick points of /1, i.e., the points z € C for whichlim sup,_, o /1(z) /log el =
«. Such points exist if and only if @ € [—2, 2] [57]. For a set X, the function which takes o
to the Hausdorff dimension of X N Th"‘ (with respect to the LQG metric or the Euclidean

metric) can be thought of as a sort of “quantum multifractal spectrum” of X .

Problem 5.3. Let£& > 0 and let P be a Dj-geodesic. Is it possible to compute the Hausdorff
dimensions of P N T;* for each a € [-2,2] with respect to the Dy, (resp. the Euclidean
metric)? More weakly, as there a unique value of o which maximizes this dimension? In
other words, is there a “typical” thickness for a point on an LQG geodesic?

It is known that the Hausdorff dimensions considered in Problem 5.3 are a.s. equal
to deterministic constants, see [55, REMARK 1.12]. The analog of Problem 5.3 for a subcritical
LQG metric ball boundary has been solved in [22,55]. In that case, the maximizing value of
« with respect to the Euclidean (resp. LQG) metric is @ = £ (resp. @ = y). One can also ask
the analog of Problem 5.3 with Minkowski dimension instead of Hausdorff dimension. We
expect that the answers will be the same.
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ANALYSIS OF
HIGH-DIMENSIONAL
DISTRIBUTIONS USING
PATHWISE METHODS

RONEN ELDAN

ABSTRACT

The goal of this note is to present an emerging method in the analysis of high-dimensional
distributions, which exhibits applications to several mathematical fields, such as func-
tional analysis, convex and discrete geometry, combinatorics, and mathematical physics.
The method is based on pathwise analysis: One constructs a stochastic process, driven by
Brownian motion, associated with the high-dimensional distribution in hand. Quantities of
interest related to the distribution, such as covariance, entropy, and spectral gap, are then
expressed via corresponding properties of the stochastic process, such as quadratic varia-
tion, making the former tractable through the analysis the latter. We focus on one particular
manifestation of this approach, the Stochastic Localization process. We review several
results which can be obtained using Stochastic Localization and outline the main steps
towards their proofs. By doing so, we try to demonstrate some of the ideas and advantages
of the pathwise approach. We focus on two types of results relevant to high-dimensional
distributions: The first one has to do with dimension-free concentration bounds, mani-
fested by functional inequalities which have no explicit dependence on the dimension. Our
main focus in this respect will be on the Kannan—-Lovasz—Simonovits conjecture, con-
cerning the isoperimetry of high-dimensional log-concave measures. Additionally, we
discuss concentration inequalities for Ising models and expansion bounds for complex-
analytic sets. The second type of results concern the decomposition of a high-dimensional
measure into mixtures of measures attaining a simple structure, with applications to mean-
field approximations.
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1. INTRODUCTION

This note is concerned with probability measures on high-dimensional spaces. The
intuition derived from low-dimensional examples in various fields such as topology and
partial differential equations may suggest that an attempt to understand the behavior of
high-dimensional objects is futile, since a system’s behavior quickly becomes complex and
intractable as the dimension increases.

Nevertheless, a recently emerging theory of “high-dimensional phenomena” reveals
that some important classes of distributions turn out to be surprisingly well-behaved (some
introductory books on this theory are [2, 32, 43]). We focus on one particular facet of this
theory which concerns dimension-free phenomena: It is often the case that the behavior of
objects of interest is dictated by their marginals onto a fixed number of directions. This is
manifested, for example, in the fact that several important functional inequalities have no
explicit dependence on the dimension.

An exemplary illustration of this phenomenon is given by the Gaussian isoperimet-
ric inequality. Consider the space R” equipped with the standard Gaussian measure whose
density i

y is iy,

dx

which we refer to as the Gaussian space. A subset H C R” is called a half-space if it has the

form H = {x : (x,v) < b} forsome v € R” and b € R. For A C R" and ¢ > 0, we define
the g-extension of A by A, := {x e R” : 3y € A, ||y — x||2 < &}. Moreover, define

= () ™"/? exp(—|x|2/2),

1 ! 2
O(t) i = — e 24y,
V2m J-oo

the normal cumulative distribution function. The Gaussian isoperimetric inequality reads,

Theorem 1.1 (Borell, Sudakov—Tsirelson [8,42]). If A C R” is a measurable set and H C R"
is a half-space satisfying y,(A) = y,(H) then for all ¢ > 0 we have

Vn(Ag) = yu(He) = (D7 (ya(A)) + &).

This theorem highlights an important metaproperty of Gaussian space: The extrem-
izers of functional and geometric inequalities are one-dimensional objects, in the sense that
they only depend on one direction. This is, for example, the case with the logarithmic-
Sobolev inequality, Ehrhad’s inequality, and Talagrand’s transportation—entropy inequality
(see [31,32] for details). A recent breakthrough by Milman and Neeman [39] shows that the
k-set analog of the isoperimetric inequality is saturated by partitions which only depend on
k — 1 directions.

Is it reasonable to look for larger classes of measures which are Gaussian-like in
the sense that they obey similar principles? Product measures are one natural candidate: By
considering the harmonics, it is clear that several inequalities, such as the Poincaré inequality,
will be saturated by one-dimensional functions. The central limit theorem ensures us that
product distributions are Gaussian-like in the sense that, under mild conditions, marginals
onto “typical” directions are close to a Gaussian.
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In recent years, the class of measures which satisfy a convexity property, called
log-concave measures, arose as another promising candidate. One remarkable result which
supports this is Klartag’s central limit theorem for convex sets [27], which asserts that typical
one-dimensional marginals of such measures have an approximately normal law. In this note,
we discuss the aspects of isoperimetry and concentration of measure in this class, in search
of a counterpart to Theorem 1.1.

Log-concave measures and the Kannan-Lovasz—-Simonovits conjecture. A measure v
on R” is log-concave if its density with respect to the Lebesgue measure is of the form
dv = e Vdx where V : R* — R U {00} is convex. This class captures, for example, the
Gaussian measure, as well as the uniform measure on a convex set.

For aset A C R”, define the surface area measure of A with respect to v by

v (04) = limsuplv(Ag\A). (1.1
e—>0+ &
(recalling that A, = {x e R” : dy € A, ||y — x||2 < ¢}). In analogy with the Gaussian isoperi-
metric inequality, we would like to obtain a lower bound on v*(3A) in terms of v(A). This
gives rise to the definition
. v (94)
Yy = inf ————
AcR" v(A)(1 —v(A))

known as the Cheeger constant of the measure v. Up to universal constants, 2 is equivalent
to the Neumann spectral gap of v, see [38]. It plays a central role in the theory of concentration
of measure phenomena; a lower bound on v, implies, for example, that a Lipschitz function
is typically close to its mean (see [32] and Section 2 below).

Since the problem is not scale invariant, it is hopeless to find a lower bound on
Y, that holds uniformly over all log-concave measures. Indeed, by considering the push-
forward through the map x — Ax and replacing A by A4, the Cheeger constant scales as %
We therefore need to assume that the measure is normalized in some way. A natural way to
do so is to require that Cov(v) = Id where Cov(v) is the covariance matrix of v, defined by
Cov(v);,; := Ex~,[Xi X;]. A centered measure v satisfying Cov(v) = Id is called isotropic.
It turns out that, as a consequence of the Brunn—Minkowski inequality, this normalization
essentially corresponds to the fact that half-spaces satisfy an isoperimetric inequality.

Fact 1.2 (see [30, SECTION 2]). Let v by a log-concave measure in R". Consider the quantity
. v (9H)
inf ———————

aerr y(H)(1—v(H))

half-space

oy =

(the difference from r,, being that the infimum is only taken over half-spaces). Then,
1 —~1/2
S = [ Cov) o < 300
We are now ready to state the Kannan—Lovasz—Simonivits conjecture.
Conjecture 1.3 (KLS conjecture, [25]). There exists a universal constant ¢ > 0 such that

any isotropic, log-concave measure v on R" satisfies ¥, > c.
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In light of Fact 1.2, the KLS conjecture equivalently asserts that for any log-concave
measure,
cay <Yy < ay

for a universal constant ¢ > 0. In words, up to a constant independent of the measure or
the dimension, the isoperimetric minimizer of any (not necessarily isotropic) log-concave
measure is a half-space, hence the analogy to Theorem 1.1.

This conjecture has a wide array of implications in high-dimensional convex geom-
etry and computational geometry, see [1,33] for extensive reviews. Here, we only mention
what is perhaps the most important of implications, a conjecture due to Bougain, known as
the hyperplane conjecture or the slicing problem.

Conjecture 1.4. There is a universal constant ¢ > 0 such that, for every n and every convex
K C R”" of unit volume, there exists an affine hyperplane H such that

Vol,_1(K N H) > c. (1.2)

For a survey on the hyperplane conjecture and other related problems, see [3e].
Denote by v, = inf, v, where the infimum is over all isotropic log-concave measures v
on R” (so that the KLS conjecture states that ¥, > ¢ for a universal constant ¢ > 0), and by
L, the largest (possibly dimension-dependent) constant which can replace the constant ¢ on
the right-hand side of (1.2). It was shown by Klartag and the author [2e], that ¥, < L,. In
particular, Bourgain’s hyperplane conjecture is implied by the KLS conjecture (see also [5]).

Let us briefly review some of the history around the KLS and hyperplane conjec-
tures. In their original work, Kannan, Lovdsz, and Simonovits showed that ¥, 2 n=1/2,
The exponent 1/2 was improved in several consecutive works, by Klartag [27] (relying on
Bobkov [7]), by the author [16] (relying on Guédon—Milman [24]), and by Lee and Vempala
[34], obtaining v/, > n~'/4. Regarding the hyperplane conjecture, Bourgain [12] showed that
L, = n~*1log(n)~'. Until recently, the only improvement of this bound was L, > n~1/4,
due to Klartag [26].

A recent breakthrough by Chen makes a very significant improvement upon these
bounds, nearly proving both conjectures.

Theorem 1.5 (Chen, [15]). One has ¥, = n=°M. As a corollary, L, = n=°W.

The pathwise approach and the Stochastic Localization scheme. Chen’s proof is based
on the so-called Stochastic Localization scheme, introduced in [16] and described in detail
below. This scheme is one example of a more general metatechnique which we call pathwise
analysis. In recent years, this metatechnique was proven useful in obtaining a variety of
results that have to do with the analysis of high-dimensional distributions. The goal of this
note is to highlight the main ideas behind it and review several applications thereof.

The use of ideas from diffusion and heat-flow to concentration inequalities dates
back at least to the 1960s and to the seminal works of Nelson and Gross, which introduced the
hypercontractivity property of heat semigroups and derived the log-Sobolev inequality for
Gaussian space, respectively. In the following decades, heat flow (or semigroup) techniques
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were realized to be a very powerful tool in proving concentration inequalities. These are, for
example, the main ingredients in the celebrated Bakry—Emery theory [3]. These ideas rely
on differentiation formulas for the heat semigroup which can alternatively be obtained via
pathwise integration along the corresponding diffusion process.

The pathwise approach takes one more step and inspects the behavior of the process
along a single path; it turns out that, when averaging over paths, quite a bit of information
is lost, which can otherwise be revealed by using stochastic calculus. For example, bounds
on the spectral gap and mixing times of diffusion processes can be obtained by coupling
the paths of two diffusion processes. Some examples of works which manage to prove new
bounds by direct analysis of the diffusion process are [19,11,13,36]. In this note we focus on a
seemingly new type of pathwise proofs where, rather than considering the path of a diffusion
process, one constructs an evolution on the space of measures, driven by Brownian motion,
associated with a given distribution.

Structure of the paper. In what follows, in order to give an initial glimpse into pathwise
techniques, in Section 2 we begin with a warm-up where we prove a concentration inequality
for Lipschitz functions on Gaussian space using stochastic calculus. Then, in Section 3 we
prove a generalization of the Gaussian isoperimetric inequality, due to Borell. In Section 4 we
introduce the Stochastic Localization process and discuss the main ideas used in obtaining
bounds for the KLS conjecture. Finally, in Section 5 we outline several other applications of
Stochastic Localization towards (i) expansion bounds for complex-analytic sets, (ii) concen-
tration inequalities for Ising models, and (iii) structure theorems which represent measures
on the discrete hypercube as mixtures of product-like components.

2. A FIRST TASTE OF PATHWISE ANALYSIS: CONCENTRATION OF

LIPSCHITZ FUNCTIONS IN GAUSSIAN SPACE

A useful property of Gaussian space, due to Maurey and Pisier, is the fact that Lip-
chitz functions have a sub-Gaussian tail:

Fact 2.1. For any 1-Lipschitz function f : R" — R, we have

n(f ‘f(x) ~ [ s

This type of behavior is often referred to as concentration of measure. Put forth

> ot}) < 4(1 - d>(oz)) < 2e_°‘2/2, Yo > 0.

by V. Milman, such bounds have far-reaching applications and the behavior of this type is
a cornerstone in the theory of high-dimensional phenomena (see, e.g., [41]). In this warm-
up section, we provide a proof of this fact which will highlight some of the advantages of
pathwise analysis. We assume that the reader has some familiarity with basic concepts in
stochastic calculus.

Throughout the section, we fix a measurable function f : R" — R. Let (B;)>0 be
a standard Brownian motion on R”; recall that By has law y,,. Consider the Doob martingale

M; = E[f(Bl) | Bt]-
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For a function g : R” — R, define P;[g](x) := [gn g(x + V1y)yn(dy). Since the law of By,
conditioned on By, is N (By, (1 — t)Id), we have

M; = Pr[f1(Bs). 2.1)

Recall that, given a stochastic process (Xs)s>o0, its quadratic variation is defined as

n
X], = li X, — X, )2,
[X] m =t)||—>0];( te lkﬂ)

1P=(0=0.t1 el
where ||| denotes the mesh of the partition. Ito’s isometry tells us that
Vary, [f] = Var[ f(B1)] = E[M]

(this is just the continuous version of the fact that for a discrete time martingale Xo, X,.. .,
one has that Var[X,] = Y i_ | E(X; — X;_1)?).
In order to obtain a bound on [M];, using It6’s formula, we calculate

2.1)

aM, ‘=" d(P1-[f1(B,))
= (VP /1B B} + o P 1Bt + AP [11(Bd
— (VPiLl/1(B.). dB).

where we used the identity % Pi[f] = %APS[ f1. Tt follows that

d 2
M1 = [VPIf1BD, = Vi3, @2
where V; := V P1_[ f](By). Since the operators V and P; commute, we also have
V: =E[Vf(By) | B:].

which teaches us that V; is a martingale. By the convexity of | - |3, we have that ||V, ||? is a
submartingale. We conclude that

1
Var,, [ f] = E[M]; = /0 E[V;3ds < EVi|3 = E,, [V 2.

This is precisely the Poincaré inequality. Alternatively, it can be easily proven using spec-
tral methods. Moreover, instead of using Brownian motion, we could essentially repeat the
argument directly using the semigroup P;. Writing

[ r2am- ( / fd)/n)z = P20 - PLrI0? = | l (%P,[(Pl_t[f])z]m))dt,

a simple calculation using integration by parts gives that

d 2 2
EPt[(Pl—t[f]) ]0) = Pt[”VPl—t[f]Hz](o)a
and an application of Jensen’s inequality yields the Poincaré inequality.

Thus, in what we have seen so far, the “pathwise” aspect merely provides different

viewpoint on a proof that can be carried out via elementary calculus. To see where it has a
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real advantage, let us now assume that the function f is 1-Lipschitz. Under this assumption,
with the help of Jensen’s inequality, we learn that

VA2 = [ VP [/1B) |3 < Pie[IIVSI3](Br) <1, VO<ri<1.

By equation (2.2), we have that [M]; < 1 almost surely. Since M; has the same law as the
push-forward of y, under f, Fact 2.1 follows as an immediate corollary of the following:

Proposition 2.2. Let (M;)o<;<1 be a martingale satisfying [M]; < 1 almost surely. Then,
P(|My — M| > a) < 4(1 — ®(a)), VYa>0. (2.3)

The key to the proof of this proposition is the Dambis/Dubins—Schwartz theorem
which, roughly speaking, asserts that every continuous martingale can be represented as a
time-changed Brownian motion. More formally, if M, is a continuous martingale adapted to
a filtration %7, then one can define a process (W;);>o and a filtration (15,) ; over the same
underlying probability space, such that:

(i) W; is a Brownian motion with respect to the filtration F, ‘.
(ii) One has M, — My = Wiy, and F; = Fpa, for all £ > 0.

Next, we claim that t := [M]; is an fﬁ}—stopping time. Indeed, the claim that for all ¢, the
event {t <t}is F;-measurable is equivalent to the claim that for all ¢ the event {t < [M];}
is F;-measurable, which is evident. Note that, by assumption, we have T < 1 almost surely.

We finally conclude the following: There exists a Brownian motion W; adapted to
a filtration %; and an ﬁt-stopping time t such that T < 1 almost surely and such that W is
equal in law to M; — M. At this point we can write

PMy —My>a)=P(W; >a) < IP’(EII € [0, 1] such that W; > a).
The proof of Proposition 2.2 is now concluded via the following “reflection principle.”
Fact 2.3. Let W; be a standard Brownian motion. Then, for all o > 0, we have
]P’(EI[ € [0, 1] such that Wy > Ol) =2P(W) > a) = 2(1 — @(a)).

Proof. (sketch) Consider the stopping time t = inf{t; W; = «}. Since, conditioned on 7 < 1,
we have that W) — W, has a symmetric law, we have P(W) > W |t < 1) = % |

Fact 2.1 may be alternatively proven by combining the Gaussian isoperimetric
inequality and the coarea formula, or by a direct coupling argument (see [41, THEOREM 2.2]).
Nevertheless, the above proof highlights the advantage in considering the martingale M, in
a “path-by-path” manner, and the reason that this approach can reveal dimension-free phe-
nomena: The process V; extracts the “important” directions, in which the function f varies,
and the law of f(Bp) eventually only depends on the behavior of the one-dimensional pro-
cess M;. The reduction of the analysis of an n-dimensional function, or measure, to the
behavior one-dimensional process will be a recurring motif later on.
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3. THE GAUSSIAN ISOPERIMETRIC INEQUALITY AND

NOISE-SENSITIVITY

As a next step towards demonstrating the pathwise technique, we provide a proof of
the Gaussian isoperimetric inequality, Theorem 1.1. In fact, we prove a stronger statement,
known as Borel’s noise stability inequality [9].

Let B; be a standard Brownian motion in R”, adapted to a filtration ¥;. Define
Z, = fol e™5/2dBy. Observe that Zs, := lim;_oo Z; has the law y,, since Joletdt = 1.
For all measurable A C R” and ¢ > 0, define

Sens;(A) := E[P(Zoo € A | Z)P(Zoo £ A | Z1)],

referred to as the 7-noise sensitivity of A. From an analytic point of view, this quantity can
be understood as the rate at which heat escapes the set A under the heat flow on Gaussian
space, defined by the Ornstein—Uhlenbeck operator £ = A — x - V.

A standard argument shows that noise-sensitivity is related to isoperimetry by

Sens; (A)

which holds, for example, under the assumption that A has finite perimeter.

v (94) = lim 3.1)

Theorem 3.1 (Borell [9]). If A C R" is a measurable set and H C R” is a half-space sat-
isfying yn(A) = yn(H), then for allt > 0,

Sens;(A) > Sens;(H).

This theorem has far-reaching applications in statistics and theoretical computer
science which we do not discuss here, but we refer the reader to [17,40] and references therein.
Combined with equation (3.1), Theorem 1.1 follows as a corollary.

Towards proving Theorem 3.1, define for a set A C R”,

b(A) = /A x7n(dx).

the Gaussian first-moment of A. Moreover, we define for s € R,

4(s) = / (o).

@~1(s)
Evidently, if H C R” is a half-space then one has ||b(H)||> = q(y»(H)). At the center of
our proof lies the following simple fact.

Fact 3.2 (Level-1 inequality). For any measurable A C R”,
|6, =< a(ya(4)). 3.2)
with equality when A is a half-space.

This fact is referred to as the level-1 inequality since it characterizes the sets which
maximize the L,-energy on the first-order Hermite expansion. It constitutes the only inequal-
ity in the proof to come.
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Proof. Set 6 = ubl)((TAS)nz' Let H be a half-space of the form H = {x; (x, 8) > «a} with «

chosen so that y, (H) = y,(A). Note that, by definition,

q(yn(A)) = ”/nyn(dX) ZII;(X’Q)Vn(dx)»

so we only need to show that

f (5. 0)y(dx) = / (x.0)yn(d).
H A

Since y,(A) = y»(H ), we may subtract « from both integrands, thus the above is equivalent

2

to
/n(<x’ 0) — a)(l(x,e)za —1ied)yn(dx) =0,

which is evident. |

Define p; to be the law of Z, conditioned on Z;, which easily checked to be
N(Z;, e /21d), or in other words,

1
we(dx) = 2m)2emt/? exp(—ze’|x - Zt|2)dx.
Set M; := i (A) = P(Zs € A | Z;). Note that, by definition,
Sens; (A) = E[M,(1 — M;)] = Mo(1 — Mo) — Var[M,]. (3.3)

Consider a half-space H satisfying y,(H) = y,(A) and, analogously, define N; = u,(H).
Equation (3.3) tells us that the statement of Theorem 3.1 is equivalent to the assertion that

Var[M,] < Var[N,], V¢ > 0. (3.4)

In order to compare the variances of the two processes, we first calculate the corresponding
quadratic variations. Using [t6’s formula, we write

1
dM, = d /(2n)—"/2e"’/2 exp(—zet”x - Ztlli)dx
A

=e' /:4()C —Z:,dZs)ps(dx)
= (b(As).dBy). (3.5)

where A; 1= e‘/z(A — Z;). Observing that M; = u;(A) = y,(A;), with the help of (3.2),
we arrive at the inequality

d

M1 = [b(An)|; < g(M0)*. (3.6)
Defining H; := e!/>(H — Z,), a similar calculation shows

d

TINL = [b(HD |5 = g(Ne). (3.7)

On an intuitive level, equations (3.6) and (3.7) tell us that, in a certain sense, the mar-
tingale N; is moving faster than M;. Naively, we might hope that the above implies that
E%[N ls = ]E%[M ]¢ for all ¢, which would conclude (3.4). This is not true, however.
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Observe that E[N]e = Var[No]| = Var[My] = E[M]s. The following lemma extracts
the power of the pathwise approach. We can couple the two processes in a way that gives us
the desired domination.

Lemma 3.3. Let v : R — [0, 00) be a continuous function. Let (M;)72,, (N)72, be two
continuous real-valued martingales such that My = Ny, and such that

d d
Z[N]t =v(N;) and E[M]’ < v(M,), (3.8)
almost surely, for allt > 0. Then for all t > 0, one has
Var[M,] < Var[N,].

Since equations (3.6) and (3.7) verify (3.8), an application of the above lemma
yields (3.4), which concludes the proof of Theorem 3.1. It therefore only remains to prove
this lemma.

Proof of Lemma 3.3 (sketch). Without loss of generality, assume My = Ny = 0. By the
Dambis/Dubins—Schwartz theorem, there exist standard Brownian motions By, l?, such that
N; = B[y}, and M; = E[M] By a standard disintegration theorem, the processes maybe
defined on the same probability space in a way that B, = B,. In other words, there exist two
martingales X;, ¥; and a standard Brownian motion By, defined over the same probability
space, such that X, Y; have the same laws as N;, M, respectively, and such that

X =B[X], andY,:B[y]t, Vet > 0.

Let tx, ty be the inverse functions of [X];, [Y];, respectively. Then the last display implies
Xy (r) = Yoy (1) = Br, and by formula (3.8) we have

d d
E[X]t|t=rX(T) = v(Br) = E[Y]t|t=ry(T)s VT =0,
which implies that [X]; > [Y]; for all # > 0. By Itd’s isometry, the lemma follows. ]

4. STOCHASTIC LOCALIZATION AND THE KLS CONJECTURE

In this section we introduce the main technique discussed in this note, the Stochastic
Localization process, and demonstrate how it can be used to produce lower bounds on the
Cheeger constant of a log-concave measure.

4.1. Construction of the process and basic properties

Let B; be a standard Brownian motion in R”, adapted to a filtration %;. As in the
previous section, define Z; := fot e/ 2d By and let u; be defined as the law of Z, condi-
tioned on Z;. The measure-valued process (11;) interpolates between the standard Gaussian
measure, at time 0, and a Dirac measure at time oco. A key formula in the previous section

(dX)

was (3.5), which can be restated as follows: Setting p,(x) := £ L > we have

Vx e R", dp;(x) = e’/zp,(x)<x —/xp,(x)dx,dB,>. 4.1)
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Now, let v be an arbitrary probability measure on R”. We would like to consider a simi-
lar evolution with v taking the place of the Gaussian measure. Suppose that (C;);>0 is a
stochastic process adapted to F;, such that for all ¢, C; is an n X n positive semidefinite
matrix. Inspired by (4.1), consider the system of stochastic differential equations

Vx eR?, Fo(x) =1, dF;(x)= F;(x){(x —a;,CidBy), 4.2)

where

a; ;= /xF,(x)v(dx).

We can now define a measure-valued process, (v;):>0, by v:(dx) = F;(x)v(dx). Note that
vo = v. The choice v = y,, and C; = ¢’ /21d recovers the evolution defined by (4.1), so the
process v; can be thought of as a generalization of ;.

We remark that the system (4.2) is an infinite system of stochastic differential equa-
tions, but as we will see below, it may instead be written as a finite system. Its existence and
uniqueness is proven in [16]. Informally, we can think of equation (4.2) as

Fryar(x) = F,(x)(1 + (x —a,, N (0. C2dr))),

so that process can be understood as a continuous version the following iterative procedure:
Start with a density on R”, and at each iteration multiply this density by a linear function,
which is equal to 1 at the center of mass of v;, and whose gradient is distributed according
to an infinitesimal Gaussian.

Before we continue, let us point out several basic properties of this process. First,
using Itd’s formula, we calculate

dF;(x) d[F(x)]: « !
FO0 " 2For = b B = 5[ Cutx —ap[ar

Consequently, the measure v, attains the form

dlog F;(x) =

ve(dx) = exp(z, + (vg, x) — %(Gtx,x))v(dx), 4.3)

with G, := fot Cszds, where v, € R” is an It process adapted to ; and z; is a normalizing
constant. In particular, if we choose C; = Id for all ¢, we have

t
ve(dx) = exp(z, + (v, x) — §||x||%)v(dx). 4.4
Next, we calculate
dvt(IR") = </ Ce(x —a,)F,(x)v(dx),dBt> =0.
Rn

Equation (4.3) shows that F;(x) is positive for all x and ¢, so we conclude that v; is almost
surely a probability measure for all ¢ and that a; is its center of mass. Finally, it is evident
from (4.2) that F;(x) is a martingale for every x, which immediately gives the following.

Fact 4.1. For every measurable W C R”, the process v;(W) is a martingale.
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4.2. Isoperimetry for log-concave measures using Stochastic Localization

Fix a log-concave measure v on R” and a measurable set A C R”. We would like to
use the process constructed above in order to produce a lower bound on v+ (dA). Consider
the process (v;); defined in (4.2) with the choice C; = 1d.

Applying Fact 4.1 to the set A, \ A gives

v1(04) = Ev;(04). 4.5)

To continue the analogy with Section 3, we consider the martingale M; := v;(A). Recall that
the proof of the Gaussian isoperimetric inequality amounted to obtaining an upper bound on
%[M]t, in terms of M, for all ¢ > 0. In our case, we will only be able to establish such a
bound for small enough values of ¢. This will be complemented by the fact that for large 7,
the measure v, satisfies an isoperimetric inequality, a consequence of the following:

Theorem 4.2 (Bakry-Ledoux [4]; see also [33, THEOREM 25]). Let u be a probability measure
on R™ whose density is of the form

du(x) = e V@=5lxl5 g (4.6)
where V(x) : R® — R U {oo} is convex and o« > 0. Then for all A C R", we have
W 04) = Vap(A)(1 - p(A)). @)

We sketch an alternative proof of this theorem in Section 5.1. In light of (4.4), we
may apply the theorem to the measure v, with @ = ¢, which yields

v+ (04) 2 Evf(04)

(4.4)+@4.7)
> E

> [Viv (4)(1—vi(4))]
= Vi(Mo(1 — Mo) — Var[M,)). (4.8)

As in Section 3, our goal is once again to bound from above the quantity Var[M;] = E[M];.
To this end, we calculate

dM, = d/ Fr(x)v(dx) “:‘2’/(x—at,d3,)vt(dx), (4.9)
A A
implying that
d 2
N M]; = H/(x —ag)ve(dx)|| . (4.10)
t A 2

The right-hand side can be bounded with the help of the following simple lemma.

Lemma 4.3. For every probability measure n on R" and every measurable A C R”,

A@—AgMMQMM)

2
< | Cov() | op- (4.11)
2
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o Jaxp@x) . . . . .
Proof. Define 6 := TR (if the denominator vanishes, there is nothing to show).

Also, without loss of generality assume [, xjt(dx) = 0. Then we have

2 2
/ *p(dx) =(/ <x,9>u<dx))
A 2 R”

< /Rn (x,0)*u(dx) = (6, Cov(n)b) < ”Cov(,u) ”OP. [

In the process w; considered in Section 3 (which corresponds to v;, only with the

measure v replaced by the Gaussian measure), the matrix Cov(i,) was deterministic. The
crucial difference here is that we have to account for || Cov(v¢)| op-
Combining (4.10) and (4.11), we have

t
Var[M,] = E[M]; < / [Cov(vs) | opds.
0
Together with (4.8), the state of events can be concluded by the following proposition.

Proposition 4.4. Let v by a log-concave measure on R". Construct the process (v;)$2,
using equation (4.2). Suppose that for some t, o« > 0, one has

t
IE|: [ ||Cov(vs)||opds] <a. (4.12)
0

Then, for every A C R” such that v(A)(1 — v(A)) > 2«, we have the Cheeger-type inequality
1
v (94) > EJZV(A)(l —v(4)).

The condition v(A)(1 — v(A)) > 2« is not crucial; one can show that it may, in fact,
be ignored (see [38, THEOREM 1.8]), so that a bound of the form (4.12) implies v, > %\/f Our
goal will therefore be to establish (4.12).

Note that condition (4.12) does not involve the set A at all. In that sense, we have
managed to reduce a statement with a quantifier “for every A C R”,” to a bound which
involves only the measure v. We now need to produce an upper bound on || Cov(vs)||op. The
process Cov(vs) becomes tractable thanks to a “moment-generating” property described in
the next subsection.

Before we proceed, let us note the trade-off between two conflicting goals, namely
controlling from above the variance of v;(A4) (which corresponds to taking ¢ small enough),

and controlling from below the “uniform concavity” term in log ‘i,—” (which corresponds to

L

v

taking ¢ large enough). It is reasonable to expect that a clever choice of the matrix C; could
be fruitful: For a general choice of C;, equation (4.9) becomes

dvi(A) = (Cbs(A),dB;), where b;(A) := /(x —a;)vs(dx). (4.13)
A

Equations (4.3) and (4.13) suggest that the choice of the driving matrix C; allows
a more intricate control of this trade-off. On the one hand, by taking C; to be small in the
direction of b;, we gain more control of the variance of v;(A), but, on the other hand, we
would like the matrix fot C2ds to be large. In the context of the KLS conjecture, it is not
known if this strategy can produce better bounds, however, in Section 5 we give several
examples which crucially rely on a careful choice of C;.
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4.2.1. Stochastic Localization as a moment-generating process
Recall that a; is the center of mass of v,. A calculation shows that

da; = d/ xv(dx)
]Rn

(‘2)/ x(x—at,Cdet)Ft(x)v(dx)

= (f x® (x — a,)vt(dx))CtdBt = Cov(v;)C;dB;. 4.14)
Rn

In words, the time-differential of the first cumulant of v; is equal to its second cumulant
multiplied by the generating increment C;d B;. A calculation of similar spirit gives

d Cov(v;) = MP[v,]C,dB; — Cov(v;)C2 Cov(v,)dt, (4.15)

where

MO,] = [ (x — an)® v, (d)

is the kth moment tensor of v,. In general, the time differential of M ®)[v,] will involve the
term M*TD[v,]C;dB,.

This property is reminiscent of the logarithmic Laplace transform, where derivatives
with respect to the space parameter correspond to cumulants of a tilted measure. This fact
has far-reaching applications in asymptotic geometric analysis, notably it has been used in
several works of Klartag, in particular in his breakthrough on the slicing problem [26].

4.2.2. Obtaining a bound for the KLS conjecture

We now give an overview of the next steps needed to obtain a bound for the KLS con-
jecture. Going back to Proposition 4.4, such a bound is reduced to obtaining upper bounds on
the growth of || Cov(v;)||op. According to equation (4.15), the expression for the differential
of Cov(v;) involves the process M3 [v;].

First let us consider a simple (but somewhat wasteful) way to obtain a bound for
|| Cov(vy)|lop, based on the fact that

[Cov(ve)|op < Tr(Cov(vs)?).
Equation (4.15) combined with Itd’s formula gives
d 2
S ETr(Cov(v)?) < E| MO ]| s (4.16)

The quantity on the right-hand side involves third moments of the measure v;. On a concep-
tual level, at this point, the state of events is that we have the implications:

Upper bound on M@ (v,) = Upper bound on ||Cov(v,)| op = Lower bound on ¥,
“4.17)

One way to continue from here would be to look for bounds on M3 (1) in terms of Cov (1)
which hold universally over all log-concave measures @ on R”. This would imply that the
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rate of growth of Cov(v;) is bounded by Cov(v;) itself. Following this route, the work [16]
used a priori estimates on the “thin-shell” constant, defined as

Op = Sup VarX»vp, ”X”Z’
w

where the supremum runs over all isotropic, log-concave probability measures @ on R”.
Upper bounds on o, imply the type of bounds on M3 [v,] which, when plugged into the
implications above, give a reduction, up to a logarithmic factor, from the KLS conjecture to
a weaker conjecture called the variance conjecture stating that o, = O(1) (see [1,16]).

Later on, Lee and Vempala ([35, LEMMA 33]) realized that, when taking the driving
matrix C; to be the identity, one could instead use the bound

3/2

E | MP[u]]7g < Tr(Cov(1)?) (4.18)

which holds uniformly for all log-concave measures. Together with equation (4.16) and an
application of Gronwall’s inequality, this gives that E Tr(Cov(v;)?) = O(n) forall t < \/LE
Plugging this into Proposition 4.4 yields the bound v, > n~1/4.

Let us now briefly discuss the additional steps needed to produce Chen’s bound,
¥, = n~°W _First of all, by rather direct arguments, one can reverse implication (4.17) in
the sense that

Lower bound on v, N Improved upper bounds on M3 [1]

4.1
for all u isotropic, log-concave in terms of Cov(u). (4.19)

In other words, if we have a priori bounds for the KLS conjecture we can improve, in some
sense, on (4.18). Lee and Vempala speculated that the implications (4.17) and (4.19) can
be chained in a way that “bootstraps” an a priori bound on the KLS constant yield a better
bound, however, they were not able to successfully implement this strategy.

Chen added another important ingredient to the mix: In light of equation (4.4), we
know that for large enough #, the measure v; is not only log-concave, but is 7-uniformly
log-concave in the sense of (4.6). According to Theorem 4.2, it has concentration properties
which do not a priori hold for log-concave measures. The main strategy is then to split the
interval [0, ¢], in Proposition 4.4, into two intervals: In the first interval, the “bootstrap” bound
on ¥, is used, whereas in the second, he manages to leverage on the uniform log-concavity
of v; in order to find a version of the implication (4.19) which gives a yet stronger lower
bound on ¥, thereby closing the implication circle of (4.17) and (4.19).

5. DECOMPOSITION OF MEASURES AND FURTHER APPLICATIONS OF

STOCHASTIC LOCALIZATION

In this section we describe several additional applications of the Stochastic Local-
ization process. Common to these applications is that they rely on the fact that this process
gives rise to a decomposition scheme which expresses a given measure as a mixture. We fix
a measure v on R” and use the same notation as in Section 4.1.

Recall that, according to Fact 4.1, for every fixed measurable set A C R”, the process
Vs (A) is a martingale, which implies in particular that v = Ev,. More generally, the optional
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stopping theorem implies that, for every ¥;-stopping time t, one has v = Ev;. Therefore,
every such stopping time induces a decomposition of the measure v, in the sense that it can
be viewed as a mixture whose components are the measures v;.

To summarize, every stopping time t may be associated with a probability measure
m = my on an abstract index set J, and every @ € J may be associated with a probability
measure v, on R”, so that

v(W) = /,1 ve(W)m(da), VYW C R” measurable. (5.1)

Above, the random measure v, with o ~ m has the same distribution as v; where v, is defined
by equations (4.2). In the next sections, we review several applications of this decomposition.

5.1. Needle decompositions

At the heart of the argument found in the original paper of Kannan, Lovész, and
Simonovits [25] lies a procedure that takes the uniform measure on a convex setin R” and rep-
resents it as a decomposition into measures whose support is contained in a one-dimensional
affine subspace (referred to as “needles”). This was done using an iterative scheme which
repeatedly cuts the set via hyperplane bisections which preserve the relative volume of the
set A. This type of scheme, referred to as “localization” generalizes an earlier lemma by
Lovész and Simonovits [37], and is based on ideas going back to Gromov and Milman [23].
Klartag [28] gives a somewhat canonical construction which generalizes this concept to Rie-
mannian manifolds (where needles are supported on geodesics).

We will not discuss the aforementioned localization schemes in detail here. Instead,
we describe an alternative way to obtain a “needle decomposition” (hence, a decomposi-
tion into measures with one-dimensional support) for a prescribed measure on R”, using
the (generalized) stochastic localization equations. We first demonstrate this by outlining an
alternative proof of the Gaussian isoperimetric inequality, as well as to Theorem 4.2.

Take v = y, and consider the process generated by (4.2). The main idea is the follow-
ing one: In view of equation (4.13), by choosing C; = Proj b We have that v;(A) remains
constant along the process. By doing so, we obtain a decomposition of y, into measures
which satisfy vy (4) = y,(A). Next, we will argue that as t — oo, we obtain a decomposi-
tion into measures with one-dimensional support.

Denote G; = fot C2ds. Since Cy is a projection matrix of codimension 1, we have
Tr(G¢) = (n — 1)t and ||G¢||op < t. This implies that all but one of the eigenvalues of G,
are at least ¢ /2. According to (4.3), the measure v, is a Gaussian measure whose covariance
matrix Cov(v;) converges, as t — 00, to a matrix M of rank at most 1. For all A C R”,
define voo (A) = lim;_, o, V¢ (A) (the limit exists by the martingale convergence theorem). It
is straightforward to show that v, is o-additive and therefore a probability measure, and
in fact, it is a Gaussian measure whose covariance is lim;—, o, Cov(v;). Moreover, since
v(A) = Ev,(A) for all  and A C R”, by taking limits we have that v(4) = Evs(A4).

In light of equation (5.1) (taking t = 00), we arrive at the following lemma.
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Lemma 5.1. For every measurable A C R", there exist a probability measure m on an index
set d and, for every o € 4, a probability measure vy on R" such that

yn(W) = / ve(W)m(da), VW C R" measurable. (5.2)
d

Moreover, for every a € d, the measure vy has a Gaussian law with covariance matrix Cy
such that (i) rank(Cy) = 1, (ii) ||Cy |lop < 1, and (iii) vy (A) = y, (A).

We now use this decomposition to show that the n-dimensional Gaussian measure
“inherits” the isoperimetric properties of the one-dimensional Gaussian measure. Indeed,
assuming the bound

yi (W) = 1(y1(W)). VW C R measurable, (5.3)

for some function I : [0, 1] — [0, 00), and given any measurable set A C R”, we can find a
decomposition of y, as in (5.2) such that every v, is a one-dimensional Gaussian measure
of variance at most 1 and vy (A) = y,(A). We get that

(5.2)

Yo\ 4) /J ve(Ae \ Aym(der) > /J ve (A N Supp(v)), \ A)m(der).

By taking limits,

e [ vF @Aym(da) = / 1(va(A))m(de) = 1(ya(A).
d d

We have therefore reduced the proof of the Gaussian isoperimetric inequality in dimension n
to the same inequality in dimension 1.

If v has density of the form dv = exp(=V(x) — a|x|?)dx with & > 0 and
V :R" — R convex, then the same procedure gives rise to a decomposition into one-
dimensional needles whose potential exhibits uniform convexity of a similar form. Thus
an analogous argument gives a reduction of Theorem 4.2 to the one-dimensional case of the
theorem (which has an elementary proof that we omit due to space considerations).

Next, we discuss a needle decomposition obtained by Stochastic Localization, in a
different setting, where the role of convexity is replaced by complex-analyticity.

5.1.1. A waist inequality for complex-analytic functions

In [29], Klartag uses a decomposition of the Gaussian measure y,, via Stochastic
Localization, to prove several expansion inequalities for complex-analytic sets. For example,
he obtains the following bound.

Theorem 5.2 (Klartag [29]). Let f : C" — C* be a holomorphic function such that
f(0) = 0. Write Z = f~1(0). Then one has

vn(Ze) = ye(fx € CF 2 Ix[2 <)), Ve >0, (5.4)

where Z, is the e-extension of Z and y, is the complex standard Gaussian measure on C™.
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The above may be thought of in context of Gromov’s waist inequality [22], accord-
ing to which, every continuous function f : R” — R¥ has a level set Z = f~!(a) which
satisfies (5.4). The key to the proof is to find a decomposition of y,, of the form

W=wam)
such that:

(i) The measures v, are Gaussian measures with covariance matrix of rank at most
k and operator norm bounded by 1.

(ii) The center of mass of each v, lies on Z.

Such a decomposition effectively reduces the proof of the theorem to the trivial case k = n.

We give a high-level sketch of ideas used to obtain such a decomposition. Consider
the Stochastic Localization process of equation (4.2) taking the background measure v to be
the Gaussian measure y,. Our goal is to find a control matrix C; so that the two properties
above hold. In order to obtain property (ii), the idea is to make sure that the a, € Z for all
t > 0 (the center of mass of v;). The evolution of a; obeys the equation (as in (4.14))

dat = COV(U;)CtdBt,

where now B; is a Brownian motion in C” and C; is an n x n Hermitian matrix. We want
to make sure that f(a,) remains constant. The key observation is that, due to the fact that f
is holomorphic, there will be no quadratic variation terms in the formula for df (a;), and we
have that

dfi(a;) =V fi(a;)T Cov(v;)CidB,, V1 <i<k.

For each ¢, by dimension considerations, we can find a projection matrix C; of rank n — k
such that df (a;) = 0. With this choice of driving-matrix, all but k eigenvalues of the matrix
G, = fot C2ds must converge to infinity as 7 — oo and, in light of (4.3), we get that Cov(v;)
tends to a matrix of rank k, as required by property (i).

5.2. Measures on the discrete hypercube

Up to this point, we were focused on absolutely continuous measures on R” (or C").
In this section, we discuss applications of Stochastic Localization to discrete measures, where
there is no natural notion of convexity and heat-flow techniques typically do not apply.

5.2.1. Concentration for Ising models via decomposition into low-rank systems
An Ising model is a measure v on the discrete hypercube {—1, 1}" whose potential
is a quadratic function or, in other words, its density is of the form

v({x}) = Z,  exp({x, Jx) + (h,x)), Vxe{-11} (5.5)

for some n x n symmetric matrix J (called an interaction matrix) and some 7 € R” (an
“external field”), and where Z,, is a normalization constant. An important question in statis-
tical mechanics is to characterize the pairs (J, 1) for which the model is in high temperature.
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One interpretation of high temperature is that \/W <« nwhere X, Y are independent
vectors with law v.

It is a common belief that for most cases of interest, measures in the high-tempera-
ture regime will admit stronger forms of concentration. For example, it is expected that the
so-called Glauber dynamics admits a polynomially-large spectral gap in the high-temperature
regime, which implies the existence of a polynomial-time sampling algorithm for v, see [21]
for definitions and background.

In what follows, we outline a way to obtain a concentration inequality for high-
temperature Ising models using Stochastic Localization. In order to keep things simple and
avoid encumbering the reader with definitions, we will derive a weaker form of concentration
than what the method allows. A function ¢ : R” — R is 1-Hamming-Lipschitz (1-Lipschitz
in short) if |p(x) — @(¥)| < ||x — y||1 forall x, y € {—1, 1}"*. We will show the following.

Theorem 5.3. For every v of the form (5.5) such that ||J ||op < 1/2 and every 1-Lipschitz
test function ¢ : {—1,1}" — R,
n
—
7 = [/ llop

The above bound was first obtained as a corollary of a result by Bauerschmidt and

Var,[p] <

Bodineau [6]. A modification of the argument below produces a stronger bound which also
establishes polynomial mixing of the Glauber dynamics, see [21]. We now outline the proof.

Without loss of generality, we may assume that J is positive semidefinite (we can
always add a multiple of the identity without changing the distribution). Given an Ising model
v and a test function ¢ : {—1, 1} — R, consider the Stochastic Localization equations (4.2),
with the matrix C; to be defined later on. Define

by = / () (x — ar)vy (dx)
{11}
so that, by (4.13), we have
d / ()i (dx) = (Ciby. dBy).

Set J; .= J — % (f Cszds. Equation (4.3) implies that v; is an Ising model with interaction
matrix J;. The idea now is to choose C; to be the orthogonal projection on the intersection
Im(J;) N b. By continuity, the matrix J; is decreasing in the positive definite sense, but
remains positive semidefinite. Since C;b; = 0, we have, using (4.13), that

IE/(pdv, :/godv, Yt > 0.

By dimension considerations, C; is nonzero as long as dim(Im(J;)) > 1. By running the
process until J; is of rank at most 1 and using the decomposition (5.1), we arrive at the
“needle decomposition” theorem formulated below. For every u, i € R”, define

vur({x}) = Z ) exp((x, u)® + (h,x)). (5.6)

with Z;, j, being a constant normalizing v,, 5, to be a probability measure.
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Theorem 5.4. Let v be an Ising measure on {—1, 1}" of the form (5.5) with J positive
semidefinite, and let ¢ : {—1, 1}" — R. There exists a probability measure m on R" x R"
such that v admits the decomposition

v = / Vy.ndm(u, h) 5.7
R~ xR”

and such that m-almost surely the pair (u, h) satisfies [ @dv, , = [ @dv and ||u|l> < ||J ||op-

This decomposition theorem allows us to show that an Ising measure inherits the
concentration properties satisfied by rank-one Ising models whose interaction matrix has a
corresponding norm. For models of rank-one, we rely on the following fact.

Fact 5.5 (see [21]). Forallu,h € R” such that lu| < % and for all 1-Lipschitz ¢ : R" — R,
we have
n
Vary, ,[¢] < T2l (5.8)
Now, given an Ising model v with positive semidefinite interaction matrix J of norm
at most 1/2 and given a 1-Lipschitz test function ¢, use Theorem 5.4 to find a measure m

corresponding to v, ¢. We have, by the law of total variance,

5.7
Var,fg] 2 /

R?xR”

n

(5.8)
Var,, ,[pldm(u,h) < /

———dm(u,h) <
RexRr 1/2 — [u| 1/2

n
— 1/ llop

5.2.2. Entropy-efficient decomposition of discrete measures

In the previous subsections we saw how the Stochastic Localization process allows
us to decompose a measure into well-behaved “needles.” We now present a family of related
applications which has proven useful in the context of interacting particle systems, random
graphs, and large deviation theory.

We begin the discussion with a simple example referred to as the Curie—Weiss
model: Fix 8 > 0 and consider the measure v on {—1, 1}", defined by

v({x}) = Z7'ex (é xix-),
({x}) B CXP\ ; j
with Zg a normalizing constant. Let X ~ v. It is well known that this measure exhibits the
following phase transition: If 8 < 1/2, then Cov(X1, X2) — 0asn — oo, whereasif § > 1/2
then Cov(X1, X2) is bounded away from 0 as n — oo (and hence, also Var[}_; X;] = Q(n?)).
On the other hand, in the latter case, there exist two measures v such that v = %(VJr +v7)
and such that v* are approximate product measures in the sense that || Cov(v¥)|op = O(1)
and, in fact, in a much stronger sense discussed later on.

This simple, yet somewhat prototypical example motivates the question of finding
sufficient conditions on a measure v on {—1, 1}"* under which it can be expressed as a decom-
position v = vazl v; where the measures v; attain a simple form, and N is not too large.
Here, we consider a more general form of decomposition where our goal is to express v as

v :/Jvam(doz)
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such that the v, ’s have a simple form. In this context, it is natural to replace the requirement
that N is not too large by an upper bound on the entropic-deficit of the decomposition,
defined as

Ent[v] —/Ent[va]m(da),
d

where, for a measure p on {—1, 1}"*, we define Ent(u) := — f{—l,l)" log(pn({x}))u(dx).
Stochastic Localization is a useful tool in obtaining decompositions of this sort, via
equation (5.1). The key is to analyze the evolution of the processes Cov(v;) and Ent[v;],
which turn out to be quite tractable. As an initial idea of how it can be done, observe that
choosing C; = Id and taking expectations on both sides of equation (4.15), we have that
%]E Cov(vy) = —E [Cov(v,)z].
One may interpret the last display as follows: The localization process “shrinks,” in expec-
tation, the large directions of the covariance matrix. Let us now outline an argument which
builds on this intuition.
Fix a measure v on {—1, 1}" and consider the process v; obtained by running the
process of equation (4.2) with the initial condition vy = v. For every ¢, take C; to be the
projection onto the span of the top eigenvector of Cov(v;). Using (4.15), we have that

d Tr(Cov(v,)) = —||C0v(v,)||épdt + martingale term.
A straightforward calculation using It6’s formula yields that

d Ent(v,) = —Tr(Ct Cov(vt))dt + martingale term
= —|| Cov(vy) ||0Pdt + martingale term.
By comparing that last two displays, we see that as long as ||Cov(v;)|lop is large, the trace

of the covariance matrix of v; decays, in expectation, much faster than its entropy. Now fix
A > 0 and consider the stopping time

7 := min{z; Cov(v,)”oP <A}

By the above, we have that A Ent(v;) — Tr(Cov(v;)) is a submartingale up to the stopping
time t. Using the optional stopping theorem, we have that
1 Tr(C
E[Entv] - Ent[vr]] = 2 E(Tr(Cov(v)) = Tr(Cov(vn))) < w < %
Using the decomposition (5.1), we arrive at the following theorem.

Theorem 5.6. Let v be a measure on{—1,1}". Then for every A > 1, there exist a probability
measure m on an index set d and a family of probability measures {vg}gecg on {—1, 1}" such

that the measure v admits the decomposition
v(W) = / vo(W)dm(0), VYW C R" measurable, (5.9)
d

such that
”COV(Va)HOP <A, Vaed
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and
Ent[v] — / Ent[vg]m(da) < ’%
d

A related argument can also produce bounds on the Frobenius norm of Cov(vy ). We
refer the reader to [19] for other inequalities of this form, as well as application to mean-field
approximation, which we do not discuss here.

The measures v, given by the above theorem are close to product measures in
a rather weak sense, and one may consider stronger notions of approximating a product
measure. A particularly useful notion is defined in terms of the transportation distance to a
product measure. For probability measures (1, 2 on {—1, 1}, we define

W(i1, pn2) = sup (/ sodm—/ quuz),
lollp<1 \J{~1,1}n {(~113m

where || - ||Lip denotes the Hamming—Lipschitz norm. This quantity is referred to as the
(Wasserstein) transportation distance with respect to the Hamming metric. Given a prob-
ability measure p on {—1, 1}", let £(u) be the unique product measure having the same
center of mass of x. Consider the quantity

P () = W(w §(n)

which quantifies how close p is to a product measure. What conditions on a measure v on
{—1, 1}" ensure that it admits a decomposition of the form (5.9) such that both the entropic
deficit and & (u) are nontrivially small (say, both are o(n))? The work [18] establishes this
under a condition inspired by an earlier work of Chatterjee and Dembo [14] and referred to
as low complexity. For a measure v on {—1, 1}", denote by f, its density with respect to the
uniform measure. Define the complexity of v by
D) :=Er~woiy sup (Vlogf, I)
xe{—1,1}"

(which can be understood as the Gaussian-width of the gradient of its potential). The follow-
ing decomposition theorem can be obtained via Stochastic Localization.

Theorem 5.7 ([18]). For every measure v on {—1, 1}"* and every & > 0, there exists a decom-
position of the form (5.9) such that its entropic deficit satisfies

Ent[v] — / Ent[vy|m(da) < en
d

and such that
/ Pe)m(da) < M
J &

Note that, as long as D (v) = o(n), we may obtain a decomposition with entropic
deficit o(n), such that P (v,) = o(n) for all but an o(1) fraction of «’s (with respect to m).
This type of structure theorem has several applications, in particular to the emerging field
of nonlinear large deviations pioneered by Chatterjee and Dembo in [14] and to mean-field
approximations. We refer the reader to [18] for more details.
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NATURAL SELECTION IN
SPATIALLY STRUCTURED
POPULATIONS

ALISON ETHERIDGE

ABSTRACT

Mathematical models play a fundamental role in theoretical population genetics and, in
turn, population genetics provides a wealth of mathematical challenges. Here we illus-
trate this by using mathematical caricatures of the evolution of genetic types in a spatially
distributed population to demonstrate the complex interplay between spatial structure, nat-
ural selection, and so-called random genetic drift (the randomness due to reproduction in
a finite population). In particular, we highlight the role that the shape of the domain inhab-
ited by the population can play in mediating the interplay between the different forces of
evolution acting upon it.
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1. INTRODUCTION

Theoretical population genetics is concerned with understanding genetic differences
within and between populations. It finds its origins at the beginning of the twentieth century
in the modern evolutionary synthesis, in which Darwin’s theory of evolution through natural
selection and Mendel’s laws of genetic inheritance were integrated. This work, pioneered by
Fisher, Haldane, and Wright, provided a unified mathematical framework within which to
discuss possible causes of evolution. As a result some consensus emerged about which forces
influence evolution, but questions such as their relative importance remained unresolved.

The intervening century has seen a rich interplay between population genetics and
the mathematical sciences: mathematical modeling has been employed to explore concepts
such as adaptation, speciation, and population structure, and in the process questions aris-
ing from population genetics have stimulated the development of elegant new mathematical
models and techniques, often of much wider applicability.

In population genetics, mathematical models are used both as a basis for statistical
inference and as a means to validate or dismiss concepts. The purpose of the model is then not
to provide detailed predictions of the fate of a particular biological population, but rather to
use caricatures of the forces of evolution, and the ways in which they interact, to gain some
insight into the evolutionary process. Our aim here is to illustrate this approach through
models that attempt to capture some features of the interactions between natural selection,
spatial structure, and the randomness due to reproduction in a finite population (so-called
genetic drift). Rather than giving detailed proofs, for which we refer to the original papers,
we shall provide informal arguments and draw out some of the lessons learned.

We shall try to minimize the use of biological jargon, but it is convenient to fix
some terminology. The term locus is used to refer in a general way to a location on the
genome. For our purposes, it will correspond to a region that codes for a gene, and it will
be passed on as a single unit from parent to offspring. Genes can occur in different forms,
called alleles, and we shall make the simplifying assumption that the gene in which we are
interested has just two alleles, denoted a, A. Evolution is fueled by mutation, the source of the
genetic diversity on which natural selection acts, but we shall assume that any new mutations
arising at the locus of interest are neutral, that is, do not affect fitness. Moreover, since genes
are organized onto chromosomes, different genetic loci do not evolve independently of one
another. However, our models will neglect this genetic structure and suppose that (relative)
fitness is determined entirely by the alleles at the locus of interest. Although crude, such
single locus models exhibit a surprisingly rich variety of behaviors.

There is a huge literature devoted to understanding the interaction between natural
selection and genetic drift. In particular, in the absence of spatial structure, it is well under-
stood that in larger populations, not only is a beneficial mutation more likely to establish and
sweep to fixation (that is, increase in frequency until it is carried by every individual in the
population), but it is also more likely that deleterious mutations will be expunged. Genetic
drift, which drives random fluctuations in the proportions of the different alleles, is stronger
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in a smaller population, and this increases the chance that a deleterious mutation is fixed just
by chance [27].

The interaction between natural selection and spatial structure (ignoring genetic
drift) is often investigated through reaction—diffusion equations. This was initiated by
Fisher [22], who studied traveling wave solutions to the equation

du  0%u
a "o

as a model of the spread of a favorable allele through a one-dimensional population. Here

+su(l—u), xeR,t>0, (1.1)

u(t, x) € [0, 1] models the proportion of the alleles carried by the individuals at location x at
time ¢ that are of the fitter type. In [28], Kolmogorov, Petrovsky, and Piscounov considered
the analogous equation in two spatial dimensions and with a general reaction term F (1) in
place of su(1 — u), although they focused on solutions that are independent of y (and thus
essentially one-dimensional). Motivated by the discussion of Fisher [21], they specialized to
a reaction term of the form aru(1 — u)? for their application to population genetics. Equa-
tion (1.1), with 9%u/9x? replaced by Au in dimensions d > 2, is often referred to as the
Fisher—KPP equation.

A special case of a result of Skorokhod [36] expresses the distribution of a branching
Brownian motion in terms of the solution to (1.1). Conversely, in the particular case of a
Heaviside initial condition, this allows one to express the solution to (1.1) in terms of the
distribution of the rightmost particle in a binary branching Brownian motion at time 7. This
is often referred to as McKean’s representation [31], and underpins the remarkable work of
Bramson [9], which provides much of our understanding of the traveling wave to which the
solution started from a Heaviside initial condition converges. More recently, these results
have been considerably extended, with a particular focus on adding a stochastic term to (1.1)
to capture the effect of random genetic drift (see, for example, [33] and the references therein),
resulting in a stochastic PDE:

0%u 1
du = (m— + su(l — u))dt + /—u(l —u)W(dt,dx), (1.2)
0x2 0

with W a space-time white noise and p a measure of local population size. (The form of
this so-called Wright—Fisher noise term will be motivated in Section 2.1.) The vast major-
ity of this work is restricted to one spatial dimension. In the biologically natural setting of
two spatial dimensions, although equation (1.1) generalizes in a natural way, the obvious
generalization of equation (1.2) has no solution. In Section 6 we shall describe one way
to circumvent this, and provide a mathematical model through which we can explore the
interaction of natural selection and genetic drift in a population distributed across a spatial
continuum (of any dimension). Depending on the dispersal mechanism and the local popu-
lation density, an individual may be competing with its own close (and equally fit) relatives,
limiting the effect of natural selection. We shall see that if the local population density is
bounded, the dimension of the space in which the population lives is important.

Natural selection can take many forms. While equation (1.1) models the spread of
an allele which is always favorable to the individual carrying it, in much of what follows
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we shall be interested in populations in which individuals carry two copies of the gene and
those carrying different alleles are selectively disadvantaged. As we explain in Section 2.1,
this form of selection can be captured by replacing the reaction term in (1.1) to obtain

2

%zmgx—z +su(l—u)Ru—1), xeR,t>0. (1.3)
Inference from genetic data typically involves using differences between the DNA sequences
of a sample of individuals from the population to reconstruct information about genealogical
ancestors of those individuals. This can then be compared to the predictions of mathemati-
cal models under different hypotheses about the forces of evolution acting on the population.
The neutral mutation rate therefore dictates the scales over which we can glean meaningful
information, and, since it is very small, this leads us to consider very large spatial and tem-
poral scales. With this in mind, we apply a diffusive scaling, corresponding to modeling
proportions of different alleles over spatial regions of diameter @ (1/¢) at times of @ (1/&2),

to obtain
ou®

ot

where we have set m = 1, s = 1. In a sense made precise in Theorem 2.4, for suitable initial

1
= Auf + u(1 —u)uf - 1), (1.4)
€

conditions, as € — 0, u® converges to the indicator function of a set whose boundary evolves
according to mean curvature flow (see Definition 2.1). We emphasize that although our main
interest is in two spatial dimensions (where mean curvature flow is simply curvature flow),
our mathematical results are valid in arbitrary spatial dimension d.

More generally (see Section 5.1), if there is a fitness difference between individuals
carrying two a alleles and those carrying two A alleles, we consider the equation

88—7: =mAu+su(l—u)(2u—(1-y)), xeR% t>0. (1.5)
As we shall explain, in order to obtain a nontrivial limit under the diffusive scaling, we
also scale y = ev. The limit is then the indicator function of a set whose boundary evolves
according to a mixture of “constant flow” of rate —v and mean curvature flow (for as long
as this flow is defined).

Whereas mean curvature flow has no nontrivial fixed point, the spherical shell of
radius (d — 1)/v (whose interior is completely occupied by the favored type) is fixed by
this mixture of curvature and constant flow. In this scenario, the two components of the
selection acting on the population work against one another and at this critical radius are
finely balanced; for any larger radius constant flow dominates and the circle expands without
bound; for a smaller radius, mean curvature flow wins out, and the circle shrinks to a point.
This behavior is in sharp contrast to the situation in one spatial dimension, and it is natural
then to ask about other domains; for example, what is the fate of an expanding population
that must pass through an isthmus? In Section 5.2, we shall see examples of domains for
which the effect of curvature flow leads to “blocking” of the expansion of the range of the
selectively favored type (but in a way which will result in a stable nontrivial steady state).
The geometry of the domain in which the population lives is important.
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The main mathematical tool that we use is a representation of the solution to (1.4)
in terms of a ternary branching Brownian motion which we explain in Section 3. Although
reminiscent of the Skorokhod/McKean representations of the solution to the Fisher—-KPP
equation, it differs in using the entire tree structure of the branching process. Our approach
can be seen as an adaptation of that of de Masi et al. in [13], and similar ideas have also been
exploited in [29]. For us, it provides an intuitive and flexible representation of the solutions
to equations like (1.3), (1.4), and (1.5), that is readily adapted to the framework of Section 6,
allowing us to incorporate the effects of genetic drift.

The rest of this article is laid out as follows. In Section 2, we motivate (1.3) from a
biological perspective and give a more precise statement about its limiting behavior as ¢ — 0.
In Section 3, we present the probabilistic representation of the solution to (1.4) and use it to
provide some intuition for the emergence of mean curvature flow. In Section 4, we replace the
Laplacian in (1.4) by a fractional Laplacian, in order to capture the corresponding behaviour
in populations with long-range dispersal. In Section 5, we turn to the situation modeled
by (1.5) in which there is a fitness difference between type aa and type AA individuals. In
particular, we shall consider what happens when the population no longer occupies the whole
Euclidean space, and we provide conditions on the geometry of its range under which the
expansion of the region occupied by the fitter type is, or is not, blocked. Finally, in Section 6,
we extend our models to incorporate genetic drift and explore the extent to which it breaks
down the effect of natural selection. In particular, we shall see how the impact of genetic
drift depends on both the local population density and the spatial dimension.

2. HYBRID ZONES AND CURVATURE FLOW

A hybrid zone is a narrow geographic region where two genetically distinct pop-
ulations are found close together and hybridize to produce offspring of mixed ancestry.
Hybrid zones are ubiquitous in nature; see, for example, [5] and [6] for an extensive cata-
logue and discussion. They can be maintained by a variety of mechanisms. For example,
consider two populations, each of which is adapted to a different set of environmental con-
ditions. If hybrids are less well adapted to those conditions, then an abrupt change in the
environment could result in a hybrid zone. In that case the hybrid zone will not move.

The situation that we shall be trying to caricature is one in which the hybrid zone
is maintained by a balance between dispersal and selection against hybrids. For instance,
this might arise if two populations regain contact after a period of geographic isolation such
as that imposed by the last glacial maximum (c. 18,000 years ago) when many species were
forced into isolated refugia. Because they are not dependent on changes in local environmen-
tal conditions, hybrid zones maintained by this mechanism can move from place to place.
In [3], Barton presented a theoretical study of the dynamics of hybrid zones. In the interests
of space, we do not attempt to examine all of the influences on the motion of the zone con-
sidered by [3]; instead we present our mathematical approach and illustrate its application in
three contrasting settings before adapting it to include genetic drift in Section 6.

4276 A.M. ETHERIDGE



2.1. Modeling selection against heterozygosity

As advertised in the introduction, we are going to focus on the case in which the
hybrid zone is maintained by selection acting on a single genetic locus. We suppose that
the gene at that locus has two alleles, denoted a@ and A, and that each individual carries two
copies of the gene. One population consists of aa individuals, the other of AA individuals.
Although it is possible to obtain equations like (1.1)—(1.5) as scaling limits of a variety of
individual based models (see, for example, [12,23,34]), it is generally highly technical and so
instead we shall motivate the models using an argument commonly found in the biological
literature.

Our first aim is to understand the form of the reaction term in (1.3), and so we begin
with the case in which the population is infinitely large, and has no spatial structure. We
assume Hardy—Weinberg equilibrium; that is, if the proportion of a-alleles across the whole
population is u, then the proportions of individuals of types aa, a A, and AA are given by

aa | aA | AA
a2 | 2a(l—i) | (1—i@)?

This is expected to be a reasonable approximation if selection is not too strong (which we

shall assume here). To model selection against hybrids, we assume that the three types have
relative fitnesses

aa | aA | AA

L1—so| 1~

We define relative fitness implicitly by explaining its effect. During reproduction, each indi-
vidual produces a large (effectively infinite) number of germ cells, each of which carries a
copy of all the genetic material of the parent (for our purposes this is just two copies of the
gene in which we are interested). The germ cells then split into gametes (each containing
one copy of the gene). All the gametes are put into a pool, and each individual in the next
generation, independently, is created by fusing two gametes sampled at random from that
pool.

The relative fitnesses above are reflected in each heterozygote (a A) individual pro-
ducing (1 — so) times as many germ cells as a homozygote (aa or AA) individual. The
proportion of type a gametes in the pool is then

L (@2 + (1 — @)(1 - 50))
@2 +2u(1 —i)(1 —so) + (1 —i)?)
a4 u(l —i)(1 —so)

1 —=2seu(1 —i)
= (1 —s0)il + 50(3i1> — 2°) + O(s5)
=1 + sou(1 —#)(2i — 1) + O(s3).

In particular,
u* —a = sou(l —i)(2u — 1) + O(s5).

In an infinite population, the proportions of alleles among offspring will exactly
follow those in the pool of gametes, and if so = s/M (where M is large), measuring time
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in units of M generations, this suggests the approximation

du _ I
T su(l—u)Qu —1)

for the dynamics of the proportion of a-alleles. The Laplacian term in (1.3) is then added to
capture dispersal of offspring.

In a finite population, we must account for the randomness inherent in drawing a
finite sample from the pool of gametes. We assume that the population size N is large and
fixed. The number of a-alleles among offspring is Bin(2N, u™*), and so the proportion of
a-alleles has mean u* and variance ﬁﬁ*(l — u™). Notice in particular, that we can expect
the effects of the fluctuations to be relevant over timescales of (9 (N) generations. As before
we suppose that sg = s/ M, and measure time in units of M generations. If M/N = O (1),
the dynamics of the proportion of a-alleles can then be approximated by the Wright—Fisher

| M
du = su(l —u)Q2u — 1)dt + ﬁu(l —u)dB;, 2.1

where B is a one-dimensional Brownian motion.

diffusion

Replacing the reaction term in equation (1.2) by su(1 — u)(2u — 1), in one spatial
dimension we obtain what can be thought of as a spatial analogue of (2.1) in which offspring
sample gametes from a pool generated by adult individuals at the location at which they
were born. The Wright—Fisher noise is supposed to capture the randomness inherent in the
sampling.

2.2. (Mean) curvature flow

We are primarily interested in two spatial dimensions, when mean curvature flow
reduces to curvature flow, but our results are valid for all d > 2. Recall that a function is said
to be a smooth embedding if it is a diffeomorphism onto its image (which we shall implicitly
assume is a subset of RY).

Definition 2.1 ((Mean) curvature flow). Let S' denote the unit circle in R%. Let I' =
(T';(*)); be a family of smooth embeddings, indexed by ¢ € [0, .7), where, for each ¢,
I';:S!' - R2 Let n = n;(u) denote the unit (inward) normal vector to I'; at u and let
k¢ (u) denote the curvature of I'; at u. We say that T is a curvature flow if
ar' ¢ (u)
ot

= ke(u)n; (u) (2.2)

for all #, u.
In higher dimensions, we replace S by S9~!, R? by R, and «; by the mean cur-
vature of I'; to obtain mean curvature flow.

Remark 2.2. Perhaps the easiest way to visualize the curvature at a point P on a differen-
tiable curve in R? is as the reciprocal of the radius of the osculating circle at P which (if it
exists) is the circle that best approximates the curve at the point P.

The curvature tells us how quickly the tangent to the curve changes as we traverse
the curve. To make this concrete, first parametrize the curve in terms of its arc length: I'(s) =
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(x(5), y(s)) with x’(s)? 4 y’(s)? = 1. The tangent vector to the curve at (x(s), y(s)), T (s) =
(x'(s), ¥'(s)), has norm one, and the unit normal is n(s) = (—y’(s), x’(s)). If the curve
is twice differentiable, then T'(s) = k(s)n(s), where «(s) is the (signed) curvature at the
point. For example, for a circle of radius R, (x(s), y(s)) = (Rcos(s/R), Rsin(s/R)), and
k(s)=1/R.

The circle is, of course, a rare example for which arc length is easy to calculate, but
by an application of the chain rule, this allows one to calculation « in terms of an arbitrary

parametrization
det(T’, T")

(MY

In the biologically relevant case of two dimensions, curvature flow is sometimes
called the curve-shortening flow and its behavior is well understood. The flow has a finite
lifetime 7. For example, if I'¢ is a circle of radius Ry, then I'; will be a circle with radius
R; satisfying dR/dt = —1/R, so the curve shrinks to a point in time R3/2. In fact, this
behavior is generic in d = 2: in [24], it was shown that if I'¢ is convex then so is I'; for
allt < .7, and that as t 1 .7 the asymptotic “shape” of T'; is a circle; [26] showed that any
smoothly embedded closed curve becomes convex at a time 7 < 7.

2.3. The motion of hybrid zones
To state a result about the behavior of the solution to (1.4) as &€ — 0, we shall need
some regularity assumptions on the initial condition.

Assumptions 2.3 (Assumptions on u?(0, x)). Let u®(0, x) = p(x) where p takes values in
[0, 1] and set
1
r= {xeRd:p(x)zz}.
We suppose that I" is a smooth hypersurface which is the boundary of an open set which

is topologically equivalent to a sphere. (When d = 2, this just says I" is a smooth curve,
topologically equivalent to a circle.) We further assume:

(¢1) T is C* for some o > 3;
(¢'2) for x outside I', p(x) < 1; for x inside T, p(x) > 1;
(€'3) thereexists r, > 0 such that, for all x e R2, | p(x) — %| >p(dist(x,T)Ar).

Condition (¢’1) guarantees that mean curvature flow (I';(-)), started from I" exists
up to some time .7 > 0. The second condition is just a convention; the third is to ensure that
the slope of p near I' is not too small, and that p is bounded away from 1/2 for points that
are not close to I'.

We write d(x, t) for the signed distance from x to I';, chosen to be positive inside
I',; and negative outside. As sets, I'; = {x € R? : d(x,t) = 0}.
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Theorem 2.4 (Special case of Chen [11, THEOREM 3]). Let u®(¢, x) solve (1.4) with u®(0, x) =
p(x) satisfying Assumptions 2.3. Fix T* € (0, 7)) and let k € N. There exists eq(k) > 0, and
aq(k),cq(k) € (0,00) such that for all ¢ € (0, eq) and t satisfying aqe?®|loge| <t < T*,

(1) for x such that d(x,t) > cqe|loge|, we have ué(t,x) > 1 — gk

(2) for x such that d(x,t) < —cqe|loge|, we have u®(t, x) < ek,

3. A PROBABILISTIC REPRESENTATION OF SOLUTIONS TO (1.4)

In [14] an analogue of Theorem 2.4 for a model which incorporates (weak) genetic
drift is proved. A large part of that paper is devoted to providing a new proof of Theorem 2.4,
for which we now explain the key ideas. It is based on a probabilistic representation of the
solution to (1.4), and is readily adapted to a host of other situations, some of which we
describe in Sections 4, 5, and 6.

For compatibility with the literature on partial differential equations, we shall sup-
pose that all Brownian motions run at rate 2 (and so have infinitesimal generator A rather
than %A). The representation is in terms of a ternary branching Brownian motion in which:

(1) eachindividual has an independent exponentially distributed lifetime with mean
&2 at the end of which it is replaced, at the location where it died, by three
offspring; and

(2) during its lifetime, each individual follows an independent Brownian motion.

We shall only ever be interested in this process started from a single individual at time 0.

Whereas Skorokhod’s representation of the solution to the Fisher—KPP equation
in [36] is just in terms of the locations of the individuals in a (binary) branching Brownian
motion at time ¢, our representation of the solution to (1.4) will also require the structure
of the tree relating the individuals in the ternary branching Brownian motion. The simplest
way to encode that information is to use Ulam—Harris notation. Each individual is labeled
by an element of % = | J;,_{1.2,3}™. The original ancestor is labeled @. The offspring of
an individual with label t = (i1, ..., i;;) receive the labels (z, 1), (z, 2), and (¢, 3). Thus, for
example, (1, 3) is the label of the third child of the first child of the original ancestor.

We shall use W (¢) = to denote historical ternary branching Brownian motion, that
is, the tree of Brownian paths traced out by ternary branching Brownian motion up until time
t,and 7 (W (¢)) for the corresponding ternary tree, obtained by ignoring the spatial positions
of individuals.

Definition 3.1 (Majority voting in (historical) branching Brownian motion). For a fixed
Ny

i=1
for the spatial locations of the random number N(¢) of individuals alive at time ¢. We call

function p : R™ — [0, 1], define a voting procedure on W (t) as follows. We write {W; (¢)}

these individuals the leaves.
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(1) Each leaf, independently, votes a with probability p(W;(z)); otherwise it
votes A.

(2) Ateach branch pointin 7 (W (t)), the vote of the parent particle 7 is the majority
vote of the votes of its three children (z, 1), (z, 2), and (z, 3).

This defines an iterative voting procedure, which runs inwards from the leaves of W (¢) to
the root. We define V, (W (¢)) to be the vote associated to the root.

This majority voting procedure is illustrated in Figure 1.

a a A A a A a a A a A

|

FIGURE 1
Majority voting on a ternary tree. Starting at the leaves, we move back to the root. At each branch point, the parent
adopts the majority view of its children. In this example, the vote at the root is a.

Lemma 3.2 (Majority voting and the Allen—Cahn equation). Let W (t) = be a historical
ternary branching Brownian motion with branching rate 1/€2, and let p : RY — [0, 1]. The

function
u(t, x) = PE[V, (W (1)) = a 3.1)

solves equation (1.4) with u®(0, x) = p(x).

The subscript x on the right hand side of equation (3.1) indicates that W starts from
a single individual at x at time zero. The proof of Lemma 3.2 proceeds in a standard way by
partitioning over whether or not the ancestor in the branching Brownian motion dies in the
first ¢ of time, and thus calculating

o (uE( 48t x) —ut(t, x))
lim .
§t—0 St

(3.2)

To understand why majority voting gives rise to the desired nonlinearity, consider what hap-
pens if the ancestor does die in the first §¢ of time, which happens with probability §¢/&2.
Each offspring, independently, votes a with the same probability, u say. The probability that
the majority of their 3 votes is a is u® 4+ 3u?(1 —u) = u(1 — u)(2u — 1) + u. Assuming
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some continuity so that we can take v &~ u®(z, x) as 6t — 0, we see that the contribution
to (3.2) from the event {the ancestor died before time 8¢} is u®(1 — u®)(2u® — 1)/&? as
required. With probability 1 — §¢/&? the ancestor did not die before 8¢, and it followed a
Brownian motion which is at position W, at time é¢. Using the Markov property at time 4z,
the Laplacian term arises from this event as limg; o (Ex [u® (¢, Ws,)] — u(¢, x))/ét.

With the representation (3.1), the conclusion of Theorem 2.4 can be written:

(1) for x with d(x, 1) > cqe|loge|, PE[V,(W (t)) = a] > 1 — &;
(2) for x with d(x,t) < —cqelloge|, PE[V,(W (¢)) = a] < ek,

The intuition behind the proof of these statements is very simple. First observe that majority
voting increases bias: if p < %, p3+3p%(1—p) < p;if p> %, p3 +3p%(1 - p) > p. Since
the branching rate is 1/&2, our branching Brownian motion sees many rounds of majority
voting in a very short space of time, and so a small bias in votes at the leaves of the tree
translates into a large bias at the root. As a result, a narrow interface will be generated across
which there is a rapid transition from PZ[V,(W (¢)) = a] being close to zero, to it being
close to one. Suppose that in fact this transition is sharp, and the solution to equation (1.4)
is the indicator function of a region bounded by a surface I'. Taking this solution as the new
initial condition, after a small time 4, we once again expect that the solution is close to a
sharp interface whose position, I'y,, marks the transition from a voting bias in favor of type
a, to one in favor of type A. That is, I, ~ {x € RY : T1p(x) = 1/2} where T denotes
the heat semigroup. If we replace the solution at time 4 by 1r, and repeat this process, we
are actually performing the Merriman—-Bence—Osher (MBO) algorithm for simulating mean
curvature flow [32]. To gain some intuition for the role of mean curvature flow, consider the
special case in which I is a sphere of radius R in RY. Then we are approximating '}, by
{x € RY: Py[||Ws]l > R] = 1/2}, where W is d-dimensional Brownian motion. Since the
radial part of a d-dimensional Brownian motion is a d-dimensional Bessel process, while it
is close to T, ||W|| will be distributed as a one-dimensional Brownian motion B with drift
close to (d — 1)/ R (remembering that our Brownian motions all run at rate two), and so we
are approximating I'y, by the set of points for which Py [Bp + A(d —1)/R > R] = 1/2;in
other words, by symmetry of B, by {x : ||x|| = R — h(d — 1)/R}. The mean curvature of I"
is (d — 1)/ R, and so for small /&, 'y, is close to the surface obtained by evolving I" according
to mean curvature flow for time /.

This intuitive picture is close to the structure of the rigorous proof which has two
main ingredients: an analysis of the one-dimensional solution, started from a Heaviside ini-
tial condition; and coupling (close to the interface) of d(Ws,t — s) with a one-dimensional
Brownian motion.

4. LONG-RANGE DISPERSAL
The Laplacian in equation (1.4) reflects an assumption that offspring remain close
to their parents. However, for many organisms this may fail; see, for example, [18] for a
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discussion of long range seed dispersal in plants. To incorporate this into equation (1.5), we
replace the Laplacian by a fractional Laplacian,

0
a'; = (=A)Sv +su(l —v)2v —1), 4.1)
where (for smooth functions f* which decay sufficiently fast)
S — f(x)
(- A)? f(x) ;== Cy lim ———dy. 4.2)
§—0 Jra\ gy (x) |y — x|+

Here Cy :=2°T'(5 + %)/(nd/2|1"(—%)|), where I' is the Gamma function, and Bg(x) is
the ball of radius § about x.

The operator (4.2) is the generator of a symmetric «-stable process, and the prob-
abilistic representation of solutions to (4.1) follows by substituting a branching «-stable
process for the branching Brownian motion in Section 3. If we are to recover an analogue
of Theorem 2.4, we expect to need to consider scales over which the spatial motion along
each branch is close to a Brownian motion. We appeal to a decomposition often used in
the numerical simulation of symmetric stable processes, see, for example, [2]. If we run an
a-stable process at rate 1()*~2 (where I(¢) — 0 as ¢ — 0), then the process obtained by
censoring jumps of size greater than /(&) can be approximated by Brownian motion. To show
that the uncensored process along a branch of our ternary tree is close to a Brownian motion,
we need to control the number of jumps of size at least /(¢) before an exponential time with
mean &2. Since we have time-changed the stable process by I(g)*~2, the rate of such jumps
is ©O(I(¢)™2), and so in order that branches on which we see jumps of size more than /(&)
be rare, we take I(g)/e — oo.

With this in mind, set 02 = 2C, /(2 — o) and rescale time and space by ¢ > £2¢, x >
e2/®J(g)1=2/%x. When o = 2, we recover the diffusive scaling. Equation (4.1) becomes

v o2
A I(e)2@

In [7], an analogue of Theorem 2.4 is proved for functions 7 : R4 — R satisfying:

(—A)20° + 8i2v8(1 —v)2v° = 1), v%(0,x) = p(x). 4.3)

(a71) limg_o I(¢)|log(e)|¥ = 0 Vk € N.

(/2) Timgo “HEE = 0.

(73) lim,_o H(e) := I(¢)?|log(e)]e s —2-1 + I(s) |log(e)|® = 0.
Note that Assumptions («72) and (<7 3) are incompatible as soon as & < 1.

Theorem 4.1 ([7, THEOREM 1.5]). Let « € (1, 2) and suppose that 1(g) satisfies Assump-
tions (/' 1)—(273) above. Suppose v¢ solves equation (4.3) with initial condition p satisfying
Assumptions 2.3. Let 7 and d(x,t) be as in Section 2.3, and fix T* € (0, 7). Then there
exists eq(a, 1), ag(ee, I), calo, I), M(a, 1) > 0 such that, for e € (0,e4) and aqe?|loge| <
t <T*,

(1) for x with d(x,t) > cql(e)|loge|, we have vE(t,x) > 1 —
1(e)*7");

1(8)2 — M(H(e) +

4283 MODELING HYBRID ZONES



(2) for x with d(x.1) < —cal(e)| loge|, we have v(1,x) < 7o + M(H(e) +
I(e)*7).

For example, /(¢) = ¢|log(e)| fulfills Assumptions (27 1)—(</3), and the “error”
e2/1(8)®> + M(H (g) + I(e)* 1) is of order 1/(log £)2. There are two competing effects: we
want to take /(g) as small as possible if the approximation of the small jumps of the stable
process by a Brownian motion is to be good; on the other hand, we need /(¢) to be large if
branches along which we see a jump of size more than /(¢) are to be rare. In contrast to the
Brownian case, these cannot be balanced to obtain an error of order ¥ for arbitrary k.

5. ASYMMETRY AND BLOCKING
So far we have worked exclusively on the whole of Euclidean space. In this section
we see that, in some scenarios, the geometry of the domain can be important.

5.1. An asymmetric reaction: homozygotes of different fitnesses
In our justification of equation (1.3) in Section 2, we assumed that both homozygotes
were equally fit. It is natural to ask what happens if that is not the case? Suppose, for example,
that we take relative fitnesses
aa | aA | A4
Ltysy [ 1—s1 | 1

’

where y; is assumed small. Mimicking our previous approach, and setting (2 + y1)s1/2 =
s/M,2/(2+ y1) = 1 — y, we recover equation (1.5). The one-dimensional equation
du 9%u
—_— =m—
ot dx2

has a traveling wave solution of the form

—1
u(x,t) = (1 + exp(—\/%(x + y\/%t))) , (5.1

connecting 0 at —oo to 1 at oo, and with wave speed y /ms. In particular, if we scale m

+su(l—u)(2u—(1-1y))

and/or s, then we may also have to scale y in order to obtain a finite wavespeed. With this in
mind, [25] considers the equation

ou®
_ 1t e
T Aut g+t

ut(1—uf)(2w® — (1 —y,)). xeR" >0, (5.2)

where y, = vel for some nonnegative v and ¢, with the additional condition that v < 1 when
£ =0, and £ = min(¢, 1).
Notice that with these parameters, the one-dimensional wave has speed of O (1) if

{ < 1 and tending to zero as e 1if £ > 1. We define

" iff <1,
ve =12 ye/e iff e (1,2], (5.3)
0 ifl > 2.
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Setu®(x,0) = p(x),take I' = {x e R : p(x) = (1 + y,)/2}, and modify Assumptions 2.3
in the obvious way (by replacing 1/2 by (1 + y¢)/2).

Theorem 5.1 (Restatement of [25, THEOREM 2.4]). Let u® solve equation (5.2) with initial
condition p satisfying Assumptions 2.3 (modified as described above), and let

T (s)
5 = (—ve + k() (s), (5.4)
until the time  at which T develops a singularity. Write d for the signed distance to T
(chosen to be positive inside F). Fix T* € (0, 7) and k € N. There exists eq(k) > 0, and
aq(k),ca(k) € (0,00) such that for all € € (0, e4) and t satisfying aqe*¢|loge| <t < T*,

(1) for x such that J(x, 1) > cqe|loge|, we have u®(t,x) > 1 — &k;

(2) for x such that c?(x, 1) < —cae|loge|, we have ué(t, x) < €.

Remark 5.2. When [ = 1, Theorem 5.1 is a special case of Theorem 1.3 of [1] in which
more general “slightly unbalanced” bistable nonlinearities are considered.

For ¢ < 2, Ve in (5.3) and (5.4) corresponds to the one-dimensional wavespeed
derived above. For { > 2, the wavespeed converges to zero sufficiently quickly as ¢ — 0
that it is not necessary to include the corresponding small contribution from the constant
flow in (5.4).

We shall focus on equation (5.2) with [ = 1,

1
= Au® + —uf(1—u®)(2u® — (1 —¢ev)) x eR% 1 >0. (5.5)
€
The approach of [25] is to extend the probabilistic representation to the asymmetric case.

Lemma 5.3. Let W(l) be a historical ternary branching Brownian motion with branching
rate (1 + ev) /&2, and let p : RY — [0, 1]. Define a voting procedure on W (t) as follows:

(1) Each leaf, independently votes a with probability p(Wi(t)), otherwise it
votes A;

(2) atabranch point, the parental vote is the majority vote of the children unless pre-
cisely one offspring vote is a, in which case the parent votes a with probability
2ev/(3 + 3ev).

Write ’\71, (W(l)) for the vote associated with the root. Then
ub(t,x) = PE[V,(W (1)) = a]
solves equation (5.5) with u®(0, x) = p(x).

The proof of Theorem 5.1 closely follows the probabilistic proof of Theorem 2.4
in [14], except that the signed distance d (Ws, F,_s) is coupled to a one-dimensional Brow-
nian motion with drift v.
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Remark 5.4 (Other voting schemes). The probabilistic representation above is far from
unique. For example, it might seem more natural to write the reaction term in (5.5) as
siz(ua(l —u®)Qu® — 1) 4+ evu®(1 — u®)), and express the solution in terms of a branch-
ing Brownian motion with a mixture of binary branching at rate v/, with the rule that the
parent votes a unless both offspring vote A, and ternary branching at rate 1/e? with the
majority voting rule. However, it turns out to be much more convenient to base the proof on
aternary tree. To obtain the voting mechanism above, we rewrite the quadratic term u(1 — u)
as the sum of two cubic terms using that 1 = u + (1 —u).

Voting schemes are very general. In [35], O’Dowd showed that if P () is any poly-
nomial with P(0) > 0 and P(1) < O (or vice versa), then the solution to
2—? =Au+ P(u)
can be represented in terms of a historical n-ary branching Brownian motion (where 7 is the
degree of P) and a rule for assigning votes to a parent according to the votes of its offspring.

5.2. Geometry matters: blocking

We now turn our attention to solutions to (5.5) on domains & € R? with reflecting
boundary conditions. We focus on the fate of the favored allele as it tries to expand through
a semiinfinite domain. We shall consider “cylindrical” domains of the form

Q= {(x1.x) 1 x1 €R, X’ € p(x1) SR}, (5.6)
We shall always take the initial condition #®(0, x) = 1x,>0.

Theorem 5.5 ([8], Theorems 1.4, 1.5, 1.6, 1.7, paraphrased). Let u be the solution to equa-
tion (1.5) on Q with normal reflection on the boundary and initial condition u(x,0) = 1, 0.
Depending on the geometry of the domain Q2 we have one of three possible asymptotic behav-
iors of the solution of equation (5.5):

(1) there can be complete invasion, that is, u(x,t) — 1 ast — oo for every x € Q;

(2) there can be blocking of the solution, meaning that u(x,t) — Ueo(x) ast — 00,
With Ueo (X)) — 0 as x; = —00;

(3) there can be axial partial propagation, meaning that u(x,t) — Uso(Xx) ast —
0o, with infyerx By Uoo(X) > ¢ > 0 for some R > 0, where Bg is the ball of
radius R centered at 0 in R971,

Which behavior is observed depends on the geometry of the domain Q2. For example, there
will be complete invasion if Q is decreasing as x1 decreases; axial partial propagation if it
contains a straight cylinder of sufficiently large cross-section; and there can be blocking if
there is an abrupt change in the geometry.

The results of [18] concerning the behavior of solutions to (5.5) complement those
of [8]. (The addition of the parameter ¢, which is not present in the work of [8], prevents direct
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FIGURE 2

Left to right: (a) the domain  of Theorems 5.6 and 5.7; (b) the opening (@ and the hemispherical shell N, used
in the proof of Theorem 5.6; (c) an illustration of “chaining” used in the proof of Theorem 5.7. Image taken
from [18].

comparison.) As in the previous sections, they are based on the probabilistic representation
of solutions. Following [8], we begin with the very special form of €2 depicted in Figure 2.

Theorem 5.6 ([18, THEOREM 1.6]). Let u® denote the solution to equation (5.5) on the domain
Q2 in Figure 2, with reflecting boundary condition and u®(0, x) = 1x,50. Suppose ro <
d;1 A Ro. Define Ny = {x € Q : |x|| =, x1 <0}, where ? A Ro > 1 > ro, and let
d (x) be the signed (Euclidean) distance of any point x € Q to N, (chosen to be negative as
x1 —> —00). Let k € N. Then there is é(k) > 0 and M (k) > 0 such that for all ¢ € (0, &),
andallt > 0,

forx = (x1,...,xq) € Q such that c?(x) < —M(k)s\log(8)|, we have u®(x,1) < €.

In other words, if the aperture r¢ is too small, then, for sufficiently small &, blocking
occurs. With the machinery of Section 5.1 in place, the proof is straightforward. First we
check that the solution to (5.5) on €2 is monotone in the initial condition, which allows us
to compare with the solution started from an initial condition p which dominates 1y, ¢, is
radially symmetric in the left half plane, satisfies p(x) = (1 — y,)/2 on the hemispherical
shell N, and fulfills the analogue of conditions (%2) and (%'3) from Assumptions 2.3 (with
I" replaced by N, and 1/2 by (1 — y,)/2). For this initial condition, it is straightforward to
adapt the proof for the whole Euclidean space from [25], and indeed things are simplified
considerably by the radial symmetry.

The converse of Theorem 5.6 is also true in the following sense.

Theorem 5.7 ([18, THEOREM 1.7]). Let u® be as in Theorem 5.6. Suppose ro > %, then for
all x € Q and § > 0 there is f := (x1,8, Ry, r9) > 0 and & such that, for all ¢ € (0,£) and
t > 1, we have u®(t,x) > 1 —6.

Again the proof exploits monotonicity in the initial condition. The solution domi-
nates one started from (1 — ) times the indicator of a ball of radius r > (d — 1)/v, with
center sitting on the x;-axis and contained in & N {x : x; > 0}. This time, adapting the argu-
ments for the solution on R® tells us that at a later time that solution dominates (1 — €) times
the indicator of a ball with larger radius 7', but the same center, strictly contained within €2.
We now start the process again, taking as initial condition 1 — ¢ times the indicator of a ball
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of radius r, and with center shifted a distance ' — r. Continuing in this way, we can find a
chain of balls connecting any point x € €2 to the original ball. This process of “chaining” is
illustrated in Figure 2. It mirrors the use of the “sliding ball” assumption to prove complete
propagation in [8].

Together, Theorems 5.6 and 5.7 say that there is a sharp transition at the critical
radius (d — 1)/v. As described in Section 1, this is the radius of the shell at which the
constant and curvature flow exactly balance on the whole of R%. However, in that case a
small perturbation results in complete invasion or extinction of the favored type, here a stable
interface will be maintained.

The domain €2 of Theorem 5.6 is very special. However, the crucial step was to be
able to cover the opening © illustrated in Figure 2 by a hemispherical shell of less than the
critical radius (d — 1) /v, and orthogonal to the boundary of the domain where they intersect.
The same result will follow (from essentially the same argument) for any domain which can
be “blocked” by a portion of such a shell in this way. As a first step, consider the domain Q.
which opens out as a truncated cone, and the shell of radius r shown in Figure 3. We can
choose r < (d — 1)/v precisely when rg < (d — 1) sina/v.

FIGURE 3

(Left) The domain Q. (See text below Theorem 5.7.) (Right) An example of a domain from Theorem 5.8.
Condition (5.7) that guarantees that we can insert a portion of a spherical shell as shown with radius less than
(d — 1)/v can be read off from that for 2 on setting ro = H + h(z) and sina = h'(z)/+/1 + I/ (z)?. Image
taken from [18].

The intuition behind blocking is that if the domain opens out too rapidly, then off-
spring of favored individuals are “spread too thin” and selection against hybrids will rapidly
eliminate their descendants. Our approach has been to seek a shell of sufficiently small radius
that intercepts the boundary of the domain orthogonally, but if the domain is opening even
faster, in the sense that expanding the shell radially one stays within the domain, at least for
a short time, this effect will be further amplified. This is the meaning of the condition (5.7)
in the following theorem.

Theorem 5.8 ([18, THEOREM 1.91). Suppose that u® solves (5.5) where Q C RY is defined as
in (5.6) with
¢(X1) = {”x’” < H + h(—xl)},
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and h a nonnegative C' function. Suppose that
d-1 H(z)
inf H+hz—( ) }<O. 5.7
z>0{ ( ) v /1 +/’l/(2)2

Fixk € N. There exist xo < 0, £(k) > 0 and M (k) > 0 such that for all ¢ € (0,£) andt > 0,

for x = (x1,...,xq) € Q such that x; < xo9 — M(k)8|10g(£)| we have u®(x,t) < &k,

Condition (5.7) can be understood from the condition ry < (d — 1) sina/v on Q on

setting ro = H + h(z) and sina = h'(z)/+/1 + W' (2)2.

Conversely, if the domain does not open up sufficiently fast, we have invasion.

Theorem 5.9 ([18, THEOREM 1.18]). Suppose that u® solves (5.5) where Q C RY is defined as
in (5.6) with
¢(x1) = {|x'] = H + h(=x)},

and h a nonnegative C function. Suppose that

d—1 h(z)
inf H+h(z)—( ) }>0
z>0{ v 1 + h'(z)?
Then for all x € Q and 8 > 0 there is t := 1(x1,8) > 0 and & such that, for all & € (0, &) and
t > 1, we have u®(t,x) > 1 —6.

These results (valid for any d > 2) are somewhat analogous to those of [3e], which
consider a plane curve evolving according to equation (5.4) in a two-dimensional cylin-
der with a periodic saw-toothed boundary. The authors say that such a curve is a periodic
traveling wave with effective speed &/ T if f,+75 (s) = T, (s) + & for some § > 0. Set-
ting hg(x) = §h1(x/8) and letting § — 0 leads to the homogenization limit of the wave,
with speed co = limg_.q cs. They show that ¢co > 0 for vH > sin« with « determined by
tan o = max, A’(x), but that the wave is blocked for small enough § if vH < sinc.

6. ADDING NOISE

In Section 2, we motivated the noise appearing in equation (1.2) as a means of
taking account of the randomness due to resampling inherent in reproduction in a finite
population. Although in d = 1, where the equations are well-posed, quite a lot is known about
the solutions to stochastic reaction—diffusion equations like (1.2), in d > 2 such equations
have no solution. On the other hand, we have seen in Section 5.2 that populations may behave
quite differently in d = 1 and d = 2 and so it may be misleading to only consider the one-
dimensional equation.

The Spatial A-Fleming—Viot process was introduced in [4,17] as an alternative way
to capture the effect of genetic drift in models for proportions of different allelic types in
populations evolving in a spatial continuum. Although originally introduced for selectively
neutral populations, it can be thought of as providing a framework for modeling, which can
readily be adapted to incorporate a wealth of biologically relevant features, including natural
selection.
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First, we define a very special version of the Spatial A-Fleming—Viot process for
a neutral population evolving in R®. As usual, we are most interested in d = 2. At each
time ¢, the random function {w;(x) : x € R} will model the proportion of a-alleles at
spatial position x at time ¢. Strictly speaking, the process is only defined up to a Lebesgue-
null set. The identification

/ {w,(x)f(x,a) + (1 — w,(x))f(x, A)}dx = / fx,k)M(dx,dx)
Rd R x{a,A}

provides a one-to-one correspondence between its state space and the space M, of measures
on R x {a, A} with “spatial marginal” Lebesgue measure, which we endow with the topol-
ogy of vague convergence. We abuse notation and also denote the state space of the process
(w,),eR+ by ;M)L.

Definition 6.1 (A neutral Spatial A-Fleming—Viot process (SLFV)). Fixu € (0, 1] andr > 0.
Let T be a Poisson Point Process on R x R with intensity measure d¢ ® dx. The Spatial
A-Fleming—Viot process driven by I1, with event radius r and impact parameter u, is the
M -valued process (w;);>o with dynamics given as follows.

If (¢, x) € I1, a reproduction event occurs at time ¢ within the closed ball B(x, r) of
radius r centered on x:

(1) Choose a parental location z uniformly at random in B(x, ), and a parental
type, ap, according to w;_(z); that is g = a with probability w,_(z) and a9 =
A with probability 1 — w;—(z).

(2) Forevery y € B(x,r),setw;(y) = (1 —u)w;—(y) + ulygy=a}-

Remark 6.2. Suppose that a reproduction event affects the ball B(x, r) in which the pro-
portion of a-alleles immediately before the event is w, and write w* for the proportion of
a-alleles immediately after the event. Then

E[w*—w] =0, and var(w*—w)=u?w(l—w).

This can be compared to the (Wright—Fisher) sampling noise in Section 2.1.

This is a very special case of the SLFV, even for a neutral population. More gener-
ally, one can take both r and u to be random. See [19] for a construction of the process under
very much more general conditions.

Instead of sampling a parental location, and then a parental type, we could equally
have just sampled types independently and uniformly at random according to the proportions
in the region affected by the event. The two-step description is convenient as we wish to trace
the ancestry of a sample from the population. Things are made particularly simple as the
Poisson process IT that dictates reproduction events is reversible (with the same distribution).
We write il for the time-reversed process.

Definition 6.3 (SLFV dual). The process ($);>o is the | J I>1 (R%)! -valued Markov process
with dynamics defined as follows.
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The process starts from a finite collection of points £1(0),...,&n() € R, We write
Pr = (§1(2),....En() (1)), where the random number N(¢) € N is the number of individuals
<«
alive at time ¢, and {§; (t)}fvz(? are their locations. For each (¢, x) € I1:
(1) for each & (t—) € B(x, r), independently mark the corresponding individual
with probability u;

(2) if at least one individual is marked, all marked individuals coalesce into a single
individual, whose location is chosen uniformly in B(x, r).

If no individual is marked, then nothing happens.

One can write down a formal duality between this “backwards in time” ancestral
process and the SLFV. It requires a little care because the SLFV is only defined up to a
Lebesgue null set. However, informally, suppose that we know {wo(x) : x € R} and that
we would like to find the type of an individual sampled from the point z at time ¢. Starting
the dual from a single individual with & (0) = z, £ (¢) is the location of the ancestor of the
sampled individual at time 0, and its type is determined by sampling according to wg (& (¢)).

Each ancestral lineage evolves in a series of jumps. By translation invariance, its
distribution is determined by the rate at which an ancestral lineage jumps from 0 to x € R%.
For such a jump to occur, three things must happen: first, an event has to fall that covers both
0 and x; second, the lineage has to be among the offspring of the event; third, x has to be
chosen as the location of the parent. Writing L,(x) = |B,(0) N B,(x)| for the volume of
the region in R of possible centers for balls of radius r that cover both 0 and x, and V; for
the volume of a unit ball in RY, we see that a single ancestral lineage evolves in a series of

jumps with intensity .

Vlrd

In particular, under our assumptions, the motion of a lineage is a spatially and temporally

dt @ Ly(x)u

dx. (6.1)

homogeneous continuous time random walk in R®, with uniformly bounded jumps taking
place at a rate proportional to u.

Note that ancestral lineages evolve independently (only) if they are far enough apart
that they cannot be covered by the same event.

6.1. Adding (genic) selection to the SLFV

There are many ways in which to add selection to the SLFV. Perhaps the simplest
is to weight the choice of parental type during a reproduction event. For example, we might
weight A alleles by a factor 1 — s for some small parameter s. Mimicking our approach in
Section 2, if the proportion of a-alleles in B(x, r) immediately before a reproduction event
is w, then the chance of choosing a type a parent is
w

T 1-s(—w)

*

=w+sw(l —w) + O(s?).
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We rewrite this as
w*=1-s)w+s(1—(1-w)?) + 0(s?), (6.2)
and incorporate (weak) selection into the SLFV as follows:

Definition 6.4 (A Spatial A-Fleming—Viot process with genic selection (SLFVGS)). Fix u,
r, and IT as in Definition 6.1 and s € (0, 1). The Spatial A-Fleming—Viot process with genic
selection (SLFVGS) driven by II, with event radius r, impact parameter u, and selection
coefficient s, is the M -valued process (w;);>o with dynamics given as follows.

If (¢, x) € I1, with probability 1 — s, a neutral reproduction event occurs as described
in Definition 6.1. With the complementary probability s the event is selective, in which case:

(1) Choose two “potential” parental locations zq, z; € R independently and
uniformly at random from B(x, r). Sample types o1, o2, according to wy—(z7),
wy—(z2), respectively.

(2) Forevery y € B(x,r),setw;(y) = (1 —w)w;—(y) + u(l — Lig, = a=q,})-
Once again we define a dual process.

Definition 6.5 (Dual to SLFVGS). The process (£1):>0 is the | ;5 (R%)! -valued Markov
process with dynamics defined as follows.

For each (¢, x) € (ﬁ, the corresponding event is neutral with probability 1 — s, in
which case proceed as in Definition 6.3. With the complementary probability s, the event is
selective, in which case:

(1) for each &;(t—) € B(x, r), independently mark the corresponding individual
with probability u;

(2) if at least one individual is marked, all of the marked individuals are replaced
by two offspring, whose locations are drawn independently and uniformly in
B(x,r).

In both cases, if no individual is marked, then nothing happens.

Remark 6.6. From the perspective of the SLFVGS, it would be more natural to call the
individuals created during a selective event in the dual process “parents” (or “potential par-
ents”), as they are situated at the locations from which the parental alleles are sampled. We
choose to call them offspring in order to emphasize that the dual process plays the role for
the SLFVGS that branching Brownian motion plays for equation (1.1).

This time, to determine the type of an individual sampled from the population at time
t, construct the dual as in Definition 6.5 and assign a type to each of the individuals alive at
time ¢ by sampling (independently) according to wg(&; (¢)). The individual that we sampled
is of the unfavored type A if and only if all of the individuals in #; are assigned type A.
If there were no coalescence, this would parallel the McKean/Skorokhod representation for
the Fisher—KPP equation (with Brownian motion replaced by the random walk of ancestral
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lineages); genetic drift appears as coalescence. It is natural to ask what happens if we scale
the SLFVGS in such a way that the random walk followed by an ancestral lineage converges
to Brownian motion.

Theorem 6.7 (Informal restatement of [2e, THEOREM 1.11]). Consider the process of Defini-
tion 6.1. Take B, y, § > 0, and let the impact and selection coefficients be u, = u/n?,
and s, = s/n‘s (for some positive constants u, s). Define the scaled process w™(t, x) =

w(nt,nP x). Suppose that
l—y=28, and 1-6—y =0.
Then:

() Ifd>2and B <y, ord=1and B <y, w™ converges weakly to a (weak)
solution of the Fisher—KPP equation.

Q) Ifp=y=1/3,§=2/3,andd =1, as n — oo, w® converges weakly to the
solution of the stochastic Fisher—-KPP equation (1.2).

This result is most easily understood through the dual process of branching and
coalescing lineages. Recalling (6.1), in the scaled process that is dual to w™, a lineage
jumps a distance of @(1/n#) at rate proportional to nu, = n'~". To obtain a nontrivial
limit, we choose 1 — y = 28, corresponding to the diffusive scaling.

Now suppose that a selective event covers a lineage. With probability 1/n? the
lineage is an offspring of the event, in which case two lineages are created at separation
o/ nP). They may almost immediately coalesce, but with positive probability they will
move apart to a distance at which they cannot be covered by the same event. In the limit as
n — 0o, we will only “see” the branching event, if the lineages move apart to distance O (1)
before coalescing. By comparison with simple random walk, we expect that the number of
times that they will come back to a separation less than 2r/n® (and so have a chance to
coalesce) before reaching a separation of @(1) is O(n?) ind = 1, O(logn) in d = 2, and
O(1) in d > 3. Now consider how many times they come back together before they coa-
lesce. When they are overlapped by the same event, given that one of them is an offspring,
the chance that the second lineage is also an offspring, and so they coalesce, is O(1/n?),
from which we deduce that they must come back together 9 (n?) times before coalescence.

Combining the above, in d > 2, as n — o0, the chance that they escape to a sep-
aration of (1) before coalescing is ((1). Since selective events happen at rate ns,u, =
O(n'=577), we take 1 — 8 — y = 0 in order that branching of ancestral lineages has rate of
O(1).Ind = 1, if B < y the chance of coalescing before separating is also asymptotically
negligible. In all these cases, as n — oo the dual process converges to a branching Brown-
ian motion, corresponding to the forwards-in-time process converging to a weak solution to
the Fisher—KPP equation. If d = 1 and 8 = y, which combined with our other conditions
requires § = y = 1/3 and § = 2/3, there is a positive chance of lineages separating to 9 (1),
but they also coalesce in finite time, reflected by the Wright—Fisher noise in (1.2).
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In the argument above we took u, — 0, corresponding to the local population den-
sity tending to infinity. In [15,16] scaling limits of the SLFVGS are considered in which the
impact u is fixed. The diffusive scaling then requires us to set w" (¢, x) = w(nt, /nx).
This time, when lineages are covered by the same event, they have a strictly positive chance
of coalescing. Reproducing the argument above, since lineages will coalesce after coming
together only a finite number of times, most branches will rapidly be lost to coalescence. In
order to see any lineages separate to (1) requires s, = O(1//n) ind = 1, O(logn/n)
ind =2, and O(1/n) in d > 3. In contrast to the setting of [2e], the local population den-
sity remains bounded as we pass to the limit and in low dimensions we see the effect of
individuals competing with their own close relatives. Recall that one motivation for taking
a scaling limit is that we use neutral mutations to infer information about genetic ancestry.
This result says that if local population density is bounded, if selection is to be detected, the
selection coefficient must be much larger in one spatial dimension than in two, and in turn
larger in two dimensions than in a population without spatial structure. In particular, when
local population density is bounded, spatial dimension is important in limiting the effect of

selection.

6.2. The effect of genetic drift on blocking

In order to investigate the effect of genetic drift on the blocking that we saw in
Section 5.2, we adapt the SLFV to incorporate the selection mechanism of Section 5.1. There
is not yet any accepted way in which to incorporate boundary conditions into the SLFV. An
obvious approach that can be applied to simple domains (including for example the domain
Q2 of Figure 2) based on “reflected sampling” (essentially mimicking Lord Kelvin’s method
of images for the heat equation) is used in [18]. The important consequence of that choice is
that scaled ancestral lineages will converge to reflected Brownian motions. For brevity we
shall only describe the adaptation of the SLFV on the whole Euclidean space.

Definition 6.8 (A Spatial A-Fleming process with (asymmetric) selection against heterozy-
gotes (SLFVSH)). Fix r,u and IT as in Definition 6.1. Fix y € (0, 1]and s € (0, 1/(1 + y)).
In the Spatial A-Fleming—Viot process with selection against heterozygosity (SLFVSH), if
(t, x) € I1, with probability 1 — (1 4 y)s a neutral reproduction event occurs as described in
Definition 6.1. With the complementary probability (1 4 y)s the event is selective, in which

case:

(1) Choose three ‘“potential” parental locations zi, zp, z3 € R4 independently
and uniformly at random from B(x, r). Sample types o, o2, 3, according
to wy—(z1), wy—(22), wy—(z3), respectively. Let & denote the most common
allelic type in o1, o2, 3, except that if precisely one of a1, oz, a3, is a, with
probability 31—1;)/ setd = a.

(2) Forevery y € B(x,r),set w;(y) = (1 —u)w;—(y) + ulig—q-
The dual process mirrors the process (#;);>o of Definition 6.5, except that this

time, in a selective event, if at least one individual is marked then all marked individuals are
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replaced by three offspring. Just as for the deterministic setting of Lemma 5.3, the duality
relation that we exploit is between the SLFVSH and the historical process of branching and
coalescing lineages, E(f) := ($s)o<s<t, and rests on a voting scheme:

(1) Each leaf of E(¢) independently votes a with probability p(&;(¢)), and A oth-
erwise;

(2) ateachneutral eventin ﬁ, all marked individuals adopt the vote of the offspring;

(3) at each selective event in (ﬁ, all marked individuals adopt the majority vote of

the three offspring, unless precisely one vote is @, in which case they all vote a
with probability 342_—’;),, otherwise they vote A.

This defines an iterative voting procedure, which runs inwards from the “leaves” of E(¢)
to the ancestral individual @ situated at the point x. The special case of majority voting,
corresponding to y = 0, is illustrated in Figure 4.

a a A a A a A a A a A

L]

QO

FIGURE 4
Example of majority voting on the dual to the SLFV with selection against heterozygosity. This corresponds to the
duality when both homozygotes are equally fit.

Lemma 6.9. With the voting procedure described above, define @/p(E(t)) to be the vote
associated to the root @. Write Py for the law of E when Py is the single point x, and E ;. for
the corresponding expectation. Then

Ep[w:(x)] = Px[V,(E(®)) = a].
To understand the influence of the genetic drift on blocking we consider two different
scalings of the SLFVSH. In both cases we shall be taking a sequence ¢, — 0 as n — oo.

Our results require that ancestral lineages converge to Brownian motion sufficiently quickly,
compared to the rate at which &, — 0, which is the purpose of the following assumption.

Assumption 6.10. The sequence {&,}neN is such that &, — 0 and (log n)l/zsn — 00 as

n — oQ.
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Weak noise/selection ratio

Our first scaling is what we shall call the weak noise/selection ratio regime. In this
regime, selection overwhelms genetic drift. It mirrors that explored in [14] and is also con-
sidered in [25]. For each n € N, and some 8 € (0, 1/4), set w(")(t, x) = w(nt, nﬂx). Let
v > 0. We denote by u, the impact parameter, and by s, and y, the selection parameters at
the nth stage of the scaling. They will be given by

u 1
Up = m, Sp = S%W’ Yn = Vén. (6.3)

Adapting the proof of Theorem 1.11 in [2e], and arguments in Section 3 of [14], one can show
that under this scaling, for large n, the SLFVSH will be close to the solution of equation (5.5).

Strong noise/selection ratio

We shall refer to our second scaling as the strong noise/selection ratio regime. In
this regime, genetic drift overcomes selection. We take a sequence of impact parameters
(Un)nen € (0, 1). Consider B € (0,1/2) and let i, := u,n 28 This time, we scale time
by /1, and space by nf: w® (¢, x) = w(nt /i, nP x). We consider a sequence of selection
coeflicients, (s,)sen C (0, 1), satisfying one of the following conditions:

san?f =0, liminf, o 4, logn < ocoord > 3,

sn?h o (6.4)
— 0, liminfu,logn = ocoandd = 2.

up logn
The first case includes some choices of impact that were allowed in the first (weak noise/selec-
tion ratio) regime; it is the strength of drift relative to selection that matters. In this regime,
we can take the parameters (¥, ),eN that dictate the asymmetry in our selection to be any
sequence in (0, 1).

Remark 6.11. The rationale behind these scalings is that (at least if ¥ = 1 in (6.3)) we can
choose parameters in such a way that the scaled models only differ in the strength of the
genetic drift (which can be thought of as the reciprocal of the impact). To see this, consider
a single ancestral lineage: in the first regime, the rate at which it jumps is proportional to
nu, =n?;in the second regime, it is proportional to nu, /i, = n# (with the same constant
of proportionality). In both cases we take the same spatial scaling, so the motion of ancestral
lineages is the same. The rate at which a lineage “branches” as a result of being covered by a
selective event in the first regime is proportional to nu,s, = n?#s,. In the second regime, it is
the same, nu, s, /i, = n2# S, so if we choose the same coefficients s,, the “branching rate”
is the same in both regimes. From the perspective of the dual process, the only difference
between the two scalings will then be in the probability of coalescence (determined by u;).

Theorem 6.12 ([18, SPECIAL CASE OF THEOREM 1.19]). Let p = (d — 1) /v and suppose ro < px«.
Let (w™(t, ))¢>0 be the scaled SLFVSH defined above on the domain Q2 of Figure 2, with
initial condition w(”)(O, x) = 1x,>0.
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(1) Under the weak noise/selection ratio regime, for any k € N, there exist n«(k) <
00, and ax(k), d« (k) € (0, 00) such that for alln > ny and all t > 0,

Sor almost every x such that x1 < —dx&,|loge,|, E[w(”)(t, x)] < 8];.

(2) Under the strong noise/selection ratio regime, a sharp interface does not
develop as n goes to infinity. Instead, there is 0> > 0 such that for every & > 0
andt > 0, there are a reflected Brownian motion (W) o, and ny such that for
alln > ny,

|Ew, [w™ (t,x)] — Px[W(0?) > 0]| <e.

More generally, one can show that in the strong noise/selection ratio regime for
x # vy, w®(, x) and w™(z, y) decorrelate as n — oco.

The first statement says that in the weak noise/selection ratio regime the SLFVSH
behaves approximately as the deterministic equation (5.5). The key step in the proof is to
couple the dual process to a system of branching random walks in which there is no coales-
cence. The proof then follows the same pattern as the deterministic result with the extra twist
that one must control the error arising from approximating the random walks by Brownian
motions.

In the strong noise/selection ratio regime, as one can convince oneself using the
argument outlined in the case of bounded neighborhood size in Section 6.1, the genetic drift
is strong enough to counter the effects of selection and it breaks down the interface. We
see coexistence of the populations throughout the domain. Perhaps counterintuitively, the
favored type expands its range further when the population density is lower.

7. CONCLUSION

There is a vast body of literature that seeks to understand the interactions between
natural selection, spatial structure, and genetic drift. Mathematics has provided a powerful
tool; a great deal has been learned from apparently crude caricatures of the ways in which
these forces interact with one another. However, as with any mathematical models, one must
be cognisant of the assumptions and simplifications that are being made. In the examples
presented here, we have aimed to draw out the importance of not neglecting the dimension
and geometry of the domain in which a population is evolving, and of taking account of the
randomness inherent in reproduction in a finite population.
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HYDRODYNAMIC LIMIT
AND STOCHASTIC PDES
RELATED TO INTERFACE
MOTION

TADAHISA FUNAKI

ABSTRACT

The hydrodynamic limit gives a link between microscopic and macroscopic systems via

a space—time scaling. Its notable feature is the averaging effect due to the local ergod-
icity under the local equilibria. In this article, as the microscopic system, we consider
several types of interacting particle systems, in which particles perform random walks
with interaction. We derive, under the hydrodynamic limit or its nonlinear fluctuation
limit, three different objects: the motion by mean curvature, Stefan free boundary problem,
and coupled KPZ equation. These are all related to the interface motion. The Boltzmann—
Gibbs principle plays a fundamental role. We discuss the coupled KPZ equation from the
aspect of singular SPDEs and renormalizations. Ginzburg—Landau V ¢-interface model,
stochastic motion by mean curvature, and stochastic eight-vertex model are also briefly
discussed.
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1. INTRODUCTION

The hydrodynamic limit is a scaling limit in space and time for interacting systems
at the microscopic level, and leads to macroscopic evolutional rules usually prescribed by
nonlinear PDEs, via an averaging effect due to the local ergodicity in local equilibria, cf.
[17,44,48]. It is formulated as a law of large numbers. Its fluctuation limit is also studied, and
we obtain linear or nonlinear stochastic PDEs (SPDEs) in the limit.

In this review article, we discuss the derivation of three different objects from inter-
acting particle systems: the motion by mean curvature (MMC, Section 2.1), Stefan free
boundary problem (Section 3) and coupled Kardar—Parisi-Zhang (KPZ) equation (Sec-
tion 4.2). We also discuss the coupled KPZ equation from the aspect of singular SPDEs
(Section 4.1). This is an ill-posed equation in a classical sense and requires renormaliza-
tions.

We consider particle systems, in which each particle moves performing a random
walk and interacting with other particles on the d-dimensional discrete torus TI'(I, =
{1,2,..., N}¢ (with periodic boundary) with large N. Specifically, we consider a zero-
range process, in which several particles may occupy each site of T;\i, and interact only at
the same site, or Kawasaki dynamics sometimes called exclusion process, in which parti-
cles obey the hard-core exclusion rule so that at most one particle can occupy each site. To
derive Stefan problem or coupled KPZ equation, we consider multiple types of particles. In
addition, we introduce the Glauber mechanism, which governs the creation and annihilation
of particles. More precisely, we consider both creation and annihilation for MMC problem,
annihilation only for Stefan problem, and neither creation nor annihilation for the coupled
KPZ problem.

Our problems have a common feature that relates to the interface motion. The system
leading to MMC exhibits a phase separation to sparse and dense regions of particles and,
macroscopically, the interface is created to separate these two phases and evolves under the
MMC, while, in that leading to the Stefan problem, we observe the segregation of differ-
ent species. Scalar KPZ equation was originally introduced as an equation for a growing
interface. Technically, the so-called Boltzmann—Gibbs principle plays a fundamental role.

2. MOTION BY MEAN CURVATURE

2.1. From particle systems

Here, to illustrate the idea and the results, we take Glauber—zero-range process as
a microscopic model based on El Kettani et al. [7,8]. Instead of zero-range process, one can
take simple Kawasaki dynamics (independent random walks with exclusion rule, [26,43]) or
Kawasaki dynamics with speed change (see [21]).

Properly tuning the Glauber part, the system exhibits phase separation and one can
derive the MMC as a macroscopic evolutional rule for the phase separation surface. Our
method is a combination of the techniques of the hydrodynamic limit, based on the relative
entropy method (Proposition 2.3) and Boltzmann—Gibbs principle (Theorem 2.6), and the
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PDE technique called the sharp interface limit (Proposition 2.7) and the discrete Schauder
estimate (Proposition 2.5).

2.1.1. Glauber—zero-range process and hydrodynamic limit with fixed K
Glauber—zero-range process on T;{, is the Markov process 7™V (t) = {n¥ (¢)} xeTd ON

d
the configuration space Xy = ZIN Xy = {0, I}Tfé in Kawasaki case) with the generator
givenby Ly = N2Lz + KLg with K > 0, where

(LzNHYm=Y, > eSO )= f},
xeT%eEZdﬂd=l

(Lo ) = D Y cEm{f0™*) - f).

d
xe€Ty +

forn = {nx}xeTl,{, € Xy and functions f on Xy. Here, nx € Z4+ = {0, 1,2, ...} denotes
the number of particles at x, n*” is 7 after one particle jumps from x to y, n*7 is n after
one particle is created at x, and n*>~ is n after one particle is annihilated at x.

The flip rates of the Glauber part are shift-invariant, that is, ¢ (1) = ¢* (z, 1) with
the creation and annihilation rates c¢* (1)(= coi (n)) of a particle at x = 0 and the spatial
shift 7, acting on X . We assume ¢~ () = 0 if n9 = 0. The jump rate g(k), k € Z, of
the zero-range part is bounded from above and below by linear functions of k. In particular,
g(0) =0.

The invariant measures or equilibrium states, being shift-invariant in space, of the
zero-range process, that is, the leading part of our dynamics, are superpositions of the product
measures Vv, on Xy (oron X = Z%d) with one-site marginal distribution given by

k o0

_ 1l oy v ¢
- 1’ ¢ N
Zy 36! 25 (b))
with parameter ¢ > 0 called fugacity, where g(k)! = l—[f-czl g(i),k>1,and g(0)! = 1. We
denote v, := V() by changing the parameter with its mean p > 0. In fact, p and ¢ = ¢(p)
are related by p = ¢(log Z,)' = E"[k] = E"[no], and ¢ = E’¢[g(k)] holds.
The macroscopic empirical measure (density field of particles) on T¢ (= [0, 1)¢

Vg (k)

with periodic boundary), which is the macroscopic region corresponding to microscopic
T 1‘\1,, associated with the configuration n € Xy, is defined by

1
oV (dvin) = N Z Nxéx (dv), ve T?, 2.1
xeTz
or equivalently, for a test function G € C °°(Td),
1 X
(‘XN('H?)’G) = W Z ﬂxG(ﬁ)' (2.2)
xET%

Thus, the scaling from micro to macro is given by ﬁ in space, ﬁ in mass, as well as N2
(for the zero-range part) and K (for the Glauber part) in time. Our problem is to study the
limit as N — oo.
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For a fixed K, one can expect that the hydrodynamic limit holds, that is,
oV (dvin™N (1)) — p(t,v)dv as N — oo

holds in probability multiplying a test function G on T4, if this holds at ¢ = 0, where p(, v)
is a unique weak solution of the reaction—diffusion equation with a nonlinear diffusion term

dp = Ap(p) + Kf(p). veT? (2.3)

with initial value p(0) and

flp) = E¥[ct(n) —c~ ()] 2.4)

Recall that ¢(p) = EV»[g] and A is the Laplacian on T<. This was shown for Glauber—
Kawasaki dynamics in [5], and the result for the zero-range process without Glauber part
(i.e., when K = 0) is found in [44]. See Section 4.2.2 for some related heuristic arguments
to derive (2.3).

2.1.2. Mesoscopic Glauber perturbation and derivation of MMC

We consider the Glauber—zero-range process 1™ (¢), that is, the X y-valued pro-
cess with generator Ly = N2Lz + KLg, now with K = K(N) — o0o. One can construct
flip rates ¢* (1) of the Glauber part in such a way that the corresponding f determined
by (2.4) is bistable, that is, f has exactly three zeros 0 < o < ax < atp <00 and f'(a1) <0,
/' (a2) < 0 hold, and satisfies the ¢-balance condition |, ;1 > f(p)¢'(p)dp = 0. We actually
take ¢ () = ¢@en) ang cy () = ¢ (txn) gy, 13, Where ¢*(n) are nonnegative local

gnx+1)
functions on X = Z%d (regarded as those on X ), which do not depend on 7y. Micro-

scopically, there are two phases: sparse phase (with density o of particles) and dense phase
(density o). Macroscopically, these two phases are separated by an interface I'; in T¢. The
creation and annihilation mechanism at the microscopic level forces the macroscopic density
to one of those two stable phases.

For a function u = {u(g)}, erd> We define the local equilibrium state v, as the
product measure on X defined by vy, (dn) =[] ,.c 4 Vu() (dny). For two probability mea-
sures p and v, the relative entropy of u with respect to v is defined by

du d
H(u|v) :=/Elogd—':b-dv.

For the initial distribution /,LON of n™ (0), we assume H(/L(Z)V |v(l)v) = O(N9#0) with
some g9 > 0, where vév = VN (g) for some u (0) = {u™ (0, %)}XGT;{, which satisfies

« uN (0, ¥) = uo(g), x € Tf,, with some 1o € C>(T?) such that ug > 0;

o Tg:={veT%ug(v) =as}isa(d — 1)-dimensional C5*?-hypersurface, 8 > 0,
without boundary in T¢ and Vu, is nondegenerate in the normal direction to I'y.

Theorem 2.1 ([71). We assume d > 2, the above conditions, and that K(N) diverges to oo
satisfying 1 < K(N) < 8o(log N )2 with small enough 8o > 0 and the Holder exponent o €
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(0, 1) determined by Nash estimate, see Proposition 2.5. Let o (¢, dv) := o™ (dv; n™ (1))
be the macroscopic empirical measure associated with nN (t). Then, we have fort € (0, T,

aN(t) I o1, onone side of I'y, 25)
o, on the other side of T'y,
in probability, where the hypersurface T'y in T? moves according to the MMC, V = Agk.
Here, k is the mean curvature of T'y multiplied by d — 1 and V' is the normal velocity
of 'y from the a1 -side to az-side. The sides of Ty are determined continuously from T'g. We
assume I'; is cstt fort <T.

The constant Aq is determined by the homogenization effect from the nonlinear

f:lz @' (u)y W(u)du
f;lz VWu)du

with the potential defined by W(u) = [ f(s)¢'(s)ds, u > 0. Note that Ao = 1 if g(k) = k
so that ¢ is linear, p(u) = u.

Laplacian and given by

Ao =

2.1.3. Proof of Theorem 2.1
(a) Probabilistic part. Let uV be the distribution of 7" (r) on Xy. Let u¥(t) =
N (z, )y eTd be the solution of the quasilinear discrete PDE (ODE):

9, (z, %) - AN<p(uN(t, %)) +Kf (uN(t, %)) (2.6)

with initial value " (0), where A¥ is the discrete Laplacian defined by

by y X
ANy = | = N2 =) -vls 2.
W)= T (5)-(m) e
ye'H‘I‘{,:|y—x\=l
for ¢ = {w(%)}xeT%. Note that (2.6) is a discretized version of (2.3). Let v,N = VN () be

the local equilibrium state on Xy with mean density {u® (z, ) x eTd-
The main estimate in the probabilistic part is the following:

Theorem 2.2. Under the condition H(ul |v) = O(N47%0) for some gg > 0, if 1 <
K(N) < 8o(log N)2 with small enough 8y > 0, then we have HuNpN) = o(N?) as
N — oo.

Once this is shown, one can show that a™ (¢) is close to Y (¢) in the sense that
lim 7 (An) =0, (2.8)
N—>o00

for the event Ay, := {n € Xn: [(aV.G) — (uN(t,-).G)| > §} and every § > 0 and G €
C®°(T). Indeed, we may combine the entropy inequality, 1 (A4) < lgféi% , and the large
deviation estimate for the product measure v¥, vV (Ay ;) < e~V forsome C = Cs,6 > 0.

The proof of Theorem 2.2 is divided into five steps.
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(1) The time derivative of the relative entropy.

Proposition 2.3 ([33,40,51]). Let m be a reference measure on Xy with full support and set

N
IﬂtN = a;vrjl . Then, we have

Ny, N 2 dui  n ol N\, N
3 H(up |v)') <—N?D va;v, +/x {Ly" 1—08,logy;" pduy
t N

where L* denotes the adjoint of L on L?(v) in general, and D(f;v) > 0 is the Dirichlet
form associated with Lz, which may be dropped since we actually do not use it.

(2) Computation of L}k\;vl and 9, log yN. We write 3" for Doy eTd for simplicity.

Lemma 2.4. Let v = vy, and ¢(57) = ¢(u(5y)) in the following first two equalities. Then,
(ANf/))(i){ x
N2LY" 1 =) g — o 7 ) ¢
z Xx: o(%) * N

* v At 1(nx = 1) _ 1 ) . ( (p(%) _ - )}
Lo I_Zx:{c (M)( o(F)  gnx+1) &) g + 1) 1= Dy,

N _ 3t§0(”N(t’ %)) N X
Ylog v’ =D~ 1) (”*‘” (”N))‘

X

(3) Schauder estimate. To bound the prefactor appearing in N ZLZ’V 1, we need

Proposition 2.5 (Schauder estimate for quasilinear discrete PDEs, [24]). If
Supy ||uN(O)||C;\t] < 00 (which holds under our assumption), the solution of (2.6) has the
bound

[u¥ )]z < CK5.

where ||u||c§’ = Zf-c:o MaXxie,,..e; |V£\l' Vgu(%)L o € (0, 1) is the Holder exponent
obtained in Nash estimate and VN u(y) =N (u(xT”) —u(5y)) is the discrete derivative of
u in the direction e € 7.9, |e| = 1.

(4) First-order Boltzmann—Gibbs principle. For a local function 2 = k(1) on X (i.e.,
h depends only on finitely many {7, }) growing at most linearly in 1, we set h (p) = EV¢[h],
p >0, and

Fe) = h(ten) — hux) — B (ux)(nx — ux),

where we write u, = u®(z, %) for simplicity. Roughly saying, one can replace / by the
first-order Taylor expansion of its equilibrium average.

Theorem 2.6 (Boltzmann—Gibbs principle). Let{a; x},.¢ erd be nonrandom coefficients
satisfying a; x| < M. Then, there exist &1, C > 0 such that

E

r T
/ Y arx fx (0 ()dt] < CMEN—™ +CM/ H(ulN [vN)dr.
(R~ o

For the proof, we apply truncation, entropy inequality, estimate on the exponential
moment under va , Feynman—Kac formula, Raleigh estimate, and equivalence of ensembles.
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First, take = g(10) — ¢(1tx) and ar,x = 2569 Then, fi(p) = ¢(p) — p(1ux)
~ N
and, noting h(u,) = 0, by Theorem 2.6, N 2L2’v‘ 1 is replaced by
AN g(uy)
Z —X<P/(ux)('7x — Uy).
" P(ux)

We use Proposition 2.5 to bound |a; x| by M = CK 5 . Note that ¢(ux) > c holds for some
¢ > 0 by the maximum principle, the property of f, and the assumption on u® (0).

Next, take the function inside curly braces in L*’” linLemma?2.4 replacing T and
nx, respectively, by n and no as & and a;, x = K. Noting E"# [g(no+1)] w(ﬂ) EVB[1(no = 1)]

and /(1) = 0, by Theorem 2.6, KL v 1 is replaced by

K Z EVe[ct — c_]w ((Zx)) (nx — ux).

Summarizing these and noting ;¢ (1) = ¢’ ()01 for (ux) = e (t, 7))

L* i 1 —0;log 1//, is replaced, with an error given by Theorem 2.6, by

) 2 (0 ) + K 0) = ) 1 = 1)

This vanishes if u, = u® (¢, %) is the solution of (2.6).
(5) Completion of the proof. Finally, since K = K(N) < o(log N)%, we obtain

0 H (' Iv) < CK& H (i oY) + O(N“™*2),
for 0 < &, < ¢g; in integrated form in 7. Gronwall’s inequality shows
2
H(uY vY) < (H(ug b)) + tO(Nd*SZ))eCKut‘

2 3 o
Note that e€X° ¢ < NC3'? from K < 8o(log N) 2. Thus, taking §o > 0 small enough, The-
orem 2.2 is shown.

(b) PDE part. The following proposition is a purely PDE result, which establishes the sharp
interface limit for the solution u® (t) of (2.6) and leads to the MMC. Theorem 2.1 follows
from (2.8) and this proposition.

Proposition 2.7. Under our assumption, u™ (t) converges to yr, as N — oo, where yr, is
defined in (2.5) and the hypersurface T in T moves according to the MMC, V = Aok.

The proof of Proposition 2.7 relies on the comparison theorem for the discrete
PDE (2.6) due to the nondecreasingness of ¢ and consists of two parts: generation of inter-
face and propagation of interface. In a short time, the reaction term K f(u®) is dominant
and the solution u® (¢, %) is pushed to one of the two stable points, a1 and a2, of f* within
the time = % log K, ¢ > 0. This is called the generation of interface.

Once the interface is created, we can construct super- and subsolutions to (2.6) based
on the traveling (standing) wave solution Up: ¢(Up)” + f(Up) = 0 on R combing with the
second-order term U; in the asymptotic expansion in K of the continuous PDE (2.3). By
sandwiching the solution of (2.6) within super- and subsolutions, and studying the asymp-
totic behavior of these solutions as K = K(N) — oo, we obtain Proposition 2.7.
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2.2. Other approaches

2.2.1. Ginzburg-Landau interface model

The Ginzburg-Landau V ¢-interface model is an evolutional model of height func-
tions of discretized interface. After characterizing all (tempered and shift-invariant) invariant
measures of V¢-dynamics on Z¢ as nonlinear version of massless Gaussian lattice free
fields with long correlations, an anisotropic motion by mean curvature was derived under the
hydrodynamic limit, see Funaki and Spohn [25] and Funaki [14]. Funaki [13] derived a PDE
with an obstacle described by an evolutionary variational inequality from the Ginzburg—
Landau interface model on a wall.

2.2.2. SPDE approach to stochastic MMC

An approach to stochastic MMC from SPDEs is also known. The sharp interface
limit of the time-dependent Ginzburg—Landau model of nonconservative type, or equiva-
lently the stochastic Allen—Cahn equation, was studied in [18,12,28]. In one dimension with
space—time Gaussian white noise, the limit motion of a phase separation point is described
by a stochastic differential equation [1e]. In higher dimensions, stochastic MMC was derived
in the limit in [12,28]. Chapter 4 of [16] gives a survey of related results. Physical background
of these SPDE:s is found in [38].

3. STEFAN PROBLEM

3.1. From two-component Glauber-Kawasaki dynamics

De Masi et al. [6] derived a system of diffusion equations with Stefan free boundary
condition from two-component simple Kawasaki dynamics with relatively large mesoscopic
annihilation effect when different types of particles meet. The annihilation effect leads to
segregation in a competition—diffusion system at the macroscopic level.

We consider two-component Glauber—Kawasaki dynamics on T¢, that is, the
Markov process (7)?’ (1), 773’ () = {nf{x(t), ”év,x(t)}xeir;(, on Xy X Xy with generator

Ly = NZLg) + KLg, where Xy = {0, I}TI'(ZJ in the present setting and
(LZ £)m.m) = di(Lx f(n2)) (1) + da(Li £ (m1.7)