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Abstract

Inverse scattering problems arise in diverse application areas, such as geophysical pro-
specting, submarine detection, near-field and nanooptical imaging, and medical imaging.
For a given wave incident on a medium enclosed by a bounded domain, the scattering
(direct) problem is to determine the scattered field or the energy distribution for the known
scatterer. An inverse scattering problem is to determine the scatterer from the boundary
measurements of the fields. Although significant recent progress has been made in solving
the inverse problems, many challenging mathematical and computational issues remain
unresolved. In particular, the severe ill-posedness has thus far limited the scope of inverse
problem methods in practical applications. This paper is concerned with mathematical
analysis and numerical methods for solving inverse scattering problems of broad interest.
Based on multifrequency data, effective computational and mathematical approaches are
presented for overcoming the ill-posedness of the inverse problems. A brief overview of
these approaches and results is provided. Particular attention is paid to inverse medium,
inverse obstacle, and inverse source scattering problems. Related topics and open problems
are also discussed.
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1. Introduction

Research on scattering and inverse scattering plays a critical role in the advance-
ment of exploration science, especially in medical imaging, stealth technology, oil and
gas exploration, nondestructive testing, materials characterization, optical microscopy, and
nanooptical imaging. Scattering involves studying the interaction of a medium, often inho-
mogeneous, with incident waves or particles, while inverse scattering deals with determining
the medium, such as location, geometry, or material properties, by the wave field measured
externally.

Over the last few decades, the ever-growing practical applications and scientific
developments have driven the need for more sophisticated mathematical models and numer-
ical algorithms to describe the scattering of complicated structures, to accurately compute
scattered fields and thus to predict the performance of a given structure, as well as to carry
out the optimal design of new structures. The rapid growth of computational capability and
the development of fast algorithms have also made inverse scattering a viable option for solv-
ing many identification problems. Mathematically, inverse scattering has been an emerging
and core field of modern mathematical physics. Significant progress has been made in the
mathematical studies of uniqueness and stability, as well as the development of numerical
methods for solving inverse scattering problems [66,74,78,88,94,102,103]. However, there are
outstanding mathematical and computational challenges that remain to be resolved, espe-
cially the nonlinearity, ill-posedness, model uncertainty, and large-scale computation. In
addition, in the area of nanotechnology and biology, optical measurement techniques are
commonly used. Since the size of the measured structure is extremely small, how to over-
come the diffraction limit to obtain superresolution imaging presents another key challenge.

This paper is not intended to cover all of the broad topics in inverse scattering theory
for wave propagation. It is designed to be an introduction to the work of our research group to
overcome the above challenges for solving the inverse scattering problems. Throughout, we
are mainly concerned with multifrequency data for the following reasons. First, due to lack
of stability, the inverse scattering problems are severely ill-posed at a fixed frequency, that is,
small variations in the measured data can lead to large errors in the reconstructions. On the
other hand, the problems become well-posed with Lipschitz-type stability estimates when
all frequency data, corresponding to the time domain case, is available. Second, the nonlin-
earity of the inverse scattering problems at high wavenumber leads to many local minima
for the associated optimization method. By properly designing a numerical method, such a
highly nonlinear problem may be reduced to a set of linear problems at given frequencies.
Physically, the approach based on multifrequency data is consistent with the Heisenberg
uncertainty principle. According to the principle, one-half of the wavelength is the diffrac-
tion limit for resolving the sharpness of details that may be observed by optical microscopy
[57,67, 79]. The diffraction limit provides a limit on the accuracy of the reconstruction for a
given wavelength. To improve the resolution, it is desirable to use an incident field with a
shorter wavelength or a higher frequency to illuminate the scatterer.
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The goal of this paper is two-fold. Concerning mathematical analysis, our recent
stability results for the inverse scattering problems are discussed. Regarding numerical meth-
ods, we present the stable recursive linearization method (RLM) for solving quantitatively
the inverse scattering problems with increased resolution.

The underlying physical model is usually a wave propagation system decided by
means of measuring data. In this work, our primary focus is on acoustic and electromagnetic
wave propagation governed by the Helmholtz equation and Maxwell’s equations, respec-
tively. Many of the approaches and methods may be extended to study inverse scattering
problems in other wave propagation models, especially elastic waves. The inverse scattering
problems for wave propagation can be broadly divided into three classes: the inverse medium
problem (IMP), the inverse obstacle problem (IOP), and the inverse source problem (ISP),
depending on the nature of reconstructions. To emphasize the significance of the spectral
information for solving the inverse scattering problems, particular attention is paid to the
frequency domain models or the time-harmonic cases. To further limit the scope, the numer-
ical methods discussed here are nonlinear optimization-based iterative methods for solving
inverse scattering problems. We refer the reader to [55,62,65,76,80,87] and references therein
for noniterative, particularly direct imaging methods for solving inverse scattering problems.

The outline of this paper is as follows. In Section 2, the IMP is introduced. Stabil-
ity results for the multiple frequency models are presented. Section 3 is devoted to the ISP.
Stability for the multifrequency ISP of Maxwell’s equations is discussed. The recent devel-
opment of stochastic inverse source problems is provided. The IOP is addressed in Section 4.
Of particular interest is the inverse diffraction problem. The paper is concluded with some
general remarks and discussions on related problems. Some significant open problems are
also presented in Section 5.

2. Inverse medium problem

In this section, we consider the IMP, which is to reconstruct the inhomogeneous
medium from boundary measurements of the scattered field surrounding the medium. The
main difficulties are the ill-posedness, especially lack of stability, and the nonlinearity. In the
static case (zero frequency), the problem is related to the celebrated Calderón problem [56],
which is known to be severely unstable, in general [2,101]. In fact, such severe ill-posedness
carries over to the inverse medium problems for acoustic and electromagnetic waves at a
fixed frequency [4,81]. Our remedy to overcome the difficulties is to consider multifrequency
boundary data. For the Maxwell equations model, we present a stable reconstruction method
based on recursive linearization. The stability of the model IMP is also investigated.

2.1. Model problem
Consider the time harmonic Maxwell equation in three dimensions, namely

r � .r �Et / � �2.1C q/Et
D 0 in R3; (2.1)
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Figure 1

The inverse medium problem geometry. A plane wave Ei is incident on the scatterer q with a compact support
contained in �.

where Et is the total electric field, � > 0 is the wavenumber or frequency, and q is a real
function known as the scatterer representing the inhomogeneous medium. The scatterer is
assumed to have a compact support contained in a bounded domain � � R3 with bound-
ary � , and satisfies �1 < q � qmax < 1 where qmax is a positive constant. The problem
geometry is shown in Figure 1.

The scatterer is illuminated by a plane wave

Ei .x/ D Epei�x�En;

where En 2 S2 is the propagating direction and Ep 2 S2 is the polarization vector satisfying
Ep � En D 0. Evidently, the incident wave satisfies the homogeneous Maxwell equation

r � .r �Ei / � �2Ei
D 0 in R3: (2.2)

Since the total field Et consists of the incident field Ei and the scattered field E, it
follows from (2.1)–(2.2) that the scattered field satisfies

r � .r �E/ � �2.1C q/E D �2qEi in R3: (2.3)

In addition, the scattered field is required to satisfy the Silver–Müller radiation condition

lim
r!1

�
.r �E/ � x � i�rE

�
D 0; r D jxj:

Denote by � the unit outward normal to � . Computationally, it is convenient to
reduce the problem to a bounded domain by imposing a suitable (artificial) boundary con-
dition on � . For simplicity, we employ the first-order absorbing boundary condition

� � .r �E/C i�� � .� �E/ D 0 on �: (2.4)

Given the incident field Ei , the direct problem is to determine the scattered field E
for the known scatterer q. This work is devoted to the solution of the IMP, i.e., determining
the scatterer q from the tangential trace of the electric field, � �Ej� at multiple frequencies.
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Although this is a classical problem in inverse scattering theory, progress has been difficult
to make on reconstruction methods, due to the nonlinearity and ill-posedness associated
with the inverse scattering problem. We refer to [5,58,64,71,85,86,93,109] for related results
on the IMP.

To overcome the difficulties, an RLM was proposed in [59–61] for solving the IMP
of the two-dimensional Helmholtz equation. Based on the Riccati equations for the scatter-
ing matrices, the method requires full aperture data and needs to solve a sensitivity matrix
equation at each iteration. Due to the high computational cost, it is numerically difficult to
extend the method to three-dimensional problems. Recently, new and more efficient RLMs
have been developed for solving the two-dimensional Helmholtz equation and the three-
dimensional Maxwell equations for both full and limited aperture data by directly using the
differential equation formulations [13,20,21,23,24,28,29,31,32,37,51]. In the case of a fixed fre-
quency, a novel RLM has also been developed by making use of the evanescent waves [22,25].
Direct imaging techniques have been explored to replace the weak scattering for generating
the initial guesses in [19,33]. More recently, the RLM has been extended to solve the inverse
medium scattering problem in elasticity [44].

Next, we present an RLM that solves the IMP of Maxwell’s equations in three
dimensions, which first appeared in our work [20,25]. The algorithm requires multifrequency
scattering data, and the recursive linearization is obtained by a continuation method on the
wavenumber. The algorithm first solves a linear equation under the Born approximation at the
lowest wavenumber. Updates are made by using the data at higher wavenumbers sequentially.
Following the idea of the Kaczmarz method, we use partial data and solve an underdeter-
mined minimal norm solution at each step. For each iteration, one forward and one adjoint
state of the Maxwell equations are solved, which may be implemented by using the symmet-
ric second-order edge elements.

2.2. Born approximation
Rewrite (2.3) as

r � .r �E/ � �2E D �2q.Ei
CE/; (2.5)

where the incident wave is taken as a plane wave Ei D Ep1e
i�x�En1 . Consider a test function

F D Ep2e
i�x�En2 , where Ep2; En2 2 S2 satisfy Ep2 � En2 D 0. Clearly, the plane wave F satis-

fies (2.2).
Multiplying equation (2.5) by F and integrating over � on both sides, we have, by

integrating by parts and noting (2.2) for F , thatZ
�

�
E � .r � F / � F � .r �E/

�
� �ds D �2

Z
�

qF � .E i
CE/dx:

A simple calculation yieldsZ
�

q.x/. Ep1 � Ep2/e
i�x�.En1CEn2/dx D

i
�

Z
�

.� �E/ �
�
.En2 C �/ � Ep2

�
ei�x�En2ds

�

Z
�

q.x/. Ep2 �E/ei�x�En2dx:
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For the weak scattering, either the wavenumber � is small, or the domain of support
� is small, or kqkL1.�/ is small, we may drop the second (nonlinear) term on the right-hand
side of the above equation to obtain the linear integral equationZ

�

q.x/ei�x�.En1CEn2/dx D
i

. Ep1 � Ep2/�

Z
�

.� �E/ �
�
.En2 C �/ � Ep2

�
ei�x�En2ds;

which is the Born approximation.
Since the scatterer q has a compact support, we use the notation

Oq.�/ D

Z
�

q.x/ei�x�.En1CEn2/dx;

where Oq.�/ is the Fourier transform of q.x/ with � D �.En1 C En2/. Choose

Eni D .sin �i cos�i ; sin �i sin�i ; cos �i /; i D 1; 2;

where �i ;�i are the latitudinal and longitudinal angles, respectively. It is clear to note that the
domain Œ0;��� Œ0;2�� of .�i ;�i /, i D 1;2, corresponds to the ballB2� D ¹� 2 R3 W j�j � 2�º.
Thus, the Fourier modes of Oq in the ball B2� can be determined. The scattering data with
higher wavenumber � must be used in order to recover more modes of the scatterer q.

2.3. Recursive linearization
As discussed in the previous subsection, when the wavenumber � is small, the Born

approximation allows the reconstruction of those Fourier modes less than or equal to 2� for
the function q.x/. We now describe a procedure that recursively determines q� , an approxi-
mation of q.x/ at � D �j for j D 1; 2; : : : , with the increasing wavenumber.

Suppose now that the scatterer qQ� has been recovered at some Q�, and that � is slightly
larger than Q�. We wish to determine q� or to determine equivalently the perturbation

ıq D q� � qQ� :

Let E and QE be solutions of the scattering problem (2.3)–(2.4) corresponding to q� and qQ� ,
respectively. Taking the difference of the scattering problem (2.3)–(2.4) corresponding to q�

and qQ� , omitting the second-order smallness in ıq and in ıE D E � QE, we obtain8<:r � .r � ıE/ � �2.1C qQ�/ıE D �2ıq.E i C QE/ in �;

� � .r � ıE/C i�� � .� � ıE/ D 0 on �:
(2.6)

For the scatterer q� and the incident wave E i, we define the scattering map

M.q� ; E
i/ D � �Ej� ;

where E is the solution of (2.3)–(2.4) with the scatterer q� . For simplicity, we denote
M.q� ; E

i/ by M.q�/ since the scattering map M.q� ; E
i/ is linear with respect to E i.

Next, we examine the boundary data � �E.xI �1; �1I �/. Here, the variable x is the
observation point which has two degrees of freedom on the artificial boundary � , �1 and
�1 are latitudinal and longitudinal angles of the incident wave E i, respectively. At each fre-
quency, we have four degrees of freedom, and thus data redundancy, which may be addressed
by fixing one of the incident angles, say �1.
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Let .�1/j D 2�.j � 1/=m, j D 1; : : : ; m, and define the residual operator

Rj .qQ�/ D � �E
�
xI �1; .�1/j I �

�ˇ̌
�

� � � QE
�
xI �1; .�1/j I �

�ˇ̌
�
;

where QE.xI �1; .�1/j I �/ is the solution of (2.3)–(2.4) with the incident longitudinal angle
.�1/j and the scatterer qQ� . For each j , the linearized problem (2.6) can be written as the
operator equation

DMj .qQ�/ıqj D Rj .qQ�/; (2.7)

whereDMj .qQ�/ is the Fréchet derivative of the scattering mapMj .q�/ corresponding to the
incident angle .�1/j . Applying the Landweber–Kaczmarz iteration [90] to (2.7) yields

ıqj D ˇ�DM
�

j .qQ�/Rj .qQ�/;

where ˇ� > 0 is a relaxation parameter and DM �
j .qQ�/ is the adjoint operator of DMj .qQ�/.

An adjoint state method is adopted to compute the correction ıqj efficiently [25].
For each incident wave with the longitudinal angle .�1/j , it is necessary to solve one direct
and one adjoint problem for Maxwell’s equations. Since the adjoint problem takes a similar
variational form to the direct problem, we need to compute essentially two direct problems
at each step. Once ıqj is determined, qQ� is updated by qQ� C ıqj . After the mth sweep is
completed, we get the reconstructed scatterer q� at the wavenumber �. Assume that the scat-
tering data is for � 2 Œ�min; �max� and let �min D �0 < �1 < � � � < �n D �max. The algorithm
of the RLM can be illustrated in Table 1.

Start with the Born approximation qk0
.

Do the outer loop on the wavenumber ki , i D 1; 2; : : : ; n.

Let q0
ki

D qki�1
.

Do the inner loop on the incident direction �j , j D 1;2; : : : ;m,

ıqj D ˇkDM
�

j .q
j �1

ki
/Rj .q

j �1

ki
/,

q
j

ki
D q

j �1

ki
C ıqj .

End

End

Table 1

The algorithm beyond Born approximation
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2.4. Numerical experiments
We present an example to illustrate the performance of the method. Let

Qq.x1; x2; x3/ D 2x2
1e

�.x2
1Cx2

2Cx2
3/ and reconstruct the scatterer defined by

q.x1; x2; x3/ D Qq.3x1; 3:5x2; 3x3/:

Figure 2 shows the surface plot of the true scatterer at slices x1 D 0:3, x2 D 0, and x3 D 0,
respectively. Six equally-spaced wavenumbers are used in the construction, starting from the
lowest wavenumber �min D 0:5� and ending at the highest wavenumber �max D 2:5� . The
incident fields are taken at 20 randomly chosen directions, which accounts for 20 Landweber
iterations at each wavenumber. The relaxation parameter is 0.01 and the noise level of the
data is 5%. Figure 3 shows the reconstructed scatterer at the Born approximation with the
wavenumber � D 0:5� . Figures 4–5 illustrate the reconstructed scatterers at the different
wavenumbers. It can be observed from the numerical results that the Born approximation
generates a poor reconstruction, but the result can be improved as the wavenumber increases.

Figure 2

The true scatterer: (left) the slice x1 D 0:3; (middle) the slice x2 D 0; (right) the slice x3 D 0.

Figure 3

The Born approximation at the wavenumber � D 0:5� : (left) the slice x1 D 0:3; (middle) the slice x2 D 0; (right)
the slice x3 D 0.
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Figure 4

The reconstructed scatterer at the wavenumber � D 1:3� : (left) the slice x1 D 0:3; (middle) the slice x2 D 0;
(right) the slice x3 D 0.

Figure 5

The reconstructed scatterer at the wavenumber � D 2:5� : (left) the slice x1 D 0:3; (middle) the slice x2 D 0;
(right) the slice x3 D 0.

2.5. Stability analysis
It is well known that when the data is given for all frequencies and under cer-

tain geometrical assumptions, the IMP is well-posed with Lipschitz type stability estimates
[45, 46, 96, 108]. However, in practice, the boundary measurements are often taken only at a
finite number of frequencies. Our numerical method based on recursive linearization takes
advantage of the regularity of the problem at high frequencies without being undermined by
local minima. Numerical tests have shown that the method is very stable with data driven
accuracy. Some preliminary convergence results of the RLM for solving the IMP with mul-
tifrequency are available in [27,41].

Next, we present stability estimates for the multifrequency IMP in one-dimension.
Stability in several dimensions is still open due to the difficulties of strong nonlinearity for
high frequencies and trapped rays of the frequency-dependent scattering relation.

Consider the one-dimensional Helmholtz equation

�00.x; �/C �2
�
1C q.x/

�
�.x; �/ D 0; x 2 R;

where the scatterer q is assumed to be supported in .0; 1/. Denote by  C and  � the scat-
tering waves corresponding to the left and right excitation e˙i�x which satisfy

�˙.x; k/ D  ˙ C e˙i�x :
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Assume q.x/ 2 CmC1
0 .Œ0; 1�/ and define the reflection coefficients by

 C.x; �/ D �C.�/e
�i�x ;  �.x; �/ D ��.�/e

i�x

and their associated measurements

d˙.�/ D
1 � �˙.�/

1C �˙.�/
:

Given the measurement data d˙.�/; � 2 .0; �0/, the IMP is to reconstruct the scatterer q.x/.
In the following, we present two stability results obtained recently in [42].

Theorem 2.1. Assume that q; Qq are two scatterer functions. Let d˙; Qd˙ be their boundary
measurements in .0; �0/. Then there exist a positive constant C and a function � such that
the following estimate holds:

kq � QqkL1.R/ � Ckd˙ � Qd˙k
�.�0/

L1.0;�0/
:

Remark 2.2. We refer to [42] for the complete statement. The proof is based on a combi-
nation of the trace formula, Hitrik’s pole-free strip for the Schrödinger operator, the mero-
morphic extension, and the Two Constant Theorem. The Hölder exponent � 2 .0; 1/ in the
estimate is an explicit increasing function of �0. It tends to zero when �0 tends to zero
which shows as expected that the ill-posedness of the inversion increases when the band
of frequency shrinks. We conclude from the stability estimate that the reconstruction of
the scatterer function is accurate when the band of frequency is large enough and deteri-
orates when this later shrinks toward zero. These theoretical results confirm the numerical
observations and the physical expectations for the increasing stability phenomena by taking
multifrequency data.

By taking into account the uncertainty principle, it is reasonable to consider the
observable part of the scatterer. In the one-dimensional setting, the observable part of the
scatterer q over the frequency band .0; �0/ may be well-defined by using the truncated trace
formula [42].

The next theorem gives the stability estimate on the observable part of the scatterer,
which shows that the reconstruction of the observable part of the scatterer is stable for �0

sufficiently large.

Theorem2.3. Assume that q; Qq are two scatterer functions and q�0 ; Qq�0 are their correspond-
ing observable parts. Let d˙; Qd˙ be the boundary measurements in .0; �0/. There exist two
constants �Q and �Q such that the following estimate holds for all �0 � �Q:

kq�0 � Qq�0kL1.R/ � �Q

d.k/ � Qd.k/


L1.0;�0/
:

3. Inverse source problem

In this section, we consider the ISP that determines the unknown current density
function from boundary measurements of the radiated fields at multiple wavenumbers. The
ISP has many significant applications in biomedical engineering and antenna synthesis [7,88].
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In medical applications, it is often desirable to use the measurement of the radiated electro-
magnetic field on the surface of the human brain to infer abnormalities inside the brain [68].

3.1. Model problem
Consider the time-harmonic Maxwell equation in a homogeneous medium

r � .r �E/ � �2E D i�J in R3; (3.1)

where � > 0 is the wavenumber,E is the electric field, J is the electric current density which
is assumed to have a compact support �. The Silver–Müller radiation condition is required
to ensure the well-posedness of the direct problem

lim
r!1

�
.r �E/ � x � i�rE

�
D 0; r D jxj: (3.2)

Given J 2 L2.�/3, it is known that the scattering problem (3.1)–(3.2) has a unique
solution

E.x; �/ D

Z
�

G.x; yI �/ � J.y/dy;

where G.x; yI �/ is Green’s tensor for the Maxwell system (3.1). Explicitly, we have

G.x; yI �/ D i�g.x; yI �/I3 C
i
�

rxr
>
x g.x; yI �/;

where g is the fundamental solution of the three-dimensional Helmholtz equation and I3 is
the 3 � 3 identity matrix.

Let BR D ¹x 2 R3 W jxj < Rº, where R is a positive constant such that� �� BR.
Denote by �R the boundary of BR. In the domain R3 nBR, the solution of (3.1) has a series
expansion in the spherical coordinates which may be used to derive the capacity operator
T . In addition, it can be verified that the solution of (3.1) satisfies the transparent boundary
condition

.r �E/ � � D i�T .E � �/ on �R;

where � is the unit outward normal to �R.
Define the boundary measurement in terms of the tangential trace of the electric

field E.�; �/ � �
2

�R
D

Z
�R

�ˇ̌
T
�
E.x; �/ � �

�ˇ̌2
C
ˇ̌
E.x; �/ � �

ˇ̌2�d.x/:
Let J be the electric current density with the compact support�. The ISP of electromagnetic
waves is to determine J from the tangential trace of the electric fieldE.x;�/� � for x 2 �R.

The ISP for the fixed frequency case has been studied extensively. It is now well
known that the problem is ill-posed with nonuniqueness and instability [1,50,69,77,82]. Due
to the existence of infinitely many nonradiating fields, a source with extended support cannot
be uniquely determined from surface measurements at a fixed frequency. Therefore, addi-
tional constraints need to be imposed in order to obtain a unique solution to the inverse
problem. A usual choice is to find the source with a minimum energy norm. However, the
difference between the minimum energy solution and the original source function could be
significant. Another difficulty of the ISP at fixed frequency is the inherited instability due
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to exponential decay of the singular eigenvalues of the forward operator [34,35,72]. For the
special cases of reconstruction for point sources, we refer to [6,9,38,39,107] for studies of the
unique identifiability and stability of the problem.

The use of the multiple frequency data for the ISP provides an approach to circum-
vent the difficulties of nonuniqueness and instability presented at a fixed frequency. For the
ISP of the Helmholtz equation, uniqueness and stability were established in [34] by mul-
tiple frequency measurements. The results indicate that the multifrequency ISP is not only
uniquely solvable but also is Lipschitz stable when the highest wavenumber exceeds a certain
real number.

In the rest of the section, we present our recent results on uniqueness and stability
for the ISP of Maxwell’s equations [30], and discuss the recent development on the inverse
random source problems, where the current density is a random function.

3.2. Uniqueness and stability
Denote by X.BR/ the closure of the following set in the L2.BR/

3 norm:²
E 2 H.curl; BR/ W

Z
BR

�
.r �E/ � .r �  / � �2E �  

�
dx D 0; 8 2 C1

0 .BR/
3

³
:

We have the following orthogonal decomposition of L2.BR/
3 [1]:

L2.BR/
3

D X.BR/˚ Y .BR/;

where Y .BR/ is an infinite-dimensional subspace of L2.BR/
3 and the electric current den-

sities in the subspace Y .BR/ are called nonradiating sources. It corresponds to finding a
minimum norm solution when computing the component of the source in X.BR/.

The following two results characterize clearly the uniqueness and nonuniqueness of
the ISP. The proofs can be found in [30].

Theorem3.1. Suppose J 2 Y .BR/. Then J does not produce any tangential trace of electric
fields on �R and thus cannot be identified.

Theorem 3.2. Suppose J 2 X.BR/, then J can be uniquely determined by the data E � �

on �R.

Define a functional space

JM .BR/ D
®
J 2 X.BR/ \Hm.BR/

3
W kJ kH m.BR/3 � M

¯
;

where m � d is an integer and M > 1 is a constant. The following theorem concerns the
stability for the multifrequency ISP (3.1).

Theorem 3.3. Let E be the solution of the source problem (3.1)–(3.2) corresponding to
J 2 JM .BR/. Then

kJ k
2
L2.BR/3 . "2

CM 2

�
K

2
3 j ln "j 1

4

.RC 1/.6m � 15/3

�5�2m

;
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where

" D

 Z K

0

�2
E.�; �/ � �

2

�R
d�

!1=2

:

The stability result shows that as the highest frequency increases, the stability con-
tinues to improve and approaches the Lipschitz type.

3.3. Inverse random source problems
Stochastic inverse problems refer to inverse problems that involve uncertainties due

to the unpredictability of the model and incomplete knowledge of the system and measure-
ments. Compared to deterministic counterparts, stochastic inverse problems have substan-
tially more difficulties from randomness and uncertainties. New models and methodologies
must be developed for solving stochastic inverse problems.

When the random source is modeled as the white noise, the stochastic ISP is con-
sidered for the Helmholtz equation [12, 15, 68, 98]. The goal is to reconstruct the statistical
properties of the random source, such as the mean and variance, from boundary measure-
ments of the radiated random wave field. Since the white noise has independent increments,
Itô’s calculus can be utilized to derive explicit formulas between the statistics of the wave
field and the random source. Recently, the model of the microlocally isotropic Gaussian field
is developed to handle stochastic processes with correlated increments [95,97]. The stochas-
tic inverse problem is to determine the microcorrelation strength in the principal symbol
from some statistics of the random wave fields. More recently, a new model of the inverse
random source problem has been proposed for the stochastic Helmholtz and Maxwell equa-
tions [99,100], where the source is assumed to be driven by a fractional Gaussian field. The
new model covers various stochastic processes and allows to deal with rougher sources.

4. Inverse diffraction grating problem

For an IOP, the scattering object is a homogeneous obstacle with a given boundary
condition. The inverse problem is to determine the obstacle from knowledge of the scattered
field away from the obstacle. In this section, we consider the scattering of a time-harmonic
electromagnetic plane wave by a (infinite) periodic structure (Figure 6), also known as a
grating in diffractive optics, which may be regarded as a special class of the obstacle problem.
The scattering problem in this setting is often referred to as the diffraction problem in the
literature.

Due to important applications, especially in the design and fabrication of optical
elements such as corrective lenses, antireflective interfaces, beam splitters, and sensors, the
diffraction problems in periodic structures have been studied extensively. We refer to [17,26]

and references therein for the mathematical studies of the existence and uniqueness ques-
tions of the model problems. Numerical methods can be found in [14, 54, 63, 104] for either
an integral equation approach or a variational approach. A comprehensive review can be
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Figure 6

The inverse diffraction problem geometry. A plane wave Ei is incident on the surface with period ƒ.

found in [16,105] on diffractive optics technology and its mathematical modeling, as well as
computational methods.

This section is concerned with the inverse diffraction problem, which is to determine
the periodic structure from a reflected field measured at a constant distance away from the
structure corresponding to a given incident field. The inverse problem arises naturally in
the study of optimal design problems in diffractive optics. The goal is to design a grating
structure that gives rise to some specified far-field patterns [11,70].

The mathematical questions on uniqueness and stability for the inverse diffrac-
tion problem of both the two-dimensional Helmholtz equation and the three-dimensional
Maxwell equations have been studied extensively in [3, 10, 18, 47, 49, 52, 84, 92, 110]. However,
all of the above mentioned results are under fairly restrictive assumptions, or local in nature.
A complete answer to the uniqueness question has been given in [47,48] for the determination
of a three-dimensional polyhedral periodic diffraction structure by the scattered electromag-
netic fields measured above the structure. The result indicates that the uniqueness by any
given incident field fails for seven simple classes of regular polyhedral structures. Moreover,
if a regular periodic polyhedral structure is not uniquely identifiable by a given incident field,
then it belongs to a nonempty class of the seven classes whose elements generate the same
total field as the original structure when impinged upon by the same incident field. Problems
on global uniqueness or stability for the inverse diffraction problem are still open.

A number of numerical methods have been developed to solve these inverse prob-
lems [8,53,73,83,89]. Using a single-layer potential representation, we have presented in [29]

an efficient RLM for solving the nonlinear inverse diffraction grating problem in a one-
dimensional perfectly reflecting structure. The algorithm requires multifrequency data and
the iterative steps are obtained by recursive linearization with respect to the wavenumber:
at each step a nonlinear Landweber iteration is applied, with the starting point given by the
output from the previous step at a lower wavenumber. Thus, at each stage an approximation to
the grating surface filtered at a higher frequency is created. Starting from a reasonable initial
guess, the RLM is shown to converge for a larger class of surfaces than the usual Newton’s
method using the same initial guess.

An extension of the numerical method has been done in [28] for solving the inverse
diffraction problem with phaseless data. By using multifrequency data, our algorithm is
based on the RLM marching with respect to the wavenumber. With the starting point given
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by the output from the previous step at a lower wavenumber, a new approximation to the grat-
ing surface filtered at a higher frequency is updated by a Landweber iteration. The numerical
results show that the continuation method cannot determine the location of the grating struc-
ture, but it can effectively reconstruct the grating shape from the phaseless data.

Another important extension of the method is to solve the inverse diffraction prob-
lem by a random periodic structure. Existing studies mostly assume that the periodic structure
is deterministic and only the noise level of the measured data is considered for the inverse
problem. In practice, however, there is a level of uncertainty of the scattering surface, e.g.,
the grating structure may have manufacturing defects or it may suffer other possible damages
from regular usage. Therefore, in addition to the noise level of measurements, the random
surface itself also influences the measured scattered fields. Surface roughness measurements
are of great significance for the functional performance evaluation of machined parts and
design of microoptical elements. Little is known in mathematics or computation about solv-
ing inverse problems of determining random surfaces. One challenge lies in the fact that the
scattered fields depend nonlinearly on the surface, which makes the random surface recon-
struction problem extremely difficult. Another challenge is to understand to what extend the
reconstruction could be made. In other words, what statistical quantities of the profile could
be recovered from the measured data? We have recently proposed an efficient numerical
method in [36] to reconstruct the random periodic structure from multifrequency scattered
fields measured at a constant height above the structure. We demonstrate that three critical
statistical properties, namely the expectation, root mean square, and correlation length of
the random structure may be reconstructed. Our method is based on a novel combination of
the Monte Carlo technique for sampling the probability space, an RLM with respect to the
wavenumber, and the Karhunen–Loève expansion of the random structure.

5. Discussions and future directions

This work is devoted to mathematical analysis and numerical methods for solving
inverse scattering problems. On mathematical analysis, we have focused mainly on the stabil-
ity analysis of the inverse problems. Numerically, we have discussed the recursive lineariza-
tion approach. These results confirm that the spectral information is vital in stable solution
of inverse scattering problems and whenever possible multiple frequency data should be
taken and employed for reconstructions. There are tremendous research opportunities for
mathematical analysis and numerical methods of inverse scattering problems to meet the
continuous growing needs in science and engineering to explore the complex world, from
the universe to the new materials, and to the cell. As the computing powers continue to
increase and new fast algorithms are developed, inverse scattering problems will continue to
contribute to the advancements of the relevant science and engineering.

In the following, we point out some future research directions in line of the research
discussed in this work.

For inverse medium scattering problems, we present the stability estimates for the
one-dimensional model. In the extreme case when all frequency data is attainable, the esti-
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mates have also been obtained in [45,46]. However, no stability estimate is available for the
IMP in several dimensions. By taking into account the uncertainty principle, we conjecture
that the reconstruction of the observable part of the scatterer is Lipschitz stable.

For the inverse diffraction problem, global uniqueness remains open. In the polyhe-
dral structure cases, the problem was solved in [47,48] by using group symmetry properties
of the structures and unique continuation properties. For the obstacle scattering problem
including the diffraction problem, another interesting problem is to derive the stability esti-
mate with explicit dependence on the wavenumber. The estimate will be particularly useful
for convergence analysis of the numerical methods.

In computation, the multifrequency data-based RLM is shown to be stable and effec-
tive for solving inverse scattering problems. However, only limited progress has been made
on convergence analysis [27,40,41,106]. It is expected that complete analysis should be done
by combining the stability estimates and the uncertainty principle. Another difficulty is the
incomplete data, including phaseless, limited aperture, or incomplete model. It is interesting
to investigate how to employ computational inverse scattering problems to break the diffrac-
tion limit. In other words, how to balance the accuracy and resolution. Initial efforts were
made on combining the RLM with near-field imaging techniques [31,32].

Another interesting direction is to study the stochastic inverse scattering problems.
As discussed in Section 3.3, initial efforts have been made for solving inverse random source
problems. However, little progress is made for inverse medium problems and inverse obstacle
problems, where the scatterer and obstacle are respective random functions. It is of interest
to consider the more challenging inverse random medium scattering problem. The medium
is no longer deterministic and its randomness and uncertainty have to be modeled as well.
Since the scattered field depends on the medium or the obstacle nonlinearly, as opposed to
the linear dependence on the source, the scattering and inverse scattering problems become
much more challenging. In particular, new mathematical and computational frameworks are
in demand for solving these problems.

Finally, although the scope of this work is limited to inverse scattering problems
in acoustic and electromagnetic waves, we believe many of the methods and techniques dis-
cussed here could apply to inverse scattering problems in other wave models. Other emerging
topics which beyond the scope of this work but could change the future landscape of solving
inverse scattering problems include deep learning type methods [43,91] and optimal transport
methods [75].
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of dispersive tsunami
propagation from
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Abstract

The long-term goal of this work is the development of high-fidelity simulation tools for
dispersive tsunami propagation. A dispersive model is especially important for short wave-
length phenomena such as an asteroid impact into the ocean, and is also important in mod-
eling other events where the simpler shallow water equations are insufficient. Adaptive
simulations are crucial to bridge the scales from deep ocean to inundation, but have dif-
ficulties with the implicit system of equations that results from dispersive models. We
propose a fractional step scheme that advances the solution on separate patches with dif-
ferent spatial resolutions and time steps. We show a simulation with 7 levels of adaptive
meshes and onshore inundation resulting from a simulated asteroid impact off the coast
of Washington. Finally, we discuss a number of open research questions that need to be
resolved for high quality simulations.
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1. Introduction

Many steps are required in modeling a tsunami arising from an asteroid impact in the
ocean. The impact itself forms a crater that drives the eventual tsunami creation. Modeling
this requires a complex three-dimensional multiphysics hydrocode, since there are many
physical processes and time scales. Once the tsunami has formed, it propagates hundreds or
thousands of kilometers across the ocean. When the shoreline is reached, the ultimate goal is
modeling the inundation risk to coastal populations and important infrastructure at a much
smaller spatial scale (typically 10 meters or less).

This work addresses the last two steps, the long-distance propagation and coastal
inundation. The goal is a high-fidelity model that can accurately determine the inundation
risk for particular sites using available bathymetric data sets. Since large-scale ocean simu-
lations are so compute-intensive, for many tsunami modeling problems the two-dimensional
depth-averaged shallow water equations (SWEs) are used for the propagation step. These
equations assume the wavelength is long relative to the depth of the ocean, as is typical
for tsunamis generated by large earthquakes. However, these nondispersive equations are
often insufficient for short-wavelength asteroid-generated tsunamis, giving inaccurate results
for both tsunami travel time and maximum shoreline run-in, as noted in our own work [5]

and in several other studies, e.g., [14, 25, 27]. This is also the case for landslide-generated
tsunamis and other short wavelength phenomena; see, e.g., [9]. Shorter waves experience sig-
nificant dispersion (waves with different periods propagate with different speeds), while the
hyperbolic SWEs are nondispersive. Dispersive depth-averaged equations can be obtained by
retaining more terms when reducing from the three-dimensional Euler equations to two space
dimensions, giving some form of “Boussinesq equations.” The additional terms involve
higher-order derivatives (typically third order), and several different models have been pro-
posed. When solved numerically, these equations generally require implicit methods in order
to remain stable with physically reasonable time steps. By contrast, the hyperbolic SWEs
involve only first-order derivatives and explicit methods are commonly used.

Our numerical model is based on the GeoClaw softwave (part of the open source
Clawpack software project [1]), which has been heavily used and well validated for model-
ing earthquake-generated tsunamis using the SWE [4,11,16]. The numerical methods used are
high-resolution, shock-capturing finite volume methods based on Riemann solvers, a stan-
dard approach for nonlinear hyperbolic problems [15]. In the case of GeoClaw, additional
features are included to make the methods “well balanced” so that the steady state of an
ocean at rest is preserved. Moreover, the shoreline is represented as an interface between wet
and dry cells, and robust Riemann solvers allow the determination of the fluxes at these inter-
faces. The wet/dry status of a cell can change dynamically as the tsunami advances onshore
or retreats. This software implements adaptive mesh refinement (AMR), critical for solving
problems with vastly different spatial scales from transocean propagation to community-
level inundation modeling. However, the patch-based AMR algorithms are based on the use
of explicit solvers, and the extension of the GeoClaw software to also work with implicit
solvers for Boussinesq equations has been a major part of this project. The basic approach
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used can also be used more generally with the AMR version of Clawpack, which has many
potential applications to other wave propagation problems when dispersive or dissipative
(e.g., second-order derivative) terms are included and implicit solvers are needed.

2. Overview of approach

We are building on the work of [12], in which the Boussinesq equations described
in the next section were solved using an extension of GeoClaw, but only for the case of a
single grid resolution, without the AMR capability. These equations have the form of the
two-dimensional SWEs with the addition of “source terms” involving third-order deriva-
tives. Equations of this type can often be solved by fractional step or splitting methods: first
advancing the solution by solving the hyperbolic shallow water equations, and then advanc-
ing the solution using terms associated with the higher-order derivatives (or in the opposite
order, as we have found to be advantageous). For the SWE part, we can use the standard
GeoClaw solver. The third derivative terms require an implicit step as described below. We
are currently using a sparse linear system solver called Pardiso [6]; several other groups have
found that multigrid works nicely as well.

The difficulty in the solution algorithm comes from the combination of adaptive
mesh refinement and implicit solvers. Adaptive mesh refinement is critical in bridging the
scales of oceanic tsunamic propagation, which typically needs resolution on the order of
kilometers, and inundation modeling, where a resolution on the order of 10 meters or less is
required. The patch-based mesh refinement in GeoClaw refines in time as well as space, in
order to satisfy the time step stability constraint of explicit methods. If a patch is refined in
space by a factor of 4, then we also typically refine in time by the same factor (as required
by the CFL condition for explicit methods) and so 4 time steps are taken for the fine patch
to “catch up” to the coarse patch in time. The fine patch thus needs to interpolate ghost cells
that fill out the stencil at each intermediate time step. Figure 1 indicates this schematically
for a refinement by 2.

In our approach, the solution of the implicit equations is stored as additional ele-
ments in the solution vector, increasing the number of equations in two horizontal dimensions
from 3 to 5. We also reverse the typical splitting order and perform the implicit solving first.
At the initial and final times during this time step, the ghost cells are still interpolated in
space from the coarse grid, but do not need interpolation in time. The ghost cell values at
intermediate times on the fine grid are interpolated from the coarse grid values at times n
and nC 1.

There are other issues to consider when combining Boussinesq and SWEs in a single
solver. The Boussinesq equations give a better model of dispersive waves over some regime,
but lack any wave breaking mechanism. As large waves approach shore, this can lead to very
large magnitude solitary waves that should break. The nonlinear SWEs perform better at
this point; a shock wave develops that is a better representation of the turbulent bore formed
by a breaking wave. Very large waves, such as those that might be formed by an asteroid
impact, can undergo shoaling far out on the continental shelf and dissipate some of their
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Figure 1

Figure shows a coarse grid with coarse cells outlined in the base grid, and a fine patch refined by a factor of 2, also
with cells outlined. The fine grid time step is half the coarse grid step. Before the fine grid takes a step, ghost cells
are needed to complete the stencil.

energy in this manner (the van Dorn effect [13]). (Shoaling refers to the modification of wave
heights when the wave enters shallower water, when the wave steepens and becomes of higher
frequency). So it is important to transition from using the Boussinesq equations in deep
water to SWEs closer to shore, based on some breaking criterion. Also the onshore flooding
is well modeled by SWEs, which is fortunate since the wetting-and-drying algorithms of
GeoClaw can then be used. In our initial work we have simply suppressed the higher-order
derivative terms (switching to SWEs) wherever the initial water depth was 10 m or less.
A better wave breaking model that allows dynamic switching has not yet been implemented
but will ultimately be incorporated.

Another issue to consider is the initial conditions for the simulation. For the aster-
oid impact problem, even the Boussinesq equations are not adequate to model the original
generation or evolution of a deep crater in the ocean. We must start with the results of a three-
dimensional multiphysics hydrocode simulation and produce suitable initial conditions for
the depth-averaged equations. We discuss this further in Section 4.

3. Equations and numerical methods

For simplicity we present the equations and algorithm primarily in one space dimen-
sion and time, since this is sufficient to illustrate the main ideas.

3.1. The shallow water and Boussinesq equations
The shallow water equations can be written as

ht C .hu/x D 0;

.hu/t C

�
hu2

C
1

2
gh2

�
x

D �ghBx ;
(3.1)
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where h.x; t/D water depth,B.x/D topography (B <0 offshore), �.x; t/DB.x/C h.x; t/,
with �D 0 being the sea level. Thus h0.x/D �B.x/ is the depth of water at rest. The depth-
averaged horizontal velocity is u.x; t/, and so hu is the momentum, and finally, g D 9:81 is
the gravitational constant. These equations are a long wavelength approximation to the Euler
equations, in the limit of small ocean depth relative to the wavelength L of the disturbance.
For earthquake generated tsunamis, a typical ocean depth might be 4 km, and a subduction
zone can have a wavelength of 100 km or more, giving a small ratio.

Equations (3.1) have the form of a hyperbolic system of conservation laws with a
source term in the momentum equation that is nonzero only on varying topography. The Geo-
Claw implementation incorporates the topography term into the Riemann solvers in order
to obtain a well-balanced method [16], which amounts to solving equations (3.1) in the non-
conservative form

ht C .hu/x D 0;

.hu/t C .hu2/x C gh�x D 0:
(3.2)

Peregrine [22] derived a Boussinesq-type extension on a flat bottom in the form

ht C .hu/x D 0;

.hu/t C .hu2/x C gh�x�
1

3
h2

0.hu/txx D 0:
(3.3)

These equations have some drawbacks, however, and do not match the dispersion relation of
the Euler equations as well as other models developed more recently. (For a historical review
of Boussinesq-type models, see [7].)

Madsen and Sorenson [18] and Shaffer and Madsen [26] optimized the equations by
adding a term with a parameter B1 that could be chosen to match the water wave dispersion
relation more closely. On general topography, they obtained

ht C .hu/x D 0;

.hu/t C .hu2/x C gh�x D

�
B1 C

1

2

�
h2

0.hu/txx C
1

6
h3

0.hu=h0/txx � B1h
2
0g.h0�x/xx ;

(3.4)

where h0.x/ is the initial water depth, and matching the dispersion relation leads to an opti-
mal B1 D 1=15.

Equations (3.4) appear to have the form of the SWEs (3.2) together with source
terms on the right-hand side. However, the standard fractional step approach cannot be used
for equations in this form because the source term involves t -derivatives.

These equations can be rewritten as

ht C .hu/x D 0;

.hu/t C .hu2/x C gh�x �D11..hu/t / D gB1h
2
0.h0�x/xx ;

(3.5)

where the differential operator D11 is defined by

D11.w/ D .B1 C 1=2/h2
0wxx �

1

6
h3

0.w=h0/xx :
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Now subtracting D11..hu
2/x C gh�x/ from both sides of the momentum equation from

(3.5) gives

ht C .hu/x D 0;

ŒI �D11�
�
.hu/t C .hu2/x C gh�x

�
D �D11

�
.hu2/x C gh�x

�
C gh2

0B1.h0�x/xx :

(3.6)

By inverting .I �D11/, we get

ht C .hu/x D 0;

.hu/t C .hu2/x C gh�x D  ;
(3.7)

where  is computed by solving an elliptic system:

ŒI �D11� D �D11

�
.hu2/x C gh�x

�
C gh2

0B1.h0�x/xx : (3.8)

System (3.7) now looks like SWEs plus a source term that involves only spatial derivatives.

3.2. Two-dimensional versions
For completeness, we include the two-dimensional version of these equations to

show that they have a similar structure. In two dimensions, let EuD .u;v/ be the two horizontal
(depth-averaged) velocities. Then the shallow water equations take the form

ht C r � .hEu/ D 0;

.hEu/t C Ez C ghr� D 0;
(3.9)

where

Ez D Eur � .hEu/C .hEu � r/Eu D

"
.hu2/x C .huv/y

.huv/x C .hv2/y

#
: (3.10)

The Boussinesq equations of [18,26], as used in [12], take the form

ht C r � .hEu/ D 0;

.hEu/t C Ez C ghr� �D.hEu/t � gB1h
2
0r

�
r � .h0r�/

�
D 0;

(3.11)

where now the 2 � 2 matrix D consists of four linear differential operators,

D D

"
D11 D12

D21 D22

#
; (3.12)

with

D11.w/ D .B1 C 1=2/h2
0wxx �

1

6
h3

0.w=h0/xx ;

D12.w/ D D21.w/ D .B1 C 1=2/h2
0wxy �

1

6
h3

0.w=h0/xy ;

D22.w/ D .B1 C 1=2/h2
0wyy �

1

6
h3

0.w=h0/yy :

(3.13)

As in 1D, in order to apply a fractional step method, we subtract D.Ez C ghr�/ from both
sides of the momentum equation of (3.11) so that it becomes

ŒI �D�
�
.hEu/t C Ez C ghr�

�
D �D.Ez C ghr�/C gB1h

2
0r

�
r � .h0r�/

�
: (3.14)
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Inverting ŒI �D� allows rewriting (3.11) as the SWEs with a source term,

ht C r � .hEu/ D 0;

.hEu/t C Ez C ghr� D E ;
(3.15)

where E involves only spatial derivatives and is determined by solving the elliptic equation

ŒI �D� E D �D.Ez C ghr�/C gB1h
2
0r

�
r � .h0r�/

�
: (3.16)

Discretizing this elliptic equation leads to a nonsymmetric sparse matrix with much
wider bandwidth than the tridiagonal matrix that arises in one dimension due to the cross-
derivative terms. Other than the significant increase in computing time required, the frac-
tional step and adaptive mesh refinement algorithms described below carry over directly to
the two-dimensional situation.

3.3. Numerics
We return to the one-dimensional equations in order to describe the numerical algo-

rithm and reformulation for patch-based adaptive refinement in space and time.
We solve the one-dimensional Boussinesq equations (3.7), in which is determined

as the solution to (3.8), by using a fractional step method with the following steps:

(1) Solve the elliptic equation (3.8) for the source term  . After this step the  
values are saved on each patch to use as boundary conditions for finer patches.

(2) Update the momentum by solving .hu/t D  over the time step (e.g., with for-
ward Euler or two-stage Runge–Kutta method). The depth h does not change in
this step since there is no source term in the ht equation.

(3) Take a step with the homogeneous SWE, using the results of step 2 as initial
data. This step uses the regular GeoClaw software and Riemann solvers.

We solve the implicit system first and then take the shallow water step because this
facilitates interpolating in time for values required on the edge of grid patches. In order
to explain this in more detail, we introduce some notation for a simple case in one space
dimension.

First suppose we only have a single grid at one resolution, with no AMR. We denote
the numerical solution at some time tN by .H;HU /N , the cell-averaged approximations to
depth and momentum on the grid. We also use‰N for the source term determined by solving
the discrete elliptic system defined by .H;HU /N on this grid. We also assume at the start
of the time step that we have boundary conditions for .H;HU / and also for the Boussinesq
correction ‰, provided in the form of “ghost cell” values in a layer of cells surrounding the
grid (or two layers in the case of .H;HU / since the high-resolution explicit methods used
have a stencil of width 5 because of slope limiters). On a single grid we assume that it is
sufficient to use the Dirichlet condition ‰ D 0 in all ghost cells surrounding the grid, i.e.,
that there is no Boussinesq correction in these cells. This is reasonable for a large domain
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where the waves of interest are confined to the interior of the domain. We also use zero-
order extrapolation boundary condition for .H;HU /, which give a reasonable nonreflecting
boundary condition for the SWEs step [16].

A single time step of the fractional step algorithm on this grid then takes the follow-
ing form in order to advance .H;HU /N to .H;HU /N C1 at time tN C1 D tN C�t :

(1) Solve the elliptic system for ‰N . The right-hand side depends on .H;HU /N .

(2) Advance the solution using the source terms (Boussinesq corrections):
H� D HN , .HU /� D .HU /N C�t‰N (using forward Euler, for example).

(3) Take a time step of length�t with the SWE solver, with initial data .H;HU /�,
to obtain .H; HU /N C1. We denote this by .H; HU /N C1 D SW..H;

HU /�; �t/.

In the software it is convenient to store the source term at each time as another component
of the solution vector, so we also use QN D .H;HU; ‰/N to denote this full solution at
time tN .

Now suppose we have two grid levels with refinement by a factor of 2 in time. We
denote the coarse grid values at some time tN as above. We assume that the fine grid is at
time tN , but that on the fine grid we must take two time steps of �t=2 to reach time tN C1.
We denote the fine grid values at time tN using lower case, .h;hu/N and qN D .h;hu; /N .
We also need boundary conditions in the ghost cells of the fine grid patch. If a patch edge is
coincident with a domain boundary, then we use the Dirichlet BC  D 0 and extrapolation
BCs for .h; hu/, as described above. For ghost cells that are interior to the coarse grid, we let
If .Q/ represent a spatial interpolation operator that interpolates from coarse grid values to
the ghost cells of a fine grid patch at time tN . This operator is applied to all three components
of QN , i.e., to the source term, as well as the depth and momentum, in order to obtain the
necessary boundary conditions for qN .

Then one time step on the coarse grid, coupled with two time steps on the fine grid,
is accomplished by the following steps:

(1) Coarse grid step:

(a) Take time step�t on the coarse grid as described above for the single grid
algorithm, but denote the result by . QH; eHU/N C1 since these provisional
values will later be updated.

(b) Using the Dirichlet BCs ‰ D 0 on the domain boundary, solve for a pro-
visional e‰N C1. This will be needed for interpolation in time when deter-
mining boundary conditions for  on the fine grid, using If .Q

N / and
If . QQN C1/.

(2) Fine grid steps:

(a) Given .h;hu/N and boundary conditions If .Q
N /, solve the elliptic system

for  N .
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(b) Update using the source terms, .h; hu/� D .h; hu/N C .0; �t
2
 N /.

(c) Take a shallow water step, .h; hu/N C1=2 D SW..h; hu/�; �t=2/.
Note that we use tN C1=2 D tN C�t=2 to denote the intermediate time.

(d) Obtain BCs at this intermediate time as 1
2
.If .Q

N /C If . QQN C1//.

(e) Solve the elliptic system for  N C1=2.

(f) Update using the source terms, .h;hu/� D.h;hu/N C1=2 C.0; �t
2
 N C1=2/.

(g) Take a shallow water step: .h; hu/N C1 D SW..h; hu/�; �t=2/.

(3) Update coarse grid:

(a) Define .H; HU /N C1 by the provisional values by . QH; eHU/N C1 where
there is no fine grid covering a grid cell, but replacing . QH; eHU/N C1 by
the average of .h; hu/N C1 over fine grid cells that cover any coarse grid
cell.

The final step is applied because the fine grid values .h; hu/N C1 are more accurate
than the provisional coarse grid values.

We then proceed to the next coarse grid time step. Note that at the start of this
step, the updated .H;HU /N C1 will be used to solve for ‰N C1. The provisional e‰N C1 is
discarded. Hence two elliptic solves are required on the coarse level each time step, rather
than only one as in the single grid algorithm.

If the refinement factor is larger than 2, then the same approach outlined above
works, but there will be additional time steps on level 2. For each time step the ghost cell
BCs will be determined by linear interpolation in time between If .Q

N / and If . QQN C1/.
If there are more than two levels, then this same idea is applied recursively: After

each time step on level 2, any level 3 grids will be advanced by the necessary number of time
steps to reach the advanced time on level 2. In this case there will also be two elliptic solves
for every time step on level 2, once for the provisional values after advancing level 2, and
once at the start of the next level 2 time step after .h; hu/ on level 2 has been updated by
averaging the more accurate level 3 values.

4. Computational results

In this section we show an end-to-end simulation of a hypothetical asteroid impact
off the coast of Washington, from initial conditions to shoreline inundation. We present our
initialization procedure in some detail. The section ends with a discussion of results.

4.1. Initialization procedure
The computational results presented in this section use initial conditions of a static

crater, illustrated in Figure 2(a). This is a standard test problem in the literature, from [27].
The crater is 1 km deep, with a diameter of 3 km, in an ocean of depth 4 km. Depth-averaged
equations are unsuitable for modeling the generation of the crater and the initial flow, since
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Figure 2

(a) Initial conditions of a static crater of depth 1 km and diameter 3 km, which were the initial conditions for the
hydrocode simulation. (b) The radially symmetric results of the hydrocode simulation at 251 seconds, used to start
the GeoClaw Boussinesq simulation.

the ensuing large vertical velocity components are not modeled. The initial conditions for
our depth-averaged simulations are taken from a three-dimensional hydrocode simulation
of the first 251 seconds after impact. The hydrocode ALE3D [21] was run by a collaborator
[24] in a radially symmetric manner, and the surface displacement at time t D 251 seconds
was recorded, as shown in Figure 2(b). It proved too noisy to depth-average the horizontal
velocity from the hydrocode. Instead, we set the velocity based on the surface displacement
and assuming that the wave was a purely outgoing wave satisfying the SWEs, for which the
velocity then depends only on the ocean depth and surface displacement. We could then
place the “initial” crater anywhere in the ocean.

This procedure for initialization of the velocity can be done because the wave speed
for the SWEs is independent of wave number, and the eigenvectors of the linearized Jacobian
matrix give the relation between surface elevation and fluid velocity for unidirectional waves.
However, in the Boussinesq equations the wave speed depends on wave number and using the
initialization based on the SWEs results in a small wave propagating inward as well. Better
initialization procedures will be investigated in future research.

4.2. Adaptive simulation
As an illustration, we show a simulation of a hypothetical asteroid impact off the

coast of Washington. We place the initial crater approximately 150 km west of Grays Harbor,
to study the vulnerable area around Westport, WA, shown in Figure 3. This well-studied area
is in close proximity to the Cascadia Subduction Zone, which can generate Mw 9 earth-
quakes. The Ocosta elementary school in Westport was recently rebuilt to incorporate the
first tsunami vertical evacuation structure in the US, due to the low topography of this region,
with design work based in part on GeoClaw modeling [10]. Detailed bathymetry and topogra-
phy data is available in this region at a resolution of 1/3 arcsecond [20], which is roughly 10 m
in latitude and 7 m in longitude at this location. For the ocean we use the etopo1 topography
DEM [2] at a resolution of 1 arcminute.
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Figure 3

Figure shows a Google Maps screenshot of Grays Harbor, on the Washington coast. The community of Westport
is on the southern peninsula. This is the focus of the inundation modeling presented in Figure 5.

A 7 level simulation was used, starting with a coarsest level over the ocean with
�y D 10 arcminutes, and refining by factors 5, 3, 2, 2, 5, 6 at successive levels, with an
overall refinement by 1800 for the level-7 grids with �y D 1=3 arcsecond. On each grid
�x D 1:5�y so that the finest-level computational grids are at a resolution of roughly 10 m
in both x and y.

Figures 4 and 5 show snapshots of the simulation at the indicated times. The disper-
sion is clearly evident, with a much more oscillatory solution than would be obtained with
the shallow water equations. The figures show how the fine grid patches move to follow the
expanding wave. The refinement is guided to focus at later times only on waves approaching
Grays Harbor. There are some reflections at the grid boundaries, but they are much smaller
in magnitude than the waves we are tracking. The 6th level refined patch appears approxi-
mately 20 minutes after the impact, to track the waves as they approach Grays Harbor. Note
how the bathymetry is refined along with the solution when the finer patches appear. The
close-up plots near Grays Harbor in Figure 5 shows “soliton fission,” a nonlinear dispersive
wave phenomenon seen near the coast that can be captured with Boussinesq solvers [3, 19].
In this simulation, we switch from Boussinesq to SWEs at a depth of 10 meters (based on
the undisturbed water depth). Figure 5 also shows the waves sweeping over the Westport
and Ocean Shores peninsulas. In this calculation, the finest level 7 grid was placed only over
Westport, while the level 6 grid covers both peninsulas.
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Figure 4

Figure shows initial conditions and mesh configuration and three later times during the adaptive solution. The
black rectangles show boundaries of refined patches with finer resolution. The colors show elevation above (red)
or below (blue) sea level, and saturate at ˙3 m. The waves are larger amplitude but this color range is used to also
show the smaller waves in the oscillatory wave train. Note that these are not resolved on coarser levels, and that
AMR is guided to focus on the waves approach Grays Harbor, WA.

4.3. Discussion of results
Since the wavelengths of asteroid-generated tsunamis are shorter than those of

earthquake-generated tsunamis, dispersive effects may be very important. Dispersion gives
rise to a highly oscillatory set of waves that propagate at different speeds, possibly affect-

5067 Towards adaptive simulations of dispersive tsunami propagation from an asteroid impact



Figure 5

The tsunami approaching Grays Harbor and overtopping the Ocean Shores and Westport peninsulas. In this figure,
the colors saturate at ˙6 m elevation relative to sea level.

ing the arrival time of the first wave and leading to significant waves over a longer time
period. These waves can undergo substantial amplification during the shoaling process on
the continental shelf and break up into large solitary waves.

On the other hand, wave breaking can rapidly dissipate the energy in short wave-
length waves. Moreover, a train of waves approaching shore results in nonlinear interactions
in the swash zone, where waves run up the beach. In the swash zone, a large approaching
wave may be largely negated by the rundown of the previous wave. Thus it is not clear a priori
whether waves modeled with the Boussinesq equations will result in substantially different

5068 M. J. Berger and R. J. LeVeque



onshore inundation than would be observed is only using the SWE, for which computations
are much less expensive. This question still remains to be answered.

5. Open problems and future research

We have demonstrated that it is possible to develop a high-fidelity modeling capabil-
ity that includes propagation and inundation by combining the Boussinesq equations, shallow
water equations, and patch-based adaptive mesh refinement in space and time. We are embed-
ding this in the GeoClaw software framework, which has previously been well validated for
earthquake-generated tsunamis. This will allow the efficient simulation of dispersive waves
generated from asteroid impacts as they propagate across the ocean, combined with high-
resolution simulation of the resulting inundation on the coast. This capability could be very
important in hazard assessment for an incipient impact.

Unfortunately, the software is not yet robust enough for general use. While it often
works well, stability issues sometimes arise at the edges of finer grid patches when refinement
ratios greater than 2 are used from one level to the next. Larger refinement ratios are generally
desirable, so that an overall refinement factor of several thousand between the coarsest and
finest meshes can be achieved with 6 or 7 levels of mesh refinement. Other Boussinesq codes
we are aware of use factor of 2 refinement [8, 23], so this may be an inherent instability.
Moreover, numerical instabilities have also been observed by other researchers [17] even on
a uniform grid when there are sharp changes in bathymetry rather than in the grid resolution.
We are investigating this issue theoretically, and may find that a different discretization or
even a different fomulation of the Boussinesq equations is required to obtain a sufficiently
robust code.

We are also continuing to investigate the shoaling phenomena and the best way to
incorporate wave breaking and the transition from Boussinesq to shallow water equations.
This can have a significant impact on the resulting onshore run-up and inundation.

Not discussed here but currently under investigation is the possibility of solving the
implicit system of equations on multiple levels in a coupled manner, whenever the levels have
been advanced to the same point in time. It is an open question whether a coupled system is
more accurate and/or stable, and possibly less computationally expensive, in the context of
patch-based adaptive mesh refinement that includes refinement in time.

Finally, as mentioned in Section 4.1, additional research is needed on ways to ini-
tialize the depth-averaged model. Better initialization procedures will allow a more seamless
transition from three-dimentional hydrocode simulations of asteroid impacts in the ocean to
our model of tsunami propagation and inundation.
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Abstract

We discuss the recent developments of projection-based model order reduction (MOR)
techniques targeting Hamiltonian problems. Hamilton’s principle completely character-
izes many high-dimensional models in mathematical physics, resulting in rich geometric
structures, with examples in fluid dynamics, quantum mechanics, optical systems, and epi-
demiological models. MOR reduces the computational burden associated with the approx-
imation of complex systems by introducing low-dimensional surrogate models, enabling
efficient multiquery numerical simulations. However, standard reduction approaches do not
guarantee the conservation of the delicate dynamics of Hamiltonian problems, resulting
in reduced models plagued by instability or accuracy loss over time. By approaching the
reduction process from the geometric perspective of symplectic manifolds, the resulting
reduced models inherit stability and conservation properties of the high-dimensional for-
mulations. We first introduce the general principles of symplectic geometry, including
symplectic vector spaces, Darboux’ theorem, and Hamiltonian vector fields. These notions
are then used as a starting point to develop different structure-preserving reduced basis
(RB) algorithms, including SVD-based approaches, and greedy techniques. We conclude
the review by addressing the reduction of problems that are not linearly reducible or in a
noncanonical Hamiltonian form.
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1. Introduction

The discretization of partial differential equations (PDEs) by classical methods like
finite element, spectral method, or finite volume leads to dynamical models with very large
state-space dimensions, typically of the order of millions of degrees of freedom to obtain
an accurate solution. MOR [48] is an effective method for reducing the complexity of such
models while capturing the essential features of the system state. Starting from the Truncated
Balanced Realization, introduced by Moore [36] in 1981, several other reduction techniques
have been developed and flourished during the last 40 years, including the Hankel-norm
reduction [20], the proper orthogonal decomposition (POD) [50], and the Padé-via-Lanczos
(PVL) algorithm [14]. More recently, there has been a focus on the physical interpretability
of the reduced models. Failure to preserve structures, invariants, and intrinsic properties of
the approximate model, besides raising questions about the validity of the reduced models,
has been associated with instabilities and exponential error growth, independently of the the-
oretical accuracy of the reduced solution space. Stable reduced models have been recovered
by enforcing constraints on the reduced dynamics obtained using standard reduction tools.
Equality and inequality constraints have been considered to control the amplitude of the
POD modes [16], the fluid temperature in a combustor [31], and the aerodynamic coefficients
[54]. Other methods directly incorporate the quantity of interest into the reduced system, pro-
ducing inf–sup stable [5], flux-preserving [11], and skew-symmetric [3] conservative reduced
dynamics. Even though great effort has been spent developing time integrators that pre-
serve the symplectic flow underlying Hamiltonian systems, interest in geometric model order
reduction initiated more recently, with efforts to preserve the Lagrangian structures [33].

The remainder of the paper is organized as follows. In Section 2, we present the
structure characterizing the dynamics of Hamiltonian systems and the concept of symplectic
transformations. In Section 3, we show that linear symplectic maps can be used to guarantee
that the reduced models inherit the geometric formulation from the full dynamics. Different
strategies to generate such maps are investigated in Section 4, with thoughts on optimality
results and computational complexities. A novel approach deviating from the linearity of the
projection map is briefly discussed in Section 5. Finally, we discuss applications of structure-
preserving reduction techniques to two more general classes of problems in Section 6, and
some concluding remarks are offered in Section 7.

2. Symplectic geometry and Hamiltonian systems

Let us first establish some definitions and properties concerning symplectic vector
spaces.

Definition 2.1. Let M be a finite-dimensional real vector space and � W M � M 7! R a
bilinear map. � is called antisymmetric if

�.u; v/ D ��.v; u/; 8u; v 2 M:
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It is nondegenerate if
�.u; v/ D 0; 8u 2 M H) v D 0:

Definition 2.2. Let M be a finite-dimensional vector space with � an antisymmetric bilinear
form on M. The pair .M; �/ is a symplectic linear vector space if � is nondegenerate.
Moreover, M has to be 2n-dimensional.

Since we are interested in structure-preserving transformations, preserving the
structure means to preserve the antisymmetric bilinear form, as stated in the following defi-
nition.

Definition 2.3. Let .M1; �1/ and .M2; �2/ be two symplectic vector spaces with
dim.M1/ � dim.M2/. The differentiable map � W M1 7! M2 is called a symplectic trans-
formation (symplectomorphism) if

���2 D �1;

where ���2 is the pull-back of �2 with �.

One of the essential properties of Euclidean spaces is that all the Euclidean spaces
of equal dimensions are isomorphic. For the symplectic vector spaces, a similar result holds,
since two 2n-dimensional symplectic vector spaces are symplectomorphic to one another.
They therefore are fully characterized by their dimensions (as a consequence of the following
theorem).

Theorem 2.1 (Linear Darboux’ theorem [13]). For any symplectic vector space .M; �/,
there exists a basis ¹ei ; fi º

n
iD1 of M such that

�.ei ; ej / D 0 D �.fi ; fj /; �.ei ; fj / D ıij ; 8i; j D 1; : : : ; n: (2.1)

The basis is called Darboux’ chart or canonical basis.

The proof of Theorem 2.1 is based on a procedure similar to the Gram–Schmidt
process to generate the symplectic basis, known as symplectic Gram–Schmidt [4].

The canonical basis allows representing the symplectic form as

�.u; v/ D �>J2n�; (2.2)

where �; � 2 R2n are the expansion coefficients of u; v 2 M with respect to the basis
¹ei ; fi º

n
iD1 and

J2n D

"
0n In

�In 0n

#
2 R2n�2n; (2.3)

is known as the Poisson tensor, with 0n 2 Rn�n and In 2 Rn�n denoting the zero and identity
matrices, respectively. As a direct result, the matrix representation of the symplectic form �

in the canonical basis is J2n. More generally, using a noncanonical basis, the form reduces
to �.u; v/ D �>J2n�, with J2n being an invertible constant skew-symmetric matrix.

While symplectic vector spaces are helpful for the analysis of dynamical problems
in Euclidean spaces and to define geometric reduced-order models, the constraint to the
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Euclidean setting is not generally adequate. In particular, the abstraction of the phase spaces
of classical mechanics over arbitrary manifolds requires the definition of more general sym-
plectic manifolds. We refer the reader to [34] for a more comprehensive description of the
topic. In this work, we limit ourselves to introducing a significant result regarding the evo-
lution of the state of Hamiltonian systems.

Definition 2.4. Let .M; �/ be a symplectic manifold and H W M 7! R a 1-form. We refer
to the unique vector field XH , which satisfies

i.XH /� D dH;

as the Hamiltonian vector field related to H , where i.XH / denotes the contraction operator
and d is the exterior derivative. The function H is called the Hamiltonian of the vector
field XH .

Suppose M is also compact, then XH is complete [22] and can be integrated, i.e.,
there exists an integral curve of XH , parametrized by the real variable t , that is, the solution
of

Py.t/ D XH

�
y.t/

�
: (2.4)

Equation (2.4) is referred to as Hamilton’s equation of evolution or Hamiltonian system. Dar-
boux’ theorem, as a generalization of Theorem 2.1, states that two symplectic manifolds are
only locally symplectomorphic. Using this result, the Hamiltonian vector field XH admits
the local representation

XH D

nX
iD1

@H

@fi

@

@ei

�
@H

@ei

@

@fi

; (2.5)

with ¹ei ; fi º
n
iD1 is a local basis, leading to the following representation of (2.4), expressed

directly in terms of H .

Proposition 2.1. Let .M;�/ be a 2n-dimensional symplectic vector space and let ¹qi ;pi º
n
iD1

be a canonical system of coordinates. Hamilton’s equation is defined by8<: dqi

dt
D

@H
@pi

;

dpi

dt
D �

@H
@qi

;
(2.6)

for i D 1; : : : ; n, which is a first order system in the .qi ; pi /-space, or generalized phase-
space.

Thus, if the state vector y D .q1; : : : ; qn; p1; : : : ; pn/ is introduced, (2.6) takes the
form

Py.t/ D J2nryH
�
y.t/

�
; (2.7)

where ryH is the naive gradient of H . The flow of Hamilton’s equation has some interesting
properties.

Proposition 2.2. Let �t be the flow of a Hamiltonian vector field XH . Then �t W M 7! M

is a symplectic transformation.
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We rely on a geometric perspective of linear vector spaces to highlight the impor-
tance of Proposition 2.2. Given two coefficient vectors u and v in R2n, the symplectic
form (2.2) can be interpreted as the sum of the oriented areas of the orthogonal projec-
tion of the parallelogram defined by the two vectors on the .qi ; pi / planes. Definition 2.3,
in case of 2n-dimensional symplectic vector space .M; �/ with canonical coordinates, is
equivalent to stating that a map � W R2n 7! R2n is a symplectic transformation if and only
if its Jacobian �0 satisfies everywhere

.�0/>J2n�0
D J2n: (2.8)

Property (2.8) can be used to show that a symplectic transformation preserves the bilinear
form � in the sense that [34]

�
�
�.u/; �.v/

�
D �.u; v/: (2.9)

Hence, the symplectic map � represents a volume-preserving transformation. However,
being symplectic is a more restrictive condition than being volume-preserving, as shown in
the Nonsqueezing Theorem [24].

We conclude this section by noting that if the Hamiltonian function does not depend
explicitly on time, its value is conserved along the solution trajectory.

Proposition 2.3. For Hamiltonian systems (2.7), the Hamiltonian function is a first integral.

3. Symplectic Galerkin projection

The motivation of MOR is to reduce the computational complexity of dynamical
systems in numerical simulations. In the context of structure-preserving projection-based
reduction, two key ingredients are required to define a reduced model. First, we need a low-
dimensional symplectic vector space that accurately represents the solution manifold of the
original problem. Then, we have to define a projection operator to map the symplectic flow
of the Hamiltonian system onto the reduced space, while preserving its delicate properties.

Let us assume there exists a canonical basis ¹ei ; fi º
n
iD1 such that Hamilton’s equa-

tion can be written in canonical form8<: Py.t/ D J2nryH.y.t//;

y.0/ D y0;
(3.1)

and the related symplectic vector space is denoted by .M; �/. Symplectic projection-based
model order reduction adheres to the key idea of more general projection-based techniques
[30] to approximate y in a low-dimensional symplectic subspace .A; �/ of dimension 2k.
In particular, we aim at k � n to have a clear reduction, and therefore, significant gains in
terms of computational efficiency. Let ¹ Qei ; Qfi º

k
iD1 be a reduced basis for the approximate

symplectic subspace and construct the linear map � W A 7! M given by

y � �.z/ D Az; (3.2)
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where
A D Œ Qe1; : : : ; Qek ; Qf1; : : : ; Qfk � 2 R2n�2k :

Then A belongs to the set of symplectic matrices of dimension 2n � 2k, also known as the
symplectic Stiefel manifold, defined by

Sp.2k; R2n/ WD
®
L 2 R2n�2k

W L>J2nL D J2k

¯
:

Differential maps are often used to transfer structures from well-defined spaces to unknown
manifolds. In this context, using the symplecticity of A, it is possible to show [1] that Defini-
tion 2.3 holds, with the right inverse of � represented by A, and that there exists a symplectic
form on A given by

Q� D ��� D A>J2nA D J2k : (3.3)

As a result, .A; Q�/ is a symplectic vector space. In the following, for the sake of notation,
we use A to indicate the reduced symplectic manifold paired with its bilinear form.

Given a symplectic matrix A 2 R2n�2k , its symplectic inverse is defined as

AC
D J>

2kA>J2n: (3.4)

Even though different from the pseudoinverse matrix .A>A/�1A>, the symplectic inverse
AC plays a similar role and, in the following proposition, we outline its main properties [44].

Proposition 3.1. Suppose A 2 R2n�2k is a symplectic matrix and AC is its symplectic
inverse. Then

• ACA D I2n,

• ...AC/>/C/> D A,

• .AC/> 2 Sp.2k; R2n/,

• If A is orthogonal then AC D A>.

Using (3.3), the definition of AC and the symplectic Gram–Schmidt process, it is possible to
construct a projection operator PA D AJ>

2k
A>J2n D AAC, that, differently from the POD

orthogonal projection [46], can be used to approximate (3.1) with Hamiltonian system of
reduced-dimension 2k, characterized by the Hamiltonian function

HRB.z/ D H.Az/: (3.5)

In particular, in the framework of Galerkin projection, using (3.2) in (3.1) yields

A Pz D J2nryH.Az/ C r; (3.6)

with r being the residual term. Utilizing the chain rule and the second property of AC in
Proposition 3.1, the gradient of the Hamiltonian in (3.6) can be recast as

ryH.Az/ D .AC/>
rzHRB.z/:

By assuming that the projection residual is orthogonal with respect to the symplectic bilinear
form to the space spanned by A, we recover8<: Pz.t/ D J2krzHRB.z.t//;

z.0/ D ACy0:
(3.7)
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System (3.7) is known as a symplectic Galerkin projection of (3.1) onto A. The pre-
processing stage consisting of the collection of all the computations required to assemble
the basis A is known as the offline stage. The numerical solution of the low-dimensional
problem (3.7) represents the online stage, and provides a fast approximation to the solution
of the high-fidelity model (3.1) by means of (3.2). Even though the offline stage is possibly
computationally expensive, this splitting is beneficial in a multiquery context, when multiple
instances of (3.7) have to be solved, e.g., for parametric PDEs.

Traditional projection-based reduction techniques do not guarantee stability, even
if the high-dimensional problem admits a stable solution [37], often resulting in a blowup
of system energy. On the contrary, by preserving the geometric structure of the problem,
several stability results hold for the reduced Hamiltonian equation (3.7). In [1, Proposition 15,

page A2625], the authors show that the error in the Hamiltonian jH.y.t// � HRB.z.t//j is
constant for all t . We detail two relevant results in the following, suggesting that structure
and energy preservation are key for stability.

Theorem 3.1 (Boundedness result [44]). Consider the Hamiltonian system (3.1), with
Hamiltonian H 2 C 1.M/ and initial condition y0 2 R2n such that y0 2 range.A/, with
A 2 R2n�2k symplectic basis. Let (3.7) be the reduced Hamiltonian system obtained as the
symplectic Galerkin projection induced by A of (3.1). If there exists a bounded neighbor-
hood Uy0 in R2n such that H.y0/ < H. Qy/, or H.y0/ > H. Qy/, for all Qy on the boundary
of Uy0 , then both the original system and the reduced system constructed by the symplectic
projection are uniformly bounded for all t .

Theorem 3.2 (Lyapunov stability [1, 44]). Consider the Hamiltonian system (3.1) with
Hamiltonian H 2 C 2.M/ and the reduced Hamiltonian system (3.7). Suppose that y� is a
strict local minimum of H . Let S be an open ball around y� such that r2H.y/ > 0 and
H.z/ < c, for all z 2 S and some c 2 R, and H. Ny/ D c for some Ny 2 @S , where @S is the
boundary of S . If there exists an open neighborhood S of y� such that S \ range.A/ ¤ ;,
then the reduced system (3.7) has a stable equilibrium point in S \ range.A/.

For the time-discretization of (3.7), the use of a symplectic integrator [26] is crucial
for preserving the symplectic structure at the discrete level. In particular, the discrete flow
obtained using a symplectic integrator satisfies a discrete version of Proposition 2.2.

In the next section, we introduce different strategies to construct symplectic bases
as results of optimization problems.

4. Proper symplectic decomposition

Let us consider the solution vectors yi D y.ti / 2 R2n (the so-called solution snap-
shots) obtained, for different time instances ti 2 Œt0; tend�, 8i D 1; : : : ; N , by time discretiza-
tion of (3.1) using a symplectic integrator. Define the snapshot matrix

My WD Œy1 : : : yN �; (4.1)
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as the matrix collecting the solution snapshots as columns. In the following, we consider
different algorithms stemming from the historicalmethod of snapshots [50], as the base of the
proper orthogonal decomposition (POD). To preserve the geometric structure of the original
model, we focus on a similar optimization problem, the proper symplectic decomposition
(PSD), which represents a data-driven basis generation procedure to extract a symplectic
basis from My . It is based on the minimization of the projection error of My on A and
it results in the following optimization problem for the definition of the symplectic basis
A 2 R2n�2k :

minimize
A2R2n�2k

My � AACMy


F

;

subject to A 2 Sp.2k; R2n/;
(4.2)

with A D range.A/ and k � kF being the Frobenius norm. Problem (4.2) is similar to the POD
minimization, but with the feasibility set of rectangular orthogonal matrices, also known as
the Stiefel manifold

St.2k; R2n/ WD
®
L 2 R2n�2k

W L>L D I2n

¯
;

replaced by the symplectic Stiefel manifold. Recently there has been a great interest in opti-
mization on symplectic manifolds, and a vast literature is available on the minimization of
the least-squares distance from optimal symplectic Stiefel manifolds. This problem has rel-
evant implications in different physical applications, such as the study of optical systems
[18] and the optimal control of quantum symplectic gates [52]. Unfortunately, with respect
to POD minimization, problem (4.2) is significantly more challenging for different reasons.
The nonconvexity of the feasibility set and the unboundedness of the solution norm pre-
cludes standard optimization techniques. Moreover, most of the attention is focused on the
case n D k, which is not compatible with the reduction goal of MOR.

Despite the interest in the topic, an efficient optimal solution algorithm has yet to
be found for the PSD. Suboptimal solutions have been attained by focusing on the subset of
the ortho-symplectic matrices, i.e.,

S.2k; 2n/ WD St.2k; R2n/ \ Sp.2k; R2n/: (4.3)

In [44], while enforcing the additional orthogonality constraint in (4.2), the optimization
problem is further simplified by assuming a specific structure for A. An efficient greedy
method, not requiring any additional block structures to A, but only its orthogonality and
simplecticity, has been introduced in [1]. More recently, in [7], the orthogonality requirement
has been removed, and different solution methods to the PSD problem are explored. In the
following, we briefly review the above-mentioned approaches.

4.1. SVD-based methods for orthonormal symplectic basis generation
In [44], several algorithms have been proposed to directly construct ortho-symplectic

bases. Exploiting the SVD decomposition of rearranged snapshots matrices, the idea is to
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search for optimal matrices in subsets of Sp.2k; R2n/. Consider the more restrictive feasi-
bility set

S1.2k; 2n/ WD Sp.2k; R2n/ \

´"
ˆ 0

0 ˆ

# ˇ̌
ˆ 2 Rn�k

µ
:

Then A>J2nA D J2k holds if and only if ˆ>ˆ D In, i.e., ˆ 2 St.k;Rn/. Moreover, we have
that AC D diag.ˆ>; ˆ>/. The cost function in (4.2) becomesMy � AACMy


F

D
M1 � ˆˆ>M1


F

; (4.4)

with M1 D Œp1 : : : pN q1 : : : qN � 2 Rn�2N , where pi and qi are the generalized phase-
space components of yi . Thus, as a result of the Eckart–Young–Mirsky theorem, (4.4) admits
a solution in terms of the singular-value decomposition of the data matrix M1. This algo-
rithm, formally known as Cotangent Lift, owes its name to the interpretation of the solution
A to (4.4) in S1.2k; 2n/ as the cotangent lift of linear mappings, represented by ˆ and ˆ>,
between vector spaces of dimensions n and k. Moreover, this approach constitutes the nat-
ural outlet in the field of Hamiltonian systems of the preliminary work of Lall et al. [33] on
structure-preserving reduction of Lagrangian systems. However, there is no guarantee that
the Cotangent Lift basis is close to the optimal of the original PSD functional.

A different strategy, known as Complex SVD decomposition, relies on the definition
of the complex snapshot matrix M2 D Œp1 C iq1 : : : pN C iqN � 2 Cn�N , with i being
the imaginary unit. Let U D ˆ C i‰ 2 Cn�N , with ˆ; ‰ 2 Rn�k , be the unitary matrix
solution to the following accessory problem:

minimize
U 2Rn�2k

M2 � U U �M2


F

;

subject to U 2 St.2k; R2n/:
(4.5)

As for the Cotangent Lift algorithm, the solution to (4.5) is known to be the set of the 2k

left-singular vectors of M2 corresponding to its largest singular values. In terms of the real
and imaginary parts of U , the orthogonality constraint implies

ˆ>ˆ C ‰>‰ D In; ˆ>‰ D ‰>ˆ: (4.6)

Consider the ortho-symplectic matrix, introduced in [44], and given by

A D

h
E J>

2nE
i

2 R2n�2k ; E>E D Ik ; E>J2nE D 0k ; with E D

"
ˆ

‰

#
: (4.7)

Using (4.6), it can be shown that such an A is the optimal solution of the PSD problem in

S2.2k; 2n/ WD Sp.2k; R2n/ \

´"
ˆ �‰

‰ ˆ

# ˇ̌
ˆ; ‰ 2 Rn�k

µ
;

that minimizes the projection error of Mr WD ŒMy J2nMy �, also known as the rotated snap-
shot matrix, with My given in (4.1). In [7], extending the result obtained in [41] for square
matrices, it has been shown that (4.7) is a complete characterization of symplectic matrices
with orthogonal columns, meaning that all the ortho-symplectic matrices admit a represen-
tation of the form (4.7), for a given E, and hence S2.2k; 2n/ � S.2k; 2n/. In the same work,
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Haasdonk et al. showed that an ortho-symplectic matrix that minimizes the projection error
of Mr is also a minimizer of the projection error of the original snapshot matrix My , and vice
versa. This is been achieved by using an equivalence argument based on the POD applied to
the matrix Mr . Thus, combining these two results, the Complex SVD algorithm provides a
minimizer of the PSD problem for ortho-symplectic matrices.

4.2. SVD-based methods for nonorthonormal symplectic basis generation
In the previous section, we showed that the basis provided by the Complex SVD

method is not only near-optimal in S2, but is optimal for the cost functionals in the space
of ortho-symplectic matrices. The orthogonality of the resulting basis is beneficial [32],
among others, for reducing the condition number associated with the fully discrete formu-
lation of (3.7). A suboptimal solution to the PSD problem not requiring the orthogonality
of the feasibility set is proposed in [44], as an improvement of the SVD-based generators of
ortho-symplectic bases using the Gappy POD [19], under the name of nonlinear program-
ming approach (NLP). Let A� 2 S2.2r; 2n/ be a basis of dimension 2r generated using the
Complex SVD method. The idea of the NLP is to construct a target basis A 2 Sp.2k; R2n/,
with k < r � n, via the linear mapping

A D A�C; (4.8)

with C 2 R2r�2k . Using (4.8) in (4.2) results in a PSD optimization problem for the coef-
ficient matrix C , of significantly smaller dimension (4kr parameters) as compared to the
original PSD problem (4kn parameters) with A unknown. However, no optimality results
are available for the NLP method.

A different direction has been pursued in [7], based on the connection between tradi-
tional SVD and Schur forms and the matrix decompositions, related to symplectic matrices,
as proposed in the following theorem.

Theorem 4.1 (SVD-like decomposition [53, Theorem 1, p. 6]). If B 2 R2n�ns , then there exist
S 2 Sp.2n; R2n/, Q 2 St.ns; Rns /, and D 2 R2n�ns of the form

D D

b q b n � 2b � q266666664

377777775

† 0 0 0 b

0 I 0 0 q

0 0 0 0 m � b � q

0 0 † 0 b

0 0 0 0 q

0 0 0 0 m � b � q

; (4.9)

with † D diag.�1; : : : ; �b/, �i > 0 8i D 1; : : : ; b, such that

B D SDQ: (4.10)

Moreover, rank.B/ D 2b C q and �i are known as symplectical singular values.
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Let us apply the SVD-like decomposition to the snapshot matrix My (4.1), where ns repre-
sents the number of snapshots, and define its weighted symplectic singular values as

wi D

8<: �i

q
kSi k

2
2 C kSnCi k

2
2; 1 � i � b;

kSi k2; b C 1 � i � b C q;

with Si 2 R2n being the i th column of S and k � k2 the Euclidean norm. The physical inter-
pretation of the classical POD approach characterizes the POD reduced basis as the set of a
given cardinality that captures most of the energy of the system. The energy retained in the
reduced approximation is quantified as the sum of the squared singular values correspond-
ing to the left singular vectors of the snapshot matrix representing the columns of the basis.
A similar guiding principle is used in [7], where the energy of the system, i.e., the Frobenius
norm of the snapshot matrix, is connected to the weighted symplectic singular values as

kMyk
2
F D

bCqX
iD1

w2
i : (4.11)

Let IPSD be the set of indices corresponding to the k largest energy contributors in (4.11),

IPSD D ¹ij º
k
j D1 D argmax

I�¹1;:::;bCqº

�X
i2I

w2
i

�
: (4.12)

Then, the PSD SVD-like decomposition defines a symplectic reduced basis A 2 Sp.2k;R2n/

by selecting the pairs of columns from the symplectic matrix S corresponding to the indices
set IPSD

A D Œsi1 : : : sik snCi1 : : : snCik �: (4.13)

Similarly to the POD, the reconstruction error of the snapshot matrix depends on the mag-
nitude of the discarded weighted symplectic singular values asMy � AACMy

2

F
D

X
i2¹1;:::;bCqºnIPSD

w2
i : (4.14)

Even though there are no proofs that the PSD SVD-like algorithm reaches the global opti-
mum in the sense of (4.2), some analysis and numerical investigations suggest that it provides
superior results as compared to orthonormal techniques [7].

4.3. Greedy approach to symplectic basis generation
The reduced basis methodology is motivated and applied within the context of real-

time and multiqueries simulations of parametrized PDEs. In the framework of Hamiltonian
systems, we consider the following parametric form of (3.1):8<: Py.t; �/ D J2nryH.y.t; �/I �/;

y.0; �/ D y0.�/;
(4.15)

with � 2 P � Rd being a d -dimensional parameter space. Let ZP be the set of solutions
to (4.15) defined as

ZP
D

®
y.t; �/ W t 2 Œt0; tend�; � 2 P

¯
� R2n:
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For the sake of simplicity, in the previous sections we have only considered the nonparametric
case. The extension of SVD-based methods for basis generations to (4.15) is straightforward
on paper, but it is often computationally problematic in practice as the number of snapshots
increases. Similar to other SVD-based algorithms, the methods described in the previous sec-
tions require the computation of the solution to (4.15) corresponding to a properly chosen
discrete set of parameters S� D ¹�j º

p
j D1 � P and time instances S t D ¹ti º

N
iD1, defined a

priori, and constituting the sampling set S�;t WD S� � S t . Random or structured strategies
exist to define the set S�, such as the Monte Carlo sampling, Latin hypercube sampling, and
sparse grids [12], while S t is a subset of the time-discretization, usually dictated by the inte-
grator of choice. The set of snapshots corresponding to the sampling set S�;t must provide
a “good” approximation of the solution manifold and should not miss relevant parts of the
time-parameter domain. Once the sampling set S�;t has been fixed, the matrix My , M1, or
M2, depending on the method of choice, is assembled, and its singular value decomposi-
tion is computed. Even though a certain amount of computational complexity is tolerated
in the offline stage to obtain a significant speed-up in the online stage, the evaluation of the
high-fidelity solution for a large sampling set and the SVD of the corresponding snapshot
matrix are often impractical or not even feasible. Hence, an efficient approach is an incremen-
tal procedure. The reduced basis, in which the column space represents the approximating
manifold, is improved iteratively by adding basis vectors as columns. The candidate basis
vector is chosen as the maximizer of a much cheaper optimization problem. This summa-
rizes the philosophy of the greedy strategy applied to RB methods [6,9], which requires two
main ingredients: the definition of an error indicator and a process to add a candidate column
vector to the basis.

Let Uk be an orthonormal reduced basis produced after k steps of the algorithm. In
its idealized form, introduced in [51], the greedy algorithm uses the projection error

.t�; ��/ WD argmax
.ti ;�j /2S�;t

u.ti ; �j / � UkU >
k u.ti ; �j /


2
; (4.16)

to identify the snapshot u� WD u.t�; ��/ that is worst approximated by the column space of
Uk over the entire sampling set S�;t . Let ukC1 be the vector obtained by orthonormalizing
u� with respect to Uk . Then the basis Uk is updated as UkC1 D ŒUk ukC1�. To avoid the
accumulation of rounding errors, it is preferable to utilize backward stable orthogonalization
processes, such as the modified Gram–Schmidt orthogonalization. The algorithm terminates
when the basis reaches the desired dimension, or the error (4.16) is below a certain toler-
ance. In this sense, the basis UkC1 is hierarchical because its column space contains the
column space of its previous iterations. This process is referred to as strong greedy method.
Even though introduced as a heuristic procedure, interesting results regarding algebraic and
exponential convergence have been formulated in [6, 9], requiring the orthogonality of the
basis in the corresponding proofs. However, in this form, the scheme cannot be efficiently
implemented: the error indicator (4.16) is expensive to calculate because it requires all the
snapshots of the training set S�;t to be accessible, relieving the computation only of the cost
required for the SVD.
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An adjustment of the strong greedy algorithm, known as weak greedy algorithm,
assembles the snapshot matrix corresponding to S�;t iteratively while expanding the approx-
imating basis. The idea is to replace (4.16) with a surrogate indicator � W S�;t 7! R that
does not demand the computation of the high-fidelity solution for the entire time-parameter
domain.

In the case of elliptic PDEs, an a-posteriori residual-based error indicator requiring
a polynomial computational cost in the approximation space dimension has been introduced
in [49]. The substantial computational savings allow the choice of a more refined, and there-
fore representative, sampling set S�;t . One might also use a goal-oriented indicator as the
driving selection in the greedy process to obtain similar computational benefits. In this
direction, in the framework of structure-preserving model order reduction, [1] suggests the
Hamiltonian as a proxy error indicator. Suppose A2k D ŒEk J>

2nEk �, with Ek D Œe1 : : : ek �,
is a given ortho-symplectic basis and consider

.t�; ��/ WD argmax
.ti ;�j /2S�;t

ˇ̌
H

�
y.ti ; �j /

�
� H

�
A2kAC

2k
y.ti ; �j /

�ˇ̌
: (4.17)

By [1, Proposition 15], the error in the Hamiltonian depends only on the initial condition and
the symplectic reduced basis. Hence, the indicator (4.17) does not require integrating in time
the full system (4.15) over the entire set S�, but only over a small fraction of the parameter
set, making the procedure fast. Hence, the parameter space can be explored first,

��
WD argmax

�j 2S�

ˇ̌
H

�
y0.�j /

�
� H

�
A2kAC

2k
y0.�j /

�ˇ̌
; (4.18)

to identify the value of the parameter that maximizes the error in the Hamiltonian as a func-
tion of the initial condition. This step may fail if y0.�j / 2 range.A2k/, 8j D 1; : : : ; p.
Then (4.15) is temporally integrated to collect the snapshot matrix

Mg D
�
y.t1; ��/ : : : y.tN ; ��/

�
:

Finally, the candidate basis vector y� D y.��; t�/ is selected as the snapshot that maximizes
the projection error

t�
WD argmax

ti 2S t

y.ti ; ��/ � A2kAC

2k
y.ti ; ��/


2
: (4.19)

Standard orthogonalization techniques, such as QR methods, fail to preserve the symplectic
structure [10]. In [1], the SR method [47], based on the symplectic Gram–Schmidt, is employed
to compute the additional basis vector ekC1 that conforms to the geometric structure of the
problem. To conclude the .k C 1/th iteration of the algorithm, the basis A2k is expanded in

A2.kC1/ D
�
Ek ekC1 J>

2nEk J>
2nekC1

�
:

We stress that, with this method, known as symplectic greedy RB, two vectors, ekC1 and
J>

2nekC1, are added to the symplectic basis at each iteration, because of the structure of ortho-
symplectic matrices. A different strategy, known as PSD-Greedy algorithm and partially
based on the PSD SVD-like decomposition, has been introduced in [8], with the feature of
not using orthogonal techniques to compress the matrix Mg . In [1], following the results
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given in [9], the exponential convergence of the symplectic strong greedy method has been
proved.

Theorem 4.2 ([9, Theorem 20, p. A2632]). Let ZP be a compact subset of R2n. Assume that
the Kolmogorov m-width of ZP defined as

dm.ZP / D inf
Z��R2n

dim.Z�/Dmv2ZP

sup
w2Z�

minkv � wk2;

decays exponentially fast, namely dm.ZP / � c exp.�˛m/ with ˛ > log 3. Then there exists
ˇ > 0 such that the symplectic basisA2k generated by the symplectic strong greedy algorithm
provides exponential approximation properties,s � A2kAC

2k
s


2
� C exp.�ˇk/; (4.20)

for all s 2 ZP and some C > 0.

Theorem 4.2 holds only when the projection error is used as the error indicator
instead of the error in the Hamiltonian. However, it has been observed for different sym-
plectic parametric problems [1] that the symplectic method using the loss in the Hamiltonian
converges with the same rate of (4.20). The orthogonality of the basis is used to prove the
convergence of the greedy procedure. In the case of a nonorthonormal symplectic basis,
supplementary assumptions are required to ensure the convergence of the algorithm.

5. Dynamical low-rank reduced basis methods for

Hamiltonian systems

The Kolmogorov m-width of a compact set describes how well this can be approx-
imated by a linear subspace of a fixed dimension m. A problem (4.15) is informally defined
reducible if dm decays sharply with m, implying the existence of a low-dimensional repre-
sentation of ZP . A slow decay limits the accuracy of any efficient projection-based reduction
on linear subspaces, including all the methods discussed so far. For Hamiltonian problems,
often characterized by the absence of physical dissipation due to the conservation of the
Hamiltonian, we may have dm.ZP / D O.m� 1

2 / in case of discontinuous initial condition
[23] for wave-like problems. Several techniques, either based on nonlinear transformations
of the solution manifold to a reducible framework [39] or presented as online adaptive meth-
ods to target solution manifolds at fixed time [42], have been introduced to overcome the
limitations of the linear approximating spaces. In different ways, they all abandon the frame-
work of symplectic vector spaces. Therefore, none of them guarantees conservation of the
symplectic structure in the reduction process. Musharbash et al. [38] proposed a dynamically
orthogonal (DO) discretization of stochastic wave PDEs with a symplectic structure. In the
following, we outline the structure-preserving dynamic RB method for parametric Hamilto-
nian systems, proposed by Pagliantini [40] in the spirit of the geometric reduction introduced
in [15]. In contrast with traditional methods that provide a global basis, which is fixed in
time, the gist of a dynamic approach is to evolve a local-in-time basis to provide an accurate
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approximation of the solution to the parametric problem (4.15). The idea is to exploit the
local low-rank nature of Hamiltonian dynamics in the parameter space. From a geometric
perspective, the approximate solution evolves according to naturally constrained dynamics,
rather than weakly enforcing the required properties, such as orthogonality or symplecticity
of the RB representation, via Lagrange multipliers. This result is achieved by viewing the
flow of the reduced model as prescribed by a vector field that is everywhere tangent to the
desired manifold.

Suppose we are interested in solving (4.15) for a set of p vector-valued parameters
�h D ¹�i º

p
iD1, sampled from P . Then the Hamiltonian system, evaluated at �h, can be recast

as a set of ODEs in the matrix unknown R 2 R2n�p ,8<: PR.t/ D XH .R.t/; �h/ D J2nrRH.R.t/; �h/;

R.t0/ D R0.�h/;
(5.1)

where H is a vector-valued Hamiltonian function, the j th column of R.t/ is such that
Rj .t/ D y.t;�j /, and .rRH/i;j WD @Hj =@Ri;j . We consider an approximation of the solu-
tion to (5.1) of the form

R.t/ � R.t/ D A.t/Z.t/; (5.2)

where A.t/ 2 S.2k; 2n/, and Z.t/ 2 R2k�p is such that its j th column Zj .t/ collects coef-
ficients, with respect to the basis A.t/, of the approximation of y.t; �j /. Despite being cast
in the same framework of an RB approach, a stark difference between (5.2) and (3.2) lies in
the time-dependency of the basis in (5.2).

Consider the manifold of 2n � p matrices having at most rank 2k, and defined as

ZP
2n WD

®
R 2 R2n�p

W R D AZ with A 2 S.2k; 2n/; Z 2 Z
¯
; (5.3)

with the technical requirement

Z WD
®
Z 2 R2k�p

W rank.ZZ>
C J>

2kZZ>J2k/ D 2k
¯
: (5.4)

This represents a full-rank condition on Z to ensure uniqueness of the representation (5.2) for
a fixed basis. The tangent vector at R.t/ D A.t/Z.t/ 2 ZP

2n is given by X D XAZ C AXZ ,
where XA and XZ correspond to the tangent directions for the time-dependent matrices A

and Z, respectively. Applying the orthogonality and symplecticity condition on A.t/, for all
times t , results in

X>
A A C A>XA D 0 and X>

A J2nA C A>J2nXA D 0; (5.5)

respectively. Using (5.5) and an additional gauge constraint to uniquely parametrize the tan-
gent vectors X by the displacements XA and XZ , the tangent space of ZP

2n at R D AZ can
be characterized as

TRMP
2n D

®
X 2 R2n�p

W X D XAZ C AXZ ;

with XZ 2 R2k�p; XA 2 R2n�2k ; X>
A A D 0; XAJ2k D J2nXA

¯
:
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The reduced flow describing the evolution of the approximation R.t/ is derived in [40] by
projecting the full velocity field XH in (5.1) onto the tangent space TR.t/Z

P
2n of ZP

2n at R.t/,
i.e., 8<: PR.t/ D …

TR.t/Z
P
2n

XH .R.t/; �h/;

R.t0/ D U0Z0:
(5.6)

To preserve the geometric structure of the problem, the projection operator …
TR.t/Z

P
2n

is a
symplectomorphism (see Definition 2.3) for each realization of the parameter �j 2 �h, in
the sense given in the following proposition.

Proposition 5.1 ([40, Proposition 4.3, p. 420]). Let S WD ZZ> C J2kZZ>J2k 2 R2k�2k .
Then, the map

…
TR.t/Z

P
2n

W R2n�p
! TR.t/Z

P
2n;

w 7! .I2n � AA>/.wZ>
C J2nwZ>J>

2k/S�1Z C AA>w;
(5.7)

is a symplectic projection, in the sense that
pX

j D1

��j .w � …
TR.t/Z

P
2n

w; y/ D 0; 8y 2 …
TR.t/Z

P
2n

;

where ��j is the symplectic form associated with the parameter �j .

The optimality of the reduced dynamics, in the Frobenius norm, follows from (5.6),
where the flow of R is prescribed by the best low-rank approximation of the Hamiltonian
velocity field vector XH into the tangent space of the reduced manifold ZP

2n. Using (5.7)
and (5.6), it is straightforward to derive the evolution equations for A.t/ and Z.t/:8̂̂<̂

:̂
PZj .t/ D J2nrZj

H.AZj ; �j /;

PA.t/ D .I2n � AA>/.J2nYZ � YZJ>
2n/S�1;

A.t0/Z.t0/ D A0Z0;

(5.8)

with Y WD ŒJ2nrH.UZ1; �1/ : : : J2nrH.UZp; �p/�.
The coefficients Z evolve according to a system of p independent Hamiltonian

equations, each in 2n unknowns, corresponding to the symplectic Galerkin projection
onto range.A/ for each parameter instance in �h, similarly to the global symplectic RB
method (3.7). In (5.8), however, the basis A evolves in time according to a matrix equation
in 2n � 2k unknowns, affecting the projection. A crucial property of the structure of A.t/ is
given in the following proposition.

Proposition 5.2 ([40, Proposition 4.5, p. 423]). IfA0 2 S.2k;2n/ thenA.t/ 2 R2n�2k solution
of (5.8) satisfies A.t/ 2 S.2k; 2n/ for all t > t0.

Standard numerical integrators, applied to (5.8), do not preserve, at the time-discrete
level, the property in Proposition 5.2 and the ortho-symplectic structure is compromised
after a single time step. In [40], two different intrinsic integrators have been investigated to
preserve the ortho-symplecticity of the basis, based on Lie groups and tangent techniques.
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Both methods require the introduction of a local chart defined on the tangent space TA.t/S

of the manifold S.2k; 2n/ at A.t/, with

TA.t/S WD
®
V 2 R2n�2k

W A>V 2 g.2k/
¯

and g.2k/ being the vector space of skew-symmetric and Hamiltonian 2k � 2k real square
matrices. In terms of differential manifolds, g.2k/ represents, together with the Lie bracket
Œ�; �� W g.2k/ � g.2k/ 7! g.2k/ defined as the matrix commutator ŒM; L� WD ML � LM ,
with M; L 2 g.2k/, the Lie algebra corresponding to the Lie group S.2k; 2k/. The idea is to
recast the basis equation in (5.8) in an evolution equation in the corresponding Lie algebra.
The linearity of Lie algebras allows to compute, via explicit Runge–Kutta methods, numer-
ical solutions that remain on the Lie algebra. Finally, the Cayley transform cay W g.2k/ 7!

S.2k; 2k/ is exploited to generate local coordinate charts and retraction/inverse retraction
maps, used to recover the solution in the manifold of rectangular ortho-symplectic matrices.
In [29], the structure-preserving dynamical RB-method has been paired with a rank-adaptive
procedure, based on a residual error estimator, to dynamically update also the dimension of
the basis.

6. Extensions to more general Hamiltonian problems

6.1. Dissipative Hamiltonian systems
Many areas of engineering require a more general framework than the one offered

by classical Hamiltonian systems, requiring the inclusion of energy-dissipating elements.
While the principle of energy conservation is still used to describe the state dynamics, dissi-
pative perturbations must be modeled and introduced in the Hamiltonian formulation (3.1).
Dissipative Hamiltonian systems, with so-called Rayleigh type dissipation, are considered a
special case of forced Hamiltonian systems, with the state y D .q;p/ 2 R2n, with q;p 2 Rn,
following the time evolution given by8<: Py.t/ D J2nrH.y.t// C XF .y.t//;

y.0/ D y0;
(6.1)

where XF 2 R2n is a velocity field, introducing dissipation, of the form

XF WD

"
0n

fH .y.t//

#
: (6.2)

We require XF to satisfy .ryH/>XF � 0, 8y 2 R2n, to represent a dissipative term, and
therefore

.rpH/>fH � 0: (6.3)

In terms of Rayleigh dissipation theory, there exists a symmetric positive semidefinite matrix
R.q/ 2 Rn�n such that fH D �R.q/ Pq.p; q/ and (6.3) reads

.rpH/>fH D Pq>fH D � Pq>R.q/ Pq � 0:
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Several strategies have been proposed to generate stable reduced approximations of (6.1),
based on Krylov subspaces or POD [27, 45]. In [25], without requiring the symplecticity of
the reduced basis, the gradient of the Hamiltonian vector field is approximated using a projec-
tion matrix W , i.e., ryH.Uz/ � W rzHRB.z/, which results in a noncanonical symplectic
reduced form. The stability of the reduced model is then achieved by preserving the passivity
of the original formulation. A drawback of such an approach is that, while viable for nondis-
sipative formulations, it does not guarantee the same energy distribution of (6.1) between
dissipative and null energy contributors. In the following, we show that the techniques based
on symplectic geometry introduced in the previous sections can still be used in the dissipative
framework described in (6.1) with limited modifications to obtain consistent and structured
reduced models. Let us consider an ortho-symplectic basis A 2 S.2k; 2n/ and the reduced
basis representation y � Az, with z D .r; s/ 2 R2k being the reduced coefficients of the
representation and r; s 2 Rk being the generalized phase coordinates of the reduced model.
The basis A can be represented as

A D

"
Aqr Aqs

Apr Aps

#
; (6.4)

with Aqr ; Aqs; Apr ; Aps 2 Rn�k being the blocks, the indices of which are chosen to repre-
sent the interactions between the generalized phase coordinates of the two models, such that
q D Aqrr C Aqss and p D Aprr C Apss. Following [43], the symplectic Galerkin projection
of (6.1) reads

Pz D AC
�
XH .Az/ C XF .Az/

�
D J2krzHRB.z/ C ACXF .Az/ D XHRB C ACXF ; (6.5)

with

ACXF D

"
A>

ps �A>
qs

�A>
pr A>

qr

# "
0n

fH

#
D

"
�A>

qsfH

A>
qrfH

#
: (6.6)

We note that, in (6.5), the reduced dynamics is described as the sum of a Hamiltonian vector
field and a term that, for a general choice of the symplectic basis A and hence of A>

qs , does
not represent a dissipative term in the form of a vertical velocity field. The Cotangent Lift
method, described in Section 4.1, enforces by construction the structure of vertical velocity
field because Aqs D 0. It can be shown [43] that dissipativity is also preserved since the rate
of energy variation of the reduced system is non-positive, i.e.,

rsHRB.Az/.A>
qrfH / D Pr>.A>

qrfH / D �.Aqr Pr/>R.Aqrs/.Aqr Pr/ � 0: (6.7)

However, time discretization of the reduced dissipative model is not trivial. Even though the
dissipative Hamiltonian structure is preserved by the reduction process, standard numerical
integrators do not preserve the same structure at the fully discrete level.

A completely different approach is proposed in [2], where (6.1) is paired with a
canonical heat bath, absorbing the energy leakage and expanding the system to the canonical
Hamiltonian structure. Consider a dissipative system characterized by the quadratic Hamil-
tonian H.y/ D

1
2
y>K>Ky. Following [17], such a system admits a time dispersive and
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dissipative (TDD) formulation 8<: Py D J2nK>f .t/;

y.0/ D y0;
(6.8)

with f .t/ being the solution to the integral equation

f .t/ C

Z t

0

�.t � s/f .s/ds D Ky; (6.9)

also known as a generalized material relation. The square time-dependent matrix
� 2 R2n�2n is the generalized susceptibility of the system, and it is bounded with respect to
the Frobenius norm. Physically, it encodes the accumulation of the dissipation effect in time,
starting from the initial condition. When � D 02n, (6.8) is equivalent to (3.1). Under phys-
ically natural assumptions on � (see [17, Theorem 1.1, p. 975] for more details), system (6.8)
admits a quadratic Hamiltonian extension (QHE) to a canonical Hamiltonian system. This
extension is obtained by defining an isometric injection I W R2n 7! R2n � H 2n, where H 2n

is a suitable Hilbert space, and reads8̂̂<̂
:̂

Py D J2nK>f .t/;

@t � D �.t; x/;

@t � D @2
x�.t; x/ C

p
2ı0.x/ �

p
�f .t/;

(6.10)

where � and � are vector-valued functions in H 2n, ı0 is the Dirac-delta function, and f

solves
f .t/ C

p
2 �

p
��.t; 0/ D Ky.t/:

It can be shown that system (6.10) has the form of a conserved Hamiltonian system with the
extended Hamiltonian

Hex.y; �; �/ D
1

2

�Ky � �.t; 0/
2

2
C

�.t/
2

H2n C
@x�.t/

2

H2n

�
;

and can be reduced, while preserving its geometric structure, using any of the standard sym-
plectic techniques. We refer the reader to [2] for a formal derivation of the reduced model
obtained by projecting (6.10) on a symplectic subspace and for its efficient time integra-
tion. The method extends trivially to more general Hamiltonian functions, as long as the
dissipation is linear in (6.9).

6.2. Noncanonical Hamiltonian systems
The canonical Hamiltonian problem (3.1) has been defined under the assumption

that a canonical system of coordinates for the symplectic solution manifold is given, and the
Hamiltonian vector can be represented as (2.5). However, many Hamiltonian systems, such
as the KdV and Burgers equations, are naturally formulated in terms of a noncanonical basis,
resulting in the following description of their dynamics:8<: Py.t/ D J2nryH.y.t//;

y.0/ D y0;
(6.11)
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with J2n 2 R2n�2n being invertible and skew-symmetric. A reduction strategy, involving
the noncanonical formulation (6.11) and based on POD, has been proposed in [21]. Consider
the RB ansatz y � Uz, with U 2 R2n�k as an orthonormal basis obtained by applying the
POD algorithm to the matrix of snapshots collected by solving the full model. The Galerkin
projection of (6.11) reads

Pz D U >J2nryH.Uz/; (6.12)

with the time derivate of the Hamiltonian function, evaluated at the reduced state, given by

PH.Uz/ D Pz>
�
rzH.Uz/

�
D

�
ryH.Uz/

�>
J >

2nU U >
ryH.Uz/: (6.13)

As expected, the Hamiltonian structure is lost in (6.12) and the energy of the system, rep-
resented by the Hamiltonian, is no longer preserved in time because J2nU U > is not skew-
symmetric. Both issues are solved in [21] by considering a matrix W , with the same properties
of J2n, such that the relation

U >J2n D W U > (6.14)

is satisfied. We stress that a condition similar to (6.14) naturally holds in the canonical Hamil-
tonian setting for a symplectic basis and has been used to derive Hamiltonian reduced models
using the symplectic Galerkin projection. A candidate W is identified in [21] by solving
the normal equation related to (6.14), i.e., W D U >J2nU . For invertible skew-symmetric
operators J2n that might depend on the state variables y, Miyatake has introduced in [35] a
hyperreduction technique that preserves the skew-symmetric structure of the J2n operator.

Formulation (6.11) is further generalized with the characterization of the phase-
space as a Poisson manifold, defined as a 2nP -dimensional differentiable manifold MP

equipped with a Poisson bracket ¹�; �º W C 1.Mp/ � C 1.Mp/ 7! C 1.Mp/ satisfying the
conditions of bilinearity, skew-symmetry, the Jacobi identity, and the Leibniz’ rule. Since
derivations on C 1.MP / are represented by smooth vector fields, for each Hamiltonian func-
tion H 2 C 1.MP /, there exists a vector XH that determines the following dynamics:8<: Py.t/ D XH .y/ D J2nP

.y/ryH.y.t//;

y.0/ D y0;
(6.15)

with the Poisson tensor J2np being skew-symmetric, state-dependent, and generally not
invertible. The flow of the Hamiltonian vector field XH .y/, which is a Poisson map and
therefore preserves the Poisson bracket structure via its pullback, also preserves the rank
2n of the Poisson tensor J2nP

.y/. Moreover, r D 2nP � 2n represents the number of inde-
pendent nonconstant functions on MP that ¹�; �º commutes with all the other functions in
C 1.MP /. These functions are known as Casimirs of the Poisson bracket and their gradi-
ents belong to the kernel of J2nP

.y/, making them independent of the dynamics of (6.15)
and only representing geometric constraints on configurations of the generalized phase-state
space.

An interesting relation between symplectic and Poisson manifolds is offered by the
Lie–Weinstein splitting theorem, stating that locally, in the neighborhood Uy� of any point
y� 2 MP , a Poisson manifold can be split into a 2n-dimensional symplectic manifold M and
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an r-dimensional Poisson manifold M . Following on this result, Darboux’ theorem guaran-
tees the existence of local coordinates .q1; : : : ; qn;p1; : : : ;pn; c1; : : : ; cr /, where ¹qi ;pi º

2
iD1

corresponds to canonical symplectic coordinates and ¹ci º
r
iD1 are the Casimirs, such that the

Poisson tensor J2np .y/ is recast, via Darboux’ map, in the canonical form J C
2np

, i.e.,

J C
2np

D

2n r� �
J2n 0 2n

0 0 r
;

with J2n 2 R2n�2n being the canonical Poisson tensor defined in (2.3).
In [28], a quasistructure-preserving algorithm for problems of the form (6.15) has

been proposed, leveraging the Lie–Weinstein splitting, an approximation of the Darboux’
map and traditional symplectic RB techniques. Let8<: yj C1 D yj C �tJ2np . Qyj /ryH. Qyj /;

y0 D y0;
(6.16)

be the fully-discrete formulation of (6.15), where j is the integration index, and Qyj represents
intermediate state/states dictated by the temporal integrator of choice. Given MP;j , an open
subset of MP comprising the discrete states yj , Qyj , and yj C1, the authors of [28] introduce
an approximation 'j C 1

2
W MP;j 7! Ms � Nj of the Darboux’ map at Qyj , with Ms being a

2N -dimensional canonical symplectic manifold and Nj approximating the null space of the
Poisson structure. The proposed approximation exploits a Cholesky-like decomposition (see
[28, Proposition 2.11, p. 1708]) of the noncanonical rank-deficient J2np . Qyj / and exactly pre-
serves the dimension of Nj , hence the number of independent Casimirs. By introducing the
natural transition map Tj WD 'j C 1

2
� '�1

j � 1
2

between the neighboring and overlapping subsets
Mj �1 and Mj , problem (6.16) is locally recast in the canonical form8<: Nyj C1 D Tj Nyj C �tJ C

2np
r NyH j . NQyj /;

Ny0 D y0;
(6.17)

where Nyj C1 WD 'j C 1
2
yj C1, Nyj WD 'j C 1

2
yj , NQyj C1 WD 'j C 1

2
Qyj , and H j . NQyj / WD

H.'�1

j C 1
2

. NQyj //. Even though the flow of (6.17) is not a global J C
2np

-Poisson map because
the splitting is not exact, the approximation is locally structure-preserving for each neigh-
borhood MP;j . By exploiting a similar splitting principle, the canonical Poisson manifold
Ms � Nj is projected on a reduced Poisson manifold A � Nj , with the reduction acting
only on the symplectic component of the splitting and dim.A/ D 2k � 2n. The corre-
sponding reduced model is obtained via Galerkin projection of (6.17) using an orthogonal
J C

2k
-symplectic basis of dimension 2k, generated via a greedy iterative process inspired by

the symplectic greedy method described in Section 4.3. Different theoretical estimates and
numerical investigations show the proposed technique’s accuracy, robustness, and conserva-
tion properties, up to errors in the Poisson tensor approximation.
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7. Conclusion

We provided an overview of model reduction methods for Hamiltonian problems.
The symplectic Galerkin projection has been discussed as a tool to generate a reduced Hamil-
tonian approximation of the original dynamics. PSD algorithms used to compute low-order
projection on symplectic spaces have been introduced and compared. Such strategies have
been classified in ortho-symplectic and symplectic procedures, depending on the structure
of the computed RB. A greedy alternative for the generation of ortho-symplectic basis,
characterized by an exponentially fast convergence, has been illustrated as an efficient iter-
ative approach to overcome the computational cost associated with SVD-based techniques
that require a fine sampling of the solution manifold of the high-dimensional problem. The
potential local low-rank nature of Hamiltonian dynamics has been addressed by a symplectic
dynamical RB method. The innovative idea of the dynamical approach consists in evolving
the approximating symplectic reduced space in time along a trajectory locally constrained
on the tangent space of the high-dimensional dynamics. For problems where the Hamilto-
nian dynamics is coupled with a dissipative term, structure-preserving reduced models can
be constructed with the symplectic reduction process by resorting to an extended nondissi-
pative Hamiltonian reformulation of the system. Finally, we have described RB strategies to
reduce problems having a noncanonical Hamiltonian structure that either enforce properties
typical of a symplectic basis or use canonical symplectic reductions as an intermediate step
to preserve the structure of the original model.
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at extreme scale and
low precisions
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Abstract

The largest dense linear systems that are being solved today are of order n D 107. Single-
precision arithmetic, which has a unit roundoff u � 10�8, is widely used in scientific
computing, and half-precision arithmetic, with u � 10�4, is increasingly being exploited
as it becomes more readily available in hardware. Standard rounding error bounds for
numerical linear algebra algorithms are proportional to p.n/u, with p growing at least
linearly with n. Therefore we are at the stage where these rounding error bounds are not
able to guarantee any accuracy or stability in the computed results for some extreme-scale
or low-accuracy computations. We explain how rounding error bounds with much smaller
constants can be obtained. Blocked algorithms, which break the data into blocks of size b,
lead to a reduction in the error constants by a factor b or more. Two architectural features
also reduce the error constants: extended precision registers and fused multiply–add oper-
ations, either at the scalar level or in mixed precision block form. We also discuss a new
probabilistic approach to rounding error analysis that provides error constants that are the
square roots of those of the worst-case bounds. Combining these different considerations
provides new understanding of the numerical stability of extreme scale and low precision
computations in numerical linear algebra.
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1. Introduction

We are approaching the exascale computing era, in which the world’s fastest com-
puters will be able to perform 1018 double-precision floating-point operations (flops) per
second. With the increased speed comes an increase in the size of problems that can be
solved in reasonable time, provided that sufficient memory is available.

A problem of particular interest is solving a dense system of linear equations
Ax D b, where A 2 Rn�n is nonsingular and b 2 Rn. Table 1 shows the sizes of large sys-
tems that have been solved at different points in time. The data is taken from the TOP5001

list, which ranks the world’s fastest computers by their speed (measured in flops per second)
in solving a random linear system Ax D b by LU factorization with partial pivoting. Gen-
erally, a benchmark run needs to be done with the largest n possible in order to obtain the
best performance, so the tabulated values give an indication of the largest systems solved at
each point in time. Table 1 suggests that the size of the largest linear systems being solved is
growing by roughly a factor 10 each decade.

The standard componentwise backward error result for a solution Ox computed by LU
factorization in floating-point arithmetic is as follows [22, Thm. 9.4]. We write jAj D .jaij j/

and inequalities between matrices hold componentwise. We need the constant

n D
nu

1 � nu
;

where u is the unit roundoff, which is u D 2�t for a base-2 floating-point arithmetic with t

bits in the significand.

Theorem 1.1. Let A 2 Rn�n and suppose that LU factorization produces computed LU
factors OL, OU , and a computed solution Ox to Ax D b. Then there is a matrix �A such that

.AC�A/ Ox D b; j�Aj � 3nj OLjj OU j: (1.1)

Ideally, we would like the backward error matrix �A in (1.1) to satisfy
k�Ak1 � ukAk1. It can be shown that

kj OLjj OU jk1 � p.n/�nkAk1 (1.2)

for a quadratic polynomial p [22, Lemma 9.6], where the growth factor �n � 1 measures the
growth of elements during the factorization process. If, however, we make the very favorable
assumption that kj OLjj OU jk1 � kAk1 then we obtain

k�Ak1

kAk1
. 3n D 3nuCO.u2/: (1.3)

For the largest n in Table 1, in IEEE double-precision arithmetic (see Table 2), we
have nu � .2:1 � 107/.1:11 � 10�16/ � 2:3 � 10�9, so even with these favorable assump-
tions our bound indicates the potential for a significant loss of numerical stability. If we
work in IEEE single precision then nu � .2:1 � 107/.5:96 � 10�8/ � 1:25, and our back-
ward error bound is of order 1, suggesting the possibility of a complete loss of stability.

1 http://www.top500.org.
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Machine Date n

Fugaku June 2021 2:1 � 107

Jaguar June 2010 6:3 � 106

ASCI RED June 2000 3:6 � 105

CM-5/1024 June 1993 5:2 � 104

Table 1

Size of large linear systems solved. The data is from the TOP500.

Precision Name (sig, exp) u xmin xmax

Half bfloat16 .8; 8/ 3:91 � 10�3 1:18 � 10�38 3:39 � 1038

Half fp16 .11; 5/ 4:88 � 10�4 6:10 � 10�5 6:55 � 104

Single fp32 .24; 8/ 5:96 � 10�8 1:18 � 10�38 3:40 � 1038

Double fp64 .53; 11/ 1:11 � 10�16 2:22 � 10�308 1:80 � 10308

Double extended
(Intel)

.64; 16/ 5:32 � 10�20 3:36 � 10�4932 1:19 � 104932

Quadruple fp128 .113; 15/ 9:63 � 10�35 3:36 � 10�4932 1:19 � 104932

Table 2

Parameters for floating-point arithmetics: number of bits in significand (including implicit most significant bit)
and exponent (sig, exp), unit roundoff u, smallest normalized positive number xmin, and largest finite number
xmax. The last three columns are given to three significant figures. The arithmetics whose names begin “fp” are
from the IEEE standard [26].

Modern hardware increasingly supports half-precision arithmetic, which is attrac-
tive because of its speed, lower energy usage, and reduced storage and data movement costs.
The two currently available half-precision formats are bfloat16 [27] and IEEE half precision;
see Table 2. The optimistic bound (1.3) provides useful information only if 3nu < 1, but
3nu > 1 for problems of order n � 684 in IEEE half precision and n � 86 in bfloat16.
Yet machine learning codes routinely use half precision in inner products and matrix–vector
products with n� 682 with apparent success [19, 38]. Moreover, the machine topping the
HPL-AI mixed-precision benchmark [15] in the June 2021 TOP500 list solved a linear system
of order 1:6 � 107 using IEEE half-precision arithmetic for most of the computations, and
the result was good enough to pass the benchmark’s test that the residual is of order the unit
roundoff for double precision.

How can this apparent mismatch between theory and practice be explained, and what
are the implications for the future as the size of the largest problems continues to increase
and the use of low precision arithmetic becomes more common? Have we reached the point
where our techniques for analyzing rounding errors, honed over 70 years of digital computa-
tion, are unable to predict the accuracy of numerical linear algebra computations that are now
routine? I will show that we can, in fact, understand to a considerable extent the behavior of
extreme-scale and low accuracy computations. To do so, we need to take account of a number
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of algorithmic design techniques and architectural features of processors that help reduce
error growth, and we need to exploit a new probabilistic approach to rounding error analysis.

The main purpose of backward error analysis results such as Theorem 1.1 is to show
the form of the backward error bound and to reveal the circumstances (if any) in which the
backward error could be large. As Wilkinson [37], Parlett [31], and the present author [22,

Sect. 3.2] have noted, the constants in a backward error bound are the least important part of
it. Wilkinson recommends that if sharp error estimates are required they should be computed
a posteriori [36, Sect. 12], [37]. This is indeed good advice, but it nevertheless remains valid
to ask what a priori bounds can tell us—about the limits of what can be computed and
about whether a successful computation can be guaranteed for a mission-critical application
or one that takes up substantial computational resources. Furthermore, this question is also
relevant for future benchmarking: will the HPL benchmark [14,32] (used in the TOP500) or
the HPL-AI mixed precision benchmark need modifying in the future because their criteria
for successful completion can no longer be satisfied?

We assume that the floating-point arithmetic in use satisfies the standard model
[22, Sect. 2.2]

fl.x op y/ D .x op y/.1C ı/; jıj � u; op D C;�;�; =: (1.4)

This model is certainly satisfied by IEEE arithmetic, which defines fl.x op y/ to be the
rounded exact value. In general, we denote by fl.expr/ the value of the expression expr when
it is evaluated in floating-point arithmetic.

We begin, in Section 2, by showing how the use of blocked inner products and
blocked matrix factorizations reduces constants in rounding error bounds by a factor approx-
imately equal to the block size. In Section 3 we explain how extended precision registers on
Intel x86 processors and fused multiply–add operations and their mixed precision block gen-
eralizations yield reductions in the error constants. In Section 4 we explain how probabilistic
rounding error analysis gives rounding error bounds with constants that are the square roots
of the constants in the worst-case bounds. Some other relevant considerations are discussed
in Section 5. We offer our conclusions in Section 6.

2. Blocked algorithms

Blocked algorithms,2 which are primarily designed to give better performance on
modern computers with hierarchical memories, also lead to improved rounding error bounds,
as we now explain.

2 A blocked algorithm organizes a computation so that it works on separate chunks of data.
It is also commonly called a “block algorithm”, but the use of “block” is best reserved for
properties, factorizations, and algorithms in which scalars are generalized into blocks. For
example, a block tridiagonal matrix is not, in general, tridiagonal, and a block LU factoriza-
tion is different from an LU factorization because it has a block upper triangular U .

5101 Numerical stability of algorithms at extreme scale and low precisions



2.1. Blocked inner products
Let x;y 2Rn and consider the inner product sD xT y. If we evaluate s in the natural

way as
s D x1y1; s  s C xkyk ; k D 2 W n; (2.1)

then the computed result Os satisfies [22, Sect. 3.1]

js � Osj � njxj
T
jyj: (2.2)

In fact, this bound holds no matter what order the terms are summed in. Another way to
compute the inner product is by summing two half-length inner products, where we assume
n D 2b for simplicity:

s1 D x.1 W b/T y.1 W b/;

s2 D x.b C 1 W n/T y.b C 1 W n/;

s D s1 C s2:

For this formulation the error bound is

js � Osj � n=2C1jxj
T
jyj;

so the error constant has been reduced by a factor 2. We can generalize this idea. Assuming
that3 n D kb, we can compute

si D x
�
.i � 1/b C 1 W ib

�T
y

�
.i � 1/b C 1 W ib

�
; i D 1 W k;

s D s1 C s2 C � � � C sk ;
(2.3)

and the error bound is [22, Sect. 3.1]

js � Osj � bCn=b�1jxj
T
jyj: (2.4)

As long as b � n, the error constant has been reduced by about a factor b. The reason for
the reduction is that whereas for the standard evaluation (2.1) elements of x and y take part
in up to n� 1 additions, for (2.3) they take part in at most b C n=b � 2 additions. The value
of b that minimizes the bound (2.4) is b D

p
n, so if we take for b the nearest integer to

p
n

we will have
js � Osj . 2

p
njxj

T
jyj:

By splitting the inner product into pieces, computing the partial inner products, and sum-
ming the results, we have reduced the error constant from n to 2

p
n, which is a substantial

reduction for large n.
Blocking of inner products is common in practice, though a fixed block size rather

than one depending on n is normally taken [8]. It may be done in a low-level kernel for
performance considerations and so may be invisible to a user.

3 This is not a practical restriction, as for general n we can compute the inner product of the
last n mod b elements separately or pad the vectors with zeros so that their dimension is a
multiple of b.
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Figure 1

Relative errors in inner products computed in single precision with no blocking and with block size 256.

To illustrate the benefits of blocking we show in Figure 1 the relative errors in inner
products computed with and without blocking for two types of random vector. The dimension
n ranges from 103 to 109, the block size is 256, and the relative errors are averaged over
10 pairs of vectors x and y for each n. The reason for shifting the normally distributed
random vectors is to make the mean nonzero, as for a zero mean the errors tends to be much
smaller [24]. The more rapid growth of the errors for the unblocked computation that begins
around n D 107 for both distributions is due to stagnation (described in Section 4.3).

The blocking approach just described can be improved by using a combination of
two different methods. We will illustrate the idea for summation, but it trivially generalizes
to inner products.

Assume that we have at our disposal two summation algorithms: a fast one, referred
to as the FastSum algorithm, and an accurate one, referred to as the AccurateSum algorithm.
Algorithm 2.1 uses these two algorithms to compute

Pn
iD1 zi by an algorithm of Blanchard,

Higham, and Mary [6]. The algorithm is called FABsum, which stands for “fast and accurate
blocked summation.” To compute the inner product xT y, we can take zi D xi yi . We assume
that n is a multiple of b.

Algorithm 2.1 (FABsum) This algorithm takes as input n summands zi , a block size b that
divides n, and two summation algorithms FastSum and AccurateSum. It returns the sum
s D

Pn
iD1 zi .

1: for i D 1 W n=b

2: Compute si D
Pib

j D.i�1/bC1 zj with FastSum.
3: end
4: Compute s D

Pn=b
iD1 si with AccurateSum.
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Note that for b D 1, FABsum reduces to AccurateSum, and for b D n it reduces to
FastSum. The motivation for FABsum is that if b is chosen large enough, most of the work
is done by FastSum but the use of AccurateSum can lead to improved accuracy.

Assume that for a sum s D
Pn

iD1 zi the computed Os from FastSum satisfies

Os D

nX
iD1

zi .1C �
f
i /;

ˇ̌
�

f
i

ˇ̌
� "f .n/; (2.5)

and the computed Os from AccurateSum satisfies

Os D

nX
iD1

zi .1C �a
i /;

ˇ̌
�a

i

ˇ̌
� "a.n/; (2.6)

where "f .n/ and "a.n/ are O.u/ and depend on n and u. With these assumptions on the
backward errors of the underlying summation algorithms, we have the following backward
error result [6, Thm. 3.1].

Theorem 2.2. Let s D
Pn

iD1 zi be computed by Algorithm 2.1. The computed Os satisfies

Os D

nX
iD1

zi .1C �i /; j�i j � ".n; b/ D "f .b/C "a.n=b/C "f .b/"a.n=b/:

To see the gains in accuracy Algorithm 2.1 can bring, consider the following two
choices. For FastSum take recursive summation, which is the usual algorithm that computes
s D z1 C z2, s  s C zk , k D 3 W n. Then "f .b/ D .b � 1/u C O.u2/. If AccurateSum
is recursive summation at twice the working precision then "a.n=b/ D uCO.u2/, and so
".n;b/D buCO.u2/ is independent of n to first order. If AccurateSum is the method known
as compensated summation [22, Sect. 4.3], which works entirely in the working precision and
for which "a.n=b/D 2uCO.u2/, then ".n; b/D .bC 1/uCO.u2/, which again does not
grow with n to first order. Analysis of the second-order terms in [6, Sect. 3.1.2] shows that
they are not significant unless n is extremely large.

Denote by C.n; b/ the cost in flops of Algorithm 2.1. If Cf .n/ and Ca.n/ are the
costs for summing n terms by FastSum and AccurateSum, respectively, then

C.n; b/ D
n

b
Cf .b/C Ca

�
n

b

�
:

In particular, if the costs Cf and Ca are linear functions of the number of summands, as is
usually the case, C.n; b/ simplifies to

C.n; b/ D Cf .n/C
1

b
Ca.n/CO

�
n

b

�
:

Therefore the cost of Algorithm 2.1 can be made close to that of FastSum by taking the
block size b sufficiently large. The parameter b can be tuned to achieve the highest possible
performance on a given target architecture, while keeping it independent of n to avoid error
growth.

We have seen that by using a blocked implementation of summation or an inner
product it is possible to reduce the error constant nuCO.u2/ by a constant factor, or even
to reduce it to .b C 1/uCO.u2/ by using FABsum, while at the same time increasing the
performance. The increased performance and reduced error bound go hand in hand.
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2.2. Blocked matrix multiplication
The standard error bound for a matrix product C D AB , where A 2 Rm�n and

B 2 Rn�t , is
jC � OC j � njAjjBj;

which is an immediate consequence of (2.2), and this bound holds for any order of evaluation.
Consider Algorithm 2.3, which is a blocked implementation of matrix multiplication that
amounts to computing each element of the product by the blocked inner product (2.3).

Algorithm 2.3 (Blocked matrix multiplication) Let A 2 Rm�n and B 2 Rn�t be partitioned
into b � b blocks Aij and Bij , where p D m=b1, q D n=b, and r D t=b2 are assumed to be
integers. This algorithm computes C D AB .

1: for i D 1 W p

2: for j D 1 W r

3: Cij D 0

4: for k D 1 W q

5: X D AikBkj

6: Cij D Cij CX

7: end
8: end
9: end

We have written lines 5 and 6 as shown in order to make clear that AikBkj is com-
puted and then added to Cij . The expression “Cij D Cij C AikBkj ” would be ambiguous
because for an individual element of Cij it has the form

ci1;j1 D ci1;j1 C

bX
`D1

ai1;`b`;j1
; (2.7)

and the order in which the b additions are done is not specified. If the additions are done from
left to right then the algorithm is numerically equivalent to standard matrix multiplication.
However, in Algorithm 2.3 the addition involving ci1;j1 is done last.

A rounding error result for Algorithm 2.3 follows readily from that for a blocked
inner product: the computed OC satisfies

jC � OC j � bCn=b�1jAjjBj: (2.8)

Again, if b � n then the error constant has been reduced by about a factor b. In a highly
optimized matrix multiplication algorithm, there may be multiple levels of blocking [18],
which give a further reduction in the error bound.

We note that the FABsum algorithm (Algorithm 2.1) and its rounding error analysis
trivially extend to matrix multiplication [6, Sect. 4].
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2.3. Blocked matrix factorizations
The LAPACK library [3] pioneered the use of blocked algorithms that compute a

matrix factorization a block at a time, where each block is square or rectangular with b

columns, with the block size typically b D 128 or b D 256. These algorithms typically con-
tain operations of the form Aij DAij �Xi Yj , and these are implemented as calls to a level 3
BLAS gemm (general matrix multiply) routine [13], which computes C  ˛AB C ˇC for
arbitrary matrices A, B , and C of conformable dimensions. In view of the error bound (2.8)
for Algorithm 2.3, the blocked algorithm will have a constant in a (componentwise) back-
ward error bound that is about b times smaller than for the unblocked algorithm provided
that the gemm computes ˛AB before adding the result to ˇC . And, of course, for block-level
computations that are inner product-based, the blockings of the previous subsections can be
applied with a smaller block size, giving a further reduction in error bound.

Most references do not take advantage of blocking when stating error bounds. The
LAPACK manual [3] states error bounds of the form p.n/u for n � n matrices, where p.n/

is independent of the block size. Standard texts such as those of Demmel [12], Golub and
Van Loan [17], and Higham [22] give error analysis only for unblocked algorithms, so do not
derive the b-dependent constants for the blocked algorithms (though [22, Sect. 13.2] derives
the constants for blocked LU factorization). We suggest three reasons why error analyses for
blocked algorithms are usually not provided. First, as explained in Section 1, there has long
been a feeling, going back to Wilkinson, that the most important part of a bound is not the
constants but the form of the bound and that optimizing constants is not worthwhile. Second,
the precise constants depend on which blocked algorithm variant of a factorization is chosen
(there are usually several) and precisely how it is implemented. Third, the error analysis for
a blocked algorithm tends to be more complicated than for the unblocked algorithm, which
can obscure the main ideas of the analysis.

The important point to note is that with a suitable implementation the constant in
a backward error bound for a blocked factorization with block size b will be reduced by a
factor of order b or more.

3. Architectural features

A number of features of modern processors contribute to reducing the error in
numerical computations.

3.1. Extended precision registers
Intel x86 processors support an 80-bit extended precision format with a 64-bit sig-

nificand (see Table 2), which is compatible with that specified in the IEEE standard [26],
[11, Sect. 4.2.2], [29, Sect. 3.4.3]. When a compiler uses this format with 80-bit registers to accu-
mulate sums and inner products, it is effectively working with a unit roundoff of 2�64 rather
than 2�53 for double precision, giving error bounds smaller by a factor up to 211 D 2048. We
note, however, that extra precision registers can lead to strange rounding effects, in particular
because of double rounding [22, Sect. 2.3, Probs. 27.1, 27.3], [29].
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3.2. Fused multiply–add
Another architectural feature that provides benefits to accuracy is a fused multiply–

add (FMA) operation, which computes x C yz with just one rounding error instead of two.
Without an FMA,

fl.x C yz/ D
�
x C yz.1C ı1/

�
.1C ı2/; jı1j � u; jı2j � u;

whereas with an FMA,

fl.x C yz/ D .x C yz/.1C ı/; jıj � u;

which means that the result is computed with a relative error bounded by u. The motivation
for an FMA is speed, as it is implemented in such a way that it takes the same time as a
single multiplication or addition. With the use of an FMA standard error bounds for inner
product-based computations are reduced by a factor 2. It should be noted, though, that an
FMA can lead to unexpected results when applied to certain expressions [22, Sect. 2.6].

3.3. Mixed precision block fused multiply–add
A mixed precision block FMA takes as input matrices A 2 Rb1�b , B 2 Rb�b2 , and

C 2Rb1�b2 , where A and B are provided in a given precision ulow and C is either in precision
ulow or in a higher precision uhigh, and computes

D„ƒ‚…
ulow or uhigh

D C„ƒ‚…
ulow or uhigh

C A„ƒ‚…
ulow

B„ƒ‚…
ulow

; (3.1)

returning D in precision ulow or uhigh. We will assume that the internal computations are at
precision uhigh. The output matrix D can be used as the input C to a subsequent FMA, so
by chaining FMAs together in this way, larger matrix products can be computed [5, Alg. 3.1].
Table 3 gives the precisions and matrix dimensions for some block FMAs available in hard-
ware. These block FMAs are designed to give one result per cycle and so can give significant
performance benefits. For example, on the NVIDIA V100 GPU, whose tensor cores imple-
ment block FMAs, half-precision arithmetic on the tensor cores runs 8 times faster than
single precision arithmetic, which in turn runs at twice the speed of double-precision arith-
metic.

When C and D in (3.1) are taken at the higher precision, uhigh, mixed precision
block FMAs give an increase in accuracy compared with computations carried out at the
lower precision, ulow. Let A2Rm�n and B 2Rn�t be given in precision uhigh and partitioned
into b1 � b blocks Aij and b � b2 blocks Bij , respectively, where p D m=b1, q D n=b, and
r D t=b2 are assumed to be integers. When the product C D AB is computed by a sequence
of chained block FMAs using [5, Alg. 3.1] (which has the same general form as Algorithm 2.3),
it can be shown [5, Thm. 3.2] that the computed OC satisfies

jC � OC j � f .n; b; ulow; uhigh/jAjjBj; (3.2)

where the first-order part of f is given in Table 4. We see that for n < 2ulow=uhigh DW n�

the block FMA constant is independent of n. It is always smaller than the constant for stan-
dard multiplication at precision ulow and of similar magnitude to the constant for standard
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Year of release Device Matrix dimensions ulow uhigh

2016 Google TPU v2 128 � 128 � 128 bfloat16 fp32
2017 Google TPU v3 128 � 128 � 128 bfloat16 fp32
2017 NVIDIA V100 4 � 4 � 4 fp16 fp32
2018 NVIDIA T4 4 � 4 � 4 fp16 fp32
2019 ARMv8.6-A 2 � 4 � 2 bfloat16 fp32

2020 NVIDIA A100 8 � 8 � 4 bfloat16 fp32
8 � 8 � 4 fp16 fp32
8 � 4 � 4 TensorFloat-32 fp32
2 � 4 � 2 fp64 fp64

Table 3

Processing units or architectures equipped with mixed-precision fused multiply–add accelerators. Matrix
dimensions are expressed as b1 � b � b2, where b1 is the number of rows in A, b is the number of columns in A

and rows in B , and b2 is the number of columns in B . The input and output precisions ulow and uhigh are defined
in (3.1). Sources [4,9,30].

Evaluation method Bound
Standard in precision ulow .nC 2/ulow

Block FMA, uhigh internally, output in uhigh 2ulow C nuhigh

Standard in precision uhigh nuhigh

Table 4

First order part of constant term f .n; b; ulow; uhigh/ in error bound (3.2) for matrix multiplication with and
without the use of a mixed precision block FMA.

multiplication at precision uhigh for n > n�. When ulow corresponds to fp16 or bfloat16 and
uhigh to fp32, we have n� D 16;384 and n� D 131;072, respectively. Hence while a mixed
precision block FMA takes inputs at precision ulow, for large n it produces results as good
as if the computation were done at precision uhigh.

Note that (3.2) assumes that, in the notation of Algorithm 2.3, lines 5 and 6 are evalu-
ated as Cij DCij CAikBkj , in left to right order; if the evaluation uses lines 5 and 6 as stated
then the uhigh term in Table 4 for the block FMA is further reduced. However, NVIDIA tensor
cores in the Volta, Turing, and Ampere microarchitectures with bD 4 do not use a fixed order
when evaluating each individual element cij C ai1b1j C ai2b2j C ai3b3j C ai4b4j in (3.1),
but rather evaluate the expression starting with the largest magnitude term [16].

4. Probabilistic rounding error analysis

We have now seen two main reasons why standard rounding error bounds may be
pessimistic: first, they do not account for block algorithms, and second, architectural features
of the computer may provide increased accuracy for certain types of operations. We now
discuss a third reason, which has to do with the very nature of rounding error bounds.
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In the model (1.4), the relative error ı in fl.x op y/ is typically strictly less than
u in magnitude, and, of course, it is zero if x op y happens to be a floating-point number.
Rounding error analyses apply (1.4) repeatedly. Typically, a product of 1C ıi terms appears,
which can be handled by the next lemma [22, Lemma 3.1].

Lemma 4.1. If jıi j � u and �i D ˙1 for i D 1 W n, and nu < 1, then
nY

iD1

.1C ıi /
�i D 1C �n; j�nj � n: (4.1)

This lemma, combined with some useful identities satisfied by the k and �k

[22, Lemma 3.3], provides a convenient way to carry out rounding error analyses. However,
the proof of the lemma involves multiple uses of the triangle inequality and so the bound
j�nj � n can be expected to be potentially weak.

For a given algorithm and a given set of data, we would like to be able to say that
there exists a set of rounding errors ıi that, if they occur, produce an error of roughly the
same size as the rounding error bound. This is usually not the case, but it can be true if in
every invocation of (1.4) ı has the same sign. For basic kernels, it may be possible to show
that the error bound is approximately attainable for a special choice of the data, as is the
case for recursive summation [22, Prob. 4.2], [35, p. 19], but such examples do not indicate the
quality of the bound in typical cases.

In an early paper on rounding error analysis, Wilkinson derives rounding error
bounds for Gaussian elimination, Givens QR factorization, and Householder QR factoriza-
tion and then states that [34, p. 318]

“The bounds we have obtained are in all cases strict upper bounds. In general, the
statistical distribution of the rounding errors will reduce considerably the function
of n occurring in the relative errors. We might expect in each case that this func-
tion should be replaced by something which is no bigger than its square root and
is usually appreciably smaller.”

He makes similar statements in [35]. For many years, primarily because of Wilkinson’s com-
ments, it has been regarded as a rule of thumb that a worst-case rounding error bound f .n/u

is more realistic if it is replaced by
p

f .n/u. No proof has been given to make this rule of
thumb rigorous, but one can argue as follows:

• linearize the error into a sum e D
Pp

iD1 ti ıi , where the ıi are rounding errors and
the ti depend on the data;

• assume that the ıi are independent random variables of mean zero;

• apply the central limit theorem to deduce that the probability distribution of
e=.

Pn
iD1 t2

i /1=2 tends towards a normal distribution of mean zero and standard
deviation � � u;
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• conclude that for sufficiently large n, the probability that jej will not exceed
u.

Pn
iD1 t2

i /1=2 times a small constant is very high.

Compared with the worst-case constant
Pn

iD1 jti j, the quantity .
Pn

iD1 t2
i /1=2 can be smaller

by a factor up to
p

n. This argument, however, has a number of weaknesses. First, it is
essentially forward error-based, whereas we prefer to work with backward errors if possi-
ble. Second, the argument is based on the first-order part of the error, so says nothing about
higher-order terms. Third, it is not clear how large n must be for the application of the central
limit theorem to be valid.

Despite the weaknesses of a central limit theorem argument, a probabilistic approach
seems to be necessary to obtain substantially better bounds than the worst-case ones. Indeed,
as Stewart [33] has noted,

“To be realistic, we must prune away the unlikely. What is left is necessarily a
probabilistic statement.”

We will discuss probabilistic rounding error analysis in the next two subsections.

4.1. Error analysis for nonrandom data
Higham and Mary [23] introduced a new probabilistic rounding error analysis,

making use of a concentration inequality. This work was extended by Higham and Mary
for random data [24], and by Ipsen and Zhou [28], and Connolly, Higham, and Mary [10],
all of whom use martingales. We will present the most general results for nonrandom data,
which are those from [10].

We need the following probabilistic version of Lemma 4.1 [10, Lemma 4.6], which
includes the constanten.�/ D exp

�
�
p

nuC nu2

1 � u

�
� 1 D �

p
nuCO.u2/: (4.2)

We use E to denote the expectation of a random variable.

Theorem 4.2. Let ı1; ı2; : : : ; ın be random variables of mean zero with jıkj � u for all k

such that E.ık j ı1; : : : ; ık�1/ D E.ık/ D 0 for k D 2 W n. Then for �i D ˙1, i D 1 W n and
any constant � > 0,

nY
iD1

.1C ıi /
�i D 1C �n; j�nj �en.�/ (4.3)

holds with probability at least 1 � 2 exp.��2=2/.

The key difference between (4.1) and (4.3) is that, to first order, the bound in (4.3)
is proportional to

p
nu rather than nu.

Next, we need the following model of rounding errors.

Model 4.3 (Probabilistic model of rounding errors). Let the computation of interest generate
rounding errors ı1; ı2; : : : in that order. The ık are random variables of mean zero such that
E.ık j ı1; : : : ; ık�1/ D E.ık/ D 0.

5110 N. J. Higham



The model says that the rounding errors ıi are mean independent and of mean zero,
but they do not need to be from the same distribution. Mean independence is a weaker con-
dition than independence: if the rounding errors are independent then they can be shown to
be mean independent, but the converse implication does not hold. Under the model, Theo-
rem 4.2 holds and allows us to bound rounding error terms that appear in analyses of inner
product-based computations. This leads to the following three results [10, Thms. 4.8–4.10], in
which

Q.�; n/ D 1 � 2n exp.��2=2/:

Theorem 4.4 (Inner products). Let s D xT y, where x; y 2 Rn, be evaluated in floating-
point arithmetic. Under Model 4.3, no matter what the order of evaluation, the computed Os
satisfies

Os D .x C�x/T y D xT .y C�y/; j�xj �en.�/jxj; j�yj �en.�/jyj (4.4)

with probability at least Q.�; n/.

Theorem 4.5 (Matrix products). Let C D AB with A 2 Rm�n and B 2 Rn�p . Under
Model 4.3, the j th column of the computed OC satisfies

Ocj D .AC�Aj /bj ; j�Aj j �en.�/jAj; j D 1 W n; (4.5)

with probability at least Q.�; mn/, and hence

jC � OC j �en.�/jAjjBj (4.6)

with probability at least Q.�; mnp/.

Theorem 4.6 (Linear system). Let A 2 Rn�n and suppose that LU factorization and sub-
stitution produce computed factors OL and OU and a computed solution Ox to Ax D b. Then,
under Model 4.3,

.AC�A/ Ox D b; j�Aj �
�
3en.�/Cen.�/2

�
j OLjj OU j (4.7)

holds with probability at least Q.�; n3=3C 3n2=2C 7n=6/.

Matrix multiplication and LU factorization both have triply nested loops, which can
be ordered in 3Š D 6 ways. Theorems 4.5 and 4.6 both hold no matter which ordering of the
loops is taken.

Let us now focus our attention on Theorem 4.6. For n D 108, the function
Q.�; n3=3 C 3n2=2 C 7n=6/ approaches 1 rapidly as � increases and is approximately
1 � 10�3 for � D 11 and 1 � 10�8 for � D 12. Moreover, as shown in [23, Sect. 3.5],
Q.�; f .n/) remains independent of n as long as � increases proportionally to log n. Exper-
iments show that the probability Q.�; f .n// is actually very pessimistic and in practice the
bounds usually hold with � D 1.

Theorems 4.2–4.6 provide a rigorous proof for inner product-based computations
of the rule of thumb stated by Wilkinson, under the assumptions of Model 4.3.
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Probabilistic error analysis can also be applied to blocked algorithms, with the block-
ing and the probabilistic approach combining to reduce the error constant. For example, the
error constant .b C n=b � 1/u C O.u2/ in (2.4) for a blocked inner product translates to
.
p

b C
p

n=b/uCO.u2/ in a probabilistic bound.

4.2. Error analysis for random data
Numerical experiments show that the bounds in Theorems 4.4–4.6 reflect the actual

rate of growth of the error with n for some problems [23,24], but the bounds can, nevertheless,
be pessimistic. Higham and Mary [24] investigate the case where the data is random. They
use the following model for the data, which is denoted by dj , j D 1 W n.

Model 4.7 (Probabilistic model of the data). The dj , j D 1 W n, are independent random
variables sampled from a given distribution of mean �x and satisfy jdj j � �d , j D 1 W n,
where �d is a constant.

A modified version of Model 4.3 is needed.

Model 4.8 (Modified probabilistic model of rounding errors). Let the computation of interest
generate rounding errors ı1; ı2; : : : in that order. The ıi are random variables of mean zero
and, for all k, the ık are mean independent of the previous rounding errors and of the data,
in the sense that

E.ık j ı1; : : : ; ık�1; d1; : : : ; dn/ D E.ık/ D 0: (4.8)

Under these models, Higham and Mary [24] obtain error bounds for an inner prod-
uct, a matrix–vector product, and a matrix product. We state the result for matrix products
[24, Thm. 3.4].

Theorem 4.9. Let A 2 Rm�n and B 2 Rn�p satisfy Model 4.7 with means �A, �B and
bounds �A, �B , and let C D AB . Under Model 4.8, the computed OC satisfies

max
i;j

ˇ̌
.C � OC /ij

ˇ̌
�

�
�j�A�B jn

3=2
C .�2

C 1/�A�Bn
�
uCO.u2/ (4.9)

with probability at least P.�/ D 1 � 2mnp exp.��2=2/.

The rate of growth of the bound (4.9) is n3=2 except when �A or �B is small or
zero, in which case it is just n. Thus the error bound depends on the means of the data.
Furthermore, it is shown in [24, Thm. 3.3] that for an inner product xT y in which either x or y

has zero mean the backward error is bounded by c1uCO.u2/ instead of c2

p
nuCO.u2/

as in Theorem 4.4, where c1 and c2 are constants.
We note that extending this analysis with random data to the solution of linear sys-

tems by LU factorization is an open problem, as noted in [24, Sect. 5].

4.3. Limitations
It is important to realize that the assumptions of the probabilistic rounding error

analysis may not hold: the rounding errors may be dependent or may have nonzero mean,
and in these cases the error may grow as nu rather than

p
nu. Consider a sum

Pn
iD1 xi

5112 N. J. Higham



computed by recursive summation, where the xi are positive and decrease with i . For a
large enough i , the summand xi may be so small that it does not change the current partial
sum in floating-point arithmetic. From this point on, no summand changes the sum so the
rounding errors are all negative and Model 4.3 does not hold, and in this circumstance the
worst-case linear growth can be achieved, as can be shown by numerical examples [10, 23].
This problem is called stagnation. A cure for stagnation is to randomize the rounding using
stochastic rounding [10], which ensures that the sum can increase. Indeed with stochastic
rounding, Model 4.3 is always satisfied and so, by Theorem 4.4, the error in the sum grows
as
p

nu instead of nu with high probability.

5. Other considerations

5.1. Sharpness of error bounds
The bound (1.1) of Theorem 1.1 is not the best we can obtain. In the proof of the

bound in [22], it is first shown that AC�A1 D OL OU , where

j�A1j �

266666664

1 1 : : : : : : 1

1 2 : : : : : : 2

:::
:::

: : : : : :
:::

:::
:::

: : : n�1 n�1

1 2 : : : n�1 n

377777775 ı j
OLjj OU j � H ı j OU j; (5.1)

where ı is the Hadamard product, A ıB D .aij bij /. The bound (1.1) corresponds to replac-
ing every element of H by n. Analogous replacements are made in the part of the analysis
dealing with the solution of the triangular systems by substitution. Clearly, then, not all n2

inequalities in (1.1) are sharp. The same is true of (4.7), as its proof is analogous to that
of (1.1). However, (5.1) still contains a term n and so this sharper bound does not bring any
significant benefits.

5.2. Growth factor at low precisions
Wilkinson [34] showed that with partial pivoting the growth factor �n for LU fac-

torization is bounded by 2n�1, and he noted that �n is nevertheless usually small in practice.
Many years of experience have confirmed that �n is indeed usually less than 50 (say) in
practice. The growth factor directly affects the backward error bounds, through the size of
the elements of OU and (1.2). When we are working in half precision, with unit roundoff
u � 5 � 10�4 for fp16 or u � 4 � 10�3 for bfloat16, element growth can have a much
bigger relative effect on the quality of a solution than for single precision or double pre-
cision. Matrices that give large growth factors for partial pivoting are known, and a class
of random matrices of arbitrary condition number that typically have �n � n=.4 log n/ was
recently identified by Higham, Higham, and Pranesh [21]. For the latter class of matrices,
growth alone can cause a complete loss of numerical stability for n � 105 in fp16—and, to
complicate matters, it can also cause overflow in fp16 [25].
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5.3. Iterative refinement
If we solve Ax D b in half-precision arithmetic then, of course, we cannot expect a

backward error smaller than the unit roundoff uh for half precision. However, we can obtain
a numerically stable solution at higher precision by using the computed half-precision solu-
tion as a first approximation that we improve by iterative refinement at the higher precision,
using the half-precision LU factors. This procedure is guaranteed to work only for condi-
tion numbers �.A/ D kAkkA�1k up to u�1

h
. GMRES-based iterative refinement solves the

update equation by GMRES preconditioned by the LU factors and can tolerate much more
ill-conditioned A. See [2, 7, 20] for details of GMRES-based iterative refinement. Although
this mixed precision algorithm uses higher precision to raise the quality of the initial solu-
tion, the conditions for success rest on the rounding error bounds for the factorization, and
so the considerations of this paper contribute to our understanding of the algorithm.

6. Conclusions

We have seen that several factors combine to make errors in inner-product based
computations much smaller than worst-case rounding error bounds suggest. Block algo-
rithms can reduce error bounds by a factor of the block size b, and if blocking is used at
multiple levels then the reduction factors can accumulate. Extended precision registers and
(block) FMAs can give automatic accuracy boosts. With a block size b D 256 and the 80-
bit registers on Intel x86-64 processors a reduction in an error bound by a constant factor
256 � 2048 D 5:2 � 105 is possible for large problems.

The rate of growth of the error can be much smaller than the worst-case bounds
because of statistical effects. If the rounding errors are mean independent and of mean zero
then, as explained in Section 4.1, for inner products, matrix–vector products, matrix prod-
ucts, and the solution of linear systems by LU factorization, the constant nD nuCO.u2/ in
a worst-case componentwise backward error bound can be replaced by en D

p
nuCO.u2/

to obtain a bound that holds with high probability. Even these bounds can be pessimistic
because, as explained in Section 4.7, when the data is random with zero mean, the error
bound reduces further—to a constant independent of n for an inner product.

Together, these aspects go a considerable way to explaining why linear systems,
and other linear algebra problems, are able to be successfully solved with ever growing
dimensions and with the use of low precision arithmetics (perhaps within a mixed preci-
sion algorithm [1]).

It is pleasing to note that blocked algorithms and (block) FMAs, which were intro-
duced to boost performance, also yield smaller rounding error bounds. It will be important
to analyze future developments in algorithms and computer architectures to understand their
effects on rounding error analysis.
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Abstract

We currently witness the spectacular success of artificial intelligence in both science and
public life. However, the development of a rigorous mathematical foundation is still at an
early stage. In this survey article, which is based on an invited lecture at the International
Congress of Mathematicians 2022, we will in particular focus on the current “workhorse”
of artificial intelligence, namely deep neural networks. We will present the main theoret-
ical directions along with several exemplary results and discuss key open problems.
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1. Introduction

Artificial intelligence is currently leading to one breakthrough after another, both
in public with, for instance, autonomous driving and speech recognition, and in the sciences
in areas such as medical diagnostics or molecular dynamics. In addition, the research on
artificial intelligence and, in particular, on its theoretical foundations is progressing at an
unprecedented rate. One can envision that the corresponding methodologies will in the future
drastically change the way we live in numerous respects.

1.1. The rise of artificial intelligence
Artificial intelligence is, however, not a new phenomenon. In fact, already in 1943,

McCulloch and Pitts started to develop algorithmic approaches to learning by mimicking
the functionality of the human brain, through artificial neurons which are connected and
arranged in several layers to form artificial neural networks. Already at that time, they had a
vision for the implementation of artificial intelligence. However, the community did not fully
recognize the potential of neural networks. Therefore, this first wave of artificial intelligence
was not successful and vanished. Around 1980, machine learning became popular again, and
several highlights can be reported from that period.

The real breakthrough and with it a new wave of artificial intelligence came around
2010 with the extensive application of deep neural networks. Today, this model might be
considered the “workhorse” of artificial intelligence, and in this article we will focus pre-
dominantly on this approach. The structure of deep neural networks is precisely the structure
McCulloch and Pitts introduced, namely numerous consecutive layers of artificial neurons.
Today two main obstacles from previous years have also been eliminated; due to the drastic
improvement of computing power, the training of neural networks with hundreds of layers
in the sense of deep neural networks is feasible, and we are living in the age of data, hence
vast amounts of training data are easily available.

1.2. Impact on mathematics
The rise of artificial intelligence also had a significant impact on various fields of

mathematics. Maybe the first area which embraced these novel methods was the area of
inverse problems, in particular, imaging science, where such approaches have been used to
solve highly ill-posed problems such as denoising, inpainting, superresolution, or (limited-
angle) computed tomography, to name a few. One might note that, due to the lack of a precise
mathematical model of what an image is, this area is particularly suitable for learning meth-
ods. Thus, after a few years, a change of paradigm could be observed, and novel solvers
are typically at least to some extent based on methods from artificial intelligence. We will
discuss further details in Section 4.1.

The area of partial differential equations was much slower to embrace these new
techniques, the reason being that it was not per se evident what the advantage of methods
from artificial intelligence for this field would be. Indeed, there seems to be no need to uti-
lize learning-type methods, since a partial differential equation is a rigorous mathematical
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model. But, lately, the observation that deep neural networks are able to beat the curse of
dimensionality in high-dimensional settings led to a change of paradigm in this area as well.
Research at the intersection of numerical analysis of partial differential equations and artifi-
cial intelligence therefore accelerated since about 2017. We will delve further into this topic
in Section 4.2.

1.3. Problems of artificial intelligence
However, as promising as all these developments seem to be, a word of caution

is required. Besides the fact that the practical limitations of methods such as deep neural
networks have not been explored at all and at present neural networks are still considered a
“jack-of-all-trades,” it is even more worrisome that a comprehensive theoretical foundation
is completely lacking. This was very prominently stated during the major conference on
artificial intelligence and machine learning, which is NIPS (today called NeurIPS) in 2017,
when Ali Rahimi from Google received the Test of Time Award and during his plenary
talk stated that “Machine learning has become a form of alchemy.” This raised a heated
discussion to which extent a theoretical foundation does exist and is necessary at all. From
a mathematical viewpoint, it is crystal clear that a fundamental mathematical understanding
of artificial intelligence is inevitably necessary, and one has to admit that its development is
currently in a preliminary state at best.

This lack of mathematical foundations, for instance, in the case of deep neural
networks, results in a time-consuming search for a suitable network architecture, a highly del-
icate trial-and-error-based (training) process, and missing error bounds for the performance
of the trained neural network. One needs to stress that, in addition, such approaches also
sometimes unexpectedly fail dramatically when a small perturbation of the input data causes
a drastic change of the output leading to radically different—and often wrong—decisions.
Such adversarial examples are a well-known problem, which becomes severe in sensitive
applications such as when minor alterations of traffic signs, e.g., the placement of stickers,
cause autonomous vehicles to suddenly reach an entirely wrong decision. It is evident that
such robustness problems can only be tackled by a profound mathematical approach.

1.4. A need for mathematics
These considerations show that there is a tremendous need for mathematics in the

area of artificial intelligence. And, in fact, one can currently witness that numerous mathe-
maticians move to this field, bringing in their own expertise. Indeed, as we will discuss in
Section 2.4, basically all areas of mathematics are required to tackle the various difficult, but
exciting challenges in the area of artificial intelligence.

One can identify two different research directions at the intersection of mathematics
and artificial intelligence:

• Mathematical Foundations for Artificial Intelligence. This direction aims for
deriving a deep mathematical understanding. Based on this, it strives to over-
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come current obstacles such as the lack of robustness or places the entire training
process on a solid theoretical foundation.

• Artificial Intelligence forMathematical Problems. This direction focuses on math-
ematical problem settings such as inverse problems and partial differential equa-
tions with the goal of employing methodologies from artificial intelligence to
develop superior solvers.

1.5. Outline
Both research directions will be discussed in this survey paper, showcasing some

novel results and pointing out key future challenges for mathematics. We start with an intro-
duction into the mathematical setting, stating the main definitions and notations (see Sec-
tion 2). Next, in Section 3, we delve into the first main direction, namely mathematical
foundations for artificial intelligence, and discuss the research threads of expressivity, opti-
mization, generalization, and explainability. Section 4 is then devoted to the second main
direction, which is artificial intelligence for mathematical problems, and we highlight some
exemplary results. Finally, Section 5 states the seven main mathematical problems and con-
cludes this article.

2. The mathematical setting of artificial intelligence

We now get into more details on the precise definition of a deep neural network,
which is after all a purely mathematical object. We will also touch upon the typical applica-
tion setting and training process, as well as on the current key mathematical directions.

2.1. Definition of deep neural networks
The core building blocks are, as said, artificial neurons. For their definition, let us

recall the structure and functionality of a neuron in the human brain. The basic elements of
such a neuron are dendrites, through which signals are transmitted to its soma while being
scaled/amplified due to the structural properties of the respective dendrites. In the soma of
the neuron, those incoming signals are accumulated, and a decision is reached whether to
fire to other neurons or not, and also with which strength.

This forms the basis for a mathematical definition of an artificial neuron.

Definition 2.1. An artificial neuronwithweightsw1; : : : ;wn 2 R, bias b 2 R, and activation
function � W R ! R is defined as the function f W Rn ! R given by

f .x1; : : : ; xn/ D �

 
nX

iD1

xiwi � b

!
D �

�
hx;wi � b

�
;

where w D .w1; : : : ; wn/ and x D .x1; : : : ; xn/.

By now, there exists a zoo of activation functions with the most well-known ones
being as follows:
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(1) Heaviside function

�.x/ D

8<: 1; x > 0;

0; x � 0I

(2) Sigmoid function �.x/ D
1

1Ce�x ;

(3) Rectifiable Linear Unit (ReLU) �.x/ D max¹0; xº.

We remark that of these examples, by far the most extensively used activation function is
the ReLU due to its simple piecewise-linear structure, which is advantageous in the training
process and still allows superior performance.

Similar to the structure of a human brain, these artificial neurons are now being
concatenated and arranged in layers, leading to an (artificial feed-forward) neural network.
Due to the particular structure of artificial neurons, such a neural network consists of com-
positions of affine linear maps and activation functions. Traditionally, a deep neural network
is then defined as the resulting function. From a mathematical standpoint, this bears the
difficulty that different arrangements lead to the same function. Therefore, sometimes a
distinction is made between the architecture of a neural network and the corresponding
realization function (see, e.g., [6]). For this article, we will, however, avoid such technical
delicacies and present the most standard definition.

Definition 2.2. Let d 2 N be the dimension of the input layer, L the number of layers,
N0 WD d , N`, ` D 1; : : : ; L, the dimensions of the hidden and last layer, � W R ! R a (non-
linear) activation function, and, for ` D 1; : : : ; L, let T` be the affine functions

T` W RN`�1 ! RN` ; T`x D W .`/x C b.`/;

withW .`/ 2 RN`�N`�1 being the weight matrices and b.`/ 2 RN` the bias vectors of the `th
layer. Then ˆ W Rd ! RNL , given by

ˆ.x/ D TL�
�
TL�1�

�
� � � �

�
T1.x/

���
; x 2 Rd ;

is called a (deep) neural network of depth L.

Let us already mention at this point that the weights and biases are the free param-
eters which will be learned during the training process. An illustration of the multilayered
structure of a deep neural network can be found in Figure 1.

2.2. Application of a deep neural network
Aiming to identify the main mathematical research threads, we first have to under-

stand how a deep neural network is used for a given application setting.
Step 1 (Train-test split of the dataset). We assume that we are given samples

.x.i/; y.i// Qm
iD1 of inputs and outputs. The task of the deep neural network is then to iden-

tify the relation between those. For instance, in a classification problem, each output y.i/

is considered to be the label of the respective class to which the input x.i/ belongs. One
can also take the viewpoint that .x.i/; y.i// Qm

iD1 arise as samples from a function such as
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Figure 1

Deep neural network ˆ W R4 ! R with depth 5.

g W M ! ¹1; 2; : : : ; Kº, where M might be a lower-dimensional manifold of Rd , in the
sense of y.i/ D g.x.i// for all i D 1; : : : ; Qm.

The set .x.i/; y.i// Qm
iD1 is then split into a training data set .x.i/; y.i//miD1 and a test

data set .x.i/; y.i// Qm
iDmC1. The training data set is—as the name indicates—used for training,

whereas the test data set will later on be solely exploited for testing the performance of the
trained network. We emphasize that the neural network is not exposed to the test data set
during the entire training process.

Step 2 (Choice of architecture). For preparation of the learning algorithm, the archi-
tecture of the neural network needs to be decided upon, which means the number of layersL,
the number of neurons in each layer .N`/

L
`D1

, and the activation function � have to be
selected. It is known that a fully connected neural network is often difficult to train, hence, in
addition, one typically preselects certain entries of the weight matrices .W .`//L

`D1
to already

be set to zero at this point.
For later purposes, we define the selected class of deep neural networks by N N �

with � encoding this chosen architecture.
Step 3 (Training). The next step is the actual training process, which consists of

learning the affine functions .T`/
L
`D1

D .W .`/ � Cb.`//L
`D1

. This is accomplished by mini-
mizing the empirical risk

OR.ˆ.W .`/;b.`//`
/ WD

1

m

mX
iD1

�
ˆ.W .`/;b.`//`

.x.i// � y.i/
�2
: (2.1)

A more general form of the optimization problem is

min
.W .`/;b.`//`

mX
iD1

L.ˆ.W .`/;b.`//`
.xi /; y

.i//C �P
�
.W .`/; b.`//`

�
; (2.2)

where L is a loss function to determine a measure of closeness between the network evalu-
ated in the training samples and the (known) values y.i/, with P being a penalty/regulariza-
tion term to impose additional constraints on the weight matrices and bias vectors.
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One common algorithmic approach is gradient descent. Since, however, m is typi-
cally very large, this is computationally not feasible. This problem is circumvented by ran-
domly selecting only a few gradients in each iteration, assuming that they constitute a rea-
sonable average, which is coined stochastic gradient descent.

Solving the optimization problem then yields a network ˆ.W .`/;b.`//`
W Rd ! RNL ,

where
ˆ.W .`/;b.`//`

.x/ D TL�
�
TL�1�

�
� � � �

�
T1.x/

���
:

Step 4 (Testing). Finally, the performance (often also called generalization ability)
of the trained neural network is tested using the test data set .x.i/; y.i// Qm

iDmC1 by analyzing
whether

ˆ.W .`/;b.`//`
.x.i// � y.i/; for all i D mC 1; : : : ; Qm:

2.3. Relation to a statistical learning problem
From the procedure above, we can already identify the selection of architecture, the

optimization problem, and the generalization ability as the key research directions for math-
ematical foundations of deep neural networks. Considering the entire learning process of a
deep neural network as a statistical learning problem reveals those three research directions
as indeed the natural ones for analyzing the overall error.

For this, let us assume that there exists a function g W Rd ! R such that the training
data .x.i/; y.i//miD1 is of the form .x.i/; g.x.i///miD1 and x.i/ 2 Œ0; 1�d for all i D 1; : : : ; m.
A typical continuum viewpoint to measure success of the training is to consider the risk of
a function f W Rd ! R given by

R.f / WD

Z
Œ0;1�d

�
f .x/ � g.x/

�2
dx; (2.3)

where we used the L2-norm to measure the distance between f and g. The error between
the trained deep neural network ˆ0.WD ˆ.W .`/;b.`//`

/ 2 N N � and the optimal function g
can then be estimated by

R.ˆ0/ �

h
OR.ˆ0/ � inf

ˆ2N N �

OR.ˆ/
i

„ ƒ‚ …
Optimization error

C 2 sup
ˆ2N N �

ˇ̌
R.ˆ/ � OR.ˆ/

ˇ̌
„ ƒ‚ …

Generalization error

C inf
ˆ2N N �

R.ˆ/:„ ƒ‚ …
Approximation error

(2.4)

These considerations lead to the main research threads described in the following subsection.

2.4. Main research threads
We can identify two conceptually different research threads, the first being focused

on developing mathematical foundations of artificial intelligence and the second aiming to
use methodologies from artificial intelligence to solve mathematical problems. It is intrigu-
ing to see how both have already led to some extent to a paradigm shift in some mathematical
research areas, most prominently the area of numerical analysis.
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2.4.1. Mathematical foundations for artificial intelligence
Following up on the discussion in Section 2.3, we can identify three research direc-

tions which are related to the three types of errors which one needs to control in order to
estimate the overall error of the entire training process:

• Expressivity. This direction aims to derive a general understanding whether and
to which extent aspects of a neural network architecture affect the best case per-
formance of deep neural networks. More precisely, the goal is to analyze the
approximation error infˆ2N N �

R.ˆ/ from (2.4), which estimates the approxi-
mation accuracy when approximating g by the hypothesis class N N � of deep
neural networks of a particular architecture. Typical methods for approaching this
problem are from applied harmonic analysis and approximation theory.

• Learning/Optimization. The main goal of this direction is the analysis of the
training algorithm such as stochastic gradient descent, in particular, asking why
it usually converges to suitable local minima even though the problem itself is
highly nonconvex. This requires the analysis of the optimization error, which is
OR.ˆ0/ � infˆ2N N �

OR.ˆ/ (cf. (2.4)) and which measures the accuracy with
which the learnt neural networkˆ0 minimizes the empirical risk (2.1), (2.2). Key
methodologies for attacking such problems come from the areas of algebraic/dif-
ferential geometry, optimal control, and optimization.

• Generalization. This direction aims to derive an understanding of the out-of-
sample error, namely, supˆ2N N �

jR.ˆ/� OR.ˆ/j from (2.4), which measures the
distance of the empirical risk (2.1), (2.2) and the actual risk (2.3). Predominantly,
learning theory, probability theory, and statistics provide the required methods for
this research thread.

A very exciting and highly relevant new research direction has recently emerged,
coined explainability. At present, it is from the standpoint of mathematical foundations still
a wide open field.

• Explainability. This direction considers deep neural networks, which are already
trained, but no knowledge about the training is available; a situation one encoun-
ters numerous times in practice. The goal is then to derive a deep understanding
of how a given trained deep neural network reaches decisions in the sense of
which features of the input data are crucial for a decision. The range of required
approaches is quite broad, including areas such as information theory or uncer-
tainty quantification.

2.4.2. Artificial intelligence for mathematical problems
Methods of artificial intelligence have also turned out to be extremely effective for

mathematical problem settings. In fact, the area of inverse problems, in particular, in imag-
ing sciences, has already undergone a profound paradigm shift. And the area of numerical
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analysis of partial differential equations seems to soon follow the same path, at least in the
very high dimensional regime.

Let us briefly characterize those two research threads similar to the previous sub-
section on mathematical foundations of artificial intelligence.

• Inverse Problems. Research in this direction aims to improve classical model-
based approaches to solve inverse problems by exploiting methods of artificial
intelligence. In order to not neglect domain knowledge such as the physics of the
problem, current approaches aim to take the best out of both worlds in the sense of
optimally combining model- and data-driven approaches. This research direction
requires a variety of techniques, foremost from areas such as imaging science,
inverse problems, and microlocal analysis, to name a few.

• Partial Differential Equations. Similar to the area of inverse problems, here the
goal is to improve classical solvers of partial differential equations by using ideas
from artificial intelligence. A particular focus is on high-dimensional problems
in the sense of aiming to beat the curse of dimensionality. This direction obvi-
ously requires methods from areas such as numerical mathematics and partial
differential equations.

3. Mathematical foundations for artificial intelligence

This section shall serve as an introduction into the main research threads aiming to
develop a mathematical foundation for artificial intelligence. We will introduce the problem
settings, showcase some exemplary results, and discuss open problems.

3.1. Expressivity
Expressivity is maybe the richest area at present in terms of mathematical results.

The general question can be phrased as follows: Given a function class/space C and a class
of deep neural networks N N � , how does the approximation accuracy when approximating
elements of C by networks ˆ 2 N N � relate to the complexity of such ˆ? Making this
precise thus requires the introduction of a complexity measure for deep neural networks. In
the sequel, we will choose the canonical one, which is the complexity in terms of memory
requirements. Notice though that certainly various other complexity measures exist. Further,
recall that the k � k0-“norm” counts the number of nonzero components.

Definition 3.1. Retaining the same notation for deep neural networks as in Definition 2.2,
the complexity C.ˆ/ of a deep neural network ˆ is defined by

C.ˆ/ WD

LX
`D1

�W .`/


0
C
b.`/


0

�
:

The most well-known—and maybe even the first—result on expressivity is the uni-
versal approximation theorem [8, 13]. It states that each continuous function on a compact
domain can be approximated up to an arbitrary accuracy by a shallow neural network.
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Theorem 3.2. Let d 2 N,K � Rd compact, f WK ! R continuous, � W R ! R continuous
and not a polynomial. Then, for each " > 0, there exist N 2 N and ak ; bk 2 R, wk 2 Rd ,
1 � k � N , such that f �

NX
kD1

ak�
�
hwk ; �i � bk

�
1

� ":

While this is certainly an interesting result, it is not satisfactory in several regards:
It does not give bounds on the complexity of the approximating neural network and also
does not explain why depth is so important. A particularly intriguing example for a result,
which considers complexity and also targets a more sophisticated function space, was derived
in [31].

Theorem 3.3. For all f 2 C s.Œ0; 1�d / and �.x/ D max¹0; xº, i.e., the ReLU, there exist
neural networks .ˆn/n2N with the number of layers of ˆn being approximately of the order
of log.n/ such that

kf �ˆnk1 . C.ˆn/
� s

d ! 0 as n ! 1:

This result provides a beautiful connection between approximation accuracy and
complexity of the approximating neural network, and also to some extent takes the depth
of the network into account. However, to derive a result on optimal approximations, we first
require a lower bound. The so-called VC-dimension (Vapnik–Chervonenkis-dimension) (see
also (3.2)) was for a long time the main method for achieving such lower bounds. We will
recall here a newer result from [7] in terms of the optimal exponent �.C/ from information
theory to measure the complexity of C � L2.Rd /. Notice that we will only state the essence
of this result without all technicalities.

Theorem 3.4. Let d 2 N, � W R ! R, and let C � L2.Rd /. Further, let

Learn W .0; 1/ � C ! N N �

satisfy that, for each f 2 C and 0 < " < 1,

sup
f 2C

f � Learn."; f /


2
� ":

Then, for all  < �.C/,

" sup
f 2C

C
�
Learn."; f /

�
! 1; as " ! 0:

This conceptual lower bound, which is independent of any learning algorithm, now
allows deriving results on approximations with neural networks, which have optimally small
complexity in the sense of being memory-optimal. We will next provide an example of such a
result, which at the same time answers another question as well. The universal approximation
theorem already indicates that deep neural networks seem to have a universality property in
the sense of performing at least as good as polynomial approximation. One can now ask
whether neural networks also perform as well as other existing approximation schemes such
as wavelets, or the more sophisticated system of shearlets [16].
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For this, let us briefly recall this system and its approximation properties. Shearlets
are based on parabolic scaling, i.e.,

A2j D

 
2j 0

0 2j=2

!
; j 2 Z

and QA2j D diag.2j=2; 2j /, as well as changing the orientation via shearing defined by

Sk D

 
1 k

0 1

!
; k 2 Z:

(Cone-adapted) discrete shearlet systems can then be defined as follows, cf. [17]. A faithful
implementation of the shearlet transform as a 2D and 3D (parallelized) fast shearlet transform
can be found at www.ShearLab.org.

Definition 3.5. The (cone-adapted) discrete shearlet system �H .�;  ; Q / generated by
� 2 L2.R2/ and  ; Q 2 L2.R2/ is the union of®

�.� �m/ W m 2 Z2
¯
;®

23j=4 .SkA2j � �m/ W j � 0; jkj �
˙
2j=2

�
; m 2 Z2

¯
;®

23j=4 Q 
�
ST

k
QA2j � �m

�
W j � 0; jkj �

˙
2j=2

�
; m 2 Z2

¯
:

Since multivariate problems are typically governed by anisotropic features such as
edges in images or shock fronts in the solution of transport-dominated equations, the follow-
ing suitable model class of functions was introduced in [9].

Definition 3.6. The set of cartoon-like functions E2.R2/ is defined by

E2
�
R2
�

D
®
f 2 L2

�
R2
�

W f D f0 C f1 � �B

¯
;

where ; ¤ B � Œ0; 1�2 is simply connected with a C 2-curve with bounded curvature as its
boundary, and fi 2 C 2.R2/ with suppfi � Œ0; 1�2 and kfi kC 2 � 1, i D 0; 1.

While wavelets are deficient in optimally approximating cartoon-like functions due
to their isotropic structure, shearlets provide an optimal (sparse) approximation rate up to a
log-factor. The following statement is taken from [17], where also the precise hypotheses can
be found. Notice that the justification for optimality is a benchmark result from [9].

Theorem 3.7. Let �;  ; Q 2 L2.R2/ be compactly supported, and let O , OQ satisfy cer-
tain decay conditions. Then �H .�;  ; Q / provides an optimally sparse approximation of
f 2 E2.R2/, i.e.,

�N .f / . N�1.logN/
3
2 as N ! 1;

where �N .f / denotes the L2-error of best N -term approximation of f .

One can now use Theorem 3.4 to show that indeed deep neural networks are as good
approximators as shearlets and, in fact, as all affine systems. Even more, the construction in
the proof of suitable neural networks, which mimics bestN -term approximations, also leads
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to memory-optimal neural networks. The resulting statement from [7] in addition proves that
the bound in Theorem 3.4 is sharp.

Theorem 3.8. Let � be a suitably chosen activation function, and let " > 0. Then, for all
f 2 E2.R2/ and N 2 N, there exist a neural networkˆ with complexityO.N/ and activa-
tion function � with

kf �ˆk2 . N�1C"
! 0 as N ! 1:

Summarizing, one can conclude that deep neural networks achieve optimal approx-
imation properties of all affine systems combined.

Let us finally mention that lately a very different viewpoint of expressivity was intro-
duced in [21] according to so-called trajectory lengths. The standpoint taken in this work is
to measure expressivity in terms of changes of the expected length of a (nonconstant) curve
in the input space as it propagates through layers of a neural network.

3.2. Optimization
This area aims to analyze optimization algorithms, which solve the (learning) prob-

lem in (2.1), or, more generally, (2.2). A common approach is gradient descent, since the
gradient of the loss function (or optimized functional) with respect to the weight matrices
and biases, i.e., the parameters of the network, can be computed exactly. This is done via
backpropagation [27], which is in a certain sense merely an efficient application of the chain
rule. However, since the number of training samples is typically in the millions, it is compu-
tationally infeasible to compute the gradient on each sample. Therefore, in each iteration only
one or several (a batch) randomly selected gradients are computed, leading to the algorithm
of stochastic gradient descent [25].

In convex settings, guarantees for convergence of stochastic gradient descent do
exist. However, in the neural network setting, the optimization problem is nonconvex, which
makes it—even when using a nonrandom version of gradient descent—very hard to analyze.
Including randomness adds another level of difficulty as is depicted in Figure 2, where the
two algorithms reach different (local) minima.

This area is by far less explored than expressivity. Most current results focus on
shallow neural networks, and for a survey, we refer to [6].

3.3. Generalization
This research direction is perhaps the least explored and maybe also the most diffi-

cult one, sometimes called the “holy grail” of understanding deep neural networks. It targets
the out-of-sample error

sup
ˆ2N N �

ˇ̌
R.ˆ/ � OR.ˆ/

ˇ̌
(3.1)

as described in Section 2.4.1.
One of the mysteries of deep neural networks is the observation that highly over-

parameterized deep neural networks in the sense of high complexity of the network do not
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Figure 2

Gradient descent versus stochastic gradient descent. Taken from [6]. © Cambridge University Press. Reprinted
with permission.

overfit, with overfitting referring to the problem of fitting the training data too tightly and con-
sequently endangering correct classification of new data. An illustration of the phenomenon
of overfitting can be found in Figure 3.

Let us now analyze the generalization error in (3.1) in a bit more depth. For a large
number m of training samples, the law of large numbers tells us that with high probabil-
ity OR.ˆ/ � R.ˆ/ for each neural network ˆ 2 N N � . Bounding the complexity of the
hypothesis class N N � by the VC-dimension, the generalization error can be bounded with
probability 1 � ı by r

VCdim.N N � /C log.1=ı/
m

: (3.2)

For classes of highly over-parametrized neural networks, i.e., where VCdim.N N � / is very
large, we need an enormous amount of training data to keep the generalization error under
control. It is thus more than surprising that numerical experiments show the phenomenon of
a so-called double descent curve [5]. More precisely, the test error was found to decrease after
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Figure 3

Phenomenon of overfitting for the task of classification with two classes.

Figure 4

Double descent curve.

passing the interpolation point, which follows an increase consistent with statistical learning
theory (see Figure 4).

3.4. Explainability
The area of explainability aims to “open the black box” of deep neural networks

in the sense as to explain decisions of trained neural networks. These explanations typically
consist of providing relevance scores for features of the input data. Most approaches focus on
the task of image classification and provide relevance scores for each pixel of the input image.
One can roughly categorize the different types of approaches into gradient-based methods
[28], propagation of activations in neurons [4], surrogate models [24], and game-theoretic
approaches [19].

We would now like to describe in more detail an approach which is based on infor-
mation theory and also allows an extension to different modalities such as audio data as well
as analyzing the relevance of higher-level features; for a survey paper, we refer to [15]. This
rate-distortion explanation (RDE) framework was introduced in 2019 and later extended by
applying RDE to noncanonical input representations.

Let now ˆ W Rd ! Rn be a trained neural network, and x 2 Rd . The goal of RDE
is to provide an explanation for the decision ˆ.x/ in terms of a sparse mask s 2 ¹0; 1ºd

5131 The mathematics of artificial intelligence



which highlights the crucial input features of x. This mask is determined by the following
optimization problem:

min
s2¹0;1ºd

E
v�V

d
�
ˆ.x/;ˆ

�
x ˇ s C .1 � s/ˇ v

��
subject to ksk0 � `;

where ˇ denotes the Hadamard product, d is a measure of distortion such as the `2-distance,
V is a distribution over input perturbations v 2 Rd , and ` 2 ¹1; : : : ; dº is a given sparsity
level for the explanation mask s. The key idea is that a solution s� is a mask marking few
components of the input x which are sufficient to approximately retain the decision ˆ.x/.
This viewpoint reveals the relation to rate-distortion theory, which normally focusses on
lossy compression of data.

Since it is computationally infeasible to compute such a minimizer (see [30]),
a relaxed optimization problem providing continuous masks s 2 Œ0; 1�d is used in prac-
tice:

min
s2Œ0;1�d

E
v�V

d
�
ˆ.x/;ˆ

�
x ˇ s C .1 � s/ˇ v

��
C �ksk1;

where � > 0 determines the sparsity level of the mask. The minimizer now assigns each
component xi of the input—in case of images each pixel—a relevance score si 2 Œ0; 1�. This
is typically referred to as Pixel RDE.

Extensions of the RDE-framework allow the incorporation of different distribu-
tions V better adapted to data distributions. Another recent improvement was the assignment
of relevance scores to higher-level features such as arising from a wavelet decomposition,
which ultimately led to the approach CartoonX. An example of Pixel RDE versus CartoonX,
which also shows the ability of the higher-level explanations of CartoonX to give insights
into what the neural network saw when misclassifying an image, is depicted in Figure 5.

4. Artificial intelligence for mathematical problems

We now turn to the research direction of artificial intelligence for mathematical
problems, with the two most prominent problems being inverse problems and partial dif-
ferential equations. As before, we will introduce the problem settings, showcase some exem-
plary results, and also discuss open problems.

4.1. Inverse problems
Methods of artificial intelligence, in particular, deep neural networks, have a tremen-

dous impact on the area of inverse problems, as already indicated before. One current major
trend is to optimally combine classical solvers with deep learning in the sense of taking the
best out of the model- and data-world.

To introduce such results, we start by recalling some basics about solvers of inverse
problems. For this, assume that we are given an (ill-posed) inverse problem

Kf D g; (4.1)
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Figure 5

Pixel RDE versus CartoonX for analyzing misclassifications of deep neural networks, where the first image is
misclassified as ”Diaper”, the second as ”Egyptian Cat”, and the third as ”Screw”.

whereK WX ! Y is an operator andX and Y are, for instance, Hilbert spaces. Drawing from
the area of imaging science, examples include denoising, deblurring, or inpainting (recov-
ery of missing parts of an image). Most classical solvers are of the form (which includes
Tikhonov regularization)

f ˛
WD argmin

f

�
kKf � gk

2„ ƒ‚ …
Data fidelity term

C˛ � P .f /„ƒ‚…
Penalty/Regularization term

�
;

where P WX ! R and f ˛ 2X , ˛ >0 is an approximate solution of the inverse problem (4.1).
One very popular and widely applicable special case is sparse regularization, where P is
chosen by

P .f / WD
�hf; 'i i

�
i2I


1

and .'i /i2I is a suitably selected orthonormal basis or a frame for X .
We now turn to deep learning approaches to solve inverse problems, which might

be categorized into three classes:
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• Supervised approaches. An ad hoc approach in this regime is given in [14], which
first applies a classical solver followed by a neural network to remove recon-
struction artifacts. More sophisticated approaches typically replace parts of the
classical solver by a custom-built neural network [26] or a network specifically
trained for this task [1].

• Semisupervised approaches. These approaches encode the regularization as a
neural network with an example being adversarial regularizers [20].

• Unsupervised approaches. A representative of this type of approaches is the tech-
nique of deep image prior [29]. This method interestingly shows that the structure
of a generator network is sufficient to capture necessary statistics of the data prior
to any type of learning.

Aiming to illustrate the superiority of approaches from artificial intelligence for
inverse problems, we will now focus on the inverse problem of computed tomography (CT)
from medical imaging. The forward operatorK in this setting is theRadon transform, defined
by

Rf .s; #/ D

Z 1

�1

f
�
s!.#/C t!.#/?

�
dt; for .s; #/ 2 R � .0; �/.

Here !.#/ WD .cos #; sin #/ is the unitary vector with orientation described by the angle
# with respect to the x1-axis and !.#/? WD .� sin #; cos #/. Often, only parts of the so-
called sinogram Rf can be acquired due to physical constraints as in, for instance, electron
tomography. The resulting, more difficult problem is termed limited-angle CT. One should
notice that this problem is even harder than the problem of low-dose CT, where not an entire
block of measurements is missing, but the angular component is “only” undersampled.

The most prominent features in images f are edge structures. This is also due to
the fact that the human visual system reacts most strongly to those. These structures in turn
can be accurately modeled by microlocal analysis, in particular, by the notion of wavefront
sets WF.f / � R2 � S, which—coarsely speaking—consist of singularities together with
their direction. Basing in this sense the application of a deep neural network on microlocal
considerations, in particular, also using a deep learning-based wavefront set detector [2] in
the regularization term, the reconstruction performance significantly outperforms classical
solvers such as sparse regularization with shearlets (see Figure 6, we also refer to [3] for
details). Notice that this approach is of a hybrid type and takes the best out of both worlds in
the sense of combining model- and artificial intelligence-based approaches.

Finally, the deep learning-based wavefront set extraction itself is yet another evi-
dence of the improvements on the state-of-the-art now possible by artificial intelligence.
Figure 7 shows a classical result from [23], whereas [2] uses the shearlet transform as a coarse
edge detector, which is subsequently combined with a deep neural network.

4.2. Partial differential equations
The second main range of mathematical problem settings, where methods from arti-

ficial intelligence are very successfully applied to, are partial differential equations. Although

5134 G. Kutyniok



Figure 6

CT reconstruction from Radon measurements with a missing angle of 40ı.

Figure 7

Wavefront set detection by a model-based and a hybrid approach.

the benefit of such approaches was not initially clear, both theoretical and numerical results
show their superiority in high-dimensional regimes.

The most common approach aims to approximate the solution of a partial differential
equation by a deep neural network, which is trained according to this task by incorporating
the partial differential equation into the loss function. More precisely, given a partial differ-
ential equation L.u/ D f , we train a neural network ˆ such that

L.ˆ/ � f:

Since 2017, research in this general direction has significantly accelerated. Some of the high-
lights are the Deep Ritz Method [10] and Physics Informed Neural Networks [22], or a very
general approach for high-dimensional parabolic partial differential equations [12].

One should note that most theoretical results in this regime are of an expressivity
type and also study the phenomenon whether and to which extent deep neural networks are
able to beat the curse of dimensionality. In the sequel, we briefly discuss one such result as an
example. In addition, notice that there already exist contributions—though very few—which
analyze learning and generalization aspects.
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Let L.uy ; y/ D fy denote a parametric partial differential equation with y being
a parameter from a high-dimensional parameter space Y � Rp and uy the associated solu-
tion in a Hilbert space H . After a high-fidelity discretization, let by.u

h
y ; v/ D fy.v/ be the

associated variational form with uh
y now belonging to the associated high-dimensional space

U h, where we set D WD dim.U h/. We, moreover, denote the coefficient vector of uh
y with

respect to a suitable basis of U h by uh
y . Of key importance in this area is the parametric map

given by

Rp
� Y 3 y 7! uh

y 2 RD such that by

�
uh

y ; v
�

D fy.v/ for all v;

which in multiquery situations such as complex design problems needs to be solved several
times. If p is very large, the curse of dimensionality could lead to an exponential computa-
tional cost.

We now aim to analyze whether the parametric map can be solved by a deep neural
network, which would provide a very efficient and flexible method, hopefully also circum-
venting the curse of dimensionality in an automatic manner. From an expressivity viewpoint,
one might ask whether, for each " > 0, there exists a neural network ˆ such thatˆ.y/ � uh

y

 � " for all y 2 Y: (4.2)

The ability of this approach to tackle the curse of dimensionality can then be studied by
analyzing how the complexity ofˆ depends on p andD. A result of this type was proven in
[18], the essence of which we now recall.

Theorem 4.1. There exists a neural network ˆ which approximates the parametric map,
i.e., which satisfies (4.2), and the dependence of C.ˆ/ on p and D can be (polynomially)
controlled.

Analyzing the learning procedure and the generalization ability of the neural net-
work in this setting is currently out of reach. Aiming to still determine whether a trained
neural networks does not suffer from the curse of dimensionality as well, in [11] extensive
numerical experiments were performed, which indicate that, indeed, the curse of dimension-
ality is also beaten in practice.

5. Conclusion: seven mathematical key problems

Let us conclude with seven mathematical key problems of artificial intelligence as
they were stated in [6]. Those constitute the main obstacles in Mathematical Foundations for
Artificial Intelligence with its subfields being expressivity, optimization, generalization, and
explainability, as well as in Artificial Intelligence for Mathematical Problems, which focus
on the application to inverse problems and partial differential equations:

(1) What is the role of depth?

(2) Which aspects of a neural network architecture affect the performance of deep
learning?
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(3) Why does stochastic gradient descent converge to good local minima despite
the nonconvexity of the problem?

(4) Why do large neural networks not overfit?

(5) Why do neural networks perform well in very high-dimensional environments?

(6) Which features of data are learned by deep architectures?

(7) Are neural networks capable of replacing highly specialized numerical algo-
rithms in natural sciences?
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Stochastic gradient
descent: where
optimization meets
machine learning
Rachel Ward

Abstract

Stochastic gradient descent (SGD) is the de facto optimization algorithm for training
neural networks in modern machine learning, thanks to its unique scalability to problem
sizes where the data points, the number of data points, and the number of free parame-
ters to optimize are on the scale of billions. On the one hand, many of the mathematical
foundations for stochastic gradient descent were developed decades before the advent
of modern deep learning, from stochastic approximation to the randomized Kaczmarz
algorithm for solving linear systems. On the other hand, the omnipresence of stochastic
gradient descent in modern machine learning and the resulting importance of optimizing
performance of SGD in practical settings have motivated new algorithmic designs and
mathematical breakthroughs. In this note, we recall some history and state-of-the-art con-
vergence theory for SGD which is most useful in modern applications where it is used. We
discuss recent breakthroughs in adaptive gradient variants of stochastic gradient descent,
which go a long way towards addressing one of the weakest points of SGD: its sensitivity
and reliance on hyperparameters, most notably, the choice of step-sizes.
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1. Introduction

In the past several decades, randomized algorithms have slowly gained popularity
and established legitimacy as scalable extensions of classical deterministic algorithms to
large scales. Perhaps the most widely used randomized algorithm today is stochastic gradient
descent, which has established itself in the past decade as the de facto optimization method
for training artificial neural networks.

A common optimization problem in large-scale machine learning involves a training
set ¹.x1; y1/; : : : ; .xn; yn/º (we suppose that the labels yj 2 R for simplicity), a parameter-
ized family of prediction functions h, and a least squares minimization problem of the form

min
w2Rp

1

n

nX
iD1

�
h.xi Iw/ � yi

�2
: (1.1)

In linear least squares regression, the prediction function is linear with respect to the weights
w; for example, the prediction function is h.xIw/ D

Pp
j D1 wj x

p�1
j in univariate polyno-

mial regression. By contrast, in “neural network” regression, the prediction function h is a
parameterized class of highly nonlinear functions inspired by models of how the human brain
processes information. The neural network’s compositional structure allows for the predic-
tion function h.xi Iw/ to be computed at given values of xi and w by recursively applying
successive transformations to the input vector xi 2 Rd0 in layers. For example, a canonical
fully-connected layer corresponds to the computation

x
.j /
i D �.Wj x

.j �1/
i C bj / 2 Rdj ; (1.2)

where x
.0/
i D xi , Wj 2 Rdj �dj �1 , the vector bj 2 Rdj contains the j th layer parameters,

and � is a simple componentwise nonlinear activation function such as the ReLU func-
tion �.x/ D max¹0; xº; the total number of parameters w 2 Rp in (1.1) is the sum of
the parameters at each of L layers, w D .W1; b1; W2; b2; : : : ; WL; bL/. “Neural network
training” refers to solving the optimization problem (1.1), either exactly or approximately.
A particular vector of parameters w� 2 Rp corresponding to an approximate solution of
the optimization problem (1.1) is considered to be a “good” solution if the corresponding
neural network function h.�Iw�/ has good generalization properties, meaning that when
applied to fresh data ¹. Qx1; Qy1/; : : : ; . Qxm; Qym/º from the same distribution from which the
training data was drawn, the distortion 1

m

Pm
iD1.h. Qxi Iw

�/ � Qyi /
2 is small. Thus, optimiza-

tion and generalization must both be taken into account when discussing the performance
of a particular algorithm for neural network training. In this note, we will only discuss the
optimization component of the stochastic gradient descent algorithm. The generalization of
solutions w� 2 Rp found by SGD tends to be remarkably strong, but this is not as well
understood mathematically and represents an important ongoing area of research.

To motivate the stochastic gradient descent algorithm, let us first recall the basic
gradient descent procedure for minimizing a differentiable function F W Rp ! R: starting
from an initial point w0 2 Rp , iterate until convergence

wj C1  wj � �jrF.wj /; (1.3)
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where �j > 0 is the step-size prescribed for the j th step. Gradient descent with fixed step-
size �j D � is guaranteed to converge to a minimizer of F under general conditions, such
as if F is smooth (in the sense that F has Lipschitz gradient), convex, and has a finite lower
bound. Gradient descent is a first-order iterative algorithm, where first-order means that it
only requires computing gradients and not higher-order derivatives. A contributing reason
to the feasibility of large-scale neural network training is that neural network optimization is
particularly well suited for first-order optimization methods: for neural network prediction
functions composed of layers as in (1.2), the gradient of the corresponding objective function
F.w/D 1

n

Pn
iD1.h.xi Iw/� yi /

2 with respect to the parameter vector w can be computed by
the chain rule using algorithmic differentiation—a technique referred to as back propagation
in the machine learning community. However, even a single gradient computation of the
form rF.w/ D 1

n

Pn
iD1 r.h.xi Iw/ � yi /

2 becomes prohibitively expensive as the size of
the training set n reaches multiple millions. More generally, when optimizing functions with
“finite sum” form, F.w/ D 1

n

Pn
iD1 fi .w/,1 a single gradient evaluation rF.w/ requires

the computation of all n component function gradientsrfi .w/. In such settings, it is natural
to consider drawing a random subset of component functions and using the gradient of the
random batch of components as a computationally efficient surrogate for the full gradient.
This is the template for stochastic gradient descent, which is described in detail blow.

Algorithm 1 Stochastic Gradient Descent
1: // Return: Ow, an intended approximation to

2: // w� 2 arg min
w2Rp

F.w/, where F D 1
n

Pn
iD1 fi

3: procedure Stochastic Gradient Descent
4: Initialize point w.0/. Prescribed step-size schedule ¹�tº

1
tD1

5: for t WD 1 to T � 1 do
6: Draw an index it uniformly at random from ¹1; 2; : : : ; nº

7: Iterate w.tC1/  w.t/ � �trfit .w
.t//.

8: end for
9: return Ow D w.T /

10: end procedure

It is important that the index it is chosen uniformly at random, in which case the
random vector rfit .w

.t// is an unbiased estimate for the full gradient rF.w.t//, mean-
ing that Eitrfit .w

.t//D rF.w.t//. In practice, one often implements minibatch stochastic
gradient descent, which is a compromise between full gradient descent and stochastic gra-
dient descent where a batch of component gradient directions are averaged at each step, to

1 We assume n 2 N is a finite number for simplicity and because it is most relevant for
applications, but all results can be extended in theory to continuous parameterizations
F.w/ D

R
s fs.w/d�.s/.
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reduce the variance of the stochastic gradient estimate. For a comprehensive overview of
stochastic gradient descent methods in large-scale optimization, we refer the reader to the
comprehensive article [4].

1.1. Stochastic gradient descent: Background
1.1.1. Stochastic approximation
The idea for stochastic gradient descent appeared almost 70 years ago in a paper

by Robbins and Monro [25]. Suppose that M W R! R is a function with a unique root we
wish to identify. We do not have access to exact exact evaluations M.w/, but rather we can
access at a given point w a random variable N.w/ such that EŒN.w/� D M.w/. Within
this framework of stochastic approximation, Robbins and Monro proposed the following
root-finding algorithm: fix w0 and a decreasing step-size schedule ¹anº

1
nD0, then iterate

wnC1 D wn � anN.wn/: (1.4)

Blum [3] subsequently extended the algorithm to the multivariate setting. One recognizes
the SGD Algorithm 1 as a special case of the Robbins–Monro root-finding algorithm via the
correspondence M.w/ D rF.w/ and N.w.t// D rfit .w

.t//. Under certain assumptions
akin to strong convexity, smoothness, and bounded noise, Robbins, Monro, and Blum showed
that algorithm (1.4) converges with probability 1, provided the step-size schedule ¹anº

1
nD0

is chosen to decrease at a rate such that
1X

nD0

an D1 and
1X

nD0

a2
n <1: (1.5)

An important gap between the setting considered by Robbins and Monro and the applica-
tion of stochastic gradient descent in large scale machine learning is in the model assump-
tions for the stochastic noise: Robbins–Monro convergence theory and the implied choice of
step-sizes (1.5) assume that the stochastic noise on the observations is uniformly bounded,
sup� jN.�/j � N <1. More realistic in the setting of large-scale machine learning is an
affine-variance noise model, where the stochastic noise level is proportional to the size of the
full gradient at any given point. Specifically, the affine-variance noise model is as follows:
for parameters �0; �1 > 0,

8w 2 Rp
W Ei

rfi .w/
2

2
� �2

0 C �2
1

rF.w/
2

: (1.6)

We will come back to the discussion about the stochastic noise later on.
Stochastic gradient descent was recognized as a powerful algorithm for training arti-

ficial neural networks in 1960, when it was used to train one of the earliest neural networks—
the Adaline network (Adaline stands for “adaptive linear unit”) [29]. The proposal of Adaline
came shortly after Rosenblatt invented the perceptron, widely considered the first artificial
neural network. Following Adaline, (stochastic) gradient descent persisted as the de facto
algorithm for training artificial neural networks due to its simplicity and ability to extend
(using back propagation) to multilayered neural network architectures. The full power of arti-
ficial neural networks was not realized until around 2010, when increased computing power
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from GPUs and distributed computing allowed the use of larger networks, which became
known as “deep learning,” and neural networks began winning prizes in image recogni-
tion contests, approaching human level performance on various tasks. Just in time for the
advent of modern deep learning, researchers began to formalize the nonasymptotic theory
for stochastic gradient descent—convergence to global minimizers in the convex setting [2,23]

and to stationary points the nonconvex setting [9].

1.1.2. The Kaczmarz method for solving linear systems
Independent of Robbins and Monro’s work in stochastic approximation, Stefan

Kaczmarz proposed an iterative method (now called the Kaczmarz method) for solving
linear equations [15]. Consider an overdetermined system of consistent linear equations,
Aw D b. Denote the i th row (out of a total of n rows) of A by ai , and let w.0/ be an arbitrary
initial approximation to the solution of Aw D b. Kaczmarz observed that w�, the unique
solution to the overdetermined consistent system, corresponds to the unique point in the
intersection of the hyperplanes Si D ¹w W hai ; wi D biº. He proposed an iterative projection
algorithm for finding the point w� whereby one cycles through the hyperplanes in their nat-
ural ordering, and projects the current estimate for w� onto the subsequent subspace, until
convergence. That is, starting from an initial guess w0 and for t D 1; 2; : : : , iterate

w.tC1/
D w.t/

C
bi � hai ; w.t/i

kaik
2

ai I i D t mod n: (1.7)

The Kaczmarz method can be viewed as an instance of what is now referred to as the method
of successive projections onto convex sets (POCS). In 1933, John von Neumann proved con-
vergence of POCS in the case of two .n D 2/ hyperplanes [27]; Halperin later extended von
Neumann’s convergence result to arbitrarily many hyperplanes [11]. Aronszajn [1] later pro-
vided an explicit rate of convergence for the case of two hyperplanes—the convergence rate
is linear and depends explicitly on the angle between the two hyperplanes. Kayalar and Wein-
ert [17] proved that Aronszajn’s rate of convergence is sharp. This sharp analysis has proved
difficult to extend beyond the case of two hyperplanes, as it is related to the difficulty of ana-
lyzing the product of more than two orthogonal projection operators, see, for example, [5].
The Kaczmarz method was rediscovered in image reconstruction in 1970, where (along with
additional positivity constraints) it is called the algebraic reconstruction technique (ART)
[10]. ART is used extensively in computed tomography and, in fact, was used in the first
medical scanner [13].

Later, in the 1990s, several works, including [8,12], observed that the Kaczmarz algo-
rithm (1.7) tended to converge more quickly and consistently if the algorithm was changed so
that the rows are selected in a random, rather than cyclic order. In a seminal paper, Strohmer
and Vershynin proved in 2007 that if the rows are drawn from a particular weighted random
distribution, the Kaczmarz algorithm converges in expectation with a sharp linear conver-
gence rate [26] depending on a condition number of the matrix A. Precisely, the randomized
Kaczmarz method proposed by Strohmer and Vershynin is as follows (Algorithm 2):
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Algorithm 2 Randomized Kaczmarz method
1: // Return: Ow, an intended solution to Aw D b

2: procedure Randomized Kaczmarz algorithm
3: Initialize point w.0/. Denote rows of A by ¹aiº

n
iD1.

4: for t WD 1 to T � 1 do
5: Draw a row ait , where it is chosen from the set ¹1;2; : : : ; nº at random according

to a weighted probability distribution such that Prob.it D j / / kaj k
2
2.

6: Iterate w.tC1/  w.t/ C
bit �hait ;w.t/i

kait k2 ait .
7: end for
8: return Ow D w.T /

9: end procedure

Subsequently, the paper [22] recognized the randomized Kaczmarz method as a spe-
cial case of stochastic gradient descent Algorithm 1 applied in the setting of linear regression,
where the objective function is F.w/D kAw � bk22 D

1
n

Pn
iD1 n.hai ;wi � bi /

2, and imple-
mented with importance sampling so that Prob.it D j // kaj k

2
2 and �it D



kait k2
2

to maintain
unbiasedness of the stochastic gradient estimator for the full gradient. Extending Strohmer
and Vershynin’s analysis beyond the linear regression setting improves on a previous linear
convergence rate of Bach and Moulines [2] to show that stochastic gradient descent Algo-
rithm 1 enjoys a linear convergence rate under a general set of conditions including convexity
and smoothness. Moreover, the convergence rate can be improved when component functions
are allowed to be drawn from an importance sampling weighted distribution, as extended to
neural networks in [16,20].

1.2. Stochastic gradient descent: convergence theory
In this section, we will lay out the convergence theory for stochastic gradient

descent precisely. Enforce the following conditions on a loss function of the form F.w/ D
1
n

Pn
iD1 fi .w/:

(a) each fi is L-smooth: 8w; z, krfi .w/ � rfi .z/k2 � Lkw � zk2;

(b) each fi is convex;

(c) F is �-strongly convex.

Under these assumptions, the loss function F has a unique minimizer w�, and SGD con-
verges to this minimizer as follows [22].

Theorem 1. Consider constant step-size � � 1
�
. Draw w.0/ either as a random initial point

or deterministically. Denote �2 D
1
n

Pn
iD1 krfi .w

�/k22. Under the stated assumptions, the
expected error of the SGD Algorithm 1 satisfies

E
w.t/

� w�
2

2
�

�
1 � 2��.1 � �L/

�t
E

w.0/
� w�

2

2
C

��2

�.1 � �L/
:
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The error expression has two terms, highlighting that the algorithm enjoys a linear
convergence rate up to a so-called “region of confusion” of radius ��2

�.1��L/
. Optimizing the

step-size � to balance the two error terms results in the following sharp convergence rate.

Corollary 1.1. Enforce the assumptions of Theorem 1. Fix the constant step-size
� D ��

2��LC2�2 . Denote by �0 D Ew.0/kw.0/ � w�k22. After T D 2 log.�0=�/. L
�
C

�2

�2�
/

iterations, the expected error satisfies

E
w.T /

� w�
2

2
� �:

While this convergence rate cannot really be improved in the setting where the step-
size is fixed, we can improve on this rate slightly by considering a carefully chosen piecewise
constant decreasing step-size schedule and applying Corollary (1.1) recursively. We could
not find the following result stated explicitly in the literature, so we provide the short proof.

Proposition 1.1. Enforce the assumptions on smoothness and convexity from Theorem 1.
For error function h.s/ D �s

2s�LC2�2 and times

TJ D 2

�
L

�
C

2J �2

�2Ekw.0/ � w�k22

�
; J D 1; 2; : : :

consider the SGD Algorithm 1 with piecewise constant decreasing step-size schedule

�t D �1 WD h.�0 � 2
�1/; 1 � t � T1;

�t D �J WD h.�0 � 2
�J /; 1C

J �1X
j D1

Tj � t �

JX
j D1

Tj ;

After T.K/ D 2K. L
�
C

2
K
�

�2

�2Ekw.0/�w�k2
2

2K/ iterations,

E
w.T.K// � w�

2

2
� 2�KE

w.0/
� w�

2

2
:

Comparing the error bounds in Proposition 1.1 and Corollary 1.1, we see that to
achieve error Ekw.T.K// �w�k22 � 2�KEkw.0/ �w�k22, the piecewise constant decreasing
step-size schedule requires a number of iterations T D 2K. L

�
C

2
K
�

�2

�2�0
2K/ while the con-

stant step-size schedule requires a larger number of iterations T 0 D 2K. L
�
C

�2

�2�0
2K/. This

suggests that to get the best possible convergence rate of SGD when the region of confu-
sion dominates the condition number, piecewise constant decreasing step-size schedules can
outperform constant step-size schedules.

Proof of Proposition 1.1. Theorem 1.1 is proved by induction on the bound in Corollary 1.1
with the number of levels K. For the base case K D 1, we get the result by applying
Corollary 1.1 with �1 D �0=2 and fixed step-size �1 D h.�0=2/. For the induction, sup-
pose the result holds at K � 1, that is, suppose that Ekw.T.K�1// � w�k22 � �K�1, where
�K WD 2�KEkw.0/ � w�k22. Apply Corollary 1.1 with �0 D �K�1 and � D �0=2 and with
�K D h.�0 � 2

�K/ to arrive at the stated bound at K.

We draw the reader’s attention to the fact that we have focused on stochastic gradi-
ent descent convergence theory under assumptions such as smoothness and convexity which
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are not satisfied in the setting of training neural networks. However, increasingly, neural net-
works are implemented to be highly overparameterized, or configured so that the number of
parameters p (length of the parameter vector w) is set to be larger than the size of the training
data. In this regime, recent works have shown that in a certain “neural tangent kernel regime,”
the loss function associated to training overparameterized neural networks is locally strongly
convex around a random initialization w.0/ [6, 14]. While it is an active area of research to
try and understand the extent to which overparameterized neural networks remain similar
to linear systems in regimes where neural networks are most powerful in practice, there is
evidence that points to a strong connection. One important piece of evidence is the fact that
SGD is typically trained using piecewise constant decreasing step-sizes to optimize conver-
gence speed, just as suggested by Proposition 1.1. Thus, the convergence theory for SGD in
the strongly convex setting (and the corresponding step-size schedule which results for opti-
mizing convergence) is surprisingly relevant in the application of training large-scale neural
networks.

1.3. Adaptive step-size rules in stochastic gradient descent
Proposition 1.1 suggests that in training neural networks using stochastic gradient

descent, piecewise constant decreasing step-sizes should be effective. In practice, neural net-
works are indeed trained using piecewise constant decreasing step-size schedules; however,
the particular choice of step-size schedule in Proposition 1.1 is not so useful in practice
as it is a function of several parameters of the optimization problem: the strong convexity
parameter � > 0, the Lipschitz smoothness constant L associated to the loss function, the
stochastic noise level �2 > 0, and the error at initialization kw.0/ �w�k22. In practice, none
of these quantities is known to the user in advance. Indeed, this represents a serious dis-
connect between the theory for SGD and the practical implementation, as the convergence
behavior of the basic SGD Algorithm 1 is quite sensitive to the choice of step-size schedule.
Fortunately, simple modifications to the basic SGD algorithm have been developed, such as
Adagrad [7,21], RMSprop, and Adam [18], which are significantly more robust to the step-size
schedule. A convergence theory for these algorithms as adaptive step-size learners in the set-
ting of stochastic gradient descent was initiated independently in [19,28]. We will focus on the
results from [28], which focuses on guarantees for the AdaGrad adaptive gradient algorithm.

As a precursor to discussing adaptive gradient methods in the context of stochastic
gradient descent, let us first understand their behavior in the setting of batch (full) gradient
descent (where where the gradients rF.w/ are measured exactly).2 In the batch setting, the
AdaGrad algorithm is as follows.

2 We note that in the batch setting, line search methods are efficient black-box plugins for
adaptively updating the step-size. However, such methods lose effectiveness in the presence
of stochastic noise, and have a tendency to overfit the noisy gradient directions.
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Algorithm 3 Gradient Descent with AdaGrad
1: // Return: Ow, an intended approximation to

2: // w� 2 arg min
w2Rp

F.w/

3: procedure Gradient Descent with AdaGrad
4: Initialize point w.0/, initial step-size parameters b0; � > 0. Tolerance � > 0.
5: repeat
6: t C 1 t .
7: Update step-size b2

t D b2
t�1 C krF.w.t�1//k2

8:

9: Iterate w.t/  w.t�1/ �
�
bt
rF.w.t�1//.

10: until krF.w.t//k2 � �

11: return Ow D w.T /

12: end procedure

To put our main result in context, let us first review the following classical result
(see, for example, [24, .1:2:13/]) on the convergence rate for gradient descent with fixed step-
size.

Lemma 1.1. Suppose that F is L-smooth, and suppose that F � D infx F.x/ > �1. Fix �

and b, consider gradient descent, w.tC1/ D w.t/ �
�
b
rF.w.t//. If b � �L, then

min
tD0WT �1

rF.w.t//
2
� "

after at most a number of steps

T D
2b.F.w.0// � F �/

�"
:

Alternatively, if b � �L
2
, then convergence is not guaranteed at all—gradient descent can

oscillate or diverge.

The following result on the convergence of AdaGrad Algorithm 3 from [28] shows
that in contrast to fixed step-size gradient descent, AdaGrad always converges, and its con-
vergence rate as a function of the parameters b0; � > 0 can be understood in a sharp sense. It
suggests that in practice, one should simply initialize AdaGrad with a large step-size 1=b0,
and the algorithm will adapt on its own by decreasing the step-size to an appropriate limiting
value.

Theorem 2 (AdaGrad—convergence). Consider the AdaGrad Algorithm 3. Suppose that F

is L-smooth and suppose that F � D infw F.w/ > �1. Then

min
tD0WT �1

rF.w.t//
2
� "
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after Case 1: T D 1C d2.F .w.0//�F �/.b0C2.F .w.0//�F �/=�/
�"

e steps if b0

�
� L, and

Case 2: T D 1 C d
.�L/2�b2

0

"
C

4..F .w.0//�F �/=�C. 3
4 Clog �L

b0
/�L/2

"
e steps if

b0

�
< L.

In either case, maxt
bt

�
�

bmax
�

where bmax=�D 2L.1C log.�L=b0//C 2
�2 .F.w.0//� F �/.

Comparing the convergence rate of AdaGrad with the convergence rate of gradient
descent with fixed step-size, we see that in case b D b0 � �L, the rates are essentially the
same. But in case b D b0 < �L, gradient descent can fail to converge as soon as b � �L=2,
while AdaGrad converges for any b0 > 0, and is extremely robust to the choice of b0 < �L

in the sense that the resulting convergence rate remains close to the optimal rate of gradient
descent with fixed step-size �=b D 1=L, paying only a factor of log. �L

b0
/ in the constant.

The convergence rate in Theorem 2 represents a worst-case analysis of AdaGrad
over the class of L-smooth functions. In practice, the limiting step-size will obtain very
quickly, and at a value much larger than 1=L. This is not surprising since the smoothness
parameter L represents only the globally worst-case bound on the magnitude of the ratio
krF .w/�rF .z/k

kw�zk
over all w; z 2 Rp . In other words, even if one has a priori bound on L,

AdaGrad can converge significantly faster than gradient descent with fixed step-size 1=L,
and is thus advantageous to use even with such knowledge.

Now let us turn to the convergence analysis of AdaGrad in the stochastic setting,
also from [28]. Recall that in the stochastic setting, instead of observing a full gradient at
each iteration, we observe a stochastic gradient gt 2 Rp which is an unbiased estimator for
the true gradient rF.w.t//.

We now state Adagrad in the stochastic setting (Algorithm 4):

Algorithm 4 Stochastic Gradient Descent with AdaGrad
1: // Return w�, an approximation to a stationary point of a

smooth function F.�/ over Rp.

2: procedure AdaGrad in Stochastic Setting
3: Initial point w.0/ 2 Rp . step-size parameters �; b0.
4: for t WD 1 to T � 1 do
5: step-size update:

�t D
�q

b2
t�1 C kgtk

2

where b2
t D b2

t�1 C kgtk
2

6: Iterate w.tC1/  w.t/ � �t gt .
7: end for
8: return Ow D w.T /

9: end procedure
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More formally, denote

Ft D �
®
w1; g1; : : : ; w.t/; g.t/; w.tC1/

¯
(1.8)

to be the sigma algebra generated by the observations of the algorithm after observing the
first t stochastic gradients. We will assume that the stochastic gradients satisfy the following:

Assumptions 2.1 (Unbiased gradients). For each time t , the stochastic gradient, gt , is an
unbiased estimate of rF.w.t//, i.e.,

EŒgt jFt�1� D rF.w.t//: (1.9)

For the theory in this section, we will assume that the stochastic noise is uniformly
bounded, as in the setting of Robbins and Monro.3

Assumptions 2.2 (Uniformly bounded gradient and uniformly bounded variance). We as-
sume supw2Rp krF.w/k �  . Moreover, for each time t , the variance satisfies

E
�gt � rF.w.t//

2
jFt�1

�
� �2: (1.11)

The AdaGrad step-sizes �
bt

in the stochastic setting exhibit quite different behavior
than in the deterministic setting. Rather than converging to a fixed value proportional to
the Lipschitz smoothness constant as in the batch setting, the step-size decreases to zero in
the stochastic setting, roughly at the rate of 1

bt
�

1

�
p

t
. This rate is optimal in t in terms of

the resulting convergence theorems in the setting of smooth but not necessarily convex F ,
or convex but not necessarily strongly convex or smooth F . Still, one must be careful with
convergence theorems for AdaGrad because the step-size is a random variable and dependent
on all previous points visited along the way.

Theorem 3. SupposeF isL-smooth andF � D infw F.w/ >�1. Suppose that the random
variables gt ; t � 0, satisfy the above assumptions. Then with probability 1 � ı,

min
t2ŒT �1�

rF.w.t//
2
�

�
2b0

T
C

2
p

2. C �/
p

T

�
Q

ı3=2

where Q D F .w.0//�F �

�
C

4�C�L
2

log. 20T .2C�2/

b2
0

C 10/.

This result implies that AdaGrad converges starting from any value of b0 for a
given �. To put this result in context, we can compare to Corollary 2.2 of [9], which implies
that under similar assumptions, if the Lipschitz constant L and the variance � are known a
priori, and the step-size is

�t D � D min
²

1

L
;

1

�
p

T

³
; t D 0; 1; : : : ; T � 1;

3 These assumptions can be weakened to a single affine-variance assumption: For each time t ,
the variance only needs to satisfy

E
�gt � rF.w.t//

2
jFt�1

�
� �2

0 C �2
1 krF.w.t/

k
2: (1.10)
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then with probability 1 � ı,

min
`2ŒT �1�

rF.w.t//
2
�

2L.F.w.0// � F �/

T ı
C

.LC 2.F.w.0// � F �//�

ı
p

T
:

Thus, essentially, AdaGrad convergence achieves the rate of [9], but without requiring a priori
knowledge of L and � to set the step-sizes. The constant in the O.1=

p
T / rate of AdaGrad

scales according to �2 (up to a logarithmic factors in � ) while the results with well-tuned
step-size scales linearly with � .

The main technical difficulty in the proof of Theorem 3 is in dealing with the Ada-
Grad step-sizes which are random variables which depend on the current and all previous
stochastic gradients. See [28] for details of the proof.

1.4. Outlook
Stochastic gradient descent is the de facto algorithm used for minimizing functions

which arise in deep learning and neural network training. While there are many mysteries
surrounding the behavior of stochastic gradient descent in applications, there are also sev-
eral regimes in which we have a rich and sharp mathematical understanding. Remarkably,
the strong linear convergence guarantees for stochastic gradient descent which are guaran-
teed in the setting of strongly convex finite sums (and the piecewise constant decreasing
step-size rules they imply) are empirically verified in practice in training overparameterized
neural networks. That is, in many practical settings, seemingly highly nonconvex and highly
nonlinear neural network-based regression functions of interest are in reality perturbations
of linear regression problems. In this sense, practice caught up with theory. A theoretical
understanding of practical methods for making stochastic gradient descent more robust to
hyperparameter specifications such as the step-size schedule has begun to emerge in recent
years. In this sense, stochastic gradient enhancements developed in practice to meet the needs
of large-scale machine learning inspired new theoretical directions in the study of stochastic
gradient descent.
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Solving inverse
problems with deep
learning
Lexing Ying

Abstract

We discuss some recent work on applying deep learning to inverse problems. On the algo-
rithmic side, we propose two new neural network modules, BCR-Net and Switch-Net,
motivated by pseudodifferential and Fourier integral operators that commonly appear in
the study of inverse problems. On the application side, we propose neural networks for
inverse maps in five applications: electric impedance tomography, optical tomography,
inverse acoustic scattering, seismic imaging, and traveltime tomography. In each applica-
tion, the architecture is motivated by perturbation theory and filtered backprojection, and is
implemented using the new modules along with convolution layers. When translation and
rotation equivariances are available, appropriate reparameterizations in the data and model
domains result in convolutional architectures that are both general and effective. These
applications demonstrate that our approach provides a seamless way for combining the
mathematical structure of the inverse problems with the power of deep neural networks.
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1. Introduction

In the past decade, deep learning (DL) has become the dominant approach in com-
puter vision, image processing, speech recognition, and many other applications in machine
learning and data science [26, 34, 40, 42, 43, 48, 58, 60]. From a technical point of view, this
success is a synergy of several key developments: (1) deep neural networks (NNs) as a flexi-
ble framework for representing high-dimensional functions and maps, (2) simple algorithms
such as backpropagation (BP) and stochastic gradient descent (SGD) for tuning the model
parameters, (3) efficient general software packages such as Tensorflow [1] and Pytorch [52],
and (4) unprecedented computing power provided by GPUs and TPUs. Despite the successes,
however, there remain a number of outstanding challenges: (1) NN architectural design is still
an art and lacks basic mathematical principles in many cases; (2) NN training often requires
an enormous amount of data, which is infeasible in many applications; and (3) a general
mathematical theory of deep learning is still lacking.

Many computational problems in physical sciences face the same challenges as
those in data science: high-dimensionality, complex or unspecified models, and high compu-
tational costs. Some well-known examples include many-body quantum systems, determinis-
tic and stochastic control, molecular dynamics, uncertainty quantification, inverse problems,
etc. There is a clear opportunity to leverage the recent developments of DL in the study of
these problems. Indeed, the past few years have witnessed a rise of activities in this direction
[2,5,7,8,12,16,18,19,30,31,35–37,41,44,46,47,54,55,57,61].

Among these topics, this paper focuses on inverse problems, i.e., recovering un-
known interior parameters from boundary measurements. It is a field of enormous impor-
tance, with applications in physics, chemistry, medicine, earth sciences, etc. From a computa-
tional perspective, many inverse problems are quite challenging for several well-understood
reasons: (1) the inverse map from boundary measurements to interior parameters is high-
dimensional and nonlinear; (2) asymptotic methods based on perturbation theory often have
low accuracy, while fully optimization-based iterative algorithms are often time-consuming;
(3) most solution methods are not designed to adapt to data priors, when they are available.

Contributions. We argue that applying deep learning to the study of inverse problems is
a fruitful mathematical research direction. On the one hand, NNs offer a flexible tool for
representing the high-dimensional inverse maps. They also learn from the data distribution
prior effectively via training. On the other hand, the rich mathematical and physical theories
behind inverse problems provide guiding principles for designing compact, yet effective NN
architectures. As a result, we avoid the need for enormous amounts of data, which are often
not available for inverse problems.

The main contributions of this line of study are two-fold. On the algorithmic side,
we first identify the mathematical operators commonly used in inverse problems, with two
such examples being pseudodifferential operators (PDOs) and Fourier integral operators
(FIOs) [59]. By leveraging analytical results from partial differential equation (PDE) theory
and numerical linear algebra (NLA), we propose novel NN modules for these key types of
operators.
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On the application side, we apply this approach to five different inverse problems:
electric impedance tomography, optical tomography, inverse acoustic scattering, seismic
imaging, and traveltime tomography. For each application, using the linearized theory and
perturbative expansion as a starting point, we approximate the inverse map with a com-
position sequence of operators. The NN for the inverse map is then assembled using the
corresponding modules, along with existing primitives such as convolution neural networks
(CNNs). Finally, the weights of the whole network are trained end-to-end with the available
training data.

Organization. The rest of the paper is organized as follows. Section 2 describes new NN
modules motivated by PDOs and FIOs. Section 3 details the five inverse problems. Finally,
Section 4 concludes with a discussion of future directions.

2. New, mathematically-motivated NN modules

If one takes a close look at the successful NN architectures in the literature, it is not
hard to see that behind each there is a powerful mathematical structure, tabulated as follows.

NN architecture Mathematical structure
Fully-connected layer Dense operator
Convolution layer Translation-invariant local operator
Recurrent neural network (RNN) Markov chain
ResNet ODE/time-stepping/semigroup

For the inverse problem theory, two types of commonly occurring operators are
pseudodifferential operators (PDOs) and Fourier integral operators (FIOs). In this section,
we propose novel NN modules for efficient and accurate representations of these two types
of operators.

2.1. Pseudodifferential operators
A pseudodifferential operator (PDO) K is of the form

.Kf /.x/ �

Z
k.x; y/f .y/dy D

Z
a.x; �/e2�ix�� Of .�/d�; (2.1)

where the symbol function a.x; �/ of the PDO is smooth away from the origin of the fre-
quency variable � [59]. PDOs are powerful generalizations of standard differential operators.
When applied to a function f , the support of the singularities in the output Kf is contained
in the singularity support of the input. Some well-known examples of PDOs include the
Green’s functions of elliptic operators, fractional Laplacians, etc. When a PDO is translation-
equivariant, it becomes a convolution and thus can be represented with a convolution layer,
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though this representation is often not effective for highly nonlocal PDOs. More importantly,
non-translation-equivariant PDOs cannot be represented using convolution layers.

One of the key properties of PDOs is that, when discretized with local basis func-
tions, the off-diagonal blocks of the matrix form of a PDO are numerically low-rank [28,29].
This property gives rise to highly effective data-sparse approximations to PDOs, and the one
adopted here is based on wavelet analysis. Motivated by this approximation, we propose a
novel NN module associated with PDOs by

• representing the data-sparse approximation of PDOs as a (linear) NN,

• enriching its representation power by including intermediate layers and nonlin-
earities such as the ReLU activation function.

Figure 1

The nonstandard wavelet form of a PDO. The first and third matrices on the right-hand side are the inverse and
forward transforms for the redundant wavelet/scaling function frame, which can be implemented with fast wavelet
transforms in linear complexity. The large middle matrix represents the PDO under this redundant frame, which
has a well-defined sparsity pattern with only O.n/ nonzero entries.

Wavelet analysis. The data-sparse approximation is based on the nonstandard wavelet form
proposed in [9]. Given an n � n matrix form of a PDO K, the nonstandard form represents
the operator in the redundant wavelet/scaling function frame and keeps only O.n/ significant
coefficients in a well-defined sparsity pattern. Figure 1 illustrates the sparsity pattern, shown
in blue.

When applying this PDO to an input vector, the matrix–vector multiplication
(MatVec) at each wavelet scale can be written as a three-layer NN with two channels in
the middle (see Figure 2 (left) for an illustration). Putting together the networks across all
scales gives rise to a linear NN shown in Figure 2 (right).

In order to represent nonlinear operators similar to PDOs, we propose generalizing
the architecture in Figure 2 by inserting multiple intermediate layers and including nonlinear
activations such as the ReLU function. This results in a new NN module called a BCR-Net
[17] as shown in Figure 3.
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Figure 2

A matrix–vector multiplication (MatVec) with an input vector. (Left) The computation at each scale of the
wavelet-based data-sparse approximation is a three-layer NN with two channels in the middle. (Right) The NN
obtained by merging across all scales. Conv and LC stand for convolution and locally-connected layer,
respectively.

Figure 3

The BCR-Net module based on the nonstandard redundant wavelet form for PDOs.

2.2. Fourier integral operators
A Fourier integral operator (FIO) K is of the form

.Kf /.x/ �

Z
k.x; y/f .y/dy D

Z
a.x; �/e2�iˆ.x;�/ Of .�/d�; (2.2)

where the amplitude a.x; �/ of the FIO is smooth away form the origin of � and the phase
ˆ.x;�/ is homogeneous of degree one in �. Viewed as a map from the frequency to the spatial
domain (i.e., Of to Kf ), FIOs are generalizations of the Fourier transforms with more general
phase and amplitude functions. When applied to a function f , the support of the singularities
in the output Kf depends on the input singularities in a well-defined way governed by the
Hamiltonian flow of the phase function ˆ [59]. Most examples of the FIOs appear in high-
frequency wave propagations and scattering theory, and it is for this reason that they are often
key to solving wave-based inverse problems.

One key property of FIOs is that, when they are discretized with local basis func-
tions, the resulting matrix representation satisfies the so-called complementary low-rank
property [45]. More precisely, when the n � n matrix is partitioned into

p
n �

p
n blocks

each of size
p

n �
p

n, each block is numerically low-rank. This property allows for an effi-
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cient data-sparse approximation, the butterfly factorization, to be detailed below. Motivated
by the butterfly factorization, we propose a new NN module associated with FIOs by

• representing the butterfly factorization of FIOs as a (linear) NN, and

• enriching its representation power by including intermediate layers and nonlinear
activations, such as the ReLU function.

Butterfly factorization. Given an n � n matrix representation of an FIO K, the simplest
form of butterfly factorization partitions the whole matrix into

p
n �

p
n blocks and then

computes a low-rank approximation of each block. Figure 4 demonstrates that the low-
rank approximations for all blocks can be summarized compactly as the product of three
sparse matrices. Notice that the second matrix of the factorization serves essentially as a
permutation.

Figure 4

Butterfly factorization of an FIO. The middle plot shows the numerical low-rank properties of each
p

n �
p

n

block. On the right, the first and third matrices collect the low-rank bases, while the second matrix essentially
performs a permutation.

When applying the FIO to an input vector, the MatVec (as shown in Figure 5) can be
represented as a three-layer linear NN. Here the first and third matrices become a convolution
or locally-connected layer with

p
n channels, while the second matrix can be implemented

with a transpose.

Figure 5

A matrix–vector multiplication (MatVec) with an input vector. The computation is represented by a three-layer
NN with a transpose operation in the middle. C/LC stands for a convolution or locally-connected layer.

In order to represent nonlinear operators similar to FIOs, we generalize the architec-
ture in Figure 5 by inserting multiple intermediate layers and including nonlinear activations
(e.g., ReLU). The resulting new NN module, shown in Figure 6, is called a Switch-Net [38].
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Figure 6

The Switch-Net module based on the butterfly factorization for FIOs.

3. Inverse problems

This section describes how to apply deep learning to five inverse problems: electrical
impedance tomography, optical tomography, inverse acoustic scattering, seismic imaging,
and traveltime tomography. For each problem, we proceed as follows:

• describe the basic setup,

• represent the linearized inverse map as a sequence of operators by following the
perturbation theory and filtered backpropagation,

• design the NN architecture by following this sequence and using the new modules
in Section 2 as well as CNNs.

Throughout this process, we keep in mind several guiding principles:

• the NN design should adapt to the data collection geometry,

• pre- and post-processing often significantly simplify the NN design, and

• preserving equivariances is the key to efficiency and accuracy.

3.1. Electrical impedance tomography
Consider a rectangular domain � (see Figure 7 (left)) with top boundary denoted

by � . To simplify the presentation, we assume a periodic boundary condition in the hori-
zontal direction. One form of the governing equation for electrical impedance tomography
(EIT) is the elliptic equation

.Lu/.p/ �
�
�� � �.p/

�
u.p/ D 0; p 2 �; (3.1)

where we often denote p D .x;z/, with x and z being the horizontal and vertical components,
respectively. Here �.p/ is the unknown internal parameter field. In one common form of an
EIT experiment, for each boundary point s 2 � , we enforce the delta boundary condition
ıs.�/ and then record the normal derivative @us.r/

@n.r/
at every point r 2 � , where us.�/ denotes

the solution of (3.1) induced by the boundary condition ıs.�/. The set d.r; s/ of boundary
measurements is

d.r; s/ D
@us.r/

@n.r/
�

@us
0.r/

@n.r/
; (3.2)
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Figure 7

Electrical impedance tomography: (left) an experimental setup for a rectangular geometry; (right) an experimental
setup in a circular geometry.

where us
0.�/ stands for the background solution when �.p/ � 0. In technical terms, d.r; s/

is the kernel of the Dirichlet-to-Neumann map of (3.1). The inverse problem is to recover
�.p/ � �.x; z/ from d.r; s/.

In order to obtain an approximation to the inverse map d.r; s/ ! �.x; z/, we first
study how d.r; s/ depends on �.x; z/ in the perturbative regime. Let L0 be the operator with
�.x; z/ � 0 and G0 D L�1

0 be its Green’s function. A perturbative analysis in [23] shows
that, when � is small, the data d.r; s/ can be well approximated with

d.r; s/ �

“
.x;z/

@G0

@n

�
r; .x; z/

�@G0

@n

�
s; .x; z/

�
�.x; z/dxdz: (3.3)

Due to the translation-equivariance of the background operator L0, this equation can be
simplified when the data d is written in a warped coordinate system .m; h/ with .r; s/ �

.m C h; m � h/, namely

d.m; h/ �

“
.x;z/

@G0

@n

�
.m � x/ C h; z

�@G0

@n

�
.m � x/ � h; z

�
�.x; z/dxdz: (3.4)

The key observation is that this is a 1D convolution in m and x with h and z treated as parame-
ters (or as channels in the NN terminology). Furthermore, due to the elliptic nature of the EIT
problem, the forward map between � and d is numerically low-rank in h and z. As a result,
the number of channels required for this convolution operator is bounded logarithmically in
the number of degrees of freedom and the desired accuracy.

The discussion so far shows that, in the small � regime, we can approximate the
forward map K W �.x; z/ ! d.m; h/ with a 1D CNN with a small number of channels. The
filtered backprojection algorithm suggests that � � .K�K C "I /�1K�d . This motivates
representing the product .K�K C "I /�1K� as an NN. Regarding K�, the analysis above for
K shows that the adjoint operator K� can also be approximated with a 1D CNN or BCR-
Net with a small number of channels. The operator .K�K C "I /�1 is a PDO in the .x; z/

domain with global support, which can be approximated with a 2D BCR-Net or even a 2D
CNN. Putting them together results in the following NN architecture [23] for the inverse map
of the EIT problem:

d.m; h/ ) 1D CNN/BCR-Net ) 2D CNN/BCR-Net ) �.x; z/: (3.5)
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Such an architecture can also be applied directly to the circular geometry (see Figure 7 (right))
if the unknown field � is parameterized in polar coordinates.

Figure 8

Electrical impedance tomography: (left, from top to bottom) the ground truth �.x; z/, the boundary measurement
d.m; h/, and the NN reconstruction; (right) the NN reconstructions at different noise levels.

Figure 8 presents a numerical example. The NN has about 70K weights and is
trained with about 10K .d; �/ training pairs. The left part shows, from top to bottom, the
ground truth internal parameters �.x; z/, the boundary measurements d.m;h/ in the warped
coordinate system .m;h/, and the NN reconstruction obtained by applying the trained NN to
d.m;h/. The images show that the NN reconstruction is close to the ground truth, though the
accuracy gradually deteriorates as the depth z grows due to the nature of the EIT problem.
The right part shows how the NN, while trained with noiseless training data, performs under
different noise levels in the testing boundary measurement d.m;h/. The images demonstrate
that the trained NN is robust to measurement noise.

3.2. Optical tomography
Consider a circular domain � in 2D (see Figure 9) with boundary � D S1. The

governing equation for optical tomography (OT) is the radiative transfer equation (RTE)

.Lˆ/.p; v/ � v � rˆ.p; v/ C �t .x/ˆ.p; v/ D �.p/

Z
S1

�.v � v0/ˆ.p; v0/dv0;

.p; v/ 2 � � S1; (3.6)

where � is a fixed scattering phase with
R

S1 �.v � v0/dv D 1. The transport coefficient
�t .p/ D �a C �.p/ measures the total absorption, including the known physical absorp-
tion constant �a and the unknown scattering strength quantified by the term �.p/. In a
typical OT experiment, for each boundary point s 2 S1, one specifies at s either an isotropic
scattering source or a delta source in the normal direction, and records the outgoing flux
(denoted by f s.�/) at each point r 2 S1. The set of boundary measurements is given by

d.r; s/ D f s.r/ � f s
0 .r/; (3.7)
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Figure 9

Optical tomography. An experimental setup in a circular geometry.

where f s
0 .�/ is the outgoing flux when �.x/ � 0. The inverse problem is then to recover

�.p/ from d.r; s/.
In order to obtain an approximation for the inverse map d.r; s/ ! �.p/, we study

how d.r; s/ depends on �.p/ in the perturbative regime. By using an equivalent integral
formulation [21], one can explicitly derive the perturbative relationship between �.p/ and
d.r; s/. However, for the purposes of NN design, a simple observation based on the rotation-
equivariance of the experimental setup is sufficient. By introducing a warped coordinate
system .s; h/ with .r; s/ � .h C s; s/, the data d.h; s/ in the new system can be written as

d.s; h/ �

“
.�;�/

k.h; �; s � �/�.�; �/d�d�; (3.8)

which is a 1D convolution in s and � , with h and � treated as parameters (i.e., channels
in the NN terminology). Since the RTE (3.6) preserves singularities, especially when the
absorption �a is weak, this map between � and d is singular in the h and � variables. As a
result, the number of channels required for the 1D convolution operator can scale with the
resolution in � and h.

The above discussion shows that, in the small � regime, we can approximate the
forward map K W �.�; �/ ! d.s; h/ with a 1D CNN with multiple channels. The filtered
backprojection algorithm suggests that � � .K�K C "I /�1K�d . This again motivates the
approach of representing the product .K�K C "I /�1K� as an NN. As the adjoint to K, the
operator K� can also be approximated with a 1D CNN or BCR-Net with multiple channels.
The operator .K�K C "I /�1 is a PDO in the .�; �/ domain with global support, which can
be approximated efficiently with a 2D BCR-Net or CNN. Summarizing these discussions
results in the following NN architecture [21] for the OT problem:

d.s; h/ ) 1D CNN/BCR-Net ) 2D CNN/BCR-Net ) �.�; �/: (3.9)

Figure 10 presents one numerical example. The resulting NN, with about 50K
weights, is trained with a dataset of 8K .d; �/ training pairs. The images show the reference
(ground truth) parameter �, along with the NN reconstructions �NN at different noise levels.
The results suggest that the learned NN representation of the inverse map is quite robust to
noise, even though the optical tomography problem is (weakly) ill-posed.
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Figure 10

Optical tomography. Reference solution � along with the NN reconstructions under different noise levels in the
boundary measurement d.s; h/.

3.3. Inverse acoustic scattering
Let us consider the acoustic scattering problem in 2D in the frequency domain. The

governing equation is the Helmholtz equation

.Lu/.p/ D

�
�� �

!2

c.p/2

�
u.p/ D 0; (3.10)

where ! is a fixed angular frequency and c.p/ is the unknown velocity field. Assume that
there exists a known constant background velocity c0 such that c.p/ � c0 is compactly sup-
ported in a domain � (see Figure 11 (left)). In a typical experimental setup, for each incoming
direction s 2 S1, the plane wave ei!s�p generates an outgoing scattered field us.p/ such that
us.p/ C ei!s�p is a solution of (3.10). At each unit direction r 2 S1, the far field pattern
defined as

Ous.r/ � lim
�!1

us.� � r/
p

�e�i!� (3.11)

is recorded. The set of boundary measurements is then d.r; s/ D Ous.r/. Instead of trying
to recover c.p/ directly, it is often convenient to treat a rescaled index-of-refraction field
�.p/ �

!2

c.p/2 �
!2

c2
0

as the unknown. The inverse problem is then to recover �.p/ (equivalently
to c.p/) from d.r; s/.

In order to obtain an approximation for the inverse map d.r; s/ ! �.x/, as usual we
consider first how d.r; s/ depends on �.x/ in the perturbative regime. A perturbative analysis
for planar incoming waves and far field patterns in [20,38] shows that, when � is small, the
data d.r; s/ can be approximated up to a smooth amplitude as

d.r; s/ � .K�/.r; s/ �

Z
p2�

ei!.s�r/�p�.p/dp: (3.12)
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Figure 11

Inverse acoustic scattering: (left) an experimental setup in 2D; (right) the complementary low-rank structure of
the forward map from �.p/ to d.r; s/.

A rank estimate of the operator kernel [38] shows that K is an FIO from � to S1 � S1 (see
Figure 11 (right) for an illustration). As a result, the approximate forward operator from � to
d can be represented with a 2D Switch-Net.

The filtered backprojection states that � � .K�K C "I /�1K�d , thus motivating
the approach of representing the product .K�K C "I /�1K� as an NN. As the adjoint of an
FIO is also an FIO [59], the operator K� can also be approximated with a Switch-Net. The
operator .K�K C "I /�1 is a PDO in the p variable and can therefore be implemented with
a 2D BCR-Net. Concatenating these two modules results in the NN architecture in [38] for
the inverse acoustic scattering problem:

d.r; s/ ) 2D Switch-Net ) 2D BCR-Net ) �.p/: (3.13)

When � is a disk, it is natural to parameterize the unknown field � in polar coordi-
nates .�; �/. The boundary measurement d is also written in a new coordinate system .h; m/

with midpoint m D
rCs

2
and shift h D

r�s
2

. Under these two new coordinate systems, the
rotation-equivariance of the circular geometry implies that the map from �.�; �/ to d.m; h/

is a 1D convolution in � and m, with h and � treated as the channel dimensions,

d.m; h/ �

Z
�0

Z 2�

0

k.h; �; m � �/�.�; �/d�d�: (3.14)

Following the discussion that leads from (3.8) to (3.9), we can also adopt the following NN
architecture [20] for the circular geometry:

d.h; m/ ) 1D CNN/BCR-Net ) 2D CNN/BCR-Net ) �.�; �/: (3.15)

Figure 12 gives a numerical example for inverse acoustic scattering. The resulting
NN has about 400K weights and is trained with a dataset of 16K .d; �/ training pairs. The
images show, for two different cases, the reference (ground truth) parameter �, along with
the NN reconstructions �NN at different noise levels up to 100%. The results suggest that
the learned NN inverse map is highly robust to noise, thanks to the well-posedness of this
problem.
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Figure 12

Inverse scattering. Each row corresponds to a different test case. For each case, we plot the reference solution,
along with the NN reconstructions up to a 100% noise level.

3.4. Seismic imaging
We consider the seismic imaging setting under a simple 2D acoustic model in the

frequency domain. The governing equation is again the Helmholtz equation

.Lu/.p/ D

�
�� �

!2

c.p/2

�
u.p/ D f .p/; p 2 �; (3.16)

where ! is a fixed frequency and c.p/ is sound speed. We assume that the background
velocity c0.p/ is given and the difference between c.p/ and c0.p/ is supported in � (see
Figure 13 (left)). In a typical experimental setup, for each point s on the top surface, one
specifies a delta source f .p/ D ıs.p/ and records the wave solution us.�/ of (3.16) at all
points r also on the top surface. The set of boundary measurements is

d.r; s/ D us.r/ � us
0.r/; (3.17)

where us
0.�/ is the solution of some background velocity c0.p/. By again introducing the

scaled index-of-refraction field �.p/ D
!2

c.p/2 �
!2

c0.p/2 , we obtain the inverse problem of
recovering �.p/ from d.r; s/.

As usual, in order to obtain an approximation for the inverse map d.r; s/ ! �.p/, we
first study how d.r; s/ depends on �.p/ in the perturbative regime. A perturbative analysis
[38] of planar incoming waves and far field patterns shows that, when � is small, the boundary
measurement d.r; s/ can be well approximated with

d.r; s/ � .K�/.r; s/ �

Z �
G0.r; p/G0.p; s/

�
�.p/dp; (3.18)

where G0.p/ is the Green’s function of the background operator L0 D �� � !2=c2
0.p/.

A rank estimate of the kernel G0.r; p/G0.p; s/ in [38] proves that K is an FIO defined
between the domain � and the product .r; s/ space (see Figure 13 (right) for an illustration).
As a result, the forward operator from � to d can be approximated with a 2D Switch-Net.
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Figure 13

Seismic imaging: (left) a simple experimental setup in 2D; (right) the complementary low-rank structure of the
forward map from �.p/ to d.r; s/.

The filtered backprojection algorithm again suggests that � � .K�K C "I /�1K�d ,
which motivates representing the product .K�K C "I /�1K� as an NN. As the adjoint of an
FIO K, K� can be approximated with a Switch-Net. Under generic conditions, the operator
.K�K C "I /�1 is a PDO in the p variable, which can be approximated with a 2D BCR-
Net. Putting everything together results in the following NN architecture [38] for the seismic
imaging problem:

d.r; s/ ) 2D Switch-Net ) 2D BCR-Net ) �.x; z/; (3.19)

where x and z are the horizontal and depth coordinates of p, respectively.
Often in seismic imaging, the background velocity c0.p/ only depends on the

depth z (and is independent of the horizontal coordinate x). In this case, we can exploit
the translation-equivariance in the horizontal direction and reparameterize the boundary
measurement d under the coordinate system .m; h/ with m D

rCs
2

and offset h D
r�s

2
.

Under this new coordinate system, the forward map from �.x; z/ to d.m; h/ is a 1D convo-
lution with the offset h and depth z treated as channels,

d.m; h/ �

Z Z

0

Z
k.h; z; m � x/�.x; z/dxdz: (3.20)

Following the discussion that leads from (3.4) to (3.5), we obtain the following NN archi-
tecture [20] for c0.p/ that depends only on depth:

d.m; h/ ) 1D CNN/BCR-Net ) 2D CNN/BCR-Net ) �.x; z/: (3.21)

Figure 14 shows a numerical example for the seismic inversion problem. The NN
has about 1M weights in total and is trained with a dataset of 16K .d; �/ pairs. The images
show the reference (ground truth) parameter �, along with the NN reconstructions �NN at
noise levels up to 100%. The results demonstrate that the learned NN inverse map is quite
robust to noise. Notice that the reconstruction quality deteriorates with depth naturally since
the boundary measurements are all collected at the top surface.
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Figure 14

Seismic imaging. The reference solution along with the NN reconstructions with different levels of noise added to
the boundary measurements.

3.5. Traveltime tomography
Here we consider a circular domain � in 2D with the boundary denoted by � (see

Figure 15). The governing equation for traveltime tomography (TT) is the eikonal equation

jru.p/j D
1

c.p/
; p 2 �; (3.22)

where c.p/ is the unknown velocity field. Assuming that c.p/ has a background velocity c0

(taken to be 1 without loss of generality), we introduce the slowness deviation
�.p/ �

1
c.p/

� 1 and write (3.22) as jru.p/j D 1 C �.p/. In a typical setup, we specify
the zero boundary condition at each boundary point s, solve for the viscosity solution us.x/

of (3.22), and record us.r/ at each boundary point r . The set of boundary measurements is
then given by

d.r; s/ D us.r/ � us
0.r/; (3.23)

where us
0.r/ D kr � sk is the solution for �.x/ � 0. The inverse problem is to recover

�.p/ �
1

c.p/
� 1 from d.r; s/.

Figure 15

Traveltime tomography. Experimental setup in a circular geometry.
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To obtain an approximation for the inverse map d.r; s/ ! �.p/, we study how
d.r; s/ depends on �.p/ in the perturbative regime. A simple consideration based on the
rotation-equivalence of the experimental setup suggests viewing the parameter � in polar
coordinates .�; �/ and the boundary measurements in the warped coordinates .s; h/ with
.r; s/ � .h C s; s/. The data d.h; s/ can then be written as [22]

d.s; h/ � .K�/.h; s/ D

Z
�0

Z 2�

0

k.h; �; s � �/�.�; �/d�d�; (3.24)

which is a 1D convolution in s and � , with h and � treated as parameters (or channels in the
NN terminology). Since the viscosity solution of the eikonal equation often has singularities,
the number of channels required for the 1D convolution operator can be quite significant.

The discussion above shows that, in the small � regime, we can approximate the
forward map K W �.�; �/ ! d.s; h/ with a 1D CNN or BCR-Net with multiple channels.
The filtered backprojection algorithm � � .K�K C "I /�1K�d suggests representing the
product .K�K C "I /�1K� as a linear NN and then generalizing to the nonlinear regime.
By invoking the same argument used for K, the adjoint operator K� can also be approximated
with a 1D CNN or BCR-Net with a small number of channels. The operator .K�K C "I /�1 is
a PDO in the .�; �/ domain with global support, which can be approximated with a 2D BCR-
Net or with a 2D CNN. Summarizing the discussion results in the following NN architecture
[22] for traveltime tomography:

d.s; h/ ) 1D CNN/BCR-Net ) 2D BCR-Net/CNN ) �.�; �/: (3.25)

Figure 16 gives a numerical example for the traveltime tomography. The NN for
the inverse map, with about 640K weights, is trained with a set of 16K .d; �/ pairs. The
three rows correspond to test examples with negative inclusion c.p/ < 1, positive inclusion
c.p/ > 1, and mixed inclusion, respectively. For each test example, we plot the reference
solution along with the NN reconstructions with different levels of noise added to the bound-
ary measurements. The results show that, even for this ill-posed problem, the NN inverse map
is accurate and robust with respect to noise.

4. Concluding remarks

In this paper, we discussed our recent work on applying deep learning to inverse
problems. On the algorithmic side, we proposed two new NN modules, BCR-Net and Switch-
Net. They are motivated by the pseudodifferential and Fourier integral operators, which play
key roles in the study of inverse problems. On the application side, we propose NNs that
approximate the inverse maps in five settings of interest: electrical impedance tomography,
optical tomography, inverse acoustic scattering, seismic imaging, and traveltime tomogra-
phy. In each application, the architecture is motivated by the perturbation theory and filtered
backprojection and is implemented using the new modules along with standard convolution
layers. In several cases, we have heavily relied on the special geometry of the domain �

and the data collection process. When combined with appropriate reparameterizations, this
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Figure 16

Traveltime tomography. The three rows correspond to negative, positive, and mixed inclusions. For each case, the
reference solution is shown along with the NN reconstructions with different levels of noise added to the boundary
measurements.

often results in NN architectures that are both general and effective. Our approach provides
a seamless way that combines the mathematical structure of the inverse problems, the power
of deep NNs, and the information in the data prior. Below we list some directions for future
research:

• We have considered only the case of complete measurement data. A question of
both practical and theoretical importance is how to extend to the case of partial
measurement data.

• For wave-based inverse problems, we have focused on a single frequency or a
single energy. In many applications, one often has access to boundary measure-
ments at multiple frequencies or energies, or even time-dependent measurements.

• The first part of the proposed NNs is closely related to the migration step in tradi-
tional imaging pipelines (such as in seismic imaging). An interesting study would
be to compare the intermediate result after the first part of our NN with the migra-
tion results to get a more precise understanding of the proposed NNs.

The study of inverse problem using deep learning has grown into a relatively large subject
[6, 39, 49, 56, 62]. This paper has solely focused on one approach that is deeply rooted in
microlocal analysis (see [3,10] for related work). There are a few other highly active research
directions that we have not discussed here, but which may be of interest to the reader:
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• We have not discussed the work on (linear) underdetermined inverse problem in
imaging [32, 51]. This field is closely connected with sparse recovery problems,
such as compressive sensing, matrix completion, phase retrieval, etc. [11].

• In the unrolling or unfolding approach [2,13,15,25,33,50,53,63] for solving inverse
problems, one writes the iterative solution algorithm as a ResNet and then trains
the network parameters to minimize the reconstruction error. In many cases, this
approach leads to a very high quality reconstruction.

• There is also active work studying stability issues when applying deep learning
to inverse problems [4, 14,24,27], which is particularly important for applications
with ill-posed inverse problems.
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1. Introduction

Combinatorial discrepancy deals with the following type of question. Given a set-
system .U; C / with elements U D Œn� and a collection C D ¹S1; : : : ; Smº of subsets of U ,
how well can we color the elements red and blue so that each set Si 2 C is colored as evenly
as possible. Formally, let us use ˙1 to denote the colors red and blue, so that if x.j / denotes
the color of element j , then j

P
j 2S x.j /j is the imbalance for set S . Then the discrepancy

of the set system .U; C / is defined as

disc.C / D min
xWU !¹�1;1º

max
i2Œm�

ˇ̌̌̌X
j 2Si

x.j /

ˇ̌̌̌
;

that is, the minimum imbalance that must occur in at least one of the sets in C , over all
possible bipartitions of U .

More generally, for an m � n matrix A, the discrepancy of A is defined as

disc.A/ D min
x2¹�1;1ºn

kAxk1: (1.1)

This generalizes the definition for set systems by choosing A to be the incidence matrix
for the system. Letting v1; : : : ; vn denote the columns of A, this is the same as minimiz-
ing k

P
j x.j /vj k1 over all ˙1 colorings x, and the problem is also referred to as vector

balancing. In some settings, one also considers more general norms besides `1, and more
general objects vi than just vectors.

Roughly speaking, discrepancy can be viewed as the study of how to divide a set of
objects into two (or more) parts which are as similar as possible, with respect to various crite-
ria. For this reason the problem arises in several applications, often in unexpected ways, and
is related to various topics in mathematics and theoretical computer science [22,23,26,47,53].
For example, in computer science it has several applications in areas such as computation
geometry, pseudorandomness, approximation algorithms, numerical integration, and differ-
ential privacy.

Beating random coloring. For any discrepancy problem, one option is to simply pick a
random coloring by setting each x.j / independently and uniformly to ˙1. However, for
many problems one can do substantially better, so in a sense discrepancy theory can be
viewed as the study of how to improve over the basic probabilistic method [1].

1.1. A brief history
Roughly speaking, there are three classical techniques in discrepancy. One of the

earliest techniques was linear algebraic and similar to the well-known iterated-rounding tech-
nique [17, 19,41]. Though this technique gives surprisingly good bounds for some problems
in discrepancy, in general they are quite weak and far from optimal.

A huge breakthrough was made in the 1980s with the partial-coloring method due
to Beck [18] and Spencer [63]. A similar approach based on ideas from convex geometry
was developed independently by Gluskin [33]. Roughly speaking, this method guarantees
the existence of a coloring of a constant fraction of the elements where every set in the set
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system incurs a low discrepancy. This method is then repeated O.log n/ times in order to get
a full coloring of all the n elements.

The third approach was developed by Banaszczyk [4] in the late 1990s based on
sophisticated ideas from convex geometry. His technique produced a full coloring directly,
and led to improved bounds for many fundamental discrepancy problems.

Algorithmic aspects. Interestingly, the original proofs of the partial-coloring method and
Banaszczyk’s method were based on non-constructive approaches such as counting argu-
ments, pigeonhole principle, and volume estimates of convex bodies, and did not give
efficient algorithms. It was even conjectured that these results might be inherently non-
algorithmic. This was problematic as in many applications of discrepancy one actually
needs to be able to find good colorings efficiently.

In recent years, there has been remarkable progress in obtaining algorithmic ver-
sions of both the partial-coloring method [6, 28, 36, 45, 59] and Banaszczyk’s method [8–10,

24, 35, 42]. There techniques combine ideas from linear algebra, discrete Brownian motion,
optimization, and convex geometry in interesting ways, and lead to several new results and
insights both in discrepancy and algorithm design. Another remarkable development has
been on approximating hereditary discrepancy based on the 2-norm from functional anal-
ysis and semidefinite programming duality [49,50].

In this survey, we give a brief overview of both the classical techniques and recent
algorithmic results, and sketch the main ideas behind them. We also discuss some recent new
directions such as online discrepancy, discrepancy of random instances, matrix discrepancy
and mention several conjectures and problems that are still open. Unfortunately, we have to
leave out several interesting topics, and in particular the various exciting applications of these
results. We also leave out techniques for proving lower bounds for discrepancy problems.

1.2. Some examples
We describe some classical problems to give a flavor of the area, and we will use

these throughout as running examples to illustrate the various techniques. Most of these
problems have a long and fascinating history, that we will discuss only very briefly here.

(1) Spencer’s problem. What is the discrepancy of an arbitrary set system with n

elements and m sets?

(2) Beck–Fiala problem. What is the discrepancy of a set system where each ele-
ment lies in at most d sets, i.e., the maximum degree is at most d?

(3) Komlós problem. What is the discrepancy of a matrix where the columns have
`2-norm at most 1?

(4) Prefix Komlós.Given vectors v1; : : : ;vn 2Rm satisfying kvjk2 �1, minimize the
maximum discrepancy of prefixes, i.e., minimize maxk2Œn� k

Pk
j D1 x.j /vj k1.
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(5) Tusnady’s problem. Given a set U of n arbitrary points in Œ0; 1�d , what is the
discrepancy with respect to rectangles, i.e., sets R \ U where R ranges over all
possible rectangles

Qd
iD1Œai ; bi � � Œ0; 1�d ?

(6) Discrepancy of Arithmetic Progressions. Here U D Zn and the sets S are of the
form Sa;b D ¹a; a C b; a C 2b; : : :º. The special case of homogeneous arith-
metic progressions (with a D 0 for each set) is called the Erdős Discrepancy
Problem.

Given a coloring x and a row a, let disc.x; a/ WD j
P

j x.j /a.j /j denote the dis-
crepancy of x for a. For any set S , by standard probabilistic tail bounds

Pr
�
disc.x; S/ � cjS j

1=2
�

� exp
�
�c2=2

�
; (1.2)

and thus a random coloring has discrepancy �.n1=2/ or worse for all the problems above.
We now describe the various improved bounds known for them. We shall give the details in
later sections.

1.2.1. Spencer’s problem
For an arbitrary set system, (1.2) and a union bound over the m sets implies that a

random coloring has discrepancy O..n log m/1=2/ with high probability (whp). In an influ-
ential work, Spencer [63] and Gluskin [33] showed the following result.

Theorem 1.1. Any set system with m � n sets has discrepancy O..n log 2.m=n//1=2/. For
m � n, the discrepancy is O.m1=2/.

In particular, for m D n this gives O.n1=2/ discrepancy, which is also the best pos-
sible, answering a question of Erdős. While this O.log n/1=2 factor improvement over the
random coloring may seem relative minor, Spencer developed the partial coloring method
to prove Theorem 1.1, which has become a key tool and gives huge improvements for many
other problems.

1.2.2. Beck–Fiala and Komlós problem
Beck and Fiala [19], in one of the first applications of the iterated rounding technique,

showed the following result.

Theorem 1.2. Any set system with maximum degree d has discrepancy at most 2d � 1.

A long-standing conjecture is the following.

Conjecture 1.2.1 ([19]). The discrepancy of any set system with degree d is O.d 1=2/.

If we allow a mild dependence on n, the partial-coloring method gives a bound of
O.d 1=2 logn/. The best known bound in this direction is O..d logn/1=2/ due to Banaszczyk
[4], based on a more general result that we shall see later.

Scaling the entries by d �1=2, notice that the Beck–Fiala problem is a special case of
the Komlós problem. For the Komlós problem, the partial-coloring method gives an O.logn/
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bound, and Banaszczyk’s method gives the best known bound of O..log n/1=2/. The follow-
ing conjecture generalizes Conjecture 1.2.1.

Conjecture 1.2.2 (Komlós). Given any v1; : : : ; vn 2 Rm satisfying kvj k2 � 1 for all j ,
there is an x 2 ¹�1; 1ºn such that k

P
j x.j /vj k1 D O.1/.

1.2.3. Prefix discrepancy
The study of discrepancy problems involving prefixes of a given sequence of vectors

also has a long history and several surprising connections to other classical ordering prob-
lems. See, e.g., [17] for a fascinating survey and also [5,20,27,47]. We restrict our focus here
to the prefix version of the Komlós problem. The best bound known here is O..log n/1=2/

due to Banaszczyk [5], where he further extended his method from [4] to handle prefixes.
Given this extension, a natural question is whether the prefix Komlós problem is

any harder than the one without prefixes.

Problem 1.3. Is the discrepancy of the prefix Komlós problem O.1/?

There is no clear consensus here, and in fact for some discrepancy problems it is
known that considering prefixes makes the problem harder [30,52].

Algorithmic aspect. As we shall see later, there are several algorithmic approaches known
by now for the partial-coloring method and for Banaszczyk’s method in [4] without prefixes.
However, the best algorithmic bound we know for the prefix version is still O.log n/, based
on partial coloring approach, and the following question is very interesting.

Problem 1.4. Find an efficient algorithm to obtain an O..log n/1=2/ discrepancy coloring
for the prefix Komlós problem.

1.2.4. Tusnady’s problem
Here one can do exponentially better than random colorings, and these ideas have

significant applications in numerical integral and quasi-Monte Carlo methods [23,47].
The case of d D 2 is already instructive to see the relative power of various tech-

niques. Moreover, we still do not know the right answer here. Linear algebraic methods give
a bound of O.log4 n/. Using partial coloring, this can be pushed to about O.log5=2 n/ [47].
The current best bound is O.log3=2 n/ due to Nikolov [54], based on Banaszczyk’s result for
prefix discrepancy [5]. On the other hand, the best known lower bound is �.log n/ [49,61].

For general d , after a long line of work, the current lower and upper bounds are
�d .logd�1 n/ [49] and Od .logd�1=2 n/ [54]. Closing this gap is an important open problem.

Conjecture 1.4.1. The discrepancy of Tusnady’s problem in d dimensions is O.logd�1 n/.

1.2.5. Arithmetic progressions
This problem has a long history, including results of Weyl [69] and Roth [58]. Using

Fourier analysis, Roth [58] proved a lower bound of �.n1=4/. Interestingly, Roth believed that
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his result might not be best possible and the right exponent might be 1=2, as suggested by
random colorings. Eventually, Matoušek and Spencer [51] gave a matching O.n1=4/ upper
bound using the partial coloring method.

For homogeneous arithmetic progressions, an O.log n/ upper bound follows from
a simple explicit construction. A famous question of Erdős was whether the discrepancy is
O.1/. This was answered negatively in a breakthrough work by Tao [67].

1.3. Hereditary discrepancy and rounding
An important application of discrepancy is in rounding a fractional solution to

an integral one without introducing much error, based on the following result of Lovász,
Spencer, and Vesztergombi [44].

Theorem 1.5 ([44]). For any x 2 Rn satisfying Ax D b, there is a Qx 2 Zn with k Qx � xk1 <

1, such that kA.x � Qx/k1 � herdisc.A/.

Here herdisc.A/ is the hereditary discrepancy of A, which is a more robust version
of discrepancy, and defined as the maximum discrepancy over all column restrictions of A,

herdisc A D max
S�Œn�

disc.AjS / D max
S�Œn�

min
x2¹�1;1ºn

kAxk1:

For most classes of set systems, any upper bound on discrepancy is also a bound
on hereditary discrepancy, as the class itself may be closed under taking subset of columns.
For example, this holds for all the problems in Section 1.2, except for the case of arithmetic
progressions, which is an example of a particular set system.

Rounding via discrepancy. To see the idea behind Theorem 1.5, suppose that x is 1=2-
integral (i.e., each x.j / has fractional part 0 or 1=2). Let S be the set of variables with
fractional part 1=2, and let y be ˙1 coloring of S with discrepancy disc.AjS /. Then
x0 D x C y=2 is integral andAx0

� Ax


1
D

A.y=2/


1
D disc.AjS /=2 � herdisc.A/=2:

That is, the signs of y are used to decide whether to round each x.j / up or down. For
arbitrary x, Theorem 1.5 follows by applying this to each bit after the decimal starting from
the least significant bit.

The problem of rounding arises naturally for example in designing efficient approx-
imation algorithms for discrete optimization problems. However, note that Theorem 1.5 only
shows the existence of a good rounding, and gives no clue on how to actually find one effi-
ciently. We shall see an algorithmic version of Theorem 1.5 in Section 3.1. In general, the
recent algorithmic progress on discrepancy has led to several new results in approximation
algorithms, a particularly notable result is [60].

2. Classical techniques

We now describe the classical techniques of (i) the linear algebraic method, (ii) par-
tial coloring, and (iii) Banaszczyk’s method. Interestingly, the linear algebraic idea will also
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play a key role in many of the algorithmic versions of partial coloring and Banaszczyk’s
method that we shall see later in Sections 3 and 4.

2.1. Linear algebraic method
This technique is simple but it can be surprisingly powerful. It is widely used in

combinatorial optimization and is also referred to as iterated rounding [41].
For discrepancy problems it works as follows. Let B 2 Rm�n be the input matrix.

The algorithm starts with the all-zero coloring x0 D .0; 0; : : : ; 0/, and updates the coloring
over several iterations t D 1; 2; : : : ; T , until the final coloring xT 2 ¹�1; 1ºn. The interme-
diate colorings satisfy xt 2 Œ�1; 1�n, and once some color reaches ˙1 it is never updated
again.

It remains to specify how the coloring is updated in each iteration. Call a variable j

alive at time t , if xt�1.j / 2 .�1; 1/ and let At be the set of alive variables at the beginning
of time t . The idea is to pick a suitable subset Bt of rows of B , with rank.Bt / < jAt j, and
consider some nonzero solution vt satisfying (i) Bt vt D 0 and (ii) vt .j / D 0 for j 2 Œn� n At .
Such a solution exists as there are jAt j alive variables, and rank.Bt / � jAt j.

The coloring is updated as xt D xt�1 C ıvt , where ı > 0 is chosen so that xt stays
in Œ�1; 1�n and at least one more color reaches ˙1 compared to xt�1. The ingenuity lies in
choosing Bt at each time t .

Let us see how to use this template to prove the Beck–Fiala theorem.

Theorem 1.2. Any set system with maximum degree d has discrepancy at most 2d � 1.

Proof. Let B denote the incidence matrix of the set system. By our assumption, each column
of B has at most d ones. Let us apply iterated rounding, where at iteration t we choose Bt

to consist of rows Si with jAt \ Si j > d . Call such rows large. As each column of B has at
most d ones, the number of ones in B restricted to columns in At is at most d jAt j, and so
the number of large rows is strictly less than jAt j and thus rank.Bt / < jAt j.

To bound the final discrepancy, notice that as long as a row is large, its discrepancy
stays 0. But once it has at most d alive elements, then no matter how these variables get
updated in subsequent iterations, the additional discrepancy must be strictly less than 2d

(e.g., if all the d alive variables were all �0:999 but get set to 1 eventually). As the final
discrepancy of a set system is integral, this gives the bound of 2d � 1.

For more ingenious applications of this method to discrepancy, we refer to the survey
by [17] and references therein.

2.2. Partial coloring method
We now describe the partial coloring lemma of Spencer and give some applications.

We then describe the convex geometric proof of this result due to Gluskin [33] based on an
exposition of Giannopoulos [32].

5184 N. Bansal



Theorem 2.1 (Partial coloring lemma). Let A be an m � n matrix with rows a1; : : : ; am.
For each i 2 Œm�, let �i D �i kai k2 be target discrepancy bound for row i . If the �i satisfyX

i2Œm�

g.�i / � n=5; (2.1)

where

g.�/ D

´
K exp.��2=9/ if � > 0:1;

K ln.��1/ if � � 0:1;

and K is some absolute constant. Then there exists x 2 ¹�1; 0; 1ºn with j¹j W jx.j /j D 1ºj �

n=10 and disc.y; ai / � �i for each i 2 Œm�.

Comparison with union bound. It is instructive to compare this with the standard union
bound argument. For a random coloring x, as PrŒdisc.ai ; x/ � �kai k2� � exp.��2

i =2/ �

g.�i /. For the union bound to work, we need to choose �i to (roughly) satisfy the conditionP
i g.�i / < 1. In contrast, Lemma 2.1 allows

P
i g.�i / D �.n/. This gives substantially

more power. For example, suppose A is a 0–1 matrix corresponding to a set system. The
union bound argument cannot ensure that �i � jSi j

1=2 for even a couple of sets, while
Theorem 2.1 allows us to set �i < 1 for O.n= log n/ sets. As x 2 ¹�1; 0; 1ºn, this in fact
gives a partial coloring with exactly zero discrepancy for those sets!

2.2.1. Applications
The partial coloring method is very general and is widely used in discrepancy theory.

We show how it directly gives Theorem 1.1 and the O.d 1=2 log n/ bound for the Beck–Fiala
problem.

Proof of Theorem 1.1 for Spencer’s problem. Let us assume that m � n. The case of
m � n follows by reducing n D m by a standard linear algebraic trick. The coloring is
constructed in phases. Let n0 D n and let nk be the number of uncolored elements in
phase k. In phase k, we apply Theorem 2.1 to the set system restricted to these nk elements
with �k D c.nk log.2m=nk//1=2 for each row, and verify that (2.1) holds for large enough
c D O.1/. This gives a partial coloring on � nk=10 elements, so nk � .0:9/kn and summing
up over the phases, total discrepancy is at most �0 C �1 C � � � D O..n log.m=n//1=2/.

O.d1=2 log n/ discrepancy for the Beck–Fiala problem. Again, the coloring is con-
structed in phases where nk � n.0:9/k elements are uncolored in phase k. In phase k, let
sk;j denote the number of sets with number of uncolored elements in the range Œ2j ; 2j C1/.
Then sk;j � min.m; nkd=2j / as the degree is at most d . A simple computation shows that
(2.1) holds for �i D cd 1=2 for each i , for large enough c D O.1/. The result then follows
directly as there are O.logn/ phases and each set incurs O.d 1=2/ discrepancy in each phase.

2.2.2. Proof of the partial coloring lemma
The original proof of Spencer was based on the pigeonhole principle and the entropy

method and has several nice expositions, e.g., [1]. We sketch here the convex geometric proof
of Gluskin [33].
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The simple observation that ties discrepancy to geometry is the following.

Observation 2.1.1. For a m � n matrix A, there is a coloring with discrepancy at most �i

for row ai iff the polytope P D ¹x W jai xj � �i ; i 2 Œm�º, contains some point in ¹�1; 1ºn.

Similarly, Theorem 2.1 is equivalent to showing that the polytope P contains some
point in ¹�1; 0; 1ºn with at least n=10 nonzero coordinates, if the �i satisfy (2.1).

Gluskin relates this property to the Gaussian volume of P . Call a convex body K

symmetric if x 2 K implies �x 2 K. Let n.x/ D .2�/�n=2 exp.�kxk2
2=2/ denote the stan-

dard n-dimensional Gaussian measure. For ease of exposition, we ignore the constants in
Theorem 2.1.

Theorem 2.2 (Gluskin). There is a small constant ı > 0, such that any symmetric convex
body K 2 Rn with n.K/ � 2�ın contains y 2 ¹�1; 0; 1ºn with at least ın coordinates ˙1.

The proof is based on a nice counting argument.

Proof. For x 2 Rn, let Kx WD K C x denote K shifted by x. As K is symmetric, we have
that n.Kx/ � exp.�kxk2=2/n.K/, as the densities of any two symmetric points y and �y

upon shifting by x satisfy,

n.y C x/ C n.x � y/ � 2
�
n.x � y/n.y C x/

�1=2
D 2 exp

�
�kxk

2=2
�
n.y/:

Consider the 2n copies Kx for all x 2 ¹�1; 1ºn. As the total Gaussian volume of these copies
is at least 2n exp.�n=2/n.K/ D 2cn, for some c > 0, there exists some point z contained in
at least 2cn copies. So there must exist some x; x0 2 ¹�1; 1ºn differing in �.n/ coordinates
such that z lies in both Kx and Kx0 . Suppose z D k1 C x D k2 C x0 for some k1; k2 2 K.
Then y WD .x � x0/=2 D .k2 � k1/=2 2 K as K is symmetric and convex, and, moreover,
y 2 ¹�1; 0; 1ºn with �.n/ coordinates ˙1.

Theorem 2.1 follows by relating the condition (2.1) on �i to the volume n.P /.

Gaussian measure of polytopes. For a vector a 2 Rn and scalar b > 0, define the slab
S.a; b/ D ¹x W jhx; aij � bº. Then S.a; �kak2/ is symmetric and convex, with measure
n.S.a; b// D 1.Œ��; ��/, and P D

Tm
iD1 S.ai ; �i kai k2/ is an intersection of slabs.

By the Sidak–Khatri lemma (see, e.g., [33]), for any symmetric convex body K and
slab S , we have that n.K \ S/ � n.K/n.S/, and hence n.P / �

Q
i n.S.ai ; �i kai k2/.

As 1.Œ��; ��/ � 1 � O.exp.��2=2// for � � 1 and O.�/ for � < 1, we have that
log.1Œ��; ��/ � �g.�/, and thus condition (2.1) implies that n.P / � 2�ın.

2.3. Banaszczyk method
A problem with the partial coloring method is that it requires O.log n/ rounds to

obtain a full coloring, which can result in an extra O.log n/ factor loss in the discrepancy
bound, as we saw for the Beck–Fiala problem. The following result of Banaszczyk [4] gives
a way to find a full coloring directly and can give better results. The form of the result also
makes it broadly applicable in other settings.
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Theorem 2.3 ([4]). Given any convex body K � Rm of Gaussian measure m.K/ � 1=2,
and vectors v1; : : : ; vn 2 Rm of `2 norm at most 1=5, there exists a coloring x W Œn� ! ¹�1;1º

such that
Pn

j D1 x.j /vj 2 K.

While this statement looks similar to Theorem 2.1, a crucial difference is that the
Gaussian measure and convex body K here are in the output space and are m-dimensional,
while K in Theorem 2.1 is in the input space and n-dimensional.

The proof of Theorem 2.3 involves some delicate computation and a non-trivial idea
of Ehrhard symmetrization. However, the main idea is very clean that we sketch below.

Proof. The key step is to show that for any convex body K with m.K/ � 1=2 and u 2 Rm

with kuk2 � 1=5, there is a convex body K � u contained in .K � u/ [ .K C u/ such that
m.K � u/ � 1=2.

Given this fact, Theorem 2.3 follows by induction on the number of vectors n. It
trivially holds for n D 0 as 0 2 K as m.K/ � 1=2. Suppose inductively that it holds for some
n � 1. Consider the convex body K 0 D K � vn. As m.K 0/ � m.K/ � 1=2, by induction
there exist x.1/; : : : ; x.n � 1/ 2 ¹�1; 1º such that u D x.1/v1 C � � � C x.n � 1/vn�1 2 K 0.
But as K 0 � .K � vn/ [ .K [ vn/, at least one of u C vn or u � vn must lie in K, giving
the sign x.n/ such that u C x.n/vn D

Pn
iD1 x.i/vi 2 K.

Bound for the Komlós problem. Theorem 2.3 directly gives the O..log n/1=2/ bound for
the Komlós problem. This follows as Ekgk1 D O..logm/1=2/ for a random Gaussian vector
g in Rm, and so choosing K to be 2Ekgk1 times the unit `1-ball in Rm, by Markov’s
inequality we have that m.K/ � 1=2. As Theorem 2.3 requires kvk2 � 1=5, we can further
scale K by a factor of 5. Finally, we can assume m � n2, as kvj k2 � 1 for each j implies
that at most n2 rows ai can have kai k1 � 1.

Banaszczyk’s theorem for prefix discrepancy. In a subsequent work, Banaszczyk [5] fur-
ther extended this result to handle prefixes, using a clever inductive argument.

Theorem 2.4 ([5]). Given vectors v1; : : : ; vn 2 Rm of `2 norm at most 1=5 and any convex
body K � Rm with m.K/ � 1 � 1=.2n/, there exists a coloring x W Œn� ! ¹�1; 1º such that
each for k D 1; : : : ; n, the prefix sum satisfies

Pk
j D1 x.j /vj 2 K.

Proof. Consider the sequence of symmetric convex bodies Kj defined iteratively as Kn D K

and Kj D .Kj C1 � vj C1/ \ K, for j D n � 1; : : : ; 1. We first show that m.Kj / � 1 � .n �

j C 1/=2n for j 2 Œn� by backwards induction. Indeed, m.Kn/ D m.K/ � 1 � 1=.2n/ in
the base case. If this it holds for some j � n, then

m.Kj �1/ D m.Kj � vj / \ m.K/ � m.Kj � vj / �
�
1 � m.K/

�
� m.Kj / �

�
1 � m.K/

�
� 1 �

n � j C 1

2n
�

1

2n
D 1 �

n � j

2n
;

where we use that m.Kj � vj / � m.Kj / as m.Kj / � 1=2.
So m.K1/ � 1=2 and K1 is convex, and a simple calculation shows that either v1

or �v1 lies in K1. We now apply induction in the forward direction. Suppose there is some

5187 Discrepancy theory and related algorithms



j � 1 such that there are signs x.1/; : : : ; x.j / satisfying (i) u WD
Pj

iD1 x.i/vi 2 Kj and (ii)Pk
iD1 x.i/vi 2 K for all k � j . To continue the induction, we need to show that (i) u 2 K

and (ii) that there is a sign x.j C 1/ such that u C x.j C 1/vj C1 2 Kj C1. Now, u 2 K

clearly holds as by (i) we have u 2 Kj � K. Now, for the sake of contradiction suppose
that both u C vj C1 and u � vj C1 … Kj C1. Then u … Kj C1 C vj C1 [ Kj C1 � vj C1 and
hence u … Kj C1 � vj C1. By definition, as Kj D K \ .Kj C1 � vj C1/ � Kj C1 � vj C1, this
contradicts our inductive assumption that u 2 Kj .

Bound for prefix Komlós. Theorem 2.4 directly implies an O..log n/1=2/ discrepancy
for the prefix version of the Komlós problem. In particular, the condition that
m.K/ � 1 � 1=.2n/ instead of � 1=2 in Theorem 2.3 make no difference beyond a constant
factor as PrŒkgk1 � Ekgk1 C t � � exp.�t2=2/ by concentration for Lipschitz functions
of Gaussians, and choosing t D O..log n/1=2/.

3. Algorithms for partial coloring

In the next few sections we describe the progress on making these results algorith-
mic. We first describe several different algorithmic proofs for partial coloring. In Section 4
we describe the algorithmic approaches for Banaszczyk’s method as stated in Theorem 2.3.
In Section 5, we describe an algorithm to approximate the hereditary discrepancy of any
arbitrary matrix.

The algorithms for partial coloring can be divided into two types: either based on a
random walk approach, or a direct optimization based approach.

Random-walk based approaches. Bansal [6] gave the first algorithm for various applica-
tions of partial coloring such as the O.n1=2/ bound for Spencer’s problem with m D O.n/

sets and the O.d 1=2 log n/ bound for the Beck–Fiala problem. Subsequently, Lovett and
Meka [45] designed an elegant and substantially simpler algorithm that gave an algorithmic
version of the full partial coloring lemma as stated in Theorem 2.1.

These algorithms can be viewed as a randomized version of the iterated rounding
method, where one starts with the all zero-coloring, and updates the variables gradually
using a correlated Brownian motion with small discrete steps. The variables are fixed once
they reach ˙1, and correlations between the variables are chosen to ensure that each row has
low discrepancy. Bansal’s algorithm was based on solving a suitable semidefinite program
(SDP) at each time step to generate the covariance matrix for the random walk. Lovett and
Meka showed that one can simply do a standard discrete Brownian motion in the subspace
orthgonal to tight discrepancy constraints, without the need to solve any SDPs.

Direct methods. Later, Rothvoss [59] further extended the result of Lovett and Meka from
polytopes to general symmetric convex bodies and gave an algorithmic version of Theo-
rem 2.2. His algorithm is extremely elegant and simple to describe. A related algorithm was
given by Eldan and Singh [28]. Both these algorithms are based on solving a very simple
optimization problem.
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We now describe these algorithms and sketch the main ideas behind their analysis.

3.1. The SDP-based approach
We start with the SDP-based approach. Even though the latter algorithms are more

general and simpler, this approach is very natural and motivates why the Brownian motion
is needed. It is also the only approach we know for some problems such as the algorithmic
version of Theorem 1.5, that we describe below in Theorem 3.1. More importantly, it is quite
flexible and can be extended in various ways by adding new SDP constraints, as we shall see
later in Section 4.

A relaxation for discrepancy. Given an input matrix A, a natural approach to find a low
discrepancy coloring for it is to first solve some convex programming relaxation and then try
to round the solution suitably to ˙1. Let us first consider linear programming relaxations.

Recall that a linear program (LP) consists of variables x1; : : : ; xn 2 R, and the goal
is to optimize some linear objective cT x subject to linear constraints aT

i x � bi for i 2 Œm�.
LPs can be solved optimally in time polynomial in n; m, and the bit length of the input.

Let ai denote the i th row of A, then the natural LP relaxation for discrepancy is,

min t s.t. � t � ai x � t; 8i 2 Œm� and � 1 � xj � 1; 8j 2 Œn�:

However, this always has the trivial solution x D 0 with objective t D 0, which is useless.
So let us consider a more general class of optimization problems called semidefi-

nite programs (SDPs). An SDP can be viewed as an LP with variables of the form xij for
1 � i; j � n, arranged as entries of an n � n matrix X , where we require that X be symmetric
and positive semidefinite, denoted by X � 0. For matrices A; B , let hA; Bi D Tr.AT B/ DP

ij Aij Bij denote the trace inner product. An SDP is an optimization problem of the form

maxhC; Xi s.t. hAk ; Xi � bk ; 1 � k � m; X � 0;

where C; A1; : : : ; Am 2 Rn�n.
SDPs can be solved to any desired level of accuracy in polynomial time. As X � 0

iff it is the Gram matrix of some vectors w1; : : : ; wn 2 Rn, i.e., Xij D hwi ; wj i, SDPs can
be viewed as vector programs where the variables are the vectors wi and we can impose any
linear constraints on their inner products (but not on the wi themselves).

SDP relaxation for discrepancy. Let � be some upper bound on the discrepancy disc.A/,
and consider the following SDP:X

j

aij wj

2

2

� �2 for i 2 Œm�; kwj k
2
2 D 1; i 2 Œn�;

Let us call a feasible solution to this SDP a vector-coloring for A, and the smallest � for
which it is feasible as the vector discrepancy, vecdisc.A/. Clearly, vecdisc.A/ � disc.A/.

At first glance, this SDP also does not seem useful. For example, for Spencer’s
problem, the solution wi D ei , where wi is the i th standard basis vector, is always feasi-
ble with � D n1=2, irrespective of the matrix A. However, this SDP becomes quite useful
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when � � n1=2 as it gives nontrivial correlations between the vectors wi that we can exploit.
Below, we describe a very simple algorithm that gives the following algorithmic version of
Theorem 1.5.

Theorem 3.1 ([6]). Given any A 2 Rm�n, there is an efficient algorithm that, with high
probability, finds a coloring with discrepancy O..log m log n/1=2 herdisc.A//.

Later, we will also describe a simple O..n log log log n/1=2/ bound for Spencer’s
problem with m D O.n/ using this SDP. This is perhaps surprising, as apriori the naive
solution wi D ei does not give any meaningful correlations between the elements and cor-
responds to random coloring.

3.1.1. Algorithm for Theorem 3.1
Before describing the algorithm, it is instructive to see why a direct approach for

rounding the SDP does not work.

Problemwith direct rounding. For simplicity, let us suppose that � D 0 for some matrix A.
Then the vectors w1; : : : ; wn produced by the SDP solution are nicely correlated so thatP

j aij wj D 0 for each row i .
To convert the wj into scalars while preserving the correlations, let us pick a random

Gaussian vector g 2 Rn, with each coordinate gk � N.0; 1/ independently and project the
vectors wj on g to obtain yj D hwj ; gi. Then as the gk are iid N.0;1/, we have that hg;wi DP

k gkw.k/ � N.0; kwk2
2/ for any vector w 2 Rn, and hence (i) yj � N.0; 1/ for each j

as kwj k2
2 D 1 and (ii)

P
j aij yj D 0 for each row i . This seems very close to what we want

except that yj � N.0; 1/ instead of ˙1.
However, the following hardness result of Charikar, Newman, and Nikolov [21] rules

out any reasonable way of rounding these yj to ˙1.

Theorem 3.2 ([21]). Given a set system on n elements and m D O.n/ sets, it is NP-hard to
distinguish whether it has discrepancy 0 or �.

p
n/.

In particular, this implies that there must exist set systems with discrepancy �.
p

n/

but vector-discrepancy 0 (otherwise solving the SDP would give an efficient way to distin-
guish between set systems with discrepancy 0 and �.

p
n/).

Discrete Brownian motion. So instead of trying to round the yj ’s directly to ˙1, the algo-
rithm will gradually obtain a ˙1 coloring by combining solutions of various SDPs over time.
We first give a overview of the algorithm.

More precisely, at time 0, we start with the coloring x0 D .0; : : : ; 0/ and
modify it over time as follows. Let xt�1 denote the fractional coloring at time t � 1. Then
xt D xt�1 C �xt is obtained by adding a small update vector �xt to xt�1. As the pertur-
bations are added, the colors evolve over time, and once a color reaches ˙1 it is frozen and
no longer updated. The updates �xt are obtained by solving the SDP with � D herdisc.A/,
restricted to the alive elements and setting �xt .j / D hg;wj i, where g is a random gaussian
and  is a small multiplier.
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Formal description. Let  D maxi;j jAij j=n and ` D 8 log n=2. Let xt and At denote the
coloring and the set of alive (unfrozen) variables at the end of time t . Let � D herdisc.A/.

(1) Initialize x0.j / D 0 for j 2 Œn� and A0 D ;.

(2) At each time step t D 1; 2; : : : ; `, do the following.
Solve the following SDP:X

j

aij wt
j

2

2

� �2
8i 2 Œm�;

wt
j

2

2
D 1 if j 2 At�1; else

wt
j

2

2
D 0:

Pick a random Gaussian gt 2 Rn, and set xt .j / D xt�1.j / C hgt ; wt
j i.

Set At D ¹j W jxt .j /j < 1º.

(3) Set x`.j / D �1 if x`.j / < �1 and x`.j / D 1 otherwise. Output x`.

Analysis. We now sketch the ideas behind Theorem 3.1. First, notice that as � D herdisc.A/,
the SDP above is always feasible no matter which variables are alive.

Let us now see how the colors of the elements and the discrepancies of the rows
evolve over time. Fix some element j . Its color xt .j / starts at 0 at t D 0 and evolves as
a martingale with updates �xt .j / D hwt

j ; gt i until it is frozen. As kwt
j k D 1, we have

�xt .j / � N.0;2/ and thus xt .j / will reach ˙1 in O.1=2/ steps with constant probability.
As there are ` D O.log n=2/ steps, whp all elements will reach ˙1, by the end of the
algorithm.

Now fix some row i . Its discrepancy xt .ai / WD
P

j aij xt .j / is 0 at t D 0, and
evolves as

P
j aij �xt .j / D

P
j hgt ;

P
j aij wt

j i at step t . As k
P

j aij wt
j k2 � �2, the

sequence xt .ai / forms a martingale with Gaussian increments with variance at most 2�2.
As ` D O.log n=2/, by standard martingale concentration and union bound over the m

constraints, each row has final discrepancy O.`1=2 � � � .logm/1=2/ D O.�.logm logn/1=2/

whp.
Finally, whp truncating x`.j / to ˙1 introduces negligible error for any row. This

follows as �xt .j / � N.0; 2/ we have that whp jxt .j /j < 1 C  � O..log n/1=2/ when it
freezes. As herdisc.A/ � maxij jAij j and  D maxij jAij j=n � herdisc.A/=n, the rounding
error is negligible.

3.1.2. Algorithmic version of Spencer’s result
The above approach is quite flexible, e.g., the discrepancy bounds �t

i for each row
i and be chosen adaptively at time t . We describe a simple version of this idea that already
gives a ˇn1=2 for ˇ D c.log log log n/1=2 bound for Spencer’s problem with m D n sets, and
thus beats random coloring.

As in Section 2.2.1, it suffices to obtain a partial coloring with O.ˇn1=2/ discrep-
ancy. Let us run the algorithmic template above for ` D 100=2 steps, using the following
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SDP relaxation for partial coloring at each time t :X
j 2Si

wj

2

2

� �2
i for i 2 Œm�; (3.1)X

j 2At�1

kwj k
2
2 � jAt�1j=10; (3.2)

kwj k
2
2 � 1 8j 2 At�1; else kwj k

2
D 0:

Notice that the �i on the right hand side in (3.1) can be different for each rows. The constraint
(3.2) says that at least jAt�1j=10 elements must be colored.

The bounds �i are set as follows. Initially, �i D cn1=2 for each Si where c is a large
enough constant. If the discrepancy jxt .Si /j for Si exceeds ˇn1=2 at any time, we label Si

dangerous and set �2
i D n= log n at all future time steps.

The result follows from the following two observations.

Lemma 3.3. If the SDPs are feasible at all time steps, then whp each set has discrepancy
O.ˇn1=2/, and at least �.n/ elements are colored ˙1 at the end of the algorithm.

Proof. (Sketch) By the choice of the �i , once a set becomes dangerous, its discrepancy
evolves as a martingale with Gaussian increments with variance at most 2n= logn. As there
at most ` D O.�2/ time steps, whp each set incurs an additional discrepancy of at most
O.n1=2/.

Next, the variance EŒ�xt .j /2� increases by at least 2=10 on average for the alive
variables at each step t by the constraint (3.2). As ` D 100�2, a simple Markov argument
shows that a constant fraction of the elements will reach ˙1 with at least constant probability.

Lemma 3.4. With probability 1 � o.1/, all the SDPs are feasible.

Proof. (Sketch) As �i � O.n1=2/ at each time and ` D O.�2/, each set Si has discrep-
ancy O.n1=2/ in expectation. So by standard martingale concentration, with probability
1 � o.1/, the fraction of sets that ever become dangerous 2 exp.��.ˇ2// � .log log n/�2

for c large enough. Let us condition on this event. We will show that the SDP is feasible at
each step using Theorem 2.1. Indeed, as each dangerous set Si contributes g.�i =jSi j

1=2/ �

g.1= log n/ � K log log n to (2.1), the dangerous sets contribute

O
�
n=.log log n/2

�
� K log log n D o.n/

in total. As �i D cn1=2 for the other sets and m D n, their total contribution is also at most
n=10 for c large enough.

3.2. The Lovett–Meka algorithm
Lovett and Mekka [45] substantially simplified the random-walk approach and

extended it to give the following algorithmic version of the general partial coloring lemma.
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Theorem 3.5. Given an input matrix A 2 Rm�n and some fractional coloring x0 2 Œ�1; 1�n

with k alive elements, for i 2 Œm� let �i be such thatX
i

exp
�
��2

i =16
�

� k=16: (3.3)

Then there is a randomized polynomial time algorithm to find a coloring x with at most k=2

alive variables such that jx.ai / � x0.ai /j � �i kai k2 for each row i 2 Œm�.

We remark that the colors produced by Theorem 3.5 lie in Œ�1; 1�, in contrast to
¹�1;0; 1º in Theorem 2.1, but this does not make any difference. Theorem 3.5 is also slightly
stronger than Theorem 2.1 for �i � 1.

The key idea of the algorithm is that whenever a discrepancy constraint becomes
tight or some variable reaches ˙1, one can simply do a random walk orthogonal to it. We
now describe it formally. Without loss of generality, we assume that all variables are initially
alive, i.e., k D n.

3.2.1. The algorithm
Let At�1 be the set of alive variables at the beginning of time t . The algorithm

maintains a linear subspace Vt�1 � Rn. Initially at t D 1, the coloring is x0, A0 D Œn� and
V0 D Rn. The following is repeated for ` D O.�2/ steps.

At time t , the algorithm chooses a random gaussian vector gt in the subspace Vt�1

and updates xt D xt�1 C gt , where  is a small step size as usual.

(1) If jxt .j /j � 1, set Vt D Vt�1 \ e?
j , so that x.j / will not be updated anymore.

(2) If jxt .ai /j � �i kai k2, set Vt D Vt�1 \ a?
i , so that row i incurs no further dis-

crepancy.

Analysis. We assume that  is small enough so that we can ignore the rounding error in
the sketch below. By design, the algorithm ensures that xt .j / 2 Œ�1; 1� for all j and that
xt .ai / � �i kai k2 for all i . We now show that, with constant probability, at least half the
variables reach ˙1.

For a linear subspace V , let N.V / denote the standard multidimensional Gaussian
distribution supported on V . By rotational invariance, a random vector g � N.V / can be
written as g D g.1/v1 C � � � C g.d/vd for some orthonormal basis ¹v1; : : : ; vd º for V and
g.1/; : : : ; g.d/ iid N.0; 1/. We note the following fact.

Lemma 3.6. Let V be a d -dimensional subspace of Rn and g � N.V /. Then for all u 2

Rn, hg; ui � N.0; �2/ where �2 � kuk2. Moreover, for i D 1; : : : ; n let �i be such that
hg; ei i � N.0; �2

i /. Then
Pn

iD1 �2
i D d .

Proof. Let u0 denote the projection of u onto V . Clearly, ku0k � kuk. As g 2 V , hg; ui D

hg; u0i and hence hg; ui � N.0; ku0k2/. For the second part, if v1; : : : ; vd is an orthog-
onal basis for V , then �2

i D
Pd

j D1hei ; vj i2. Thus
Pn

iD1 �2
i D

Pn
iD1

Pd
j D1hei ; vj i2 DPd

j D1

Pn
iD1hvj ; ei i

2 D
Pd

j D1 kvj k2 D d .

5193 Discrepancy theory and related algorithms



Proof of Theorem 3.5. (Sketch) First we claim that in expectation, not many discrepancy
constraints become tight in step (2) of the algorithm. This follows as for any time t , by
Lemma 3.6 the discrepancy increment for each row ai is distributed as N.0; � 2kai k

2/.
As ` D O.�2/, by standard tail bounds PrŒjx`.aj / � x0.aj /j � �i kai k2� D exp.��.�2

i //.
As the �i satisfy (3.3), choosing the constants appropriately, the probability that more than
n=8 discrepancy constraints becomes tight is at most 1=8.

Let us condition on the above event. The proof now follows from a win–win argu-
ment. If more than n=2 elements reach ˙1, we are already done. If this does not happen, then
at any time during the algorithm the subspace Vt has dimension at least n � n=2 � n=8 �

3n=8. By Lemma 3.6, as
P

j EŒ�xt .j /2� � .3n=8/2 and ` D O.�2/ steps, the energyP
j .x`.j /2 � x0.j /2/ must increase by �.n/ in expectation. But as x`.j /2 � x0.j /2 2

Œ�1; 1� for all j , a simple argument can be used to show that at least �.n/ variables reach
˙1 in expectation.

3.3. Direct approaches
The Lovett–Meka algorithm crucially uses the face structure of the polytope and

does not seem to generalize to general convex bodies in the sense of Theorem 2.2. In partic-
ular, even if n.K/ � 2�ın, condition (2.1) may not hold as it might require exponentially
many facets to obtain any reasonable approximation of a general convex body K.

We now describe an extremely elegant and simple to state the algorithm due to
Rothvoss [59], that finds a partial coloring in general convex bodies. We then describe a
related algorithm by Eldan and Singh [28].

3.3.1. Rothvoss’ algorithm
Let K be a symmetric convex body with .K/ � 2�ın. Take a random Gaussian

g 2 Rn, and output the point closet to g in the body K \ Œ�1; 1�n, i.e., output

x�
D argmin

®
kg � xk2 W x 2 K \ Œ�1; 1�n

¯
:

That’s it! The point x� can be computed by a convex program, using a membership oracle
for K.

Theorem 3.7 ([59]). Let " > 0 be a sufficiently small constant and ı WD .3=2/" log2.1="/,
and let K be a symmetric convex body with n.K/ � exp.�ın/. Then whp, x� has at least
"n many coordinates ˙1.

Analysis. The proof is also very elegant and uses Gaussian concentration for Lipschitz func-
tions and the Sidak–Khatri lemma in a clever way.

The starting observation is that the distance d.g; x�/ is at least n1=2=5 with prob-
ability 1 � exp.��.n//. This follows as x� 2 Œ�1; 1�n and as g.j / � N.0; 1/ for each
coordinate j , we have PrŒjg.j /j � 2� � 1=25. On the other hand, d.g; K/ � 3.ın/1=2

with probability 1 � exp.��.n// by Gaussian concentration for Lipschitz functions as
n.K/ � exp.�ın/.
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Now, suppose for the sake of contradiction that fewer than "n coordinates of x� are
˙1 for some g. Let I be the set of these coordinates. A key observation is that if x� is an
optimum solution to some convex program, and some constraint is not tight at x�, then x�

remains optimum even when this constraint is removed. So x� would still be the optimum
solution, if replace K \ Œ�1; 1�n in the convex program by K \ S.I /, where S.I / D ¹x W

jx.j /j � 1; j 2 I º is the intersection of the slabs corresponding to coordinates in I .
By the Sidak–Khatri lemma, n.K \ S.I // � n.K/n.S.I // � exp.�.� C 2ı/n/,

and hence by Gaussian concentration the distance d.g; x�/ D d.g; K \ S.I // �

6." C ı/n1=2 with probability 1 � exp.��.n//. So even if after a union bound over the �

exp.ı ln.1=ı/n/ possible choices for I , one has d.x�; g/ D

O.." C ı/n1=2/ whp. This contradicts the first observation that d.x�; g/ � n1=2=5 whp.

3.3.2. Eldan–Singh algorithm
This algorithm is as simple to state and only requires linear optimization: Pick a

random direction c 2 Rn and optimize over K \ Œ�1; 1�n, i.e., output

x�
D argmax

®
cT x W x 2 K \ Œ�1; 1�n

¯
:

Eldan and Singh [28] showed a result similar to Theorem 3.7. That is, for any � > 0 small
enough, there is a ı > 0 such that if n.K/ � 2�ın then whp x� has at least "n coordinates
˙1 with constant probability.

4. Algorithmic version of Banaszczyks’s result

We now consider the algorithmic approaches for Banaszczyk’s method. The first
progress was by Bansal, Dadush, and Garg [8], who gave an efficient SDP-based algorithm
to find an O..logn/1=2/ discrepancy coloring for the Komlós problem. A deterministic algo-
rithm for the problem was subsequently obtained by Levy, Ramadas, and Rothvoss [42].

Later, Bansal, Dadush, Garg, and Lovett [9] gave an algorithm for the general case
of Banaszczyk’s theorem with arbitrary convex body K. Their algorithm, called the Gram–
Schmidt walk, combines linear algebra and random walks. Recently, Harshaw et al. [35] gave
an optimal analysis of this walk.

We describe both these approaches below. We mention that finding an efficient algo-
rithm for the prefix version of Banaszczyk’s problem in Theorem 2.4 is still open.

Problem 4.1. Find an efficient algorithm for the prefix version of Banaszczyk’s theorem.
The case of prefix Komlós (Problem 1.4) would already be very interesting.

4.1. The Komlós problem
We describe the following result of Bansal, Dadush, and Garg [8].

Theorem 4.2 ([8]). Given vectors v1; : : : ; vn 2 Rm with kvj k2 � 1 for j 2 Œn�, there is a
polynomial time algorithm that finds an O..log n/1=2/ discrepancy coloring whp.
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The algorithm is based on SDPs and is similar to that in Section 3.1, but it adds
some extra constraints to the SDP so that the resulting solution has some additional desirable
properties. To understand these properties, it is instructive to see what can go wrong with
the partial coloring approach. To focus on the main ideas we consider the special case of
Beck–Fiala problem, with the goal of finding an O..d log n/1=2/ discrepancy coloring.

Recall that the O.d 1=2 logn/ bound using partial coloring was obtained by requiring
zero discrepancy for large sets S , say of size > 10d . For small sets of size s � 10d , we can set
the bound roughly O.s1=2/ (in Section 2.2.1 we used the bound d 1=2, but O.s1=2 ln.20d=s//

also works). So as long as a set is large, it incurs zero discrepancy, and once it is small it
incurs at most O.d 1=2/ discrepancy in each partial coloring step.

The ideal process. Ideally, one would expect that once a set S becomes small, then when-
ever a constant fraction of the elements get colored colored globally in a partial coloring step,
the size of S should also decrease geometrically. If so, this would actually give an O.d 1=2/

discrepancy. However, the problem is that partial coloring does not give much control on
which elements get colored, e.g., sets can incur discrepancy O.d 1=2/ even if only O.d 1=2/

of their elements get colored. This imbalance between the discrepancy and the progress a
set makes in getting colored is the main barrier to improving the O.d 1=2 log n/ bound.

A concrete bad example. To see this more explicitly, let us consider the Lovett–Meka
algorithm. Suppose the subspace Vt�1 at time t is spanned by the orthonormal basis b;

edC1; : : : ; en where b D d �1=2.e1 C � � � C ed /. Then any update �xt 2 Vt�1 has �xt .1/ D

� � � D �xt .d/, and for the set S D ¹1; : : : ; dº, all variables get updated by the same amount,
so if it incurs discrepancy d 1=2, the coloring progress is only d 1=2. In contrast, if the
�xt .1/; : : : ; �xt .d/ were independent, �.d/ elements would get colored in expectation
while incurring a discrepancy of d 1=2.

The key idea behind the algorithm of [8] is to ensure that even though the update
�xt lies in some subspace that we cannot control, the coordinates �xt .j / behave roughly
independently in the sense that

E

��X
j

b.j /�xt .j /

�2�
� �

�X
j

b.j /2E
�
�xt .j /2

��
8b 2 Rn; (4.1)

where � � 1 is some fixed constant. Notice that if the �xt .j / were independent or even
pairwise independent, then (4.1) would be an equality with � D 1.

The algorithm will add an additional SDP constraint to ensure property (4.1). We
describe this below and then give a sketch of the analysis.

4.1.1. Algorithm
Let .U; C / be the input set system. As usual, the algorithm starts with the coloring

x0 D 0n. Let xt�1; At�1 denote the coloring and the set of alive variables at the beginning
of t . Call a set S 2 C large if jS \ At�1j � 10d .

Repeat the following for t D 1; 2; : : : ; ` until A` D ;.
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(1) Solve the following SDP:X
j 2S

wj

2

D 0 for all large S; (4.2)X
j

b.j /wj

2

� 2
X

j

b.j /2
kwj k

2
8b 2 Rn; (4.3)

kwj k
2

� 1 for j 2 At�1; and else kwj k
2

D 0; (4.4)X
j

kwj k
2

� jAt�1j=4: (4.5)

(2) Let �xt .j / D hg; vi i where g is a random Gaussian vector. Set
xt D xt�1 C �xt , and update At accordingly.

The infinitely many constraints (4.3) can be written compactly as X � 2 diag.X/, where X

is the Gram matrix with Xij D hwi ; wj i.

4.1.2. Analysis
The constraints (4.2) ensures that �xt .S/ D 0 for large sets, which are at most

jAt�1j=10 in number. The constraints (4.3) imply the property (4.1). The feasibility of the
SDP follows from the following geometric result.

Theorem 4.3 ([10]). Let G � Rn be an arbitrary subspace with dimension dim.G/ D ın.
For any � > 0 and � > 1 with 1=� C � � ı, there is a n � n PSD matrix X satisfying:

(i) hhhT ; Xi D 0 for all h 2 G?, where G? is the subspace orthogonal to G.

(ii) Xi i � 1 for all i 2 Œn�.

(iii) The trace tr.X/ � �n.

(iv) X � � diag.X/.

In particular, choosing G to be the subspace orthogonal to all large rows and setting
ı D 0:9, � D 2, and � D 0:1, Theorem 4.3 implies that the SDP is always feasible.

This algorithm can be viewed as an interesting extension of iterated-rounding, where
the update lies in a subspace, and yet has interesting random-like properties.

Let us see why this helps. At any time t , the discrepancy for set S has Gaussian incre-
ments with variance EŒ.

P
j 2S �xt .j //2�, which by (4.1) is at most 2

P
j 2S EŒ�xt .j /2�,

i.e., twice the variance injected into the elements of S . We will show thatX
t

�X
j 2S

�xt .j /2

�
D O.d/

whp, and hence the discrepancy of S will be a Gaussian with standard deviation O.d 1=2/.
A union bound over the sets then gives the desired O..d log n/1=2/ bound.

To this end, let us define
P

j 2S xt .j /2 as the energy of S at time t . By (4.2), any S

incurs discrepancy only after it becomes small, and so from that time onward its energy
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can increase by at most O.d/. A priori there is no reason why the total increase in energy
of S should be related to

P
t

P
j 2S EŒ�xt .j /2� (the total variance injected into the ele-

ments of S ). For example, even for a single variable j if xt .j / fluctuates a lot over time,P
t �xt .j /2 could be arbitrarily large, while the final energy is � 1. More precisely, the

change in energy of S at time t isX
j 2S

�
xt .j /2

� xt�1.j /2
�

D 2
X
j 2S

xt�1.j /�xt .j /„ ƒ‚ …
I

C

X
j 2S

�xt .j /2

„ ƒ‚ …
II

:

Summing up over t , the left-hand side telescopes and equals the total increase in energy
of S . But

P
t �xt .j /2 can be much larger than this if the sum of term I over time is very

negative. However, constraint (4.1) turns out to be very useful again. In particular, term I is
a mean-zero update, and by (4.1) its variance can be bounded as

E

��X
j 2S

xt�1.j /�xt .j /

�2�
� 2

X
j 2S

xt�1.j /2�xt .j /2
� 2

X
j 2S

�xt .j /2:

This implies that the contribution of I is quite small compared to
P

t

P
j 2S EŒ�xt .j /2�.

A clean exposition based on supermartingale concentration is in [7].

4.2. The general setting
We now describe the algorithmic version of Theorem 2.3. For simplicity, we will

assume that K is symmetric. This is almost without loss of generality, because if K is asym-
metric with m.K/ � 3=4, then K \ �K is symmetric and m.K \ �K/ � 1=2.

An immediate issue with making Theorem 2.3 algorithmic is that any explicit
description of K to a reasonable accuracy could already require exponential space. A cru-
cial first step was by Dadush, Garg, Nikolov, and Lovett [24] who reformulated Theorem 2.3
without any reference to K. To state this result, recall that a random vector Y 2 Rm is
� -sub-Gaussian if for all test directions � 2 Rm,

E
�
eh�;Y i

�
� e�2k�k2

2=2:

Roughly, this means that hY; �i looks like a Gaussian random variable with variance at most
�2 for every unit vector � . Simplifying slightly to symmetric K, [24] showed the following.

Theorem 4.4 ([24]). For any symmetric convex body K, Theorem 2.3 (up to the exact value
of c) is equivalent to the following: Let v1; : : : ; vn 2 Rm be vectors with jvj k2 � 1. Then
there exists a distribution D on colorings ¹�1; 1ºn, such that for x sampled from D, the
random vector

Pn
j D1 x.j /vj is � -sub-Gaussian for some � D O.1/.

Moreover, to get a constructive version of Theorem 2.3 for any K, it suffices to give
an algorithm that can efficiently sample a coloring from D.

The idea behind Theorem 4.4 is that as m.K/ � 1=2, a random Gaussian g 2 Rm

satisfies PrŒg 2 K� � 1=2, or equivalently, PrŒkgkK � 1� � 1=2 where k � kK is the norm
with K as its unit ball. By standard tail bounds, this gives EŒkgkK � D O.1/. The following
result of Talagrand [66], together with Markov’s inequality, directly gives Theorem 4.4.
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Theorem 4.5 ([66]). Let K � Rm be a symmetric convex body and Y 2 Rm be a � -sub-
Gaussian random vector. Then for the standard Gaussian g 2 Rm,

E
�
kY kK

�
� O.�/ � E

�
kgkK

�
:

Bansal, Dadush, Garg, and Lovett [9] designed an algorithm called the Gram–
Schmidt walk (GS-walk), with the following guarantee.

Theorem 4.6 ([9]). Given vectors v1; : : : ; vn 2 Rm with kvj k2 � 1, GS-walk outputs a col-
oring x 2 ¹�1; 1ºn such that

Pn
j D1 x.j /vj is sub-Gaussian with � � 6:32.

Harshaw, Sävje, Spielman, and Zhang [35] gave an improved analysis of the algo-
rithm and showed that � D 1, which is the best possible.

4.2.1. Gram–Schmidt walk algorithm
Before we describe the algorithm, we give some intuition. Suppose first that the

vectors v1; : : : ; vn are orthogonal. Then, in fact a random coloring suffices. This follows
as for any � 2 Rm, we have h�;

P
j x.j /vj i D

P
j x.j /h�; vj i, which for a random ˙1

coloring x is distributed as a sub-Gaussian with variance
P

j h�; vj i2, which is at most k�k2
2

as the vj are orthogonal and have at most unit length.
On the other extreme, suppose that v1; : : : ; vn are all identical and equal to some

unit vector v. Then a random coloring is very bad and has variance n (instead of O.1/) in the
direction � D v. The right thing here, of course, is to pair up the signs of x.j /. The general
algorithm will handle these two extreme examples in a unified way, by trying to exploit the
linear dependencies as much as possible while also using randomness.

We now describe the algorithm formally.

The Gram–Schmidt walk. Let v1; : : : ; vn be the input vectors. Let xt�1; At�1 denote the
coloring and the set of alive elements at the beginning of time t .

Let n.t/ 2 At�1 be the largest indexed element alive at time t . This is called the
pivot at time t and will play a special role. Let Wt be subspace spanned by the vectors
in At�1 n ¹n.t/º (i.e., all vectors alive at time t except n.t/). Let v?.t/ be the orthogonal
projection of the pivot vn.t/ on W ?

t .
The algorithms works as follows. Initialize x0 D .0; : : : ; 0/ and A0 D Œn�.
At t D 1; : : : ; n, do the following:

(1) Compute the update direction ut D .ut .1/; : : : ; ut .n// 2 Rn as follows. Set
ut .j / D 1 for the pivot j D n.t/ and ut .j / D 0 for j … At�1.
The ut .j / for the remaining j 2 At�1 n ¹n.t/º are defined by writing

v?.t/ D vn.t/ C

X
j 2At�1n¹n.t/º

ut .j /vj :
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(2) Let ı�
t < 0 < ıC

t be the unique negative and positive solutions for ı, respectively,
to maxj 2At�1 jxt�1.j / C ıut .j /j D 1. Let

ıt D

8<: ı�
t with probability ıC

t =.ıC
t � ı�

t /;

ıC
t with probability � ı�

t =.ıC
t � ı�

t /:

(3) Update xt�1 randomly as xt D xt�1 C ıt ut . Update At accordingly.

Remark. Let us first see what the algorithm does for the two cases mentioned above. If the
vi are orthonormal, then v?.t/ D vn.t/ as vn.t is orthogonal to Wt , and the algorithm only
updates the color of the pivot. Moreover, at each time t x.n.t// is set independently to ˙1,
and so the algorithm eventually produces a completely random coloring. On the other hand,
in the case where the vi are identical, at each step t , as long as nt � 2, the algorithm will
exactly pair up the color of the pivot with the alive vector with the lowest index, resulting in
overall discrepancy of at most 1.

Sketch of analysis. At each step, at least one element reaches �1 or 1, so the algorithm
terminates in at most n steps.

Fix a vector � 2 Rm with respect to which we want to show sub-Gaussianity of the
discrepancy vector. Let Yt WD

Pn
iD1 xt .i/vi and let disct D h�; Yt i. The goal is to show that

E
�
ediscn

�
� e.�2=2/k�k2

2 ; for � D O.1/:

Let us denote �xt WD xt � xt�1 D ıt ut and � disct WD disct � disct�1. A key observation
is that as ut is chosen to satisfy v?.t/ D

Pn
iD1 ut .i/vi , we have

� disct D

nX
iD1

h�; vi i�xt .i/ D ıt

nX
iD1

h�; vi iut .i/ D ıt

˝
�; v?.t/

˛
(4.6)

and hence depends only on the vector v?.t/.

Proving sub-Gaussianity. We sketch the main idea. Let us first make a simplifying assump-
tion that at each time t , the element to reach ˙1 is the pivot. So the elements get colored
in the order n; n � 1; : : : ; 1 and the pivot at time t is n.t/ D n � t C 1. Let w1; : : : ; wn be
the orthonormal vectors obtained by applying the Gram–Schmidt orthonormalization pro-
cedure (GS) on the vectors v1; : : : ; vn in that order. That is, w1 D v1=kv1k and for i > 1,
wi is the projection of vi orthogonal to v1; : : : ; vi�1, normalized to have unit norm. Then
v?.t/ D hvn.t/; wn.t/iwn.t/.

By (4.6), the overall discrepancy along � is discn.�/ D
Pn

tD1 ıt h�; v?.t/i. As ıt

is a mean-zero random variable chosen independently at time t , and jıt j � 2, we have

E
�
ediscn.�/

�
D E

�
e

Pn
tD1 ıt h�;v?.t/i

�
� eO.1/�

Pn
tD1h�;v?.t/i2

:

But this is at most eO.1/�k�k2
2 , as desired, becauseX

t

˝
�; v?.t/

˛2
D

X
t

˝
�; hvn.t/; wn.t/iwn.t/

˛2
�

X
t

h�; wn.t/i
2

� k�k
2
2;
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as jhvn.t/; wn.t/ij � kwn.t/k2kvn.t/k2 � 1, and
P

i h�; wi i
2 � k�k2

2 as the wi are orthonor-
mal.

In general the analysis needs some more care as non-pivot elements will also get
colored during the process. But, roughly speaking, this only improves the bounds. If some
non-pivot element xk is colored at some time t , then the GS procedure (without vk) will pro-
duce a different set of orthonormal vectors ¹w0

i º, but the increase in h�;w0
n.t/

i2 � h�;wn.t/i
2,

can be charged against the fact that k will never be a pivot anymore in the the future. We
refer to [9] for the formal analysis.

5. Approximating hereditary discrepancy

In the previous sections we obtained bounds on the discrepancy of various classes of
set systems and matrices. One can ask whether given a particular matrix A, can we efficiently
determine disc.A/. However, as described earlier in Theorem 3.2, discrepancy is hard to
approximate in a very strong sense [21]. Intuitively, this is because discrepancy can be quite
brittle, e.g., consider some matrix A with large discrepancy; however, if we duplicate each
column of A, the resulting matrix has discrepancy 0.

Even though discrepancy is hard to approximate, in a surprising and remarkable
result Matoušek, Nikolov, and Talwar [50] showed that herdisc.A/ can be well approximated.
Note that a priori it is not even clear how to certify (even approximately) that herdisc.A/ � k,
as it is the maximum over exponentially many quantities that themselves cannot be certified.

Theorem 5.1 ([50]). There is an O.log m/3=2/ approximation algorithm for computing the
hereditary discrepancy of any A 2 Rm�n.

This is based on relating the hereditary discrepancy of a matrix to its 2-norm.

The 2-norm. For a matrix A, let r.A/ D maxi .
P

j A2
ij /1=2 and C.A/ D maxj .

P
i A2

ij /1=2

denote the largest `2-norm of rows and columns A. The 2.A/-norm of A is defined as

2.A/ D min
®
r.U /c.V / W U V D A

¯
;

the smallest product r.U /c.V / over all possible factorizations of A.
The quantity 2.A/ is efficiently computable using an SDP as follows. Consider

vectors w1; : : : ; wm corresponding to rows of U and wmC1; : : : ; wmCn to columns of V . As
˛U; V=˛ is also a valid factorization for any ˛ > 0, we can assume that r.U / D c.V /. Then,
it is easily seen that 2.A/ is the smallest value t for which the following SDP is feasible.

hwi ; wj Cmi D Aij 8i 2 Œm�; j 2 Œn� and hwi ; wi i � t 8i 2 Œm C n�: (5.1)

Theorem 5.1 follows from the following two facts.

Lemma 5.2. For any A 2 Rm�n and factorization A D U V with U; V arbitrary, we have
that disc.A/ � O.r.U /c.V /.log 2m/1=2/. In particular, disc.A/ � O.2.A/.log 2m/1=2/.

This also implies that herdisc.A/ � O.2.A/.log 2m/1=2/ as 2.�/ itself is a heredi-
tary function. Indeed, for any subset of columns S , we have 2.AjS / � 2.A/ as AjS D U VjS
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and C.VjS / � C.V /. The proof of Lemma 5.2 uses Banaszczyk’s theorem in an interesting
way.

Proof. Define the body K D ¹y W kUyk1 � 2r.U /.log2m/1=2º. Then .K/ � 1=2 because
for a random gaussian g � N.0; I /, Prg ŒkUgk1 � 2r.U /.log 2m/1=2� � 1=2.

As the columns of V have length at most c.V / and .K/ � 1=2, by Theorem 2.3
there exists x 2 ¹�1; 1ºn such that y WD Vx 2 5c.V /K. By definition of K, this gives
kUyk1 � 10r.U /c.V /.log 2m/1=2, and as Ax D Uy, the result follows.

Lemma 5.3. For any A 2 Rm�n, we have herdisc.A/ � �.2.A/= log m/.

The proof of Lemma 5.3 establishes an interesting connection between the 2-norm
and the determinant lower bound defined as follows.

detlb.A/ D max
k

max
S�Œm�;T �Œn�;jS jDjT jDk

ˇ̌
det.AS;T /

ˇ̌1=k
;

where AS;T is the submatrix of A restricted to row and columns in S and T .
In a classical result, Lovász, Spencer, and Vesztergombi [44] showed that

herdisc.A/ � detlb.A/=2 for any matrix A. using a geometric view of hereditary discrep-
ancy similar to that in Observation 2.1.1. In the other direction, Matoušek [48] showed that
herdisc.A/ � O.log.mn/.log n/1=2 detlb.A//. Interestingly, Matoušek’s proof used The-
orem 3.1 and duality for the SDP considered in Section 3.1. In particular, if the vector
discrepancy is large for some subset of columns, there there must exist a sub-matrix with
large detlb. This result was improved recently by Jiang and Reis [39] to herdisc.A/ �

O..log m log n/1=2 detlb.A//, and this bound is the best possible.
To prove Lemma 5.3, [50] show that detlb.A/ � 2.A/= log m using the duality of

the SDP (5.1) together with ideas of Matoušek [48].
The bounds in both Lemmas 5.2 and 5.3 are the best possible. However, the follow-

ing conjecture seems quite plausible.

Conjecture 5.3.1. There is an O.log mn/ approximation algorithm for computing the
hereditary discrepancy of any matrix A.

As detlb.A/ and herdisc.A/ are within an O.log mn/ factor, by the results of [44]

and [39], one possible way to prove Conjecture 5.3.1 would be to give an O.1/ approximation
for computing detlb.A/.

6. Other recent directions

We now discuss some other recent directions. First, we consider an interesting line of
work on understanding the discrepancy of random instances. Next, we consider some results
in the online setting where the vectors vj are revealed over time and the sign x.j / must be
chosen immediately and irrevocably when vj is revealed. Finally, we consider some matrix
discrepancy problems, where one considers signed sums of matrices, instead of signed sums
of vectors.
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6.1. Random instances
In this survey, we restrict our attention to the work on the Beck–Fiala problem

[2, 14, 29, 37, 57]. There are two natural probabilistic models here. Either each column has
a 1 in exactly k positions chosen randomly out of the m choices, or the Bernoulli ensemble
where each entry is 1 with probability p D k=m. The latter is slightly easier due to the lack of
dependencies. For both these settings, an O.k1=2/ discrepancy can be achieved for the entire
range of n and m, under fairly general conditions [14,57]. These results are also algorithmic.

An interesting recent line of work shows that in fact much smaller discrepancy is
possible if n � m. Franks and Saks [31] showed that disc.A/ � 2 with high probability for a
fairly general class of random matrices A if n D �.m3 log2 m/. Independently, Hoberg and
Rothvoss [37] showed that disc.A/ � 1 whp for the Bernoulli ensemble if n D �.m2 log m/,
provided that mp D �.log n/. Both these results use Fourier based techniques and are non-
algorithmic.

Let us note that n D �.m logm/ is necessary to achieve O.1/ discrepancy, provided
that p is not too small. Indeed, if we fix any coloring x, and consider a random instance,
the probability that a fixed row has discrepancy O.1/ is O..pn/�1=2/, so the probability
that each row has discrepancy O.1/ is at most .pn/��.m/. As there are (only) 2n possible
colorings, a first moment argument already requires that 2n.pn/�m D �.1/.

So a natural question is whether the discrepancy is actually O.1/ for nD�.m logm/.
Curiously, the Fourier-based methods seem to require n D �.m2/ even for p D 1=2. How-
ever, subsequent results show this optimal dependence using the second moment method.
Potukuchi [56] showed that disc.A/ � 1 if n D �.m log m/ for the dense case of p D 1=2.
The sparse setting with p � 1 turns out to be more subtle, and was only recently resolved
by Altschuler and Weed [2] using a more sophisticated approach based on the conditional
second moment method together with Stein’s method of exchangeable pairs. They show the
following result.

Theorem 6.1 ([2]). Let A 2 ¹0; 1ºm�n be a random matrix with each entry independently
chosen to be 1 with probability p WD p.n/. Then there is a constant c > 0 such that if
n � cm log m, then disc.A/ � 1 whp.

The results of [2,56] are also non-algorithmic, and given the use of the probabilistic
method it seems unlikely that they can be made algorithmic. However, one may wonder if
this can be done under weaker assumptions such as when n � m10.

Problem 6.2. Is there an efficient algorithm to find a coloring with expected discrepancy
O.1/ for random instances of the Beck–Fiala problem when n D m�.1/.

Smoothed analysis. A substantial generalization of the random setting is the smoothed anal-
ysis setting, where the instance is obtained by taking underlying worst-case instance and
perturbing it by a small random noise [65]. Recently, [12] studied the prefix-Komlós problem
in this setting, where the vectors v1; : : : ; vn are chosen adversarially and then vj is perturbed
by an independent random noise vector uj .
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Theorem 6.3 ([12]). If the covarianceCov.uj / < "2Im for some � � 1=poly.m; log n/. Then,
whp each prefix has discrepancy O..log m C log log n/1=2/.

This improves the dependence on n in Theorem 2.4 to doubly logarithmic, even if
the noise is quite small, e.g., a vector is changed only with probability 1=poly.m; log n/ in a
single random coordinate. The techniques for random instances do not directly work here as
these methods crucially use various special properties of random instances.

An interesting question is whether Theorem 6.1 can be extended to the smoothed
setting.

Problem 6.4. Does the Beck–Fiala problem have O.1/ expected discrepancy in the smooth-
ed setting, for a reasonably small noise rate, when n D m�.1/.

6.2. Online setting
In all the results considered thus far, we assumed that the vectors v1; : : : ; vn 2 Rm

are all given in advance. Another natural model is the online setting, first studied by Spencer
[62], where the vector vt is revealed at time t and a sign x.t/ must be chosen irrevocably
without the knowledge of the vectors that will arrive in the future. The goal is to keep the
discrepancy kdt k1 any time t as small as possible, where dt D x.1/v1 C � � � C x.t/vt is
the discrepancy at end of time t .

We restrict our focus here to the online Komlós setting. Notice that setting x.t/

randomly to ˙1 also works in the online setting, but this gives �.n1=2/ dependence on n.
Unfortunately, this dependence is unavoidable in general—at each step t an adversary can
choose the vector vt to be orthogonal to the current discrepancy vector dt�1 causing kdt k2

(and hence kdt k1) to grow as �.t1=2/ with time. More refined lower bounds are also known
[16,64].

Interestingly, it turns out that the dependence on n can be substantially improved if
the vectors vt are chosen in a less adversarial manner.

Stochastic model. Here the vectors are chosen randomly and independently from some dis-
tribution D, that is known to the algorithm [11,13,15,34]. For the Komlós setting, [11] showed
the following.

Theorem 6.5 ([11]). Let D be any distribution on unit vectors in Rm. There is an online
algorithm that given vectors sampled iid from D, achieves discrepancy O.log4 mn/ whp.

These results are based on a greedy deterministic algorithms that choose the sign
x.t/ based on a suitable potential function.

Let us consider the simpler setting of `2 discrepancy and where D is the uniform
distribution over the unit sphere Sm�1. We sketch the proof of an O.m1=2/ bound (which is
the best possible for `2-discrepancy even offline, e.g., for m orthonormal vectors).

Consider the potential ˆt D kdt k
2
2. Upon given vt , the algorithm chooses x.t/ to

minimize the increase in �ˆt D ˆt � ˆt�1. This evaluates todt�1 C x.t/vt

2
� kdt�1k

2
2 D 2x.t/hdt ; vt i C jvt j

2
2 D 2x.t/hdt ; vt i C 1;
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and hence setting x.t/ D �sign.hdt ; vt i/ gives �ˆt D �2jhdt ; vt ij C 1.
As vt is uniform in Sm�1, we have that in expectation EDjhdt�1; vt ij �

m�1=2kdt�1k2 for any dt�1. This gives that EŒ�ˆt � � 0, and hence ˆt has a strong
negative drift whenever jdt�1j � m1=2. Using standard arguments, this implies that the
discrepancy is O.m1=2/ whp at any given time.

The case of general distributions D is harder as EDjhdt�1; vt ij need not be large for
every dt�1. For example, if most of the probability mass of D lies in some subspace M , and
dt�1 is orthogonal to M . However, one can still make this approach work by considering
more complicated potential functions, that in addition to penalizing dt�1 with large norm,
also penalize dt�1 if it gets close to certain undesirable regions.

Oblivious adversarymodel. Recently, these results were considered in the much more gen-
eral oblivious adversary model. Here, the adversary knows the online algorithm and can
pick the vectors accordingly, but it must choose them in advance before the online algorithm
begins its execution. Equivalently, it cannot see the internal random choices made by the
algorithm.

Notice that the oblivious setting generalizes both the stochastic setting and the
worst case offline setting. Moreover, unlike for the stochastic model, here the �.n1=2/ lower
bound holds for any deterministic online algorithm, as dt�1 is completely determined by
v1; : : : ; vt�1 and the adversary can always pick vt orthogonal to dt�1. So any nontrivial
algorithm in this model must use its internal randomness cleverly.

In a recent breakthrough, Alweiss, Liu, and Sawhney [3] showed the following
remarkable result.

Theorem 6.6 ([3]). For any ı > 0, vectors v1; v2; : : : ; vn 2 Rm with kvt k2 � 1 for all t 2 Œn�,
the algorithm maintains kdt k1 D O.log.mn=ı// for all t 2 Œn� with probability 1 � ı.

Choosing ı D 1=n2 gives that each prefix has discrepancy O.log mn/ whp, almost
matching the offline O..log mn/1=2/ bound for prefix discrepancy given by Theorem 2.4.
Moreover, the algorithm is extremely elegant and simple to describe.

Self-balancing walk algorithm. Let c D 30 log mn=ı. At each time t ,

(1) If jdt�1j1 > c or if jhdt�1; vt ij > c, declare failure.

(2) Set xt D 1 with probability 1=2 � hdt�1; vt i=2c and xt D �1 otherwise.

The algorithm can be viewed as a randomized version of the greedy algorithm that
picks the sign randomly if vt and dt�1 are orthogonal, and otherwise uses the correlation
between them to create a bias to move dt closer to the origin.

The proof is a based on a clever stochastic domination argument and induction, and
shows that as long as the algorithm does not declare failure, the distribution of dt is less
spread out than N.0; 2�cI /.

Theorem 6.6 is remarkable in many ways. First, it gives a simple linear time algo-
rithm to obtain O.log n/ discrepancy for the Komlós problem. Second, it also matches the
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best algorithmic bound that we currently know for the prefix-Komlós problem in the offline
setting. So any improvement of Theorem 6.6 would be extremely interesting.

Problem 6.7. Design an online algorithm for the Komlós problem, or for the prefix Komlós
problem, that achieves an O..log mn/1=2/ discrepancy.

For recent partial progress in this direction, see [43].

6.3. Matrix discrepancy
So far we only considered problems involving a signed sum of vectors. It is also very

interesting to consider signed sums of more general objects such as matrices. An important
problem of this type, with application to various fields, is the Kadison–Singer problem [40].
Below is an equivalent formulation in terms of discrepancy due to Weaver [68].

Kadison–Singer problem [68]. Let A1; : : : ; An 2 Rd�d be rank-1 Hermitian matrices sat-
isfying

P
j Aj D I and kAj kop � ı for all j 2 Œn�, where ı � 1=2. Is there a ˙1 coloring x

such that k
P

j x.j /Aj kop � 1 � �, for some fixed constant � > 0 independent of n and d?
More generally, one can ask how small can the discrepancy k

P
j x.j /Aj kop be over

all possible ˙1 colorings x. For a random coloring, standard matrix concentration results
[55] give a bound of O..ı log d/1=2/, which does not give anything useful for the Kadison–
Singer problem for large d . In a major breakthrough, Marcus, Spielman, and Srivastava [46]

showed a bound of O.
p

ı/, without any dependence on d , using the method of interlacing
polynomials. This bound is also the best possible [68]. These techniques are very different
and we do not discus them here.

Their result however is non-constructive and obtaining an algorithmic version in an
outstanding open question.

Problem 6.8. Is there an algorithmic version for the Kadison–Singer problem, even for the
weaker bound of 1 � � instead of O.

p
ı/.

Matrix Spencer problem. Another very interesting question, proposed originally by Raghu
Meka, is the following matrix version of the Spencer’s problem: given symmetric matrices
A1; : : : ; An 2 Rn�n with kAj kop � 1, find a ˙1 coloring x to minimize k

P
j x.j /Aj kop.

Notice that if the Aj are diagonal, this is equivalent to Spencer’s problem for m D n.
Again, standard matrix concentration bounds imply a O..n log n/1=2/ bound for random
coloring, and the question is whether better bounds are possible.

Conjecture 6.8.1. The matrix Spencer problem has discrepancy O.n1=2/.

Very recently, Hopkins, Raghavendra, and Shetty [38] proved Conjecture 6.8.1 when
the Aj have rank n1=2, or, more generally, when kAj kF � n1=2. This result is based on an
interesting new connection between discrepancy and communication complexity, and they
also use this to give an alternate new proof of Spencer’s result in classical setting. Another
related result is due to Dadush, Jiang, and Reis [25].
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Enlargements:
a bridge between
maximal monotonicity
and convexity
Regina S. Burachik

Abstract

Perhaps the most important connection between maximally monotone operators and
convex functions is the fact that the subdifferential of a convex function is maximally
monotone. This connects convex functions with a proper subset of maximally monotone
operators (i.e., the cyclically monotone operators). Our focus is to explore maps going in
the opposite direction, namely those connecting an arbitrary maximally monotone map
with convex functions. In this survey, we present results showing how enlargements of
a maximally monotone operator T provide this connection. Namely, we recall how the
family of enlargements is in fact in a bijective correspondence with a whole family of
convex functions. Moreover, each element in either of these families univocally defines T .
We also show that enlargements are not merely theoretical artifacts, but have concrete
advantages and applications, since they are, in some sense, better behaved than T itself.
Enlargements provide insights into existing tools linked to convex functions. A recent
example is the use of enlargements for defining a distance between two point-to-set maps,
one of them being maximally monotone. We recall this new distance here, and briefly
illustrate its applications in characterizing solutions of variational problems.
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1. Introduction

In the framework of real Banach spaces, convex analysis and the theory of monotone
operators have shown a fascinating interplay: the theory of one can be used for developing
further the theory of the other, and the advances in one of them generates advances of the
other. This cross-fertilization between both theories is a key topic in modern Functional
Analysis, and has been captivating mathematicians since the middle of the 20th century.
The natural way of going from convex analysis to maximally monotone maps is via the
subdifferential of a convex function, which is maximally monotone [29,35]. More precisely,
subdifferentials are the (proper) subset of cyclically monotone maps [33].

Given a maximally monotone operator T , we approximate T by another set-valued
map, called from now on an enlargement of T . Our goal is to show that enlargements pro-
vide a fruitful way of going from maximally monotone operators to convex functions. As an
example, enlargements are used to prove a formula involving infimal convolution of convex
functions [20], or to show new equivalences for the situation in which two convex functions
differ by a constant [13], or for characterizing solutions of difference of convex (DC) prob-
lems [7]. More examples of this interplay can be found, for instance, in [9, Chapter 5], as well
as in [31,37]. We will see in what follows the crucial rôle of convex analysis in establishing
outer-semicontinuity of the enlargements.

The concept of enlargement was first hinted in 1996 by Martínez-Legaz and Théra
in [28]. Independently, the enlargement was formally defined and studied for the first time
in the 1997 paper [10]. The results we quote in this survey span a time period from the late
1990s until today. We also quote crucial results obtained by Svaiter in [38], where the formal
definition of the family of enlargements is introduced, and a fundamental link with convexity
is established. Another key result mentioned here is the introduction of a family of convex
functions associated with T , suggested by Fitzpatrick in 1988 in [23]. A beautiful fact is
that these two families, seemingly independent from each other, are actually in a bijective
correspondence, as we will see in Theorem 30.

A main motivation for studying maximally monotone maps and their approxima-
tions is the inclusion problem, stated as

Find x�
2 X such that z 2 T .x�/; (1.1)

where T W X � X� is a maximally monotone operator between a Banach space X and its
dual X�. Model (1.1) is used for solving fundamental problems, such as optimality condi-
tions for (smooth and nonsmooth) optimization problems, fixed point problems, variational
inequalities, and solutions of nonlinear equations. If T is point-to-point, the inclusion above
becomes an equality.

This survey is organized as follows. In Section 2 we give the theoretical setting
and the main definitions and basic results that we will need in later sections. In this section
we recall the Fenchel–Young function, and also the Fitzpatrick function. In Section 3 we
define the family of enlargements and give prototypical examples. In this section we describe
the structure of the family (in terms of smaller and larger elements), and recall some of its
continuity properties and the Brøndsted–Rockafellar property. We end this section recalling
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a bijective correspondence between the family of enlargements of T and a family of convex
functions. In Section 4 we define a family of convex functions associated with the family of
enlargements, and illustrate this definition with examples. In this section we also describe
the structure of this family, with smallest and largest elements, in analogy with the situation
for the family of enlargements. In Section 5 we recall a new distance between point-to-set
maps induced by the family of convex functions associated with T . We illustrate this new
concept with applications to variational problems, and we include some open questions on
these distances. Section 6 contains a few final words.

To facilitate reading, most technical proofs are kept to a minimum, and the focus
is set on the main ideas and key points of the results. Interested readers can consult the
references given regarding each result. Some results combine several existing facts, and their
proofs are given to illustrate the type of analysis used in this topic.

2. Preliminaries

Throughout this paper, X is a real reflexive Banach space with topological dual X�

and duality pairing between them denoted by h�; �i. The norm in any space is denoted by
k � k. We use w to represent the weak topologies both on X and X�. When using the weak
topology, we will mention it explicitly, otherwise the strong topology is assumed. Let Z be
a topological space and consider a subset A � Z, we denote by A its closure with respect to
the strong topology, by int.A/ the interior of A and by co.A/ the convex hull of A.

2.1. Basic facts and tools
Recall the following definitions concerning extended real valued functions.

Definition 1. Let Z be a topological space and consider a function f W Z ! R [ ¹C1º.

(i) The epigraph of f is the set

epi.f / WD
®
.z; t/ 2 Z �R W f .z/ � t

¯
:

(ii) The domain of f is the set

dom f WD
®
x 2 Z W f .x/ < C1

¯
:

(iii) The function f is said to be proper if dom f 6D ;.

(iv) The function f is said to be lower-semicontinuous (lsc) if epi.f / is closed.

The following definitions are relevant to convex functions.

Definition 2. Let f W X ! R [ ¹C1º will be a convex function.

(i) The subdifferential of f is the point-to-set map @f W X � X� defined by

@f .x/ WD
®
x�
2 X�

W f .y/ � f .x/ �
˝
y � x; x�

˛
;8y 2 X

¯
;

if x 2 dom f; (2.1)

and @f .x/ WD ;, otherwise.
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(ii) Given � � 0, the �-subdifferential of f is the point-to-set map @�f W X � X�

defined by

@�f .x/ WD
®
x�
2 X�

W f .y/ � f .x/ �
˝
y � x; x�

˛
� �;8y 2 X

¯
;

if x 2 dom f; (2.2)

and @�f .x/ WD ;, otherwise. Note that @0f D @f . To keep � as a variable, we
restate the �-subdifferential of f in a way that does not involve �. Namely, we
consider the point-to-set map M@f W RC �X � X� defined by

M@f ."; x/ WD @�f .x/; (2.3)

and call the ensuing enlargement the Brøndsted–Rockafellar enlargement.

(iii) The Fenchel–Moreau conjugate of f , denoted as f � W X� ! R [ ¹C1º, is
defined by

f �.x�/ WD sup
®˝

x; x�
˛
� f .x/ W x 2 X

¯
: (2.4)

(iv) The Fenchel–Young function associated to f is the function f FY W X �X�!

R [ ¹C1º defined by

f FY.x; x�/ WD f .x/C f �.x�/ for all .x; x�/ 2 X �X�: (2.5)

Remark 1. Note that f � is always convex and (weakly) lsc. Hence, it is also strongly lsc
by convexity. Therefore, f FY is a convex, proper, and .k � k � w/-lsc function on X � X�.
A remarkable and well-known fact is that f FY completely characterizes the operator @f , in
the following sense:

@f .x/ D
®
x�
2 X�

W f FY.x; x�/ D
˝
x; x�

˛¯
: (2.6)

More precisely, the definitions yield

f .x/C f �.v/ � hx; vi; 8.x; v/ 2 X �X�;

f .x/C f �.v/ D hx; vi” x 2 X; v 2 @f .x/:
(2.7)

Moreover, f FY completely characterizes the map M@f (see (2.3)). Indeed, the definitions yield

M@f ."; x/ D
®
v 2 X�

W f FY.x; v/ D f .x/C f �.v/ � hx; vi C "
¯
: (2.8)

Since we always have f FY.x; v/ � hx; vi, when � D 0, (2.8) collapses into (2.6).
System (2.7) constitutes the main inspiration for defining a family of convex functions
induced by a maximally monotone operator T .

The map M@f has a fundamental rôle in variational analysis. It is used for (i) develop-
ing algorithms for nonsmooth optimization (e.g., the "-subgradient method, bundle methods,
perturbed proximal methods), (ii) characterizing minimizing/stationary sequences, and (iii)
characterizing approximate solutions of optimization problems. A crucial theoretical impact
is the fact that it was used by Rockafellar to show maximality of @f in [35].

All information on a point-to-set map is encapsulated in its graph.
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Definition 3. Let Z;Y be topological spaces and F WZ � Y a point-to-set map. The graph
of F is the set

G.F / WD
®
.z; y/ 2 Z � Y W y 2 F.z/

¯
:

Given a point-to-set map F , we define F as the point-to-set map by the following equality:

G.F / WD G.F /;

where the closure in the right-hand side is taken with respect to the product topology in
Z � Y .

We next recall well known concepts related with point-to-set maps from X to X�.

Definition 4. Let T W X � X� be a point-to-set map.

(i) The domain of T is denoted by D.T / and defined by

D.T / WD
®
x 2 X W T .x/ 6D ;

¯
;

and the range of T , denoted by R.T /, is defined by

R.T / WD
®
v 2 X�

W exists x 2 D.T / such that v 2 T .x/
¯
;

(ii) T is said to be monotone when˝
y � x; y�

� x�
˛
� 0 8.x; x�/; .y; y�/ 2 G.T /:

(iii) A monotone operator T is called maximally monotone provided˝
y � x; y�

� x�
˛
� 0 8.y; y�/ 2 G.T / implies .x; x�/ 2 G.T /:

Equivalently, T is maximally monotone when G.T / cannot be properly exten-
ded (in the sense of the inclusion), without violating the monotonicity condi-
tion given in (ii).

Continuity properties are associated with closedness of the graph. Hence, the topol-
ogy we use determines the continuous maps. Besides from closedness w.r.t. the strong and
weak topologies, we will consider sequential closedness with respect to the strong topology
in X and the weak topology in X�.

Recall the standard notation for strong and weak convergence in a reflexive Banach
space: Given a sequence .zn/ � X , and an element z 2 X , we denote by zn ! z the strong
convergence of .zn/ to z. Given a sequence .wn/ � X� and an element w 2 X�,we denote
by wn * w the weak convergence of .wn/ to w. In this situation, we say that the sequence
.zn; wn/ converges (sw) (for strong-weak) to .z; w/.

Definition 5. Let X be a reflexive Banach space and fix S � X � X�. We say that S is
sequentially strong-weak-closed, denoted as .sw/s-closed, if for every sequence .xn;vn/�S

the following condition holds:

If xn ! x; vn * v; then .x; v/ 2 S:

5216 R. S. Burachik



We say that S is sequentially weakly closed, if S contains all weak limits of its weakly
convergent sequences.

Remark 2. If S � X � X� is weakly closed, then it is sequentially weakly closed (this is
true for every topological space). The converse is in general not true (see, e.g, [2, Example
3.33]), unless S is convex.

Fact 6. (i) If S is weakly closed then S is .sw/s-closed.

(ii) Assume that S is convex and S is strongly closed. Then, it is weakly closed (and
hence .sw/s-closed).

Proof. (i) If S is weakly closed then, by the previous remark, S is sequentially
weakly closed. Since every strongly convergent sequence is weakly convergent,
this implies that S is .sw/s-closed.

(ii) If S is strongly closed and convex, by [9, Corollary 3.4.16], S is weakly closed.
By (i), it is .sw/s-closed.

2.2. The Fitzpatrick function
From Remark 1, we see that the function f FY completely characterizes the operator

T WD @f and its enlargement M@f . A fundamental step in extending this type of link to an
arbitrary maximally monotone operator T was performed by Fitzpatrick in 1988 in [23],
who defined the following function, now called the Fitzpatrick function associated with T :

FT .x; v/ WD sup
®
hy; vi C hx � y; ui W .y; u/ 2 G.T /

¯
D sup

®
hy � x; v � ui C hx; vi W .y; u/ 2 G.T /

¯
:

By [23, Theorems 3.4 and 3.8], we have that

FT .x; v/ D hx; vi if and only if .x; v/ 2 G.T /;

FT .x; v/ � hx; vi or every x 2 X; v 2 X�;
(2.9)

Note the similarity with system (2.7). In other words, FT characterizes G.T /, in a similar
way as f FY characterizes G.@f /. The Fitzpatrick function remained unnoticed for several
years until it was rediscovered in [28]. In [24] Flåm gave an economic interpretation of the
Fitzpatrick function, and also mentioned that this function was already used in 1982 by
Krylov in [27]. The Fitzpatrick function allows for tractable reformulations of hard problems,
including variational representation of (nonlinear) evolutionary PDEs, and the development
of variational techniques for the analysis of their structural stability; see, e.g., [25,32,40,41].
In [23, Theorem 3.10], Fitzpatrick proved that FT is the smallest function among all those that
verify system (2.9). We will further explore this fact in later sections. Namely, we will revisit
system (2.9) when defining the family of convex functions associated with the enlargements
of T .
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3. Enlargements of maximally monotone maps

We start this section by recalling the definition of enlargement, introduced by Svaiter
in [38]. Then, we will focus on some well-known properties of set valued maps: local bound-
edness, outersemicontinuity, Lipschitz continuity, and the Brøndsted–Rockafellar property.

To explore continuity properties, we will often consider the closure of a point-to-
set map E W R � X � X�. By Definition 3, for F WD E, E is the point-to-set map such
that G.E/ D G.E/, where the closure is taken with respect to the strong topology in all
spaces. In what follows, T is a fixed maximally monotone operator. From now on, most
of the proofs will be omitted to alleviate the reading. All these proofs can be found in the
references given for every result. The proofs which I do provide are meant to illustrate the
type of mathematical tools used in the analysis, without making the text too technical.

3.1. The family of enlargements E.T /

The theoretical framework that follows is based on the groundbreaking definition of
a family of enlargements of T , introduced by Svaiter in [38].

Definition 7. Let T W X � X� be a maximally monotone map. We say that a point-to-set
mapping E W RC �X � X� is an enlargement of T if the following hold:

.E1/ T .x/ � E.�; x/ for all � � 0, x 2 X ;

.E2/ If 0 � �1 � �2, then E.�1; x/ � E.�2; x/ for all x 2 X ;

.E3/ The transportation formula holds for E. More precisely, let x�
1 2 E.�1; x1/,

x�
2 2 E.�2; x2/, and ˛ 2 Œ0; 1�. Define

Ox WD ˛x1 C .1 � ˛/x2; Qx�
WD ˛x�

1 C .1 � ˛/x�
2 ;

� WD ˛�1 C .1 � ˛/�2 C ˛
˝
x1 � Ox; x�

1 � Qx
�
˛
C .1 � ˛/

˝
x2 � Ox; x�

2 � Qx
�
˛

D ˛�1 C .1 � ˛/�2 C ˛.1 � ˛/
˝
x1 � x2; x�

1 � x�
2

˛
:

Then � � 0 and Qx� 2 E.�; Ox/.

The set of all maps verifying .E1/–.E3/ is denoted by E.T /. We say that E is closed if
G.E/ is (strongly) closed. The set of all closed enlargements is denoted by Ec.T /.

Remark 3. Condition .E1/ ensures that E is an enlargement of T , while .E2/ indicates
that the enlargement is increasing with respect to �. Condition .E3/ allows constructing
new elements in G.E/ by using convex combinations of known elements in G.E/. As we
will see below, this condition is essential for establishing the link between enlargements of
maximally monotone operators and convex functions. Note that if conditions .E1/–.E3/ hold
for E, then they also hold for E, hence if E 2 E.T /, then E 2 E.T /. By taking �1 D �2 D 0

and ˛1; ˛2 2 .0; 1/ in .E3/, we deduce that E.0; �/ is a monotone map. By .E1/, we also
have E.0; �/ � T . By maximality, we must have E.0; �/ D T .

Example 8. The set M@f .�; x/ is nonempty for every � > 0 if and only if f is lower semicon-
tinuous at x. The map M@f is an enlargement of T D @f . The fact that it verifies .E1/–.E2/
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follows directly from the definitions. The proof of condition .E3/ for M@f can be found, e.g., in
[14, Lemma 2.1]. It follows from the definitions that M@f is a closed enlargement of @f , namely,
M@f 2 Ec.@f /.

We recall next an example of an enlargement of an arbitrary maximally monotone
operator T .

Example 9. Define the point-to-set map T e W RC �X � X� as follows:

T e."; x/ WD

8<: ¹v 2 X� W hu � v; y � xi � �";8.y; u/ 2 G.T /º; 8x 2 D.T /;

;; if x 62 D.T /:

As mentioned in the Introduction, this enlargement of T was explicitly defined for the first
time in [10]. The fact that it verifies conditions .E1/–.E2/ follows directly from the defi-
nition. The transportation formula, i.e., condition .E3/ for T e , is established in [17, 21]. It
follows from the definitions that it is a closed enlargement of T , namely, T e 2 Ec.T /. The
enlargement T e has been used for developing (i) inexact prox-like methods for variational
inequalities [8,10,11,15,18], (ii) bundle-type methods for finding zeroes of maximally mono-
tone operators [21,30], and (iii) a unifying convergence analysis for algorithms for variational
inequalities [16]. More recently, T e has been used for developing inexact versions of the
Douglas–Rachford algorithm for finding zeroes of sums of maximally monotone operators
[1, 22, 39]. This list is by no means complete, but serves as evidence of the impact this con-
cept has had on the development of inexact methods for variational inequalities and related
problems. One of the reasons for this enlargement to have so many applications is the fact
that, as we will see in Section 3.2, it has better continuity properties than the original T .

Remark 4. We mentioned above the fact that FT characterizes T (see (2.9)). Moreover, FT

also characterizes T e . Indeed, it follows directly from the definitions that

FT .x; v/ � hx; vi C � if and only if v 2 T e.�; x/: (3.1)

Remark 5. When T D @f , we always have from the definitions that M@f .�;x/� .@f /e.�;x/.
The opposite inclusion can be strict, as observed in [28], see also [9, Example 5.2.5(iv)].

We mentioned above that T e 2 Ec.T /, we can say more about its “location” within
this family. The following result was established in [38].

Theorem 10. The family E.T / has a largest and a smallest element (with respect to the
inclusion of their graphs). The largest element is T e , and the smallest element is

T s.�; x/ D
\

E2E.T /

E.�; x/:

Moreover, T e is the largest element in Ec.T /, and T s is the smallest element in Ec.T /. In
other words, for every E 2 Ec.T /, we have

G.T s/ � G.E/ � G.T e/:
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3.2. Local boundedness
Consider an iterative method for solving problem (1.1) that generates a sequence

.xk ; vk/ � G.T /. Assume that the sequence .xk/ � X is convergent. In this situation, can
we say something about the behavior of the sequence .vk/? The answer to this question
requires more knowledge about G.T /. In fact, if T is maximally monotone, and .xk/ has its
limit in the interior of D.T /, then .vk/� X� is bounded and hence has a weakly convergent
subsequence by Bourbaki–Alaoglu’s theorem. The fundamental property needed here is the
local boundedness of T in the interior of its domain.

Definition 11. Let X be a topological space and Y a metric space. A point-to-set map
F W X � Y is said to be locally bounded at x 2 D.F / if there exists an open neighbor-
hood U of x such that F.U / WD

S
z2U F.z/ is bounded, and it is said to be locally bounded

when it is locally bounded at every x 2 D.F /.

Maps that are monotone are locally bounded at every point of the interior of their
domains. When they are also maximal, they are not locally bounded at any point of the
boundary of their domains. The latter fact means that we cannot expect enlargements to be
locally bounded at any point of the boundary of their domains. Hence, we concentrate on
points in the interior of their domains. Since G.E/ � ¹0º �G.T / and we use enlargements
to approximate T , we need to ensure that the local boundedness property is not lost when
replacing T by E. In fact, we will see that G.E/ is not “too large,” in the sense that the local
boundedness property in the interior of the domains is still preserved.

Local boundedness of maximally monotone maps was established by Rockafellar in
[34], and later extended to more general cases by Borwein and Fitzpatrick [3]. To make our
study specific for enlargements, we will use a refined notion of local boundedness for point
to set maps defined on RC �X .

Definition 12. Let E W RC � X � X� be a point-to-set mapping. We say that E is affine
locally bounded at x 2 X when there exists an open neighborhood V of x and positive
constants L; M such that

sup
y2V;

v2E.";y/

kvk � L"CM:

Remark 6. By Theorem 10, G.T e/�G.E/ for every E 2E.T /. Therefore, all local bound-
edness properties enjoyed by T e are inherited by E 2 E.T /. This means that it is enough
to study the local boundedness property for T e . This result is [17, Corollary 3.10], which we
recall next.

Theorem 13 (Affine local boundedness). If T W X � X� is monotone, then T e is affine
locally bounded in intD.T /. In other words, for all x 2 intD.T / there exist a neighborhood
V of x and positive constants L; M such that

sup
®
kvk W v 2 T e."; y/; y 2 V

¯
� L"CM

for all " � 0.
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Remark 7. The local boundedness property allows us to give an answer to the question
posed at the start of Section 3.2. We mentioned there that local boundedness of T implies
that, when the limit of .xk/ is in the interior of D.T /, the sequence .vk/ has a subsequence
which is a weakly convergent. Theorem 13 and Remark 6 show that this fact is still true for
any enlargement E 2 E.T /.

3.3. Lipschitz continuity
Consider again a method that generates a sequence .xk/ � D.T / and assume that

X D X� D Rn. Assume again that your sequence .xk/ converges to some x 2D.T /. Given
any fixed v 2 T x, can you find a sequence vk 2 T xk such that .vk/ converges to v? Enlarge-
ments of T do verify this property. They actually verify a much stronger property: Lipschitz
continuity. On the other hand, the above mentioned property is not true for maximally mono-
tone operators. Indeed, if f .t/ D jt j then T D @f does not verify it at t D 0. Indeed,
maximally monotone operators satisfy this property at a point x if and only if T x is a single
point. The latter fact is shown in [34] (see also [9, Theorem 4.6.3]).

Definition 14. Let Z and Y be Banach spaces and F W Z � Y a point-to-set map. Let U be
a subset of D.F / such that F is closed-valued on U . The mapping F is said to be Lipschitz
continuous on U if there exists a Lipschitz constant � > 0 such that for all x; x0 2 U it holds
that

F.x/ � F.x0/C �
x � x0

B.0; 1/;

where B.0;1/ WD ¹y 2 Y W kyk � 1º. In other words, for every x 2 U , v 2 F.x/, and x0 2 U ,
there exists v0 2 F.x0/ such that v � v0

 � �
x � x0

:

The fact that enlargements of T are Lipschitz continuous at every point in the interior
of their domains was proved in [17, Theorem 3.14]. For more details on these properties, see
[9, Chapter 5].

3.4. On graphs, closedness, and convexity
Assume now that your method generates a sequence .xk ; vk/ � G.T / which has a

limit point .x; v/ 2 X � X�. When can you ensure that .x; v/ 2 G.T /? In other words, is
G.T / closed? Closedness of the graph of a point-to-set map is a type of continuity called
outer-semicontinuity [9, Definition 2.5.1(a) and Theorem 2.5.4]. When T is maximally mono-
tone, G.T / is strongly closed and also .sw/s-closed, see [9, Proposition 4.2.1]. We will show
in this section that enlargements enjoy the same kind of outer-semicontinuity. We will see that
convexity has a crucial rôle in establishing this. Let E W RC �X � X� be any point-to-set
map. Definition 3 gives

G.E/ WD
®
.t; x; v/ 2 RC �X �X�

W v 2 E.t; x/
¯
:
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To see G.E/ as the epigraph of a (possibly not convex) function, rearrange the order of its
variables and consider the set:

QG.E/ WD
®
.x; v; t/ 2 X �X�

�RC W v 2 E.t; x/
¯
:

We see next how this set determines a convex function that characterizes G.E/. The next
result from [38, Lemma 3.2] is the key in linking enlargements with convexity.

Lemma 15. Let ˆ W X �X� �R! X �X� �R be defined as

ˆ.x; v; �/ D
�
x; v; � C hv; xi

�
;

and letE WRC �X � X� be any point-to-set map. The following statements are equivalent:

(i) E verifies .E3/;

(ii) ˆ. QG.E// � X �X� �R is a convex set.

Fact 16. Let E 2 E.T /.

(i) QG.E/ is .sw/s-closed if and only if ˆ. QG.E// is .sw/s-closed.

(ii) QG.E/ is (strongly) closed if and only if ˆ. QG.E// is (strongly) closed.

Proof. (i) Assume that QG.E/ is .sw/s-closed and take a sequence .xn; vn; sn/ 2

ˆ. QG.E// such that xn ! x, vn * v; and sn ! s. By definition of ˆ, this
means that .xn; vn; sn � hxn; vni/ 2 QG.E/ and

xn ! x; vn * v; and sn � hxn; vni ! s � hx; vi:

Since QG.E/ is .sw/s-closed, we deduce that .x; v; s � hx; vi/ 2 QG.E/. Equiv-
alently, .x; v; s/ 2 ˆ. QG.E// and therefore ˆ. QG.E// is sequentially .sw/s-
closed. The converse implication follows identical steps, mutatis mutandis. The
proof of (ii) follows from the fact that ˆ and ˆ�1 are continuous with respect
to the strong topology.

Convexity is crucial for ensuring outer-semicontinuity of the enlargements of T .

Corollary 17. Let E 2 Ec.T /. Then E is .sw/s-outer-semicontinuous.

Proof. Since E 2 Ec.T /, we know that G.E/ (and equivalently, QG.E/) is (strongly) closed.
By Fact 16(ii) and Lemma 15, ˆ. QG.E// is (strongly) closed and convex. By Fact 6(ii),
it is .sw/s-closed. Finally, Fact 16(i) yields that QG.E/ .sw/s-closed, showing the outer-
semicontinuity.

3.5. Brøndsted and Rockafellar property
Since ¹0º � G.T / � G.E/, the transportation formula allows producing elements

in G.E/ by using elements G.T /. Can we use elements in G.E/ to approach those in G.T /?
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For T D M@f , Brøndsted and Rockafellar [5] showed that any .";x;v/2G.M@f / can be approx-
imated by an element .x0; v0/ 2 G.@f / in the following way:

For all � > 0; there exists v0
2 @f .x0/ such that

x � x0
 � "

�
and

v � v0
 � �:

This result is known as Brøndsted–Rockafellar’s lemma. The remarkable fact is that enlarge-
ments enjoy this property, too. While this property holds for T D M@f in any Banach space,
more general enlargements require reflexivity of the space. A consequence of the Brønd-
sted and Rockafellar property is the fact that the domain and range of an enlargement is
dense in the domain and range of T , respectively. We sketch the proof of the Brøndsted and
Rockafellar property here because it is beautiful and is based on crucial results on maximally
monotone operators. For that, we recall that the duality mapping in a Banach space is defined
as J WD @g for g.x/ WD 1

2
kxk2. Using the definition of the subdifferential, it can be shown

[9, Proposition 4.4.4(i)] that the duality mapping verifies

J.x/ WD
®
v 2 X�

W hx; vi D kxk2; kxk D kvk
¯
: (3.2)

The proof uses a key property of T in reflexive Banach spaces. Namely, the surjectivity of
T C ˛J for ˛ > 0. This surjectivity property, which is, moreover, a characterization of max-
imally monotone operators in reflexive spaces, was established by Rockafellar in [36]. Since
G.T e/ � G.E/ for every E 2 Ec.T /, it is enough to show that the Brøndsted–Rockafellar
property holds for T e .

Theorem 18. Let ."; x"; v"/ 2 G.T e/ be given. For all � > 0, there exists .x; v/ 2 G.T /

such that

kv � v"k �
"

�
and kx" � xk � �:

Proof. The claim trivially holds if " D 0 because in this case by .E1/ we can take .x; v/ D

.x"; v"/ 2G.T /. Assume that " > 0. For any fixed ˇ > 0, define Tˇ .�/ WD ˇT .�/C J.� � x"/.
Since T is maximally monotone, the surjectivity property mentioned above implies that there
exist x 2 X and v 2 T x such that ˇv" 2 ˇv C J.x � x"/, which rearranges as ˇ.v" � v/ 2

J.x � x"/. Using the fact that ."; x"; v"/ 2 G.T e/ and the definition of J in (3.2), we have

�" � hv" � v; x" � xi D �
1

ˇ
kx � x"k

2
D �ˇkv � v"k

2;

and the result follows by taking ˇ WD �2=" and rearranging the expression above.

Since G.E/ � ¹0º � G.T /, we may wonder whether the range and domain of E

might be much larger that those of T . The precise situation is a consequence of Theorem 18,
and is stated next. Again, it is enough to establish this result for T e .

Corollary 19. The following hold:

(i) R.T / � R.T e/ � R.T /;

(ii) D.T / � D.T e/ � D.T /.
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Proof. The rightmost inclusions in (i) and (ii) follow from the previous theorem by taking
�!C1 for (i) and �! 0 for (ii), respectively. The leftmost inclusions follow from .E1/.

4. A family of convex functions associated with E.T /

We have seen that the convexity emanating from condition .E3/ ensures that enlarge-
ments are outer-semicontinuous. How can this fact be used to associate enlargements with
convex functions? All information on E is encapsulated in the set QG.E/. Hence, we start
by using this set to define the epigraph of a function defined in X � X�. The results in this
section either directly use those in [19], or combine these for ease of presentation.

Definition 20. Let S �X �X� �R. The lower envelope of S is the function  WX �X�!

R [ ¹C1º defined by

.x; v/ WD inf
®
t 2 R W .x; v; t/ 2 S

¯
;

with the convention that inf; D C1.

Fact 21. Let S � X � X� � R be a nonempty set and let  be its lower envelope as in
Definition 20. The following properties hold:

(i) S � epi./.

(ii) If S is closed and has epigraphical structure (i.e., if .x; v; t/ 2 S then
.x; v; s/ 2 S for every s > t ) then S D epi./.

(iii) S is closed if and only if  is lower semicontinuous.

(iv) S is closed and convex if and only if  is convex, proper, and lower semicon-
tinuous.

Proof. The proofs of (i), (iii), and (iv) follow directly from the definitions. For (ii), use the
definition of infimum and the closedness of S to deduce that .x; v; .x; v// 2 S . Now the
epigraphical structure yields epi./ � S .

The following simple lemma shows when QG.E/ D epi.�/ for some function �.

Lemma 22. Let E W RC � X � X� and let � W X � X� ! R [ ¹C1º. The following
statements are equivalent:

(i) QG.E/ D epi.�/.

(ii) � � 0 and E.t; x/ D ¹v 2 X� W �.x; v/ � tº for all t � 0, x 2 X .

Proof. [.i/! .ii/] By definition of E, QG.E/�X �X� �RC, so D.E/�RC �X . Hence,
� � 0. Now use (i) to write

v 2 E.b; x/$ .x; v; b/ 2 QG.E/
.i/
D epi.�/$ �.x; v/ � b:
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[.ii/! .i/] We have

.x; v; b/ 2 QG.E/$ b � 0; v 2 E.b; x/
.ii/
$ �.x; v/ � b $ .x; v; b/ 2 epi.�/:

Imposing closedness assumptions, we obtain lsc of �, as we see in the next result,
which is [19, Proposition 3.1].

Theorem 23. Let E W RC � X � X� be a point-to-set map such that G.E/ is closed and
verifies .E2/. Define �E W X �X� ! R [ ¹C1º as

�E .x; v/ WD inf
®
t � 0 W .x; v; t/ 2 QG.E/

¯
D inf

®
t � 0 W v 2 E.t; x/

¯
:

In other words, �E is the lower envelope of QG.E/. The following hold:

(i) QG.E/ D epi.�E /.

(ii) �E is strongly lsc.

(iii) �E � 0.

(iv) E.t; x/ D ¹v 2 X� W �E .x; v/ � tº for all t � 0, x 2 X .

Furthermore, �E is the unique function that verifies (iii) and (iv). In particular, the mapping
E 7! �E is one-to-one in Ec.T /.

Proof. Items (i) and (ii) follow from Fact 21(ii)–(iii). Item (iii) follows from the definition,
and item (iv) follows from (iii) and (i). For the uniqueness of �E , use Lemma 22. The injec-
tivity of the mapping E 7! �E follows from (i).

The set QG.E/ is (in general) not convex, and the same holds for �E . For generating
a convex function, we use again the map ˆ.

Definition 24. Let E 2 Ec.T / and let �E be as in Theorem 23. Define ƒE W X � X� !

R [ ¹C1º by the equality

epi.ƒE / WD ˆ
�
epi.�E /

�
:

Namely,

ƒE .x; v/ D �E .x; v/C hx; vi; (4.1)

for every .x; v/ 2 X �X�.

The following result constitutes the link between enlargements and convex func-
tions.

Theorem 25. Let E 2 Ec.T / and let ƒE as in Definition 24. The following hold:

(i) ƒE is convex and (strongly) lsc.

(ii) ƒE verifies
ƒE .x; v/ � hx; vi; for every .x; v/ 2 X �X�;

ƒE .x; v/ D hx; vi; if v 2 T x:

Moreover, the mapping E 7! ƒE is one-to-one in Ec.T /.
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Proof. To prove (i), use Definition 24 to write

epi.ƒE / D ˆ
�
epi.�E /

�
D ˆ

�
QG.E/

�
;

where we used Theorem 23(i) in the second equality. The convexity now follows from
Lemma 15. To prove that the function ƒE is lsc, use the fact that E 2 Ec.T / and Fact 16(ii).
The inequality in (ii) follows from (4.1) and Theorem 23(iii). As for the equality in (ii),
assume that v 2 T x. By .E1/, this implies that v 2E.0;x/ and, by definition, �E .x; v/ � 0.
Since �E � 0, we must have �E .x; v/ D 0. The latter, combined with (4.1), yields
ƒE .x; v/ D hx; vi. The last assertion holds by (4.1) and the fact that, given E, the function
�E is uniquely defined.

The following result is [19, Corollary 3.2] and characterizes E in terms of the con-
vexity of ƒE .

Corollary 26. Let E be a point-to-set map with closed graph which verifies .E1/–.E2/. Let
ƒE be as in Definition 24. The following statements are equivalent:

(i) E 2 Ec.T /.

(ii) ƒE is convex.

(iii) E verifies .E3/.

Proof. The equivalence between (i) and (iii) follows directly from the assumptions and the
definitions. The equivalence between (ii) and (iii) follows from the definition of ƒE and
Lemma 15. Indeed, the definition of ƒE and Theorem 23(i) gives

epi.ƒE / D ˆ
�
epi.�E /

�
D ˆ

�
QG.E/

�
:

By Lemma 15, E verifies .E3/ if and only if ˆ. QG.E// is convex, and by the above expression
the latter is equivalent to the convexity of ƒE .

Remark 8. Let E D T e 2 Ec.T /. In this case, we have that ƒT e D FT , the Fitzpatrick
function associated with T . This is a consequence of (2.9), and Remark 4. Indeed, (2.9)
and the latter remark imply that conditions (iii) and (iv) in Theorem 23 hold for �.x; v/ WD

FT .x; v/ � hx; vi. By the uniqueness property stated in the same theorem, we must have
�T e .x;v/DFT .x;v/� hx;vi. Since we know that T e 2Ec.T /, (4.1) now yields ƒT e DFT .

Theorem 25 helps us identify the relevant set of convex functions, which we define
next.

Definition 27. Let H0 be the set of all convex and (strongly) lower semicontinuous functions
defined on X �X�. The Fitzpatrick family of T is the set

H .T / WD
®
h 2 H0 W h.x; v/ � hx; vi for all .x; v/ 2 X �X�;

and h.x; v/ D hx; vi whenever v 2 T x
¯
:
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Remark 9. By taking S D epi.h/ in Fact 6, we see that h is (strongly) lower semicontinuous
and convex if and only if it is weakly lower semicontinuous, and the latter is equivalent to h

being .sw/s-lower semicontinuous.

Example 28. Using Definition 27, Remark 1 states that f FY 2 H .@f /. Similarly, the
system (2.9) implies that FT 2 H .T / for every T maximally monotone operator.

Theorem 25 provides a map from E.T / to H .T /. Namely, the map E 7! ƒE , with
ƒE fully characterizing G.T / in the sense of condition (ii) in the statement of the theorem.
We will define next the inverse of this map. Define � W X � X� ! R as �.x; v/ WD hx; vi

for every .x; v/ 2 X �X�.

Theorem 29. Let h W X � X� ! R [ ¹C1º be a convex and lsc function. Consider the
point-to-set map Lh W R �X � X� defined by

Lh.t; x/ WD
®
v 2 X�

W h.x; v/ � t C hx; vi
¯
;

for every t 2 R, x 2 X . The following statements are equivalent:

(i) h 2 H .T /.

(ii) h � � , D.Lh/ � RC �X and Lh 2 Ec.T /.

(iii) ƒLh D h and Lh.0; x/ � T x.

Proof. Œ.i/! .ii/� The definition on H .T / directly gives h � � . The latter inequality also
yields D.Lh/ � RC �X . Indeed, v 2 Lh.t; x/ if and only if h.x; v/ � t C �.x; v/. Since
h � � , this implies that t � 0, so D.Lh/� RC �X . We need to show that E WD Lh verifies
.E1/–.E3/. Condition .E2/ follows trivially from the definition of Lh. We next check .E1/.
By (i), we know that h.x; v/ D hx; vi for every v 2 T x. Therefore,

T x �
®
u 2 X�

W h.x; u/ � hx; vi
¯
D Lh.0; x/;

so .E1/ holds. To verify .E3/ we will show that ˆ. QG.Lh// is convex and use Lemma 15.
Indeed, by definition of ˆ and Lh,

ˆ
�
QG.Lh/

�
D

®�
x; v; t C hx; vi

�
W v 2 Lh.t; x/

¯
D

®�
x; v; t C hx; vi

�
W h.x; v/ � t C hx; vi

¯
DW ˆh:

We claim that ˆh D epi.h/. Indeed, it is clear that ˆh � epi.h/. To show that epi.h/ � ˆh,
take any .x; v; s/ 2 epi.h/. We need to show that we can write s D t C hx; vi for some
t � 0. Indeed, by (i), we know that h.x; v/ � hx; vi. Hence, hx; vi � h.x; v/ � s so
t D s � hx; vi � 0. This shows that the claim is true and ˆh D epi.h/. Since h is convex,
the above expression gives the convexity of ˆ. QG.Lh//, and Lemma 15 furnishes .E3/.
Œ.ii/! .iii/� The inclusion Lh.0; x/ � T x is .E1/, which holds because Lh 2 Ec.T /. Let
us show that ƒLh D h. By (ii), we can apply Theorem 23(iv) to E WD Lh and obtain

Lh.t; x/ D
®
v 2 X�

W h.x; v/ � hx; vi � t
¯
D

®
v 2 X�

W �Lh.x; v/ � t
¯
;

8t � 0; 8x 2 X;
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where used the definition of Lh in the first equality. Use t WD �Lh.x; v/ in the middle set to
obtain h.x; v/ � hx; vi � �Lh.x; v/. By (ii), we have that h � � so that t WD

h.x;v/��.x;v/� 0 can be used in the right-most set to derive �Lh.x;v/� h.x;v/� hx;vi.
Therefore, �Lh.x; v/C hx; vi D h.x; v/. Using this equality and the definition of ƒLh , we
have that

ƒLh.x; v/ D �Lh.x; v/C hx; vi D h.x; v/;

so (iii) is proved.
Œ.iii/! .i/� Since h is lsc, Lh is a point-to-set map with closed graph that verifies .E2/. By
Theorem 23(iii), we have that �Lh � 0. The definitions and (iii) now yield

h D ƒLh D �Lh C � � �;

which gives the inequality in the definition of H .T /. Now we need to prove that
h.x; v/ D �.x; v/ whenever v 2 T x. Since T x � Lh.0; x/, we can use Theorem 23(iv)
for t D 0 to deduce that �Lh.x; v/ � 0. By Theorem 23(iii) again, we have that �Lh � 0.
Altogether, �Lh.x; v/ D 0 if v 2 T x. Using (iii), we can write

h.x; v/ D ƒLh.x; v/ D �Lh.x; v/C �.x; v/ D �.x; v/;

when v 2 T x. Therefore, h 2 H .T /.

Remark 10. For every h 2 H .T /, we have that h D � if and only if v 2 T x. Indeed, the
“if” part follows because h 2H .T /. Conversely, let h D � and take E WD Lh 2 Ec.T /. By
Theorem 23(iv), v 2 Lh.0; x/ and by Theorem 29 and Remark 3 T D Lh.0; �/ so v 2 T x.

To complete this section, we combine the results above to obtain a bijection between
E.T / and H .T /. In the following result, we consider the sets E.T / and H .T / as partially
ordered. In E.T / we use the partial order of the inclusion of the graphs: E1 � E2 if and
only if G.E1/ � G.E2/. In H .T / we use the natural partial order of pointwise comparison
in X �X�: h1 � h2 if and only if h1.x; v/ � h2.x; v/ for every .x; v/ 2 X �X�.

Theorem 30. The map ‚ W Ec.T /! H .T / defined as ‚.E/ WD ƒE is a bijection, with
inverse ‚�1.h/D Lh. Considering the partially ordered spaces .E.T /;�/ and .H .T /;�/,
the bijection ‚ is “order reversing”, i.e., if E1 � E2 then h2 WD ‚.E2/ � h1 WD ‚.E1/.
Therefore, ‚.T e/ D FT and FT is the smallest element of the family H .T /.

Proof. By Theorem 25, we know that ‚.E/ D ƒE 2 H .T / and the function ‚ is
injective. The function ‚ is surjective because by Theorem 29, Lh 2 Ec.T / and hence
‚.Lh/ D ƒLh D h for every h 2H .T /. The fact that ‚ is order reversing is proved via the
following chain of equivalent facts:

E1 � E2
definition
 ! QG.E1/ � QG.E2/

Theorem 23(i)
 ! epi.�E1/ � epi.�E1/

$ �E2 � �E1

(4.1)
$ ‚.E2/ D ƒE2 � ‚.E1/ D ƒE1 :
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Since G.T e/ � G.E/ for every E 2 Ec.T /, we can use the fact that ‚ is order reversing
and Remark 8 to obtain

‚.T e/ D ƒT e
Remark 8
D FT � ‚.E/;

for every E 2 Ec.T /. Since ‚.Ec.T // D H .T /, the claim is proved.

5. A distance induced by H .T /

In this section we recall how the family H .T / is used for defining a new distance
between set-valued maps. More results can be found in [6, 7, 12]. Let h 2 H .T /, and let S W

X � X� be any point-to-set operator. Following [12, Definition 3.1], for each .x;y/2X �X ,
define

D
[;h
S .x; y/ WD

8<: infv2Sy.h.x; v/ � hx; vi/ if .x; y/ 2 dom S � dom T;

C1 otherwise
(5.1a)

and D
];h
S .x; y/ WD

8<: supv2Sy.h.x; v/ � hx; vi/ if .x; y/ 2 dom S � dom T;

C1 otherwise.
(5.1b)

We call these distancesGeneralized Bregman distances (GBDs). When S is point to point, all
three collapse into one, Dh

S WDD
[;h
S DD

];h
S . The GBDs specialize to the Bregman distance.

Given a proper, convex, and differentiable function f W X ! R, the (classical) associated
Bregman distance [4] is defined as

Df .x; y/ WD f .x/ � f .y/C
˝
y � x;rf .y/

˛
: (5.2)

It is easy to check that GBDs reduce to (5.2) when T D S D rf and h WD f FY [12, Propo-

sition 3.5]. We show next that GBDs can be used to characterize approximate solutions of
the sum problem:

find x 2 X such that 0 2 Sx C T x; (5.3)

where S; T W X � X� are point-to-set maps, with T being maximally monotone. The proof
of the next result, inspired by [12, Proposition 3.7], is [7, Proposition 2.2].

Proposition 31. Suppose that T W X � X� is a maximally monotone operator and
S W X � X� is a point-to-set operator. Fix any h 2 H .T /, " 2 RC, and x 2 X . Con-
sider the following statements:

(a) 0 2 Lh."; x/C T x.

(b) D
[;h
�S .x; x/ � ".

Then .a/ H) .b/. Moreover, if dom S is open and S is locally bounded with weakly closed
images, then the two statements are equivalent.

Next we illustrate how optimality conditions for minimizing a DC (difference of
convex) function can be expressed by means of a particular type of GBD. Let f W X !
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R [ ¹C1º and g W X ! R be proper and convex lsc functions. We consider the problem
of finding x 2 X that globally minimizes f � g. In the proposition below, the equivalence
between statements (a) and (b) are well known in finite-dimensional spaces (see, e.g., [26,
Theorem 3.1]). Its extension to reflexive Banach spaces can be found in [7, Proposition 2.3].

Proposition 32. The following statements are equivalent:

(a) x is a global minimum of f � g on X .

(b) For all " � 0, M@g."; x/ � M@f ."; x/.

(c) For all " � 0, D
];f FY

M@g
.x; x/ � ".

5.1. Some open problems related to GBDs
(a) When T D S D @f , will the GBD induced by h D FT have some advantages

when compared with the classical Bregman distance (induced by h D f FY)?
What do the resulting generalized projections look like, when compared with
the classical Bregman projections?

(b) Can these distances be used to regularize/penalize proximal-like iterations for
variational inequalities?

(c) In view of Proposition 31, can we use the GBDs to develop new algorithms for
solving problem (5.3)?

(d) In view of Proposition 32, can we obtain an optimality condition for the inclu-
sion problem 0 2 T x � Sx with T; S maximally monotone?

(e) Can a similar result to Proposition 32 be obtained for enlargements of T D @f

different from M@f ?

6. Final words

Many crucial properties have been left uncovered, and it is my hope that those
mentioned here will motivate researchers to explore the yet undiscovered paths that link
maximally monotone operators with convex functions.

I conclude with a tribute to Asen Dontchev, who passed away on 16 September 2021.
Asen was an outstanding mathematician with crucial contributions to set-valued analysis,
and especially to the topic of inclusion problems and their approximations.
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Nonlinear eigenvalue
problems for
seminorms and
applications
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Dedicated to the Memory of Joyce McLaughlin and Victor Isakov.

Abstract

The aim of this paper is to discuss recent progress in nonlinear eigenvalue problems for
seminorms (absolutely one-homogeneous convex functionals), which find many appli-
cations in data science, inverse problems, and image processing. We provide a unified
viewpoint on the notion of nonlinear singular vectors and eigenvectors for homogeneous
nonlinear operators respectively functionals. We further discuss in particular ground states,
i.e., the first eigenvector or eigenfunction. Moreover, we review a recent approach to the
analysis of eigenvectors based on duality, which has implications to the possible compu-
tation of spectral decompositions, i.e., signal dependent linear expansions in a system of
eigenvectors.
Moreover, we discuss some relevant implications such as the refined analysis of variational
regularization methods and their bias, as well as the analysis of some iteration methods
and time-continuous flows. Finally, we provide more direct applications of the nonlinear
eigenvalue problems such as nonlinear spectral clustering on graphs.
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1. Introduction

Eigenvalue problems are not just a basic technique in linear algebra (cf. [39, 40]),
they also find many applications in several branches of sciences, more recently also in data
or image analysis. Prominent examples are the computation of states in quantum mechan-
ics, Fourier decompositions—i.e., expansion in Laplacian eigenvalues—of audio signals or
images (cf., e.g., [8]), or spectral clustering based on graph Laplacians (cf. [42]). In most
of these applications the eigenvector or eigenfunction is of more importance than the exact
eigenvalue, e.g., spectral clustering is based on dividing into the sets where the first non-
trivial eigenfunction is negative or positive, respectively. Thus, particular focus is pot on the
computation of eigenvectors respectively eigenfunctions.

While eigenvalue problems for linear operators are well understood, nonlinear
eigenvalue problems, in particular those being nonlinear in the eigenvector or eigenfunction
(cf. [1, 38]), are still a lively topic with many different directions of research. In physics,
eigenvalue problems for nonlinear Schrödinger equations are a prominent example (cf.
[24,43]), while eigenvalue problems for p-Laplacian operators (and their graph equivalents)
received strong recent attention in partial differential equations and data science (cf., e.g.,
[12,21,33–35]).

In this paper we want to focus on a special type of eigenvalue problems for (pos-
itively) zero-homogeneous operators related to the subdifferential of absolutely one-homo-
geneous functionals, more precisely we look for � > 0 and u 2 H ,H a Hilbert space, such
that

�u 2 @J.u/: (1.1)

Here J WH ! R [ ¹C1º is assumed to be convex and absolutely one-homogeneous, thus it
is effectively a seminorm on a subspace ofH (cf. [15]). The assumption of one-homogeneity
is less restrictive than it seems, since many other homogeneous eigenvalue problems can be
reformulated equivalently as one-homogeneous problems, as we shall see in the p-Laplacian
case below. Such eigenvalue problems can be rephrased in a variational setting, since we look
for stationary points of the Rayleigh-quotient

R.u/ D
J.u/

kuk
: (1.2)

Indeed, (iterative) minimization of the Rayleigh quotient is a key technique for the compu-
tation of eigenvectors or eigenfunctions (cf. [13,25,29,31,32]).

Let us mention a related notion of nonlinear singular values (cf. [3]), given by

�K�Ku 2 @J0.u/; (1.3)

where J0 W X ! R [ ¹C1º is a convex and absolutely one-homogeneous functional on a
Banach spaceX , andK WX ! Y is a bounded linear operator into the Hilbert space Y . This
notion generalizes the linear singular value problem

K�Ku D �2u; (1.4)

with the obvious relation � D
1p
�

to a nonlinear setting, and finds interesting applications in
the regularization theory of inverse problems (cf. [3,4]). We shall see below that indeed there
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is a reformulation of the singular value problem (1.3) as a nonlinear eigenvalue problem of
the form (1.1).

Besides some basic issues for eigenvalue problems and their direct applications,
we will also discuss the issue of spectral decompositions (cf. [15, 18, 19, 27, 28, 30]), i.e., the
possibility to develop signals in a systematic way into nonlinear eigenvectors, e.g., as a sum

f D

1X
kD1

ckuk ;

for f 2 H and uk being the eigenvector with eigenvalue �k . In a general setting we rather
look for a decomposition of the form

f D

Z 1

0

d��; (1.5)

with a measure � on RC valued in the Hilbert spaceH . Such a decomposition will be called
spectral decomposition if the polar composition

�� D u�j��j (1.6)

is such that for each � in the support of j��j the unit vector u� 2 H is an eigenvector for
the eigenvalue �. Fundamental questions, only partly answered so far, are the existence of
nonlinear spectral decompositions as well as a systematic way to compute such decompo-
sitions from data. A particular advantage of a spectral decomposition is the possibility to
define filtered versions of f ,

f D

Z 1

0

 .�/ d��; (1.7)

e.g., with  being zero on a certain interval to suppress certain scales related to a range of
eigenvalues. Such approaches find applications, e.g., in image or geometry processing (cf.
[26,30]). Moreover, the spectral decompositions of two different data f1 and f2 can be mixed,
which finds interesting applications, e.g., in image fusion (cf. [5]).

The remainder of this paper is organized as follows: In Section 2 we provide some
notations and fundamental properties of eigenvalue problems for seminorms, as well as first
examples. We also discuss the motivation for a nonlinear spectral decomposition. Section 3
is devoted to the study of ground states, the eigenvectors for the first nontrivial eigenvalue,
which are of particular relevance and also the easiest to compute numerically. Section 4 dis-
cusses the relation between eigenvalue problems, on the one hand, and variational methods,
iterative schemes, and time-continuous flows, on the other. Here we see that eigenvectors
and eigenfunctions yield structured examples of exact solutions for those methods. On the
other hand, these methods, in particular gradient flows and time-continuous versions, can be
used to compute eigenvectors and possibly even spectral decompositions.

2. Basic properties and formulations

In the following we fix some notation, discuss some basic properties of nonlinear
eigenvalue problems such as (1.1), and unify the formulations of eigenvalues and singular
values.
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2.1. Seminorms, duality, and subdifferentials
Throughout the whole paper we assume that J W H ! R [ ¹C1º is convex and

absolutely one-homogeneous, i.e.,

J.tu/ D jt jJ.u/; 8t 2 R: (2.1)

This implies that J satisfies a triangle inequality, since

J.u1 C u2/ D 2J

�
1

2
u1 C

1

2
u2

�
� 2

�
1

2
J.u1/C

1

2
J.u2/

�
D J.u1/C J.u2/:

Moreover, the set
H0 D

®
u 2 H j J.u/ < 1

¯
is a subspace of H on which J is a seminorm, hence our nomenclature as eigenvalue prob-
lems for seminorms.

For completeness, let us recall the definition of the subdifferential of a convex func-
tional J ,

@J.u/ D
®
p 2 H�

j hp; v � ui � J.v/ � J.u/;8v 2 H
¯
; (2.2)

and the polar function (or convex dual),

J �.p/ D sup
u2H

hp; ui � J.u/: (2.3)

Note that for p 2 @J.u/ we have
hp; ui D J.u/

and
hp; vi � J.v/

for each v 2H , and these properties are actually an equivalent characterization of subgradi-
ents under our assumptions (cf. [15]). Since J is a norm on a subspace, we can define a dual
norm

kpk� D sup
u2H;J.u/�1

hp; ui; (2.4)

which is interesting for the analysis of subgradients. Indeed, it can be shown that

@J.u/ � @J.0/ D
®
p 2 H�

j kpk� � 1
¯
;

for each u 2 H , i.e., subdifferentials are contained in the dual unit ball.
The eigenvalue problem (1.1) can be interpreted in a dual way, by noticing that each

eigenvector u is also a multiple of a subgradient p, respectively as p 2 �@J �.p/. A key
observation made in [15] is that these subgradients arising in the eigenvalue problems are of
minimal norm.

Proposition 2.1. Let u be an eigenvector of J satisfying �u D p 2 @J.u/. Then p is a
subgradient of minimal norm, i.e.,

kpk � kqk; 8q 2 @J.u/:

5237 Nonlinear eigenvalue problems for seminorms and applications



In [15] a further geometric characterization of eigenvectors has been derived, which
relates to the minimal norm property.

Proposition 2.2. An element p 2 @J.0/ defines an eigenvector u D
1
�
p for some � > 0 if

and only if p satisfies the extremal property,

hp; p � qi � 0; 8q 2 @J.0/: (2.5)

At least from a theoretical point of view, this yields an option to obtain all eigenvec-
tors of functional as follows: first of all, compute for eachu2H with kuk D 1 the subgradient
of minimal norm, i.e.,

p D arg min
®
kqk j q 2 @J.u/

¯
;

and subsequently check condition (2.5). In case of satisfaction, u is an eigenvector.

Example 2.3. Consider the simple example J.u/ D
p

hu;Aui for a positive semidefinite
operator A. In this case

@J.u/ D
1

J.u/
Au

for u ¤ 0, and it is easy to see that

@J.0/ D
®
p D Aw j w 2 H hw;Awi � 1

¯
:

Let u be a linear eigenvector with eigenvalue � ¤ 0, i.e., �u D Au, then (2.5) with p D

1
J.u/

Au D
�
J.u/

u becomes

�

J.u/

�
u;

1

J.u/
Au � Aw

�
� 0:

This is satisfied, since it is equivalent top
hu;Aui � hu;Awi;

and this inequality holds due to the Cauchy–Schwarz inequality in the scalar product induced
by A.

Example 2.4. Consider a polyhedral functional, i.e.,

J.u/ D ��
C D sup

p2C

hp; ui;

with the symmetric polyhedral set

C D conv
�
¹p1; : : : ; pm;�p1; : : : ;�pmº

�
:

Then pj satisfies (2.5) if the plane orthogonal to pj only intersects C in pj .
Let us make this more concrete in R2 in polyhedra with m D 2. We start with the

example p1 D .1; 1/ and p2 D .�1; 1/, i.e., C is the unit ball in `1. The lines orthogonal to
˙pj only intersect C in pj , thus all pj are eigenvectors. As a specific case, we explicitely
compute (2.5) for p1 and q D .r; s/ 2 C ,

hp1; p1 � qi D 2 � r � s � 0;

since r; s 2 Œ�1; 1�.
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As a second example consider p1 D .1; 1/ and p2 D ."; 1/ with " 2 .0; 1/. With
the reasoning as above, we see that p1 is an eigenvector. However, p2 is not as we see with
q D .1; 1/ 2 C ,

hp2; p2 � qi D "2 C 1 � " � 1 D "." � 1/ < 0:

2.2. Singular values and eigenvalues
In the following we discuss the reformulation of the nonlinear singular value prob-

lem (1.3) as a nonlinear eigenvalue problem. Throughout this section we assume that J0 is
a seminorm on a subspace of X extended by C1, and K W X ! Y is a bounded linear
operator. In order to unify the formulation with (1.1), we want to define a functional J on a
subspace of Y , respectively on values v D Ku. Hence, it is natural to define the spaceH as
the closure of the range ofK in Y . IfK has a nontrivial nullspace, the definition of J0.v/ as
J.u/ with Ku D v is not unique, however. We thus first provide a property of eigenvectors
that will enable a unique definition.

Lemma 2.5. Let u be a nonlinear singular vector according to (1.3). Then J0.u/ � J0.w/

for all w such that Kw D Ku.

Proof. We take a duality product of �K�Ku with u � w to obtain

�
˝
K�Ku;w � u

˛
D �hKu;Ku �Kwi D 0:

On the other hand, from the singular value equation (1.3) we find

�
˝
K�Ku;w � u

˛
D hp;w � ui D hp;wi � J0.u/ � J0.w/ � J0.u/:

Hence, J0.u/ � J0.w/.

From this result we see that we need to define J via the minimal value of J0, more
precisely

J.v/ WD inf
u;KuDv

J0.u/: (2.6)

It is straightforward to check that J W H ! R [ ¹C1º is an absolutely one-homogeneous
convex functional. Moreover, there is a direct relation between subgradients: we find p 2

@J.Ku/ if and only if K�p 2 @J0.u/. Thus, we find the equivalence between

�v D �Ku 2 @J.v/ and �K�Ku D �K�v 2 @J0.u/:

2.3. Spectral decomposition
An interesting question is the possible existence of a spectral decomposition in the

nonlinear case. Let us recall the well-known spectral decomposition of a positive semi-
definite linear operator A on a Hilbert space H : there exists an operator-valued spectral
measure E supported on the spectrum of A such that

A D

Z 1

0

�dE�:
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This allows extending functions f W RC ! R to the operator A as

f .A/ D

Z 1

0

f .�/ dE�:

In the case of a compact operator, the spectral measure is concentrated on a countable set
and takes the form

E D

1X
kD1

uk ˝ ukı�k ;

where uk is an eigenvector for the eigenvalue �k and ˝ denotes the outer product. A positive
semidefinite linear operator is the canonical choice in our setting, since it defines a convex
absolutely one-homogeneous functional

J.u/ D
p

hu;Aui:

In general, we cannot expect to obtain some kind of spectral decomposition from a
convex functional J , respectively its subdifferential @J , but we can hope to have a pointwise
decomposition, corresponding in the linear case to

Au D

Z 1

0

�d.E�u/ D

Z 1

0

�d��;

with a spectral measure � valued in the Hilbert space H . In particular, this allows for the
reconstruction of u from the spectral measure via

u D

Z 1

0

d��;

as well as some spectral filtering by integrating some function of �, e.g., a characteristic
function in some region.

In general, there is no unique way to construct a unique spectral decomposition of
this kind. For example, for total variation regularization in one dimension (with appropri-
ate definition of the variation on the boundary), it was shown in [3] that the Haar wavelet
basis is an orthogonal basis of nonlinear eigenfunctions, hence there exists an atomic spec-
tral decomposition in this basis. However, it also has been shown that there is a continuum
of further eigenfunctions, necessarily linearly dependent, hence further spectral decomposi-
tions can be obtained by exchanging parts of the Haar wavelet basis. An interesting question
is to define a generic spectral decomposition by a natural technique.

3. Ground states

In the following we investigate the first nontrivial eigenvalue and its corresponding
eigenvector or eigenfunction, which we call ground state. More precisely, let

N .J / D
®
u 2 H j J.u/ D 0

¯
be the nullspace of J . Due to the properties of J , the nullspace is indeed a linear subspace
(cf. [3,15]), and we can define its orthogonal complementH0 WD N .J /? inH . It can further
be shown that for each u 2 H and u0 2 N .J / the identity

J.uC u0/ D J.u/C J.u0/
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holds, i.e., there is an analogue of the orthogonal decomposition at the level of J . Finally,
let u 2 H be an eigenvector for the eigenvalue � ¤ 0. Then we find for u0 2 N .J /,

�hu; u0i D hp; u0i � J.uC u0/ � J.u/ D 0:

Since �u is also an eigenvector, we obtain the opposite inequality and hence the orthogonal-
ity of u and u0. Thus, we get rid of the trivial eigenvalues and the corresponding eigenvectors
by restriction to H0, which leads in particular to the definition of a ground state according
to [3].

Definition 3.1. Let J W H ! R [ ¹C1º be an absolutely one-homogeneous convex func-
tional andH0 be the orthogonal of its nullspace as above. Then we call u 2H a ground state
of J if

u 2 arg min
u2H0

J.u/

kuk
: (3.1)

Let us mention that we can rescale u in the above definition and consider equiva-
lently a ground state as a minimizer of J on the unit sphere ¹u 2 H0 j kuk D 1º. The latter
is useful for proving the existence of ground states. If J is lower semicontinuous and the
sublevel sets of J are precompact, existence follows from a standard argument (cf. [3]). It is
apparent for normalized eigenvectors u that � D J.u/, thus

�0 WD min
u2H0

J.u/

kuk
� �

for each nontrivial eigenvalue. On the other hand, �0 is indeed an eigenvalue for each eigen-
vector u0 minimizing the Rayleigh-quotient. For this, define p0 D �0u0. Then we have

hp0; u0i D �0hu0; u0i D �0 D J.u0/;

and for arbitrary u 2 H n ¹0º,

hp0; ui D �0hu0; ui � �0kuk �
J.u/

kuk
kuk D J.u/:

Thus p0 D �0u0 2 @J.u0/.
We finally recall the relation to the case of nonlinear singular values. The ground

state in this case can be equivalently computed from minimizing

u 2 arg min
u2X

J0.u/

kKuk
; (3.2)

which is often more accessible.

3.1. p-Laplacian eigenvalues
Ground states of the p-Laplacian are a well-studied problem in partial differential

equations, as well as on graphs. In the standard setting, one would look for the first eigenvalue
in the problem

�r �
�
jruj

p�2
ru

�
D �1ujuj

p�2;
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in a domain� with homogeneous Neumann or Dirichlet boundary values. This is, however,
related to the eigenvalue of the p-Laplacian energy

Ep.u/ D

Z
�

ˇ̌
ru.x/

ˇ̌p
dx

in Lp.�/, while our Hilbert space setting corresponds to solving

�r �
�
jruj

p�2
ru

�
D �1ukuk

p�2

L2
:

Since u 7! Ep.u/
1=p is an absolutely one-homogeneous convex functional, the ground state

can be computed by minimizing the corresponding Rayleigh quotient

R.u/ D
Ep.u/

1=p

kukL2
;

which corresponds to our setup in this paper. For p D 2, all formulations simply yield the
standard linear eigenvalue problem for the Laplacian and, indeed, the formulation with the
Rayleigh quotient is related to the fact that the first eigenvalue is the best constant in the
Poincaré-inequality. On graphs, the corresponding problem for the graph Laplacian is fun-
damental for spectral clustering techniques (cf. [42]).

Particularly interesting cases are, of course, the limiting ones p D 1 and p D 1.
For p D 1, the ground state is the first eigenfunction of total variation, and, due to area and
coarea formula, the L2-norm and total variation can be related to the volume, respectively
perimeter, of level sets (cf. [22]). In this way and similar to the classical Cheeger problems
(cf. [37]), it can be shown that, indeed, ground states only take two-function values and the
interface between solves an isoperimetric problem. On a graph the ground states of total
variation can be related in a similar way to a graph cut, the so-called Cheeger cut (cf. [41]).
In one dimension, for a modified version of total variation that takes into account also the
variation across the boundary (assuming extension by zero outside), the ground state can
be computed as a piecewise constant function with single discontinuity in the midpoint of
the interval. For this approach, also scaling of the eigenfunction is possible. For simplicity,
consider � D .0; 1/ and let u1 be the ground state. Then indeed, for s < 1, the function

us1.x/ D

´
1p
s
u1.

x
s
/ if x < s;

0 if x > s

is another eigenfunction for a larger eigenvalue. Moreover, the dilation

u
s;t
1 .x/ D

8̂<̂
:
0 if x < t;
1p
s
u1.

x�t
s
/ if x < s C t;

0 if x > s C t

is another eigenfunction if t � 1 � s. Indeed, such results can be generalized to anisotropic
total variation in multiple dimension by scaling and dilation along the coordinate axes.

In the case p D 1, the setup in a Hilbert space is not the one usually referred to as
1-Laplacian, which rather corresponds to the treatment of the 1-Laplacian energy

J.u/ D kruk1
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in L1.�/, while we use the Hilbert spaceH D L2.�/. In this case an interesting problem
is to consider an extended version of J , defined as C1 if u does not have homogeneous
boundary values, i.e., we effectively solve the homogeneous Dirichlet problem. Here the
ground state can be computed more easily with a different scaling J.u/ D 1, i.e., we effec-
tively maximize kuk2 subject to jru.x/j � 1 almost everywhere. For a domain �, this is
indeed the case if u is the distance function to the boundary, thus computing the ground
state yields an alternative way to compute distance functions, respectively solve the eikonal
equation (cf. [17] for further details). On a graph, the computation of the ground state with
the above normalization yields a way to define and compute a distance function.

3.2. Ground states and sparsity
An interesting class of functionals J in many applications in signal and image pro-

cessing are `1-norms or their continuum counterpart, the total variation of a measure. Such
functionals are used to enforce sparsity of their minimizers, i.e., a minimal size of the support.

Let us start in the finite-dimensional case X D Rn, K W Rn ! Rm (the latter
equipped with the Euclidean norm), and

J0.u/ D kuk1 D

nX
iD1

jui j:

Here we use the singular value formulation (3.2), i.e., we want to compute

u 2 arg min
u2X

kuk1

kKuk2
:

Indeed, the sparsity is present also in the ground state. To see this, let ei be the i th unit vector
and Qei D sign.ui /ei . Then, for arbitrary u, we have

kKuk2 D kuk1

 nX
iD1

�iK Qei


2

;

with �i D
jui j

kuk1
. By convexity, we find further

kKuk2 � kuk1

nX
iD1

�ikK Qeik2;

and equality holds if u has a single nonzero entry. In particular, we find

R.u/ D
kuk1

kKuk2
�

1

maxi kKeik2
;

and thus u D ej with j such that

kKej k2 � kKeik2; 8i 2 ¹1; : : : ; nº

is a ground state. Moreover, the proof shows that there are no other ground states, i.e., all of
them have maximal sparsity.

In the infinite-dimensional case, we have X D M.�/ for some domain � and K
mapping to some Hilbert space, typically with the assumption that K is the adjoint of an
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operator L mapping from the Hilbert space to the predual space Cb.�/ (cf. [9]). Using the
latter issues with the dual space of M.�/ can be avoided and the analysis can be carried out
in the predual space. The functional J0 is the total variation norm

J0.u/ D sup
'2Cb.�/;k'k1�1

Z
�

' du:

With analogous reasoning as above, interpreting a general measure after division by its total
variation norm as a convex combination of signed concentrated measures, we see that the
ground states are of the form u D ız for z 2 � such that

kKızk � kKıxk; 8x 2 �:

Example 3.2. Let us consider� � Rd and let k W Rd ! R be a continuous and integrable
kernel. We consider the convolution operator

K W M.�/ ! L2.Rd /; u 7!

Z
�

k.� � y/du.y/:

We see that Kız D k.� � z/ and thus

kKızk
2
L2

D

Z
Rd

k.x � z/2 dx D

Z
Rd

k.y/2 dy:

Hence, the maximum of kKızk is attained for any z 2�, which implies that the concentrated
measure ız is a ground state for any z 2 �.

Example 3.3. We return to the case of a polyhedral regularization J D ��
C , but actually the

argument holds for general convex sets C . Since we know that the ground state is an eigen-
vector and thus a subgradient in @J.0/ D C , it suffices to minimize the Rayleigh quotient
over C . Moreover, the extremal property (2.5) can be satisfied only for p 2 @C , hence we
further restrict the possible minimization. Let p be the solution of

p D arg min
q2@C

kqk;

i.e., the element of minimal norm in @C . Then

R.p/ D
J.p/

kpk
D

1

kpk
sup
q2C

hq; pi D
1

kpk
hp; pi D kpk:

By analogous reasoning, we can show

R.q/ � kqk � kpk D R.p/:

Thus, p is indeed a ground state of J .

4. Variational problems, iterations, and flows

A first motivation of the definition of nonlinear singular values was to obtain exact
solutions of variational problems of the form

u 2 arg min
u2X

1

2
kKu � f k

2
C ˛J0.u/;
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which frequently arise in the regularization of inverse problems, image processing, and data
analysis (cf. [4] and the references therein). It was further extended to some iterative methods
and time-continuous flows, which in turn can be used as methods to compute eigenvectors
or singular vectors. We shall discuss these developments in the following. For the sake of a
simple notation, we denote by u� an eigenvector with eigenvalue �, i.e.,

�u� D p� 2 @J.u�/: (4.1)

Moreover, throughout the whole section we will use data f 2H0, since for arbitrary f 2H

we can factor out the component in N .J /. The latter is just technical and beyond our interest
of highlighting the main points of the analysis in this paper.

4.1. Variational regularization methods
We start with a discussion of variational regularization methods, which we rephrase

as in Section 2 in a Hilbert space setting, i.e.,

u 2 arg min
u2H

1

2
ku � f k

2
C ˛J.u/: (4.2)

We consider f being a multiple of the eigenvector u�, i.e., f D cu�, c > 0, and look for a
solution of the form u D C.˛; �/u�. The basis for this investigation is the optimality condi-
tion

u � f C ˛p D 0; p 2 @J.u/

satisfied by a solution u of (4.2). Making the ansatz p D p� D �u�, which is in the subdif-
ferential of C.˛; �/u due to the zero-homogeneity of @J , we arrive at the scalar relation

C.˛; �/ � c C ˛� D 0;

which yields a positive solution if c > ˛�. If c � ˛�, we obtain a solution by choosing
C.˛; �/ D 0, since c

˛�
2 @J.0/. Thus, we find

C.˛; �/ D .c � ˛�/C; (4.3)

i.e., the solution is a multiple of an eigenvector with the magnitude obtained by a shrinkage
formula. We see that obviously the shrinkage is stronger for larger ˛, but also for larger �.
Hence, there is less change in smaller eigenvalues (low frequencies) than in larger eigenval-
ues (high frequencies).

The solutions of this kind can be investigated with respect to their robustness with
respect to noise (errors in f ) and bias (errors due to positive values of ˛), see [3]. Let us
detail some aspects of bias in the following, a particularly interesting property is that the
ground state yields the minimal bias (cf. [3]).

Theorem 4.1. Let ˛ > 0 and u … N .J / be a solution of (4.2). Then

ku � f k � ˛�0;

where �0 is the minimal eigenvalue of J .
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Proof. We employ the optimality condition p D
1
˛
.f � u/ with p 2 @J.u/ to obtain

J.u/ D hp; ui D
1

˛
hf � u; ui �

1

˛
kukku � f k:

Moreover, due to our assumption on f and since p 2 H0 for every subgradient, we also
conclude u 2 H0. Due to the definition of the minimal eigenvalue via the ground state, we
conclude

kuk �
1

�0
J.u/:

Inserting this relation into the above inequality and canceling J.u/, which is possible due to
u … N .J /, yields the assertion.

In order to get rid of bias effects for low frequencies, several two-step approaches
have been proposed in literature for examples of J . A structured approach has been derived
in [11], which computes a solution v via minimizing

kv � f k ! min
v

subject to J.v/ � J.u/ � hp; v � ui D 0;

where u is the solution of (4.2) and p the corresponding subgradient arising in the optimality
condition. We can elucidate this scheme in the case of f D cu�. If c > ˛�, we have a
nontrivial solution u D C.˛; �/u�, thus v D cu� satisfies J.v/ � J.u/ � hp; v � ui D 0

and clearly minimizes kv � f k. This means that low frequencies are exactly reconstructed
by this two-step procedure. An alternative approach to reduce bias is iterative regularization,
in particular the Bregman iteration, which can be interpreted as an inexact penalization of the
above constraint. We will further investigate the behavior of singular vectors in this iteration
in the next part.

4.2. Bregman iterations and inverse scale space flows
The Bregman iteration is obtained by subsequently computing

ukC1
2 arg min

u

1

2
ku � f k

2
C ˛

�
J.u/ � J

�
uk

�
�

˝
pk ; u � uk

˛�
;

the penalty being the Bregman distance between u and the last iterate uk , and pk the subgra-
dient from the optimality condition for uk (cf. [36]). The optimality condition directly yields
an update formula for the subgradients in the form

pkC1
D pk C

1

˛
.f � ukC1/:

Let us mention that for consistency with the variational method the choice p0 D 0 and u0 2

N .J / is usually assumed, without loss of generality we can choose u0 D 0. In this case the
variational method (4.2) is just the first step of the Bregman iteration. In order to obtain a
suitable result, ˛ has to be chosen large in the Bregman iteration, however.

It is instructive to investigate again the case f D cu� in the Bregman iteration,
looking for a solution of the form uk D C k.˛; �/u�. If ˛ is large, we may expect to have
c < ˛� and hence u1 D 0, which yields p1 D

c
˛
u�. Indeed, we obtain

pk D
ck

˛
u� for k �

˛�

c
:
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The first iteration step with a nonzero solution uk is given by k D K.˛; �/ with

K.˛; �/ D min
²
k 2 N j k >

˛�

c

³
:

Here we can easily compute pk D �u� and thus

uk D cu� C ˛

�
c.k � 1/

˛
� �

�
u�;

i.e.,
C k.˛; �/ D c �

�
˛� � c.k � 1/

�
D ck � ˛�:

For k D K.˛; �/C 1, we obtain again uk , being a nontrivial multiple of u�, and the corre-
sponding subgradient is pk D �u� D pk�1, which implies uk D f . For further iterations,
the result clearly does not change anymore. Hence, the number of iterations needed to obtain
the exact solution behaves like ˛�

c
, and we see again that eigenvectors for smaller eigenval-

ues (low frequency) are reconstructed faster, while eigenvectors for larger eigenvalues will
appear only very late in the iteration.

The computations are a bit more precise in the limit ˛ ! 1, which yields (after
appropriate rescaling of step sizes) a time-continuous flow, the so-called inverse scale space
method (cf. [20])

@tp.t/ D f � u.t/; p.t/ 2 @J
�
u.t/

�
:

By analogous reasoning, we can compute the solution for u.0/D p.0/D 0 and f D cu� as

u.t/ D

´
0; t < �

c
;

cu�; t > �
c
:

Thus, the reconstruction becomes exact at a time proportional to the eigenvalue.

4.3. Gradient flows
Another iterative scheme obtained from the variational method (4.2) is to start with

u D f and solve for
ukC1

2 arg min
u

1

2
ku � ukk

2
C ˛J.u/:

Again, the first step is consistent with (4.2), but the dynamics is very different from the Breg-
man iteration, in particular for small ˛, which is the relevant case here. Choosing f D cu�,
the optimality condition

ukC1
� uk C ˛pkC1

D 0; pkC1
2 @J.ukC1/

yields u1 D .c � ˛�/u�, and by analogous reasoning

uk D .c � k˛�/u�;

as long as k < c
˛�

. For k > c
˛�

, we can indeed verify that uk D 0 solves the problem. Here
we see that eigenvectors related to larger eigenvalues (high frequencies) shrink faster to zero,
whereas the ground state is the last to disappear.
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Again, this can be made more precise for the time-continuous variant, this time
obtained as ˛ ! 0. The above iteration scheme is also known as minimizing movement
scheme (cf. [23]) and the limit for appropriately scaled time is the gradient flow

@tu.t/ D �p.t/; p.t/ 2 @J
�
u.t/

�
; (4.4)

with initial value u.0/ D f . Again, the solution of the gradient flow has a simple form if
f D cu�, namely

u.t/ D

´
.c � �t/u�; t < c

�
;

0; t > c
�
:

This means that solutions shrink to zero linearly in time, and the extinction time c
�

again
changes with the eigenvalue. Due to the inverse relation with �, low frequencies get extinct
later than high ones.

The behavior on eigenvectors motivates studying the gradient flow also for arbitrary
initial values f . First of all, we can generalize the finite time extinction. For initial value
f 2 H0, it is easy to show that u.t/ 2 H0 for all t > 0, since for v 2 N .J / we have˝

u.t/; v
˛
D hf; vi �

Z t

0

˝
p.s/; v

˛
ds D 0:

Now we can use we use the standard dissipation relationu.t/2 C 2

Z t

0

J
�
u.s/

�
ds � kf k

2;

and J.u.s// � �0ku.s/k, resulting inu.t/2 C 2�0

Z t

0

u.s/ ds � kf k
2:

Similar to the proof of the Gronwall inequality, this allows deducingu.t/ � kf k � �0t; for t <
kf k

�0
:

Thus u.t/ D 0 for t D
kf k

�0
, and it is easy to show that for t > kf k

� 0
the unique solution of

the gradient flow is given by u.t/D 0 and p.t/D 0. Thus, the gradient flow exhibits a finite
extinction phenomenon, the solution vanishes after finite time. We define the extinction time
as

t�.f / D inf
®
t > 0 j u.t/ D 0

¯
: (4.5)

Our analysis above yields the following upper bound on the extinction time:

Theorem 4.2. Let f 2H0 and u 2 C.0;T IH/ be a solution of the gradient flow (4.4). Then
the extinction time defined by (4.5) satisfies

t�.f / �
kf k

�0
; (4.6)

where �0 is the minimal nontrivial eigenvalue of J .
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From the special case of f being a multiple of a ground state, we see that (4.6) is
sharp for suitable initial values. In order to gain further understanding, it is instructive to
investigate scalar products of the solution u with eigenvectors. This leads to˝

u.t/; u�
˛
D hf; u�i �

Z t

0

˝
p.s/; u�

˛
ds � hf; u�i � �t:

Thus we obtain lower bounds on the extinction time of the form

t�.f / �
1

�

ˇ̌
hf; u�i

ˇ̌
and see that the extinction time will be larger the more the initial value is correlated with
low frequencies.

The extinction time is not the only relevant quantity, but also the so-called extinction
profile is of high relevance. The extinction profile vf is defined as

vf D lim
�#0

1

�
u

�
t�.f / � �

�
;

i.e., it is the left-sided derivative of the gradient flow at the extinction time. Surprisingly,
it can be shown that vf is an eigenvector of J , under suitable conditions even that it is the
ground state. This was shown first for the total variation flow (cf., e.g., [2]) and later also
other zero-homogeneous evolution equations such as the fast diffusion equation (cf. [6, 7]).
In [15,16] this has been reconsidered in the abstract setting of eigenvectors of seminorms and
general results on the extinction profile could be obtained. Let us just motivate formally why
it can be expected that the extinction profile is an eigenvector. From the optimality condition
in the minimizing movement scheme with � chosen appropriately, we obtain

1

�
u

�
t�.f / � �

�
D
1

�

�
u

�
t�.f / � �

�
� u

�
t�.f /

��
D p

�
t�.f /

�
:

Hence, if p.t�.f // is not vanishing, the limit � # 0 yields vf D p.t�.f // and, due to the
homogeneity of the subdifferential, we also obtain p.t�.f // 2 @J.vf / in the limit. Thus, vf ,
respectively its rescaled version, is an eigenvector of J .

We finally mention that an extension of the results on the extinction profile has been
carried out in [14], which analyzes the fine asymptotics for gradient flows of p-homogeneous
functionals. In the case p < 2, there is still an extinction profile with similar properties,
for p � 2 there is only decay as t ! 1, however. Appropriately rescaled versions of the
asymptotics of the solution are again eigenvectors of the underlying functionals.

4.4. Gradient flows and spectral decompositions
Gradient flows are particularly interesting for computing eigenvectors and even

spectral decompositions, since the classical theory by Brezis (cf. [10]) implies that indeed
the solution selects subgradients of minimal norm, i.e.,

@tu.t/ D �p0.t/; p0.t/ D arg min
®
kpk j p 2 @J

�
u.t/

�¯
:

Thus, we obtain a spectral decomposition into eigenvectorsp0.t/with the Lebesgue measure
on RC if all subgradients of minimal norm are indeed eigenvectors. This means that (2.5)

5249 Nonlinear eigenvalue problems for seminorms and applications



needs to be satisfied for the subgradients of minimal norm in @J.v/ for all v 2 H . Then we
have indeed

f D

Z 1

0

p.t/ dt;

but this is not yet a spectral decomposition in the above sense, since the integration is not
with respect to a measure of the eigenvalue. However, as seen in [15], a change of measure
from t to �.t/ indeed yields a spectral decomposition. Note, however, that sincep.t/ and thus
�.t/ can be piecewise constant, the arising measure in the spectral domain is not absolutely
continuous with respect to the Lebesgue measure in typical cases.

In [16] an alternative way to obtain a spectral decomposition in separable Hilbert
spaces was derived via extinction profiles. This countable spectral decomposition is obtain
by first computing the extinction profile of the gradient flow with starting value f and then
projecting f onto the space orthogonal to the first extinction profile. This projection is used
again as starting value of the gradient flow and then again f is projected onto the space
orthogonal to the new extinction profile. Iterating this procedure the projections converge to
zero and the sum of the orthogonal components yields an atomic spectral decomposition.

There are several examples of flows that yield a spectral decomposition, the most
prominent one being the one-dimensional total variation (cf. [15]). Other examples are
polyhedral regularizations with sufficiently regular convex sets C (cf. [18, 19]) and one-
homogeneous functionals vector fields using divergence and rotation (cf. [15]).

5. Applications

In order to illustrate the use of nonlinear eigenvalue problems in data science, we
discuss two toy examples representing wider classes of applications in this section.

5.1. 1-Laplacian graph clustering
We start with a common technique for data clustering, namely the computation of

the first eigenfunction of the 1-Laplacian on graphs. For this, we acquire data on a surface by
a laser scanner with random sampling, as illustrated in Figure 1. This resembles the classical
two-moons data set frequently used for the evaluation of clustering methods. Based on those
data points we build a nearest neighbor graph as illustrated in the right image of Figure 1.

On the arising graph we compute the first nontrivial eigenfunction of the classical
graph Laplacian, which is shown in the left part of Figure 2. This serves mainly for compar-
ison with the eigenfunction of the 1-Laplacian on the graph (the ground state of the graph
total variation), which is shown in the right part. The ground state can be computed as an
extinction profile of the gradient flow with the graph Laplacian eigenfunction as a starting
value (cf. [16]). It is apparent that the eigenfunction of the 1-Laplacian has a much sharper
transition between positive and negative values, which corresponds closely to the geometric
structure in the data. This leads to improved spectral clustering as shown in Figure 3, namely
the sub- and superlevel sets at zero (in red, respectively blue). One observes a rather linear
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Figure 1

Image of traditional Austrian Christmas cookies (Vanillekipferl) and random sampling of points on the surface
(left, respectively middle) and neighborhood graph built out of the sample points.

Figure 2

First nontrivial eigenfunction of the graph (2-)Laplacian (left) and the graph 1-Laplacian (right).

Figure 3

Spectral clustering based on the graph (2-)Laplacian (left) and the graph 1-Laplacian (right).

structure in the clustering with the graph Laplacian, while the clustering with the 1-Laplacian
perfectly adapts to the structure in the data set.

5.2. Distance functions from 1-Laplacians
In the following we illustrate the computation of distance functions by minimizing

the 1-Laplacian energy
J.u/ D ess sup

x

ˇ̌
ru.x/

ˇ̌
: (5.1)

We use the graph Laplacian energy on a grid graph built on the map of the United Kingdom
with a large stencil. In this case we compute the (nonnegative) ground state over the set of
functions on the graph vanishing on a predefined boundary (corresponding to the geograph-
ical boundary). We then normalize it such that J.u/ D 1, which implies that u becomes the
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Figure 4

Distance function on a grid graph for the geometry of the United Kingdom.

distance function to the boundary. The result is shown in Figure 4 and generalizes results
obtained by solving the eikonal equation in the continuum setting.
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Abstract

We introduce the concept of strong high-order approximate minimizers of nonconvex
optimization problems. These apply in both standard smooth and composite nonsmooth
settings, and additionally allow convex or inexpensive constraints. An adaptive regular-
ization algorithm is then proposed to find such approximate minimizers. Under suitable
Lipschitz continuity assumptions, the evaluation complexity of this algorithm is investi-
gated. The bounds obtained not only provide, to the best of our knowledge, the first known
result for (unconstrained or inexpensively-constrained) composite problems for optimality
orders exceeding one, but also give the first sharp bounds for high-order strong approx-
imate qth order minimizers of standard (unconstrained and inexpensively constrained)
smooth problems, thereby complementing known results for weak minimizers.
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1. Introduction

We consider composite optimization problems of the form

min
x2F

w.x/
def
D f .x/ C h

�
c.x/

�
; (1.1)

where f , c are smooth and h possibly nonsmooth but Lipschitz continuous, and where F is
a feasible set associated with inexpensive constraints (which are discussed in the next para-
graph). Such problems have attracted considerable attention, due to the their occurrence in
important applications such as LASSO methods in computational statistics [26], Tikhonov
regularization of underdetermined estimation problems [21], compressed sensing [16], arti-
ficial intelligence [22], penalty or projection methods for constrained optimization [8], least
Euclidean distance and continuous location problems [17], reduced-precision deep-learning
[27], image processing [2], to cite but a few examples. We refer the reader to the thorough
review in [23]. In these applications, the function h is typically globally Lipschitz continuous
and cheap to compute—common examples include the Euclidean, `1, or `1 norms.

Inexpensive constraints defining the feasible set F are constraints whose evaluation
or enforcement has negligible cost compared to that of evaluating f , c and/or their deriva-
tives. They are of interest here since the evaluation complexity of solving inexpensively
constrained problems is dominated solely by the number of evaluations of f , c and their
derivatives. Inexpensive constraints include, but are not limited to, convex constraints with
cheap projections (such as bounds or the ordered simplex). Such constraints have already
been considered elsewhere [3,12].

Of course, problem (1.1) may be viewed as a general nonsmooth optimization prob-
lem, to which a battery of existing methods may be applied (for example, subgradient, prox-
imal gradient, and bundle methods). However, this avenue ignores the problem’s special
structure, which may be viewed as a drawback. More importantly for our purpose, this
approach essentially limits the type of approximate minimizers one can reasonably hope
for to first-order points (see [18, Chapter 14] for a discussion of second-order optimality
conditions and [8, 20] for examples of structure-exploiting first-order complexity analysis).
However, our first objective in this paper is to cover approximate minimizers of arbitrary
order (obviously including first- and second-order ones), in a sense that we describe below.
This, as far we know, precludes a view of (1.1) that ignores the structure present in h.

It is also clear that any result we can obtain for problem (1.1) also applies to stan-
dard smooth problems (by letting h be the zero function), for which evaluation complexity
results are available. Most of these results cover first- and second-order approximate min-
imizers (see [7, 10, 15, 24, 25] for a few references), but two recent papers [11, 12] propose an
analysis covering our stated objective to cover arbitrary-order minimizers for smooth nonon-
vex functions. However, these two proposals significantly differ, in that they use different
definitions of high-order minimizers, by no means a trivial concept. The first paper, focus-
ing on trust-region methods, uses a much stronger definition than the second one which
covers adaptive regularization algorithms. Our second objective in the present paper is to
strengthen these latter results to use the stronger definition of optimality for adaptive regu-
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larization algorithms and therefore bridge the gap between the two previous approaches in
the more general framework of composite problems.

Contributions and motivation. The main contributions of this paper may be summarized
as follows:

(1) We formalize the notion of strong approximate minimizer of arbitrary order
for standard (noncomposite) smooth problems and extend it to composite ones,
including the case where the composition function is nonsmooth, and addition-
ally allow inexpensive constraints. This notion is stronger than that of “weak”
approximate minimizers used in [3,12,14].

(2) We provide a conceptual adaptive regularization algorithm whose purpose is to
compute such strong approximate minimizers.

(3) We analyze the worst-case complexity of this conceptual algorithm both for
composite and standard problems, allowing arbitrary optimality order and any
degree of the model used within the algorithm. For composite problems, these
bounds are the first ones available for approximate minimizers of order exceed-
ing one. For smooth problems, the bounds are shown to improve on those
derived in [11] for trust-region methods, while being less favorable (for orders
beyond the second) than those in [12] for approximate minimizers of the weaker
sort. These bounds are summarized in Table 1.1 in the case where all "j are
identical. Each table entry also mentions existing references for the quoted
result. Sharpness (in the order of ") is also reported when known.

We acknowledge upfront that our approach is essentially theoretical, because it
depends, in its present incarnation, on computing global minimizers of Taylor series within
Euclidean balls, a problem which is known to be a very hard for high orders [1]. Although
these calculations do not involve any evaluation of the problem’s objective function or of
its derivatives (and thus do not affect evaluation complexity bounds), this is a significant
hurdle. While realistic algorithms may have to resort to inexact global minimization (we
discuss the necessity and impact of such approximations in Section 7), the case of exact
ones can be viewed as an idealized, aspirational setting and the complexity results derived
therein as “best possible.” Thus we ask here the mathematically important questions: what
would be achievable in this idealized setting? Or if constrained global minimizers of poly-
nomials were computable because of special problem structure? A second motivation is that
high-order models have already proved their usefulness in practice, in particular in the solu-
tion of highly nonlinear low-dimensional least-squares problems [19], even if implementing
algorithms using them is far from obvious [4]. The identification of approximate minimizers
of orders matching the degree of the models is, in our view, an obvious, yet unexplored ques-
tion. Moreover, the consideration of such approximate minimizers results in new insights in
the definition of approximate minimizers and prompts a proposal for a new approximate
optimality measure (see Section 2). At variance with standard ones, this proposal has the
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inexpensive
constraints

Weak minimizers Strong minimizers

smooth (h D 0) smooth (h D 0) composite
h convex h nonconvex

q D 1 none "
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp � "�2 [8,20]

convex "
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp "�2

nonconvex "
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp

[5,12]

"�2 "�2

q D 2 none "
�

pC1
p�1 sharp

[12]

"
�

pC1
p�1 sharp

[12]

"�3 "�3

convex "
�

pC1
p�1 sharp

[12]

"
�

2.pC1/
p sharp "�3 "�3

nonconvex "
�

pC1
p�1 sharp

[12]

"
�

2.pC1/
p sharp "�3 "�3

q > 2 none, or
general

"
�

pC1
p�qC1 sharp

[12]

"
�

q.pC1/
p sharp "�.qC1/ "�.qC1/

Table 1.1

Order bounds (as multiples of powers of the accuracy ") on the worst-case evaluation complexity of finding
weak/strong ."; ı/-approximate minimizers for composite and smooth problems, as a function of optimality order
(q), model degree (p), convexity of the composition function h and presence/absence/convexity of inexpensive
constraints. The dagger indicates that this bound for the special case when h.�/ D k � k2 and f D 0 is already
known [9].

advantage of being well-defined and consistent across all orders and it is obviously also
applicable (and computationally cheap) for orders one and two.

Outline. The paper is organized as follows. Section 2 outlines some useful background and
motivation on high-order optimality measures. In Section 3, we describe our problem more
formally and introduce the notions of weak and strong high-order approximate minimizers.
We describe an adaptive regularization algorithm for problem (1.1) in Section 4, while Sec-
tion 5 discusses the associated evaluation complexity analysis. Section 6 then shows that
several of the obtained complexity bounds are sharp, while Section 7 discusses the necessity
of global minimizations and the impact of allowing them to be inexact. Some conclusions
and perspectives are finally outlined in Section 8.
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2. A discussion of qth-order necessary optimality

conditions

Before going any further, it is best to put our second objective (establishing strong
complexity bounds for arbitrary qth order using an adaptive regularization method) in per-
spective by briefly discussing high-order optimality measures. For this purpose, we now
digress slightly and first focus on the standard unconstrained (smooth) optimization problem
where one tries to minimize an objective function f over Rn. The definition of a j th-order
approximate minimizer of a general (sufficiently) smooth function f is a delicate question.
It was argued in [11] that expressing the necessary optimality conditions at a given point x in
terms of individual derivatives of f at x leads to extremely complicated expressions involv-
ing the potential decrease of the function along all possible feasible arcs emanating from x.
To avoid this, an alternative based on Taylor expansions was proposed. Such an expansion is
given by

Tf;q.x; d/ D

qX
`D0

1

`Š
r

`
xf .x/Œd �` (2.1)

where r`
xf .x/Œd �` denotes the `th-order cubically1 symmetric derivative tensor (of dimen-

sion `) of f at x applied to ` copies of the vector d . The idea of the approximate necessary
condition that we use is that, if x is a local minimizer and q � p is an integer, there should be
a neighborhood of x of radius ıj 2 .0;1� in which the decrease in (2.1), which we measure by

�
ıj

f;j
.x/

def
D f .x/ � min

d2Rn;kdk�ıj

Tf;j .x; d/; (2.2)

must be small. In fact, it can be shown [11, Lemma 3.4] that

lim
ıj !0

�
ıj

f;j
.x/

ı
j
j

D 0; (2.3)

whenever x is a local minimizer of f . Making the ratio in this limit small for small enough ıj

therefore seems reasonable. Let "j is a prescribed order-dependent accuracy parameter, and
"

def
D ."1; : : : ; "q/. Also let ı

def
D .ı1; : : : ; ıq/ be a vector of associated “optimality radii.” Then

we will say that x is a strong ."; ı/-approximate qth-order minimizer if, for all j 2 ¹1; : : : ; qº,
there exists a ıj > 0 such that

�
ıj

f;j
.x/ � "j

ı
j
j

j Š
: (2.4)

(The factor j Š is introduced for notational convenience.) The ıj are called optimality radii
because they are the radii of the neighborhood of x in which the Taylor series Tf;j .x; d/

cannot decrease more than "j (appropriately scaled). Thus ıj and "j are tightly linked (see
Lemma 4.4 below) and the limit (2.3) (which applies at true local minimizers) is conceptually
achieved when "j itself tends to zero. Note that (2.4) reduces to the condition kr1

xf .x/k � "1

for j D 1, and that, for j D 2, �
ıj

f;2
.x/ is obtained by solving a trust-region subproblem,

1 Meaning all its dimensions are the same.
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a process whose cost is comparable to that of computing the leftmost eigenvalue of the
Hessian, as would be required for the standard second-order measure.

The definition (2.4) should be contrasted with notion of weak minimizers introduced
in [12]. Formally, x is a weak ."; ı/-approximate qth-order minimizer if there exists ıq 2 R

such that

�
ıq

f;q
.x/ � "q�q.ıq/ where �q.ı/

def
D

qX
`D1

ı`

`Š
: (2.5)

Obviously, (2.5) is less restrictive than (2.4) since it is easy to show that �q.ı/ 2 Œı; 2ı/ and
is thus significantly larger than ı

q
q =qŠ for small ıq . Moreover, (2.5) is a single condition,

while (2.4) has to hold for all j 2 ¹1; : : : ; qº. The interest of considering weak approximate
minimizers is that they can be computed faster than strong ones. It is shown in [12] that the
evaluation complexity bound for finding them is O."

�
pC1

p�qC1 /, thereby providing a smooth
extension to high-order of the complexity bounds known for q 2 ¹1; 2º. However, the major
drawback of using the weak notion is that, at variance with (2.4), it is not coherent with
the scaling implied by (2.3).2 Obtaining this coherence therefore comes at a cost for orders
beyond two, as will be clear in our developments below.

If we now consider that inexpensive constraints are present in the problem, it is easy
to adapt the notions of weak and strong optimality for this case by (re)defining

�
ıj

f;j
.x/

def
D f .x/ � min

xCd2F ; kdk�ıj

Tf;j .x; d/; (2.6)

where F is the feasible set. We then say that x is a strong inexpensively constrained ."; ı/-
approximate qth-order minimizer if, for all j 2 ¹1; : : : ; qº, there exists a ıj > 0 such that
(2.4) holds with this new definition.

3. The composite problem and its properties

We now return to the more general composite optimization (1.1), and make our
assumptions more specific:

AS.1 The function f from Rn to R is p times continuously differentiable and each
of its derivatives r`

xf .x/ of order ` 2 ¹1; : : : ; pº are Lipschitz continuous
in a convex open neighborhood of F , that is, for every j 2 ¹1; : : : ; pº, there
exists a constant Lf;j � 1 such that, for all x; y in that neighborhood,r

j
x f .x/ � r

j
x f .y/

 � Lf;j kx � yk; (3.1)

where k � k denotes the Euclidean norm for vectors and the induced operator
norm for matrices and tensors.

AS.2 The function c from Rn to Rm is p times continuously differentiable and each
of its derivatives r`

xc.x/ of order ` 2 ¹1; : : : ; pº are Lipschitz continuous in

2 In the worst case, it may lead to the origin being accepted as a second-order approximate
minimizer of �x2.
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a convex open neighborhood of F , that is, for every j 2 ¹1; : : : ; pº there
exists a constant Lc;j � 1 such that, for all x; y in that neighborhood,r

j
x c.x/ � r

j
x c.y/

 � Lc;j kx � yk; (3.2)

AS.3 The function h from Rm to R is Lipschitz continuous, subbadditive, and zero
at zero, that is, there exists a constant Lh;0 � 0 such that, for all x; y 2 Rm,h.x/ � h.y/

 � Lh;0kx � yk; (3.3)

h.x C y/ � h.x/ C h.y/ and h.0/ D 0: (3.4)

AS.4 There is a constant wlow such that w.x/ � wlow for all x 2 F .

Assumption AS.3 allows a fairly general class of composition functions. Examples include
the popular k � k1, k � k, and k � k1 norms, concave functions vanishing at zero and, in the
unidimensional case, the ReLu function maxŒ0; �� and the periodic j sin.�/j. As these examples
show, nonconvexity and nondifferentiability are allowed (but not necessary). Note that finite
sums of functions satisfying AS.3 also satisfy AS.3. Note also that h being subadditive does
not imply that h˛ is also subadditive for ˛ � 1 (h.c/ D c is, but h.c/2 is not), or that it is
concave [6]. Observe finally that equality always holds in (3.4) when h is odd.3

When h is smooth, problem (1.1) can be viewed either as composite or smooth. Does
the composite view present any advantage in this case? The answer is that the assumptions
needed on h in the composite case are weaker in that Lipschitz continuity is only required
for h itself, not for its derivatives of orders 1 to p. If any of these derivatives are costly,
unbounded or nonexistent, this can be a significant advantage. However, as we will see below
(in Theorems 5.5 and 5.6) this comes at the price of a worse evaluation complexity bound.
For example, the case of linear h is simple to assess, since in that case h.c/ amounts to a linear
combination of the ci , and there is obviously no costly or unbounded derivative involved: a
smooth approach is therefore preferable from a complexity perspective.

Observe also that AS.1 and AS.2 imply, in particular, thatr
j
x f .x/

 � Lf;j �1 and
r

j
x c.x/

 � Lc;j �1 for j 2 ¹2; : : : ; pº (3.5)

Observe also that AS.3 ensures that, for all x 2 Rm,ˇ̌
h.x/

ˇ̌
D
ˇ̌
h.x/ � h.0/

ˇ̌
� Lh;0kx � 0k D Lh;0kxk: (3.6)

For future reference, we define

Lw
def
D max

j 2¹1;:::;pº
.Lf;j �1 C Lh;0Lc;j �1/: (3.7)

We note that AS.4 makes the problem well-defined in that its objective function is bounded
below. We now state a useful lemma on the Taylor expansion’s error for a general function r

with Lipschitz continuous derivative.

3 Indeed, h.�x � y/ � h.�x/ C h.�y/ and thus, since h is odd, �h.x C y/ � �h.x/ � h.y/,
which, combined with (3.4), gives that h.x C y/ D h.x/ C h.y/.
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Lemma 3.1. Let r W Rn ! R be p times continuously differentiable and suppose that
r

p
x r.x/ is Lipschitz continuous with Lipschitz constantLr;p , Let Tr;p.x; s/ be thepth degree

Taylor approximation of r.x C s/ about x given by (2.1). Then for all x; s 2 Rn,ˇ̌
r.x C s/ � Tr;p.x; s/

ˇ̌
�

Lr;p

.p C 1/Š
ksk

pC1; (3.8)r
j
x r.x C s/ � r

j
s Tr;p.x; s/

 �
Lr;p

.p � j C 1/Š
ksk

p�j C1 .j D 1; : : : ; p/: (3.9)

Proof. See [12, Lemma 2.1] with ˇ D 1.

We now extend the concepts and notation of Section 2 to the case of composite
optimization. Abusing notation slightly, we denote, for j 2 ¹1; : : : ; pº,

Tw;j .x; s/
def
D Tf;j .x; s/ C h

�
Tc;j .x; s/

�
(3.10)

(Tw;j .x; s/ it is not a Taylor expansion). We also define, for j 2 ¹1; : : : ; qº,

�ı
w;j .x/

def
D w.x/ � min

xCd2F ;kdk�ı

�
Tf;j .x; s/ C h

�
Tc;j .x; s/

��
D w.x/ � min

xCd2F ;kdk�ı
Tw;j .x; s/ (3.11)

by analogy with (2.6). This definition allows us to consider (approximate) high-order mini-
mizers of w, despite h being potentially nonsmooth, because we have left h unchanged in the
optimality measure (3.11), rather than using a Taylor expansion of h.

We now state a simple first-order necessary optimality condition for a global mini-
mizer of composite problems of the form (1.1) with convex h.

Lemma 3.2. Suppose that f and c are continuously differentiable and that AS.3 holds.
Suppose in addition that h is convex and that x� is a global minimizer of w. Then the origin
is a global minimizer of Tw;1.x�; s/ and �ı

w;1.x�/ D 0 for all ı > 0.

Proof. Suppose now that the origin is not a global minimizer of Tw;1.x�; s/, but that there
exists an s1 ¤ 0 with Tw;1.x�; s1/ < Tw;1.x�; 0/ D w.x�/. By Taylor’s theorem, we obtain
that, for ˛ 2 Œ0; 1�,

f .x� C ˛s1/ D Tf;1.x�; ˛s1/ C o.˛/; c.x� C ˛s1/ D Tc;1.x�; ˛s1/ C o.˛/ (3.12)

and, using AS.3 and (3.6),

h
�
c.x� C ˛s1/

�
D h

�
Tc;1.x�; ˛s1/ C o

�
˛ks1k

��
� h

�
Tc;1.x�; ˛s1/

�
C h

�
o.˛/ks1k

�
� h

�
Tc;1.x�; ˛s1/

�
C o.˛/Lh;0ks1k D h

�
Tc;1.x�; ˛s1/

�
C o.˛/:

(3.13)

Now note that the convexity of h and the linearity of Tf;1.x�; s/ and Tc;1.x�; s/ imply that
Tw;1.x�; s/ is convex, and thus that Tw;1.x�; ˛s1/ � w.x�/ � ˛ŒTw;1.x�; s1/ � w.x�/�.
Hence, using (3.12) and (3.13), we deduce that

0 � w.x� C ˛s1/ � w.x�/ � Tw;1.x�; ˛s1/ � w.x�/ C o.˛/

� ˛
�
Tw;1.x�; s1/ � w.x�/

�
C o.˛/;

5263 The evaluation complexity of finding high-order minimizers of nonconvex optimization



which is impossible for ˛ sufficiently small, since Tw;1.x�; s1/ � w.x�/ < 0 by construction
of s1. As a consequence, the origin must be a global minimizer of the convex Tw;1.x�; s/

and therefore �ı
w;1.x�/ D 0 for all ı > 0.

Unfortunately, this result does not extend to �ı
w;q.x/ when q D 2, as is shown by

the following example. Consider the univariate w.x/ D �
2
5
x C jx � x2 C 2x3j, where h is

the (convex) absolute value function satisfying AS.3. Then x� D 0 is a global minimizer of
w (plotted as unbroken line in Figure 3.1) and yet

Tw;2.x�; s/ D Tf;2.x�; s/ C
ˇ̌
Tc;2.x�; s/

ˇ̌
D �

2

5
s C

ˇ̌
s � s2

ˇ̌
(plotted as dashed line in the figure) admits a global minimum for s D 1 whose value (� 2

5
)

is smaller that w.x�/ D 0. Thus �1
w;2.x�/ > 0 despite x� being a global minimizer. But it is

clear in the figure that �ı
w;2.x�/ D 0 for ı smaller than 1

2
.

Figure 3.1

Functions w.x/ (unbroken) and Tw;2.0; s/ D Tf;2.0; s/ C jTc;2.0; s/j (dashed).

In the smooth (h D 0) case, Lemma 3.2 may be extended for unconstrained
(i.e., F D Rn) twice-continuously differentiable f since then standard second-order opti-
mality conditions at a global minimizer x� of f imply that Tf;j .x�; d / is convex for
j D 1;2 and thus that �ı

f;1
.x�/ D �ı

f;2
.x�/ D 0. When constraints are present (i.e., F � Rn),

unfortunately, this may require that we restrict ı. For example, the global minimizer of
f .x/ D �.x � 1=3/2 C 2=3x3 for x 2 Œ0; 1� lies at x� D 0, but Tf;2.x�; d / D �.d � 1=3/2

which has its constrained global minimizer at d D 1 with Tf;2.x�; 1/ < Tf;2.x�; 0/ and we
would need ı � 2=3 to ensure that �ı

f;2
.x�/ D 0.
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4. An adaptive regularization algorithm for composite

optimization

We now consider an adaptive regularization algorithm to search for a (strong) ."; ı/-
approximate qth-order minimizer for problem (1.1), that is a point xk 2 F such that

�ı
w;j .xk/ � "j

ı
j
j

j Š
for j 2 ¹1; : : : ; qº; (4.1)

where �ı
w;q.x/ is defined in (3.11). At each iteration, the algorithm seeks a feasible approx-

imate minimizer of the (possibly nonsmooth) regularized model

mk.s/ D Tf;p.xk ; s/ C h
�
Tc;p.xk ; s/

�
C

�k

.p C 1/Š
ksk

pC1

D Tw;p.xk ; s/ C
�k

.p C 1/Š
ksk

pC1 (4.2)

and this process is allowed to terminate whenever

mk.s/ � mk.0/ (4.3)

and, for each j 2 ¹1; : : : ; qº,

�
ıs;j

mk ;j .s/ � �"j

ı
j
s;j

j Š
(4.4)

for some � 2 .0; 1/. Observe that mk.s/ is bounded below since (3.6) ensures that the reg-
ularization term of degree p C 1 dominates for large steps. Obviously, the inclusion of h

in the definition of the model (4.2) implicitly assumes that, as is common, the cost of eval-
uating h is small compared with that of evaluating f or c. It also implies that computing
�

ıj

w;j .x/ and �
ıs;j

mk ;j .s/ is potentially more complicated than in the smooth case, although it
does not impact the evaluation complexity of the algorithm because the model’s approximate
minimization does not involve evaluating f , c or any of their derivatives.

The rest of the algorithm, that we shall refer to as ARqpC, follows the standard
pattern of adaptive regularization algorithms, and is stated on this page. As everywhere in
this paper, we assume that q 2 ¹1; : : : ; pº.

ARqpC algorithm for finding an ."; ı/-approximate qth-order minimizer
of the composite function w in (1.1)

Step 0: Initialization. An initial point x0 and an initial regularization parameter
�0 > 0 are given, as well as an accuracy level " 2 .0; 1/q . The constants
ı0, � , �1, �2, 1, 2, 3, and �min are also given and satisfy

� 2 .0; 1/; ı0 2 .0; 1�q; �min 2 .0; �0�; 0 < �1 � �2 < 1;

and 0 < 1 < 1 < 2 < 3: (4.5)

Compute w.x0/ and set k D 0.

Step 1: Test for termination. Evaluate ¹ri
xf .xk/º

q
iD1 and ¹ri

xc.xk/º
q
iD1. If (4.1)

holds with ı D ık , terminate with the approximate solution x" D xk . Oth-
erwise compute ¹ri

xf .xk/º
p
iDqC1 and ¹ri

xc.xk/º
p
iDqC1.
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Step 2: Step calculation. Attempt to compute an approximate minimizer sk of model
mk.s/ given in (4.2) such that xk C sk 2 F and optimality radii ısk

2 .0; 1�q

exist such that (4.3) holds and (4.4) holds for j 2 ¹1; : : : ; qº and s D sk . If
no such step exists, terminate with the approximate solution x" D xk .

Step 3: Acceptance of the trial point. Compute w.xk C sk/ and define

�k D
w.xk/ � w.xk C sk/

w.xk/ � Tw;p.xk ; s/
: (4.6)

If �k � �1, then define xkC1 D xk C sk and ıkC1 D ısk
; otherwise define

xkC1 D xk and ıkC1 D ık .

Step 4: Regularization parameter update. Set

�kC1 2

8̂̂<̂
:̂

Œmax.�min; 1�k/; �k � if �k � �2;

Œ�k ; 2�k � if �k 2 Œ�1; �2/;

Œ2�k ; 3�k � if �k < �1:

(4.7)

Increment k by one and go to Step 1 if �k � �1, or to Step 2 otherwise.

As expected, the ARqpC algorithm shows obvious similarities with that discussed in [12], but
differs from it in significant ways. Beyond the fact that it now handles composite objective
functions, the main one being that the termination criterion in Step 1 now tests for strong
approximate minimizers, rather than weak ones.

As is standard for adaptive regularization algorithms, we say that an iteration is
successful when �k � �1 (and xkC1 D xk C sk) and that it is unsuccessful otherwise. We
denote by �k the index set of all successful iterations from 0 to k, that is,

�k D
®
j 2 ¹0; : : : ; kº j �j � �1

¯
;

and then obtain a well-known result ensuring that successful iterations up to iteration k do
not amount to a vanishingly small proportion of these iterations.

Lemma 4.1. The mechanism of the ARqpC algorithm guarantees that, if

�k � �max; (4.8)

for some �max > 0, then

k C 1 � j�kj

�
1 C

j log 1j

log 2

�
C

1

log 2

log
�

�max

�0

�
: (4.9)

Proof. See [5, Theorem 2.4].

We also have the following identity for the norm of the successive derivatives of the
regularization term.

Lemma 4.2. Let s be a vector of Rn. Thenr
j
s

�
ksk

pC1
�  D

.p C 1/Š

.p � j C 1/Š
ksk

p�j C1 for j 2 ¹0; : : : ; p C 1º: (4.10)

Moreover, r
j
s .kskpC1/Œd �j is a convex function in d for any d orthogonal to s. It is also

convex for any multiple of s whenever j is even.
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Proof. See [12, Lemma 2.4] with ˇ D 1.

As the conditions for accepting a pair .sk ; ıs/ in Step 2 are stronger than previously
considered (in particular, they are stronger than those discussed in [12]), we must ensure that
such acceptable pairs exist. We start by recalling a result discussed in [12] for the smooth
case.

Lemma 4.3. Suppose that

.q D 1; F is convex; and h is convex/; or

.q D 2; F D Rn and h D 0/:
(4.11)

Suppose in addition that s�
k

¤ 0 is a global minimizer of mk.s/ for xk C s 2 F . Then there
exist a feasible neighborhood of s�

k
such that (4.3) and (4.4) hold for any sk in this neigh-

borhood with ıs D 1.

Proof. Consider first the composite case where q D 1. We have that

Tmk ;1.s�
k ; d / D Tf;p.xk ; s�

k / C r
1
s Tf;p.xk ; s�

k /Œd � C h
�
Tc;p.xk ; s�

k / C r
1
s Tc;p.xk ; s�

k /Œd �
�

C
�k

.p C 1/Š

�ˇ̌ˇ̌
s�

k

ˇ̌ˇ̌pC1
Cr

1
s

ˇ̌ˇ̌
s�

k

ˇ̌ˇ̌pC1
Œd �
�

is a convex function of d (since h is convex, all terms in the above right-hand side are). Sup-
pose now that it has a feasible global minimizer d� such that Tmk ;1.s�

k
; d�/ < Tmk ;1.s�

k
; 0/ D

mk.s�
k
/. Since F is convex, Tmk ;1.s�

k
; d 0/ < mk.s�

k
/ for all d ’ in the segment .0; d��. But

(3.5) implies thatr
`
s Tf;p.xk ; s�

k /
 �

pX
iD`

1

.i � `/Š

r
i
xf .xk/

 s�
k

i�`
� max

j 2¹2;:::;pº
Lf;j �1

pX
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k
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.i � `/Š
;

r
`
s Tc;p.xk ; s�

k /
 �

pX
iD`
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r
i
xc.xk/

 s�
k

i�`
� max

j 2¹2;:::;pº
Lc;j �1

pX
iD`

ks�
k
ki�`

.i � `/Š

and both must be bounded for s�
k

given. Thus, Tmk ;1.s�
k
; d 0/ approximates mk.s�

k
C d 0/ arbi-

trarily well for small enough kd 0k, and therefore mk.s�
k

C d 0/ < mk.s�
k
/ for small enough

kd 0k, which is impossible since s�
k

is a global minimizer of mk.s/. As a consequence d D 0

must be a global minimizer of Tmk ;1.s�
k
; d /. Thus �ı

mk ;1.s�
k
/ D 0 for all ı > 0, and in par-

ticular for ı D 1, which, by continuity, yields the desired conclusion.
Consider now the case where q D 2, h D 0 and F D Rn. Suppose that j D 1 (j D 2).

Then the j th order Taylor expansion of the model at s�
k

is a linear (positive semidefinite
quadratic) polynomial, which is a convex function. As a consequence, we obtain as above
that �ı

mk ;j .s�
k
/ D 0 for all ıs;j > 0 and the conclusion then again follows.

Alas, the example given at the end of Section 3 implies that ıs may have to be
chosen smaller than one for q D 2 and when h is nonzero, even if it is convex. Fortunately,
the existence of a step is still guaranteed in general, even without assuming convexity of h.
To state our result, we first define � to be an arbitrary constant in .0; 1/ independent of ",
which we specify later.
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Lemma4.4. Let � 2 .0;1/ and suppose that s�
k
is a global minimizer ofmk.s/ for xk C s 2 F

such that mk.s�
k
/ < mk.0/. Then there exists a pair .s; ıs/ such that (4.3) and (4.4) hold.

Moreover, one has that either ksk � � or (4.3) and (4.4) hold for s for all ıs;j .j 2 ¹1; : : : ;qº/,
for which

0 < ıs;j �
�

qŠ.6Lw C 2�k/
"j : (4.12)

Proof. We first need to show that a pair .s; ıs/ satisfying (4.3) and (4.4) exists. Since
mk.s�

k
/ < mk.0/, we have that s�

k
¤ 0. By Taylor’s theorem, we have that, for all d ,

0 � mk.s�
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(4.13)

for some � 2 .0; 1/. Using (4.10) in (4.13) and the subadditivity of h ensured by AS.3 then
yields that, for any j 2 ¹1; : : : ; qº and all d ,
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: (4.14)

Since s�
k

¤ 0, and using (3.6), we may then choose ıs;j 2 .0; 1� such that, for every d with
kdk � ıs;j , we have
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As a consequence, we obtain that if ıs;j is small enough to ensure (4.15), then (4.14) implies
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The fact that, by definition,

�
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mk ;j .s/ D max

"
0; max

kdk�ıs;j
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(4.17)

continuity of Tf;p.xk ; s/ and Tc;p.xk ; s/ and their derivatives and the inequality
mk.s�

k
/ < mk.0/ then ensure the existence of a feasible neighborhood of s�

k
¤ 0 in which s

can be chosen such that (4.3) and (4.4) hold for s D s, concluding the first part of the proof.
To prove the second part, assume first that ks�

k
k � 1. We may then restrict the neigh-

borhood of s�
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in which s can be chosen enough to ensure that ksk � �. Assume therefore
that ks�
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k � 1. Remembering that, by definition and the triangle inequality,r
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for ` 2 ¹q C 1; : : : ; pº, and thus, using (3.6), (3.5), and (4.10), we deduce that
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where Lw is defined in (3.7). We therefore obtain from (4.15) that any pair .s�
k
; ıs;j / satisfies

(4.16) for kdk � ıs;j if
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(4.18)
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which, because ks�
k
k � 1, is in turn ensured by the inequality
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: (4.19)

Observe now that, since ıs;j 2 Œ0; 1�, we have ı`
s;j � ı

j C1
s;j for ` 2 ¹j C 1; : : : ; pº. Moreover,

we have that,
pX

iD`

1

.i � `/Š
� e < 3

�
` 2 ¹j C 1; : : : ; p C 1º

�
;

pC1X
`Dj C1

1

`Š
� e � 1 < 2;

and therefore (4.19) is (safely) guaranteed by the condition

j Š.6Lw C 2�k/ ıs;j �
1

2
�"j ; (4.20)

which means that the pair .s�
k
; ıs/ satisfies (4.16) for all j 2 ¹1; : : : ; qº whenever

ıs;j �

1
2
�"j

qŠ.6Lw C 2�k/

def
D

1

2
ımin;k :

We may thus again invoke the continuity of the derivatives of mk and (4.17) to deduce that
there exists a neighborhood of s�

k
such that, for every s in this neighborhood, mk.s/ < mk.0/

and the pair .s; ımin;k/ satisfies �
ımin;k

mk ;j .s/ � �"j

ı
j
min;k

j Š
, yielding the desired conclusion.

This lemma indicates that either the norm of the step is larger than � , or the range of
acceptable ıs;j is not too small in that any positive value at most equal to the right-hand side
of (4.12) can be chosen. Thus any value larger than a fixed fraction (a half, say) of (4.12) is
also acceptable. Such a value is, for instance, guaranteed if ıs;j is chosen according to the
technique described as Algorithm 4.1.

A detailed Step 2 for the ARqpC algorithm (Algorithm 4.1)

Step 2: Step calculation.

Step 2.1: Compute a descent step sk such that

mk.sk/ < mk.0/

and either kskk � 1 or sk is the global minimizer of mk.s/ for
ksk � 1. If no such step exists, terminate the ARqpC algorithm
with the approximate solution x" D xk .

Step 2.2: For j 2 ¹1; : : : ; qº, set ıs;j D 1.

Step 2.3: If kskk > 1, return the pair .sk ; ıs/.

Step 2.4: For each j 2 ¹3; : : : ; qº,

(i) compute the global minimum of Tmk ;j .sk ; d / over all d

such that kdk � ıs;j ;
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(ii) if

�
ıs;j

mk ;j .sk/ � �"j

ı
j
s;j

j Š

consider the next value of j ; else set ıs;j D
1
2
ıs;j and return

to Step 2.4(ii).

Step 2.5: Return the pair .sk ; ıs/.

Lemma 4.4 then ensures that this conceptual algorithm is well-defined (and, in particular, that
the loop within Step 2.4 is finite for each j ). We therefore assume, without loss of generality,
that, if some constant �max is given such that �k � �max for all k, then the ARqpC algorithm
ensures that

ıs;j � �ı;min "j with �ı;min
def
D

�

2qŠ.6Lw C 2�max/
2

�
0;

1

2

�
(4.21)

for j 2 ¹1; : : : ; qº whenever kskk � �.
We also need to establish that the possibility of termination in Step 2 of the ARqpC

algorithm is a satisfactory outcome.

Lemma 4.5. Termination cannot occur in Step 2 of the ARqpC algorithm if q D 1 and h

is convex. In other cases, if the ARqpC algorithm terminates in Step 2 of iteration k with
x" D xk , then there exists a ı 2 .0; 1�q such that (4.1) holds for x D x" and x" is a strong
."; ı/-approximate qth-order-necessary minimizer.

Proof. Given Lemma 4.4, if the algorithm terminates within Step 2, it must be because every
(feasible) global minimizer s�

k
of mk.s/ is such that mk.s�

k
/ � mk.0/. In that case, s�

k
D 0

is one such global minimizer. If q D 1 and h is convex, Lemma 3.2 ensures that termination
must have happened in Step 1, and termination in Step 2 is thus impossible. Otherwise, we
have that, for any j 2 ¹1; : : : ; qº and all d with xk C d 2 F ,
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where we used the subadditivity of h (ensured by AS.3) to derive the last inequality. Hence
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Using (3.6), we may now choose each ıj 2 .0; 1� for j 2 ¹1; : : : ; qº small enough to ensure
that the absolute value of the last right-hand side is at most "j ı

j

k;j
=j Š for all d with kdk � ık;j

and xk C d 2 F , which, in view of (3.11), implies (4.1).

5. Evaluation complexity

To analyze the evaluation complexity of the ARqpC algorithm, we first derive the
predicted decrease in the unregularized model from (4.2).

Lemma 5.1. At every iteration k of the ARqpC algorithm, one has that

w.xk/ � Tw;p.xk ; sk/ �
�k

.p C 1/Š
kskk

pC1: (5.1)

Proof. Immediate from (4.2) and (3.10), the fact that mk.0/ D w.xk/ and (4.3).

We next derive the existence of an upper bound on the regularization parameter for
the structured composite problem. The proof of this result hinges on the fact that, once the
regularization parameter �k exceeds the relevant Lipschitz constant (Lw;p here), there is
no need to increase it any further because the model then provides an overestimation of the
objective function.

Lemma 5.2. Suppose that AS.1–AS.3 hold. Then, for all k � 0,

�k � �max
def
D max

�
�0;

3Lw;p

1 � �2

�
; (5.2)

where Lw;p D Lf;p C Lh;0Lc;p .

Proof. Successively using (4.6), Theorem 3.1 applied to f and c, and (5.1), we deduce that,
at iteration k,

j�k � 1j D

ˇ̌̌̌
w.xk/ � w.xk C sk/

w.xk/ � Tw;p.xk ; s/
� 1

ˇ̌̌̌
D

jf .xk C sk/ C h.c.xk C sk// � Tf;p.xk ; s/ � h.Tc;p.xk ; s//j

w.xk/ � Tw;p.xk ; s/

�

Lf;pkskkpC1

.pC1/Š
C Lh;0kc.xk C sk/ � Tc;p.xk ; s/k

w.xk/ � Tw;p.xk ; s/

�

Lf;pCLh;0Lc;p

.pC1/Š
kskkpC1

�k

.pC1/Š
kskkpC1

D
Lf;p C Lh;0Lc;p

�k

:
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Thus, if �k � Lw;p=.1 � �2/, then iteration k is successful, xkC1 D xk , and (4.7) implies
that �kC1 � �k . The conclusion then follows from the mechanism of (4.7).

We now establish an important inequality derived from our smoothness assump-
tions.

Lemma 5.3. Suppose that AS.1–AS.3 hold. Suppose also that iteration k is successful and
that the ARqpC algorithm does not terminate at iteration k C 1. Then there exists a j 2

¹1; : : : ; qº such that
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Proof. If the algorithm does not terminate at iteration k C 1, there must exist a j 2 ¹1; : : : ; qº

such that (4.1) fails at order j at iteration k C 1. Consider such a j and let d be the
argument of the minimization in the definition of �
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Now, using Theorem 3.1 for r D f yields
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In the same spirit, also using AS.3 and applying Theorem 3.1 to c, we obtain
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Because of Lemma 5.2 we also have that

jX
`D1

�kkskkp�`C1ı`
kC1;j

`Š.p � ` C 1/Š
� �max

jX
`D1

kskkp�`C1ı`
kC1;j

`Š.p � ` C 1/Š
: (5.8)

Moreover, in view of (4.2) and (4.4),

�

jX
`D1

1

`Š
r

`
s Tf;p.xk ; sk/Œd �` C h

�
Tc;p.xk ; sk/

�
� h

 
jX

`D0

1

`Š
r

`
s Tc;p.xk ; sk/Œd �`

!

�

jX
`D1

�k

`Š.p � ` C 1/Š
kskk

p�`C1ı`
kC1;j � �

ıs;j

mk ;j .sk/ D �"
ı

j

kC1;j

j Š
; (5.9)

where the last equality is derived using ıs;j D ıkC1;j if iteration k is successful. We may now
substitute (5.5)–(5.9) into (5.4) and use the inequality .p � ` C 1/Š � 1 to obtain (5.3).

Lemma 5.4. Suppose that AS.1–AS.3 hold, that iteration k is successful, and that the ARqpC
algorithm does not terminate at iteration k C 1. Suppose also that the algorithm ensures, for
each k, that either ıkC1;j D 1 for j 2 ¹1; : : : ; qº if (4.11) holds (as allowed by Lemma 4.3),
or that (4.21) holds (as allowed by Lemma 4.4) otherwise. Then there exists a j 2 ¹1; : : : ; qº

such that

kskk �

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
1��

3j Š.Lw;pC�max/

� 1
p�j C1 "

1
p�j C1

j if (4.11) holds,� .1��/�
j �1
ı;min

3j Š.Lw;pC�max/

� 1
p "

j
p

j if (4.11) fails but h D 0;� .1��/�
j
ı;min

3j Š.Lw;pC�max/

� 1
pC1 "

j C1
pC1

j if (4.11) fails and h ¤ 0;

(5.10)

where �ı;min is defined in (4.21).

Proof. We now use our freedom to choose � 2 .0; 1/. Let

�
def
D

�
1 � �

3qŠ.Lw;p C �max/

� 1
p�qC1

D min
j 2¹1;:::;qº

�
1 � �

3j Š.Lw;p C �max/

� 1
p�j C1

2 .0; 1/:
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If kskk � �, then (5.10) clearly holds since " � 1 and �ı;min < 1. We therefore assume that
kskk < �. Because the algorithm has not terminated, Lemma 5.3 ensures that (5.3) holds for
some j 2 ¹1; : : : ; qº. It is easy to verify that this inequality is equivalent to

˛ " ı
j

kC1;j
� kskk

pC1�j

�
ıkC1;j

kskk

�
C ˇkskk

pC1 (5.11)

where the function �j is defined in (2.5) and where we have set

˛ D
1 � �

j Š.Lw;p C �max/
and ˇ D

2

.p C 1/Š

Lh;0Lc;p

Lw;p C �max
2 Œ0; 1/;

the last inclusion resulting from the definition of Lw;p in Lemma 5.2. In particular, since
�j .t/ � 2tj for t � 1 and ˇ < 1, we have that, when kskk � ıkC1;j ,

˛ " � 2kskk
pC1

�
1

kskk

�j

C

�
kskk

ıkC1;j

�j

kskk
p�j C1

� 3kskk
p�j C1: (5.12)

Suppose first that (4.11) hold. Then, from our assumptions, ıkC1;j D 1 and kskk � � < 1 D

ıkC1;j . Thus (5.12) yields the first case of (5.10). Suppose now that (4.11) fails. Then our
assumptions imply that (4.21) holds. If kskk � ıkC1;j , we may again deduce from (5.12)
that the first case of (5.10) holds, which implies, because �ı;min < 1, that the second and
third cases also hold. Consider therefore the case where kskk > ıkC1;j and suppose first that
ˇ D 0. Then (5.11) and the fact that �j .t/ < 2t for t 2 Œ0; 1� give that

˛"ı
j

kC1;j
� 2kskk

pC1

�
ıkC1;j

kskk

�
;

which, with (4.21), implies the second case of (5.10). Finally, if ˇ > 0, (5.11), the bound
ˇ � 1, and �j .t/ < 2 for t 2 Œ0; 1� ensure that

˛"ı
j

kC1;j
� 2kskk

pC1
C kskk

pC1;

the third case of (5.10) then follows from (4.21).

Note that the proof of this lemma ensures the better lower bound given by the first
case of (5.10) whenever kskk � ıkC1;j . Unfortunately, there is no guarantee that this inequal-
ity holds when (4.11) fails.

We may then derive our final evaluation complexity results. To make them clearer,
we provide separate statements for the standard smooth and for the general composite cases.

Theorem 5.5 (Smooth case). Suppose that AS.1 and AS.4 hold and that h D 0. Suppose also
that the algorithm ensures, for each k, that either ıkC1;j D 1 for j 2 ¹1; : : : ; qº if (4.11)
holds (as allowed by Lemma 4.3), or that (4.21) holds (as allowed by Lemma 4.4) otherwise.

1. Suppose that F is convex and q D 1 or that F D Rn and q D 2. Then there
exist positive constants �

s;1
ARqp, �

a;1
ARqp, and �c

ARqp such that, for any " 2 .0; 1�q , the
ARqpC algorithm requires at most

�
a;1
ARqp

w.x0/ � wlow

minj 2¹1;:::;qº "
pC1

p�j C1

j

C �c
ARqp D O

�
max

j 2¹1;:::;qº
"

�
pC1

p�j C1

j

�
(5.13)
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evaluations of f and c, and at most

�
s;1
ARqp

w.x0/ � wlow

minj 2¹1;:::;qº "
pC1

p�j C1

j

C 1 D O
�

max
j 2¹1;:::;qº

"
�

pC1
p�j C1

j

�
(5.14)

evaluations of the derivatives of f of orders 1 to p to produce an iterate x" such
that �1

f;j
.x"/ � "j =j Š for all j 2 ¹1; : : : ; qº.

2. Suppose that either F � Rn and q D 2, or that F is nonconvex or that q > 2.
Then there exist positive constants �

s;2
ARqp, �

a;2
ARqp, and �c

ARqp such that, for any
" 2 .0; 1�q , the ARqpC algorithm requires at most

�
a;2
ARqp

w.x0/ � wlow

minj 2¹1;:::;qº "
j.pC1/

p

j

C �c
ARqp D O

�
max

j 2¹1;:::;qº
"

�
j.pC1/

p

j

�
(5.15)

evaluations of f and c, and at most

�
s;2
ARqp

w.x0/ � wlow

minj 2¹1;:::;qº "
j.pC1/

p

j

C 1 D O
�

max
j 2¹1;:::;qº

"
�

j.pC1/
p

j

�
(5.16)

evaluations of the derivatives of f of orders 1 to p to produce an iterate x" such
that �

ı"

f;j
.x"/ � "j ı

j
";j =j Š for some ı" 2 .0; 1�q and all j 2 ¹1; : : : ; qº.

Theorem 5.6 (Composite case). Suppose that AS.1–AS.4 hold. Suppose also that the algo-
rithm ensures, for each k, that either ıkC1;j D 1 for j 2 ¹1; : : : ; qº if (4.11) holds (as allowed
by Lemma 4.3), or that (4.21) holds (as allowed by Lemma 4.4) otherwise.

1. Suppose that F is convex, q D 1, and h is convex. Then there exist positive
constants �

s;1
ARqpC, �

a;1
ARqpC, and �c

ARqpC such that, for any "1 2 .0; 1�, the ARqpC
algorithm requires at most

�
a;1
ARqpC

w.x0/ � wlow

"
pC1

p

1

C �
c;1
ARqpC D O

�
"

�
pC1

p

1

�
(5.17)

evaluations of f and c, and at most

�
s;1
ARqpC

w.x0/ � wlow

"
pC1

p

1

C 1 D O
�
"

�
pC1

p

1

�
(5.18)

evaluations of the derivatives of f and c of orders 1 to p to produce an iterate
x" such that �1

w;j .x"/ � "1 for all j 2 ¹1; : : : ; qº.

2. Suppose that F is nonconvex or that h is nonconvex, or that q > 1. Then there
exist positive constants �

s;2
ARqp, �

a;2
ARqp, and �c

ARqp such that, for any " 2 .0; 1�q , the
ARqpC algorithm requires at most

�
a;2
ARqpC

w.x0/ � wlow

minj 2¹1;:::;qº "
j C1
j

C �c
ARqpC D O

�
max

j 2¹1;:::;qº
"

�.j C1/
j

�
(5.19)

evaluations of f and c, and at most

�
s;2
ARqpC

w.x0/ � wlow

minj 2¹1;:::;qº "
j C1
j

C 1 D O
�

max
j 2¹1;:::;qº

"
�.j C1/
j

�
(5.20)
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evaluations of the derivatives of f and c of orders 1 to p to produce an iterate
x" such that �

ı"

w;j .x"/ � "j ı
j
";j =j Š for some ı" 2 .0; 1�q and all j 2 ¹1; : : : ; qº.

Proof. We prove Theorems 5.5 and 5.6 together. At each successful iteration k of the ARqpC
algorithm before termination, we have the guaranteed decrease

w.xk/ � w.xkC1/ � �1

�
Tw;p.xk ; 0/ � Tw;p.xk ; sk/

�
�

�1�min

.p C 1/Š
kskk

pC1 (5.21)

where we used (5.1) and (4.7). We now wish to substitute the bounds given by Lemma 5.4
in (5.21), and deduce that, for some j 2 ¹1; : : : ; qº,

w.xk/ � w.xkC1/ � ��1"!
j (5.22)

where the definition of � and ! depends on q and h. Specifically,

�
def
D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�
s;1
ARqp D �

s;1
ARqpC

def
D

.pC1/Š
�1�min

�
1��

3j Š.Lw;pC�max/

�� pC1
p�j C1

if .q D 1; h and F are convex/; and

if .q 2 ¹1; 2º; F is convex and h D 0/;

�
s;2
ARqp

def
D

.pC1/Š
�1�min

� .1��/�
j �1
ı;min

3j Š.Lw;pC�max/

�� pC1
p

if h D 0 and

..q D 2 and F � Rn/ or q > 2 or F is nonconvex/

�
s;2
ARqpC

def
D

.pC1/Š
�1�min

� .1��/�
j
ı;min

3j Š.Lw;pC�max/

��1

if h ¤ 0 and .q > 1 or F is nonconvex/;

where �ı;min is given by (4.21), and

!
def
D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

pC1
p�qC1

if .q D 1; h and F are convex/; and
if .q D 2; F D Rn and h D 0/;

q.pC1/
p

if h D 0 and
..q D 2 and F � Rn/ or q > 2 or F is nonconvex/

q C 1 if h ¤ 0 and .q > 1 or F is nonconvex/:

(5.23)

Thus, since ¹w.xk/º decreases monotonically,

w.x0/ � w.xkC1/ � ��1 min
j 2¹1;:::;qº

"!
j j�kj:

Using AS.4, we conclude that

j�kj � �
w.x0/ � wlow

minj 2¹1;:::;qº "!
j

(5.24)

until termination, bounding the number of successful iterations. Lemma 4.1 is then invoked
to compute the upper bound on the total number of iterations, yielding the constants

�
a;1
ARqp

def
D �

s;1
ARqp

�
1 C

j log 1j

log 2

�
; �

a;2
ARqp

def
D �

s;2
ARqp

�
1 C

j log 1j

log 2

�
;

�
a;1
ARqpC

def
D �

s;1
ARqpC

�
1 C

j log 1j

log 2

�
; �

a;2
ARqpC

def
D �

s;2
ARqpC

�
1 C

j log 1j

log 2

�
;
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and
�c

ARqp D �c
ARqpC

def
D

1

log 2

log
�

�max

�0

�
;

where �max D maxŒ�0;
3Lw;p

1��2
� (see (5.2)). The desired conclusions then follow from the fact

that each iteration involves one evaluation of f and each successful iteration one evaluation
of its derivatives.

For the standard smooth case, Theorem 5.5 provides the first results on the complex-
ity of finding strong minimizers of arbitrary orders using adaptive regularization algorithms
that we are aware of. By comparison, [12] provides similar results but for the convergence
to weak minimizers (see (2.5)). Unsurprisingly, the worst-case complexity bounds for weak
minimizers are better than those for strong ones: the O."�.pC1/=.p�qC1// bound which we
have derived for q 2 ¹1;2º then extends to any order q. Moreover, the full power of AS.1 is not
needed for these results since it is sufficient to assume that r

p
x f .x/ is Lipschitz continuous.

It is interesting to note that the results for weak and strong approximate minimizers coincide
for first and second order. The results of Theorem 5.5 may also be compared with the bound
in O."�.qC1// which was proved for trust-region methods in [11]. While these trust-region
bounds do not depend on the degree of the model, those derived above for the ARqpC algo-
rithm show that worst-case performance improves with p and is always better than that of
trust-region methods. It is also interesting to note that the bound obtained in Theorem 5.5
for order q is identical to that which would be obtained for first-order but using "q instead
of ". This reflects the observation that, different from the weak approximate optimality, the
very definition of strong approximate optimality in (2.4) requires very high accuracy on the
(usually dominant) low order terms of the Taylor series while the requirement lessens as the
order increases.

An interesting feature of the algorithm discussed in [12] is that computing and testing
the value of �ı

mk ;j .sk/ is unnecessary if the length of the step is large enough. The same
feature can easily be introduced into the ARqpC algorithm. Specifically, we may redefine
Step 2 to accept a step as soon as (4.3) holds and

kskk �

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

$ minj 2¹1;:::;qº "
1

p�qC1

j if .q D 1; h and F are convex/; and
if .q D 2; F D Rn and h D 0/;

$ minj 2¹1;:::;qº "
q
p

j if h D 0 and
..q D 2 and F � Rn/ or q > 2 or F is nonconvex/;

$ minj 2¹1;:::;qº "
qC1
pC1

j if h ¤ 0 and .q > 1 or F is nonconvex/;

for some $ 2 .�; 1�. If these conditions fail, then one still needs to verify the requirements
(4.3) and (4.4), as we have done previously. Given Lemma 5.1 and the proof of Theorems 5.5
and 5.6, it is easy to verify that this modification does not affect the conclusions of these
complexity theorems, while potentially avoiding significant computations.

Existing complexity results for (possibly nonsmooth) composite problems are few
[8,13,14,20]. Theorem 5.6 provides, to the best of our knowledge, the first upper complexity
bounds for optimality orders exceeding one, with the exception of [13] (but this paper requires
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strong specific assumptions on F ). While equivalent to those of Theorem 5.5 for the standard
case when q D 1, they are not as good and match those obtained for the trust-region methods
when q > 1. They could be made identical in order of "j to those of Theorem 5.5 if one is
ready to assume that Lh;0Lc;p is sufficiently small (for instance, if c is a polynomial of degree
less than p). In this case, the constant ˇ in Lemma 5.11 will of the order of ıkC1;j =kskk,
leading to the better bound.

6. Sharpness

We now show that the upper complexity bounds in Theorem 5.5 and the first part of
Theorem 5.6 are sharp. Since it is sufficient for our purposes, we assume in this section that
"j D " for all j 2 ¹1; : : : ; qº.

We first consider a first class of problems, where the choice of ık;j D 1 is allowed.
Since it is proved in [12] that the order in " given by the Theorem 5.5 is sharp for finding
weak approximate minimizers for the standard (smooth) case, it is not surprising that this
order is also sharp for the stronger concept of optimality whenever the same bound applies,
that is when q 2 ¹1; 2º. However, the ARqpC algorithm slightly differs from the algorithm
discussed in [12]. Not only are the termination tests for the algorithm itself and those for the
step computation weaker in [12], but the algorithm there makes a provision to avoid comput-
ing �ı

mk ;j whenever the step is large enough, as discussed at the end of the last section. It is
thus impossible to use the example of slow convergence provided in [12, Section 5.2] directly,
but we now propose a variant that fits our present framework.

Theorem 6.1. Suppose that h D 0 and that the choice ık;j D 1 is possible (and made) for
all k and all j 2 ¹1; : : : ; qº. Then the ARqpC algorithm applied to minimize f may require

"
�

pC1
p�qC1

iterations and evaluations of f and of its derivatives of order 1 up to p to produce a point
x" such that �1

w;q.x"/ � "=j Š for all j 2 ¹1; : : : ; qº.

Proof. Our aim is to show that, for each choice of p � 1, there exists an objective func-
tion satisfying AS.1 and AS.4 such that obtaining a strong ."; ı/-approximate qth-order-
necessary minimizer may require at least "�.pC1/=.p�qC1/ evaluations of the objective
function and its derivatives using the ARqpC algorithm. Also note that, in this context,
�

ıj
w;q.x/ D �

ıj

f;q
.x/ and (4.1) reduces to (2.4).

Given a model degree p � 1 and an optimality order q, we also define the sequences
¹f

.j /

k
º for j 2 ¹0; : : : ; pº and k 2 ¹0; : : : ; k"º by

k" D
˙
"

�
pC1

p�qC1
�

(6.1)

and
!k D "

k" � k

k"

2 Œ0; "�; (6.2)
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as well as

f
.j /

k
D 0 for j 2 ¹1; : : : ; q � 1º [ ¹q C 1; : : : ; pº and f

.q/

k
D �." C !k/ < 0:

Thus

Tf;p.xk ; s/ D

pX
j D0

f
.j /

k

j Š
sj

D f
.0/

k
� ." C !k/

sq

qŠ
: (6.3)

We also set �k D pŠ=.q � 1/Š for all k 2 ¹0; : : : ; k"º (we verify below that is acceptable). It
is easy to verify using (6.3) that the model (4.2) is then globally minimized for

sk D
ˇ̌
f

.q/

k

ˇ̌ 1
p�qC1 D Œ" C !k �

1
p�qC1 > "

1
p�qC1

�
k 2 ¹0; : : : ; k"º

�
: (6.4)

We then assume that Step 2 of the ARqpC algorithm returns, for all k 2 ¹0; : : : ; k"º, the
step sk given by (6.4) and the optimality radius ık;j D 1 for j 2 ¹1; : : : ; qº (as allowed by
our assumption). Thus implies that

�
ık;q

f;q
.xk/ D ." C !k/

ı
q

k;q

qŠ
; (6.5)

and therefore that

!k 2 .0; "�; �
ık;j

f;j
.xk/ D 0 .j D 1; : : : ; q � 1/ and �

ık;q

f;q
.xk/ > "

ı
q

k;q

qŠ
(6.6)

(and (2.4) fails at xk) for k 2 ¹0; : : : ; k" � 1º, while

!k"
D 0; �

ık;j

f;j
.xk"

/ D 0 .j D 1; : : : ; q � 1/ and �
ık;q

f;q
.xk"

/ D "
ı

q

k;q

qŠ
(6.7)

(and (2.4) holds at xk"
). The step (6.4) yields that

mk.sk/ D f
.0/

k
�

" C !k

qŠ
Œ" C !k �

q
p�qC1 C

�k

.p C 1/Š
Œ" C !k �

pC1
p�qC1

D f
.0/

k
�

" C !k

qŠ
Œ" C !k �

q
p�qC1 C

1

.p C 1/.q � 1/Š
Œ" C !k �

pC1
p�qC1

D f
.0/

k
� �.q; p/Œ" C !k �

pC1
p�qC1 (6.8)

where
�.q; p/

def
D

p � q C 1

.p C 1/qŠ
2 .0; 1/: (6.9)

Thus mk.sk/ < mk.0/ and (4.3) holds. We then define

f
.0/

0 D 2
1C

pC1
p�qC1 and f

.0/

kC1
D f

.0/

k
� �.q; p/Œ" C !k �

pC1
p�qC1 ; (6.10)

which provides the identity
mk.sk/ D f

.0/

kC1
(6.11)

(ensuring that iteration k is successful because �k D 1 in (4.6) and thus that our choice of
a constant �k is acceptable). In addition, using (6.2), (6.10), (6.6), (6.9) and the inequality
k" � 1 C "

�
pC1

p�qC1 resulting from (6.1), gives that, for k 2 ¹0; : : : ; k"º,

f
.0/

0 � f
.0/

k
� f

.0/
0 � k�.q; p/Œ2"�

pC1
p�qC1 > f

.0/
0 � k""

pC1
p�qC1 2

pC1
p�qC1

� f
.0/

0 �
�
1 C "

pC1
p�qC1

�
2

pC1
p�qC1 � f

.0/
0 � 2

1C
pC1

p�qC1 ;
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and hence that
f

.0/

k
2 .0; 2

1C
pC1

p�qC1 � for k 2 ¹0; : : : ; k"º: (6.12)

We also set

x0 D 0 and xk D

k�1X
iD0

si :

Then (6.11) and (4.2) give thatˇ̌
f

.0/

kC1
� Tf;p.xk ; sk/

ˇ̌
D

1

.p C 1/.q � 1/Š
jskj

pC1
� jskj

pC1: (6.13)

Now note that, using (6.3) and the first equality in (6.4),

T
.j /

f;p
.xk ; sk/ D

f
.q/

k

.q � j /Š
s

q�j

k
ıŒj �q� D �

1

.q � j /Š
s

p�j C1

k
ıŒj �q�;

where ıŒ�� is the standard indicator function. We now see that, for j 2 ¹1; : : : ; q � 1º,ˇ̌
f

.j /

kC1
� T

.j /

f;p
.xk ; sk/

ˇ̌
D
ˇ̌
0 � T

.j /

f;p
.xk ; sk/

ˇ̌
�

1

.q � j /Š
jskj

p�j C1
� jskj

p�j C1; (6.14)

while, for j D q, we have thatˇ̌
f

.q/

kC1
� T

.q/

f;p
.xk ; sk/

ˇ̌
D
ˇ̌
�s

p�qC1

k
C s

p�qC1

k

ˇ̌
D 0 (6.15)

and, for j 2 ¹q C 1; : : : ; pº,ˇ̌
f

.j /

kC1
� T

.j /

f;p
.xk ; sk/

ˇ̌
D j0 � 0j D 0: (6.16)

Combining (6.13)–(6.16), we may then apply classical Hermite interpolation (see [12, The-

orem 5.2] with �f D 1), and deduce the existence of a p times continuously differentiable
function fARqpC from R to R with Lipschitz continuous derivatives of order 0 to p (hence sat-
isfying AS.1) which interpolates ¹f

.j /

k
º at ¹xkº for k 2 ¹0; : : : ;k"º and j 2 ¹0; : : : ;pº. More-

over, (6.12), (6.3), (6.4), and the same Hermite interpolation theorem imply that jf .j /.x/j

is bounded by a constant only depending on p and q, for all x 2 R and j 2 ¹0; : : : ; pº (and
thus AS.1 holds) and that fARqpC is bounded below (ensuring AS.4.) and that its range only
depends on p and q. This concludes our proof.

This immediately provides the following important corollary.

Corollary 6.2. Suppose that h D 0 and that either q D 1 and F is convex, or q D 2 and
F D Rn. Then the ARqpC algorithm applied to minimize f may require

"
�

pC1
p�qC1

iterations and evaluations of f and of its derivatives of order 1 up to p to produce a point
x" such that �1

w;q.x"/ � "=j Š for all j 2 ¹1; : : : ; qº.

Proof. We start by noting that, in both cases covered by our assumptions, Lemma 4.3 allows
the choice ık;j D 1 for all k and all j 2 ¹1; : : : ; qº. We conclude by applying Theorem 6.1.
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It is then possible to derive a lower complexity bound for the simple composite case
where h is nonzero but convex and q D 1.

Corollary 6.3. Suppose that q D 1 and that h is convex. Then the ARqpC algorithm applied
to minimize w may require

"
�

pC1
p

iterations and evaluations of f and c and of their derivatives of order 1 up to p to produce
a point x" such that �1

w;1.x"/ � ".

Proof. It is enough to consider the unconstrained problem where w D h.c.x// with
h.x/ D jxj and c is the positive function f constructed in the proof of Theorem 6.1.

We now turn to the high-order smooth case.

Theorem 6.4. Suppose that h D 0 and that either q > 2, or q D 2 and F D Rn. If " 2 .0; 1/

is sufficiently small and if the ARqpC algorithm applied to minimize f allows the choice of
an arbitrary ık;j > 0 satisfying (4.21), it may then require

"
�

q.pC1/
p

iterations and evaluations of f and of its derivatives of order 1 up to p to produce a point
x" such that �

ı";j

f;j
.x"/ � "ı

j
";j =j Š for all j 2 ¹1; : : : ; qº and some ı" 2 .0; 1�q .

Proof. As this is sufficient, we focus on the case where F D Rn. Our aim is now to show
that, for each choice of p � 1 and q > 2, there exists an objective function satisfying AS.1
and AS.4 such that obtaining a strong ."; ı/-approximate qth-order-necessary minimizer may
require at least "�q.pC1/=p evaluations of the objective function and its derivatives using the
ARqpC algorithm. As in Theorem 6.1, we have to construct f such that it satisfies AS.1 and
is globally bounded below, which then ensures AS.4. Again, we note that, in this context,
�

ıj

f;q
.x/ D �

ıj

f;q
.x/ and (4.1) reduces to (2.4).

Without loss of generality, we assume that " �
1
2
. Given a model degree p � 1 and

an optimality order q > 2, we set

k" D
˙
"

�
q.pC1/

p
�

(6.17)

and
!k D "q k" � k

k"

2
�
0; "q

� �
k 2 ¹0; : : : ; k"º

�
: (6.18)

Moreover, for j 2 ¹0; : : : ; pº and each k 2 ¹0; : : : ; k"º, we define the sequences ¹f
.j /

k
º by

f
.1/

k
D �

"q C !k

qŠ
< 0 and f

.j /

k
D 0 for j 2 ¹2; : : : ; pº; (6.19)

and therefore

Tf;p.xk ; s/ D

pX
j D0

f
.j /

k

j Š
sj

D f
.0/

k
�

"q C !k

qŠ
s: (6.20)
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This definition and the choice �k D pŠ .k 2 ¹0; : : : ; k"º/ (we verify below that this is accept-
able) then allow us to define the model (4.2) by

mk.s/ D f
.0/

k
�

"q C !k

qŠ
s C

jsjpC1

p C 1
: (6.21)

We now assume that, for each k, Step 2 returns the model’s global minimizer

sk D

�
"q C !k

qŠ

� 1
p �

k 2 ¹0; : : : ; k"º
�

(6.22)

and the optimality radius
ık;j D "

�
j 2 ¹1; : : : ; qº

�
: (6.23)

Indeed, a simple calculation shows that we may choose ık;j at least as large as

ık;j D
3jskj

p � 1
D

3

p � 1

�
"q C !k

qŠ

� 1
p

: (6.24)

which is clearly the case for (6.23) under our assumption on ". Let us show that the above
choice (6.24) is correct. Consider the model (6.21) and let ˇ D ."q C !k/=qŠ. We may
then compute Tmk ;j .sk ; ˛sk/ the j th degree Taylor expansion of this model at sk for
j 2 ¹1; : : : ; qº. Since r1

s mk.sk/ D 0, we obtain from Lemma 4.2 that

Tmk ;j .sk ; ˛sk/ D

jX
`D0

r`
s mk.sk/Œ˛sk �`

`Š
D mk.sk/ C

�k

.p C 1/Š

jX
`D2

r`
s .js�

k
jpC1/Œ˛sk �`

`Š

D mk.sk/ C
�k

.p C 1/Š

jX
`D2

˛`r`
s .jskjpC1/Œsk �`

`Š

D mk.sk/ C �k

jX
`D2

˛`jskjpC1

`Š.p C 1 � `/Š
:

Clearly, Tmk ;1.sk ; ˛sk/ D mk.sk/ for all ˛ because the standard first-order optimality condi-
tion at sk gives that r1

d
Tmk ;1.sk ; 0/ D 0. The second-order optimality condition implies that

Tmk ;2.sk ; ˛sk/ is convex in ˛, but, given that ˛ can be negative, approximations of degree
larger than 2 are no longer convex for odd values of j . We are now interested in computing
an upper bound on ısk ;j so that (4.4) holds and for odd j (and thus for all j ). Consider the
case where j D 3: choosing ˇ D 1 (and thus s�

k
D e1) as above, (4.4) then requires that, for

all j˛skj � ısk ;3,

Tmk ;3.sk ; 0/ � Tmk ;3.s�
k ; ˛sk/ < �"

j˛skj3

6
;

which is obviously satisfied for any ısk ;3 smaller or equal to absolute value of the root ˛�;3 of
the equation Tmk ;3.sk ; 0/ D Tmk ;3.s�

k
; ˛sk/. Using the expression of Tmk ;3.s�

k
; ˛sk/ derived

above, one verifies that

˛�;3 D �
3pjskjpC1

p.p � 1/jskjpC1
D �

3

p � 1
:

The cases j D 5; 9; : : : ; p are less restrictive because the corresponding roots ˛�;j are all
smaller than ˛�;3. As a consequence, (4.4) holds for j 2 ¹1; : : : ; qº and ık;j D

3jsk j

p�1
.
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Thus, from (6.24), (6.20) and (6.23),

�
ık;j

f;j
.xk/ D ."q

C !k/
"

qŠ

for j 2 ¹1; : : : ; qº and k 2 ¹0; : : : ; k"º. Using (6.23), (6.17), and the fact that, for
j 2 ¹1; : : : ; q � 1º,

"q C !k

qŠ
�

2"q

qŠ
�

"j

j Š
D

ı
j

k;j

j Š
(6.25)

when q � 2 and " �
1
2
, we then obtain that

�
ık;j

f;j
.xk/ � "

ı
j

k;j

j Š
.j D 1 : : : ; q � 1/ and �

ık;q

f;q
.xk/ > "

ı
q

k;q

qŠ

(and (2.4) fails at xk) for k 2 ¹0; : : : ; k" � 1º, while

�
ık;j

f;j
.xk"

/ < "
ı

j

k;j

j Š
.j D 1 : : : ; q � 1/ and �

ık;q

f;q
.xk"

/ D "
ı

q

k;q

qŠ

(and (2.4) holds at xk"
). Now (6.21) and (6.22) give that

mk.sk/ D f
.0/

k
�

"q C !k

qŠ

�
"q C !k

qŠ

� 1
p

C
1

p C 1

�
"q C !k

qŠ

� pC1
p

D f
.0/

k
�

p

p C 1

�
"q C !k

qŠ

� pC1
p

:

Thus mk.sk/ < mk.0/ and (4.3) holds. We then define

f
.0/

0 D 2
1C

q.pC1/
p and f

.0/

kC1
D f

.0/

k
�

p

p C 1

�
"q C !k

qŠ

� pC1
p

; (6.26)

which provides the identity
mk.sk/ D f

.0/

kC1
(6.27)

(ensuring that iteration k is successful because �k D 1 in (4.6) and thus that our choice of a
constant �k is acceptable). In addition, using (6.18), (6.26), and the inequality
k" � 1 C "�q.pC1/=p resulting from (6.17), (6.26) gives that, for k 2 ¹0; : : : ; k"º,

f
.0/

0 � f
.0/

k
� f

.0/
0 � kŒ2"�

q.pC1/
p � f

.0/
0 � k""

q.pC1/
p 2

q.pC1/
p

� f
.0/

0 �
�
1 C "

q.pC1/
p

�
2

q.pC1/
p � f

.0/
0 � 2

1C
q.pC1/

p ;

and hence that
f

.0/

k
2
�
0; 2

1C
q.pC1/

p
�

for k 2 ¹0; : : : ; k"º: (6.28)

As in Theorem 6.1, we set x0 D 0 and xk D
Pk�1

iD0 si . Then (6.11) and (4.2) give thatˇ̌
f

.0/

kC1
� Tf;p.xk ; sk/

ˇ̌
D

1

p
jskj

pC1: (6.29)

Using (6.20), we also see thatˇ̌
f

.1/

kC1
� T

.1/

f;p
.xk ; sk/

ˇ̌
D

ˇ̌̌̌
�

."q C !kC1/

qŠ
C

."q C !k/

qŠ

ˇ̌̌̌
� jskj

p

�
1 �

"q C !kC1

"q C !k

�
< jskj

p;

(6.30)
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while, for j 2 ¹2; : : : ; pº,ˇ̌
f

.j /

kC1
� T

.j /

f;p
.xk ; sk/

ˇ̌
D j0 � 0j < jskj

p�j C1: (6.31)

The proof is concluded as in Theorem 6.1. Combining (6.29)–(6.31), we may then apply
classical Hermite interpolation (see [12, Theorem 5.2] with �f D 1) and deduce the existence of
a p-times continuously differentiable function fARqpC from R to R with Lipschitz continuous
derivatives of order 0 to p (hence satisfying AS.1) which interpolates ¹f

.j /

k
º at ¹xkº for

k 2 ¹0; : : : ; k"º and j 2 ¹0; : : : ; pº. Moreover, the Hermite theorem, (6.19), and (6.22)
also guarantee that jf .j /.x/j is bounded by a constant only depending on p and q, for all
x 2 R and j 2 ¹0; : : : ; pº. As a consequence, AS.1, AS.2, and AS.4 hold. This concludes
the proof.

Whether the bound (5.20) is sharp remains an open question at present.

7. Inexact global minimization

We finally discuss the necessity of performing global minimization when calcu-
lating the (objective and model) optimality measures and, when relevant, the effect of per-
forming such computations inexactly. We start by recalling that such minimization problems
potentially occur in two parts of the algorithm: in Step 1 (for deciding termination) and in
Step 2 (during the step computation).

Step computation. Consider the step computation first and remember that the ultimate pur-
pose of Step 2 is to find a step sk guaranteeing a sufficient decrease of the Taylor series at xk ,
in that

Tw;j .xk ; 0/ � Tw;j .xk ; sk/ � �decr"
!
j (7.1)

for some fixed �decr > 0 and j 2 ¹1; : : : ; qº, where ! is defined in (5.23) (this argument is
used in the proof of Theorems 5.5 and 5.6). Of course, if a step sk that satisfies (7.1) for some
given �decr can be found simply,4 without resorting to global optimization, so much the better
(and we may then choose ık;j D 1 for j 2 ¹1; : : : ; qº). In other cases, the decrease guarantee
(7.1) is obtained in one of two possible ways: if kskk � 1 and given that "j 2 .0; 1�, sufficient
decrease follows from Lemma 5.1 with �decr D �min=.p C 1/Š. Alternatively, if kskk � 1, we
then have to enforce (4.4) for some ıs;j 2 .0; 1�, and use the more complicated Lemma 5.4 to
reach the desired conclusion. In our development, the constant 1 in the inequality kskk � 1

was chosen solely for simplicity of exposition, but can be replaced by any constant indepen-
dent of k. In particular, it can be replaced by �

1=.pC1/
decr "

!=.pC1/
min where "min D minj 2¹1;:::;qº "j ,

so that sufficient decrease still immediately follows from Lemma 5.1 if

kskk � �
1=.pC1/
decr "

!=.pC1/
min : (7.2)

As a consequence, we see that performing any global optimization in Step 2 is only necessary
whenever a descent step cannot be found that satisfies either (7.1) or (7.2). From a practical
point of view, the failure of these two conditions could be considered as a reasonable ter-

4 Say, by applying some trusted local minimization method.
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mination rule for small enough "min, even if there is then no guarantee that the iterate xk at
which the algorithm appears to be stuck is an approximate minimizer.

If one now insists on true optimality, the details of Algorithm 4.1 become relevant.
In this algorithm, the sole purpose of the global minimization in Step 2.1 is to ensure that
Lemma 4.4 can be applied to guarantee finite termination of the loop within Step 2.2. Thus, if
Step 2.1 cannot be performed exactly, it may happen that this loop does not terminate (even
assuming feasibility of the additional global minimizations within the loop). A practical
algorithm would terminate this loop if ıs;j becomes too small or if a maximum number of
inner iterations have been taken, returning a value of ıs;j which is potentially too large for
the computed step (compared to what would have resulted if global minimization had always
been successful). This is also the outcome of Step 2.2 if the global minimizations involved
within this step become too costly and the j th loop must be terminated prematurely. Thus,
given that ıkC1 D ıs at successful iterations, we next have to consider what happens in
Step 1 of iteration k C 1 when one or more of the ıkC1;j is too large. In this case, the
definition of �

ıkC1;j

w;j .xkC1/ (see (2.2)) implies that there might exist a move dkC1;j with
kdkC1;j k � ıkC1;j such that

Tw;j .xkC1; 0/ � Tw;j .xkC1; dkC1;j / > "j

ı
j

kC1;j

j Š
;

preventing termination even if xkC1 is a suitable ."; ı/-approximate minimizer. This is obvi-
ously a serious problem from the point of view of bounding evaluation complexity, since the
algorithm will continue and evaluate further, unnecessary, values of f , c, and their deriva-
tives. Two possibilities may then occur. Either iteration k C 1 is unsuccessful, �k increased
causing a subsequent stepsize reduction and, if the behavior persists, forcing convergence
to xk , or it is successful,5 yielding a further objective function reduction and allowing the
algorithm to progress towards an alternative approximate minimizer with a lower objective
function value. The complexity bound is maintained if (7.1) or (7.2) holds, or if an insuffi-
cient decrease only occurs at most a number of times independent of "min. However, even if
this is not the case and the complexity bound we have derived evaporates as a consequence,
the fact that the algorithm moves on can be viewed as beneficial for the optimization process
from a more global perspective.

Termination test. One also needs global minimization to compute the optimality measure
�

ık;j

w;j .xk/ in Step 1. Clearly, the global optimization defining �
ık;j

w;j .xk/ in (2.2) may be ter-
minated as soon as an approximate solution d is found such that

�
ık;j

w;j .xk/ > "j

ı
j

k;j

j Š
;

thereby avoiding a full-accuracy computation of the global minimizer. When far from the
solution, we expect the optimality measure to be large, and hence such an approximate

5 As suggested by the fact that minimization in Step 2 of iteration k C 1 may obviously be
started from xkC1 C dkC1;j , a point already providing descent on a good approximation
of w.
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solution d to be found quickly. Suppose now that the solution is approached, and that the
minimization of Tw;j .xk ; d / within the ball of radius ık;j can only be performed inexactly
in that one can only find a move d such that

Tw;j .xk ; d / � Tw;j .xk ; d�/ � "�;j

ı
j

k;j

j Š
; (7.3)

where d� is the elusive constrained global minimizer and "�j
2 .0; 1�. Then the only effect

of this computational constraint is to limit the achievable accuracy on the approximate min-
imizer by imposing that "j � "�;j . However, achieving (7.3) for small ık;j might also be too
challenging: one is then left (as above) with the option of using a larger value of ık;j , pos-
sibly missing the identification of xk as an ."; ı/-approximate minimizer, which potentially
leads to an alternative better one but destroys the complexity guarantee.

To summarize this discussion, the need for global optimization in Steps 1 and 2.4 is
driven by the desire to obtain a good evaluation complexity bound (by avoiding further evalu-
ations if a suitable approximate minimizer has been found). The algorithm could still employ
approximate calculations, but at the price of losing the complexity guarantee or limiting the
achievable accuracy.

8. Conclusions and perspectives

We have presented an adaptive regularization algorithm for the minimization of
nonconvex, nonsmooth composite functions, and proved bounds detailed in Table 1.1 on the
evaluation complexity (as a function of accuracy) for composite and smooth problems and
for arbitrary model degree and optimality orders.

These results complement the bound proved in [12] for weak approximate minimiz-
ers of inexpensively constrained smooth problems (third column of Table 1.1) by provid-
ing corresponding results for strong approximate minimizers. They also provide the first
complexity results for the convergence to minimizers of order larger than one for (possibly
nonsmooth and inexpensively constrained) composite ones.

The fact that high-order approximate minimizers for nonsmooth composite prob-
lems can be defined and computed in a quantifiable way opens up interesting possibilities. In
particular, these results may be applied in the case of expensively-constrained optimization
problems, where exact penalty functions result in composite subproblems of the type studied
here.
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Abstract

Nonlinear optimization stems from calculus and becomes an independent subject due to
the proposition of Karush–Kuhn–Tucker optimality conditions. The ever-growing realm
of applications and the explosion in computing power is driving nonlinear optimization
research in new and exciting directions. In this article, I shall give a brief overview of non-
linear optimization, mainly on unconstrained optimization, constrained optimization, and
optimization with least constraint violation.
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1. Introduction

It is known that nonlinear optimization stems from calculus. Consider the uncon-
strained optimization problem

min
x2<n

f .x/; (1.1)

where f W <n ! < is smooth and its gradient g is available. The calculus invented by Newton
and Leibniz in the seventeenth century provided a necessary condition for a point x to be
the optimal solution of (1.1), which is rf .x/ D 0, i.e., the tangent line of f at x is hori-
zontal. For equality constrained optimization, the necessary optimality condition is that the
derivatives of the Lagrangian function with respect to the primal and dual variables are equal
to zero, which was exposed by Lagrange in the eighteenth century. Nonlinear optimization
became an independent subject when Karush [52] and Kuhn and Tucker [53] provided nec-
essary optimality conditions for general optimization subjected to equality and inequality
constraints,

min f .x/ (1.2)

such that h.x/ D 0; (1.3)

g.x/ � 0; (1.4)

where f W <n ! <, h W <n ! <mE , g W <n ! <mI are supposed to be twice continuously
differentiable functions. The proposition of the Fletcher–Reeves conjugate gradient method
[39] and the Davidon–Fletcher–Powell quasi-Newton method [33, 38] greatly promoted the
development of nonlinear optimization.

This article shall give a brief overview of nonlinear optimization, mainly on uncon-
strained optimization, constrained optimization, and optimization with least constraint vio-
lation.

2. Unconstrained optimization

The design and analysis of numerical methods for unconstrained optimization is
closely related to the unconstrained quadratic optimization

min
x2<n

q.x/ WD
1

2
xTAx � bT x; (2.1)

where b 2 <n and A 2 <n�n is symmetric and positive definite with eigenvalues 0 < �1 �

� � � � �n. Fundamental methods for unconstrained optimization include gradient methods,
conjugate gradient methods, quasi-Newton methods, Newton method, and derivative-free
methods. We focus on two classes of first-order methods, gradient methods, and conjugate
gradient methods, which are suitable for large-scale problems.

The gradient method can be dated back to Cauchy [9], and the first nonlinear con-
jugate gradient method is due to Fletcher and Reeves [39]. Driven by practical applications,
various variants of the methods have been proposed for convex optimization, nonsmooth
optimization, stochastic optimization, etc. For smooth optimization, the two classes of meth-
ods are significantly improved by asking their search directions to be close to the Newton or
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quasi-Newton direction in some sense. Typical examples of the conjugate gradient method
are the Dai–Yuan method [27], the Hager–Zhang method [46], and the Dai–Kou method [22].
For the gradient method, one milestone work is the Barzilai–Borwein (nonmonotone) gra-
dient method, while another significant work is the Yuan stepsize [87], which leads to the
proposition of the efficient Dai–Yuan (monotone) gradient method [30]. Interestingly enough,
Huang et al. [51] found that it is possible to equip the Barzilai–Borwein method with the two-
dimensional quadratic termination property.

2.1. Gradient methods
Gradient methods search along the negative gradient and are of the form

xkC1 D xk � ˛kgk ; (2.2)

where gk D rf .xk/ and ˛k > 0 is the stepsize. Different choices of the stepsize ˛k lead to
different gradient methods. The steepest descent (SD) method, which is due to Cauchy [9],
determines its stepsize by the exact line search, i.e.,

˛SD
k D arg min

˛>0
f .xk � ˛gk/: (2.3)

The SD method is shown to be Q-linearly convergent, but its performance is poor when
the problem is ill-conditioned [1]. Specifically, the SD method will asymptotically tend to
minimize the function in some two-dimensional subspace and produce zigzags [40]. If the
dimension is greater than one, the SD stepsize (2.3) always tends to be long, and some short-
ened SD methods are proposed in [30].

One milestone work on the gradient method is due to Barzilai and Borwein [3]. Its
basic idea is to ask the matrix ˛�1

k
I or ˛kI have a certain quasi-Newton property. Then

by minimizing ksk�1 � .˛�1
k
I /yk�1k or k.˛kI /sk�1 � yk�1k with respect to ˛k , where

sk�1 D xk � xk�1, yk�1 D gk � gk�1 and k � k is the two-norm, two stepsizes are derived
as

˛BB 1
k D

sT
k�1

sk�1

sT
k�1

yk�1

; ˛BB 2
k D

sT
k�1

yk�1

yT
k�1

yk�1

: (2.4)

The stepsizes ˛BB 1
k

and ˛BB 2
k

are called long and short Barzilai–Borwein (BB) stepsizes,
respectively, since ˛BB 1

k
� ˛BB 2

k
if sT

k�1
yk�1 > 0. Despite its heavy nonmonotone behavior,

the BB method performs significantly better than the SD method in practice; see, e.g., [36].
For unconstrained quadratic optimization, the BB method is proved to be R-superlinearly
convergent if the dimension is two [3]. For general dimension, the BB method is globally con-
vergent [73] and the convergence isR-linear [25]. An efficient extension of the BB method for
unconstrained optimization is given in [74] by incorporating the Grippo–Lampariello–Lucidi
(GLL) nonmonotone line search [45]. Interestingly enough, it is shown in [25] that the BB
stepsize can asymptotically be accepted by the GLL nonmonotone line search when the iter-
ate is close to the solution. This property is similar to the fact that the unit stepsize can
asymptotically be accepted by Newton or quasi-Newton methods using the Armijo or Wolfe
line search. Furthermore, efficient projected gradient methods based on BB-like methods
and applications can be found in [4,20,63,90], among many other references. The numerical
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efficiency of the BB method over the SD method has stimulated many studies on the gradient
method.

However, it is intriguing to provide theoretical evidence showing that the BB method
performs much better than the SD method for high-dimensional problems. One possible
angle is to relate the stepsize in the gradient method to the eigenvalues of the Hessian of the
function. To this aim, consider the unconstrained quadratic optimization problem (2.1). In
this case, by (2.1) and (2.2), we have that gkC1 D .I � ˛kA/gk for all k � 1. Then we see
that the gradient method with constant stepsizes (i.e., ˛k � ˛ for some ˛ > 0) is equivalent
to the shifted power method for computing some eigenvalue of the matrix A since

gkC1

kgkC1k
D

.I � ˛A/kg1

k.I � ˛A/kg1k
D

.A � ˛�1I /kg1

k.A � ˛�1I /kg1k
: (2.5)

For example, if ˛k �
1

2L
, where L is the gradient Lipschitz constant, which was one choice

in the early times [2], gkC1

kgkC1k
will tend to the eigenvector corresponding to the minimal

eigenvalue of A provided the initial gradient g1 has a nonzero component in this eigen-
vector. Another fact is the quadratic termination property of the gradient method, which was
exposed by Lai [54]. To see this, notice that gkC1 D

Qk
j D1.I � j̨A/g1 for k � 1. Then by the

Hamilton–Caley theorem, we have that gnC1 vanishes if the set of stepsizes ¹˛i W 1� i � nº

coincides with the set of inverse eigenvalues of A, ¹��1
i W 1 � i � nº. A natural corollary is

as follows.

Lemma 2.1. Consider the gradient method (2.2) for the unconstrained quadratic opti-
mization problem (2.1). Assume that the initial gradient g1 has nonzero components in
all eigenvectors of the matrix A. If the gradient method is R-superlinearly convergent,
then, for each eigenvalue �i .1 � i � n/ of A, there exists a subsequence ¹˛ki

º such that
limki !1 ˛ki

D ��1
i .

The above lemma provides us an insight about convergence properties of gradient
methods. From the proof of the R-superlinear convergence of the BB method in the two-
dimensional setting [3], it is easy to see that there do exist subsequences ¹˛k1

º and ¹˛k2
º

such that they converge to the two inverse eigenvalues of the Hessian, respectively. Dai and
Fletcher [19] observed this phenomenon for the BB method in the three-dimensional setting
as well and showed that the BB method is likely to beR-superlinearly convergent in this case.
It is also shown in [19] that the cyclic steepest descent method is likely to be R-superlinearly
convergent for n-dimensional convex quadratic functions provided that m �

nC1
2

, where m
is the cyclic time of the steepest descent stepsize.

Another significant addition to the gradient method is the Yuan stepsize [87], which
is such that, if the previous and later steps use SD stepsizes, the gradient method can give
the exact minimizer of a two-dimensional convex quadratic function. A variant of the Yuan
stepsize is given by Dai and Yuan [30] as

˛DY
k D

2

1

˛SD
k�1

C
1

˛SD
k

C

r�
1

˛SD
k�1

�
1

˛SD
k

�2

C
4kgkk2

.˛SD
k�1

kgk�1k/2

: (2.6)
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They also suggested the so-called Dai–Yuan gradient method (2.2) with

˛k D

8<:˛SD
k
; if mod(k,4) D 0; 1,

˛DY
k
; if mod(k,4) D 2; 3.

(2.7)

The Dai–Yuan gradient method is monotone since ˛DY
k

� ˛SD
k

. This is the first monotone
gradient method which can beat the BB nonmonotone gradient method for unconstrained
quadratic optimization.

A recent progress in the gradient method is provided by Huang et al. [51], who intro-
duced a new mechanism for the gradient method to achieve the two-dimensional quadratic
termination property. Given �1.k/; �2.k/ 2 ¹1; : : : ; kº and some suitable functions  1,  2,
 3,  4 satisfying  1.A/ 2.A/ D  3.A/ 4.A/, they suggested calculating the stepsize ˛k

by solving the following quadratic equation:

gT
�1.k/ 1.A/.I � ˛kA/gk � gT

�2.k/ 2.A/.I � ˛kA/gk

D gT
�1.k/ 3.A/.I � ˛kA/gk � gT

�2.k/ 4.A/.I � ˛kA/gk ; (2.8)

and proved that the gradient method using any stepsize obtained from (2.8) and ˛kC2 in the
form of .A�gkCi /T .A�gkCi /

.A�gkCi /T A.A�gkCi /
with i D 1 or 2 and � being some real number achieves the

two-dimensional quadratic termination property. Interestingly, the stepsize ˛DY
k

in (2.6) is a
solution of equation (2.8) corresponding to �1.k/ D k � 1, �2.k/ D k,  1.A/ D  4.A/ D

.I � ˛k�1A/
�1, and  2.A/ D  3.A/ D I .

To equip the BB method with the two-dimensional quadratic termination property,
Huang et al. [51] chose �1.k/ D k � 2, �2.k/ D k � 1,  1.A/ D .I � ˛k�2A/

�1,  2.A/ D

.I � ˛k�1A/
�1,  3.A/ D  1.A/ 2.A/, and  4.A/ D I . Then by (2.8), they obtained the

following novel stepsize:
˛HDL

k D
2

�2

�3
C

q�
�2

�3

�2
� 4�1

�3

; (2.9)

where
�1

�3

D
˛BB 2

k�1
� ˛BB 2

k

˛BB 2
k�1

˛BB 2
k

.˛BB 1
k�1

� ˛BB 1
k

/
;

�2

�3

D
˛BB 1

k�1
˛BB 2

k�1
� ˛BB 1

k
˛BB 2

k

˛BB 2
k�1

˛BB 2
k

.˛BB 1
k�1

� ˛BB 1
k

/
: (2.10)

It is observed in [51] that the use of the stepsize ˛HDL
k

can make both the BB1 and BB2
methods achieve the two-dimensional quadratic termination property. The computation of
˛HDL

k
only involves the BB stepsizes in the previous two iterations and does not require exact

line searches or the Hessian computation. Hence it can easily be extended for nonlinear
optimization.

Based on the new stepsize ˛HDL
k

and the general framework in [92], an efficient gra-
dient method for solving unconstrained optimization problem (2.1) is suggested in [51]. In
particular, the method uses ˛1 D ˛SD

1 , ˛2 D ˛BB 1
2 , and, for k � 3,

˛k D

8<: min
®
˛BB 2

k�1
; ˛BB 2

k
; ˛HDL

k

¯
; if ˛BB 2

k
=˛BB 1

k
< �k ,

˛BB 1
k

; otherwise,
(2.11)
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where �k > 0 is chosen in some way. The method (2.11) appears to be much better than
BB, Dai–Yuan, and some other recent gradient methods. With the projection technique, the
method (2.11) was also extended in [51] to unconstrained optimization, box-constrained opti-
mization, and singly linearly box-constrained optimization, and good numerical results were
obtained.

There are still many questions about the gradient method to be investigated. Is it
possible to provide more theoretical evidence showing the efficiency of the BB method for
high-dimensional functions? What is the best choice of the stepsize in the gradient method?
How to extend the existing efficient gradient methods to many other areas?

2.2. Conjugate gradient methods
Conjugate gradient methods are a class of important methods for solving (1.1). They

are of the form
xkC1 D xk C ˛kdk ; (2.12)

where ˛k is the stepsize obtained by a line search and dk is the search direction given by

dk D �gk C ˇkdk�1; (2.13)

except for d1 D �g1. The scalar ˇk is the so-called conjugate gradient parameter such that
the method (2.12)–(2.13) reduces to the linear conjugate gradient method if the objective
function is quadratic and the line search is exact.

For nonlinear functions, however, different formulae for the parameter ˇk result
in different conjugate gradient methods and their properties can be significantly different.
To distinguish the linear conjugate gradient method, sometimes we call the conjugate gra-
dient method for unconstrained optimization as the nonlinear conjugate gradient method.
The work of Fletcher and Reeves [39] not only opened the door to the nonlinear conju-
gate gradient field but also greatly stimulated the study of nonlinear optimization. Four
well-known formulae for ˇk are called the Fletcher–Reeves (FR) [39], Dai–Yuan (DY) [27],
Polak–Ribière–Polyak (PRP) [67,68], and Hestenes–Stiefel (HS) [50], which are given by

ˇFR
k D

kgkk
2

kgk�1k
2
; ˇDY

k D
kgkk

2

dT
k�1

yk�1

;

ˇPRP
k D

gT
k
yk�1

kgk�1k
2
; ˇHS

k D
gT

k
yk�1

dT
k�1

yk�1

;

(2.14)

respectively, where yk�1 D gk � gk�1 as before.
Since the exact line search is usually expensive and impractical, the strong Wolfe line

search is often considered in the early convergence analysis and numerical implementation
for nonlinear conjugate gradient methods. The strong Wolfe line search aims to find a stepsize
˛k > 0 satisfying

f .xk C ˛kdk/ � f .xk/C ı˛kg
T
k dk ; (2.15)ˇ̌

g.xk C ˛kdk/
T dk

ˇ̌
� ��gT

k dk ; (2.16)
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where 0< ı < � < 1. However, it was shown in [28] that even with strong Wolfe line searches,
none of the FR, PRP, and HS methods can ensure the descent property of the search direction
if the parameter � is not properly chosen. If a descent search direction is not produced, a
practical remedy is to restart the method along �gk . This may degrade the efficiency of the
method since the second-derivative information achieved along the previous search direction
is discarded.

It is known that quasi-Newton methods often use the standard Wolfe line search,
which aims to find a stepsize ˛k > 0 satisfying (2.15) and

g.xk C ˛kdk/
T dk � �gT

k dk ; (2.17)

where 0< ı < � < 1. Dai and Yuan [27] were able to establish the descent property and global
convergence of the DY method with the standard Wolfe line search under weak assumptions
on the objective function.

Assumption 2.1. (i) The level set L D ¹x 2 <n W f .x/ � f .x1/º is bounded, where x1 is
the starting point; (ii) f is continuously differentiable in some neighborhood of L and its
gradient is Lipschitz continuous.

Theorem 2.1 ([27]). Suppose that f satisfies Assumption 2.1. Consider the sequence ¹xkº

generated by the DY method (2.12)–(2.13) with ˇk D ˇDY
k

and the standard Wolfe line
search (2.15) and (2.17). Assume that kgkk ¤ 0 for all k. Then we have that gT

k
dk < 0

for all k. Furthermore, the DY method converges in the sense that lim infk!C1 kgkk D 0.

It is noted in [27] that the DY formula can be rewritten as ˇDY
k

D
gT

k
dk

gT
k�1

dk�1
. It is

remarkable that the DY method has a certain self-adjusting property that is independent
of the line search and the function convexity. The DY direction can also be used to restart
optimization methods while guaranteeing the global convergence of the method (see [28]).
Interestingly enough, Dai [16] provided another nonlinear conjugate gradient method which
can ensure the descent property of the search direction without any line searches.

The following theorems provide general convergence results for nonlinear conju-
gate gradient methods with the strong Wolfe line search and the standard Wolfe line search,
respectively. The results are very useful in the convergence analysis of various nonlinear
conjugate gradient methods.

Theorem 2.2 ([21]). Suppose that Assumption 2.1 holds. Consider any method of the form
(2.12)–(2.13) with dk satisfying gT

k
dk < 0 and with the strong Wolfe line search (2.15)

and (2.16). Then the method is globally convergent in the sense that lim infk!C1 kgkk D 0

if
P

k�1 kdkk
�2

D C1.

Theorem 2.3 ([17]). Suppose that Assumption 2.1 holds. Consider any method of the form
(2.12)–(2.13) with dk satisfying gT

k
dk < 0 and with the standard Wolfe line search (2.15)

and (2.17). Then the method is globally convergent in the sense that lim infk!C1 kgkk D 0

if the scalar ˇk is such that
P

k�1

Qk
j D2 ˇ

�2
j D C1:
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Powell [71] found that the PRP method can automatically generate a search direction
close to the steepest descent direction once a small step occurs, whereas the FR method
may produce many tiny steps continuously. This explains why the PRP method sometimes
performs much better than the FR method in practice. Nevertheless, Powell [71] showed that,
even with exact line searches, the PRP method can cycle indefinitely without approaching
a stationary point. To change this unbalanced state, Touati-Ahmed and Storey [79] proposed
the hybrid conjugate gradient method, where

ˇFRPRP
k D max

®
0;min

®
ˇPRP

k ; ˇFR
k

¯¯
: (2.18)

Gilbert and Nocedal [42] modified the PRP method by setting

ˇPRPC

k
D max

²
gT

k
yk�1

kgk�1k
2
; 0

³
: (2.19)

They established the global convergence results for the FRPRP and PRP+ methods, but found
that the two methods are not significantly more efficient than the PRP method itself. Never-
theless, Dai and Yuan [29] were able to extend the convergence theorem of the DY method,
Theorem 2.1, to the following hybrid conjugate gradient method:

ˇDYHS
k D max

®
0;min

®
ˇHS

k ; ˇDY
k

¯¯
; (2.20)

and found that the DYHS method with the standard Wolfe line search performs much better
than the PRP method using the strong Wolfe line search.

Since yk�1 D Ask�1 D ˛k�1Adk�1 in case of unconstrained quadratic optimiza-
tion, an equivalent expression of the conjugacy condition dT

k
Adk�1 D 0 is dT

k
yk�1 D 0. For

general functions, however, we have for quasi-Newton methods that dk D �B�1
k
gk , where

the approximation matrix Bk satisfies the quasi-Newton equation Bksk�1 D yk�1. This
hints us at the nonlinear conjugate gradient condition dT

k
yk�1 D .�B�1

k
gk/

T .Bksk�1/ D

�gT
k
sk�1. By introducing a scaling factor t , Dai and Liao [24] considered a nonlinear con-

jugacy condition dT
k
yk�1 D �tgT

k
sk�1 and proposed the following family for conjugate

gradient methods:
ˇDL

k .t/ D
gkyk�1

dT
k�1

yk�1

� t
gksk�1

dT
k�1

yk�1

: (2.21)

Although the descent property of the search direction is sufficient for establishing
the convergence results, efficient conjugate gradient methods have been proposed such that
the sufficient descent condition

gT
k dk � �ckgkk

2 (2.22)

holds for some constant c > 0 and all k � 1. Specifically, Hager and Zhang [46] proposed a
family of conjugate gradient methods, where

ˇHZ
kC1 D

gT
kC1

yk

dT
k
yk

� �k

kykk
2

dT
k
yk

gT
kC1

dk

dT
k
yk

; (2.23)

with �k > N� > 1
4
, and they preferred the choice �k D 2. By introducing a suitable truncation

of ˇk and the approximate Wolfe line search, they built a conjugate gradient software, called
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CG_DESCENT [47], which performs better than PRP+ of Gilbert and Nocedal. By observing
that the loss of orthogonality in the sequence of gradients caused by numerical error might
slow down the convergence of conjugate gradient methods, Hager and Zhang [48] updated
CG_ DESCENT to Version 6.8 by combining the limited memory technique.

By projecting the search direction of the self-scaling memoryless BFGS method,
which was proposed by Perry [66] and Shanno [77], into the one-dimensional manifold �k D

Span¹�gk C ˇdk�1º, Dai and Kou [22] proposed a family of conjugate gradient methods,
where

ˇk.�k/ D
gT

k
yk�1

dT
k�1

yk�1

�

²
�k�1 C

kyk�1k
2

sT
k�1

yk�1

�
sT

k�1
yk�1

ksk�1k
2

³
gT

k
sk�1

dT
k�1

yk�1

: (2.24)

Then by choosing �k�1 D
sT

k�1
yk�1

ksk�1k
2 , they recommended the formula

ˇDK
k D

gT
k
yk�1

dT
k�1

yk�1

�
kyk�1k

2

sT
k�1

yk�1

gT
k
sk�1

dT
k�1

yk�1

; (2.25)

which is such that the sufficient descent condition (2.22) holds with c D
3
4
. The software

CGOPT was then developed in [22] based on the Dai–Kou method and an improved Wolfe
line search. Furthermore, CGOPT was updated in [60] to Version 2.0, which consists of
standard CG iterations and subspace iterations and is a strong competitor of CG_DESCENT.

Despite significant progresses, we feel there is still much more room to seek for
the best nonlinear conjugate gradient algorithms. For example, Yuan and Stoer [88] first
presented the subspace minimization conjugate gradient method by determining the search
direction via the subproblem min¹gT

k
d C

1
2
dTBkd W d 2 Span¹gk ; dk�1ºº. Following this

line, Dai and Kou [23] approximated the term gT
k
Bkgk by 3

2
kyk�1k

2

sT
k�1

yk�1
kgkk2 and presented an

efficient Barzilai–Borwein conjugate gradient method.

3. Constrained optimization

An intuitive way to deal with constrained optimization problems is to transform
them into unconstrained optimization problems via penalty functions or indicator functions.
Nowadays, there are many classes of numerical methods and software for constrained opti-
mization; see, e.g., [65, 89]. Sequential quadratic programming methods and interior-point
methods are two classes of very efficient numerical methods for constrained optimization
among many others. In addition, augmented Lagrangian methods of multipliers also received
a lot of attention since they form the base of alternating direction method of multipliers (see
[5]), which can deal with large-scale structured problems. In this section, we shall briefly
review some of our recent contributions to the three classes of methods.

3.1. Sequential quadratic programming methods
The sequential quadratic programming (SQP) method, also called Wilson–Han–

Powell method, is one of the most effective methods for constrained optimization and can
be viewed as a natural extension of Newton and quasi-Newton methods. Its basic idea is
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to transform the original problem into a sequence of quadratic program (QP) subproblems.
After solving each QP subproblem, we wish the full SQP-step to be a superlinearly con-
vergent step; by combining some criterion, we evaluate whether to accept this full step and
introduce some remedy if necessary. Based on the used criterion, SQP methods can roughly
be classified into two categories. One is penalty-type methods, whose main feature is to
use some penalty function. The other is penalty-free methods, which do not use any penalty
parameters, e.g., filter methods [37], the methods without any penalty function or a filter [44].

However, two possible difficulties may arise in SQP methods. One is that the QP
subproblem may be inconsistent. The other is how to avoid the Maratos effect [61] since
the full SQP-step may lead to an increase in both the objective function and the constraint
violation even when the iteration is arbitrarily close to a regular minimizer.

Various techniques are available for dealing with inconsistency of the QP subprob-
lem. Early such works include the scaling technique by Powell [70] and the Sl1QP method
by Fletcher [35]. Spellucct [78] introduced some slack variables for dealing with inconsistent
subproblems. Liu and Yuan [58] provided a robust SQP method by solving an unconstrained
piecewise quadratic subproblem and a QP subproblem at each iteration. Fabien [34] solved
a relaxed, strictly convex, QP subproblem if the constraints are inconsistent.

For the Maratos effect, Chen et al. [13] gave the following formal definition.

Definition 3.1. Let x� and v.kc.x/k/ be a solution and a measurement of the constraint vio-
lation of (1.2)–(1.4), respectively. Given a sequence ¹xkº which converges to x� and a se-
quence of full SQP-steps ¹dkº, we say that the Maratos effect happens if (i) limk!C1 kxk C

dk � x�k=kxk � x�k D 0; (ii) f .xk C dk/ > f .xk/ and v.kc.xk C dk/k/ > v.kc.xk/k/.

When the Maratos effect happens, the full SQP-step may not be accepted since it
makes both the objective function and the constraint violation worse. In fact, in this case, we
see that the pair .kh.xk/k; f .xk// dominates the pair .kh.xk C dk/k, f .xk C dk// even if
xk C dk is much closer to x� than xk and hence xk C dk will not be accepted by the filter
method initially proposed by Fletcher and Leyffer [37]. This is also the case for many other
globally convergent penalty-type and penalty-free-type algorithms. For example, if l1 and
l1 exact penalty functions are used, the full trial step dk will be rejected as well since the
value f .x/C �kh.x/kp (� > 0, p D 1;1) becomes worse.

Several approaches have been proposed for avoiding the Maratos effect, including
nonmonotone line search strategies [11], second order correction step [41, 62], and the use
of differentiable exact penalty functions [72]. The computation of second-order correction
steps may be cumbersome, and the nonmonotone framework will complicate the algorithmic
implementation. Another approach of avoiding the Maratos effect is to utilize the Lagrangian
function value instead of the objective function value. Such an idea can be found in Ulbrich
[80], who proposed a trust-region filter-SQP method by introducing the Lagrangian function
value in the filter.

For efficiency evidence of using the Lagrangian function value in avoiding the
Maratos effect, Chen et al. [13] provided the following basic result (for simplicity, it is
assumed that mI D 0).
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Theorem 3.1. Suppose that .x�; ��/ is a KKT pair of problem (1.2)–(1.3), at which the
second-order sufficient conditions and the linear independence constraint qualification hold.
Assume that v.kh.x/k/ is a measurement of constraint violation of the problem, �.x/ is a
Lipschitz continuous multipliers function, and Pk.Bk � r2

xxL.xk ; �.xk///dk D o.kdkk/,
where ¹xkº converges to x�, Bk is the approximation of r2

xxL.xk ; �.xk// in the QP sub-
problem, Pk is an orthogonal projection matrix from Rn to the null space of AT

k
, and dk

is the full SQP-step. If v.kh.xk C dk/k/ > v.kh.xk/k/, then there must exist some constant
b0 > 0 such that L.xk C dk ; �.xk C dk// � L.xk ; �.xk// � b0kdkk2.

The above theorem indicates that, when the Maratos effect happens, there must be
a sufficient decrease in the Lagrangian function. Thus we see that the Lagrangian function
value can play an important role. In this case, we can prove that Fletcher’s differentiable
exact penalty function is decreasing as well.

Furthermore, Chen et al. [12] proposed a penalty-free trust-region method with the
Lagrangian function value without using feasibility restoration phase. Chen et al. [13] pre-
sented a line search penalty-free SQP method for equality constrained optimization with
the Lagrangian function value. Thus with the use of the Lagrangian function value, one
would expect SQP methods to control possible erratic behavior in a better manner and share
the rapid convergence of Newton-like methods. More researches are required on the use of
Lagrangian function value in SQP methods for general nonlinear optimization.

3.2. Interior-point methods
Interior-point methods have been among the most efficient methods for continuous

optimization, see, e.g., Ye [84], Byrd et al. [8], Vanderbei and Shanno [81], Wächter and
Biegler [83], Liu and Yuan [59], Curtis [15], and Gould et al. [43]. These methods are iterative
and require every iterate to be an interior point. The numerical efficiency and polynomial
computational complexity of interior-point methods for linear programming made a lot of
researchers to be interested again in interior-point methods for nonlinear optimization.

However, Wächter and Biegler [82] noticed that many line-search interior-point
methods for nonlinear optimization may fail to find a feasible point of a single-variable
nonlinear and nonconvex problem, even though the problem is well posed. In addition, the
algorithmic framework of interior-point methods for nonlinear optimization often includes
an inner-loop and an outer-loop, in which the inner-loop finds an approximate solution of
a logarithmic barrier subproblem and the outer-loop focuses on the update of the barrier
parameter. This framework is distinct from that of interior-point methods for linear pro-
gramming (which reduces the barrier parameter at each iteration) and is believed to be
ineffective sometimes.

Below we shall describe a primal–dual interior-point relaxation method with nice
properties. The method was recently introduced in [56].

In order to avoid requiring feasible interior-point iterates, traditional interior-point
methods for problem (1.2)–(1.4) introduce slack variables for inequality constraints and solve
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the logarithmic barrier subproblem

min f .x/ � �

mIX
iD1

ln zi (3.1)

such that h.x/ D 0; (3.2)

g.x/ � z D 0; (3.3)

where � > 0 is a barrier parameter and zi > 0 is the i th component of z.
Noting that the subproblem (3.1)–(3.3) is an equality constrained optimization prob-

lem, we reformulate it as another constrained optimization by using the Hestenes–Powell
augmented Lagrangian:

min
x;z

f .x/ � �

mIX
iD1

ln zi � vT
�
g.x/ � z

�
C
1

2
�
�
g.x/ � z

�2 (3.4)

such that h.x/ D 0; (3.5)

where v 2 <mI is an estimate of the Lagrange multipliers associated with the original
inequality constraints, � > 0 is a barrier parameter, and � > 0 is a penalty parameter. Since
the objective function in (3.4) is strictly convex with respect to z, the unique minimizer of z
can be derived with the expression

zi D
1

2�

�q�
vi � �gi .x/

�2
C 4�� �

�
vi � �gi .x/

��
; i D 1; : : : ; mI : (3.6)

The preceding expression depends on the primal variable vector x and the dual variable
vector v, thus can be taken as a function of .x; v/. For simplicity, corresponding to (3.6),
denote

yi D
1

2�

�q�
vi � �gi .x/

�2
C 4��C

�
vi � �gi .x/

��
; i D 1; : : : ; mI : (3.7)

Substituting (3.6) for z in the objective function in (3.4) and maximizing the derived function
with respect to v, since it is a strictly concave function of v, the subproblem (3.4)–(3.5) can
be reformulated as

min
x

max
v

f .x/ � �

mIX
iD1

ln zi C
1

2
�kyk

2
�
1

2�
kvk

2 (3.8)

such that h.x/ D 0; (3.9)

where both z and y are real-valued functions of x 2 <n and v 2 <mI defined by (3.6)
and (3.7).

Although the subproblem (3.8)–(3.9) is originated from the logarithmic barrier sub-
problem (3.1)–(3.3), it is different from the latter in that zi is not a primal variable but a
positive function of primal and dual variables. Thus, the requirement that the primal and
dual iterates are interior-points is relieved. Our primal–dual interior-point relaxation method
is proposed to solve the subproblem (3.8)–(3.9) approximately. In particular, the barrier and
penalty parameters are updated adaptively during the iterative process.
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We firstly describe the relation between the logarithmic barrier subproblem (3.1)–
(3.3) and its augmented Lagrangian reformulation (3.8)–(3.9).

Theorem 3.2 ([56]). Suppose�> 0 and � > 0. Then .x�; v�/ 2 <n � <mI is a local solution
of the constrained minimax problem (3.8)–(3.9) if and only if x� is a local solution of the
logarithmic-barrier subproblem (3.1)–(3.3) and gi .x

�/ > 0, v�
i D �=gi .x

�/ for all i D

1; : : : ; mI .

Then we show the relation between the original problem (1.2)–(1.4) and the aug-
mented Lagrangian reformulation (3.8)–(3.9).

Theorem 3.3 ([56]). Given � > 0. Let z be defined by (3.6). The point .x�; u�; v�/ is a KKT
triple of the original problem (1.2)–(1.4) if and only if .x�; u�; v�/ and �� satisfy the system

� D 0; (3.10)

rf .x/ � rh.x/u � rg.x/v D 0; (3.11)

h.x/ D 0; (3.12)

g.x/ � z D 0: (3.13)

It should be noted that equations (3.11)–(3.13) are the KKT conditions of the sub-
problem (3.8)–(3.9). Moreover, for all � > 0 and i D 1; : : : ; mI , both zi and yi are twice
continuously differentiable with respect to x and v. Thus the subproblem (3.8)–(3.9) can
be thought as a smoothing problem of the original problem (1.2)–(1.4) in the sense that the
system (3.11)–(3.13) is a smoothing system of the KKT conditions of the original prob-
lem. Letting the merit function �.�;�/.x; u; v/ be the square of l2 residuals of the system
(3.11)–(3.13), the preceding system (3.10)–(3.13) can be further reformulated as the system

�C �.�;�/.x; u; v/ D 0; (3.14)

rf .x/ � rh.x/u � rg.x/v D 0; (3.15)

h.x/ D 0; (3.16)

g.x/ � z D 0; (3.17)

where  2 .0; 1/ is a scalar. The two systems (3.10)–(3.13) and (3.14)–(3.17) are equivalent,
but the connection between the parameter� and the KKT residual �.�;�/.x;u;v/ is enhanced
in (3.14) which requires that � vanishes with �.�;�/.x; u; v/.

Then by sequentially solving the linearized system of the system (3.14)–(3.17) and
using the merit function �.�;�/.x; u; v/, an efficient primal–dual interior-point relaxation
method was provided in [55]. Under suitable assumptions, the new method is proved to have
strong global convergence and rapid local convergence [55,56]. In particular, [26] shows that
some variant of this method is capable of rapidly detecting the infeasibility of nonlinear
optimization. Numerical experiments demonstrate that the new method not only is efficient
for well-posed feasible problems, but also is applicable for some feasible problems without
LICQ or MFCQ and some infeasible problems.

The new method is robust in the following three aspects. Firstly, the new method
does not require any primal or dual iterate to be an interior-point but prompts the iterate to
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be an interior-point, which is quite different from most of the globally convergent interior-
point methods in the literature. Secondly, the new method uses a single-loop framework and
updates the barrier parameter adaptively, which is similar to that of interior-point methods for
linear programming. Thirdly, the new method has strong global convergence and is capable
of rapidly detecting the infeasibility.

For convex and linear programming, our primal–dual interior point relaxation
method provides an intermediate approach between the simplex method and the interior-
point method. In addition, we admit the components of g.x/ and v to be zero during the
iterative process and thus � can be zero when the solution is obtained. Based on these obser-
vations, we may expect our relaxation method to give a solution with high accuracy and
to avoid the ill-conditioning phenomenon of interior-point methods, and improve the per-
formance of interior-point methods for large scale problems. Some future topics include its
extension for nonlinear semidefinite programming and its complexity when applied for linear
programming. An efficient extension of the method has been given for convex quadratic pro-
gramming [91]. More researches and software-building are expected to go along this line.

3.3. Augmented Lagrangian method of multipliers
The augmented Lagrangian method of multipliers (ALM) was initially proposed

by Hestenes [49] and Powell [69] for solving nonlinear optimization with only equality con-
straints. The ALM minimizes the Hestenes–Powell augmented Lagrangian approximately
and circularly with update of multipliers and has been attracting extensive attention in the
community. It was generalized by Rockafellar [76] to solve optimization problems with
inequality constraints. Many ALMs have been proposed for various optimization problems.

Consider the general nonlinear optimization problem (1.2)–(1.4). By introducing
some slack variables zi .i D 1; : : : ;mI / for the inequality constraints, the problem can equiv-
alently be transformed to that with general equality constraints and nonnegative constraints

min f .x/ (3.18)

such that h.x/ D 0; (3.19)

g.x/ � z D 0; (3.20)

z � 0: (3.21)

Using the augmented Lagrangian on equality constraints, problem (3.18)–(3.21) is reformu-
lated as a nonlinear program with only nonnegative constraints:

min
x;z

f .x/ � uT h.x/ � vT
�
g.x/ � z

�
C
1

2
�
�h.x/2

C
g.x/ � z

2�
(3.22)

such that z � 0; (3.23)

where u 2 <mE and v 2 <mI are the estimates of Lagrange multipliers and � > 0 is the
penalty parameter. Thanks to the strict convexity of the objective function with respect to z,
we may explicitly get the optimal z, yielding an equivalent unconstrained optimization sub-

5303 An overview of nonlinear optimization



problem of (3.22)–(3.23),

min
x

f .x/ � uT h.x/C
1

2
�
h.x/2

C

mIX
iD1

�
�
gi .x/; vi I �

�
; (3.24)

where �.gi .x/; vi I �/ equals to �vigi .x/ C
1
2
�gi .x/

2 if gi .x/ � vi=� and �
1
2
v2

i =� oth-
erwise. Unfortunately, the function � in (3.24) is in general discontinuous in the second
derivative with respect to x. Some other unconstrained reformulation is based on the opti-
mization (3.4)–(3.5) in the form

min
x;z

f .x/ � �

mIX
iD1

ln zi � uT h.x/C
1

2
�
h.x/2

� vT
�
g.x/ � z

�
C
1

2
�
�
g.x/ � z

�2
;

(3.25)
where both x and z are primal variables, u and v are dual estimates, and z should be an
interior-point.

Originated from solving the augmented Lagrangian reformulation of problem (3.8)–
(3.9), the new ALM, proposed by Liu et al. [57], solves the following problem approximately
and circularly with update of multipliers u and v:

min
x

f .x/ � uT h.x/C
1

2
�
h.x/2

C

mIX
iD1

 
�
gi .x/; vi I�; �

�
; (3.26)

where  .gi .x/; vi I�; �/ D �� ln zi C
1
2
�y2

i �
1

2�
v2

i and zi and yi are defined by (3.6) and
(3.7). A detailed description of the new ALM is given in Algorithm 1. It is a generalization of
the classical Hestenes–Powell augmented Lagrangian and a combination of the augmented
Lagrangian and the interior-point technique.

Algorithm 1: A new ALM for problem (1.2)–(1.4) [57]

1 Given .x0; u0; v0/, and �0, �0. Let k WD 0.

2 while �k > � or �.�k ;�k/.xk ; uk ; vk/ > � do

3 Compute xkC1 to be an approximate solution of problem (3.26) with the
initial point xk .

4 Update uk by ukC1 D uk � �kh.xk/.

5 Update vk by vkC1 D �ky.xkC1; vk I�k ; �k/.

6 Update �kC1 � 2�k if kz.xkC1; vkC1I�k ; �k/ � c.xkC1/k is not small.

7 Update �kC1 � 0:5�k if kz.xkC1; vkC1I�k ; �k/ � c.xkC1/k is small.

8 Let k WD k C 1.
9 end

Liu et al. [57] proved that the new ALM is of strong global convergence, rapid infea-
sibility detection, and shares the same convergence rate to the KKT point as the Hestenes–
Powell augmented Lagrangian for optimization with equality constraints.
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Although the subproblem (3.26) is similar to the augmented Lagrangian counter-
part (3.24) and the interior-point counterpart (3.25) in appearance that all of them are uncon-
strained optimization and first-order smooth, but it is essentially distinct from the latter two
subproblems in the following aspects.

Firstly, the function  in (3.26) has one more parameter � than � in (3.24) and is
always twice continuously differentiable with respect to x provided g is twice continuously
differentiable and v holds fixed, while � in (3.24) has discontinuous second derivative with
respect to x. The problem (3.25) has the same property with (3.26). Secondly, the subprob-
lems (3.24) and (3.26) are convex if the original problem (1.2)–(1.4) is convex, while the
subproblem (3.25) can be nonconvex even though the original problem is convex. Thirdly,
unlike subproblem (3.25), the subproblems (3.24) and (3.26) do not require any primal or
dual variable to be positive. Moreover,  .gi .x/; vi I�; �/ is well defined for every x 2 <n

and v 2 <mI , while (3.25) requests z > 0 and v > 0.
To summarize, the new ALM can deal with optimization problems with inequality

constraints and shares the same convergence rate to the KKT point as the Hestenes–Powell
augmented Lagrangian for optimization problems with equality constraints. As the new
ALM has nice properties, more researches are expected along this line.

4. Optimization with least constraint violation

The theory and algorithms for constrained optimization usually assume the fea-
sibility of the optimization problem. If the constraints are inconsistent, several numerical
algorithms have been proposed to find infeasible stationary points, which have nothing to do
with the objective function; see, e.g., Byrd et al. [7], Burke et al. [6], and Dai et al. [26]. How-
ever, there are important optimization problems, which may be either feasible or infeasible
and whose objective function is wished to be minimized with the least constraint violation
even if they are infeasible. A typical example comes from rocket trajectory optimal control,
where the fuel is minimized with the aim of landing at a target point and subjected to other
constraints. If landing at the target is not possible, we might wish to minimize the distance
between the real landing point and the target and thereafter optimize the required fuel. Hence
we are led to optimization problems with least constraint violation.

For optimization with possible inconsistent constraints, we prove that the minimiza-
tion problem with least constraint violation is equivalent to a Lipschitz equality constrained
optimization problem. To this aim, consider the nonlinear optimization problem

min f .x/

such that Ax D b;

gi .x/ � 0; i D 1; : : : ; p;

(4.1)
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where f W <n ! < is smooth and gi .i D 1; : : : ; p/ are differentiable concave functions. In
this case, the optimization problem with the least constraint violation can be expressed as

min f .x/

such that AT .Ax � b/C Jg.x/T
�
g.x/

�
�

D 0:
(4.2)

Define H.x; y/ D ATA �
Pp

j D1 yj r2gj .x/. For y� D Œ�g.x�/�C and z� D Œg.x�/�C,
define ˛� D ¹i W y�

i > 0º, ˇ� D ¹i W y�
i D z�

i D 0º, � D ¹i W z�
i > 0º. Then we are

able to give an elegant necessary optimality condition from the classical optimality theory
of Lipschitz continuous optimization.

Theorem 4.1 ([31]). Let .x�; y�/ be a local minimizer of problem (4.2). Suppose that the
matrixH.x�; y�/C Jg˛�.x�/T Jg˛�.x�/ is positive definite. Then there exist �� 2 <n and
Œvb�ˇ� 2 <jˇ�j satisfying Œvb�i 2 Œ0; 1�, i 2 ˇ� such that

rf .x�/C
�
H.x�; y�/C Jg˛�.x�/T Jg˛�.x�/

C Jgˇ�.x�/T Diag
�
Œvb�ˇ�

�
Jgˇ�.x�/

�
��

D 0: (4.3)
Dai and Zhang [31] found that the penalty method can be used for solving opti-

mization problems with least constraint violation. Chiche and Gilbert [14] proved that the
augmented Lagrangian method of multipliers (ALM) can deal with an infeasible convex
quadratic optimization problem. Is the ALM still valid for general convex optimization with
the least constraint violation?

To this aim, consider the following convex constrained optimization problem:

.P/
min f .x/

such that g.x/ 2 K;
(4.4)

where f W <n ! <, g W <n ! Y, K � Y is a nonempty closed convex set, and Y is a finite-
dimensional Hilbert space. We analyze the dual of the problem with the least constraint
violation. By introducing a vector y 2 Y, problem (4.4) is equivalently expressed as

min f .x/

such that g.x/ D y;

y 2 K:

(4.5)

For a given s 2 Y, the shifted problem is defined as

P.s/
min f .x/

such that g.x/C s 2 K:
(4.6)

Here we call s a shift. The set of feasible shifts, denoted as � , is defined by

� WD
®
s 2 Y W there exists some x 2 <

n such that g.x/C s 2 K
¯
: (4.7)

Define the smallest norm shift by Ns D arg min¹
1
2
ksk2 W s 2 �º. If � is closed, then Ns can be

achieved, i.e., Ns 2 � . In this case, the optimization problem with the least constraint violation
is expressed as follows:

P.Ns/
min f .x/

such that g.x/C Ns 2 K:
(4.8)
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Now we shall present the properties of the ALM for problem (4.5), which was pro-
vided by Dai and Zhang [32]. The Lagrangian of problem (4.5), denoted by l , is defined by
l.x; y; �/ D f .x/C �T .g.x/ � y/. The augmented Lagrangian function of problem (4.5),
denoted by lr , is defined by

lr .x; y; �/ D f .x/C �T
�
g.x/ � y

�
C
r

2

g.x/ � y
2
: (4.9)

The dual function � W Y ! < associated with problem (4.5) is

�.�/ WD � inf
x2<n;y2K

l.x; y; �/: (4.10)

Denote by D and D.s/ the conjugate dual problems of P and P.s/, respectively. Then prob-
lems D and D.s/ are expressed as follows:

.D/ max
�

�
��.�/

�
;

�
D.s/

�
max

�

�
sT � � �.�/

�
: (4.11)

The following proposition reveals that the solution set of the dual problem, if nonempty, is
unbounded when Ns ¤ 0.

Proposition 4.1 ([32]). Assume that Ns ¤ 0, val P.Ns/ 2 <, � is lower semicontinuous at Ns and
Sol D.Ns/ ¤ ;. Then Sol D.Ns/ is unbounded with �Ns 2 ŒSol D.Ns/�1.

For the sequence ¹.xk ; yk ; �k/º generated by the ALM for solving problem (4.5),
defining sk D yk � g.xk/, we are able to prove the following theorem.

Theorem 4.2 ([32]). Assume that Ns ¤ 0, val P.Ns/ 2 <, � is lower semicontinuous at Ns and
Sol D.Ns/ ¤ ;. Assume also that ¹rkº has a positive lower bound and ¹.xk ; yk/º has an
accumulation point. Then we have that (i) sk ! Ns; (ii) ¹�kº diverges; (iii) for every " > 0,
there exists an index k large enough such that .xk ; yk/ satisfies "-approximate optimality
conditions of problem P.Ns/ in terms of the augmented Lagrangian.

The above theorem shows that the ALM can deal with convex optimization with
least constraint violation. Studies on the theory and algorithms for optimization with least
constraint violation are clearly required.

5. Some discussions

Due to limited space, this article only reviewed some numerical methods for general
nonlinear optimization. An early good review on unconstrained optimization is given by
Nocedal [64], where two open questions about quasi-Newton methods were summarized.
One is whether the DFP method with the Wolfe line search converges for uniformly convex
functions. The other is whether the BFGS method with the Wolfe line search converges for
general nonlinear functions. A negative answer of the second open question has been known
(see, e.g., Dai [18]). Although Yuan [86] made a significant progress on the first open question,
we do not know its answer, yet. The infimum of the Q-order of the convergence of quasi-
Newton methods is only one [85]. The work of Rodomanov and Nesterov [75] stimulated
research interests on this topic again.
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Previous studies for constrained optimization usually assumed the feasibility of the
optimization problem. This article described optimality conditions for optimization with
least constraint violation and the ability of the ALM method to deal with such a problem.
Independently of the work [31], Censor et al. [10] proposed a data-compatibility approach for
the problem and presented some theoretical analysis. However, more researches are clearly
required along this line.

The development of nonlinear optimization influences many research directions in
optimization such as matrix optimization, sparse optimization, and nonsmooth optimiza-
tion. There is still much to do in extending nonlinear optimization methods for minimax
optimization, which arises from both modern machine learning and tradition research areas.
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Abstract

In recent years, important progresses have been made in the control theory for stochastic
distributed parameter control systems (SDPSs for short). However, the theory is far from
being complete. The primary difficulty is that many effective tools and methods for deter-
ministic distributed parameter control systems and stochastic finite-dimensional control
systems do not work anymore for SDPSs. One has to develop new mathematical tools,
such as stochastic transposition method and stochastic Carleman estimate, even for some
very simple SDPSs. The objectives of this paper are to provide some new results, to show
some new phenomena, to explain the new difficulties, and to present some new methods
for the control theory of SDPSs. We mainly focus on our works for the controllability for
stochastic hyperbolic equations, and the Pontryagin-type maximum principle for controlled
stochastic evolution equations. At last, a number of open questions and future directions of
research are given.
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1. Introduction

Control theory was founded by N. Wiener in 1948. It is an interdiscipline among
mathematics, engineering, and computer science. The early works in this field were mainly
concerned with deterministic finite-dimensional control systems. Motivated by applica-
tions, numerous mathematicians and engineers put great effort to study control theory for
more complex systems, such as distributed parameter control systems (typically governed
by partial differential equations), stochastic finite-dimensional control systems (governed
by stochastic differential equations), and SDPSs (typically governed by stochastic partial
differential equations, SPDEs for short). These studies provide a rich source of complex
mathematical problems, which have fundamental impact on the development of many areas
in mathematics.

It is very surprising that the control theory for SDPSs is still in its infancy though
it has been studied for around 60 years. Compared with other directions in mathematical
control theory (including control theory for deterministic and stochastic finite-dimensional
systems and that for distributed parameter systems), many aspects of control theory for
SDPSs are much less understood or even still unknown. Nevertheless, one cannot, by no
means, ignore its importance. On the one hand, the world is full of uncertainties. They enter
the system through noise in sensing/actuation, external disturbances affecting the underly-
ing system, and uncertain dynamics in the system (parameter errors, unmodeled effects, etc.).
For lots of significant physical and biological systems, these uncertainties cannot be ignored,
and the systems should be governed by SPDEs (e.g., [19]). This leads to a major requirement
for the study of the control theory of SDPSs (e.g., [11, 21, 41]). On the other hand, control
theory for deterministic finite-dimensional control systems is relatively mature now, and
there is a huge list of publications for distributed parameter control systems and stochas-
tic finite-dimensional control systems. The study of SDPSs is a natural development of the
mathematical control theory. Then, what slows the pace of the control theory of SDPSs?
In my opinion, it lies in the fact that the complexity of SDPSs introduces extreme difficul-
ties. Firstly, the formulation of the control problems for SDPSs may differ from those for
distributed parameter control systems or stochastic finite-dimensional control systems. Sec-
ondly, many powerful methods and tools developed for the latter two systems mentioned
above cannot work for SDPSs. Thirdly, people know very little about SPDEs although much
progress has been made in recent years. As a result, new notions and mathematical tools
are required, even for some very simple SDPSs. We will demonstrate this by illustrative
examples in Sections 2 and 3.

The most fundamental problem in control theory is to modify the behavior of the
system by means of suitable “control” actions in an “optimal” way. This leads to the for-
mation of controllability and optimal control problems. Roughly speaking, controllability
involves finding one way to steer the state of the system to a desired target from a given
starting point. Optimal control concerns finding the “best way,” according to a given cost
criterion, to achieve the desired goal. In this paper, we mainly focus on some recent progress
on these two topics for SDPSs. We do not attempt to cover the whole field of these topics,
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which is virtually hopeless. Rather, with admitted bias, we choose subjects that are under-
going rapid change and require new approaches to meet the challenges and opportunities.
No attempt will be made to provide an exhaustive list of all the papers in the corresponding
topics, which would only tend to make the narrative very disjoint.

Although we will deal with SDPSs, it is helpful to introduce some fundamental ideas
in a simpler setting, i.e., for finite-dimensional deterministic control systems. It can also help
readers see the essential differences between the deterministic and stochastic problems.

Let T > 0. Consider the following control system:8<:yt .t/ D Ay.t/C Bu.t/; a.e. t 2 Œ0; T �;

y.0/ D y0;
(1.1)

whereA 2 Rn�n, B 2 Rn�m (n;m 2 N), y is the state, and u 2 L2.0; T I Rm/ is the control.

Definition 1.1. The control system (1.1) is called exactly controllable at time T if for any
y0; y1 2 Rn, there is a control u 2 L2.0; T I Rm/ such that the corresponding state y to (1.1)
satisfies y.T / D y1.

Remark 1.1. Definition 1.1 can be easily extended to more general control systems, for
which the requirement y.T / D y1 may be too restrictive and has to be relaxed. This leads
to the notions of approximate/null/partial controllability, and so on.

The exact controllability problem of (1.1) can be regarded as a two-point boundary
value problem. However, it is clearly ill-posed and cannot be solved by the classical well-
posedness theory of ODEs. To study it, people introduce the adjoint equation of (1.1):18<: zt .t/ D �A>z.t/; t 2 Œ0; T �;

z.T / D zT 2 Rn;
(1.2)

and prove the following result:

Theorem 1.1. The system (1.1) is exactly controllable at time T if and only if solutions
to (1.2) satisfy

jzT j
2
Rn � C

Z T

0

ˇ̌
B>z.t/

ˇ̌2
Rmdt; 8zT 2 Rn: (1.3)

Here and henceforth, unless otherwise stated, we shall write C for a generic positive
constant, which may vary from one place to another.

Remark 1.2. The inequality (1.3) is called an observability estimate for (1.2). Roughly
speaking, it concerns whether the solution of (1.3) can be fully determined from the observa-
tion B>z.t/, t 2 Œ0; T �. Usually, B> is not of full row rank. Hence, one cannot solve for zT

from B>zT directly. In such a case, we do our observation on a time interval Œ0; T �. Besides
the connection with controllability, observability has its own interest in control theory.

1 For any matrix D, denote by D> the transpose of D.
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Remark 1.3. Whether inequality (1.3) holds or not depends on A and B , where A decides
the type of the control system and B reflects the way we control the system. A sufficient and
necessary condition for (1.3) is that .A;B/ fulfills the Kalman rank condition (e.g., [18]).

By Theorem 1.1, the controllability problem of (1.1) is reduced to an a priori esti-
mate of its adjoint equation. This idea is greatly extended to different kinds of control sys-
tems. Most of the controllability results for linear control systems are proved by establishing
suitable observability estimates for their adjoint equations (e.g., [16,21,40,49,50]). However,
it is much more complicated to study the controllability problems for SDPSs. Indeed, as we
will explain in Section 2, we have to handle the observability for backward SPDEs. More-
over, since one may put controls on both drift and diffusion terms in SDPSs (as we shall see
in Section 2, sometimes it is necessary to introduce controls in such a way), the controls will
affect each other. Further, compared with distributed parameter control systems, some new
and unexpected phenomena are found for controllability problems of SDPSs:

(1) One may need stronger conditions to get the approximate controllability than
the null controllability for SDPSs (e.g., [26]).

(2) Two controls are needed to get the exact controllability of stochastic Schrödinger
equations and stochastic transport equations (e.g., [27,29]).

(3) The approximate/null controllability may be sensitive with respect to small per-
turbations of lower order terms (e.g., [8,23]).

(4) To get the exact controllability, the control may be very irregular (e.g., [31]).

(5) The reachable set is very “small” if there is no control in the diffusion term (e.g.,
[47]).

(6) A stochastic hyperbolic equation is not exactly controllable with controls acting
on the whole domain where the equation evolves on (e.g., [37]).

Generally speaking, the controllability properties for different SDPSs are drastically
different. Consequently, when studying controllability problems of SDPSs, we should con-
sider concrete models of SDPSs. There are two prototypical equations needed to be under-
stood first: the stochastic hyperbolic equation and the stochastic parabolic equation. Due to
the limitation of space, we will focus on the former which possesses sufficient complexity to
permit exposition of a wide variety of interesting questions and differs from the controlla-
bility of deterministic hyperbolic equations essentially. Readers are referred to [23,26,40,45]

and the references therein for controllability of the latter equation.
Next, we present a typical optimal control problem. Fix a suitable function

f W Œ0; T � � Rn � Rm ! Rn and a nonempty subset U of Rm. Let

U
�
D
®
u W Œ0; T � ! U j u is Lebesgue measurable

¯
:
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Consider the following control system:8<:yt .t/ D f
�
t; y.t/; u.t/

�
; a.e. t 2 Œ0; T �;

y.0/ D y0;
(1.4)

with a cost functional

J.u/ D

Z T

0

g
�
t; y.t/; u.t/

�
dt C h

�
y.T /

�
; u.�/ 2 U: (1.5)

Here y0 2 Rn, y is the state, and u is the control, valued in Rn and U , respectively; g and
h are suitable functions. The optimal control problem is as follows:

Problem (DOP). Find a Nu 2 U such that

J. Nu/ D inf
u2U

J.u/: (1.6)

Any control Nu 2 U satisfying (1.6) is called an optimal control, and the corresponding state,
denoted by Ny, is called an optimal state, and . Ny; Nu/ is called an optimal pair.

Problem (DOP) can be regarded as an infinite-dimensional optimization problem.
A principal approach to solve it is to derive necessary conditions satisfied by optimal solu-
tions. Nevertheless, since U may be quite general, the classical variation technique cannot
be applied to Problem (DOP) directly. In [43], L. S. Pontryagin’s group employed the spike
variation to derive the so-called Pontryagin’s Maximum Principle, which states a necessary
condition that any optimal pair must satisfy:

Theorem 1.2. Let . Ny; Nu/ be an optimal pair for Problem (DOP). Then, for a.e. t 2 Œ0; T �,

H
�
t; Ny.t/; Nu.t/; z.t/

�
D max

u2U
H
�
t; Ny.t/; u; z.t/

�
; (1.7)

where z W Œ0; T � ! Rn solves8<: zt .t/ D �fy

�
t; Ny.t/; Nu.t/

�>
z.t/C gy

�
t; Ny.t/; Nu.t/

�
; a.e. t 2 Œ0; T �;

z.T / D �hy

�
Ny.T /

� (1.8)

and

H.t; y; u; p/
�
D
˝
p; f .t; y; u/

˛
Rn � g.t; y; u/; .t; y; u; p/ 2 Œ0; T � � Rn

� U � Rn:

The significance of Theorem 1.2 lies in that the infinite-dimensional optimization
problem (1.6) is reduced to the finite-dimensional optimization problem (1.7) (in the point-
wise sense). Particularly, in many cases, U is a finite set and (1.7) itself allows people to
construct the optimal control.

Compared with Problem (DOP), there are new essential difficulties in establishing
Pontryagin-type Maximum Principle for optimal control problems of SDPSs. The primary
one is the well-posedness of the adjoint equation (a generalization of (1.8)), which is an
operator-valued backward stochastic evolution equation. There is no suitable stochastic inte-
gration theory for general operator-valued stochastic processes. Hence, that equation cannot
be understood as a stochastic integral equation and does not admit a mild or a weak solution.
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To overcome this difficulty, we introduce a new notion, i.e., relaxed transposition solution
and employ the stochastic transposition method to prove the well-posedness of that equation.
More details are provided in Section 3.

In this paper, we consider control problems for SDPSs governed by Itô-type SPDEs.
The system is completely observable (meaning that the controller is able to observe the
system state completely) and the noise is a one-dimensional standard Brownian motion. For
the optimal control problem, the cost functional is an integral over a deterministic time inter-
val. The reasons for these settings are that we would like to show readers some fundamental
structure and properties of control problems for SDPSs in a clean and clear way, and avoid
technicalities caused by more complicated models.

The rest of this paper consists of three parts. The first (resp. second) one is devoted
to controllability (resp. optimal control) problems for SDPSs. At last, in the third part, we
provide some open problems for control theory of SDPSs.

2. Exact controllability of stochastic hyperbolic

equations

For the readers’ convenience, we first recall some basic notations. Let T > 0 and
.�;F ;F;P / (with F D ¹Ft ºt�0 being a filtration) be a complete filtered probability space.
Denote by F the progressive � -field (in Œ0; T � � �) with respect to F. Let X be a Banach
space. For any p; q 2 Œ1;1/, write Lp

Ft
.�IX/ 4

D Lp.�;Ft ;P IX/ (t 2 Œ0; T �), and define

L
q
F

�
0; T ILp.�IX/

�
�
D

´
' W .0; T / �� ! X j '.�/ is F-adapted and

Z T

0

�
E
ˇ̌
'.t/

ˇ̌p
X

� q
p dt < 1

µ
:

Similarly, for 1 � p < 1, we may also define L1
F .0; T ILp.�IX//, Lp

F .0; T IL1.�IX//,
and L1

F .0; T IL1.�I X//. In the sequel, we shall simply denote Lp
F .�ILp.0; T I X/

�
�

L
p
F

�
0; T ILp.�IX// by Lp

F .0; T IX/. For any p 2 Œ1;1/, set

CF

�
Œ0; T �ILp.�IX/

� 4
D
®
' W Œ0; T � �� ! X j ' is F-adapted and

' W Œ0; T � ! L
p

FT
.�IX/ is continuous

¯
:

Similarly, for any k 2 N, one can define the Banach space C k
F .Œ0; T �IL

p.�; X//. Also,
we writeDF .Œ0; T �IL

p.�IX// for the Banach space of all X -valued, F-adapted, stochastic
processes X which are càdlàg in Lp

FT
.�IX/ and jX jL1

F .0;T ILp.�IX// < 1, with the norm
inherited from L1

F .0; T ILp.�IX//.
Throughout this section, we assume that there is a 1-dimensional standard Brownian

motion W.�/ on .�;F ;F;P / and F is the natural filtration generated by W.�/.
Let G � Rn (n 2 N) be a bounded domain with a C 2 boundary � . Let �0 � � be

a nonempty subset satisfying suitable assumptions to be given later. Set Q D .0; T / � G,
† D .0; T / � � , and †0 D .0; T / � �0. Let .ajk/1�j;k�n 2 C 3.GI Rn�n/ be such that
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ajk D akj .j; k D 1; 2; : : : ; n/ and, for some constant s0 > 0,
nX

j;kD1

ajk.x/�j �k
� s0j�j2; 8.x; �/

�
D
�
x; �1; : : : ; �n

�
2 G � Rn:

Fix a1 2 L1
F .0; T IW 1;1.GI Rn//, a2; a3; a4 2 L1

F .0; T IL1.G//, and a5 2 L1
F .0; T I

W
1;1

0 .G//.

2.1. Formulation of the problem
Consider the following controlled stochastic hyperbolic equation:8̂̂̂̂

<̂̂
ˆ̂̂̂:
dyt �

nX
j;kD1

.ajkyxj
/xk
dt D .a1 � ry C a2y C f /dt C .a3y C g/dW.t/ in Q;

y D h on †;

y.0/ D y0; yt .0/ D y1 in G;
(2.1)

where the initial data .y0; y1/ 2 L2.G/�H�1.G/, .y; yt / is the state, and f;g 2 L1
F .0; T ;

H�1.G// and h 2 L2
F .0; T IL2.�// are three controls. As we shall see in Section 2.2, equa-

tion (2.1) admits a unique transposition solution

y 2 CF

�
Œ0; T �IL2

�
�IL2.G/

��
\ C 1

F

�
Œ0; T �IL2

�
�IH�1.G/

��
:

Inspired by the definition of the exact controllability of deterministic hyperbolic
equations and stochastic differential equations, we introduce the following notion.

Definition 2.1. We say that the control system (2.1) is exactly controllable at time T if for
any .y0; y1/ 2 L2.G/�H�1.G/ and .y0

0; y
0
1/ 2 L2

FT
.�IL2.G//�L2

FT
.�IH�1.G//, one

can find controls .f; g; h/ 2 L2
F .0; T IH�1.G// �L2

F .0; T IH�1.G// � L2
F .0; T IL2.�//

such that the corresponding state y to (2.1) satisfies that .y.T /, yt .T // D .y0
0; y

0
1/ a.s.

Remark 2.1. Compared with Definition 1.1, Definition 2.1 looks much more complex. This
is due to the complexity of the control system. The two definitions share the same spirit, that
is, using controls to steer the state of the system to the desired destination. Here and in what
follows, we use adapted stochastic processes as controls according to two reasons:

(1) In stochastic control systems, “uncertainty” is critical, i.e., there is some pos-
sible variations in the system’s behavior. The controls have to take different
possibilities into account.

(2) We cannot use information from the future. Thus, the control at time t has to be
measurable with respect to the � -algebra Ft , which reflects the information we
can obtain at time t .

Three controls are applied in (2.1). One may expect the exact controllability to be
correct. However, surprisingly enough, we have the following negative result.
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Theorem 2.1 ([37, Theorem 2.1]). The system (2.1) is not exactly controllable for any T > 0.

Remark 2.2. Both Theorem 2.1 and Theorem 2.2 below are negative results, which have
their own interests. Indeed, one aspect of control theory that is particularly important is the
exploration of fundamental limits of the control ability for a given control system, since
trade-offs between the cost we pay for controls and the performance of the behavior of the
system will be the primary design challenge for a control system.

The controls we introduce into (2.1) are the strongest possible ones. Theorem 2.1
shows that the controllability property of stochastic hyperbolic equations differs signifi-
cantly from the well-known controllability property for deterministic hyperbolic equations
(e.g., [50]). Motivated by this, we consider the following refined version of controlled stochas-
tic hyperbolic equation:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

dy D Oydt C .a4y C f /dW.t/ in Q;

d Oy �

nX
j;kD1

.ajkyxj
/xk
dt D .a1 � ry C a2y C a5g/dt C .a3y C g/dW.t/ in Q;

y D �†0h on †;

y.0/ D y0; Oy.0/ D Oy0 in G:
(2.2)

Here .y0; Oy0/ 2 L2.G/ � H�1.G/, .y; Oy/ is the state, and f 2 L2
F .0; T I L2.G//,

g 2 L2
F .0; T I H�1.G//, and h 2 L2

F .0; T I L2.�0// are controls. As we shall see in
Section 2.2, the system (2.2) admits a unique transposition solution .y; Oy/2CF .Œ0;T �IL

2.�I

L2.G/// � CF .Œ0; T �I L
2.�I H�1.G///. Readers are referred to [37] for the derivation

of (2.2).

Remark 2.3. Usually, if we put a control in the diffusion term, it may affect the drift term
in one way or another. Here we assume that the effect is in the form of “a5gdt” as that in
the second equation of (2.2). One may consider a more general case, say, by adding a term
like “a6fdt” (in which a6 2 L1

F .0; T IL1.G//) into the first equation of (2.2). However,
except for n D 1, the corresponding controllability problem is still unsolved (e.g., [39]).

Definition 2.2. We say that the system (2.2) is exactly controllable at time T if for any
.y0; Oy0/ 2 L2.G/�H�1.G/ and .y1; Oy1/ 2 L2

FT
.�IL2.G//�L2

FT
.�IH�1.G//, one can

find controls .f; g; h/ 2 L2
F .0; T IL2.G// � L2

F .0; T IH�1.G// � L2
F .0; T IL2.�0// such

that the corresponding solution .y; Oy/ to (2.2) satisfies that .y.T /; Oy.T // D .y1; Oy1/.

Under some assumptions, we can show that (2.2) is exactly controllable (see The-
orem 2.3). Hence, from the viewpoint of controllability, (2.2) is a more reasonable model
than (2.1).

2.2. Well-posedness of stochastic hyperbolic equations with boundary controls
Both (2.1) and (2.2) are SPDEs with nonhomogeneous boundary values. They may

not have weak or mild solutions. Therefore, as the deterministic case (e.g., [22]), solutions
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to them are understood in the sense of a transposition solution. To this end, we need the
following backward stochastic hyperbolic equation:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

dz D Ozdt CZdW.t/ in Q� ;

d Oz �

nX
j;kD1

.ajkzxj
/xk
dt D .b1 � rz C b2z C b3Z C b4

OZ/dt C OZdW.t/ in Q� ;

z D 0 on †� ;

z.�/ D z� ; Oz.�/ D Oz� in G;
(2.3)

where � 2 .0; T �, Q�
�
D.0; �/ � G, †�

�
D.0; �/ � � , .z� ; Oz� / 2 L2

F�
.�IH 1

0 .G/ � L2.G//,
b1 2 L1

F .0; T ; W 1;1.GI Rn//, and bi 2 L1
F .0; T IL1.G// (i D 2; 3; 4).

For any .z� ; Oz� / 2 L2
F�
.�IH 1

0 .G// � L2
F�
.�IL2.G//, the system (2.3) admits a

unique solution .z;Z; Oz; OZ/ 2CF .Œ0; ��IH
1
0 .G//�L2

F .0; � IH 1
0 .G//�CF .Œ0; ��IL

2.G//�

L2
F .0; � IL2.G// (e.g., [40, Theorem 4.10]), which satisfies the following hidden regularity:

Proposition 2.1 ([37, Proposition 3.1]). The solution .z; Oz; Z, OZ/ to (2.3) satisfies
@z
@�

j� 2 L2
F .0; � ; L

2.�// andˇ̌̌̌
@z

@�

ˇ̌̌̌
L2

F .0;� IL2.�//

� C
�ˇ̌
z�
ˇ̌
L2

F�
.�IH 1

0 .G//
C
ˇ̌
Oz�
ˇ̌
L2

F�
.�IL2.G//

�
; (2.4)

where the constant C is independent of � and .z� ; Oz� / 2L2
F�
.�IH 1

0 .G//�L2
F�
.�IL2.G//.

Definition 2.3. A stochastic process y 2 CF .Œ0; T �IL
2.�; L2.G/// \ C 1

F .Œ0; T �IL
2.�;

H�1.G/// is called a transposition solution to (2.1) if for any � 2 .0; T � and .z� ; Oz� / 2

L2
F�
.�IH 1

0 .G// � L2
F�
.�IL2.G//, it holds that

E
˝
yt .�/; z

�
˛
H �1.G/;H 1

0 .G/
� E

˝
y.�/; Oz�

˛
L2.G/

�
˝
Oy0; z.0/

˛
H �1.G/;H 1

0 .G/
C
˝
y0; Oz.0/

˛
L2.G/

D E

Z �

0

hf; ziH �1.G/;H 1
0 .G/dt C E

Z �

0

hg;ZiH �1.G/;H 1
0 .G/dt � E

Z �

0

Z
�0

h
@z

@�
d�ds;

where .z; Oz;Z; OZ/ solves (2.3) with b1 D �a1, b2 D �diva1 C a2, b3 D a3, and b4 D 0.
A pair of stochastic processes .y; Oy/ 2 CF .Œ0; T �I L

2.�I L2.G/// � CF .Œ0; T �;
L2.�;H�1.G/// is called a transposition solution to (2.2) if for any � 2 .0;T � and .z� ; Oz� /2

L2
F�
.�; H 1

0 .G// � L2
F�
.�; L2.G//, it holds that

E
˝
Oy.�/; z�

˛
H �1.G/;H 1

0 .G/
� E

˝
y.�/; Oz�

˛
L2.G/

�
˝
Oy0; z.0/

˛
H �1.G/;H 1

0 .G/
C
˝
y0; Oz.0/

˛
L2.G/

D �E

Z �

0

hf; OZiL2.G/dt C E

Z �

0

hg; a5z CZiH �1.G/;H 1
0 .G/dt � E

Z �

0

Z
�0

h
@z

@�
d�ds;

where .z; Oz;Z; OZ/ solves (2.3) with b1 D �a1, b2 D �diva1 C a2, b3 D a3, and b4 D �a4.

Remark 2.4. By Proposition 2.1, the term “E
R �

0

R
�0
h @z

@�
d�ds” makes sense. The above

definitions of transposition solutions to (2.1) and (2.2) are the generalization of the transpo-
sition solution to deterministic hyperbolic equation (e.g., [22]).
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Proposition 2.2 ([37, Propositions 4.1 and 4.2]). The system (2.1) (resp. (2.2)) admits a
unique transposition solution y (resp. .y; Oy/).

2.3. The controllability results
We have introduced three controls (f , g, and h) in the system (2.2). At first glance,

it seems unreasonable that especially the controls f and g in the diffusion terms of (2.2) are
acting on the whole domain G. One may ask whether localized controls are enough or the
boundary control can be dropped. However, the answers are “NO.”

Theorem 2.2 ([37, Theorem 2.3]). For any open subset �0 of � and open subsetG0 ofG, the
system (2.2) is not exactly controllable at any time T > 0, provided that one of the following
three conditions is satisfied:

(1) a4 2 CF .Œ0; T �IL
1.�IL1.G///, G nG0 ¤ ;, and f is supported in G0;

(2) a3 2 CF .Œ0; T �IL
1.�IL1.G///, G nG0 ¤ ;, and g is supported in G0;

(3) h D 0.

To get a positive controllability result for the system (2.2), the time T should be large
enough due to the finite propagation speed of solutions to stochastic hyperbolic equations.
On the other hand, noting that the deterministic wave equation is a special case of (2.2),
by [2], we see that exact controllability of (2.2) is impossible without conditions on �0 and
.ajk/1�j;k�n. Hence, to continue, we introduce the following assumptions:

Condition 2.1. There exists a positive function '.�/ 2 C 3.G/ satisfying the following:

(1) For some constant �0 > 0 and all .x; �1; : : : ; �n/ 2 G � Rn,
nX

j;kD1

nX
j 0;k0D1

�
2ajk0

.aj 0k'xj 0 /xk0 � ajk
xk0
aj 0k0

'xj 0

�
�j �k

� �0

nX
j;kD1

ajk�j �k :

(2) The function '.�/ has no critical point in G, i.e., jr'.x/j > 0 for x 2 G.

We shall choose the set �0 as follows:

�0
�
D

´
x 2 �

ˇ̌̌ nX
j;kD1

ajk'xj
.x/�k.x/ > 0

µ
:

Also, write
R1

�
D

r
max
x2G

'.x/; R0
�
D

r
min
x2G

'.x/:

Clearly, if '.�/ satisfies Condition 2.1, then for any given constants ˛ � 1 and ˇ 2 R, so does
Q'D ˛'Cˇ with�0 replaced by ˛�0. Therefore we may choose ';�0; c0; c1 and T such that

Condition 2.2. The following inequalities hold:

(1) 1
4

nP
j;kD1

ajk.x/'xj
.x/'xk

.x/ � R2
1, 8x 2 G;
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(2) T > T0
�
D 2R1;

(3) .2R1

T
/2 < c1 <

2R1

T
;

(4) �0 � 4c1 � c0 > c0 C 2R1.1C ja5j2
L1

F .0;T IL1.G//
/.

Remark 2.5. As we have explained before Condition 2.2, this condition can always be
satisfied. We put it here merely to emphasize the relationship among c0, c1, �0 and T .

Remark 2.6. To ensure that (4) in Condition 2.2 holds, c1 andT depend on ja5jL1
F .0;T IL1.G//.

This seems to be reasonable because a5 stands for the effect of the control in the diffusion
term to the drift term. One needs time to get rid of such an effect. Nevertheless, this does
not happen when n D 1 (e.g., [39]).

The exact controllability result for the system (2.2) is stated as follows:

Theorem 2.3 ([37, Theorem 2.2]). System (2.2) is exactly controllable at time T if Condi-
tions 2.1 and 2.2 hold.

Remark 2.7. Although it is necessary to put controls f and g on the whole domain G,
one may suspect that Theorem 2.3 is trivial and give a possible “proof” of Theorem 2.3 as
follows: Choosing f D �a4y and g D �a3y, the system (2.2) becomes8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

dy D Oydt in Q;

d Oy �

nX
j;kD1

.ajkyxj
/xk
dt D .a1 � ry C a2y � a5a3y/dt in Q;

y D �†0h on †;

y.0/ D y0; Oy.0/ D Oy0 in G:

(2.5)

This is a hyperbolic equation with random coefficients. If one regards the sample point !
as a parameter, then for every given ! 2 �, there is a control h.�; �; !/ such that the solu-
tion to (2.5) fulfills .y.T; x; !/; Oy.T; x; !// D .y1.x; !/; Oy1.x; !//. However, it is unclear
whether the control constructed in this way is adapted to the filtration F or not. If it is not
the case, then to determine the value of the control at present, one needs to use information
from the future, which is meaningless in the stochastic framework.

In order to prove Theorem 2.3, by a standard duality argument, it suffices to establish
the following observability estimate for the adjoint equation (2.3).

Theorem 2.4. Under the assumptions of Theorem 2.3, all solutions to equation (2.3) with
� D T satisfyˇ̌�

zT ; OzT
�ˇ̌

L2
FT

.�IH 1
0 .G/�L2.G//

� C

�ˇ̌̌̌
@z

@�

ˇ̌̌̌
L2

F .0;T IL2.�0//

C ja5z CZj
2
L2

F .0;T IH 1
0 .G//

C j OZj
2
L2

F .0;T IL2.G//

�
:
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Remark 2.8. Although Theorem 2.4 is much more complex than Theorem 1.1, it has the
same features in common with Theorem 1.1, that is, a solution of an equation can be fully
determined by a suitable observation of the solution.

Remark 2.9. The proof of Theorem 2.4 is almost the same as that of [37, Theorem 7.1]. We
do not provide the explicit dependence of the constant C on the observation time T and the
coefficients bi (1 � i � 4). Interested readers are referred to [37].

2.4. Carleman estimate
Theorem 2.4 is an observability estimate of equation (2.3). Generally speaking, there

are three main approaches to establish the observability estimate for multidimensional deter-
ministic hyperbolic equations.

The first is the multiplier techniques (e.g., [21]). Two key points for applying this
method are the time reversibility of the equation and the time independence of the coeffi-
cients. Equation (2.3) does not fulfill the second property above.

The second approach is based on the microlocal analysis (e.g., [2]), which gives
a sharp sufficient condition, i.e., the Geometric Control Condition, for the observability
estimate of hyperbolic equations. It is interesting to generalize this method to study the
observability estimate of equation (2.3).

The last one is the global Carleman estimate (e.g., [15,49]). It has been generalized
to study the observability estimate for stochastic hyperbolic equations recently (e.g., [28,34,
48,49]). Theorem 2.3 is also proved likewise. The key is the following identity.

Lemma 2.1 ([37, Lemma 6.1]). Let z be anH 2.Rn/-valued Itô process and Oz be an L2.Rn/-
valued Itô process such that for some Z 2 L2

F .0; T IH 1.Rn//, dz D Ozdt C ZdW.t/ in
.0; T / � Rn. Let `;‰ 2 C 2..0; T / � Rn/. Set � D e`, v D �z and Ov D � Oz C `tv. Then, for
a.e. x 2 Rn,

�

 
�2`t Ov C 2

nX
j;kD1

ajk`xj
vxk

C‰v

!"
d Oz �

nX
j;kD1

�
ajkzxj

�
xk
dt

#

C

nX
j;kD1

"
nX

j 0;k0D1

�
2ajkaj 0k0

`xj 0vxj
vxk0 � ajkaj 0k0

`xj
vxj 0vxk0

�
� 2`ta

jkvxj
Ov C ajk`xj

Ov2
C‰ajkvxj

v �
‰xj

2
ajkv2

� Aajk`xj
v2

#
xk

C d

"
`t

nX
j;kD1

ajkvxj
vxk

C `t Ov2
� 2

nX
j;kD1

ajk`xj
vxk

Ov �‰v Ov C

�
A`t C

‰t

2

�
v2

#

D

´"
`t t C

nX
j;kD1

�
ajk`xj

�
xk

�‰

#
Ov2

C

nX
j;kD1

cjkvxj
vxk

C Bv2

� 2

nX
j;kD1

��
ajk`xk

�
t

C ajk`txk

�
vxj

Ov C

 
�2`t Ov C 2

nX
j;kD1

ajk`xj
vxk

C‰v

!2µ
dt
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C `t .d Ov/2 � 2

nX
j;kD1

ajk`xj
dvxk

d Ov �‰dvd Ov C `t

nX
j;kD1

ajk.dvxj
/.dvxk

/

C A`t .dv/
2

�

´
�

 
�2`t Ov C 2

nX
j;kD1

ajk`xj
vxk

C‰v

!
`tZ

�

"
2

nX
j;kD1

ajk.�Z/xk
`xj

Ov � �‰tvZ C �‰ OvZ

#

C 2

"
nX

j;kD1

ajkvxj
.�Z/xk

C �AvZ

#
`t

µ
dW.t/; a.s.; (2.6)

where .dv/2 and .d Ov/2 denote the quadratic variation processes of v and Ov, respectively,
and 8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

cjk �
D
�
ajk`t

�
t

C

nX
j 0;k0D1

�
2ajk0�

aj 0k`xj 0

�
xk0

�
�
ajkaj 0k0

`xj 0

�
xk0

�
C‰ajk ;

A
�
D.`2

t � `t t / �

nX
j;kD1

�
ajk`xj

`xk
�
�
ajk`xj

�
xk

�
�‰;

B
�
D A‰ C .A`t /t �

nX
j;kD1

�
Aajk`xj

�
xk

C
1

2

"
‰t t �

nX
j;kD1

�
ajk‰xj

�
xk

#
:

Remark 2.10. The derivation of (2.6) requires a fairly complex but elementary computation.
Identities in the spirit of (2.6) are widely used to solve observability problems for determin-
istic and stochastic PDEs (e.g., [14,15,39,40]).

Choosing `.t;x/D�Œ'.x/�c1.t�
T
2
/2� and‰D`t t C

nP
j;kD1

.ajk`xj
/xk

�c0� in (2.6),

integrating (2.6) in Q and taking the mathematical expectation, after some technical com-
putations, one can prove Theorem 2.3.

The above not only gives a sketch of the proof of Theorem 2.3, but also presents a
methodology of getting the observability estimates for SPDEs and backward SPDEs: indeed,
one has to establish a suitable pointwise identity and choose a suitable weight function.
Almost all observability estimates for SPDEs and backward SPDEs are obtained in this way
(e.g., [14,27–29,34,39,40,45,48,49]). That said, we do not mean that the proofs of these observ-
ability estimates are similar; rather we want to emphasize the common ground in the idea of
the proofs.

3. Pontryagin-type stochastic maximum principle and

stochastic transposition method

This section is devoted to the Pontryagin-type stochastic maximum principle (PMP
for short) for optimal control problems of semilinear SDPSs. There is a long history for the
study of this topic. We refer to [3] for a pioneering result and to [17, 44] and the references
therein for subsequent results. These works addressed three special cases: (1) the diffusion
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term does not depend on the control variable; (2) U is convex; (3) the second-order deriva-
tives of g and h with respect to y in (3.2) below are Hilbert–Schmidt operator-valued. On
the one hand, under the first two assumptions (resp. the third assumption), the PMP and
their proofs are similar to those of the distributed parameter control systems (resp. stochas-
tic finite-dimensional control systems). On the other hand, when one puts a control in the
drift term, it will affect the diffusion term, i.e., the control could influence the scale of uncer-
tainty. Hence, it is important to study PMP for SDPSs with control-dependent diffusion terms
and nonconvex control domains. This was done in [33] (some generalizations were given in
[35,36,39]).

3.1. Formulation of the optimal control problem
Unlike in Section 2, we will formulate our system in an abstract framework. Through-

out this section, T > 0, .�;F ; F; P / (with F �
D¹Ft ºt2Œ0;T �) is a fixed filtered probability

space satisfying the usual conditions, on which a 1-dimensional standard Brownian motion
W.�/ is defined, andH is a separable Hilbert space. Denote by F the progressive � -field (in
Œ0; T � ��) with respect to F.

Let A be a linear operator (with the domain D.A/ � H ), which generates a C0-
semigroup ¹S.t/ºt�0 on H . Denote by A� the adjoint operator of A, which generates the
adjoint C0-semigroup of ¹S.t/ºt�0. Let U be a separable metric space. Put

UŒ0; T �
�
D
®
u W Œ0; T � �� ! U j u is F-adapted

¯
:

We assume the following condition:

(A1). The maps a; b W Œ0; T � � H � U ! H satisfy (for ' D a; b): (i) for any .y; u/ 2

H � U , '.�; y; u/ W Œ0; T � ! H is Lebesgue measurable; (ii) for any .t; y/ 2 Œ0; T � �H ,
'.t; y; �/ W U ! H is continuous; and (iii) there is a constant CL > 0 such that8<:
ˇ̌
'.t; y1; u/ � '.t; y2; u/

ˇ̌
H

� CLjy1 � y2jH ;ˇ̌
'.t; 0; u/

ˇ̌
H

� CL;
8.t; y1; y2; u/ 2 Œ0; T � �H �H � U:

Consider the following controlled stochastic evolution equation:8<: dy.t/ D
�
Ay.t/C a.t; y; u/

�
dt C b.t; y; u/dW.t/; a.e. t 2 .0; T �;

y.0/ D �;
(3.1)

where u 2 UŒ0;T � is control, y is state, and � 2L8
F0
.�IH/. The control system (3.1) admits

a unique mild solution y 2 CF .Œ0; T �IL
8.�IH// (e.g., [40, Theorem 3.13]).

Remark 3.1. In (3.1), the diffusion term depends on the control. This means that the control
could influence the scale of uncertainty (as is indeed the case in many practical systems,
especially in the system of mesoscopic scale). In such a setting, the stochastic problems
essentially differ from the deterministic ones.

Also, we need the following condition:
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(A2). The maps g.�; �; �/ W Œ0;T ��H �U ! R and h.�/ WH ! R satisfy: (i) for any .y;u/ 2

H � U , g.�; y; u/ W Œ0; T � ! R is Lebesgue measurable; (ii) for any .t; y/ 2 Œ0; T � � H ,
g.t; y; �/ W U ! R is continuous; and (iii) there is a constant CL > 0 such that8<:

ˇ̌
g.t; y1; u/ � g.t; y2; u/

ˇ̌
H

C
ˇ̌
h.y1/ � h.y2/

ˇ̌
H

� CLjy1 � y2jH ;ˇ̌
g.t; 0; u/

ˇ̌
H

C
ˇ̌
h.0/

ˇ̌
H

� CL;

8.t; y1; y2; u/ 2 Œ0; T � �H �H � U:

Define a cost functional J.�/ (for the control system (3.1)) as follows:

J.u/
�
D E

"Z T

0

g
�
t; y.t/; u.t/

�
dt C h

�
y.T /

�#
; 8u 2 UŒ0; T �; (3.2)

where y is the state of (3.1) corresponding to u. Consider an optimal control problem:

Problem (OP). Find a Nu 2 UŒ0; T � such that

J. Nu/ D inf
u2UŒ0;T �

J.u/: (3.3)

Any Nu satisfying (3.3) is called an optimal control. The corresponding state Ny is
called an optimal state, and . Ny; Nu/ is called an optimal pair.

3.2. Transposition solution and relaxed transposition solution to backward
stochastic evolution equation
We first recall that the key idea in the proof of Theorem 1.2 is as follows: One

first perturbs an optimal control by means of the spike variation, then considers the first-
order term in a sort of Taylor expansion with respect to this perturbation. By sending the
perturbation to zero, one obtains a kind of variational inequality. The Pontryagin’s maximum
principle then follows from a duality argument. When applying this idea to study PMP for
Problem (OP), one encounters an essential difficulty, which, roughly speaking, is that the
Itô stochastic integral

R tC"

t
rdW.s/ is only of order

p
" (rather than " as with the Lebesgue

integral). To overcome this difficulty, we should study both the first and second order terms
in the Taylor expansion of the spike variation. In such case, inspired by [42], we need to
introduce two adjoint equations. The first is8<: dz D �A�zdt C F.t; z; Z/dt CZdW.t/ in Œ0; T /;

z.T / D zT :
(3.4)

In (3.4), F W Œ0; T � �H �H ! H is Lebesgue measurable with respect to t and Lipschitz
continuous with respect to z and Z.

Neither the usual natural filtration condition nor the quasi-left continuity is assumed
for the filtration F, and the operator A is only assumed to generate a general C0-semigroup.
Hence, equation (3.4) may not have a weak or mild solution. Similar to equation (2.1), we
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should introduce new notion of solution to (3.4). To this end, consider the following stochas-
tic evolution equation:8<: d' D .A' C  /ds C Q dW.s/ in .t; T �;

'.t/ D �;
(3.5)

where t 2 Œ0; T /,  2 L1
F .t; T IL2.�IH//, Q 2 L2

F .t; T IH/, and � 2 L2
Ft
.�IH/. Equa-

tion (3.5) admits a unique (mild) solution ' 2CF .Œt;T �IL
2.�IH// (e.g., [40, Theorem 3.13]).

Definition 3.1. We call .z;Z/ 2DF .Œ0;T �IL
2.�IH//�L2

F .0;T IH/ a transposition solu-
tion to (3.4) if for any t 2 Œ0;T �, 2L1

F .t;T IL2.�IH//, Q 2L2
F .t;T IH/, � 2L2

Ft
.�IH/,

and the corresponding solution ' 2 CF .Œt; T �IL
2.�IH// to (3.5), it holds that

E
˝
'.T /; zT

˛
H

� E

Z T

t

˝
'.s/; f

�
s; z.s/; Z.s/

�˛
H
ds

D E
˝
�; z.t/

˛
H

C E

Z T

t

˝
 .s/; z.s/

˛
H
ds C E

Z T

t

˝
Q .s/;Z.s/

˛
H
ds: (3.6)

Remark 3.2. On the one hand, if (3.4) admits a strong solution .z; Z/ 2 ŒCF .Œ0; T �I

L2.�IH// \L2
F .0; T ID.A//� � L2

F .0; T IH/, then, we can get (3.6) by Itô’s formula
(e.g., [40, Theorem 2.142]). On the other hand, (3.6) can be used to get the PMP for Problem
(OP). These are the reasons for introducing Definition 3.1. The main idea of this definition is
to interpret the solution to a less understood equation by means of another well-understood
one.

Theorem 3.1 ([33, Theorem 3.1]). Equation (3.4) has a unique transposition solution .z; Z/
and ˇ̌

.z; Z/
ˇ̌
DF .Œ0;T �IL2.�IH//�L2

F .0;T IH/

� C
�ˇ̌
F.�; 0; 0/

ˇ̌
L1

F .0;T IL2.�IH//
C jzT jL2

FT
.�IH/

�
:

The proof of Theorem 3.1 is based on a Riesz-type representation theorem obtained
in [31].

The second adjoint equation is28̂̂<̂
:̂
dP D

�
�.A�

C J �/P � P.AC J / �K�PK � .K�QCQK/C F
�
dt CQdW.t/

in Œ0; T /;

P.T / D PT :

(3.7)

where F 2 L1
F .0; T IL2.�I L.H///, PT 2 L2

FT
.�I L.H//, and J;K 2 L4

F .0; T ; L1.�I

L.H///.

2 In this paper, for any operator-valued process R, we denote by R� its pointwise dual
operator-valued process.
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Equation (3.7), as written, is a rather formidable operator-valued backward stochas-
tic evolution equation. When H D Rn, (3.7) is an Rn�n matrix-valued backward stochas-
tic differential equation, and therefore, the desired well-posedness follows from that of
an Rn2 (vector)-valued backward stochastic differential equation. However, in the infinite-
dimensional setting, although L.H/ is still a Banach space, it is neither reflexive nor
separable even ifH itself is separable. There exists no stochastic integration/evolution equa-
tion theory that can be employed to treat the well-posedness of (3.7) even if the filtration F is
generated byW.�/ (e.g., [46]). Hence, we should employ the stochastic transposition method
again and define the solution to (3.7) in the transposition sense. To this end, we need the
following stochastic evolution equation:8<: d' D .AC J /'ds C  ds CK'dW.s/C Q dW.s/ in .t; T �;

'.t/ D �:
(3.8)

Here � 2L4
Ft
.�IH/ and ; Q 2L2

F .t;T IL4.�IH//. Also, we should introduce the solution
space for (3.7). Write

P Œ0; T �
�
D
®
P W Œ0; T � �� ! L.H/ j jP jL.H/ 2 L1

F

�
0; T IL2.�/

�
and for every

t 2 Œ0; T � and � 2 L4
Ft
.�IH/;P � 2 DF

�
Œt; T �IL

4
3 .�IH/

�
and

jP�j
DF .Œt;T �IL

4
3 .�IH//

� C j�jL4
Ft

.�IH/

¯
and

QŒ0; T �
�
D
®�
Q.�/; OQ.�/

�
j for any t 2 Œ0; T �; both Q.t/ and OQ.t/ are bounded linear

operators from L4
Ft
.�IH/ � L2

F

�
t; T IL4.�IH/

�
� L2

F

�
t; T IL4.�IH/

�
to

L2
F

�
t; T IL

4
3 .�IH/

�
and Q.t/.0; 0; �/� D OQ.t/.0; 0; �/

¯
:

Definition 3.2. We call .P.�/;Q.�/; OQ.�// 2 P Œ0; T � � QŒ0; T � a relaxed transposition solu-
tion to (3.7) if for any t 2 Œ0; T �, �1; �2 2 L4

Ft
.�IH/, and  1;  2; Q 1; Q 2 2 L2

F .t; T I

L4.�IH//, it holds that

E
˝
PT '1.T /; '2.T /

˛
H

� E

Z T

t

˝
F.s/'1.s/; '2.s/

˛
H
ds

D E
˝
P.t/�1; �2

˛
H

C E

Z T

t

˝
P.s/ 1.s/; '2.s/

˛
H
ds C E

Z T

t

˝
P.s/'1.s/;  2.s/

˛
H
ds

C E

Z T

t

˝
P.s/K.s/'1.s/; Q 2.s/

˛
H
ds C E

Z T

t

˝
P.s/ Q 1.s/;K.s/'2.s/C Q 2.s/

˛
H
ds

C E

Z T

t

˝
Q 1.s/; OQ.t/.�2;  2; Q 2/.s/

˛
H
ds C E

Z T

t

˝
Q.t/.�1;  1; Q 1/.s/; Q 2.s/

˛
H
ds;

Here, for j D 1; 2, 'j solves (3.8) with �,  , and Q replaced by �j ,  j , and Q j , respectively.

Remark 3.3. Due to the very weak characterization of Q, a relaxed transposition solution
is more like a half-measure rather than the natural solution to (3.7). We believe that a more
suitable definition should be as follows:

Let OQŒ0; T �
�
D
®
Q W Œ0; T � �� ! L.H/ j jQjL.H/ 2 L2

F

�
0; T IL2.�/

�¯
.

5330 Q. Lü



We call .P.�/;Q.�// 2 P Œ0; T �� OQŒ0; T � a transposition solution to (3.7) if for any
t 2 Œ0; T �, �1; �2 2 L4

Ft
.�IH/, and  1;  2; Q 1; Q 2 2 L2

F .t; T IL4.�IH//, it holds that

E
˝
PT '1.T /; '2.T /

˛
H

� E

Z T

t

˝
F.s/'1.s/; '2.s/

˛
H
ds

D E
˝
P.t/�1; �2

˛
H

C E

Z T

t

˝
P.s/ 1.s/; '2.s/

˛
H
ds C E

Z T

t

˝
P.s/'1.s/;  2.s/

˛
H
ds

C E

Z T

t

˝
P.s/K.s/'1.s/; Q 2.s/

˛
H
ds C E

Z T

t

˝
P.s/ Q 1.s/;K.s/'2.s/C Q 2.s/

˛
H
ds

C E

Z T

t

˝
Q.s/ Q 1.s/; '2.s/

˛
H
ds C E

Z T

t

˝
Q.s/'1.s/; Q 2.s/

˛
H
ds:

Here, for j D 1; 2, 'j solves (3.8) with �,  , and Q replaced by �j ,  j , and Q j , respectively.
If (3.7) admits a transposition solution, then it has a relaxed transposition solution (e.g.,
[40, Remark 12.11]). Until now, we have no idea how to prove the existence of a transposition
solution to (3.7). In such a case, sometimes, we introduce another kind of solution, namely,
the V -transposition solution to (3.7), as a substitute (e.g., [12,32,38,39]).

Remark 3.4. Only the first term P of the solution to (3.7) appears in the PMP for Prob-
lem (OP). Nevertheless, the characterization of Q has its own interest. On the one hand,
Q is used to get higher-order necessary conditions and to solve operator-valued backward
stochastic Riccati equations (e.g., [12, 32, 38, 39]). On the other hand, the information about
the whole solution helps us understand the first part of the solution.

Theorem 3.2 ([33, Theorem 6.1]). Suppose thatL2
FT
.�IR/ is separable. Then equation (3.7)

admits a unique relaxed transposition solution .P.�/;Q.�/; OQ.�//. Furthermore,

jP jP Œ0;T � C
ˇ̌�
Q.�/; OQ.�/

�ˇ̌
QŒ0;T �

� C
�
jF jL1

F .0;T IL2.�IL.H/// C jPT jL2
FT

.�IL.H//

�
:

3.3. Pontryagin-type maximum principle
Let us assume a further condition:

(A3). For any .t; u/ 2 Œ0; T � � U , the maps a.t; �; u/, b.t; �; u/, g.t; �; u/, and h.�/ are C 2,
such that for ' D a; b, and  D g; h, 'x.t; x; �/,  x.t; x; �/, 'xx.t; x; �/, and  xx.t; x; �/ are
continuous for any .t; x/ 2 Œ0; T � �H . Moreover, there exists a constant CL > 0 such that8<:
ˇ̌
'x.t; x; u/

ˇ̌
L.H/

C
ˇ̌
 x.t; x; u/

ˇ̌
H

� CL;ˇ̌
'xx.t; x; u/

ˇ̌
L.H;H IH/

C
ˇ̌
 xx.t; x; u/

ˇ̌
L.H/

� CL;
8.t; x; u/ 2 Œ0; T � �H � U:

Remark 3.5. Condition (A3) is a little restrictive. When theC0-semigroup ¹S.t/ºt�0 enjoys
some smoothing effect, it can be relaxed (e.g., [37]). Due to (A3), Theorem 3.3 cannot be
applied to stochastic linear quadratic optimal control problems for SDPSs directly. Never-
theless, following the proof of Theorem 3.3, we can get the PMP for that problem (e.g., [35]).

Let H.t; x; �; k1; k2/
4
D
˝
k1; a.t; x; �/

˛
H

C
˝
k2; b.t; x; �/

˛
H

� g.t; x; �/ for .t; x; �;
k1; k2/ 2 Œ0; T � �H � U �H �H .
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Theorem 3.3. Suppose that L2
FT
.�I R/ is separable and (A1)–(A3) hold. Let . Ny.�/; Nu.�//

be an optimal pair of Problem (OP), .z.�/; Z.�// be the transposition solution to (3.4)
with F.t; z; Z/ D �ay.t; Ny.t/; Nu.t//�z � by.t; Ny.t/; Nu.t//�Z C gy.t; Ny.t/; Nu.t//,
zT D �hy. Ny.T //, and .P.�/;Q.�/; OQ.�// be the relaxed transposition solution to (3.7) with8<:PT D �hyy. Ny.T //; J.t/ D ay.t; Ny.t/; Nu.t//;

K.t/ D by.t; Ny.t/; Nu.t//; F .t/ D �Hyy.t; Ny.t/; Nu.t/; z.t/; Z.t//:

Then, for a.e. .t; !/ 2 Œ0; T � �� and for all � 2 U ,

H
�
t; Ny.t/; Nu.t/; z.t/; Z.t/

�
� H

�
t; Ny.t/; �; z.t/; Z.t/

�
�
1

2

˝
P.t/

�
b
�
t; Ny.t/; Nu.t/

�
� b

�
t; Ny.t/; �

��
; b
�
t; Ny.t/; Nu.t/

�
� b

�
t; Ny.t/; �

�˛
H

� 0:

Remark 3.6. Compared with Theorem 1.2, the main difference in Theorem 3.3 is the appear-
ance of the term P . This reflects that, in the stochastic situation, the controller has to balance
the scale of control and the degree of uncertainty if the control affects the volatility of the
system. If b is independent of u, then we do not need P and one adjoint equation, say (3.4),
is enough to get the PMP for Problem (OP) (e.g., [40, Theorem 12.4]).

PMP is a necessary condition for optimal controls, which gives a minimum qualifi-
cation for the candidates of optimal controls. It is natural to ask whether it is also sufficient.
To this end, let us introduce the following assumption.

(A4). The control domain U is a convex subset with a nonempty interior of a separable
Hilbert space QH . The maps a; b, and g are locally Lipschitz in u, and their derivatives in x
are continuous in .x; u/.

Theorem 3.4. Suppose the assumptions of Theorem 3.3 and (A4) hold. Let u 2 UŒ0; T � and
y be the corresponding state of (3.1). Let .z; Z/ be the transposition solution to (3.4) with
F.t; z; Z/ D �ay.t; y.t/; u.t//

�z � by.t; y.t/; u.t//
�Z C gy.t; y.t/; u.t//,

zT D �hy.y.T //, and .P.�/;Q.�/, OQ.�// be the relaxed transposition solution to (3.7) with8<:PT D �hyy.y.T //; J.t/ D ay.t; y.t/; u.t//;

K.t/ D by.t; y.t/; u.t//; F .t/ D �Hyy.t; y.t/; u.t/; z.t/; Z.t//:

Suppose that h.�/ is convex, H.t; �; �; z.t/; Z.t// is concave for all t 2 Œ0; T � a.s., and

H
�
t; y.t/; u.t/; z.t/; Z.t/

�
� H

�
t; y.t/; �; z.t/; Z.t/

�
�
1

2

˝
P.t/

�
b
�
t; y.t/; u.t/

�
� b

�
t; y.t/; �

��
; b
�
t; y.t/; u.t/

�
� b

�
t; y.t/; �

�˛
H

� 0

for all � 2 U , then .y.�/; u.�// is an optimal pair of Problem (OP).

4. Open problems

SDPSs offers challenges and opportunities for the study of the mathematical control
theory. There are many interesting problems in this topic. Some of them are listed below,
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which is by no means an exhaustive list and only reflects our research taste. We believe that
new mathematical results and even fundamentally new approaches will be required.

(1) Null and approximate controllability of stochastic hyperbolic equations. We have
shown that the system (2.1) is not exactly controllable for any T > 0 and �0 � � . It is natural
to ask whether it is null/approximately controllable. Of course, for these problems, fewer
controls should be employed. The difficulty to do that lies in proving suitable observability
estimate of equation (2.3), in which Z and OZ do not appear in the right-hand side.

(2) Exact controllability for stochastic wave-like equations with more regular controls.
Is the system (2.2) exactly controllable when g 2 L2

F .0; T IL2.G//? The desired controlla-
bility is equivalent to the following observability estimate:ˇ̌�

zT ; OzT
�ˇ̌

L2
FT

.�IH 1
0 .G//�L2

FT
.�IL2.G//

� C

�ˇ̌̌̌
@z

@�

ˇ̌̌̌
L2

F .0;T IL2.�0//

C ja5z CZjL2
F .0;T IL2.G// C j OZjL2

F .0;T IL2.G//

�
; (4.1)

where .z; Z; Oz; OZ/ is the solution to (2.3) with � D T and final datum .zT ; OzT /. But one
cannot mimic the method in [37] to prove (4.1).

(3) Null/approximate controllability for stochastic parabolic equations with one con-
trol. One needs two controls to get the null/approximate controllability for stochastic para-
bolic equations (e.g., [45]). We believe that one control is enough. However, except for some
special cases (e.g., [23,26]), we have no idea on how to prove that.

(4) The cost for the approximate controllability for SDPSs. It is shown in [45] that
stochastic parabolic equations are approximately controllable. But it does not give any esti-
mate for the cost of the control. Can one generalize the results in [10] to stochastic parabolic
equations? Furthermore, it deserves to study the cost of the approximate controllability for
general SDPSs.

(5) Controllability for semilinear SDPSs. In [9], based on sharp estimates on the depen-
dence of controls for the underlying linear equation perturbed by a potential and fixed point
arguments, it was proved that semilinear parabolic and hyperbolic equations are null con-
trollable with nonlinearities that grow slower than s log.s/ 3

2 . Whether such results can be
obtained for semilinear stochastic parabolic/hyperbolic equations is open. On the other hand,
for nonlinearities growing at infinity as s log.s/p with p > 2, one cannot get the null con-
trollability due to the blow-up of solutions. However, this does not exclude controllability
for some particular classes of nonlinear terms (e.g., [7]). More generally, there are lots of
interesting results for controllability of semilinear distributed parameter systems (e.g., [6]).
So a systematic study of controllability problems for semilinear SDPSs deserves attention.

(6) Stabilization of SDPSs. Stabilization for distributed parameter control systems is a well-
studied area. In recent years, some progresses were obtained for SDPSs (e.g., [1,4]). However,
this problem is far from being well understood. For example, as far as we know, there is no
result for the stabilization of stochastic hyperbolic equations with localized damping.
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(7) Optimal control problems for SDPSs with endpoint/state constraints. For some spe-
cial constraints, such as y.T / belonging to some nonempty open subset of L2

FT
.�IH/, one

can use the Ekeland variational principle to establish a Pontryagin-type maximum principle
with nontrivial Lagrange multipliers. Nevertheless, for the general case, one does need some
further conditions to obtain nontrivial results. For deterministic optimal control problems,
people introduce the so-called finite codimensionality condition to guarantee the nontriv-
iality of the Lagrange multiplier (e.g., [20, 25]). There are some attempts to generalize this
condition to the stochastic framework (e.g., [24]). Another way is to use some tools from the
set-valued analysis (e.g., [12]). However, the existing results are still not satisfactory so far.

(8)Well-posedness of (3.7) in the sense of transposition solution. It would be quite impor-
tant for some optimal control problems to prove that equation (3.7) admits a unique transpo-
sition solution. So far this is only done for a very special case (e.g., [33, Theorem 4.1]).

(9) Higher-order necessary conditions for optimal controls. Similar to calculus, in addi-
tion to the first-order necessary conditions (PMP), sometimes higher-order necessary con-
ditions should be established to distinguish optimal controls from the candidates satisfying
the first-order necessary conditions trivially. Some results in this direction for SDPSs can
be found in [12,13,32]. However, these results were obtained only under very strong assump-
tions which should be relaxed. To this end, we believe one should first show the existence of
a transposition solution to equation (3.7).

(10) Existence of optimal controls. We have discussed the necessary conditions for opti-
mal controls without proving the existence of an optimal control, which is a very difficult
problem. There are two general approaches available to study it. One is to prove the verifica-
tion theorem, the other is to show that a minimizing sequence of controls is compact. Both
methods have not been developed well for SDPSs. Except for some trivial cases, such as

• U is a closed and convex subset of a reflective Banach spaceV , and the functionals
g and h are convex and for some ı, � > 0,

g.x; u; t/ � ıjujV � �; h.x/ � ��; 8.x; u; t/ 2 H � V � Œ0; T �I

• U is a closed, convex and bounded subset of a reflective Banach space V , and the
functionals g and h are convex;

there is no further result for that problem.

(11) The relationship between PMP and dynamic programming for SDPSs. PMP and
dynamic programming serve as two of the most important tools in solving optimal con-
trol problems. Both of them provide some necessary conditions for optimal controls. There
should exist a basic link between them. This link is established for finite dimensional stochas-
tic control systems (e.g., [47]). A possible relationship unavoidably involves the derivatives
of the value functions, which could be nonsmooth in even very simple cases (e.g., [5]).

(12) The connection between controllability and optimal control. The survey divides
itself naturally into two parts—controllability and optimal control. There should be a close
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relationship between these two topics. Some initial findings are given in [24], in which a new
link between (finite-codimensional exact) controllability and optimal control problems for
SDPSs with endpoint state constraints is presented. However, lots of things are to be done,
which are by no means easy tasks.

(13) Numerics of the controllability and optimal control problems for SDPSs. By gen-
eralizing J.-L. Lions’ HUM (e.g., [16]), one can find the numerical solution to controllability
problems of SDPSs by solving suitable adjoint equations numerically (e.g., [40, Section 7.4]).
On the other hand, by Theorem 3.4, one can obtain an optimal control by solving suitable
forward–backward stochastic evolution equation. Unfortunately, the numerical approxima-
tion of the equations mentioned above can be quite cumbersome. We refer the readers to [30]

and references therein for some recent works on this. There are lots of things to be done.

(14) What can we benefit from the uncertainty? From Sections 2 and 3, we see that the
uncertainty in SDPSs places many disadvantages for controlling the systems. Nevertheless,
sometimes, surprisingly, it provides advantages (e.g., [34,39]). What can we benefit from the
uncertainty in SDPSs is far from being understood. We believe that the study for that problem
will lead to new insights into uncertainty.
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Independent learning
in stochastic games
Asuman Ozdaglar, Muhammed O. Sayin, and
Kaiqing Zhang

Abstract

Reinforcement learning (RL) has recently achieved tremendous successes in many arti-
ficial intelligence applications. Many of the forefront applications of RL involve mul-
tiple agents, e.g., playing chess and Go games, autonomous driving, and robotics. Unfor-
tunately, the framework upon which classical RL builds is inappropriate for multiagent
learning, as it assumes an agent’s environment is stationary and does not take into account
the adaptivity of other agents. In this review paper, we present the model of stochastic
games [69] for multiagent learning in dynamic environments. We focus on the develop-
ment of simple and independent learning dynamics for stochastic games: each agent is
myopic and chooses best-response type actions to other agents’ strategy without any coor-
dination with her opponent. There has been limited progress on developing convergent
best-response type independent learning dynamics for stochastic games. We present our
recently proposed simple and independent learning dynamics that guarantee convergence
in zero-sum stochastic games, together with a review of other contemporaneous algo-
rithms for dynamic multiagent learning in this setting. Along the way, we also reexamine
some classical results from both the game theory and RL literature, to situate both the
conceptual contributions of our independent learning dynamics, and the mathematical
novelties of our analysis. We hope this review paper serves as an impetus for the resur-
gence of studying independent and natural learning dynamics in game theory, for the more
challenging settings with a dynamic environment.
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1. Introduction

Reinforcement learning (RL) in which autonomous agents make decisions in un-
known dynamic environments has emerged as the backbone of many artificial intelligence
(AI) problems. The frontier of many AI systems emerges in multiagent settings, including
playing games such as chess and Go [73, 74], robotic manipulation with multiple connected
arms [30], autonomous vehicle control in dynamic traffic and automated warehouses or pro-
duction facilities [68,86]. Further advances in these problems critically depend on developing
stable and agent incentive-compatible learning dynamics in multiagent environment. Unfor-
tunately, the mathematical framework upon which classical RL depends on is inadequate
for multiagent learning, since it assumes an agent’s environment is stationary and does not
contain any adaptive agents.

The topic of multiagent learning has a long history in game theory, almost as long
as the discipline itself. One of the most studied models of learning in games is fictitious play,
introduced by Brown [14], with first rigorous convergence analysis presented by Robinson
[59] for its discrete-time variant and for finite two-player zero-sum games. See also [27,28,33,

49,51,70] and others for the analysis of fictitious play. In fictitious play, each agent is myopic
(i.e., she does not take into account the fact that her current action will have an impact on
the future actions of other players1), and therefore chooses a best response to the opponent’s
strategy, which she estimates to be the empirical distribution of past play. Despite extensive
study on learning in repeated play of static complete-information games (also referred to as
strategic- or normal-form games) and the importance of the issues, there is limited progress
on multiagent learning in dynamic environments (where the environments evolve over time).
The key challenge is to estimate the decision rules of other agents that in turn adapt their
behavior to changing nonstationary environments.

In this review paper, we first present stochastic games, first introduced in [69], as
a model for representing dynamic multiagent interactions in Section 3.2 Stochastic games
extend strategic-form games to dynamic settings where the environment changes with play-
ers’ decisions. They also extend single-agent Markov decision problems (Markov decision
processes) to competitive situations with more than one decision-maker. Developing simple
and independent learning rules, e.g., the fictitious-play/best-response type dynamics, for
stochastic games has been an open question for some time in the literature (see [19, 20, 78]

for some negative nonconvergent results due to nonstationarity).
In the second part of the paper in Section 4, we present recently proposed simple and

independent learning rules from [63,64], and show their convergence for zero-sum stochastic
games. Crucially, these rules are based on fictitious play-type dynamics and, unlike ear-
lier works, do not require coordination between agents, leading to fully decentralized and
independent multiagent learning dynamics. We combine ideas from game theory and RL in
developing these learning rules, and consider three different settings: model-based setting

1 Hereafter, we use player and agent interchangeably.
2 The preliminary information on strategic-form games and learning in strategic-form games

with repeated play are provided in Section 2.
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where players know their payoff functions, transition probabilities of the underlying stochas-
tic games, and observe opponent’s actions; model-free setting where players do not know
payoff functions and transition probabilities but can still observe the opponent’s actions; and
the minimal information setting where players do not even observe opponent’s actions. In
all three settings, the players do not know the opponent’s objective, i.e., they do not possess
the knowledge that the underlying game is zero-sum. In the minimal-information setting, the
players may not even know the existence of an opponent.

In Section 5, we have also reviewed several other algorithms/learning dynamics, and
their convergence results for multiagent learning in stochastic games. We cover both results
from the game theory literature that typically assumes knowledge of the model of the players’
payoff functions, and the transition probabilities of the underlying stochastic games, and also
from the RL literature which posit learning dynamics that perform updates without knowing
the transition probabilities. Most of these update rules typically involve coordination and
computationally intensive steps for the players. These algorithms can be viewed more as ones
for computing the Nash equilibrium of the stochastic games, as opposed to natural learning
dynamics that would be adopted by self-interested agents interested in maximizing their own
payoffs given their inferences (as captured in our learning dynamics). Finally, we conclude
the paper with open questions on independent learning in stochastic games in Section 6.

2. Preliminaries: strategic-form games

A two-player strategic-form game can be characterized by a tuple hA1; A2; r1; r2i,
in which

• the finite set of actions that player i can take is denoted by Ai ,

• the payoff function of player i is denoted by r i W A ! R, where A WD A1 � A2.3

Each player i takes an action from her action set Ai simultaneously and receives the payoff
r i .a1; a2/.

We let players choose a mixed strategy to randomize their actions independently.
For example, � i W Ai ! Œ0; 1� denotes the mixed strategy of player i such that � i .ai / cor-
responds to the probability that player i plays ai . Note that we have

P
ai 2Ai � i .ai / D 1 by

its definition.
We represent the strategy profile and action profile of the players by � D .�1; �2/

and a D .a1; a2/, respectively. Under the strategy profile � , the expected payoff of player i

is defined by
U i .�/ WD Ea��

®
r i .a/

¯
:

3 We can generalize the definition to arbitrary number of players in a rather straightforward
way.
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Note that the expected payoff of player i is affected by the strategy of the opponent. We next
introduce the Nash equilibrium where players do not have any (or large enough) incentive to
change their strategies unilaterally.

Definition 2.1 (("-)Nash equilibrium). A strategy profile �� is a mixed-strategy "-Nash equi-
librium with " � 0 if we have

U 1
�
�1

� ; �2
�

�
� U 1

�
�1; �2

�

�
� "; for all �1; (2.1a)

U 2
�
�1

� ; �2
�

�
� U 2

�
�1

� ; �2
�

� "; for all �2: (2.1b)

Furthermore, �� is a mixed-strategy Nash equilibrium if (2.1) holds with " D 0.

The following is the classical existence result for any strategic-form game (e.g., see
[4, Theorem 3.2]).

Theorem 2.2 (Existence of an equilibrium in strategic-form games). In strategic-form
games (with finitely many players and finitely many actions), a mixed-strategy equilibrium
always exists.

The key question is whether an equilibrium can be realized or not in the interac-
tion of self-interested decision-makers. In general, finding the best strategy against another
decision-maker is not a well-defined optimization problem because the best strategy that
reflects the viewpoint of the individual depends on the opponent’s strategy. Therefore, play-
ers are generally not able to compute their best strategy beforehand. When there exists a
unique equilibrium, we can expect the players to identify their equilibrium strategies as a
result of an introspective thinking process. For example, what would the opponent choose?
What would the opponent have chosen if she knew I am considering what she would pick
while choosing my strategy? And so on. However, many empirical analyses suggest that an
equilibrium would not typically be realized in one shot even with such reasoning (see, e.g.,
[29]).

It is instructive to consider the following well-known example: Consider a game
played among n > 1 students. The teacher asks the students to pick a number between 0 and
100, and submit it within a closed envelope. The winner will be the one who chooses the
number closest to the two-thirds of the average of all numbers picked. It can be seen that the
unique equilibrium is the strategy profile where every player chooses 0. We would expect
the students to pick 0 as a result of an introspective thinking process, however, empirical
studies show that they typically pick numbers other than zero such that their average ends
up around 30, with its two-thirds around 20 [53]. This results in players who have selected 0

by strategizing their actions introspectively losing the game. However, if the game is played
repeatedly with players observing chosen actions, each player will have a tendency to pick
numbers closer to the winning number (or its two-thirds if they notice that others can also
have such a tendency to pick the number closest to the winning one). This results in conver-
gence to the equilibrium play along repeated play of the game, even when the players have
not engaged in any forward-looking strategy.
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Many games have multiple equilibria which makes coordination and selection
through introspective thinking challenging. On the other hand, empirical studies suggest
even in strategic situations equipped with multiple equilibria, individual agents reach an
equilibrium as long as they engage with each other multiple times and receive feedback to
revise their strategies [29].

In the following, we review the canonical models of learning with multiple agents
through repeated interactions.

2.1. Learning in strategic-form games with repeated play
Suppose that players know the primitives of the game, i.e., hA1; A2; r1; r2i. If play-

ers knew the opponent’s strategy, computation of the best strategy is a simple optimization
problem where they pick one of the maxima among linearly ordered finitely many elements.
However, players do not know the opponent’s strategy. When they play the same game repeat-
edly and observe the opponent’s actions in these games, they have a chance to reason about
what the opponent would play in the next repetition of the game. Therefore, they can estimate
the opponent’s strategy based on the history of the play. However, the opponent is not neces-
sarily playing according to a stationary strategy since she is also a strategic decision-maker
who can adapt her strategy according to her best interest.

Fictitious play is a simple and stylist learning dynamic where players (erroneously)
assume that the opponent plays according to a stationary strategy.4 This assumption lets
players form a belief on the opponent’s strategy based on the history of the play, e.g., the
empirical distribution of the actions taken. Then, the players can adapt their strategies based
on the belief constructed.

Fictitious play, since its first introduction by [14], has become the most appealing
best-response type learning dynamics in game theory. Formally, at iteration k, player i main-
tains a belief on the opponent’s strategy, denoted by O��i

k
2 �.A�i /.5 For example, the belief

can correspond to the empirical average of the actions taken in the past. Note that we can
view an action ai as a deterministic strategy in which the action is played with probability 1,
i.e., ai 2 �.Ai / with slight abuse of notation. Then, the empirical average is given by

O��i
kC1 D

1

k C 1

kX
�D0

a�i
� : (2.2)

The belief O��i
kC1

can be computed iteratively using bounded memory according to

O��i
kC1 D O��i

k C
1

k C 1
�
�
a�i

k � O��i
k

�
; (2.3)

with arbitrary initialization O��i
0 2 �.A�i /. In other words, players do not have to remember

every action taken by the opponent in the past. Moreover, player i selects her action following

ai
k 2 argmax

ai 2Ai

Ea�i � O��i
k

®
r i .a1; a2/

¯
; (2.4)

4 It is called fictitious play because [14] introduced it as an introspective thinking process that
a player can play by herself.

5 We represent the probability simplex over a set A by �.A/.
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with an arbitrary tie-breaking rule, playing a greedy best-response to the belief she maintains
on opponent’s strategy.

We say that fictitious play dynamics converge to an equilibrium if beliefs formed
converge to a Nash equilibrium when all players follow the fictitious play dynamics (2.3)–
(2.4). We also say that a class of games has fictitious play property if fictitious play converges
in every game of that class. The following theorem is about two important classes of games
from two extremes of the game spectrum: two-player zero-sum strategic-form games, where
r1.a/ C r2.a/ D 0 for all a 2 A, and n-player identical-interest strategic-form games, where
there exists a common payoff function r W A ! R such that r i .a/ D r.a/ for all a 2 A and
for each player i .

Theorem 2.3 (Fictitious play property of zero-sum and identical-interest games).

• The two-player zero-sum strategic-form games have fictitious play property [59].

• The n-player identical-interest strategic-form games have fictitious play property
[51].

As an alternative to the insightful proofs in [59] and [51], we can establish a con-
nection between fictitious play and continuous-time best response dynamics to characterize
its convergence properties. For example, [31] provided a proof for the continuous-time best-
response dynamics in zero-sum strategic-form games through a Lyapunov function formula-
tion. This convergence result also implies the convergence of fictitious play in repeated play
of the same zero-sum strategic-form game. We next briefly describe the approach in [31] to
convergence analysis for continuous-time best-response dynamics.

In continuous-time best response dynamics, the strategies .�1;�2/ evolve according
to the following differential inclusion:

d� i

dt
C � i

2 argmax
ai 2Ai

Ea�i ���i

®
r i .a1; a2/

¯
(2.5)

for i D 1;2. We highlight the resemblance between (2.3) and (2.5) because we can view (2.5)
as the limiting flow of (2.3) as 1=.k C 1/ ! 0. Note also that there exists an absolutely con-
tinuous solution to this differential inclusion [31]. To characterize the convergence properties
of this flow, [31] showed that the function

V.�/ D

X
iD1;2

�
max
ai 2Ai

Ea�i ���i

®
r i .a1; a2/

¯
� Ea��

®
r i .a/

¯�
(2.6)

is a Lyapunov function when r1.a/ C r2.a/ D 0 for all a 2 A.6 This yields that
V.�.t// � V.�.t 0// for all t 0 > t and V.�.t// > V.�.t 0// if V.�.t// > 0. Correspond-
ingly, we have V.�.t// ! 0 as t ! 1. This implies that the continuous-time best response
dynamics converge to the equilibrium of the zero-sum game. Since the terms in parentheses

6 Note that Ea�� ¹r1.a/º C Ea�� ¹r2.a/º D 0 when r1.a/ C r2.a/ D 0 for all a 2 A.
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in (2.6) are nonnegative, V.�/ D 0 yields that they are equal to zero for each i D 1; 2, which
is indeed the definition of the Nash equilibrium.

Generally, the convergence of the limiting flow would not lead to the convergence of
the discrete-time update. However, based on tools from differential inclusion approximation
theory [5], the existence of such a Lyapunov function yields that the fictitious play dynam-
ics converge to an equilibrium since its linear interpolation after certain transformation of
the time axis can be viewed as a perturbed solution to the differential inclusion (2.5) with
asymptotically negligible perturbation while the existence of Lyapunov function yields that
any such perturbed solution also converges to the zero-set of the Lyapunov function, i.e.,
¹� W V.�/ D 0º.

The fictitious play dynamics enjoy the following desired properties [29]: (i) The
dynamics do not require knowledge of the underlying game’s class, e.g., the opponent’s
payoff function, and is not specific to any specific class of games; (ii) Players attain the best-
response performance against an opponent following an asymptotically stationary strategy,
i.e., the learning dynamics is rational; (iii) If the dynamics converge, it must converge to an
equilibrium of the underlying game.

Unfortunately, there exist strategic-form games that do not have fictitious play prop-
erty as shown by [70] through a counterexample. The classes of strategic-form games with
fictitious play property have been studied extensively, e.g., see [6, 7, 48–52, 59, 65]. Variants
of fictitious play, including smoothed fictitious play [27] and weakened fictitious play [81]

have also been studied extensively. However, all these studies focus on the repeated play
of the same strategic-form game at every stage. There are very limited results on dynamic
games where players interact repeatedly while the game played at a stage (called stage-game)
evolves with their actions. Note that players need to consider the impact of their actions in
their future payoffs as in dynamic programming or optimal control when they have utilities
defined over infinite horizon.

In the next section, we introduce stochastic games, a special (and important class)
of dynamic games where the stage-games evolve over infinite horizon based on the current
actions of players.

3. Stochastic games

Stochastic games (also known as Markov games), since their first introduction by
Shapley [69], have been widely used as a canonical model for dynamic multiagent interac-
tions (e.g., see the surveys [16, 89]). At each time k D 0; 1; : : : , players play a stage game
that corresponds to a particular state of a multistate environment. The stage games evolve
stochastically according to the transition probabilities of the states controlled jointly by the
actions of both players. The players receive a payoff which is some aggregate of the stage
payoffs; a typical model is to assume the players receive a discounted sum of stage payoffs
over an infinite horizon.

Formally, a two-player stochastic game is characterized by a tuple hS;A1;A2; r1; r2;

p; i, in which:
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• The finite set of states is denoted by S .

• The finite set of actions that player i can take at any state is denoted by Ai .7

• The stage payoff function of player i is denoted by r i W S � A ! R, where
A D A1 � A2.

• For any pair of states .s; s0/ and action profile a 2 A, we define p.s0js; a/ as the
transition probability from s to s0 given action profile a.

• The players also discount the impact of future payoff in their utility with the dis-
count factor  2 Œ0; 1/.

The objective of player i is to maximize the expected sum of discounted stage-payoffs col-
lected over infinite horizon, given by

E

´
1X

kD0

kr i .sk ; ak/

µ
; (3.1)

where ak 2 A denotes the action profile played at stage k, ¹s0 � po; skC1 � p.� j sk ; ak/;

k � 0º is a stochastic process representing the state at each stage k and po 2 �.S/ is the initial
state distribution. The expectation is taken with respect to randomness due to stochastic state
transitions and actions mixed independently by the players.

The players can play an infinite sequence of (mixed) actions. When they have perfect
recall, they can mix their actions independently according to a behavioral strategy in which
the probability of an action is taken depends on the history of states and action profiles, e.g.,
hk D ¹s0; a0; s1; a1; : : : ; sk�1; ak�1; skº at stage k. This results in an infinite-dimensional
strategy space, and therefore, the universal result for the existence of an equilibrium, The-
orem 2.2, does not apply here. On the other hand, stochastic games can also be viewed as
a generalization of Markov decision processes (MDPs) to multiagent cases since state tran-
sition probabilities depend only on the current state and current action profile of players.
Behavioral strategies that depend only on the final state of the history (which corresponds
to the current state) are known as Markov strategies. Furthermore, we call a Markov strat-
egy by a stationary strategy if it does not depend on the stage, e.g., see [71, Section 6.2]. In
(discounted) MDPs, there always exists an optimal strategy that is stationary, e.g., see [23].
Shapley [69] showed that this can be generalized to two-player zero-sum stochastic games.

We denote the stationary mixed strategy of player i by � i W S ! �.Ai /, implying
that she takes actions according to the mixed strategy specific to state s, i.e., � i .s/ 2 �.Ai /.
We represent the strategy profile of players by � WD ¹�1;�2º. Correspondingly, the expected
discounted sum of stage payoffs of player i under the strategy profile � is defined by

U i .�/ WD E

´
1X

kD0

kr i .sk ; ak/

µ
; (3.2)

7 The formulation can be generalized to the case where the action spaces depend on state in a
rather straightforward way.
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where ak � �.sk/, and the expectation is taken with respect to the all randomness. We next
introduce the Nash equilibrium (more specifically, Markov perfect equilibrium [44,45]) where
players do not gain any utility improvement by unilateral changes in their stationary strategies
regardless of the initial state, e.g., see [71, Section 6.2].

Definition 3.1 (Stationary ("-)Nash equilibrium). We say that a stationary strategy profile
� is a stationary mixed-strategy "-Nash equilibrium with " � 0 if we have

U 1
�
�1; �2

�
� U 1

�
N�1; �2

�
� " for all N�1; (3.3a)

U 2
�
�1; �2

�
� U 2

�
�1; N�2

�
� " for all N�2: (3.3b)

We say that � is a stationary mixed-strategy Nash equilibrium if (3.3) holds with " D 0.

We next state an important existence result for discounted stochastic games.

Theorem 3.2 (Existence of a stationary equilibrium in stochastic games [24]). In stochastic
games (with finitely many players, states, and actions, and discount factor  2 Œ0; 1/), a
stationary mixed-strategy equilibrium always exists.

The proof for two-player zero-sum stochastic games is shown by Shapley [69] while
its generalization to n-player general-sum stochastic games is proven by Fink [24] and Taka-
hashi [77] concurrently. Shapley [69] had also presented an iterative algorithm to compute the
unique equilibrium value of a two-player zero-sum stochastic game. To describe the algo-
rithm, let us first note that in a zero-sum strategic-form game, there always exists a unique
equilibrium value for the players (though there may exist multiple equilibria). For example,
given a zero-sum strategic-form game hA1; A2; u1; u2i, we denote the equilibrium values of
player 1 and player 2, respectively, by

val1
�
u1

�
D max

�12�.A1/
min

�22�.A2/
Ea�.�1;�2/

®
u1.a/

¯
; (3.4)

val2
�
u2

�
D max

�22�.A2/
min

�12�.A1/
Ea�.�1;�2/

®
u2.a/

¯
: (3.5)

It is instructive to examine the following thought experiment. Imagine that players are at the
edge of the infinite horizon. Then the players’ continuation payoff would be determined by
the stage game at state s since there would not be any future stages to consider. The unique
equilibrium values they would get would be vali Œr i .s; �/�. Then, at the stage just before the last
one, they would have played the strategic-form game hA1; A2; Q1.s; �/; Q2.s; �/i at state s,
where

Qi .s; �/ D r i .s; �/ C 
X
s02S

p
�
s0

js; �
�

vali
�
r i .s0; �/

�
: (3.6)

Shapley [69] showed that if we follow this backward induction, we can always compute the
equilibrium values associated with a stationary equilibrium. To this end, he introduced the
operator T i defined by�

T i vi
�
.s/ WD vali

�
r i .s; �/ C 

X
s02S

p.sjs; �/vi .s0/

�
; 8s 2 S; (3.7)
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which is a contraction with respect to the `1-norm when  2 .0; 1/ since vali is a nonex-
pansive mapping, i.e., ˇ̌

vali .ui / � vali . Qui /
ˇ̌

� max
a2A

ˇ̌
ui .a/ � Qui .a/

ˇ̌
;

for any ui W A ! R and Qui W A ! R, similar to the maximum function in the Bellman operator.
Therefore, the iteration

vi
.nC1/ D T i vi

.n/; 8n � 0; (3.8)

starting from arbitrary vi
.0/

converges to the unique fixed point of the operator. Further inspec-
tion of the fixed point reveals that it is indeed the equilibrium values of states associated with
some stationary equilibrium of the underlying two-player zero-sum stochastic game. There
does not exist a counterpart of this iteration for the computation of equilibrium values in
general-sum stochastic games, since the value of a game is not uniquely defined for general-
sum stochastic games, and involves a fixed point operation, which is hard to compute at each
stage of an algorithm. However, Shapley’s iteration is still a powerful method to compute
equilibrium values in a two-player zero-sum stochastic game.

In the following section, we examine whether a stationary equilibrium would be
realized as a consequence of nonequilibrium adaptation of learning agents as in Section 2.1
but now for stochastic games instead of repeated play of the same strategic-form game.

4. Learning in stochastic games

Fictitious play dynamics is a best-response type learning dynamics where each
player aims to take the best response against the opponent by learning the opponent’s strat-
egy based on the history of the play. This stylist learning dynamic can be generalized to
stochastic games as players (again erroneously) assume that the opponent plays according to
a stationary strategy (which depends only on the current state). Hence, they can again form a
belief on the opponent’s stationary strategy based on the history of the play. Particularly, they
can form a belief on the opponent’s mixed strategy specific to a state based on the actions
taken at that state only due to the stationarity assumption on the opponent’s strategy. Given
that belief on the opponent’s strategy, players can also compute the value of each state-action
pair based on backward induction since their actions determine both the stage payoff and the
continuation payoff by determining the state transitions. Therefore, they essentially play an
auxiliary stage-game at each stage specific to the current state, which can be represented by
Gs WD hA1; A2; Q1.s; �/; Q2.s; �/i, where the payoff or the Q-function, Qi .s; �/ W A ! R

is determined according to the backward induction given ��i the belief of player i about
player �i ’s strategy, and therefore, it satisfies the following fixed-point equation:

Qi .s; a/ D r i .s; a/ C 
X
s02S

p
�
s0

js; a
�

max
ai 2Ai

Ea�i ���i .s0/

®
Qi .s0; a1; a2/

¯
: (4.1)

For notational convenience, we also define the value function vi W S ! R by

vi .s/ WD max
ai 2Ai

Ea�i ���i .s/

®
Qi .s; a1; a2/

¯
: (4.2)
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At each stage k, player i has a belief on player �i ’s strategy, which we denote
by O��i

k
. Player i also forms a belief on the payoff function for the auxiliary game, or the

Q-function, denoted by OQi
k
. Let s be the current state of the stochastic game. Then, player i

selects her action ai
k

according to

ai
k 2 argmax

ai 2Ai

Ea�i � O��i
k

.s/

®
OQi

k.s; a1; a2/
¯
: (4.3)

Observing the opponent’s action a�i
k

, player i forms her belief on player �i ’s strategy for
the current state s as a weighted empirical average, which can be constructed iteratively as

O��i
kC1.s/ D O��i

k .s/ C ˛ck.s/

�
a�i

k � O��i
k .s/

�
: (4.4)

Here ˛c 2 Œ0; 1� is a step size and it vanishes with ck.s/ indicating the number of visits to
state s rather than time. Note that if there was a single state, ck.s/ would correspond to the
time, i.e., ck.s/ D k, as in the classical fictitious play. The update (4.4) can also be viewed
as taking a convex combination of the current belief O�2

k
.s/ and the observed action a2

k
while

the step size ˛ck.s/ is the (vanishing) weight of the action observed. Vanishing step size as
a function of the number of visits implies that, the players give less weight to their current
belief than the observed action by using a large step size if that state has not been visited
many times. This means that the players will still give less weight to their current belief even
at later stages if the specific state has not been visited many times, and indicating, they have
not been able to strengthen their belief enough to rely more on it.

Simultaneously, player i updates her belief on her own Q-function for the current
state s according to

OQi
kC1.s;a/ D OQi

k.s;a/ C ˇck.s/

�
r i .s;a/ C 

X
s02S

p
�
s0

js;a
�
Ovi
k.s0/ � OQi

k.s;a/

�
; 8a 2 A;

(4.5)
where we define Ovi

k
W S ! R as the value function estimate given by

Ovi
k.s/ D max

ai
Ea�i

k
� O��i

k
.s/

®
OQi

k.s; a1; a2/
¯
; (4.6)

and ˇc 2 Œ0; 1� is another step size that also vanishes with ck.s/. Similar to (4.4), the update
of the belief on the Q-function (4.5) can be viewed as a convex combination of the current
belief OQi

k
.s;a/ and the new observation r i .s;a/ C 

P
s02S p.s0js;a/ Ovi

k
.s0/. Such vanishing

step size again implies that the players are relying on their beliefs more if they have had many
chances to strengthen them.

The key feature of this learning dynamic is that the players update their beliefs on
their Q-functions at a slower timescale than the update of their beliefs on the opponent
strategy. This is consistent with the literature on evolutionary game theory [22, 62] (which
postulates players’ choices to be more dynamic than changes in their preferences) since we
can view Q-functions in auxiliary games as slowly evolving player preferences. Particularly,
the two-timescale learning framework implies that the players take smaller and smaller steps
at (4.5) than the steps at (4.4) such that the ratio of the step sizes, ˇc=˛c , goes to zero with
the number of visits to the associated state. Note that this implies that ˇc goes to zero faster
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than ˛c does, implying slower update of the Q-function estimate compared to the opponent’s
strategy estimate. This weakens the dependence between evolving beliefs on opponent strat-
egy and Q-function.

We say that this two-timescale fictitious play dynamics converge to an equilibrium
if beliefs on opponent strategies converge to a Nash equilibrium which associates with the
auxiliary games while the beliefs on Q-functions converge to the Q-functions for a stationary
equilibrium of the underlying stochastic game. Particularly, given an equilibrium ��, the
associated Q-function of player i satisfies

Qi .s;a/ D r i .s;a/ C 
X
s02S

p
�
s0

js;a
�

max
ai 2Ai

Ea�i ���i
� .s/

®
Qi .s0;a1;a2/

¯
; 8.s;a/ 2 S � A:

Recall that players are playing a dynamically evolving auxiliary game at each state repeat-
edly, but update their beliefs on the Q-functions and opponent strategies only when that
state is visited. Therefore, the players are updating their beliefs on the opponent strategy
and Q-function specific to that state only during these visits. Hence, we make the follow-
ing assumption ensuring that players have sufficient time to revise and improve their beliefs
specific to a state.

Assumption 4.1 (Markov chain). Each state is visited infinitely often.

Stochastic games reduce to the repeated play of the same strategic-form game if
there exists only one state and the discount factor is zero. Correspondingly, Assumption 4.1
always holds in such a case. However, when there are multiple states, Assumption 4.1 does
not necessarily hold, e.g., since some states can be absorbing by preventing transitions to
others. In the following, we exemplify four Markov chain configurations with different gen-
erality:

• Case (i) The probability of transition between any pair of states is positive for
any action profile. This condition is also known as irreducible stochastic games
[40].

• Case (ii) The probability of transition between any pair of states is positive for
at least one action profile. Case (ii) includes Case (i) as a special case.8

• Case (iii) There is positive probability that any state can be reached from any state
within a finite number of stages for any sequence of action profiles taken during
these stages. Case (iii) includes Case (i) as a special case but not necessarily
Case (ii).

• Case (iv) There is positive probability that any state can be reached from any
state within a finite number of stages for at least one sequence of action pro-

8 Another possibility in between Cases (i) and (ii) is that the probability of transition between
any pair of states is positive for at least one action of one player and any action of the oppo-
nent. In other words, the opponent cannot prevent the game to transit from any state to any
state.
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files taken during these stages. Case (iv) includes Cases (ii) and (iii) as special
cases.9

Note that Assumption 4.1 holds under Case (iii) but not necessarily under Case (ii) or (iv).
Recall that in the classical fictitious play, the beliefs on opponent strategy are formed

by the empirical average of the actions taken by the opponent. The players can also form
their beliefs as a weighted average of the actions while the weights may give more (or less)
importance to recent ones depending on the player’s preferences, e.g., as in (4.4). In other
words, we let ˛c take values other than 1=.c C 1/ for c D 0; 1; : : : Furthermore, the two-
timescale learning scheme imposes that ˇc=˛c goes to zero as c goes to infinity. In the
following, we specify conditions on step sizes that are sufficient to ensure convergence of the
two-timescale fictitious play in two-player zero-sum stochastic games under Assumption 4.1.

Assumption 4.2 (Step sizes). The step sizes ¹˛cº and ¹ˇcº satisfy the following conditions:

(a) They vanish at a slow enough rate such thatX
c�0

˛c D

X
c�0

ˇc D 1

while ˛c ! 0 and ˇc ! 0 as c ! 1.

(b) They vanish at two separate timescales such that

lim
c!1

ˇc

˛c

D 0:

The following theorem shows that the two-timescale fictitious play converges in
two-player zero-sum stochastic games under these assumptions.

Theorem 4.3 ([63]). Given a two-player zero-sum stochastic game, suppose that players
follow the two-timescale fictitious play dynamics (4.4) and (4.5). Under Assumptions 4.1
and 4.2, we have

. O�1
k ; O�2

k / ! .�1
� ; �2

�/ and . OQ1
k ; OQ2

k/ ! .Q1
�; Q2

�/; with probability 1; (4.7)

as k ! 1 for some stationary equilibrium �� D .�1
� ; �2

�/ of the underlying stochastic game
and .Q1

�; Q2
�/ denote the associated Q-functions.

Before delving into the technical details of the proof, it is instructive to compare the
two-timescale fictitious play with both the classical fictitious play and the Shapley’s iteration.
For example, the update of O��i

k
, described in (4.4), differs from the classical fictitious play

dynamics (2.3) since the auxiliary game depends on the belief OQi
k

while the belief (and
therefore the payoffs of the auxiliary games) evolves in time with new observations, quite

9 Another possibility in between Cases (iii) and (iv) is that there is positive probability that
any state can be reached from any state within a finite number of stages for at least one
sequence of actions of one player and for any sequence of actions taken by the opponent
during these stages. In other words, the opponent cannot prevent the player to reach any
state from any state within a finite number of stages.
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contrary to the classical scheme (2.4). In general, this constitutes a challenge in directly
adopting the convergence analysis for the classical scheme to stochastic games. However,
the two-timescale learning scheme weakens this coupling, enabling us to characterize the
asymptotic behavior specific to a state separately from the dynamics in other states as if
. OQ1

k
.s; �/; OQ2

k
.s; �// is stationary.

Moreover, even with the two-timescale learning scheme, we still face a challenge
in directly adopting the convergence analysis of fictitious play specific to zero-sum games,
e.g., [31,59]. Particularly, players form beliefs on their Q-functions independently based on
the backward induction that they will always look for maximizing their utility against the
opponent strategy. Due to this independent update, the auxiliary games can deviate from the
zero-sum structure even though the underlying game is zero-sum. Hence we do not necessar-
ily have OQ1

k
.s; a/ C OQ2

k
.s; a/ D 0 for all a 2 A and for each s 2 S . This poses an important

challenge in the analysis since an arbitrary general-sum game does not necessarily have fic-
titious play property in general.

Next, we compare the two-timescale fictitious play with Shapley’s value iteration.
We can list the differences between the update of OQi

k
, described in (4.5), and the Shapley’s

iteration (3.8) as follows:

• The Shapley’s iteration is over the value functions, however, it can be turned into
an iteration over the Q-functions with the operator

.F i Qi /.s; a/ D r i .s; a/ C 
X
s02S

p
�
s0

js; a
�

vali
�
Qi .s0; �/

�
; 8.s; a/ 2 S � A;

(4.8)

as derived in [76]. The transformed iteration is given by Qi
.nC1/

D F i Qi
.n/

starting
from arbitrary Qi

.0/
. Furthermore, the Shapley’s iteration does not involve a step

size, however, a step size can be included if we view Qi
.nC1/

D F i Qi
.n/

as the
one

Qi
.nC1/ D Qi

.n/ C ˇ.n/.F
i Qi

.n/ � Qi
.n// (4.9)

with the step size ˇ.n/ D 1 for all n.

• The Shapley’s iteration updates the value function at every state at each stage
while (4.5) takes place only when the state is visited. Therefore, we face the asyn-
chronous update challenge in the convergence analysis of (4.5) together with (4.4),
which can take place only when the associated state is visited. To address this, we
can resort to the asynchronous stochastic approximation methods, e.g., see [80]

(also upcoming Theorem 4.5).

• More importantly, the convergence of the Shapley’s iteration benefits from the
contraction property of the operator (3.7) (or its transformed version (4.8)) based
on the nonexpansive mapping vali .�/. However, in the update (4.5), we have

Ovi
k.s/ D max

ai 2Ai
Ea�i � O��i .s/

®
OQi .s; a1; a2/

¯
rather than vali . OQi .s; �//, which need not lead to a contraction.
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The proof of Theorem 4.3 follows from exploiting the two-timescale learning
scheme to analyze the evolution of the beliefs on opponent strategies specific to a state
in isolation as if the beliefs on Q-functions are stationary and then showing that Ovi

k
.s/ tracks

vali . OQi .s; �// while addressing the deviation from the zero-sum structure via a novel Lya-
punov function construction. The two-timescale learning scheme yields that the limiting
flow of the dynamics specific to a state is given by

d� i .s/

dt
C � i

s 2 argmax
ai 2Ai

Ea�i ���i .s/

®
Qi .s; a1; a2/

¯
; (4.10)

dQi .s; a/

dt
D 0; (4.11)

for all .s; a/ 2 S � A and i D 1; 2. The function (2.6) presented in [31] for continuous-time
best response dynamics in zero-sum games is no longer a valid Lyapunov function sinceP

iD1;2 Qi .s; a/ is not necessarily zero for all s and a. Therefore, we modify this function to
characterize the asymptotic behavior of this flow in terms of the deviation from the zero-sum
structure, e.g., maxa2A j

P
iD1;2 Qi .s; a/j. The new function is defined by

V�

�
�.s/; Q.s; �/

�
WD

� X
iD1;2

max
ai 2Ai

Ea�i ���i .s/

®
Qi .s; a1; a2/

¯
� � max

a2A

ˇ̌̌̌ X
iD1;2

Qi .s; a/

ˇ̌̌̌�
C

;

where � is a fixed scalar satisfying � 2 .1; 1=/. The lower bound on � plays a role in its
validity as a Lyapunov function when maxa2A j

P
iD1;2 Qi .s; a/j ¤ 0 while the upper bound

will play a role later when we focus on the evolution of
P

iD1;2 Qi .s; a/ to show that the
sum converges to zero, i.e., the auxiliary stage games become zero-sum, almost surely.

Note that V�.�/ reduces to V.�/, described in (2.6), if
P

iD1;2 Qi .s; a/ D 0 for all
a 2 A. Furthermore, it is a valid Lyapunov function for any Q1.s; �/ and Q2.s; �/ since we
have

d

dt

� X
iD1;2

max
ai 2Ai

Ea�i ���i .s/

®
Qi .s; a/

¯�
D

X
iD1;2

Qi .s; a�/ �

X
iD1;2

max
ai 2Ai

Ea�i ���i .s/

®
Qi .s; a/

¯
; (4.12)

where a� D .a1
�; a2

�/ are the maximizing actions in (4.10), and we always haveX
iD1;2

Qi .s; a�/ < � max
a2A

ˇ̌̌̌ X
iD1;2

Qi .s; a/

ˇ̌̌̌
if it is not zero-sum, since � > 1. In other words, the term inside .�/� in the new Lyapunov
function always decreases along the flow when it is nonnegative and cannot be positive once
it becomes nonpositive.

If we let Nvk WD Ov1
k

C Ov2
k

and NQk WD OQ1
k

C OQ2
k
, the new Lyapunov function yields

that �
Nvk.s/ � � max

a2A

ˇ̌
NQk.s; a/

ˇ̌�
C

! 0 (4.13)
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as k ! 1 for each s 2 S . On the other hand, we always have Nvk.s/ � ��maxa2A j NQk.s; a/j

by the definition of Ovi
k
. These bounds imply that NQk.s; a/ ! 0, and therefore Nvk.s/ ! 0 for

all .s; a/ 2 S � A, because the evolution of NQk for the current state s is given by

NQkC1.s; a/ D NQk.s; a/ C ˇck.s/

�


X
s02S

p
�
s0

js; a
�
Nvk.s0/ � NQk.s; a/

�
; 8a 2 A (4.14)

by (4.5), while the upper bound on � ensures that � 2 .0; 1/, and therefore, NQk.s; a/ con-
tracts at each stage until it converges to zero for all s 2 S and a 2 A. The asynchronous update
and the asymptotic upper bound on Nvk , as described in (4.13), constitute a technical chal-
lenge to draw this conclusion, however, they can be addressed via asynchronous stochastic
approximation methods, e.g., see [80].

Furthermore, the saddle point equilibrium yields

max
a12A1

Ea2� O�2
k

.s/

®
OQ1

k.s; a/
¯

� val1
�

OQ1
k.s; �/

�
� min

a22A2
Ea1� O�1

k
.s/

®
OQ1

k.s; a/
¯
; (4.15)

and the right-hand side is bounded from below by

min
a22A2

Ea1� O�1
k

.s/

®
OQ1

k.s; a/
¯

� min
a22A2

Ea1� O�1
k

.s/

®
� OQ2

k.s; a/
¯

C min
a22A2

Ea1� O�1
k

.s/

®
NQk.s; a/

¯
(4.16)

� � max
a22A2

Ea1� O�1
k

.s/

®
OQ2

k.s; a/
¯

� max
a2A

ˇ̌
NQk.s; a/

ˇ̌
: (4.17)

These bounds lead to

0 � Ovi
k.s/ � vali

�
OQi

k.s; �/
�

� Nvk.s/ C max
a2A

ˇ̌
NQk.s; a/

ˇ̌
; (4.18)

Since the right-hand side goes to zero as k ! 1, we have that Ovi
k
.s/ tracks vali . OQi

k
.s; �//.

Based on this tracking result, the update of OQi
k

can be viewed as an asynchronous version
of the iteration

Qi
.nC1/ D Qi

.n/ C ˇ.n/

�
F i Qi

.n/ C �i
.n/ � Qi

.n/

�
; (4.19)

where the tracking error �i
.n/

is asymptotically negligible almost surely and the operator F ,
as described in (4.8), is a contraction similar to the Shapley’s operator, described in (3.7).
This completes the sketch of the proof for Theorem 4.3.

4.1. Model-free learning in stochastic games
We next consider scenarios where players do not know the transition probabilities

and their own stage payoff function, however, they can still observe their stage payoffs (asso-
ciated with the current action profile), the opponent’s action, and the current state visited.
Therefore, the players can still form beliefs on opponent strategy and their Q-functions.

The update of the belief on opponent strategy does not depend on the model knowl-
edge. Therefore, the players can update their beliefs O��i

k
as in (4.4) also in the model-free

case. However, the update of OQi
k

necessitates the model knowledge by depending on the
stage payoff function and transition probabilities. The same challenge arises also in model-
free solution of Markov decision processes (MDPs)—a single player version of stochastic
games.
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For example, Q-learning algorithm, introduced by [82], can be viewed as a model-
free version of the value iteration in MDPs and the update rule is given by

OqkC1.s; a/ D Oqk.s; a/ C ˇk.s; a/
�
rk C  max

Qa2A
Oqk.Qs; Qa/ � Oqk.s; a/

�
; (4.20)

where the triple .s; a; Qs/ denotes the current state s, current action a, and the next state Qs,
respectively, the payoff rk corresponds to the payoff received, i.e., rk D r.s; a/, and
ˇk.s; a/ 2 Œ0; 1� is a step size specific to the state-action pair .s; a/. The entries corre-
sponding to the pairs .s0; a0/ ¤ .s; a/ do not get updated, i.e., OqkC1.s0; a0/ D Oqk.s0; a0/.

Watkins and Dayan [82] provided an ingenious (direct) proof for the almost sure
convergence of Q-learning algorithm. Alternatively, it is also instructive to establish a con-
nection between Q-learning algorithm and the classical value iteration to characterize its
convergence properties. For example, the differences between them can be listed as follows:

• In Q-learning, agents use the value function estimate for the next state Qs, i.e.,
Ovi
k
.Qs/, in place of the expected continuation payoff

P
s02S p.s0js; a/ Ovi

k
.s0/. This

way, they can sample from the state transition probabilities associated with the
current state–action pair by observing the state transitions. Correspondingly, this
update takes place only after the environment transitions to the next state.

• The update can take place only for the current state–action pair because the agent
can sample only from the transition probabilities associated with the current state-
action pair by letting the environment do the experimentation.

Therefore, the Q-learning algorithm can be viewed as an asynchronous Q-function version
of the value iteration

OqkC1 D Oqk C ˇk.Fo Oqk C !kC1 � Oqk/; (4.21)

where the Q-function version of the Bellman operator is given by

.Fo Oqk/.s; a/ D r.s; a/ C 
X
s02S

p
�
s0

js; a
�

max
a02A

Oqk.s0; a0/ (4.22)

and the stochastic approximation error !kC1 is defined by

!kC1.s; a/ WD 

�
max
Qa2A

Oqk.Qs; Qa/ �

X
s02S

p
�
s0

js; a
�

max
a02A

Oqk.s0; a0/

�
; (4.23)

with Qs denoting the next state at stage k. Note that (4.21) turns into an asynchronous update
if ˇk.s; a/ is just zero when Oqk.s; a/ is not updated. Though these error terms ¹!kºk>0

do not form an independent sequence, they form a finite-variance martingale difference
sequence conditioned on the history of parameters. The following well-known result shows
that the weighted sum of such martingale difference sequences vanishes asymptotically
almost surely.

Lemma 4.4 ([58]). Let ¹Fkºk�0 be an increasing sequence of � -fields. Given a sequence
¹!kºk�0, suppose that !k�1 is Fk-measurable random variable satisfying EŒ!kjFk � D 0

and EŒ!2
k
jFk � � K for some K. Then, the sequence ¹Wkºk�0 evolving according to

WkC1 D .1 � ˛k/Wk C ˛k!k ; (4.24)
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vanishes to zero asymptotically almost surely, i.e., limk!1 Wk D 0 with probability 1, pro-
vided that ˛k 2 Œ0; 1� is a vanishing step size that is Fk-measurable, square-summableP1

kD0 ˛2
k

< 1 while
P1

kD0 ˛k D 1 with probability 1.

This is a powerful result to characterize the convergence properties of stochastic
approximation algorithms having the structure

xkC1 D xk C ˛k

�
F.xk/ � xk C !k

�
where xk is an n-dimensional vector, F W Rn ! Rn is a Lipschitz function, ˛k 2 Œ0; 1� is
a step size, and !k is a stochastic approximation error term forming a finite-variance mar-
tingale difference sequence conditioned on the history of parameters. Note that every entry
of the vector xk gets updated synchronously. If we also have that the iterate is bounded, we
can characterize the convergence properties of this discrete-time update based on its limiting
ordinary differential equation via a Lyapunov function formulation [11]. If the entries do not
get updated synchronously, the asynchronous update challenge can be addressed based the
averaging techniques [38]. In the case of Q-learning, this corresponds to assuming that dif-
ferent state–action pairs occur at well-defined average frequencies, which can be a restriction
in practical applications [80]. Instead, [80] showed that we do not need such an assumption
if the mapping F has a contraction-like property based on the asynchronous convergence
theory [8,9].

Theorem 4.5 ([80]). Given anMDP, let an agent follow theQ-learning algorithm, described
in (4.20), with vanishing step sizes ˇk.s; a/ 2 Œ0; 1� satisfying

P
k�0 ˇk.s; a/ D 1 andP

k�0 ˇk.s; a/2 < 1 for each .s; a/ 2 S � A. Suppose that the entries corresponding to
each .s; a/ gets updated infinitely often. Then, we have

Oqk.s; a/ ! q�.s; a/; with probability 1; (4.25)

for each .s; a/ 2 S � A, as k ! 1, where q� is the unique Q-function solving the MDP.

Tsitsiklis [80] considered a more general case where agents receive random payoffs.
In general, such randomness can result in unbounded parameters. However, this is not the
case for Q-learning algorithm, i.e., the iterates in the Q-learning algorithm remains bounded.
Furthermore, the boundedness of the iterates plays a crucial role in the proof of Theorem 4.5.
Particularly, consider the deviation between the iterate Oqk and the unique solution q�, i.e.,
Qqk D Oqk � q�, which evolves according to

QqkC1 D Qqk C ˇk.F0 Qqk C !kC1 � Qqk/ (4.26)

by (4.21) and since F0q� D q�. Boundedness of the iterates Oqk yields that Qqk is also bounded.
For example, let j Qqk.s; a/j � D for all .s; a/ and k. Furthermore, by the contraction property
of F0 with respect to the maximum norm, we have

max
.s;a/

ˇ̌
.F0 Qqk/.s; a/

ˇ̌
�  max

.s;a/

ˇ̌
Qqk.s; a/

ˇ̌
:

Therefore, we can show that the absolute value of new iterates are bounded from above byˇ̌
Qqk.s; a/

ˇ̌
� Yk.s; a/ C WkC1.s; a/; (4.27)
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where ¹Yk.s; a/ºk�0 and ¹WkC1.s; a/ºk�0 are two sequences evolving, respectively, accord-
ing to

YkC1.s; a/ D
�
1 � ˇk.s; a/

�
D C ˇk.s; a/D (4.28)

starting from Y0 D D, and

WkC1.s; a/ D
�
1 � ˇk.s; a/

�
Wk.s; a/ C ˇk.s; a/!k.s; a/; (4.29)

starting from W1.s; a/ D 0 for all .s; a/. For each .s; a/, the sequence ¹Yk.s; a/ºk�0 con-
verges to D while ¹WkC1.s; a/ºk�0 converges to zero with probability 1 by Lemma 4.4
due to the assumptions on the step size and the infinitely often update of every entry. Letting
k ! 1 for both sides of (4.27), we obtain that the shifted iterates are asymptotically bounded
from above by D. This yields that there exists a stage where the iterates remain bounded
from above by . C �/D where � > 0 is sufficiently small such that  C � < 1. By following
the same lines, we can find a smaller asymptotic bound on the iterates. Therefore, we can
induce that the shifted iterates converge to zero and the iterates converge to the solution of
the MDP even with the asynchronous update.

Similar to the generalization of the value iteration to Q-learning for model-free
solutions, [42] generalized the Shapley’s iteration to Minimax-Q learning to compute equi-
librium values in two-player zero-sum stochastic games in a model-free way. The update rule
is given by

OQi
kC1.s; a/ D OQi

k.s; a/ C ˇk.s; a/
�
r i

k C  vali
�

OQi
k.Qs/

�
� OQi

k.s; a/
�
; (4.30)

for the current state s, current action profile a, and next state Qs with a step size ˇk.s;a/ 2 Œ0;1�

vanishing sufficiently slow such that
P

k�0 ˇk.s; a/ D 1 and
P

k�0 ˇk.s; a/2 < 1 with
probability 1. The payoff r i

k
corresponds to the payoff received for the current state and

action profile, i.e., r i
k

D r i .s; a/. The Minimax-Q algorithm converges to the equilibrium
Q-functions of the underlying two-player zero-sum stochastic game almost surely if every
state and action profile occur infinitely often.

In model-free methods, the assumption that every state–action pair occur infinitely
often can be restrictive for practical applications. A remedy to this challenge is that agents
explore at random instances by taking any action with uniform probability. Such random
exploration results in that every state-action pair gets realized infinitely often if every state is
visited infinitely often. Indeed, random exploration will also yield that each state gets visited
infinitely often if there is always positive probability that any state is reachable from any
state within a finite number of stages for at least one sequence of actions taken during these
stages. This corresponds to Case (iv) described in Section 4.

In the model-free two-timescale fictitious play, players play the best response in the
auxiliary game with probability .1 � �/ while experimenting with probability � by playing
any action with uniform probability. They still update the belief on the opponent strategy
as in (4.4). Furthermore, they update their beliefs on the Q-function for the current state s,
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current action profile a and next state s0 triple .s; a; s0/ according to

OQ1
kC1.s; a/ D OQ1

k.s; a/ C ˇck.s;a/

�
r1

k C  max
a12A

Ea2� O�2
k

.s0/

®
OQ1

k.s0; a1; a2/
¯

� OQ1
k.s; a/

�
;

(4.31)

where ˇck.s;a/ 2 Œ0; 1� is a step size vanishing with the number of times .s; a/ is realized
and the payoff r1

k
corresponds to the payoff associated with the current state s and action

profile a, i.e., r1
k

D r1.s; a/.
Recall that the two-timescale learning scheme plays an important role in the conver-

gence of the dynamics. Particularly, the step size ˛c used in the update of the belief O��i
k

.s/

goes to zero slower than the step size ˇc used in the update of the belief OQi
k
.s; �/. Since

both step size depend on the number of visits to the associated state, the assumption that
ˇc=˛c ! 0 as c ! 1 is sufficient to ensure this timescale separation. However, in the model-
free case, the asynchronous update of OQi

k
.s; a/ for different action profiles can undermine

this timescale separation because the step size ˇc specific to the update of OQi
k
.s; a/ depends

the number of times the state and action profile .s; a/, i.e., ck.s; a/, is realized. Therefore, we
make the following assumption ensuring that the step size in the update of OQi

k
.s; a/ vanishes

still faster than the step size in the update of O��i
k

.s/ as long as ck.s; a/ is comparable with
ck.s/, i.e., lim infk!1 ck.s; a/=ck.s/ > 0 with probability 1.

Assumption 4.6 (Step sizes). The step sizes ¹˛cº and ¹ˇcº satisfy the following conditions:

(a) They vanish at a slow enough rate such thatX
c�0

˛c D

X
c�0

ˇc D 1; and
X
c�0

˛2
c < 1;

X
c�0

ˇ2
c < 1

while ˛c ! 0 and ˇc ! 0 as c ! 1.10

(b) The sequence ¹ˇcºc�0 is monotonically decreasing. For any m 2 .0; 1�, we
have11

lim
c!1

ˇbmcc

˛c

D 0:

When we have lim infk!1 ck.s; a/=ck.s/ > 0 with probability 1 for all .s; a/, the
second part of Assumption 4.6 ensures that limk!1

ˇck .s;a/

˛ck .s/
D 0 with probability 1 for all

.s; a/. Indeed, Assumptions 4.2 and 4.6 are satisfied for the usual (vanishing) step sizes such
as

˛c D
1

.c C 1/�˛
and ˇc D

1

.c C 1/�ˇ
;

where 1=2 < �˛ < �ˇ � 1.

10 We have the additional assumption that the step size ˇc is square summable to ensure that
the stochastic approximation error terms have finite variance conditioned on the history of
the parameters.

11 Perkins and Leslie [54] made a similar assumption that supc
ˇbmcc

ˇc
< M for all m 2 .0; 1/

and ˇc
˛c

! 0 for two-timescale asynchronous stochastic approximation.
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When players do random experimentation in the model-free case, they do not take
the best response with certain probability. Therefore, we do not have convergence to an
exact equilibrium as in the model-based case. However, the players still converge to a near
equilibrium of the game with linear dependence on the experimentation probability and the
following theorem provides an upper bound on this approximation error.

Theorem 4.7 ([63]). Given a two-player zero-sum stochastic game, suppose that players
follow the model-free two-timescale fictitious play dynamics with experimentation probabil-
ity � > 0. Under Assumptions 4.1 and 4.6, we have

lim sup
k!1

ˇ̌
vi

k.s/ � vi .s/
ˇ̌

� �D
1 C 

.1 � /2
; (4.32)

lim sup
k!1

max
a2A

ˇ̌
OQi

k.s; a/ � Qi .s; a/
ˇ̌

� �D
1 C 

.1 � /2
; (4.33)

with probability 1, where D D
1

1�

P
i max.s;a/ jr i .s; a/j, where vi

� and Qi
� denote, respec-

tively, the value function and Q-function of player i for some stationary equilibrium of the
stochastic game.

Even though the random experimentation can prevent convergence to an exact equi-
librium, it provides an advantage for the applicability of this near-convergence result because
every state gets visited infinitely often, and therefore, Assumption 4.1 holds, if the underly-
ing Markov chain satisfies Case (iv), i.e., there is positive probability that any state can be
reached from any state within a finite number of stages for at least one sequence of action
profiles taken during these stages.

The dynamics can converge to an exact equilibrium also in the model-free case if
players let the experimentation probability vanish at certain rate. However, there are technical
details that can limit the applicability of the result for Case (iv).

4.2. Radically uncoupled learning in stochastic games
Finally, we consider minimal-information scenarios where players do not even

observe the opponent’s actions in the model-free case. Each player can still observe its
own stage payoff received and the current state visited. The players also do not know the
opponent’s action set. Indeed, they may even be oblivious to the presence of an opponent.
The learning dynamics under such minimal information case is known as radically uncou-
pled learning in the learning in games literature, e.g., see [25].

Without observing the opponent’s actions and knowing her action space, players
are not able to form beliefs on opponent strategy as in the fictitious play. This challenge is
present also in the repeated play of the same strategic-form game. For example, consider the
strategic-form game hA1; A2; r1; r2i and define qi W Ai ! R by

qi .ai / WD Ea�i ���i

®
r i .a1; a2/

¯
; 8ai

2 Ai (4.34)
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given the opponent’s strategy ��i . Then, the computation of the best response is a simple
optimization problem for player i , given by

ai
� 2 argmax

ai 2Ai

qi .ai /:

Player i would be able to compute her best response ai
� even when she does not know the

opponent strategy ��i and her payoff function r i if she knew the function qi .�/. Hence, the
question is whether the computation of qi .�/ can be achieved without observing the oppo-
nent’s action.

Suppose that players are playing the same strategic-form game repeatedly and player
i makes the forward induction that the opponent will play as how he has played in the past
similar to the fictitious play dynamics. If that were the case, i.e., the opponent were playing
according to a stationary strategy ��i , then at each stage the payoff received by player i

would be the realized payoff r i .a1; a2/, where a�i � ��i and ai is the current action she
has taken. Correspondingly, player i can form a belief about qi .ai / for all ai 2 Ai and update
qi .�/ associated with the current action based on the payoff she received. For example, let
Oqi
k
, ai

k
and r i

k
denote, respectively, the belief of player i on qi , her current action and the

current payoff she received. Similar to the update of the belief on opponent’s strategy, the
update of Oqi

k
is given by

Oqi
kC1.ai / D

´
Oqi
k
.ai / C ˛k.ai /.r i

k
� Oqi

k
.ai // if ai D ai

k
;

Oqi
k
.ai / otherwise,

where ˛k.ai / 2 Œ0; 1� is a vanishing step size specific to the action ai . However, this results
in an asynchronous update of Oqk for different actions quite contrary to the synchronous belief
update (2.3) in the fictitious play. There is no guarantee that it would converge to an equilib-
rium even in the zero-sum case. On the other hand, such an asynchrony issue is not present
and the update turns out to be synchronous in expectation if players take smoothed best
response while normalizing the step size by the probability of the current action taken [39].

Given Oqi
k
, the smoothed best response BRi

k 2 �.Ai / is given by

BRi

k WD argmax
�i 2�.Ai /

�
Eai ��i

®
Oqi
k.ai /

¯
C ��i .�i /

�
; (4.35)

where �i W �.Ai / ! R is a smooth and strictly concave function whose gradient is unbounded
at the boundary of the simplex �.Ai / [29]. The temperature parameter � > 0 controls the
amount of perturbation on the smoothed best response. Note that the smooth perturbation
ensures that there always exists a unique maximizer in (4.35). Since players take smoothed
best response rather than best response, we use an equilibrium concept different from the
Nash equilibrium. This new definition is known as Nash distribution or quantal response
equilibrium [46].

Definition 4.8 (Nash distribution). We say that a strategy profile �� is a Nash distribution
if we have

� i
� D argmax

�i 2�.Ai /

�
E.ai ;a�i /�.�i ;��i

� /

®
r i

k.a/
¯

C ��i .�i /
�

(4.36)

for each i .
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An example to the smooth function is �i .�i / WD �Eai ��i ¹log.�i .ai //º, also known
as the entropy [34], and the associated smoothed best response has the following analytical
form:

BRi

k.ai / D
exp. Oqi

k
.ai /=�/P

Qai 2Ai exp. Oqi
k
. Qai /=�/

;

which is positive for all ai 2 Ai .
When player i takes her action according to the smoothed best response BRi

k , any
action will be taken with some positive probability BRi

k.ai / > 0. Hence she can update her
belief according to

Oqi
kC1.ai / D

´
Oqi
k
.ai / C BRi

k.ai /�1˛k.r i
k

� Oqi
k
.ai // if ai D ai

k
;

Oqi
k
.ai / otherwise,

(4.37)

where ˛k 2 .0; 1/ is a step size vanishing with k and not specific to any action. This asyn-
chronous update rule, also known as individual Q-learning, turns out to be synchronous in
the expectation. Particularly, the new update rule is given by

Oqi
kC1.ai / D Oqi

k.ai / C ˛k

�
E

a�i �BR�i
k

®
r i .a1; a2/

¯
� Oqi

k.ai / C !i
k.ai /

�
; 8ai

2 Ai ; (4.38)

and !i
k
.ai / is the stochastic approximation error defined by

!i
k.ai / WD 1

¹ai Dai
k

º
BRi

k.ai /�1
�
r i

k � Oqi
k.ai /

�
� Ea�BRk

®
1

¹ai Dai
k

º
BRi

k.ai /�1
�
r i

k � Oqi
k.ai /

�¯
;

where BRk D .BR1

k ; BR2

k/, because we have

Ea�BRk

®
1

¹ai Dai
k

º
BRi

k.ai /�1
�
r i

k � Oqi
k.ai /

�¯
D E

a�i �BR�i
k

®
r i .a1; a2/

¯
� Oqi

k.ai /:

Furthermore, the stochastic approximation error term forms a martingale difference sequence
conditioned on the history of iterates while the boundedness of the iterates ensure that it has
finite variance. Therefore, we can invoke Lemma 4.4 to characterize the convergence prop-
erties of (4.38)—a rewritten version of (4.37) with the stochastic approximation term !i

k
.

Theorem 4.9 ([39]). In two-player zero-sum (or identical-payoff) strategic-form games
played repeatedly, if both player follows the individual Q-learning algorithm, described
in (4.37), then their estimate Oqi

k
converges to qi

� for all ai 2 Ai satisfying

qi
�.ai / D Ea�i ���i

�

®
r i .a1; a2/

¯
for some Nash distribution �� D .�1

� ; �2
�/ under the assumption that the iterates remain

bounded. Correspondingly, their smoothed best response also converges to ��.

Recall that in stochastic games, players are playing an auxiliary stage-game specific
to the current state Gs D hA1; A2; Q1.s; �/; Q2.s; �/i, where Qi satisfies (4.1). Therefore, in
the minimal information case, each player i can form a belief about the associated

qi .s; ai / WD Ea�i ���i .s/

®
Qi .s; a1; a2/

¯
;

which is now specific to state s contrary to (4.34), and update it based on the stage payoffs
received as in the individual Q-learning dynamics. We can view qi as the local Q-function
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since it is defined over individual actions rather than action profiles. We denote player i ’s
belief on qi by Oqi

k
. Let s be the current state of the stochastic game. Then, player i selects

her action ai
k

according to smoothed best response

BRi

k.s; �/ D argmax
�i 2�.Ai /

�
Eai ��i

®
Oqi
k.s; ai /

¯
C ��i .�i /

�
;

i.e., ai
k

� BRi

k.s; �/. The smoothed best response depends only on the belief on the local
Q-function, i.e., Oqi

k
.s; �/. Observing the stage reward r i

k
and the next state s0, player i can

update her belief according to

Oqi
kC1.s; ai / D

8<: Oqi
k
.s; ai / C BRi

k.s; ai /�1˛ck.s/.r
i
k

C  Ovi
k
.s0/ � Oqi

k
.s; ai // if ai D ai

k
;

Oqi
k
.s; ai / otherwise,

(4.39)

where ˛c 2 .0; 1/ is a vanishing step size and recall that ck.s/ denotes the number of visits to
state s until and including stage k. The update (4.39) differs from (4.37) due to the additional
term  Ovi

k
.s0/ corresponding to an unbiased estimate of the continuation payoff in the model-

free case. Due to this additional term, the individual Q-learning dynamics in auxiliary stage-
games specific to each state are coupled with each other. A two-timescale learning framework
can weaken this coupling if players estimate Ovi

k
at a slower timescale according to

Ovi
kC1.s/ D Ovi

k.s/ C ˇck.s/

�
E

ai �BRi
k.s;�/

®
Oqi
k.s; ai /

¯
� Ovi

k.s/
�
; (4.40)

where ˇc 2 .0; 1/ is a vanishing step size that goes to zero faster than ˛c , rather than Ovi
k
.s/ D

E
ai �BRi

k.s;�/
¹ Oqi

k
.s; ai /º.

This decentralized Q-learning dynamics, described in (4.39) and (4.40), have con-
vergence properties similar to the two-timescale fictitious play even in this minimal infor-
mation case. Furthermore, random exploration is inherent in the smoothed best response.
Therefore, Assumption 4.1 holds if the underlying Markov chain satisfies Case (iv). How-
ever, due to the smoothed best response, the dynamics does not necessarily converge to an
exact Nash equilibrium.

Theorem 4.10 ([64]). Given a two-player zero-sum stochastic game, suppose that players
follow the decentralized Q-learning dynamics. In addition to Assumptions 4.1 and 4.6, we
assume that

P
c�0 ˛2

c < 1 and the iterates are bounded. Let Qi
� and vi

� denote the unique
equilibrium Q-function and value function of player i . Then, we have

lim sup
k!1

ˇ̌
Ovi
k.s/ � vi

�.s/
ˇ̌

� � log
�ˇ̌

A1
ˇ̌ˇ̌

A2
ˇ̌�

g./; (4.41)

for all .i; s/ 2 ¹1; 2º � S , with probability 1, where g.�/ WD
2C���

.1��/.1�/
with some � 2

.1; 1=/.
Furthermore, let O� i

k
.s/ 2 �.Ai / be the weighted time-average of the smoothed best

response updated as

O� i
kC1.s/ D O� i

k.s/ C 1¹sDskº˛ck.s/

�
BRi

k.s; �/ � O� i
k.s/

�
:
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Then, we have

lim sup
k!1

j max
ai 2Ai

Ea�i � O��i
k

.s/

®
Qi

�.s; a/
¯

� vi
��

.s/j � � log
�ˇ̌

A1
ˇ̌ˇ̌

A2
ˇ̌�

h./; (4.42)

for all .i; s/ 2 ¹1; 2º � S , with probability 1, where h./ WD g./.1 C / � 1. In other
words, these weighted-average strategies converge to near Nash equilibrium strategies of
the stochastic game.

The iterates would be bounded inherently if players update the local Q-function
(4.37) by thresholding the step BRi

k.ai /�1˛ck.s/ from above by 1. Furthermore, the dynam-
ics could converge to an exact equilibrium if players let their temperature parameter � > 0

vanishes over time at a certain rate, e.g., see [64]. With vanishing temperature, Assump-
tion 4.1 holds if the underlying Markov chain satisfies Case (iii).

5. Other learning algorithms

Previous sections have focused on a detailed description of best-response/fictitious-
play type learning dynamics, together with Q-learning dynamics, for stochastic games. In
this section, we summarize several other algorithms in the learning in games literature, with
a focus on independent/decentralized learning for stochastic games (also belonging to the
area of multiagent reinforcement learning in the machine learning literature).

5.1. Classical algorithms
For stochastic games, other than Q-learning-type algorithms presented in Sec-

tion 4.1, [10] also established the asymptotic convergence of an actor–critic algorithm to
a weaker notion of generalized Nash equilibrium. Another early work [13] proposed R-
MAX, an optimism-based RL algorithm for average-reward two-player zero-sum stochastic
games, with polynomial time convergence guarantees. However, convergence to the actual
Nash equilibrium is not guaranteed from the regret definition in the paper.

For strategic-form games, besides fictitious play, several other decentralized learn-
ing dynamics have also been thoroughly studied. A particular example is the no-regret learn-
ing algorithms12 from the online learning literature. It is a folklore theorem that: If both
players of a game use some no-regret learning dynamics to adapt their strategies to their
opponent’s strategies, then the time-average strategies of the players constitute a Nash equi-
librium of the zero-sum strategic-form game [18, 61]. Popular no-regret dynamics include
multiplicative weights update [26,41], online gradient descent [91], and their generalizations
[47, 67]. These no-regret learning dynamics are uncoupled in that a player’s dynamics does
not explicitly rely on the payoffs of other players [32]. They are also posited to be a rational
model of players’ rational behavior [60,75]. In addition, [39] proposed individual Q-learning,
a fully decentralized learning dynamics where each player’s update rule requires no obser-
vation of the opponent’s actions, with convergence to the Nash equilibrium distribution of

12 See [18] for formal definitions and results of no-regret learning.
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certain two-player games. Notably, these decentralized learning dynamics are only known to
be effective for strategic-form games.

5.2. Multiagent reinforcement learning
There has been a flurry of recent works on multiagent RL in stochastic games with

focuses on nonasymptotic performance guarantees. The authors of [56,57] proposed batch RL
algorithms to find an approximate Nash equilibrium using approximate dynamic program-
ming analysis. Wei et al. [83] studied online RL, where only one of the player is controlled,
and develops the UCSG algorithm with sublinear regret guarantees that improves the results
in [13], though still without guarantees of finding the Nash equilibrium. Subsequently, [72]
provided near-optimal sample complexity for solving turn-based two-player zero-sum finite
stochastic games, when a generative model that enables sampling from any state–action
pair is available. Under the same setting, the near-optimal sample complexity for general
two-player zero-sum finite stochastic games was then established in [87]. Without a gener-
ative model, [2,85] presented optimistic value iteration-based RL algorithms for two-player
zero-sum stochastic games, with efficient exploration of the environment, and finite-time
regret guarantees. The two players need some coordination to perform the algorithms, and
the focus in these two works is the finite-horizon episodic setting. Later, [3] and [43] provided
tighter regret bounds for the same setting, with model-free and model-based RL methods,
respectively. Liu et al. [43] has also studied the general-sum setting, with finite-sample guar-
antees for finding the Nash equilibrium, assuming some computation oracle for finding the
equilibrium of general-sum strategic-form games at each iteration. Contemporaneously, [35,
37] studied multiagent RL with function approximation in finite-horizon episodic zero-sum
stochastic games, with also the optimism principle and regret guarantees.

In addition, policy-based RL algorithms have also been developed for solving
stochastic games. The authors of [15, 88] developed double-loop policy gradient methods
for solving zero-sum linear quadratic dynamic games, a special case of zero-sum stochas-
tic games with linear transition dynamics and quadratic cost functions, with convergence
guarantees to the Nash equilibrium. Later, [90] also studied double-loop policy gradient
methods for zero-sum stochastic games with general function approximation. Note that
these double-loop algorithms are not symmetric in that they require one of the players to
wait for the opponent to update her policy parameter multiple steps while updating her own
policy for one step, which necessarily requires some coordination between players. Finally,
[66] developed an Explore–Improve–Supervise approach, which combines ideas from Monte
Carlo Tree Search and Nearest Neighbors methods, to find the approximate Nash equilib-
rium value of continuous-space turn-based zero-sum stochastic games. The two players are
coordinated to learn the minimax value jointly.

Notably, as minimax Q-learning, these multiagent RL algorithms are mostly focused
on the computational aspect of learning in stochastic games: compute the Nash equilibrium
without knowing the model, using possibly as few samples as possible. Certain level of
coordination among the players is either explicitly or implicitly assumed when implement-
ing these algorithms, even for the zero-sum setting where the players compete against each
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other. For human-like self-interested players, these update rules may not be sufficiently ratio-
nal and natural to execute. Indeed, as per [12], a preferable multiagent RL algorithm should
be both rational and convergent: a rational algorithm ensures that the iterates converge
to the opponent’s best-response if the opponent converges to a stationary policy; while a
convergent algorithm ensures convergence to some equilibrium if all the agents apply the
learning dynamics. In general, a rational algorithm, in which each player adapts to the (pos-
sibly nonstationary) behavior of other players and uses only local information she observes
without the aid of any central coordinator, does not lead to the equilibrium of the game.
In fact, investigating whether a game-theoretical equilibrium can be realized as a result of
nonequilibrium adaptation dynamics is the core topic in the literature of learning in games
[29]. These multiagent RL works have thus motivated our study of independent learning
dynamics presented in Section 4.

5.3. Decentralized learning in stochastic games
Decentralized learning in stochastic games has attracted increasing research inter-

est lately. In [1], decentralized Q-learning has been proposed for weakly acyclic stochastic
games, which include stochastic teams (identical-interest stochastic games) as a special case.
The update rule for each player does not need to observe the opponent players’ actions, and
is even oblivious to the presence of other players. However, the players are implicitly coordi-
nated to explore every multiple iterations (in the exploration phase) without changing their
policies, in order to create a stationary environment for each player. The key feature of the
update rule is to restrict player strategies to stationary pure strategies. Since there are only
finitely many stationary pure strategy, players can create a huge-game matrix for each sta-
tionary pure strategy and a pure-strategy equilibrium always exists when this huge-game is
weakly acyclic with respect to best response. However, in the model-free case, players do not
know the payoffs of this huge-game and the two-phase update rule addresses this challenge.
Perolat et al. [55] developed actor–critic-type learning dynamics that are decentralized and of
fictitious-play type, where the value functions are estimated at a faster timescale (in the critic
step), and the policy is improved at a slower one (in the actor step). Nonetheless, the learning
dynamics only applies to a special class of stochastic games with a “multistage” structure,
in which each state can only be visited once. In [21], an independent policy gradient method
was investigated for zero-sum stochastic games with convergence rate analysis, where two
players use asymmetric stepsizes in their updates with one updates faster than the other.
This implicitly requires some coordination between players to determine who shall update
faster. Contemporaneously, [79] studied online RL in unknown stochastic games, where only
one player is controlled and the update rule is fully decentralized. The work focused on the
efficient exploration aspect of multiagent RL, by establishing the regret13 guarantees of the
proposed update rule. The work considered only the finite-horizon episodic setting, and it

13 The regret defined in [79] is weaker than the normal one with the best-in-hindsight com-
parator. See [79, Sect. 2] for a detailed comparison.
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is also unclear if the learning dynamics converge to any equilibrium when all players apply
it.14

With symmetric and decentralized learning dynamics, [17, 40, 84] are, to the best
our knowledge, the latest efforts on learning in stochastic games. Leslie et al. [40] stud-
ied continuous-time best-response dynamics for zero-sum stochastic games, with a two-
timescale update rule: at the slower timescale, a single continuation payoff (common among
the players) is updated, representing time average of auxiliary game payoffs up to time k; at
the faster timescale, each player updates its strategy in the direction of its best response to
opponent’s current strategy in the auxiliary game. The common continuation payoff update
ensures that the auxiliary game is always zero-sum, allowing the use of the techniques for
the strategic-form game setting [31]. The dynamics update the mixed strategies at every
state at every time. Alternatively, the work also considered a continuous-time embedding
of the actual play of the stochastic game where game transitions according to a controlled
continuous-time Markov chain. Both [84] and [17] studied the genuine infinite-horizon dis-
counted zero-sum stochastic games, and provided last-iterate convergence rate guarantees
to approximate Nash equilibrium. To this end, [84] developed an optimistic variant of gra-
dient descent-ascent update rule; while [17] focused on the entropy-regularized stochastic
games, and advocated the use of policy extragradient methods. Though theoretically strong
and appealing, these update rules assume either exact access or sufficiently accurate estimates
of the continuation payoffs under instantaneous joint strategies and/or the instantaneous strat-
egy of the opponent. In particular, to obtain finite-time bounds, the players are coordinated
to interact multiple steps to estimate the continuation payoffs in the learning setting [84].

By and large, ever since the introduction of fictitious play [14] and stochastic games
[69], it remains a long-standing problem whether an equilibrium in a stochastic game can be
realized as an outcome of some natural and decentralized nonequilibrium adaptation, e.g.,
fictitious play (except the contemporaneous work [40] with some continuous-time embed-
dings). Hence, our solutions in Section 4 serve as an initial attempt towards settling the
argument positively.

6. Conclusions and open problems

In this review paper, we introduced multiagent dynamic learning in stochastic
games, an increasingly active research area where artificial intelligence, specifically rein-
forcement learning, meets game theory. We have presented the fundamentals and background
of the problem, followed by our recent advances in this direction, with a focus on studying
independent learning dynamics. We believe our work has opened up fruitful directions for
future research, on developing more natural and rational multiagent learning dynamics for

14 The same update rule with different stepsize and bonus choices and a certified policy tech-
nique, however, can return a non-Markovian approximate Nash equilibrium policy pair in
the zero-sum setting; see [3], and the very recent and more complete treatment [36], for
more details.
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stochastic games. In particular, several future/ongoing research directions include: (1) estab-
lishing convergence guarantees of our independent learning dynamics for other stochastic
games, e.g., identical-interest ones; (2) establishing nonasymptotic convergence guarantees
of our learning dynamics, or other independent learning dynamics, for stochastic games;
(3) developing natural learning dynamics that also account for the large state–action spaces
in practical stochastic games, e.g., via function approximation techniques.

Funding

A. Ozdaglar and K. Zhang were supported by DSTA grant 031017-00016 and ARO
Project W911NF1810407.

References

[1] G. Arslan and S. Yüksel, Decentralized Q-learning for stochastic teams and
games. IEEE Trans. Automat. Control 62 (2017), no. 4, 1545–1558.

[2] Y. Bai and C. Jin, Provable self-play algorithms for competitive reinforcement
learning. In International conference on machine learning, pp. 551–560, PMLR,
2020.

[3] Y. Bai, C. Jin, and T. Yu, Near-optimal reinforcement learning with self-play. In
Advances in neural information processing systems 33, pp. 2159–2170, Curran
Associates, Inc., 2020.

[4] T. Başar and G. J. Olsder, Dynamic noncooperative game theory. 2nd edn. Clas-
sics Appl. Math., SIAM, 1999.

[5] M. Benaim, J. Hofbauer, and S. Sorin, Stochastic approximations and differential
inclusions. SIAM J. Control Optim. 44 (2005), no. 1, 328–348.

[6] U. Berger, Fictitious play in 2 � n games. J. Econom. Theory 120 (2005), no. 2,
139–154.

[7] U. Berger, Learning in games with strategic complementarities revisited.
J. Econom. Theory 143 (2008), no. 1, 292–301.

[8] D. P. Bertsekas, Distributed dynamic programming. IEEE Trans. Automat. Con-
trol AC-27 (1982), 610–616.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numer-
ical methods. Prentice Hall, New Jersey, 1989.

[10] V. S. Borkar, Reinforcement learning in Markovian evolutionary games. Adv.
Complex Syst. 5 (2002), no. 01, 55–72.

[11] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint. Hin-
dustan Book Agency, 2008.

[12] M. Bowling and M. Veloso, Rational and convergent learning in stochastic games.
In Proceedings 17th international joint conference on artificial intelligence,
pp. 1021–1026, Morgan Kaufmann Publishers Inc., 2001.

5368 A. Ozdaglar, M. O. Sayin, and K. Zhang



[13] R. I. Brafman and M. Tennenholtz, R-MAX—A general polynomial time algo-
rithm for near-optimal reinforcement learning. J. Mach. Learn. Res. 3 (2002),
213–231.

[14] G. W. Brown, Iterative solution of games by fictitious play. In Activity analysis
of production and allocation, pp.374–376, Cowles Commission Monograph 13,
Wiley, New York, 1951.

[15] J. Bu, L. J. Ratliff, and M. Mesbahi, Global convergence of policy gradient for
sequential zero-sum linear quadratic dynamic games. 2019, arXiv:1911.04672.

[16] L. Busoniu, R. Babuska, and B. D. Schutter, A comprehensive survey of multi-
agent reinforcement learning. IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
38 (2008), no. 2, 156–172.

[17] S. Cen, Y. Wei, and Y. Chi, Fast policy extragradient methods for competitive
games with entropy regularization. 2021, arXiv:2105.15186.

[18] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games. Cambridge Uni-
versity Press, 2006.

[19] C. Claus and C. Boutilier, The dynamics of reinforcement learning in cooperative
multiagent systems. In Conference on artificial intelligence, pp. 746–752, Amer-
ican Association for Artificial Intelligence, 1998.

[20] A. Condon, On algorithms for simple stochastic games. In Advances in computa-
tional complexity theory 13, pp. 51–72, American Mathematical Society, 1990.

[21] C. Daskalakis, D. J. Foster, and N. Golowich, Independent policy gradient
methods for competitive reinforcement learning. In Advances in neural infor-
mation processing systems, Curran Associates, Inc., 2020.

[22] J. C. Ely and O. Yilankaya, Nash equilibrium and the evolution of preferences.
J. Econom. Theory 97 (2001), no. 2, 255–272.

[23] J. Filar and K. Vrieze, Competitive Markov decision processes. Springer, 2012.
[24] A. M. Fink, Equilibrium in stochastic n-person game. J. Sci. Hiroshima Univ., Ser.

A-I 28 (1964), 89–93.
[25] D. P. Foster and H. P. Young, Regret testing: learning to play Nash equilibrium

without knowing you have an opponent. Theor. Econ. 1 (2006), 341–367.
[26] Y. Freund and R. E. Schapire, Adaptive game playing using multiplicative

weights. Games Econom. Behav. 29 (1999), no. 1–2, 79–103.
[27] D. Fudenberg and D. M. Kreps, Learning mixed equilibria. Games Econom.

Behav. 5 (1993), no. 3, 320–367.
[28] D. Fudenberg and D. K. Levine, Consistency and cautious fictitious play.

J. Econom. Dynam. Control 19 (1995), no. 5–7, 1065–1089.
[29] D. Fudenberg and D. K. Levine, The theory of learning in games. 2. MIT Press,

1998.
[30] S. Gu, E. Holly, T. Lillicrap, and S. Levine, Deep reinforcement learning for

robotic manipulation with asynchronous off-policy updates. In IEEE international
conference on robotics and automation, pp. 3389–3396, IEEE, 2017.

5369 Independent learning in stochastic games

https://arxiv.org/abs/1911.04672
https://arxiv.org/abs/2105.15186


[31] C. Harris, On the rate of convergence of continuous-time fictitious play. Games
Econom. Behav. 22 (1998), 238–259.

[32] S. Hart and A. Mas-Colell, Uncoupled dynamics do not lead to Nash equilibrium.
Am. Econ. Rev. 93 (2003), no. 5, 1830–1836.

[33] J. Hofbauer and W. H. Sandholm, On the global convergence of stochastic ficti-
tious play. Econometrica 70 (2002), no. 6, 2265–2294.

[34] J. Hofbauer and W. H. Sandholm, On the global convergence of stochastic ficti-
tious play. Econometrica 70 (2002), 2265–2294.

[35] B. Huang, J. D. Lee, Z. Wang, and Z. Yang, Towards general function approxima-
tion in zero-sum Markov games. 2021, arXiv:2107.14702.

[36] C. Jin, Q. Liu, Y. Wang, and T. Yu, V-learning—a simple, efficient, decentralized
algorithm for multiagent RL. 2021, arXiv:2110.14555.

[37] C. Jin, Q. Liu, and T. Yu, The power of exploiter: provable multi-agent RL in large
state spaces. 2021, arXiv:2106.03352.

[38] H. J. Kushner and D. S. Clark, Stochastic approximation methods for constrained
and unconstrained systems. Springer, 1978.

[39] D. S. Leslie and E. J. Collins, Individual Q-learning in normal form games. SIAM
J. Control Optim. 44 (2005), no. 2, 495–514.

[40] D. S. Leslie, S. Perkins, and Z. Xu, Best-response dynamics in zero-sum stochastic
games. J. Econom. Theory 189 (2020).

[41] N. Littlestone and M. K. Warmuth, The weighted majority algorithm. Inform. and
Comput. 108 (1994), no. 2, 212–261.

[42] M. L. Littman, Markov games as a framework for multi-agent reinforcement
learning. In International conference on machine learning, pp. 157–163, Morgan
Kaufmann Publishers Inc., 1994.

[43] Q. Liu, T. Yu, Y. Bai, and C. Jin, A sharp analysis of model-based reinforce-
ment learning with self-play. In International conference on machine learning,
pp. 7001–7010, PMLR, 2021.

[44] E. Maskin and J. Tirole, A theory of dynamic oligopoly, I: Overview and quantity
competition with large fixed costs. Econometrica (1988), 549–569.

[45] E. Maskin and J. Tirole, A theory of dynamic oligopoly, II: Price competition,
kinked demand curves, and Edgeworth cycles. Econometrica (1988), 571–599.

[46] R. McKelvey and T. Palfrey, Quantal response equilibria for normal form games.
Games Econom. Behav. 10 (1995), 6–38.

[47] B. McMahan, Follow-the-regularized-leader and mirror descent: equivalence the-
orems and l1 regularization. In International conference on artificial intelligence
and statistics, pp. 525–533, PMLR, 2011.

[48] P. Milgrom and J. Roberts, Adaptive and sophisticated learning in normal form
games. Games Econom. Behav. 3 (1991), 82–100.

[49] K. Miyasawa, On the convergence of the learning process in a 2 � 2 non-zero-
sum game. Economic Research Program, Princeton University, Research Memo-
randum 33 (1961).

5370 A. Ozdaglar, M. O. Sayin, and K. Zhang

https://arxiv.org/abs/2107.14702
https://arxiv.org/abs/2110.14555
https://arxiv.org/abs/2106.03352


[50] D. Monderer and A. Sela, A 2 � 2 game without the fictitious play property.
Games Econom. Behav. 14 (1996), 144–148.

[51] D. Monderer and L. Shapley, Fictitious play property for games with identical
interests. Games Econom. Behav. 68 (1996), 258–265.

[52] D. Monderer and L. Shapley, Potential games. Games Econom. Behav. 14 (1996),
124–143.

[53] R. Nagel, Unraveling in guessing games: An experimental study. Am. Econ. Rev. 5
(1995), 1313–1326.

[54] S. Perkins and D. S. Leslie, Asynchronous stochastic approximation with differen-
tial inclusions. Stoch. Syst. 2 (2012), no. 2, 409–446.

[55] J. Pérolat, B. Piot, and O. Pietquin, Actor–critic fictitious play in simultaneous
move multistage games. In International conference on artificial intelligence and
statistics, pp. 919–928, PMLR, 2018.

[56] J. Pérolat, B. Scherrer, B. Piot, and O. Pietquin, Approximate dynamic program-
ming for two-player zero-sum Markov games. In International conference on
machine learning, pp. 1321–1329, PMLR, 2015.

[57] J. Pérolat, F. Strub, B. Piot, and O. Pietquin, Learning Nash Equilibrium for
General-Sum Markov Games from Batch Data. In International conference on
artificial intelligence and statistics, pp. 232–241, PMLR, 2017.

[58] B. T. Poljak and Y. Z. Tsypkin, Pseudogradient adaptation and training algo-
rithms. Autom. Remote Control 12 (1973), 83–94.

[59] J. Robinson, An iterative method of solving a game. Ann. of Math. (1951),
296–301.

[60] T. Roughgarden, Intrinsic robustness of the price of anarchy. In ACM symposium
on theory of computing, pp. 513–522, Association for Computing Machinery,
2009.

[61] T. Roughgarden, Algorithmic game theory. Commun. ACM 53 (2010), no. 7,
78–86.

[62] W. H. Sandholm, Preference evolution, two-speed dynamics, and rapid social
change. Rev. Econ. Dyn. 4 (2001), no. 3, 637–679.

[63] M. O. Sayin, F. Parise, and A. Ozdaglar, Fictitious play in zero-sum stochastic
games. 2020, arXiv:2010.04223.

[64] M. O. Sayin, K. Zhang, D. S. Leslie, T. Başar, and A. Ozdaglar, Decentralized
Q-learning in zero-sum markov games. In Thirty-fifth conference on neural infor-
mation processing systems, 2021.

[65] A. Sela, Fictitious play in “one-against-all” multi-player games. Econom. Theory
14 (1999), 635–651.

[66] D. Shah, V. Somani, Q. Xie, and Z. Xu, On reinforcement learning for turn-based
zero-sum Markov games. 2020, arXiv:2002.10620.

[67] S. Shalev-Shwartz, Online learning and online convex optimization. Found.
Trends Mach. Learn. 4 (2011), no. 2, 107–194.

5371 Independent learning in stochastic games

https://arxiv.org/abs/2010.04223
https://arxiv.org/abs/2002.10620


[68] S. Shalev-Shwartz, S. Shammah, and A. Shashua, Safe, multi-agent, reinforce-
ment learning for autonomous driving. 2016, arXiv:1610.03295.

[69] L. S. Shapley, Stochastic games. Proc. Natl. Acad. Sci. USA 39 (1953), no. 10,
1095–1100.

[70] L. S. Shapley, Some topics in two-person games. Adv. Game Theory 52 (1964),
1–29.

[71] Y. Shoham and K. Leyton-Brown, Multiagent systems: algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

[72] A. Sidford, M. Wang, L. Yang, and Y. Ye, Solving discounted stochastic two-
player games with near-optimal time and sample complexity. In International
conference on artificial intelligence and statistics, pp. 2992–3002, PMLR, 2020.

[73] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering
the game of Go with deep neural networks and tree search. Nature 529 (2016),
no. 7587, 484–489.

[74] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of Go without
human knowledge. Nature 550 (2017), no. 7676, 354–359.

[75] V. Syrgkanis and E. Tardos, Composable and efficient mechanisms. In ACM
symposium on theory of computing, pp. 211–220, Association for Computing
Machinery, 2013.

[76] C. Szepesvári and M. L. Littman, A unified analysis of value-function-based
reinforcement-learning algorithms. Neural Comput. 11 (1999), no. 8, 2017–2060.

[77] M. Takahashi, Equilibrium points of stochastic non-cooperative n-person games.
J. Sci. Hiroshima Univ., Ser. A-I 28 (1964), 95–99.

[78] M. Tan, Multi-agent reinforcement learning: independent vs. cooperative agents.
In International conference on machine learning, pp. 330–337, PMLR, 1993.

[79] Y. Tian, Y. Wang, T. Yu, and S. Sra, Online learning in unknown Markov games.
In International conference on machine learning, pp. 10279–10288, PMLR, 2021.

[80] J. N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning. Mach.
Learn. 16 (1994), 185–202.

[81] B. Van der Genugten, A weakened form of fictitious play in two-person zero-sum
games. Int. Game Theory Rev. 2 (2000), no. 4, 307–328.

[82] C. J. C. H. Watkins and P. Dayan, Q-learning. Mach. Learn. 8 (1992), no. 3,
279–292.

[83] C.-Y. Wei, Y.-T. Hong, and C.-J. Lu, Online reinforcement learning in stochastic
games. In Advances in neural information processing systems, pp. 4987–4997,
Curran Associates, Inc., 2017.

[84] C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo, Last-iterate convergence of decen-
tralized optimistic gradient descent/ascent in infinite-horizon competitive Markov
games. In Conference on learning theory 134, pp. 4259–4299, PMLR, 2021.

5372 A. Ozdaglar, M. O. Sayin, and K. Zhang

https://arxiv.org/abs/1610.03295


[85] Q. Xie, Y. Chen, Z. Wang, and Z. Yang, Learning zero-sum simultaneous-move
Markov games using function approximation and correlated equilibrium. In Con-
ference on learning theory, pp. 3674–3682, PMLR, 2020.

[86] Y. Yang, J. Li, and L. Peng, Multi-robot path planning based on a deep rein-
forcement learning DQN algorithm. CAAI Trans. Intell. Technol. 5 (2020), no. 3,
177–183.

[87] K. Zhang, S. Kakade, T. Başar, and L. Yang, Model-based multi-agent RL in zero-
sum markov games with near-optimal sample complexity. In Advances in neural
information processing systems 33, pp. 1166–1178, Curran Associates, Inc., 2020.

[88] K. Zhang, Z. Yang, and T. Başar, Policy optimization provably converges to Nash
equilibria in zero-sum linear quadratic games. In Advances in neural information
processing systems, pp. 11598–11610, Curran Associates, Inc., 2019.

[89] K. Zhang, Z. Yang, and T. Başar, Multi-agent reinforcement learning: a selective
overview of theories and algorithms. In Handbook of reinforcement learning and
control, pp. 321–384, Stud. Syst. Decis. Control. Springer, 2021.

[90] Y. Zhao, Y. Tian, J. D. Lee, and S. S. Du, Provably efficient policy gradient
methods for two-player zero-sum Markov games. 2021, arXiv:2102.08903.

[91] M. Zinkevich, Online convex programming and generalized infinitesimal gradient
ascent. In International conference on machine learning, pp. 928–936, PMLR,
2003.

Asuman Ozdaglar

Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA, asuman@mit.edu

Muhammed O. Sayin

Electrical and Electronics Engineering Department in Bilkent University, Ankara, Turkey,
sayin@ee.bilkent.edu.tr

Kaiqing Zhang

LIDS and CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA,
kaiqing@mit.edu

5373 Independent learning in stochastic games

https://arxiv.org/abs/2102.08903
mailto:asuman@mit.edu
mailto:sayin@ee.bilkent.edu.tr
mailto:kaiqing@mit.edu


Reachable states for
infinite-dimensional
linear systems: old
and new
Marius Tucsnak

Abstract

This work describes some recent results on the reachable spaces for infinite dimensional
linear time invariant systems. The focus is on systems described by the constant coeffi-
cients heat equation, when the question is shown to be intimately connected to the theory
of Hilbert spaces of analytic functions.

Mathematics Subject Classification 2020

Primary 93B03; Secondary 93B05, 35K08, 30H20

Keywords

Reachable space, null controllability, Bergman spaces, smooth inputs, control cost

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 7, pp. 5374–5395
DOI 10.4171/ICM2022/12

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. Introduction

Determining the reachable states of a controlled dynamical system is a major ques-
tion in control theory. The set formed by these states measures our capability of acting on a
system and provides important information for safety verifications. This fundamental ques-
tion is well understood for linear finite-dimensional systems but much less is known in an
infinite-dimensional context (namely for systems governed by partial differential equations).
Most of the known results concern the case when the system is exactly controllable, which
means, as reminded below, that the reachable state coincides with the state space of the
system. When the reachable space is a strict subspace of the state space, its description is
generally far from being complete. Note that for infinite-dimensional systems, as recalled
below, the reachable space also serves to define the main controllability types in a precise
and condensed manner.

The present work aims at describing some of the major advances in this field, with
focus on those involving interactions with complex and harmonic analysis techniques. With
no claim of exhaustiveness, we first briefly discuss some of the interactions which are by
now classical (such as those based on Ingham–Beurling-type theorems) and then we describe
recent advances involving various complex analysis techniques, such as the theory of repro-
ducing kernel Hilbert spaces (namely of Bergman type) or separation of singularities for
spaces of holomorphic functions.

The study of the reachable space and of the controllability of finite-dimensional
linear control systems have been set at the center of control theory by the works of R. Kalman
in the 1960s (see, for instance, [20]). Controllability theory for infinite-dimensional linear
control systems emerged soon after. Among the early contributors we mention D. L. Rus-
sell, H. Fattorini, T. Seidman, A. V. Balakrishnan, R. Triggiani, W. Littman, and J.-L. Lions.
The latter gave the field an enormous impact with his book [26], which opened the way to
fascinating interactions of controllability theory with various fields of analysis.

The related question of the study of the reachable space of infinite-dimensional
linear control systems, namely those governed by partial differential equations, has been
initiated, as far as we know, by the papers of Russell [31] and Fattorini and Russell [11].
In these famous papers the authors provide relevant information on the reachable space of
systems described by hyperbolic and parabolic partial differential equations in one space
dimension controlled from the boundary.

The techniques generally employed for one-dimensional wave or Euler–Bernoulli
plate equations are quite close to those used for the corresponding controllability problems,
in particular Ingham–Beurling-type theorems, and they often provide full characterizations
of the reachable space. To give the reader a flavor of the techniques used for systems describ-
ing one-dimensional elastic structures, we give an abstract result in Section 3 and an illus-
trating example in Section 4. The situation is much more complicated for the wave equation
in several space dimensions where (with the exception of the exactly controllable case) char-
acterizing the reachable spaces is essentially an open question.
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On the other hand, determining the reachable states for systems described by the
heat equation with boundary control is an extremely challenging question, on which major
advances have been obtained within the last years. Indeed, due to the smoothing effect of the
heat kernel, the reachable states are expected to be very smooth functions. However, since
the control functions are in general only in L2, the characterization of the reachable space,
even in apparently very simple situations, is a difficult question, solved only very recently.
To be more precise, consider the system8̂̂̂̂

<̂
ˆ̂̂:
@�

@t
.t; x/ D

@2�

@x2
.t; x/; t > 0; x 2 .0; �/;

�.t; 0/ D u0.t/; �.t; �/ D u�.t/; t 2 Œ0;1/;

�.0; x/ D 0; x 2 .0; �/;

(1.1)

which models the heat propagation in a rod of length� , controlled by prescribing the temper-
ature at both ends. It is well known that for every u0; u� 2 L2Œ0;1/, problem (1.1) admits
a unique solution � and that the restriction of this function to .0;1/ � .0; �/ is an analytic
function. The input-to-state maps (briefly, input maps) .ˆheat

� /�>0 are defined by

ˆheat
�

"
u0

u�

#
D �.�; �/

�
� > 0; u0; u� 2 L2Œ0; ��

�
: (1.2)

Determining the reachable space at instant � of the system determined by the 1D
heat equation with Dirichlet boundary control consists in determining Ranˆheat

� .
The first result on this space goes back to [11], where it is shown that the func-

tions which extend holomorphically to a horizontal strip containing Œ0; �� and vanishing,
together with all their derivatives of even order, at x D 0 and x D � , belong to Ranˆheat

� .
The fact that some other types of functions (like polynomials), not necessarily vanishing at
the extremities of the considered interval, are in the reachable space has been remarked in
a series of papers published in the 1980s (see, for instance, Schmidt [36] and the references
therein). A significant advance towards such a characterization was reported only in 2016, in
the work by Martin, Rosier, and Rouchon [27], where it was shown that any function which
can be extended to a holomorphic map in a disk centered in �

2
and of diameter �e.2e/�1 lies

in the reachable space. This result has been further improved in Dardé and Ervedoza [8],
where it has been shown that any function which can be extended to a holomorphic one in a
neighborhood of the square D defined by

D D
®
s D x C iy 2 C j jyj < x and jyj < � � x

¯
(1.3)

lies in the reachable space.
On the other hand, it is not difficult to check (see, for instance, [27, Theorem 1])

that if  2 Ranˆheat
� then  can be extended to a function holomorphic in D, so that the

assertion in [8] suggests that the reachable space could in this case be connected to a clas-
sical space of holomorphic functions defined on D. This has been confirmed by a series of
recent papers (see, Hartmann, Kellay, and Tucsnak [13], Normand, Kellay, and Tucsnak [21],
Orsoni [29], and Hartmann and Orsoni [14]) which led to a full characterization of this space
to be described in Section 6.
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2. Some background on well-posed linear control systems

The concept of a well-posed linear system, introduced in Salamon [35] and further
developed in Weiss [44], plays an important role in control theory for infinite-dimensional
systems. We briefly recall below some basic facts about these systems, including the defini-
tion of the reachable space and the three main controllability types.

Let U (the input space) and X (the state space) be Hilbert spaces (possibly infinite-
dimensional). The spaces U andX will be constantly identified with their duals and, if there
is no risk of confusion, the inner product and norm in these spaces will be simply denoted
by h�; �i and k � k, respectively.

From a system-theoretic viewpoint, the simplest way to define a linear well-posed
time-invariant system in a possibly infinite-dimensional setting is to introduce families of
operators satisfying the properties in the definition below.

Definition 2.1. Let U and X be Hilbert spaces. A well-posed linear control system with
input space U and state space X is a couple † D .T ; ˆ/ of families of operators such that

(1) T D .Tt /t>0 is an operator semigroup on X , i.e.,

• Tt 2 L.X/ for every t > 0,

• T0 D  for every  2 X ,

• TtC� D TtT� .t; � > 0/,

• limt!0C Tt D  . 2 X/;

(2) For every t > 0, we have ˆt 2 L.L2.Œ0;1/IU/;X/ and

ˆ�Ct .u♦
�
v/ D Ttˆ�uCˆtv .t; � > 0/; (2.1)

where the � -concatenation of two signals u and v, denoted by u♦
�
v, is the

function

u♦
�
v D

8<:u.t/ for t 2 Œ0; �/;

v.t � �/ for t > �:
(2.2)

It can be shown that the above properties imply that the map

.t; u/ 7! ˆtu;

is continuous from Œ0;1/ � L2.Œ0;1/IU/ to X .
Let A W D.A/ ! X be the generator of T D .Tt /t>0 on X . We denote by T � the

adjoint semigroup, which is generated by the adjoint ofA� ofA. The operator domain D.A/,
when endowed with norm

k'k
2
X1

D k'k
2

C kA'k
2 .' 2 X1/; (2.3)

is a Hilbert space. This Hilbert space is denoted by X1. Similarly, we denote by Xd1 the
Hilbert space obtained by endowing D.A�/ with the norm

k'k
2

Xd1
D k'k

2
C
A�'

2 �
' 2 Xd1

�
: (2.4)
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Let X�1 be the dual of Xd1 with respect to the pivot space X , so that X1 � X � X�1 with
continuous and dense embeddings. Note that, for each k 2 ¹�1; 1º, the original semigroup
T has a restriction (or an extension) to Xk that is the image of T through the unitary oper-
ator .ˇI � A/�k 2 L.X; Xk/, where ˇ 2 �.A/ (the resolvent set of A). We refer to [41,

Remark 2.10.5] for a proof of the last statement. This restriction (extension) will be still denoted
by T .

An important consequence of Definition 2.1 is (see, for instance, [44]) that there
exists a unique B 2 L.U;X�1/, called the control operator of †, such that

ˆ�u D

Z �

0

T���Bu.�/ d�
�
� > 0; u 2 L2

�
Œ0;1/IU

��
: (2.5)

Notice that in the above formula, T acts on X�1 and the integration is carried out in X�1.
The operator B can be found by

Bv D lim
�!0

1

�
ˆ� .� � v/ .v 2 U/; (2.6)

where � denotes the characteristic function of the interval Œ0; 1�. We mention that it follows
from the above definitions that if .T ; ˆ/ is a well-posed control system then for all u 2

L2.Œ0;1/IU/, t 7! ˆtu is a continuous function from Œ0;1/ to X .
From the above facts, it follows that a well-posed control system can alternatively

be described by a pair .A; B/, where A W D.A/ ! X generates a C 0-semigroup T on X
and B 2 L.U;X�1/ is an admissible control operator for T . This latter property means that
for some t > 0, the operator ˆt defined by (2.5) has its range contained in X . We refer to
Tucsnak and Weiss [41, Sections 4 and 5] for more material on this concept.

We also recall (see, for instance, [41, Proposition 4.2.5]) that the families T and ˆ
can also be seen as the solution operators for the initial value problem

Pz.t/ D Az.t/C Bu.t/; z.0/ D z0; (2.7)

in the following sense:

Proposition 2.1. Let � > 0. Then for every z0 2 X and every u 2 L2.Œ0; ��IU/, the initial
value problem (2.7) has a unique solution

z 2 C
�
Œ0; ��IX

�
\H 1

�
.0; �/IX�1

�
:

This solution is given by

z.t/ D Ttz0 Cˆtu
�
t 2 Œ0; ��

�
: (2.8)

In most of the remaining part of this work, we describe a well-posed control system
either by a couple .T ;ˆ/ as in Definition 2.1 or by a couple .A;B/, whereA is the generator
of T and B is the unique operator in L.U;X�1/ satisfying (2.5).

Given a well-posed control system † D .T ; ˆ/ and � > 0, the reachable space in
time � of † is defined as the range Ranˆ� of the operator ˆ� . This space can be endowed
with the norm induced from L2.Œ0; ��IU/, which is

k�kRanˆ� D inf
u2L2.Œ0;��IU/
ˆ�uD 

kukL2.Œ0;��IU/ .� 2 Ranˆ� /: (2.9)
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Remark 2.1. From the above construction of the reachable space, it easily follows (see, for
instance, Saitoh and Sawano [34, Theorem 2.36]) that, when endowed with the norm (2.9),
Ranˆ� becomes a Hilbert space, isomorphic to the orthogonal complement inL2.Œ0; ��IU/
of Kerˆ� .

Remark 2.2. We obviously have thatˆ� is onto fromL2.Œ0; ��IU/ onto Ranˆ� . Moreover,
we have

kˆ�kL.L2.Œ0;��IU/;Ranˆ� / D 1: (2.10)

Indeed, we clearly have that

kˆ�kL.L2.Œ0;��IU/;Ranˆ� / 6 1:

Moreover, if � 2 Ranˆ� n ¹0º there exists a sequence .un/n>0 in .L2.Œ0; ��IU/ n ¹0º/N

such that ˆ�un D � for every n 2 N and kunkL2.Œ0;��IU/ ! k�kRanˆ� as n ! 1. We thus
have that

lim
n!1

kˆ�unkRanˆ�
kunkL2.Œ0;��IU/

D 1;

and, consequently, we have (2.10).

If the spaces U and X are finite-dimensional then there exists A 2 L.X/ such that
Tt D exp.tA/ for every t > 0 and B 2 L.U;X/. In this case the following result, known as
the Kalman rank condition for controllability, holds:

Proposition 2.2. If U and X are finite-dimensional then we have, for every � > 0,

Ranˆ� D Ran
h
B AB A2B : : : An�1B

i
: (2.11)

Remark 2.3. From Proposition 2.2, it follows in particular that for finite-dimensional sys-
tems the reachable space does not depend on the time horizon � > 0. Moreover, it is not
difficult to check (see, for instance, Normand, Kellay, and Tucsnak [21]) that Proposition 2.2
implies that Ranˆ� coincides with the range of the restriction ofˆ� to signals which can be
extended to entire functions from C to U .

Unlike the finite-dimensional case, for general well-posed linear control systems,
there is no simple characterization of the reachable space in terms of the operators A and B .
Moreover, this space depends in general on � and, for most systems described by partial
differential equations, we have only a small amount of information on the reachable space.
Another difference with respect to the finite-dimensional case is that the range Ranˆ1

� of
the restriction of ˆ� to a smaller space (such as L1.Œ0; ��IU/) is in general a strict subset
of Ranˆ� .

The concept of reachable space appears, in particular, in the definition of the main
three controllability concepts used in the infinite-dimensional system theory.

Definition 2.2. Let � > 0 and let the pair .T ; ˆ/ define a well-posed control LTI system.

• The pair .T ; ˆ/ is exactly controllable in time � if Ranˆ� D X .
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• .T ; ˆ/ is approximately controllable in time � if Ranˆ� is dense in X .

• The pair .T ; ˆ/ is null-controllable in time � if Ranˆ� � Ran T� .

From the above definition, we see that for systems which are approximately control-
lable in some time � > 0 we can define the dual .Ranˆ� /0 of Ranˆ� with respect to the
pivot space X (we refer to Tucsnak and Weiss [41, Section 2.9] for the general definition of
this concept). More precisely:

Definition 2.3. Let † D .T ; ˆ/ be approximately controllable in time � and let .Ranˆ� /0

be the dual of Ranˆ� with respect to the pivot space X , so that we have

Ranˆ� � X � .Ranˆ� /0;

with continuous and dense inclusions.
The dual ˆ0

� 2 L..Ranˆ� /0; L2.Œ0; ��IU// of the operator ˆ� introduced in (2.5)
is defined by

hˆ�u; �iRanˆ� ;.Ranˆ� /0 D
˝
u; .ˆ� /

0�
˛
L2.Œ0;��IU/

;

for every u 2 L2.Œ0; ��IU/ and � 2 .Ranˆ� /0.

It can be easily checked that the norm in the space Ranˆ� can be characterized as
follows:

Proposition 2.3. Assume that .A;B/ is approximately controllable in some time � > 0. Then

k�k.Ranˆ� /0 D kˆ�
� �kL2.Œ0;��IU/ .� 2 X/; (2.12)

where ˆ�
� 2 L.X;L2.Œ0; ��IU// is the adjoint of ˆ� defined by

hˆ�u; �iX D
˝
u;ˆ�

� �
˛
L2.Œ0;��IU/

�
u 2 L2

�
Œ0; ��IU

�
; � 2 X

�
:

Note that the fact that the right-hand side of (2.12) defines a norm follows from the
fact that Ranˆ� is dense in X .

A direct consequence of Proposition 2.3 is the following characterization of
.Ranˆ� /0:

Proposition 2.4. If .A;B/ is approximately controllable in time � > 0 then .Ranˆ� /0 coin-
cides with the completion of X with respect to the norm � 7! kˆ�

� �kL2.Œ0;��IU/.

By combining the above result with a classical duality argument (see, for, instance,
[41, Proposition 4.4.1]), we obtain:

Corollary 2.1. If .A; B/ is approximately controllable in time � > 0 then .Ranˆ� /0 coin-
cides with the completion of D.A�/ with respect to the norm � 7! .

R �
0

kB�T �
t �k

2 dt / 12 .

As already mentioned, in the infinite-dimensional case the reachable space generally
depends on the time horizon � . However, as precisely stated below, there exists an important
class of infinite-dimensional systems for which the reachable space is independent of the
time horizon.
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Proposition 2.5. If the well-posed linear control system .T ; ˆ/ is null-controllable in any
positive time then Ranˆ� does not depend on � > 0.

Following the ideas of [37], a very short proof of the above result is provided in [21].

3. Single input systems with skew-adjoint generator

In this section we consider, for the sake of simplicity, a class of systems which can be
seen as a “toy model” for many linear control problems involving the dynamics of flexible
structures. In fact, our abstract result in Theorem 3.1 below can be directly applied only
to problems in one space dimension. Nevertheless, estimates similar to the inequality in
Theorem 3.2 below can be used when tackling some problems in several space dimensions,
at least in particular geometric configurations (see, for instance, Allibert [2], Jaffard [17],
Jaffard and Micu [18], or Komornik and Loreti [22]). The situation is much more complicated,
requiring different techniques, in several space dimensions and with arbitrary shapes of the
domain filled by the elastic structure, see, for instance, Avdonin, Belishev, and Ivanov [3].

Let A W D.A/ ! X be a skew-adjoint operator, with nonempty resolvent set �.A/
and with compact resolvents. We denote by .�k/k2Z� an orthonormal basis of X consisting
of eigenvectors of A. For every k 2 Z�, we denote by i�k the eigenvalue associated to the
eigenvector �k , so that �k is real for all k 2 Z�. Without loss of generality, we can assume
that �1 > ��1 and

�nC1 � �n > 0
�
n 2 Z�

n ¹�1º
�
: (3.1)

According to Stone’s theorem, the operator A generates a strongly continuous group of uni-
tary operators on X . This group, denoted by T D .Tt /t2R, is described by the formula

Tt D

X
k2Z�

h ; �ki exp .i�kt /�k .t 2 R;  2 X/: (3.2)

Assume that the control space U is one-dimensional (i.e., that U D C) and that the
control operator B 2 L.U IX�1/ is given by

Bu D ub .u 2 U/; (3.3)

with b a fixed element of X�1, where, as mentioned in Section 2, X�1 is the dual of D.A�/

with respect to the pivot space X . For b as above and  2 D.A/, the notation hb; i stands
for the duality product of b and  . For every k 2 N, we set

bk WD hb; �ki: (3.4)

The main result in this section is:

Theorem3.1. LetA be a skew-adjoint operator with compact resolvents onX with spectrum
�.A/ D iƒ, where ƒ D .�k/k2Z� is a regular sequence of real numbers, i.e., with

1 WD inf
n2Z�

n¤�1

j�nC1 � �nj > 0: (3.5)
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Moreover, assume that there exist p 2 N and p > 0 such that

p WD inf
n2Z�

n¤�p

�
�nCp � �n

p

�
> 0: (3.6)

Finally, suppose that the sequence .bk/ defined in (3.4) is bounded and that bk ¤ 0 for
every k 2 Z�. Then for every � > 2�

p
, the input mapˆ� of the system .A;B/ (withB defined

in (3.3)) satisfies

Ranˆ� D

²
� 2 X

ˇ̌̌̌ X
k2Z�

jbkj
�2
ˇ̌
h�; �ki

ˇ̌2
< 1

³
: (3.7)

Remark 3.1. The assumption that bk ¤ 0 for every k 2 Z� is not essential. Indeed, it is not
difficult to check that for every b ¤ 0 we have that Ranˆ� is contained in the closed span QX

of the set ¹'k j bk ¤ 0º. Consequently, we can apply Theorem 3.6 to the restriction of our
original system to QX and obtain that

Ranˆ� D

²
� 2 QX

ˇ̌̌̌ X
k2Z�

bk¤0

jbkj
�2
ˇ̌
h�; �ki

ˇ̌2
< 1

³
:

The proof of Theorem 3.1 is based on a class of results playing, more generally, an
important role in the study of reachability questions for the 1D elastic structures. More pre-
cisely, we refer here to several inequalities coming from the theory of nonharmonic Fourier
series, introduced in Ingham [16]. In particular, we use below the following generalization of
Parseval’s inequality:

Proposition 3.1 (Ingham, 1936). Let ƒ D .�n/n2Z� be a real sequence satisfying (3.5).
Then for any interval I with length jI j there exists a constant c, depending on jI j and 1,
such that Z

I

ˇ̌̌̌ X
n2Z�

an exp.i�nt /
ˇ̌̌̌2

dt 6 c
X
n2Z�

janj
2;

for any sequence .an/ 2 `2.Z�;C/.

It is not difficult to check that the proposition above implies the following admissi-
bility result for (3.3) (note that the result below can also be seen as a particular case of the
admissibility conditions given in Ho and Russell [15] and Weiss [43]).

Proposition 3.2. Let A be a skew-adjoint operator with compact resolvents on X with
spectrum �.A/ D iƒ, where ƒ D .�k/k2Z� satisfies (3.5). Assume that b 2 X�1 is such
that for every k 2 Z�, the number bk defined in (3.4) is nonzero. Moreover, suppose that
supk2N jbkj < 1 (recall that the sequence .bk/ has been defined in (3.4)). Then B defined
by (3.3) is an admissible control operator for T .

The main analytical tool in the proof of Theorem 3.1 is a lower bound for exponential
sums, in the spirit of classical inequalities of Ingham [16], Beurling [5], and Kahane [19].
We give below the quantitative version proved in Tenenbaum and Tucsnak [39], making the
dependency of the involved constants explicit in terms of various parameters.

5382 M. Tucsnak



Theorem 3.2. Let ƒ D .�n/n2Z� be a real sequence satisfying (3.5) and (3.6). Then, for
any  2 .0; p/ and interval I with length jI j > 2�


, there exists a constant � D �.1/ > 0

such that, writing " WD
1
2
¹1= � 1=pº, we haveZ

I

ˇ̌̌̌ X
n2Z�

an exp.i�nt /
ˇ̌̌̌2

dt >
�"5pC2

p12p

X
n2Z�

janj
2

for any sequence .an/ 2 `2.Z�;C/.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. It is not difficult to check that our standing assumptions imply that
the system .A;B/ is approximately controllable in time � . Thus, according to Corollary 2.1,
it suffices to identify the completion of D.A�/ D D.A/ with respect to the norm

� 7!

 Z �

0

B�T �
t �
2 dt

! 1
2

: (3.8)

After some simple calculations, we obtain that

B�T �
t � D

X
k2Z�

bkh�; �ki exp.�i�kt /
�
t > 0; � 2 D.A�/

�
:

By combining Proposition 3.1 and Theorem 3.2, it follows that the norm defined in (3.8) is
equivalent to the norm

� 7!

�X
k2Z�

jbkj
2
ˇ̌
h�; �ki

ˇ̌2� 1
2

: (3.9)

We can thus use Corollary 2.1 to conclude that the dual .Ranˆ� /0 of Ranˆ� with respect
to the pivot space X is the completion of D.A/ with respect to the norm defined in (3.9).

On the other hand, the completion of D.A/with respect to the norm defined in (3.9)
clearly coincides with the dual with respect to the pivot space X of the space²

� 2 X

ˇ̌̌̌ X
k2Z�

jbkj
�2
ˇ̌
h�; �ki

ˇ̌2
< 1

³
;

so that we obtain the conclusion (3.7).

4. An example coming from elasticity

In this section we show how the abstract result in Theorem 3.1 can be applied to
determine the reachable space of a system describing the vibrations of an Euler–Bernoulli
beam with piezoelectric actuator. More precisely, we consider the initial and boundary value
problem modeling the vibrations of an Euler–Bernoulli beam which is subject to the action
of a piezoelectric actuator. Most of the results in this section appear, using a different termi-
nology, in Tucsnak [40].
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If we suppose that the beam is hinged at both ends and that the actuator is excited
in a manner so as to produce pure bending moments, the model for the controlled beam can
be written as (see, for instance, Crawley [7] or Destuynder et al. [10]):

Rw.t; x/C
@4w

@x4
.t; x/ D u.t/

d
dx
�
ıb.x/ � ıa.x/

�
.0 < x < �; t > 0/; (4.1)

w.t; 0/ D w.t; �/ D 0;
@2w

@x2
.t; 0/ D

@2w

@x2
.t; �/ D 0 .t > 0/; (4.2)

w.0; x/ D 0; Pw.0; x/ D 0 .0 < x < �/: (4.3)

In the equations above,w represents the transverse deflection of the beam, a;b 2 .0;�/ stand
for the ends of the actuator, and ıy is the Dirac mass at the point y. Moreover, Pw, Rw denote
the partial derivatives of w with respect to time. The control is the function u representing
the time variation of the voltage applied to the actuator.

It is easily seen that equations (4.1)–(4.3) can be written, using the standard notation
for Sobolev spaces, using a second-order abstract form in the spaceH D H�1.0; �/. More
precisely, the system (4.1)–(4.3) can be rephrased as

Rw.t/C A20w.t/ D B0u.t/ .t > 0/; (4.4)

w.0/ D 0; Pw.0/ D 0; (4.5)

where A0 is the Dirichlet Laplacian on .0; �/ defined by

D.A0/ D H 1
0 .0; �/; (4.6)

A0' D �
d2'
dx2

�
' 2 D.A0/

�
; (4.7)

and the operator B0 is defined by

B0u D u
d

dx
.ıb � ıa/ .u 2 C/: (4.8)

We first recall the following well-posedness result from [40]:

Proposition 4.1. Equations (4.1)–(4.3) determine a well-posed control system with state
spaceX D D.A0/�H and control space U D C. The corresponding semigroup generator
and control operator are defined by

D.A/ D D
�
A20
�

� D.A0/; A D

"
0 I

�A20 0

#
; (4.9)

respectively

B D

"
0

B0

#
; (4.10)

where the operators A0 and B0 have been defined in (4.6)–(4.8).

Let ˆbeam be the input maps associated to the well-posed system from Proposi-
tion 4.1, defined by

ˆbeam
� u D

"
w.�; �/

Pw.�; �/

# �
u 2 L2

�
Œ0; ��IU

��
:
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The main result in this section is

Proposition 4.2. For
�
f
g

�
2 X , we define the Fourier coefficients .an/ and .bn/ by

f .x/ D

1X
nD1

cn sin .nx/; g.x/ D

1X
nD1

n2dn sin .nx/; (4.11)

with .ncn/ and .ndn/ in `2.N;C/. Moreover, assume that
aC b

�
;
a � b

�
2 R � Q: (4.12)

Then for every � > 0, we have that
�
f
g

�
2 X lies in Ranˆbeam

� if and only ifX
n2N

n2 sin�2

�
n.aC b/

2

�
sin�2

�
n.a � b/

2

��
jcnj

2
C jdnj

2
�
< 1: (4.13)

Proof. It is known that the operatorsA0 andA20, whereA0 has been defined in (4.6) and (4.7),
are self-adjoint and positive on H (see, for instance, [41, Sections 3.3 and 3.4]). From this
it follows that the operator A defined in (4.9) is skew-adjoint on X D D.A0/ � H , see
[41, Section 3.7]. Moreover, we know from Proposition 4.1 that B is an admissible control
operator for the unitary group T generated by A, so that the system .A;B/ is eligible for the
application of Theorem 3.1. To check that all the assumptions in this theorem are satisfied,
let

'k.x/ D k

r
2

�
sin.kx/

�
k 2 N; x 2 .0; �/

�
:

It is easily seen that .'k/k2N is an orthonormal basis of H comprising eigenvectors of A0
with corresponding eigenvalues .�2

k
/k2N , where �k D k2 for every k 2 N. This enables

us, according to [41, Proposition 3.7.7], to construct an orthonormal basis in X consisting of
eigenvectors ofA. More precisely, for every k 2 N, we set '�k D �'k and ��k D ��k , and

�k D
1

p
2

"
1
i�k
'k

'k

#
: (4.14)

Then for every k 2 Z�, we have that�k is an eigenvector ofA corresponding to the eigenvalue
i�k and .�k/k2Z� is an orthonormal basis in X .

Let us note at this stage that the sequence .�k/k2Z� obviously satisfies assump-
tion (3.5) from Theorem 3.1 and that for every  > 0 there exists p 2 N such that .�k/k2Z�

satisfies assumption (3.6) with p >  .
To compute the coefficients .bk/ defined in (3.4), we note that from (4.10) and (4.14)

it follows that
hBu; �kiX�1;X1 D

1
p
2

hB0u; 'kiŒD.A0/�0;D.A0/;

where ŒD.A0/�
0 is the dual of D.A0/ with respect to the pivot space H . Recalling that

H D H�1.0; �/ and using (4.8), it follows that, for every u 2 C and k 2 Z�, we have

hBu; �kiX�1;X1 D
1

p
2

u
��

d
dx
�
A�1
0 'k

��
xDa

�

�
d

dx
�
A�1
0 'k

��
xDb

�
;
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so that
bk D

1
p
2

��
d

dx
�
A�1
0 'k

��
xDa

�

�
d

dx
�
A�1
0 'k

��
xDb

� �
k 2 Z�

�
:

After some simple calculations, we obtain that

bk D
1

p
�

�
cos.ka/ � cos.kb/

�
D

2
p
�

sin
�
k.b C a/

2

�
sin
�
k.b � a/

2

� �
k 2 Z�

�
:

From the above formula, it follows that the sequence .bk/ is bounded and, recalling (4.12),
that bk ¤ 0 for every k 2 Z�.

We have thus checked all the assumptions of Theorem 3.1. Applying this theorem to
the system described by the operators of A and B defined in this section, it this follows that�
f
g

�
2X indeed belongs to the reachable space of the considered system iff (4.13) holds.

Remark 4.1. The result in Proposition 4.2 can be combined with some simple diophan-
tine approximation results to obtain more explicit information on Ranˆbeam

� . Some of these
properties are:

• There exist no locations a and b for which the system is exactly controllable.
Indeed, from (4.13) it follows that the system .A; B/ is exactly controllable iff
the sequences .j sin Œn.a˙b/

2
�j/n2N are bounded away from zero. Or, using the

continuous fraction approximation of real numbers, it is easy to check (see [40])
that there are no real numbers a and b with this property.

• The largest reachable spaces are obtained when a˙b
�

can be “badly” approximated
by rational numbers. In particular, if a˙b

�
are quadratic irrationals (i.e., solutions

of a second-order equation with integer coefficients), then

Ranˆbeam
� � D.A/:

• On the other hand, choosing a and b such that a˙b
�

can be well approximated
by rational numbers, the reachable space diminishes. We think, in particular, of
Liouville numbers (see Valiron [42]). More precisely, for everym 2 N, there exist
a; b 2 .0; �/ such that a˙b

�
62 Q and D.Am/ contains states which are not reach-

able.

5. The heat equation on a half-line

The properties of the system we consider in this section strongly contrast those
encountered in the finite-dimensional context. We just mention here that its reachable space
depends on time and that the system is approximately controllable but not null-controllable.
The results presented in this section are not new, but we chose to describe them in detail
for two reasons. Firstly, the study of the reachable space of this system brought in new tech-
niques in control theory for infinite-dimensional systems, essentially coming from the theory
of reproducing kernel Hilbert spaces. Secondly, as it has been very recently discovered, these
results have an important role in characterizing the reachable space for the controlled heat
equation on a bounded interval, as it will be shown in Section 6.
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Consider the initial and boundary value problem8̂̂̂̂
<̂
ˆ̂̂:
@v

@t
.t; x/ D

@2v

@x2
.t; x/ .t > 0; x 2 .0;1//;

v.t; 0/ D u0.t/; .t 2 Œ0;1//;

v.0; x/ D 0 .x 2 .0;1//;

(5.1)

and the associated input maps .ˆleft
� /�>0 defined by

ˆleft
� u D v.�; �/

�
u 2 L2Œ0;1

�
; � > 0/: (5.2)

As far as we know, the first paper with explicit control-theoretic purposes tackling
the system described by the first two equations in (5.1) is Micu and Zuazua [28]. The main
results in [28] assert that the first two equations in (5.1) determine a well-posed control system
in appropriate spaces and that this system is not null-controllable in any time � > 0 (con-
cerning this last assertion, we also refer to Dardé and Ervedoza [9] for an elegant proof and
extensions to related PDE systems). Combining the above mentioned lack of controllability
property with Proposition 2.5 suggests that Ranˆleft

� depends on the time � . This depen-
dence was, in fact, already made explicit in a series of papers driven by complex analysis
motivations, see Aikawa et al. [1] and Saitoh [32,33]. These results came to the attention of the
control-theoretic community only very recently, when they became an important ingredient
in proving the main results in [13].

Before stating some of the main results from [1] and [33], we first recall some defi-
nitions concerning Bergman spaces. More precisely, for� � C an open set and ! 2 C.�/,
with j!.x/j> 0 for every x 2�, the Bergman space on� with weight !, denotedA2.�;!/
is formed by all the functions f holomorphic on� such that f

p
j!j is inL2.�/. For ! D 1,

this space is simply denoted by A2.�/. Note that A2.�; !/ becomes a Hilbert space when
endowed with the norm

k k
2
A2.�;!/

D

Z
�

ˇ̌
 .x C iy/

ˇ̌2 ˇ̌
!.x C iy/

ˇ̌
dx dy:

We also recall (see, for instance, [6, Section 4.1]) that the input maps defined in (5.2) can be
alternatively described by the integral formula�

ˆleft
� u

�
.x/ D �

Z �

0

@�

@x
.� � �; x/u.�/ d�

�
u 2 L2Œ0;1/; � > 0; x 2 .0; �/

�
; (5.3)

where

�.t; x/ D

r
1

�t
exp

�
�
x2

4t

�
.t > 0; x 2 R/ (5.4)

is the heat kernel on R.
For each � > 0, the range of the input mapˆleft

� defined in (5.2) has been completely
described in [32] as an appropriate subspace of the space of functions continuous on .0; �/
and which can be extended to a function which is holomorphic on the set � defined by

� D

²
s 2 C

ˇ̌̌̌
�
�

4
< arg s <

�

4

³
: (5.5)
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The precise description given in [32] of this space involves the sum of a two Hilbert spaces
of holomorphic functions defined on �, one of them being of Bergman type. To avoid extra
notational complexity, we choose to omit the precise statement of this result and to focus
on the characterization of the range of the restriction of ˆleft

� to the space of inputs u.t/ D
p
tf .t/ with f 2 L2Œ0; ��. Recalling (5.3) and (5.4), this means that for every � > 0 we

focus on the range of the operator defined by

.P�f /.x/ D

Z �

0

x exp.� x2

4.���/
/

2
p
�.� � �/

3
2

f .�/
p
� d�

�
f 2 L2Œ0; ��; x 2 .0; �/

�
: (5.6)

We are now in a position to state the main result in [1].

Theorem 5.1. For every � > 0, the operator P� defined in (5.6) is an isometry fromL2Œ0; ��
onto A2.�; !0;� /, where � has been defined in (5.5) and

!0;ı.s/ D
exp.Re.s2/

2ı
/

ı
.ı > 0; s 2 �/: (5.7)

The proof of Theorem 5.1 is a very nice application of the theory of linear operators
in reproducing kernel spaces, as described, for instance, in [34]. More precisely, the main
steps of the proof from [1] are:

• remarking that, by elementary calculus, if in the definition (5.3) ofˆleft
� we replace

x 2 .0; �/ by s 2 � then the right-hand side of (5.3) defines a function which is
holomorphic on �;

• using general results on the range of integral operators on RKHS and appropriate
integrations, deduce that Ran P� is an RKHS of holomorphic functions on �
whose kernel is

K� .s; w/ D exp
�

�
s2 C w2

4�

�
4sw

�.s2 C w2/2
I (5.8)

• finally, remarking that the kernelK� in (5.8) coincides with the reproducing kernel
of A2.�; !0;� /.

6. The heat equation on an interval

In this section we come back to equations in (1.1), already briefly discussed in Sec-
tion 1. More precisely, we describe below very recent advances which have lead to several
equivalent characterizations of the system described by the first two equations in (1.1). In
other words, our aim is to characterize the range of the operatorˆheat

� introduced in (1.2). We
continue using the notation introduced in Section 5, namely for Bergman spaces (possibly
weighted).

We first state the following remarkably simple characterization, proved in [14] and
confirming a conjecture formulated in [13]:
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Theorem 6.1. Let � > 0 and let ˆheat
� be the input map introduced in (1.2). Then

Ranˆheat
� D A2.D/; (6.1)

whereD is the square introduced in (1.3).

It is quite natural to postpone the discussion of the main steps of the proof of The-
orem 6.1 to the end of this section. Indeed, this proof is based, in particular, on another
characterization of Ranˆheat

� , as a sum of two Bergman spaces on two symmetric infinite
sectors. Besides being used in the proof of Theorem 6.1, this type of characterization is of
independent interest.

To state these results, we need some notation. We first introduce the set

Q� D � ��; (6.2)

where � has been defined in (5.5), and the weight function

!�;ı.Qs/ D
exp.ReŒ.��Qs/2�

2ı
/

ı
.ı > 0; Qs 2 Q�/: (6.3)

Note that
!0;ı.s/ D !�;ı.� � s/ .s 2 �/; (6.4)

where !0;ı is the weight introduced in (5.7).
We also introduce the space Xı defined for every ı > 0 by

Xı D

´
 2 C.0; �/

ˇ̌̌̌
ˇ 9'0 2 A2.�; !0;ı/

9'� 2 A2. Q�;!�;ı/
;  D '0 C '� on .0; �/

µ
; (6.5)

which is endowed with the norm

k'kı D inf

8̂<̂
:k'0kA2.�;!0;ı / C k'�kA2. Q�;!�;ı /

ˇ̌̌̌
ˇ̌̌ '0 C '� D '

'0 2 A2.�; !0;ı/

'� 2 A2. Q�;!�;ı/

9>=>; : (6.6)

We are now in a position to formulate the main result in [21].

Theorem 6.2. With the above notation, for every �; ı > 0, we have

Ranˆheat
� D Xı D A2.�/C A2. Q�/: (6.7)

Let us mention that the equality Ranˆheat
� D A2.�/ C A2. Q�/ has been obtained

independently in [29].
We briefly describe below the main steps of the proof of Theorem 6.2.

• We first remark thatˆheat
� is the sum of a series of integral operators involving the

heat kernel. More precisely, we have 
ˆ�

"
u0

u�

#!
.x/ D

Z �

0

@K0

@x
.� � �; x/u0.�/ d� C

Z �

0

@K�

@x
.� � �; x/u�.�/ d��

� > 0; u0; u� 2 L2Œ0; ��; x 2 .0; �/
�
; (6.8)
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where

K0.�; x/ D �

r
1

��

X
m2Z

exp
�

�
.x C 2m�/2

4�

� �
� > 0; x 2 Œ0; ��

�
; (6.9)

K�.�; x/ D K�.�; � � x/
�
� > 0; x 2 Œ0; ��

�
: (6.10)

Formula (6.8) can be derived, using symmetry considerations, from (5.3). An
alternative proof is proposed in [13] by combining the Fourier series expression
of the solution of (1.1) and the Poisson summation formula.

• The second step consists in remarking that Ranˆheat
� coincides with the range of

the map (still defined on .L2Œ0; ��/2)"
f

g

#
7! ˆheat

�

"p
tf

p
tg

# �
f; g 2 L2Œ0; ��

�
:

This can be easily proved using the fact that the considered system is null-
controllable in any positive time, see [21, Proposition 3.2].

• For the third step, we first prove that from (6.8) it follows that for every f; g 2

L2Œ0; ��, we have

ˆheat
�

"p
tf

p
tg

#
D P�f CQ�g CR�

"
f

g

#
;

where P� has been defined in (5.6),

.Q�g/.x/ D .P�g/.� � x/
�
x 2 .0; �/

�
;

and R� is an operator whose norm tends to zero when � ! 0C. In other words,
ˆheat
� decomposes into the sum of the input maps of the system describing the

boundary controlled heat equation on Œ0;1/ and .�1;��, respectively (for which
the ranges are known from the previous section) and a remainder term R� which
becomes “negligible” for small � .
Combined with Theorem 5.1, this fact implies, recalling (6.5), that

Ranˆheat
� D X� .� > 0/:

• The last step of the proof consists in showing that

X� D A2.�/C A2. Q�/ .� > 0/:

This can be accomplished by combining Proposition 2.5 and the construction of
appropriate multipliers (see [21] for details).

We end this section by coming back to the proof of Theorem 6.1. In view of Theo-
rem 6.2, the conclusion of Theorem 6.1 is equivalent to the equality

A2.D/ D A2.�/C A2. Q�/: (6.11)
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This a question which is part of a class of problems with a quite long history in complex
analysis: the separation of singularities for holomorphic functions. A general formulation
of this type of problems is: denoting by Hol.O/ the space of holomorphic functions on
an open set O � C (in particular, the Banach space of analytic functions) and given two
open sets �1; �2 � C with �1 \ �2 ¤ ;, is it true that Hol.�1 \ �2/ D Hol.�1/ C

Hol.�2/? We refer to [14] for detailed historical information on this issue, mentioning here
just that [14] is the first work considering this question in a Bergman space context. Moreover,
using a methodology involving sophisticated analytical techniques, like Hörmander-typeLp-
estimates for the solution of the N@ equation, the main results in [14] assert that the separation
of singularities for Bergman spaces holds in a geometrical context more general than that
in (6.11).

7. Conclusions, remarks, and open questions

This work gives an overview, far from being exhaustive, of the applications of
complex and harmonic analysis methods in the study of the reachable space of infinite-
dimensional systems. In most of the presented results, the analytical tools appearing in the
previous sections have been developed for purposes having a priori nothing to do with
the infinite-dimensional system theory. This is the case, for instance, for the Ingham–
Beurling–Kahane-type inequalities appearing in Section 3, which began to be applied in
controllability and reachability questions only several decades after their publication. The
situation is similar for the methods coming from the theories of RKHS and spaces of analytic
functions, namely those described in Sections 5 and 6: their penetration in the control-
theoretic community took place 20 years after their first publication. An important fact is
that these interactions raised new problems and allowed significant progress in the concerned
fields of analysis. The separation of singularities for Bergman spaces, briefly discussed in
Section 6, is a remarkable example illustrating these mutual interactions.

We conclude this work by briefly describing some open questions which are, at least
in the author’s opinion, of major interest in the infinite-dimensional system theory.

7.1. Time reversible systems
We think here of linear control systems described by the wave, Schrödinger, or

Euler–Bernoulli equations. As already mentioned, the characterization of the reachable
space of these systems is quite well understood in the case of one space dimension, but
essentially open in several space dimensions. Taking the example of a system described
by the wave equation in a bounded domain in Rn .n > 2/, we should mention the famous
paper by Bardos, Lebeau, and Rauch [4], where it is proved that the exact controllability (in
sufficiently large time) holds iff the control support satisfies the so-called geometric optics
condition. On the other hand, using a duality argument and Holmgren’s uniqueness theorem,
it is not difficult to see that if the control support is an arbitrary open subset of the boundary,
then the system is approximately controllable, again in sufficiently large time. As far as we
know, the question of characterizing the reachable space when the control support does not
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satisfy the geometric optics condition is essentially open and it seems an extremely challeng-
ing one. Some information on these spaces can be found in [18], where the wave equation
holds in a rectangular domain, or in [3]. Possible tools for tackling a more general geometry
can be found in Lebeau [25], Robbiano [30], or Laurent and Léautaud [23].

7.2. Systems described by parabolic equations
As described in Section 6, the reachable space for systems described by the constant

coefficient heat equation on a bounded interval has been recently completely characterized
in terms of Hilbert spaces of analytic functions. However, for systems described by variable
coefficient parabolic equations, even in one space dimension, many natural questions are still
open. We think, in particular, of the sharp identification of the domain of analyticity of the
reachable space when all the coefficients of the parabolic equation are entire functions of the
space variable, see Laurent and Rosier [24] for several remarkable results in this direction.

Coming back to the system described by the one-dimensional constant coefficient
heat equations, it would be important to understand the action of the heat semigroup on the
reachable space. In particular, is the semigroup obtained by restricting the heat semigroup to
the reachable space strongly continuous on Ranˆ� (when endowed with the norm defined
in (2.9))? A positive answer to this question would be a good departure point in studying the
robustness of the reachable space with respect to various perturbations (linear or nonlinear),
in the vein of the corresponding theory for exactly controllable systems.

Finally, let us briefly discuss the state-of-the-art for systems described by the con-
stant coefficient heat equation in several space dimensions. An early result in this direction
has been provided in Fernández-Cara and Zuazua [12], where it is shown that a class of func-
tions which are holomorphic in an appropriate infinite strip are in the reachable space. A
very recent and important contribution to this question has been recently brought in a work
by Strohmaier and Waters [38]. In this work, assuming that the spatial domain is a ball and
that the control acts on the whole boundary, the authors provide detailed information on the
reachable space, similar to that obtained in [8] for systems described by the one-dimensional
heat equation. As far as we know, with the exception of the above-mentioned situation, the
study of the reachable space described by boundary-controlled parabolic equation in Rn,
with n > 2, is a widely open question.
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Abstract

Many supervised machine learning methods are naturally cast as optimization problems.
For prediction models which are linear in their parameters, this often leads to convex prob-
lems for which many mathematical guarantees exist. Models which are nonlinear in their
parameters such as neural networks lead to nonconvex optimization problems for which
guarantees are harder to obtain. In this paper, we consider two-layer neural networks with
homogeneous activation functions where the number of hidden neurons tends to infinity,
and show how qualitative convergence guarantees may be derived.
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1. Introduction

In the past 20 years, data in all their forms have played an increasing role: in personal
lives, with various forms of multimedia and social networks, in the economic sector where
most industries monitor all of their processes and aim at making data-driven decisions, and
in sciences, where data-based research is having more and more impact, both in fields which
are traditionally data-driven such as medicine and biology, but also in humanities.

This proliferation of data leads to a need for automatic processing, with striking
recent progress in some perception tasks where humans excel, such as image recognition
or natural language processing. These advances in artificial intelligence were fueled by the
combination of three factors: (1) massive data to learn from, such as millions of labeled
images, (2) increased computing resources to treat this data, and (3) continued scientific
progress in algorithms.

Machine learning is one of the scientific disciplines that have made this progress
possible, by blending statistics and optimization to design algorithms with theoretical gener-
alization guarantees. The goal of this paper is to highlight our recent progress and to present
a few open mathematical problems.

2. Supervised learning

In this paper, we will focus on the supervised machine learning problem, where we
are being given n pairs of observations .xi ; yi / 2 X � Y, i D 1; : : : ; n, for example, images
(X is then the set of all possible images), with a set of labels (Y is then a finite set, which
we will assume to be a subset of R for simplicity). The goal is to be able to predict a new
output y 2 Y, given a previously unobserved input x 2 X.

Following the traditional statistical M-estimation framework [45], this can be per-
formed by considering prediction functions x 7! h.x; �/ 2 R, parameterized by � 2 Rd .
The vector � is then estimated through regularized empirical risk minimization, that is, by
solving

min
�2Rd

1

n

nX
iD1

`
�
yi ; h.xi ; �/

�
C ��.�/; (2.1)

where ` W Y � R ! R is a loss function, and � W Rd ! R is a regularization term that avoids
overfitting (that is, learning a carbon copy of the observed data that does not generalize well
to unseen data).

Typical loss functions are the square loss `.yi ; h.xi ; �// D
1
2
.yi � h.xi ; �//2 for

regression problems, and the logistic loss `.yi ; h.xi ; �// D log.1 C exp.�yi h.xi ; �/// for
binary classification where Y D ¹�1; 1º. In this paper, we will always assume that the loss
function is continuously twice differentiable and convex with respect to the second variable.
This applies to a wide variety of output spaces beyond regression and binary classification
(see [36] and references therein).

When the predictor depends linearly on the parameters, typical regularizers are the
squared Euclidean norm �.�/ D

1
2
k�k2

2 or the `1-norm �.�/ D k�k1, which both lead to
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improved generalization performance, with the `1-norm providing additional variable selec-
tion benefits [14].

2.1. Statistics and optimization
The optimization problem in equation (2.1) leads naturally to two sets of questions,

which are often treated separately. Given that some minimizer O� is obtained (no matter how),
how does the corresponding prediction function generalize to unseen data? This is a statisti-
cal question that requires assumptions on the link between the observed data (usually called
the “training data”), and the unseen data (usually called the “testing data”). It is typical to
assume that the training and testing data are sampled independently and identically from
the same fixed distribution. Then a series of theoretical guarantees applies, based on various
probabilistic concentration inequalities (see, e.g., [31]).

The second question is how to obtain an approximate minimizer O� , which is an
optimization problem, regardless on the relevance of O� on unseen data (see, e.g., [6]). For
high-dimensional problems where d is large (up to millions or billions), classical gradient-
based algorithms are preferred because of their simplicity, efficiency, robustness, and favor-
able convergence properties. The most classical one is gradient descent, which is an iterative
algorithm with iteration

�k D �k�1 � rR.�k�1/;

where R.�/ D
1
n

Pn
iD1 `.yi ; h.xi ; �// C ��.�/ is the objective function in equation (2.1),

and  > 0 the step-size.
In this paper, where we aim at tackling high-dimensional problems, we will often

consider the two problems of optimization and statistical estimation jointly.

2.2. Linear predictors and convex optimization
In many applications, a prediction function which is linear in the parameter � is

sufficient for good predictive performance, that is, we can write

h.x; �/ D �>ˆ.x/

for some function ˆ W X ! Rd , which is often called a “feature function.” For simplicity, we
have assumed finite-dimensional features, but infinite-dimensional features can also be con-
sidered, with a specific computational argument to allow finite-dimensional computations
through reproducing kernel Hilbert spaces (see, e.g., [40] and references therein).

Given a convex loss function, the optimization problem is convex and gradient
descent on the objective function, together with its stochastic extensions, has led to a number
of efficient algorithms with strong generalization guarantees of convergence towards the
global optimum of the objective function [6]. For example, for the square or logistic loss,
if the feature function is bounded in `2-norm by R for all observations, and for the squared
Euclidean norm �.�/ D

1
2
k�k2

2, bounds on the number of iterations to reach a certain pre-
cision " (difference between the candidate function value R.�/ and the minimal value) can
be obtained:
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• For gradient descent, R2

�
log 1

"
iterations are needed, but each iteration has a run-

ning time complexity of O.nd/, because the d -dimensional gradients of the n

functions � 7! `.yi ; h.xi ; �//, i D 1; : : : ; n, are needed.

• For stochastic gradient descent, with iteration �k D �k�1 � r`.yi.k/; h.xi.k/;

�k�1//, with i.k/ 2 ¹1; : : : ; nº taken uniformly at random, the number of itera-
tions is at most R2

�
1
"
. We lose the logarithmic dependence, but each iteration has

complexity O.d/, which can be a substantial gain when n is large.

• More recent algorithms based on variance reduction can achieve an overall com-
plexity proportional to .n C

R2

�
/ log 1

"
, thus with an exponential convergence rate

at low iteration cost (see [16] and references therein).

In summary, for linear models, algorithms come with strong performance guar-
antees that reasonably match their empirical behavior. As shown below, nonlinear models
exhibit more difficulties.

2.3. Neural networks and nonconvex optimization
In many other application areas, in particular in multimedia processing, linear pre-

dictors have been superseded by nonlinear predictors, with neural networks being the most
classical example (see [15]). A vanilla neural network is a prediction function of the form

h.x; �/ D �>
s �.�>

s�1�
�
� � � �>

2 �.�>
1 x/

�
;

where the function � W R ! R is taken component-wise, with the classical examples being the
sigmoid function �.t/ D .1 C exp.�t //�1 and the “rectified linear unit” (ReLU),
�.t/ D tC D max¹t; 0º. The matrices �1; : : : ; �s are called weight matrices. The simplest
nonlinear predictor is for s D 2, and will be the main subject of study in this paper. See
Figure 1 for an illustration.

Figure 1

Neural network with a single hidden layer, with an input weight matrix �1 2 Rd�m and a output weight vector
�2 2 Rm.
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The main difficulty is that now the optimization problem in equation (2.1) is not
convex anymore, and gradient descent can converge to stationary points that are not global
minima. Theoretical guarantees can be obtained regarding the decay of the norm of the gra-
dient of the objective function, or convergence to a local minimizer may be ensured [21,25],
but this does not exclude bad local minima, and global quantitative convergence guarantees
can only be obtained with exponential dependence in dimension for the class of (potentially
nonconvex) functions of a given regularity [33].

An extra difficulty is related to the number of hidden neurons, also referred to as the
width of the network (equal to the size of �2 when s D 2), which is often very large in practice,
which poses both statistical and optimization issues. We will see that this is precisely this
overparameterization that allows obtaining qualitative global convergence guarantees.

3. Mean field limit of overparameterized one-hidden

layer neural networks

We now tackle the study of neural networks with one infinitely wide hidden layer.
They are also referred to as (wide) two-layer neural networks, because they have two layers of
weights. We first rescale the prediction function by 1=m (which can be obtained by rescaling
�2 by 1=m), and express it explicitly as an empirical average, namely

h.x; �/ D
1

m
�>

2 �.x>�1/ D
1

m

mX
j D1

�2.j / � �
�
x>�1.�; j /

�
;

where �2.j / 2 R is the output weight associated to neuron j , and �1.�; j / 2 Rd the cor-
responding vector of input weights. The key observation is that the prediction function
x 7! h.x; �/ is the average of m prediction functions x 7! �2.j / � �Œ�1.�; j />x�, for
j D 1; : : : ; m, with no sharing of the parameters (which is not true if extra layers of hidden
neurons are added).

In order to highlight this parameter separability, we define

wj D
�
�2.j /; �1.�; j /

�
2 RdC1;

the set of weights associated to the hidden neuron j , and consider

‰.w/ W x 7! w.1/ � �
�
x>w.2; : : : ; d C 1/

�
;

so that the prediction function x 7! h.�; w1; : : : ; wm/, parameterized by w1; : : : ; wm, is now

h.�; w1; : : : ; wm/ D
1

m

mX
j D1

‰.wj /: (3.1)

The empirical risk is of the form

R.h/ D E
�
`
�
y; h.x/

��
;

which is convex in h for convex loss functions (even for neural networks), but typically non-
convex in w. Note that the resulting problem of minimizing a convex function R.h/ for
h D

1
m

Pm
j D1 ‰.wj / applies beyond neural networks, for example, for sparse deconvolu-

tion [7].
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3.1. Reformulation with probability measures
We now define by P .W/ the set of probability measures on W D RdC1. We can

rewrite equation (3.1) as
h D

Z
W

‰.w/d�.w/;

with � D
1
m

Pm
j D1 ıwj

being the average of Dirac measures at each w1; : : : ; wm. Following
a physics analogy, we will refer to each wj as a particle. When the number m of particles
grows, the empirical measure 1

m

Pm
j D1 ıwj

may converge in distribution to a probability
measure with a density, often referred to as a mean field limit. Our main reformulation will
thus be to consider an optimization problem over probability measures.

The optimization problem we are faced with is equivalent to

inf
�2P .W/

R

�Z
W

‰.w/d�.w/

�
; (3.2)

with the constraint that � is an average of m Dirac measures. In this paper, following a long
line of work in statistics and signal processing [5,23], we consider the optimization problem
without this constraint, and relate optimization algorithms for finite but large m (thus acting
on W D .w1; : : : ; wm/ in Wm) to a well-defined algorithm in P .W/.

Note that we now have a convex optimization problem, with a convex objective in
� over a convex set (all probability measures). However, it is still an infinite-dimensional
space that requires dedicated finite-dimensional algorithms. In this paper we focus on gra-
dient descent on w, which corresponds to standard practice in neural networks (e.g., back-
propagation). For algorithms based on classical convex optimization algorithms such as the
Frank–Wolfe algorithm, see [4].

3.2. From gradient descent to gradient flow
Our general goal is to study the gradient descent recursion on W D .w1; : : : ;

wm/ 2 Wm, defined as
Wk D Wk�1 � mrG.Wk�1/; (3.3)

with

G.W / D R
�
h.�; w1; : : : ; wm/

�
D R

 
1

m

mX
j D1

‰.wj /

!
:

In the context of neural networks, this is exactly the back-propagation algorithm. We include
the factor m in the step-size to obtain a well-defined limit when m tends to infinity (see
Section 3.3).

For convenience in the analysis, we look at the limit when the step-size  goes to
zero. If we consider a function V W R ! Wm, with values V.k/ D Wk at t D k , and
we interpolate linearly between these points, then we obtain exactly the standard Euler dis-
cretization of the ordinary differential equation (ODE) [44],

PV D �mrG.V /: (3.4)
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This gradient flow will be our main focus in this paper. As highlighted above, and with extra
regularity assumptions, it is the limit of the gradient recursion in equation (3.3) for vanishing
step-sizes  . Moreover, under appropriate conditions, stochastic gradient descent, where we
only observe an unbiased noisy version of the gradient, also leads in the limit  ! 0 to the
same ODE [24]. This allows applying our results to probability distributions of the data .x;y/

which are not the observed empirical distribution, but the unseen test distribution, where the
stochastic gradients come from the gradient of the loss from a single observation.

Three questions now emerge:

(1) What is the limit (if any) of the gradient flow in equation (3.4) when the number
of particles m gets large?

(2) Where can the gradient flow converge to?

(3) Can we ensure a good generalization performance when the number of param-
eters grows unbounded?

In this paper, we will focus primarily in the next sections on the first two questions, and tackle
the third question in Section 5.

3.3. Wasserstein gradient flow
Above, we have described a general framework where we want to minimize a func-

tion F defined on probability measures,

F.�/ D R

�Z
W

‰.w/d�.w/

�
; (3.5)

with an algorithm minimizing G.w1; : : : ; wm/ D R. 1
m

Pm
j D1 ‰.wj // through the gradient

flow PW D �mrG.W /, with W D .w1; : : : ; wm/.
As shown in a series of works concerned with the infinite-width limit of two-layer

neural networks [8,30,35,38,41], this converges to a well-defined mathematical object called
a Wasserstein gradient flow [2]. This is a gradient flow derived from the Wasserstein metric
on the set of probability measures, which is defined as [39]

W2.�; �/2
D inf

2….�;�/

Z
kv � wk

2
2d.v; w/;

where ….�; �/ is the set of probability measures on W � W with marginals � and �. In a
nutshell, the gradient flow is defined as the limit when  tends to zero of the extension of the
following discrete time dynamics:

�.t C / D inf
�2P .W/

F.�/ C
1

2
W2

�
�.t/; �

�2
:

When applying such a definition in a Euclidean space with the Euclidean metric, we recover
the usual gradient flow P� D �rF.�/, but here with the Wasserstein metric, this defines a
specific flow on the set of measures. When the initial measure is a weighted sum of Diracs,
this is exactly asymptotically (when  ! 0) equivalent to backpropagation. When initialized
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with an arbitrary probability measure, we obtain a partial differential equation (PDE), satis-
fied in the sense of distributions. Moreover, when the sum of Diracs converges in distribution
to some measure, the flow converges to the solution of the PDE. More precisely, assuming
‰ W RdC1 ! F , where F is a Hilbert space, and rR.h/ 2 F the gradient of R, we consider
the mean potential

J.wj�/ D

�
‰.w/; rR

�Z
W

‰.v/d�.v/

��
: (3.6)

The PDE is then the classical continuity equation

@t �t .w/ D div
�
�t .w/rJ.wj�t /

�
; (3.7)

which is understood in the sense of distributions. The following result formalizes this behav-
ior (see [8] for details and a more general statement).

Theorem 1. Assume that R W F ! Œ0; C1Œ and ‰ W W D RdC1 ! F are (Fréchet) dif-
ferentiable with Lipschitz differentials, and that R is Lipschitz on its sublevel sets. Con-
sider a sequence of initial weights .wj .0//j �1 contained in a compact subset of W and let
�t;m WD

1
m

Pm
j D1 wj .t/where .w1.t/; : : : ;wm.t// solves theODE (3.4). If�0;m weakly con-

verges to some �0 2 P .W/ then �t;m weakly converges to �t where .�t /t�0 is the unique
weakly continuous solution to (3.7) initialized with �0.

In the following section, we will study the solution of this PDE (i.e., the Wasserstein
gradient flow), interpreting it as the limit of the gradient flow in equation (3.4), when the
number of particles m tends to infinity.

4. Global convergence

We consider the Wasserstein gradient flow defined above, which leads to the PDE in
equation (3.7). Our goal is to understand when we can expect that when t ! 1, �t converges
to a global minimum of F defined in equation (3.5). Obtaining a global convergence result
is not out of the question because F is a convex functional defined on the convex set of
probability measures. However, it is nontrivial because with our choice of the Wasserstein
geometry on measures, which allows an approximation through particles, the flow has some
stationary points which are not the global optimum (see the examples in Section 4.4).

We start with an informal general result without technical assumptions before stating
a formal simplified result.

4.1. Informal result
In order to avoid too many technicalities, we first consider an informal theorem in

this paper and refer to [8] for a detailed set of technical assumptions (in particular smoothness
assumptions). This leads to the informal theorem:

Theorem 2 (Informal). If the support of the initial distribution includes all directions in
RdC1, and if the function ‰ is positively 2-homogeneous then, if the Wasserstein gradient
flow weakly converges to a distribution, it can only be to a global optimum of F .
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In [8] another version of this result that allows for partial homogeneity (e.g., with
respect to a subset of variables) of degree 1 is proven, at the cost of a more technical assump-
tion on the initialization. For neural networks, we have ‰.wj /.x/ D m�2.j / � �Œ�1.�; j />x�,
and this more general version applies. For the classical ReLU activation function
u 7! max¹0; uº, we get a positively 2-homogeneous function, as required in the previous
statement. A simple way to spread all directions is to initialize neural network weights from
Gaussian distributions, which is standard in applications [15].

From qualitative to quantitative results? Our result states that for infinitely many par-
ticles, we can only converge to a global optimum (note that we cannot show that the flow
always converges). However, it is only a qualitative result in comparison with what is known
for convex optimization problems in Section 2.2:

• This is only for m D C1, and we cannot provide an estimation of the number of
particles needed to approximate the mean field regime that is not exponential in t

(see such results, e.g., in [28]).

• We cannot provide an estimate of the performance as the function of time, that
would provide an upper bound on the running time complexity.

Moreover, our result does not apply beyond a single hidden layer, and understanding
the nonlinear infinite-width limits for deeper networks is an important research area [3,12,13,

19,34,42,48].

From informal to formal results. Beyond the lack of quantitative guarantees, obtaining a
formal result requires regularity and compactness assumptions which are not satisfied for
the classical ReLU activation function u 7! max¹0; uº, which is not differentiable at zero
(a similar result can be obtained in this case but under stronger assumptions on the data
distribution and the initialization [9, 47]). In the next section, we will consider a simplified
formal result, with a detailed proof.

4.2. Simplified formal result
In order to state a precise result, we will cast the flow on probability measures on

W D RdC1 to a flow on measures on the unit sphere

�d
D
®
w 2 RdC1; kwk2 D 1

¯
:

This is possible when the function ‰ is positively 2-homogeneous on W D RdC1, that is,
such that ‰.�w/ D �2‰.w/ for � > 0. We can use homogeneity by reparameterizing each
particle wj in polar coordinates as

wj D rj �j ; with rj 2 R and �j 2 �d :

Using homogenetity, we have a prediction function

h D
1

m

mX
j D1

‰.wj / D
1

m

mX
j D1

r2
j ‰.�j /:
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Moreover, the function J defined in equation (3.6) is also 2-homogeneous, and its gradient
then 1-homogeneous. The flow from equation (3.4), can be written as

Pwj D �rJ.wj j�/; with � D
1

m

mX
iD1

ıwj
:

A short calculation shows that the flow8<: Prj D �2rj J.�j j�/;

P�j D �r�J.�j j�/ D .I � �j �>
j /rJ.�j j�/;

with � D
1

m

mX
iD1

r2
j ı�j

; (4.1)

where r� denotes the gradient of functions defined on the sphere �d , leads to exactly the
same dynamics. Indeed, by homogeneity of ‰, the two definitions of � and � (through the
wj ’s, or the �j ’s and rj ’s) lead to the same functions J.�j�/ and J.�j�/, and we get

Pwj D Prj �j C rj P�j D �2rj J.�j j�/�j � rj .I � �j �>
j /rJ.�j j�/

D �rj rJ.�j j�/ � rj

�
2J.�j j�/ � �>

j rJ.�j j�/
�
�j

D �rJ.wj j�/;

because w 7! rJ.wj�/ is 1-homogeneous, and we have used the Euler identity for the 2-
homogeneous function w 7! J.wj�/ D J.wj�/.

Moreover, the flow defined in equation (4.1) is such that �j remains on the sphere
�d . We will study this flow under the assumption that the function ‰ is sufficiently regular,
which excludes ReLU neural networks, but makes the proof easier (see more details in [7]).

We first derive a PDE analogous to equation (3.7). We consider a smooth test func-
tion f W �d ! R, and the quantity

a D

Z
�d

f .�/d�.�/ D
1

m

mX
j D1

r2
j f .�j /:

We have

Pa D
1

m

mX
j D1

2rj Prj f .�j / C
1

m

mX
j D1

r2
j r�f .�j />

P�j

D �
1

m

mX
j D1

4r2
j J.�j j�/f .�j / �

1

m

mX
j D1

r2
j r�f .�j />

r�J.�j j�/

D �4

Z
�d

f .�/J.�j�/d�.�/ �

Z
�d

r�f .�/>
r�J.�j�/d�.�/: (4.2)

This shows that we have the PDE for the density �t at time t

@t �t .�/ D �4�t .�/J.�j�t / C div�

�
�t .�/r�J.�j�t /

�
(4.3)

satisfied in the sense of distributions (see e.g. [39, Prop. 4.2]). We can now state our main
result.

Theorem 3. Assume the function ‰ W �d ! F is d -times continuously differentiable.
Assume �0 is a nonnegative measure on the sphere �d with finite mass and full support. Then
the flow defined in (4.3) is well defined for all t > 0. Moreover, if �t converges weakly to
some limit �1, then �1 is a global minimum of the function � 7! F.�/ D R.

R
�d ‰.�/d�.�//

over the set of nonnegative measures.
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4.3. Proof of Theorem 3
The global optimality conditions for minimizing the convex functional F is that on

the support of �1 then J.�j�1/ D 0, while on the entire sphere J.�j�1/ > 0. The proof,
adapted from [7], then goes as follows:

• The existence and uniqueness of the flow .�t /t�0 can be proved by using the
equivalence with a Wasserstein gradient flow .�t /t�0 in P .RdC1/ and the theory
of Wasserstein gradient flows [2]. As a matter of fact, .�t /t�0 is itself a gradient
flow for a certain metric between nonnegative measures, that is, in a certain sense,
the inf-convolution between the Wasserstein and Hellinger metrics, see the dis-
cussion in [7].

• The flow �t has a full support at all time t . This can be deduced from the repre-
sentation of the solutions to equation (4.3) as

�t D X.t; �/#

 
�0 exp

 
�4

Z t

0

J
�
X.s; �/j�s

�
ds

!!
;

where X W Œ0;C1Œ � �d ! �d is the flow associated to the time-dependent vector
field �r�J.� j �t /, i.e., it satisfies X.0;�/ D � and d

dt
X.t;�/ D �r�J.X.t;�/j�t /

for all � 2 �d , see, e.g., [27]. Under our regularity assumptions, standard stability
results for ODEs guarantee that at all time t , X.t; �/ is a diffeomorphism of the
sphere. Thus �t is the image measure (this is what the “sharp” notation stands for)
by a diffeomorphism of a measure of the form �0 exp.: : : / which has full support
and thus �t has full support.

• We assume that the flow converges to some measure �1 (which could be singular).
From equation (4.1), this imposes by stationarity of �1 that J.�j�1/ D 0 on the
support of �1, but nothing is imposed beyond the support of �1 (and we need
nonnegativity of J.�j�1/ for all � 2 �d ).
In order to show that min�2�d J.�j�1/ > 0, we assume that it is strictly negative
and will get a contradiction. We first need a v < 0 such that v > min�2�d J.�j�1/,
and the gradient r�J.�j�1/ does not vanish on the v-level-set ¹� 2 �d ;

J.� j �1/ D vº of J.�j�1/. Such a v exists because of Morse–Sard lemma
which applies because under our assumptions, J.�j�/ is d -times continuously
differentiable for any finite nonnegative measure �.
We then consider the set K D ¹� 2 �d ; J.� j �1/ 6 vº, which has some boundary
@K, such that the gradient r�J.�j�1/ has strictly positive dot-product with an
outward normal vector to the level set at � 2 @K.
Since �t converges weakly to �1, there exists t0 > 0 such that for all t > t0,
sup�2K J.�j�t / < v=2, while on the boundary r�J.�j�1/ has nonnegative dot-
product with an outward normal vector. This means that for all t > t0, applying
equation (4.2) to the indicator function of K, if at D �t .K/,

a0.t/ > �4 sup
�2K

J.�j�t /a.t/:
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By the previous point, a.t0/ > 0 and thus, by Grönwall’s lemma, a.t/ diverges,
which is a contradiction with the convergence of �t to �1.

4.4. Experiments
In order to illustrate1 the global convergence result from earlier sections, we consider

a supervised learning problem on R2, with Gaussian input data x, and output data given by
a “teacher” neural network

y D

m0X
j D1

�2.j / max¹�1.W; j />x; 0º

for some finite m0 and weights �1 and �2. We consider R.h/ the expected square loss and
stochastic gradient descent with fresh new samples .xi ; yi / and a small step-size.

We consider several number m of hidden neurons, to assess when the original neu-
rons can be recovered. In Figure 2, for large m (e.g., m D 100 or m D 1000), all learned
neurons converge to the neurons that generated the function which is in accordance with our
main global convergence result (note that in general, recovering the neurons of the teacher is
not a necessary condition for optimality, but it is always sufficient), while for m D 5 > m0,
where the global optimum will lead to perfect estimation, we may not recover the global opti-
mum with a gradient flow. An interesting open question is to characterize mathematically the
case m D 20, where we obtain the global optimum with moderate m.

In Figure 3, we consider several random initializations and random “teacher” net-
works and compute the generalization performance of the neural network after optimization.
We see that for large m, good performance is achieved, while when m is too small, local
minima remain problematic. This experiment suggests that the probability of global conver-
gence quickly tends to 1 as m increases beyond m0 in this setting, even in moderately high
dimension.

5. Generalization guarantees and implicit bias for

overparameterized models

A shown above, overparameterization—which takes the form of a large number of
hidden neurons in our context—is a blessing for optimization, as it allows ensuring conver-
gence to a global minimizer. When stochastic gradient descent with fresh observations at
each iteration is used, then the predictor will converge to the optimal predictor (that is, it
will minimize the performance on unseen data), but will do so potentially at a slow speed,
and with the need for many observations. In this context, overparameterization does not lead
to overfitting, but may rather underfit.

In practice, several passes over a finite amount of data (n observations) are used,
and then overparameterization can in principle lead to overfitting. Indeed, among all predic-
tors that will perfectly predict the training data, some will generalize, some will not. In this

1 The code to reproduce Figures 2 and 3 is available on the webpage https://github.com/
lchizat/2021-exp-ICM.
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Figure 2

Gradient flow on a two-layer ReLU neural network with m D 5, m D 20, m D 100, and m D 1000, respectively.
The position of the particles is given by j�2.j /j � �1.�; j / and the color depends on the sign of �2.j /. The dashed
directions represent the neurons of the network that generates the data distribution (with m0 D 4). The unit circle,
where the particles are initialized, is plotted in black and the radial axis is scaled by tanh to improve readability.

section, we show that the predictor obtained after convergence of the gradient flow can in
certain cases be characterized precisely.

To obtain the simplest result, following [17,18,43], this will be done for binary clas-
sification problems with the logistic loss. We will first review the implicit bias for linear
models before considering neural networks.

5.1. Implicit bias for linear logistic regression
In this section, we consider a linear model h.x; �/ D �>ˆ.x/ and we consider the

minimization of the unregularized empirical risk with the logistic loss, that is,

R.�/ D
1

n

nX
iD1

log.1 C exp
�
�yi �

>ˆ.xi /
�
: (5.1)
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Figure 3

SGD on the square loss in the “teacher–student” setting (104 iterations, batch size 100, learning rate 0:005,
d D 100, the teacher has m0 D 10 neurons): (left) risk (expected square loss) after training as a function of m

over 30 random repetitions; (right) success rate as a function of m over 30 repetitions (success means that the risk
after training is below 10�3).

We consider a separable problem where there exists a linear function in ˆ.x/, �>ˆ.x/ such
that yi �

>ˆ.xi / > 0 for all i 2 ¹1; : : : ; nº. By rescaling, we may equivalently assume that
there exists � 2 Rd such that

8i 2 ¹1; : : : ; nº; yi �
>ˆ.xi / > 1:

This means that the objective function in equation (5.1) has an infimal value of zero, which
is not attained for any � , since it is strictly positive. However, taking any � that separates the
data as above, it holds that R.t�/ converges towards 0 as t tends to infinity. There are thus
in general an infinite number of directions towards which � can tend to reach zero risk.

It turns out that gradient descent selects a particular one: the iterate of gradient
descent will diverge, but its direction (that is, the element of the sphere it is proportional to)
will converge [43] to the direction of amaximummargin classifier defined as [46] a solution to

min
�2Rd

k�k
2
2 subject to 8i 2 ¹1; : : : ; nº; yi �

>ˆ.xi / > 1: (5.2)

The optimization problem above has a nice geometric interpretation (see Figure 4). These
classifiers with a large margin has been shown to have favorable generalization guarantees
in a wide range of contexts [22].

5.2. Extension to two-layer neural networks
We will now extend this convergence of gradient descent to a minimum norm clas-

sifier beyond linear models. We consider the minimization of the logistic loss

1

n

nX
iD1

log.1 C exp
�
�yi h.xi /

�
;

where h.x/ D
1
m

Pm
j D1 �2.j / max¹�1.W; j />x; 0º is a two-layer neural network. We will

consider two regimes: (1) where only the output weights �2.j /, j D 1; : : : ;m are optimized,
and (2) where all weights are optimized. In these two situations, we will let the width m
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Figure 4

Geometric interpretation of equation (5.2) with a linearly separable binary classification problem in two
dimensions (with each observation represented by one of the two labels � or �): among all separating hyperplanes
going through zero, that with the largest minimal distance from observations to the hyperplane will be selected.

go to infinity and consider the infinite-dimensional resulting flows. As shown in the previ-
ous section, when they converge, these flows converge to the global optimum of the objective
function. But in the separable classification setting, the functions h should diverge. We essen-
tially characterize towards which directions they diverge, by identifying the norms that are
implicitly minimized [9].

5.3. Kernel regime
In this section, we consider random input weights �1.W;j /, sampled from the uniform

distribution on the sphere, and kept fixed throughout the optimization procedure. In other
words, we only run the gradient flow with respect to the output weights �2 2 Rm.

Since the model is a linear model with feature vectors in m dimensions with com-
ponents

ˆ.x/j D
1

p
m

max
®
�1.W; j />x; 0

¯
;

we can apply directly the result above from [43], and the resulting classifier will minimize
implicitly k�2k2

2, that is, the direction of �2 will tend to a maximum margin direction.
In order to study the situation when the number of features m tends to infin-

ity, it is classical within statistics and machine learning to consider the kernel function
Ok W Rd � Rd ! R defined as

Ok.x; x0/ D ˆ.x/>ˆ.x0/ D
1

m

mX
j D1

max
®
�1.W; j />x; 0

¯
max

®
�1.W; j />x0; 0

¯
:

When m tends to infinity, the law of large number implies that Ok.x; x0/ tends to

k.x; x0/ D E
�
max

®
�>x; 0

¯
max

®
�>x0; 0

¯�
;

for � uniformly distributed on the sphere.
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Thus, we should expect that in the overparameterized regime, the predictor behaves
like predictors associated with the limiting kernel function [32,37]. It turns out that the kernel
k can be computed in closed form [11], and that the reproducing kernel Hilbert space (RKHS)
functional norm k � k associated to the kernel k is well understood (see below for a formula
that defines it). In particular, this norm is infinite unless the function is at least d=2-times
differentiable [4], and thus very smooth in high dimension (this is to be contrasted with the
fact that each individual neuron leads to a nonsmooth function). We thus expect smooth
decision boundaries at convergence (see experiments below). This leads to the following
result (see details in [9]):

Theorem 4 (Informal). When m; t ! C1 (limits can be interchanged), the predictor asso-
ciated to the gradient flow converges (up to normalization) to the function in the RKHS that
separates the data with minimum RKHS norm k � k, that is, the solution to

min
f

kf k
2 subject to 8i 2 ¹1; : : : ; nº; yi f .xi / > 1:

Note that the minimum RKHS norm function can also be found by using the finite-
dimensional representation f .x/ D

Pn
iD1 ˛i k.x;xi / and minimizing

Pn
i;j D1 ˛i j̨ k.xi ; xj /

under the margin constraint, which is a finite-dimensional convex optimization problem.
A striking phenomenon is the absence of catastrophic overfitting, where the observed

data are perfectly classified but with a very irregular function that would potentially not gen-
eralize well. Despite the strong overparameterization, the classifier selected by gradient
descent can be shown to generalize through classical results from maximum margin estima-
tion. See [29] for a related result where the performance as a function of m, and not only for
infinite m, is considered in special settings. We will see a similar behavior when optimizing
the two layers, but with a different functional norm.

5.4. Feature learning regime
We now consider the minimization with respect to both input and output weights.

This will correspond to another functional norm that will not anymore be an RKHS norm,
and will allow for more adaptivity, where the learned function can exhibit finer behaviors.

We first provide an alternative formulation of the RKHS norm as [4]

kf k
2

D inf
a.�/

Z
�d�1

ja.�/j2d�.�/ such that f .x/ D

Z
�d�1

.�>x/Ca.�/d�.�/;

where the infimum is taken over all square-integrable functions on the sphere �d�1, and �

is the uniform probability measure on the sphere. This formulation highlights that functions
in the RKHS combine infinitely many neurons.

We can then define the alternative variation norm [23] as

�.f / D inf
a.�/

Z
�d�1

ja.�/jd�.�/ such that f .x/ D

Z
�d�1

.�>x/Ca.�/d�.�/;

where the infimum is now taken over all integrable functions on �d�1. Going from squared
L2-norms to L1-norms enlarges the space by adding nonsmooth functions. For example,

5413 Gradient descent on infinitely wide neural networks: global convergence and generalization



a single neuron corresponds to a.�/d�.�/ tending to a Dirac measure at a certain point, and
thus has a finite variation norm.

This leads to the following result (see the details and full set of assumptions in [9]).

Theorem 5 (Informal). When m; t ! C1, if the predictor associated to the gradient flow
converges (up to normalization), then the limit is the function that separates the data with
minimum variation norm �.f /, that is, the solution to

min
f

�.f / subject to 8i 2 ¹1; : : : ; nº; yi f .xi / > 1:

Compared to the RKHS norm result, there is no known finite-dimensional convex
optimization algorithms to efficiently obtain the minimum variation norm algorithm. More-
over, the choice of an L1-norm has a sparsity-inducing effect, where the optimal a.�/d�.�/

will often corresponds to singular measure supported by a finite number of elements of the
sphere. These elements can be seen as features learned by the algorithm: neural networks
are considered as methods that learn representations of the data, and we provide here a jus-
tification with a single hidden layer. Such feature learning can be shown to lead to improved
prediction performance in a series of classical situations, such as when the optimal function
only depends on a few of the d original variables [4,9].

5.5. Experiments
In this section, we consider a large ReLU network with m D 1000 hidden units, and

compare the implicit bias and statistical performances of training both layers, which leads to
a max margin classifier with the variation norm, versus the output layer, which leads to max
margin classifier in the RKHS norm. These experiments are reproduced from [9].

Setting. Our data distribution is supported on Œ�1=2; 1=2�d and is generated as follows. In
dimension d D 2, the distribution of input variables is a mixture of k2 uniform distributions
on disks of radius 1=.3k � 1/ on a uniform 2-dimensional grid with step 3=.3k � 1/, see
Figure 6(a) for an illustration with k D 3. In dimension larger than 2, all other coordinates
follow a uniform distribution on Œ�1=2; 1=2�. Each cluster is then randomly assigned a class
in ¹�1; C1º.

Low dimensional illustrations. Figure 5 illustrates the differences in the implicit biases
when d D 2. It represents a sampled training set and the resulting decision boundary between
the two classes for 4 examples. The variation norm max-margin classifier is nonsmooth and
piecewise affine, which comes from the fact that the L1-norm favors sparse solutions. In
contrast, the max-margin classifier for the RKHS norm has a smooth decision boundary,
which is typical of learning in a RKHS.

Performance. In higher dimensions, we observe the superiority of training both layers by
plotting the test error versus m or d on Figures 6(b) and 6(c). We ran 20 independent experi-
ments with k D 3 and show with a thick line the average of the test error P .yf .x/ < 0/ after
training. For each m, we ran 30 experiments using fresh random samples from the same data
distribution.
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Figure 5

Comparison of the implicit bias of training (top) both layers versus (bottom) only the output layer for wide
two-layer ReLU networks with d D 2 and for 4 different random training sets.

Figure 6

(a) Projection of the data distribution on the two first dimensions, (b) test error as a function of n with d D 15,
and (c) test error as a function of d with n D 256.

6. Discussion

In this paper, we have presented qualitative convergence guarantees for infinitely-
wide two layer neural networks. These were obtained with a precise scaling—in the number
of neurons—of the prediction function, the initialization and the step-size used in the gradi-
ent flow. With those scalings, the mean-field limit exhibits feature learning capabilities, as
illustrated in binary classification where precise functional spaces could be used to analyze
where optimization converges to. However, this limit currently does not lead to quantitative
guarantees regarding the number of neurons or the convergence time, and obtaining such
guarantees remains an open problem. This is an active area of research with, in particular,
recent results concerning the local convergence [1,7,49] or global convergence under strong
assumption on the data [26]. Moreover, extending this analysis to more than a single hidden
layer or convolutional networks remains difficult.

Different scalings lead to different behaviors [10]. In particular, there is a scaling for
which the limit behaves as a kernel method (even though all layers are trained, and not just the
output layer) leading to another RKHS norm with a larger space than that from Section 5.3,
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see [20]. While not leading to representation learning, extensions to deeper networks are
possible with this scaling and provide one of few optimization and statistical guarantees
for these models. Some recent progress has been made in the categorization of the various
possible scalings for deep networks [48], and this emerging general picture calls for a large
theoretical effort to understand the asymptotic behaviors of wide neural networks.
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Abstract

Imaging has been playing a vital role in the development of natural sciences. Advances
in sensory, information, and computer technologies have further extended the scope of
influence of imaging, making digital images an essential component of our daily lives.
Image reconstruction is one of the most fundamental problems in imaging. For the past
three decades, we have witnessed phenomenal developments of mathematical models
and algorithms in image reconstruction. In this paper, we will first review some progress
of the two prevailing mathematical approaches, i.e., the wavelet frame-based and PDE-
based approaches, for image reconstruction. We shall discuss the connections between
the two approaches and the implications and impact of the connections. Furthermore, we
will review how the studies of the links between the two approaches lead us to a math-
ematical understanding of deep convolutional neural networks, which has led to further
developments in modeling and algorithmic design in deep learning and new applications
of machine learning in scientific computing.
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1. Introduction

The development of natural sciences has been heavily relying on visual examina-
tions. Through observations on natural phenomenons made by our naked eyes or via instru-
ments such as cameras, microscopes, telescopes, etc., scientists make a scientific hypothesis
on the underlying principles hidden in the phenomenon, and they later conduct more exper-
iments or resort to mathematical deductions to further verify their hypothesis. Therefore,
images play a central role since they can accurately record the phenomenon of interest and
be further processed and analyzed by algorithms to assist human decision-making. In the
past few decades, we are experiencing rapid advances in information technology, which con-
tribute significantly to the exponential growth of data. Digital images are of no doubt one
of the essential components of data. Advanced computer technology has made it possible to
apply some of the most sophisticated developments in mathematics and machine learning to
the design and implementation of efficient algorithms to process and analyze image data. As a
result, the impact of images has now gone far beyond natural sciences. Image processing and
analysis techniques are now widely adopted in engineering, medicine, technical disciplines,
and social media, and digital images have become an essential element of our daily lives.

Among all tasks within the scope of computer vision, image reconstruction, such as
image denoising, deblurring, inpainting, medical imaging, etc., is one of the most fundamen-
tal ones. Its objective is to obtain high-quality reconstructions of images that are corrupted
in various ways during the process of acquisition, storage, and communication, and enable
us to see crucial but subtle objects that reside in the images. Mathematics has been the main
driven force in the advancement of image reconstruction for the past few decades [7,33,53].
Conversely, image reconstruction also brings to mathematics new challenging problems and
fascinating applications that gave birth to new mathematical tools, whose application has
even gone beyond the scope of image reconstruction.

Image reconstruction can be formulated as the following inverse problem:

f D Au C �: (1.1)

Here, A is a linear operator corresponding to the imaging process. For example, A is an iden-
tity operator for image denoising; a convolution operator for image deblurring; a restriction
operator for image inpainting [13]; a subsampled Fourier transform for magnetic resonance
imaging (MRI) [19]; a subsampled Radon transform for X-ray-based computed tomography
(CT) [22]. Variable u is the unknown image to be reconstructed, and f is the measurements
that are contaminated by additive noise � with known or partially known statistics, e.g.,
Gaussian, Laplacian, Poisson, etc. The main challenge in solving the linear inverse problem
(1.1) is the ill-posedness of the problem. A naive inversion of A, such as pseudoinversion or
via Tikhonov regularization [154], may result in a reconstructed image with amplified noise
and smeared-out edges.

Many existing image reconstruction models and algorithms are transformation-
based. One of the earliest transforms was the Fourier transform, which is effective on signals
that are smooth and sinusoidal-like. However, the Fourier transform is not adequate on
images with multiple localized frequency components. Windowed Fourier transforms [72]
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were introduced to overcome the poor spatial localization of the Fourier transform. How-
ever, the high-frequency coefficients in the transform domain are not ideally sparse for images
due to the fixed time-frequency resolution of the windowed Fourier transforms. This is why
wavelets and wavelet frames are much more effective for images than Fourier or windowed
Fourier transforms because of their varied time-frequency resolution, which enables them
to provide a better sparse approximation to piecewise smooth functions [45,51,110].

Another influential class of methods for image reconstruction that have been devel-
oped through a rather different path from wavelets is the PDE-based approach [33,119,136],
which includes variational and (nonlinear) PDE methods. The basic idea of variational meth-
ods is to characterize images as functions living in a certain function space, such as the BV
space [115, 131] (space of functions with bounded variations), and an energy functional is
designed according to the function space assumption. PDE methods, on the other hand, often
take the observed low-quality image or a coarsely reconstructed image as the initialization
and enhance it by evolving a carefully designed nonlinear PDE that conducts smoothing in
homogeneous regions and edge-preservation or enhancement near edges [120,123].

The two approaches have been developing independently for decades. Although
studies were showing the links between the two approaches [84, 148] using specific models
and algorithms, their general connections were still unknown. Later in [24,26,42,52], funda-
mental connections between wavelet frame-based approach and variational methods were
established. Connections of wavelet frame-based models to the total variation model were
established in [24], to the Mumford–Shah model were established in [26], and to some more
general variational models such as the total generalized variation model [18] were estab-
lished in [42,52]. On the other hand, [49] established a generic connection between iterative
wavelet frame shrinkage and general nonlinear evolution PDEs. We showed that wavelet
frame shrinkage algorithms could be viewed as discrete approximations of nonlinear evo-
lution PDEs. Such connection led to new understandings of both the wavelet frame- and
PDE-based approach and expanded the scope of applications for both. The series of papers
[24,26,42,49,52] essentially merged the two seemingly unrelated areas: wavelet frame-based
and PDE-based approach for image reconstruction, and gave birth to many new image recon-
struction models and algorithms.

For the past decade, the landscape of research and technological development of
image reconstruction and computer vision is experiencing a significant transformation due
to the advances in machine learning, especially deep learning [71,91,145]. A new set of models
call the convolutional neural networks (CNNs) [65,92] were introduced, where the AlexNet
[89], U-Net [130], ResNet [77], and DenseNet [79] are well-known examples. Most CNNs
have millions to billions of parameters that are trained (or optimized) on large data sets via
stochastic algorithms. One remarkable property of deep neural networks (DNNs) in general
is that they can well approximate nonlinear functions in high-dimensional spaces without
suffering from the curse of dimensionality [36,104,114,142–144,163,164,170]. CNNs were first
shown to be extremely effective in image classification [77, 89]. They were later adopted in
image reconstruction and significantly advanced its state-of-the-art (see, e.g., [38,113,156,159,
172]).
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Why CNNs perform so well in practice and where their capability boundary locates
is arguably the biggest mystery in deep learning for the moment. One possible way of unrav-
eling such mystery, at least for image reconstruction, is to explore the connection between
CNNs and mathematical models we now have a systematic understanding of. More impor-
tantly, what do CNNs do differently to outperform these mathematical models significantly,
and can we combine the wisdom from both sides? Answering these questions can bring new
insights into CNN models and further extend the scope of their applications.

Let F be an image reconstruction operator for the problem (1.1) that takes a coarse
reconstruction of the image as input and the reconstructed image as output. For both wavelet
frame-based and PDE-based models, this mapping F is a discrete dynamical system. As
shown by [49], most of these discrete dynamical systems are various discrete approximations
to differential equations. CNNs, on the other hand, are formed by consecutive compositions
of relatively simple functions, which makes them discrete dynamical systems as well. We use
F‚ to denote a CNN, which is a parameterized dynamical system. One apparent difference
between F and F‚ is that the former is entirely design-based using human knowledge while
the latter has minimal human design and its actual form mostly relies on a large number
of parameters ‚ that are optimized through empirical risk minimization. The dynamics
F and F‚ are two extremes of modeling where the former advocates human knowledge,
which grants solid theoretical foundations and adequate interpretability, while the latter pro-
motes data-driven modeling which can extract features and principles from data that may
be unknown to humans to better assist in decision making. However, in practice, neither
extreme is ideal, which is especially the case in science, economics, and medicine. In these
disciplines, interpretability is mostly required. Also, we have some knowledge to describe
a particular phenomenon but still largely not enough, and we have observational or simula-
tion data but limited in quantity. Therefore, we need to balance between the two extremes
depending on the specific application of interest. Finding connections between F and F‚

may better assist us in this regard.
This motivated us to study connections between CNNs and differential equations.

From the standpoint of dynamical systems, we explored the structural similarities between
numerical differential equations and CNNs in [101,102,107]. In [107], we showed that not only
ResNet could be viewed as a forward-Euler approximation to differential equations as first
pointed out by [74, 162], but many other CNNs with bypass structures (or skip connections)
can also be viewed as a discrete approximation of differential equations. Furthermore, [107]
was the first to draw connections between residual-type CNNs with random perturbations
and stochastic differential equations (SDEs). In fact, [107] suggested numerical ODEs/SDEs
as a systematic framework for designing CNNs for image classification. In [101, 102], we
were among the earliest to explore the structural similarity between CNNs and numeri-
cal PDEs. The key to such structural similarity is also the key to the connections between
wavelet frame-based and PDE-based approaches for image reconstruction. By exploiting
such structural similarity, we proposed a set of new CNNs called PDE-Nets, which can
estimate the analytical form of (time-dependent) PDEs from observed dynamical data with
minor prior knowledge on the underlying mechanism that drives the dynamics. Once trained,
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the PDE-Net also serves as a simulator that can generate more dynamical data accurately and
efficiently.

This paper will review the development of the wavelet frame-based and PDE-based
approaches for image reconstruction. We shall discuss the connections between the two
approaches and demonstrate how the connections lead to new models for image reconstruc-
tion. Furthermore, we will show how these theoretical studies inspired our exploration of
structural similarities between differential equations and CNNs. These findings lead to fur-
ther developments in modeling and algorithmic design in deep learning and new applications
of machine learning in scientific computing.

2. Wavelet frame-based approach for image

reconstruction

We start with a brief introduction to the concept of wavelet frame transform in a
discrete setting. The interested readers should consult [45,46,128,129] for theories of frames
and wavelet frames, [51,140] for a short survey on the theory and applications of frames, and
[53] for a more detailed survey.

In the discrete setting, let an image f be a d -dimensional array. We denote by
Id D RN1�N2�����Nd the set of all d -dimensional images. We denote the d -dimensional fast
.LC 1/-level wavelet frame transform/decomposition with filters ¹q.0/;q.1/; : : : ;q.r/º (see,
e.g., [53]) by

Wu D
®
W`;lu W .`; l/ 2 B

¯
; u 2 Id ; (2.1)

where B D ¹.`; l/ W 1� `� r; 0� l �Lº [ ¹.0;L/º. The wavelet frame coefficients W`;lu 2

Id are computed by W`;lu D q`;l Œ���~ u, where ~ denotes the convolution operator with
a certain boundary condition, e.g., periodic boundary condition, and q`;l is defined as

q`;l D Lq`;l ~ Lql�1;0 ~ � � � ~ Lq0;0 with Lq`;l Œk� D

´
q`Œ2

�lk�; k 2 2lZd ;

0; k … 2lZd :
(2.2)

Similarly, we can define QW u and QW`;lu given a set of dual filters ¹ Qp; Qq1; : : : ; Qqrº. We
denote the inverse wavelet frame transform (or wavelet frame reconstruction) as QW >, which
is the adjoint operator of QW . When the primal filters ¹p; q.1/; : : : ; q.r/º and dual filters
¹ Qp; Qq1; : : : ; Qqrº satisfy the extension principles [128,129], we have the perfect reconstruction
formula

u D QW >Wu; for all u 2 Id :

In particular, when the dual filters are the same as the primal filters with the extension prin-
ciple satisfied, W is the transform associated to a tight frame system, and we simply have
that

u D W >Wu; for all u 2 Id : (2.3)

For simplicity, we will mostly focus our discussions on the case d D 2.
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Two simple but useful examples of filters for univariate tight frame systems, i.e.,
Haar and piecewise linear tight frame system, constructed from B-splines [129] are given as
follows.

Example 2.1. Filters of B-spline tight frame systems.

(1) Haar. Let p D
1
2
Œ1;1� be the refinement mask of the piecewise constant B-spline

B1.x/ D 1 for x 2 Œ0; 1� and 0 otherwise. Define q1 D
1
2
Œ1;�1�.

(2) Piecewise linear. Let p D
1
4
Œ1; 2; 1� be the refinement mask of the piece-

wise linear B-spline B2.x/ D max .1 � jxj; 0/. Define q1 D

p
2

4
Œ1; 0;�1� and

q2 D
1
4
Œ�1; 2;�1�.

The key to the success of wavelet frames in image reconstruction is their capabil-
ity to provide a sparse approximation to images. In other words, the high-frequency band
Bn¹.0; L/º of the wavelet frame transform Wu of a typical image u is sparse. Large (in
magnitude) wavelet frame coefficients encode image features such as edges, while the coef-
ficients are small in smooth regions. This is mainly due to the short support and high order
of vanishing moments of wavelet frames that make them behave like differential operators
(we will come back to this in Section 4).

Wavelet frame-based image reconstruction started from the seminal work [32]. The
basic idea is as follows: Consider the linear inverse problem (1.1). After an initial recon-
struction of the image u, edges might be blurred, and noise is still present in the image.
Since a clean image should be sparse in the wavelet frame domain, one of the simplest ways
to sharpen the image and remove noise at the same time is to set small high-frequency coeffi-
cients to zero. When we reconstruct the image using the processed wavelet frame coefficients,
it will no longer be consistent with the data, i.e., Au may be far away from f . The simplest
way to correct it is by moving u closer to the hyperplane Au D f . Then, we iterate this pro-
cedure till convergence. This leads to a wavelet frame-based iterative algorithm, which was
later analyzed by [23] and revealed its relation to the following wavelet frame-based balanced
model:

min
d

1

2

AW >d � f
2

2
C
�

2

.I � W W >/d
2

2
C k� � dk1: (2.4)

The balanced model also takes the analysis model [25,55,147]

min
u

1

2
kAu � f k

2
2 C k� � Wuk1; (2.5)

and the synthesis model [47,59,60,63,64]

min
d

1

2

AW >d � f
2

2
C k� � dk1 (2.6)

as special cases. The balanced, analysis and synthesis models (and their variants) are among
the most commonly used models in image reconstruction.

The objective functions in (2.4)–(2.6) are all convex, and can be efficiently opti-
mized by convex optimization algorithms. For example, both the balanced and synthesis
models can be solved efficiently by proximal forward–backward splitting (PFBS) [20,35,44,
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122,155] and can be further accelerated by Nesterov’s approach [10,141]. The analysis model
can be solved efficiently using the alternating direction method of multipliers (ADMM)
[16,25,66,68,69] and the primal dual hybrid gradient (PDHG) method [30,58,176].

3. PDE-based approach for image reconstruction

In the past few decades, many variational and PDE models have been proposed
with success in different tasks in image reconstruction. In this section, we shall refer to
them both as the PDE-based approach. Successful examples of the PDE-based approach
include the total variation (TV) model [131], total generalized variation model [18], Mumford–
Shah model [115], shock-filter [120], Perona–Malik (PM) equation [123], anisotropic diffusion
models [161], fluid dynamics model [12], etc. In this section, we will recall the TV model and
the PM equation.

Regularization is crucial in solving ill-posed inverse problems. In 1963, Tikhonov
proposed the so-called Tikhonov regularization [154] that penalizes the H 1 seminorm of
the image to be reconstructed. Tikhonov regularization can effectively remove noise while
it smears out important image features such as edges as well. This is essentially because
H 1 is not an appropriate function space to model images. It has such a strong regularity
requirement that functions with jump discontinuities are not allowed in the function space.
To overcome such drawbacks, Rudin, Osher, and Fatemi proposed the refined TV model that
penalizes the total variation of the function to be reconstructed so that jump discontinuities
can be well-preserved and noise can be adequately removed. This is because the BV space is
large enough to include functions with discontinuities but not too large, so that noise is still
excluded.

Now, we first recall the definition of TV and the BV space. Let� � R2 be an open
set and u 2 L1.�/. Then, the total variation of u is defined as

TV.u/ WD sup
²Z

�

u div v dx W v 2 C 1
c .�;R

2/; kvkL1.�/ � 1

³
; (3.1)

where C 1
c .�;R

2/ is the space of all compactly supported continuously differentiable func-
tions on�. Another convenient notation for the TV of a functionu is TV.u/D

R
�

jDu.x/jdx,
where Du is the distributional derivative of u. Intuitively speaking, the TV of a function u
records the total amount of fluctuation of the function on domain �. If u is differentiable,
then TV.u/ D

R
� jru.x/j dx. We define the BV space as

BV.�/ D
®
u 2 L1.�/ W TV.u/ < C1

¯
:

We now consider the function version of the image reconstruction problem (1.1),
namely

f D AuC �:

We use nonbold characters to denote functions and linear operators in contrast to the bold
characters that denote arrays and matrices. Then, the TV model for image reconstruction
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reads as follows:
min
u2BV

TV.u/C
�

2

Z
�

�
Au.x/ � f .x/

�2dx; (3.2)

where � > 0 is a preselected hyperparameter that balances the amount of regularization
from the first term and data consistency from the second term. Ways of solving the TV
model include solving the associated Euler–Lagrange equation or the gradient flow, or we
can discretize the model first and then use a convex optimization algorithm (e.g., one of those
described in the previous section). Note that (3.2) is similar in form to (2.5). The difference is
that in (2.5), we penalize the `1-norm of the wavelet frame transform of u, while in (3.2) we
penalize theL1-norm ofDu. This is an indication that (3.2) and (2.5) may be closely related.
For convenience, we shall call the variational model (3.2) and its variants as differential
operator-based analysis model, and (2.5) the wavelet frame-based analysis model.

In contrast to variational models for image reconstruction, designing PDE models is
less restrictive and more intuitive to incorporate local geometric structures of images in the
design. The scale-space theory tells us that using PDEs to model image reconstruction is a
reasonable option. Let us use a set of nonlinear operators ¹Tt ºt�0 with u.t; x/ D .Ttu0/.x/

to denote the flow of image reconstruction starting from an initial estimation u0.x/. If the
set of operators satisfies certain axioms, such as recursivity, regularity, locality, translation
invariance, etc., then there exists a second-order nonlinear evolution PDE such that u.t; x/
is its viscosity solution [3]. The PM equation is one of the well-known PDE models that
are effective in image reconstruction (originally for image denoising but can be extended
to general image reconstruction problems). It imposes a different amount of diffusion, even
backward diffusion, in different regions of the images depending on local regularity and the
orientation of edges. In the following, we will recall the idea of the original design of the
PM equation for image denoising. Interested readers should consult [7,123] for more details.

Given an observed noisy image u0.x/, the PM equation takes the following form:8̂̂<̂
:̂
ut D div

�
g
�
jruj2

�
ru
�
; on .0; T / ��;

@u
@En
.t; x/ D 0; on .0; T / � @�;

u.0; x/ D u0.x/; on �;

where the diffusivity function g is a scalar function satisfying8̂̂<̂
:̂
g W Œ0;1/ 7! .0;1/ is monotonically decreasingI

g.0/ D 1I g.x/ ! 0 as x ! 1I

g.x/C 2xg0.x/ > 0 for x � KI g.x/C 2xg0.x/ < 0 for x > K:

(3.3)

The specific design of the diffusivity function g is to impose not only a spatially variant
diffusion, but also different amount of diffusion in different directions at any given location.
Commonly used examples of the diffusivity function g include

g.s/ D e
� s

2�2 ; or g.s/ D
1

1C sp=�2
; p >

1

2
; � > 0:

From (3.3), we can see that g.jruj2/ is relatively large at smooth regions of the
image u where jruj is relatively small. Thus, the PM equation applies stronger smoothing
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in smooth regions of the image. In contrast, jruj is relatively large near edges, and hence
g.jruj2/ is relatively small. Then, the PM equation applies less smoothing near edges which
can reduce the amount of blurring. On the other hand, if we decompose the PM equation
along the tangential and normal direction of the level sets of u, we can rewrite the original
PM equation as

ut D g
�
jruj

2
�
uT T C Qg

�
jruj

2
�
uNN ;

with
Qg.x/ D g.x/C 2xg0.x/; N D

ru

jruj
; and T D N?; jT j D 1:

Here, T and N are two unit vector fields that record, respectively, the tangential and normal
directions of the level sets of function u. Further, uT T and uNN are the second-order deriva-
tives along the tangential direction T and normal direction N , respectively. We can see
from (3.3) that the PM equation imposes forward diffusion along the tangential direction
to remove noise, while imposing backward diffusion along the normal direction near edges
for enhancement. This, however, makes the PM equation an ill-posed PDE. This problem was
later resolved by [28] where a modification of the PM equation was proposed and analyzed.

4. Connections between wavelet frame-based and

PDE-based approaches

In this section, we will summarize the main findings from the work [24] that estab-
lished the connections between the differential operator-based and wavelet frame-based anal-
ysis models, and the work [49] that established the connections between nonlinear evolution
PDEs and iterative wavelet frame-based shrinkage algorithms. Extensions of these results
can be found in [26,42,52].

4.1. Wavelet frame transform and differential operators
Wavelet frame transform is a collection of convolution operators with both low- and

high-pass filters. For a given multiresolution analysis (MRA) based wavelet frame system,
the low-pass filters are associated with the refinable functions, while the high-pass filters
are associated with wavelet functions. Key properties of both refinable and wavelet func-
tions, such as smoothness and vanishing moments, can be characterized by their associated
filters. The key observation that eventually leads to the connections between wavelet frame
and PDE-based approaches is the link between vanishing moments of wavelet functions and
differential operators in discrete and continuum settings. This observation was first made in
[24] and was further exploited in [26,42,49,52].

For a high-pass filter q, let bq.!/ D
P

k2Z2 qŒk�e�ik! be its two-scale symbol.
Throughout this paper, for a multiindex ˛ D .˛1; ˛2/ 2 Z2

C and ! 2 R2, write

˛Š D ˛1Š˛2Š; j˛j D ˛1 C ˛2; D˛ D
@˛

@!˛
D

@˛1C˛2

@!
˛2
2 @!

˛1
1

:
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We say that q (and bq.!/) has vanishing moments of order ˛ D .˛1; ˛2/, where ˛ 2 Z2
C,

provided that X
k2Z2

kˇqŒk� D i jˇj @
ˇ

@!ˇ
bq.!/ˇ̌̌̌

!D0

D 0 (4.1)

for all ˇ 2 Z2
C with jˇj < j˛j and for all ˇ 2 Z2

C with jˇj D j˛j but ˇ 6D ˛. We say that
q has total vanishing moments of order K with K 2 ZC if (4.1) holds for all ˇ 2 Z2

C with
jˇj < K. Suppose K � 1. If (4.1) holds for all ˇ 2 Z2

C with jˇj < K except for ˇ 6D ˇ0

with certain ˇ0 2 Z2
C and jˇ0j D J < K, then we say that q has total vanishing moments

of order Kn¹J C 1º.
To have a better understanding of the concept of vanishing moments, let us look at

one example. Letbq1.!/ D ei!1 � e�i!1 , which is the first high-pass filter of the piecewise
linear B-spline tight wavelet frame system in Example 2.1. Then,

bq1.0/ D 0;
@

@!1

bq1.0/ D 2i 6D 0;
@

@!2

bq1.0/ D 0:

Thusbq1.!/ has vanishing moments of order .1; 0/. In addition, we have

@2

@!2
1

bq1.0/ D 0;
@2

@!1@!2

bq1.0/ D 0;
@2

@!2
2

bq1.0/ D 0:

Therefore, q1 has total vanishing moments of order 3n¹j.1; 0/j C 1º, or 3n¹2º (it does not
have total vanishing moments of order 4n¹2º since @3

@!3
1

bq1.0/ D �2i 6D 0).
The following proposition from [49] describes the relation between the vanishing

moments of high-pass filters and finite difference approximations of differential operators.
This proposition was later applied to the work of PDE-Net [101,102] that explores and exploits
structure similarities between deep convolutional neural networks and numerical PDEs.

Proposition 4.1. Let q be a high-pass filter with vanishing moments of order ˛ 2 Z2
C. Then

for a smooth function F.x/ on R2, we have
1

"j˛j

X
k2Z2

qŒk�F .x C "k/ D C˛

@˛

@x˛
F.x/CO."/;

where C˛ is the constant defined by

C˛ D
1

˛Š

X
k2Z2

k˛qŒk� D
i j˛j

˛Š

@˛

@!˛
bq.!/ˇ̌̌̌

!D0

:

If, in addition, q has total vanishing moments of orderKn¹j˛j C 1º for someK > j˛j, then
1

"j˛j

X
k2Z2

qŒk�F .x C "k/ D C˛

@˛

@x˛
F.x/CO."K�j˛j/:

Similar results can be written in terms of wavelet frame functions which is given by
the following proposition of [42]. Note that a version of the same result for B-splines wavelet
frames was proposed earlier in [24].
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Proposition 4.2. Let a tensor product wavelet frame function  ˛ 2 L2.R2/ have vanishing
moments of order ˛ with j˛j � s, and let supp. ˛/ D Œa1; a2� � Œb1; b2�. Then, there exists
a unique '˛ 2 L2.R2/ such that '˛ is differentiable up to order ˛ a.e.,

c˛ D

Z
R2

'˛ ¤ 0 and  ˛ D @˛'˛:

Furthermore, for n 2 N and k 2 Z2 with supp. ˛;n�1;k/ � �, we have

hu; ˛;n�1;ki D .�1/j˛j2j˛j.1�n/
˝
@˛u; '˛;n�1;k

˛
for every u belonging to the Sobolev space W s

1 .�/. Here,

 ˛;n�1;k D 2n�2 ˛

�
2n�1

� �k=2
�

and '˛;n�1;k is defined similarly.

Note that Proposition 4.1 is more convenient to use in addressing the connections
between wavelet frame shrinkage algorithm and nonlinear evolution PDEs. In contrast,
Proposition 4.2 is more convenient to use in addressing the connections between wavelet
frame-based and differential operator-based analysis models.

4.2. Connections between wavelet frame-based analysis model and TV model
The wavelet frame-based analysis model considered by [24] is given as

inf
u2W s

1 .�/
En.u/ WD �k�n � W Tnuk1 C

1

2
kAnTnu � Tnf k

2
2; (4.2)

and the differential operator-based analysis model is given as

inf
u2W s

1 .�/
E.u/ WD �kDuk1 C

1

2
kAu � f k

2
L2.�/: (4.3)

Here, W denotes the wavelet frame transform defined by (2.1) and (2.2), Tn is the sampling
operator generated by the refinable function corresponding to the underlying wavelet frame
system, An is a discrete approximation of the operator A, D is a certain linear differential
operator with highest order s (e.g., for the TV model, D D r and s D 1). We denote by
W r

p .�/ the Sobolev space with functions whose r th order weak derivatives belong toLp.�/

and which is equipped with the norm kf kW r
p .�/ WD

P
j˛j�r kD˛f kp .

From the form of En and E, we can see a similarity between the two functionals. It
was proved in [24] thatEn converges toE pointwise onW s

1 .�/. However, since we are inter-
ested in the (approximated) minimizers of these functionals, pointwise convergence does
not guarantee a relation between their associated (approximated) minimizers. Therefore, �-
convergence [17] was used in [24] to draw a connection between the problems minu En.u/

and minuE.u/. We first recall the definition of �-convergence.

Definition 4.1. Given En.u/ W W s
1 .�/ 7! NR and E.u/ W W s

1 .�/ 7! NR, we say that En �-
converges to E if:

(i) for every sequence un ! u in W s
1 .�/, E.u/ � lim infn!1En.un/;

(ii) for every u 2 W s
1 .�/, there is a sequence un ! u in W s

1 .�/, such that
E.u/ � lim supn!1En.un/.
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Then, based on the link between wavelet frame transform and differential operators
given by Proposition 4.2, the main result of [24] is given as follows:

Theorem 4.1. Given the variational problem (4.3), there exists a set of coefficients �n, such
that the functional En of the problem (4.2) �-converges to the functional E of the prob-
lem (4.3) in W s

1 .�/. Let u
?
n be an "-optimal solution to the problem (4.2), i.e., En.u

?
n/ �

infuEn.u/C � (� > 0). We have that

lim sup
n!1

En.u
?
n/ � inf

u
E.u/C �;

and any cluster point of ¹u?
nºn is an "-optimal solution to the problem (4.3).

Theorem 4.1 goes beyond the theoretical justifications of the linkage of (4.2) and
(4.3). Since the differential operator-based analysis model (4.3) has strong geometric inter-
pretations, this connection brings geometric interpretations to the wavelet frame-based
approach (4.2) as well. This also leads to even wider applications of the wavelet frame-
based approach, e.g., image segmentation [27, 48, 99] and 3D surface reconstruction [50].
Conversely, the theorem also grants a new perspective of sparse approximation to the PDE-
based approach supplementing its current function space perspective. On the other hand,
not only the wavelet frame-based analysis model can be viewed as a discrete approxima-
tion of the differential operator-based analysis model, but such discretization can also be
superior to standard finite difference discretization commonly used in PDE-based methods.
Taking the Haar wavelet frame-based analysis model as an example, its regularization term
has the property of 45-degree rotation invariance. In contrast, the standard finite difference
discretization for TV regularization does not have such an invariance. This enables Haar
wavelet frame-based analysis model to generate better reconstructed images than the TV
model with the standard discretization.

4.3. Connections between wavelet shrinkage algorithms and nonlinear
evolutional PDEs
In [49], general connections between wavelet frame shrinkage algorithms and non-

linear evolution PDEs (e.g., PM equation, shock-filters, anisotropic diffusions) were estab-
lished. The links between the two approaches provide new and inspiring interpretations of
themselves that enable us to derive new PDE models and (better) wavelet frame shrinkage
algorithms for image restoration. Here, we will recall some of the main results from [49].

Let d WD Wu be the wavelet frame transform of u, QW >d be the inverse wavelet
frame transform defined by (2.1) and (2.2) with the corresponding filters satisfying the exten-
sion principles [128,129]. Then, we have QW >W D I . For simplicity, we only consider 1-level
wavelet frame transform. Given wavelet frame coefficients d D ¹d`;n W n 2 Z2; 0 � ` � Lº

and a threshold �.d/ D ¹�`;n.d/ W n 2 Z2; 0 � ` � Lº, the shrinkage operator S�.d/ is
defined as follows:

S�.d/ D
®
S�`;n.d/.d`;n/ D d`;n

�
1 � �`;n.d/

�
W n 2 Z2; 0 � ` � L

¯
: (4.4)
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Two well-known examples of the shrinkage operator (4.4) are the isotropic and anisotropic
soft-thresholding operators [24,49,54].

Given the shrinkage operator S�, a generic wavelet frame shrinkage algorithm takes
the form

uk
D QW >S�k�1.Wuk�1/; k D 1; 2; : : : (4.5)

Note that, for simplicity, we have dropped the term of data fidelity. More general versions of
the algorithm can be found in [49]. Now, consider the following nonlinear evolution PDE:

ut D

LX
`D1

@˛`

@x˛`
ˆ`.Du; u/; D D

�
@ˇ1

@xˇ1
; : : : ;

@ˇL

@xˇL

�
: (4.6)

The PDE (4.6) is defined on R2, and j˛`j; jˇ`j � 0, 1� `�L. Thus, it covers most nonlinear
parabolic and hyperbolic equations that we use for image reconstruction.

One key results of [49] can be summarized as follows: Given a PDE that takes the
form (4.6), then we can construction wavelet frame transforms W and QW , and a shrinkage
operator S� such that the wavelet frame shrinkage algorithm (4.5) is an approximation of the
PDE (4.6). When the PDE (4.6) is a well-posed anisotropic diffusion, the discrete solution
obtained from (4.5) converges to the solution of the PDE. This result is a consequence of
Proposition 4.1.

Let us consider a simple example. Consider the PDE

ut D
@ˆ1

@x1

�
@u

@x1

;
@u

@x2

; u

�
C
@ˆ2

@x2

�
@u

@x1

;
@u

@x2

; u

�
:

Let W`, ` D 1; 2, be the Haar wavelet frame transform corresponding to the first two high-
frequency bands. By Proposition 4.1, we have the following discretization of the above PDE:

uk
D uk�1

� � Q1W >
1 ˆ1.1W1uk�1; 2W2uk�1;uk�1/

� � Q2W >
2 ˆ2.1W1uk�1; 2W2uk�1;uk�1/;

with parameters ` and Q` being properly chosen such that `W` �
@

@x`
and Q`W >

`
�

@
@x`

.
On the other hand, the iterative algorithm (4.5) can be rewritten as

uk
D uk�1

� W >
1

�
W1uk�1

� �1.W1uk�1;W2uk�1;uk�1/
�

� W >
2

�
W2uk�1

� �2.W1uk�1;W2uk�1;uk�1/
�
:

Comparing the above two iterative formulas, we can see that if we define the operator � D

¹S` W ` D 1; 2º as

S`.�1; �2; �/ WD �` � � Q`ˆ`.�1; �2; �/ D �`

�
1 � � Q`ˆ`.�1; �2; �/=�`

�
; �`; � 2 R;

(whenever ˆ`.�1; �2; �/=�` is well defined), then there is an exact correspondence between
the two iterative formulas. Note that the threshold level in the original definition (4.4) is
given by � Q`ˆ`.�1; �2; �/=�`. In particular, when

ˆ`

�
@u

@x1

;
@u

@x2

; u

�
D g`

�
jruj

2; u
� @u
@x`

;
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we have
S`.�1; �2; �/ D �`

�
1 � � Q`g`.�

2
1 C �2

2 ; �/
�
:

It is interesting to observe that the threshold level given by � Q`g`.�
2
1 C �2

2 ; �/ is proportional
to the diffusivity g`.

Other than showing that the wavelet frame shrinkage algorithms can be viewed as
a discrete approximation of PDEs, [49] also presented examples of new PDEs that can be
derived from wavelet frame shrinkage algorithms. Conversely, new wavelet shrinkage algo-
rithms that better exploit local image geometry can also be derived. Here, we recall one such
example.

Consider the accelerated wavelet frame shrinkage algorithm [93,116,117]

uk
D .I � �A>A/W >S˛k�1

�
.1C k�1/Wuk�1

� k�1Wuk�2
�

(4.7)

C �A>f ; k D 1; 2; : : :

When we properly choose the wavelet frame transform W and the parameters � and k , the
iterative algorithm (4.7) leads to the following PDE:

ut t C Cut D

LX
`D1

.�1/1Cjˇ`j @
ˇ`

@xˇ`

�
g`

�
u;
@ˇ1u

@xˇ1
; : : : ;

@ˇLu

@xˇL

�
@ˇ`

@xˇ`
u

�
(4.8)

� �A>.Au � f /:

What makes equation (4.8) interesting is the presence of both ut and ut t . The term ut makes
the PDE parabolic-like so that the first term on the right-hand side regularizes the solution
u; the term ut t makes the PDE hyperbolic-like so that the evolution of u is accelerated. The
idea of using a hyperbolic equation to speed up convergence was proposed in [111] for sparse
signal reconstruction from noisy, blurry observations. Furthermore, related findings was also
given by [149,150]. It also inspired more recent studies in machine learning that established
connections between numerical ODEs and CNNs [107].

5. Going beyond image reconstruction

Differential equations, especially partial differential equations (PDEs), play a promi-
nent role in physics, chemistry, biology, economics, engineering, etc., to describe the govern-
ing laws underlying virtually every physical, technical, or biological process. The application
of differential equations in image reconstruction and computer vision is a relatively new field
that started around 1990. In Section 4, we have unified the prevailing models in image recon-
struction, from which we can see that most effective image reconstruction algorithms are
various discrete approximations of differential equations. In this section, we shall bridge the
design of certain types of CNNs with numerical differential equations. More specifically, the
bridge between numerical ODEs/SDEs and CNNs was established by [107] and the bridge
between numerical PDEs and CNNs was established by [101, 102]. In this line of work, we
regard CNNs as a discrete dynamical system, and the flow of features from the very first layer
to the last layer of the CNNs is the underlying dynamical process. We argue that different
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numerical schemes of differential equations lead to different architectures of CNNs, which
inherit certain properties from the differential equations. By connecting CNNs with numer-
ical differential equations, we can bring in tools from applied mathematics and physics to
shed light on the interpretability of CNNs; and we can also bring in tools from deep learning
to further advance not only image reconstruction but also a much broader field of scientific
computing.

5.1. ODE-Nets: exploring structural similarity between numerical ODEs and
CNNs
One of the central tasks in deep learning is designing effective deep architectures

with strong generalization potential and are easy to train. The first ultra-deep CNN is the
ResNet [77] where skip connections were introduced to keep feature maps in different layers
on the same scale and to avoid gradient vanishing. Structures other than the skip connec-
tions of the ResNet were also introduced to prevent gradient vanishing, such as the dense
connections [79] and fractal path [90].

Observe that each residual block of ResNet can be written as

ukC1
D uk

C�tF.uk ; tk/; (5.1)

where k is the index for the residual block F . As first suggested by [74, 162], each residual
block of ResNet is one step of the forward-Euler discretization of the ODE Pu D F.u; t/.
In [107], we further showed that many state-of-the-art deep network architectures, such as
PolyNet [174], FractalNet [90], and RevNet [70], which can be considered as different dis-
cretizations of ODEs. From the perspective of [107], the success of these networks is mainly
due to their ability to efficiently approximate dynamical systems.

Taking PolyNet as an example, a PolyInception module was introduced in each
residual block. The PolyInception model includes polynomial compositions that can be
described as

.I C F C F 2/ � x D x C F.x/C F
�
F.x/

�
:

We observed in [107] that PolyInception model can be interpreted as an approximation to
one step of the backward-Euler (implicit) scheme, ukC1 D .I ��tF /�1uk . Indeed, we can
formally rewrite .I ��tF /�1 as

I C�tF C .�tF /2 C � � � C .�tF /k C � � � :

Therefore, the architecture of PolyNet can be viewed as an approximation to the backward-
Euler scheme solving the ODE ut D F.u; t /. Note that the implicit scheme allows a larger
step size [6], which in turn allows fewer residual blocks.

Furthermore, for residual-type networks with random perturbations, such as ResNet
with shake-shake regularization [67] and stochastic depth [80], it was shown by [107] that
these networks can be viewed as weak approximations [118] to certain SDEs, which links the
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training of such networks with mean-field stochastic optimal control

min E.x;y/�P

 
E

 
`.XT ;y/C

Z T

0

r.s; Xs; �s/

!
ds

!
s.t. dXt D f .Xt ; �t /dt C g.Xt ; �t /dBt ; X0 D x;

where `.�; �/ is a certain loss function measuring the distance between the two input argu-
ments, r.�; �; �/ is a running cost that regularizes the dynamics and P is the distribution of the
data. Note that the SDE and stochastic optimal control perspective on ResNet with dropout
[146] was later proposed by [151].

In [107], we argued that we could exploit numerical ODEs to design new residual-
type CNNs with state-of-the-art classification accuracy. Here, we shall call these deep
residual-type CNNs inspired by numerical schemes of ODEs as ODE-Nets. As an exam-
ple, we proposed to use a linear two-step scheme for ODEs to design a new ODE-Net, called
LM-ResNet, as follows:

ukC1
D .1 � ˛k/u

k
C ˛kuk�1

C F.uk ; tk/; ˛k 2 R: (5.2)

The difference between the LM-ResNet (5.2) and the original ResNet (5.1) is revealed by
the modified equation analysis [160]. Modified equations are commonly used in numerical
analysis to describe numerical behaviors of numerical schemes. The modified equations of
the ResNet and the LM-ResNet are as follows:8<: Puk C

�t
2

Ruk D F.uk ; tk/; ResNet;

.1C ˛k/ Puk C .1 � ˛k/
�t
2

Ruk D F.uk ; tk/; LM-ResNet:
(5.3)

Here, uk D u.tk/ and similarly for Puk and Ruk . Comparing the two modified equations in
(5.3), we can see that when ˛k � 0, the second-order term Ru of the modified equation of LM-
ResNet is bigger than that of the original ResNet. Note that the term Ru represents acceleration
which leads to acceleration of the convergence of uk when F D �rG, which was observed
earlier for F.u/ taking a particular form in (4.8). This was our original motivation to select
(5.2) among numerous other numerical ODE schemes, since we believed the depth of the
corresponding ODE-Net could be reduced compared to the original ResNet because of the
acceleration mechanisms induced by the term Ruk . It turned out that it was indeed the case, and
LM-ResNet managed to reduce the depth of the original ResNet (the versions with stochastic
perturbations as well) by a factor of 2–10 without hurting classification accuracy. This was
empirically validated on image classification benchmarks CIFAR10/100 and ImageNet.

The bridge between numerical schemes and architectures of neural networks can
not only inspire various designs of ODE-Nets [34,94,108,177], concepts from the numerical
analysis can also be introduced to enforce the ODE-Nets to satisfy certain desired properties.
For example, [41] utilized a symplectic scheme to enforce the learned network to preserve
the physic structure, and [173] boosted the stability and adversarial robustness of ResNet
through stability analysis on the underlying dynamical system. The bridge also inspired the
work on the neural ODE [37, 97] in which ODEs and SDEs were used as machine learn-
ing models, and they have achieved huge success in generative modeling. The validity of
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using dynamical systems as machine learning models was provided by [96] where the uni-
versal approximation property of these models was established. This line of research also
inspired more applications of ODE-Nets in time series prediction [87] and physical system
identification [73,127,168]. By regarding training ResNet as an optimal control problem, [95]
discovered that the BP-based optimization algorithm could be viewed as an iterative solver
for the maximal principle of the optimal control problem. Based on this observation, [98,171]
designed new accelerated training algorithms for ODE-Nets inspired by the theory of opti-
mal control. Although the structural similarity between numerical ODEs and CNNs is mostly
formal, theoretical analysis regarding the depth limit of ODE-Nets has become a vibrant and
fast-moving field of research [43,106,121,125,153].

5.2. PDE-Nets: exploring structural similarity between numerical PDEs and
CNNs
The original motivation of the work PDE-Nets [101, 102] was to design transpar-

ent CNNs to uncover hidden PDE models from observed dynamical data with minor prior
knowledge on the mechanisms of the dynamics and to perform accurate predictions at the
same time. Learning PDEs from observation or measurement data is a typical task in inverse
problems in which machine learning methods have recently attracted tremendous attention
[5]. However, existing CNNs designed for computer vision tasks primarily emphasize pre-
diction accuracy. They are generally considered black-boxes and cannot reveal the hidden
PDE model that drives the dynamical data. Therefore, we need to carefully design the CNN
by exploring the structure similarity between numerical PDEs and CNNs.

Assume that the PDE to be uncovered takes the following generic form:

ut D F.u;Du/; x 2 � � R2; t 2 Œ0; T �;

where D was defined in (4.6). In a nutshell, PDE-Nets are designed as feedforward networks
by discretizing the above PDE using forward-Euler (or any other temporal discretization) in
time and finite-difference in space. The forward-Euler approximation of the temporal deriva-
tive makes PDE-Nets residual-type neural networks. As has been extensively discussed in
Section 4, the finite-difference approximation to the differential operator D can realized by
convolutions with properly chosen convolution kernels (i.e., filters). In fact, not only finite-
difference approximations can be realized by convolutions, any discretization of D based
on an approximation of u using translation-invariant basis functions can also be realized by
convolutions [39]. The nonlinear response function F is approximated by a symbolic neural
network denoted as SymNet (or a regular DNN as in [102] that is more expressive but less
interpretable). Let ukC1 be the predicted value at time tk C �t based on uk . Then, the
PDE-Nets take the following dynamical form:

ukC1
D uk

C�t � SymNetnm.Q00uk ;Q01uk ;Q10uk ; : : : /; k D 0; 1; : : : ; K � 1: (5.4)

Here, the operators ¹Qij º denote convolution operators with the underlying filters denoted by
qij , i.e.,QijuD qij ~ u. The operatorsQ10,Q01,Q11, etc., approximate differential oper-
ators, i.e., Qiju �

@iCj u
@i x@j y

. In particular, Q00 is a certain averaging operator. The symbolic
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neural network SymNetnm is introduced to approximate the multivariate nonlinear response
function F . The design of SymNetnm is motivated by [135]. It can accurately estimate func-
tion F that is formed or can be well approximated by multivariate polynomials. Details on
SymNetnm and its properties can be found in [101]. All the parameters of the SymNet and the
filters ¹qij º are jointly learned from data.

A key difference from existing works (e.g., [14,21,100,133,137,138,167]) on discovering
PDE models from observation data prior to [101, 102] is that the filters corresponding to the
specific finite-difference approximations to D are learned jointly with the estimation of the
nonlinear response function F . The benefits of doing such joint learning in both system
identification and prediction were empirically demonstrated in [101]. More importantly, in
order to grant desired interpretability to the PDE-Nets, proper constraints are enforced on
the filters. These constraints are motivated from Proposition 4.1 which we now elaborate.

In [101,102], the moment matrix associated to a given filter q was introduced to easily
enforce constraints on the filter during training. Recall that the moment matrix M.q/ of an
N �N filter q is defined by

M.q/ D .mi;j /N �N ; (5.5)

where

mi;j D
1

iŠj Š

N �1
2X

k1;k2D� N �1
2

ki
1k

j
2 qŒk1; k2�; i; j D 0; 1; : : : ; N � 1: (5.6)

Then, by examining (5.6), (4.1), and Proposition 4.1, it is not hard to see that, with a properly
chosen N , filter q can be designed to approximate any differential operator with prescribed
order of accuracy by imposing constraints on M.q/.

For example, if we want to approximate @u
@x

(up to a constant) by convolution q ~ u

where q is a 3 � 3 filter and u is the evaluation of u on a regular grid, we can consider the
following constrains on M.q/:0B@ 0 0 ?

1 ? ?

? ? ?

1CA or

0B@ 0 0 0

1 0 ?

0 ? ?

1CA : (5.7)

Here, ?means no constraint on the corresponding entry which allows one degree of freedom
for learning. The constraints described by the moment matrix on the left of (5.7) guarantee
that the approximation accuracy is at least of first order, and that on the right guarantees
an approximation of at least second order. In particular, when all entries of M.q/ are con-
strained, the corresponding filter is uniquely determined. In the PDE-Nets, all filters are
learned subjected to partial constraints on their associated moment matrices. Similar ideas
on learning constrained filters to approximate differential operators were later used in [9]

to design data-driven solvers for PDEs, and in [31] to design data-driven discretizations for
total variations. A more extended discussion on the connections between numerical PDEs
and neural networks was given in [2].

Exploiting the links between PDEs and CNNs has become a popular line of research
that has led to many new designs of CNN models for machine learning and computer vision
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tasks [4, 76, 113, 134, 152, 175]. It can also be used to improve the efficiency of CNNs [57]. On
the other hand, this line of research also drives the development of data-driven modeling
in scientific computing including efficient solvers for PDEs [9, 11, 39, 40, 85, 105, 158], model
reduction of complex systems [109,112,126,165,166,169], system identification from observa-
tion or simulation data [8, 15, 40, 75, 81, 83, 103, 124, 132], control of physical systems [78, 157],
inverse problems [5,61,62,86], and applications in seismology [88]. In addition, building PDE
models on unstructured data for machine learning and scientific computing tasks is now an
emerging branch of research [1,29,56,82,139].
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Graph Neural Networks (GNNs), neural network architectures targeted to learning repre-
sentations of graphs, have become a popular learning model for prediction tasks on nodes,
graphs and configurations of points, with wide success in practice. This article summa-
rizes a selection of emerging theoretical results on approximation and learning properties
of widely used message passing GNNs and higher-order GNNs, focusing on representa-
tion, generalization, and extrapolation. Along the way, it summarizes broad mathematical
connections.
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1. Introduction

There has been growing interest in solving machine learning tasks when the input
data is given in form of a graph G D .V;E;X;W / from a set of attributed graphs G , where
X 2Rd�jV j contains vectorial attributes for each node, andW 2Rdw �jE j contains attributes
for each edge (X and W may be empty). Examples include predictions in social networks,
recommender systems and link prediction (given two nodes, predict an edge), property pre-
diction of molecules, prediction of drug interactions, traffic prediction, forecasting physics
simulations, and learning combinatorial optimization algorithms for hard problems. These
examples use two types of task: (1) given a graphG, predict a label F.G/; (2) given a graph
G and node v 2 V.G/, predict a node label f .v/. An edge may be similarly predicted, but
from two nodes instead of one.

Solving these tasks demands a sufficiently rich embedding of the graph or each node
that captures structural properties as well as the attribute information. While graph embed-
dings have been a widely studied topic, including spectral embeddings and graph kernels,
recently, Graph Neural Networks (GNNs) [36,37,39,49,65,83] have emerged as an empirically
broadly successful model class that, as opposed to, e.g., spectral embeddings, allows adapt-
ing the embedding to the task at hand, generalizes to other graphs of the same input type,
and incorporates attributes. Due to space limits, this survey focuses on the popular message
passing (spatial) GNNs, formally defined below, and their rich mathematical connections,
with an excursion into higher-order GNNs.

When learning a GNN, we observeN i.i.d. samples D D ¹Gi ; yiº
N
iD1 2 .G � Y/N

drawn from an underlying distribution P on G � Y. The labels yi are often given by an
unknown target function g.Gi /, and observed with or without i.i.d. noise. Given a (convex)
loss function ` W G � Y � Y ! R that measures prediction error, i.e., mismatch of y and
F.G/, such as the squared loss or cross-entropy, we aim to estimate a model F from our
GNN model class F to minimize the expected loss (population risk) R.F /:

min
F 2F

E.G;y/�P

�
`
�
G; y; F.G/

��
� min

F 2F
R.F /: (1.1)

When analyzing this quantity, three main questions become important:
1. Representational power (Section 2). Which target functions g can be approxi-

mated well by a GNN model class F ? Answers to this question relate to graph isomorphism
testing, approximation theory for neural networks, local algorithms and representing invari-
ance/equivariance under permutations.

2. Generalization (Section 3). Even with sufficient approximation power, we can
only estimate a function OF 2 F from the data sample D . The common learning or training
procedure is to instead minimize the empirical risk bR.F /:

OF 2 arg min
F 2F

1

N

NX
iD1

`
�
Gi ; yi ; F .Gi /

�
� arg min

F 2F

bR.F /: (1.2)

Generalization asks how well OF is performing according to the population risk, i.e., bR. OF /,
as a function ofN and model properties. Good generalization may demand explicit (e.g., via
penalties) or implicit regularization (e.g., via the optimization algorithm, typically variants
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of stochastic gradient descent). Hence, generalization analyses involve the complexity of the
model class F , the target function, the data and the optimization procedure.

3. Generalization under distribution shifts (Section 4). In practice, a learned
model OF is often deployed on data from a distribution Q ¤ P , e.g., graphs of different
size, degree or attribute ranges so that for instance supp.Q/ � supp.P /. In which cases can
we expect successful extrapolation to Q? This depends on the structure of the graphs and the
task, formalizable via graph limits, local structures and algorithmic structures, e.g., dynamic
programming.

Beyond these topics, GNNs have close connections to graph signal processing as
learnable filters, to geometric learning and probabilistic inference.

1.1. Graph Neural Networks (GNNs)
Message passing graph neural networks (MPNNs) follow an iterative scheme [36,

37,39,49,65,83]. Throughout, they maintain a representation (embedding) h.t/
v 2Rdt for each

node v 2 V . In each iteration t , we update each node v’s embedding h.k/
v as a function of its

neighbors’ embeddings and possible edge attributes:

h.0/
v D xv; 8v 2 V; (1.3)

m.t/
v D f

.t/
Agg
�
h.t�1/

v ;
®®
h.t�1/

u ; w.u; v/ j u 2 N .v/
¯̄ �
; 1 � t < T (Aggregate), (1.4)

h.t/
v D fUp

�
h.t/

v ; m.t/
v

�
(Update): (1.5)

The final node representation f .v/D h.T /
v , 8v 2 V is the last iterate, possibly concatenated

with a linear classifier. Here, N .v/ � V denotes the neighborhood of v 2 V , and ¹¹�ºº a
multiset. Via the updates, h.t/

v encodes the t -hop neighborhood of node v, i.e., the subgraph
of all nodes reachable from v within t steps. The number of iterations T is also termed the
GNN depth, and one iteration may be viewed as a layer.

The aggregation function f .t/
Agg W R

dt�1 ! Rdt plays a major role and is shared by
all nodes within an iteration. It is a nonlinear function of the form

f
.t/

Agg
�
h.t�1/

v ;
®®
h.t�1/

u ; w.u; v/ j u 2 N .v/
¯̄ �
D �

.t/
1

� X
u2N .v/

�
.t/
2

�
h.t/

u ; h.t/
v ; w.u; v/

��
:

(1.6)

The sum may also be replaced by an average, degree-normalized sum or coordinate-wise
min or max. In the most general form, the functions �1; �2 are implemented as multilayer
perceptrons (MLPs), neural networks that alternate linear transformations and coordinate-
wise nonlinear activations such as the ReLU (�.a/ D max¹a; 0º) or sigmoid function:

MLP.hI �/ D �
�
W .M/

� � � �
�
W .2/�.W .1/hC b.1//C b.2/

�
� � � C b.M/

�
: (1.7)

The learnable parameters � of the MLP are the weight matricesW .j / and bias vectors b.j /.
The update fUp is typically a weighted combination with learnable weight matrices:

fUp
�
h.t/

v ; m.t/
v

�
D �

�
W

.t/
1 h.t/

v CW
.t/

2 m.t/
v

�
or fUp

�
h.t/

v ; m.t/
v

�
D m.t/

v : (1.8)
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Finally, if a graph-level prediction is desired, all node representations can be aggregated by
a permutation invariant readout function

F.G/ D fRead
�®®
h.T /

v j v 2 V
¯̄ �
: (1.9)

Here, we assume the readout has the form (1.6) or is a simple sum or average. Typically, all
parameters are learned jointly via stochastic gradient descent minimizing the empirical risk.

Throughout this article, nD jV j denotes the number of nodes andN the number of
training data points.

Permutation invariance. An important property of GNNs is permutation invariance of the
graph, and equivariance of the node representations. Let A 2 Rn�n be the adjacency matrix
of a graph G 2 G , and X 2 Rn�d its node features. Permutation invariance/equivariance
means that for all permutation matrices P 2 Rn�n and all G 2 G :

F.PAP>; PX/ D F.A;X/ (1.10)

f .PAP>; PX; v/ D f .A;X; v/ (1.11)

2. Representational power of GNNs

For functions on graphs, representational power has mainly been studied in terms
of graph isomorphism: which graphs a GNN can distinguish. Via variations of the Stone–
Weierstrass theorem, these results yield universal approximation results. Other works bound
the ability of GNNs to compute specific polynomials of the adjacency matrix and to distin-
guish graphons [28, 60]. Observed limitations of MPNNs have inspired higher-order GNNs
(Section 2.3). Moreover, if all node attributes are unique, then analogies to local algorithms
yield algorithmic approximation results and lower bounds (Section 2.2).

2.1. GNNs and graph isomorphism testing
A standard characterization of the discriminative power of GNNs is via the hierarchy

of the Weisfeiler–Leman (WL) algorithm for graph isomorphism testing, also known as color
refinement or vertex classification [75], which was inspired by the work of Weisfeiler and
Leman [93,94]. The WL algorithm does not entirely solve the graph isomorphism problem,
but its power has been widely studied.

A labeled graph is a graph endowed with a node coloring l W V.G/! † for some
sufficiently large alphabet†. Given a labeled graph .G; l/, the 1-dimensional WL algorithm
(1-WL) iteratively computes a node coloring c.t/

l
W V.G/! † for some sufficiently large

alphabet †. Starting with c.0/

l
in iteration t D 0, in iteration t > 0 it sets for all v 2 V ,

c
.t/

l
.v/ D Hash

�
ct�1

l .v/;
®®
ct�1

l .u/ j u 2 N .v/
¯̄ �
; (2.1)

where Hash is an injective map from the input pair to†, i.e., it assigns a unique color to each
neighborhood pattern. To compare two graphs G;G0, the algorithm compares the multisets
¹¹c

.t/

l
.v/ j v 2 V.G/ºº and ¹¹c.t/

l
.u/ j u 2 V.G0/ºº in each iteration. If the sets differ, then it
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determines that G ¤ G0. Otherwise, it terminates when the number of colors in iteration t
and t � 1 are the same, which occurs after at most max¹jV.G/j; jV.G0/jº iterations.

The computational analogy between the 1-WL algorithm and MPNNs is obvious.
Since the WL algorithm uniquely colors each neighborhood, the coloring c.t/

l
.v/ always

refines the coloring h.t/
v from a GNN.

Theorem 1 ([66, 95]). If for two graphs G; G0 a message passing GNN outputs fG.G/ ¤

fG.G
0/, then the 1-WL algorithm will determine that G ¤ G0.
For any t , there exists an MPNN such that c.t/

l
� h.t/. A sufficient condition is that

the aggregate, update, and readout operations are injective multiset functions.

GNNs that use the degree for normalization in the aggregation [49] can be equivalent
to the 1-WL agorithm too, but with one more iteration in the WL algorithm [35].

2.1.1. Representing multiset functions
Theorem 1 demands the neighbor aggregation fAgg to be an injective multiset func-

tion. Theorem 2 shows how to universally approximate multiset functions.

Theorem 2 ([92,95]). Any multiset function G on a countable domain can be expressed as

G.S/ D �1

�X
s2S

�2.s/
�
; (2.2)

where �1 W Rd1 ! Rd2 and �2 W Rd2 ! R are nonlinear functions.

The proof idea is to show that there exists an injective function
P

s2S �.s/. The
above result is an extension of a universal approximation result for set functions [72,73,101],
and suggests a neural network model for sets where �1; �2 are approximated by MLPs. The
Graph Isomorphism Network (GIN) [95] implements this sum decomposition in the aggre-
gation function to ensure the ability to express injective operations.

Here, the latent dimension d2 plays a role. Proofs for countable domains use a dis-
continuous mapping �1 into a fixed-dimensional space, whereas MLPs universally approx-
imate continuous functions [25]. Continuous set functions on R�M (i.e., jS j � M ) can be
sum-decomposed as above with continuous �1; �2 and latent dimension at least d2 D M .
The dimension is a necessary and sufficient condition for universal approximation [92]. For
GNNs, this means d2 must be at least the maximum degree deg.G/ of the input graph G.

2.1.2. Implications for graph distinction
Theorem 1 allows directly transferring any known result for 1-WL to MPNNs. For

instance, 1-WL succeeds in distinguishing graphs sampled uniformly from all graphs on n
nodes with high probability, and failure probability going to zero as n ! 1 [8, 9]. 1-WL
can also distinguish any nonisomorphic pair of trees [42]. It fails for regular graphs, as all
node colors will be the same. The graphs that 1-WL can distinguish from any nonisomorphic
graph can be recognized in quasilinear time [6]. See also [6, 18,48] for more detailed results
on the expressive power of variants of the WL algorithm.
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Figure 1

Graphs G1 (left, 2 connected components) and G2 (middle) with node attributes indicated by letters. The
computation tree rooted at the node with arrow (right) agrees in both graphs, and likewise for the other nodes.
Hence, 1-WL and MPNNs cannot distinguish G1 and G2. Figure adapted from [33].

2.1.3. Computation trees and structural graph properties
To further illustrate the implications of GNNs’ discriminative power, we look at

some specific examples. The maximum information contained in any embedding h.t/
v can

be characterized by a computation tree T .h
.t/
v /, i.e., an “unrolling” of the message passing

procedure. 1-WL essentially colors computation trees. The tree T .h
.t/
v / is constructed recur-

sively: let T .h
.0/
v / D xv for all v 2 V . For t > 0, construct a root with label xv and, for any

u 2 N .v/ construct a child subtree T .h
.t�1/
u /. Figure 1 illustrates an example.

Proposition 1. If for two nodes u ¤ v, we have T .h
.t/
v / D T .h

.t/
u /, then h.t/

v D h
.t/
u .

Comparing computation trees directly implies that MPNNs cannot distinguish reg-
ular graphs. It also shows further limitations with practical impact (Fig. 1), in particular for
learning combinatorial algorithms, and for predicting properties of molecules, where func-
tional groups are of key importance. We say a class of models F decides a graph property
if there exists an F 2 F such that for any two G;G0 that differ in the property, we obtain
F.G/ ¤ F.G0/.

Proposition 2. MPNNs cannot decide girth, circumference, diameter, radius, existence of
a conjoint cycle, total number of cycles, and existence of a k-clique [33]. MPNNs cannot
count induced (attributed) subgraphs for any connected pattern of 3 or more nodes, except
star-shaped patterns [22].

Motivated by these limitations, generalizations of GNNs were proposed that prov-
ably increase their representational power. Two main directions are to (1) introduce node IDs
(Section 2.2), and (2) use higher-order functions that act on tuples of nodes (Section 2.3).

2.2. Node IDs, local algorithms, combinatorial optimization, and lower bounds
The major weaknesses of MPNNs arise from their inability to identify nodes as

the origin of specific messages. Hence, MPNNs can be strengthened by making nodes more
distinguishable. The gained representational power follows from connections with local algo-
rithms, where the input graph defines both the computational problem and the network
topology of a distributed system: each node v 2 V is a local machine and generates a local
output, and all nodes execute the same algorithm, without faults.
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Approximation algorithms. Sato et al. [80] achieve a partial node distinction by transfer-
ring the idea of a port numbering from local algorithms. Edges incident to each node are
numbered as outgoing ports. In each round, each node simultaneously sends a message to
each port, but the messages can differ across ports:

m.t/
v D f

.t/
Agg
�®®�

port.u; v/; port.v; u/; h.t�1/
u

�
j u 2 N .v/

¯̄ �
: (2.3)

Permutation invariance, though, is not immediate. This corresponds to the vector–vector
consistent (VVC ) model for local algorithms [41]. The VVC analogy allows transferring
results on representing approximation algorithms. CPNGNN is a specific VVC GNN model.

Theorem3 ([80]). There exists a CPNGNN that can compute a .deg.G/C 1/-approximation
for the minimum dominating set problem, a CPNGNN that can compute a 2-approximation
for the minimum vertex cover problem, but no CPNGNN can do better. No CPNGNN can
compute a constant-factor approximation for the maximum matching problem.

Adding a weak vertex 2-coloring leads to further results. Despite the increased
power compared to MPNN, CPNGNNs retain most limitations of Proposition 2 [33].

A more powerful alternative is to endow nodes with fully unique identifiers [59,81].
For example, augmenting the GIN model (a maximally expressive MPNN) [95] with random
node identifiers yields a model that can decide subgraphs that MPNN and CPNGNN cannot
[81]. This model can further achieve better approximation results for minimum dominating set
(H.deg.G/C 1/C "), where H is the harmonic number) and maximum matching (1C ").

Turing completeness. Analogies to local algorithms imply that MPNNs with unique node
IDs are Turing complete, i.e., they can compute any function that a Turing machine can
compute, including graph isomorphism. In particular, the proof shows an equivalence to the
Turing universal LOCAL model from distributed computing [3,57,69].

Theorem 4 ([59]). If fUp and fAgg are Turing complete functions and the GNN gets unique
node IDs, then GNN and LOCAL are equivalent. For any MPNN F there exists a local
algorithm A of the same depth, such that F.G/ D A.G/, and vice versa.

Corollary 1 ([59]). Under the conditions in Theorem 4, if the GNN depth (number of iter-
ations) is at least diameter.G/ and the width is unbounded, then MPNNs can compute any
Turing computable function over connected attributed graphs.

Lower bounds. The width of a GNN refers to the dimensionality of the embeddings h.t/
v .

For bounded size, GNNs lose computational power. Via analogies to the CONGEST model
[70], which bounds message sizes, one can transfer results on decision, optimization and
estimation problems on graphs. These lead to lower bounds on the product of depth and
width of the GNN. Here, the nodes do not have access to a random generator.

Theorem 5 ([59]). If a problem cannot be solved in less than T rounds in CONGEST
using messages of at most b bits, then it cannot be solved by an MPNN of width w �
.b � log2 n/=p D O.b= logn/ and depth T , where p D ‚.n/.
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Theorem 5 directly implies lower bounds for solving combinatorial problems, e.g.,
Tw D�.n= logn/ for cycle detection and computing diameter, and T

p
w D�.

p
n= logn/

for minimum spanning tree, minimum cut, and shortest path [59].
Moreover, we can transfer ideas from communication complexity. The communica-

tion capacity cf of an MPNN f (with unique node IDs) is the maximum number of symbols
that the MPNN can transmit between any two disjoint sets V1; V2 � V of nodes when viewed
as a communication network: cf � cut.V1; V2/

PT
tD1 min¹mt ; wtº C

PT
tD1 t , where T is

the GNN depth, wt the width of layer t , mt the size of the messages, and t the size of a
global state that is maintained. The communication capacity of the MPNN must be at least
cf D�.n/ to distinguish all trees, and cf D�.n2/ to distinguish all graphs [58]. By relating
discrimination and function approximation (Section 2.4), these results have implications for
function approximation, too.

Random node IDs. While unique node IDs are powerful in theory, in many practical exam-
ples the input graphs do not have unique IDs. An alternative is to assign random node IDs
[1, 27]. This can still yield GNNs that are essentially permutation invariant: while their out-
puts are random, the outputs for different graphs are still sufficiently separated [1]. This leads
to a probabilistic universal approximation result:

Theorem 6 ([1]). Let h W G !R be a permutation invariant function on graphs of size n� 1.
Then for all ";ı > 0 there exists anMPNNF with access to a global readout and with random
node IDs such that for every G 2 G it holds that Pr.jF.G/ � h.G/j � "/ � 1 � ı.

The proof builds on a result by [10] that states that any logical sentence in FOC2 can
be expressed by the addressed GNN. The logic considered here is a fragment of first-order
(FO) predicate logic that allows to incorporate counting quantifiers of the form 9�kx .x/,
i.e., there are at least k elements x satisfying  , but is restricted to two variables. FOC2 is
tightly linked with the 1-WL test: for any nodes u; v 2 V in any graph, 1-WL colors u and v
the same if and only if they are classified the same by all FOC2 classifiers [19].

2.3. Higher-order GNNs
Instead of adding unique node IDs, one may increase the expressive power of GNNs

by encoding subsets of V that are larger than the single nodes used in MPNNs. Three
such directions are: (1) neural network versions of higher-dimensional WL algorithms, (2)
(non)linear equivariant operations, and (3) recursion. Other strategies that could not be cov-
ered here use, e.g., simplicial and cell complexes [16, 17] or augment node attributes with
topological information (e.g., persistent homology) [102].

Most of these GNNs act on k-tuples s 2 V k , and may be written in a unified form
via tensors H .t/ 2 Rnk�dt , where the first k coordinates index the tuple, and H .t/

s;W 2 Rdt is
the representation of tuple s in layer t . For MPNNs, which use node and edge information,
H .0/ 2 Rn�n�.dC1/. The first d channels ofH .0/ encode the node attributes:H .0/

v;v;1Wd
D xv

andH .0/

u;v;1Wd
D 0 for u¤ v. The final channel captures the adjacency matrix A of the graph:
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H
.0/

W;W;.dC1/
D A. Node embeddings are computed by a permutation equivariant network:

f .G/ D m ı SE ı F
.T /
ı � � � ı F .1/

ı shape.G/; (2.4)

where m W RdT ! Rdout is an MLP that is applied to each representation hT
v separately,

SE W Rnk�dT ! Rn�dT is a reduction SE .H/v;W D
P

s2V k Ws1Dv Hs;W, and each layer F .t/ W

Rnk�dt�1 ! Rnk�dt is a message passing (aggregation and update) operation for MPNNs,
and will be defined for higher-order networks. The first operation shapes the input into
the correct tensor form, if needed. For a graph embedding, we switch to a reduction SI W

Rnk�dT ! RdT , SI .H/ D
P

s2V k Hs;W and apply the MLP m to the resulting vector:
F.G/ D m ı SI ı F

.T / ı � � � ı F .1/ ı shape(G). The GNNs differ in their layers F .t/.

2.3.1. Higher-order WL networks
Extending analogies of MPNNs and the 1-WL algorithm [66, 95], the first class

of higher-order GNNs imitates versions of the k-dimensional WL algorithm. The k-WL
algorithms are defined on k-tuples of nodes, and different versions differ in their aggrega-
tion and definition of neighborhood. In iteration 0, the k-WL algorithm labels each k-tuple
s 2 V k by a unique ID for its isomorphism type. Then it aggregates over neighborhoods
N WL

i .s/ D ¹.s1; s2; : : : ; si�1; v; siC1; : : : ; sk/ j 8v 2 V º for 1 � i � k:

c
.t/
i .s/ D

®®
c.t�1/

�
s0
�
j s0
2 N WL

i .s/
¯̄
; 1 � i � k; s 2 V k ; (2.5)

c.t/.s/ D Hash
�
c.t�1/.s/; c

.t/
1 .s/; c

.t/
2 .s/; : : : ; c

.t/

k
.s/
�
8s 2 V k : (2.6)

For two graphs G;G0 the k-WL algorithm then decides “not isomorphic” if ¹¹c.t/.s/ j s 2

V.G/kºº ¤ ¹¹c.t/.s0/ j s0 2 V.G0/kºº for some t , and returns “maybe isomorphic” otherwise.
Like 1-WL, k-WL decides “not isomorphic” only if G © G0. The Folklore k-WL algorithm
(k-FWL) differs in its update rule, which “swaps” the order of the aggregation steps [19]:

c.t/
u .s/ D .c

.t�1/

.u;s2;:::;sk/
; c

.t�1/

.s1;u;s3;:::;sk/
; : : : ; c

.t�1/

.s1;:::;sk�1;u/
/ 8u 2 V; s 2 V k ; (2.7)

c.t/.s/ D Hash
�
c.t�1/.s/;

®®
c.t/

u .s/ j u 2 V
¯̄ �

8s 2 V k : (2.8)

The 1-WL and 2-WL test are equivalent, and for k � 2, .k C 1/-WL can distinguish strictly
more graphs than k-WL [19]. The k-FWL is as powerful as the .k C 1/-WL for k � 2 [38].

Set-WL GNN. Since computations on k-tuples are expensive, [66] consider a GNN that
corresponds to a set version of a k-WL algorithm. For any set S � V with jS j D k, let
N set.S/ D ¹T � V; jT j D k j jS \ T j D k � 1º. The set-based WL test (k-SWL) then
updates as

c.t/.S/ D Hash
�
c.t�1/.S/;

®®
c.t�1/.T / j T 2 N set.S/

¯̄ �
I (2.9)

its GNN analogue uses the aggregation and update (cf. equations (1.6) and (1.8))

h
.tC1/
S D �

�
W

.t/
1 h

.t/
S C

X
T 2N set.S/

W
.t/

2 h
.t/
T

�
; (2.10)

where � is a coordinatewise nonlinearity (e.g., sigmoid or ReLU). This family of GNNs is
equivalent in power to the k-SWL test [66] (Theorem 8). For computational efficiency, a local
version restricts the neighborhood of S to sets T such that the nodes ¹u; vº D S�T in the
symmetric difference are connected in the graph. This local version is weaker [1].
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FolkloreWLGNN. In analogy to the k-FWL algorithm, Maron et al. [62] define k-FGNNs
with aggregations

h.tC1/
s D f

.tC1/
Up

 
h.t/

s ;
X
v2V

kY
iD1

f
.tC1/

i

�
h

.t/

.s1;:::;si�1;v;siC1;:::;sk/

�!
: (2.11)

For k D 2, this model can be implemented via matrix multiplications. The input to the aggre-
gation, for all pairs of nodes simultaneously, is a tensorH 2Rn�n�dt , withH.u;v/;W D h.u;v/.
The initial H .0/ 2 Rn�n�.dC1/ is defined as in the beginning of Section 2.3.

To compute the aggregation layer, first, we apply three MLPsm1;m2 W Rd1 ! Rd2

and m3 W Rd1 ! Rd3 to each embedding h.u;v/ in H : ml .H/.u;v/;W D ml .H.u;v/;W/ for 1 �
l � 3. Then one computes an intermediate representation H 0 2 Rn�n�d2 by multiplying
matching “slices” of the outputs ofm1;m2:H 0

W;W;i Dm1.H/W;W;i �m2.H/W;W;i . The final output
of the aggregation is the concatenation .m3.H/; H

0/ 2 Rn�n�.d2Cd3/. A variation of this
model, a low-rank global attention model, was shown to relate attention and the 2-FWL
algorithm via algorithmic alignment, which we discuss in Section 3.3 [71]. Attention in neural
networks introduces learned pair-wise weights in the aggregation function.

The family of k-FGNNs is a class of nonlinear equivariant networks, and is equiv-
alent in power to the k-FWL test and the .k C 1/-WL test [7,62] (Theorem 8).

2.3.2. Linear equivariant layers
While the models discussed so far rely on message passing, the GNN definition (2.4)

only requires permutation equivariant or invariant operations in each layer. The k-linear
(equivariant) GNNs (k-LEGNNs), introduced in [63], allow more general linear equivariant
operations. In k-LEGNNs, each layer F .t/ D � ıL.t/ W Rnk�dt�1 ! Rnk�dt is a concatena-
tion of a linear equivariant function L.t/ and a coordinatewise nonlinear activation function.
The function � may also be replaced with a nonlinear function f .t/

1 W RdtC1=2 ! RdtC1 (an
MLP) applied separately to each tuple embedding L.t/.H .t�1//s;W.

Characterizations of equivariant functions or networks were studied in [40,52,53,74].
Maron et al. [63] explicitly characterize all invariant and equivariant linear layers, and show
that the vector space of linear invariant or equivariant functions f W Rnk

! Rn` has dimen-
sion b.k/ and b.k C `/, respectively, where b.k/ is the kth Bell number. When including
multiple channels and bias terms, one obtains the following bounds.

Theorem 7 ([63]). The space of invariant (equivariant) linear layers Rnk�d ! Rd 0

(Rnk�d ! Rnk�d 0 ) has dimension dd 0b.k/C d 0 (for equivariant, dd 0b.2k/C d 0b.k/).

The GNN model uses one parameter (coefficient) for each basis tensor. Importantly,
the number of parameters is independent of the number of nodes. The proof for identifying
the basis tensors sets up a fixed point equation with Kronecker products of any permutation
matrix that any equivariant tensor must satisfy. The solutions to these equations are defined
by equivalence classes of multiindices in Œn�k . Each equivalence class is represented by a
partition  of Œk�, e.g.,  D ¹¹1º; ¹2; 3ºº includes all multiindices .i1; i2; i3/where i1 ¤ i2; i3
and i2 D i3. The basis tensors B 2 ¹0; 1ºn

k are then such that B
s D 1 if and only if s 2  .
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Linear equivariant GNNs of order k (k-LEGNNs) parameterized with the full basis
are as discriminative as the k-WL algorithm [62] (Theorem 8). To achieve this discriminative
power, each entry H .0/

s;W in the input tensor encodes an initial coloring of the isomorphism
type of the subgraph indexed by the k-tuple s.

2.3.3. Summary of representational power via WL
The following theorem summarizes equivalence results between the GNNs dis-

cussed so far and variants of the WL test. Following [7], we here use equivalence relations,
as they suffice for universal approximation in Section 2.4. For a set F of functions defined
on G , define an equivalence relation � via the joint discriminative power of all F 2 F , i.e.,
for any G;G0 2 G :

.G;G0/ 2 �.F / ” 8F 2 F ; F .G/ D F.G0/: (2.12)

Theorem 8. The above GNN families have the following equivalences:

�.MGNN/ D �.2-WL/ [95], (2.13)

�.k-set-GNN/ D �.k-SWL/ [66], (2.14)

�.k-LEGNN/ D �.k-WL/ [34,63], (2.15)

�.k-FGNN/ D �..k C 1/-WL/ [7,62]. (2.16)

Analogous results hold for equivariant models (for node representations), with the
exception of equality (2.15), which becomes an inclusion: �.k-LEGNNE /� �.k-WLE / [7].

2.3.4. Relational pooling
One option to obtain nonlinear permutation invariant functions is to average permu-

tation-sensitive functions over the permutation group …n. Murphy et al. [67, 68] propose
such a model, inspired by joint exchangeability of random variables [2, 29]. Concretely, if
A 2 Rn�n denotes the adjacency matrix of the input graph G and X 2 Rn�d the matrix of
node attributes, then

FRP.G/ D
1

nŠ

X
�2…n

g.A�;� ; X�/ D g.� �H
.0//; (2.17)

where X� is X with permuted rows, and H .0/ is the tensor combining adjacency matrix
and node attributes. Here, g is any permutation-sensitive function, and may be modeled
via various nonlinear function approximators, e.g., neural networks such as fully connected
networks (MLPs), recurrent neural networks or a combination of a convolutional network
applied to A and an MLP applied to X . In particular, this model allows implementing graph
isomorphism testing via node IDs (cf. Section 2.2) if g is a universal approximator [68]. For
instance, node IDs may be permuted over nodes and concatenated with the node attributes:

FRP.G/ D
1

nŠ

X
�2…n

�
A�;� ; ŒX� ; In�

�
D

1

nŠ

X
�2…n

g
�
A;
�
X; .In/�

��
; (2.18)

where In 2Rn�n is the identity matrix. If g is an MPNN, the resulting model is strictly more
powerful than the 1-WL test and hence g by itself.
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The drawback of the Relational Pooling (2.17) is its computational intractability.
Various approximations have been considered, e.g., defining canonical orders, stochastic
approximations, and applying g to all possible k-subsets of V . In the latter case, increasing
k strictly increases the expressive power. Local Relational Pooling is a variant that applies
relational pooling to the k-hop subgraphs centered at each node, and then aggregates the
results. This operation provably allows to identify and count subgraphs of size up to k [22].

2.3.5. Recursion
A general strategy for encoding a graph is to encode a collection of subgraphs, and

then aggregate these encodings. When doing so, an important bit of information are node
correspondences across subgraphs [15,86]. Otherwise, this process includes the reconstruc-
tion hypothesis [46,88], i.e., the question whether any graphG can be reconstructed from the
collection of its subgraphs G n ¹vº, for all v in G.

Indeed, the expressive power of such a model depends on the set of subgraphs, the
type of subgraph encodings and the aggregation. Tahmasebi et al. [86] show that recursion can
be a powerful tool: instead of iterative message passing or layering, a recursive application of
the above subgraph embedding step, even with a simple set aggregation like (1.6), can enable
a GNN that can count any bounded-size subgraphs, as opposed to MPNNs (Proposition 2).

Let Nr .v/ be the r-hop neighborhood of v in G. Recursive neighborhood pooling
(RNP) encodes intersections of such neighborhoods of different radii. Given an input graph
G with node attributes ¹hin

u ºu2V.G/ and a sequence .r1; : : : ; rt / of radii, RNP recursively
encodes the node-deleted r1-neighborhoods Gv D Nr1.v/ n ¹vº of all nodes v 2 V after
marking the deletion in augmented representations haug

u , u 2 V . It then combines the results,
and returns node representations of all nodes. I.e., for each node v 2 V , it computes Gv and

haug
u D

�
hin

u ; 1
�
.u; v/ 2 E.Gv/

��
8u 2 V.Gv/; (2.19)®®

h0
v;u

¯̄
u2Gv

 RNP-GNN
�
Gv;

®®
haug

u

¯̄
u2Gv

; .r2; r3; : : : ; rt /
�
; (recursion) (2.20)

return hout
v D f

.t/
Agg
�
hin

v ;
®®
h0

v;u

¯̄
u2Gv

�
; 8v 2 V: (2.21)

If the sequence of radii is empty (base case), then the algorithm returns the input attributes
hin

u . In contrast to iterative message passing, the encoded subgraphs here correspond to inter-
sections of local neighborhoods. Together with the node deletions and markings that retain
node correspondences, this maintains more structural information. If the radii sequence dom-
inates a covering sequence for a subgraph H of interest, then, with appropriate parameters,
RNP can count the induced and noninduced subgraphs ofG isomorphic toH [86]. The com-
putational cost isO.nk/ for recursion depth k, and better for very sparse graphs, in line with
computational lower bounds.

2.4. Universal approximation
Distinguishing given graphs is closely tied to approximating continuous functions

on graphs. In early work, Scarselli et al. [82] take a fixed point view and show a universal
approximation result for infinite-depth MPNNs whose layers are contraction operators, for
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functions on equivalence classes defined by computation trees. Dehmamy et al. [28] analyze
the ability of GNNs to compute polynomial functions of the adjacency matrix.

Later works derive universal approximation results for graph and permutation-equi-
variant functions from graph discrimination results via extensions of the Stone–Weierstrass
theorem [7, 23,47, 64]. For instance, H -invariant networks (for a permutation group H ) can
universally approximateH -invariant polynomials [64], which in turn can universally approx-
imate any invariant function [98]. Keriven and Peyré [47] do not fix the size of the graph and
show that shallow equivariant networks can, with a single set of parameters, well approxi-
mate a function on graphs of varying size. Both constructions involve very large tensors.

More generally, the Stone–Weierstrass theorem (for symmetries) allows translating
Theorem 8 into universal approximation results. Let CI .X;Y/ be the set of invariant con-
tinuous functions from X to Y. Then a class F of GNNs is universal if its closure F (in
uniform norm) on a compact set K is the entire CI .K;Rp/.

Theorem 9 ([7]). LetKdisc � Gn �Rd0�n,K � Rd0�n be compact sets, where Gn is the set
of all unweighted graphs on n nodes. Then

MGNN D
®
f 2 CI

�
Kdisc;R

p
�
W �.2-WL/ � �.f /

¯
; (2.22)

k-LEGNN D
®
f 2 CI .K;R

p/ W �.k-WL/ � �.f /
¯
; (2.23)

k-FGNN D
®
f 2 CI .K;R

p/ W �..k C 1/-WL) � �.f /
¯
: (2.24)

Analogous relations hold for equivariant functions, except for

k-LEGNNE D
®
f 2 CE .K;R

n�p/ W �.k-LEGNNE / � �.f /
¯
;

which is a superset of ¹f 2 CE .K;Rn�p/ W �.k-WLE / � �.f /º.

3. Generalization

Beyond approximation power, a second important question in machine learning is
generalization.Generalization asks how well the estimated function OF is performing accord-
ing to the population risk, i.e., R. OF /, as a function of the number of data pointsN and model
properties. Good generalization may demand explicit (e.g., via a penalty term) or implicit
regularization (e.g., via the optimization algorithm). Hence, generalization analyses involve
aspects of the complexity of the model class F , the target function we aim to learn, the data
and the optimization procedure. This is particularly challenging for neural networks, due to
the nested functional form and the nonconvexity of the empirical risk.

A classic learning theoretic perspective bounds the generalization gap R. OF / �bR. OF / via the complexity of the model class F (Section 3.1). These approaches do not take
into account possible implicit regularization via the optimization procedure. One possibil-
ity to do so is via the Neural Tangent Kernel approximation (Section 3.2). Finally, for more
complex, structured target functions, e.g., algorithms or physics simulations, one may want
to also consider the structure of the target task. One such option is Algorithmic Alignment
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(Section 3.3). Another strategy for obtaining generalization bounds is via algorithmic sta-
bility, the condition that, if one data point is replaced, the outcome of the learning algorithm
does not change much. This strategy led to some early bounds for spectral GNNs [91].

3.1. Generalization bounds via complexity of the model class
Vapnik–Chervonenkis dimension. The first GNN generalization bound was based on
bounding the Vapnik–Chervonenkis (VC) dimension [89] of the GNN function class F .
The VC dimension of F expresses the maximum size of a set of data points such that for
any binary labeling of the data, some GNN in F can perfectly fit, i.e., shatter, the set. The
VC dimension directly leads to a bound on the generalization gap. Here, we only state the
results for sigmoid activation functions.

Theorem 10 ([84]). The VC dimension of GNNs with p parameters, H hidden neurons (in
the MLP) and input graphs of size n is O.p2H 2n2/.

Strictly speaking, Theorem 10 is for node classification with one hidden layer in
the aggregation function MLPs. The VC dimension directly yields a bound on the gener-
alization gap: for a class F with VC dimension D, with probability 1 � ı, it holds that
R. Of /� bR. Of / � O.qD

N
log N

D
/C

q
1

2N
log 1

ı
. Interestingly, in these bounds, GNNs are a

generalization of recurrent neural networks [84]. The VC dimension bounds for GNNs are
the same as for recurrent neural networks [50]; for fully connected MLPs, they are missing
the factor n2 [45].

Rademacher complexity. Bounds that are in many cases tighter can be obtained via Rade-
macher complexity. The empirical Rademacher complexity bRS .F / of a function class
F measures how well it can fit “noise” in the form of uniform random variables � D
.�1; : : : ; �N / in ¹�1;C1º: bRS .F /DE� ŒsupF 2F

1
N

PN
iD1 �iF.xi /�, for a fixed data sample

S D ¹x1; : : : ; xN º. Similarly to VC dimension, bRS .F / provides a bound on the probability
of error under the full data distribution: P Œerror.F /� � bR.F / C 2bRS .J/ C 3

q
log.2=ı/

2N
,

where J is the class of functions F 2 F concatenated with the loss. Garg et al. [33] analyze
a GNN that applies a logistic linear binary classifier at each node, averages these predic-
tions for a graph-level prediction, and uses a mean field update [26]: ht

v D �.W1xv C

W2�.
P

u2N.v/ g.h
t�1
u ///, where �; �; g are nonlinear functions with bounded Lipschitz

constant that are zero at zero (e.g., tanh), and kW1kF ; kW2kF � B . The logistic predictor
outputs a “probability” for the label 1, and is evaluated by a margin loss function that gives
a (scaled) penalty if the “probability” of the correct label is below a threshold ( C1

2
).

Theorem 11 ([33]). Let C be the product of the Lipschitz constants of �; �; g, and B; T
the number of GNN iterations; w the dimension of the embeddings ht

v , and d the maximum
branching factor in the computation tree. Then the generalization gap of the GNN can be
bounded as: QO. wdp

N 
/ for C < 1=d , QO. wdTp

N 
/ for C D 1=d , and QO.wd

p
wTp

N 
/ for C > 1=d .

The factor d is equal to maxv2G deg.v/� 1. For recurrent neural networks, the same
bounds hold, but with d D 1 [21]: a sequence is a tree with branching factor 1. In comparison,
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for the VC bounds in this setting, with H D w, n > d and p is the size of the matrices W
(about w2), we obtain a generalization bound of QO.w3n=

p
N/, ignoring log factors. Later

work tightens the bounds in Theorem 11 by using a PAC-Bayesian approach [56].

3.2. Generalization bounds via the Neural Tangent Kernel
Infinitely-wide neural networks can be related to kernel learning techniques [4,5,31,

32, 43]. Du et al. [30] extend this analysis to a broad class of GNNs. The main idea under-
lying the Neural Tangent Kernel (NTK) is to approximate a neural network F.�; G/ with
a kernel derived from the training dynamics. Assume we fit F.�; G/ with the squared loss
L.�/D

PN
iD1 `.F.�;Gi /; yi /D

1
2
.F.�;Gi /� yi /

2, where � 2 Rm collects all parameters
of the network. If we optimize with gradient descent with infinitesimally small step size, i.e.,
d�.t/

dt
D�rL.�.t//, then the network outputs u.t/D .F.�.t/;Gi //

N
iD1 follow the dynamics

du

dt
D �H.t/

�
u.t/ � y

�
; where H.t/ij D

�
@F.�.t/; Gi /

@�
;
@F.�.t/; Gj /

@�

�
: (3.1)

Here, y D .yi /
N
iD1. If � is sufficiently large (i.e., the network sufficiently wide), then it was

shown that the matrix H.t/ 2 RN �N remains approximately constant as a function of t . In
this case, the neural network becomes approximately a kernel regression [85]. If the parame-
ters �.0/ are initialized as i.i.d. Gaussian, then the matrixH.0/ converges to a deterministic
kernel matrix QH , the Neural Tangent Kernel, with closed form regression solution F QH .G/.
Given this approximation, one may analyze generalization via kernel learning theory.

Theorem 12 ([11]). Given N i.i.d. training data points and any loss function ` W R �R!

Œ0; 1� that is 1-Lipschitz in the first argument with `.y; y/ D 0, with probability 1 � ı the
population risk of the Graph Neural Tangent predictor is bounded as

R.F QH / D O

�
1

N

q
y> QH�1y � tr. QH/C

r
1

N
log.1=ı/

�
:

In contrast to the results in Section 3.1, the complexity measure y> QH�1y of the
target function is data-dependent. If the target function to be learned follows a simple GNN
structure with a polynomial, then this bound can be polynomial:

Theorem 13 ([30]). Let Nhv D cv

P
u2N .v/[¹vº hu. If the labels yi , 1 � i � N , satisfy

yi D ˛1

X
v2V.Gi /

ˇ>
1
Nhv C

1X
lD1

˛2l

X
v2V

�
ˇ>

2l
Nhv

�2l

for ˛k 2 R, ˇk 2 Rd , then y> QH�1y � 2j˛1j � kˇ1k2 C
P1

lD1

p
2�.2l � 1/j˛2l j � kˇ2lk

2l
2 .

With n D maxi V.Gi /, we have tr. QH/ D O.n2N/.

3.3. Generalization via algorithmic alignment
The Graph NTK analysis shows a polynomial sample complexity if the function

to be learned is close to the computational structure of the GNN, in a simple way. While
this applies to mainly simpler learning tasks, the idea of an “alignment” of computational
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structure carries further. Recently, there has been growing interest in learning scientific tasks,
e.g., given a set of particles or planets along with their location, mass and velocity, predict
the next state of the system [12,78,79], and in “algorithmic reasoning,” e.g., learning to solve
combinatorial optimization problems in particular over graphs [20]. In such cases, the target
function corresponds to an algorithm, e.g., dynamic programming.

While many neural network architectures have the power to represent such tasks,
empirically, they do not learn them equally well from data. In particular, GNNs perform well
here, i.e., their architecture encodes suitable inductive biases [13,96]. As a concrete example,
consider the Shortest Path problem. The computational structure of MPNNs matches that
of the Bellman–Ford (BF) algorithm [14] very well: both “algorithms” iterate, and in each
iteration t , update the state as a function of the neighboring nodes and edge weightsw.u; v/:

.BF/ d Œt �Œv� D min
u2N .v/

dŒt � 1�Œu�C w.u; v/;

.GNN/ ht
v D

X
u2N .v/

MLP
�
ht�1

u ; ht�1
v ; w.u; v/

�
:

(3.2)

Hence, the GNN can simulate the BF algorithm if it uses sufficiently many iterations, and if
the aggregation function approximates the BF state update. Intuitively, this is a much simpler
function to learn than the full algorithm as a black box, i.e., the GNN encodes much of the
algorithmic structure, sparsity and invariances in the architecture. More generally, MPNNs
match the structure of many dynamic programs in an analogous way [96].

The NTK results formalize simplicity by a small function norm in the RKHS asso-
ciated with the Graph NTK; this can become complicated with more complex tasks and
multiple layers. To quantify structural match, Xu et al. [96] define algorithmic alignment by
viewing a neural network as a structured arrangement of learnable modules – in a GNN,
the (MLPs in the) aggregation functions – and define complexity via sample complexity of
those modules in a PAC-learning framework. Sample complexity in PAC learning is defined
as follows: We are given a data sample ¹.xi ; yi /º

N
iD1 drawn i.i.d. from a distribution P that

satisfies yi D g.xi / for an underlying target function g. Let f DA.¹xi ; yiº
N
iD1/ be the func-

tion output by a learning algorithm A. For a fixed error " and failure probability 1 � ı, the
function g is .N; "; ı/-PAC learnable with A if

Px�P

�ˇ̌
f .x/ � g.x/

ˇ̌
< "

�
� 1 � ı: (3.3)

The sample complexity CA.g; "; ı/ is the smallest N so that g is .N; "; ı/-learnable with A.

Definition 1 (Algorithmic alignment [96]). Let g be a target function and N a neural network
with M modules Ni . The module functions f1; : : : ; fM generate g for N if, by replacing
Ni with fi , the network N simulates g. Then N .N; "; ı/-algorithmically aligns with g if
(1) f1; : : : ; fM generate g and (2) there are learning algorithms Ai for the Ni ’s such that
M �maxi CAi

.fi ; "; ı/ � N .

Algorithmic alignment resembles Kolmogorov complexity [51]. Thus, it can be hard
to obtain the optimal alignment between a neural network and an algorithm. But, any algo-
rithmic alignment yields a bound, and any with acceptable sample complexity may suffice.
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The complexity of the MLP modules in GNNs may be measured with a variety of techniques.
One option is the NTK framework. The module-based bounds then resemble the polynomial
bound in Theorem 13, since both are extensions of [5]. However, here, the bounds are applied
at a module level, and not for the entire GNN as a unit. Theorem 14 translates these bounds,
in a simplified setting, into sample complexity bounds for the full network.

Theorem 14 ([96]). Fix " and ı. Suppose ¹.Gi ; yi /º
N
iD1 � P , where jV.Gi /j < n, and yi D

g.Gi / for some g. Suppose N1; : : : ;NM are network N ’s MLP modules in sequential order
of processing. Suppose N and g .N; "; ı/-algorithmically align via functions f1; : : : ; fM

for a constantM . Under the following assumptions, g is .N;O."/;O.ı//-learnable by N .

(a) Sequential learning. We train Ni ’s sequentially: N1 has input samples ¹ Ox.1/
i ;

f1. Ox
.1/
i /ºNiD1, with Ox

.1/
i obtained from Gi . For j > 1, the input Ox.j /

i for Nj are
the outputs of the previous modules, but labels are generated by the correct func-
tions fj �1; : : : ; f1 on Ox.1/

i .

(b) Algorithm stability. Let A be the learning algorithm for the Ni ’s, f DA.¹xi ; yiº
N
iD1/,

and Of D A.¹ Oxi ; yiº
N
iD1/. For any x, kf .x/ � Of .x/k � L0 � maxi kxi � Oxik, for

some L0 <1.

(c) Lipschitzness. The learned functions Ofj satisfy k Ofj .x/ � Ofj . Ox/k � L1kx � Oxk, for
some L1 <1.

The big O notation here hides factors including the Lipschitz constants, number of
modules, and graph size. When measuring module complexity via the NTK, Theorem 14,
e.g., indeed yields a gap between fully connected networks and GNNs in simple cases [96],
supporting empirical results. While some works use sequential training [90], empirically,
better alignment improves learning and generalization in practice even with more common
“end-to-end” training, i.e., optimizing all parameters simultaneously [13,96].

At a general level, these alignment results indicate that it is not only possible to learn
combinatorial algorithms and physical reasoning tasks with machine learning, but how, in
turn, incorporating expert knowledge, e.g., in algorithmic techniques or physics, into the
design of the learning method can improve sample efficiency.

4. Extrapolation

Section 3 summarizes results for in-distribution generalization, i.e., how well a
learned model performs on data from the same distribution P as the training data. Yet, in
many practical scenarios, a model is applied to data from a different distribution.
A strong case of such a distribution shift is extrapolation. It considers the expected loss
E.G;y/�QŒ`.G; y; F.G//� under a distribution Q with different support, e.g., supp.Q/ �
supp.P /. For graphs, Q may entail graphs of different sizes, different degrees, or with node
attributes in different ranges from the training graphs. As no data has been observed in
the new domain parts, extrapolation can be ill-defined without stronger assumptions on the
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task and model class. What assumptions are sufficient? Theoretical results on extrapolation
assume the graphs have sufficient structural similarity and/or the model class is sufficiently
restricted to extrapolate accurately. Empirically, while extrapolation has been difficult, sev-
eral works achieve GNN extrapolation in tasks like predicting the time evolution of physical
systems [12], learning graph algorithms [90], and solving equations [54].

Structural similarity of graphs. One possibility to guarantee successful extrapolation to
larger graphs is to assume sufficient structural similarity between the graphs in P and Q,
in particular, structural properties that matter for the GNN family under consideration. For
spectral GNNs, which learn functions of the graph Laplacian, this assumption has been
formalized as the graphs arising from the same underlying topological space, manifold or
graphon. Under such conditions, spectral GNNs – with conditions on the employed filters –
can generalize to larger graphs [55,76,77].

For message passing GNNs, whose representations rely on computation trees as
local structures (Section 2.1), an agreement in the distributions of the computation trees in
the graphs sampled from P and Q is necessary [99]. This is violated, for instance, if the
degree distribution is a function of the graph size, as is the case for random graphs under the
Erdős–Rényi or Preferential Attachment models. The computation tree of depth t rooted at
a node v corresponds to the color c.t/.v/ assigned by the 1-WL algorithm.

Theorem 15 ([99]). Let P and Q be finitely supported distributions of graphs. Let P t be
the distribution of colors c.t/.v/ over P and similarly Qt for Q. Assume that any graph in
Q contains a node with a color in Qt nP t . Then, for any graph regression task solvable by
a GNN with depth t there exists a GNN with depth at most t C 3 that perfectly solves the task
on P and predicts an answer with arbitrarily large error on all graphs from Q.

The proof exploits the fact that GNN predictions on nodes only depend on the asso-
ciated computation tree, and that a sufficiently flexible GNN (depth at least t C 2 layers and
width max¹.max deg.G/ C 1/t � jC j; 2

p
jP jº, where the max degree refers to any graph

in the support, jC j is the finite number of possible input node attributes and P the set of
colors encountered in graphs in the support) can assign arbitrary target labels to any compu-
tation tree [66,99]. That is, the available information allows for multiple local minima of the
empirical risk. A similar result can be shown for node prediction tasks.

Conditions on the GNN. If one cannot guarantee sufficient structural similarity of the input
graphs, then further restrictions on the GNN model can enable extrapolation to different
graph sizes, structures and ranges of input node attributes. If there are no training observa-
tions in a certain range of attributes or local structures, then the predictions of the learned
model depend on the inductive biases induced by the model architecture, loss function and
training algorithm. In other words, which, out of multiple fitting functions (minima), a model
will choose, depends on these biases.

Xu et al. [97] analyze such biases to obtain conditions on the GNN for extrapolation.
Taking the perspective of algorithmic alignment (Section 3.3), they first analyze how indi-
vidual module functions, i.e., the MLPs in the aggregation function of a GNN, extrapolate,
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and then transfer this to the entire GNN. The aggregation functions enter the extrapolation
regime, e.g., if the node attributes, node degrees or computation trees are different in Q, as
they determine the inputs to the aggregations. The following theorem states that, away from
supp.P /, MLPs implement directionally linear functions.

Theorem 16 ([97]). Suppose we train a two-layer MLP f W Rd ! R with ReLU activation
functions with squared loss in the NTK regime. For any direction v 2 Rd , let x0 D tv.
As t ! 1, f .x0 C hv/ � f .x0/ ! ˇv � h for any h > 0, where ˇv is a constant linear
coefficient. Moreover, given " > 0, for t D O.1

"
/, we have jf .x0Chv/�f .x0/

h
� ˇvj < ".

The linear function and the constant terms in the convergence rate depend on the
training data and the direction v. The proof of Theorem 16 relies on the fact that a neural net-
work in the NTK regime learns a minimum-norm interpolation function [4,5,43]. Although
Theorem 16 uses a simplified setting of a wide 2-layer network, similar results hold empiri-
cally for more general MLPs [97].

To appreciate the implications of this result in the context of GNNs, consider the
example of Shortest Path in equation (3.2). For the aggregation function to mimic the
Bellman–Ford algorithm, the MLP must approximate a nonlinear function. But, in the extrap-
olation regime, it implements a linear function and therefore is expected to not approximate
Bellman–Ford well any more. Indeed, empirical works that successfully extrapolate GNNs
for Shortest Path use a different aggregation function of the form [13,90]

h.t/
u D min

v2N .u/
MLP.t/

�
h.t�1/

u ; h.t�1/
v ; w.v;u/

�
: (4.1)

Here, the nonlinear parts do not need to be learned, allowing to extrapolate with a linear
learned MLP. More generally, the directionally linear extrapolation suggests that the (1)
architecture or (2) input encoding should be set up such that the target function can be approx-
imated by MLPs learning linear functions (linear algorithmic alignment). An example for
(2) may be found in forecasting physical systems, e.g., predicting the evolution of n objects
in a gravitational system, and the node (object) attributes are mass, location, and velocity
at time t . The position of an object at time t C 1 is a nonlinear function of the attributes
of the other objects. When encoding the nonlinear function as transformed edge attributes,
the function to be learned becomes linear. Indeed, many empirical works that successfully
extrapolate implement the idea of linear algorithmic alignment [24,44,61,87,97,100].

Finally, the geometry of the training data also plays an important role. Xu et al. [97]
show empirical results and initial theoretical results for learning max-degree, suggesting that,
even with linear algorithmic alignment, sufficient diversity in the training data is needed to
identify the correct linear functions.

For the case when the target test distribution Q is known, Yehudai et al. [99] propose
approaches for combining elements of P and Q to enhance the range of the data seen by the
GNN.
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5. Conclusion

This survey covered three main topics in understanding GNNs: representation, gen-
eralization, and extrapolation. As GNNs are an active research area, many results could not
be covered. For example, we focused on MPNNs and main ideas for higher-order GNNs,
but neglected spectral GNNs, which closely relate to ideas in graph signal processing. Other
emergent topics include adversarial robustness, optimization behavior of the empirical risk
and its improvements, and computational scalability and approximations. Moreover, GNNs
have a rich set of mathematical connections, a selection of which was summarized here.

For function approximation, the limitations of MPNNs motivated powerful higher-
order GNNs. However, these are still computationally expensive. What efficiency is theoret-
ically possible? Moreover, most applications may not require full graph isomorphism power,
or k-WL power for large k. What other measures make sense? Do they allow better and
sharper complexity results? Initial works consider, e.g., subgraph counting [22,86].

The generalization results so far need to use simplifications in the analysis. To
what extent can they be relaxed? Do more specific tasks or graph classes allow sharper
results? Which modifications of GNNs would allow them to generalize better, and how
do higher-order GNNs generalize? Similar questions pertain to extrapolation and reliability
under distribution shifts, a topic that has been studied even less than GNN generalization.

In general, revealing further mathematical connections may enable the design of
richer models and enable a more thorough understanding of GNNs’ learning abilities and
limitations, and potential improvements.
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Theory of adaptive
estimation
Oleg V. Lepski

Abstract

The paper is an introduction to the modern theory of adaptive estimation. We introduce
a universal estimation procedure based on a random choice from collections of estima-
tors satisfying a few very general assumptions. In the framework of an abstract statis-
tical model, we present an upper bound for the risk of the proposed estimator (`-oracle
inequality). The basic technical tools here are a commutativity property of some opera-
tors and upper functions for positive random functionals. Since the obtained result is not
related to a particular observation scheme, many conclusions for various problems in dif-
ferent statistical models can be derived from the single `-oracle inequality.
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1. Introduction

Let .V .n/;A.n/;P .n/

f
; f 2 F/, n 2 N�, be a family of statistical experiments gen-

erated by observation X .n/. It means that X .n/ is a V .n/-valued random variable defined on
some probability space, and the probability law ofX .n/ belongs to the family .P .n/

f
; f 2 F/.

Since the probability space on which X .n/ is defined will play no role in the sequel, we will
just assume its existence.

Furthermore, in this paper:

• .D ;D; �/ is a measurable space;

• F is a set of functions f W D ! R. Typical examples of set F are functional
spaces, e.g., F D L2.Rd /, Cb.R

d /, the set of all measurable real functions, etc.;

• G W F ! S, where S is a set endowed with semimetric `.

The goal is to estimate G.f /; f 2 F, from observation X .n/. By an estimator we
mean anyX .n/-measurable S-valued mapping. The accuracy of an estimator QG is measured
by the `-risk

R.`/
n

�
QGIG.f /

�
D
�
E.n/

f

�
`
�

QG;G.f /
��q� 1

q : (1.1)

Here and later, E.n/

f
denotes the mathematical expectation with respect to the probability

measure P .n/

f
and the number q � 1 is supposed to be fixed. Recall that for any X .n/-

measurable map T W V .n/ ! R,

E.n/

f
ŒT � D

Z
V .n/

T .v/P .n/

f
.dv/:

1.1. Examples of models
In these notes we will consider the following statistical models.

Density model. Let P.D ;�/ denote the set of all probability densities with respect to mea-
sure � defined on D and let F � P.D ; �/.

Then the statistical experiment is generated by the observationX .n/ D .X1; : : : ;Xn/;

n 2 N�, where Xi ; i 2 N�, are i.i.d. random vectors possessing unknown density f 2 F.

White Gaussian Noise Model. Let F D L2.D ; �/. Put QD D ¹B 2 D W �.B/ < 1º and
let .W.B/; B 2 QD/ be the white noise with intensity �.

Consider the statistical model generated by the observation X .n/ D ¹Xn.g/; g 2

L2.D ; �/º where

Xn.g/ D

Z
D

f .t/g.t/�.dt /C n�1=2

Z
D

g.t/W.dt /: (1.2)

Recall also that for any g 2 L2.D ; �/,

Xn.g/ v N
�
hg; f i; n�1

hg; gi
�
; (1.3)

where h�; �i is the inner product of L2.D ; �/ and N .�; �/ denotes the normal law on R.
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1.2. Examples of estimation targets G

Global estimation G.f / D f . The goal is to estimate the entire function f . Here S D F,
and the accuracy of estimation is usually measured by the Lp-risk onD� D , i.e., `.g1;g2/D

kg1 � g2kp;D , 1 � p � 1, where

kgk
p
p;D D

Z
D

jgj
p�.dt /; p 2 Œ1;1/; kgk1;D D sup

t2D

ˇ̌
g.t/

ˇ̌
:

Pointwise estimationG.f / D f .t0/, t0 2 D. Here S D R1 and `.a;b/D ja� bj, a;b 2 R,
andD � D . We present this estimation problem separately from the below-discussed prob-
lems of estimation of functionals because it is often used in order to recover the underlying
function itself.

Estimation of functionals. Here S D R1 and `.a; b/ D ja � bj, a; b 2 R, and D � D .
One can consider

• Estimation of a derivative at a given point, G.f / D f .k/.t0/, t0 2 D, k 2 N�;

• Estimation of norms, G.f / D kf kp;D , 1 � p � 1;

• Estimation of extreme points, G.f / D arg maxt2D f .t/;

• Estimation of regular functionals, for example, G.f / D
R

D
f s.t/dt , s 2 N�.

2. Minimax adaptive estimation

Let F be a given subset of F. For any estimator QGn, define its maximal risk on F by

R.`/
n Œ QGnI F � D sup

f 2F
R.`/

n

�
QGnIG.f /

�
and the minimax risk on F is given by

�n.F/ WD inf
QGn

R.`/
n Œ QGnI F �; (2.1)

where the infimum is always taken over all possible estimators. An estimator whose maximal
risk is proportional to �n.F/ is called a minimax on F .

Let ¹F# ; # 2 ‚º be the collection of subsets of F, where # is a nuisance param-
eter which may have very complicated structure (see the examples below). Without further
mentioning, we will consider only scales of functional classes for which a minimax on F#

estimator (usually depending on #) exists for any # 2 ‚.
The problem of adaptive estimation can be formulated as follows: Is it possible to

construct a single estimator OGn which is simultaneously minimax on each class F# ; # 2 ‚,
i.e., such that

lim sup
n!1

��1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8# 2 ‚‹

We refer to this question as the problem of minimax adaptive estimation over the scale of
classes ¹F# ; # 2 ‚º. If such an estimator exists, we will call it optimally-adaptive, or rate-
adaptive.
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The first adaptive results were obtained in [14]. Starting from this pioneering paper,
a variety of adaptive methods were proposed in different statistical models such as den-
sity and spectral density estimation, nonparametric regression, deconvolution model, inverse
problems, and many others. The interested reader can find a very detailed overview of this
topic in [31]. Here we only mention several methods allowing one to construct optimally-
adaptive estimators:

• Extension of Efroimovich–Pinsker method [11,12];

• Lepski method [27] and its extension, namely Goldenshluger–Lepski method [18];

• Unbiased risk minimization [20,21];

• Wavelet thresholding [10];

• Model selection [1,2];

• Aggregation of estimators [3,15,23,37,42,43];

• Exponential weights [9,36,40];

• Risk hull method [7];

• Blockwise Stein method [4,8,39].

We will discuss existence of optimally-adaptive estimators in details later. Now let us provide
some example of scales of functional classes over which the adaptation is studied.

2.1. Scales of functional classes
2.1.1. Classes of smooth functions
Let .e1; : : : ; ed / denote the canonical basis of Rd , d 2 N�. For a function

T W Rd ! R1 and real number u 2 R, the first-order difference operator with step size u in
the direction of the variable xj is defined by�u;jT .x/D T .xC uej /� T .x/, j D 1; : : : ; d .
By induction, the kth-order difference operator is

�k
u;jT .x/ D �u;j�

k�1
u;j T .x/ D

kX
lD1

.�1/lCk

 
k

l

!
�ul;jT .x/:

Definition 2.1. For given vectors Ě D .ˇ1; : : : ; ˇd / 2 .0;1/d , Er D .r1; : : : ; rd / 2 Œ1;1�d ,
and EL D .L1; : : : ; Ld / 2 .0;1/d , a function T W Rd ! R1 is said to belong to anisotropic
Nikolskii’s class NEr;d .

Ě; EL/ if kT krj
� Lj for all j D 1; : : : ; d , and there exist natural

numbers kj > ǰ such that�kj

u;jT


rj
� Lj juj ǰ ; 8u 2 R; 8j D 1; : : : ; d:

Let F D
Sd

q�1 Lq.Rd / and

F# D NEr;d .
Ě; EL/; # D . Ě; Er; EL/ 2 ‚ � .0;1/d � Œ1;1�d � .0;1/d ;

where NEr;d .
Ě; EL/ is the anisotropic Nikolskii’s class of functions on Rd ; d � 1.
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2.1.2. Functional classes with structure
Structural models are usually used in estimation of multivariate functions in order

to improve estimation accuracy and to overcome the curse of the dimensionality.

Single index structure. Let F D
Sd

q�1 Lq.Rd / and let Sd�1, d � 2, denote the unit sphere
in Rd . Let also Nr;1.ˇ;L/, r � 1, ˇ > 0, L > 0 be the Nikolskii’s class of functions on R1.

For any � � Sd�1 and any r � 1, ˇ > 0, L > 0, introduce the following functional
class:

F single
r .ˇ;L; �/ D

®
f W Rd

! R1
W f .�/ D F

�
!|

�
�
; F 2 Nr;1.ˇ;L/; ! 2 �

¯
:

The adaptive estimation over the collection

F# D F single
r .ˇ;L; �/; # D .ˇ; r; L; �/ 2 ‚ � .0;1/ � Œ1;1� � .0;1/ � Sd�1

is called the estimation under the single-index constraint.

Additive structure. Let as previously F D
Sd

q�1 Lq.Rd /, d � 2, and let Nr;1.ˇ; L/,
r � 1, ˇ > 0, L > 0 denote the Nikolskii’s class of functions on R1.

For any r � 1, ˇ > 0, L > 0, introduce the following functional class:

F additive
r .ˇ;L; �/ D

´
f W Rd

! R1
W f .x/ D

dX
kD1

Fk.xk/; Fk 2 Nr;1.ˇ;L/

µ
:

The adaptive estimation over the collection

F# D F additive
r .ˇ;L/; # D .ˇ; r; L/ 2 ‚ � .0;1/ � Œ1;1� � .0;1/

is called the estimation under the additive constraint.
The functional classes introduced above are considered in the framework of Gaus-

sian White Noise Model or, more generally, in nonparametric regression context.

Hypothesis of independence. The functional classes introduced below are used in the Den-
sity Model. Let D D Rd , d � 2, � be the Lebesgue measure and recall that F � P.D ; �/.
At last, let Id be the set of all subsets of ¹1; : : : ; dº.

For any I 2 Id and any x 2 Rd , denote xI D ¹xi 2 R; j 2 I º, NI D ¹1; : : : ; dº n I ,
and set for any density f 2 F,

fI .xI / D

Z
R NI

f .x/dx NI ; xI 2 RjI j:

If we denote the coordinates of the random vector Xi by Xi;1; : : : ; Xi;d , we can assert that
fI is the marginal density of the random vector Xi;I WD .Xi;j ; j 2 I / for any i D 1; : : : ; n.
The latter is true because Xi , i D 1; : : : ; n, are identically distributed.

Let … denote the set of all partitions of ¹1; : : : ; dº. The independence hypothe-
sis supposes that there exists a partition P such that the random vectors X1;I , I 2 P , are
mutually independent, meaning that

f .x/ D

Y
I2P

fI .xI /; 8x 2 Rd :
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For given vectors Ě D .ˇ1; : : : ; ˇd / 2 .0; 1/d , Er D .r1; : : : ; rd / 2 Œ1; 1�d , EL D

.L1; : : : ; Ld / 2 .0;1/d and a given partition P 2 …, introduce the following functional
class:

F
indep

Er
. Ě; EL;P / D

²
f W Rd

! RC W f .x/ D

Y
I2P

fI .xI /; fI 2 NrI ;jI j.ˇI ; LI /; I 2 P

³
:

The adaptive estimation over the collection

F# D F
indep

Er
. Ě; EL;P /; # D . Ě; Er; EL/ 2 ‚ � .0;1/d � Œ1;1�d � .0;1/d �…

is called the estimation under hypothesis of independence.

2.2. Existence of adaptive estimators. Fundamental problem
It is well-known that optimally-adaptive estimators do not always exist, see [5,13,26,

28]. Formally, the nonexistence of optimally-adaptive estimator means that

lim inf
n!1

inf
QGn

sup
#2¹#1;#2º

��1
n .F#/R

.`/
n Œ QGnI F# � D 1; 8#1; #2 2 ‚: (2.2)

Indeed, since a minimax estimator on F# exists for any # 2 ‚, we can assert that

0 < lim inf
n!1

inf
QGn

��1
n .F#/R

.`/
n Œ QGnI F# � < 1; 8# 2 ‚:

The latter result means that the optimal (from the minimax point of view) family of normal-
izations ¹�n.F#/; # 2 ‚º is attainable for each value # , while (2.2) shows that this family is
unattainable by any estimation procedure simultaneously for any couple of elements from‚.
This, in its turn, implies that optimally-adaptive over the scale ¹F# ; # 2 ‚º does not exist.

However, the question of constructing a single estimator for all values of the nui-
sance parameter # 2‚ remains relevant. Hence, if (2.2) holds, we need to find an attainable
family of normalization and to prove its optimality. The realization of this program dates back
to [27] where the notion of adaptive rate of convergencewas introduced. Nowadays there exist
several definitions of adaptive rate of convergence and corresponding to this notion criteria
of optimality, see [25,27,38,41]. Here we present the simplest definition of the adaptive rate
which is the following.

Definition 2.2. A normalization family ¹ n.F#/; # 2 ‚º is called an adaptive rate of con-
vergence over collection of functional classes ¹F# ; # 2 ‚º if

lim inf
n!1

inf
QGn

sup
#2¹#1;#2º

 �1
n .F#/R

.`/
n Œ QGnI F# � > 0; 8#1; #2 2 ‚; (2.3)

and there exists an estimator OGn such that

lim sup
n!1

sup
#2¹#1;#2º

 �1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8#1; #2 2 ‚: (2.4)

The sequence sup#2‚Œ n.#/='n.#/� is called the price to pay for adaptation, and the esti-
mator OGn is called an adaptive estimator.
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Note that (2.4) is equivalent to

lim sup
n!1

 �1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8# 2 ‚

and, therefore, if (2.4) is fulfilled for any n 2 N� with

 n.#/ D c.#/�n.#/; c.#/ < 1; 8# 2 ‚;

then one can assert that OGn is an optimally-adaptive estimator.

Example 2.3. Consider univariate model (1.2), where D D Œ0; 1� and � is the Lebesgue
measure. Let also F# D N1;1.ˇ; L/, # D .ˇ; L/, be the collection of Nikolskii’s classes
with r D 1 (Hölder’s classes). Let b;L > 0 be arbitrary but a priori chosen numbers, and
let ‚ D .0; b� � .0;L�. The goal is to estimate G.f / D f .a/ where a 2 .0; 1/ is a given
point.

The minimax rate of convergence for this problem is given by

�n

�
N1;1.ˇ;L/

�
D .L

1
ˇ =n/

ˇ
2ˇC1 ;

while the adaptive rate of convergence is given, see [26], by

 n

�
N1;1.ˇ;L/

�
D
�
L

1
ˇ ln.n/=n

� ˇ
2ˇC1 :

We conclude that optimally-adaptive estimators do not exist in this estimation problem.

The most challenging problem of the adaptive theory is to understand how the
existence/nonexistence of optimally-adaptive estimators depends on the statistical model,
underlying estimation problem (mapping G), loss functional `, and the collection of con-
sidered classes. An attempt to provide such classification was undertaken in [27, 28], but
the sufficient conditions found there for both the existence and nonexistence of optimally-
adaptive estimators turned out to be too restrictive.

Problem. Find necessary and sufficient conditions of the existence of optimally-adaptive
estimators, i.e., the existence of an estimator OGn satisfying the following property:

lim sup
n!1

��1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8# 2 ‚:

This problem stated in [27] 30 years ago remains unsolved.
It is important to realize that answers to the formulated problem may be different

even if the statistical model and the collection of functional classes are the same and estima-
tion problems have “similar nature.”

Example 2.4. Consider the univariate model (1.2), where D D Œ0; 1� and � is the Lebesgue
measure. Let also F# D N1;1.ˇ; L/, # D .ˇ; L/, be the collection of Nikolskii’s classes
with r D 1 (Hölder’s classes). Let b;L > 0 be arbitrary but a priori chosen numbers, and
let ‚ D .0; b� � .0;L�. Set

G1.f / D kf k1;Œ0;1�; G2.f / D kf k2;Œ0;1�:

The optimally-adaptive estimator ofG1.�/, was constructed in [29]. On the other hand, there
is no optimally-adaptive estimator for G2.�/, see [6].
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2.3. Adaptive estimation via the oracle approach
Let G D ¹ OGh;h 2 Hº be a family of estimators built from the observationX .n/. The

goal is to propose a data-driven (based on X .n/) selection procedure from the collection G

and establish for it an `-oracle inequality.
More precisely, we want to construct an H-valued random element Oh completely

determined by the observation X .n/ and to prove that for any n � 1,

R.`/
n

�
OG Oh

IG.f /
�

� inf
h2T

U .`/
n .f; h/C rn; 8f 2 F: (2.5)

We call (2.5) an `-oracle inequality. Here rn ! 0, n ! 1 is a given sequence which may
depend on F and the family of estimators G only. As to the quantity U .`/

n .�; �/, it is explicitly
expressed, and for some particular problems one can prove inequality (2.5) with

U .`/
n .f; h/ D CR.`/

n

�
OGhIG.f /

�
; (2.6)

where C is a constant which may depend on F and the family of estimators G only.
Historically, inequality (2.5) with U .`/

n .�; �/ given in (2.6) was called the oracle
inequality. The latter means that the “oracle” knowing the true parameter f can construct
the estimator OGh.f / which provides the minimal over the collection G risk for any f 2 F,
that is,

h.f / W R.`/
n

�
OGh.f /IG.f /

�
D inf

h2H
R.`/

n

�
OGhIG.f /

�
:

Since h.f / depends on unknown f , the estimator OGh.f /, called oracle estimator, is not
an estimator in the usual sense and, therefore, cannot be used. The goal is to construct the
estimator OG Oh

which “mimics” the oracle one.
It is worth noting that the `-oracle inequality with U .`/

n .�; �/ given in (2.6) is not
always available, and this is the reason why we deal with a more general definition given
by (2.5).

The important remark is that inequality (2.5) provides a very simple criterion allow-
ing one to assert that the selected estimator OG Oh

is optimally-adaptive, or adaptive with respect
to the scale of functional classes ¹F# ; # 2 ‚º. Indeed, let us assume that

(i) rn � C inf#2‚ �n.F#/ for some C > 0 (verified for all known problems);

(ii) 9# 7! h.#/ and c.#/ > 0 such that

sup
f 2F#

U .`/
n

�
f; h.#/

�
� c.#/�n.F#/; 8# 2 ‚:

Hence we deduce from (2.5) that, for any # 2 ‚,

sup
f 2F#

R.`/
n

�
OG Oh

IG.f /
�

� sup
f 2F#

U .`/
n

�
f; h.#/

�
C rn �

�
c.#/C C

�
�n.F#/;

and, therefore, we can assert that OG Oh
is optimally-adaptive. If (i) and (ii) hold with  n.F#/

instead of �n.F#/, where  n.F#/ is the adaptive rate of convergence, we can state that OG Oh

is an adaptive estimator.
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3. Universal selection rule and `-oracle inequality

Our objective now is to propose a data-driven selection rule from a family of esti-
mators satisfying few very general assumptions and to establish for it an `-oracle inequality
(2.5). It is important to emphasize that we provide an explicit expression of the functional
U

.`/
n .�; �/ that allows us to derive various adaptive results from the unique oracle inequality.

The proposed approach can be viewed as a generalization of several estimation procedures
developed by the author and his collaborators during last 20 years, see [16–19,22,24,30,31,34].

3.1. Assumptions
Let Hn, n 2 N�, be a sequence of countable subsets of H. Let ¹ OGh; h 2 Hº and

¹ OGh;�; h; � 2 Hº be the families of X .n/-measurable S-valued mappings possessing the
properties formulated below. Both OGh and OGh;� usually depend on n, but we will omit this
dependence for the sake of simplicity of notations.

Let "n ! 0, n ! 1, and ın, n ! 1, be two given sequences. Suppose there exist
collections of S-valued functionals ¹ƒh.f /; h 2 Hº, ¹ƒh;�.f /; h; � 2 Hº, and a collection
of positiveX .n/-measurable random variables‰n D ¹‰n.h/;h 2 Hº for which the following
conditions hold (the functionalsƒh andƒh;� may depend on n (not necessarily) but we will
omit this dependence in the notations):

(Apermute) For any f 2 F and n � 1,

either .i/ OGh;�.f / D OG�;h.f /; 8�; h 2 HI

or .ii/ sup
h;�2Hn

`
�
ƒh;�.f /;ƒ�;h.f /

�
� ın:

(Aupper) For any f 2 F and n � 1,

.i/ E.n/

f

�
sup

h2Hn

�
`
�

OGh; ƒh.f /
�

�‰n.h/
�q

C

�
� "q

nI

.ii/ E.n/

f

�
sup

h;�2Hn

�
`
�

OGh;�; ƒh;�.f /
�

�
®
‰n.h/ ^‰n.�/

¯�q
C

�
� "q

n:

Some remarks are in order.
1) Assumption .Apermute/.i/was called in [18] the commutativity property. The selec-

tion rule presented in the next section was proposed in [33] and an `-oracle inequality was
established under Assumptions .Aupper/.i/ and .Apermute). However, it turned out that for
some estimator collections Assumption .Apermute/.i/ is not verified. So our main objec-
tive is to prove the same (up to absolute constants) `-oracle inequality under assumptions
.Apermute/.ii/ and .Aupper/.

2) For many statistical models and problems,

ƒh.f / D E.n/

f
. OGh/; ƒh;�.f / D E.n/

f
. OGh;�/:

In this case `. OGh;ƒh.f // and `. OGh;�;ƒh;�.f // can be viewed as stochastic errors related to
the estimators OGh and OGh;� , respectively. Hence, following the terminology used in [32], we
can say that ¹‰n.h/; h 2 Hº and ¹‰n.h/ ^‰n.�/; h; � 2 Hº are upper functions of level "n

for the collection of corresponding stochastic errors. Often the collection ¹‰n.h/;h 2 Hº is
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not random. This is typically the case when a statistical problem is studied in the framework
of white Gaussian noise or regression model.

3) We consider countable Hn in order not to discuss of the measurability of the
supremum inside the mathematical expectation appearing in Assumption .Aupper/. The
theory developed in the next section remains valid for any parameter set over which the
corresponding supremum is X .n/-measurable.

3.2. Universal selection rule and corresponding `-oracle inequality
Our objective is to propose the selection rule from an arbitrary collection G .Hn/ D

¹ OGh; h 2 Hnº satisfying hypotheses .Apermute/ and .Aupper/, and establish for it the `-oracle
inequality (2.5).

Define, for any h 2 Hn,

ORn.h/ D sup
�2Hn

�
`. OG�; OGh;�/ � 2‰n.�/

�
C
:

Let Oh.n/ 2 Hn be an arbitrary X .n/-measurable random element satisfying

ORn

�
Oh.n/

�
C 2‰n

�
Oh.n/

�
� inf

h2Hn

®
ORn.h/C 2‰n.h/

¯
C "n:

Our final estimator is OG Oh.n/ . In order to bound from above its risk, introduce the following
notation: for any f 2 F , h 2 Hn and n � 1,

B.n/.f; h/ D `
�
ƒh.f /;G.f /

�
C 2 sup

�2Hn

`
�
ƒh;�.f /;ƒ�.f /

�
;

 n.f; h/ D
�
E.n/

f

®
‰q

n.h/
¯� 1

q :

Theorem 3.1 ([33]). Let .Apermute/.i/ and .Aupper/ be fulfilled. Then, for any f 2 F and
n � 1,

R.`/
n

�
OG Oh.n/ IG.f /

�
� inf

h2Hn

®
B.n/.f; h/C 5 n.f; h/

¯
C 6"n:

Thus, the `-oracle inequality is established with rn D 6"n and

U .`/
n .f; h/ D B.n/.f; h/C 5 n.f; h/:

Our goal now is to prove the following result.

Theorem 3.2. Let .Apermute/.ii/ and .Aupper/ be fulfilled. Then, for any f 2 F and n � 1,

R.`/
n

�
OG Oh.n/ IG.f /

�
� inf

h2Hn

®
B.n/.f; h/C 9 n.f; h/

¯
C 10"n C ın:

Thus, the `-oracle inequality is established with rn D 10"n C ın and

U .`/
n .f; h/ D B.n/.f; h/C 9 n.f; h/:

Proof. We break the proof into three short steps and, for the simplicity of notations, we will
write Oh instead of Oh.n/. Set

�1 D sup
�2Hn

�
`. OG�; ƒ�/ �‰n.�/

�
C
; �2 D sup

h;�2Hn

�
`. OGh;�; ƒh;�/ �

®
‰n.h/ ^‰n.�/

¯�
C
:
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1) Our first goal is to prove that for any h; � 2 Hn,

`. OGh; OGh;�/ � ORn.�/C 6‰n.h/C 2�1 C 2�2 C ın: (3.1)

Indeed, the following chain od inequalities is obtained from the triangle inequality:

`. OGh; OGh;�/ � `. OGh; ƒh/C `.ƒh; OGh;�/

� `. OGh; ƒh/C `.ƒh; ƒh;�/C `. OGh;�; ƒh;�/

� `.ƒh; ƒh;�/C 2‰n.h/C �1 C �2: (3.2)

Similarly, taking into account .Apermute/.ii/, we get

`.ƒh; ƒh;�/ � `.ƒh; ƒ�;h/C ın

� `. OGh; ƒh/C `. OGh; OG�;h/C `. OG�;h; ƒ�;h/C ın

� `. OGh; OG�;h/C 2‰n.h/C �1 C �2 C ın: (3.3)

It remains to note that in view of the definition of ORn.�/,

`. OGh; OG�;h/ � 2‰n.h/C
�
`. OGh; OG�;h/ � 2‰n.h/

�
C

� 2‰n.h/C ORn.�/:

This, together with (3.2) and (3.3), implies (3.1).
2) Let h 2 Hn be fixed. We have in view of the definition of ORn.�/ that

`. OG Oh
; OG

h; Oh
/ � 2‰n. Oh/C

�
`. OG Oh

; OG
h; Oh
/ � 2‰n. Oh/

�
C

� 2‰n. Oh/C ORn.h/: (3.4)

Here we have also used that Oh 2 Hn by its definition.
Applying (3.1) with � D Oh, we obtain

`. OGh; OG
h; Oh
/ � ORn. Oh/C 6‰n.h/C 2�1 C 2�2 C ın: (3.5)

We get from (3.4), (3.5), and the definition of Oh that

`. OG Oh
; OG

h; Oh
/C `. OGh; OG

h; Oh
/ � ORn. Oh/C 2‰n. Oh/C ORn.h/C 6‰n.h/C 2�1 C 2�2 C ın

� 2 ORn.h/C 8‰n.h/C 2�1 C 2�2 C "n C ın: (3.6)

3) We have, in view of the triangle inequality, for any h 2 Hn that

ORn.h/ � sup
�2Hn

`
�
ƒh;�.f /;ƒ�.f /

�
C �1 C �2: (3.7)

Thus, we obtain from (3.6) and (3.7), for any h 2 Hn,

`. OG Oh
; OG

h; Oh
/C `. OGh; OG

h; Oh
/

� 2 sup
�2Hn

`
�
ƒh;�.f /;ƒ�.f /

�
C 8‰n.h/C 4�1 C 4�2 C "n C ın: (3.8)

Obviously, for any h 2 Hn,

`
�

OGh; G.f /
�

� `
�
ƒh.f /;G.f /

�
C‰n.h/C �1:

By the triangle inequality, this yields, together with (3.8), for any h 2 Hn that

`
�

OG Oh
; G.f /

�
� B.n/.f; h/C 9‰n.h/C 5�1 C 4�2 C "n C ın; 8f 2 F:
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Taking into account Assumption .Aupper/, we get for any h 2 Hn and any f 2 F,®
E.n/

f

�
`
�

OG Oh
; G.f /

��q¯ 1
q � B.n/.f; h/C 9 n.f; h/C 10"n C ın:

Noting that the left-hand side of the obtained inequality is independent of h, we come to the
assertion of the theorem.

We finish this section with simple, but very useful (in minimax and minimax adap-
tive estimation) consequence of Theorems 3.1–3.2.

For any F � F, set

n.F/ D inf
h2H

sup
f 2F

�
B.n/.f; h/C  n.f; h/

�
:

The quantity n.F/ is often called the bias–variance tradeoff.

Corollary 1. Let .Aupper/ be fulfilled. Assume also that either .Apermute/.i/ holds or
.Apermute/.ii/ is verified with ın D "n. Then, for any F � F and n � 1,

R.`/
n Œ OG Oh.n/ I F � � 9n.F/C 11"n:

The proof of the corollary is elementary and can be omitted.

4. Examples of estimator collections satisfying

Assumption (Apermute)

4.1. Estimator collections in the density model
First example. Let D D Rd , d � 1, and � be the Lebesgue measure. LetK W Rd ! R be
a function from L1.Rd / and

R
R K D 1. Let H � .0; 1�d , and define for any h D .h1; : : : ;

hd / 2 H,

Kh.t/ D V �1
h K.t1=h1; : : : ; td=hd /; t 2 Rd ; Vh D

dY
j D1

hj : (4.1)

Introduce the following estimator collection:

G D

´
OGh.x/ D n�1

nX
iD1

Kh.Xi � x/; x 2 Rd ; h 2 H

µ
: (4.2)

The estimator OGh.�/ is called the kernel estimator with bandwidth h. Kernel estimators
are used in estimating the underlying density at a given point, as well as in estimating the
entire f . Also, they are used as a building block for constructing estimators of many func-
tionals of density mentioned in Section 1.2. Selection from the family G , usually referred to
as bandwidth selection, is one of the central problems in nonparametric density estimation.

For any h 2 H, set

ƒh.f; �/ D E.n/

f

�
OGh.�/

�
D

Z
D

Kh.t � �/f .t/dt

and consider two possible constructions of the collection OGh;�.�/, h; � 2 H.
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Construction based on the convolution product. Define Kh;� W Rd ! R by

Kh;�.�/ D

Z
Rd

K�.� � t /Kh.t/dt DW ŒKh �K��.�/

and set
OGh;�.�/ D n�1

nX
iD1

Kh;�.Xi � �/; ƒh;�.f; �/ D E.n/

f

�
OGh;�.�/

�
:

Since obviously Kh;� � K�;h, we can assert that OGh;� � OG�;h and, therefore, Assumptions
.Apermute/.i/ and .Apermute/.ii/ are both fulfilled.

Construction based on the coordinatewise maximum. Define Kh;� W Rd ! R by

Kh;�.�/ D Kh_�.�/; h _ � D .h1 _ �1; : : : ; hd _ �d /;

and set
OGh;�.�/ D n�1

nX
iD1

Kh;�.Xi � �/; ƒh;�.f; �/ D E.n/

f

�
OGh;�.�/

�
:

Since obviously Kh;� � K�;h, we can assert that OGh;� � OG�;h and, therefore, Assumptions
.Apermute/.i/ and .Apermute/.ii/ are both fulfilled.

Second example. Consider now the estimator collection related to the density estimation
under hypothesis of independence presented in Section 2.1.2.

Here, as previously, D D Rd , d � 2, and � is the Lebesgue measure. Recall that
F � P.D ;�/, Id is the set of all subsets of ¹1; : : : ; dº, and… denotes the set of all partitions
of ¹1; : : : ; dº.

Let K W R1 ! R1 be a univariate kernel, that is, K 2 L1.R1/ and
R

R1 K D 1.
For any h D .0; 1�d and any I 2 Id , set

KhI
.u/ D V �1

hI

Y
j 2I

K.uj =hj /; VhI
D

Y
j 2I

hj :

Since the independence hypothesis assumes that there exists a partition P such that

f .x/ D

Y
I2P

fI .xI /; 8x 2 Rd ;

the idea is to estimate each marginal density by the kernel method and use the product of
these estimators as the final one. Thus, define for any x 2 Rd , h 2 H, and any I 2 Id ,

OfhI
.xI / D n�1

nX
iD1

KhI
.XI;i � xI /

and introduce the following family of estimators:

G D

²
OGh.x/ D

Y
I2P

OfhI
.xI /; x 2 RD; h D .h;P / 2 Œ0; 1�d �… DW H

³
:

Let � denote the convolution operator on R. Set for any x 2 Rd , h; h0 2 .0; 1�d , and any
I 2 Id ,

ŒKhI ? Kh0
I
� D

Y
j 2I

ŒKhj
� Kh0

j
�
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and introduce
OfhI ;h0

I
.xI / D n�1

nX
iD1

ŒKhI
? Kh0

I
�.XI;i � xI /;

Let us endow the set … with the operation “˘” putting for any P ;P 0 2 …,

P ˘ P 0
D
®
I \ I 0

¤ ;; I 2 P ; I 0
2 P 0

¯
2 …:

Introduce for any h; � 2 H the estimator
OGh;�.x/ D

Y
I2P ˘P 0

OfhI ;h0
I
.xI /; x 2 Rd :

Obviously, OGh;� � OG�;h and, therefore, Assumption .Apermute/.i/ is fulfilled. On the
other hand, see [30], functionals ƒh and ƒh;� are so complicated that the verification of
.Apermute/.ii/ does not seem possible. We are not even sure that it holds for sufficiently
small ın.

Third example. Let us now consider the family of estimators which appears in adaptive
estimation under the following structural assumption. Let D D R2 and � be the Lebesgue
measure. Let Q denote the set of all 2 � 2 rotational matrices and P

sym
1 denote the set of all

symmetric probability densities on R1. Set

A D
®
a W R2

! R1
W a.�; �/ D a1.�/a2.�/; a1; a2 2 P

sym
1

¯
;

and assume that there exist a 2 A and M 2 Q such that f .�/ D a.M T �/. The latter means
that

Xi D M�i ; i D 1; : : : ; n;

where �i , i D 1; : : : ; n, are i.i.d. random vectors with a common density a.
If M is known then �i D M TXi ; : : : ; �n D M TXn are observable i.i.d. random

vectors with independent coordinates. Indeed, the density of �1 is a1.�/a2.�/. Hence the esti-
mation of a is the estimation under hypothesis of independence, which, as it was mentioned
above, allows one to improve the accuracy of estimation of the density a, and, therefore, of the
density f as well. However, ifM is unknown, the sequence �i DM TXi ; : : : ; �n DM TXn is
not observable anymore and the estimation of f can be viewed as the problem of adaptation
to an unknown rotation of the coordinate system.

Let the kernel K W R1 ! R1 be the same as in the previous example and setKh.�/D

h�1K.�=h/, h 2 .0; 1�. Later on Q 2 Q will be presented as

Q D .q; q?/ D

 
q1 �q2

q2 q1

!
;

where q; q? 2 S1. For any h WD .h;Q/ 2 Œ0; 1� � Q and x 2 R2, set

OGh.x/ D

"
n�1

nX
kD1

Kh

�
qT .Xk � x/

�#"
n�1

nX
kD1

Kh

�
qT

?.Xk � x/
�#
;

and introduce the following family of estimators:

G D
®

OGh.x/; x 2 R2; h 2 H � Œ0; 1� � Q
¯
:

In order to construct estimator OGh;�.�/, h; � 2 H, we will need the following notation.
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For any Q;D 2 Q, define

p.D;Q/ D qT d?; �.D;Q/ D qT d:

Set also Kh.t/ D Kh.t1/Kh.t2/, t 2 R2, h 2 .0; 1�, and let

� D

 
1 0

0 �1

!
; � D

 
0 1

1 0

!
;

Define, see [35], for any h D .h;Q/ 2 H and � D .~;D/ 2 H,

OGh;�.x/ D
1

n.n � 1/

nX
k;lD1;k¤l

Kh_~

�
p.D;Q/��Xk C �.D;Q/Xl ���QD�x

�
and let

ƒh;�.f; �/ D E.n/

f

�
OGh;�.�/

�
:

Note that for any D;Q 2 Q,

p.D;Q/ D �p.Q;D/; �.D;Q/ D �.Q;D/; DQ D QD: (4.3)

Obviously, OGh;�.�/ ¤ OG�;h.�/ and, therefore, Assumption .Apermute/.i/ does not hold.
On the other hand,

ƒh;�.f; �/ D

Z
R2

Z
R2

Kh_~

�
p.D;Q/��uC �.D;Q/v ���QD�x

�
f .u/f .v/dudv:

Since f .�/ D a.M T �/ and a is symmetric, f is a symmetric function as well, and we have

ƒh;�.f; �/ D

Z
R2

Z
R2

Kh_~

�
�p.D;Q/��uC �.D;Q/v ���QD�x

�
f .u/f .v/dudv

D

Z
R2

Z
R2

Kh_~

�
p.Q;D/��uC �.Q;D/v ���DQ�x

�
f .u/f .v/dudv

D ƒ�;h.f; �/:

To get the penultimate equality, we have used (4.3). We conclude that Assumption
.Apermute/.ii/ holds with any ın whatever the semimetric ` is considered.

4.2. Estimator collections in White Gaussian Noise Model
First example. Let D be a set endowed with the Borel measure � and �.D/ < 1. Recall
that the observation X .n/ D ¹Xn.g/; g 2 L2.D ; �/º is given in (1.2).

Let ¹ m; m 2 Mº be an orthonormal basis in L2.D ; �/ and let H D ¹h D .hm;

m 2 M/º be a given subset of l2. Introduce, for any t; x 2 D ,

Kh.t; x/ D

X
m2M

hm m.t/ m.x/; h 2 H;

and consider the following estimation collection:

G D
®

OGh.x/ D Xn

�
K.�; x/

�
; x 2 D ; h 2 H

¯
:
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The estimator OGh.�/ is used in the estimation of unknown f under L2-loss, that is, S D F,
G.f / D f , and `.f; g/ D kf � gk2;D , f; g 2 F � L2.D ; �/. Let

ƒh.f; �/ D E.n/

f

�
OGh.�/

�
D

Z
D

Kh.t; �/f .t/�.dt / D

X
m2M

hm m.�/

Z
D

 m.t/f .t/�.dt /:

Denoting the mth Fourier coefficient of f by fm, we get

ƒh.f; �/ D

X
m2M

hmfm m.�/:

In particular, in view of Parseval’s identity,ƒh.f / � f


2;D
D

X
m2M

.hm � 1/2f 2
m:

For any h; � 2 H, set

Kh;�.t; x/ D

Z
D

Kh.t; y/K�.y; x/�.dy/; t; x 2 D ;

and put, for any x 2 D ,
OGh;�.x/ D Xn

�
Kh;�.�; x/

�
:

Noting that, for any t; x 2 D ,

Kh;�.t;x/D

X
m2M

X
j 2M

hm�j m.t/ j .x/

Z
D

 m.y/ j .y/�.dt /D

X
m2M

hm�m m.t/ m.x/;

we can assert that Kh;� � K�;h. This implies OGh;� � OG�;h and, therefore,

ƒh;� WD E.n/

f
Œ OGh;�� � E.n/

f
Œ OG�;h� DW ƒ�;h:

Hence, Assumptions .Apermute/.i/ and .Apermute/.ii/ are both fulfilled.

Second example. Here and later,D D Rd , d � 1, � is the Lebesgue measure, and X .n/ D

¹Xn.g/; g 2 L2.Rd ; �/º is given in (1.2).
Let b > 0 be given and denote by H.b/ the set of all Borel functions h W .�b; b/d !

.0; 1�d . As before let K W Rd ! R, K 2 L1.Rd / be a function satisfying
R
K D 1.

With any h 2 H.b/, we associate the function

Kh.x/.t; x/ D V �1
h .x/K

�
t � x

h.x/

�
; t 2 Rd ; x 2 .�b; b/d ;

where Vh.x/ D
Qd

iD1 hi .x/ and h.�/ D .h1.�/; : : : ; hd .�//.
Consider the family of estimators

G D
®

OGh.x/.x/ D Xn

�
Kh.x/.�; x/

�
; h 2 H.b/; x 2 .�b; b/d

¯
: (4.4)

The estimators from this collection are called kernel estimators with varying bandwidth. Let

ƒh.�/.f; �/ D E.n/

f

�
OGh.�/.�/

�
D

Z
Rd

Kh.�/.t; �/f .t/�.dt /:

For any h; � 2 H.b/, set

OGh.x/_�.x/.x/ D Xn

�
Kh.x/_�.x/.�; x/

�
; x 2 .�b; b/d ;
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where as previously h.�/ _ �.�/ D .h1.�/ _ �1.�/; : : : ; hd .�/ _ �d .�//. Let also

OGh.�/_�.�/.�/ D E.n/

f
Œ OGh.�/� D

Z
Rd

Kh.�/.t; �/f .t/�.dt /:

Since obviously Kh_� � K�_h for any h; � 2 H.b/, we can assert that both Assumptions
.Apermute/.i/ and .Apermute/.ii/ are fulfilled whatever the semimetric ` is considered.

5. One example of estimator collection satisfying

Assumption (Aupper)

In this section we continue to consider the estimator family given in (4.4). Our objec-
tive here is to find Hn � H.b/ and ¹‰n.h/; h 2 Hnº for which Assumption .Aupper/ can be
checked in the case where ` is the Lp-norm on .�b; b/d , 1 � p < 1.

For any h 2 H.b/, define

�h.x/.x/ D

Z
Rd

Kh.x/.t; x/W.dt /; x 2 .�b; b/d ;

and note that, in view of (1.2),

`
�

OGh; ƒh.f /
�

D n� 1
2 k�hkp;.�b;b/d :

We remark that �h.�/.�/ is independent of f and n. Hence, Assumption .Aupper/ will be
checked if we find Hn and nonrandom ¹‰�

n.h/; h 2 Hnº such that

E
�

sup
h2Hn

�
k�hkp;.�b;b/d �‰�

n.h/
�q

C

�
� "q

nn
q
2 I (5.1)

E
�

sup
h;�2Hn

�
k�h_�kp;.�b;b/d �

®
‰�

n.h/ ^‰�
n.�/

¯�q
C

�
� "q

nn
q
2 : (5.2)

Here and later, E denotes the mathematical expectation with respect to the law of W . Also,
furthermore, we will assume that

K.x/ D

dY
iD1

K.xi /; 8x 2 Rd ;

where K W R1 ! R1 is such that
R

K D 1, supp.K/ � Œ�1; 1�, and, for some M > 0,ˇ̌
K.s/ � K.t/

ˇ̌
� M js � t j; 8s; t 2 R:

5.1. Functional classes of bandwidths
Let ˛n ! 0, n ! 1, be a given sequence and let

!n D e�
p

j ln.˛n/j; �n D eln2.˛n/:

SetHn D ¹hs D e�s; s 2 Nº \ .0;!n� and denote by H1;n the set of all measurable functions
defined on .�b; b/d and taking values in Hd

n . Obviously, H1;n � H.b/. For any h 2 H1;n

and any s D .s1; : : : ; sd / 2 Nd , define

‡sŒh� D

d\
j D1

‡sj
Œhj �; ‡sj

Œhj � D
®
x 2 .�b; b/d W hj .x/ D hsj

¯
:
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Let � 2 .0; 1/ and L > 0 be given constants. Define

Hn.�; L/ D

²
h 2 H1;n W

X
s2Nd

��
�
‡sŒh�

�
� L

³
:

Set Np D ¹bpc C 1; bpc C 2; : : :º and introduce

H2;n D

[
r2Np

Hn.r/; Hn.r/ D
®
h 2 H1;n W

V � 1
2

h


rp

r�p ;.�b;b/d � �n

¯
:

We will establish (5.1) and (5.2) with Hn D H�
n.�; L/ WD H2;n \ Hn.�; L/.

5.2. Verification of (5.1)
For any h 2 H2;n, define

Np;n.h/ D Np \ Œrn.h/;1/; rn.h/ D inf
®
r 2 Np W h 2 Hn.r/

¯
:

Obviously, rn.h/ < 1 for any h 2 H2;n. For any h 2 H2;n. define

‰n.h/ D inf
r2Np;n.h/

C.r; �; L/
V � 1

2

h


rp

r�p ;.�b;b/d ;

where C.r; �;L/; � 2 .0; 1/,L > 0, can be found in [32, Section 3.2.2]. Here we only mention
that C.r; �; L/ is finite for any given r; �; L but limr!1 C.r; �; L/ D 1.

Note also that the condition h 2 H2;n guarantees that ‰n.h/ < 1.

Theorem 5.1 ([32, Corollary 1]). For any � 2 .0; 1/ and q � 1, one can find n.�; q/ such
that for any n � n.�; q/,

E
°

sup
h2H�

n.�;L/

�
k�hkp;.�b;b/d �‰n.h/

�
C

±q

� .c˛n/
q;

where c depends on K; p; q; b, and d only.

Choosing ˛n D c�1"n

p
n, we can assert that is (5.1) holds for any‰ �n .�/�‰n.�/.

5.3. Verification of (5.2)
The verification of (5.2) is mostly based on two facts.
First, the following result has been proved in [31, Lemma 1].

Lemma 5.2. For any d � 1, � 2 .0; 1=d/, and L > 0, there exist n.�; d; L/ such that for
all n � n.�; L; d/,

h _ � 2 Hn

�
d�; .2L/d

�
; 8h; � 2 Hn.�; L/:

Hence, setting

‰�
n.h/ D inf

r2Np;n.h/
C �.r; �; L/

V � 1
2

h


rp

r�p ;.�b;b/d ;

where C �.r; �; L/ D C.r; �;L/ _ C.r; d�; .2L/d /, we can assert that the statement of The-
orem 5.1 remains true for ‰�

n.�/ as well if � > 1=d . This follows from the fact that ‰�
n.�/ �

‰n.�/.
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Moreover, in view of Theorem 5.1, for all n large enough,

E
°

sup
h2H�

n.d�;.2L/d /

�
k�hkp;.�b;b/d �‰�

n.h/
�

C

±q

� .c˛n/
q : (5.3)

Since, in view Lemma 5.2, if � > 1=d , we have

sup
h;�2H�

n.�;L/

�
k�h_�kp;.�b;b/d �‰�

n.h _ �/
�

C
� sup

�2H�
n.d�;.2L/d /

�
k��kp;.�b;b/d �‰�

n.�/
�

C
;

we deduce from (5.3) that

E
°

sup
h;�2H�

n.�;L/

�
k�h_�kp;.�b;b/d �‰�

n.h _ �/
�

C

±q

� .c˛n/
q : (5.4)

It remains to note that for any 1 � t < 1 and any h 2 H,V � 1
2

h_�


t;.�b;b/d �

V � 1
2

h


t;.�b;b/d ^

V � 1
2

�


t;.�b;b/d ;

which implies
‰�

n.h _ �/ � ‰�
n.h/ ^‰�

n.�/; 8h; � 2 H: (5.5)

Inequality (5.2) follows now from (5.4) and (5.5) if one chooses ˛n D c�1"n

p
n.
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Mean estimation
in high dimension
Gábor Lugosi

Abstract

In this note we discuss the statistical problem of estimating the mean of a random vector
based on independent, identically distributed data. This classical problem has recently
attracted a lot of attention both in mathematical statistics and in theoretical computer
science and numerous intricacies have been revealed. We discuss some of the recent
advances, focusing on high-dimensional aspects.
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1. Introduction

We consider the statistical problem of estimating the mean of a random vector based
on independent, identically distributed data. This seemingly innocent classical problem has
drawn renewed attention both in mathematical statistics and theoretical computer science.

The problem is formulated as follows: let X1; : : : ; Xn be independent, identically
distributed random vectors taking values in Rd such that their mean � D EX1 exists. Upon
observing these random variables, one would like to estimate the vector �. An estimatorb�n D b�n.X1; : : : ; Xn/ is simply a measurable function of the “data” X1; : : : ; Xn, taking
values in Rd .

Naturally, the standard empirical mean

�n D
1

n

nX
iD1

Xi

is the first estimate that comes to mind. Indeed, the strong law of large numbers guarantees
that �n converges to � almost surely without any further conditions on the distribution.
However, here we are interested in the finite-sample behavior of mean estimators and for any
meaningful statement one needs to make further assumptions on the distribution. Throughout
this note, we assume that the covariance matrix † D E.X1 � �/.X1 � �/T exists.

The empirical mean is known to be sensitive to “outliers” that are inevitably present
in the data when the distribution may be heavy-tailed. This concern gave rise to the area of
robust statistics. Classical references include Huber [19], Huber and Ronchetti [20], Hampel,
Ronchetti, Rousseeuw, and Stahel [14], Tukey [44].

The quality of an estimator may be measured in various ways. While most of the
early statistical work focused on expected risk measures such as the mean-squared error

E
�
kb�n � �k

2
�

(with k � k denoting the Euclidean norm), such risk measures may be misleading. Indeed, if
the distance kb�n ��k is not sufficiently concentrated, the expected value does not necessar-
ily reflect the “typical” behavior of the error. For such reasons, estimators b�n that are close
to � with high probability are desirable.

Thus, our aim is to understand, for any given sample size n and confidence parameter
ı 2 .0; 1/, the smallest possible value " D ".n; ı/ such that

P
®
kb�n � �k > "

¯
� ı:

In Section 2 we briefly discuss the one-dimensional case and lay out some of the
basic ideas behind the more complex high-dimensional estimators. In Section 3 we present
so-called sub-Gaussian estimators that guarantee the optimal order of magnitude for the
accuracy ".n; ı/. Finally, in Section 4 we discuss the more refined requirement of estimators
being close to the mean in each direction.

Bibliographic remark. It is beyond the scope of this note to offer an exhaustive bibliog-
raphy of the topic. We refer the reader to the recent—though already somewhat outdated—
survey of Lugosi and Mendelson [27].
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2. Basic ideas: the one-dimensional case

First consider the case d D 1, that is, when theXi are real-valued random variables.
In this case, if �2 denotes the variance of X1, then the central limit theorem guarantees that
the empirical mean satisfies

lim
n!1

P

²
j�n � �j >

�ˆ�1.1 � ı=2/
p
n

³
D ı;

where ˆ.x/ D P¹G � xº is the cumulative distribution function of a standard normal
random variable G. This implies the slightly loose asymptotic inequality

lim
n!1

P

²
j�n � �j >

�
p
2 log.2=ı/

p
n

³
� ı:

Motivated by this property, we introduce a corresponding nonasymptotic notion as follows:
for a given sample size n and confidence level ı, we say that a mean estimator b�n is L-sub-
Gaussian if there is a constant L > 0, such that, with probability at least 1 � ı,

jb�n � �j �
L�

p
log.2=ı/
p
n

:

As it is pointed out in [11], if one considers the class of distributions with finite variance, the
best accuracy one can hope for is of the order

p
log.1=ı/=n and in this sense sub-Gaussian

estimators are optimal. Perhaps surprisingly, sub-Gaussian estimators exist under the only
assumption that the Xi have a finite second moment.

One such estimator is the so-calledmedian-of-means estimator. It has been proposed
in different forms in various papers, see Nemirovsky and Yudin [41], Jerrum, Valiant, and
Vazirani [21], Alon, Matias, and Szegedy [1].

The definition of the median-of-means estimator calls for partitioning the data into
k groups of roughly equal size, computing the empirical mean in each group, and taking the
median of the obtained values.

Formally, recall that the median of k real numbers x1; : : : ; xk 2 R is defined as
M.x1; : : : ; xk/ D xi where xi is such thatˇ̌®

j 2 Œk� W xj � xi

¯ˇ̌
�
k

2
and

ˇ̌®
j 2 Œk� W xj � xi

¯ˇ̌
�
k

2
:

(If several indices i fit the above description, we take the smallest one.)
Now let 1 � k � n and partition Œn� D ¹1; : : : ; nº into k blocks B1; : : : ; Bk , each

of size jBi j � bn=kc � 2.
Given X1; : : : ; Xn, compute the sample mean in each block

Zj D
1

jBj j

X
i2Bj

Xi

and define the median-of-means estimator by b�n D M.Z1; : : : ; Zk/.
To grasp intuitively why this estimator works, note that for each block, the empirical

mean is an unbiased estimator of the mean, with controlled standard deviation �=
p
n=k.

Hence, the median of the distribution of the blockwise empirical mean lies within �=
p
n=k

from the expectation. Now the empirical median is a highly concentrated estimator of this
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median. Now it is easy to derive the following performance bound. For simplicity, assume
that n is divisible by k so that each block has m D n=k elements.

Let X1; : : : ; Xn be independent, identically distributed random variables with mean
� and variance �2. For any ı 2 .0; 1/, if k D d8 log.1=ı/e, and n D mk, then, with
probability at least 1 � ı, the median-of-means estimator b�n satisfies

jb�n � �j � �

r
32 log.1=ı/

n
:

In other words, the median-of-means estimator has a sub-Gaussian performance
with L D

p
32 for all distributions with a finite variance.

An even more natural mean estimator is based on removing possible outliers using
a truncation of X . Indeed, the so-called trimmed-mean (or truncated-mean) estimator is
defined by removing a fraction of the sample, consisting of the "n largest and smallest points
for some parameter " 2 .0; 1/, and then averaging over the rest. This idea is one of the most
classical tools in robust statistics, see, Tukey and McLaughlin [45], Huber and Ronchetti [20],
Bickel [3], Stigler [43] for early work on the trimmed-mean estimator. The nonasymptotic sub-
Gaussian property of the trimmed mean was established recently by Oliveira and Orenstein
[42] who proved that if " is chosen proportionally to log.1=ı/=n, then the trimmed-mean
estimator has a sub-Gaussian performance for all distributions with a finite variance (see
also [27]).

A quite different approach was introduced and analyzed by Catoni [4]. Catoni’s idea
is based on the fact that the empirical mean �n is the solution y 2 R of the equation

nX
iD1

.Xi � y/ D 0:

Catoni proposed to replace the left-hand side of the equation above by another strictly
decreasing function of y of the form

nX
iD1

 
�
˛.Xi � y/

�
;

where  W R ! R is an antisymmetric increasing function and ˛ 2 R is a parameter. The
idea is that if  .x/ increases much slower than x, then the effect of “outliers” present due to
heavy tails is diminished. Catoni offers a whole range of “influence” functions  and proves
that by an appropriate choice of  the estimator has a sub-Gaussian performance.

We close this section by noting that in a recent work Lee and Valiant [23] construct a
sub-Gaussian estimator with the (almost) optimal constant LD

p
2C o.1/. Their estimator

builds on a clever combination of median of means, trimmed mean, and Catoni’s estimator.
A different approach was proposed by Minsker and Ndaoud [39]. Just like median of means,
their mean estimator also starts by computing empirical averages on disjoint blocks of the
data. Then they reweight the block averages in function of their empirical standard deviation.
Using nontrivial properties of self-normalized sums, they obtain an estimator that is not only
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sub-Gaussian but it is also asymptotically efficient, in the sense that the estimator is asymp-
totically normal with an asymptotic variance that is as small as possible in the minimax sense.

3. Multivariate sub-Gaussian estimators

Next we discuss the substantially more complex multivariate problem. Recall that
X is a random vector taking values in Rd with mean � D EX and covariance matrix
†D E.X ��/.X ��/T . Given n independent, identically distributed samplesX1; : : : ;Xn

drawn from the distribution of X , one wishes to estimate the mean vector �.
In order to obtain guidance of what a desirable performance is for a mean estimator,

it is instructive to consider the properties of the empirical mean�n whenX has a multivariate
normal distribution. In that case, it is not difficult to see that the Gaussian concentration
inequality implies that for ı 2 .0; 1/, with probability at least 1 � ı,

k�n � �k �

r
Tr.†/
n

C

r
2�max log.1=ı/

n
:

where Tr.†/ and �max denote the trace and spectral norm of the covariance matrix †.
Inspired by this, we may generalize the definition of a sub-Gaussian mean estimator to the
multivariate setting as follows: we say that for a given confidence level ı 2 .0; 1/ and sample
size n, a mean estimator b�n is sub-Gaussian if there exists a constant C such that, for all
distributions whose covariance matrix exists, with probability at least 1 � ı,

kb�n � �k � C

�r
Tr.†/
n

C

r
�max log.1=ı/

n

�
: (3.1)

Naive attempts to generalize the one-dimensional median-of-means estimator do not neces-
sarily achieve the desired sub-Gaussian property. For example, one may define the geometric
median-of-means estimator defined as follows (see Minsker [37], Hsu and Sabato [18], Lerasle
and Oliveira [25]): we start by partitioning Œn� D ¹1; : : : ; nº into k blocks B1; : : : ; Bk , each
of size jBi j � bn=kc � 2, where k � log.1=ı/. Just like in the univariate case, we compute
the sample mean within each block: for j D 1; : : : ; k, let

Zj D
1

m

X
i2Bj

Xi :

The estimator may be defined as the geometric median of the Zj , defined as

b�n D argmin
m2Rd

kX
j D1

kZi �mk:

This estimator was proposed by Minsker [37] and independently by Hsu and Sabato [18] (see
also Lerasle and Oliveira [25]). Minsker [37] proved that there exists a constant C such that,
whenever the covariance matrix exists, with probability at least 1 � ı,

kb�n � �k � C

r
Tr.†/ log.1=ı/

n
:
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This is quite nice since the inequality does not require any assumption other than the exis-
tence of the covariance matrix. However, it is not quite a sub-Gaussian bound as in (3.1). An
important advantage of the geometric median-of-means estimator is that it can be computed
efficiently by solving a convex optimization problem. See Cohen, Lee, Miller, Pachocki, and
Sidford [8] for a recent result and for the history of the computational problem.

3.1. Median-of-means tournaments
The existence of a sub-Gaussian mean estimator was first proved by Lugosi and

Mendelson [29]. Their estimator is an instance of median-of-means tournaments and may be
defined as follows. LetZ1; : : : ;Zk be the sample means within each block exactly as above.
For each a 2 Rd , let

Ta D
®
x 2 Rd

W 9J � Œk� W jJ j � k=2 such that for all j 2 J; kZj � xk � kZj � ak
¯

(3.2)

and define the mean estimator by

b�n 2 argmin
a2Rd

radius.Ta/;

where radius.Ta/ D supx2Ta
kx � ak. Thus, b�n is chosen to minimize, over all a 2 Rd , the

radius of the set Ta defined as the set of points x 2 Rd for which kZj � xk � kZj � ak for
the majority of the blocks. If there are several minimizers, one may pick any one of them.

The set Ta may be seen as the set of points in Rd that are at least as close to the
point cloud ¹Z1; : : : ; Zkº as the point a. The estimator b�n is obtained by minimizing the
radius of Ta. The sub-Gaussian performance of this estimator is established in [29]:

Let X1; : : : ; Xn be independent, identically distributed random vectors in Rd with
mean � and covariance matrix †. There exist constants c; C > 0 such that for any
ı 2 .0; 1/, if k D cdlog.1=ı/e and n D mk, then, with probability at least 1 � ı,

kb�n � �k � C

�r
Tr.†/
n

C

r
�max log.1=ı/

n

�
:

An equivalent way of defining the median-of-means tournament estimator is

b�n 2 argmin
a2Rd

sup
u2Sd�1

�
Median

®
hZj ; ui

j̄ 2Œk�
� ha; ui

�
:

We may regard this as another notion of multivariate median of the block centersZ1; : : : ;Zk .
Unfortunately, unlike the geometric median, computing this median is hard in the sense
that computing it (at least in its naive implementation) takes time exponential in the dimen-
sion d . However, Hopkins [15] introduced a semidefinite relaxation of the median-of-means
tournament estimator that can be computed in time O.nd C d log.1=ı/c/ for a dimension-
independent constant c and, at the same time, achieves the desired sub-Gaussian guarantee
under the only assumption that the covariance matrix exists. Subsequent improvements man-
aged to decrease the running time further. For example, Cherapanamjeri, Flammarion, and
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Bartlett [7] combined Hopkins’ ideas with gradient-descent optimization to construct an sub-
Gaussian mean estimator that is computable in time O.nd C d log.1=ı/2 C log.1=ı/4/.
Based on ideas of “spectral reweighting” of Cheng, Diakonikolas, and Ge [6], Depersin and
Lecué [9], and Lei, Luh, Venkat, and Zhang [24] further improve the running time. Hopkins,
Li, and Zhang [17] show how spectral reweighting is essentially equivalent to the median
notion introduced above. We refer to these papers for an exhaustive review of the rapidly
growing literature of computational aspects of robust mean estimation.

3.2. Multivariate trimmed mean
Here we describe a quite different construction that also results in a sub-Gaussian

mean estimator. The estimator, proposed and analyzed by Lugosi and Mendelson [31], is a
multivariate version of the trimmed-mean estimator discussed in Section 2. The construction
is as follows.

First split the data in two halves. For simplicity of the exposure, suppose we have
2n data points X1; : : : ; Xn; Y1; : : : ; Yn. Set " D c

log.1=ı/
n

for an appropriate constant c > 0.
For every v 2 Sd�1, let ˛v and ˇv be the empirical "=2 and 1 � "=2 quantiles based on the
second half of the data Y1; : : : ; Yn. Define

�˛;ˇ .x/ D

8̂̂<̂
:̂
ˇ if x > ˇ;

x if x 2 Œ˛; ˇ�;

˛ if x < ˛:

and for a parameter Q > 0, compute the univariate trimmed estimators

UQ.v/ D
1

n

nX
iD1

�˛v�Q;ˇvCQ

�
hXi ; vi

�
:

Each of these estimators is just the trimmed mean estimator of EhX; vi D h�; vi for a given
direction v. Note that the trimming interval is widened by the global parameter Q whose
role is to make sure that the univariate estimators work simultaneously. In order to convert
the estimators of the projected means into a single vector, define the “slabs”

�.v;Q/ D
®
x 2 Rd

W
ˇ̌
hx; vi � UQ.v/

ˇ̌
� 2"Q

¯
and let

�.Q/ D

\
v2Sd�1

�.v;Q/:

If x 2 �.Q/, then the projection of x to every direction v is close to the trimmed mean
estimator of h�; vi. The main technical result of [31] is that, when

Q � max
�
1

"

r
Tr.†/
n

;

r
�1

"

�
;

the set �.Q/ contains the mean �, with probability 1 � ı. Since the diameter of �.Q/ is
at most 4"Q, this guarantees the sub-Gaussian property of any element of the set �.Q/.
The problem with such an estimator is that its construction requires knowledge of the cor-
rect value of Q that depends on the (unknown) covariance matrix †. This problem may
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be circumvented by a simple adaptive choice of Q: let i� be the smallest integer such thatT
i�i� �.2i / ¤ ;. Then define b�n to be any point in the set\

i2ZWi�i�

�
�
2i

�
:

This choice is sufficient to guarantee the sub-Gaussian property of the estimator.

Remark. In some situations the Euclidean norm is not necessarily the most adequate way of
measuring the accuracy of a mean estimator. Hence, it is natural to ask the following: given
a norm k � k, a confidence parameter ı 2 .0; 1/, and an i.i.d. sample of cardinality n, what is
the best possible accuracy " for which there exists a mean estimator b�n for which

kb�n � �k � " with probability at least1 � ı‹

The optimal order of magnitude of " is now well understood even in this general setting, see
Lugosi and Mendelson [28], Bahmani [2], Depersin and Lecué [10].

4. Direction-dependent accuracy

An equivalent way of formulating the sub-Gaussian inequality (3.1) for a mean esti-
mator b�n is as follows: with probability at least 1 � ı,

8u 2 Sd�1
W hb�n � �; ui � C

�r
�1 log.1=ı/

n
C

r
Tr.†/
n

�
; (4.1)

where �1 � � � � � �d denote the eigenvalues of the covariance matrix † and
Tr.†/ D

Pd
iD1 �i . We refer to the two terms on the right-hand side as the weak and strong

terms. The strong term corresponds to a global component, while the weak term controls
fluctuations in the worst direction, leading to the weak term which involves �1.

If one wanted to estimate the projection h�; ui in a fixed direction u 2 Sd�1 by an
estimator b�n.u/, as discussed in Section 2, the best accuracy one could hope for would beˇ̌b�n.u/ � h�; ui

ˇ̌
� C

r
�2.u/ log.1=ı/

n
;

where �2.u/D Var.hX;ui/. Now it is natural to ask whether one can improve the inequality
of (4.1) in a direction-sensitive way. In particular, a natural question is if the weak term on
the right-hand side of (4.1) can be improved to

p
�2.u/ log.1=ı/=n and if it can, what price

one has to pay in the strong term for such an improvement. This problem was studied by
Lugosi and Mendelson [30] and in this section we recall the main results of that paper.

Once again, we turn to the canonical case of Gaussian vectors to obtain guidance
about what kind of properties one can hope for. One can show (see [30]) that if the Xi are
independent Gaussian vectors, then the empirical mean �n satisfies that, with probability at
least 1 � ı,

8u 2 Sd�1
W h�n � �; ui � C

�r
�2.u/ log.1=ı/

n
C

r
Tr.†/
n

�
;
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where C is a numerical constant. Thus, in the Gaussian case one can indeed obtain a weak
term that scales optimally, without giving up anything in the strong term. In fact, the bound
can be slightly improved to

8u 2 Sd�1
W h�n � �; ui � C

�r
�2.u/ log.1=ı/

n
C

sP
i>k1

�i

n

�
where k1 D c log.1=ı/, for some constant c. This bound is, in fact, the best one can hope for
in the following sense:

Proposition 1. Let �n D .1=n/
Pn

iD1 Xi where the Xi are independent Gaussian vectors
with mean � and covariance matrix †. Suppose that there exists a constant C such that, for
all ı; n; �, and †, with probability at least 1 � ı,

8u 2 Sd�1
W h�n � �; ui � C

r
�2.u/ log.1=ı/

n
C S: (4.2)

Then there exists a constant C 0 depending on C only, such that the “strong term” S has to
satisfy

S � C 0

sP
i>k0

�i

n

where k0 D 1C .2C C
p
2/2 log.1=ı/.

The observation above shows that even in the well-behaved example of a Gaussian
distribution, the strong term needs to be at least of the orderrP

i>k �i

n

where k is proportional to log.1=ı/.
The main result of [30] is that under an additional assumption on the distribution

of X , one can construct an estimator that, up to the optimal strong term, preforms in every
direction as if it were an optimal estimator of the one-dimensional marginal:

Let X1; : : : ; Xn be i.i.d. random vectors, taking values in Rd , with mean � and
covariance matrix † whose eigenvalues are �1 � �2 � � � � �d � 0. Suppose that
there exists q > 2 and a constant � such that, for all u 2 Sd�1,�

E
ˇ̌
hX � �; ui

ˇ̌q�1=q
� �

�
EhX � �; ui

2
�1=2

: (4.3)

Then for every ı 2 .0; 1/ there exists a mean estimator b�n and constants 0 < c; c0;

C < 1 (depending on � and q only) such that, if ı � e�c0n, then, with probability,
at least 1 � ı,

8u 2 Sd�1
W hb�n � �; ui � C

�r
�2.u/ log.1=ı/

n
C

sPd
iDc log.1=ı/ �i

n

�
: (4.4)
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Mean estimators with sub-Gaussian performance of the type (3.1) exist without
assuming anything more than the existence of the covariance matrix. However, to achieve
the improved direction-dependent performance formulated above, we need to assume that
moments of order q exist for some q > 2. Moreover, we assume that theLq norm of each one-
dimensional marginal is related to the L2-norm in a uniform manner, as described by (4.3).
We call this a norm-equivalence condition. This condition is used repeatedly in a crucial way
in the construction of the estimator. It is an intriguing question whether such a condition is
necessary or if there exists a mean estimator satisfying an inequality of the type (4.4) under
the only assumption of finite second moments. The mean estimator and the constants in the
performance bound depend on the values � and q of the norm-equivalence condition.

Next we describe the construction of the mean estimator. It is a quite complex vari-
ation of the trimmed mean estimator described in the previous section. In the form defined
here, it is hopeless to have an algorithm that computes it efficiently, that is, in time polynomial
in the sample size, the dimension, and log.1=ı/. It is an open question how far computation-
ally efficient mean estimators can reach in terms of their statistical performance. In particular,
it would be interesting to understand whether there is a true (i.e., rigorously provable) conflict
between statistical accuracy and computational efficiency in the mean estimation problem.
We note that in the related problem of robust mean estimation under adversarial contamina-
tion, such conflicts indeed seem to exist, see Hopkins and Li [16].

In the first step of the construction of the estimator, we divide the sampleX1; : : : ;Xn

into n=m blocks of size m and compute, for each block

Yj D
1

p
m

mX
iD1

Xm.j �1/Ci :

Here m is chosen to be a constant depending on q and �, the constants appearing in the
norm equivalence condition. The purpose of this “smoothing” is to ensure that the Yj satisfy
certain “small-ball” properties.

Next, for each direction u 2 Sd�1, we compute the trimmed-mean estimators

b�n.u/ D
1

p
m

1

n=m � 2�n=m

X
j 2Œn=m�nJC.u/[J�.u/

Yj ;

where the sets JC.u/ and J�.u/ correspond to the indices of the �n=m smallest and �n=m
largest values of hYj ; ui and � 2 .0; 1=2/ is another constant that depends on q and � only.

Now one can prove that the directional mean estimatesb�n.u/work as desired, simul-
taneously for all u 2 Sd�1. More precisely, there exist constants c; C 0 > 0 depending on �
and q such that, with probability at least 1 � ı, for all u 2 Sd�1,

ˇ̌b�n.u/ � h�; ui
ˇ̌

� C 0

�r
�2.u/ log.1=ı/

n
C

sPd
iDc log.1=ı/ �i

n

�
:

Once we have the “directional” mean estimators b�n.u/ with the desired property, similarly
to the multivariate trimmed-mean estimator discussed in Section 3 above, we need to find a
vector b�n such that hb�n; ui is close to b�n.u/ for all u 2 Sd�1 (at the appropriate direction-
dependent scale).
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To this end, similarly to the case of the trimmed-mean estimator, we define “slabs.”
In order to define slabs of the correct width, we need to estimate the directional variances
�2.u/. This is the problem of covariance estimation that has received quite a lot of atten-
tion, see Catoni [5], Giulini [13], Koltchinskii and Lounici [22], Lounici [26], Mendelson [35],
Mendelson and Zhivotovksiy [36], Minsker [38], Minsker and Wei [40] for a sample of the
relevant literature.

For our purposes, we only need to accurately estimate the variances �2.u/ in those
directions u 2 Sd�1 in which the variance is “not too small,” meaning that it is above a
certain critical level. Below the critical level, all we need is that the estimator detects that the
variance is small. More precisely, we construct an estimator  n.u/, such that, on an event of
probability at least 1 � e�cn,

1

4
�2.u/ �  n.u/ � 2�2.u/ 8u 2 Sd�1 such that �2.u/ � r2,

 n.u/ � Cr2 otherwise.

Here c and C are constants depending on � and q only and

r D

s
c0

n

X
i�c0n

�i

for another constant c0 > 0 depending on � and q.
Once such a covariance estimator  n.u/ is constructed, for a parameter � > 0, we

may define the slabs

Eu;� D

²
v 2 Rd

W
ˇ̌b�n.u/ � hv; ui

ˇ̌
� �C 2C 0

r
 n.u/ log.1=ı/

n

³
and let

S� D

\
u2Sd�1

Eu;�:

Since � > 0, the set S� is compact, and therefore the set

S D

\
�>0WS�¤;

S�

is not empty. We may now define the mean estimator as any element b�n 2 S . This estimator
satisfies the announced property.

It remains to define the variance estimator  n.u/. To this end, first we define

QXi D
Xi �X 0

i

2
; i 2 Œn�

(defined on a sample of size 2n that is independent of that used to construct the directional
mean estimators b�n.u/) to obtain a sample of centered vectors with the same covariance
as X .

Next we divide this sample into n=m equal blocks, where m is an appropriately
chosen constant (depending on � and q). For each block, we compute

Zj D
1

p
m

mX
iD1

QXm.j �1/Ci :
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The purpose of this step is to guarantee a certain “small-ball” property of the distribution,
similarly to the definition of b�n.u/. Once again,  n.u/ is a trimmed-mean estimator. More
precisely, for every u 2 Sd�1, if we denote by JC.u/ the set of indices of the �n=m largest
values of hZj ; ui, we define

 n.u/ D
1

n=m

X
j 2Œn=m�nJC.u/

hZj ; ui
2:

The proof of the desired properties of both the directional mean estimator b�n.u/ and direc-
tional variance estimator  n.u/ relies on novel bounds for the ratio of empirical and true
probabilities that hold uniformly over certain classes of random variables. The main tech-
nical machinery that leads to the necessary directional control requires bounds for ratios of
empirical and true probabilities that hold uniformly in a class of functions. Informally, one
needs to control

sup
¹f 2F ;kf kL2

�rº

sup
t WP¹f .X/>tº��

ˇ̌̌̌
n�1

Pn
iD1 1f .Xi />t

P¹f .X/ > tº
� 1

ˇ̌̌̌
for appropriate values of r and �.

In other words, in [30] it is shown that, under minimal assumptions on the class F ,
the empirical frequencies of level sets of every f 2 F are close, in a multiplicative sense, to
their true probabilities, as long as kf kL2 D

p
Ef .X/2 and P¹f .X/ > tº are large enough.

Estimates of this flavor had been derived before, but only in a limited scope. Examples
include the classical inequalities of Vapnik–Chervonenkis in VC theory, dealing with small
classes of binary-valued functions (see also, Giné and Koltchinskii [12] for some results for
real-valued classes). Existing ratio estimates are often based on the restrictive assumption
that the collection of level sets, say of the form ¹¹x W f .x/ > tº W f 2 F ; t � t0º, is small
in the VC sense.

The method developed in [30] is based on a completely different argument that builds
on the so-called small-ball method pioneered by Mendelson [32–34].

5. Conclusion

The problem of estimating the mean of a random vector has received a lot of recent
attention both in mathematical statistics and in theoretical computer science. Understanding
the possibilities and limitations of general mean estimation is an intriguing problem and the
computational aspects enrich the area further with many nontrivial and exciting questions.
In spite of the significant progress, many interesting questions remain to be explored. The
lessons learnt from this prototypical statistical problem are expected to infuse other areas of
statistics and machine learning with valuable ideas.
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Abstract

Results by van der Vaart (1991) from semi-parametric statistics about the existence of a
non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian
regression setting. Information-theoretically optimal inference on aspects of the unknown
parameter is possible if and only if the adjoint of the linearisation of the regression map
satisfies a certain range condition. It is shown that this range condition may fail in a
commonly studied elliptic inverse problem with a divergence form equation (‘Darcy’s
problem’), and that a large class of smooth linear functionals of the conductivity param-
eter cannot be estimated efficiently in this case. In particular, Gaussian ‘Bernstein von
Mises’-type approximations for Bayesian posterior distributions do not hold in this setting.
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1. Introduction

The study of inverse problems forms an active scientific field at the interface of the
physical, mathematical and statistical sciences and machine learning. A common setting is
where one considers a ‘forward map’ G between two spaces of functions, and the ‘inverse
problem’ is to recover � from the ‘data’ G� � G .�/. In real-world measurement settings, data
is observed discretely, for instance one is given point evaluations G .�/.Xi / of the function
G .�/ on a finite discretisation ¹Xiº

N
iD1 of the domain of G� . Each time a measurement is

taken, a statistical error is incurred, and the resulting noisy data can then be described by
a statistical regression model Yi D G� .Xi / C "i , with regression functions ¹G� W � 2 ‚º

indexed by the parameter space ‚. Such models have been studied systematically at least
since C. F. Gauss [9] and constitute a core part of statistical science ever since.

In a large class of important applications, the family of regression maps ¹G� W � 2‚º

arises from physical considerations and is described by a partial differential equation (PDE).
The functional parameter � is then naturally infinite- (or after discretisation step, high-)
dimensional, and the map � 7! G� is often non-linear, which poses challenges for statistical
inference. Algorithms for such ‘non-convex’ problems have been proposed and developed
in the last decade since influential work by A. Stuart [28], notably based on ideas from
Bayesian inference, where the parameter � is modelled by a Gaussian process (or related)
prior …. The inverse problem is ‘solved’ by approximately computing the posterior mea-
sure ….�j.Yi ; Xi /NiD1/ on ‚ by an iterative (e.g. MCMC) method. While the success of this
approach has become evident empirically, an objective mathematical framework that allows
giving rigorous statistical and computational guarantees for such algorithms in non-linear
problems has only emerged more recently. The types of results obtained so far include sta-
tistical consistency and contraction rate results for posterior distributions and their means,
see [1, 13, 19] and also [14, 16, 21–23], as well as computational guarantees for MCMC based
sampling schemes [3,15,25].

Perhaps the scientifically most desirable guarantees are those for ‘statistical uncer-
tainty quantification’ methods based on posterior distributions, and these are notoriously
difficult to obtain. Following a programme originally developed by [4–6, 26] in classical
‘direct’ regression models, one way to address this issue is by virtue of the so-called
Bernstein–von Mises theorems which establish asymptotically (as N ! 1) exact Gaussian
approximations to posterior distributions. These exploit the precise but delicate machinery
from semi-parametric statistics and Le Cam theory (see [31]) and aim at showing that the
actions h ; �ij.Yi ; Xi /

N
iD1 of infinite-dimensional posterior distributions on a well-chosen

set of test functions  converge – after rescaling by
p
N (and appropriate re-centering) – to

fixed normal N .0; �2
�
. //-distributions (with high probability under the data .Yi ; Xi /NiD1).

The limiting variance �2
�
. / has an information-theoretic interpretation as the Cramér–Rao

lower bound (inverse Fisher information) of the model (see also Section 2.4). Very few
results of this type are currently available in PDE settings. Recent progress in [20] (see also
related work in [12,18,21,22]) has revealed that Bernstein–von Mises theorems may hold true
if the PDE underlying G� has certain analytical properties. Specifically, one has to solve
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‘information equations’ that involve the ‘information operator’ DG �
�
DG� generated by the

linearisation DG� of G� (with appropriate adjoint DG �
�

). The results in [20,21] achieve this
for a class of PDEs where a base differential operator (such as the Laplacian, or the geodesic
vector field) is attenuated by an unknown potential � , and where  can be any smooth test
function.

In the present article we study a different class of elliptic PDEs commonly used to
model steady state diffusion phenomena, and frequently encountered as a ‘fruitfly example’
of a non-linear inverse problem in applied mathematics (‘Darcy’s problem’; see the many
references in [13, 28]). While this inverse problem can be solved in a statistically consistent
way (with ‘nonparametric convergence rates’ to the ground truth, see [13,24]), we show here
that, perhaps surprisingly, semi-parametric Bernstein–von Mises phenomena for posterior
distributions of a large class of linear functionals of the relevant ‘conductivity’ parameter
do in fact not hold for this PDE, not even just locally in a ‘smooth’ neighbourhood of the
standard Laplacian. See Theorems 6 and 7, which imply in particular that the inverse Fisher
information �2

�
. / does not exist for a large class of smooth  ’s. The results are deduced

from a theorem of van der Vaart [30] in general statistical models, combined with a thorough
study of the mapping properties ofDG� and its adjoint for the PDE considered. Our negative
results should help to appreciate the mathematical subtlety underpinning exact Gaussian
approximations to posterior distributions in non-linear inverse problems arising with PDEs.

2. Information geometry in non-linear regression models

In this section we review some by now classical material on information-theoretical
properties of infinite-dimensional regular statistical models [30,31], and develop the details
for a general vector-valued non-linear regression model relevant in inverse problems settings.
Analogous results could be obtained in the idealised Gaussian white noise model (cf. Chapter
6 in [11]) sometimes considered in the inverse problems literature.

2.1. Measurement setup
Let .X;A; �/ be a probability space and let V be a finite-dimensional vector

space of fixed finite dimension pV 2 N with inner product h�; �iV and norm j � jV . We
denote by L1.X/ and L2.X/ D L2

�
.X; V / the bounded measurable and �-square inte-

grable V -valued functions defined on X normed by k � k1 and k � kL2
�
.X/, respectively.

The inner product on L2.X/ is denoted by h�; �iL2.X/. We will also require Hilbert spaces
L2.P / D L2.V � X; P / of real-valued functions defined on V � X that are square inte-
grable with respect to a probability measure P on the produce space V � X, with inner
product h�; �iL2.P /.

We will consider a parameter space ‚ that is subset of a (separable) Hilbert space
.H; h�; �iH/ on which measurable ‘forward maps’

� 7! G .�/ D G� ; G W ‚ ! L2�.X; V /; (2.1)
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are defined. Observations then arise in a general random design regression setup where one
is given jointly i.i.d. random vectors .Yi ; Xi /NiD1 of the form

Yi D G� .Xi /C "i ; "i �
i:i:d N .0; IV /; i D 1; : : : ; N; (2.2)

where the Xi ’s are random i.i.d. covariates drawn from law � on X. We assume that the
covariance IV of each Gaussian noise vector "i 2 V is diagonal for the inner product of V .
[Most of the content of this section is not specific to Gaussian errors "i in (2.2), cf. Exam-
ple 25.28 in [31] for discussion.]

We consider a ‘tangent space’H at any fixed � 2‚ such thatH is a linear subspace
of H and such that perturbations of � in directions h 2 H satisfy ¹� C sh; h 2 H; s 2 R;

jsj< �º �‚ for some � small enough. We denote by NH the closure ofH in H and will regard
NH itself as a Hilbert space with inner product h�; �iH. We employ the following assumption

in the sequel.

Condition 1. Suppose G is uniformly bounded sup�2‚ kG .�/k1 � UG . Moreover, for fixed
� 2‚, x 2 X, and every h 2H , suppose that G� .x/ is Gateaux-differentiable in direction h,
that is, for all x 2 X,ˇ̌

G .� C sh/.x/ � G .�/.x/ � sI� Œh�.x/
ˇ̌
V

D o.s/ as s ! 0; (2.3)

for some continuous linear operator I� W .H; k � kH/ ! L2
�
.X; V /, and that for some � > 0

small enough and some finite constant B D B.h; �/,

sup
jsj<�

kG .� C sh/ � G .�/k1

jsj
� B: (2.4)

2.2. The DQM property
We will now derive the semi-parametric ‘score’ and ‘information’ operators (cf. [30,

31]) in the observational model (2.2). If P� is the law of .Y1; X1/ D .G .�/.X1/C "1; X1/

on V � X then (2.2) is an i.i.d. statistical model of product laws

PN D
®
PN� D ˝

N
iD1P� W � 2 ‚

¯
; N 2 N; (2.5)

on .V � X/N , and we can identify all information-theoretic properties in terms of the model
P D P1 D ¹P� W � 2 ‚º for the coordinate distributions. The model P is differentiable in
quadratic mean (DQM) at � 2 ‚ along the tangent space H with score operator

A� W H ! L2.V � X; P� / (2.6)

(cf. (3.2) in [30]) if for each path �s;h D � C sh, h 2 H , we have as s ! 0,Z
V�X

�
1

s

�
dP

1=2

�s;h
� dP

1=2

�

�
�
1

2
A� Œh� dP

1=2

�

�2
! 0 (2.7)

where
dP

1=2

�
.y; x/ D .2�/�pV =4e�jy�G .�/.x/j2V =4 dy dx; y 2 V; x 2 X;

are the square-root probability densities of P� with respect to Lebesgue measure on V � X.
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Theorem 1. Assuming Condition 1, the model (2.5) is differentiable in quadratic mean
(DQM) at � 2 ‚ along every path .� C sh W jsj < �; h 2 H/ with � small enough. The
‘score’ operator A� W H ! L2.V � X; P� / is given by

A� Œh�.y; x/ D
˝
y � G .�/.x/; I� .h/.x/

˛
V
; h 2 H; .y; x/ 2 V � X; (2.8)

which extends to a continuous linear operator A� W NH ! L2.P� /.

Proof. Fix h 2 H . Using that the densities dP� are strictly positive, the left-hand side in
(2.7) equalsZ

V�X

�
1

s

�dP 1=2
�s;h

dP
1=2

�

� 1

�
�
1

2
A� Œh�

�2
dP�

D

Z
V�X

�
1

s

�
eh

y
2 ;G .�s;h/.x/�G .�/.x/iV �

jG .�s;h/.x/j
2
V

�jG .�/.x/j2
V

4 � 1
�

�
1

2
A� Œh�

�2
dP� .y; x/

D

Z
V�X

�
1

s

�
ef .s/ � 1 �

s

2
A� Œh�

��2
dP�

where, for y; x fixed,

f .s/ D

�
y

2
;G .�s;h/.x/ � G .�/.x/

�
V

�
jG .�s;h/.x/j

2
V � jG .�/.x/j2V
4

:

Clearly, f .0/ D 0 and, by Condition 1 and the chain rule, we have

f 0.0/ D

�
y

2
; I� Œh�.x/

�
V

�
hG .�/.x/; I� Œh�.x/iV

2
D
1

2
A� Œh�.y; x/;

so that the last integrand converges to zero for every .y; x/ 2 V � X, as s ! 0. By Condi-
tion 1 and the Cauchy–Schwarz inequality, we see that Œef .s/ � 1�=s is bounded by a constant
multiple of eC jyjV ;C DC.B;UG / <1, uniformly in jsj< �. Furthermore, again from Con-
dition 1, A� Œh�


L2.P� /

.
�
EjY jV C UG

�
kI� Œh�kL2

�
. khkH

and
E�
�
eC jY jV C jA� Œh�.Y;X/j

�2
< 1;

so the last limit can be P� -integrated by the dominated convergence theorem to give that the
last displayed integral converges to zero, verifying the DQM property. The first inequality in
the last display also implies that A� extends to a continuous linear map from NH to L2.P� /.

2.3. The adjoint score and information operator
The bounded linear operator A� W . NH; h�; �iH/ ! L2.V � X; P� / has adjoint oper-

ator
A�
� W L2.V � X; P� / !

�
NH; h�; �iH

�
which satisfies

hw;A�hiL2.P� / D
˝
A�
�w; h

˛
H
; for all w 2 L2.V � X; P� /; h 2 NH:
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The information operator is then defined as

A�
�A� W NH ! NH: (2.9)

Note that the ‘complexity’ of the statistical model enters via the choice of ‘tangent space’H
for which the adjoint is computed, but we suppress this in the notation.

In the present model the information operator can be entirely described in terms of
the operator I� W .H; h�; �iH/ ! L2

�
.X; V / from Condition 1, and its adjoint

I�
� W L2�.X; V / !

�
NH; h�; �iH

�
:

Proposition 1. Assuming Condition 1, we have

A�
�A� Œh� D I�

� I� Œh�; 8h 2 H: (2.10)

Proof. Writing � for the pdf of an N .0; IV / distribution, we have from Fubini’s theorem,
for any w 2 L2.P� /,

hA�h;wiL2.P� / D

Z
V

Z
X

˝
y � G� .x/; I� .h/.x/

˛
V
w.y; x/dP� .y; x/

D

Z
X

�
I� .h/.x/;

Z
V

�
y � G� .x/

�
w.y; x/�

�
y � G� .x/

�
dy

�
V

d�.x/

D
˝
I� .h/; E�

��
Y � G� .X/

�
w.Y;X/jX D �

�˛
L2
�

D
˝
h; I�

�

�
E�
��
Y � G� .X/

�
w.Y;X/jX D �

��˛
H
;

that is, the adjoint A�
�

D I�
�

ı E� is the composition of the adjoint I�
�

of I� with the conditional
expectation (projection) operator

E� W L2.P� / ! L2�.X; V /; E� Œw�.x/ D E�
��
Y � G� .X/

�
w.Y;X/

ˇ̌
X D x

�
; x 2 X:

(2.11)
Now for h 2 H , we see for " � N .0; IV / and �-a.e. x 2 X,

E�
�
A� Œh�

�
.x/ D E�

��
Y � G� .X/

�˝
Y � G� .X/; I�h.X/

˛
V

ˇ̌
X D x

�
D E

�
"
˝
"; I�h.x/

˛
V

�
D I�h.x/;

and therefore A�
�
A� Œh� D I�

�
E� ŒA� Œh�� D I�

�
I� Œh�, completing the proof.

One can think of E� in the previous proof as a projection onto the ‘space of residuals’
of the regression equation (2.2), which vanishes in the representation of the information
operator (2.10). In particular, the model (2.2) is LAN (locally asymptotically normal) for
LAN-norm k � kLAN arising from LAN inner product

hh1; h2iLAN WD hI�h1; I�h2iL2
�

D hA�h1;A�h2iL2.P� /; h1; h2 2 NH: (2.12)

Proposition 2. Let DN � .Yi ; Xi /
N
iD1 � PN

�
arise from model (2.2) for some � 2 ‚ and

suppose Condition 1 holds. Then the likelihood ratio process satisfies

log
dPN

�Ch=
p
N

dP�
.DN / !

d
N!1 N

�
�
1

2
khk

2
LAN; khk

2
LAN

�
; h 2 H:
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The proof follows from Theorem 1 in conjunction with Lemma 25.14 in [31] (and the
central limit theorem). This, in particular, justifies the use of the terminology ‘information
operator’ for I�

�
I� instead of A�

�
A� .

In what is to follow, the range of the adjoint score operator A�
�

will play a crucial
role, and we wish to record a few preparatory remarks here. By what precedes, that range
equals

R
�
A�
�

�
D
®
 D I�

�E�w; for some w 2 L2.P� /
¯
; (2.13)

where E� is from (2.11). Since E� maps L2.P� / into L2
�
, a fortiori any  2 R.A�

�
/ has to

satisfy
 2 R

�
I�
�

�
D
®
 D I�

�h; for some h 2 L2�.X; V /
¯
; (2.14)

so R.A�
�
/ � R.I�

�
/. Likewise, taking w.y; x/ D hy � G .�/.x/; h.x/iV 2 L2.P� /, we can

realise (arguing as in the proof of the last proposition) any h 2 L2
�
.X/ as E�w D h and so

if  2 R.I�
�
/ then  2 R.A�

�
/, too. We conclude that

R
�
I�
�

�
D R

�
A�
�

�
: (2.15)

2.4. Lower bounds for estimation of functionals
Suppose the problem is to estimate a linear functional ‰ W ‚ ! R of the unknown

parameter � . Let

PH WD
®
w D A� .h/ W h 2 H

¯
� L2.V � X; P� /

denote the tangent space of the model P induced by H . Suppose further we can find Q � 2

L2.P� / (the ‘efficient influence function’) such that

‰.h/ D h Q � ;A�hiL2.P� /; h 2 H: (2.16)

If such Q � exists, we can always take it to belong to the closure PH of PH in L2.P� /
(simply by L2.P� /-projection onto PH , if necessary). A lower bound for the optimal
efficient asymptotic variance for

p
N -consistent estimators of ‰.�/ over the model ¹� C

h=
p
N; h 2 H º is then given by

sup
0¤w2PH

h Q � ; wi2
L2.P� /

hw;wiL2.P� /
D k Q �k

2
L2.P� /

; (2.17)

with equality holding in view of Q � 2 PH and the Cauchy–Schwarz inequality. Specifically,
by Theorem 25.21 in [31], one has

lim inf
N!1

inf
Q N W.V�X/N!R

sup
h2H;khkH�1=

p
N

NEN�Ch

�
Q N �‰.� C h/

�2
� k Q �k

2
L2.P� /

: (2.18)

If the functional is of the form ‰.h/ D h ; hiH for some fixed test function  , and if A�
�

is
the adjoint of A� from the previous subsection, the requirement (2.16) can be written as

h ; hiH D h Q � ;A�hiL2.P� / D
˝
A�
�

Q � ; h
˛
H
; h 2 H; (2.19)

and hence reduces to  D A�
�

Q � for some Q � 2 L2.P� /, that is,  2 R.A�
�
/ from (2.13).
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2.5. Non-existence of
p

N -consistent estimators of linear functionals
Arguing along the traditional lines of the proof of the Cramer–Rao inequality, the

inverse of

i�;h; WD

kA�hk2
L2.P� /

h ; hi2H

(2.20)

provides an a priori lower bound for the variance of any estimator b‰ of‰.�/D h ;�iH that
is unbiased (i.e. satisfies E�b‰ D ‰.�/) for all � in the one-dimensional model ¹� C sh W

jsj < �º. The efficient Fisher information for estimating ‰ optimally for all elements h 2 H

of the tangent space is then given by

i�;H; WD inf
h2H;h ;hiH¤0

kA�hk2
L2.P� /

h ; hi2H

: (2.21)

Note that when  D A�
�

Q � is in the range of A�
�

then we can rewrite the last number as

inf
h2H;h ;hiH¤0

kA�hk2
L2.P� /

hA�
�

Q � ; hi2H

D inf
h2H;h ;hiH¤0

kA�hk2
L2.P� /

h Q � ;A�hi2
L2.P� /

: (2.22)

Since  2 R.A�
�
/ is orthogonal on ker.A� /, using also (2.17), we thus arrive at

k Q �k
2
L2.P� /

D sup
h2H;A�h¤0

h Q � ;A�hi2
L2.P� /

hA�h;A�hiL2.P� /
D i�1�;H; ; (2.23)

explaining the relationship to the best asymptotic variance in (2.18).
An important observation of van der Vaart (Theorem 4.1 in [30]) is that a necessary

and sufficient condition for the Fisher information for estimating ‰.�/ D h�;  iH to be
non-zero is that  indeed lies in the range of A�

�
.

Theorem 2. For � 2 ‚ and tangent space H , let i�;H; be the efficient Fisher informa-
tion (2.21) for estimating the functional ‰.�/ D h�;  iH,  2 NH . Then i�;H; > 0 if and
only if  2 R.I�

�
/.

If  2 R.I�
�
/ then positivity i�;H; > 0 follows directly from (2.15), (2.22) and the

Cauchy–Schwarz inequality. The converse is slightly more involved – we include a proof
in Section 4.2 below for the case most relevant in inverse problems when the information
operator I�

�
I� from (2.10) is compact on NH (see after Proposition 4 below for the example

relevant here).
It follows that if  … R.I�

�
/ then ‰.�/ cannot be estimated at

p
N -rate.

Theorem 3. Consider estimating a functional‰.�/D h ;�iH, 2 NH , based on i.i.d. data
.Yi ; Xi /

N
iD1 in the model (2.2) satisfying Condition 1 for some � 2 ‚ and tangent spaceH .

Suppose i�;H; D 0. Then

lim inf
N!1

inf
Q N W.V�X/N!R

sup
h2H;khkH�1=

p
N

NEN�Ch

�
Q N �‰.� C h/

�2
D 1: (2.24)

The last theorem can be proved following the asymptotic arguments leading to the
proof of (2.18) in Theorem 25.21 in [31]. A proof that follows more directly from the pre-
ceding developments is as follows: Augment the observation space to include measurements
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.Zi ; Yi ;Xi /
N
iD1 � NPN

�
where theZi �i id N .h�; iH; �

2/ are independent of the .Yi ;Xi /’s,
and where �2 is known but arbitrary. The new model NPN D ¹ NPN

�
W � 2‚º has ‘augmented’

LAN norm from (2.12) given by

k NA�hk
2

L2. NP� /
D kA�hk

2
L2.P� /

C ��2
h ; hi

2
H; h 2 NH;

as can be seen from a standard tensorisation argument for independent sample spaces and the
fact that a N .h�; iH; �

2/model has LAN ‘norm’ ��2h ;hi2H, by a direct calculation with
Gaussian densities. In particular, the efficient Fisher information from (2.21) for estimating
h ; �iH from the augmented data is now of the form

Ni�;H; D inf
h

kA�hk2
L2.P� /

C ��2h ; hi2H

h ; hi2H

D i�;H; C ��2
D ��2 > 0:

Note next that mutatis mutandis (2.17), (2.18) and (2.23) all hold in the augmented model
NPN with score operator NA� and tangent space H , and that the linear functional ‰.�/ D

h ; �iH now verifies (2.16) as it is continuous on H for the k NA� Œ��kL2. NP� /
-norm, so that we

can invoke the Riesz representation theorem to the effect that

‰.h/ D h NA Qh; NAhiL2. NP� /
; h 2 H; and some Q � D NA Qh 2 . NP/H :

Thus the asymptotic minimax theorem in the augmented model gives

lim inf
N!1

inf
N N W.R�V�X/N!R

sup
h2H;khkH�1=

p
N

NEN�Ch

�
N N �‰.� C h/

�2
� Ni�1�;H; D �2

(2.25)
for estimators N based on the more informative data. The asymptotic local minimax risk in
(2.24) exceeds the quantity in the last display, and letting �2 ! 1 implies the result.

3. Application to a divergence form PDE

The results from the previous section describe how in a non-linear regression model
(2.2) under Condition 1, the possibility of

p
N -consistent estimation of linear functionals

‰.�/ D h ; �iH essentially depends on whether  lies in the range of I�
�
. A sufficient con-

dition for this is that  lies in the range of the information operator A�
�
A� D I�

�
I� , and the

results in [20] show that the lower bound in (2.18) can be attained by concrete estimators in
this situation. The general theory was shown to apply to a class of PDEs of Schrödinger type
[20,21] and to non-linear X -ray transforms [18,20], with smooth test functions  2 C1.

We now exhibit a PDE inverse problem where the range constraint from Theo-
rem 2 fails, fundamentally limiting the possibility of efficient

p
N -consistent estimation of

‘nice’ linear functionals. In particular, we will show that, unlike for the Schrödinger type
equations considered in [20, 21], for this PDE the inverse Fisher information �2

�
. / does

not exist for a large class of functionals ‰.�/ D h�;  iL2 , including generic examples of
smooth non-negative  2 C1. This implies in particular the non-existence of a ‘functional’
Bernstein–von Mises phenomenon that would establish asymptotic normality of the posterior
distribution of the process ¹h�; iL2 W  2 C1º (comparable to those obtained in [4,5,21]).
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3.1. Basic setting
Let O � Rd be a bounded smooth domain with boundary @O and, for convenience,

of unit volume �.O/ D 1, where � is Lebesgue measure. Denote by C1.O/ the set of all
smooth real-valued functions on O and byC1

0 .O/ the subspace of such functions of compact
support in O. Let L2 D L2

�
.O/ be the usual Hilbert space with inner product h�; �iL2 . The

L2
�
-Sobolev spaces Hˇ D Hˇ .O/ of order ˇ 2 N are also defined in the standard way, as

are the spaces C ˇ .O/ that have all partial derivatives bounded and continuous up to order ˇ.
For a conductivity � 2 C1.O/, source f 2 C1.O/ and boundary temperatures

g 2 C1.@O/, consider solutions u D u� D u�;f;g of the PDE

r � .�ru/ D f in O; (3.1)

u D g on @O:

Here r;�;r� denote the gradient, Laplace and divergence operator, respectively. We ensure
ellipticity by assuming � � �min > 0 throughout O.

We write L� D r � .�r.�// for the ‘divergence form’ operator featuring on the left-
hand side in (3.1). A unique solution u� 2 C1.O/ to (3.1) exists (e.g. Theorem 8.3 and
Corollary 8.11 in [10]). The operator L� has an inverse integral operator

V� W L2�.O/ ! H 2.O/ \ ¹hj@O D 0º (3.2)

for Dirichlet boundary conditions, that is, it satisfies V� Œf � D 0 at @O and L�V� Œf � D f

on O for all f 2 L2
�
.O/. Moreover, the operator V� is self-adjoint on L2

�
.O/. One further

shows that whenever f 2 H 2.O/ satisfies fj@O D 0, then V�L� Œf � D f . These standard
facts for elliptic PDEs can be proved, e.g. as in Section 5.1 in [29] or Chapter 2 in [17].

To define the ‘forward map’ G we consider a model ‚ of conductivities arising as
a Hˇ -neighbourhood of the standard Laplacian of radius � > 0, specifically

‚ D

²
� 2 C1.O/; inf

x
�.x/ >

1

2
; �j@O D 1 W k� � 1kHˇ .O/ < �

³
; ˇ > 1C d: (3.3)

The inverse problem is to recover � from solutions

G W ‚ ! L2�.O/; G .�/ � u� (3.4)

of (3.1) where we emphasise that f; g, as well as �j@O , are assumed to be known (see also
Remark 3). The particular numerical choices 1D �j@O and 1=2D �min are made for notational
convenience. For independent "i �i id N .0; 1/, Xi �i id �, we then observe data

.Yi ; Xi /
N
iD1 2 .R � O/N � PN� ; Yi D u� .Xi /C "i ; (3.5)

from model (2.2). Note that unlike in statistical ‘Calderón problems’ [1], we measure u�
throughout the entire domain O. Before we take a closer look at the local information geom-
etry of the map G arising from the PDE (3.1), let us first give conditions under which the
problem of inferring � from .Yi ; Xi /

N
iD1 in (3.5) has a consistent solution.
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3.2. Global injectivity and model examples
Under suitable constellations of f; g in (3.1), the non-linear map � 7! u� can be

injective, and ‘stability’ properties of G are well studied at least since [27], we refer to the
recent contributions [2,13,24] and the many references therein. For instance, one can show:

Proposition 3. Let �1; �2 2 C1.O/ be conductivities such that k�ikC 1 � B , �1 D �2 on
@O, and denote by u�i the corresponding solutions to (3.1). Assume

inf
x2O

�
�u� .x/C �

ˇ̌
ru� .x/

ˇ̌2
Rd

�
� c0 > 0 (3.6)

holds for � D �1 and some � > 0. Then we have for some C D C.B;�; c0;O/ > 0,

k�1 � �2kL2 � Cku�1 � u�2kH2 : (3.7)

Based on (3.7), one can show (see [13,24]) that we can recover � in L2-loss by some
estimator O� D O�..Yi ; Xi /

N
iD1/ at a ‘non-parametric rate’ k O� � �kL2.O/ D OPN

�
.N� / for

some 0 <  < 1=2, uniformly in ‚. We wish to study here inference on linear functionals

‰.�/ D h ; �iL2.O/;  2 C1
0 .O/:

As we can bound the ‘plug-in’ estimation error jh ; � � O�iL2 j by k O� � �kL2 , the conver-
gence rate N� carries over to estimation of ‰. Nevertheless, we will show that there are
fundamental limitations for efficient inference on‰ at the ‘semi-parametric’ rate ( D 1=2).
This will be illustrated with two model examples for which the ‘injectivity’ condition (3.6)
can be checked.

Example 1 (No critical points). In (3.1), take

f D 2; g D
j � j2

Rd � 1

d
: (3.8)

Then for the standard Laplacian � D 1, we have u1 D g on NO;�u1 D 2, and hence ru1 D

2x=d , which satisfies infx2O jru1.x/jRd � c > 0 for any domain O � Rd separated away
from the origin. This lower bound extends to

inf
�2‚

inf
x2O

ˇ̌
ru� .x/

ˇ̌
Rd � cr > 0 (3.9)

for � small enough in (3.3), by perturbation: arguing as in (3.16) below and from standard
elliptic regularity estimates (Lemma 23 in [24] and as in (3.15)), we have for b > 1C d=2,
ˇ > b C d=2 (such that Hˇ � C b),

ku� � u1kC 1 .
V1�r � Œ.� � 1/ru� �

�
Hb .

.� � 1/ru�

Hb�1

. k� � 1kHb�1ku�kC b � k� � 1kHˇ ku�kHˇ < C�: (3.10)

In view of sup�2‚ k�u�k1 < 1 and (3.9), condition (3.6) is verified for � large enough
and all � 2 ‚.

The situation in Example 1 where the gradient ru� never vanishes is somewhat
atypical, and one may expect u� to possess a finite number of isolated critical points x0
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(where ru� .x0/ vanishes); see, e.g. [2] and references therein. The next example encom-
passes a prototypical such situation with an interior minimum. See also Remark 1 for the
case of a saddle point. Further examples with more than one critical point are easily con-
structed, too.

Example 2 (Interior minimum). Consider the previous example where now O is the unit
disk in R2 centred at the origin. In other words, in (3.1) we have f D 2 and gj@O D 0,
corresponding to a classical Dirichlet problem with source f . In this case u1 takes the same
form as in the previous example but now has a gradient ru1 D x that vanishes at the origin
0 2 R2, corresponding to the unique minimum of u1 on O. The injectivity condition (3.6)
is still satisfied for all � 2 ‚ simply since (3.1) implies

0 < 2 D ��u� C r� � ru� on O;

so that either �u� � 1=.2k�k1/ or jru� .x/jRd � 1=.2k�kC 1/ has to hold on O. In this
example, the constraints that � be small enough as well as that �1 D �2 on @O in Proposition 3
can in fact be removed, see Lemma 24 in [24].

3.3. The score operator and its adjoint
To connect to Section 2, let us regard ‚ from (3.3) as a subset of the Hilbert space

H D L2
�
.O/, and take G .�/ from (3.4); hence we set X D O, V D R, � D dx (Lebesgue

measure).
As ‘tangent space’ H � H, we take all smooth perturbations of � of compact sup-

port,
H D C1

0 .O/; (3.11)

so that the paths �s;h D � C sh, � 2 ‚, h 2 H , lie in ‚ for all s 2 R small enough. The
closure NH ofH for k � kH equals NH D H D L2

�
.O/. We now check Condition 1, restricting

to d � 3 to expedite the proof.

Theorem 4. Assume d � 3. Let‚ be as in (3.3) and let the tangent spaceH be as in (3.11).
The forward map � 7! G .�/ from (3.4) satisfies Condition 1 for every � 2 ‚, with uniform
bound UG D UG .kgk1; kf k1/ and with

I� .h/ � �V�
�
r � .hru� /

�
; h 2 H: (3.12)

In particular, I� extends to a bounded linear operator on H.

Proof. We can represent the solutions u� of (3.1) by a Feynman–Kac-type formula as

u� .x/ D Exg.X�O / � Ex
Z �O

0

f .Xs/ds; x 2 O; (3.13)

where .Xs W s � 0/ is a Markov diffusion process started at x 2 O with infinitesimal generator
L�=2, law Px D Px

�
, and exit time �O from O, see Theorem 2.1 on p. 127 in [8]. As in

the proof of Lemma 20 in [24], one bounds supx2O Ex�O by a constant that depends only
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on O; �min, and we conclude from the last display that therefore

ku�k1 � kgk1 C kf k1 sup
x2O

Ex�O < 1 (3.14)

so that the bound UG for G required in Condition 1 follows.
We will repeatedly use the following elliptic regularity estimates:V� Œh�1

� c0
V� Œh�H2 � c1khkL2 ; ku�kH2 � c2; (3.15)

with constants c0 D c0.O/, c1 D c1.�min;O;ˇ;�/, c2 D c2.UG ;kf kL2 ;kgkH2 ; �min;O;ˇ;�/

that are uniform in � 2 ‚. The first inequality in (3.15) is just the Sobolev imbedding. The
second follows from Lemma 21 in [24], noting also that sup�2‚ k�kC 1 � C.ˇ; �;O/ by
another Sobolev imbedding Hˇ � C 1. The final inequality in (3.15) follows from Theo-
rem 8.12 in [10] and (3.14).

To verify (2.4), notice that the difference u�Csh � u� solves (3.1) with g D 0 and
appropriate right-hand side, specifically we can write

G .� C sh/ � G .�/ D �sV�
�
r � .hru�Csh/

�
; h 2 H; (3.16)

for jsj small enough. Then (2.4) follows from (3.15) sinceV� �r � .hru�Csh/
�

1
.
r � .hru�Csh/


L2

. khru�CshkH1

. khkC 1 sup
�2‚

ku�kH2 � B < 1:

We will verify (2.3) by establishing a stronger ‘k � k1-norm’ differentiability result:
fix � 2 ‚ and any h 2 H such that � C h 2 ‚. Denote by DG� Œh� the solution v D vh of
the PDE

r � .�rv/ D �r � .hru� / on O;

v D 0 on @O

where u� is the given solution of the original PDE (3.1). Then the function wh D u�Ch �

u� �DG� Œh� solves the PDE

L�Chwh D �r �
�
hrV� Œr � .hru� /�

�
on O;

wh D 0 on @O:

As a consequence, applying (3.15) and standard inequalities repeatedly, we haveu�Ch � u� �DG� Œh�


1
D
V�Ch

�
r �

�
hrV� Œr � .hru� /�

��
1

.
r �

�
hrV� Œr � .hru� /�

�
L2

. khkC 1
V� �r � .hru� /

�
H2

. khkC 1
r � .hru� /


L2

. khk
2
C 1

ku�kH2 D O
�
khk

2
C 1

�
: (3.17)
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In particular DG� Œsh� D I� Œsh� is the linearisation of the forward map � 7! G .�/ D u�

along any path � C sh; jsj > 0, h 2 H . Finally, by duality, self-adjointness of V� and the
divergence theorem (Proposition 2.3 on p. 143 in [29]), we can bound for every h 2 H ,

kI�hkL2 D sup
k�kL2�1

ˇ̌̌̌ Z
O

�V�
�
r � .hru� /

�ˇ̌̌̌
D sup

k�kL2�1

ˇ̌̌̌ Z
O

rV� Œ�� � hru� �

ˇ̌̌̌
. sup

k�kL2�1

V� Œ��H1khkL2ku�kC 1 . khkL2 ;

using also (3.15) and that ku�kC 1 < 1 (here for fixed � ) as u� is smooth. By continuity
and since H is dense in L2

�
D H, we can extend I� to a bounded linear operator on H,

completing the proof.

Theorem 1 gives the score operator A� mappingH intoL2.R � O;P� / of the form

A� Œh�.x; y/ D
�
y � u� .x/

�
� I� .h/.x/; y 2 R; x 2 O: (3.18)

For the present tangent spaceH , we have NH D H. To apply the general results from Section 2,
we now calculate the adjoint I�

�
W L2

�
.O/ ! NH D L2

�
.O/ of I� W NH ! L2.O/.

Proposition 4. The adjoint I�
�

W L2
�
.O/ ! L2

�
.O/ of I� is given by

I�
� Œg� D ru� � rV� Œg�; g 2 L2�.O/: (3.19)

Proof. Since I� from (3.12) defines a bounded linear operator on the Hilbert spaceL2
�

D H,
a unique adjoint operator I �

�
exists by the Riesz representation theorem. Let us first show that˝

h;
�
I �
� � I�

�

�
g
˛
L2

D 0; 8h; g 2 C1
0 .O/: (3.20)

Indeed, sinceV� is self-adjoint forL2
�

and satisfies ŒV�g�j@O D 0, we can apply the divergence
theorem (Proposition 2.3 on p. 143 in [29]) with vector field X D hru� to deduce˝

h; I �
� g
˛
L2.O/

D hI�h; giL2.O/ D �
˝
V�
�
r � .hru� /

�
; g
˛
L2.O/

D �

Z
O

�
r � .hru� /

�
V� Œg�d�

D

Z
O

hru� � rV� Œg�d� D
˝
h; I�

�g
˛
L2.O/

;

so that (3.20) follows. Since C1
0 .O/ is dense in L2

�
.O/ and since I �

�
, I�
�

are continuous on
L2
�
.O/ (by construction in the former case and by (3.15), u� 2 C1.O/, in the latter case),

the identity (3.20) extends to all g 2 L2
�
.O/ and hence I �

�
D I�

�
, as desired.

Note further that for � 2 ‚ fixed, using (3.15), u� 2 C1 and L2-continuity of I� ,
we have kI�

�
I�hkH1 . kI�hkL2 . khkL2 . The compactness of the embeddingH 1 �L2 now

implies that the information operator I�
�
I� is a compact and self-adjoint operator on L2.O/.

3.4. Injectivity of I� , I�
�
I�

Following the developments in Section 2, our ultimate goal is to understand the
range R.I�

�
/ of the adjoint operator I�

�
. A standard Hilbert space duality argument implies

that
R
�
I�
�

�?
D ker.I� /; (3.21)
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that is, the ortho-complement (in H) of the range of I�
�

equals the kernel (null space) of I�
(in H). Thus if  is in the kernel of I� then it cannot lie in the range of the adjoint and the
non-existence of the inverse Fisher information in Theorem 2 for such  can be attributed
simply to the lack of injectivity of I� .

We first show that under the natural ‘global identification’ condition (3.6), the map-
ping I� from (3.12) is injective on the tangent spaceH (and hence on our parameter space‚).
The proof (which is postponed to Section 4.1) also implies injectivity of the information oper-
ator I�

�
I� on H , and in fact gives an H 2 � L2 Lipschitz stability estimate for I� .

Theorem 5. In the setting of Theorem 4, suppose also that (3.6) holds true. Then for I�
from (3.12), every � 2 ‚ and some c D c.�; c0; �;O/,I� Œh�


H2 � ckhkL2 8h 2 H: (3.22)

In particular, I� .h/ D 0 or I�
�
I� .h/ D 0 imply h D 0 for all h 2 H .

Using (3.15), one shows further that the operator I� is continuous from H 1.O/ !

H 2.O/ and, by taking limits in (3.22), Theorem 5 then extends to all h 2 H 1
0 .O/ obtained

as the completion of H for the H 1.O/-Sobolev norm.
Of course, the kernel in (3.21) is calculated on the Hilbert space H D L2.O/, so the

previous theorem does not characteriseR.I�
�
/?, yet. Whether I� is injective on all ofL2.O/

depends on finer details of the PDE (3.1). Let us illustrate this in the model examples from
above.

3.4.1. Example 1 continued; on the kernel in L2.O/

In our first example, I� starts to have a kernel already when hj@O ¤ 0. Indeed, from
the proof of Theorem 5, a function h 2 C1. NO/ is in the kernel of I� if and only if

T� .h/ D r � .hru� / D rh � ru� C h�u� D 0: (3.23)

Now fix any � 2 ‚ with u� satisfying (3.9). The integral curves .t/ in O associated to the
smooth vector field ru� ¤ 0 are given near x 2 O as the unique solutions (e.g. [29, p. 9]) of
the vector ODE

d

dt
D ru� ./; .0/ D x: (3.24)

Since ru� does not vanish, we obtain through each x 2 O a unique curve ..t/ W 0� t � T /

originating and terminating at the boundary @O, with finite ‘travel time’T �T .O; cr/ <1.
Along this curve, (3.23) becomes the ODE

d

dt
h
�
.t/

�
C h

�
.t/

�
�u�

�
.t/

�
D 0; 0 < t < T :

Under the constraint hj@O D 0 for h 2 H , the unique solution of this ODE is h D 0, which
is in line with Theorem 5. But for other boundary values of h, non-zero solutions exist.
One can characterise the elements h 2 C1. NO/ in the kernel of I� as follows. Since the
vector field ru� is non-trapping, there exists (see [7, Theorem 6.4.1]) r 2 C1. NO/ such that
ru� � rr D �u� . Thus

ru� � r.her / D erT� .h/
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and it follows that T� .h/ D 0 iff her is a first integral of ru� . Observe that the set of first
integrals of ru� is rather large: using the flow of ru� , we can pick coordinates .x1; : : : ; xd /
in O such that t 7! .t C x1; x2; : : : ; xd / are the integral curves of ru� and thus any function
that depends only on x2; : : : ; xd is a first integral.

3.4.2. Example 2 continued; injectivity on L2.O/

We now show that in the context of Example 2, the injectivity part of Theorem 5
does extend to all of L2.O/.

Proposition 5. Let I� be as in (3.12) where u� solves (3.1) with f;g as in (3.8) and O is the
unit disk in R2 centred at .0; 0/. Then for � D 1, the map I1 W L2.O/ ! L2.O/ is injective.

Proof. Let us write I D I1 and suppose I.f /D 0 for f 2L2.O/. Then for any h 2 C1.O/

we have by Proposition 4

0 D hIf; hiL2.O/ D hf; I �hiL2.O/ D
˝
f;XV1Œh�

˛
L2.O/

(3.25)

with vector field X D ru1 � r.�/ D x1@x1 C x2@x2, .x1; x2/ 2 O. Choosing h D �g for
any smooth g of compact support, we deduce thatZ

O

X.g/f d� D 0; 8g 2 C1
0 .O/; (3.26)

and we now show that this implies f D 0. A somewhat informal dynamical argument would
say that (3.26) asserts that fd� is an invariant density under the flow ofX . Since the flow of
X in backward time has a sink at the origin, the density can only be supported at .x1; x2/D 0

and thus f D 0.
One can give a distributional argument as follows. Suppose we consider polar coor-

dinates .r; #/ 2 .0; 1/� S1 and functions g of the form �.r/ .#/, where � 2 C1
0 .0; 1/ and

 2 C1.S1/. In polar coordinates X D r@r , and hence we may write (3.26) asZ 1

0

 
r2

 Z 2�

0

f .r; #/ .#/ d#

!
@r�

!
dr D 0: (3.27)

By Fubini’s theorem, for each  we have an integrable function

F .r/ WD

Z 2�

0

f .r; #/ .#/ d#

and thus r2F defines an integrable function on .0; 1/ whose distributional derivative satis-
fies @r .r2F / D 0 by virtue of (3.27). Thus r2F D c (using that a distribution on .0; 1/
with zero derivative must be a constant). Now consider  2 C1.S1/ also as a function in
L2.O/ and compute the pairing

.f;  /L2.O/ D

Z 1

0

rF .r/ dr D c 

Z 1

0

r�1 dr D ˙1

unless c D 0. Thus f D 0.

By perturbation (similar as in (3.10)) and the Morse lemma, we can show that
u� ; � 2 ‚, has a gradient u� that vanishes only at a single point in a neighbourhood of
0, and so the proof of the previous theorem extends to any � 2 ‚.
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3.5. The range of I�
�
and transport PDEs

From (3.21) we see R.I�
�
/ D ker.I� /?, but in our infinite-dimensional setting care

needs to be exercised as the last identity holds in the (complete) Hilbert space H D L2.O/

rather than in our tangent space H (on which the kernel of I� is trivial). We will now show
that the range R.I�

�
/ remains strongly constrained. This is also true in Example 2 when

ker.I� / D ¹0º: the range may not be closed R.I�
�
/ ¤ R.I�

�
/, and this ‘gap’ can be essential

in the context of Theorems 2 and 3. To understand this, note that from Proposition 4 we have

R
�
I�
�

�
D
®
 D ru� � rV� Œg�; for some g 2 L2�.O/

¯
: (3.28)

The operator V� maps L2
�

intoH 2
0 D ¹y 2 H 2 W yj@O D 0º and hence if  is in the range of

I�
�

then the equation

ru� � ry D  on O; (3.29)

y D 0 on @O

necessarily has a solution y D y 2 H 2
0 . The existence of solutions to the transport PDE

(3.29) depends crucially on the compatibility of  with geometric properties of the vector
field ru� , which in turn is determined by the geometry of the forward map G (via f; g; � )
in the base PDE (3.1). We now illustrate this in our two model Examples 1 and 2.

3.5.1. Example 1 continued; range constraint
Applying the chain rule to y 2 H 2.O/ and using (3.24), we see
d

dt
y
�
.t/

�
D
d.t/

dt
� ry

�
.t/

�
D .ru� � ry/

�
.t/

�
; 0 < t < T :

Hence along any integral curve  of the vector field ru� , the PDE (3.29) reduces to the ODE
dy

dt
D  : (3.30)

Now suppose  2 R.I�
�
/. Then a solution y 2 H 2

0 to (3.29) satisfying yj@O D 0 must exist.
Such y then also solves the ODE (3.30) along each curve  , with initial and terminal values
y.0/ D y.T / D 0. By the fundamental theorem of calculus (and uniqueness of solutions),
this forces Z T

0

 
�
.t/

�
dt D 0 (3.31)

to vanish. In other words,  permits a solution y to (3.29) only if  integrates to zero along
each integral curve (orbit) induced by the vector field ru� . Now consider any smooth (non-
zero) nonnegative in the tangent spaceH D C1

0 .O/, and take x 2 O such that � c > 0

near x. For  the integral curve passing through x, we then cannot have (3.31) as the inte-
grand never takes negative values while it is positive and continuous near x. Conclude by
way of contradiction that  … R.I�

�
/. Applying Theorems 2 and 3, we have proved:

Theorem6. Consider estimation of the functional‰.�/D h�; iL2.O/ from data .Yi ;Xi /NiD1
drawn i.i.d. fromPN

�
in the model (3.5)where f;g in (3.1) are chosen as in (3.8), the domain

O is separated away from the origin, and‚ is as in (3.3)with � small enough and ˇ > 1C d ,
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d � 3. Suppose 0 ¤  2 C1
0 .O/ satisfies  � 0 on O. Then for every � 2 ‚, the efficient

Fisher information for estimating ‰.�/ satisfies

inf
h2H;hh; iL2¤0

kI�hk2
L2
�

h ; hi2
L2
�

D 0: (3.32)

In particular, for any � 2 ‚,

lim inf
N!1

inf
Q N W.R�O/N!R

sup
� 02‚;k� 0��kH�1=

p
N

NEN� 0

�
Q N �‰.� 0/

�2
D 1: (3.33)

Let us notice that one can further show that (3.31) is also a sufficient condition for
 to lie in the range of I�

�
(provided  is smooth and with compact support in O). As this

condition strongly depends on � via the vector field ru� , it seems difficult to describe any
choices of  that lie in

T
�2‚R.I

�
�
/.

3.5.2. Example 2 continued; range constraint
We showed in the setting of Example 2 that I� is injective on all ofL2.O/, and hence

any  2 L2.O/ lies in closure of the range of I�
�
. Nevertheless, there are many relevant

 ’s that are not contained in R.I�
�
/. In Example 2, the gradient of u� vanishes and the

integral curves  associated to ru� D .x1; x2/ emanate along straight lines from .0; 0/

towards boundary points .z1; z2/ 2 @O where y..z1; z2// D 0. If we parameterise them as
¹.z1e

t ; z2e
t / W �1 < t � 0º, then as after (3.30) we see that if a solution y 2 H 2

0 to (3.29)
exists then  must necessarily satisfyZ 0

�1

 
�
z1e

t ; z2e
t
�
dt D 0 � y.0/ D const: 8.z1; z2/ 2 @O: (3.34)

This again cannot happen, for example, for any non-negative non-zero  2 H that vanishes
along a given curve  (for instance if it is zero in any given quadrant of O), as this forces
const D 0. Theorems 2 and 3 again yield the following for Example 2:

Theorem 7. Consider the setting of Theorem 6 but where now O is the unit disk centred at
.0; 0/, and where 0 �  2 C1

0 .O/,  ¤ 0, vanishes along some straight ray from .0; 0/ to
the boundary @O. Then (3.32) and (3.33) hold at � D 1.

Arguing as after Proposition 5, the result can be extended to any � 2 ‚ by an appli-
cation of the Morse lemma.

3.6. Concluding remarks
Remark 1 (Interior saddle points of u� ). To complement Examples 1, 2, suppose we take
� D 1, f D 0 in (3.1) so that uD u1 D x21 � x22 if gD u@O (and O is the unit disk, say). Then
ru D 2.x1;�x2/ and the critical point is a saddle point. In this case we can find integral
curves x running through x away from .0; 0/ between boundary points in finite time. Then
is  is nonnegative and supported near x it cannot integrate to zero along x . An analogue
of Theorem 6 then follows for this constellation of parameters in (3.1), too. Note that in this
example, the kernel of I� contains at least all constants.
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Remark 2 (Local curvature of G ). The quantitative nature of (3.22) in Theorem 5 is com-
patible with ‘gradient stability conditions’ employed in [3, 25] to establish polynomial time
posterior computation time bounds for gradient based Langevin MCMC schemes. Specifi-
cally, arguing as in Lemma 4.7 in [25], for a neighbourhood B of �0 one can deduce local
average ‘curvature’

inf
�2B

�minE�0
�
�r

2`.�/
�

� c2D
�4=d ;

of the average-log-likelihood function ` when the model ‚ is discretised in the eigenbasis
ED � .en W n � D/ � H arising from the Dirichlet Laplacian. In this sense (using also
the results from [13]) one can expect a Bayesian inference method based on data (2.2) and
Gaussian process priors to be consistent and computable even in high-dimensional settings.
This shows that such local curvature results are not sufficient to establish (and hence distinct
from) Gaussian ‘Bernstein–von Mises-type’ approximations.

Remark 3 (Boundary constraints on � ). As the main flavour of our results is ‘negative’, the
assumption of knowledge of the boundary values of � in (3.3) strengthens our conclusions
– it is also natural as the regression function u D g is already assumed to be known at @O.
In the definition of the parameter space ‚, we could further have assumed that all outward
normal derivatives up to order ˇ � 1 of � vanish at @O. This would be in line with the
parameter spaces from [13,24]. All results in this section remain valid because our choice of
tangent space H in (3.11) is compatible with this more constrained parameter space.

Remark 4 (Ellipticity). The Bernstein–von Mises theorems from [18,20,21] exploit ellipticity
of the information operator I�

�
I� in their settings, allowing one to solve for y in the equation

I�
�
I�y D  so that R.I�

�
/ contains at least all smooth compactly supported  (and this is

so for any parameter � 2 ‚). In contrast, in the present inverse problem arising from (3.1),
the information operator does not have this property and solutions y to the critical equation
I�
�
y D  exist only under stringent geometric conditions on  . Moreover, these conditions

exhibit a delicate dependence on � , further constraining the set
T
�2‚ R.I

�
�
/ relevant for

purposes of statistical inference.

4. Appendix

For convenience of the reader we include here a few more proofs of some results of
this article.

4.1. Proofs of Theorem 5 and Proposition 3
Define the operator

T� .h/ D r � .hru� /; h 2 H;

so that (3.12) becomes I� D V� ı T� . The map u 7! .L�u; uj@O/ is a topological isomor-
phism between H 2.O/ and L2.O/ �H 3=2.@O/ (see [17], Theorem II.5.4), and hence with
u D V� Œw� we deduce kV� Œw�kH2 & kwkL2 for all w 2 C1.O/. As a consequence, using
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also Lemma 1,
kI� Œh�kH2 & kT� .h/kL2 & khkL2 ; h 2 H;

which proves the inequality in Theorem 5. Next, as I� is linear, we see that whenever I� Œh1�D

I� Œh2� for h1; h2 2 H we have I� Œh1 � h2� D 0, and so by the preceding inequality h D

h1 � h2 D 0 in L2, too. Likewise, if h1; h2 2 H are such that I�
�
I�h1 D I�

�
I�h2, then 0 D

hI�
�
I� .h1 � h2/; h1 � h2iL2

�
D kI� .h1 � h2/k

2
L2
�

so I�h1 D I�h2 and thus by what precedes
h1 D h2.

Lemma 1. We have kT� .h/kL2 D kr � .hru� /kL2 � ckhkL2 for all h 2 H and some con-
stant c D c.�;B; c0/ > 0, where B � ku�k1.

Proof. Applying the Gauss–Green theorem to any v 2 C 1.O/ vanishing at @O gives˝
�u� ; v

2
˛
L2

C
1

2

˝
ru� ;r

�
v2
�˛
L2

D
1

2

˝
�u� ; v

2
˛
L2
:

For v D e��u�h, h 2 H , with � > 0 to be chosen, we thus have
1

2

Z
O

r
�
v2
�

� ru� D �

Z
O

�kru�k
2v2 C

Z
O

ve��u�rh � ru� ;

so that by the Cauchy–Schwarz inequalityˇ̌̌̌Z
O

�
1

2
�u� C �kru�k

2

�
v2
ˇ̌̌̌

D

ˇ̌̌̌˝�
�u� C �kru�k

2
�
; v2

˛
L2

C
1

2

˝
ru� ;r

�
v2
�˛
L2

ˇ̌̌̌
D
ˇ̌˝
h�u� C rh � ru� ; he

�2�u�
˛
L2

ˇ̌
� �

r � .hru� /

L2

khkL2 (4.1)

for N� D exp.2�ku�k1/. We next lower bound the multipliers of v2 in the left-hand side
of (4.1). By (3.6), ˇ̌̌̌Z

O

�
1

2
�u� C �kru�k

2

�
v2
ˇ̌̌̌

� c0

Z
O

v2

and, combining this with (4.1), we deducer � .hru� /

L2

khkL2 � c0
kvk

2
L2.O/

& khk
2
L2
; h 2 H;

which is the desired estimate.

The last lemma also immediately implies Proposition 3. Let us write h D �1 � �2

which defines an element ofH . Then by (3.1) we have r � .hru�1/D r � .�2r.u�2 � u�1//

and hence kr � .hru�1/kL2 . ku�2 � u�1kH2 . By Lemma 1 the left-hand side is lower
bounded by a constant multiple of khkL2 D k�1 � �2kL2 , so that the result follows.

4.2. Proof of Theorem 2 for I�
�
I� compact

Let us assume NH D H without loss of generality, write I � I� , L2 D L2
�
.X/ in

this proof, and let ker.I �I /D ¹h 2 H W I �IhD 0º. If I �I is a compact operator on H then
by the spectral theorem for self-adjoint operators, there exists an orthonormal system of H
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of eigenvectors ¹ek W k 2 Nº spanning H 	 ker.I �I / corresponding to eigenvalues �k > 0
so that

I �Iek D �kek ; and I �Ih D

X
k

�khh; ekiHek ; h 2 H:

We can then define the usual square-root operator .I �I /1=2 by�
I �I

�1=2
h D

X
k

�
1=2

k
hh; ekiHek ; h 2 H: (4.2)

If we denote by P0 the H-projection onto ker.I �I /, then the range of .I �I /1=2 equals

R
��
I �I

�1=2�
D

²
g 2 H W P0.g/ D 0;

X
k

��1
k hek ; gi

2
H < 1

³
: (4.3)

Indeed, using standard Hilbert space arguments, (a) sinceP0.ek/D 0 for all k, for any h 2 H

the element g D .I �I /1=2h belongs to the right-hand side in the last display, and conversely
(b) if g satisfiesP0.g/D 0 and

P
k �

�1
k

hek ; gi2H <1 then hD
P
k �

�1=2

k
hek ; giek belongs

to H and .I �I /1=2h D g.
Next, Lemma A.3 in [30] implies that R.I �/ D R..I �I /1=2/. Now suppose  2 H

is such that  … R.I �/ and hence  … R..I �I /1=2/. Then from (4.3), either P0. / ¤ 0 orP
k �

�1
k

hek ;  i2H D 1 (or both). In the first case, let Nh D P0. /, so

kI NhkL2 D
I �P0. /�L2 D

˝
I �I

�
P0. /

�
; P0. /

˛
H

D 0;

but h ; NhiH D kP0 k2H D ı for some ı > 0. Since H is dense in H, for any �; 0 < � <

min.ı=.2k kH/; ı
2=4/, we can find h 2 H such that kh � NhkH < � and by continuity also

kI.h � Nh/kL2 < �. Then p
i�;h; D

kIhkL2

jh ; hiHj
� 2

�

ı
�

p
�:

Using also (2.12), we conclude that i�;H; < � in (2.21), so that the result follows since �
was arbitrary. In the second case we have

P
k �

�1
k

hek ;  i2H D 1 and define

 N D

X
k�N

��1
k ekhek ;  iH; N 2 N;

which defines an element of H. By density we can choose hN 2H such that khN � N kH <

1=k kH, as well as kI.hN �  N /kL2 < 1, for every N fixed. Next observe that

h ; N iH D

X
k�N

��1
k hek ;  i

2
H � MN ;

I. N /2L2 D
˝
I �I. N /;  N

˛
H

D

X
k�N

��1
k hek ;  i

2
H D MN ;

and thatMN ! 1 as N ! 1. Then by our choice of hN 2 H and ifMN � 2, we have by
the triangle inequality,ˇ̌

h ; hN iH

ˇ̌
�
ˇ̌
h ; N iH

ˇ̌
�
ˇ̌
h ; N � hN iH

ˇ̌
� MN � 1 � MN =2;I.hN /L2 �

I. N /L2 C
I.hN �  N /


L2

�
p
MN C 1 � 2

p
MN :
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From this and (2.12) we conclude that the inverse of (2.21) satisfies

i�1�;H; �
h ; hN i2H

kIhN k2
L2

�
1

16

M 2
N

MN

� MN =16:

As N was arbitrary and MN !N!1 1, we must have i�;H; D 0, as desired.
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Abstract

We describe basic ideas underlying research to build and understand artificially intelligent
systems: from symbolic approaches via statistical learning to interventional models relying
on concepts of causality. Some of the hard open problems of machine learning and AI are
intrinsically related to causality, and progress may require advances in our understanding
of how to model and infer causality from data.
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1. Introduction

In 1958, the New York Times reported on a new machine called the perceptron.
Frank Rosenblatt, its inventor, demonstrated that the perceptron was able to learn from expe-
rience. He predicted that later perceptrons would be able to recognize people, or instantly
translate spoken language. Now a reality, this must have sounded like distant science fiction
at the time. In hindsight, we may consider it the birth of machine learning, the field fueling
most of the current advances in artificial intelligence (AI).

Around the same time, another equally revolutionary development took place: scien-
tists understood that computers could do more than compute numbers: they can process sym-
bols. Although this insight was also motivated by artificial intelligence, in hindsight it was
the birth of the field of computer science. There was great optimism that the manipulation of
symbols, in programs written by humans, implementing rules designed by humans, should be
enough to generate intelligence. Below, we shall refer to this as the symbol–rule hypothesis.1

There was initially encouraging progress on seemingly hard problems such as auto-
matic theorem proving and computer chess. One of the fathers of the field, Herb Simon,
predicted in 1956 that “machines will be capable, within twenty years, of doing any work a
man can do.” However, problems that appeared simple, such as most things animals could
do, turned out to be hard. This came to be known as Moravec‘s paradox. When IBM’s
Deep Blue chess computer beat Garry Kasparov in 1997, Kasparov was physically facing
a human during the match: while Deep Blue was capable of analyzing the game’s search tree
in unprecedented detail, it was unable to recognize and physically move chess pieces, so this
task had to be relegated to a human, in an inversion of the famous mechanical turk.2

In the years to follow, the field of AI entered what came to be known as the AI winter.
The community got disillusioned with the lack of progress and prospects, and interest greatly
declined. However, largely independently of the field of classic AI, machine learning even-
tually started to boom. Like Rosenblatt’s early work, it was built on the observation that all
existing examples of truly intelligent systems—i.e., animals, including humans—were not
built on the symbol–rule hypothesis: both the representations and the rules implemented by
natural intelligent systems are acquired from experience, through processes of evolution and
learning.

Rather than exploring the well-known dichotomy between rule- and learning-based
approaches, we will explore the less known questions of causality and interventions. While
the field of causality in computer science was initially strongly linked to classic AI, recent
years have witnessed great interest in connecting it to machine learning [111]. Below, we
explore some of these connections, drawing from [125, 133]. We will argue that the causal
view is relevant when it comes to addressing crucial open problems of machine learning,
related to notions of robustness and generalization beyond the training distribution.

1 The term should be taken with a grain of salt, since it suggests a separation between repre-
sentations and computations which is hard to uphold in practice.

2 https://en.wikipedia.org/wiki/Mechanical_Turk.
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Overview. In statistical learning, our starting point is a joint distribution p.X/ generating
the observable data. Here,X is a random vector, and we are usually given a dataset x1; : : : ;xm

sampled i.i.d. from p. We are often interested in estimating properties of conditionals of some
components of X given others, e.g., a classifier (which may be obtained by thresholding a
conditional at 0:5). This is a nontrivial inverse problem, giving rise to statistical learning
theory (Section 2).

Causal learning is motivated by shortcomings of statistical learning (Section 3). Its
starting point is a structural causal model (SCM) [104] (Section 4). In an SCM, the compo-
nents X1; : : : ;Xn ofX are identified with vertices of a directed graph whose arrows represent
direct causal influences, and there is a random variable Ui for each vertex, along with a func-
tion fi which computes Xi from its graph parents PAi and Ui , i.e.,

Xi WD fi .PAi ; Ui /: (1.1)

Given a distribution over the Ui , which are assumed independent, this also gives rise to a
probabilistic model p.X/. However, the model in (1.1) is more structured: the graph connec-
tivity and the functions fi create particular dependences between the observables. Moreover,
it describes how the system behaves under intervention: by replacing functions by constants,
we can compute the effect of setting some variables to specific values.

Causal learning builds on assumptions different from standard machine learn-
ing (Section 5), and addresses a different level in the modeling hierarchy (Section 6). It
also comes with new problems, such as causal discovery, where we seek to infer proper-
ties of graph and functions from data (Section 7). In some cases, conditional independences
among the Xi contain information about the graph [144]; but novel assumptions let us handle
some cases that were previously unsolvable [68]. Those assumptions have nontrivial implica-
tions for machine learning tasks such as semisupervised learning, covariate shift adaptation
and transfer learning [128] (Section 8). Once provided with a causal model, causal reason-
ing (Section 9) allows us to identify and estimate certain causal queries of interest from
observational data. We conclude with a list of some current and open problems (Section 10),
with a particular emphasis on the topic of causal representation learning.

The presentation and notation will be somewhat informal in several respects. We
generally assume that all distributions possess densities (with respect to a suitable reference
measure). We sometimes write p.x/ for the distribution (or density) of a random variable X .
Accordingly, the same p can denote another distribution p.y/, distinguished by the argument
of p.�/. We also sometimes use summation for marginalization which supposes discrete vari-
ables; the corresponding expressions for continuous quantities would use integrals.

2. Statistical learning theory

Suppose we have measured two statistically dependent observables and found the
points to lie approximately on a straight line. An empirical scientist might be willing to
hypothesize a corresponding law of nature (see Figure 1). However, already Leibniz pointed
out that if we scatter spots of ink randomly on a piece of paper by shaking a quill pen, we
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Figure 1

Given a small number of observations, how do we find a law underlying them? Leibniz argued that even if we
generate a random set of points, we can always find a mathematical equation satisfied by these points.

can also find a mathematical equation satisfied by these points [81]. He argued that we would
not call this a law of nature, because no matter how the points are distributed, there always
exists such an equation; we would only call it a law of nature only if the equation is simple.
This raises the question of what makes an equation simple. The physicist Rutherford took the
pragmatic view that if there is a law, it should be directly evident from the data: “if your exper-
iment needs statistics, you ought to have done a better experiment.”3 This view may have been
a healthy one when faced with low-dimensional inference problems where regularities are
immediately obvious; however, modern AI is facing inference problems that are harder: they
are often high-dimensional and nonlinear, yet we may have little prior knowledge about the
underlying regularity (e.g., for medical data, we usually do not have a mechanistic model).

Statistical learning theory studies the problem of how to still perform valid infer-
ence, provided that we have sufficiently large datasets and the computational means to pro-
cess them. Let us look at some theoretical results for the simplest learning scenario, drawing
from [130]; for details, see [153]. Suppose we are given empirical observations,

.x1; y1/; : : : ; .xm; ym/ 2 X � Y; (2.1)

where X is some nonempty set from which the inputs come, and Y D ¹˙1º is the output set,
in our case consisting of just two classes. This situation is called pattern recognition, and our
goal is to use the training data (2.1) to infer a function f WX ! ¹˙1º (from some function
class chosen a priori) which will produce the correct output for a new input x which we may
not have seen before. To formalize what we mean by “correct,” we make the assumption
that all observations .xi ; yi / have been generated independently by performing a random
experiment described by an unknown probability distribution p.x; y/—a setting referred
to as i.i.d. (independent and identically distributed) data. Our goal will be to minimize the

3 Cited after http://www.warwick.ac.uk/statsdept/staff/JEHS/data/jehsquot.pdf.
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Figure 2

Using straight lines, we can separate three points in all possible ways; we cannot do this for four points, no matter
how they are placed. The class of linear separations is not “falsifiable” using three points, but it becomes
falsifiable once we have four or more points.

expected error (or risk)

RŒf � D

Z
X�Y

c.y; f .x//dp.x; y/; (2.2)

where c is a so-called loss function, e.g., the misclassification error c.y; f .x// D
1
2
jf .x/ � yj taking the value 0 whenever f .x/ D y and 1 otherwise.

The difficulty of the task stems from the fact that we are trying to minimize a quantity
that we cannot evaluate: since we do not know p, we cannot compute (2.2). We do know,
however, the training data (2.1) sampled from p. We can thus try to infer a function f from
the training sample whose risk is close to the minimum of (2.2). To this end, we need what
is called an induction principle.

One way to proceed is to use the training sample to approximate (2.2) by a finite
sum, referred to as the empirical risk

RempŒf � D
1

m

mX
iD1

c.xi ; yi ; f .xi //: (2.3)

The empirical risk minimization (ERM) induction principle recommends that we choose (or
“learn”) an f that minimizes (2.3). We can then ask whether the ERM principle is statis-
tically consistent: in the limit of infinitely many data points, will ERM lead to a solution
which will do as well as possible on future data generated by p?

It turns out that if the function class over which we minimize (2.3) is too large, then
ERM is not consistent. Hence, we need to suitably restrict the class of possible functions. For
instance, ERM is consistent for all probability distributions, provided that the VC dimension
of the function class is finite. The VC dimension is an example of a capacity measure. It is
defined as the maximal number of points that can be separated (classified) in all possible
ways using functions from the class. For example, using linear classifiers (separating classes
by straight lines) on R2, we can realize all possible classifications for 3 suitably chosen
points, but we can no longer do this once we have 4 points, no matter how they are placed
(see Figure 2). This means that the VC dimension of this function class is 3. More generally,
for linear separations in Rd , the VC dimension is d C 1.

Whenever the VC dimension is finite, our class of functions (or explanations)
becomes falsifiable in the sense that starting from a certain number of observations, no
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longer all possible labelings of the points can be explained (cf. Figure 2). If we can never-
theless explain a sufficiently large set of observed data, we thus have reason to believe that
this is a meaningful finding.

Much of machine learning research is concerned with restrictions on classes of func-
tions to make inference possible, be it by imposing prior distributions on function classes,
through other constraints, or by designing self-regularizing learning procedures, e.g., gradi-
ent descent methods for neural networks [79]. While there is a solid theoretical understanding
of supervised machine learning as described above (i.e., function learning from input–output
examples), there are still details under investigation, such as the recently observed phe-
nomenon of “double descent” [7].

A popular constraint, implemented in the Support Vector Machine (SVM) [130,153],
is to consider linear separations with large margin: it turns out that for large margin separa-
tions in high-dimensional (or infinite-dimensional) spaces, the capacity can be much smaller
than the dimensionality, making learning possible in situations where it would otherwise fail.

For some learning algorithms, including SVMs and nearest neighbor classifiers,
there are strong universal consistency results, guaranteeing convergence of the algorithm to
the lowest achievable risk, for any problem to be learned [28,130,146,153]. Note, however, that
this convergence can be arbitrarily slow.

For a given sample size, it will depend on the problem being learned whether we
achieve low expected error. In addition to asymptotic consistency statements, learning theory
makes finite sample size statements: one can prove that with probability at least 1 � ı (for
ı > 0), for all functions f in a class of functions with VC dimension h,

RŒf � � RempŒf �C

s
1

m

�
h.log.2m=h/C 1/C log

4

ı

�
: (2.4)

This is an example of a class of results that relate the training error RempŒf � and the test error
RŒf � using a confidence interval (the square root term) depending on a capacity measure of
a function class (here, its VC dimension h). It says that with high probability, the expected
error RŒf � on future observations generated by the unknown probability distribution is small,
provided the two terms on the right-hand side are small: the training error RempŒf � (i.e., the
error on the examples we have already seen), and the square root term, which will be small
whenever the capacity h is small compared to the number of training observations m. If, on
the other hand, we try to learn something that may not make sense, such as the mapping from
the name of people to their telephone number, we would find that to explain all the training
data (i.e., to obtain a small RempŒf �), we need a model whose capacity h is large, and the
second term becomes large. In any case, it is crucial for both consistency results and finite
sample error bounds such as (2.4) that we have i.i.d. data.

Kernel methods. A symmetric function k W X2 ! R, where X is a nonempty set, is
called a positive definite (pd) kernel if for arbitrary points x1; : : : ; xm 2 X and coeffi-
cients a1; : : : ; am 2 R: X

i;j

ai aj k.xi ; xj / � 0:
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The kernel is called strictly positive definite if for pairwise distinct points, the implicationP
i;j ai aj k.xi ; xj / D 0 H) 8i W ai D 0 is valid. Any positive definite kernel induces a

mapping
ˆ W x 7! k.x; �/ (2.5)

into a reproducing kernel Hilbert space (RKHS) H satisfying˝
k.x; �/; k.x0; �/

˛
D k.x; x0/ (2.6)

for all x; x0 2X. Although H may be infinite-dimensional, we can construct practical clas-
sification algorithms in H provided that all computational steps are carried out in terms of
scalar products, since those can be reduced to kernel evaluations (2.6).

In the SVM algorithm, the capacity of the function class is restricted by enforcing a
large margin of class separation in H via a suitable RKHS regularization term. The solution
can be shown to take the form

f .x/ D sgn
�X

i

˛i k.xi ; x/C b

�
; (2.7)

where the learned parameters ˛i and b are the solution of a convex quadratic optimization
problem. A similar expansion of the solution in terms of kernel functions evaluated at training
points holds true for a larger class of kernel algorithms beyond SVMs, regularized by an
RKHS norm [126].

In kernel methods, the kernel plays three roles which are crucial for machine learn-
ing: it acts as a similarity measure for data points, induces a representation in a linear space4

via (2.5), and parametrizes the function class within which the solution is sought, cf. (2.7).

Kernel mean embeddings. Consider two sets of points X WD ¹x1; : : : ; xmº � X and
Y WD ¹y1; : : : ; ynº � X. We define the mean map � as [130]

�.X/ D
1

m

mX
iD1

k.xi ; �/: (2.8)

For polynomial kernels k.x; x0/ D .hx; x0i C 1/d , we have �.X/ D �.Y / if all empirical
moments up to order d coincide. For strictly pd kernels, the means coincide only if X D Y ,
rendering � injective [131]. The mean map has some other interesting properties [143], e.g.,
�.X/ represents the operation of taking a mean of a function on the sample X :˝

�.X/; f
˛
D

*
1

m

mX
iD1

k.xi ; �/; f

+
D

1

m

mX
iD1

f .xi /:

Moreover, we have�.X/ � �.Y /
 D sup

kf k�1

ˇ̌˝
�.X/ � �.Y /; f

˛ˇ̌
D sup

kf k�1

ˇ̌̌̌
ˇ 1

m

mX
iD1

f .xi / �
1

n

nX
iD1

f .yi /

ˇ̌̌̌
ˇ:

4 Note that the data domain X need not have any structure other than being a nonempty set.
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If Ex;x0�pŒk.x; x0/�; Ex;x0�qŒk.x; x0/� <1, then the above statements, including
the injectivity of �, generalize to Borel measures p; q, if we define the mean map as

� W p 7! Ex�p

�
k.x; �/

�
;

and replace the notion of strictly pd kernels by that of characteristic kernels [33]. This means
that we do not lose information when representing a probability distribution in the RKHS.
This enables us to work with distributions using Hilbert space methods, and construct prac-
tical algorithms analyzing distributions using scalar product evaluations.

Note that the mean map � can be viewed as a generalization of the moment gener-
ating function Mp of a random variable x with distribution p,

Mp.�/ D Ex�p

�
ehx;�i

�
:

The map � has applications in a number of tasks, including computing functions of random
variables [129] and testing for homogeneity [41] or independence [43]. The latter will be of par-
ticular interest to causal inference: we can develop a kernel-based independence test by com-
puting the distance between sample-based embeddings of a joint distribution p.X; Y / and
the product of its marginals p.X/p.Y / [42–44,114,165], and generalize it to conditional inde-
pendence testing [33,100], as required for certain causal discovery methods (see Section 7).

3. From statistical to causal models

Methods relying on i.i.d. data. In current successes of machine learning [79], we gener-
ally (i) have large amounts of data, often from simulations or large-scale human labeling,
(ii) use high capacity machine learning models (e.g., neural networks with many adjustable
parameters), and (iii) employ high performance computing. Statistical learning theory offers
a partial explanation for recent successes of learning: huge datasets enable training complex
models and thus solving increasingly difficult tasks.

However, a crucial aspect that is often ignored is that we (iv) assume that the data are
i.i.d. This assumption is crucial for good performance in practice, and it underlies theoretical
statements such as (2.4). When faced with problems that violate the i.i.d. assumption, all bets
are off. Vision systems can be grossly misled if an object that is normally recognized with
high accuracy is placed in a context that in the training set may be negatively correlated with
the presence of the object. For instance, such a system may fail to recognize a cow standing
on the beach. In order to successfully generalize in such settings, we would need to construct
systems which do not merely rely on statistical dependences, but instead model mechanisms
that are robust across certain violations of the i.i.d. assumption. As we will argue, causality
provides a natural framework for capturing such stable mechanisms and reasoning about
different types of distribution shifts.

Correlation vs. causation. It is a commonplace that correlation does not imply causation.
Two popular and illustrative examples are the positive correlation between chocolate con-
sumption and Nobel prizes per capita [91], and that between the number of stork breeding
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Figure 3

Measurements of two genes (x-axis), gene A (left) and gene B (right), show the same strong positive correlation
with a phenotype (y-axis). However, this statistical information alone is insufficient to predict the outcome of a
knock-out experiment where the activity of a gene is set to zero (vertical lines at x D 0). Answering such
interventional questions requires additional causal knowledge (inset causal graphs): knocking out gene A, which
is a direct cause, would lead to a reduction in phenotype, whereas knocking out gene B, which shares a common
cause, or confounder, with the phenotype but has no causal effect on it, would leave the phenotype unaffected.
This shows that correlation alone is not enough to predict the outcome of perturbations to a system (toy data,
figure from [111]).

pairs and human birth rates [89], neither of which admit a sensible interpretation in terms of
direct causation. These examples naturally lead to the following questions: What exactly do
we mean by “causation”? What is its relationship to correlation? And, if correlation alone is
not enough, what is needed to infer causation?

Here, we adopt a notion of causality based on manipulability [159] and interven-
tion [104] which has proven useful in fields such as agriculture [161], econometrics [46, 52],
and epidemiology [118].

Definition 3.1 (Causal effect). We say that a random variable X has a causal effect on a
random variable Y if there exist x ¤ x0 such that the distribution of Y after intervening on
X and setting it to x differs from the distribution of Y after setting X to x0.

Inherent to the notion of causation, there is a directionality and asymmetry which
does not exist for correlation: if X is correlated with Y , then Y is equally correlated with X ;
but, if X has a causal effect on Y , the converse (in the generic case) does not hold.

We illustrate the intervention-based notion of causation and its difference from cor-
relation (or, more generally, statistical dependence) in Figure 3. Here, knocking out two genes
XA and XB that are indistinguishable based on their correlation with a phenotype Y would
have very different effects. Only intervening on XA would change the distribution of Y ,
whereas XB does not have a causal effect on Y —instead, their correlation arises from a
different (confounded) causal structure. Such causal relationships are most commonly rep-
resented in the form of causal graphs where directed arrows indicate a direct causal effect.

5548 B. Schölkopf and J. von Kügelgen



Figure 4

Reichenbach’s common cause principle [116] postulates that statistical dependence between two random variables
X and Y has three elementary possible causal explanations shown as causal graphs in (a)–(c). It thus states that
association is always induced by an underlying causal process. In (a) the common cause Z coincides with X , and
in (b) it coincides with Y . Grey nodes indicate observed and white nodes unobserved variables.

The example in Figure 3 shows that the same correlation can be explained by mul-
tiple causal graphs which lead to different experimental outcomes, i.e., correlation does
not imply causation. However, there is a connection between correlation and causation,
expressed by Reichenbach [116] as the Common Cause Principle, see Figure 4.

Principle 3.2 (Common cause). If two random variables X and Y are statistically depen-
dent (X =??Y ), then there exists a random variable Z which causally influences both of them
and which explains all their dependence in the sense of rendering them conditionally inde-
pendent (X ?? Y j Z). As a special case, Z may coincide with X or Y .

According to Principle 3.2, statistical dependence always results from underlying
causal relationships by which variables, including potentially unobserved ones, influence
each other. Correlation is thus an epiphenomenon, the byproduct of a causal process.

For the example of chocolate consumption (X ) and Nobel laureates (Y ), common
sense suggests that neither of the two variables should have a causal effect on the other, i.e.,
neither chocolate consumption driving scientific success (X ! Y ; Figure 4a) nor Nobel
laureates increasing chocolate consumption (Y ! X ; Figure 4b) seem plausible. Princi-
ple 3.2 then tells us that the observed correlation must be explained by a common cause Z

as in Figure 4c. A plausible candidate for such a confounder could, for example, be economic
factors driving both consumer spending and investment in education and science.

Without such background knowledge or additional assumptions, however, we cannot
distinguish the three cases in Figure 4 through passive observation, i.e., in a purely data-
driven way: the class of observational distributions over X and Y that can be realized by
these models is the same in all three cases.

To be clear, this does not mean that correlation cannot be useful, or that causal
insight is always required. Both genes in Figure 3 remain useful features for making pre-
dictions in a passive, or observational, setting in which we measure the activities of certain
genes and are asked to predict the phenotype. Similarly, chocolate consumption remains
predictive of winning Nobel prizes. However, if we want to answer interventional questions,
such as the outcome of a gene-knockout experiment or the effect of a policy enforcing higher
chocolate consumption, we need more than correlation: a causal model.
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4. Causal modeling frameworks

Causal inference has a long history in a variety of disciplines, including statistics,
econometrics, epidemiology, and AI. As a result, different frameworks for causal modeling
have emerged over the years and coexist today. The first framework described below (CGM)
starts from the distribution of the observables, combining it with a directed graph to endow
it with causal semantics. The second (SCM) starts from a graph and a set of functional
assignments, and generates the observed distribution as the push-forward of an unobserved
noise distribution. Finally, we cover a nongraphical approach (PO) popular in statistics.

Causal graphical models (CGMs). The graphical models framework [75, 78] provides a
compact way of representing joint probability distributions by encoding the dependence
structure between variables in graphical form. Directed graphical models are also known
as Bayesian networks [101]. While they do not offer a causal interpretation per se—indeed,
different graphical models can be compatible with the same distribution (cf. Principle 3.2)—
when edges are endowed with the notion of direct causal effect (Definition 3.1), we refer to
them as causal graphical models (CGM) [144].

Definition 4.1 (CGM). A CGM M D .G; p/ over n random variables X1; : : : ; Xn consists
of: (i) a directed acyclic graph (DAG) G in which directed edges (Xj !Xi ) represent a direct
causal effect of Xj on Xi ; and (ii) a joint distribution p.X1; : : : ; Xn/ which is Markovian
with respect to G:

p.X1; : : : ; Xn/ D

nY
iD1

p.Xi j PAi / (4.1)

where PAi D ¹Xj W .Xj !Xi / 2Gº denotes the set of parents, or direct causes, of Xi in G.

We will refer to (4.1) as the causal (or disentangled) factorization. While many
other entangled factorizations are possible, e.g.,

p.X1; : : : ; Xn/ D

nY
iD1

p.Xi j XiC1; : : : ; Xn/; (4.2)

only (4.1) decomposes the joint distribution into causal conditionals, or causal mechanisms,
p.Xi j PAi /, which can have a meaningful physical interpretation, rather than being mere
mathematical objects such as the factors on the RHS of (4.2).

It turns out that (4.1) is equivalent to the following condition.

Definition 4.2 (Causal Markov condition). A distribution p satisfies the causal Markov
condition with respect to a DAG G if every variable is conditionally independent of its non-
descendants in G given its parents in G.

Definition 4.2 can equivalently be expressed in terms of d-separation, a graphical
criterion for directed graphs [104], by saying that d-separation in G implies (conditional)
independence in p. The causal Markov condition thus provides a link between properties of
p and G.
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Figure 5

(a) A directed acyclic graph (DAG) G over three variables. A causal graphical model .G; p/ with causal graph G

and observational distribution p can be used to answer interventional queries using the concept of graph surgery:
when a variable is intervened upon and set to a constant (white diamonds), this removes any influence from other
variables, captured graphically by removing all incoming edges. (b) and (c) show postintervention graphs G0

and G00 for do.X2 WD x2/ and do.X3 WD x3/, respectively. (An intervention on X1 would leave the graph
unaffected.)

What makes CGMs causal is the interpretation of edges as cause–effect relationships
which enables reasoning about the outcome of interventions using the do-operator [104] and
the concept of graph surgery [144]. The central idea is that intervening on a variable, say by
externally forcing it to take on a particular value, renders it independent of its causes and
breaks their causal influence on it, see Figure 5 for an illustration. For example, if a gene
is knocked out, it is no longer influenced by other genes that were previously regulating it;
instead, its activity is now solely determined by the intervention. This is fundamentally differ-
ent from conditioning since passively observing the activity of a gene provides information
about its driving factors (i.e., its direct causes).

To emphasize this difference between passive observation and active intervention,
Pearl [104] introduced the notation do.X WD x/ to denote an intervention by which variable
X is set to value x. The term graph surgery refers to the idea that the effect of such an
intervention can be captured in the form of a modification to the original graph by removing
all incoming edges to the intervened variable. Interventional queries can then be answered
by performing probabilistic inference in the modified postintervention graph which typically
implies additional (conditional) independences due to the removed edges.

Example 4.3. The interventional distribution p.X3jdo.X2 WD x2// for the CGM in Figure 5
is obtained via probabilistic inference with respect to the postintervention graph G0 where
X1 ?? X2:

p
�
X3j do.X2 WD x2/

�
D

X
x12X1

p.x1/p.X3jx1; x2/ (4.3)

¤

X
x12X1

p.x1jx2/p.X3jx1; x2/ D p.X3jx2/: (4.4)

It differs from the conditional p.X3jx2/ for which inference in done over G where X1 =??X2.
Note the marginal p.x1/ in (4.3), in contrast to the conditional p.x1jx2/ in (4.4): this is
precisely the link which is broken by the intervention do.X2 WD x2/, see Figure 5b. The right-
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hand side of (4.3) is an example of covariate adjustment: it controls for the confounder X1 of
the causal effect of X2 on X3, see Section 9 for more details on adjustment and computing
interventions.

CGMs have been widely used in constraint- and score-based approaches to causal
discovery [47,144] which we will discuss in Section 7. Due to their conceptual simplicity, they
are a useful and intuitive model for reasoning about interventions. However, their capacity
as a causal model is limited in that they do not support counterfactual reasoning, which is
better addressed by the two causal modeling frameworks which we will discuss next.

Structural causal models (SCMs). Structural causal models, also referred to as func-
tional causal models or nonparametric structural equation models, have ties to the graphical
approach presented above, but rely on using directed functional parent–child relationships
rather than causal conditionals. While conceptually simple in hindsight, this constituted a
major step in the understanding of causality, as later expressed by [104, page 104]:

“We played around with the possibility of replacing the parents–child relation-
ship p.Xi jPAi / with its functional counterpart Xi D fi .PAi ; Ui / and, suddenly,
everything began to fall into place: We finally had a mathematical object to which
we could attribute familiar properties of physical mechanisms instead of those
slippery epistemic probabilities p.Xi jPAi / with which we had been working so
long in the study of Bayesian networks.”

Definition 4.4 (SCM). An SCM MD .F;pU/ over a setX of n random variables X1; : : : ;Xn

consists of (i) a set F of n assignments (the structural equations),

F D
®
Xi WD fi .PAi ; Ui /

¯n

iD1
(4.5)

where fi are deterministic functions computing each variable Xi from its causal par-
ents PAi � X n ¹Xiº and an exogenous noise variable Ui ; and (ii) a joint distribution
pU.U1; : : : ; Un/ over the exogenous noise variables.

The paradigm of SCMs views the processes fi by which each observable Xi is
generated from others as a physical mechanism. All randomness comes from the unobserved
(also referred to as unexplained) noise terms Ui which capture both possible stochasticity of
the process, as well as uncertainty due to unmeasured parts of the system.

Note also the assignment symbol “WD” which is used instead of an equality sign
to indicate the asymmetry of the causal relationship: the left-hand side quantity is defined
to take on the right-hand side value. For example, we cannot simply rewrite a structural
equation X2 WD f2.X1; U2/ as X1 D g.X2; U2/ for some g, as would be the case for a
standard (invertible) equation.

In parametric, linear form (i.e., with linear fi ), SCMs are also known as structural
equation models and have a long history in path analysis [161] and economics [46,52].
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Each SCM induces a corresponding causal graph via the input variables to the struc-
tural equations which is useful as a representation and provides a link to CGMs.

Definition 4.5 (Induced causal graph). The causal graph G induced by an SCM M is the
directed graph with vertex set X and a directed edge from each vertex in PAi to Xi for all i .

Example 4.6. Consider an SCM over X D ¹X1; X2; X3º with some pU.U1; U2; U3/ and

X1 WD f1.U1/; X2 WD f2.X1; U2/; X3 WD f3.X1; X2; U3/:

Following Definition 4.5, the induced graph then corresponds to G in Figure 5.

Definition 4.4 allows for a rich class of causal models, including those with cyclic
causal relations and ones which do not obey the causal Markov condition (Definition 4.2)
due to complex covariance structures between the noise terms. While work exists on such
cyclic or confounded SCMs [13], it is common to make the following two assumptions.

Assumption 4.7 (Acyclicity). The induced graph G is a DAG: it does not contain cycles.

Assumption 4.8 (Causal sufficiency/no hidden confounders). The Ui are jointly indepen-
dent, i.e., their distribution factorizes, pU.U1; : : : ; Un/ D pU1.U1/ � � � � � pUn.Un/.

Assumption 4.7 implies5 the existence of a well-defined, unique (observational) dis-
tribution over X from which we can draw via ancestral sampling:6 first, we draw the noise
variables from pU, and then we iteratively compute the corresponding Xi ’s in topological
order of the induced DAG (i.e., starting at the root node of the graph), substituting previously
computed Xi into the structural equations where necessary. Formally, the (observational)
distribution p.X1; : : : ; Xn/ induced by an SCM under Assumption 4.7 is defined as the
push-forward of the noise distribution pU through the structural equations F. Under Assump-
tion 4.8, the causal conditionals are thus given by

p.Xi jPAi D pai / WD pUi

�
f �1
pai

.Xi /
�

for i D 1; : : : ; n; (4.6)

where f �1
pai

.Xi / denotes the preimage of Xi under fi for fixed PAi D pai .
Assumption 4.8 rules out the existence of hidden confounders because any unmea-

sured variables affecting more than one of the Xi simultaneously would constitute a depen-
dence between some of the noise terms (which account for any external, or exogenous,
influences not explained by the observed Xi ). In combination with Assumption 4.7, Assump-
tion 4.8 (also known as causal sufficiency) thus ensures that the distribution induced by an
SCM factorizes according to its induced causal graph as in (4.1). In other words, it guarantees
that the causal Markov condition is satisfied with respect to the induced causal graph [104].
Below, unless explicitly stated otherwise, we will assume causal sufficiency.

Due to the conceptual similarity between interventions and the assignment charac-
ter of structural equations, the computation of interventional distributions fits in naturally

5 Acyclicity is a sufficient, but not a necessary condition.
6 Since neither F nor p are known a priori, ancestral sampling should be seen as a hypothet-

ical sampling procedure; inference and learning are still necessary in general.
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into the SCM framework. To model an intervention, we simply replace the corresponding
structural equation and consider the resulting entailed distribution.

Definition 4.9 (Interventions in SCMs). An intervention do.Xi WD xi / in an SCM
M D .F; pU / is modeled by replacing the i th structural equation in F by Xi WD xi ,
yielding the intervened SCM Mdo.Xi WDxi / D .F0; pU /. The interventional distribution
p.X�i jdo.Xi WD xi //, where X�i D X n ¹Xiº, and intervention graph G0 are those induced
by Mdo.Xi WDxi /.

This way of handling interventions coincides with that for CGMs, e.g., after per-
forming do.X2 WD x2/ in Example 4.6, X1 no longer appears in the structural equation
for X2, and the edge X1 ! X2 hence disappears in the intervened graph, as is the case
for G0 in Figure 5.

In contrast to CGMs, SCMs also provide a framework for counterfactual reasoning.
While (i) observations describe what is passively seen or measured and (ii) interventions
describe active external manipulation or experimentation, (iii) counterfactuals are statements
about what would or could have been, given that something else was in fact observed. These
three modes of reasoning are sometimes referred to as the three rungs of the “ladder of
causation” [107]. As an example, consider the following counterfactual query:

Given that patient X received treatment A and his/her health got worse, what
would have happened if he/she had been given treatment B instead, all else being
equal?

The “all else being equal” part highlights the difference between interventions and counter-
factuals: observing the factual outcome (i.e., what actually happened) provides information
about the background state of the system (as captured by the noise terms in SCMs) which
can be used to reason about alternative, counterfactual, outcomes. This differs from an inter-
vention where such background information is not available. For example, observing that
treatment A did not work may tell us that the patient has a rare condition and that treat-
ment B would have therefore worked. However, given that treatment A has been prescribed,
the patient’s condition may have changed, and B may no longer work in a future intervention.

Note that counterfactuals cannot be observed empirically by their very definition
and are therefore unfalsifiable. Some therefore consider them unscientific [115] or at least
problematic [26]. On the other hand, humans seem to perform counterfactual reasoning in
practice, developing this ability in early childhood [14].

Counterfactuals are computed in SCMs through the following three-step procedure:

1. Update the noise distribution to its posterior given the observed evidence
(“abduction”).

2. Manipulate the structural equations to capture the hypothetical intervention
(“action”).

3. Use the modified SCM to infer the quantity of interest (“prediction”).
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Definition 4.10 (Counterfactuals in SCMs). Given evidence X D x observed from an SCM
M D .F; pU/, the counterfactual SCM MXDx is obtained by updating pU with its posterior:
MXDx D .F;pUjXDx/. Counterfactuals are then computed by performing interventions in the
counterfactual SCM MXDx, see Definition 4.9.

Note that while computing interventions only involved manipulating the structural
equations, counterfactuals also involve updating the noise distribution, highlighting the con-
ceptual difference between the two. Updating pU requires knowledge of the interaction
between noise and observed variables, i.e., of the structural equations, which explains why
additional assumptions are necessary. Note that the updated noise variables no longer need
to be independent, even if the original system was causally sufficient (Assumption 4.8).

Example 4.11 (Computing counterfactuals with SCMs). Consider an SCM M defined by

X WD UX ; Y WD 3X C UY ; UX ; UY � N .0; 1/: (4.7)

Suppose we observe X D 2 and Y D 6:5 and want to answer the counterfactual “what would
Y have been, had X D 1?,” i.e., we are interested in p.YXD1jX D 2;Y D 6:5/. Updating the
noise using the observed evidence via (4.7), we obtain the counterfactual SCM MXD2;Y D6:5,

X WD UX ; Y WD 3X C UY ; UX � ı.2/; UY � ı.0:5/; (4.8)

where ı.�/ denotes the Dirac delta measure. Performing the intervention do.X WD 1/ in (4.8)
then gives the result p.YXD1jX D 2;Y D 6:5/D ı.3:5/, i.e., “Y would have been 3:5.” This
differs from the interventional distribution p.Y j do.X D 1// D N .3; 1/, since the factual
observation helped determine the background state (UX D 2, UY D 0:5).

The SCM viewpoint is intuitive and lends itself well to studying restrictions on
function classes to enable induction (Section 2). For this reason, we will mostly focus on
SCMs in the subsequent sections.

Potential outcomes (PO). The potential outcomes framework was initially proposed by
Neyman [98] for randomized studies [31], and later popularized and extended to observa-
tional settings by Rubin [124] and others. It is popular within statistics and epidemiology and
perhaps best understood in the context of the latter. This is also reflected in its terminol-
ogy: in the most common setting, we consider a binary treatment variable T , with T D 1

and T D 0 corresponding to treatment and control, respectively, whose causal effect on an
outcome variable Y (often a measure of health) is of interest.

One interpretation of the PO framework consistent with its roots in statistics is to
view causal inference as a missing data problem. In the PO framework, for each individual
(or unit) i and treatment value t there is a PO, or potential response, denoted Yi .t/ capturing
what would happen if individual i received treatment t . The POs are considered determin-
istic quantities in the sense that for a given individual i , Yi .1/ and Yi .0/ are fixed and all
randomness in the realized outcome Yi stems from randomness in the treatment assignment,

Yi D T Yi .1/C .1 � T /Yi .0/: (4.9)

5555 From statistical to causal learning



Table 1

Causal inference as a missing data problem: for each individual i (rows), only the PO Yi .Ti / corresponding to the
assigned treatment Ti is observed; the other PO is a counterfactual. Hence, the unit-level causal effect
�i D Yi .1/ � Yi .0/ is unidentifiable.

i Ti Yi .1/ Yi .0/ �i

1 1 7 ? ?
2 0 ? 8 ?
3 1 3 ? ?
4 1 6 ? ?
5 0 ? 4 ?
6 0 ? 1 ?

To decide whether patient i should receive treatment, we need to reason about the individu-
alized treatment effect (ITE) �i as captured by the difference of the two POs.

Definition 4.12 (ITE). The ITE for individual i under a binary treatment is defined as

�i D Yi .1/ � Yi .0/: (4.10)

The “fundamental problem of causal inference” [51] is that only one of the POs is
ever observed for each i . The other, unobserved PO becomes a counterfactual,

Y cf
i D .1 � T /Yi .1/C T Yi .0/: (4.11)

Consequently, �i can never be measured or computed from data, i.e., it is not identifiable
(without further assumptions), as illustrated in Table 1.

Implicit in the form of (4.9) and (4.11) are the following two assumptions.

Assumption 4.13 (Stable unit treatment value; SUTVA). The observation on one unit
should be unaffected by the particular assignment of treatments to the other units [23].

Assumption 4.14 (Consistency). If individual i receives treatment t , then the observed out-
come is Yi D Yi .t/, i.e., the potential outcome for t .

Assumption 4.13 is usually understood as (i) units do not interfere, and (ii) there is
only one treatment level per group (treated or control) leading to well-defined POs [61]. It
can be violated, e.g., through (i) population dynamics such as herd immunity from vaccina-
tion or (ii) technical errors or varying within-group dosage, respectively. However, for many
situations such as controlled studies it can be a reasonable assumption, and we can then view
different units as independent samples from a population.

So far, we have considered POs for a given unit as deterministic quantities. How-
ever, most times it is impossible to fully characterize a unit, e.g., when dealing with complex
subjects such as humans. Such lack of complete information introduces uncertainty, so that
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POs are often instead treated as random variables. This parallels the combination of deter-
ministic structural equations with exogenous noise variables in SCMs.7 Indeed, there is a
equivalence between POs and SCMs [104]:

Yi .t/ D Y j do.T WD t / in an SCM with U D ui ;

An individual in the PO framework thus corresponds to a particular instantiation of the Uj in
an SCM: the outcome is deterministic given U, but since we do not observe ui (nor can we
characterize a given individual based on observed covariates), the counterfactual outcome is
treated as a random variable. In practice, all we observe is a featurized description xi of an
individual i and have to reason about expected POs, EŒY.1/; Y.0/jxi �.

Another common assumption is that of no hidden confounders which we have
already encountered in form of the causal Markov condition (Definition 4.2) for CGMs and
causal sufficiency (Assumption 4.8) for SCMs. In the PO framework this becomes no hidden
confounding between treatment and outcome and is referred to as (conditional) ignorability.

Assumption 4.15 (Conditional ignorability). Given a treatment T 2 ¹0; 1º, potential out-
comes Y.0/; Y.1/, and observed covariates X, we have

Y.0/ ?? T j X and Y.1/ ?? T j X: (4.12)

The PO framework is tailored toward studying the (confounded) effect of a typi-
cally binary treatment variable on an outcome and is mostly used for causal reasoning, i.e.,
estimating individual and population level causal effects (Section 9). In this context, it is
sometimes seen as an advantage that an explicit graphical representation is not needed. At
the same time, the lack of a causal graph and the need for special treatment and outcome
variables make POs rather unsuitable for causal discovery where other frameworks prevail.

5. Independent causal mechanisms

We now return to the disentangled factorization (4.1) of the joint distribution
p.X1; : : : ; Xn/. This factorization according to the causal graph is always possible when the
Ui are independent, but we will now consider an additional notion of independence relating
the factors in (4.1) to one another.

Consider a dataset that consists of altitude A and average annual temperature T of
weather stations [111]. Variables A and T are correlated, which we believe is due to the fact
that the altitude has a causal effect on the temperature. Suppose we had two such datasets, one
for Austria and one for Switzerland. The two joint distributions may be rather different, since
the marginal distributions p.A/ over altitudes will differ. The conditionals p.T jA/, however,
may be rather similar, since they follow from physical mechanisms generating temperature
from altitude. The causal factorization p.A/p.T jA/ thus contains a component p.T jA/ that

7 When all noise variables in an SCM are fixed, the other variables are uniquely determined;
without complete background knowledge, on the other hand, they are random.
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generalizes across countries, while the entangled factorization p.T /p.AjT / does not. Cum
grano salis, the same applies when we consider interventions in a system. For a model to
correctly predict the effect of interventions, it needs to be robust with respect to generalizing
from an observational distribution to certain interventional distributions.

One can express the above insights as follows [111,128]:

Principle 5.1 (Independent causal mechanisms (ICM)). The causal generative process of
system’s variables is composed of autonomous modules that do not inform or influence each
other. In the probabilistic case, this means that the conditional distribution of each variable
given its causes (i.e., its mechanism) does not inform or influence the other mechanisms.

This principle subsumes several notions important to causality, including separate
intervenability of causal variables, modularity and autonomy of subsystems, and invari-
ance [104,111]. If we have only two variables, it reduces to an independence between the cause
distribution and the mechanism producing the effect distribution from the cause distribution.

Applied to the causal factorization (4.1), the principle tells us that the factors should
be independent in two senses:

(influence) changing (or intervening upon) one mechanism p.Xi jPAi / does not
change the other mechanisms p.Xj jPAj / (i ¤ j ), and

(information) knowing some mechanisms p.Xi jPAi / (i ¤ j ) does not give us
information about a mechanism p.Xj jPAj /.

We view any real-world distribution as a product of causal mechanisms. A change in such
a distribution (e.g., when moving from one setting/domain to a related one) will always
be due to changes in at least one of those mechanisms. Consistent with Principle 5.1, we
hypothesize [133]:

Principle 5.2 (Sparse mechanism shift (SMS)). Small distribution changes tend to manifest
themselves in a sparse or local way in the causal/disentangled factorization (4.1), i.e., they
should usually not affect all factors simultaneously.

In contrast, if we consider a noncausal factorization, e.g., (4.2), then many terms
will be affected simultaneously as we change one of the physical mechanisms responsible
for a system’s statistical dependences. Such a factorization may thus be called entangled.
The notion of disentanglement has recently gained popularity in machine learning [9, 50,

83,147], sometimes loosely identified with statistical independence. The notion of invariant,
autonomous, and independent mechanisms has appeared in various guises throughout the
history of causality research, see [1,104,111,133].

Measures of dependence of mechanisms. Note that the dependence of two mechanisms
p.Xi jPAi / and p.Xj jPAj / does not coincide with the statistical dependence of the random
variables Xi and Xj . Indeed, in a causal graph, many of the random variables will be depen-
dent even if all the mechanisms are independent.
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If p.x/ and f are chosen independently, then peaks of p.y/ tend to occur in regions where f has small slope.
Hence p.y/ contains information about f �1 (figure from [111]).

Consider two variables and structural assignments X WDU and Y WD f .X/, i.e., the
cause X is a noise variable (with density p.x/), and the effect Y is a deterministic function
of the cause. Let us, moreover, assume that the ranges of X and Y are both Œ0; 1�, and f

is strictly monotonically increasing. The ICM principle then reduces to an independence of
p.x/ and f . Let us consider p.x/ and the derivative f 0 as random variables on the probabil-
ity space Œ0; 1� with Lebesgue measure, and use their correlation as a measure of dependence
of mechanisms. It can be shown that for f ¤ id, independence of p.x/ and f 0 implies
dependence between p.y/ and .f �1/0 (see Figure 6). Other measures are possible and
admit information-geometric interpretations. Intuitively, under the ICM assumption (Princi-
ple 5.1), the “irregularity” of the effect distribution becomes a sum of (i) irregularity already
present in the input distribution and (ii) irregularity introduced by the mechanism f , i.e., the
irregularities of the two mechanisms add up rather than (partly) compensating each other.
This would not be the case in the opposite (“anticausal”) direction (for details, see [68]).
Other dependence measures have been proposed for high-dimensional linear settings and
time series [12,63,67,136].

Algorithmic independence. So far, we have discussed links between causal and statistical
structures. The fundamental of the two is the causal structure, since it captures the physical
mechanisms that generate statistical dependences in the first place. The statistical structure is
an epiphenomenon that follows if we make the unexplained variables random. It is awkward
to talk about the (statistical) information contained in a mechanism, since deterministic func-
tions in the generic case neither generate nor destroy information. This motivated us to devise
an algorithmic model of causal structures in terms of Kolmogorov complexity [65]. The Kol-
mogorov complexity (or algorithmic information) of a bit string is essentially the length of
its shortest compression on a Turing machine, and thus a measure of its information content.
Independence of mechanisms can be defined as vanishing mutual algorithmic information:
two conditionals are considered independent if knowing (the shortest compression of) one
does not help achieve a shorter compression of the other one.
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Algorithmic information theory provides a natural framework for nonstatistical
graphical models. Just like statistical CGMs are obtained from SCMs by making the unex-
plained variables Ui random, we obtain algorithmic CGMs by making the Ui bit strings
(jointly independent across nodes) and viewing the node Xi as the output of a fixed Turing
machine running program Ui with input PAi . Similar to the statistical case, one can define a
local causal Markov condition, a global one in terms of d-separation, and a decomposition of
the joint Kolmogorov complexity in analogy to (4.1), and prove that they are implied by the
SCM [65]. This approach shows that causality is not intrinsically bound to statistics: causality
is about mechanisms governing flow of information which may or may not be statistical.

The assumption of algorithmically independent mechanisms has interesting impli-
cations for physics: it implies the second law of thermodynamics (i.e., the arrow of time).
Consider a process where an incoming ordered beam of photons (the cause) is scattered by an
object (the mechanism). Then the outgoing beam (the effect) contains information about the
object. Microscopically, the time evolution is reversible; however, the photons contain infor-
mation about the object only after the scattering. What underlies Loschmidt’s paradox [86]?

The asymmetry can be explained by applying the ICM Principle 5.1 to initial state
and system dynamics, postulating that the two be algorithmically independent, i.e., knowing
one does not allow a shorter description of the other. The Kolmogorov complexity of the
system’s state can then be shown to be nondecreasing under time evolution [62]. If we view
Kolmogorov complexity as a measure of entropy, this means that the entropy of the state can
only stay constant or increase, amounting to the second law of thermodynamics.

Note that the resulting state after time evolution is clearly not independent of the
system dynamic: it is precisely the state that, when fed to the inverse dynamics, would return
us to the original (ordered) state.

6. Levels of causal modeling

Coupled differential equations are the canonical way of modeling physical phenom-
ena. They allow us to predict the future behavior of a system, to reason about the effect
of interventions, and—by suitable averaging procedures—to predict statistical dependences
that are generated by a coupled time evolution. They also allow us to gain insight into a
system, explain its functioning, and, in particular, read off its causal structure.

Consider a coupled set of ordinary differential equations
dx
dt
D f .x/; x 2 Rd ; (6.1)

with initial value x.t0/D x0. We assume that they correctly describe the physical mechanisms
of a system.8 The Picard–Lindelöf theorem states that, at least locally, if f is Lipschitz, there

8 In other words, they do not merely phenomenologically describe its time evolution without
capturing the underlying mechanisms (e.g., due to unobserved confounding, or a form of
coarse-graining that does not preserve the causal structure [123,133]).
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Table 2

A simple taxonomy of models. The most detailed model (top) is a mechanistic or physical one,
usually in terms of differential equations. At the other end of the spectrum (bottom), we have a purely statistical
model; this can be learned from data and is useful for predictions but often provides little insight beyond modeling
associations between epiphenomena. Causal models can be seen as descriptions that lie in between, abstracting
away from physical realism while retaining the power to answer certain interventional or counterfactual questions.

Model Predict
in i.i.d.
setting

Predict under
distribution
shift/intervention

Answer
counterfactual
questions

Obtain
physical
insight

Learn
from
data

Mechanistic/physical yes yes yes yes ?
Structural causal yes yes yes ? ?
Causal graphical yes yes no ? ?
Statistical yes no no no yes

exists a unique solution x.t/. This implies, in particular, that the immediate future of x is
implied by its past values.

In terms of infinitesimal differentials dt and dx D x.t C dt/ � x.t/, (6.1) reads

x.t C dt/ D x.t/C dt � f
�
x.t/

�
: (6.2)

From this, we can ascertain which entries of the vector x.t/ cause the future of others
x.t C dt/, i.e., the causal structure.

Compared to a differential equation, a statistical model derived from the joint distri-
bution of a set of (time-independent) random variables is a rather superficial description of
a system. It exploits that some of the variables allow the prediction of others as long as the
experimental conditions do not change. If we drive a differential equation system with cer-
tain types of noise, or if we average over time, statistical dependences between components
of x may emerge, which can be exploited by machine learning. In contrast to the differen-
tial equation model, such a model does not allow us to predict the effect of interventions;
however, its strength is that it can often be learned from data.

Causal modeling lies in between these two extremes. It aims to provide understand-
ing and predict the effect of interventions. Causal discovery and learning tries to arrive at
such models in a data-driven way, using only weak assumptions (see Table 2, from [111,133]).

While we may naively think that causality is always about time, most existing causal
models do not (and need not) consider time. For instance, returning to our example of altitude
and temperature, there is an underlying dynamical physical process that results in higher
places tending to be colder. On the level of microscopic equations of motion for the involved
particles, there is a temporal causal structure. However, when we talk about dependence
or causality between altitude and temperature, we need not worry about the details of this
temporal structure; we are given a dataset where time does not appear, and we can reason
about how that dataset would look if we were to intervene on temperature or altitude.
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Some work exists trying to build bridges between these different levels of descrip-
tion. One can derive SCMs that describe the interventional behavior of a coupled system
that is in an equilibrium state and perturbed in an adiabatic way [96], with generalizations to
oscillatory systems [122]. In this work, an SCM arises as a high-level abstraction of an under-
lying system of differential equations. It can only be derived if suitable high-level variables
can be defined [123], which in practice may well be the exception rather than the rule.

7. Causal discovery

Sometimes, domain knowledge or the temporal ordering of events can help constrain
the causal relationships between variables, e.g., we may know that certain attributes like age
or sex are not caused by others; treatments influence health outcomes; and events do not
causally influence their past. When such domain knowledge is unavailable or incomplete,
we need to perform causal discovery: infer which variables causally influence which others,
i.e., learn the causal structure (e.g., a DAG) from data. Since experiments are often difficult
and expensive to perform while observational (i.e., passively collected) data is abundant,
causal discovery from observational data is of particular interest.

As discussed in Section 3 in the context of the Common Cause Principle 3.2, the
case where we have two variables is already difficult since the same dependence can be
explained by multiple different causal structures. One might thus wonder if the case of more
observables is completely hopeless. Surprisingly, this is not the case: the problem becomes
easier (in a certain sense) because there are nontrivial conditional independence properties
[25, 35, 145] implied by a causal structure. We first review two classical approaches to the
multivariate setting before returning to the two-variable case.

Constraint-based methods. Constraint-based approaches to causal discovery test which
(conditional) independences can be inferred from the data and then try to find a graph which
implies them. They are therefore also known as independence-based methods. Such a pro-
cedure requires a way of linking properties of the data distribution p to properties of the
underlying causal graph G. This link is known as the faithfulness assumption.

Assumption 7.1 (Faithfulness). The only (conditional) independences satisfied by p are
those implied by the causal Markov condition (Definition 4.2).

Faithfulness can be seen as the converse of the causal Markov condition. Together,
they constitute a one-to-one correspondence between graphical separation in G and condi-
tional independence in p. While the causal Markov condition is satisfied by construction,
faithfulness is an assumption which may be violated. A classical example for a violation of
faithfulness is when causal effects along different paths cancel.

Example 7.2 (Violation of faithfulness). Consider the SCM from Example 4.6 and let

X1 WD U1; X2 WD ˛X1 C U2; X3 WD ˇX1 C X2 C U3
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Figure 7

Illustration of Markov equivalence using common graph motifs. The chains in (a) and the fork in (b) all imply the
relation X ?? Z j Y (and no others). They thus form a Markov equivalence class, meaning they cannot be
distinguished using conditional independence testing alone. The collider, or v-structure, in (c) implies X ?? Z

(but X =??Z j Y ) and forms its own Markov equivalence class, so it can be uniquely identified from observational
data. For this reason, v-structures are helpful for causal discovery. It can be shown that two graphs are Markov
equivalent if and only if they share the same skeleton and v-structures.

with U1; U2; U3
i:i:d:
� N .0; 1/. By substitution, we obtain X3 D .ˇ C ˛/X1 C U2 C U3.

Hence X3 ??X1 whenever ˇC ˛ D 0, even though this independence is not implied by the
causal Markov condition over the induced causal graph G, see Figure 5. Here, faithfulness
is violated if the direct effect of X1 on X3 (ˇ) and the indirect effect via X2 (˛ ) cancel.

Apart from relying on faithfulness, a fundamental limitation to constraint-based
methods is the fact that many different DAGs may encode the same d-separation/indepen-
dence relations. This is referred to as Markov equivalence and illustrated in Figure 7.

Definition 7.3 (Markov equivalence). Two DAGs are said to be Markov equivalent if they
encode the same d-separation statements. The set of all DAGs encoding the same d-separa-
tions is called a Markov equivalence class.

Constraint-based algorithms typically first construct an undirected graph, or skele-
ton, which captures the (conditional) independences found by testing, and then direct as
many edges as possible using Meek’s orientation rules [90]. The first step carries most of the
computational weight and various algorithms have been devised to solve it efficiently.

The simplest procedure is implemented in the IC [109] and SGS [144] algorithms. For
each pair of variables .X; Y /, these search through all subsets W of the remaining variables
to check whether X ?? Y j W. If no such set W is found, then X and Y are connected
with an edge. Since this can be slow due to the large number of subsets, the PC algorithm
[144] uses a much more efficient search procedure. It starts from a complete graph and then
sequentially test only subsets of the neighbors of X or Y of increasing size, removing an
edge when a separating subset is found. This neighbor search is no longer guaranteed to give
the right result for causally insufficient systems, i.e., in the presence of hidden confounders.
The FCI (short for fast causal inference) algorithm [144] addresses this setting, and produces
a partially directed causal graph as output.

Apart from being limited to recovering a Markov equivalence class, constraint-based
methods can suffer from statistical issues. In practice, datasets are finite, and conditional
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independence testing is a notoriously difficult problem, especially if conditioning sets are
continuous and multidimensional. So while, in principle, the conditional independences
implied by the causal Markov condition hold true irrespective of the complexity of the
functions appearing in an SCM, for finite datasets conditional independence testing is hard
without additional assumptions [135]. Recent progress in (conditional) independence testing
heavily relies on kernel function classes to represent probability distributions in reproducing
kernel Hilbert spaces, see Section 2.

Score-based methods. Score-based approaches to causal discovery assign a score to each
graph G from a set of candidate graphs (usually the set of all DAGs). The score S is supposed
to reflect how well G explains the observed data DD ¹x1; : : : ;xmº, and we choose the graph
OG maximizing this score,

OG D argmax
G

S.GjD/:

Various score functions have been proposed, but most methods assume a parametric model
which factorizes according to G, parametrized by � 2‚. Two common choices are multino-
mial models for discrete data [22] and linear Gaussian models for continuous data [34]. For
example, a penalized maximum likelihood approach using the BIC [134] as a score yields

Sbic.GjD/ D log p.DjG; O�mle/ �
k

2
log m; (7.1)

where k is the number of parameters and O�mle is the maximum likelihood estimate for � to
D in G. Note that k generally increases with the number of edges in G so that the second
term in (7.1) penalizes complex graphs which do not lead to substantial improvements.

Another choice of score function is the marginal likelihood, or evidence, in a
Bayesian approach to causal discovery, which requires specifying prior distributions over
graphs and parameters, p.G; �/ D p.G/p.� jG/. The score for G is then given by

Sbayes.GjD/ D p.DjG/ D

Z
‚

p.DjG; �/p.� jG/d�: (7.2)

This integral is intractable in general, but can be computed exactly for some models such as
a Dirichlet-multinomial under some mild additional assumptions [47,48].

A major drawback of score-based approaches is the combinatorial size of the search
space. The number of DAGs over n random variables grows superexponentially and can be
computed recursively (to account for acyclicity constraints) [119]. For example, the number
of DAGs for n D 5 and n D 10 nodes is 29281 and 4175098976430598143, respectively.
Finding the best scoring DAG is NP-hard [20]. To overcome this problem, greedy search
techniques can be applied, e.g., greedy equivalence search (GES) [21] which optimizes for
the BIC.

In recent years, another class of methods has emerged that is based on assuming
particular functional forms for the SCM assignments. Those arose from studying the cause-
effect inference problem, as discussed below.
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Cause–effect inference. In the case of only two variables, the ternary concept of condi-
tional independences collapses and the causal Markov condition (Definition 4.2) thus has no
nontrivial implications. However, we have seen in Section 5 that assuming an independence
of mechanisms (Principle 5.1) lets us find asymmetries between cause and effect, and thus
address the cause–effect inference problem previously considered unsolvable [68]. It turns
out that this problem can be also addressed by making additional assumptions on function
classes, as not only the graph topology leaves a footprint in the observational distribution,
but so do the functions fi in an SCM. Such assumptions are typical for machine learning,
where it is well known that finite-sample generalization without assumptions on function
classes is impossible, and where much attention is devoted to properties of function classes
(e.g., priors or capacity measures), as discussed in Section 2.

Let us provide an intuition as to why assumptions on the functions in an SCM should
help learn about them from data. Consider a toy SCM with only two observables X ! Y .
In this case, the structural equations (4.5) turn into

X WD U; Y WD f .X; V / (7.3)

with noises U ?? V . Now think of V acting as a random selector variable choosing from
among a set of functions F D ¹fv.x/� f .x; v/ j v 2 supp.V /º. If f .x; v/ depends on v in
a nonsmooth way, it should be hard to glean information about the SCM from a finite dataset,
given that V is not observed and it randomly switches between arbitrarily different fv .9 This
motivates restricting the complexity with which f depends on V . A natural restriction is to
assume an additive noise model

X WD U; Y WD f .X/C V: (7.4)

If f in (7.3) depends smoothly on V , and if V is relatively well concentrated, this can be
motivated by a local Taylor expansion argument. Such assumptions drastically reduce the
effective size of the function class—without them, the latter could depend exponentially on
the cardinality of the support of V .

Restrictions of function classes can break the symmetry between cause and effect
in the two-variable case: one can show that given a distribution over X; Y generated by an
additive noise model, one cannot fit an additive noise model in the opposite direction (i.e.,
with the roles of X and Y interchanged) [6,53,76,95,113]. This is subject to certain genericity
assumptions, and notable exceptions include the case where U; V are Gaussian and f is
linear. It generalizes results of [139] for linear functions, and it can be generalized to include
nonlinear rescaling [164], cycles [94], confounders [64], and multivariable causal discovery
[112]. There is now a range of methods that can detect causal direction better than chance [97].

9 Suppose X and Y are binary, and U; V are uniform Bernoulli variables, the latter selecting
from F D ¹id; notº (i.e., identity and negation). In this case, the entailed distribution for Y

is uniform, independent of X , even though we have X ! Y . We would be unable to discern
X ! Y from data. (This would also constitute a violation of faithfulness (Assumption 7.1).)
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We have thus gathered some evidence that ideas from machine learning can help
tackle causality problems that were previously considered hard. Equally intriguing, however,
is the opposite direction: can causality help us improve machine learning?

Nonstationarity-based methods. The last family of causal discovery approaches we men-
tion is based on ideas of nonstationarity and invariance [128]. These approaches do not apply
to purely observational data collected in an i.i.d. setting. In contrast, they aim to leverage
heterogeneity of data collected from different environments. The main idea is the follow-
ing: since causal systems are modular in the sense of the ICM Principle 5.1, changing one
of the independent mechanisms should leave the other components, or causal conditionals,
unaffected (SMS Principle 5.2). A correct factorization of the joint distribution according
to the underlying causal structure should thus be able to explain heterogeneity by localized
changes in one (or few) of the mechanisms while the others remain invariant.

One of the first works to use this idea [150] analyzed which causal structures can be
distinguished given data resulting from a set of mechanism changes. Recent work [55] addi-
tionally aims to learn a low-dimensional representation of the mechanism changes. Other
works [110,120] have proposed methods for finding the direct causes of a given target variable.
Using a recent result on identifiability of nonlinear ICA [59] which also relies on nonstation-
arity, a method for learning general nonlinear SCMs was proposed [93]. Here the idea is
to train a classifier to discriminate between the true value of some nonstationarity variable
(such as a time-stamp or environment indicator) and a shuffled version thereof.

8. Implications for machine learning

Semisupervised learning. Suppose our underlying causal graph is X ! Y , and we are
trying to learn a mapping X ! Y . The causal factorization (4.1) for this case is

p.X; Y / D p.X/p.Y jX/: (8.1)

The ICM Principle 5.1 posits that the modules in a joint distribution’s causal factorization
do not inform or influence each other. This means that, in particular, p.X/ should contain no
information about p.Y jX/, which implies that semisupervised learning [17] should be futile,
as it is trying to use additional information about p.X/ (from unlabeled data) to improve
our estimate of p.Y jX D x/. What about the opposite direction, is there hope that semi-
supervised learning should be possible in that case? It turns out the answer is yes, due to the
work on cause–effect inference using the ICM Principle 5.1 [24]. It introduced a measure of
dependence between the input and the conditional of output given input, and showed that
if this dependence is zero in the causal direction, then it is strictly positive in the opposite
direction. Independence of cause and mechanism in the causal direction thus implies that in
the backward direction (i.e., for anticausal learning), the distribution of the input variable
should contain information about the conditional of output given input, i.e., the quantity
that machine learning is usually concerned with. This is exactly the kind of information that
semisupervised learning requires when trying to improve the estimate of output given input
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by using unlabeled inputs. This suggests that semisupervised learning should be impossi-
ble for causal learning problems, but feasible otherwise, in particular for anticausal ones.
A metaanalysis of published semisupervised learning benchmark studies corroborated this
prediction [128], and similar results apply for natural language processing [69]. These findings
are intriguing since they provide insight into physical properties of learning problems, thus
going beyond the methods and applications that machine learning studies usually provide.

Subsequent developments include further theoretical analyses [66,111] and a form of
conditional semisupervised learning [156]. The view of semisupervised learning as exploiting
dependences between a marginal p.x/ and a noncausal conditional p.yjx/ is consistent with
the common assumptions employed to justify semisupervised learning [17,125].

Invariance and robustness. We have discussed the shortcomings of the i.i.d. assumption,
which rarely holds true exactly in practice, and the fact that real-world intelligent agents need
to be able to generalize not just within a single i.i.d. setting, but across related problems.
This notion has been termed out-of-distribution (o.o.d.) generalization, attracting significant
attention in recent years [133]. While most work so far has been empirical, statistical bounds
would be desirable that generalize (2.4), including additional quantities measuring the dis-
tance between training and test distribution, incorporating meaningful assumptions [137].
Such assumptions are necessary [8], and could be causal, or related to invariance properties.

The recent phenomenon of “adversarial vulnerability” [148] shows that minuscule
targeted violations of the i.i.d. assumption, generated by adding suitably chosen noise to
images (imperceptible to humans), can lead to dangerous errors such as confusion of traffic
signs. These examples are compelling as they showcase nonrobustnesses of artificial systems
which are not shared by human perception. Our own perception thus exhibits invariance or
robustness properties that are not easily learned from a single training set.

Early causal work related to domain shift [128] looked at the problem of learning
from multiple cause–effect datasets that share a functional mechanism but differ in noise
distributions. More generally, given (data from) multiple distributions, one can try to identify
components which are robust, and find means to transfer them across problems [4, 36, 54,

163, 166]. According to the ICM Principle 5.1, invariance of conditionals or functions (also
referred to as covariate shift in simple settings) should only hold in the causal direction, a
reversal of the impossibility described for SSL.

Building on the work of [110,128], the idea of invariance for prediction has also been
used for supervised learning [3, 87, 120]. In particular, “invariant risk minimization” (IRM)
was proposed as an alternative to ERM, cf. (2.3).

9. Causal reasoning

In contrast to causal discovery (Section 7), which aims to uncover the causal struc-
ture underlying a set of variables, causal reasoning starts from a known (or postulated) causal
graph and answers causal queries of interest. While causal discovery often looks for qualita-
tive relationships, causal reasoning usually aims to quantify them. This requires two steps:
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(i) identifying the query, i.e., deriving an estimand for it that only involves observed quanti-
ties; and (ii) estimating this using data. Often, the quantities of interest can be described as
treatment effects, i.e., contrasts between two interventions.

Definition 9.1 (Treatment effects). The conditional average treatment effect (CATE), con-
ditioned on (a subset of) features x, is defined as

�.x/ WD E
�
Y jx; do.T D 1/

�
� E

�
Y jx; do.T D 0/

�
D E

�
Y.1/ � Y.0/jx

�
: (9.1)

The average treatment effect (ATE) is defined as the population average of the CATE,

� WD E
�
�.X/

�
D E

�
Y j do.T D 1/

�
� E

�
Y j do.T D 0/

�
D E

�
Y.1/ � Y.0/

�
: (9.2)

While ITE (Definition 4.12) and CATE (9.1) are sometimes used interchangeably,
there is a conceptual difference: ITE refers to the difference of two POs and is thus bound
to an individual, while CATE applies to subpopulations, e.g., the CATE for females in their
40s. Since the ITE is fundamentally impossible to observe, it is often estimated by the CATE
conditional on an individual’s features xi using suitable additional assumptions.

As is clear from Definition 9.1, the treatment effects we want to estimate involve
interventional expressions. However, we usually only have access to observational data.
Causal reasoning can thus be cast as answering interventional queries using observational
data and a causal model. This involves dealing with confounders, both observed and unob-
served.

Before discussing how to identify and estimate causal effects, we illustrate why
causal assumptions are necessary using a well-known statistical phenomenon.

Simpson’s paradox and Covid-19. Simpson’s paradox refers to the observation that aggre-
gating data across subpopulations may yield opposite trends (and thus lead to reversed con-
clusions) from considering subpopulations separately [142]. We observed a textbook example
of this during the Covid-19 pandemic by comparing case fatality rates (CFRs), i.e., the pro-
portion of confirmed Covid-19 cases which end in fatality, across different countries and age
groups as illustrated in Figure 8 [154]: for all age groups, CFRs in Italy are lower than in
China, but the total CFR in Italy is higher.

How can such a pattern be explained? The case demographic (see Figure 8, right) is
rather different across the two countries, i.e., there is a statistical association between country
and age. In particular, Italy recorded a much larger proportion of cases in older patients who
are generally at higher risk of dying from Covid-19 (see Figure 8, left). While this provides
a consistent explanation in a statistical sense, the phenomenon may still seem puzzling as it
defies our causal intuition. Humans appear to naturally extrapolate conditional probabilities
to read them as causal effects, which can lead to inconsistent conclusions and may leave one
wondering: how can the disease in Italy be less fatal for the young, less fatal for the old,
but more fatal for the people overall? It is for this reason that the reversal of (conditional)
probabilities in Figure 8 is perceived as and referred to as a “paradox” [49,105].

If we consider the country as treatment whose causal effect on fatality is of interest,
then causal assumptions (e.g., in the form of a causal graph) are needed to decide how to
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Figure 8

(Left) Covid-19 case fatality rates (CFRs) in Italy and China by age and in aggregate (“Total”), including all
confirmed cases and fatalities up to the time of reporting in early 2020 (see legend): for all age groups, CFRs in
Italy are lower than in China, but the total CFR in Italy is higher, an example of Simpson’s paradox. (Right) The
case demographic differs between countries: in Italy, most cases occurred in the older population (figure
from [154]).

handle covariates such as age that are statistically associated with the treatment, e.g., whether
to stratify by (i.e., adjust for) age or not. This also explains why randomized controlled trials
(RCTs) [31] are the gold standard for causal reasoning: randomizing the assignment breaks
any potential links between the treatment variable and other covariates, thus eliminating
potential problems of bias. However, RCTs are costly and sometimes unethical to perform,
so that causal reasoning often relies on observational data only.10

We first consider the simplest setting without hidden confounders and with overlap.
We start with identification of treatment effects on the population level, and then discuss
different techniques for estimating these from data.

Identification. In absence of unmeasured variables (i.e., without hidden confounding), and
provided we know the causal graph, it is straight-forward to compute causal effects by adjust-
ing for covariates. A principled approach to do so for any given graph was proposed by
Robins [117] and is known as the g-computation formula (where the g stands for general).
It is also known as truncated factorisation [104] or manipulation theorem [144]. It relies on
the independence of causal mechanisms (Principle 5.1), i.e., the fact that intervening on a
variable leaves the other causal conditionals in (4.1) unaffected:

p
�
X1; : : : ; Xnj do.Xi WD xi /

�
D ı.Xi D xi /

Y
j ¤i

p.Xj jPAj /: (9.3)

From (9.3) the interventional distribution of interest can then be obtained by marginalization.
This is related to the idea of graph surgery (see Figure 5), and leads to a set of three inference
rules for manipulating interventional distributions known as do-calculus [104] that have been
shown to be complete for identifying causal effects [56,140].

10 For a treatment of more general types of data fusion and transportability of experimental
findings across different populations, we refer to [5,106].
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Figure 9

Treatment effect estimation with three observed covariates X1; X2; X3: here, the valid adjustment sets for T ! Y

(see Proposition 9.3) are ¹X1º, ¹X2º, and ¹X1; X2º. Including X3 opens the nondirected path
T ! X3  X2 ! Y and lies on the directed path T ! X3 ! Y , both of which can introduce bias.

Note that covariate adjustment may still be needed, even if there are no clear
confounders directly influencing both treatment and outcome, as shown by the example
in Figure 9.

Example 9.2. Applying the g-computation formula (9.3) to the setting of Figure 9, we obtain

p
�
yj do.t/

�
D

X
x1

p.x1/
X
x2

p.x2jx1/
X
x3

p.x3jt; x2/p.yjt; x2; x3/ (9.4)

D

X
x1

p.x1/
X
x2

p.x2jx1/p.yjt; x2/ D
X
x2

p.x2/p.yjt; x2/ (9.5)

(a)
D

X
x1;x2

p.x1; x2/p.yjt; x1; x2/
(b)
D

X
x1

p.x1/p.yjt; x1/; (9.6)

where the last line follows by using the following conditional independences implied by the
graph: (a) Y ?? X1 j ¹T; X2º, and (b) X2 ?? T j X1.

Note that both the right-hand side in (9.5) and both sides in (9.6) take the form

p
�
yj do.t/

�
D

X
z

p.z/p.yjt; z/: (9.7)

In this case we call Z a valid adjustment set for the effect of T on Y . Here, ¹X1º, ¹X2º,
and ¹X1; X2º are all valid adjustment sets, but it can be shown that, e.g., ¹X1; X3º is
not (see Figure 9). As computing the g-formula with many covariates can be cumbersome,
graphical criteria for which subsets constitute valid adjustment sets are useful in practice,
even in the absence of unobserved confounders.

Proposition 9.3 ([141]). Under causal sufficiency, a set Z is a valid adjustment set for the
causal effect of a singleton treatment T on an outcome Y (in the sense of (9.7)) if and only
if the following two conditions hold: (i) Z contains no descendant of any node on a directed
path from T to Y (except for descendants of T which are not on a directed path from T

to Y ); and (ii) Z blocks all non-directed paths from T to Y .

Here, a path is called directed if all directed edges on it point in the same direction,
and nondirected otherwise. A path is blocked (by a set of vertices Z) if it contains a triple of
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consecutive nodes connected in one of the following three ways: A! B ! C with B 2 Z,
A B! C with B 2 Z, or A!B C , where neither B nor any descendant of B is in Z.

Two well-known types of adjustment set implied by Proposition 9.3 are parent
adjustment, where Z D PaT ; and the backdoor criterion, where Z is constrained to con-
tain no descendants of T and to block all “back-door paths” from T to Y (T  : : : Y ).

Note that Proposition 9.3 only holds singleton treatments (i.e., interventions on a
single variable). For treatments T involving multiple variables, a slightly more complicated
version of Proposition 9.3 can be given in terms of proper causal paths, and we refer to
[102,108] for details.

Let us briefly return to our earlier example of Simpson’s paradox and Covid-19.
Considering a plausible causal graph for this setting [154], we find that age A acts as a medi-
ator C ! A ! F of the causal effect of country C on fatality F (there is likely also a
direct effect C ! F , potentially mediated by other, unobserved variables). If we are inter-
ested in the (total) causal effect of C on F (i.e., the overall influence of country on fatality),
A should not be included for adjustment according to Proposition 9.3, and, subject to causal
sufficiency, the total CFRs can be interpreted causally.11 For another classic example of
Simpson’s paradox in the context of kidney stone treatment [18], on the other hand, the size
of the stone acts as a confounder and thus needs to be adjusted for to obtain sound causal
conclusions.

Valid covariate adjustment and the g-formula tell us how to compute interventions
from the observational distribution when there are no hidden confounders. To actually iden-
tify causal effects from data, however, we need to also be able to estimate the involved
quantities in (9.7). This is a problem if a subgroup of the population never (or always)
receives a certain treatment. We thus need the additional assumption of a nonzero proba-
bility of receiving each possible treatment, referred to as overlap, or common support.

Assumption 9.4 (Overlap/common treatment support). For any treatment t and any config-
uration of features x, it holds that 0 < p.T D t jX D x/ < 1.

The combination of overlap and ignorability (that is, no hidden confounders—
see Assumption 4.15) is also referred to as strong ignorability and is a sufficient condition
for identifying ATE and CATE: the absence of hidden confounders guarantees the existence
of a valid adjustment set Z � X for which p.Y j do.T D t /;Z/ D p.Y jT D t;Z/, and over-
lap guarantees that we can actually estimate the latter term for any z occurring with nonzero
probability.12

Regression adjustment. Having identified a valid adjustment set (using Proposition 9.3),
regression adjustment works by fitting a regression function Of to EŒY jZ D z; T D t � D

f .z; t / using an observational sample ¹.yi ; ti ; zi /º
m
iD1. We can then use Of to impute coun-

terfactual outcomes as Oycf
i D

Of .zi ; 1 � ti / in order to estimate the CATE. The ATE is then

11 Mediation analysis [103] provides tools to tease apart and quantify the direct and indirect
effects; the age-specific CFRs in Figure 8 then correspond to controlled direct effects [154].

12 The overlap assumption can thus be relaxed to hold for at least one valid adjustment set.
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given by the population average and can be estimated as

O�regression-adj. D
1

m1

X
i Wti D1

�
yi �

Of .zi ; 0/
�
C

1

m0

X
i Wti D0

�
Of .zi ; 1/ � yi

�
; (9.8)

where m1 and m0 are the number of observations from the treatment and control groups,
respectively. Note the difference to the RCT estimator where no adjustment is necessary,

O�RCT D
1

m1

X
i Wti D1

yi �
1

m0

X
i Wti D0

yi : (9.9)

Matching and weighting approaches. While regression adjustment indirectly estimates
ATE via CATE, matching and weighting approaches aim to estimate ATE directly. The gen-
eral is idea to emulate the conditions of an RCT as well as possible.

Matching approaches work by splitting the population into subgroups based on fea-
ture similarity. This can be done on an individual level (so-called one-to-one or nearest
neighbor matching) by matching each individual i with the most similar one, j.i/, from
the opposite treatment group (i.e., ti ¤ tj.i/). The difference of their outcomes, yi � yj.i/, is
then considered as a sample of the ATE, and their average taken as an estimate thereof,

O�NN-matching D
1

m1

X
i Wti D1

.yi � yj.i//C
1

m0

X
i Wti D0

.yj.i/ � yi /: (9.10)

Alternatively, the population can be split into larger subgroups with similar features (so-
called strata). Each stratum is then treated as an independent RCT. If there are K strata
containing m1; : : : ; mK observations each, the stratified ATE estimator is

O�stratified D

PK
kD1 mk O�

.k/
RCTPK

kD1 mk

; (9.11)

where O� .k/
RCT is the estimator from (9.9) applied to observation in the kth stratum.
Weighting approaches, on the other hand, aim to counteract the confounding bias

by reweighting each observation to make the population more representative of an RCT.
This means that underrepresented treatment groups are upweighted and overrepresented ones
downweighted. An example is the inverse probability weighting (IPW) estimator,

O�IPW D
1

m1

X
i Wti D1

yi

p.T D 1jZ D zi /
�

1

m0

X
i Wti D0

yi

p.T D 0jZ D zi /
: (9.12)

The treatment probability p.T D 1jZ/ is also known as propensity score. While from a
theoretical point of view Z should be a valid adjustment set, practitioners sometimes use all
covariates to construct a propensity score.

Propensity score methods. To overcome the curse of dimensionality and gain statistical
efficiency in high-dimensional, low-data regimes, propensity scores can be a useful tool,
because covariates and treatment are rendered conditionally independent, T ?? Z j s.z/, by
the propensity score s.z/ WD p.T D 1jZD z/ [121]. Instead of adjusting for large feature sets
or performing matching in high-dimensional spaces, the scalar propensity score can be used
instead. Applying this idea to the above methods gives rise to propensity score adjustment
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Figure 10

Overview of special settings which allow estimating causal effects of treatment T on outcome Y when the strong
ignorability assumption (no hidden confounding or overlap) does not hold. In (a) the hidden confounder H is dealt
with by means of an observed mediator M , while (b) relies on an instrumental variable (IV) which is independent
of H . (c) In a regression discontinuity design (RDD), treatment assignment is a threshold function of some
observed decision score S so that there is no overlap between treatment groups.

and propensity score matching. For the latter, the difference in propensity scores is used as
similarity between instances to find nearest neighbors or to define strata.

While simplifying in one respect, the propensity score needs to be estimated from
data which is an additional source of error. The standard approach for this is to estimate s.z/
by logistic regression, but more sophisticated methods are also possible. However, propensity
score methods still rely on having identified a valid adjustment set Z to give unbiased results.
Using all covariates to estimate s, without checking for validity as an adjustment set, can thus
lead to wrong results.

Next, we consider the case of causal reasoning with unobserved confounders. While
it is not possible to identify causal effects in the general case, we will discuss two particular
situations in which ATE can still be estimated. These are shown in Figures 10a and 10b.

Front-door adjustment. The first situation in which identification is possible even though
a hidden variable H confounds the effect between treatment and outcome is known as
front-door adjustment. The corresponding causal graph is shown in Figure 10a. Front-door
adjustment relies on the existence of an observed variable M which blocks all directed paths
from T to Y , so that T only causally influences Y through M . For this reason M is also
called a mediator. The other important assumption is that the hidden confounder does not
influence the mediator other than through the treatment T , i.e., M ?? H j T . In this case,
and provided p.t; m/ > 0 for all t and m, the causal effect of T on Y is identifiable and is
given by the following.

Proposition 9.5 (Front-door adjustment). For the causal graph in Figure 10a it holds that

p
�
yj do.t/

�
D

X
m

p.mjt /
X

t 0

p.t 0/p.yjm; t 0/: (9.13)

We give a sketch of the derivation, and refer to [104] for a proof using the rules of
do-calculus. Since M mediates the causal effect of T on Y , we have that

p
�
yj do.t/

�
D

X
m

p
�
mj do.t/

�
p

�
yj do.m/

�
: (9.14)

Since there are no back-door paths from T to M , we have p.mj do.t// D p.mjt /.
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Moreover, ¹T º is a valid adjustment set for the effect of M on Y by Proposition 9.3,
so

p
�
yj do.m/

�
D

X
t 0

p.t 0/p.yjm; t 0/: (9.15)

Substituting into (9.14) then yields expression (9.13).
We point out that the setting presented here is only the simplest form of front-door

adjustment which is sufficient to convey the main idea. It can be amended to include observed
covariates X as well, as long as the conditions on the mediator remain satisfied.

Instrumental variables (IVs). The second setting for causal reasoning with hidden con-
founders is based on the idea of instrumental variables [2, 29, 160], see Figure 10b. The IV
approach relies on the existence of a special observed variable I , called instrument.

Definition 9.6 (IV). A variable I is a valid instrument for estimating the effect of treat-
ment T on outcome Y confounded by a hidden variable H if all of the following three
conditions hold: (i) I ?? H ; (ii) I =??T ; and (iii) I ?? Y j T .

Condition (i) states that the instrument is independent of any hidden confounders H .
Since this assumption cannot be tested, background knowledge is necessary to justify the use
of a variable as IV in practice. Conditions (ii) and (iii) state that the instrument is correlated
with treatment, and only affects the outcome through T , and are referred to as relevance and
exclusion restriction, respectively.

Given a valid IV, we apply a two-stage procedure: first obtain an estimate OT of the
treatment variable T that is independent of H by predicting T from I . Having thus created
an unconfounded version of the treatment, a regression of Y on OT then reveals the correct
causal effect. We demonstrate this idea for a simple linear model with continuous treatment
variable where the causal effect can be obtained by two-stage least squares (2SLS).

Example 9.7 (Linear IV with 2SLS). Consider the linear SCM defined by

T WD aI C bH C UT ; Y WD cH C dT C UY ;

with UT ; UY independent noise terms. Then, since I ?? H , linear regression of T on I

recovers the coefficient a via OT D aI . Substituting for T in the structural equation for Y gives

Y WD daI C .c C bd/H C UY C dUT :

A second linear regression of Y on OT D aI recovers the causal effect d because
.I ?? H/ H) . OT ?? H/, whereas a naive regression of Y on T would give a differ-
ent result, as T =??H .

Instrumental variables have been studied extensively and more sophisticated ver-
sions than the simple example above exist, allowing for nonlinear interactions and observed
covariates.

Having discussed some special settings to deal with hidden confounding, we briefly
present a technique to deal with violations of the overlap assumption.
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Regression discontinuity design. In a regression discontinuity design (RDD), the treatment
assignment mechanism behaves like a threshold function, i.e., the propensity score is discon-
tinuous [60]. In the simplest setting, the assignment of treatment or control is determined by
whether an observed score S is above a threshold s0, T WD I¹S � s0º. This score in turn
depends on other covariates which may or may not be observed. For example, patients may be
assigned a risk score, and treatment is only prescribed if this score surpasses a given thresh-
old. Since the score may be assigned by another institution, not all relevant covariates H

are usually observed. However, it is assumed that the treatment decision only depends on
the score, e.g., because doctors comply with the official rules. The causal graph for such a
simple RDD setting is shown in Figure 10c. While the score S constitutes a valid adjustment
set in principle, the problem with RDDs is the lack of overlap: patients with low scores are
always assigned T D 0 and patients with high scores are always assigned T D 1. Because
of this, covariate adjustment, matching, or weighting approaches do not apply. The general
idea of an RDD is to overcome this challenge by comparing observations with score in a
small neighborhood of the decision cut-off value s0, motivated by the consideration that
patients with close scores but on opposite sides of s0 differ only in whether they received the
treatment or not. For example, if the treatment cut-off value is 0.5 for a score in [0,1], then
patients with scores of 0.49 and 0.51 are comparable and can be treated as samples from an
RCT. An RDD (in its simplest form) thus focuses on differences in the regression function
EŒY jS D s; T D t .s/� D f .s/ for s 2 Œs0 � "; s0 C "�, where " > 0 is small.

Half-sibling regression and exoplanet detection. We conclude this section with a real-
world application performing causal reasoning in a confounded additive noise model.
Launched in 2009, NASA’s Kepler space telescope initially observed 150000 stars over
four years, in search of exoplanet transits. These are events where a planet partially occludes
its host star, causing a slight decrease in brightness, often orders of magnitude smaller than
the influence of telescope errors. When looking at stellar light curves, we noticed that the
noise structure was often shared across stars that were light years apart. Since that made
direct interaction of the stars impossible, it was clear that the shared information was due to
the telescope acting as a confounder. We thus devised a method that (a) regresses a given
star of interest on a large set of other stars chosen such that their measurements contain no
information about the star’s astrophysical signal, and (b) removes that regression in order
to cancel the telescope’s influence.13 The method is called “half-sibling” regression since
target and predictors share a parent, namely the telescope. The method recovers the random
variable representing the astrophysical signal almost surely (up to a constant offset), for an
additive noise model (specifically, the observed light curve is a sum of the unknown astro-
physical signal and an unknown function of the telescope noise), subject to the assumption
that the telescope’s effect on the star is in principle predictable from the other stars [132].

13 For events that are localized in time (such as exoplanet transits), we further argued that the
same applies for suitably chosen past and future values of the star itself, which can thus also
be used as predictors.
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In 2013, the Kepler spacecraft suffered a technical failure, which left it with only
two functioning reaction wheels, insufficient for the precise spatial orientation required by
the original Kepler mission. NASA decided to use the remaining fuel to make further obser-
vations, however, the systematic error was significantly larger than before—a godsend for
our method designed to remove exactly these errors. We augmented it with models of exo-
planet transits and an efficient way to search light curves, leading to the discovery of 36
planet candidates [32], of which 21 were subsequently validated as bona fide exoplanets [92].
Four years later, astronomers found traces of water in the atmosphere of the exoplanet K2-
18b—the first such discovery for an exoplanet in the habitable zone, i.e., allowing for liquid
water [10, 151]. The planet turned out to be one that had been first detected in our work [32]

(exoplanet candidate EPIC 201912552).

10. Current research and open problems

Conservation of information. We have previously argued that the mechanization of infor-
mation processing currently plays a similar role to the mechanization of energy processing
in earlier industrial revolutions [125]. Our present understanding of information is rather
incomplete, as was the understanding of energy during the course of the first two indus-
trial revolutions. The profound modern understanding of energy came with Emmy Noether
and the insight that energy conservation is due to a symmetry (or covariance) of the funda-
mental laws of physics: they look the same no matter how we shift time. One might argue
that information, suitably conceptualized, should also be a conserved quantity, and that this
might also be a consequence of symmetries. The notions of invariance/independence dis-
cussed above may be able to play a role in this respect.

Mass seemingly played two fundamentally different roles (inertia and gravitation)
until Einstein furnished a deeper connection in general relativity. It is noteworthy that causal-
ity introduces a layer of complexity underlying the symmetric notion of statistical mutual
information. Discussing source coding and channel coding, Shannon [138] remarked: This
duality can be pursued further and is related to a duality between past and future and the
notions of control and knowledge. Thus wemay have knowledge of the past but cannot control
it; we may control the future but have no knowledge of it.

What is an object? Following the i.i.d. pattern recognition paradigm, machine learning
learns objects by extracting patterns from many observations. A complementary view may
consider objects as modules that can be separately manipulated or intervened upon [149].
The idea that objects are defined by their behavior under transformation has been influential
in fields ranging from psychology to mathematics [74,88].

Causal representation learning. In hindsight, it appears somewhat naive that first attempts
to build AI tried to realize intelligence by programs written by humans, since existing exam-
ples of intelligent systems appear much too complex for that. However, there is a second
problem, which is just as significant: classic AI assumed that the symbols which were the
basis of algorithms were provided a priori by humans. When building a chess program, it is
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Classic AI:
symbols provided a priori;
rules provided a priori.

Machine learning:
representations (symbols) learned from data;
only include statistical information.

Causal modeling:
structural causal models assume the
causal variables (symbols) are given.

Causal representation learning:
capture interventions, reasoning, planning – “Think-
ing is acting in an imagined space” (Konrad Lorenz)

Figure 11

Causal representation learning aims to automatically learn representations that contain not just statistical
information, but support interventions, reasoning, and planning. The long-term goal of this field is to learn causal
world models supporting AI, or causal digital twins of complex systems.

clear that the algorithms operate on chess board positions and chess pieces; however, if we
want to solve a real-world problem in an unstructured environment (e.g., recognize spoken
language), it is not clear what constitutes the basic symbols to be processed.

Traditional causal discovery and reasoning assumed that the elementary units are
random variables connected by a causal graph. Real-world observations, however, are usu-
ally not structured into such units to begin with. For instance, objects in images that permit
causal reasoning first need to be discovered [84, 85, 149, 157]. The emerging field of causal
representation learning strives to learn these variables from data, much like machine learn-
ing went beyond symbolic AI in not requiring that the symbols that algorithms manipulate
be given a priori (see Figure 11).

Defining objects or variables, and structural models connecting them, can some-
times be achieved by coarse-graining of microscopic models, including microscopic SCMs
[123], ordinary differential equations [122], and temporally aggregated time series [37]. While
most causal models in economics, medicine, or psychology use variables that are abstrac-
tions of more elementary concepts, it is challenging to state general conditions under which
coarse-grained variables admit causal models with well-defined interventions [15, 16, 123].
The task of identifying suitable units that admit causal models aligns with the general goal
of modern machine learning to learn meaningful representations for data, where meaningful
can mean robust, transferable, interpretable, explainable, or fair [70–72,77,155,162]. To com-
bine structural causal modeling (Definition 4.4) and representation learning, we may try to
devise machine learning models whose inputs may be high-dimensional and unstructured,
but whose inner workings are (partly) governed by an SCM.

Suppose that our high-dimensional, low-level observations X D .X1; : : : ; Xd / are
explained by a small number of unobserved, or latent, variables S D .S1; : : : ; Sn/ where
n� d , in thatX is generated by applying an injective map g WRn!Rd to S (see Figure 12c),

X D g.S/: (10.1)
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Figure 12

Overview of different causal learning tasks: (a) causal discovery (Section 7) aims to learn the causal graph (or
SCM) connecting a set of observed variables; (b) causal reasoning (Section 9) aims to answer interventional or
counterfactual queries based on a (partial) causal model over observed variables Xi ; (c) causal representation
learning (Section 10) aims to infer a causal model consisting of a small number of high-level, abstract causal
variables Si and their relations from potentially high-dimensional, low-level observations X D g.S/.

A common assumption regarding (10.1) is that the latent Si are jointly independent, e.g., for
independent component analysis (ICA) [57] (where g is referred to as a mixing) or disentan-
gled representation learning [9] (where g is called a decoder). Presently, however, we instead
want think of the latent Si as causal variables that support interventions and reasoning.

The Si may thus well be dependent, and possess a causal factorization (4.1),

p.S1; : : : ; Sn/ D

nY
iD1

p.Si jPAi /; (10.2)

induced by an underlying (acyclic) SCM M D .F; pU/ with jointly independent Ui and

F D
®
Si WD fi .PAi ; Ui /

¯n

iD1
: (10.3)

Our goal is to learn a latent causal model consisting of (i) the causal representation
S D g�1.X/, along with (ii) the corresponding causal graph and (iii) the mechanisms
p.Si jPAi / or fi . This is a challenging task, since none of them are directly observed or
known a priori; instead we typically only have access to observations of X. In fact, there is
no hope in an i.i.d. setting since already the simpler case with independent Si (and nD d ) is
not identifiable in general (i.e., for arbitrary nonlinear g in (10.1)): even independence does
not sufficiently constrain the problem to uniquely recover, or identify, the true Si ’s up to any
simple class of ambiguities such as permutations and elementwise invertible transformations
of the Si [58].

To link causal representation learning to the well-studied ICA setting with indepen-
dent latents in (10.1), we can consider the so-called reduced form of an (acyclic) SCM: by
recursive substitution of the structural assignments (10.3) in topological order of the causal
graph, we can write the latent causal variables S as function of the noise variables only

S D frf.U/: (10.4)

Due to acyclicity, this mapping frf WRn!Rn has a lower triangular Jacobian (possibly after
reordering the Si without loss of generality). However, (10.4) is strictly less informative
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than (10.3): while they entail the same distribution (10.2), the former no longer naturally
supports interventions on the Si but only changes to the noise distribution pU (an example
of a so-called soft intervention [30]). At the same time, the reduced form (10.4) allows us to
rewrite (10.1) as

X D g ı frf.U/: (10.5)

Through this lens, the task of learning the reduced form (10.4) could be seen as structured
form of nonlinear ICA (i.e., (10.1) with independent latents) where we additionally want
to learn an intermediate representation through frf. However, as discussed, we cannot even
solve the problem with independent latents (i.e., identify g ı frf in (10.5)) [58], let alone
separate the SCM and mixing functions to recover the intermediate causal representation.

It is not surprising that is is not possible to solve the strictly harder causal repre-
sentation learning problem in an i.i.d. setting and that additional causal learning signals are
needed. This gives rise to the following questions: How can we devise causal training algo-
rithms to learn the Si ? And, what types of additional data, assumptions, and constraints do
they require beyond the i.i.d. setting? Two general ideas are to (i) build on the ICM Prin-
ciple 5.1 and enforce some form of (algorithmic) independence between the learned causal
mechanisms p.Si jPAi / or fi , and (ii) use heterogeneous (non-i.i.d.) data, e.g., from mul-
tiple views or different environments, arising from interventions in the underlying latent
SCM (10.3). We briefly discuss some more concrete ideas based on recent work.

Generative approach: Causal autoencoders. One approach is to try to learn the gen-
erative causal model (10.1) and (10.3), or its reduced form (10.4), using an autoencoder
approach [73]. An autoencoder consists of an encoder function q W Rd ! Rn which maps X
to a latent “bottleneck” representation (e.g., comprising the unexplained noise variables U),
and a decoder function Og W Rn ! Rd mapping back to the observations. For example, the
decoder may directly implement the composition Og D g ı frf from (10.4). Alternatively, it
could consist of multiple modules, implementing (10.1) and (10.3) separately. A standard
procedure to train such an autoencoder architecture is to minimize the reconstruction error,
i.e., to satisfy Og ı q � id on a training set of observations of X. As discussed, this alone
is insufficient, so to make it causal we can impose additional constraints on the structure
of the decoder [80] and try to make the causal mechanisms independent by ensuring that
they are invariant across problems and can be independently intervened upon. For exam-
ple, if we intervene on the causal variables Si or noise distribution pU in our model of (10.3)
or (10.4), respectively, this should still produce “valid” observations, as assessed, e.g., by the
discriminator of a generative adversarial network [38]. While we ideally want to manipulate
the causal variables, another way to intervene is to replace noise variables with the corre-
sponding values computed from other input images, a procedure that has been referred to
as hybridization [11]. Alternatively, if we have access to multiple environments, i.e., datasets
collected under different conditions, we could rely on the Sparse Mechanism Shift Princi-
ple 5.2 by requiring that changes can be explained by shifts in only a few of the p.Si jPAi /.

Discriminative approach: Self-supervised causal representation learning. A differ-
ent machine learning approach for unsupervised representation learning, that is not based on
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generative modeling but is discriminative in nature, is self-supervised learning with data
augmentation. Here, the main idea is to apply some hand-crafted transformations to the
observation to generate augmented views that are thought to share the main semantic char-
acteristics with the original observation (e.g., random crops or blurs for images). One then
directly learns a representation by maximizing the similarity across encodings of views
related to each other by augmentations, while enforcing diversity across those of unrelated
views. In a recent work [158], we set out to better understand this approach theoretically, as
well as to investigate its potential for learning causal representations. Starting from (10.1), we
postulate a latent causal model of the form Sc ! Ss , where Sc is a (potentially multivariate)
content variable, defined as the high-level semantic part of the representation S D .Sc ; Ss/

that is assumed invariant across views; and Ss is a (potentially multivariate) style variable,
defined as the remaining part of the representation that may change. Within this setting, data
augmentations have a natural interpretation as counterfactuals under a hypothetical inter-
vention on the style variables, given the original view. It can be shown that in this case,
subject to some technical assumptions, common contrastive self-supervised learning algo-
rithms [19,45,152] as well as appropriately constrained generative models isolate, or recover,
the true content variables Sc up to an invertible transformation. By extending this approach
to use multiple augmented views of the same observation, and linking these to different coun-
terfactuals in the underlying latent SCM, it may be possible to recover a more-fine-grained
causal representation.

Independent mechanism analysis.We also explored [40] to what extent the ICM Prin-
ciple 5.1 may be useful for unsupervised representation learning tasks such as (10.1),
particularly for imposing additional constraints on the mixing function g. It turns out that
independence between p.S/ and the mixing g—measured, e.g., as discussed in Section 5
in the context of Figure 6 and [68]—does not impose nontrivial constraints when S is not
observed, even when the Si are assumed independent as in ICA. However, by thinking of
each Si as independently influencing the observed distribution, we postulate another type
of independence between the partial derivatives @g

@Si
of the mixing g which has a geomet-

ric interpretation as an orthogonality condition on the columns of the Jacobian of g. The
resulting independent mechanism analysis (IMA) approach rules out some of the common
examples of nonidentifiability of nonlinear ICA [58, 83] mentioned above. Since IMA does
not require independent sources, it may also be a useful constraint for causal representation
learning algorithms.

Learning transferable mechanisms and multitask learning. Machine learning excels in
i.i.d. settings, and through the use of high capacity learning algorithms we can achieve out-
standing performance on many problems, provided we have i.i.d. data for each individual
problem (Section 2). However, natural intelligence excels at generalizing across tasks and
settings. Suppose we want to build a system that can solve multiple tasks in multiple envi-
ronments. If we view learning as data compression, it would make sense for that system to
utilize components that apply across tasks and environments, and thus need to be stored only
once [125].
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Indeed, an artificial or natural agent in a complex world is faced with limited
resources. This concerns training data, i.e., we only have limited data for each individual
task/domain, and thus need to find ways of pooling/reusing data, in stark contrast to the
current industry practice of large-scale labeling work done by humans. It also concerns
computational resources: animals have constraints on the resources (e.g., space, energy)
used by their brains, and evolutionary neuroscience knows examples where brain regions
get repurposed. Similar constraints apply as machine learning systems get embedded in
physical devices that may be small and battery-powered. Versatile AI models that robustly
solve a range of problems in the real world will thus likely need to reuse components, which
requires that the components are robust across tasks and environments [127, 133]. This calls
for a structure whose modules are maximally reusable. An elegant way to do this would be to
employ a modular structure that mirrors modularity that exists in the world. In other words,
if the are mechanisms at play in the world play similar roles across a range of environments,
tasks, and settings, then it would be prudent for a model to employ corresponding compu-
tational modules [39]. For instance, if variations of natural lighting (the position of the sun,
clouds, etc.) imply that the visual environment can appear in brightness conditions span-
ning several orders of magnitude, then visual processing algorithms in our nervous system
should employ methods that can factor out these variations, rather than building separate sets
of object recognizers for every lighting condition. If our brain were to model the lighting
changes by a gain control mechanism, say, then this mechanism in itself need not have any-
thing to do with the physical mechanisms bringing about brightness differences. It would,
however, play a role in a modular structure that corresponds to the role the physical mecha-
nisms play in the world’s modular structure—in other words, it would represent the physical
mechanism. Searching for the most versatile, yet compact, models would then automatically
produce a bias towards models that exhibit certain forms of structural isomorphy to a world
that we cannot directly recognize.

A sensible inductive bias to learn such models is to look for independent causal
mechanisms [82], and competitive training can play a role in this: for a pattern recognition
task, learning causal models that contain independent mechanisms helps in transferring mod-
ules across substantially different domains [99].

Interventional world models, surrogate models, digital twins, and reasoning. Modern
representation learning excels at learning representations of data that preserve relevant sta-
tistical properties [9, 79]. It does so, however, without taking into account causal properties
of the variables, i.e., it does not care about the interventional properties of the variables it
analyzes or reconstructs. Going forward, causality will play a major role in taking represen-
tation learning to the next level, moving beyond the representation of statistical dependence
structures towards models that support intervention, planning, and reasoning. This would
realize Konrad Lorenz’ notion of thinking as acting in an imagined space. It would also pro-
vide a means to learn causal digital twins that go beyond reproducing statistical dependences
captured by surrogate models trained using machine learning.
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The idea of surrogate modeling is that we may have a complex phenomenon for
which we have access to computationally expensive simulation data. If the mappings involved
(e.g., from parameter settings to target quantities) can be fitted from data, we can employ
machine learning, which will often speed them up by orders of magnitude. Such a speed-
up can qualitatively change the usability of a model: for instance, we have recently built
a system to map gravitational wave measurements to a probability distribution of physi-
cal parameters of a black hole merger event, including sky position [27]. The fact that this
model only requires seconds to evaluate makes it possible to immediately start electromag-
netic follow-up observations using telescopes as soon as a gravitational wave event has been
detected, enabling analysis of transient events.

Going forward, we anticipate that surrogate modeling will benefit from respecting
the causal factorization (4.1) decomposing the overall dependence structure into mechanisms
(i.e., causal conditionals). We can then build an overall model of a system by modeling the
mechanisms independently, each of them using the optimal method. Some of the conditionals
we may know analytically, some we may be able to transfer from related problems, if they
are invariant. For some, we may have access to real data to estimate them, and for others, we
may need to resort to simulations, possibly fitted using surrogate models.

If the model is required to fully capture the effects of all possible interventions,
then all components should be fitted as described in the causal directions (i.e., we fit the
causal mechanisms). Such a model then allows employing all the causal reasoning machinery
described in Sections 4 and 9 (e.g., computing interventional and, in the case of SCMs,
counterfactual distributions). If, on the other hand, a model only needs to capture some of
the possible interventions, and is used in a purely predictive/observational mode for other
variables, then we can get away with also using and fitting some noncausal modules, i.e.,
using a decomposition which lies in-between (4.1) and (4.2).

We believe that this overall framework will be a principled and powerful approach to
build such (causal) digital twins or causal surrogate models by combining a range of methods
and bringing them to bear according to their strengths.

Concluding remarks. Most of the discussed fields are still in their infancy, and the above
account is biased by personal taste and knowledge. With the current hype around machine
learning, there is much to say in favor of some humility towards what machine learning can
do, and thus towards the current state of AI—the hard problems have not been solved yet,
making basic research in this field all the more exciting.
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anticoncentration
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error bounds in
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Abstract

This paper presents some second- and higher-order Gaussian anticoncentration inequalities
in high dimension and error bounds in Slepian’s comparison theorem for the distribution
functions of the maxima of two Gaussian vectors. The anticoncentration theorems are
presented as upper bounds for the sum of the absolute values of the partial derivatives of
a certain order for the joint distribution function of a Gaussian vector or weighted sums
of such absolute values. Compared with the existing results where the covariance matrix
of the entire Gaussian vector is required to be invertible, the bounds for the mth deriva-
tives developed in this paper require only the invertibility of the covariance matrices of all
subsets of m random variables. The second-order anticoncentration inequality is used to
develop comparison theorems for the joint distribution functions of Gaussian vectors or,
equivalently, the univariate distribution functions of their maxima via Slepian’s interpo-
lation. The third- and higher-order anticoncentration inequalities are motivated by recent
advances in the central limit theorem and consistency of bootstrap for the maximum com-
ponent of a sum of independent random vectors in high dimension and related applications
in statistical inference and machine learning.
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1. Introduction

LetX D .X1; : : : ;Xd /
> and Y D .Y1; : : : ; Yd /

> be two Gaussian vectors. Slepian’s
[31] inequality asserts that when Xi and Yi have the same mean and variance, and
Var.Xi � Xj / � Var.Yi � Yj / for all 1 � i < j � d , the maximum of Yi is stochasti-
cally larger than the maximum of Xi ,

P
°

max
1�i�d

Xi > t
±

� P
°

max
1�i�d

Yi > t
±
; 8t 2 R: (1.1)

Variations and extensions of Slepian’s inequality have been developed to relax the
conditions on the mean and variance of the individual components and pairwise contrasts,
and to compare more general functions of the Gaussian vectors. Among such results, the
Sudakov–Fernique inequality [15,32,33] asserts that

E
h
max
i�d

Xi

i
� E

h
max
i�d

Yi

i
(1.2)

when EŒX�D EŒY � and Var.Xi �Xj / � Var.Yi � Yj / for all 1 � i < j � d . Gordon’s [16]

inequalities extend (1.1) and (1.2) to the minimax function of Gaussian matrices. Chatterjee
[5] provided an error bound in the Sudakov–Fernique inequalityˇ̌̌

E
h
max
i�d

Yi

i
� E

h
max
i�d

Xi

iˇ̌̌
�
p
� log d (1.3)

under the condition EŒX�D EŒY �, where�D max1�i<j �d jVar.Yi � Yj /� Var.Xi �Xj /j.
Comparison theorems such as the above and related anticoncentration inequalities

are used in statistical inference, machine learning, reliability, signal processing, extreme
value theory, random matrix theory, empirical processes, and more. See, for example, [1,18,
21–23,27,29,30,34] and references therein. Anticoncentration inequalities in Slepian’s compar-
ison theorem provide upper bounds for the modulus of continuity of the distribution function
of the maximum or the corresponding density function. This paper is motivated by the recent
developments in the central limit theorem and bootstrap theory for the maximum component
of a sum of independent random vectors in high dimension, specifically a crucial role of the
Gaussian anticoncentration theory in these developments [6,8,10,12,13,19,25].

We present in this paper second- and higher-order anticoncentration inequalities for
the Gaussian maxima and some of their implications in the comparison of Gaussian distribu-
tion functions. These anticoncentration inequalities provide upper bounds for the sum of the
absolute values of the derivatives of a given order for the Gaussian joint distribution func-
tion and thus upper bounds for the derivatives of the distribution function of the Gaussian
maxima. While the second-order anticoncentration inequalities are used in the development
of our error bounds in Slepian’s comparison theorem, the third- and higher-order anticoncen-
tration inequalities can be used in studies of the central limit theorem and bootstrap in high
dimension depending on the order of expansion in the related Slepian’s [31] or Lindeberg’s
[24] interpolations in such applications.

We present below some error bounds in Slepian’s comparison theorem as conse-
quences of our results in Sections 2 and 3.
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Theorem 1. LetX D .X1; : : : ;Xd /
> and Y D .Y1; : : : ; Yd /

> be two Gaussian vectors with
EŒX� D EŒY � D �. Let �i D

p
Var.Xi / ^ Var.Yi /,�i;j D ¹Cov.Yi ; Yj /� Cov.Xi ;Xj /º=

.�i�j /, �cross
C D max1�i<j �d .�i;j /C, and �diag D max1�i�d j�i;i j. Then, for d � 2,

P
°

max
1�k�d

Yk � t
±

� P
°

max
1�k�d

Xk � t
±

�
p
��.4 log d/; (1.4)

where �� D .�cross
C C�diag/=2C max1�i�j �d j�i;j j=.2 log d/. Moreover, for d � 2,

P
°

max
1�k�d

Yk � t
±

� P
°

max
1�k�d

Xk � t
±

�

�
2
�cross

C _�diag

1 � ��
C
�diag

2

�
min

®
2 log d;

�
��.t/C 1

�2¯
; (1.5)

where �� D maxi<j �d jCorr.Xi ;Xj /j _ jCorr.Yi ;Yj /j and ��.t/D 1_ maxi�d jt ��i j=�i .

Theorem 1 is proved in Section 3. In Theorem 1, (1.4) is a sharper and more explicit
version of Corollary 5.1 of [9]. Under the conditions for (1.1), �cross

C .s/ D �diag.s/ D 0

in (1.5), so Theorem 1 contains Slepian’s inequality as a special case. Inequality (1.5)
improves upon (1.4) when

p
��=.1 � ��/ is small. Although quantities of different order

of smoothness are concerned, the error bounds in Theorem 1 are of a similar form to that
of (1.3).

The rest of the paper is organized as follows. We present second-order anticoncen-
tration inequalities in Section 2, comparison theorems for the Gaussian joint distribution
functions in Section 3, and higher-order anticoncentration inequalities in Section 4.

We use the following notation to shorten mathematical expressions in the rest of the
paper. For positive integers m < d , Œd � D ¹1; : : : ; dº, i1Wm D .i1; : : : ; im/, Œd �m D ¹i1Wm W

ij 2 Œd �8 j 2 Œm�º, Œd �m
¤

D ¹i1Wm 2 Œd �m W ij ¤ ik 8 j ¤ kº, Œd �m< D ¹i1Wm 2 Œd �m W i1 <

� � �< imº, Œd �i1Wm D ¹k 2 Œd � W k ¤ ij 8j 2 Œm�º, and Œd �2
i1Wm;¤

D ¹.j; k/ 2 Œd �2
¤

W j 2 Œd �i1Wm ;

k 2 Œd �i1Wmº. As usual, we denote by '.t/ andˆ.t/, respectively, theN.0; 1/ density and dis-
tribution functions, k � k2 the Euclidean norm, kf kL1

D supx2Rd jf .x/j, a^ bD min.a;b/,
a _ b D max.a; b/, and xC D max.x; 0/.

2. Anticoncentration inequalities for Gaussian maxima

Let X D .X1; : : : ; Xd /
> be a multivariate Gaussian vector with a joint distribution

function

G.x/ D G.x1; : : : ; xd / D P
®
Xi � xi 8i 2 Œd �

¯
: (2.1)

Let Xmax D maxi2Œd�Xi and denote the distribution function of the maximum by

Gmax.t/ D P¹Xmax � tº D G.t; : : : ; t /: (2.2)

While concentration inequalities provide upper bounds for the deviation of Xmax from its
center, e.g., the median, anticoncentration inequalities bound

P¹a < Xmax � aC "º D Gmax.aC "/ �Gmax.a/

or the density of Xmax from the above.

5596 C.-H. Zhang



Among existing results on the anticoncentration of Xmax, Nazarov’s [26] inequality,

Gmax.aC "/ �Gmax.a/ � "
2C

p
2 log d

mini2Œd�

p
Var.Xi /

; 8" > 0; (2.3)

has found important applications in statistics and machine learning, including bootstrap and
central limit theorem [6,8,12,13,19,35]. In terms of the joint distributionG, Nazarov’s inequal-
ity can be written as an `1-bound for the gradient of G,

d

dt
Gmax.t/ D

dX
iD1

@

@xi

G.x/jxi Dt;8i2Œd� �
2C

p
2 log d

mini2Œd�

p
Var.Xi /

: (2.4)

In our development of comparison theorems for Gaussian maxima, the second
derivative

@

@xi

@

@xj

P
°

max
k2Œd�

.Xk � xk/ � t
±

is involved in Slepian’s interpolation. As t can be absorbed into xk , what we need is a proper
upper bound for the second derivative of the distribution function G,

Gi;j .x/ D
@

@xi

@

@xj

P
®
Xi � xi 8i 2 Œd �

¯
:

In fact, a weighted `1-norm of Gi;j .x/ is used in our analysis. Such bounds for the Hessian
of G.x/ can be viewed as second-order anticoncentration inequalities.

For a standard Gaussian vector Z D .Z1; : : : ; Zd /
> with EŒZ� D 0 and

EŒZZ>� D Id , [3] proved the following anticoncentration inequality of general order:

sup
x

X
.i1;:::;im/2Œd�m

ˇ̌̌̌
@mP¹Zk � xk 8k 2 Œd �º

@xi1 � � � @xim

ˇ̌̌̌
� Cm.log d/m=2

for some constant Cm depending on m only. Further development of such results and their
applications can be found in [2,4,10,11,14,17,20,25,28,36,37] among others. In particular, for
applications to Gaussian and bootstrap approximation of the maxima of sums of indepen-
dent random vectors, the Gaussian vector X was assumed to have a nonsingular covariance
matrix † and the transformation Z D †�1=2X was taken to study the anticoncentration of
Xmax [2,10,14]. The resulting anticoncentration inequality can be written as

sup
x

X
.i1;:::;im/2Œd�m

ˇ̌̌̌
@mG.x/

@xi1 � � � @xim

ˇ̌̌̌
�
Cm.log d/m=2

�
m=2
min .†/

; (2.5)

where �min stands for the smallest eigenvalue. However, the dependence of (2.5) on the
smallest eigenvalue is restrictive. We provide below second-order and in Section 4 higher-
order anticoncentration inequalities which replace �min.†/ in (2.5) by the minimum of the
eigenvalues of diagonal blocks of dimensionm. Such results can be viewed as extensions of
Nazarov’s inequality (2.4) to higher order.

Before we present the second-order anticoncentration inequality, we give a variation
of Nazarov’s inequality to explain our approach and write a short proof of it as a road map
of the proof in higher order.
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Theorem 2. Let G.x/ be the joint distribution function (2.1) of a Gaussian vector
.X1; : : : ; Xd /

> with Xi � N.�i ; �
2
i /. Let Gi .x/ D .@=@xi /G.x/. Let h.t/ be a function

and t0 � 0 such that h.t/'.t/ � h.t0/'.t0/ for t � t0, h.t/ ^ h0.t/ � 0 for t � t0, and
th.t/� h0.t/ is nonnegative and increasing in Œt0;1/. Let a�

1 D t0 _ maxi2Œd�.xi ��i /=�i .
Then,

dX
iD1

�iGi .x/h
�
.xi � �i /=�i

�
� min

®
h
�
a�

1

��
a�

1 C 1 ^
�
1=a�

1

��
; h.t0 _

p
2 log d/

p
2 log d

¯
; d � 2: (2.6)

In particular, for ˇ � 0, (2.6) holds for h.t/ D jt jˇ with t0 D
p
ˇ.

For h.t/D 1 and d � 2, (2.6) slightly improves Nazarov’s inequality (2.4). Inequal-
ity (2.6) with h.t/ D jt jm�1 is useful in bounding the mth order derivative of G.x/. The
following corollary demonstrates another way of utilizing the choice h.�/ in Theorem 2.

Corollary 1. Let d � 2. If �i � � > 0, then

d

dt
P
°
max
i2Œd�

Xi � t
±

�

p
2 log d
�

:

If jt � �i j � a with a certain a > 0, then
d

dt
P
°
max
i2Œd�

Xi � t
±

� .2=a/ log d:

Compared with existing literature, Corollary 1 provides an alternative bound to deal
with high heteroskedasticity. The second bound in the corollary follows from (2.6) with
h.t/ D jt j=a as Gi .x/ � j.xi � �i /=�i j�iGi .x/=a. Typically, for EŒXi � D 0, the magni-
tude of EŒmaxi2Œd� Xi � is of the order �

p
log d for some � representing the average of

�i or larger and the probability outside a small neighborhood of EŒmaxi2Œd� Xi � is very
small due to Gaussian concentration, so that the most interesting application of (2.4) is for
t � a with a � �

p
log d . In such applications, Corollary 1 replaces mini2Œd� �i in (2.4)

with a quantity of the order � . This is related to a variation of (2.3) in [7] where the
p

log d
rate is replaced by O.EŒmaxk�d Xk=�k �C

p
1 _ log.mini �i="// for centered X . Another

variation of (2.4) can be found in [13] where the upper bound is

1=�.1/ C max
1�j �d

.1C
p
2 log j /=�.j /

where �.1/ � � � � � �.d/ are the ordered values of �1; : : : ; �d . This variation of Nazarov’s
inequality is extended to higher orders in Section 4.

Proof of Theorem 2. Let�i .t/D'..t ��i /=�i /=�i be the density ofXi ,X 0
i D .Xi � xi /=�i

and �i;j D Corr.Xi ; Xj /. Because Xi is independent of X 0
k

� �i;kX
0
i ,

Gi .x/ D P
®
Xk � xk ;8k 2 Œd �i jXi D xi

¯
�i .xi /

D P
®
X 0

k � �i;kX
0
i ;8k 2 Œd �i

¯
�i .xi /: (2.7)
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Let �i D P¹X 0
i > 0ºGi .x/=�i .xi /, �i .x/ D .xi � �i /=�i and Ri D

P
k2Œd� I ¹X 0

k
� X 0

i º

be the rank of X 0
i . Due to the independence of X 0

i and ¹X 0
k

� �i;kX
0
i ; k 2 Œd �i º and the fact

that ¹X 0
k

� �i;kX
0
i ; k 2 Œd �i ; X

0
i > 0º � ¹Ri D 1º,

�i D P
®
X 0

k � �i;kX
0
i ;8k 2 Œd �i

¯
ˆ
�
��i .x/

�
� P¹Ri D 1º; (2.8)

so that
P

i2Œd� �i � 1. Let  1.t/ D ˆ.�t /='.t/. We have h.�i .x//= 1.�i .x// � h.a�
1/=

 1.a
�
1/ because a�

1 � t0, h.t/= 1.t/ � h.t0/= 1.t0/ for t � t0 and h.t/= 1.t/ is nonde-
creasing for t � t0. Because �iGi .x/ D �i= 1.�i .x// by (2.7) and (2.8), the first upper
bound in (2.6) follows from 1= 1.t/ � t C  1.t/ and h.t/ ^ h0.t/ � 0 for t � t0. For the
second upper bound in (2.6), (2.7) and (2.8) yield

dX
iD1

�iGi .x/h
�
�i .x/

�
� max

�i ;�i ;i2Œd�

´X
�i �t0

h.t0/'.t0/�i

ˆ.��i /
C

X
�1>t0

h.�i /�i

 1.�i /
W

dX
iD1

�i � 1; 0 � �i � ˆ.��i /

µ
:

D max
�i �t0;�i ;i2Œd�

´
dX

iD1

h.�i /'.�i / W

dX
iD1

ˆ.��i / � 1

µ
(2.9)

due to h.t/'.t/ � h.t0/'.t0/ in .1; t0� and the monotonicity of ˆ.t/ in R and h.t/= 1.t/

in Œt0;1/. The global maximum on the right-hand side of (2.9) must be attained when
�ih.�i / � h0.�i / D � for all i with a Lagrange multiplier �. As th.t/ � h0.t/ D � has one
solution in Œt0;1/, the global maximum is attained at �i D t for all i 2 Œd � and some t � t0.
As .d=dt/¹h.t/'.t/º � 0 for t � t0, the maximum is attained at t D t0 _ t1 and given by
dh.t0 _ t1/'.t0 _ t1/, where t1 is the solution ofˆ.�t1/D 1=d . This gives the second upper
bound in (2.6) because t1 �

p
2 log d and d'.t1/ D 1= 1.t1/ �

p
2 log d for d � 2.

To extend Theorem 2 to the second order, we need to define certain quantities ˛i;j

as an extension of the weights �i . Let †i;j and �i;j .�/ be respectively the covariance matrix
and joint density of .Xi ; Xj /

>. As 1=�i D maxt

p
2��i .t/, ˛i;j is expected to involve

j det.†i;j /j1=2 as the Jacobian in the denominator of �i;j .�/. However, ˛i;j also involves a
certain threshold level ti for a two-dimensional extension of (2.8). Let �i;j D Corr.Xi ; Xj /.
The threshold level ti is defined as

ti D min
®q
.1 � �i;j /=.1C �i;j / W j 2 Œd �i

¯
; (2.10)

which can be viewed as the tangent of the minimum half-angle between standardizedXi and
Xj inL2.P /. Let Yi D .Xi ��i /=�i be the standardizedXi , �i;j D arccos.�i;j / 2 Œ0;�� be
the L2.P / angle between Yi and Yj , and �i;min D min¹�i;j W j 2 Œd �i º be the angle between
Yi and its nearest neighbor. The threshold level in (2.10) can be written as

ti D tan.�i;min=2/:
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The quantity ˛i;j is then defined as

˛i;j D 2 tan.�i;min=4/
ˇ̌
det
�
†i;j

�ˇ̌1=2

D 2 tan
�
arctan.ti /=2

�
�i�j

�
1 � �2

i;j

�1=2 (2.11)

with tan.�i;min=4/ 2 Œ0; 1� and ti as in (2.10). We note that 2 tan.�i;min=4/ � ti when ti is
small. We also consider quantities

Q�i;j D Q�i;j .x/ D
�
�2

i C �2
j ji

�1=2
^
�
�i C ti .�j ji /C

�
C

(2.12)

as signed versions of

�i;j D �i;j .x/ D
�
�2

i C �2
j ji

�1=2
; (2.13)

where �i D �i .x/D .xi ��i /=�i and �j ji D �j ji .x/D .�j � �i;j �i /=.1� �2
i;j /

1=2. We are
now ready to state a second order Gaussian anticoncentration theorem.

Theorem 3. Let d � 2 and X D .X1; : : : ; Xd /
> be a Gaussian vector with a joint

distribution function G.x/. Let Gi;j .x/ D .@=@xi /.@=@xj /G.x/, ˛i;j as in (2.11),
�i;j D Corr.Xi ; Xj /, and a�

2 D a�
2.x/ D

p
2 _ maxi;j Q�i;j .x/ with Q�i;j .x/ as in (2.12).

Then, X
.i;j /2Œd�2

¤

˛i;jGi;j .x/ � min
®
.1=�/ _

�
2 log

�
d.d � 1/=2

��
;
�
a�

2 C
p
2
�2¯
: (2.14)

Moreover, with a�
1 D 1 _ maxi2Œd�.xi � �i /=�i ,

dX
iD1

ˇ̌̌̌
�2

i Gi;i .x/C

X
j 2Œd�i

�i;j�i�jGi;j .x/

ˇ̌̌̌
� min

®
2 log d;

�
a�

1

�2
C 1

¯
: (2.15)

Before we move ahead to proving Theorem 3, we state in the following corollary
a scaled `1-bound for the Hessian of the joint distribution function G.x/ as a direct conse-
quence of the theorem using tan.�i;min=4/ �

p
.1 � maxk¤i �i;k/=8 in (2.11).

Corollary 2. With �i D Var1=2.Xi / and �i;j D Corr.Xi ; Xj /,
dX

iD1

dX
j D1

�i�j

ˇ̌
Gi;j .x/

ˇ̌
� max

.i;j;k/2Œd�3
¤

8 log dp
.1 � j�i;j j/.1 � �j;k/

C 2 log d; d � 2:

Proof of Theorem 3. To prove (2.14), we define

X 0
i D

Xi � xi

�i

; X 0
j ji D

X 0
j � �i;jX

0
i

.1 � �2
i;j /

1=2
; �.j;k/ji D Corr

�
X 0

j ; X
0
kjX 0

i

�
: (2.16)

Let �i;j .�/ be the joint density of .Xi ; Xj /
>. As in (2.7), it holds for all .i; j / 2 Œd �2

¤
that

Gi;j .x/ D P
®
X 0

k < 0; 8k 2 Œd �i;j jX 0
i D X 0

j D 0
¯
�i;j .xi ; xj /

D P
®
X 0

kji � �.j;k/jiX
0
j ji < 0; 8k 2 Œd �i;j

¯
�i;j .xi ; xj /: (2.17)
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For the second step above, we note that X 0
kji

� �.j;k/jiX
0
j ji

is independent of .X 0
i ; X

0
j /

>.
Similar to the proof leading to (2.9), we set Ci;j D ¹0 < X 0

j ji
< tiX

0
i º with the threshold

level ti in (2.10), and define

�i;j D P¹Ci;j ºGi;j .x/=�i;j .xi ; xj /: (2.18)

LetRi D
Pd

j D1 I ¹X 0
j �X 0

i º andRj ji D
P

k2Œd�i
I ¹X 0

kji
�X 0

j ji
º be respectively the marginal

and conditional ranks of X 0
i and X 0

j ji
in (2.16). By the definition of ti ,

ti �
p
.1 � �i;k/=.1C �i;k/, so that �i;k C .1 � �2

i;k
/1=2ti � 1 for all k 2 Œd �i . It follows

that
�i;j D P

®
X 0

kji � �.j;k/jiX
0
j ji < 0 8k 2 Œd �i;j

¯
P¹Ci;j º

D P
®
X 0

kji < �.j;k/jiX
0
j ji ;8k 2 Œd �i;j ; 0 � X 0

j ji < tiX
0
i ; X

0
i > 0

¯
� P

®
Rj ji D 1; X 0

kji < tiX
0
i ; 8k 2 Œd �i ; X

0
i > 0

¯
D P

®
Rj ji D 1; X 0

k <
�
�i;k C

�
1 � �2

i;k

�1=2
ti
�
X 0

i � X 0
i ; 8k 2 Œd �i

¯
� P¹Rj ji D 1;Ri D 1º:

Consequently, X
.i;j /2Œd�2

¤

�i;j � 1: (2.19)

We still need a lower bound for P¹Ci;j º to use (2.19). To this end, we prove

P¹Ci;j º D �i;j�i;j .xi ; xj /=Gi;j .x/

� 2 tan.�i;min=4/'.�i;j /'.0/ 2. Q�i;j /

D ˛i;j�i;j .xi ; xj / 2. Q�i;j /; (2.20)

where �i;j D �i;j .x/ are as in (2.13), Q�i;j D Q�i;j .x/ D min¹�i;j ; .�i C ti .�j ji /C/Cº are as
in (2.12), ˛i;j and �i;min are as in (2.11), and

 2.t/ D

Z 1

0

Z y1

0

e�y2
2 =2�ty1�y2

1 =2dy2dy1: (2.21)

Moreover, with  1.t/ D ˆ.�t /='.t/ as in (2.9), we prove that for all t � 0,

1= 2.t/ � 1= 2
1 .t/C 1C 2=

�
1C  2

1 .t/
�
: (2.22)

The first equality in (2.20) is from the definition of �i;j in (2.18), and the last follows from
'.�i /'.�j ji / D j det.†i;j /j1=2�i;j .xi ; xj / and the definition of ˛i;j in (2.11). We note that
�i;j D .�2

i C �2
j ji
/1=2 and the variables X 0

i � N.��i ; 1/ and X 0
j ji

� N.��j ji ; 1/ are inde-
pendent by (2.16). It follows that

P¹Ci;j º D

Z 1

0

Z ti y1

0

'.y1 C �i /'.y2 C �j ji /dy2dy1 (2.23)

with ti D tan.�i;min=2/. Given �i;j D .�2
i C �2

j ji
/1=2, the above integral is minimized when

�i ^ �j ji � 0 and �j ji=�i D tan.�i;min=4/. Thus, after proper rotation

P¹Ci;j º �

Z 1

0

Z
jy2j�tan.�i;min=4/y1

'.y1 � �i;j /'.y2/dy2dy1;
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which implies the inequality in (2.20) for �i;j D Q�i;j . For �i;j > Q�i;j and 0 < y2 � tiy1,
�iy1 C �j jiy2 � �iy1 C ti .�j ji /Cy1 � Q�i;jy1, so that by (2.23)

P¹Ci;j º �
'.�i;j /
p
2�

Z 1

0

Z ti y1

0

e�y2
1 =2�y2

2 =2�Q�i;j y1dy2dy1;

which again implies the inequality in (2.20). For (2.22), we note that by (2.21)

 2.t/ D

Z 1

0

®
 1

�
.t C y1/=

p
2
�
=
p
2
¯
e�ty1�y2

1 =2dy1:

As in Lemma 9 of [13], 1=.t C  1.t// <  1.t/ < 1=t , so thatZ 1

0

y1e
�ty1�y2

1 =2dy1 D 1 � t 1.t/ �  2
1 .t/:

As  1.�/ is convex and decreasing in Œ0;1/, an application of Jensen’s inequality yields
 2.t/ � ¹ 1.t/=

p
2º 1..t C  1.t//=

p
2/. Thus, as .1=t/=.1C 1=t2/ <  1.t/ < 1=t ,

 2.t/ �
 1.t/
p
2
 1

�
1C  2

1 .t/
p
2 1.t/

�
�

 2
1 .t/=.1C  2

1 .t//

1C 2 2
1 .t/=.1C  2

1 .t//
2
;

which gives (2.22).
Let � 0

i;j D ˛i;jGi;j .x/ 2. Q�i;j /. It follows from (2.20) that � 0
i;j � �i;j . By (2.11)

and (2.17),

� 0
i;j � 2

ˇ̌
det
�
†i;j

�ˇ̌1=2
�i;j .xi ; xj / 2. Q�i;j / D

p
2=�'.�i;j / 2. Q�i;j /: (2.24)

This gives (2.14) for d D 2 as ˛1;2G1;2.x/ � 1=� . By (2.19) and (2.22),X
.i;j /2Œd�2

¤

˛i;jGi;j .x/ D

X
.i;j /2Œd�2

¤

� 0
i;j

 2. Q�i;j /
�
�
a�

2 C
p
2
�2

due to a�
2 D

p
2 _ max.i;j /2Œd�2

¤
Q�i;j and 1= 1.t/ � t C 1=t . In general, (2.19) and (2.24)

yieldX
.i;j /2Œd�2

¤

˛i;jGi;j .x/

� max
�i;j �0;� 0

i;j

² X
.i;j /2Œd�2

¤

� 0
i;j

 2.�i;j /
W

X
.i;j /2Œd�2

¤

� 0
i;j � 1; � 0

i;j �
p
2=�'.�i;j / 2.�i;j /

³
D max

�i;j �0

² X
.i;j /2Œd�2

¤

p
2=�'.�i;j / W

X
.i;j /2Œd�2

¤

p
2=�'.�i;j / 2.�i;j / � 1

³
(2.25)

because  2.t/ and '.t/ are both decreasing in Œ0;1/. Let d2 D d.d � 1/=2. By (2.21),
 2.t/ �  0

2.t/=t is decreasing in t in Œ0;1/, so that the optimization problem is solved
by �i;j D t2 with a Lagrange multiplier, where t2 is the solution of

p
2=�'.t2/ 2.t2/ D

1=.2d2/. For d � 3 and t D
p
.2 log.2d2=.2� log d2///C, we have 1= 2.t/ � 2 log d2

via (2.22). Thus, the right-hand side of (2.25) is no greater than 2 log d2.
Finally, it follows from (2.16) and (2.7) that

Gi;i .x/ D �Gi .x/�i .x/=�i �

X
j 2Œd�i

Gi;j .x/�i;j�j =�i (2.26)

with �i .x/ D .xi � �i /=�i , so that (2.15) follows from Theorem 2 with h.t/ D jt j.
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3. Comparison of Gaussian distribution functions

The Gaussian anticoncentration theorem in Section 2 yields the following error
bounds in the comparison of Gaussian joint distribution functions.

Let X D .X1; : : : ; Xd /
> and Y D .Y1; : : : ; Yd /

> be two Gaussian vectors with
common mean� and respective covariance matrices†X and†Y and joint distribution func-
tions

GX .x/ D P
®
Xk � xk8k 2 Œd �

¯
; GY .y/ D P

®
Yk � yk8k 2 Œd �

¯
: (3.1)

For 0 � s � 1, let †i;j .s/ be the elements of †.s/ D .1 � s/†X C s†Y ,

�i .xI s/ D .xi � �i /=
p
†i;i .s/; (3.2)

�i;j .s/ D
†Y

i;j �†X
i;jp

†i;i .s/†j;j .s/
; �i;j .s/ D

†i;j .s/p
†i;i .s/†j;j .s/

; (3.3)

and

�i;j;˙.s/ D max
k¤i;`¤j

.2�i;j .s//˙ _ j�i;i .s/C�j;j .s/jp
.1 � j�i;j .s/j/.

p
1 � �i;k.s/C

p
1 � �j;`.s//

: (3.4)

Theorem 4. Let GX .x/ and GY .y/ be as in (3.1), ��.xI s/ D 1 _ maxi�2Œd� j�i .xI s/j,
��

C.s/D max.i;j /2Œd�2
¤
�i;j;C.s/ and�diag.s/D maxi2Œd� j�i;i .s/j, where �i .xI s/,�i;i .s/,

and �i;j;˙.s/ are as in (3.2). (3.3), and (3.4), respectively. Then, for d � 2,

GY .x/ �GX .x/ �

Z 1

0

�
2��

C.s/C�diag.s/=2
�

min
®
2 log d;

�
��.x; s/C 1

�2¯
ds: (3.5)

Because GX
max.t/ D GX .t; : : : ; t / and GY

max.t/ D GY .t; : : : ; t /, Theorem 1 is an
immediate consequence of Theorem 4. Conversely, as t can be absorbed into the mean, The-
orem 1 is a simplified version of Theorem 4.

Assume, without loss of generality, that X and Y are independent as the
theorem does not involve the joint distribution of X and Y . With � D EŒX�, write
X.s/ D

p
1 � s.X � �/C

p
s.Y � �/C �, s 2 Œ0; 1�, as Slepian’s interpolation and

�.xI s/ D .2�/�d

Z
Rd

exp
�p

�1.� � x/>u � u>
�
.1 � s/†X

C s†Y
�
u=2

�
du

as the joint density ofX.s/. Slepian’s inequality was proved by passing the differentiation of
EŒf .X.s//� to twice differentiation of f through the above formula,

d

ds
E
�
f
�
X.s/

��
D
1

2

dX
iD1

dX
j D1

�
†Y

i;j �†X
i;j

� Z �@2f .x/

@xi@xj

�
�.xI s/dx; (3.6)

provided the twice differentiability of f .x/. However, for comparison of distribution func-
tions, this is not feasible as f is an indicator function. Instead, with y D .y1; : : : ; yd /

>, we
may exchange the differentiation and integration in (3.6) and write

d

ds
E
�
f
�
X.s/

��
D
1

2

dX
iD1

dX
j D1

�
†Y

i;j �†X
i;j

�@2F.yI s/

@yi@yj

ˇ̌̌̌
yD0

(3.7)
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with F.yI s/ D
R
f .x/�.x C yI s/dx D EŒf .X.s/ � y/�. In the proof of Theorem 4, we

directly apply the weighted anticoncentration inequality in Theorem 3 to (3.7).

Proof of Theorem 4. Let �i .s/ D †
1=2
i;i .s/ and

G.xI s/ D P
®
Xk.s/ � xk ; k 2 Œd �

¯
;

so that (3.7) becomes

.@=@s/G.xI s/ D
1

2

dX
iD1

dX
j D1

�
†Y

i;j �†X
i;j

�
Gi;j .xI s/; (3.8)

where Gi;j .xI s/ D .@=@xi /.@=@xj /G.xI s/. As in (2.11), let

˛i;j .s/ D 2�i .s/�j .s/
�
1 � �2

i;j .s/
�1=2 tan

�
�i;min.s/=4

�
;

with �i;min.s/ D min¹arccos.�i;k/.s/; k 2 Œd �i º 2 Œ0; ��. We have

�i .s/�j .s/.1C j�i;j .s/j/

˛i;j .s/C j̨;i .s/
� max

k¤i;`¤j

p
2.1C j�i;j .s/j/p

1 � j�i;j .s/j.
p
.1 � �i;k/C

p
.1 � �j;`//

due to tan.�i;min=4/�
p
.1 � maxk¤i �i;k/=8. Let �i .xI s/D .xi ��i /=�i .s/. We use �i .s/

to scale (3.8) and apply (2.26) and Theorem 3 as follows:

.@=@s/G.xI s/

D
1

2

X
.i;j /2Œd�2

¤

�i;j .s/�i .s/�j .s/Gi;j .xI s/ �
1

2

dX
iD1

�i;i .s/�i .s/Gi .xI s/�i .xI s/

�
1

4

X
.i;j /2Œd�2

¤

�
�i;i .s/C�j;j .s/

�
�i;j .s/�i .s/�j .s/Gi;j .xI s/

�

X
.i;j /2Œd�2

¤

�i;j;C.s/

�
˛i;j .s/C j̨;i .s/

2

�
Gi;j .xI s/

C
1

2

dX
iD1

ˇ̌
�i;i .s/�i .xI s/

ˇ̌
�i .s/Gi .xI s/

� max
.i;j /2Œd�2

¤

�i;j;C.s/¹.
p
2�� C

p
2/2 ^ .4 log d/º

C max
i2Œd�

ˇ̌
�i;i .s/=2

ˇ̌
¹.�� C 1/2 ^ .2 log d/º:

This gives (3.5) by integrating over s 2 Œ0; 1�.

In the rest of this section we prove Theorem 1.

Proof of Theorem 1. Let Errt D P¹max1�i�d Yi � tº � P¹max1�i�d Xi � tº and write

Errt D P
°

max
1�i�d

Y 0
i � 0

±
� P

°
max

1�i�d
X 0

i � 0
±
;

with X 0
i D .Xi � t /=�i and Y 0

i D .Yi � t /=�i . Let " � "0 > 0, ˇ D .log d/=.2"0/,
g.x/D ˇ�1 log.

Pd
iD1 e

ˇxi / for x D .x1; : : : ; xd /
>, and f".t/ be the nonincreasing function
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with f"."/D 0 and derivative f 0
" .t/D �"�1.1� jt j="/C. Let xmax D max1�i�d xi . Similar

to [5], we approximate I ¹xmax � 0º by f".g.x/ � "0/. Because xmax � g.x/ � xmax C 2"0,

I ¹ymax � 0º � I ¹xmax � 0º � f"

�
g.y/ � "0

�
C f"

�
g.x/ � "0

�
� I ¹ymax � 0º

®
1 � f"

�
ymax C "0

�¯
C I ¹xmax > 0ºf"

�
xmax � "0

�
;

for any x and y D .y1; : : : ; yd /
>, where ymax D max1�i�d yi . Set "0=" D 3=10. As

Var.X 0
i / ^ Var.Y 0

i / � 1 and f .t/C f .�t / D 1, Corollary 1 provides

Errt � E
�
f
�
g.Y /

��
C E

�
f
�
g.X/

��
�
p
2 log d

 Z 0

�"�"0

�
1 � f"

�
t C "0

��
dt C

Z "C"0

0

f"

�
t � "0

�
dt

!
D
p
2 log d

®
2"0

C "
�
1 � "0="

�3
=3
¯

� .3"=4/
p
2 log d: (3.9)

The approximation allows us to apply (3.6) toX 0 andY 0. Letpi Dpi .x/D eˇxi =
Pd

j D1 e
ˇxj .

We have @g.x/=@xi D pi and @pi=@xj D ˇI¹iDj ºpi � ˇpipi . It follows that

jErrt j � .3"=4/
p
2 log d C

1

2

Z
Rd

f̌ 0
"

�
g.x/

� dX
iD1

pi�i;i�.xI s/dx

C
1

2

Z
Rd

®
f 00

"

�
g.x/

�
� f̌ 0

"

�
g.x/

�¯ dX
iD1

dX
j D1

pipj�i;j�.xI s/dx

� .3"=4/
p
2 log d C

�

2

Z
Rd

ˇ̌
f 00

"

�
g.x/

�ˇ̌
�.xI s/dx

C
.�diag C�cross

C / log d
4"0

Z
Rd

ˇ̌
f 0

"

�
g.x/

�ˇ̌
�.xI s/dx; (3.10)

due to f 0
" .t/ � 0, where � D max1�i�j �d j�i;j j. Similar to (3.9), we have

1

4"0
p
2 log d

Z
Rd

ˇ̌
f 0

"

�
g.x/

�ˇ̌
�.xI s/dx �

1C 2"0="

4"0
D

4

3"

and
R

Rd jf 00
" .g.x//j�.xI s/dx=.2

p
2 log d/ � ."0="C 1/=" � 4=.3"/. Inserting the above

bounds for the integrals into (3.10), we find that
jErrt jp
2 log d

�
3"

4
C
4

3"

®�
�diag

C�cross
C

�
log d C�

¯
:

This gives (1.4) with " minimizing the right-hand side. Theorem 4 implies (1.5) due to
j�i;j .s/j � ��¹.1 � s/

p
�i .0/�j .0/C s

p
�i .1/�j .1/º=¹�i .s/�j .s/º � �� in (3.4).

4. Higher-order anticoncentration

In this section we extend Theorem 3 to higher order by developing upper bounds for
weighted sums of the absolute values of the derivatives

Gi1;:::;im.x/ D
@mP¹Xk � xk 8k 2 Œd �º

@xi1 � � � @xim

(4.1)
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for Gaussian vectors X D .X1; : : : ; Xd /
>, where x D .x1; : : : ; xd /

>. We shall defer proofs
to the end of the section after the statement and discussion of these extensions.

We first present anmth-order anticoncentration inequality in terms of partial corre-
lations between the components of the Gaussian vector X . For i1Wm D .i1; : : : ; im/ 2 Œd �m

¤

and .j; k/ 2 Œd �2
i1Wm;¤

, the partial correlation of Xj and Xk given Xi1Wm D .Xi1 ; : : : ; Xim/
>

is

�j;kji1Wm
D Corr.Xj ; XkjXi1Wm/ (4.2)

with the convention �.j;k/ji1W0
D �j;k D Corr.Xj ; Xk/. Define threshold levels

ti1Wj
D 1 ^ min

²p
1 � �ij ;kji1W.j �1/p
1C �ij ;kji1W.j �1/

; k 2 Œd �i1Wj

³
; i1Wj 2 Œd �

j

¤
; (4.3)

and an extension of a simplification of (2.11) as

˛0
i1Wm

D
ˇ̌
det
�
†i1Wm

�ˇ̌1=2
m�1Y
j D1

ti1Wj
; i1Wm 2 Œd �m

¤
; (4.4)

with ˛0
i D �i D †

1=2
i;i , where †i1Wm is the m � m covariance matrix of Xi1Wm . Compared

with (2.11) where cos.�i;min/ D �i;max D max¹�i;k W k 2 Œd �i º, ti D 1 ^ tan.�i;min=2/ for
i1 D i in (4.3), so that ˛0

i;j in (4.4) and ˛i;j in (2.11) are within a factor of 2 of each other.

Theorem 5. For any positive integer m < d , there exists a finite numerical constant Cm

depending on m only such that for any set of positive constants ¹bi1Wm W i1Wm 2 Œd �m<º with
ordered values b.1/ � b.2/ � � � � , the mth-order derivatives in (4.1) are bounded by

sup
x

X
i1Wm2Œd�m<

˛0
i1Wm

bi1Wm

ˇ̌
Gi1Wm.x/

ˇ̌
� Cm max

1�k�d

.1C
p
2 log k/m

b.k/

; (4.5)

where ˛0
i1Wm

are as in (4.4) for i1Wm 2 Œd �m< .

As mentioned in the discussion of (2.5), the upper bound in our anticoncentration
inequality can be expressed in terms of the minimum eigenvalue of the correlation matrix of
no more than m components of X . For i1Wm D .i1; : : : ; im/ 2 Œd �m

¤
, let �i1Wm be the m �m

correlation matrix ofXi1Wm D .Xi1 ; : : : ;Xim/
> and define the corresponding minimum eigen-

value as

�
i1Wm
min D min

®
u>�i1Wm u W u 2 Rm; kuk2 D 1

¯
: (4.6)

The following theorem asserts that the quantity ˛0
i1Wm

in Theorem 5 can be replaced by

˛00
i1Wm

D .�i1 � � � �im/

 
�

i1Wm
min

m�1Y
j D1

min
®
�

i1;:::;ij ;k

min W k 2 Œd �i1;:::;ij

¯!1=2

: (4.7)

For m D 2, min¹�
i;k
min W k 2 Œd �i º D 1 � max¹j�i;kj W k 2 Œd �i º in (4.7) while the sharper

one-sided ti D 1^ tan.�i;min=2/ and 2 tan.�i;min=4/ are respectively used in (4.4) and (2.11),
where cos.�i;min/ D max¹�i;k W k 2 Œd �i º.
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Theorem 6. For any positive integer m < d , there exists a finite numerical constant Cm

depending on m only such that (4.5) holds with the quantity ˛0
i1Wm

replaced by the quantity
˛00

i1Wm
in (4.7). In particular,

sup
x

X
i1Wm2Œd�m<

ˇ̌
Gi1Wm.x/

ˇ̌
�

Cm.1C
p
2 log d/m

min¹˛00
i1Wm

W i1Wm 2 Œd �m<º
; (4.8)

and in terms of the sparse eigenvalue �min;j D min¹�
i1Wj

min W i1Wj 2 Œd �
j

¤
º with the �i1Wj

min in (4.6)

sup
x

X
i1Wm2Œd�m<

 
mY

j D1

�ij

!ˇ̌
Gi1Wm.x/

ˇ̌
�

Cm.1C
p
2 log d/m

�min;m

p
�min;m�1 � � ��min;2

: (4.9)

While the quantity ˛00
i1Wm

in (4.7) is expressed in terms of the more familiar minimum
eigenvalues, it is bounded from the above by the quantity ˛0

i1Wm
in (4.4) up to a constant factor.

Moreover, compared with ˛00
i1Wm

, the quantity ˛0
i1Wm

is potentially of larger order as it involves
one-sided threshold levels ti1Wj

in (4.3). Thus, Theorem 5 is slightly sharper than Theorem 6.
We present next an upper bound of the ratio ˛00

i1Wm
=˛0

i1Wm
through a Cholesky decomposition

of correlation matrices, and thus the validity of Theorem 6 as a corollary of Theorem 5.
Because the quantity ˛0

i1Wm
involves partial correlations in (4.3), we construct the

Cholesky decomposition through a Gram–Schmidt orthogonalization process. Let
Yi D .Xi � �i /=�i . In the Gram–Schmidt orthogonalization process, we write

Ykji1Wj
D
Ykji1W.j �1/

� �ij ;kji1W.j �1/
Yij ji1W.j �1/

.1 � �2
ij ;kji1W.j �1/

/1=2
; k 2 Œd �i1Wj

; j D 0; : : : ; m � 1; (4.10)

with the convention Ykji1W0
D Yk . Let Ai1Wm be the matrix satisfying0BBBB@

Yi1

Yi2ji1

:::

Yimji1W.m�1/

1CCCCA D Ai1Wm

0BBBB@
Yi1

Yi2

:::

Yim

1CCCCA : (4.11)

Because ¹Ykji1Wj
; k 2 Œd �i1Wj

º and Yi1Wj
are independent, Yi1 ; Yi2ji1 ; : : : ; Yimji1W.m�1/

are iid
N.0; 1/ variables, so that Ai1Wm gives a Cholesky decomposition of �i1Wm in the sense of

Im�m D Ai1Wm�i1Wm
�
Ai1Wm

�>
: (4.12)

As the spectrum norm of Ai1Wm is bounded by .�i1Wm
min /

�1=2 and the elements of Ai1Wm are
expressed in terms of partial correlations, (4.10), (4.11), and (4.12) lead to the following
lemma.

Lemma 1. For i1Wm 2 Œd �m
¤
, let �i1Wm be them�m correlation matrix of the Gaussian vector

Xi1Wm D .Xi1 ; : : : ; Xim/
>. For j 2 Œd �i1Wm , let �.im;j /ji1W.m�1/

be the partial correlation as
defined in (4.2). Then, the determinant of �i1Wm is given by

det
�
�i1Wm

�
D

mY
kD2

k�1Y
j D1

�
1 � �2

ij ;ik ji1W.j �1/

�
(4.13)
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with �ik ;i1ji1W0
D �ik ;i1 . Consequently, with �

i1Wm
min being the smallest eigenvalue of �i1Wm ,

det
�
�i1Wm

�m�1Y
kD1

min
�
1;
1 � �`kC1;ik ji1W.k�1/

1C �`kC1;ik ji1W.k�1/

�
� �

i1Wm
min

m�1Y
kD1

�
�

i1Wk ;`kC1

min =5
�

(4.14)

for all `kC1 2 Œd �i1Wk
, k D 1; : : : ; m � 1.

It follows from Lemma 1 that ˛00
i1Wm

� 5.m�1/=2˛0
i1Wm

for the quantities in (4.7)
and (4.4), respectively, so that Theorem 6 is a consequence of Theorem 5.

We still need to consider the case where the differentiation is taken multiple times
in some of the directions. As a general study of such results is beyond the scope of this paper,
we present here an upper bound for the third derivative and discuss the main difficulties in
the higher-order cases.

Theorem 7. Let Gi;j;k.x/ be as in (4.1) for a Gaussian vector X1Wd with marginal distri-
butions Xi � N.�i ; �

2
i /. Let �min;j be the lower sparse eigenvalue as in Theorem 6 for the

correlation matrices of j -components of X1Wd . Then, for some numeric constant C3,

sup
x

dX
iD1

dX
j D1

dX
kD1

�i�j�k

ˇ̌
Gi;j;k.x/

ˇ̌
�
C3.1C

p
2 log d/3

�min;3

p
�min;2

: (4.15)

In our approach, the proof of Theorem 7 and the analysis in higher-order cases
involve factors which can be expressed as regression coefficients. Let Yi D .Xi � �i /=�i

as in (4.10). Given i1Wm 2 Œd �m
¤

and k 2 Œd �i1Wm , the linear regression of Yk against Yi1Wm is
given by

EŒYkjYi1Wm � D

mX
j D1

ˇ
kji1Wm

ij
Yij : (4.16)

These regression coefficients ˇkji1Wm

ij
appear in the derivatives (4.1) as follows. Let

Pi1Wm.x/ D P
®
Xk � xk 8 k 2 Œd �i1Wm jXi1Wm D xi1Wm

¯
(4.17)

and �i1Wm.x/ be the joint density of Xi1Wm . As in (2.7), we have

Gi1Wm.x/ D Pi1Wm.x/�i1Wm.x/: (4.18)

As Yk � EŒYkjYi1Wm � is independent of Yi1Wm and Yi1Wm is linear inXi1Wm , the conditional prob-
ability in (4.17) can be written as

Pi1Wm.x/ D P

´
Yk � EŒYkjYi1Wm � �

xk � �k

�k

�

mX
j D1

ˇ
kji1Wm

ij

xij � �ij

�ij

; 8k 2 Œd �i1Wm

µ
:

Thus, for a 2 Œm�,

.@=@xia/Gi1Wm.x/ D Pi1Wm.x/.@=@xia/�i1Wm.x/C �i1Wm.x/.@=@xia/Pi1Wm.x/

D Gi1Wm.x/.@=@xia/ log�i1Wm.x/

�

X
imC12Œd�i1Wm

Gi1WmC1ˇ
imC1ji1Wm

ia
�imC1=�ia : (4.19)
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In general, the scaled mth partial derivative .�i1@=@xi1/
j1 � � � .�ik@=@xik /

jkG.x/ with
j1 C � � � C jk D m would involve a term of the form

.�1/m�k�i1 � � � �imGi1;:::;imˇ
ikC1ji1Wk

`kC1
� � �ˇ

imji1W.m�1/

`m

such that ia appears ja � 1 times in `kC1; : : : ; `m, optionally in the order of a D 1; : : : ; k.
While ˇikC1ji1Wk

`kC1
. 1=�

i1Wk
min , a difficulty is to find sharper bounds for

�i1 � � � �imˇ
ikC1ji1Wk

`kC1
� � �ˇ

imji1W.m�1/

`m
=˛0

i1Wm

to extend Theorem 7 to higher order in the same form as that of (4.15) and (4.9).

Proof of Theorem 5. Consider a fixed sequence of integers i1Wm 2 Œd �m
¤

. Define

X 0
j ji1Wm

D

X 0
j ji1W.m�1/

� �.im;j /ji1W.m�1/
X 0

imji1W.m�1/

.1 � �2
.im;j /ji1W.m�1/

/1=2
(4.20)

as in (2.16) with the partial correlation �.im;j /ji1W.m�1/
in (4.2) and initializationX 0

j ji1W0
DX 0

j D

.Xj � xj /=�j . This is the same Gram–Schmidt orthogonalization process as in (4.10) but
the X 0

j are not centered to have mean zero at the initialization. Still the covariance structure
ofX 0

j ji1Wm
is the same as that of Yj ji1Wm

. BecauseX 0
kji1Wm

; k 2 Œd �i1Wm are independent ofXi1Wm ,

Gi1Wm.x/ D

Z
yk�xk ;8k2Œd�i1Wm

�Œd�.y/
Y

k2Œd�i1Wm

dykjyi1Wm
Dxi1Wm

D P
®
X 0

k < 0 8k 2 Œd �i1Wm jX 0
i1

D � � � D X 0
im

D 0
¯
�i1Wm.xi1Wm/

D P
®
X 0

kji1Wm
< 0 8k 2 Œd �i1Wm

¯
�i1Wm.xi1Wm/ (4.21)

as in (2.17) and (4.18). To bound the probability P¹X 0
kji1Wm

< 0 8k 2 Œd �i1Wmº, we define

�i1Wm D P¹Ci1WmºGi1Wm.x/=�i1Wm.xi1Wm/; (4.22)

where Ci1Wm is defined with the threshold levels ti1Wj
in (4.3) as

Ci1Wm D
®
0 < X 0

ij C1ji1Wj
� ti1Wj

X 0
ij ji1W.j �1/

; 1 � j < m;Xi1 > 0
¯
:

Given integers j � 0 and i1Wj , define the rank of X 0
kji1Wj

as

Rkji1Wj
D

X
`2Œd�i1Wj

I
®
X 0

`ji1Wj
� X 0

kji1Wj

¯
; k 2 Œd �i1Wj

:

Here Rkji1W0
D
P

`2Œd� I ¹X 0
`

� X 0
k
º is the marginal rank of X 0

k
as X 0

`ji1W0
D X 0

`
in (4.20). In

the event ¹X 0
kji1Wm

< 0 8k 2 Œd �i1Wmº \ Ci1Wm , we have Rimji1;:::;im�1
D 1 due to

X 0
kji1W.m�1/

� �im;kji1W.m�1/
X 0

imji1W.m�1/
� X 0

imji1W.m�1/
;

and by induction Rij ji1W.j �1/
D 1 given Rij C1ji1Wj

D 1 for j D m � 1; : : : ; 1 due to

X 0
kji1W.j �1/

D �ij ;kji1W.j �1/
X 0

ij ji1W.j �1/
C
®
1 � �2

ij ;kji1W.j �1/

¯1=2
X 0

kji1Wj

� �ij ;kji1W.j �1/
X 0

ij ji1W.j �1/
C
®
1 � �2

ij ;kji1W.j �1/

¯1=2
X 0

ij C1ji1Wj

�
®
�ij ;kji1W.j �1/

C
�
1 � �2

ij ;kji1W.j �1/

�1=2
ti1Wj

¯
X 0

ij ji1W.j �1/

� X 0
ij ji1W.j �1/

;

5609 Gaussian anticoncentration



by the choice of ti1Wj
in (4.3). Thus, due to the independence between the event Ci1Wm and the

set of random variables ¹X 0
kji1Wm

; k 2 Œd �i1Wmº,

�i1Wm D P
®
X 0

kji1Wm
< 0 8k 2 Œd �i1Wm ;Ci1Wm

¯
� P¹Rij ji1W.j �1/

; 1 � j � mº:

Consequently, X
i1Wm2Œd�m

¤

�i1Wm � 1: (4.23)

We still need to find a suitable lower bound for P¹Ci1Wmº to use (4.23). Let
�i D EŒX 0

i �,

�i1Wm D
®
.�i1 ; : : : ; �im/

�
†i1Wm

��1
.�i1 ; : : : ; �im/

>
¯1=2

; �ij ji1W.j �1/
D E

�
X 0

ij ji1W.j �1/

�
;

and 'ij ji1W.j �1/
be the N.�ij ji1W.j �1/

; 1/ density. We shall prove that

P¹Ci1Wmº � ˛0
i1Wm
�i1Wm.x/C

0
mJm.�i1Wm/=�

m
i1Wm
; (4.24)

with Jm.t/ D
R1

0
ym�1e�y�y2=.2t2/dy and C 0

m D 2�m=2=¹2m�.m=2/mŠº, and thatˇ̌
det
�
†i1Wm

�ˇ̌1=2
�i1Wm.x/ D .2�/�m=2 exp

�
��2

i1Wm
=2
�
: (4.25)

Because X 0
ij ji1W.j �1/

are defined by the Gram–Schmidt process, they are independent
N.�ij ji1W.j �1/

; 1/ variables. Thus, as the Jacobian of a linear transformation ofX 0
i1
; : : : ;X 0

im
is

a constant, j det.†i1Wm/j1=2�i1Wm.x/ D
Qm

j D1 'ij ji1W.j �1/
.0/ and

Pm
j D1 �

2
ij ji1W.j �1/

D �2
i1Wm

. This
gives (4.25). Because ti1Wj

� 1 for all j , it follows that

P¹Ci1Wmº D P
®
0 < X 0

ij C1ji1Wj
� ti1Wj

X 0
ij ji1W.j �1/

; 1 � j < m;Xi1 > 0
¯

D

Z 1

0

Z ti1 x1

0

� � �

Z ti1W.m�1/
xm�1

0

mY
j D1

'.xj � �ij ji1;:::;ij �1
/dxj

�

Z 1

0

Z ti1 x1

0

� � �

Z ti1W.m�1/
xm�1

0

exp.��2
i1Wm
=2 � �i1Wmkxk2 � kxk2

2=2/

.2�/m=2
dx

�

 
m�1Y
j D1

ti1Wj

!Z 1

0

Z x1

0

� � �

Z xm�1

0

exp.��2
i1Wm
=2 � �i1Wmkxk2 � kxk2

2=2/

.2�/m=2
dx

D

 
m�1Y
j D1

ti1Wj

!
2

mŠ2m�.m=2/2m=2

Z 1

0

ym�1e
��2

ii Wm
=2��ii Wm

y�y2=2
dy

D

 
m�1Y
j D1

ti1Wj

!
2�m=2j det.†i1Wm/j1=2�i1Wm.x/

2m�.m=2/mŠ

Jm.�i1Wm/

�m
i1Wm

D ˛0
i1Wm
�i1Wm.x/C

0
mJm.�i1Wm/=�

m
i1Wm
:
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Putting together (4.4), (4.21), (4.22), (4.23), (4.24), and (4.25), we find thatX
i1Wm2Œd�m<

˛0
i1Wm

bi1Wm

Gi1Wm.x/ D

X
i1Wm2Œd�m<

min
²

e
��2

i1Wm
=2

.2�/m=2bi1Wm

;
˛0

i1Wm

bi1Wm

�i1Wm�i1Wm.xi1Wm/

P¹Ci1Wmº

³

�

X
i1Wm2Œd�m<

min
²

e
��2

i1Wm
=2

.2�/m=2bi1Wm

;
�i1Wm�

m
i1Wm

bi1WmC
0
mJm.�i1Wm/

³
�

X
k 62K

e�L2
k

=2

.2�/m=2b.1/

C max
k2K

mŠLm
k

b.k/C 0
mJm.Lk/

� Cm max
k2Œd�

.1C
p
2 log k/m

b.k/

; (4.26)

with Lk D 1C
p
2 log k and K D ¹k W �.k/ � Lkº due to the monotonicity Jm.t/=t

m " in
.0;1/ and Jm.Lk/ � Jm.L1/ D Jm.1/. This completes the proof of Theorem 5.

Proof of Theorem 6. In view of the definitions of ˛0
i1Wm

and ˛00
i1Wm

in (4.4) and (4.7), respec-
tively, Theorem 6 follows directly from Theorem 5 and Lemma 1.

Proof of Lemma 1. Let i1Wm D 1 W m, as a permutation of labels does not change the conclu-
sions. It follows from (4.12) that

det
�
�1Wm

��
det
�
A1Wm

��2
D 1:

Because A1Wm is a lower-triangular matrix with diagonal elements A1Wm
1;1 D 1 and

A1Wm
k;k

D
Qk�1

j D1.1 � �2
k;j j1W.j �1/

/�1=2 for 2 � k � m,

det
�
�1Wm

�
D

1

det2.A1Wm/
D

mY
kD2

1

.A1Wm
k;k
/2

D

mY
kD2

k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

�
:

This gives (4.13). Now we write for k < `kC1 � d

det
�
�1Wm

�m�1Y
kD1

min
�
1;
1 � �`kC1;kj1W.k�1/

1C �`kC1;kj1W.k�1/

�
D

 
m�1Y
j D1

�
1 � �2

m;j j1W.j �1/

�!m�1Y
kD1

´
min

�
1;
1 � �`kC1;kj1W.k�1/

1C �`kC1;kj1W.k�1/

� k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

�µ
;

(4.27)

with the convention
Qk�1

j D1.1 � �2
k;j j1W.j �1/

/ D 1 for k D 1. By (4.12), 
m�1Y
j D1

�
1 � �2

m;j j1W.j �1/

�!�1

D
�
A1Wm

m;m

�2
�

1

�min.�1Wm/
;
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as the spectral norm of A1Wm is no greater than 1=�1=2
min .�

1Wm/. For 1 � k � m � 1,

max
�
1;

p
1C �kC1;kj1W.k�1/p
1 � �kC1;kj1W.k�1/

� k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

��1=2

�

�
1C 2

j�kC1;kj1W.k�1/jq
1 � �2

kC1;kj1W.k�1/

� k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

��1=2

D A
1W.kC1/

k:k
C 2

ˇ̌
A

1W.kC1/

kC1;k

ˇ̌
�

q
5=�min

�
�1W.kC1/

�
;

due to
p
.1C t /=.1 � t / � 1C 2jt j=

p
1 � t2 or, equivalently, 1C t �

p
1 � t2 C 2jt j for

jt j < 1. This and (4.27) give (4.14) because labels do not matter.

Proof of Theorem 7. Let �i;j .x/ be the joint density of .Xi ; Xj /
>, �i .x/ D .xi � �i /=�i ,

and �i;j .x/ be given by ��2
i;j .x/=2D log.2� det1=2.†i;j /�i;j .x// as in (4.25). As in (4.19)

and similar to (2.26), for i ¤ j ,

Gi;j;j .x/ D Gi;j .x/.@=@xj / log�i;j .x/ �

X
k2Œd�i;j

Gi;j;k.x/ˇ
kji;j
j �k=�j ;

with j.@=@xj / log�i;j .x/j D je>
j .�

i;j /�1.�i .x/; �j .x//
>j=�j � .�

i;j
min/

�1=2�i;j .x/=�j and

ˇ
kji;j
j D

.1 � �2
k;j ji

/�1=2�k;j ji .1 � �2
j;i /

�1=2

.1 � �2
k;j ji

/�1=2.1 � �2
k;i
/�1=2

D
�k;j ji .1 � �2

k;i
/1=2

.1 � �2
i;j /

1=2
:

The formula for the regression coefficient is obtained by noticing thatˇkji;j
j D �A

i;j;k

k;j
=A

i;j;k

k;k

in the Cholesky decomposition (4.11) with the matrix elementsAi;j;k

k;j
andAi;j;k

k;k
determined

by the Gram–Schmidt formula (4.10). By (4.13),

det
�
�i;j;k

�
D
�
1 � �2

k;j ji

��
1 � �2

k;i

��
1 � �2

i;j

�
:

As in the proof of Lemma 1, we have, by (4.4) and (4.3),�
�i�j�kˇ

kji;j
j

˛0
i;j;k

�2

D
�2

k;j ji
.1 � �2

k;i
/.1 � �2

i;j /
�1

t2i;j t
2
i .1 � �2

k;j ji
/.1 � �2

k;i
/.1 � �2

i;j /

�
1

t2i
�

1

t2i;j .1 � �2
i;j /

�
1

.1 � �2
j;kji

/.1 � �2
i;j /

�
5

�
i; j̀

min

�
5

�
i;j;`k
min

�
1

�
i;j;k
min

;

for some j̀ 2 Œd �i and `k 2 Œd �i;j . It follows thatX
.i;j /2Œd�2

¤

�i�
2
j

ˇ̌
Gi;j;j .x/

ˇ̌
�

X
.i;j /2Œd�2

¤

�i�jGi;j .x/
�
�

i;j
min
��1=2

�i;j .x/

C

X
.i;j;k/22Œd�3

¤

5˛0
i;k;j

jGi;k;j .x/j

�min;3

p
�min;2

: (4.28)
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Similar to (4.26) in the proof of Theorem 5, the first term on the right-hand side above is
bounded by X

.i;j /2Œd�2
¤

�i�jGi;j .x/�i;j .x/p
�min;2

�
C 0

3.1C
p
2 log d/3

�min;2

:

By Theorem 5,
P

.i;j;k/22Œd�3
¤
˛0

i;j;k
jGi;j;k.x/j � 6C3.1C

p
2 log d/3. Thus, the right-hand

side of (4.28) is bounded by C 00
3 .1C

p
2 log d/3=.�min;3

p
�min;2/. Similarly,

2X
iD1

�3
i

ˇ̌
Gi;i;i .x/

ˇ̌
�
C 00

3 .1C
p
2 log d/3

�min;3

p
�min;2

by differentiating the identity

Gi;i .x/ D Gi .x/�i .x/=�i �

X
j Wi¤j 2Œd�

Gi;j .x/�i;j�j =�i

in (2.26). The conclusion follows as the sum over Œd �3
¤

is bounded in Theorem 6.
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Abstract

In this article, we review our recently introduced methods for obtaining strictly positive
lower bounds on the top Lyapunov exponent of high-dimensional, stochastic differential
equations such as the weakly-damped Lorenz-96 (L96) model or Galerkin truncations of
the 2D Navier–Stokes equations. This hallmark of chaos has long been observed in these
models, however, no mathematical proof had been provided for either deterministic or
stochastic forcing.
The method we proposed combines (A) a new identity connecting the Lyapunov exponents
to a Fisher information of the stationary measure of the Markov process tracking tangent
directions (the so-called “projective process”); and (B) an L1-based hypoelliptic regularity
estimate to show that this (degenerate) Fisher information is an upper bound on some frac-
tional regularity. For L96 and GNSE, we then further reduce the lower bound of the top
Lyapunov exponent to proving that the projective process satisfies Hörmander’s condition.
We review the recent contributions of the first and third authors on the verification of this
condition for the 2D Galerkin–Navier–Stokes equations in a rectangular, periodic box of
any aspect ratio. Finally, we briefly contrast this work with our earlier work on Lagrangian
chaos in the stochastic Navier–Stokes equations. We end the review with a discussion of
some open problems.
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1. Lyapunov exponents for stochastic differential

equations

Understanding the “generic” long-term dynamics of high (or infinite-) dimensional
nonlinear systems far from equilibrium remains a daunting task. In physical applications of
interest, many such systems are both subject to unpredictable external forcing and observed to
be chaotic in the sense of being very sensitive to the initial condition and forcing. Hence, for
all practical purposes, the exact dynamics of any specific trajectory cannot be predicted far in
advance and any controlled experiments will not be exactly repeatable. Instead of reckoning
such systems one trajectory at a time, a common practice is to view initial conditions as
random, i.e., distributed according to some probabilistic law, and to attempt to understand
how this law evolves as it is transported by the dynamics. In this context, the relevant “time-
invariant” objects are equilibrium probabilistic laws on the phase space of the system, often
referred to as invariant measures or stationary measures.

There is a well-developed abstract theory (smooth ergodic theory) for understanding
the invariant measures of chaotic systems, their geometric properties, and how these relate
to the asymptotic regimes of trajectories initiated from “typical” initial conditions. On the
other hand, it is quite hard to verify mathematically that this abstract program applies to
systems of practical interest. There are already extremely challenging open problems for
vastly simplified 2D toy models of the kinds of chaotic behavior seen in fluid dynamics, e.g.,
the Chirikov standard map discussed below in Section 1.1.

It turns out that verifying and understanding chaotic properties is far more tractable
for systems subjected to random noise. The kinds of systems we have in mind are, for exam-
ple, hydrodynamical settings such as with wind over a sail, a weather or climate system, or
nonlinear wave systems. In these settings it has long been suggested to study the random
dynamical system generated by the PDE or ODE subjected to random external forcing, and
this is often done in applied mathematics (see, e.g., [26,69] and the references therein). Even
with the simplifications coming from the random forcing, and despite considerable efforts,
a thorough, mathematically rigorous understanding of these random systems is still in its
infancy, with many basic open questions remaining.

In this article we will review existing work and our recent contributions [17, 20] in
proving that a given system of interest modeled by a stochastic differential equation is chaotic,
i.e., it is highly sensitive to initial conditions for trajectories initiated at Lebesgue-typical
points in the phase space. The specific systems we apply our methods to are the Lorenz-96
system [67] and Galerkin truncations of the 2D Navier–Stokes equations in a rectangular,
periodic box (of any aspect ratio), provided they are subjected to sufficiently strong stochas-
tic forcing1 (equivalently, sufficiently weak damping) and are sufficiently high dimensional.
These are the first results of this type for such models, despite overwhelming numerical evi-
dence (see, e.g., [26, 53, 69, 74]). Specifically we prove for these models that if the damping
parameter is ", then the top Lyapunov exponent (see Sections 1.1 and 1.2 for definition)

1 The deterministic case remains very far out of reach.
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satisfies

lim
"!0

�"
1

"
D 1

as " ! 0, and in particular, 9"0 > 0 such that for all " 2 .0; "0/, �"
1 > 0.

Outline
In Section 1 we give a background on Lyapunov exponents for stochastic differential

equations (SDEs). Section 2 concerns formulae of Lyapunov exponents through the station-
ary statistics of tangent directions and contains both classical and our recent results from [17]

which connect Lyapunov exponents to a certain Fisher information-type quantity. We discuss
in Section 3 how to connect the Fisher information to regularity using ideas from hypoel-
lipticity theory (also original work from [17]), and in Section 4 we discuss applications to a
class of weakly-driven, weakly-dissipated SDE with bilinear nonlinear drift term (original
work in [17] for Lorenz-96 and for Galerkin Navier–Stokes in [20]). In Section 5 we briefly
discuss our earlier related work on Lagrangian chaos in the (infinite-dimensional) stochas-
tic Navier–Stokes equations [14]. Finally, in Section 6 we discuss some open problems and
potential directions for research.

1.1. Lyapunov exponents and their challenges
Let ˆt W Rn ! Rn, t 2 R�0 be a flow (autonomous or not) with differentiable

dependence on initial conditions. The Lyapunov exponent at x 2 Rn, when it exists, is the
limit

�.x/ D lim
t!1

1

t
log
ˇ̌
Dxˆt

ˇ̌
;

where Dxˆt is the Jacobian of ˆt at x, i.e., the derivative with respect to the initial condition.
Hence, �.x/ gives the asymptotic exponential growth rate of the Jacobian as t ! 1.

The exponent �.x/ contains information about the divergence of trajectories: heuris-
tically at least, if d.x; y/ is small then

d
�
ˆt .x/; ˆt .y/

�
� e�.x/t d.x; y/

and hence �.x/ > 0 implies exponential sensitivity with respect to initial conditions, com-
monly popularized as the “butterfly effect.” Morally, a positive Lyapunov exponent at a
“large” proportion of initial conditions x 2 Rn is a hallmark of chaos, the tendency of a
dynamical system to exhibit disordered, unpredictable behavior. In this note we refer to a
system such that �.x/ > 0 for Lebesgue a.e. x as chaotic.2

The existence of Lyapunov exponents is usually justified using tools from ergodic
theory, and forms a starting point for obtaining more refined dynamical features, such as
stable/unstable manifolds in the moving frame along “typical” trajectories. These ideas form

2 We caution the reader that there is no single mathematical definition of “chaos.” Some
definitions refer to the existence of a subset of the phase space exhibiting chaotic behavior,
e.g., Li–Yorke chaos or the presence of a hyperbolic horseshoe. The results discussed in this
note pertain to the long-time behavior of Lebesgue-typical initial conditions.
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the fundamentals of smooth ergodic theory, which aims to study statistical properties of
chaotic systems, such as decay of correlations, i.e., how ˆt .x/, t � 1 can “forget” the initial
x 2 Rn, and probabilistic laws such as a strong law of large numbers or central limit theorem
for g ı ˆt .x/, where g W Rn ! R is a suitable observable of the system; see, e.g., discussions
in [7,10,66,83,85].

A discrete-time example
Unfortunately, estimating �.x/ or proving �.x/ > 0 for specific systems turns out

to be extremely challenging. A simple, classical model which shows the challenges is the
Chirikov standard map family [29], written here as

FL W T 2 	; FL.x; y/ D
�
2x C L sin.2�x/ � y; x

�
;

where T 2 is parametrized as Œ0; 1/2 and both coordinates in F WD FL are taken modulo 1.
Here, L � 0 is a fixed parameter which for purposes of the discussion here will be taken
large. The diffeomorphism F is smooth and volume-preserving, and ergodic theory affirms
that the Lyapunov exponent �.x; y/ D limn

1
n

log jD.x;y/F j exists for Lebesgue a.e. x and
satisfies �.x; y/ � 0 where it exists. The Chirikov standard map itself is frequently used
as a toy model of more complicated chaotic systems, e.g., the Navier–Stokes equations in
transition from laminar flow to turbulence [68].

Observe that when L � 1 and away from an O.L�1/ neighborhood of ¹cos.2�x/ D

0º, the Jacobian D.x;y/F exhibits strong expansion along tangent directions roughly parallel
to the x-axis (matched by strong contraction roughly parallel to the y-axis). In view of this,
it is widely conjectured that ¹�.x/ > 0º has positive Lebesgue measure. Nevertheless, this
standard map conjecture remains wide open [32, 75]. A key obstruction is “cone twisting”:
on long timescales, vectors roughly parallel to the x-axis are strongly expanded until the first
visit to the “critical strip” near ¹cos.2�x/ D 0º, where DF is approximately a rotation by 90
degrees. At this point, vectors roughly parallel to the x axis are rotated to be roughly parallel
to the y axis, where strong contraction occurs and previously accumulated expansion can be
negated. Indeed, an estimate on a Lyapunov exponent requires understanding the asymptotic
cancelations in the Jacobian as t ! 1. One manifestation of the subtlety is the wildly tangled
coexistence of hyperbolic trajectories [45] and elliptic islands [35].

The problem of estimating Lyapunov exponents for the standard map is far more
tractable in the presence of noise/stochastic driving. Let us consider the standard map sub-
jected to small noise: let !1;!2; : : : be i.i.d. random variables uniformly distributed in Œ�";"�

for some " > 0, and consider the random compositions

F n
D F!n ı � � � ı F!1 ; F!i

.x; y/ D F.x C !i ; y/:

One can show show that 8" > 0, the corresponding Lyapunov exponent � D �.x; y/ is
deterministic (independent of the random samples almost surely) and constant (independent
of .x; y/) with probability 1. It is a folklore theorem that � > 0 8" > 0, while for L � 1

and " & e�L, one can show � �
1
2

log L, commensurate with exponential expansion in the
x-direction over the bulk of phase space [23]; in a related vein, see also [22,24,25,64,80].
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1.2. Lyapunov exponents for SDE
The topic of this note is to discuss developments in the context of the random dynam-

ical systems generated by stochastic differential equations (SDE), i.e., ODE subjected to
Brownian motion driving terms. In this continuous-time framework, numerous additional
tools not present in the discrete-time setting become available, e.g., infinitesimal generators,
which as we show below, connect the estimation of Lyapunov exponents to regularity esti-
mates (e.g., Sobolev regularity) of solutions to certain (degenerate) elliptic PDE. A highlight
of this approach is our application to the Lyapunov exponents of a class of weakly-driven,
weakly-forced SDEs, including famous models such as Lorenz 96 and Galerkin truncations
of the Navier–Stokes equations.

For simplicity, in this note we restrict our attention to SDE on Rn, however, our more
general results apply to SDEs posed on orientable, geodesically complete, smooth manifolds;
see [17]. Let X0; X1; : : : ; Xr W Rn ! Rn be smooth vector fields on Rn, and let W 1

t ; : : : ; W r
t

be a collection of independent, real-valued Brownian motions, with � denoting the corre-
sponding canonical space with probability P and .Ft /t�0 denoting the increasing filtration
generated by ¹W k

s ; s � tºr
kD1

. We consider continuous-time processes .xt / on Rn solving
the SDE

dxt D X0.xt / dt C

rX
kD1

Xk.xt / ı dW k
t ; (1.1)

for fixed initial data x0 2 Rn.
Under mild conditions on the vector fields X0; : : : ; Xr (for example, regularity and

the existence of a suitable Lyapunov function to rule out finite time blow-up), global-in-time
solutions .xt / to (1.1) exist, are unique, and have differentiable dependence of xt on x0; in
particular, for P-a.e. ! 2 � and all t � 0, there exists a stochastic flow of diffeomorphisms
ˆt

! such that 8x0 2 Rn, the law of the process .xt /t�0 solving (1.1) is the same as that of the
process .ˆt

!.x0//t�0; see, e.g., [60] for the details and general theory of SDEs and stochastic
flows.

This stochastic flow of diffeomorphisms ˆt
! is the analogue of the flow ˆt corre-

sponding to solutions of the initial value problem of an ODE. However, the external stochastic
forcing implies a time-inhomogeneity which must be accounted for. One can show that there
exists a P-measure preserving semiflow � t W � 	; t � 0 corresponding to time-shifts on the
Brownian paths, i.e., shifting the path .Ws/s�0 to .WtCs � Wt /s�0. Equipped with this time
shift, one has the following with probability 1 and for all s; t � 0:

ˆsCt
! D ˆt

�s! ı ˆs
! : (1.2)

We now set about summarizing the ergodic theory tools used to study such stochastic flows.
First, we note that the trajectories xt D ˆt

!.x0/ for fixed initial x0 2 Rn form a Markov
process adapted to the filtration .Ft /. Moreover, ˆt

! has independent increments: 8s; t � 0,
ˆs

! and ˆt
�s!

are independent.
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1.2.1. Stationary measures and long-term statistics
Markov semigroups. We write Pt .x; A/ D P.ˆt

!.x/ 2 A/ for the time-t transition kernel
of .xt /. Let Pt denote the Markov semigroup associated to .xt /, defined for bounded, mea-
surable observables h W Rn ! R by

Pt h.x/ D E
�
h.xt / j x0 D x

�
D

Z
Rn

h.y/Pt .x; dy/:

This semigroup gives the expected value of a given observable given a fixed initial condition.
Via the pairing of functions and measures, we derive the (formal) dual P �

t , which gives the
evolution of the law of the solution .xt / given a distribution for the initial condition: for a
probability measure �0 2 P .Rn/ and Borel set A � Rn,

P �
t �0.A/ D

Z
Rn

Pt .x; A/d�0.x/:

That is, P �
t �0 is the law of xt assuming �0 is the law of x0.

Taking a time derivative @t , we (formally) obtain the backward Kolmogorov equa-
tion

@t Pt h.x/ D LPt h.x/; where L D X0 C
1

2

rX
iD1

X2
i ; (1.3)

where, for a given vector field X and f 2 C 1, Xf denotes the derivative of f in the direc-
tion X . The differential operator L is called the (infinitesimal) generator. Assuming that
the law of xt has a density pt with respect to Lebesgue, the formal dual of (1.3) is the
Fokker–Plank equation (or Forward Kolmogorov equation) given by the following PDE

@t pt D L�pt ; (1.4)

where L� denotes the formal L2 adjoint of L. See, e.g., [60] for mathematical details.

Stationary measures. We say a measure � is stationary if P �
t � D �. That is, if x0 is

distributed with law �, then xt is distributed with law3 � for all t > 0. We say that a set
A � Rn is invariant if Pt .x; A/ D 1 for all x 2 A and t � 0, and we say that a stationary
measure � is ergodic if all invariant sets have �-measure 0 or 1. By the pointwise ergodic
theorem, ergodic stationary measures determine the long-term statistics of a.e. initial datum
in their support [33]: if � is an ergodic stationary measure, then for any bounded, measurable
' W Rn ! R and � � P-a.e. .x; !/ we have that

lim
T !1

1

T

Z T

0

'
�
ˆt

!.x/
�

dt D

Z
Rn

'.x/d�.x/:

Unlike for deterministic systems, stationary measures are usually much easier to characterize
for SDEs. In particular, it is often possible to show that there exists a unique stationary
measure and that it has a smooth density with respect to Lebesgue. In such a case, Lebesgue-
generic initial conditions all have the same long-term statistics, a property often observed in
nature and experiments for the physical systems we are interested in.

3 It is important to note that .xt / itself is not constant in t ; consider, e.g., water flowing past a
stone in a river.

5623 Lower bounds on the Lyapunov exponents of stochastic differential equations



Existence of stationary measures. If the domain of the Markov process were compact
(e.g., T n instead of Rn) then the existence of stationary measures would follow from a stan-
dard Krylov–Bogoliubov argument: given an initial probability measure �0 2 P .Rn/, one
considers the time-averaged measures

N�t WD
1

t

Z t

0

P �
s �0 ds:

The weak-� compactness of probability measures on a compact space ensures that the
sequence ¹ N�t ºt�0 has a weak-� limit point � which by construction must be stationary
(assuming some mild well-posedness properties for the original SDE). On a noncompact
domain, one must show the tightness of the measures ¹ N�t ºt�0 (this is essentially saying
that solutions do not wander off to infinity too often) and use Prokorov’s theorem to pass
to the limit in the narrow topology. This is often achieved using the method of Lyapunov
functions4/drift conditions [71], or by using a special structure and the damping in the system
(such as the case for, e.g., the Navier–Stokes equations [59]).

Uniqueness of stationary measures. The Doob–Khasminskii theorem [33] implies that
uniqueness is connected to (A) irreducibility and (B) regularization of the Markov semi-
groups5 and, in particular, one can deduce that any stationary measure is unique if these
properties hold in a sufficiently strong sense.

Let us first discuss irreducibility. For a Markov process .xt / on Rn, we say that .xt /

is topologically irreducible if for all open U � Rn, 9t D t .U; x/ � 0 such that

Pt .x; U / > 0:

That is, every initial condition has a positive probability of being in U . This is stronger than
necessary to deduce uniqueness, but is sufficient for our discussions.

Regularity is a little more subtle. A sufficient condition is the requirement of being
strong Feller:

8' W Rn
! R bounded, measurable, Pt ' 2 C

�
Rn

I R
�
; t > 0:

For finite-dimensional SDEs, it is reasonably common and there exists a machinery to char-
acterize this.6 When Span¹Xi .x/; 1 � i � rº D Rn for all x 2 Rn, L is elliptic and hence
being strong Feller follows from classical parabolic regularity theory [65] applied to (1.3)
(assuming suitable regularity conditions on the ¹Xj º). When this direct spanning is absent
(e.g., when r < n), L is only degenerate elliptic. However, nearly sharp sufficient conditions
for the regularization of L were derived by Hörmander [50], who obtained a condition (now
called Hörmander’s condition), in terms of the Lie algebra generated by the vector fields
¹Xi ; 0 � i � rº. We will return to this important topic of hypoellipticity in Section 3.1.

4 These are the probabilistic analogues of Lyapunov’s “first method” for ODEs, used to ensure
convergence to compact attractors. This is not to be confused with Lyapunov exponents,
which refer to Lyapunov’s “second method.”

5 In essence, this is equivalent to how x 7! Pt .x; �/ behaves, i.e., whether trajectories with
nearby initial conditions have similar statistics.

6 In infinite dimensions it is much more rare; luckily, it is stronger than what is required just
to prove uniqueness (see, e.g., [47,58]).
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1.2.2. Lyapunov exponents
We saw that the long-term behavior of scalar observables is determined by station-

ary measures, which is due to the ergodic theorem. A more sophisticated ergodic theorem
connects stationary measures to Lyapunov exponents. Given x 2 Rn, v 2 Rn n ¹0º (with v

being considered a direction here) and a random sample ! 2 �, the Lyapunov exponent at
.!; x; v/ is defined as the limit (if it exists)

�.!; x; v/ D lim
t!1

1

t
log
ˇ̌
Dxˆt

!v
ˇ̌
:

The following (truncated) version of Oseledets’ Multiplicative Ergodic Theorem (MET)
addresses the existence of the limit [55,73,77].

Theorem 1.1 (Oseledets’ multiplicative ergodic theorem [73]). Let � be an ergodic sta-
tionary measure, and assume a mild integrability condition (see, e.g., [55, 73]) then, there
exist (deterministic) constants �1 > �2 > � � � > �` � �1 such that for P � �-almost all
.!; x/ 2 � � Rn and for all v 2 Rn n ¹0º, the limit defining �.!; x; v/ exists and takes one
of the values �i ; 1 � i � `.

Moreover, there exists a P � �-measurably-varying flag of strictly increasing sub-
spaces

; DW F`C1.!; x/ � F`.!; x/ � � � � � F1.!; x/ WD Rn

such that for P � �-a.e. .!; x/ and 8v 2 Fj n Fj C1,

�j D lim
t!1

1

t
log
ˇ̌
Dxˆt

!v
ˇ̌

D �.!; x; v/:

In particular, the top Lyapunov exponent �1 is realized at P � �-a.e. .!; x/ and all v 2 Rn

outside a positive-codimension subspace F2.!; x/ � Rn.

We note that under very mild conditions, if the stationary measure � is unique, it
is automatically ergodic; otherwise, each distinct ergodic stationary measure admits its own
set of Lyapunov exponents.

The sign of the largest Lyapunov exponent �1 is the most relevant to the stability
analysis of typical trajectories, in view of the fact that �.!; x; v/ D �1 for v in an open and
dense set. For this reason we frequently refer to �1 as “the” Lyapunov exponent. The sum
Lyapunov exponent also turns out to be crucial:

�† D

X̀
j D1

mj �j D lim
t!1

1

t
log
ˇ̌
det Dxˆt

!

ˇ̌
;

which gives the asymptotic exponential expansion/compression of Lebesgue volume under
the flow. Here, mj D dim Fj � dim Fj C1 is the multiplicity of the j th Lyapunov exponent.

2. Formulae for the Lyapunov exponents

Throughout this section, we assume that ˆt
! is the stochastic flow of diffeomor-

phisms corresponding to the SDE (1.1) with associated Markov process xt D ˆt
!.x/, x 2 Rn.
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2.1. The projective process
As we have seen, Lyapunov exponents are naturally viewed as depending on the

tangent direction v 2 Rn at which the derivative Dxˆt
! is evaluated. For this reason, to esti-

mate Lyapunov exponents, it is natural to consider an auxiliary process on tangent directions
themselves. To this end, let SRn D Rn � Sn�1 denote the unit tangent bundle of Rn, where
Sn�1 is the unit sphere in Rn. Given a fixed initial .x; v/ 2 SRn, we define the process .vt /

on Sn�1 by

vt D
Dxˆt

!.v/

jDxˆt
!.v/j

:

The full process zt D .xt ; vt / on SRn is Markovian, and in fact solves an SDE

dzt D QX0.zt / dt C

rX
iD1

QXi .zt / ı dW
.i/
t ;

where the “lifted” fields QXi are defined as

QXi .x; v/ WD
�
Xi .x/; .I � …v/rXi .x/v

�
:

Here, we have written …v D v ˝ v for the orthogonal projection onto the span of v 2 Sn�1.
Below, we denote the corresponding generator by

QL WD QX0 C
1

2

rX
iD1

QX2
i :

Lyapunov exponents and stationary measures. Let .xt ; vt / be a trajectory of the projec-
tive process with fixed initial .x; v/ 2 SRn, and observe that at integer times t 2 Z>0, we
have by (1.2)

1

t
log
ˇ̌
Dxˆt

!.v/
ˇ̌

D
1

t

t�1X
iD0

log
ˇ̌
Dxi

ˆ1
� i !

vi

ˇ̌
:

Hence, log jDxˆt
! j is an additive observable of .xt ; vt /, i.e., a sum iterated over the tra-

jectory .xt ; vt /. Therefore, the strong law of large numbers for a Markov chain implies the
following formula for the Lyapunov exponent:

Proposition 2.1 (See, e.g., [55]). Let � be an ergodic stationary measure for .xt ; vt /. Assum-
ing the integral is finite, for �-a.e. initial .x; v/ 2 SRn�1 and t � 0, we have

t�.!; x; v/ D E
Z

log
ˇ̌
Dxˆt

!v
ˇ̌
d�.x; v/:

with probability 1 (E denotes integration with respect to dP.!/).
Moreover, if � is the unique stationary measure for the .xt ; vt / process, then for

�-a.e. x, and all v 2 Rn, we have �1 D �.!; x; v/ with probability 1 and

t�1 D E
Z

log
ˇ̌
Dxˆt

!v
ˇ̌
d�.x; v/: (2.1)

Remark 2.2. The latter statement can be interpreted as saying that the existence of a unique
stationary measure for the projective process gives a kind of nondegeneracy of the Oseledets’
subspace F2.!; x/ with respect to ! [55].

5626 J. Bedrossian, A. Blumenthal, and S. Punshon-Smith



A time-infinitesimal version: the Furstenberg–Khasminskii formula. One of the key
benefits of the SDE framework is the ability to take time derivatives, which turns dynami-
cal questions (e.g., estimates of Lyapunov exponents, identification of stationary densities)
into functional-analytic ones (e.g., solutions of degenerate elliptic or parabolic equations)
for which many tools are available. Taking the time derivative of (2.1) gives what is known
as the Furstenberg–Khasminskii formula (see, e.g., [7,54]):

Proposition 2.3. Assume .xt ; vt / admits a unique stationary measure � on SRn projecting
to a stationary measure � on Rn for .xt /. For .x; v/ 2 SRn, define

Q.x/ D div X0.x/ C
1

2

rX
iD1

Xi div Xi .x/;

QQ.x; v/ D div QX0.x; v/ C
1

2

rX
iD1

QXi div QXi .x; v/:

Then, provided Q 2 L1.d�/ and QQ 2 L1.d�/, one has

�† D

Z
Q d� and

n�1 � �† D

Z
Rn

Q d� �

Z
SRn

QQ d�:

The first formula expresses Q.x/ as the time-infinitesimal rate at which Dxˆt
!

compresses or expands Lebesgue measure, which in this formula is directly related to the
asymptotic exponential volume growth or contraction rate �†. Similarly, QQ.x; v/ is the
time-infinitesimal rate at which Dxˆt

! compresses or expands volume on the sphere bundle
SRn D Rn � Sn�1. Roughly speaking, contraction of volumes along the Sn�1 coordinate
is associated with expansion in the Jacobian, while expansion of Sn�1-volume is related to
contraction in the Jacobian; this reversal is the reason for the minus sign in front of QQ. For
some intuition, observe that .1; 0/ is a sink and .0; 1/ is a source for the discrete-time system
vn D Anv=jAnvj on S1, where A D

�
2 0
0 1=2

�
.

2.2. Sign-definite formulas for Lyapunov exponents
The Furstenberg–Khasminskii formula is highly remarkable in that it reduces the

problem of estimating Lyapunov exponents to computing the ensemble average of a single
deterministic observable, QQ, with respect to the stationary measure of .xt ; vt /. On the other
hand, the formula itself is sign-indefinite, as QQ.x; v/ takes on both positive and negative
values as .x;v/ is varied. This is reflective of the cancelation problem mentioned earlier in the
estimation of Lyapunov exponents: previously accumulated tangent growth can be “canceled
out” by rotation into contracting directions later on in the trajectory. Hence, without a very
precise characterization of �, it would be very challenging to obtain any useful quantitative
estimates on �1 from this formula.

Given the above, it makes sense to seek a sign-definite formula for the Lyapunov
exponent. Below, given measures �; �; � � � on a measurable space X , the relative entropy

5627 Lower bounds on the Lyapunov exponents of stochastic differential equations



H.�j�/ of � given � is defined by

H.� j �/ D

Z
X

log
�

d�

d�

�
d�:

Observe that H.� j �/ � 0, while by strict convexity of log and Jensen’s inequality, we have
H.�j�/ D 0 iff � D �. We also write b̂t

! W SRd 	 for the stochastic flow associated to full
lifted process .xt ; vt / on SRn, that is, b̂t

!.x0; v0/ D .xt ; vt /. Lastly, given a diffeomorphism
ˆ of a Riemannian manifold M and a density g on M , we define ˆ�g to be the density

ˆ�g.x/ D g ı ˆ�1.x/
ˇ̌
det Dxˆ�1

ˇ̌
;

noting that if x is distributed like g dVolM , then ˆ.x/ is distributed like ˆ�g dVolM .
The following deep formula has its roots in Furstenberg’s seminal paper [40] and

ideas à la Furstenberg have been developed by a variety of authors (e.g., [12, 28, 63, 79, 82]),
and can be stated as follows: if � 2 P .SRn/ is a stationary probability measure for the
projective process .xt ; vt / and d�.x; v/ D d�x.v/d�.x/ is the disintegration of �, then for
all t > 0, the following identity (often an inequality in more general settings) holds.

Proposition 2.4 (See, e.g., [12]). Assume .xt ; vt / admits a unique stationary measure �

with density f D
d�
dq

, where dq D dVolSRn is the Riemannian volume measure on SRn D

Rn � Sn�1. Let � be the corresponding stationary measure for .xt / with density � D
d�
dx
.

Writing
ft WD

�b̂t
!

�
�
f; �t WD

�
ˆt

!

�
�
�;

we have (under the same integrability condition as Theorem 1.1)

EH.�t j�/ D �t�† and EH.ft jf / D t .n�1 � 2�†/:

At least in simple settings, such as for SDEs with a unique stationary measure for
the projective process, the formula follows from a slightly more subtle analysis of volume
compression/expansion on SRn suitably combined with ergodic theory. Furstenberg [40] was
the first to relate relative entropy to Lyapunov exponents; at the generality above, the proof
is due to Baxendale [12].

To explore the consequences of Proposition 2.4, let us rewrite it in a more suggestive
form. Let fx.v/ D f .x; v/=�.x/, ft;x.v/ D ft .x; v/=�t .x/ denote the conditional densities
of f and ft along the fiber SxRn ' Sn�1. One can then combine the above formulae into
the identity

EH.ft jf / � EH.�t j�/ D E
Z

Rn

H.ft;xjfx/d�.x/ D t .n�1 � �†/: (2.2)

The left-hand side of this identity is the expectation of a positive quantity, while the right-
hand side is nonnegative due to the general inequality n�1 � �†. By the strict convexity, we
have

n�1 D �† ” ft;x � fx with probability 1 for all t � 0 and � almost every x:

Unraveling the definitions, ft;x � fx means that�
Dxˆt

!

�
�
fx D fˆt

!.x/;
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i.e., the matrices Dxˆt
! , viewed as acting on Sn�1 embedded in Rn, transform the condi-

tional density fx into the density fˆt
!.x/ of tangent directions at ˆt

!.x/. This is a very rigid
condition in view of the fact that given any two (absolutely continuous) densities h; h0 on
Sn�1, ®

A 2 GLn.R/ W A�h D h0
¯

has empty interior in the space of n � n matrices. One can obtain the following beautiful
dichotomy by a more detailed analysis of the rigidity in a group of matrices in SLn that
preserve a given probability measure; see, e.g., [12,40,63].

Theorem 2.5 (Furstenberg criterion). Suppose the same setting as Proposition 2.4. If
n�1 D �†, then one of the following holds:

(a) There is a continuously-varying family of inner products x 7! h�; �ix with the
property that Dxˆt

! is an isometry from h�; �ix to h�; �iˆt
!.x/ with probability 1

for all t � 0.

(b) There is a (locally) continuously-varying family of proper subspaces x 7! Li
x �

Rd with the property that Dxˆt
!.
S

i Li
x/ D

S
i Li

ˆt
!.x/

with probability 1 for
all t � 0.

Remark 2.6. Note that in the above, the inner products and the Li are deterministic, which
is highly rigid for many random systems. Note that they are also continuously-varying.

However, if one is interested in deducing �1 > 0, this criterion is really only useful if
�† D 0, i.e., the system is volume preserving, otherwise one only obtains the nondegeneracy
n�1 > �†. Moreover, Theorem 2.5 lacks any quantitative information, and so it cannot be
used to obtain concrete estimates with respect to parameters. Hence, it generally cannot be
applied to dissipative systems, even weakly dissipative.

In the volume preserving case, however, criteria à la Furstenberg can be a very
powerful tool. In our previous work [14], we used a suitable (partially) infinite-dimensional
extension of Theorem 2.5 to show that the Lagrangian flow map (i.e., the trajectories of
particles in a fluid) is chaotic when the fluid evolves by the stochastically forced 2D Navier–
Stokes equations (called Lagrangian chaos in the fluid mechanics literature). See Section 5
for more information.

2.3. The best of both worlds: sign-definite and time-infinitesimal
Proposition 2.4 is, on its face, a quantitative and sign-definite formula for Lyapunov

exponents, and this leads to a strong and relatively easy-to-rule-out dichotomy for the degen-
erate scenario n�1 D �†. On the other hand, the formula itself is not straightforward to work
with, requiring both the stationary density f for .xt ; vt / as well as the time-t flow ˆt

! and
its derivative Dxˆt

! as ! varies. In particular, it is unclear how to glean quantitative infor-
mation beyond the “soft” inequality n�1 > �†, as would be relevant for a damped system
(i.e., �† < 0).
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In view of the sign-indefinite formula (2.1) and its time-infinitesimal version, the
Furstenberg–Khasminskii formula, it is reasonable to hope that a time-infinitesimal version
of Proposition 2.4 might exist. The authors establish such a formula in our recent work [17].

Proposition 2.7 (Theorem A in [17]). Assume .xt ; vt / has a unique stationary measure �

with density f D
d�
dq

on SRn. Let � denote the corresponding stationary measure for .xt /

on Rn with density � D
d�
dx
. Define the modified Fisher information

FI.f / D
1

2

rX
iD1

Z
SRn

j QX�
i f j2

f
dq; FI.�/ D

1

2

rX
iD1

Z
Rn

jX�
i �j2

�
dx:

Under a mild moment criterion (see [17]), we have

FI.�/ D ��† and FI.f / D n�1 � 2�†:

Recall that QX�
i denotes the adjoint of QXi viewed as an operator on L2.dq/.

Remark 2.8. One can show that FI.f / � FI.�/ corresponds to an analogous Fisher infor-
mation on the conditional densities Ofx.v/, providing the exact time-infinitesimal analogue
of (2.2) (see [17]).

These Fisher-information-type formulas for Lyapunov exponents enjoy many of the
best qualities of the previous formulas: (A) they are sign-definite, like those in Proposi-
tion 2.4, and (B) are also time-infinitesimal like those in Proposition 2.3, and so are inherently
simpler, requiring only the stationary density f for .xt ; vt / and how it is acted on by the first-
order differential operators QX�

i .
A key feature of Proposition 2.7 is that a lower bound on FI.f / implies a lower

bound on n�1 � 2�†. The FI.f / itself has the connotation of a partial regularity of f

along the forcing directions QXi . This is reminiscent of techniques in Hörmander’s theory of
hypoelliptic operators, where partial regularity along forcing directions implies regularity
in all directions under an appropriate Lie algebra spanning condition involving the drift X0.
This connection is explored in the next section.

3. Quantitative lower bounds by the Fisher information

Let us now set about obtaining quantitative estimates on Lyapunov exponents using
the Fisher information as in Proposition 2.7. For this, it will be most useful to consider the
weakly-forced system

dxt D X"
0.xt / dt C

p
"

rX
kD1

X"
k.xt / ı dW k

t ; (3.1)

where we have also allowed " dependence in the vector fields X"
j . In this case, Proposition 2.7

gives the following Fisher information formula on the stationary density f " of the projective
process associated to (3.1)

"

2

rX
j D1

Z
j QX�

j f "j2

f "
dq D n�1 � 2�†:

5630 J. Bedrossian, A. Blumenthal, and S. Punshon-Smith



If QXj has a bounded divergence,7 by Cauchy–Schwarz inequality, 9C > 0 such that
rX

j D1

 QXj f "
2

L1 � C C FI
�
f "
�

D

�
C C

n�1 � 2�†

"

�
:

Hence, we have related L1-type directional regularity in the forcing directions to the Lya-
punov exponents. If the lifted forcing directions ¹ QXj ºr

j D1 spanned the entire tangent space
TwSRn everywhere, then we would obtain a lower bound of the Lyapunov exponents of the
type f "

2
PW 1;1 .

�
1 C

n�1 � 2�†

"

�
; (3.2)

and so we would find a straightforward lower bound on n�1 � 2�† in terms of the regularity
of f ". This kind of lower bound is clearly most useful if �† is small, especially O."/, but
crucially, it does not have to be exactly zero. In this manner, we can treat systems which are
close to being volume preserving, but not necessarily exactly volume preserving. This is at
the crux of why we can treat systems like Lorenz-96 and Galerkin–Navier–Stokes whereas
traditional à la Furstenberg methods based on, e.g., Theorem 2.5 cannot.

3.1. Hypoellipticity
It is not usually the case that ¹ QXj ºr

j D1 spans TwSRn and so the lower bound (3.2) is
generally false. For example, for additive noise, the lifts satisfy QXj D .Xj ; 0/ and so clearly
this fails to span TwSRn, regardless of whether or not ¹Xj ºr

j D1 spans TxRn. Hence, in
general, the Fisher information connects regularity in the lifted forcing directions to the Lya-
punov exponents, but a priori, not any other directions in TwSRn. For this, we need a concept
known as hypoellipticity, by which solutions to Kolmogorov equations such as (1.3) or (1.4)
can be smooth even when L is degenerate, i.e., even when the forcing directions do not span
the tangent space. This effect was studied first by Kolmogorov [57] in 1934, however, clarity
on the effect was not fully obtained until Hörmander’s 1967 work [50].

Let us discuss Hörmander’s main insights from [50]. It will make sense to quantify
fractional regularity along a vector field X using the group etX and the Lp Hölder-type
seminorm (brushing aside minor technical details)

jhjX;s WD sup
t2.�1;1/

jt j�s
etX h � h


Lp :

Hörmander’s original work was based in L2; our work will be based in L1. For now, we set
p D 2.

There are two key ideas in [50]. The first, and simpler idea, comes from the Campbell–
Baker–Hausdorff formula, which implies for any two vector fields X; Y that (essentially, the
Zassenhaus formula):

e�tX e�tY etX etY
D et2ŒX;Y �CO.t3/;

7 This is not the case for our examples, but this will not be important as we will eventually
work only locally.
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where here ŒX; Y � is the Lie bracket, i.e., the commutator (see [49] and [50]). In particular,
marching forward and then backward by two vector fields X; Y does not quite get us back to
where we started (unless X;Y commute). Therefore we have (using that the etX are bounded
on Lp), et2ŒX;Y �CO.t3/

� I


Lp .
etX

� I


Lp C
etY

� I


Lp

C
e�tX

� I


Lp C
e�tY

� I


Lp ;

which suggests the remarkable property that any fractional regularity of a function h in direc-
tions X;Y , i.e., jhjX;s C jhjY;s < 1, implies that h also has (a little less) fractional regularity
in the commutator direction ŒX; Y �. Another version of Campbell–Baker-0Hausdorff (see
[50]) gives

et.XCY /
D etX etY et2ŒX;Y �

� � � ;

where the “� � � ” corresponds to a formal product expansion of higher commutators of tX

and tY (and thus higher powers in t ). Combined with the previous formal discussion, this
suggests that regularity in directions X;Y should also supply regularity in the direction X C

Y (and indeed, any linear combination). By iterating these heuristics, we get the suggestion
that a priori regularity along any set of vector fields ¹Z0; : : : ; Zrº should imply that there
should also be some regularity in any direction Z 2 Lie.Z0; : : : ; Zr /, where the Lie algebra
is given by the span of all possible combinations of commutators

Lie.Z0; : : : ; Zr / WD span
®
ad.Ym/ : : : ad.Y1/Y0 W Yj 2 ¹Z0; Z1; : : : ; Zrºm � 0

¯
;

and where ad.X/Y WD ŒX; Y �. In [50], these heuristics are made rigorous with the fol-
lowing functional inequality: Suppose that 8z 2 Rn, Liez.Z0; : : : ; Zr / D ¹Z.z/ W Z 2

Lie.Z0; : : : ; Zr /º D TzRn. Then 8sj 2 .0; 1/, 9s? such that for all 0 < s < s?, 8R > 0,
and 8h 2 C 1

c .B.0; R//, one has

khkH s .R khkL2 C

rX
j D0

jhjZj ;sj
: (3.3)

In particular, this inequality holds a priori for any h 2 C 1
c .BR.0// and it has nothing to do

directly with solutions to any PDE. Making this rigorous requires dealing with the errors in
the CBH formulas used above. At any step of the argument, these errors are of lower regular-
ity but in new directions, and so dealing with them requires a little finesse and interpolations
to close the argument.

Inequality (3.3) is already an interesting observation that can expand the directions
of regularity. In particular, one can use an L1-analogue of (3.3) to provide a lower bound
on the Fisher information based on regularity in any direction contained in the Lie algebra
of the forcing directions ¹ QX1; : : : ; QXrº. However, Hörmander was far from done. Indeed,
this is clearly unsatisfying to some degree as this will not even depend on the underlying
deterministic dynamical system under consideration, encoded in the drift vector field QX0.
Moreover, for additive forcing, (3.3) fails to add anything at all. For Hörmander’s second
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main insight, consider the backward Kolmogorov equation

Lg D Z0g C
1

2

rX
j D1

Z2
j g D F: (3.4)

Assuming ¹Zj ºr
j D0 have bounded divergence,8 one obtains the standard L2-“energy” esti-

mate:
rX

j D1

kZj gk
2
L2 . kgk

2
L2 C kF k

2
L2 :

After applying a smooth cutoff �R.x/ D �.x=R/ where � 2 C 1
c .B2.0//, 0 � � � 1, and

�.x/ D 1 for jxj � 1, and dealing with the commutators as in a Caccioppoli estimate, the
functional inequality (3.3) combined with this estimate implies that if Liez.Z1; : : : ; Zr / D

TzRn at all z, then we would obtain an estimate like

k�RgkH s .R kgkL2.B2R.0// C kF kL2.B2R.0//:

However, as discussed above, this condition on the vector fields is often too strong to be
useful for us here.

However, another natural a priori estimate on g is available from (3.4). Indeed, pair-
ing (3.4) with a test function ', we obtainˇ̌̌̌Z

'Z0f dq

ˇ̌̌̌
�

1

2

rX
j D1

Z�
j '


L2kZj gkL2 .
1

2

rX
j D1

�
k'kL2 C kZj 'kL2

��
kgkL2 C kF kL2

�
:

This simple observation shows that for solutions of Lg D F , H 1-type regularity in the
forcing directions automatically provides a corresponding dual H �1-type regularity on Z0g.
The cornerstone of [50] is the following functional inequality (i.e., again, not directly related
to solutions of any PDEs): if one has Liez.Z0; Z1; : : : ; Zr / D Rn everywhere, then 9s 2

.0; 1/ such that if R > 0 and h 2 C 1
c .BR.0//, then

khkH s . khkL2 C sup
'Wk'kL2 C

Pr
j D1 kZj 'kL2 �1

ˇ̌̌̌Z
'Z0h dq

ˇ̌̌̌
C

rX
j D1

kZj hkL2 DW khkH 1
hyp

:

(3.5)

The key heuristic behind this functional inequality is the following observation:
1

2

d

dt

etZ0h � h
2

L2 D
˝
etZ0h � h; Z0etZ0h

˛
�

 
khkL2 C

rX
j D1

Zj etZ�
0
�
etZ0h � h

�
L2

!
kgkH 1

hyp
:

Therefore, if we had something like
rX

j D1

Zj etZ�
0
�
etZ0h � h

�
L2 .

rX
j D1

kZj hkL2 ; (3.6)

8 Alternatively, one can consider the estimates suitably localized.
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then we could combine the L2-estimate on ¹Zj ºr
j D1 with the corresponding dual negative

regularity in the Z0 direction to obtain some positive fractional regularity in the Z0 direction,
specifically we would have 1=2 regularity frometZ0h � h

2

L2 . tkhk
2
H 1

hyp
:

Unfortunately (3.6) does not generally hold,9 and Hörmander uses a rather ingenious reg-
ularization argument to turn this heuristic into reality. We shall henceforth call functional
inequalities of the type (3.5) Hörmander inequalities.

The gain in regularity from (3.5) combines with the Kolmogorov equation to get the
estimate

kg�RkH s . kgkL2.B2R.0// C kF kL2.B2R.0//;

and so provides an analogue of the gain of regularity when studying elliptic equations
(though only fractional regularity). As in that theory, this regularity gain can be iterated
to imply that any L2-solution of Lg D F is C 1 if F 2 C 1 [50].

3.2. Uniform hypoellipticity
Next, we want to make the arguments which are quantitative with respect to param-

eters, and hence we will introduce the notion of uniform hypoellipticity. Let us formalize the
definition of Hörmander’s condition for elliptic- and parabolic-type equations. For a mani-
fold M , we denote by X.M/ the set of smooth vector fields on M .

Definition 3.1 (Hörmander’s condition). Given a manifold M and a collection of vector
fields

¹Z0; Z1; : : : ; Zrº � X.M/;

we define collections of vector fields X0 � X1 � � � � recursively by

X0 D ¹Zj W j � 1º;

XkC1 D Xk [
®
ŒZj ; Z� W Z 2 Xk ; j � 0

¯
:

We say that ¹Zi º
r
iD0 satisfies the parabolic Hörmander condition if there exists k such that

for all w 2 M,

span
®
Z.w/ W Z 2 Xk

¯
D TwM:

We say that ¹Zi º
r
iD0 satisfies the (elliptic) Hörmander condition if this holds with X0 D

¹Zj W j � 0º.

Note that the parabolic Hörmander condition is slightly stronger than the elliptic
Hörmander condition.

9 As in the easier inequalities above, the heuristic (3.6) neglects the creation of higher-order
commutators; in fact, one requires regularity in many other directions in Lie.Z0; : : : ; Zr / as
a result.
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Definition 3.2 (Uniform Hörmander’s condition). Let M be a manifold, and let ¹Z"
0;Z"

1; : : : ;

Z"
r º � X.M/ be a set of vector fields parameterized by " 2 .0; 1�. With Xk defined as in

Definition 3.1 in the parabolic case (resp. elliptic), we say ¹Z"
0; Z"

1; : : : ; Z"
r º satisfies the

uniform parabolic (resp. elliptic) Hörmander condition on M if 9k 2 N such that for any
open, bounded set U � M there exist constants ¹Knº1

nD0 such that for all " 2 .0; 1� and all
x 2 U , there is a finite subset V.x/ � Xk such that 8� 2 TxM,

j�j � K0

X
Z2V.x/

ˇ̌
Z.x/ � �

ˇ̌
;

X
Z2V.x/

kZkC n � Kn:

This definition stipulates that any " dependence is locally (on the manifold) uniform
in terms of both regularity and spanning. Now we are ready to state the uniform L1-type
Hörmander inequality suitable for use with the Fisher information, proved in [17]. There are
many works extending Hörmander’s theory in various ways see, e.g., [1,4,19,44,56,62,72] and
the references therein. However, as far as the authors are aware, there are no works in the
L1–L1 framework. We also need to consider the forward Kolmogorov equation QL�f D 0,
as opposed to the case of the backward Kolmogorov equation considered by Hörmander [50];
this changes some details but little of significant consequence is different.

Theorem 3.3 (L1-type uniform Hörmander inequality, [17, Theorem 4.2]). Let ¹X"
0 ; X"

1 ;

: : : ; X"
r º be a collection of vector fields on SRn satisfying the uniform elliptic Hörman-

der condition as in Definition 3.2. Then, 9s? 2 .0; 1/ such that if BR.x0/ � Rn is an open
ball and h 2 C 1

c .BR.x0/ � Sn�1/, then for all 0 < s < s?, 9C D C.R; x0; s/ such that
8" 2 .0; 1/ the following fractional regularity10 estimate holds uniformly in ":

khkW s;1 � C

 
khkL1 C sup

'Wk'kL1 C
Pr

j D1 kX"
j 'kL1 �1

ˇ̌̌̌Z
'
�
X"

0

��
h dq

ˇ̌̌̌
C

rX
j D1

�X"
j

��
h


L1

!
:

In particular, applying a smooth cutoff �R WD �.x=R/ for some � 2 C 1
c .B2.0// with

0 � � � 1 and � � 1 if jxj � 1 to the Kolmogorov equation QL�f " D 0 (assuming also
kf "kL1 D 1) and suitably estimating the commutators, we obtain�Rf "

2

W s;1 .R 1 C FI.f "/: (3.7)

Remark 3.4. Hypoellipticity plays a classical role in the theory of SDEs. In particular, the
parabolic Hörmander condition of Definition 3.1 is exactly the condition most often used to
deduce that the Markov semigroup Pt is strong Feller (the exposition of [46] is especially
intuitive). The parabolic Hörmander condition also often plays a role in proving irreducibility
via geometric control theory (see discussions in [42,48,52] and specifically in [17] in regards

10 For s 2 .0; 1/, we may define W s;1 on a geodesically complete, n-dimensional Riemannian
manifold with bounded geometry M as

kwkW s;1 D kwkL1 C

�Z
M

Z
h2TxMWjhj<ı0

jw.expxh/ � w.x/j

jhjsCn
dhdq.x/

�
;

where expx W TxM ! M is the exponential map on M and dq is the Riemannian volume
measure. See, e.g., [81] for more details.
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to the projective process). For many applications, it is likely that the parabolic Hörmander’s
condition will be used to prove that there exists a unique stationary measure � for the projec-
tive process (via Doob–Khasminskii [33]), as required to apply Proposition 2.7. Hence the
condition of uniformity-in-" in Definition 3.2 will usually be the only additional information
required to apply Theorem 3.3.

Remark 3.5. Quantitative arguments based on L2 Hörmander inequalities can be found in
[2, 19] (completed concurrently with or after [17]). Thinking about hypoellipticity in terms
of functional inequalities, rather than qualitative statements about regularity of solutions to
PDEs, has other important advantages as well, for example, it is easier to adapt classical
elliptic and parabolic PDE methods, such as De Giorgi or Moser iterations, into hypoelliptic
equations [19,44,72].

Obtaining the above Theorem 3.3 follows an argument generally based on Hörman-
der’s original paper [50], however, the L1–L1 framework, as opposed to the self-dual L2

framework in [50], necessitates a more complicated regularization argument than that used
[50] (which was already quite delicate!). Moreover, as we are always interested in sphere
bundles here, one cannot avoid working on smooth manifolds, which at least under the
assumption of geodesic completeness, only adds some technical complexity rather than fun-
damental difficulties.

Let us briefly see, heuristically, how one would approach the proof of Theorem 3.3.
Motivated by the above discussion regarding [50], the main challenge is to obtain 1=2 of a
derivative of L1 Hölder-type regularity in the QX�

0 “direction.” By a bootstrap-type argument,
we may assume that we have corresponding regularity along all of the other vector fields in
Liez. QX0; QX1; : : : ; QXr / (see [17] for details). Let St be a (carefully designed) regularization
operator St W Lp ! Lp . We obtain for any w 2 C 1

c .BR.0/ � Sn�1/,et QX�
0 w � w


L1 �

et QX�
0
�
S�

� w � w
�

L1 C
S�

� w � w


L1 C
et QX�

0 S�
� w � S�

� w


L1 :

We eventually set � �
p

t and the regularization operator will be designed so that the first
two terms are O.�/, thus we need mainly to work on the latter term, which by duality is
estimated byet QX�

0 S�
� w � S�

� w


L1 � sup
kvkL1 �1

ˇ̌̌̌
ˇZ t

0

Z
SRn

.es QX0v/X�
0 S�

� w dqds

ˇ̌̌̌
ˇ;

and, for any fixed v 2 L1, we haveˇ̌̌̌Z
SRn

.es QX0v/X�
0 S�

� w dq

ˇ̌̌̌
�

ˇ̌̌̌Z
SRn

.es QX0v/Œ QX0; S� ��w dq

ˇ̌̌̌
C

ˇ̌̌̌Z
SRn

.S� es QX0v/ QX�
0 w dq

ˇ̌̌̌
�
esX0v


L1

Œ QX0; S� ��w


L1

C

 S� es QX0v


1
C

rX
j D1

Xj S� es QX0v


L1

!
D.w/;

where

D.h/ WD sup
'Wk'kL1 C

Pr
j D1 kX"

j 'kL1 �1

ˇ̌̌̌Z
SRn

'
�

QX"
0

��
h dq

ˇ̌̌̌
:
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Hence, the challenge is designing a regularizer such that the commutator Œ QX0;S� �� loses only
O.��1/ using no a priori regularity in the QX0 direction, and similarly that S� regularizes the
forcing fields QXj like O.��1/. To do this, we let S� be a modified version of Hörmander’s
regularizer, which averages the function along directions in Liez. QX0; : : : ; QXr / a correspond-
ing amount (higher commutators corresponding to less regularization) in a carefully ordered
way. Specifically, because these “directional mollifiers” do not commute, the order in which
they are applied is very important. Hörmander regularized with S� , whereas we are funda-
mentally regularizing with its adjoint S�

� , which reverses the delicate ordering. Despite the
added difficulty, this turns out to be an important choice for our framework.

4. Chaos for 2D Galerkin–Navier–Stokes and related

models

In this section, we outline how to apply the above ideas to prove a positive Lyapunov
exponent for Galerkin truncations of the stochastic 2D Navier–Stokes. A general class of
models with similar bilinear drift term, which we call Euler-like systems, are given by the
following SDE:

dx"
t D

�
B
�
x"

t ; x"
t

�
� "Ax"

t

�
dt C

rX
kD1

XkdW k
t : (4.1)

Here, ¹Xkºr
kD1

is a collection of constant (x-independent) forcing vector fields (i.e., additive
forcing) while B W Rn � Rn ! Rn is a nontrivial (not identically zero) bilinear drift that
satisfies

div B D 0; x � B.x; x/ D 0;

so in particular the unforced " D 0 dynamics preserve the norm,11 given by 1
2
kxk2, and

volume in Rn (i.e., the Liouville property). The term �"A provides weak linear damping,
where A is assumed to be a symmetric, positive-definite n � n matrix. Stochastically forced
versions of the Lorenz 96 model (L96) [67], Galerkin truncations of 2D and 3D Navier–
Stokes on a torus (of arbitrary aspect ratio) [20, 36, 78] and truncations of commonly used
shell models for turbulence [34,43,61,84] can be cast in this form. The 2D stochastic Galerkin–
Navier–Stokes equations will be described in more detail in Section 4.3 below.

The bilinearity of B implies that solutions can be naturally rescaled into a weakly-
damped, weakly-driven system, and the two scalings are equivalent as far as Lyapunov expo-
nents are concerned. Indeed, while the scaling (4.1) is common among models of complex
real-world systems, the stationary measure � has characteristic energy

R
jxj2d�.x/ � "�1.

Since we are concerned with the regime " � 1, it is natural to rescale and consider a weakly-
damped, weakly-driven system. Hence, it is more natural to rescale so that the long-time
behavior remains bounded and nonvanishing as " ! 0. By rescaling x"

t 7!
p

"x"p
"t

, replac-
ing " 7! "3=2, and using the self-similarity of Brownian motion, we get an equivalent in law,

11 In the case of the vorticity form of the 2D Navier–Stokes equations that we will be studying
below, this quantity is the enstrophy.
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weakly-driven, weakly damped form

dx"
t D

�
B
�
x"

t ; x"
t

�
� "Ax"

t

�
dt C

p
"

rX
kD1

XkdW k
t : (4.2)

Most importantly, this rescaling does not affect our results on Lyapunov exponents, since
upon setting O" D "3=2, the Lyapunov exponent O�O"

1 of (4.2) with parameter O" is related to the
Lyapunov exponent �"

1 of (4.1) by the identity
O�O"

1

O"
D

�"
1

"
. This kind of scaling is sometimes

called fluctuation–dissipation due to the balance between the forcing and the dissipation.
For this class of systems (4.1), our result below gives a sufficient condition for a

positive Lyapunov exponent in terms of projective hypoellipticity, i.e., if the lifted vector
fields ¹ QX"

0 ; QX1; : : : ; QXrº corresponding to the projective process .x"
t ; v"

t / (denoting X"
0.x/ D

B.x; x/ � "Ax) satisfy Hörmander’s condition on SRn.

Theorem 4.1 ([17, Theorem C]). Assume that

(i) ¹ QX"
0 ; QX1; : : : ; QXrº satisfy the elliptic Hörmander’s condition uniformly in " 2

.0; 1/ as in Definition 3.2;

(ii) the bilinear term B is nontrivial, i.e., B.x; x/ ¤ 0 for some x 2 Rn; and

(iii) the process .x"
t ; v"

t / admits a unique stationary density f ".

Then, the limit defining the Lyapunov exponent �"
1 of (4.1) exists, and satisfies

lim
"!0

�"
1

"
D 1:

In particular, 9"0 > 0 such that for all " 2 .0; "0/, one has �"
1 > 0.

A sketch of the proof of Theorem 4.1 is given in Section 4.1 below. The most difficult
part of applying this result to a concrete system, e.g., Galerkin–Navier–Stokes, is to prove the
parabolic Hörmander condition for the projective process: general comments on this problem
are given in Section 4.2, while the issue of affirming this for Galerkin–Navier–Stokes is taken
up in Section 4.3.

Given parabolic Hörmander’s condition, unique existence of f " follows, via the
Doob–Khasminskii theorem, from topological irreducibility of .x"

t ; v"
t /, i.e., the ability to

approximately control random trajectories by controlling noise paths. For Euler-like models
such as (4.1), this follows from geometric control theory arguments and the following well-
known cancelation condition on B.x; x/ (known to hold for many models such as Galerkin–
Navier–Stokes, cf. [42,48]): there exists a collection of vectors ¹e1; : : : ; esº � Rn with

span¹e1; : : : ; esº D span¹X1; : : : ; Xrº

such that for each 1 � k � s, B.ek ; ek/ D 0. For more details, see Section 5.3 of [17].

Remark 4.2. The inverse Lyapunov exponent .�"
1/�1 is sometimes called the Lyapunov

time, and is the “typical” length of time one must wait for tangent vectors to grow by a factor
of e. Thus, the estimate �"

1 � " implies that the Lyapunov time is � "�1. On the other hand,
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"�1 is the typical amount of time it takes for the Brownian motion
p

"Wt to reach an O.1/

magnitude; for this reason, it is reasonable to refer to "�1 as a kind of “diffusion timescale.”
So, stated differently, our results indicate that as " ! 0, arbitrarily many Lyapunov times
elapse before a single “diffusion time” has elapsed, indicating a remarkable sensitivity of
the Lyapunov exponent to the presence of noise.

Based on these ideas, one would like to assert that the scaling �"
1 � " implies that

the deterministic dynamics are “close” to positive Lyapunov exponent dynamics, agnostic as
to whether the zero-noise system has a positive exponent on a positive area set. However, this
assertion does not follow from the scaling �"

1 � " alone: even if the Brownian motion itself
is small, there could already be a substantial difference between random and corresponding
deterministic (zero-noise) trajectories well before time "�1, e.g., if there is already strong
vector growth in the deterministic dynamics. For more on this, see the open problems in
Section 6.

4.1. Zero-noise limit and rigidity: proof sketch of Theorem 4.1
Applying the Fisher information identity (Proposition 2.7) to the Euler-like sys-

tem (4.2) and using that �"
† D �" tr A, we obtain

FI.f "/ D
n�"

1

"
C 2 tr A:

By the regularity lower bound (3.7), this implies that, for each open ball BR.0/, we have the
lower bound �Rf "

2

W s;1 .R 1 C
�"

1

"
;

where the regularity s 2 .0; 1/ and the implicit constant C D CR are independent of ".
From this, we see that if lim inf" "�1�"

1 were to remain bounded, then f " would
be bounded in W

s;1
loc uniformly in ". As W s;1 is locally compactly embedded in L1 and f "

naturally satisfies certain uniform-in-" moment bounds, one can deduce, by sending " ! 0,
that at least one of the following must hold true (see Proposition 6.1, [17] for details):

(a) either lim"!0
�"

1

"
D 1; or

(b) the zero-noise flow .x0
t ; v0

t / admits a stationary density f 0 2 L1.SRn/.

Let us consider alternative (b). While it is natural and common for the projective
processes of SDE to admit stationary densities, the existence of an absolutely continuous
invariant measure f 0dq for the projective process of the " D 0 problem

Pxt D B.xt ; xt /; (4.3)

is quite rigid. Indeed, in view of the fact that vector growth implies concentration of Lebesgue
measure in projective space (cf. the discussion in Section 2.1 after Proposition 2.3), the
existence of an invariant density essentially rules out any vector growth for the " D 0 projec-
tive process .x0

t ; v0
t /. Precisely, a generalization of Theorem 2.32 in [8] (see [17] for details)
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implies that there is a measurably varying Riemannian metric x 7! gx such that ˆt is an
isometry with respect to gx , namely

gx

�
Dxˆt v; Dxˆt w

�
D gˆt .x/.v; w/; v; w 2 TxRn;

where ˆt W Rn ! Rn is the flow associate to the " D 0 dynamics (4.3). So, we see that if
lim inf"!0 "�1�1 < 1, then the deterministic, measure-preserving " D 0 dynamics must be
in a situation analogous to possibility (a) in Theorem 2.5.

In our setting, we show that there is necessarily some norm growth as t ! 1 for
the " D 0 dynamics due to shearing between conserved energy shells ¹x 2 Rn W jxj2 D Eº.
This is straightforward to check: due to the scaling symmetry ˆt .˛x/ D ˛ˆ˛t .x/, ˛ > 0,
we have the following orthogonal decomposition of the linearization Dxˆt in the direction
x 2 Rn:

Dxˆt x D ˆt .x/ C tB
�
ˆt .x/; ˆt .x/

�
;

noting that y � B.y; y/ � 0 for all y 2 Rn. Hence, one obtains the lower boundˇ̌
Dxˆt

ˇ̌
� t

jB.ˆt .x/; ˆt .x//j

jxj

for each x 2 Rn n ¹0º and each t > 0. This contradicts the existence of the Riemannian
metric gx via a Poincaré recurrence argument and the fact that the set of stationary points
¹x 2 Rn W B.x; x/ D 0; jxj2 � Rº is a zero volume set. This is summarized in the following
proposition (a proof of which is given in [17]).

Proposition 4.3 ([17, Proposition 6.2]). Assume that the bilinear mapping B is not iden-
tically 0. Let � be any invariant probability measure for b̂t (the flow corresponding to the
(deterministic) " D 0 projective process) with the property that �.A � Sn�1/ D �.A/, where
� � LebRn . Then, � is singular with respect to volume measure dq on SRn.

4.2. Verifying projective hypoellipticity: a sufficient condition
We address here the challenge of verifying the parabolic Hörmander condition on

the sphere bundle SRn. Recall that given a smooth vector field X on Rn we define its lift QX

to the sphere bundle SRn by

QX.x; v/ D
�
X.x/; rX.x/v � v

˝
v; rX.x/v

˛�
;

where rX.x/ denotes the (covariant) derivative of X at x and is viewed as a linear endo-
morphism on TxRn. Many of the following general observations about the lifted fields were
made in [12]; see also [17] for detailed discussions.

An important property is that the lifting operation can be seen to be a Lie algebra
isomorphism onto its range with respect to the Lie bracket, i.e., Œ QX; QY � D ŒX;Y �Q . Using this
observation, the parabolic Hörmander condition (see Definition 3.1) on SRn for the lifts of
a collection of vector fields

¹X0; X1; : : : ; Xrº � X.Rn/
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can be related to nondegeneracy properties of the Lie subalgebra mx.X0I X1; : : : ; Xr / of
sl.TxRn/ defined by

mx.X0I X1; : : : ; Xr / WD

²
rX.x/ �

1

n
div X.x/ Id W X 2 Lie.X0I X1; : : : ; Xr /; X.x/ D 0

³
;

where
Lie.X0I X1; : : : ; Xr / WD Lie

�
X1; : : : ; Xr ; ŒX0; X1�; : : : ; ŒX0; Xr �

�
;

is the zero-time ideal generated by ¹X0; X1; : : : ; Xrº, with X0 a distinguished “drift” vector
field (recall that sln.TxRn/ is the Lie algebra of traceless linear endomorphisms of TxRn).

Particularly, if for each x 2 Rn, mx.X0I X1; : : : ; Xr / acts transitively on Sn�1 in
the sense that, for each .x; v/ 2 SRn, one has®

Av � vhv; Avi W A 2 mx.X0I X1; : : : ; Xr /
¯

D TvSn�1; (4.4)

then the parabolic Hörmander condition for ¹X0; X1; : : : ; Xrº on Rn is equivalent to the
parabolic Hörmander condition for the lifts ¹ QX0; QX1; : : : ; QXrº on SRn. Moreover, the uniform
parabolic Hörmander condition is satisfied on SRn if and only if it is satisfied on Rn and (4.4)
holds uniformly in the same sense as in Definition 3.2. Since sl.Rn/ acts transitively on
Rn n ¹0º (see, for instance, [27]), a sufficient condition for transitivity on Sn�1 is

mx.X0I X1; : : : ; Xr / D sl
�
TxRn

�
:

In the specific case of Euler-like models (4.2) with X"
0.x/ D B.x; x/ � "A and

¹Xkºr
kD1

as in (4.2), the situation can be simplified if Lie.X0I X1; : : : ; Xr / contains the con-
stant vector fields ¹@xk

ºn
kD1

. In this case, the family of x and "-independent endomorphisms

Hk WD r
�
@xk

; X"
0

�
D rŒ@xk

; B�; k D 1; : : : ; n;

generate the Lie algebra mx.X"
0 I X1; : : : ; Xr / at all x 2 Rn. This argument implies the

following sufficient condition for projective spanning.

Corollary 4.4 (See [17]). Consider the bilinear Euler-like models (4.2). If Lie.X0I X1;

: : : ;Xr / contains ¹@xk
ºn

kD1
, then ¹ QX"

0 ; QX1; : : : ; QXrº satisfy the uniform parabolic Hörmander
condition (in the sense of Definition 3.2) on SRn if

Lie.H 1; : : : ; H n/ D sl.Rn/:

This criterion is highly useful, having reduced projective spanning to a question
about a single Lie algebra of trace-free matrices.

In [17], we verified this condition directly for the Lorenz 96 system [67], which is
defined for n unknowns in a periodic array by the nonlinearity B given by

B`.x; x/ D x`C1x`�1 � x`�2x`�1: (4.5)

The traditional case is n D 40, but it can be considered in any finite dimension. In particular,
we proved the following.
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Corollary 4.5 ([17, Corollary D]). Consider the L96 system given by (4.2) with the nonlin-
earity (4.5) and Xk D qkek for k 2 ¹1; : : : ; rº, qk 2 R, and ek the canonical unit vectors. If
q1; q2 ¤ 0 and n � 7, then

lim
"!0

�"
1

"
D 1:

In particular 9"0 > 0 such that �"
1 > 0 if " 2 .0; "0/.

4.3. Projective hypoellipticity for 2D Galerkin–Navier–Stokes
Let us now see how we can go about verifying the projective hypoellipticity con-

dition for a high-dimensional model of physical importance, namely Galerkin truncations
of the 2D stochastic Navier–Stokes equations on the torus of arbitrary side-length ratio
T 2

r D Œ0; 2�/ � Œ0; 2�
r

/ (periodized) for r > 0. Recall that the Navier–Stokes equations on
T 2

r in vorticity form are given by

@t w C u � rw � "�w D
p

" PWt ;

where w is the vorticity and u is the divergence-free velocity field coming from the Biot–
Savart law u D r?.��/�1w and PWt is a white-in time, colored-in-space Gaussian forcing
which we will take to be diagonalizable with respect to the Fourier basis with Fourier trans-
form supported on a small number of modes.

In the work [20] by the first and last authors of this note, we consider a Galerkin
truncation of the 2D stochastic Navier–Stokes equations at an arbitrary frequency N � 1 in
Fourier space by projecting onto the Fourier modes in the truncated lattice

Z2
0;N WD

®
.k1; k2/ 2 Z2

n ¹0º W max
®
jk1j; jk2j

¯
� N

¯
� Z2;

giving rise to an n D jZ2
0;N j D .2N C 1/2 � 1 dimensional stochastic differential equation

with the reality constraint w�k D wk for w D .wk/ 2 CZ2
0;N (that is, the vector is indexed

over Z2
0;N ) governed by

dwk D
�
Bk.w; w/ � "jkj

2
r wk

�
dt C

p
"dW k ; (4.6)

where jkj2r WD k2
1 C r2k2

2 , and W k
t D ˛kW

a;k
t C iˇkW

b;k
t are independent complex Wiener

processes satisfying W k
t D W

�k

t (W a;k
t ;W

b;k
t are standard i.i.d. Wiener processes) with ˛k ,

ˇk arbitrary such that ˛k D 0 , ˇk D 0. The symmetrized nonlinearity Bk.w; w/ is given
by

Bk.w; w/ WD
1

2

X
j C`Dk

cj;`wj w`; cj;` WD
˝
j ?; `

˛
r

�
1

j`j2r

�
1

jj j2r

�
where the sum runs over all j; ` 2 Z2

0;N such that j C ` D k and we are using the notation
hj ?; `ir WD r.j2`1 � j1`2/. In what follows, the coefficient cj;` always depends on r , but
we suppress the dependence for notational simplicity.

We will regard the configuration space CZ2
0;N as a complex manifold with com-

plexified tangent space spanned by the complex basis vectors ¹@wk
W k 2 Z2

0;N º (Wirtinger
derivatives) satisfying @w�k

D N@wk
. See [51] for the notion of complexified tangent space
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and [20] for discussion on how to use this complex framework for checking Hörmander’s
condition. In this basis, we can formulate the SDE (4.6) in the canonical form

dwt D X"
0.wt / C

X
k2Z0

p
"@wk

dW k
t ;

where the drift vector field X"
0 is given by X"

0.w/ WD
P

k2Z2
0;N

.Bk.w; w/ � "jkj2r wk/@wk

and the set of driving modes Z0 is given by Z0 WD ¹k 2 Z2
0;N W ˛k ; ˇk ¤ 0º.

As in the setting of [36, 47], we consider very degenerate forcing and study how it
spreads throughout the system via the nonlinearity B`.w; w/. Specifically, define the sets

Zn
D
®
` 2 Z2

0;N W ` D j C k; j 2 Z0; k 2 Zn�1; cj;k ¤ 0
¯
; n � 0

and assume that the driving modes Z0 satisfy
S

n�0 Zn D Z2
0;N . Under this assumption

on Z0, it can be shown (see [17] Proposition 3.6 or [36,47]) that the complexified Lie algebra
Lie.X"

0 I ¹@wk
W k 2 Z0º/ contains the constant vector fields ¹@wk

W k 2 Z2
0;N º and therefore

satisfies the uniform parabolic Hörmander condition on CZ2
0;N .

4.3.1. A distinctness condition on a diagonal subalgebra
As discussed in Section 4.2, in order to verify projective hypoellipticity for the

vector fields X"
0 I ¹@wk

W k 2 Z0º, it suffices to study the generating properties of a suit-
able matrix Lie algebra. In [20], we show this can be reformulated to a condition on the
constant, real valued matrices H k D rŒ@wk

; B�, k 2 Z2
0;N , represented in ¹@wk

º coordi-
nates by .H k/`;j D @wj

@wk
B`.w; w/ D cj;kı`Dj Ck . After obtaining this reformulation, the

main result of [20] is the following nondegeneracy property of the matrices ¹H kº.

Theorem 4.6 ([20, Theorem 2.13], see also Proposition 3.11). Consider the 2D stochastic
Galerkin–Navier–Stokes equations with frequency truncation N on T 2

r and suppose that
N � 392. Then, the following holds:

Lie
�®

H k
W k 2 Z2

0;N

¯�
D slZ2

0;N
.R/; (4.7)

where slZ2
0;N

.R/ denotes the Lie algebra of real-valued traceless matrices indexed by the
truncated lattice Z2

0;N . Therefore projective hypoellipticity holds for (4.2) and, by Theo-
rem 4.1, the top Lyapunov exponent satisfies lim"!0 "�1�"

1 D 1.

Remark 4.7. Verifying the Lie algebra generating condition (4.7) is quite challenging due
to the fact that there there are n D jZ2

0;N j matrices and n2 � 1 degrees of freedom to span.
The matrices are also banded in the sense that for each k, .H k/`;j couples most of the
lattice values `; j along the band k D ` � j and therefore it is a major challenge to isolate
elementary matrices (matrices with only one nonzero entry) as one can do rather easily in
“local in frequency” models like L96 (4.5) (see [17]). Moreover, brute force computational
approaches that successively generate Lie bracket generations and count the rank by Gaussian
elimination (such as the Lie tree algorithm in [37]) are only available for fixed r 2 RC and
N 2 ZC, and can be subject to numerical error (for instance, if r is chosen irrational) which
destroy the validity of the proof.
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In order to show that (4.7) holds, in [20] we take an approach inspired by the root-
space decomposition of semisimple Lie algebras and study genericity properties of the fol-
lowing diagonal subalgebra of Lie.¹H kº/

h WD span
®
Dk

W k 2 Z2
0;N

¯
;

where Dk D ŒH k ; H �k � are a family of diagonal matrices with diagonal elements Dk
i D

.Dk/i i given by

Dk
i D ci;kciCk;k1Z2

0;N
.i C k/ � ci;kci�k;k1Z2

0;N
.i � k/:

Using that, for a given diagonal matrix D 2 slZ2
0;N

.R/, the adjoint action ad.D/ W

slZ2
0;N

.R/ ! slZ2
0;N

.R/, where ad.D/H D ŒD; H �, has eigenvectors given by the elemen-
tary matrices Ei;j (i.e., a matrix with 1 in the i th row and j th column and 0 elsewhere),
ad.D/Ei;j D .Di � Dj /Ei;j means that ad.D/ has a simple spectrum if the diagonal entries
of D have distinct differences, Di � Dj ¤ Di 0 � Dj 0 , .i; j / ¤ .i 0; j 0/. This implies that if
H is a matrix with nonzero nondiagonal entries and D has distinct differences, then for
M D n2 � n, the Krylov subspace

span
®
H; ad.D/H; ad.D/2H; : : : ; ad.D/M �1H

¯
contains the set ¹Ei;j W i; j 2 Z2

0;N ; i ¤ j º, which is easily seen to generate slZ2
0;N

.R/.
However, in our setting the diagonal matrices Dk have an inversion symmetry

Dk
�i D �Dk

i and therefore there cannot be a matrix in h with all differences distinct. More-
over, we do not have a matrix with all off diagonal entries nonzero due to the degeneracies
present in cj;k and the presence of the Galerkin cut-off. Nevertheless, in [20] we are able to
deduce the following sufficient condition on the family ¹Dkº, ensuring that (4.7) holds:

Proposition 4.8 ([20, Corollary 4.9 and Lemma 5.2]). Let N � 8. If for each .i; j; `; m/ 2

.Z2
0;N /4 satisfying i C j C ` C m D 0 and .i C j; ` C m/ ¤ 0, .i C `; j C m/ ¤ 0, .i C

m; j C `/ ¤ 0, there exists a k 2 Z2
0;N such that

Dk
i C Dk

j C Dk
` C Dk

m ¤ 0; (4.8)

then (4.7) holds.

The proof of Proposition 4.8 is not straightforward. However, its proof uses some
similar ideas as the proof of (4.8) but is otherwise significantly easier, so we only discuss the
latter.

4.3.2. Verifying the distinctness condition using computational algebraic
geometry
The distinctness condition (4.8) is not a simple one to verify. Indeed, ignoring the

Galerkin cut-off N for now, Dk
i are rational algebraic expressions in the variables .i;k; r/ (by

comprising products and sums of the coefficients cj;k), and therefore proving (4.8) amounts
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to showing that the family of Diophantine equations12

Dk
i C Dk

j C Dk
` C Dk

m D 0; for each k 2 Z2
0;N (4.9)

have no solutions .i; j; `; m; r/ satisfying the constraints of Proposition 4.8. Due to the com-
plexity of the expression for Dk

i , there is little hope to verify such a result by hand (the
resulting polynomials are of degree 16 in 9 variables). But, if one extends each of the 9 vari-
ables .i; j; `; m; r/ D .i1; i2; j1; j2; `1; `2; m1; m2; r/ to the algebraically closed field C,
then (4.9) along with i C j C ` C m D 0 defines a polynomial ideal I with an associated
algebraic variety V .I / in C9. Such a high dimensional variety is rather complicated due to
the inherent symmetries of the rational equation in (4.9); however, its analysis is nonetheless
amenable to techniques from algebraic geometry, particularly the strong Nullstellensatz and
computer algorithms for computing Gröbner bases (see [30] for a review of the algebraic
geometry concepts). Indeed, without the Galerkin cut-off (the formal infinite-dimensional
limit), in [20] we proved, by computing Gröbner bases in rational arithmetic using the F4
algorithm [38] implemented in the computer algebra system Maple [70], that the identity
V .I / D V .g/ holds, where g is the following “saturating” polynomial

g.i; j; `; m; r/ D r2
ji j2r jj j

2
r j`j

2
r jmj

2
r

�
ji C j j

2
r C j` C mj

2
r

��
ji C `j

2
r C jj C mj

2
r

�
�
�
ji C mj

2
r C jj C `j

2
r

�
whose nonvanishing encodes the constraints in Proposition 4.8, thereby showing that (4.8)
holds.

Dealing with the Galerkin truncation adds significant difficulties to the proof as
the associated rational system (4.9) is instead piecewise defined (depending on k and N )
and therefore does not easily reduce to a problem about polynomial inconsistency. Nonethe-
less, by considering 34 different polynomial ideals associated to different possible algebraic
forms, in [20] we were able to show that if N is taken large enough (bigger than 392 to be
precise) then (4.8) still holds with the Galerkin truncation present and therefore Theorem 4.6
holds.

Finally, it is worth remarking that even without the Galerkin cut-off, the system of
rational equations (4.9) is complex enough to become computationally intractable (even for
modern computer algebra algorithms) without some carefully chosen simplifications, vari-
able orderings, choice of saturating polynomial g, and sheer luck; see [20] for more details.

5. Lagrangian chaos in stochastic Navier–Stokes

At present, the results above based on Proposition 2.7 are restricted to finite-
dimensional problems. Indeed, even while the Fisher information can potentially be extended
to infinite dimensions under certain conditions,13 for any parabolic SPDE problem, we will

12 At least considering r D 1 or another fixed, rational number.
13 If X�� � � and we define ˇ�

X� WD
d QX��

d� , then FI.f / D
1
2

P
k kˇ�

QX�
k2

L2.�/
, and there is

no explicit dependence on any reference measure or Riemannian metric; see [17] for more
details.
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always have �† D �1. The existence of positive Lyapunov exponents for the infinite-
dimensional, stochastic Navier–Stokes equations remains open as of the writing of this note.

However, there is another important problem in fluid mechanics where we have been
able to make progress. Consider the (infinite-dimensional) 2D Navier–Stokes equations14

in T 2,
@t ut C .ut � rut C rp � ��ut / D

X
k

qkek
PW k

t ; div ut D 0; (5.1)

where the qk 2 R and ek are eigenfunctions of the Stokes operator. The Lagrangian flow
map 't

!;u W T 2 7! T 2 is defined by the trajectories of particles moving with the fluid

d
dt

't
!;u.x/ D ut

�
't

!;u.x/
�
; '0

!;u.x/ D x;

where note that the diffeomorphism 't
!;u depends on the initial velocity u and the noise

path ! and is therefore a cocycle over the skew product ‚t W � � H s 	, where ‚t .!; u/ D

.�t !; ‰t
!.u// and ‰t

! W H s 	 is the 2D Navier–Stokes flow on H s associated with (5.1).
One can naturally ask whether or not .ut / is chaotic, as we have done in previous sections, or
if the motion of particles immersed in the fluid is chaotic, e.g., if the Lagrangian Lyapunov
exponent is strictly positive. The latter is known as Lagrangian chaos [3,5,9,26,31,41,86] (to
distinguish it from chaos of .ut / itself, which is sometimes called Eulerian chaos). While
both are expected to be observed in turbulent flows, Lagrangian chaos is not incompatible
with Eulerian “order,” i.e., a negative exponent for the .ut / process.

In [14] we proved, under the condition that jqkj � jkj�˛ for some ˛ > 10, that 9�1 >

0 deterministic and independent of initial x and initial velocity u such that the following limit
holds almost surely:

lim
t!1

1

t
log
ˇ̌
Dx't

!;u

ˇ̌
D �1 > 0: (5.2)

This Lagrangian chaos was later upgraded in [15,18] to the much stronger property of uniform-
in-diffusivity, almost sure exponential mixing. To formulate this notion, we consider .gt / a
passive scalar solving the (random) advection–diffusion equation

@t gt C ut � rgt D ��gt ; g0 D g;

for � 2 Œ0; 1� and a fixed, mean-zero scalar g 2 L2.T 2/. In [15,18], we proved that there exists
a (deterministic) constant � > 0 such that for all � 2 Œ0; 1� and initial divergence free u 2 H s

(for some sufficiently large s), there exists a random constant D D D.!; �; u/ such that for
all g 2 H 1 (mean-zero)

kgt kH �1 � De��t
kgkH 1

where D is almost surely finite and satisfies the uniform-in-� moment bound (for some fixed
constant q and for any � > 0),

ED2 .�

�
1 C kukH s

�q
e

�kuk2

H1 :

14 The 3D Navier–Stokes equations can be treated provided the ���ut is replaced with the
hyperviscous damping ��2ut .
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One can show that this result is essentially optimal up to getting sharper quantitative esti-
mates on � and D, at least if � D 0 [15,18]. This uniform, exponential mixing plays the key
role in obtaining a proof of Batchelor’s power spectrum [11] of passive scalar turbulence in
some regimes [16].

Let us simply comment on the Lagrangian chaos statement (5.2), as it is most closely
related to the rest of this note. The main step is to deduce an analogue of Theorem 2.5
for the Lagrangian flow map, using that while the Lagrangian flow map depends on an
infinite-dimensional Markov process, the Jacobian Dx't

!;u itself is finite dimensional. This
is done in our work [14] by extending Furstenberg’s criterion to handle general linear cocy-
cles over infinite-dimensional processes in the same way that Dx't

!;u depends on the sample
paths .ut /.

The Lagrangian flow is divergence-free, and thus the Lagrangian Lyapunov expo-
nents satisfy �† D 0 and �1 � 0, so ruling out the degenerate situations in Theorem 2.5
would immediately imply �1 > 0. A key difficulty in this infinite-dimensional context is to
ensure that the rigid invariant structures (now functions of the fluid velocity field u and the
Lagrangian tracer position x) in our analogue of Theorem 2.5 vary continuously as functions
of u and x. It is at this step that we require the nondegeneracy type condition on the noise
jqkj & jkj�˛ , which is used to ensure that the Markov process .ut ; 't .x// is strong Feller.

At the time of writing, it remains an interesting open problem to extend our works
[14, 15, 18] to degenerate noise such as that used in [47] or [58]. It bears remarking that the
methods of [47] apply to the one-point process .ut ; 't .x// (this is used in our work [15]),
however, it is nevertheless unclear how to prove Lagrangian chaos without a sufficiently
strong analogue of Theorem 2.5, and it is unclear how to obtain such a theorem without the
use of the strong Feller property.

6. Looking forward

The work we reviewed here raises a number of potential research directions.

Tighter hypoelliptic regularity estimates. The scaling �"
1 � " that naturally follows from

our above analysis is surely suboptimal – even if the deterministic problem were to be com-
pletely integrable, the scaling would likely be O." / for some  < 1 depending on dimension
(see, e.g., [13,76]). To begin with, one may attempt to strengthen the hypoelliptic regularity
estimate by refining the " scaling to something likef "

2

W s;1 . 1 C
n�"

1 � 2�"
†

"
;

for some constant 0 <  < 1. If such an estimate were true, the same compactness-rigidity
argument of Theorem 4.1 would imply a scaling like �"

1 & " . An improvement of this type
seems plausible given the proof of Theorem 3.3. It might be necessary, in general, to use a
more specialized norm on the left-hand side, but local weak L1 compactness, i.e., equiinte-
grability, is all that is really required for the compactness-rigidity argument to apply.
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Beyond compactness-rigidity. Compactness-rigidity arguments may remain limited in
their ability to yield optimal or nearly optimal scalings for �1, regardless of the ways one can
improve Theorem 3.3. Another approach is to find some way to work more directly on " > 0.
This was essentially the approach of works [13,76], however, the method of these papers only
applies if one has a nearly-complete understanding of the pathwise random dynamics. We
are unlikely to ever obtain such a complete understanding of the dynamics of models such
as L96 or Galerkin–Navier–Stokes, but there may be hope that partial information, such as
the isolation of robust, finite-time exponential growth mechanisms, could be used to obtain
better lower bounds on kf "kW s�;1 . An approach with a vaguely related flavor for random
perturbations of discrete-time systems, including the Chirikov standard map, was carried
out in the previous work [23].

Finer dynamical information: moment Lyapunov exponents. Lyapunov exponents pro-
vide asymptotic exponential growth rates of the Jacobian, but they provide no quantitative
information on how long it takes for this growth to be realized with high probability. One
tool to analyze this is the study of large deviations of the convergence of the sequences
1
t

log jDxˆt
!vj. The associated rate function is the Legendre transform of the moment Lya-

punov exponent function p 7! ƒ.p/ WD limt!1
1
t

logEjDxˆt
!vjp (the limit defining ƒ.p/

exists and is independent of .x; v; !/ under fairly general conditions [6]). It would be highly
interesting to see if the quantitative estimates obtained by, e.g., Theorem 4.1 extend also
to quantitative estimates on the moment Lyapunov exponents. We remark that the moment
Lagrangian Lyapunov exponents play a key role in our works [15,18].

Lyapunov times of small-noise perturbations of completely integrable systems. The
phase space of a completely integrable Hamiltonian flow is foliated by invariant torii along
which the dynamics is a translation flow—such systems are highly ordered and nonchaotic.
On the other hand, small perturbations of the Hamiltonian are known to break the most
“resonant” of these torii, while torii with sufficiently “nonresonant” frequencies persist due
to KAM theory. It is an interesting and highly challenging open problem to prove that this
“breakage” results in the formation of a positive-volume set admitting a positive Lyapunov
exponent. For the most part such problems are wide open, and related to the standard map
conjecture discussed in Section 1.1. The recent work of Berger and Turaev [21] established
a renormalization technique for proving the existence of smooth perturbations resulting in a
positive Lyapunov exponent, but it remains open to affirm how “generic” such perturbations
actually are.

The following is a closely related stochastic dynamics problem: starting from a com-
pletely integrable system and adding a small amount of noise, how many Lyapunov times
elapse for the random dynamics before the “stochastic divergence” timescale when the deter-
ministic flow and the stochastic flow differ by O.1/? Estimating the stochastic divergence
timescale is essentially a large deviations problem, and has already been carried out for
small random perturbations of completely integrable systems; see, e.g., [39]. On the other
hand, estimating Lyapunov times beyond the crude .�"

1/�1 estimate is a large deviations
estimate for the convergence of finite-time Lyapunov exponents to their asymptotic value
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�"
1. The associated rate function in this case is the Legendre transform of the moment Lya-

punov exponent ƒ.p/ mentioned earlier; a positive result for the program described above
would require quantitative-in-" estimates on ƒ.p/.

More general noise models. One simple potential extension is Theorem 4.1 to different
types of multiplicative noise. Another important extension would be to noise models which
are not white-in-time, for example, noise of the type used in [58], which is challenging
because our work is deeply tied to the elliptic nature of the generator QL�. A simpler exam-
ple of nonwhite forcing can be constructed from “towers” of coupled Ornstein–Uhlenbeck
processes, which can be built to be C k in time for any k � 0 (see, e.g., [14,15] for details).

Lagrangian chaos. There are several directions of research to extend our results in [14,

15, 18], such as studying degenerate noise as in [47, 58], extending to more realistic physical
settings such as bounded domains with stochastic boundary driving, and extending Propo-
sition 2.7 to the Lagrangian flow map in a variety of settings, which would help to facilitate
quantitative estimates (note one will have to use the conditional density version so that one
does not see the effect of the �† associated to the Navier–Stokes equations themselves).
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Multiscale
eco-evolutionary
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Abstract

Motivated by recent biological experiments, we emphasize the effects of small and random
populations in various biological/medical contexts related to evolution such as invasion
of mutant cells or emergence of antibiotic resistances. Our main mathematical challenge
is to quantify such effects on macroscopic approximations. The individual behaviors are
described by the mean of stochastic multiscale models. The latter, in the limit of large
population and according to the assumptions on mutation size and frequency, converge
to different macroscopic equations. Sufficiently rare mutations yield a timescale separation
between competition and mutation. In that case, the stochastic measure-valued process
at the mutation timescale converges to a jump process which describes the successive
invasions of successful mutants. The gene transfer can drastically affect the evolutionary
outcomes. For faster mutation timescales, numerical simulations indicate that these models
exhibit as cyclic behaviors. Mathematically, population sizes and times are considered on
a log-scale to keep track of small subpopulations that have negligible sizes compared with
the size of the resident population. Explicit criteria on the model parameters are given to
characterize the possible evolutionary outcomes. The impact of these time and size scales
on macroscopic approximations is also investigated, leading to a new class of Hamilton–
Jacobi equations with state constraint boundary conditions.
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1. Introduction and presentation of the individual-based

model

Since Darwin’s revolutionary work on evolution and natural selection [18], many
mathematicians have worked on modeling his theories. Different schools of thought have
developed, involving different classes of mathematical objects. Ecological models of struc-
tured population dynamics usually rely on deterministic models in large populations, such as
dynamical systems (as the famous Lotka–Volterra system) and partial differential equations.
Population genetics are more interested in random fluctuations of gene frequencies in small
populations (like in the Wright–Fisher model) and therefore make extensive use of prob-
abilistic tools. A few decades ago, eco-evolutionary models emerged, seeking to link these
two approaches. Our work is placed in this framework. Our point of view consists in focusing
on stochastic individual behaviors, taking into account demographic parameters (birth and
death rates), evolutionary parameters (mutations, gene transfer), and ecological parameters
(interactions between individuals), all these parameters depending on the genetic or pheno-
typic characteristics of the individual. This point of view is strongly reinforced by the ability
of biologists to obtain more and more individual data, for example, for bacteria, thanks to
single cell microscopes or microfluidic techniques. The notion of individual variability took
a long time to emerge, especially for the biology of microorganisms, and it was not until the
2000s that biologists began to take it into account [24,39].

There are three main sources of randomness in eco-evolutionary mechanisms which
happen at different time and size scales: at the molecular level (errors in DNA replication
or genetic information exchanges), at the individual level (division time, life span, contacts,
access to resources), and at a macroscopic level (environmental variations). Mathematically,
it is very exciting that all the parameters we have mentioned have their own scales, which can
be different according to the species considered and also can vary according to the environ-
ment. Depending on these scales, the mathematical models and the associated mathematical
questions can be of different nature and challenging, and open new fields of investigation.

We consider bacteria or cell populations. The ability of an individual to survive
or divide depends on phenotypic or genetic parameters whose quantitative expression (real
or vectorial) is called a trait. The evolution of the trait distribution results from different
main mechanisms. The heredity is the vertical transmission of the ancestral trait to offspring,
except when a mutation occurs. Mutations generate trait variability in the population. The
selection process takes place at two levels. The variability in traits allows an individual with
a higher probability of survival or a better ability to reproduce to create a subpopulation
of offspring that will invade the population (genetic selection). In addition, selection also
favors those individuals best able to survive in competition with others (ecological selec-
tion). Although their reproduction is asexual, bacteria or cells can also horizontally exchange
genetic information during their life. Horizontal gene transfer is obtained by direct contact
between cells, either by the transfer of small parts of chromosomal DNA or by the trans-
fer of plasmids, small circular double-stranded DNA structures which can be very costly
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for the cell in terms of energy used. Gene transfer plays an essential role in the evolution,
maintenance, transmission of virulence and antibiotic resistance.

Our goal in this paper is to show the richness of models, mathematical questions and
theorems that can emerge from these eco-evolutionary dynamics and from the understanding
of their long-term evolution. One is faced with the fundamental question: how to describe and
quantify the successive invasions of favorable mutants? All our constructions will be based
on the stochastic behavior of the individuals from which we will derive different macroscopic
approximations depending on the parameter assumptions.

The seminal papers concerning eco-evolutionary modeling are based on game
theory and dynamical systems, see Hofbauer–Sigmund [28], Marrow–Law–Cannings [33],
Metz et al. [35, 36]. Then more general models for structured populations have been intro-
duced based either on partial differential equations, see, for example, the founding papers
of Diekmann [21], Diekmann–Jabin–Mischler–Perthame [22], Barles–Mirrahimi–Perthame
[3], Desvillettes–Jabin–Mischler–Raoul [19], or on stochastic individual-based models as
in the theoretical biological papers by Dieckmann–Law [20], Bolker–Paccala [9], or in the
rigorous mathematical papers by Fournier–Méléard [25], Champagnat–Ferrière–Méléard
[13], Champagnat [11], Champagnat–Méléard [15]. Models including horizontal transfer have
been proposed in the literature based on the seminal contribution of Anderson and May on
host-pathogen deterministic population dynamics [1] (see also Levin et al. [30, 40]) or on a
population genetics framework without ecological concern (see [4,38,41]).

The basis of our approach is a stochastic individual-based model: it is a pure jump
point measure-valued process in continuous time, weighted by the carrying capacity K of
the system (order of magnitude of the population size), whose jump events are births with
or without mutation, transfers, and deaths. The jump rates depend on the trait value of each
individual, on the total population and for some of them on K. From this basic process,
one can derive different approximations following the main biological assumptions of the
adaptive biology. The population size is assumed to be large (K ! 1), but we will also need
to keep track of small populations. Mutations are rare (pK tends to 0), but not necessarily
from the population standpoint, depending on whether KpK tends to 0 or not. Mutation steps
in the trait space may be considered small or not. The population process will be considered
on different time scales: of order 1, of order 1

KpK
, or of order log K.

After introducing in Section 2 the individual-based model scaled by the carrying
capacity K, we will study in Section 3 large population limits on finite time intervals when
K tends to infinity, using ideas developed in [25]. The stochastic process is shown to con-
verge to the unique solution of a nonlinear integro-differential equation (see also Billiard et
al. [5,6] for models with horizontal transfer). In the case where the trait support is composed
of two values, the equation reduces to a nonstandard two-dimensional dynamical system
whose long-time behavior is studied. In Section 4, we analyze the invasion probability and
time to fixation of an initially rare mutant population. In this case, the stochastic behavior
of the mutant population is fundamental and needs to be combined with the deterministic
approximation of the resident population size. In Section 5 we assume that mutations are
rare at the population scale to imply a separation between the competition and mutation time
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scales, following ideas of [11,13,15]. Under an “invasion implies fixation” assumption, a pure
jump (single support) measure-valued process is derived from the population process at the
mutation time scale. When the mutation steps tend to 0, a limiting differential equation for the
support dynamics is also derived in a longer time scale. These results are illustrated by simu-
lations of a simple model in Section 6. Depending on the transfer rate, we obtain dramatically
different behaviors, ranging from expected evolution toward the optimal trait, to extinction
(evolutionary suicide). When the individual mutation rate is small, but not from the popu-
lation standpoint, intermediary values of transfer rates lead to surprising cyclic behaviors
related to reemergence of traits. To capture these phenomena, we consider in Section 7 the
small populations of order KˇK for 0 < ˇK � 1 that can be observed in the long time scale
log K. We study the asymptotic dynamics of the exponents .ˇK.t/; t � 0/ and analyze the
first reemergence of the optimal trait. In Section 8, under the additional assumption that the
individual mutations are small, we establish in a simple framework that the stochastic dis-
crete exponent process converges to the viscosity solution of a Hamilton–Jacobi equation
with state constraint boundary conditions, allowing us to fill the gap between the stochastic
[11, 15] and deterministic [3, 22] approaches of Dirac concentration in adaptive dynamics. In
the coming years, we hope to generalize this result in a much more general framework.

Notation. The set E being a Polish space, the Skorohod space D.Œ0;T �;E/ is the functional
space of right-continuous and left-limited functions from Œ0; T � to E. It is endowed by the
Skorohod topology (cf. Billingsley [7]) which makes it a Polish space.

2. A general stochastic individual-based model for

vertical and horizontal trait transmission

2.1. The model
The population dynamics is described by a stochastic system of interacting individ-

uals (cf. [12, 13,25]). The individuals are characterized by a quantitative parameter x, called
trait, belonging to a compact subset X of Rd , which summarizes the phenotypic or genotypic
information of each individual. The trait determines the demographic rates. It is inherited
from parent to offspring, except when a mutation occurs, in which case the trait of the off-
spring takes a new value. It can also be transmitted by horizontal transfer from an individual
to another one. The demographic and ecological rates are scaled by the carrying capacity
K which is taken as a measure of the “system size” (resource limitation, living area, initial
number of individuals). We will derive macroscopic behaviors for the population by letting
K tend to infinity with the appropriate scaling 1

K
for individuals’ weight.

At each time t , the population state at time t is described by the point measure

�K
t .dx/ D

1

K

N K
tX

iD1

ıXi .t/.dx/; N K
t D K

Z
�K

t .dx/;

where Xi .t/ is the trait of the i th individual living at t , individuals being ranked according
to the lexicographic order of their trait values. Recall that notation ıx means the Dirac mea-
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sure at x. Later we will denote indifferently, for a measurable bounded function f on Rd ,
h�K

t ; f i D
R

Rd f .x/�K
t .dx/ D

PN K
t

iD1 f .Xi .t//=K.
The right-continuous and left-limited measure-valued process .�K

t ; t � 0/ is a
Markov process whose transitions are described as follows. An individual with trait x gives
birth to a new individual with rate b.x/. With probability 1 � pK , the new individual car-
ries the trait x and with probability pK , there is a mutation on the trait. The trait z of the
new individual is chosen according to the probability distribution m.x; dz/. An individual
with trait x dies with intrinsic death rate d.x/ and from the competition with any other
individual alive at the same time. If the competitor has the trait y, the competition death
rate is C.x;y/

K
, leading for a population � D

1
K

Pn
iD1 ıxi

to a total individual death rate
d.x/ C

1
K

Pn
iD1 C.x; xi / D d.x/ C C � �.x/. Horizontal transfers can occur from indi-

viduals x to y, or vice versa. In a population �, an individual with trait x chooses a partner
with trait y at rate 1

K
�.x;y/
h�;1i

. After transfer, .x; y/ becomes .x; x/.

2.2. Generator
We denote by MK the set of point measures on X weighted by 1=K and by MF the

set of finite measures on X. The generator of the process .�K
t /t�0 is given for measurable

bounded functions F on MK and � D
1
K

Pn
iD1 ıxi

by
nX

iD1

b.xi /

�
.1 � pK/

�
F

�
� C

1

K
ıxi

�
� F.�/

�
C pK

Z
X

�
F

�
� C

1

K
ız

�
� F.�/

�
m.xi ; dz/

�
C

nX
iD1

�
d.xi / C C � �.xi /

��
F

�
� �

1

K
ıxi

�
� F.�/

�
C

nX
i;j D1

�.xi ; xj /

Kh�; 1i

�
F

�
� C

1

K
ıxi

�
1

K
ıxj

�
� F.�/

�
:

It is standard to construct the measure-valued process �K as the solution of a
stochastic differential equation driven by Poisson point measures and to derive the following
moment and martingale properties (see, for example, [25] or Bansaye–Méléard [2]).

Theorem 2.1. Under the previous assumptions and assuming also that for some p � 2,
E.h�K

0 ; 1ip/ < 1, the following properties hold. For a bounded measurable function f

on X, Z
f .x/�K

t .dx/ D

Z
f .x/�K

0 .dx/ C M
K;f
t

C

Z t

0

Z
X

²�
.1 � pK/b.x/ � d.x/ � C � �K

s .x/
�
f .x/

C pKb.x/

Z
X

f .z/m.x; dz/

C

Z
X

�.x; y/

h�K
s ; 1i

�
f .x/ � f .y/

�
�K

s .dy/

³
�K

s .dx/ds;
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where M K;f is a right-continuous and left-limited square-integrable martingale starting
from 0 with quadratic variation˝

M K;f
˛
t

D
1

K

Z t

0

Z
X

²�
.1 � pK/b.x/ C d.x/ C C � �K

s .x/
�
f 2.x/

C pKb.x/

Z
X

f 2.z/m.x; dz/

C

Z
X

�.x; y/

h�K
s ; 1i

�
f .x/ � f .y/

�2
�K

s .dy/

³
�K

s .dx/ds:

3. Large population limit and rare mutation in the

ecological time-scale

3.1. A deterministic approximation
Assuming that pK converges to p when K tends to infinity, we derive a macroscopic

approximation of the population process on any finite time interval.

Assumptions .H/. (i) When K ! C1, the stochastic initial point measures �K
0

converge in probability (and for the weak topology) to the deterministic measure
u0 2 MF .X/ and supK E.h�K

0 ; 1i3/ < C1.

(ii) The functions b, d , C , and � are continuous. The intrinsic growth rate of the
subpopulation of trait x is denoted by r.x/ D b.x/ � d.x/. For any x; y 2 X,
we also assume r.x/ > 0, C.x;y/ > 0. It means that, in absence of competition,
the subpopulation with trait x has a tendency to grow and the regulation of the
population size comes from the competition pressure.

Proposition 3.1. Assume .H/ and that pK ! p when K tends to infinity. Then, for T > 0

and when K ! 1, the sequence .�K/K�1 converges in probability in D.Œ0; T �; MF .X//

to the deterministic function u 2 C.Œ0; T �; MF .X//, the unique weak measure-solution of

@t u.t; x/ D
�
r.x/ � C � u.t; x/

�
u.t; x/ C p

Z
X

b.y/m.y; x/u.t; y/dy

C
u.t; x/

ku.t; �/k1

Z
X

˛.x; y/u.t; y/dy; (3.1)

with C � u.t; x/ D
R

C.x; y/u.t; y/dy and ˛.x; y/ D �.x; y/ � �.y; x/.

The proof is standard and consists of a tightness and uniqueness argument, see [2,25]

or [6] for details. Let us note that the horizontal transfer acts on the dynamics (3.1) through the
“horizontal flux” rate ˛ which quantifies the asymmetry between transfers and can be positive
as well as negative (or zero in the case of perfectly symmetrical transfer). Nevertheless, the
fully stochastic population process depends not only on ˛ but also on � itself. Let us mention
that, to the best of our knowledge, the long-time behavior of a solution of (3.1) is unknown,
except in the case without transfer studied by Desvillettes et al. [19]. The existence of steady-
states for some similar equations has been studied in Hinow et al. [27] and Magal–Raoul [32].
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3.2. Particular cases when p D 0

Standard biological observations lead us to assume small individual mutation rate,

lim
K!1

pK D 0: (3.2)

Under this assumption, the mutational term in (3.1) disappears, meaning that mutation events
are too rare to be observed at the demographic/ecological timescale (of births, deaths, and
interaction). In the particular case when the support of the initial measure u0 is a single
point x, i.e., u0 D nx.0/ıx , nx.0/ 2 RC, the support of the measure ut is ¹xº for all t > 0

and ut D nx.t/ıx . From (3.1), we deduce that nx.t/ is the solution of the logistic equation

n0
x.t/ D nx.t/

�
r.x/ � C.x; x/nx.t/

�
:

This equation has a unique stable equilibrium

Nnx D
r.x/

C.x; x/
: (3.3)

Similarly, in the case when the support of u0 is composed of two points x and y, i.e., u0 D

nx.0/ıx C ny.0/ıy , nx.0/; ny.0/ 2 RC, the support of the measure ut is ¹x; yº for all t > 0

and ut D nx.t/ıx C ny.t/ıy , and .nx.t/; ny.t// is the solution of the dynamical system
dnx

dt
D

�
r.x/ � C.x; x/nx � C.x; y/ny C

˛.x; y/

.nx C ny/
ny

�
nx ;

dny

dt
D

�
r.y/ � C.y; x/nx � C.y; y/ny �

˛.x; y/

.nx C ny/
nx

�
ny :

(3.4)

This system can be seen as a perturbation of a competitive Lotka–Volterra system, but
presents more possible limit behaviors (but no cycles, see [5] for a detailed study). It is easy
to see that trait y will invade a resident population of trait x and get fixed if and only if

r.y/ � r.x/ C ˛.y; x/ > 0: (3.5)

In particular, the horizontal transfer can revert the outcome of the dynamical system without
transfer, provided that j˛.y; x/j > jr.y/ � r.x/j and sign.˛.y; x// D �sign.r.y/ � r.x//,
where sign.x/ D 1 if x > 0; 0 if x D 0; �1 if x < 0.

The situation is even simpler if the function C is constant. The system becomes
dn

dt
D n

�
qr.x/ C .1 � q/r.y/ � C n

�
;

dq

dt
D q.1 � q/

�
r.y/ � r.x/ C ˛.y; x/

�
;

where n D nx C ny and q D nx=.nx C ny/. There are only two equilibria for the second
equation, q D 0 and q D 1; corresponding to the equilibria . r.x/

C
; 1/ and . r.y/

C
; 0/, respec-

tively. This illustrates an important assumption, called the ‘invasion implies fixation” prin-
ciple (IIF).

Assumption (IIF). Given any x 2 X and Lebesgue almost any y 2 X, either . Nnx ; 0/ is a
stable steady state of (3.4), or . Nnx ; 0/ and .0; Nny/ are respectively unstable and stable steady
states, and any solution of (3.4) with an initial state in .R�

C/2 converges to .0; Nny/ when
t ! 1.
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Biologically speaking, this means that the ecological coefficients impede the coex-
istence of two traits (which is biologically accepted when there is only one type of resource,
see [14]).

4. Rare mutations – fixation probability

For this section, we refer to [11,13,15] for rigorous proofs.
Let us now assume (3.2) and that the resident population is uniquely composed of

individuals with trait x and near its size equilibrium, i.e., when K is large, the population
size N x;K is then close to the equilibrium K Nnx . Let us now investigate the fate of a newly
mutated individual with trait y in this resident population, as observed in Figure 1. When
the mutant appears, it begins to develop (by heredity) a small population with trait y whose
size is initially negligible. During this first phase, the number N y;K of individuals with trait
y is very small with respect to N x;K . Its dynamics can be approximated by a linear birth and
death stochastic process, at least until it reaches the threshold �K, for a given small � > 0.
The transfer x ! y acts as a birth term and the transfer y ! x as a death term. Therefore,
the growth rate of an individual with trait y for this first phase is approximately given by

S.yI x/ D r.y/ � C.y; x/ Nnx C ˛.y; x/ D r.y/ � C.y; x/
r.x/

C.x; x/
C ˛.y; x/: (4.1)

The quantity S.yI x/ is called invasion fitness of trait y in the resident population of trait x.
Note that S is not symmetric and null on the diagonal; for C constant, it is given by (3.5).
When K tends to infinity, the probability for the process N y;K to reach �K (for some � > 0)
is approximately the survival probability of the underlying linear birth and death process,
i.e., the positive part of the growth rate S.yI x/ divided by the birth rate b.y/ C �.y; x/,

Figure 1

Invasion and fixation or polymorphic persistence of a deleterious mutation for unilateral transfer rate: (left) C � 1,
b.y/ D 0:5, b.x/ D 1, d.x/ D d.y/ D 0, K D 5 000, ˛.y; x/ D �.y; x/ D 0:7; (right) C.y; x/ D C.x; x/ D 2,
C.y; y/ D 4, C.x; y/ D 1, b.y/ D 0:8, b.x/ D 1, d.x/ D d.y/ D 0, K D 1 000, ˛.y; x/ D �.y; x/ D 0:5.
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namely
P.yI x/ D

Œr.y/ � C.y; x/ Nnx C ˛.y; x/�C

b.y/ C �.y; x/
: (4.2)

In particular, invasion is impossible if S.yI x/ � 0.
Let us assume that S.yI x/ > 0. Then, the duration of the first phase (growth of

the y-population from 1 to �K individuals) is of order log K=S.yI x/. It can be proved
rigorously but, to be convinced of this, it is enough to notice that if t is the time elapsed
from the appearance of the single mutant individual with trait y to threshold �K, then
E.N

y;K
t / � eS.yIx/t D �K, and t D logK=S.yIx/. Then the second phase begins, where the

processes .N x;K ; N y;K/ stay close to the dynamical system (3.4) with nonnegligible initial
data �. Under Assumption (IIF), the trait y invades the population and the x-population
size decreases to N

x;K
t < �K in a duration of order of magnitude 1. Should the latter

happen, the third phase begins and N x;K can be approximated by a subcritical linear birth
and death process, until y is fixed and x is lost. In this case, the transfer y ! x acts as a
birth term and the transfer x ! y as a death term. The duration of this third phase behaves as
log K=.d � b/ when K ! 1 (see [34, Section 5.5.3, p. 190] for precise computation) where
b D b.x/ C �.x; y/, d D d.x/ C

C.x;y/r.y/
C.y;y/

C �.y; x/. Summing up, the fixation time of
an initially rare trait y going to fixation is of order

Tfix D log K

�
1

S.yI x/
C

1

jS.xI y/j

�
C o.log K/: (4.3)

5. Very rare mutations in an evolutionary time scale

We wish to rigorously define and quantify the evolutionary process describing the
successive invasions of successful mutants under hypothesis (3.2). In Section 3, mutations
are not seen in the limit. To observe the dynamical impact of mutations, we have to wait for a
longer time thanO.1/.Depending on the rate of convergence of pK to 0, different timescales
will be considered in the next sections.

We assume here that not only pK ! 0 but also K pK ! 0, meaning that both
individual and population mutation rates are small. We will consider the behavior of the
population process at the very long time scale 1

K pK
. Moreover, we will assume that

8 V > 0; log K �
1

K pK

� eVK : (5.1)

This assumption leads to a separation of time scales between competition phases and muta-
tion arrivals. Indeed, by (4.3), mutations are rare enough so that the selection has time to
eliminate deleterious traits or to fix advantageous traits before the arrival of a new mutant.

5.1. Trait substitution sequence
Let us study the convergence of the process .�K

:=.KpK /
/K�1 when K tends to infin-

ity, under the assumption (5.1). By simplicity we assume the invasion implies fixation (IIF)
principle. This implies that, for a monomorphic ancestral population, the dynamics at the
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time scale t=.KpK/ can be approximated by a jump process over singleton measures on X

whose mass at any time is at equilibrium. More precisely, we have

Theorem 5.1. Assume .H/, (5.1), and (IIF). Suppose the initial conditions are �K
0 .dx/ D

N K
0 ıx0.dx/with x02X, limK!1N K

0 D Nnx0 in probability, and supK2N�E..N K
0 /3/ < C1.

Then, the sequence of processes .�K
�=.KpK /

/K�1 converges in law (for finite-dimen-
sional distributions) to the MF .X/-valued process .Vt .dx/ D NnYt ıYt .dx/; t � 0/ where
.Yt /t�0 is a pure jump process on X, started at x0, with the jump measure from x to y being

b.x/ NnxP.yI x/m.x; dy/ (5.2)

and P.yI x/ being defined in (4.2).

The jump process .Yt ; t � 0/ (with Y0 D x0) describes the support of .Vt ; t �

0/. It has been heuristically introduced in [35] and rigorously studied in [11], in the case
without transfer. It is often called the trait substitution sequence (TSS). Theorem 5.1 can be
generalized when the assumption (IIF) is not satisfied, see [15].

Main ideas for the proof of Theorem 5.1. The proof is a direct adaptation of [11]. The birth
and death rates of the resident x and mutant y are

b.x/ C
�.x; y/N y;K

N K
; d.x/ C C.x; x/N x;K

C C.x; y/N y;K
C

�.y; x/N y;K

N K
;

b.y/ C
�.y; x/N x;K

N K
; d.y/ C C.y; x/N x;K

C C.y; y/N y;K
C

�.x; y/N x;K

N K
:

The proof consists in combining (5.1), the results in Section 4, and the Markov property.
Let us fix � > 0. At t D 0, the population is monomorphic with trait x0 and satisfies the
assumptions of Theorem 5.1. As long as no mutation occurs, the population stays monomor-
phic with trait x0 and, for t and K large enough, the density process h�K

t ;1x0i belongs to the
�-neighborhood of Nnx0 with large probability (cf. Proposition 3.1). From the large deviations
principle (see Freidlin–Wentzell [26]), one deduces that the time taken by the density process
in absence of mutations to leave the �-neighborhood of Nnx0 is larger than exp.VK/, for some
V > 0, with high probability. Hence assumption (5.1) ensures that the approximation of the
population process by Nnx0ıx0 stays valid until the first mutation occurrence.

The invasion dynamics of a mutant with trait y in the resident population has been
studied in Section 4. If S.yI x0/ > 0, the process N y;K is supercritical, and therefore, for
large K, the probability for the mutant population’s density to attain � is close to the prob-
ability P.yI x0/. After this threshold and thanks to Assumption (IIF), the density process
.h�K

t
KpK

; 1x0i; h�K
t

KpK

; 1yi/ will attain, when K tends to infinity, an �-neighborhood of the
unique stable equilibrium .0; Nny/ of (3.4) and will stabilize around this equilibrium. We have
shown in Section 4 that the time elapsed between the occurrence of the mutant and the final
stabilization is given by (4.3). Hence, if log K �

1
KpK

, with a large probability this phase of
competition–stabilization will be complete before the occurrence of the next mutation. Using
Markovian arguments, we reiterate the reasoning after each mutation event. Therefore, the
population process on the time-scale t=KpK only keeps in the limit the successive stationary
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states corresponding to successive advantageous mutations. If the process belongs to an �-
neighborhood of Nnx , the mutation rate from an individual with trait x is close to KpKb.x/ Nnx .
At the time scale t

KpK
, it becomes b.x/ Nnx . The limiting process is a pure jump process

.Vt ; t � 0/ whose jump measure from a state Nnxıx is b.x/ NnxP.yI x/m.x; dy/.

Example 5.2. Let us consider a simple model with trait x 2 Œ0; 4�, C being constant, and
b.x/ D 4 � x, d � 1, �.x; y/ D �ex�y . Then S.x C hI x/ D �h C �.eh � e�h/ and, for
� > 1=2, it is positive if and only if h > 0. Thus the evolution with transfer is directed
towards larger and larger traits, decreasing the growth rate until possible extinction. For �

small enough, S.x C hI x/ < 0 for h > 0 so that a mutant of trait x C h with h > 0 would
disappear at the TSS scale. In this case, evolution drives the population to smaller and smaller
traits until trait 0. The evolution for intermediary � ’s is an open challenging question.

5.2. Canonical equation of the adaptive dynamics
Let us now assume that the mutation effects are very small: the mutation distribution

m� depends on a parameter � > 0 as follows:Z
g.z/m� .x; dz/ D

Z
g.x C �h/m1.x; dh/;

where m1 is a reference symmetric measure with finite variance. Then the generator of the
TSS Y � (which now depends on the parameter � ) is given by

L� g.x/ D

Z �
g.x C �h/ � g.x/

�
b.x/ Nnx

ŒS.x C �hI x/�C

b.x C �h/ C �.x C �h; x/ Nnx

m1.x; dh/:

For smooth S and since S.xI x/ D 0, we have when � tends to 0,

L� g.x/ � �2 1

2
g0.x/ Nnx@1S.xI x/

Z
h2m1.x; dh/:

Let us observe that � ! 0 makes the dynamics stop at this time scale. To observe a nontrivial
behavior, we have to wait a longer time of order of magnitude 1=�2.

Standard tightness and identification arguments allow showing the convergence in
probability in D.Œ0; T �; X/ of the process .Y �

t=�2 ; t 2 Œ0; T �/ to the deterministic function
.x.t/; t 2 Œ0; T �/, solving the equation

x0.t/ D
1

2
Nnx.t/@1S

�
x.t/I x.t/

� Z
h2m1

�
x.t/; dh

�
; (5.3)

the so-called canonical equation of adaptive dynamics introduced in [20] (cf. [15] for a rig-
orous proof). Note also that there is another candidate for the canonical equation obtained
from partial differential equation arguments related to Hamilton–Jacobi equations [22,31,37].

Let us come back to Example 5.2 introduced previously. We assume that m1.x; dh/

is a symmetric measure keeping the trait in Œ0; 4�, i.e., with support in Œ�x; 4 � x�. In this
case, Nnx D

3�x
C

and the canonical equation is given by

x0.t/ D
3 � x.t/

C
.2� � 1/

Z
h2m1

�
x.t/; dh

�
;

since r 0.x/ D �1 and @1�.x; x/ D �@2�.x; x/ D � . Then for � > 1=2, the trait support is
an increasing function, the population size Nnx.t/ is decreasing to 0, and therefore evolution
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drives the population to an evolutionary suicide. Conversely, for � < 1=2, evolution leads to
the optimal null trait (which maximizes the growth rate).

6. Simulations – case of frequency-dependence

(Simulations due to the Master students Lucie Desfontaines and Stéphane Krystal)
We focus on the special case of unilateral transfer, that is, �.x; y/ D �1x>y , which

is relevant for plasmids transfer. The next simulations are concerned with Example 5.2, with
C � 0:5, p D 0:03, and m� .x;h/dh D N .0;�2/, conditioned on x C h 2 Œ0;4�, with � D 0:1.
The initial state is composed of K D 1 000 individuals with trait 1. Thus the corresponding
population size at equilibrium is 1 000 �

b.1/�d.1/
C

D 4 000 individuals.
The constant � will be the varying parameter. Figure 2(a) shows the evolution

dynamics when � D 0. The evolution drives the population to its optimal trait 0 corre-
sponding to a size at equilibrium equal to 1 000 �

b.0/�d.0/
C

D 6 000 individuals. The case
� D 0:2 in Figure 2(b) shows a scenario similar to the case � D 0, although the evolution to
optimal trait 0 takes a longer time. Conversely, when � D 1 (Figure 2(c)), the transfer drives
the traits to larger and larger values, corresponding to lower and lower population sizes until
extinction (evolutionary suicide). These simulations correspond to the theoretical study of
the previous section. Let us now consider the intermediary value � D 0:7 (Figure 3). The
evolution exhibits different patterns. In the first picture, high transfer converts at first indi-
viduals to larger traits and at the same time the population decreases. At some point, the
population size is so small that the transfer does not play a role anymore leading to the brutal
resurgence of a quasiinvisible strain, issued from a few individuals with small traits (and
then with larger growth rate). We observe cyclic resurgences driving the mean trait towards

Figure 2

(a) � D 0; (b) � D 0:2 – almost no modification; (c) � D 1 – evolutionary suicide. Time in abscissa. First line, trait
evolution; second line, size evolution.
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Figure 3

� D 0:7 – stepwise evolution with the trait evolution (left), and population size (center). Another pattern with
extinction (right).

the optimal trait 0. In the last picture, we observe extinction of the population: the remaining
individuals with smaller traits allow for a single resurgence of a new strain, but the traits of
the individuals alive are too large to allow for survival.

7. Stochastic analysis of emergence of evolutionary

cyclic behavior – a simple model

From now on, we are interested in the mathematical understanding of the previous
simulations. In the latter, the chosen mutation probability p was small, but not the population
mutation rate Kp, so (5.1) was not satisfied. We have to consider different time and size
scales than the previous ones to capture the surprising resurgence behaviors. This part is
largely inspired from Champagnat–Méléard–Tran [17].

7.1. A trait-discretized model
From now on, we consider a model inspired by Example 5.2 with a discrete trait

space of mesh ı > 0: X D Œ0; 4� \ ıN D ¹0; ı; : : : ; Lıº where L D b4=ıc. We choose
b.x/ D 4 � x, �.x; y/ D �1x>y , d.�/ � 1 and C.�; �/ � C . Therefore, Nnx D

3�x
C

and the
invasion fitness of a mutant individual of trait y in the population of resident trait x and size
K Nnx is

S.yI x/ D x � y C �1x<y � �1x>y D x � y C � sign.y � x/: (7.1)

We also define the fitness of an individual of trait y in a negligible population (of size o.K/)
with dominant trait x to be

OS.yI x/ D 3 � y C � sign.y � x/: (7.2)

Indeed, the competition part is negligible in that case and vanishes at the limit when K ! 1.
We assume that

pK D K�˛ with ˛ 2 .0; 1/; (7.3)

and when a mutation occurs from an individual with trait `ı, the new offspring carries the
mutant trait .` C 1/ı (the mutations are directed to the right). The total mutation rate in a
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population with size of order K is thus equal to K1�˛ and then goes to infinity with K. We
are very far from the situation described in [6, 11, 15] where (5.1) was satisfied. Here, small
populations of size order Kˇ ; ˇ < 1 can have a nonnegligible contribution to evolution by
mutational events, and we need to take into account all subpopulations with size of order Kˇ .

The population is described by the vector .N K
0 .t/; : : : ; N K

`
.t/; : : : ; N K

L .t//, where
N K

`
.t/ is the number of individuals of trait x D `ı at time t . The total population size N K

t is
now N K

t D
PL

`D0 N K
`

.t/. Our study of the (evolutionary) long-time dynamics of the process
is based on a fine analysis of the size order, as power of K, of each subpopulation. These
powers of K evolve on the timescale log K, as can be easily seen in the case of branching
processes (see Lemma 7.1). We thus define ˇK

`
.t/ for 0 � ` � L such that

N K
` .t log K/ D KˇK

`
.t/

� 1; i.e., ˇK
` .t/ D

log.1 C N K
`

.t log K//

log K
: (7.4)

We assume that N K.0/ D .b 3K
C

c; bK1�˛c; : : : ; bK1�`˛c; : : : ; bK1�b1=˛c˛c;

0; : : : ; 0/. Then trait x D 0 is initially resident, with density 3=C . With this initial con-
dition, we have

ˇK
` .0/ �����!

K!C1
.1 � `˛/10�`< 1

˛
: (7.5)

The main result of this section will give the asymptotic dynamics of ˇK.t/ D

.ˇK
0 .t/; : : : ; ˇK

L .t// for t � 0 when K ! C1. We show that the limit is a piecewise
affine continuous function, which can be described along successive phases determined by
their resident or dominant traits. When the latter trait changes, the fitnesses governing the
slopes are modified. Moreover, inside each phase, other changes of slopes are possible due
to a delicate balance between mutations, transfer, and growth of subpopulations. We will
deduce from the asymptotic dynamics of ˇK.t/ explicit criteria for some of the evolutionary
outcomes observed in Section 6 (Theorem 7.5).

Such an approach based on the behavior of the exponents ˇK at the time scale logK

has also been used in Durrett–Mayberry [23] for constant population size or pure birth pro-
cess, with directional mutations and increasing fitness parameter, in Bovier et al. [10] for a
density-dependent model where the evolution crosses the fitness valley constituted of unfit
traits, in Blath et al. [8] for models with dormancy. In a deterministic setting with similar
scales, we also refer to Kraut–Bovier [29]. In our case, the dynamics is far more complex
due to the trade-off between larger birth rates for small trait values and transfer to higher
traits, leading to diverse evolutionary outcomes. As a consequence, we need to consider cases
where the dynamics of a given trait is completely driven by immigrations (see Lemma 7.2).
This complexifies a lot the analysis.

7.2. Some enlightening lemmas
Before stating the main result (Theorem 7.3) which can be difficult to read and

understand, we state two lemmas whose proof can be found in the Appendix of [17]. These
lemmas are interesting by themselves.

(i) Assume first that a mutant with trait y appears in a resident population with trait
x such that y < x. Then the dynamics of the initial (small) y-subpopulation size behaves
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as a linear birth and death process with birth rate approximated by 4 � y and death rate by
1 C

CN x;K .t/
K

C � . We are thus led to study the following process.

Lemma 7.1. Let us consider a linear birth and death process .ZK
t ; t � 0/, i.e., a binary

branching process, with individual birth rate b � 0, individual death rate d � 0, and initial
value ZK

0 D Kˇ with ˇ > 0.

The process .
log.1CZK

s log K /

log K
; s 2 Œ0; T �/ converges in probability in L1.Œ0; T �/ for

all T > 0 to ..ˇ C rs/ _ 0; s 2 Œ0; T �/ when K tends to infinity, with r D b � d .
In addition, if b < d , for all s > ˇ=r , then limK!C1 P .ZK

s log K D 0/ D 1.

The limit can be understood from E.ZK.t// D Kˇ ert . The proof of Lemma 7.1 uses
the martingale property of .e�rt ZK

t /t�0. The proof is easy for r � 0 and more technical in
the case r < 0, necessitating to control the extinction events after a certain time.

(ii) Assume now that a mutant with trait y D x C ı appears in a resident population
with trait x. Then the dynamics of the initial (small) y-subpopulation size behaves as a
linear birth and death process with birth rate approximated by 4 � y C � and death rate
by 1 C

CN x;K .t/
K

. But in addition, trait y may receive a contribution from x at time t due to
mutations at total rate N x;K.t/K�˛ . By Lemma 7.1, we know that N x;K.s logK/ � KcCas

for constant a; c 2 R. This justifies the following lemma.

Lemma 7.2. Let us consider a linear birth and death process with immigration .ZK
t ; t � 0/,

with individual birth rate b � 0, individual death rate d � 0, initial value ZK
0 D Kˇ with

ˇ > 0, and immigration rate at time t given by Kceat , with a; c 2 R.
The process .

log.1CZK
s log K /

log K
; s 2 Œ0; T �/ converges when K tends to infinity in prob-

ability in L1.Œ0; T �/ for all T > 0 to a continuous deterministic function Ň.s/.
For c � ˇ and ˇ > 0, Ň.s/ D .ˇ C rs/ _ .c C as/ _ 0. For ˇ D 0, c < 0 and a > 0,

Ň.s/ D ..r _ a/.s � jcj=a// _ 0. For ˇ D 0, c < 0, and a � 0, Ň.s/ D 0. The other cases
are immediate (see [17]).

This convergence is illustrated in Figure 4.
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Figure 4

(a) Initially, Ň D 0, but thanks to immigration, the population is revived. Once this happens, the growth rate r

being larger than a, immigration has a negligible effect after time jcj=a. (b) After time .ˇ � c/=.a � r/, the
dynamics is driven by mutation before getting extinct. (c) We observe a local extinction before the population is
revived thanks to incoming mutations.
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7.3. Dynamics of the exponents
Let us come back to the asymptotic dynamics of ˇK.t/ D .ˇK

0 .t/; : : : ; ˇK
L .t// for

t � 0 when K ! C1, which are characterized in the next result by a succession of deter-
ministic time intervals Œsk�1; sk �; k � 1, called phases and delimited by changes of resident
or dominant traits. The latter are unique except at times sk and are denoted by `�

k
ı; k � 1.

This asymptotic result holds until a time T0, which guarantees that there is ambiguity neither
on these traits nor on the extinct subpopulations at the phase transitions. We will not give
the exact (and technical) definition of T0 and refer to [17].

Theorem 7.3. Assume (7.3) with ˛ 2 .0; 1/, ı 2 .0; 4/, and (7.5).

(i) For 0 < T � T0, the sequence .ˇK.t/; t 2 Œ0; T �/ converges in probability
in D.Œ0; T �; Œ0; 1�LC1/ to a deterministic piecewise affine continuous function
.ˇ.t/ D .ˇ0.t/; : : : ; ˇL.t//, t 2 Œ0; T �/, such that ˇ`.0/ D .1 � `˛/10�`< 1

˛
.

The functions ˇ are parameterized by ˛, ı, and � defined as follows.

(ii) There exist an increasing nonnegative sequence .sk/k�0 and a sequence
.`�

k
/k�1 in ¹0; : : : ; Lº defined inductively: s0 D 0, `�

1 D 0, and, for all k � 1,
assuming that `�

k
have been constructed, we can construct sk > sk�1 as follows:

sk D inf
®
t > sk�1 W 9` ¤ `�

k ; ˇ`.t/ D ˇ`�
k
.t/

¯
: (7.6)

If ˇ`�
k
.sk/ > 0, we set

`�
kC1 D arg max

`¤`�
k

ˇ`.sk/; (7.7)

if the argmax is unique. In the other cases, we stop the induction.

(iii) The functions ˇ` are defined, for all t 2 Œsk�1; sk � and ` 2 ¹0; : : : ; Lº, by

ˇ`.t/ D

8̂̂<̂
:̂

Œ1ˇ0.sk�1/>0.ˇ0.sk�1/ C
R t

sk�1

QS s;k.0I `�
k
ı/ ds/� _ 0; if ` D 0;

.ˇ`.sk�1/ C
R t

t`�1;k^t
QSs;k.`ıI `�

k
ı/ ds/

_.ˇ`�1.t/ � ˛/ _ 0; otherwise,
(7.8)

where, for all traits x; y, QSt;k.yI x/ D 1ˇ`�
k

.t/D1S.yI x/ C 1ˇ`�
k

.t/<1
OS.yI x/

and where

t`�1;k D

8<: inf¹t � sk�1; ˇ`�1.t/ D ˛º; if ˇ`.sk�1/ D 0;

sk�1; otherwise.
(7.9)

In addition, for all ` and all a < b such that the time interval Œa; b� is included in the interior
of the zero-set of ˇ`, the event ¹N K

`
.t log K/ D 0; 8t 2 Œa; b�º has a probability converging

to 1 as K tends to infinity.

Simulations are shown in Figure 5 for various parameter values.
Roughly speaking, slope changes of the exponents ..ˇ0.t/; : : : ; ˇL.t//; t 2 Œ0; T �/

can take place at the times when a new exponent reaches 1 and there is a change of the resident
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Figure 5

Exponents ˇ`.t/ as functions of time: (left) ı D 1:4, ˛ D 0:6, � D 2. We see a periodic behavior showing
reemergence of the fittest traits; (center) ı D 0:3, ˛ D 1=� , � D 1. A cyclic but aperiodic behavior is observed;
(right) ı D 0:41, ˛ D 1=� , � D 2:8. The population is directly driven to evolutionary suicide.

trait, when a new exponent reaches 0 and there is extinction of the trait, and when the slope
of an exponent formerly directed by its fitness becomes directed by incoming mutations.

Remark 7.4. (i) By the definition of sk and `�
kC1

, max` ˇ`.t/ D ˇ`�
k
.t/ for t 2

Œsk�1; sk/.

(ii) The previous result keeps track of populations of size Kˇ for 0 < ˇ � 1, but
not of populations of smaller order, which go fast to extinction on the time scale
log K.

Main ideas of the proof. We need to consider in the sequel two different situations: either
there is a single trait x with population size of order K, called resident trait, or the total
population size is o.K/. We explain the proof for simplicity assuming that there is always
a resident trait. Theorem 7.3 is obtained by a fine comparison of the size of each sub-
population defined by a given trait value with carefully chosen branching processes with
immigration. The stochastic dynamics consists in a succession of steps, composed of long
phases Œ�K

k
log K; �K

k
log K� for k � 1 (with �K

1 D 0) followed by short intermediate phases
Œ�K

k
log K; �K

kC1
log K�, where the stopping time �K

k
is defined as the first time when the

resident population size exits a neighborhood of its equilibrium density, or when the other
subpopulations stop to be negligible with respect to the resident population. In each long
phase, there is a single resident trait. Short intermediate phases correspond to the replace-
ment of the resident trait, where two subpopulations are of maximal order. We prove that �K

k

converges in probability to sk , k � 1. In the limit, intermediate steps vanish on the time scale
logK. The proof proceeds by induction on k until some step k0 where one of the three follow-
ing events occurs: the exponents of three traits become maximal simultaneously, extinction,
or the exponent of some trait vanishes at the same time as a change of resident population.
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We then stop the induction and set T0 D sk0
in the first and third cases, or T0 D C1 in the

second case.
To control the exponents ˇK

`
.t/, we proceed by a double induction, first on the steps,

and second, inside each step, on the traits `ı, for ` D 0 to ` D L. The exponents are approx-
imately piecewise affine. Changes of slopes may happen when a new trait emerges, when
a trait dies or when the dynamics of a trait becomes driven by incoming mutations. We
use Lemma 7.2. During intermediate phases, we use comparisons with dynamical systems,
described in Section 3.

7.4. Reemergence of trait 0
Recall that we work with birth, death and transfer rates presented in Section 7.1. In

Figure 5, we have exhibited different evolutionary dynamics (reemergence of a trait, cyclic
behavior, local extinction, evolutionary suicide). By reemergence of a trait `ı, we mean that
ˇ`.s/ D 1 on some nonempty time interval Œt1; t2�, then ˇ`.s/ < 1 on some nonempty interval
.t2; t3/, and then ˇ`.s/ D 1 again on some nonempty interval Œt3; t4�. We would like to predict
the evolutionary outcome as a function of parameters ˛; ı; � . There are so many situations
that we are not able to fully characterize the outcomes (see [17] for a detailed study in the
case of three traits). Therefore, we focus on the beginning of the dynamics until either global
extinction or reemergence of one trait occurs.

The resurgence of trait 0 is a prerequisite for a cyclic dynamics as those observed
in Figure 5. We assume here that ı < 4=3 (so that the cardinal of X is L C 1 � 4) and
only consider the case ı < � < 3. Computing the fitness functions, one can observe that for
the first phases, sk D

k˛
��ı

, and the trait kı is resident on Œsk ; skC1/ (ˇk.s/ D 1) and for all
s 2 Œsk ; skC1/,

ˇ0.s/ D 1 �
˛.k � 1/

� � ı

�
� �

k

2
ı

�
� .� � kı/.s � sk/:

This formula stays valid until either ˇ0.s/ D 0 (loss of 0), or ˇ0.s/ D 1 for some s > s1

(reemergence of 0), or when the population size becomes o.K/. The slope of the function
ˇ0.s/ becomes positive at time s Qk

, where Qk WD d
�
ı
e. Hence its minimal value is equal to

m0 D ˇ0.s Qk
/ D 1 �

˛. Qk � 1/

� � ı

�
� �

Qk

2
ı

�
: (7.10)

If the latter is positive, ˇ0 reaches 1 again in phase Œs Nk ; s NkC1/, where Nk D b2 �
ı
c, at time

Ns WD s Nk C
˛. Nk � 1/

� � ı

� �
Nk
2
ı

Nkı � �
D sb2 �

ı
c C

˛.b2 �
ı
c � 1/

� � ı

� �
b2 �

ı
c

2
ı

b2 �
ı
cı � �

: (7.11)

The previous calculations give the intuition for the following theorem (see the proof in [17]).

Theorem 7.5. Assuming ı < � < 3, ı < 4=3 and, under the assumptions of Theorem 7.3,

(a) If m0 > 0 and Nkı < 3, then the first reemerging trait is 0 and the maximal
exponent is always 1 until this reemergence time;
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(b) If m0 < 0, the trait 0 gets lost before its reemergence and there is global extinc-
tion of the population before the reemergence of any trait;

(c) If m0 > 0 and Nkı > 3, there is reemergence of some trait `ı < 3 and, for some
time t before the time of first reemergence, max1�`�L ˇ`.t/ < 1.

Biologically, case (b) corresponds to evolutionary suicide. In cases (a) and (c), very
few individuals with small traits remain, which are able to reinitiate a population of size of
order K (reemergence) after the resident trait becomes too large. In these cases, one can
expect successive reemergences. However, we do not know if there exists a limit cycle for
the dynamics. Case (c) means that the total population is o.K/ on some time interval, before
reemergence occurs after populations with too large traits become small enough.

It seems very difficult to go further with probabilistic tools. Another approach could
consist in obtaining a macroscopic approximation of the exponents ˇK in a trait continuum
in terms of Hamilton–Jacobi equations and then using the tools of analysis.

8. Macroscopic Hamilton–Jacobi approximation of the

exponents

This part is a collaboration in progress with S. Mirrahimi [16]. We will give the ideas
of our ongoing results, in particular a partial result concerning the simple case of stochastic
supercritical birth–death–mutation process without transfer and competition. We assume that
trait x belongs to the continuum Œ0;1�. Starting from a finite population, our goal is to recover,
by a direct scaling, the Hamilton–Jacobi equation that has been introduced in [3,22]. For this,
we consider a discretization of the trait space Œ0; 1� with step ıK ! 0, scale the mutation
steps by a factor 1= log K (small mutation steps), and assume that the initial population sizes
are of the order of Kˇ0 for an exponent ˇ0 that can depend on the trait. More precisely, the
population is composed of individuals with traits belonging to the discrete space XK WD

¹iıK W i 2 ¹0; 1; : : : ; Œ 1
ıK

�ºº. The number of individuals with trait iıK is described by the
stochastic process .N K

i .t/; t � 0/. As in the previous sections, an individual with trait x 2

XK gives birth to a new individual with same trait x at rate b.x/, dies at rate d.x/, but we
assume that, for all y 2 XK , it gives birth to a mutant individual with trait y at rate

p.x/ıK log Km
�
log K.x � y/

�
:

Assumption 8.1. (i) The functions b, d , and p are nonnegative C 1-functions
defined on Œ0; 1� such that, for all x 2 Œ0; 1�, b.x/ > d.x/.

(ii) The function m is nonnegative, continuous, defined on R, satisfiesR
R m.y/ dy D 1. It has exponential moments of any order and behaves as

the Gaussian kernel m.h/ D
1p
2��

e�h2=2�2 at infinity.

(iii) There exists a > 0 such that, for all K 2 N and all i 2 ¹0; 1; : : : ; Œ 1
ıK

�º,
N K

i .0/ � Ka.
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(iv) There exists a2 < a such that K�a2=4 << ıK << 1= log.K/. Then, for hK WD

ıK log K, we have limK!C1 hK D 0.

Note that points 1 and 3 of Assumption 8.1 impede the subpopulations to be extinct.
Note also that, for all x 2 .0; 1/, the total mutation rate from an individual with trait xK D

iKıK with iK D Œx=ıK �, converges as K ! C1 to

lim
K!C1

p.xK/

Œ 1
ıK

�X
j D0

hKm
�
hK.ik � j /

�
D p.x/

Z
R

m.y/ dy D p.x/:

Defining the exponents ˇK
i .t/ as in (7.4), we introduce their interpolations: for all x 2 Œ0; 1�

and K � 1, let i be such that x 2 ŒiıK ; .i C 1/ıK/ and define

Q̌K.t; x/ D ˇK
i .t/

�
1 �

x

ıK

C i

�
C ˇK

iC1.t/

�
x

ıK

� i

�
:

The sequence of processes . Q̌K/K�1 belongs to D.Œ0; T �; C.Œ0; 1�; R//, where C.Œ0; 1�; R/

is endowed with the topology of uniform convergence.

Theorem 8.2. We assume that Assumptions 8.1 hold, and that the sequence . Q̌K.0; �// con-
verges in probability on C.Œ0; 1�; R/ to a deterministic function ˇ0.�/ and that there exists a
constant A such that

lim
K!C1

P
�
LK

0 > A
�

D 0; where LK
0 WD sup

i¤j

jˇK
i .0/ � ˇK

j .0/j

ıK ji � j j
:

Then Q̌K converges in probability in D.Œ0; T �; C.Œ0; 1�; R// to the unique viscosity solution
ˇ of the Hamilton–Jacobi equation with state constraint boundary conditions8̂<̂

:
@

@t
ˇ.t; x/ D b.x/ � d.x/ C p.x/

Z
R

m.h/eh@xˇ.t;x/dh; .t; x/ 2 RC � .0; 1/;

ˇ.0; x/ D ˇ0.x/; x 2 Œ0; 1�:

(8.1)

More precisely, ˇ is a viscosity supersolution of (8.1) in .0; C1/ � .0; 1/ and a viscosity
subsolution in .0; C1/ � Œ0; 1�.

Usually, the analytical proof of such concentration results is based on the maximum
principle (see [3]) which does not hold in this stochastic framework. To prove the tightness
of the sequence Q̌K , a technical and delicate point consists in showing that the increments
.ˇK

iC1.t/ � ˇK
i .t//=ıK are bounded uniformly in time for K large enough. These increments

are semimartingales, and we easily obtain their Doob–Meyer decomposition. The martingale
part is proved to be small for large K. The maximum principle is used to control the finite
variation part, with an !-by-! argument. Once the tightness is obtained, we have to identify
the limiting values of Q̌K , which only charge deterministic and continuous trajectories. We
identify the limiting paths as viscosity solutions of the Hamilton–Jacobi equation (8.1).
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Quantitative analysis
of field
concentration
in presence of closely
located inclusions
of high contrast
Hyeonbae Kang

Abstract

In composites consisting of inclusions and a matrix of different materials, some inclu-
sions are located closely to each other. If the material properties of inclusions are of high
contrast with that of the matrix, field concentration occurs in the narrow region between
closely located inclusions. Understanding the field concentration quantitatively is impor-
tant in the theory of composites and imaging since it represents stress or field enhance-
ment. The last 30 years or so have witnessed significant progress in analyzing this phe-
nomena of field concentration: optimal estimates and asymptotic characterization cap-
turing the field concentration have been derived in the contexts of the conductivity equa-
tion (or antiplane elasticity), the Lamé system of linear elasticity, and the Stokes system.
The purpose of this paper is to review some of them in a coherent manner.
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1. Introduction

Typical composites consist of inclusions imbedded in the matrix (the background
medium), where the inclusions have material properties different from that of the matrix.
In some composites, two inclusions are located closely to each other, and if their material
properties are in high contrast with that of the matrix, then a strong concentration of the
field or stress may occur in the narrow region between two inclusions. It is important to
quantitatively analyze the field concentration or the stress since it may cause material failure
(see, for example, [5]).

Composites may have multiple inclusions. But, since the region of interest is the
local narrow area in-between two inclusions which are closely located, all other inclusions
except for the considered two are ignored and the mathematical problem is formulated with
just two inclusions, that is, the problem is formulated in terms of disjoint bounded domains
D1 and D2 in Rd (d D 2; 3) representing the two inclusions. They are assumed to have Lip-
schitz continuous boundaries, and the interface conditions along @Dj (j D 1; 2) are given
by the perfectly bonding conditions, namely, continuity of the flux and the potential (see
(2.5) and below). With these interface conditions, we consider the homogeneous and inho-
mogeneous transmission problems of various equations such as the equation of conductivity
or antiplane elasticity, the Lamé system for linear elasticity, and the Stokes system for fluid
flow. The inclusions represent conductors or insulators for conductivity equations, elastic
inclusions for antiplane elasticity equations or Lamé systems, and suspensions for Stokes
systems.

Throughout this paper, " denotes the distance between two inclusions, namely,

" WD dist.D1; D2/: (1.1)

The characteristic feature of the configuration for the problem is that " is arbitrarily small.
The mathematical problem here is to capture in a quantitative way the behavior of the field
(the gradient of the solution) and its derivatives in the narrow region between D1 and D2

in terms of " and, if possible, the contrast of material parameters. As mentioned before, this
problem arises from the stress analysis in composites. It also arises from the effective medium
theory [12,25] (see also [19]): in order to compute the effective properties of composites with
the periodic array of densely packed inclusions, it is necessary to capture the asymptotic
behavior of the field in-between inclusions. Sometimes the two inclusions are designed to
create the field concentration to achieve a desired enhancement of the field.

During the last three decades or so, significant development on the problem has
been made: optimal estimates for the gradient and its derivatives have been obtained and
asymptotic characterizations of the field concentration have been derived. The purpose of
this paper is to review them. Despite all this progress, some outstanding and challenging
problems remain unsolved. We discuss them as well.

The rest of this paper consists of three sections, reviewing the conductivity equation,
the Lamé system, and the Stokes systems in turn. A short discussion is added at the end of
the paper.
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2. The conductivity equation

Let D1 and D2 be disjoint bounded domains in Rd (d D 2; 3) whose boundaries
are assumed to be Lipschitz continuous. Let kj be the conductivity of Dj for j D 1; 2, while
that of Rd n .D1 [ D2/ is assumed to be 1. So the conductivity distribution is given by

� D �Rd n.D1[D2/ C k1�D1 C k2�D2 ; (2.1)

where � denotes the characteristic function on the respective set. We assume that 0 < kj ¤

1 < 1 (j D 1; 2).
We consider the inhomogeneous transmission problem: for a given function f ,8<: r � �ru D f in Rd ;

u.x/ D c ln jxj C O
�
jxj�1

�
as jxj ! 1;

(2.2)

for some constant c. The constant c can be nonzero if d D 2, and it is zero if d D 3. We also
consider the homogeneous transmission problem8<: r � �ru D 0 in Rd ;

u.x/ � H.x/ D O
�
jxj�dC1

�
as jxj ! 1;

(2.3)

where H is a given function harmonic in Rd . Instead of the free-space problems (2.2) and
(2.3), one may consider the corresponding boundary value problems, which are equivalent to
the above problems. However, the free-space problems seem more natural since the problems
arise from the composite theory, and all but the two closely located inclusions are ignored.

When the conductivities k1 and k2 simultaneously tend 1 or 0, it is expected for the
ru of the solution u to become arbitrarily large as the distance " between the two inclusions
tends to 0. The problem is to derive estimates for ru in terms of " (and k1, k2, if possible) as "

tends to 0. The conductivity being 1 means that the inclusion is perfectly conducting, while
0 means insulating. The two-dimensional equation may represent the antiplane elasticity, and
in such a case it means that the inclusion is either stiff or void. When k1 D 0 and k2 D 1,
or the other way around, a quite different singular behavior (blow-up) occurs as " tends to 0

as we will see later.
When the distance " tends to 0, the numerical computation of u becomes quite dif-

ficult since the blow-up of ru forces us to use a refined mesh. In this respect, an asymptotic
characterization of the singularity of ru has an important role. By an asymptotic character-
ization, as " tends to 0, we mean a decomposition of the form

u D s C r; (2.4)

where s is the singular part, namely, rs carries the full information about the singularity of
ru, while r is the regular part, namely, rr is bounded. To be used effectively for numerical
computations, the singular part s needs to be the solution of the conductivity equation, and
explicit.
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The problem (2.2) can be expressed as8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�u D f in Rd n D;

�u D k�1
j f in Dj ; j D 1; 2;

ujC � uj� D 0 on @Dj ; j D 1; 2;

@�ujC � kj @�uj� D 0 on @Dj ; j D 1; 2;

u.x/ D c ln jxj C O
�
jxj

�1
�

as jxj ! 1:

(2.5)

Here and throughout this paper, @� denotes the outward normal derivative on @Dj and the
subscripts ˙ denote the limits from outside and inside of Dj , respectively. The third and
fourth lines in (2.5) represent the perfect-bonding conditions along @D, namely the continuity
of the potential and flux, respectively.

Let F be the (weighted) Newtonian potential of f , namely,

F.x/ D

Z
Rd nD

�.x � y/f .y/ dy C

2X
j D1

1

kj

Z
Dj

�.x � y/f .y/ dy; x 2 Rd ; (2.6)

where �.x/ is the fundamental solution to the Laplacian, i.e.,

�.x/ D

8̂<̂
:

1

2�
ln jxj; d D 2;

�
1

4�
jxj

�1; d D 3:

(2.7)

Since �F D f in Rd n D and �F D k�1
j f in Dj , v WD u � F (u is the solution to (2.2))

is the solution to 8̂̂̂̂
<̂̂
ˆ̂̂̂:

�v D 0 in D [ .Rd n D/;

vjC � vj� D 0 on @Dj ; j D 1; 2;

@�vjC � kj @�vj� D .kj � 1/�j on @Dj ; j D 1; 2;

v.x/ D c ln jxj C O
�
jxj

�1
�

as jxj ! 1;

(2.8)

with �j D @�F j@Dj
(j D 1; 2). That is, the inhomogeneous problem (2.2) is reduced to

(2.8). By putting v WD u � H , we see that the homogeneous (2.3) is reduced to (2.8) with
�j D @�H j@Dj

.
The solution to (2.8) can be represented in terms of the single-layer potentials, and

if it is done so, the problem is reduced to a system integral equations for the Neumann–
Poincaré operator on @D1 � @D2. In a recent paper [14], explicit solutions to (2.2) and (2.3)
have been constructed when inclusions are circular using the complete knowledge of the
spectrum for the Neumann–Poincaré operator on two circles. In Section 2.1, we review them
and optimal estimates of the derivatives of the solution as consequences. We then review in
Section 2.2 important generalizations to inclusions, of more general shape in two and three
dimensions, of results for circular inclusions. These are actually results established earlier
than the circular case of [14]; the review of this section is in reverse historical order. The merit
in doing so is that the fine results for the case of circular inclusions may serve as milestones
of which problems have been solved and which still need to be solved.
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In the last subsection, we review the results on the asymptotic characterizations of
the singular behavior of the gradient of the solution.

2.1. Estimates for circular inclusions
2.1.1. Explicit representation of the solution
Suppose that D1 and D2 are disks of radii r1 and r2, respectively. Explicit solutions

are constructed in [14] by transforming circles @D1 and @D2 to two concentric circles. In
order for the transformation to take a simple form, we make some necessary translations and
rotations so that after them centers of D1 and D2 are located at .c1; 0/ and .c2; 0/, where

c1 D
r2

2 � r2
1 � .r1 C r2 C "/2

2.r1 C r2 C "/
�

ˇ

2
; c2 D c1 C r1 C r2 C "; (2.9)

with

ˇ D

p
"
p

.2r1 C "/.2r2 C "/.2r1 C 2r2 C "/

r1 C r2 C "
: (2.10)

Then, @D1 and @D2 are mapped onto two concentric circles by the transformation

z�
D T z WD

ˇ

z
C 1; (2.11)

namely, T .@Dj / (j D 1; 2) is the circle of the radius Rj centered at 0, where Rj is given by

R2
1 D 1 C

ˇ

c1

; R2
2 D 1 C

ˇ

c2

: (2.12)

Let
D�

1 WD T .D1/ D
®
j�j < R1

¯
; D�

2 WD T .D2/ D
®
j�j > R2

¯
: (2.13)

Let H �1=2.@Dj / denote the Sobolev space of order �1=2 on @Dj and H
�1=2
0 .@Dj /

be the subspace of H �1=2.@Dj / whose element f satisfies
R

@Dj
f D 0. Suppose that the

function �j appearing in (2.8) belongs to H
�1=2
0 .@Dj / and let Hj be the unique solution to

the following Neumann boundary value problem:8<: �Hj D 0 in Dj ;

@�Hj D �j on @Dj :
(2.14)

Let hj be the analytic function in D�
j such that h1.0/ D 0, limj� j!1 h2.�/ D 0, and

Hj .z/ D <.hj ı T /.z/ C Cj ; z 2 Dj ; (2.15)

for some constant Cj . Here and afterwards, < indicates the real part. Let

� WD
R1

R2

and �j WD
kj C 1

2.kj � 1/
; j D 1; 2; (2.16)

and define functions wj by

w1.�/ D

1X
lD0

h1.�2l�/

.4�1�2/lC1
; j�j < R1; (2.17)
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and

w2.�/ D

1X
lD0

h2.��2l�/

.4�1�2/lC1
; j�j > R2: (2.18)

Using functions w1 and w2, we define

A1.�/ WD

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

.�1 C �2/w1.�/

C .�1 � �2/w1.��/ � w1.�2�/; j�j � R1;

.�1 C �2/w1.R2
1

N��1/

C .�1 � �2/w1.��/ � w1.�2�/; R1 < j�j � R2;

.�1 C �2/w1.R2
1

N��1/

C .�1 � �2/w1.R1R2
N��1/ � w1.R2

1
N��1/; R2 < j�j;

(2.19)

and

A2.�/ WD

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

.�1 C �2/w2.R2
2��1/

� .�1 � �2/w2.R1R2��1/ � w2.R2
2��1/; j�j � R1;

.�1 C �2/w2.R2
2��1/

� .�1 � �2/w2.��1 N�/ � w2.��2 N�/; R1 < j�j � R2;

.�1 C �2/w2. N�/

� .�1 � �2/w2.��1 N�/ � w2.��2 N�/; R2 < j�j:

(2.20)

We have the following representation formula for the solution to (2.8).

Proposition 2.1. Suppose �j 2 H
�1=2
0 .@Dj / (j D 1; 2). The solution v to (2.8) is given by

v.z/ D <
�
A1

�
T .z/

�
C A2

�
T .z/

��
; z 2 R2: (2.21)

For the inhomogeneous problem (2.2), �j D @�F j@Dj
, and hence the condition that

�j belongs to H
�1=2
0 .@Dj / (j D 1; 2) amounts toZ

D1

f D

Z
D2

f D 0: (2.22)

Thus we have the following corollary for (2.2).

Corollary 2.2. Suppose that f satisfies (2.22). The solution u to (2.2) is represented as

u.z/ D F.z/ C <
�
A1

�
T .z/

�
C A2

�
T .z/

��
C const. (2.23)

For the general case when f does not necessarily satisfy condition (2.22), we can
(explicitly) construct functions V1 and V2 such that the function f0, defined by

f0 D f �

�Z
D1

f

�
r � �rV1 �

�Z
D2

f

�
r � �rV2;

satisfies (2.22), and hence the solution u to (2.2) takes the form

u D

�Z
D1

f

�
V1 C

�Z
D2

f

�
V2 C u0; (2.24)
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where u0 is the solution to (2.2) of the form (2.21). The construction of functions V1 and V2

in [14] heavily uses the fact that D1 and D2 are disks.
For the homogeneous problem (2.3), �j D @�H j@Dj

and hence Hj D H . Thus, we
have the following corollary:

Corollary 2.3. The solution u to (2.2) is represented as

u.z/ D H.z/ C <
�
A1

�
T .z/

�
C A2

�
T .z/

��
: (2.25)

2.1.2. Optimal estimates for the solution
We now present estimates for the solutions and their derivatives. These estimates

are optimal and derived from the explicit representations of the solution presented in the
previous subsection. The derivation is far from trivial.

We first introduce some norms for regularity of functions. A function g defined
on R2 (with inclusions D1 and D2) is said to be piecewise C n;˛ for some nonnegative
integer n and 0 < ˛ < 1 if g is C n;˛ on D1, D2 and R2 n D (D D D1 [ D2) separately.
For piecewise C n;˛ functions g, the norm is defined by

kgkn;˛ WD kgkC n;˛.D1/ C kgkC n;˛.D2/ C kgkC n;˛.R2nD/: (2.26)

When ˛ D 0, we denote it by kgkn;0. We also use the following norm:

kgk
�
n;˛ WD

1

k1

kgkC n;˛.D1/ C
1

k2

kgkC n;˛.D2/ C kgkC n;˛.R2nD/: (2.27)

When .k1 � 1/.k2 � 1/ > 0 which includes the case when k1 D k2 D 1 or
k1 D k2 D 0 in limits, we obtain the following theorems for the inhomogeneous and homo-
geneous transmission problems. Here and throughout this paper, we put

r� WD

s
2.r1 C r2/

r1r2

: (2.28)

We assume that the inhomogeneity f is given by f D r � g for some g. It is assumed that
g is compactly supported in R2 for the sake of simplicity.

Theorem 2.4. Suppose .k1 � 1/.k2 � 1/ > 0 and f D r � g for some piecewise C n�1;˛

function g with the compact support (n is a positive integer and 0 < ˛ < 1). There is a
constant C > 0 independent of k1, k2, ", and g such that the solution u to (2.2) satisfies

kukn;0 � C kgk
�
n�1;˛.4�1�2 � 1 C r�

p
"/�n: (2.29)

This estimate is optimal in the sense that there is g such that the reverse inequality (with a
different constant C ) holds when n D 1.

Theorem 2.5. Let � be a bounded set containing D1 [ D2. Let u be the solution to (2.3).
If .k1 � 1/.k2 � 1/ > 0, then there is a constant C > 0 independent of k1, k2, ", and the
function H such that

kukn;� � C kHkC n.�/.4�1�2 � 1 C r�

p
"/�n: (2.30)
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This estimate is optimal in the sense that there is a harmonic functionH such that the reverse
inequality (with a different constant C ) holds for the case n D 1. Here, kukn;� denotes the
piecewise C n norm on �, namely,

kukn;� WD kukC n.D1/ C kukC n.D2/ C kukC n.�nD/: (2.31)

The estimates (2.29) and (2.30) are not new. The estimate (2.29) (for the inhomoge-
neous problem with circular inclusions) was obtained in [11]. The estimate (2.30) for the
gradient for the homogeneous problem (with circular inclusions), namely, for n D 1, is
obtained in [3,4], while that for higher n in [11].

Since
4�1�2 � 1 D

2.k1 C k2/

.k1 � 1/.k2 � 1/
;

the estimate (2.29) shows that if either k1 or k2 is finite (away from 0 and 1), then kukn;0 is
bounded regardless of the distance ", while if both k1 and k2 tend to 1, then the right-hand
side of (2.29) is of order "�n=2. As explained at the end of this subsection, ru may actually
blow up at the order of "�1=2. If k1 and k2 tend to 0, then the right-hand side of (2.29) is
also of order "�n=2 provided that kgk�

n�1;˛ is bounded, in particular, if there is no source in
D1 [ D2, namely, g D 0 in D1 [ D2. The estimate (2.30) yields the same findings.

If .k1 � 1/.k2 � 1/ < 0 which includes the case when k1 D 0 and k2 D 1 (or the
other way around) in limits, then 4�1�2 < 0. Thus the right-hand sides of (2.29) and (2.30)
are bounded and cannot be the right estimates for this case. Instead, we obtain the following
theorems.

Theorem 2.6. Suppose .k1 � 1/.k2 � 1/ < 0 and f D r � g for some piecewise C n;˛ func-
tion g with compact support (n is a positive integer and 0 < ˛ < 1). There is a constant
C > 0 independent of k1, k2, ", and g such that the solution u to (2.2) satisfies

kukn;0 � C kgk
�
n;˛

�
4j�1�2j � 1 C r�

p
"
��nC1

: (2.32)

This estimate is optimal in the sense that there is f such that the reverse inequality (with a
different constant C ) holds for n D 2.

Theorem 2.7. Let � be a bounded set containing D1 [ D2. Let u be the solution to (2.3).
If .k1 � 1/.k2 � 1/ < 0, then there is a constant C > 0 independent of k1, k2, ", and the
function H such that

kukn;� � C kHkC nC1.�/

�
4j�1�2j � 1 C r�

p
"
��nC1

: (2.33)

This estimate is optimal in the sense that there is a harmonic functionH such that the reverse
inequality (with a different constant C ) holds for n D 2.

Estimates (2.32) and (2.33) show that if .k1 � 1/.k2 � 1/ < 0, then ru is bounded
regardless of the k1, k2, and ". But, the nth (n � 2) order derivative may blow up at the rate
of "�.n�1/=2 if, for example, k1 D 0 and k2 D 1. The second derivative of u actually blows
up at the rate of "�1=2 in some cases as explained in the next subsection. These results are
new and waiting to be generalized to inclusions of general shape and to higher dimensions.
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2.1.3. Optimality of the estimates
Let F be a smooth function in R2 with a compact support such that F.z/ D x1 in

a neighborhood of D1 [ D2. Let f WD �F . Then the following hold [14]:

(i) Let k1 D k2 D 1. The solution u to (2.2) satisfiesˇ̌
ru.z/

ˇ̌
& "�1=2 (2.34)

for some z 2 R2 n D.

(ii) For the case when .k1 � 1/.k2 � 1/ < 0, we take either k1 D 0, k2 D 1 or
k1 D 1, k2 D 0. The solution u to (2.2) satisfiesˇ̌

r
2u.z/

ˇ̌
& "�1=2 (2.35)

for some z 2 R2 n D, while ru is bounded.

Similar estimates hold for the solution to the homogeneous problem (2.3) with H.x/ D x1

(the optimality of the gradient estimate is also shown [3]).

2.2. Estimates for inclusions of general shape
The estimate (2.30) shows that if k1; k2 are finite, namely, 0 < C1 � k1,

k2 � C2 < 1 for some constants C1; C2, then ru is bounded regardless of ". This fact
is known to be true in a more general setting where there are several inclusions of arbitrary
shape [29] (see [10] for the case of circular inclusions).

If k1 D k2 D 1 (the perfectly conducting case), then we see from (2.30) thatˇ̌
ru.z/

ˇ̌
. "�1=2: (2.36)

This estimate and its optimality for the case of strictly convex inclusions (more generally, if
they are strictly convex near the points of the shortest distance) in two dimensions has been
proved in [34]. In three dimensions, the optimal estimate for ru has been obtained in [6] asˇ̌

ru.z/
ˇ̌

.
1

"j ln "j
: (2.37)

(See [26, 31] for the case of spherical inclusions.) In [21], a bow-tie structure, where two
vertices are points of the shortest distance, is considered. It is proved that two kinds of sin-
gularities appear, one due to the corners and the other due to the interaction between the two
inclusions.

If k1 D k2 D 0 (the insulating case), the same estimate for jruj as the perfectly
conducting case holds in two dimensions. This is due to the existence of harmonic conjugates
and does not extend to three dimensions. In fact, the three-dimensional case is completely
different. It is proved in [7] that if k1 D k2 D 0, the estimateˇ̌

ru.z/
ˇ̌

. "�s (2.38)

holds with s D 1=2 when inclusions are strictly convex inclusions in three dimensions. It
is then proved in [35] that the surprising estimate with s D

2�
p

2
2

holds on the shortest line
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segment between two spherical inclusions of the same radii. Recently in [30] the estimate with
s D 1=2 �  for some  > 0 was derived on strictly convex inclusions and for dimensions
d � 3. An upper bound of  for d � 4 has been derived in [33].

It is likely that in the three-dimensional insulating case the behavior of the gradient
depends heavily on the geometry of inclusions, and it is not clear at all what the best possible
s is in (2.38). It is not even clear if such a number exists; it may depend on the position x of
the estimate. Clarifying this is now an outstanding open problem to be solved.

For the inhomogeneous problem, estimates on conducting inclusions of circular and
bow-tie shapes in two dimensions and of spherical shape in three dimensions when the source
function is an emitter, namely, f D a � ız for some z outside inclusions, have been obtained
[22–24]. Here, ız denotes the Dirac-delta function. Such a problem is considered in relation
to the patched antenna where the field excited by an emitter of the dipole-type is enhanced
by closely located antenna (see, for example, [32]).

Theorems 2.6 and 2.7 for the case .k1 � 1/.k2 � 1/ < 0 are new and unexpected,
and their extension to inclusions of general shape and to higher dimensions is wide open.
Particular interest lies in the high contrast case, namely, k1 D 0 and k2 D 1; we do not know
whether the gradient is bounded and the higher order derivatives blow up, if so at what rate.
The case of spherical inclusions seems already quite challenging.

2.3. Asymptotic characterizations of the gradient blow-up
The problem (2.3) in the limit k1 ! 1 and k2 ! 1 can be rewritten as8̂̂<̂

:̂
�u D 0 in De;

u D �j .constant/ on @Dj ; j D 1; 2;

u.x/ � H.x/ D O
�
jxj

1�d
�

as jxj ! 1;

(2.39)

where De WD Rd n .D1 [ D2/. The problem (2.39) is not an exterior Dirichlet problem
since the constants �j are not prescribed. Rather, they are determined by the conditionsZ

@Dj

@ujC dS D 0; j D 1; 2: (2.40)

The constants �1 and �2 may or may not be the same depending on the given H (and the
configuration of inclusions). When they are different, a sharp gradient occurs if the distance
between D1 and D2 is short.

The singular behavior of ru where u is the solution to (2.39) can be characterized
by the singular function q D qD which is the solution to8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

�q D 0 in De;

q D constant on @Dj ; j D 1; 2;Z
@Dj

@qjCdS D �.�1/j ; j D 1; 2;

q.x/ D O
�
jxj

1�d
�

as jxj ! 1:

(2.41)

For general inclusions D1 and D2, there is a unique solution to (2.41) (see [1]).
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Using the singular function qD , the solution u to (2.39) can be decomposed as

u D ˛qD C r; (2.42)

where
˛ D

uj@D2
� uj@D1

qDj@D2
� qDj@D1

: (2.43)

Here the constant ˛ and functions qD; r depend on ". Observe that r attains constant values
on @D1 and @D2, and r j@D1

D r j@D2
, so that rr is bounded on De (see [16]). Thus the

term ˛rqD characterizes the blow-up of ru as " ! 0. In particular, since rqD is of order
"�1=2, ˛ represents the magnitude of the blow-up, and hence is called the stress concentration
factor.

If D1 D B1 and D2 D B2 are two disjoint disks, the solution q (we denote it by qB

in this case) can be found explicitly. Let Rj be the inversion with respect to @Bj (j D 1; 2),
and let ı1 and ı2 be the unique fixed points of the combined inversions R1 ı R2 and R2 ı R1,
respectively. Let

qB.x/ D
1

2�

�
ln jx � ı1j � ln jx � ı2j

�
: (2.44)

The function qB is the solution to (2.41). In particular, qB is constant on @Bj because @B1

and @B2 are circles of Apollonius of points ı1 and ı2. The function qB appears in the bipolar
coordinate system for @B1 and @B2 and was used for analysis of the field concentration for
the first time in [34]. Using the explicit form of the function qB , it is proved that

krqBkL1.R2n.B1[B2// � "�1=2: (2.45)

Results on asymptotic characterizations of the gradient blow-up in two dimensions
may be summarized as follows:

(i) If D1 D B1 and D2 D B2 are disks, then

˛ D
4�r1r2

r1 C r2

.z2 � z1/ � rH. z1Cz2

2
/

jz2 � z1j
C O.

p
"/ as " ! 0; (2.46)

where rj is the radius of Dj , j D 1; 2 [16].

(ii) Suppose that @Dj is C2; for some  2 .0; 1/. We further suppose that there are
unique points z1 2 @D1 and z2 2 @D2 such that jz1 � z2j D dist.D1; D2/ and
there is a common neighborhood U of z1 and z2 such that Dj \ U is strictly
convex for j D 1; 2. Let Bj be the disk osculating to Dj at zj (j D 1; 2). Then,

rqD D rqB

�
1 C O

�
"=2

��
C O.1/; (2.47)

and

˛ D

p
2�

p
�1 C �2

1
p

"

Z
@D1[@D2

H@�qDd�
�
1 C O

�
"=2

��
: (2.48)

In particular, ˛ is bounded regardless of " [1].
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(iii) Let D0
1 and D0

2 be the touching inclusions obtained as the limit of D1 and D2

as " ! 0 (D1 and D2 are still assumed to satisfy assumptions of (ii)), and let
u0 be the solution for the touching case, namely,8̂̂<̂

:̂
�u0 D 0 in De

0;

u0 D �0 on @De
0;

u0.x/ � H.x/ D O.jxj
�1/ as jxj ! 1;

(2.49)

where De
0 WD R2 n .D0

1 [ D0
2/ and �0 is a constant determined by the additional

condition Z
�

jr.u0 � H/j2dA < 1: (2.50)

Then,
˛ D

Z
@D0

1

@�u0 C O
�
"j log "j

�
(2.51)

as " ! 0 [15].

The decomposition formula (2.42) (together with (2.47) and (2.51)) has some impor-
tant consequences. Since rqD is bounded from below and above by "�1=2 (up to constant
multiples), the blow-up estimates for ru can be obtained from the formula. It can be used
to compute u numerically. Since the formula extracts the leading singular term in an explicit
way, it suffices to compute the residual term b for which only regular meshes are required.
This idea appeared and was exploited in [16] in the special case when Dj are disks.

The formula (2.42) has another very interesting implication. The quantity ru � n

represents the charge density on @D1 [ @D2 induced by the field �rH , and ru0 � n does
that on @D0

1 [ @D0
2 . Note that the charge densities on the separated inclusions have a singular

part ˛rqD � n and a regular part rr � n. It is proved in [15] that rr � n converges to ru0 � n

as " ! 0, that is, as the separated inclusions approach the touching ones. So the singular
part suddenly disappears when the two inclusions become touching. It is reminiscent of
the electrical spark occurring between two separated conductors which suddenly disappears
when the conductors are touching.

The decomposition formula of the kind (2.42) when D1 and D2 are three-dimen-
sional balls of the same radii has been derived in [17] (see [27] for the case of different radii).
In this case the singular function is given as an infinite superposition of point charges.

3. Lamé system

In this section we review results on the field concentration for the Lamé system of
linear elasticity. If Lamé parameters are finite so that inclusions are of low contrast with
the matrix, then the gradient of the solution is bounded regardless of the distance between
inclusions. This is the well-known result of Li–Nirenberg [28]. The only known results for
the high contrast case are when inclusions are hard and strictly convex. We review them here.
Hard inclusions for the elasticity correspond to the perfect conductors for the electricity and
are characterized by the boundary condition as explained blow.
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As before, let D1 and D2 be bounded domains in R2. Let .�;�/ be the pair of Lamé
constants of De D R2 n .D1 [ D2/ which satisfies the strong ellipticity conditions, � > 0

and � C � > 0 (we only consider the two-dimensional case). The Lamé operator is given by

L�;�u WD ��u C .� C �/rr � u; (3.1)

where u D .u1; u2/T (T for transpose) is a vector-valued function. Let

‰1.x/ D

"
1

0

#
; ‰2.x/ D

"
0

1

#
; ‰3.x/ D

"
�x2

x1

#
; (3.2)

which are the displacement fields of the rigid motions.
The problem for the Lamé system is given as follows:8̂̂̂̂

<̂̂
ˆ̂̂̂:

L�;�u D 0 in De;

u D

3X
j D1

cij ‰j on @Di ; i D 1; 2;

u.x/ � H.x/ D O.jxj
�1/ as jxj ! 1;

(3.3)

where H D .h1; h2/T is a given function satisfying L�;�H D 0 in R2. The boundary con-
ditions to be satisfied by the displacement u on @Dj (the second line in (3.3)) indicate that
D1 and D2 are hard inclusions. The constants cij there are not given but determined by the
condition similar to (2.40), that is,Z

@Di

‰j � �Œu�n ds D 0; i D 1; 2; j D 1; 2; 3: (3.4)

Here, �Œu� denotes the stress tensor corresponding to the displacement vector u, defined by

�Œu� WD �.r � u/ C 2�.bru/;

where bru D
1
2
.ru C ruT /.

An asymptotic characterization of the solution u to (3.3), which captures the sin-
gular behavior of ru, is obtained in [18]. It is given in terms of singular functions which
are constructed by the singular function qB for the conductivity problem given in (2.44). To
describe them, let z1; z2; B1; B2 be as before (right before (2.47)), namely z1 2 @D1 and
z2 2 @D2 are unique points such that jz1 � z2j D dist.D1; D2/, there is a common neigh-
borhood U of z1 and z2 such that Di \ U is strictly convex for i D 1; 2, and Bi is the disk
osculating to Di at zi (i D 1; 2). Let ı1 and ı2 be the points appearing in the definition
(2.44) of qB , namely the fixed points of the combined inversions. After a translation and a
rotation if necessary, we may assume that ı1 D .�a; 0/ and ı2 D .a; 0/. This number a is
actually satisfies a D 2ˇ, where ˇ is given in (2.10). If we denote the centers of Bi by .ci ; 0/

(i D 1; 2), then ci satisfies the relation

ci D .�1/i
q

r2
i C a2; i D 1; 2: (3.5)

Let q D qB and let

˛1 D
1

2

�
1

�
C

1

� C 2�

�
and ˛2 D

1

2

�
1

�
�

1

� C 2�

�
: (3.6)
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Singular functions Q1 and Q2 for the elasticity problem of this section are defined by

Q1 D ˛1

"
q

0

#
� ˛2x1rq (3.7)

and

Q2 D ˛1

"
0

q

#
C ˛2x1.rq/?; (3.8)

where .a; b/? D .�b; a/. Actually, these functions were found in [18] as linear combinations
of point-source functions in linear elasticity called nuclei of strain. It turns out that they can
be expressed in simple forms using the function q (see also [20]).

One can easily see that Qj are solutions to the Lamé system, namely

L�;�Qj D 0 in R2
n ¹ı1; ı2º: (3.9)

It is shown in [18] that Qj takes “almost” constant values ‰j on the osculating circles @Bi

(i D 1; 2). In fact, there are constants kj i and lj i such that for i D 1; 2,

Q1.x/ D k1i ‰1.x/ C l1i x; x 2 @Bi ; (3.10)

and
Q2.x/ D k2i ‰2.x/ C l2i x

?; x 2 @Bi : (3.11)

Actually, the constants kj i and lj i can be easily derived using the simple forms Qj . Using
the fact that q is constant on @Bi , one can show that

rq.x/ D �
a

2�ri

1

x1

.x1 � ci ; x2/; x 2 @Bi ; i D 1; 2:

It thus follows that for i D 1; 2,

k1i D ˛1qj@Bi
�

˛2aci

2�ri

; l1i D
˛2a

2�ri

; (3.12)

and
k2i D ˛1qj@Bi

C
˛2aci

2�ri

; l2i D �
˛2a

2�ri

(3.13)

Another function related with the boundary value ‰3 on @B1 and @B2 is constructed
in the same paper. But this function has nothing to do with the singular behavior of the
field, so we omit it here. It is worth mentioning that the singular functions Q1 and Q2 are
effectively utilized to prove the Flaherty–Keller formula [12] describing the effective property
of densely packed elastic composites [19].

Using the singular functions Q1 and Q2, it is proved that the solution u to (3.3)
admits the following decomposition:

u D C1Q1 C C2Q2 C b; (3.14)

where C1 and C2 are constants depending on ", but bounded independently of ", and b is a
function whose gradient is bounded on any bounded subset of De . The following estimate
is obtained as an immediate consequence of the decomposition formula:

krukL1.De/ . "�1=2: (3.15)
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This estimate is also proved in [8]. This estimate is optimal in the sense that the reverse
inequality holds in some cases. An extension to three dimensions has been achieved in [9].

We emphasize that the constants C1 and C2 appearing in formula (3.14) are not
explicit. Thus further investigation on how to determine them (or compute them numerically)
is desired.

4. Stokes system

In this section we review the result in [2], that is, an asymptotic characterization of
the stress concentration for the Stokes flow modeled by ��u D rp and r � u D 0. Here, �

represents the constant viscosity of the fluid. Even if the result is only for the two-dimensional
inclusions of circular shape, the result may serve as a milestone for further development.

Let D1 and D2 be disks and let De D R2 n D1 [ D2 as before. Let .U; P / is a
given background solution to the homogeneous Stokes system in R2, namely, ��U D rP

and r � U D 0 in R2. We consider the following problem of the Stokes system:8̂̂̂̂
<̂̂
ˆ̂̂̂:

��u D rp in De;

r � u D 0 in De;

u D

3X
j D1

dij ‰j on @Di ; i D 1; 2;

(4.1)

with the conditions

.u � U /.x/ D O
�
jxj

�1
�
; r.u � U /.x/ D O

�
jxj

�2
�
; .p � P /.x/ D O

�
jxj

�2
�

as jxj ! 1. Here, ‰j are the functions given in (3.2), and dij are constants to be determined
from the equilibrium conditionsZ

@Di

‰j � �Œu; p�n d� D 0; i D 1; 2; j D 1; 2; 3: (4.2)

Here, �Œu; p� is the stress field induced by the velocity-pressure pair .u; p/, namely

�Œu; p� D �pI C 2�bru; (4.3)

where I is the identity matrix.
As the distance between D1 and D2 tends to 0, the solution to (4.1) exhibits singular

behavior in its gradient which can be captured in terms of singular functions. The singular
functions for (4.1) form the solution .Vj ; pj / (j D 1; 2) to the following problem:8̂̂̂<̂

ˆ̂:
��Vj D rpj in R2 n ¹ı1; ı2º;

r � Vj D 0 in R2 n ¹ı1; ı2º;

Vj D
.�1/i

2
‰j @Bi ; i D 1; 2;

(4.4)

with the conditions

Vj .x/ D Cj C O
�
jxj

�1
�
; rVj .x/ D O

�
jxj

�2
�
; pj .x/ D O

�
jxj

�2
�

for some constant Cj as jxj ! 1. Here ıj is the point appearing in (2.44).
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In [2], singular functions .Vj ;pj / are constructed using the stream function formula-
tion for which the bipolar coordinate system is used. We assume ı1 D .�a;0/ and ı2 D .a;0/

as before. Then, the bipolar coordinates .�; �/ are defined by

� D 2�qD; � D arg.x � a; y/ � arg.x C a; y/: (4.5)

Let
e� D

r�

jr�j
; e� D

r�

jr� j
:

Suppose that D1 and D2 have the same radius, say R, and let

s D sinh�1.a=R/:

Define two constants A1 and B1 by

A1 WD
1

2s � tanh 2s
; B1 WD �

1

2 cosh 2s
A1: (4.6)

Then, the velocity V1 is given by V1 D v1� e� C v1� e� where

v1� D .A1� C B1 sinh 2�/
1 � cosh � cos �

cosh � � cos �
; (4.7)

v1� D sin �

�
A1 C 2B1 cosh 2� �

sinh �.A1� C B1 sinh 2�/

cosh � � cos �

�
; (4.8)

and the pressure p1 is given by

p1 D
2�

a

�
.A1 � 2B1/ cosh � cos � C B1 cosh 2� cos 2�

�
�

2�

a
.A1 � B1/: (4.9)

The formulas for .V2; p2/ are quite involved. But it is proved in [2] that

V2 D �A2

"
0

�

#
C A2x.r�/?

C V2o (4.10)

and
p2 D �

2�

a
A2 sinh � sin � C p2o; (4.11)

where .V2o; p2o/ is a solution to the Stokes system whose gradient is bounded regardless of
", and A2 is the constant defined by

A2 D �
1

2s C sinh 2s
: (4.12)

The function V2 is similar to the function Q2 for the Lamé system given in (3.8).
It is proved in the same paper that if the background velocity field U is given by

U.x1; x2/ D

"
˛ ˇ

 �˛

# "
x1

x2

# �
˛2

C .ˇ C /2
¤ 0

�
(4.13)

for some constants ˛, ˇ, and  , the background pressure P D 0, and if D1 and D2 are disks
of the same radius R, then the solution .u; p/ admits a decomposition of the following form:

.u; p/ D ˛
2

p
R

"3=2.V1; p1/ C
ˇ C 

2

p
R".V2; p2/ C .u0; p0/; (4.14)
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where .u0; p0/ is a solution to the Stokes problem whose stress tensor is bounded. Thus we
have

�Œu; p� D ˛
2

p
R

"3=2�ŒV1; p1� C
ˇ C 

2

p
R"�ŒV2; p2� C �Œu0; p0�: (4.15)

Since k�ŒV1; p1�kL1.De/ � "�2 and k�ŒV2; p2�kL1.De/ � "�1 as proved in [2], we
have

k�Œu; p�kL1.De/ � "�1=2; (4.16)

which says that the stress always blows up at the rate of "�1=2 provided that U is linear as
given in (4.13) and inclusions are circular. It is quite interesting and challenging to extend
this result to the noncircular case.

5. Conclusions

In this paper we review significant results on optimal estimates of the derivatives
and asymptotic characterizations of the solution in the presence of two inclusions when the
distance between them tends to zero. A special emphasis is laid on the case of high contrast.
We review results on the conductivity equation, the Lamé system, and the Stokes system.
Apart from these equations, the stress concentration factor for the p-Laplacian has been
derived in [13].

As mentioned in the text, many challenging problems remain unsolved. Among
them, the problem for the three-dimensional insulating case is outstanding. The case when
the conductivities k1 and k2 satisfy the condition .k1 � 1/.k2 � 1/ < 0 is also quite inter-
esting. It goes without saying that the studies of problems for the Lamé and Stokes systems
are in their early stage. Extensions to general shape and higher dimensions are quite chal-
lenging.
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1. Introduction

Day after day, the popularization and dissemination of the results obtained by the
researchers is not only considered more important, but it is compulsory in order to ful-
fill the conditions of many research grants. Many reasons have been given to justify why
science popularization and dissemination is crucial. In fact, nowadays, as it is said in [4],
“Dissemination and communication of research should be considered as an integral part
of any research project. Both help in increasing the visibility of research outputs, public
engagement in science and innovation, and confidence of society in research. Effective dis-
semination and communication are vital to ensure that the conducted research has a social,
political, or economical impact. They draw [the] attention of governments and stakeholders
to research results and conclusions, enhancing their visibility, comprehension, and imple-
mentation.” But this paper tries to be just a personal account of my experience in the field of
math popularization, and one thing is why universities, governments, and any other institu-
tion must encourage dissemination and popularization of science in general, or mathematics
in particular, and a very different thing is why any particular individual, myself in this occa-
sion, is doing this kind of tasks. Of course, in order to understand a particular case, we have
to keep in mind a more general scope, so, we shall briefly try to answer the typical questions
of why, what, where, and how, both from a general and from my very personal point of view.
In fact, those topics, to a greater or lesser extent, have been considered previously in the six
works on this subject (just six) in other ICM’s editions. In this way, Ian Stewart’s work [9]

considers where, and he analyzes the many possible types of media which can be used for
popularization. He focuses on magazines, newspapers, books, radio, and television, but the
internet is missing, so, eight years later, Etienne Ghys [1] focused precisely on the role of the
internet. A general perspective was discussed in a panel directed by Günter Ziegler [11] and
seeking the same goal is the purpose of the first work on this subject presented at ICM [8].
Finally, the other two articles are mainly concerned with one of those big questions, and so
[3] tries to give clues about “what” and [6] is focused on “who.”

In this work, I am going to try to answer some of those big questions, but mainly
treating the “why” one. So, firstly I will tell why I started to work on math popularization
and why I think it is important, adding a couple or reasons to those more commonly given
by general institutions. For instance, a committee of the British government on strategies
for education (see http://nationalstrategies.standards.dcsf.gov.uk/node/16073) addresses the
importance of mathematics in society:

“Mathematical thinking is important for all members of a modern society as
a habit of mind for its use in the workplace, business and finance, and for per-
sonal decision-making. Mathematics is fundamental to national prosperity in pro-
viding tools for understanding science, engineering, technology and economics.
It is essential in public decision-making and for participation in the knowledge
economy.”
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But those arguments apply only to institutions, not to individuals. Hardly anyone
works in any subject, even less in one as math popularization with a difficult rentabilization
from the point of view of the academic career, with those high targets in mind. But, something
interesting I have learned from my personal perspective is that we can add some additional
arguments to those usually given.

The structure of this paper is as follows. Firstly, in the next section, I will tell how and
why I started doing math popularization and will show my personal point of view of the other
general questions we have mentioned before. I think it is important to point out that one of
my main concerns is how to bring mathematics closer to women and girls, and the other way
around: how to bring women and girls closer to mathematics, and why I think this is impor-
tant. Section 3 reports an unexpected benefit of my work in math popularization and provides
an additional reason to those usually given by institutions, since we have found how that task
is important in order to obtain new results in basic science, even more important, in a very
multidisciplinary work. We will finish with some conclusions and plans for future works.

2. Who, what, where, when, why, and how (my personal view)

Several reasons have been given to encourage science popularization in general, and
mathematics in particular. The rapid development and extensive application of science and
technology since 1870 not only promoted a profound transformation in economy and society,
but also deeply impacted the mode of production, people’s lifestyle, and the basic relation-
ship between science and the public. But it is difficult for the general public to understand the
role of mathematics in that development, so almost all institutions try to impel the spreading
of a certain knowledge of that role in people’s lifestyle. But, I have to confess that I did not get
up one morning thinking “mm, I must spread my math knowledge because that is important
for society.” Not at all, In my case, after obtaining my PhD degree (with a thesis in Compu-
tational Geometry), I was lucky enough that a well-known publisher contacted me and so I,
and my advisor, embarked into transforming the thesis into a book for that publisher. In the
meantime, I continued with my research, trying to publish some papers and sending works to
conferences. This is to say, I did not care about math popularization at all; at least, as an actor.
So, what was the starting point of my career in this field? Well, I have to confess that after
the book two kids came, and with them a lot of questions (after a while, of course). Many of
those questions referred to mathematics, simply because their dad and mum are mathemati-
cians. I tried to answer those questions, and their dad encouraged me to write those answers
in a personal blog I kept at that time. Nobody read that blog before that entry, but, suddenly
those explanations became quite popular and I got thousands of clicks. In one way or the
other, that post was read by an illustrator (Raquel García Ulldemolins) and, simultaneously,
a very popular blog in that time asked me to collaborate with them. Someone suggested that
Raquel and I could make a tandem, so, I wrote the text and she painted some illustrations.
In this way, “Mati y sus mateaventuras” (Mati and her mathadventures) was born.

The structure of all the posts in that blog is similar: two brothers (Sal and Ven) are
arguing about any subject and then, they meet their friend Mati and she shows then that the
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Figure 1

One of the illustrations in the first post of “Mati y sus mateaventuras”.

subject is full of mathematical facts; and with them their dog (Gauss is its name) is always
given a humorous counterpoint (see Figures 1 and 2).

I have to say that this blog had quite an impact and obtained several awards. Initially,
we had in mind young people as the target of our stories, but we soon realized that a lot
of parents and, especially, teachers started to use the ideas we were showing there as an
inspiration or as a pedagogical material for their families or in their classrooms. So, right
after the blog, many visits to schools came and, after that, talks in many different places
(universities, secondary schools, science museums, even bars, and cafeterias), radio, books,
television, etc.

Thus, after all this activity, I can say that my main professional activity in the last
ten years has been math popularization. I think in all this process I have learned some things
about this discipline. Firstly, if we assume that math popularization is important, it is crucial
the support of the institution but, at the same time, we have to try to carry our message
to traditional media because a good portion of our possible and desirable target does not
access yet to the new (or not so new) places where an important part of the popularization
activity is done (around internet, mainly). On the other hand, the institutions must create
the adequate climate to foster the work of those who decide to dedicate a part of their time
to try to convince the society that mathematics is important (as all the other branches of
knowledge, of course). I am not an expert on that side of the equation, but three things can
be done: firstly, universities must have their own units in order to organize activities open
to the public, with a clear plan ahead and with measurable milestones; additionally, those
units must help the members of the university doing actions in this field by giving technical
support. Secondly (and in some way, related to point one), it is important to dedicate funds
to these tasks. On many occasions, the people doing math popularization do it at their own
expense. Lastly, the elements needed to value this work must be established. Not a long time
ago, we did math popularization without telling our departments we were doing such a task
after work, fearing that other members of those departments could think we were wasting
our time.

5705 The hug of the scutoid



But now, I think we can focus on the “what” side of popularization. Again, at least
from my point of view. Of course, it is impossible to talk about “what” without taking into
account the audience (“Who” is your public). It is not the same to give a talk in a bar
to adult people as in a school to six-year-old students or a twenty minute slot in a radio
show. Nevertheless, there exists a rule of the thumb for any activity: we have to keep in
mind that, with very few exceptions, our audience is not very fond of mathematics and,
in many cases, they think that the discipline is useful, but they cannot give examples of
its usefulness other than elementary arithmetic calculations. So, our central thread must be
an application of mathematics, if possible a very unexpected one. Or, at least, to show a
puzzle challenging enough to engage and inspire your audience. Then, with the excuse of
solving the application we have presented (or the puzzle), we can (we must) the beautiness
of the involved mathematics. Of course, the application does not need to be a crucial one
for humanity. For instance, in one of the posts, I wrote about one of the few mathematical
articles that appeared in Nature [5]. In that work, the author tries to find, under different
criteria, the best way to lace the shoes. Or in another one, I reproduce the simple compu-
tations needed to solve a very important problem: how to leave the toilet seat after using it
(males mainly). And an obvious answer is “clean,” of course, following this, more academic
work: https://www.scq.ubc.ca/a-game-theoretic-approach-to-the-toilet-seat-problem/. Well,
probably those two examples are, indeed, crucial for humanity.

In any case, it is clear, I think, that “What,” “Who,” and “How” are closely inter-
related (and even “Where”), and so every time we try to communicate something about
mathematics, we have to keep in mind those three factors and to adapt our message under
those conditions.

A side note about “How.” In my case, I always use the same style, with the Raquel
García Ulldemolins’s illustrations (with the exception of the radio, of course) and a certain
naive touch.

2.1. Why mathematics?
Briefly, I would like to point out three reasons (among hundreds) to try to answer

the question “Why is it important to make math popular?”. At least, those are the factors I
have in mind when preparing any action on this subject, especially giving a talk or arranging
any other activity in schools.

Firstly, to fight against some myths (“mathematics is only for few people (and they
are nerds)”, “common people only need to know elementary arithmetic operations,” “I am
not fit for mathematics”, etc.). The main problem here is that in an elementary school (and
even in a secondary school) in many countries, mathematics is taught just as a tedious rep-
etition of some computations without putting them in context. So, it is important here to
show how mathematics is present in many facts of everyday life, and why having a certain
knowledge and understanding of mathematics can help when we make some decisions.

Secondly, for the students, the analytic mind that we can train with the proper prob-
lems in mathematics can help in almost all the other subjects. And finally, I have noticed the
positive value of a talk in those gifted students (and in many cases, they do not know about
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Figure 2

After some time, the characters in “Mati y sus mateaventuras” were changing a little bit, but preserving the same
flavor.

their capacities). There are some studies in this area and, for example, in [10], the authors
show, as they pointed out in the abstract, that within the same society, adolescent students
who specifically lack mathematical education exhibited reduced brain inhibition levels in a
key brain area involved in reasoning and cognitive learning. Importantly, these brain inhi-
bition levels predicted mathematical attainment 19 months later, suggesting they play a role
in neuroplasticity. And their study provides a biological understanding of the impact of the
lack of mathematical education on the developing brain and the mutual interplay between
biology and education. We will see something about the mutual interplay between biology
and mathematics later.

2.2. Where are the women?
The second half of the last century has seen an increase of women with mathemati-

cal degrees, until reaching the 50% level in many countries and even more than that, but we
have seen that this process has been reversed in this century. As Figure 3 shows, the turning
point was around the beginning of this century and it coincides (causality or not, we as math-
ematicians know pretty well that correlation does not imply causality) with the moment when
data, information, algorithms, and many other subjects related with mathematics entered our
common life with a high demand for mathematicians in many companies. In other words,
this happened when teaching became not the first option after obtaining the degree.
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Figure 3

One can observe the effect of “scisors” in the evolution of the male–female ratio in math degrees in Spain. The
line representing women grows until the year 2000, and then it decreases.

I think it is worthy to copy what is said1 about this problem and its possible solutions:

“Male scientists outnumber females two to one, [...]. According to the
National Girls Collaborative Project, ‘Women make up half of the total U. S.
college-educated workforce, but only 29% of the science and engineering work-
force.’

Girls are interested in math and science when they’re young, but they’re
often diverted before high school and eventually declare their college major in
another field. An American Association of University Women study of 1,226
female science professionals found that girls actually demonstrate interest in
science at a young age, but are discouraged due to antagonistic, critical behav-
ior in many math and science departments. Nearly 40 percent of respondents
indicated experiencing such behavior.

Maybe the problem isn’t gender-based but in the way children’s skills
are fostered. Math Professor Mary Beth Ruskai argues that both boys and girls
need more interactions with scientists to become interested in science. Schools
should also identify and encourage students’ talents, regardless of academic
field. Educational reform efforts often yield increased retention rates for both
males and females, simultaneously combating two problems.

1 https://www.learningliftoff.com/encourage-girls-math-and-science-courses-and-careers/.
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Here are a few ways teachers and parents can keep that spark of interest
in science going for young girls and encourage more women scientist in the
future:

1. Create Projects Based on Interest
Instead of letting girls’ math and science interests lie dormant or go

ignored, we should present them with science projects based on their interest.
Sometimes, all it takes is one successful project to give a girl the encouragement
she needs to find her passion in math or science. Even some toys for young
children can aid in kindling an interest in science.

2. Introduce Female Math and Science Role Models
The U. S. Department of Commerce reports that women hold only 24

percent of STEM occupations, and those with a STEM (Science, Technology,
Engineering, and Math) degree typically work in education or healthcare. While
the numbers seem bleak, it presents an opportunity for change. Females working
in or holding degrees in math or science should serve as role models for girls
seeking a career in their field. Introducing a positive role model of the same
gender to young girls can keep them interested and have a lifelong impact on
their career paths.

3. Emphasize the Positives
Parents and educators should encourage girls to defy the stereotypes

that math and science are only for boys. Like any subject, if girls are struggling
in math and science, teachers should help them work through their struggles.
This can mean playing an active role in helping them better understand these
subjects. Just because a female student finds the subjects difficult is not a reason
to move away from the field entirely. Working through challenges is part of the
learning experience. Confidence plays a large role in a girl’s success in science
and math, and it’s important to help her maintain a high level of confidence.

4. Explore Career Options Early
Often, kids in elementary and high school are unaware of the myriad

career options that will be available to them as adults. Many of these careers
will require a broader background in subjects they may not have considered or
cultivated an interest in. But if they are able to explore career interests early, they
can better prepare for them by taking classes they might have avoided otherwise.
A student may want to be a doctor or a veterinarian, for example, but not be aware
of the important role that science will take for such careers. And some job fields,
such as computer coding and programming, encourage students to begin training
in high school and even elementary school to be truly competitive. If career
education courses are not offered in your child’s school, consider an alternative
school choice such as an online career academy. Destinations Career Academies
and Programs combine traditional high school academics with career education.

In short, science and math are not gender-specific fields, yet girls seem
to tune out natural tendencies toward these subjects. We can change their atti-
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tudes toward math and science by offering them encouragement, role models,
and opportunities to learn, tapping into their innate scientific and math skills.”

I think that we, from an external point of view, can relate to those four points, and
it is a good guide to follow.

3. And, suddenly, flies

In this section, I am going to try to show an additional benefit of math populariza-
tion, based on a personal experience. This benefit is not for the general public, for society,
but mainly for other researchers. I will try to show how the popularization of mathemat-
ics can help in some interdisciplinary fields, building bridges between other sciences and
mathematics, and fostering new and important results.

3.1. Voronoi diagram and 2-dimensional epithelial tissues
As “The New Yorker” says in an article,2 “One of the many mysteries of living

cells is how they manage to blossom into coherent many-celled units. A person or a platypus
begins as a single cell, which divides into more cells, which also divide and subdivide. Some
of these, the epithelial cells, are destined to become tissues and organs. The cells collect into
layers, which bend and fold into greater-than sums: ovaries, kidneys, a heart. In part, it’s a
packing challenge, a geometry problem; as the layers twist and curve, the individual cells
change shape in accordance with the whole, and they do so as efficiently as possible.”

So, the research group of Luisma Escudero was focused on the problem of describ-
ing the shape of the epithelial cells. In fact, they had made some progress in the 2-dimensional
case (when the cells are very flat). And their result was based on the Voronoi diagram.
According to Wikipedia, “A Voronoi diagram is a partition of a plane into regions close
to each of a given set of objects. In the simplest case, these objects are just finitely many
points in the plane (called seeds, sites, or generators). For each seed, there is a correspond-
ing region, called a Voronoi cell, consisting of all points of the plane closer to that seed
than to any other.” In this way, Luisma Escudero and his group modeled the shape of those
2-dimensional cells using the following method.

Firstly, they generate a set of random points in a plane region, then they compute
the Voronoi diagram of that set of points, this can be considered the iteration 0. For next
iterations, they compute the centroid of each Voronoi region obtained in the previous iteration
and compute, again, the Voronoi diagram of that set of centroids. In this way, they conclude
that a good model for this kind of tissues is obtained after five iterations. This means that
by comparing some parameters (number cells with a given number of neighbors, quantity
of some structures, etc.) of a sample with their model tissue, they can check if the sample
corresponds to a healthy individual or if it presents some problem [7] (see Figure 4).

2 https://www.newyorker.com/science/lab-notes/we-are-all-scutoids-a-brand-new-shape-
explained.
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Figure 4

A synopsis of the results obtained in [7].

But, as animals develop, tissue bending contributes to shaping the organs into com-
plex three-dimensional structures. However, the architecture and packing of curved epithelia
remains largely unknown, and it was known that the results for the 2-dimensional model
are not valid anymore. Thus, the transition from planar epithelial sheets to cylindrical, ellip-
soidal, or spherical forms involves a fundamental reorganization of the cells.

It must be known that an epithelial tissue must be thought as a sheet and all the
cells in that tissue appear on both sides of the tissue (called the apical and basal surfaces).
Thus, in all the books of Cellular Biology, those cells are represented by prisms or truncated
pyramids. But a close examination under microscope shows that the neighboring cells are
not the same on the apical and basal surfaces. So, another model for those cells was needed.

3.2. Scutoids and 3-dimensional epithelial tissues
Of course, the first idea is to consider some variation of Voronoi diagrams, but the

problem is that the model must predict what really happens in epithelial tissues, and Escud-
ero’s group was stuck. Then, he read a couple of articles I had written for one of the most
important platform for science popularization in Spain (Naukas) about Voronoi Diagrams
(https://naukas.com/2011/12/23/cada-uno-en-su-region-y-voronoi-en-la-de-todos/ and
https://naukas.com/2012/01/28/esta-voronoi-que-se-ponga/) and he decided to contact me.
That was the beginning of a beautiful (and fruitful) collaboration.

After some failures, we finally modeled the scutoids, following the following steps:
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Regarding the space, we start with a given surface S , then for each point X.u:v/ 2 S ,
we consider the normal vector to S at X.u; v/, N.u; v/. Thus, for each � 2 Œ0; 1�, it is
possible to define a new surface S� parallel to S in such a way that any point of S� is
X�.u; v/ D X.u; v/ C �N.u; v/ (a point in one of the surfaces has an equivalent point in
each one of the other parallel surfaces). The metric in each surface previously defined is just
the distance of the shortest geodesic on that surface joining two points. As it is well known,
in the case of the cylinder, the geodesics are the helices in the cylinder.

We define every seed starting in a point on the apical surface. That point defines
a segment between the basal and apical surfaces by means of its normal (given the point
X.u; v/, the segment is X.u; v/ C �N.u; v/, � 2 Œ0; 1�). The intersection of these line seg-
ments with a given surface determines a seed. Thus, in order to generate all the seeds, in a
first step we had chosen n points on the apical surface, then the n segments that were gener-
ated by them, and, finally, the intersection of those segments with every surface S� defined
the seeds for that surface.

The next step is to compute the Voronoi diagrams of the seeds obtained in each
one of the parallel surfaces. We linked the Voronoi regions corresponding to the seeds on
the same segment, obtaining a three-dimensional figure, which we called a scutoid (see
Figure 5).

3.3. Almost famous
After the publication of our results in Nature Communications, we made an impor-

tant work in the dissemination of its results and scutoids appeared everywhere. Of course,
in the most important media such as “New York Times,” “The New Yorker,” “The Times,”
as well as in the news of most of the TV companies (BBC, CBS, Fox, etc.), and in some
shows as “The Late Show with Stephen Colbert.” This led artists, designers, architects, and
engineers to produce some works in their fields based on the shape and properties of the
scutoids. In order to achieve this success, we sent press releases, called press conferences,
and, in general, we talked about scutoids everywhere and everytime.

4. The show must go on. Conclusions and future work

Although the beginning of my work in math popularization started in a unplanned
way, it has reached such a volume that, I think, I must concentrate on the things I believe are
more productive: firstly, encourage girls to study mathematics or any other science, or obtain
a technical degree, and secondly, try to spread the usefulness of mathematics to a very broad
public by using some media, such as the radio, that are not so popular in math popularization
(it is quite a challenge to describe the shape of a scutoid if we have no images).

But, just as at the beginning, I really do not know what I am going to do in five years
from now. Let us see.
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Figure 5

A graphical synopsis of the results obtained in [2].
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Abstract

Mathematicians and mathematics educators are united by their deep care for mathematics.
This said, they are sometimes like parents who have differing ideas about what is good
for the child. To improve communication between these two communities, I am telling
the story of my own transformation from mathematics to mathematics education. In this
account, I explain why I was compelled to revise my vision of mathematics and how I
eventually arrived at the “commognitive” conceptualization, according to which math-
ematics is an activity of telling stories that produce their own objects. This change of
vision brought many insights about learning mathematics and about factors that may slow
students’ progress. I illustrate some of the gains that come with commognitive conceptu-
alization by showing how this approach allowed my colleagues and me to come to grips
with some learning-related phenomena that have long been puzzling mathematicians and
educators.
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Let me begin with introducing myself: I am a mathematics education researcher,
particularly interested in how people learn mathematics. If I am here, at the convention
of mathematicians, it is because our two communities, that of mathematicians and that of
mathematics educators, have something centrally important in common: for all of us, ‘mathe-
matics’ is the keyword around which our professional activities evolve. True, mathematicians
spend their time within mathematical universe investigating its objects, whereas my col-
leagues and I sit in school and university classrooms observing those who try to enter that
universe. Yet, understanding mathematics is the basic requirement for both of us. Our two
communities are also united in their deep care for mathematics. This said, mathematicians
and mathematics educators are sometimes like parents who have differing ideas about what
is good for the child. The main sources of our occasional disagreements, it seems, are our dis-
similar perspectives. Mathematicians never take their eyes off mathematical objects, whereas
educational researchers constantly vacillate between this abstract universe and the outside
world, populated by human beings. When invited to this conference, I felt this may be a
good occasion to take a closer look at similarities and differences of these two outlooks.
Getting acquainted with your interlocutor’s thinking, even if it is unlikely to turn into your
own, is the necessary first step in bridging potential communicational gaps. The best way to
do this, I thought, would be by reflecting on what changed in my and my colleagues’ journey
from mathematics to mathematics education.

For me, this trip began years ago. As I traveled, the view before my eyes evolved all
the time, changing from time to time almost beyond recognition. Today, I consider myself
as a mathematical insider-turned-outsider, or a participant-turned-observer. I believe that my
first-hand experiences as a member of both research communities makes me well equipped
for the job of explaining and justifying my current perspective. Retracing the events that
transformed me and my colleagues from people-who-think-like-mathematicians into those-
who-think-like-educators may do the job best. This is, indeed, what I intend to do in this
paper. Mine will be a story of an evolving vision of mathematics and of the deepening under-
standing of how children and young people turn into mathematical thinkers – or fail to do so.
As my narrative unfolds, please keep in mind that if I occasionally speak in the first person
singular, it is not because I consider my own history as in any way special or unique. On the
contrary, it is because of its being rather common that I find it worth telling. My perspective
may not be the only one with some traction within the community of mathematics educa-
tion, but it can be considered as generic, in that it reflects concerns and sensitivities common
to most of those who teach mathematics. The resulting story, therefore, which is not unlike
those many of my colleagues could tell, should not be read as an autobiographical exercise
but rather as a general reflection on how answers to the questions of what mathematics is
and how people learn may change with the change of the storyteller’s perspective. As you
go through the following pages, please remember that whatever I found in this journey was
generated in a collective effort of numerous people.1

1 I cannot list here the countless encounters with colleagues and texts that contributed to the
ideas to be presented in this paper, but I wish to mention the Haifa Discourse Group, whose
role in this project has been central.
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1. Conundrums that triggered the transformation

The proper way to begin this “travelogue” is to mention those special events that
got me started on the journey and then kept me going. I will present here just three out of
the many formative occurrences that raised questions and made me think.

1.1. Why doesn’t logic suffice to understand mathematics?
I was still in the middle school when, as I was reading Henri Poincaré’s2 seminal

book Science and method, I came across a paragraph that gave me pause:

One ... fact must astonish us, or rather would astonish us if we were not too much
accustomed to it: How does it happen that there are people who do not understand
mathematics? If the science invokes only the rules of logic, those accepted by all
well-formed minds, how does it happen that there are so many people who are
entirely impervious to it? [14, p. 47]

Poincare’s words resonated with what I had been wondering about myself. My classmates
seemed split into two groups: some students could clearly grasp mathematical ideas in no
time, at a glance; others complained incessantly about their inability to make sense of what
was going on in the classroom. The higher the grade, the sharper the split appeared. Those
from the first camp, the fluent speakers of the language of mathematical symbols, wondered
with Poincaré about the other students’ imperviousness to the logic of this language; those
from the group of nonspeakers could not understand how this language could ever be mas-
tered.

I agreed with Poincaré about the puzzling nature of this difference and, like him,
wondered how this split could be explained. Saying that mathematics, unlike other school
subjects, is uniformly abstract did not satisfy me as an explanation. The word “abstract” has
been offered as if it was clear what it meant, but was it? For most people, the term signals the
intangibility of the mathematical universe, its being inaccessible to senses. But saying what
abstract thing is not hardly solves Poincare’s puzzle. Indeed, the question remains of why
and how some people manage to get into this abstract universe despite of its intangibility;
and what it is that keeps the rest of humanity behind its closed doors.

1.2. What is so complex about complex numbers?
The formative event to be presented now sharpened this latter question. It took place

when I was already a graduate student in mathematics and served as a teaching assistant to
a well-known mathematician specializing in mathematical logic. One day, I was briefing the
professor about my recent classroom experiences: “The students could recite the definition
of complex numbers, but they constantly complained about ‘not understanding anything’

2 The French thinker Henri Poincaré is known mainly as a mathematician, but he was a
polymath who made important contributions also to theoretical physics, engineering, and
philosophy of science.
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and not being able to cope with the tasks I gave them”. And, indeed, these students’ minds
seemed to be going blank even in the face of problems that would have yielded to just properly
applied definition. The professor seemed puzzled. And then, suddenly, he said: “Well, this
may be merely a matter of the teaching method. If I was their tutor, I would just discuss the
definition and show that it is free from contradiction and consistent with the axioms of a
number field. This, I am sure, would have opened their eyes.”

I knew intuitively that this simple solution had little chance to work. Just as verbal
instructions for juggling would not suffice to make a person able to juggle balls, clubs, and
rings, repeating the definition of operations on complex numbers would also be insufficient to
make the learners able to juggle a complex number. One mathematician whom I interviewed
years ago told me that he could act with only those mathematical objects that appeared to him
as having a clear “physiognomy” [17]. This metaphor brought back the issue of abstraction,
but this time, it made me zero-in on the idea of a mathematical object: whereas it was clear
how one develops an image of a person, how does one accord a distinct physiognomy to a
new mathematical object, such as a complex number?

All this seemed to constitute at least a partial response to Poincare’s question: Only
those seem to be doing well in mathematics who have their ways to work out for themselves
a good sense of mathematical objects. It is the ability to “see” these objects as they are being
juggled by the teacher that allows one to make sense of the teacher’s movements; and this is
the inability to imagine them that turns these movements into incomprehensible. This was
an important insight, and yet, it left me with new questions. Above all, I was now wondering
about what mathematical object is, where it comes from, and how it can be turned into “one’s
own.”

1.3. Why cannot children see as the same what grownups cannot see as
different?
I was already a beginning researcher in mathematics education when an encounter

with two four-year old girls put me and my colleagues on the path toward an all-new vision of
mathematical universe. The search began when one of my Masters’ student got interested in
young children’s numerical thinking, which she decided to investigate by watching her four-
year old daughter Roni and Roni’s 7-month older friend, Einat, performing some numerical
comparisons. The girls were presented with pairs of boxes with marbles and then asked
“In which box are there more marbles?” It soon became clear that the children could count
properly. With a little prodding, they also managed, in most cases, to produce proper answers.
And yet, even their successful solutions were accompanied by actions and utterances that we
found strange and difficult to account for [21]. The greatest surprise came when the girls
faced the pair of boxes with two marbles each. Upon seeing the two pairs of little balls, Roni
smiled and said: “In none.” Visibly pleased with the girl’s answer, the interviewer closed the
conversation: “There are more marbles in none of the boxes? Right.” And yet, Roni’s father,
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who watched the scene from behind the camera, was not yet fully satisfied. He asked for
explanation, and the following conversation between him and his daughter took place:

1. Father: Why? Why do you say this?
2. Roni: Because there is [are] 2 in one, and in [this] one there is [are]

another 2.
3. Father: So, this is why there is more in none of them? So, in both of

them there is: : : what?
4. Roni: Two.
5. Father: And this is: : : more or less?
6. Roni: Less
7. Father: Less than what?
8. Roni: Than: : : than: : : than big numbers.
9. Father: Than big numbers? That means: : : If there is [are] 2 in one

box and 2 also in the other, then what is there in the two boxes?
10. Roni: 4.
11. Father: Aha. Together, there is [are] 4?
12. Roni: Yes.
13. Father: And in each box there is the sa: : :

14. Roni: Because it is between: : :

15. Father: I see. And there is the same [thing] in each box?
16. Roni: : : : ..
17. Father: How many in each box?
18. Roni: 2.
19. Father: Oh well: : :

At the first sight, what happened here, while quite amusing, could have been dismissed as too
commonplace to merit a serious investigation: The little girl was unable to guess her father’s
intentions and did her best to satisfy his expectations by offering any guess she could muster.
Anybody who has ever taught mathematics seems familiar with situations such as this. Yet,
we were wondering about the futility of the father’s multiple attempts to make his daughter
use the expression “the same” (as, for instance, in “There is the same number of marbles in
these two boxes”3). Why were they ineffective, in spite of their versatility? Why did even
his “there is the sa: : : ” (see turn 13 in the transcript), which left only one syllable to Roni’s
discretion,4 fail to do the trick? And finally, why did his explicit formulation of the desired

3 The conversation was in Hebrew, where “the same” translates into an idiomatic expression
“oto davar,” verbally equivalent to “the same thing” (“the same” cannot be stated without
being followed by “thing” or any other noun, such as “number”). Note, therefore, that to
fulfill the father’s expectation, Roni could use the generic “the same thing” rather than the
more specific “the same number.”

4 Father said “oto da: : : ”, which had to be completed to “oto davar.” This single syllable
would have also completed Roni’s answer because it would have produced a more or less
full sentence.
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answer (15) leave the girl visibly bewildered (16)? Our own bafflement was not any lesser:
Why was this simple expression inaccessible to this obviously intelligent girl in this task,
even though, as had already been repeatedly demonstrated, she was perfectly able to use it
in other contexts?

After much deliberation, we concluded that our 4-year old participants could not
think about any two objects to which the words “the same” could be applied. Evidently,
Roni’s father wanted this expression to be referred to numbers, or amounts of marbles in the
two boxes. But these two italicized nouns, both of them used by the adult as signifiers of
mathematical objects, were nothing of the kind in the eyes of the children. This event sharp-
ened our interest in the nature and origins of mathematical objects. Whereas the previous
story was about learners who have not yet developed a sense of a new mathematical object,
this one was about students who did not even suspect the existence of such an object. The
question now was how to bring this object to their awareness. If the query regarded concrete
material objects, the response would have been clear. Objects such as those investigated in
physics, biology, or astronomy are pretty straightforward and can be experienced by a person
through his/her senses, either directly or indirectly, even before her being able to say anything
about them. But the case of mathematical objects is quite different. Numbers, functions, and
derivatives, unlike stones, stars, and living creatures, do not wait for the learner out there
to be first detected, and investigated only later. So, how to even start talking about such an
object?

Let me summarize. This last event, as well as the previous two, although brief and
seemingly unremarkable, can be called formative: all three of them made us realize that
to teach mathematics we can no longer ignore the question of the nature and origins of
mathematical objects. We now needed to confront foundational queries head-on. After the
iterative process of proposing tentative answers, which we would then critically examine, put
to empirical tests and reject or modify, a far-reaching change in our vision of things eventu-
ally occurred. In the rest of this paper, I tell the story of transformations that led us to our
current conceptualization. For reasons to be explained latter, we call this framework discur-
sive or commognitive. The commognitive way of thinking has been working well for us for
some time now. It made us able to formulate an answer to Poincare’s query, to explain what
the learners needed in order to reconcile themselves with complex numbers, and to account
for the fact that four-year old children do not consider the expression “the same” as appli-
cable within the context of numerical comparisons. These answers, while probably not the
only possible, helped us make sense of what we saw and gave rise to pedagogical decisions
that subsequently proved themselves in practice. We thus hold to the commognitive vision,
at least for now, fully aware that it may be replaced one day with another, potentially more
powerful way of thinking about mathematics, its objects, and its learning.
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2. What changed on the way from mathematics to

mathematics education

In this part, I explain what commognition is, while also telling the story of how this
framework came into being. In the beginning, our thinking about mathematics was shaped
exclusively by our own first-hand mathematical experience. It then evolved in a series of
decisive steps, the first of which was the recognition of the very need to engage with the
onto-epistemology of mathematics. Next came a series of small conceptual earthquakes,
some of which have been presented above. One after another, these events effectively shook
and transformed our foundational approach. I will now present each of these transformations
in some detail.

2.1. Recognition of the need to elucidate onto-epistemological foundations
Although deliberations on the ontology and epistemology of mathematics have a

long history, meta-mathematical questions usually fail to attract those who actually investi-
gate numbers, functions, and abstract algebraic or geometric constructs. Preoccupied with the
study of mathematical universe, they have little patience for conundrums labeled as “philo-
sophical.” This unwillingness to engage with foundational issues may be accounted for in a
couple of ways.

In some cases, the lack of openness toward a serious conversation on foundational
issues comes in a form of a quiet certainty about the mind-independent nature of mathemat-
ics. According to thinkers known as Platonists, mathematical objects, although inaccessible
to our senses, are as much a part of the mind-independent reality as are stars, trees, and com-
puters. Questioning the origins of mathematical universe would thus be an idle game. Since
the times of the eponymous Plato, this view has been voiced over and over again, and most
recently was reiterated by some of the most distinguished mathematicians of our times. Thus,
for instance, the logician Kurt Gödel stated that “Mathematics describes a non-sensual real-
ity, which exists independently both of the acts and [of] the dispositions of the human mind”
[7, p. 311]. René Thom, the founder of catastrophe theory, sounded even more categorical
when he stated that “mathematicians should have courage of their most profound convic-
tions and thus affirm that mathematical forms indeed have an existence that is independent
of the mind considering them” [22, p. 695].

Another reason that has been keeping mathematicians from engaging in serious
foundational debates has been the view, shared by many, that onto-epistemological ques-
tions are irrevocably ill-defined and thus cannot lead to verifiable, useful answers. To save
yourself embarrassment, it is better to remain silent on these issues, and thus agnosticism
may be the safest option. This, indeed, is the spirit of Bertrand Russell’s famous description
of mathematics “as a subject in which we never know what we are talking about, nor whether
what we are saying is true” [16, p. 84].

But this widespread disdain for foundational issues may also be explained in another
way. If mathematicians may allow themselves the luxury of ignoring onto-epistemological
infrastructure of their research, it is because no foundational resolutions seem necessary to
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investigate mathematical reality. Reuben Hersh and Philip Davis, two mathematicians turned
philosophers of mathematics, speak explicitly about mathematicians’ unwillingness to make
a serious ontological commitment while stating, tongue in cheek, that “the typical working
mathematician is a Platonist on weekdays and a formalist5 on Sundays” [2, p. 321]. In short,
theories on the nature and origins of mathematical universe seem as irrelevant to those who
juggle mathematical objects as the theory of big-bang is to those who juggle balls, rings and
clubs.

Well, some may doubt if it is really so. After all, the disbelief with which new math-
ematical objects have usually been greeted throughout history could usually be traced to
uncertainties about the ontological status, and thus legitimacy, of these entities. On the face
of it, this kind of problem should have prodded foundational reflections. Historical facts,
however, undermine this claim. As explained by the British logician and historian of mathe-
matics, Philip Jourdain, whenever “logically-minded men” objected to such “absurd” notions
as a negative number and imaginary numbers, the struggle for the recognition was eventually
settled not by rational argument but simply by mathematicians’ stubborn application of the
problematic entity and their eventual “getting used” to its presence. To put it in Jourdain’s
own words, “mathematicians simply ignored [the objectors] and said ‘Go on; faith will come
to you’ : : : So [the new objects] were used with faith that : : : was justified much later” [10,

pp. 29–30].
These days, the mathematicians’ indifference toward the question of the origins and

nature of mathematical objects spreads to education, and the foundational issues remain an
elephant also in mathematics classroom. As long as I was involved in mathematical research
myself, I was accepting this situation uncritically. My position changed, however, when I
started introducing others to the world of mathematics. As explained above, I soon realized
that without coming to grips with the sticky foundational questions I would not be able to
address properly any of the conundrums I encountered while teaching. Taking exception with
the agnostic attitude was the necessary first step on my way toward the kind of understandings
that are indispensable for well-reasoned pedagogical decisions. Upon this realization, my
colleagues and I began talking about things that, so far, went without saying. In the rest of
this section, I present the insights gradually gained on these occasions, especially those of
them that withstood empirical tests and have been deemed helpful enough to be retained as
a part of our theory of learning mathematics.

2.2. Mathematical object as a mode de parler rather than a part of
mind-independent reality
The story of our journey toward the commognitive conceptualization of mathemat-

ics will now be told as a series of three transformations that resulted from our foundational

5 Formalism, yet another school in the philosophy of mathematics, has been embraced,
among others, by Gottlob Frege and David Hilbert. According to formalists, mathematics
is, basically, a symbolic game – the art of manipulating “empty” symbols according to
well-defined rules.
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deliberations. The first of these changes was due to the doubt about the signifier–signified
dichotomy. We decided that rather than treating mathematical objects as self-sustained enti-
ties, ontologically different from the discursive constructs used to “describe” them, it might
be more useful to see them as mere fictitious interpretation of certain communicational
forms.

What are mathematical objects? The Platonic stance implies that mathematical objects
are entities in their own right, not to be confused with mathematical words, symbols, dia-
grams, and graphs, all of which play an only the auxiliary role of these objects’ “representa-
tions” – the mere communicational means. Or, as stated by the French mathematician Alain
Connes, “Conceptual tools [signs, representations] aren’t to be confused with the mathemat-
ical reality itself” [1, p. 182].

You do not need to be the declared Platonist, however, to live in the world of this
signifier–signified dichotomy. The idea that words and symbols are mere avatars of the “real
things” is entrenched in the way we speak. For instance, we make statements such as

The symbols 13, XIII, and 5 C 6 represent the same number.

The expression x2 and the basic parabola represent the same function.

The word represent appearing in both these sentences implies that there are two categories of
things, one of which comprises the entities that constitute the proper object of mathematical
conversation (in this case, these are the number called “thirteen” and the function called
“quadratic”, respectively), and the other one composed of signifiers – the communicational
counterparts of the former (in this case, these are the symbols 13, XIII, 5 C 6 and x2 and the
words “number” or “function”6). The message about the independent existence of numbers
or functions is implied by the fact that, as indicated by these last two utterances, a single
mathematical object can have many sharply differing representations.

Being inscribed in the expressions we use, and thus in the ways we think, the
signifier–signified dualism is difficult to argue with. It is unlikely to become an explicit topic
of conversation in the first place. If the issue ever caught my attention, it was because of ques-
tions I began asking myself when, as a novice teacher, I was charged with the task of ushering
other people to the world of mathematics. Before I could start introducing my students to the
concept of negative number, for instance, I had to resolve the problem: How to talk with the
class about entities that cannot be shown, while also claiming that these entities constitute
products of operations that the young learners considered so far as “impossible”? The text-
books I was using suggested extending the number line to the left of the zero with the help of
a symmetric half-line, whose integer points would now be given the names �1, �2, �3,: : :

I was skeptical. Will the students believe me when I try to convince them that calling a point
on a line with a new name suffices to conjure an all-new mathematical object? Will I be per-
suasive while claiming that by this simple act of baptism I had brought into being something

6 Here, I the quotation marks in the expressions “number” and “function” signal that I am
speaking about the words, not about what is signified by these words.
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that these young people had always considered as nonexistent and even “not allowed”? And
if I put the new symbol �3 to the right of the equality sign in the expression “5 � 8 D : : : ,”
saying “Now the operation 5 � 8 can be performed and it gives a result,” wouldn’t they
protest, asking what had been added in this act of arbitrary signification? While wonder-
ing about what is the point of all this, they will surely question our human power to conjure
something out of nothing. Years later, when I got acquainted with a bunch of classroom stud-
ies on children learning about negative numbers, and especially when I also co-conducted
one such study myself [18], I found out that all these fears were definitely justified.

The decisive turnaround in my implicitly Platonist vision of mathematics began
taking place as a result of my encounter with the 4-year old Roni and Eynat. As I was delib-
erating on the children’s inability to use the expression “the same” in the context of boxes
with marbles, I realized: when I introduce a new mathematical object, such as number, to
the conversation about what I see – in this case about boxes with marbles, – I add nothing.
Rather, I am just changing the way I speak. Of course, there are reasons for this shift in my
discourse, and in the longer run, this transformation is going to prove itself very useful. But
the change in the way I talk is all that “introduction of a new object” may mean at this point
to the uninitiated – to those who, like Roni and Eynat, are hearing the term “number” within
this context for the first time. This change in the form of speech is bound to confuse a young
person who cannot yet appreciate the prospective benefits of this move. This bafflement will
be experienced not just during the introduction of negative numbers, but also when other
types of numbers – fractional, irrational, “imaginary” or even the most basic one, the natural
– enter the scene for the first time.

To explain, let me engage you in a thought exercise. Please, take a look at the four
pictures in Figure 1. Although these images are very different from one another, we may
still claim that they present the same person. What is it that justifies this last statement? The
answer seems simple: the claim is true because a single person, Sigmunt Freud, served as
the model for all of four them. If the four pictures seem dissimilar, this is because they were
drawn at different times in his life.

Figure 1

What makes us say that these four pictures “present the same person”?.
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Figure 2

What is it that is “the same” in these six pictures?.

Now, consider the six pictures in Figure 2. Here, too, we may speak in terms of a
single thing represented in different ways: all these pictures represent the number five. But
where is this common element, number five? The truth is that the only feature shared by the
six figures is that whenever we count their elements, we end with the word “five.” Thus, what
makes these figures into “the same” is the five-word long process of counting, and not any
common object, as was the case with Freud’s pictures. Yes, only a shared procedure may
become the basis for claiming a “sameness” of dissimilar figures. If this fact escapes our
attention, it is because also in the case such as that in Figure 2, we use the form of speech
that was applied, so far, only for stating the presence of a common object. Saming through
common procedure rather than a common object brings results because of which the French
mathematician Henri Poincaré defined mathematics as “the art of giving the same name to
different things” (quoted in [24, p. 154]).

All this makes us aware of the fact that we are using number-word only as if they
were names of some independently existing objects, in a metaphorical way. But metaphors
have their entailments, and in this case, one of the metaphorical entailments is that such
object as “number five” is “represented” in all these very different images here the way
Freud was represented in the four photos. Now it became obvious why young children must
be able to count long before they can speak about numbers as anything else than the sounds
used in counting. Indeed, counting is probably where the very idea of the abstract object
called “number” has its roots. Following this insight, we decided to investigate the processes
of objectifying the operation of counting, with the term objectification to be understood as
a discursive transformation that makes us use mathematical words and symbols as if they
signified discourse-independent objects.
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We soon realized that the change in the way of talking called objectification is a
combination of two lexico-grammatical transformations. First, there is nominalization – the
act of replacing lengthy portions of text with a single noun. This is what you do, for instance,
when you replace the talk about counting with number-words used as nouns. This is also what
happens when you transit from the proposition

(A) If I extract a square root from x and raise the result to the third power, I get the
same result as when I raise x to the 3rd power and extract square root from it.

to the equivalent objectified sentence

(B) The third power of square root equals square root of the third power.

(Note that both propositions can be expressed symbolically as
p

x
3

D
p

x3). The verb
clauses from (A), “I extract square root from : : : ” and “I raise ... to the third power” have
been replaced in (B) by the noun phrases “square root of : : : ” and “third power of : : : ,”
respectively.

The second component of objectification is alienation, that is, the removal of the
human subject. Thus, in the example just given, the grammatical subject of (A) is “I,” which
implies that it is a human being who performs the operation given by the subsequent verb
phrase “extract square root.” In (B), it is the noun phrase “The third power of square root”
that plays the role of grammatical subject. In result, (B) sounds as if it was speaking about
a self-sustained entity that does its own thing, without an involvement of any human agent.
Only when we adopt this impersonal form of speech, we also begin saying that the nouns or
symbols “represent” the object.

It soon became clear to us that objectification is a common phenomenon, to be found
almost everywhere, not just in mathematics. You build on the metaphor of object also when
you use words such as “velocity,” “energy,” “identity,” “class,” “justice” or human “ego.”
And while the subsequent research taught us that the transition to this objectified form of
talk is never straightforward or easy, it also made us aware of the reasons why so many
people, in so many domains, are prepared to invest the necessary effort.

Why do we need MOs? So, why do we objectify, in the first place? What do we gain when
making transition from talking about actions and operations to talking about objects? The
theoretical and empirical scrutiny of what happens in this transition brought to our attention
two beneficial consequences of objectification: first, it improves the effectiveness of commu-
nication by allowing us to say more with less; second, it widens the range of things we can
do, and in particular, of practical tasks we can perform.

To make my first point, let me, once again, compare propositions (A) and (B), the
first of them expressed as a story of a series of actions (extracting square root and raising
a number to the third power), and the other as a description of properties of mathematical
objects (of the square root, of the third power). One difference between the two is readily
visible: the objectified statement (B) is much shorted, more concise, than its unobjecti-
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fied equivalent, (A). Thus, this example clearly corroborates my first claim: objectification
allowed us to express ourselves more briefly, whatever it was we wished to say.

To illustrate the compressing power of objectification in an even more dramatic
way, I will engage you in the following thought exercise:

Suppose you cannot use number words “one,” “two,” “three,”: : : except in
counting. How would you then present in words the general truths expressed in
this equality: 3 C 4 D 7?

Let me explain: in your response, you are allowed to use the number words, but only as
“empty” signifiers, that is, as just strings of letters or of phonemes. Thus, you can say:
“I counted the marbles in this box and got ‘five’ as the last number word”, but you cannot
say “There are five marbles in this box.” I suggest that you give some thought to possible
answers before you read my own response below.

And here is my answer. Not allowed to say things like “There are four marbles in
the box” or “4 plus 3 equals 7,” I would translate the symbolic equality 3 C 4 D 7 into the
following statement:

If I have a set so that whenever I count its elements I stop at the word “three,”
and I have yet another set such that whenever I count its elements I stop at the
word “four”
and if I put these two sets together,
then,
if I count the elements of the new set, I will always stop at the word “seven.”

This is a very long sentence. Without condensing it and similar ones into objectified expres-
sions such as “3 C 4 D 7,” or even just, in words, three plus four equals seven, how would
we be able to develop mathematics at large, and its numerical algorithms in particular? This
example shows with particular force how the discursive device called objectification impacts
the efficiency of mathematical communication by compressing lengthy expressions into very
short ones.

And now, let me substantiate the second claim, according to which objectification
extends the range of things we can do. I will help myself with an example that may appear
so familiar, commonplace, and simple that you may wonder why I even chose to deal with
it. But this is exactly the point. The analysis of this seemingly trivial event will let you see
things, of the existence of which you might have been always aware, but which you never
scrutinized to see how and why they work. What we notice here can be extrapolated to even
most complex cases.

The example is taken from one of our empirical studies, in which we observed young
people performing tasks related to numbers. Consider the following conversation between
the interviewer and the 18-year-old girl by the name Mira, who was asked to pay for an
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imaginary purchase with real coins7 that have been given to her beforehand:

1. Interviewer: You bought 3 cookies from me; each one costs 75 agoras.
Now you have to pay me.

2. Mira: Three times 75 : : :

3. 150 plus 3 times 25: : : 75: : :

4. 150 plus 75: : : 225.
5. Here you are: 2 shekels and 25 agoras [while saying this,

Mira passes to the interviewer two coins of 1 shekel, two
of 10 agoras, and one of 5 agoras].

Let us take a close look at what Mira did. While saying “Three times 75” (utterance 2), she
translated the required operation on coins into the numerical operation, multiplication of
number 75 by 3. She did it by mapping the concrete objects (specific coins) onto mathemati-
cal objects (corresponding numbers) and by matching physical operations on the former with
arithmetical operations on the latter. Then, in steps (3), (4), and (5), Mira implemented the
operations on the mathematical objects, obtaining the number 225.8 It is only then that she
returned to the coins and composed the actual payment. Thus, the conversation that began as
one about concrete objects (cookies and coins) has become one about mathematical objects
(numbers), and then went back to concrete objects (coins). To sum up, the monetary trans-
action was a brief drama in three acts, with the middle one, the act of planning the action of
paying, resulting in the mediating story about numbers, “three times 75 equals 225”.

It is noteworthy that in a simple case such as that presented above, the task could
have been performed also in an unmediated way. Such unmediated action is exemplified in
another episode from our study:

1. Interviewer: Now you have to pay me. You bought 3 cookies from me;
each one costs 75 agoras. Please, pay me.

2. Talli: Each one is 75 agoras: : : [while saying this, hands a coin
of 50 agoras (1/2 shekel), two of 10 agoras, and one of 5
agoras to the interviewer].

3. Interviewer: What did you give me?
4. Talli: 75.
5. Interviewer: Yes, you mean half and?
6. Talli: 20 agoras and 5. Ok. And a shekel [passes a coin of 1

shekel]. One shekel and 75. Inside the shekel there is a 75,
so there is 25 more. So, here is half a shekel more [passes
the coin of 50 agoras]. And that’s it.

7 The coins are in shekels and agoras, Israeli monetary units corresponding to dollars and
cents, or pounds and pennies. Note that in the last sentence of the conversation (see line 5),
the number names 2 and 25 are but labels for coins: the coin of one shekel and the set of
coins including 2 coins of 10 agoras and one of five, respectively.

8 She took 50 out of the three 75s and added them together (3), and then, in (4) she first multi-
plied by 3 the remaining 25s and then added the products, 75, to the 150 obtained in (3).
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Here, the required payment was performed directly on coins: Talli simply passed three sets of
75 agoras one by one. No mediating story has been told here and the payer ended up without
necessarily knowing the total price of the purchase.

Considering this last example, the question may be asked why we should ever bother
about mediating actions involving mathematical objects. Well, whereas this kind of action
may appear just optional in simple tasks with which one is closely familiar, other tasks may
be unfeasible without it. When the payment is made in the direct, immediate way, one relies
on her memory of specific sets of coins that compose different basic values, such as that
of 75 agoras. Sometimes, one’s repertoire of memorized sums may not suffice to compose
the required payment. Even more importantly, unmediated way of acting is applicable only
in familiar situations, in which the performer can be guided by her previous experience. In
contrast, mediating story used skillfully in one situation, may be appropriate also for a less
familiar situation, involving concrete objects of a different kind. Thanks to their universality,
therefore, mathematical objects make a person able to act in situations that are new to them,
that is, involve objects – concrete or abstract – upon which she has never operated before.
Indeed, mediating mechanisms of the kind of those exemplified here are at work even when
you perform most complex and sophisticated practical tasks, such as building bridges or
computers, flying to the moon, or designing vaccine for corona. One story about a single
mathematical object allows us to deal with multiple situation that, so far, have not been
considered as having anything in common. To sum up, mathematical objects are powerful
tools, which not only make communication effective, but also allow us to deal with ever-new
situations and to engaging in ever more complex forms of activity.

How are MOs discursively constructed? The interesting feature of these tools, and more
specifically of mathematical objects, is that rather than being applied readymade, they are
being constructed as we go. To put it differently, we conjure mathematical object by talking
about them. This may sound as paradoxical as saying that a hammer is being put together
during, and thanks to, the process of hammering. Yet, this is how it is. I will now take a closer
look at the way in which the on-the-run object constructions take place.

After defining objectification as a discursive transformation that makes us use math-
ematical words and symbols as if they signified discourse-independent objects, I pointed out
to two discursive operations that produce the objectifying effect: nominalization and alien-
ation. Alienation has been briefly explained above, and I will now focus on nominalization,
the process of replacing portions of text with a noun. Let us take a look at the different ways
in which nominalization can be attained.

One of these ways has already been exemplified: I have shown how processes of
counting turn into mathematical objects called numbers. Brief utterances with words such
as two or five used as nouns may now replace long statements about human actions, such
as “when I count the sides of pentagon, I arrive at the word ‘five’.” This move of replacing
stories of processes with stories of objects is called reification. Reifying is also what I do
when instead of speaking about my own action of multiplying, as in the narrative “When I
multiply odd number by itself, I get odd number,” I tell a story of an object: “The square
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of odd number is odd.” And it is what I did above in transition from the proposition (A) to
(B), when I disposed of verb phrases “extract square root” and “raise to the third power”
appearing in proposition (A) and replaced them in (B) with noun phrases, “square root”
and “third power.” It should be stressed that reification is not restricted to mathematics. We
apply it everywhere, even in everyday talk. I reify, for instance, when I replace the story
employing the verb “move,” as in “The antelope moves fast” with the one that uses the noun
“movement,” as in “The antelope’s movement is fast.”

Another nominalizing operation that may lead to the emergence of a new object
takes place when we endow several different objects with the same name. As such, it may
be called saming. Saming is what we do when we refer to things as different as, say, dog and
cat with the same word, “domestic animal.” We are saming in mathematics when we refer
to both the expression x2 and the curve known as parabola with the same name, “the basic
quadratic function.”

Finally, there is the operation of encapsulating, of replacing the plural form with the
singular. This is what we do when instead of saying “The post-office workers are efficient,”
we declare “The post-office staff is efficient.” Here, the word “staff,” in singular, encapsulates
“the workers,” in plural. And in mathematics, we are encapsulating when, for instance, we
replace the claim “The cubes of numbers are increasing” with “The function x3 is increas-
ing.”

The following example, featuring the object called “the basic quadratic function,”
shows how these three operations, saming, reifying, and encapsulating, can be iteratively
combined in the process of constructing a mathematical object. It is reasonable to conjecture
that the idea of the quadratic function emerged when people realized that some stories about
x2 may be translated into narratives about the curve called “parabola” and also into those
about a certain table – the one displaying a set of ordered number pairs, in each of which
the second element is the square of the first. For instance, the claim that zero is the smallest
possible value of x2 can be translated into the story of the smallest second element of the
pair and into one on the lowest point of the parabola.

The benefit of replacing all three signifiers, the algebraic expression, the parabola,
and the table with the single term “basic quadratic function” is immediately obvious: this
replacement allows us to make all these statements simultaneously, in the single sentence:
“Zero is the smallest value of the basic quadratic function.” Here, we used the new noun
“function” to perform saming of the three original signifiers. Clearly, such saming makes
our propositions incomparably more general, and thus more powerful, and it adds to the
thriftiness of mathematical communication.

What we call “basic quadratic function” became a combination of three signifiers,
which from now will be called realizations of the signifier “basic quadratic function.” But
the process of realizing signifiers with the help of other signifiers is recursive, and the three
realizations of the basic quadratic function may themselves be realized by other signifiers.
Thus, x2 may be realized as a square of any specific number. It is obtained from these specific
squares by saming. These square numbers, in turn, are reifications of the operation of multi-
plying numbers by themselves. Similarly, both the table and the parabola can be realized as
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Figure 3

The realization tree of the signifier “Basic quadratic function” (adapted from [20]).

the set of ordered pairs of numbers and their squares, with encapsulation as the correspond-
ing transformation. As before, these squares are reifications of the operation of squaring. The
resulting diagram in Figure 3 presents the object called “basic quadratic function,” composed
of its name (the signifier) and its realization network (the signified).

Let me now summarize some of the insights, so far, about mathematical objects.
First, the last statement of the previous paragraph can be generalized, and the mathematical
object can now be defined as a signifier, such as word, written symbol or icon, together
with its realization network. Here, the phrase “R is a realization of signifier S” is to be
understood as saying that for a set of true proposition about S, there is an isomorphic set of
true proposition about R (to avoid getting into technicalities, I will skip the definition of the
relation of isomorphism between sets of propositions, but I hope the term is self-explanatory).
Thus, the expression “x2” is a realization of the signifier “basic quadratic function” and 32

is a realization of x2.
Second, the set of all objects can be split into a pair of categories, and this can be

done in two different ways. First, there is the distinction between primary and discursive
objects – between those that exist in the world, independently from the human mind, and
those that exist also, or only, in discourse. Second, there is the concrete–abstract dichotomy.
These distinctions may be explained with the help of Figure 4, which shows in a schematic
way how generations of new objects are being built, one after another, from those that pre-
cede them. The chain begins with concrete material objects, that is, those material things
whose existence does not depend on whether somebody thinks or talks about them. These
are the objects that are called primary. When a primary object is given a name or denoted
with a symbol, we can start communicating about it. In this way, an atomic or elementary
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Figure 4

Types of objects (adapted from [20]).

discursive object, or atomic d-object for short, is created. In the third stage, some atomic d-
objects are combined by saming or encapsulating into compound discursive objects. Finally,
or perhaps in parallel to the stages of saming and encapsulating, additional compound d-
objects are obtained by reifying processes that involve previously constructed objects. It is
this last category that consists of objects called abstract. The other three, reification-free
categories, contain objects considered as concrete.

Several conclusions follow from what was said so far. First, according to the above
definitions, all mathematical objects are abstract because their construction involves reifi-
cation, the operation that appears to be the act of adding a whole new entity but, in fact,
introduces just a new figure of speech. Second, there is no ontological distinction anymore
between signifier and signified. Any of the material means used for communicating – writ-
ten or spoken words, visual devises, or touchable things – may serve as signifiers, and these
are also the materials of which the signified, this dynamically expanding, never complete
network of realizations is made. This means that all objects, whether primary or discursive,
whether concrete or abstract, are basically material and accessible to senses, and the only
difference between concrete and abstract entities is that in this latter case, the signified may
be unbounded: it is always ready to accommodate new elements and is never perceivable
in its entirety. Finally, discursive objects are personal constructs that develop gradually as a
person learns mathematics. In this process, the realization network of signifiers such as “the
basic quadratic function” or “rational number” is constantly expanding, sometimes deviating
from the canonic version, accepted by the community of mathematicians.

The main idea to be taken from all that has been said so far is that mathematics is an
autopoietic communicational system that creates its own objects while telling stories about
them. Recognizing this inherently paradoxical nature of object construction is critical to our
understanding of how mathematics is learned. Before I turn to new insights about learning
that came to us with this recognition, let me add a few words about how this new vision of
mathematical objects revolutionized our ideas about mathematics as an activity.
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2.3. Mathematics: the activity of telling useful stories about reality rather
than a search for the universal truth about it
It seems that the discursive nature of at least some mathematical objects has been

already intimated by one of the greatest mathematicians of all times, Johann Carl Friedrich
Gauss, who famously stated that “Infinity is merely a façon de parler” ([6, p. 216], quoted
in [12, p. 337]). From referring to a particular mathematical object, this claim has now been
extended to all of the abstract entities. An inescapable conclusion of this nondualist vision is
that mathematics is a form of communication, or discourse, that we adopt when constructing
mathematical objects and telling potentially useful stories about them. I will now unpack this
assertion explaining what is meant here by the terms “story” and “useful.”

Within this present context, the use of the colloquial word “story” may make some
of you feel uneasy. I claim, however, that the word is in place in describing not only mathe-
matics, but also all other domains of research, such as physics, biology, or history. Thus, for
instance, a story about living organisms, such as “Plants convert light energy into chemical
energy in the process of photosynthesis,” is a typical output of research in biology, whereas
the formula “S D 1=2gt2” is among stories about bodies in motion told by physicists. Yes,
also this last string of symbols, as unlikely as it may seem at the first glance as an example
of a story, does turn into a narrative once we decode it and write it in words rather than
symbols: “The distance S traveled by a free falling object is equal to half of the gravitational
acceleration, g, multiplied by the square of the time of the travel, t .” Similarly, mathemat-
ical equality .x2/0 D 2x can be seen as a narrative about a function and its derivative. Of
course, the three propositions I brought here as examples of scientific or mathematical sto-
ries present these stories in a highly condensed form. For elaboration, one needs to consult
academic literature.

Let me complete my explanations by clarifying how the term “story” is to be under-
stood in the present context. From now on, I will be using the expression story about X, where
X is a noun, as referring to a coherent sequence of utterances (propositions) that, when taken
together, can be said to be “about X” (or “on X” or “of X”). The “aboutness” means that X is
the grammatical object or subject of some of the utterances in the sequence, and the sequence
in its entirety is consistent and cohesive. The term “consistent” says that the sequence does
not logically imply both a proposition and its negation. This term “cohesive” indicates the
presence of lexico-grammatical links that hold the sequence together, that is, connect its suc-
cessive utterances thematically. The connection may be chronological, as is the case when
the successive utterances are linked with words such as “before,” “after,” or “next”; it can be
logical, attained by the use of connectors such as “therefore,” “it follows,” “and,” “or”; and it
can be causal, expressing itself in the presence of words such as “because.” Most current uses
of the term “story” or “narrative” imply chronological interconnection of the different parts,
and thus our present definition leads to a wider than the common application of the term.

The last question that needs to be answered in the attempt to complete the defini-
tion of mathematics as “the activity of telling potentially useful stories about mathematical
objects” regards the term “useful.” What does this adjective mean and why should it be pre-
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ferred to “true,” which is mathematicians’ favorite? In the preceding section, I have already
stressed that mathematical objects are useful in their roles of “compressors” of mathemati-
cal prose and of action-mediating devices. With their help, we are able to perform tasks that
would not be workable otherwise. For the operations on mathematical objects to be truly
helpful, we have to draw on what we have learned about their properties. In other words,
stories about mathematical objects are those that guide our decisions about how to use these
entities in problem-solving and in practical action.

Some of you may shrug at my mention of usefulness as the required feature of
mathematical stories. Some mathematicians may share D. H. Hardy’s conviction that their
activities have nothing to do with “anything useful” [8, p. 150]. Yet, the majority of mathe-
maticians seem to be of one mind with Andrew Forsyth [4, p. 35], who famously claimed that
almost any mathematical story would eventually turn useful beyond mathematics itself, pro-
vided we have the patience to wait for a “real-life” problem that can be solved with its help.
The message about potential practical usefulness of even most abstract mathematical ideas
can also be heard in Alfred North Whitehead’s disclaimer: “It is no paradox to say that in
our most theoretical moods we may be nearest to our most practical applications” [25, p. 100].

Of course, not all stories come equal and not all of them can serve as reliable medi-
ators of practical actions. Only those mathematical narratives are endorsed as reliable and
potentially useful that have been constructed and shown to be endorsable with the help of
well-defined communicational tools, that is, within a special discourse. This latter word,
discourse, may be defined as referring to a communicational game that determines a com-
munity. Its game-like nature expresses itself in its being rules-regulated activity, similar in
this respect to, say, the game of chess. It determines a community in that, like chess, it splits
the humanity into those who are able to participate in this activity and those who are not (of
course, the split is never clear-cut, but the idea of the “community of discourse” is useful nev-
ertheless). It is important to remember that discourse may be in words, but more often than
not, it is multimodal. Sometimes, mathematical conversation may take place just in sounds
other than words, in body movement, gestures, facial expressions, pictures – any of these or
all of them together. Mathematical discourse, as any other, can be practiced with partners or
with oneself. In this latter case, the discursive activity it is called “thinking.”

Different discourses are created for different types of mathematical objects, and
they differ among them along four dimensions. The first and most obvious of the distinc-
tive features is the set of keywords pertaining to the discourse’s characteristic objects, such
as the words “number,” “one,” “eleven,” “sum,” “product” in arithmetic, “figure” and “tri-
angle” in geometry, and “function” in mathematical analysis. Most of these keywords come
with explicit rules for use, known as definitions. Second, there are the characteristic visual
mediators, that is, visual means with which one makes clear what it is she or he is talk-
ing about. Thus, in mathematical analysis we use algebraic expressions and curves known
as graphs, and in geometric discourse we help ourselves with drawings of different shapes.
Third, each of mathematical discourses has a well-defined set of communicational routines,
the patterned, recurrent ways of doing things. Some of these routines are common to all
mathematical discourses, whereas some others are discourse-specific. Among them, there
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may be routines for reading mathematical notations and for operating on symbols, those
to be applied in constructing stories about mathematical objects, and some others, to be
performed in testing stories already created or in showing whether they can be endorsed.
The routine used in this latter task is known as “proof.” Finally, the discourse on X comes
with a small set of endorsed narratives on X, known as axioms, on the basis of which other
endorsed narratives on X will gradually be constructed. Together, all these endorsed narra-
tives will constitute the theory of X. In natural sciences, a collection of narratives, to count as
a theory, must be unambiguous, consistent with experience, general rather than specific, and
this is only the beginning of the long list of requirements. In mathematics, on the other hand,
at least in principle, consistency and cohesiveness are all that is necessary to ensure that a
story be seen as a part of theory. Mathematicians strive to make their theories as complete as
possible, hoping that for every proposition about X, either this sentence or its negation will
turn out to be a part of the theory of X.

Viewing research, at large, and mathematics in particular, as communicational activ-
ities has an implication that goes against one widespread belief about mathematics, engender
by its Platonic version: it is now clear that many seemingly competing theories, not just one,
may be developed about the same X.9 The phenomenon is well known from science – think,
for instance, about Aristotelian, Newtonian, and Einsteinian theories of motion. To see that it
occurs also in mathematics, one may consider the Euclidean and non-Euclidean geometries,
each of which tells its own story of the construct called “space.”10 The different stories may
sometimes appear to be contradicting each other, as is the case for the Euclidean, Bolyai–
Lobachevskian (hyperbolic), and Riemannian (spherical) narratives about the sum of angles
in a triangle. Here, the apparent contradiction stems from the fact that, in each of the dis-
courses, the use of the basic keywords is defined with the help of a slightly different set
of axioms. Some other examples that could be given here are much less obvious, simply
because mathematicians agreed to opt for just one version that became canonic, with the
others forgotten. This is what happened when integers were extended to rational numbers,
and then when unsigned numbers were broadened to signed, or from real to complex. Within
the nondualist approach to mathematics, therefore, unlike in the world of Platonic ideas, the
decision to label a narrative as “true” becomes relative to the discourse in which this nar-
rative is told. It is for this reason that the adjective “useful” may be a more appropriate
descriptor for the basic criterion for endorsability than is the word “true” which, whether we
want it or not, brings the connotation of universality. To forestall possible protests, let me
immediately add that what has been said in this paragraph does not imply that mathematical

9 Keep in mind that X is a noun that points us to a certain phenomenon, rather than the phe-
nomenon as such. The different discourses on X are likely to use this noun differently, and
this entails differing narratives about X.

10 The fact that these three theories can be subsumed under a common metadiscourse may give
rise to the assertion that they are parts of a single higher-level theory; this, however, does
not contradict the claim that when taken separately, they constitute different theories of the
same X, and that these different theories pertain to, or are useful for, different interpretations
of the X.
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“truth” (or endorsability) is arbitrary. Whereas we are free to opt for any properly constructed
mathematical discourse,11 once we make our choice, we lose our freedom to decide what can
count as true. Within the boundaries of the chosen discourse, the veracity of narratives we
are going to create will be uniquely determined by the rules and routines of this discourse.

Before concluding this brief introduction to commognition, it is important to stress
that this approach, and more generally, our conversion from covert Platonists to overt nond-
ualists did not come out of nowhere. It was inspired by many recent developments in several
seemingly unrelated domains, with philosophy of science and learning sciences among them.
On the one hand, we followed in the footsteps of leading thinkers of the 20th century who
turned to communication as the key to understanding human uniqueness. The word “knowl-
edge,” signifying one of the hallmarks of humanity, has been interpreted by Rorty as referring
to the “conversation of mankind” [15, p. 389]. In a similar vein, Foucault claimed that dis-
courses are “things said: : : those familiar yet enigmatic groups of statements that are known
as medicine, political economy, and biology” (see the blurb on the cover of [5]; mathematics
can now be added to this list). This nondualist position with regard to knowledge, as observed
at the level of humanity as a whole, paralleled the work of psychologists whose observations
on individual human beings and on their cognitive activities was inspired by the ideas of the
Austrian–British philosopher Ludwig Wittgenstein and of the Russian thinker Lev Vygotsky.
In tune with Vygotsky’s claims on the inseparability of word and its meaning, the writers
who called themselves “discursive psychologists” started questioning the ontological split
between thinking and communication [3,9]. We have been encouraged by all these thinkers
when we decided to view mathematical thinking as a self-dialogue involving the discourse
known as mathematics. The unity of these hitherto separate ontological categories, cognition
and communicating, is reflected in the portmanteau commognition [19].

3. How commognitive insights about learning helped to

solve the initial conundrums

Having introduced the nondualist way of thinking about mathematics and its object,
I now have to convince you that the result was worth the effort. More specifically, I need
to show that commognition is a powerful tool for making sense of what people do in their
encounters with mathematics, and that it is more successful in this role than any dualist
approach so far. I will do this by showing how the discursive conceptualization of mathemat-
ics helps us resolve the three conundrums that initiated us on our way toward commognition.
I will now attend these conundrums in the order reverse to that in which they are presented
above. On my way, I will discuss some of the more general changes brought by commogni-
tion to our understanding of what people do when they learn mathematics, what obstacles

11 We choose discourse according to the criterion of prospective usefulness, as it is measured
by either its practical applications or by its power to generate a rich mathematical theory or,
preferably, according to both these considerations.
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they need to tackle on their way, and what may help or obstruct their efforts to overcome the
hurdles.

3.1. Seeing as the same what so far appeared as different: the paradoxical
conditions for objectification
Just to remind, the heroin of this formative event was the 4-year old Roni who, when

faced with two boxes with a pair of marbles each, was unable to say what her father desper-
ately wanted to hear: that there was “the same” number of marbles in the two boxes. This
was puzzling because while opening each box, Roni could be heard saying the word “two”
and then claiming that there is more “in none.” Already when introducing this conundrum,
I have raised an explanatory conjecture: for the 4-year old, there was nothing in the two boxes
that could be called “the same.” Now I can say that at this point, the young child evidently
did not yet create for herself any abstract objects, mathematical or otherwise, that could be
seen as being present in both boxes with two marbles and described as “the same.”

This brief story gives rise to a much more general, and some may say quite unortho-
dox conclusion about sources of numerical thinking. According to cognitivist theories, pro-
duced in the mainstream psychological research, this kind of thinking is an inborn property
of humans, with the first signs of “number sense” detectable already in newborns. Commog-
nitive researchers do agree that some special human abilities, rarely found in other species,
are necessary to make numerical thinking possible. As a good example, let me mention one
ability that may well appear already at birth – the ability to distinguish between small sets
of different cardinalities. Yet, once mathematical thinking is conceptualized as a discursive
activity, the mere recognition of quantitative difference does not yet count as a case of math-
ematical thinking. According to commognition, mathematical thinking, by definition, does
not exist before the child developed some uniquely human communicational skills. Note that
this disagreement between the dualist and non-dualist visions of mathematical thinking is
not just a matter of semantics. Indeed, the difference of opinion on the ontology of numbers
has far-reaching consequences for our understanding of how this thinking emerges and how
it develops later. Eventually, it is bound to affect our ideas about the ways in which children
may be helped – or hindered – on their way toward numeracy.

To give just one example, let me consider yet another conundrum, one that has been
challenging cognitive psychologists ever since the seminal studies by Jean Piaget. To put
it in their own words, these psychologists have been puzzling over the fact that “children
who know how to count may not use counting to compare sets with respect to number”
[13, p. 35]. In this sentence, the authors summarized the phenomenon that has been observed
time and time again: When presented with two sets of, say, marbles and asked “In which of
them are there more marbles?”, 4- or 5-year old children would not count even if they could.
This, indeed, may seem puzzling to a person who considers numbers as self-sustained things
which, like spoons or bicycles, can be experienced by children long before they are able to
act with these objects themselves. And the puzzle may go, more or less, like this: The fact the
children can count indicates that they are already familiar with the entities called numbers.
Of course, they need some time to develop the routine of comparing-by-counting. But even
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when they are already adept in this latter routine, why do they stay away from it when asked
such question as “Where are there more marbles”? In our long conversations with Roni and
Eynat, we observed this phenomenon many times [11,21]. It was puzzling indeed, but only as
long as it was described in this cognitivist language, which we too used at that time. The effect
of puzzle disappeared when we began seeing number as but a reification of the discursive
action of counting. The commognitive vision reversed the order of learning: the routine of
comparing-by-counting, with counting understood at this stage as but an incantation (reciting
number words in a constant order) comes first, and the idea of number as an abstract object
emerges form it much later. Thus, as long as the child cannot actually do things with number
words, there is simply no such thing as number. And even when she gains some mastery
over the discursive operations of counting and comparing-by-counting, it must still take time
until she reifies counting and stops seeing it as merely the favorite game of the grownups. All
this seemed to solve, or rather resolve, the cognitivist conundrum: as long as the process of
counting has not been reified, which seems to be the common state of affairs in 4- or 5-year
olds, saying that children are trying to “compare sets with respect to numbers” makes no
sense – and the puzzling disappears.

All that has been said here evokes also one important metacommognitive reflection.
Our studies taught us quite a lesson about ourselves as observers of others. Events such as
the latter one opened our eyes to the fact that one’s own view of mathematics serves as
a highly selective lens for seeing and understanding other people. We realized that unless
we take precautions, we tend, as teachers or researchers, to attribute our own numerical
way of thinking to those whom we observe, while also assuming that in the learner this
thinking may be not as well developed as in an expert. This tendency comes to the fore
when the dualistically-minded observer takes for granted that the questions she asked has
been interpreted by the young participants according to her intention (“children compared
sets with regard to number”). In result, when the child’s performance does not meet her
expectations, the observer tends to put the blame on procedural insufficiencies. She says to
herself, “The child did try to do this, but she erred in the procedure.” While stressing what is
missing in children’s actions, the cognitivist observer remains blind to what is actually there.
In research, she does not even record the “strange” things children are actually doing in the
attempt to cope. This oversight leaves her ignorant of the fact that children could be trying to
perform a task quite different from that she had in mind. This is how the observer who thinks
in dualist terms is misled by her own language and misses the opportunity to get a deeper
insight into the meandering route the children travel before they become skillful participants
of the canonic mathematical discourse.

3.2. The complexity of complex numbers: the need to reconcile yourself with
the incommensurability between the old and the new discourses of numbers
Another puzzle left us with the question about difficulties students experience while

learning about complex numbers. Why, we asked, in order to turn the learner into a skillful,
competent participant of the discourse on complex numbers, does it not suffice to provide the
definition of these numbers and then ask the learners to practice the well-defined operations?
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Within the commognitive approach, one possible answer offers itself immediately: as in the
previous case, we are talking here about the introduction of a new mathematical object, and
as already stated, processes of objectification take time. Yet, although this statement sounds
like answering our question, it leaves us with a new one: Why is the process of objectifying
so demanding in the case of complex numbers? And more generally, what obstacles must
the learner overcome on his/her way toward a new mathematical object?

Admittedly, not everybody experiences the task of objectifying as an uphill struggle.
In some cases, the birth of a mathematical objects is recalled as an exhilarating event, an
epiphany. Here is, for example, the story told by the topologist William Thurston:

I remember as a child, in fifth grade, coming to the amazing (to me) realization
that the answer to 134 divided by 29 is 134 over 29... What a tremendous labor-
saving device! To me, “134 divided by 29” meant a certain tedious chore, while
134 over 29 was an object with no implicit work. [23, p. 4]

And Thurston continues: “I went excitedly to my father to explain my discovery. He told
me that of course this is so, ‘a over b’ and ‘a divided by b0 are just synonyms. To him,
it was just a small variation in notation” (ibid). Yet, as demonstrated in our examples, not
every mathematics learner is as fortunate as Thurston. A closer look shows that the learners’
difficulties may have several sources.

First, there is a certain circularity of requirements. If mathematical objects, such as
numbers, whether natural or complex, are discursive constructions, then in order to build
such an object one needs to talk about it. But to talk about it, the person must have already
brought this object into being. And there is also another, slightly different circularity: the
learner is unlikely to make the necessary effort without understanding its prospective gains.
Indeed, she needs to be aware of the usefulness of the object she is trying to construct. But
how can she comprehend its usefulness before she actually uses it?

Another objectification-hindering circumstance is the fact that what happens in the
process of reifying may appear counterintuitive. Indeed, when you reify a mathematical pro-
cess, such as that of extracting a square root from a number, and you write

p
�1 D i , you

claim that there is a product to the operation that has been considered so far as giving no
result and was described as “forbidden.” And now, who can say where and why this new
number came from? It appeared with the introduction of the new signifier, “i .” This new
signifier reified the process of subtracting, but it did not add anything. This unlikely act of
conjuring something out of nothing seems as counterintuitive (and difficult to digest!) as
would be reifying a recipe for a cake and claiming that it constitutes the cake itself.

Objectification may have yet another counterintuitive aspect. To reify, a revolution
in the rules of the game is sometimes required. This dramatic change may express itself in
adopting a new way of building and endorsing new narratives, in changing how we think
about familiar objects, and in disqualifying some of hitherto unquestioned truths. Thus,
when complex numbers are to be introduced, some defining features of the object known
as “number” may have to be abandoned. So far, numbers have been understood as what
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answers such questions as “How many?” or “How much?” Each of them had a magnitude,
and for any two of them it was clear which is “bigger.” Not any longer. Also some previ-
ously endorsed stories must now be compromised. For instance, in the transition from the
discourse of real numbers to that of complex ones, the narrative “Some polynomial equations
have no solutions” is not true anymore. In spite of the apparent contradiction, the old truth
and the new one are not mutually exclusive. They just belong to different discourses, because
each one of them is using the word “number” in different way. Such two narratives are called
“incommensurable” (as opposed to incompatible), and so do the discourses that produced
them. Summing up, objectification projects back onto familiar discourses and transforms
them, sometimes beyond recognition.

In the view of all this, it is not surprising that students may struggle to construct
mathematical objects for themselves, and that they may take time to succeed. As long as
the success refuses to come, they may have a considerable difficulty benefitting from what
their teacher does or says. Obviously, the question now cries to be asked of how we can
support the learners in their coping with all these hurdles. How to help them overcome the
circularity and counterintuitiveness of objectification? A partial answer will be given below,
when I show how commognition helped us tackle Poincaré’s query. For now, let me just say
that those who teach, having long forgotten their own past struggles, are mostly unaware of
incommensurability between their own discourse and that of the learners. This was certainly
so in the case of the mathematician with whom I discussed students’ difficulties with complex
numbers. The very awareness of the nature of the problem may take the teacher half way
toward a solution.

3.3. The insufficiency of logic for understand mathematics? Some
mathematical developments are a matter of choice, not of deductive reasoning
If mathematics “invokes only the rules of logic, those accepted by all well-formed

minds, how does it happen that there are so many people who are entirely impervious to it?”,
wondered Poincaré while pondering on his own abilities as mathematician. As can already be
seen from the former examples, commognition dissolves this puzzle by showing the falsity
of its premise. Yes, according to commognition, the assumption that mathematics is the
exclusive province of logic is untrue. Whereas logic wields the absolute power inside every
mathematical discourse, the choice of the discourse is not a purely deductive act.

Let me elaborate. One of the implications of the commognitive vision of mathemat-
ics and its objects is that the growth of mathematics, whether historical or ontogenetic (in
learning), involves two types of developments: adding ever-new stories about already exist-
ing objects and, from time to time, adding new objects and reforming the discourse. The first
of these changes happens inside an existing discourse, whereas the other is metadiscursive:
it is a transformation of the discourses themselves. We can thus speak about two types of
learning that can be described, respectively, as object-level and meta-level. I will now argue
that only the former kind of learning can be considered as just a matter of logic. Indeed,
although mathematics is often described as a purely analytic discipline, that is, one whose
narratives are constructed and endorsed exclusively on the basis of deduction, this feature
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holds only within the boundaries of a well-defined discourse. Once a discourse is chosen, its
rules, combined with those of deduction, uniquely determine how new endorsed narratives
are to be derived from those that have been endorsed before, axioms and definitions included.
Thus, as long as a skillful participant stays within the confines of a particular mathematical
discourse, he can, at least in principle, produce new narratives and test their endorsablity
independently, without being helped by others. In school, this is the situation for the learner
who is already well acquainted with, say, the discourse on functions and is now supposed to
explore properties of different families of functions.

The situation changes, however, when the student faces the need for meta-level
learning. Here, in order to proceed, he will have to make the transition to a discourse incom-
mensurable with the one he is coming from. Historically, this kind of transition is an outcome
of mathematicians’ personal choices – of their assessment of how useful or beautiful would
be the results of following in one direction or another. To develop new mathematical dis-
course, they often needed to revise their shared beliefs on what should count as useful,
aesthetic, and as “mathematically permissible.” Clearly, these choices were not dictated by
logic – they were a matter of contingency and of personal preferences rather than of neces-
sity. Making such decisions required the ability to see mathematics as a whole and to foresee
the long-term effects of these decisions. Incapable of this kind of considerations, novice par-
ticipants of mathematical discourse are unlikely to replicate these historical choices on their
own, and must thus be ushered into the new incommensurable discourse by others.

The need for meta-level learning appears many times along the school and univer-
sity curricula, with this need being often invisible even to the teachers. How can meta-level
learning happen? It is unlikely to begin in any other way than with the learner’s exposure
to the new discourse, as practiced by experts. Such exposure is likely to create a communi-
cational conflict between the learner and the teacher: coming from different discourses, the
interlocutors will be using the same words in different ways, possibly remaining unaware of
this latter difference. If the learner is to enter the new discourse, she needs to recognize the
need for a change and must be willing to make it even if she does not yet have any indepen-
dent rationale for doing this. She must, however, be confident that those who introduced the
new discourse had good reasons for doing so, and that once she is better acquainted with how
the new discourse works, these reasons will become clear to her. This means she has to start
acting according to the rules of the new discourse before she can say what they are good for.
Thus, the first stage in learning involves participating in the discourse by imitation. While
performing what must appear at this time as a mere ritual, the learner has to engage in the sus-
tained effort to figure out the rationale for implementing these unfamiliar discursive routines.
In most cases, the student’s persistence may be trusted to pay. In the end, the new discourse
and its stories will combine into a sensible, logical whole, and what appeared so far as mere
rituals will turn into the activity of genuine mathematical explorations. In short, meta-level
learning begins with emulation of expert activities, accompanied by a constant attempt at
rationalization. We call this procedure reflective imitation. The gradual objectification is a
part and parcel of the process and it is the one that turns the learner from memorizer and
rule-follower into an explorer of mathematical universe.
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The relevant point in this story of meta-level learning is that rather than being depen-
dent exclusively on the learner’ logical thinking, the necessary meta-level developments are
predominantly a matter of persistence. They also require suspense of old beliefs and prefer-
ences. Exactly as stated by Jourdain, the learner must be able to say to himself “Go on; faith
will come to you.” This principle, even if recognized by the student, is difficult to imple-
ment. Not everybody’s confidence in her ability to eventually “see the light” would suffice to
persist indefinitely in practices that may sometimes be quite frustrating. The “many people”
whose evidently insufficient understanding of mathematics puzzled Poincaré are probably
those individuals who, for one reason or another, gave up at a certain point – or perhaps did
not ever begin this unending sense-making struggle in the first place.

4. Postscript: my personal takeaways from the journey

So, what is it that we achieved in our travel from thinking-as-mathematicians to
thinking-as-mathematics-educators? To begin with, our vision of mathematics underwent
an ontological upheaval. From the task of describing the independently existing world of
ideal mathematical objects, it reincarnated into the activity of telling stories whose protag-
onists are being constructed on the go. As a result, also our vision of mathematics learning
changed considerably. From the straightforward, even if at times challenging, activity of
cumulating “mathematical knowledge” the learning of mathematics was converted into an
obstacle-racing, with the obstacles imposing periodic changes of direction. In each result-
ing transition, a new discourse subsumed an old one, retroactively changing some of the old
discourse’s metarules and certain uses of its keywords.

Our own transition from crypto-Platonism to commognition was the case of meta-
level learning. Indeed, this was a change in our stories about mathematics and in the ways
they are told – and it was highly consequential. On the new onto-epistemological foundations,
we started developing teaching practices that could now be theoretically justified and rigor-
ously tested. This passage brought also some understandings about ourselves. We realized
that because of deep-seated convictions about learning we inherited from our own teachers
we were sometimes, unwittingly, teaching mathematics in ways that contributed to students’
life-long failure. As researchers, we learned that our own well-developed mathematical dis-
course, which we once saw as developing by a mere accrual, could be blinding us to what
is happening when people learn mathematics. We now know that what one sees from where
her long mathematical journey takes her may be quite different from what she experienced
in the point of departure. Moreover, we are also aware that by the time a person reaches
a certain point in the development of her mathematical discourse, she has already forgot-
ten the initial landscape, and does not even remember that it was once quite different! All
this taught us that, as teachers and researchers, we have to be always mindful of this simple
caveat: When you see people doing something that does not make any sense to you, do not
assume that it is senseless for the actors. The odds are that they are just not doing what you
think they are. And if you are aware of the abyss between the learners’ present discourse and
the discourse you wish them to reach, you no longer expect them to make it to your place
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in a leap, simply by hopping over the abyss. Instead, you join them in building a bridge that
would take the novices safely to the other side of the dangerous gap. This technique, drawing
heavily on insights earned in mathematics education research, can be trusted to save many
mathematical lives.
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George Birkhoff’s
forgotten manuscript
and his programme
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Abstract

In 1912 George Birkhoff created a sensation with his proof of Poincaré’s so-called “last
geometric theorem.” He followed it with prize-winning papers on “The restricted problem
of three bodies” (1915) and “Dynamical systems with two degrees of freedom” (1917).
Many of the essential ideas from these papers can be found in his book Dynamical Systems
(1927). At the end of the 1920s, Birkhoff began to draw up a programme of research on
unsolved problems in dynamics, and in 1941 presented his ideas at the 50th anniversary
celebration of the University of Chicago. Soon afterwards a summary of his lecture was
published. At the time of his death in 1944, he left unfinished a manuscript of a revised
and extended version of his lecture. In this paper I describe Birkhoff’s work leading up to
this manuscript before describing the contents of the manuscript itself.
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1. Birkhoff’s work in dynamics

In 1924 the Russian mathematician Nikolai Krylov described George Birkhoff as
“the Poincaré of America.”1 It was an apt description. As a student in Chicago, Birkhoff had
been introduced to Poincaré’s work by the mathematical astronomer Forest Ray Moulton and
he had immersed himself in it, especially Poincaré’s great treatise on celestial mechanics—
the three volume Les Méthodes Nouvelles de la Mécanique Céleste—which had appeared in
the last decade of the 19th century. In fact, so closely did Birkhoff’s name become linked with
that of Poincaré that when Birkhoff died Poincaré’s name featured often in the obituaries, an
extreme example being the short notice written by Jacques Hadamard in which Poincaré’s
name appears more often than Birkhoff’s [28].2 Although Birkhoff made significant advances
in other fields of mathematics, such as the theory of difference equations and the four-color
problem, it is his work in dynamics, notably his proof of Poincaré’s “last geometric theorem”
and his individual ergodic theorem, on which his fame principally rests.

Indeed, Birkhoff maintained an interest in dynamics throughout his career. His Col-
lected Mathematical Papers list 32 papers under the heading, the first published in 1912,
when he was aged 28, and the last, posthumously, in 1945. The second was his proof of
Poincaré’s last geometric theorem which he presented to the American Mathematical Soci-
ety in October 1912 and which appeared in print in January 1913, with a French translation
the following year [8]. Poincaré had published the theorem in 1912 shortly before his death,
having been working on it for two years previously [39]. Despite (correctly) believing it to be
true, Poincaré had been unable to prove it except for a few special cases.3 Birkhoff was not the
only mathematician to rise to the challenge but no-one was better prepared—his proof came
only a few months after Poincaré’s death.4 Remarkably for an American mathematician at
the time, Birkhoff had never been to Europe—he had learnt all his mathematics in the United
States. As Norbert Wiener later wrote, “Before 1912 it had been considered indispensable
for any young American mathematician of promise to complete his training abroad. Birkhoff
marks the beginning of the autonomous maturity of American mathematics” [42, p. 177].

Birkhoff gave Poincaré’s theorem in the following form:

Let us suppose that a continuous one-to-one transformation T takes the ring
[annulus] R formed by concentric circles Ca and Cb of radii a and b, respec-

1 On 9 August 1924, Raymond Archibald, who had just met Krylov at the International
Congress of Mathematicians in Toronto, wrote to Birkhoff to tell him that Krylov (whom
he described as “a magnificent man”) wanted especially to meet him. HUG 4213.2, Birkhoff
Papers, Harvard University Archives.

2 Hadamard and Birkhoff were friends for over 30 years, and Hadamard translated some of
Birkhoff’s work into French. Birkhoff was a popular speaker at the famous Séminaire
Hadamard in Paris, and he was one of the mathematicians interviewed by Hadamard for
his famous Psychology of Invention in the Mathematical Field (1945).

3 In 1992 Golé and Hall would show that Poincaré had been closer to success than he had
realized [25].

4 Among those who made a determined but unsuccessful attempt was L. E. J. Brouwer [40,
pp. 147–148].
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tively (a > b > 0), into itself in such a way as to advance the points of Ca in a
positive sense, and the points of Cb in the negative sense, and at the same time to
preserve areas. Then there are at least two invariant points [8, p. 14].

Birkhoff’s proof of the theorem would soon come to be considered as “one of the most
exciting mathematical events of the era and widely acclaimed” [20, p. iv], although at the
time, as Oswald Veblen wrote to Birkhoff from Germany in December 1913, the reaction in
Göttingen was only that Birkhoff was someone who “probably [had] to be reckoned with”!
[7, p. 42].

There is a close connection between Poincaré’s theorem and what is known as “the
restricted three-body problem.” This is a particular case of the three-body problem in which
two large bodies, with masses � and 1 � �, respectively, rotate about their center of mass in
circular orbits under their mutual gravitational attraction, and a third body of neglible mass,
which is attracted by the other two bodies but does not influence their motion, moves in the
plane defined by the two revolving bodies. The problem is then to ascertain the motion of the
third body. The problem has one integral, which was first obtained by Carl Jacobi in 1836
and hence is known as the Jacobian integral or constant. Although the problem may appear
contrived, it turns out to be a reasonable approximation to the Sun–Earth–Moon system. It
was first explored by Leonhard Euler in connection with his lunar theory of 1772, but it was
Poincaré who brought the problem to prominence in his celebrated memoir of 1890 [37], and
who later gave it its name.5 Poincaré knew that if his theorem could be shown to be true, then
it would confirm the existence of an infinite number of periodic motions for the problem for
all values of the mass parameter �. Poincaré also believed that the theorem would eventually
be instrumental in establishing whether or not the periodic motions are densely distributed
amongst all possible motions. As Aurel Wintner later observed, much of the dynamical work
of Birkhoff was either directed towards or influenced by the restricted three-body problem
[44, p. 349].

In 1925 Birkhoff extended Poincaré’s theorem to a nonmetric form by removing
the condition that the outer boundaries of the ring and the transformed ring must coin-
cide, and replacing it instead with the alternative condition that the outer boundary and
the transformed outer boundary are met only once by a certain radial line [11]. He proved
that the revised form held for annular regions with arbitrary boundary curves, and, correct-
ing an earlier omission—he had not taken into account that the first invariant point might
have index zero which meant that the existence of a second invariant point does not follow
automatically—proved that there are always two distinct invariant points. Since the extension
does not involve an invariant area integral it is essentially a topological result. Its impor-
tance lies in the fact that it can be used to establish the existence of infinitely many periodic
motions near a stable periodic motion in a dynamical system with two degrees of freedom,
from which the existence of quasiperiodic motions—that is motions which are not periodic

5 Poincaré’s work on the three-body problem is discussed in detail in my book [4].
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themselves but which are limits of periodic motions—follows.6 Three years later Birkhoff
explored the relationship between the dynamical system and the area-preserving transfor-
mation used in the theorem [14]. Having shown that corresponding to such a dynamical
problem there exists an area-preserving transformation in which the important properties
of the system for motions near periodic motions correspond to properties of the transforma-
tion, he showed that a converse form of this correspondence also exists. In other words, given
a particular type of area preserving transformation there exists a corresponding dynamical
system. In 1931 he generalized the theorem to higher dimensions [22].

Birkhoff published three papers on the restricted three-body problem itself. The first
[21], which appeared in 1915 and for which he won the Quirini Stampalia prize of the Royal
Venice Institute of Science, provided the first major qualitative attack on the problem since
Poincaré. Unlike Poincaré, Birkhoff, in his treatment of the problem, made little concession
to analysis, and his investigation was founded almost entirely on topological ideas. By con-
sidering the representation from a topological point of view, he was able to illustrate the
problem’s dependence on the value of the Jacobian constant. He established a transforma-
tion of the variables which enabled him to derive a new form of the equations in which the
equations are regular, providing the third body is not rejected to infinity. From this he cre-
ated a geometric representation in which the manifolds of states of motion are represented by
the stream-lines of a three-dimensional flow and are without singularity unless the Jacobian
constant takes one of five exceptional values. Having excluded these five values, the totality
of the states of motion could then be represented by the stream lines of a three-dimensional
flow occupying a nonsingular manifold in a four-dimensional space. But, as Poincaré had
shown, providing the mass of the one of the two main bodies is sufficiently small, the rep-
resentation of the problem as a three-dimensional flow can be reduced to a representation
which depends on the transformation of a two-dimensional ring into itself [38, pp. 372–381].
Birkhoff showed that Poincaré’s transformation could be considered as the product of two
involutory transformations, a result he subsequently used to prove the existence of an infi-
nite number of symmetric periodic motions, as well as results concerning their characteristic
properties and distribution.

Twenty years elapsed before Birkhoff next published on the problem. In the interim
he had worked extensively on general dynamical systems, the crowning result of which was
another prize memoir which appeared in 1935 [16], the prize having been awarded by the
Pontifical Academy of Sciences. In two later papers on the restricted problem which derived
from lectures given at the Scuola Normale Superiore di Pisa, he combined ideas from the
prize memoir of 1915 together with some general results from the one of 1935, notably his
development of Poincaré’s idea of a surface of section (now often called a Poincaré section).7

In the first of these two later papers [17], he focused on the analytic properties of the surface

6 A modern and slightly modified account of Birkhoff’s proof is given by Brown and
Neumann [23].

7 Given an n-dimensional phase space, a surface of section is an .n � 1/-dimensional space
embedded in the original space and transversal to the flow of the system.
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of section and the transformation he had used in 1935, while in the second [18] he used
qualitative methods to explore the results from the first in order to obtain further information
about the different types of motion and the relationships existing between them.

In 1923 Birkhoff was awarded the Bôcher Memorial Prize of the American Mathe-
matical Society for a paper in which he provided a general treatment of dynamical systems
with two degrees of freedom [9]. Such systems comprise the simplest type of nonintegrable
dynamical problems, and, as exemplified in the work of Poincaré, they form the natural
starting point for qualitative explorations into questions of dynamics. According to Marston
Morse, Birkhoff stated that he thought the Bôcher prize paper was as good a piece of research
as he would be likely to do [35, p. 380].

Birkhoff began with the equations of motion in standard Lagrangian form:
d

dt

�
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�

@L
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�
D 0;

d

dt
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�
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�
D 0;

where the function L, which is quadratic in the velocities, involves six arbitrary functions
of x and y. By making an appropriate transformation of variables, he reduced the equations
to a normal form which involved only two arbitrary functions of x and y. In the reversible
case, that is, when the equations of motion remain unchanged when t is replaced by �t , the
transformation was already well known. In this case the equations of motion can be inter-
preted as those of a particle constrained to move on a smooth surface and the orbits of the
particle interpreted as geodesics on the surface. But in the irreversible case, as, for example,
in restricted three-body problem, Birkhoff’s transformation was new and he gave a dynami-
cal interpretation in which the motions can be regarded as the orbits of a particle constrained
to move on a smooth surface which rotates about a fixed axis with uniform angular velocity
and carries with it a conservative force field. The central part of the paper concerned various
methods by which the existence of periodic motions could be established. These include his
“minimum method,” and his “minimax method,” the latter later providing a starting point for
the work of Morse on calculus of variations in the large. Birkhoff also considered Poincaré’s
method of analytic continuation which is applicable to both reversible and irreversible peri-
odic motions. One of the problems with the method was that it was only valid for a small
variation in the value of the parameter. The restriction was due to the possibility that the
period of the motion under consideration might become infinite. Thus to increase the inter-
val of the variation it is necessary to show that this possibility cannot arise and Birkhoff did
precisely that for a wide range of periodic motions.

It was in the Bôcher prize paper that Birkhoff first began to generalize Poincaré’s
idea of a surface of section and formally develop a theory attached to it. Poincaré had used
the idea specifically to reduce the restricted three-body problem to the transformation of a
ring to itself, but if the method was to have a general validity it was important to establish
under what circumstances surfaces of section exist. Birkhoff was able to show that not only
do they exist in a wide variety of cases but also that they can be of varying genus and have
different numbers of boundaries.

In his “Surface transformations and their dynamical applications” of 1920 [10],
Birkhoff elaborated and extended some of the ideas he had broached at the end of the Bôcher
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prize paper. By reducing the dynamical problem to a transformation problem and studying
certain transformations and their fixed points, which he did at length, he was able to classify
certain different types of motion. For example, whether a periodic motion, which is repre-
sented by a fixed point, is stable or unstable can be determined by examining the behavior
of a point sufficiently close to the fixed point under repeated iterations of the transformation.
Later Birkhoff considered the question of stability in more detail [13].

Invited by Gösta Mittag-Leffler in 1926 to contribute to the 50th volume of Acta
Mathematica—the journal which Mittag-Leffler had edited since its inception in 1882—
Birkhoff chose to tackle Poincaré’s conjecture concerning the denseness of periodic motions.
It was a particularly fitting choice of subject, given Poincaré’s early and consistent support of
Acta.8 A feature of Birkhoff’s paper [12] is his introduction of the billiard ball problem—that
is, to determine the motion of a billiard ball on a convex table—which he used to show how
Poincaré’s last geometric theorem could be applied to dynamical systems with two degrees
of freedom.9 Having considered certain types of periodic motion, he was able to conclude
that if a dynamical system admits one stable periodic motion of nonexceptional type—the
exception being when the period of the perturbed motion is independent of the constants of
integration—then it admits an infinite number of stable periodic motions within its imme-
diate vicinity, and the totality of these stable periodic motions form a dense set. Although
this does not resolve Poincaré’s conjecture, it does show that it cannot be true uncondition-
ally. He was able to prove the conjecture in the case of a transitive system—that is a system
in which “motions can be found passing from nearly one assigned state to nearly any other
arbitrarily assigned state” [12, p. 379]—showing that the periodic motions together with those
asymptotic to them are densely distributed.

Birkhoff’s influential book, Dynamical Systems, which derived from the American
Mathematical Society Colloquium Lectures he delivered in Chicago in 1920, was published
in 1927, with a new edition appearing in 1966. A Russian translation, which also con-
tained translations of several of Birkhoff’s papers including [15], was published in 1941 and
reprinted in 1999. Although representing “essentially a continuation of Poincaré’s profound
and extensive work on Celestial Mechanics” [20, p. iii], Birkhoff’s book opened a new era in
the study of dynamics by detaching the subject from its origins in celestial mechanics and
making use of topology [3]. It provides a summary of Birkhoff’s research in dynamics during
the preceding 15 years, with the final three chapters—on the general theory of dynamical sys-
tems, the case of two degrees of freedom, and the three-body problem—bringing together the
main strands of his work. As Bernard Koopman, one of Birkhoff’s former students, remarked,
Dynamical Systems is better described as a theory than as a book [31, p. 165]. Birkhoff’s goal
was clear: “The final aim of the theory of the motions of a dynamical system must be directed

8 Poincaré’s contributions to Acta Mathematica are discussed in my article [5, pp. 148–150].
9 It is indicative of the paper’s status that it was selected by Robert MacKay and James Meiss

for reproduction in their book of the most significant writings on Hamiltonian dynamics
published since the First World War [33].
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toward the qualitative determination of all possible types of motions and of the interrelations
of these motions.” [20, p. 189].

He started with a general class of dynamical systems, that is systems defined by the
differential equations,

dxi

Xi

D dt : : : .i D 1; : : : ; n/;

where the Xi are n real analytic functions, and a state of motion can be represented by a point
in a closed n-dimensional manifold. A motion can then be represented by a trajectory in the
manifold, and its domain is its closed set of limit points. The trajectories composed entirely of
limit points are those Birkhoff called “recurrent motions.” More generally, recurrent motions
are those which trace out with uniform closeness, in any sufficiently large period of their
entire history, all their states. Since, by definition, every point on the trajectory of a recurrent
motion is a limit point, the motion must approach every point on the trajectory infinitely
often and arbitrarily closely. Thus the simplest types of recurrent motions are the stationary
motions and the periodic motions. As Birkhoff showed, the idea of recurrent motion is a
particularly useful one with regard to the general problem of determining all possible motions
in a particular dynamical system. For example, he proved that the set of limit motions of any
motion contains at least one recurrent motion; and that any point either generates a recurrent
motion or generates a motion which approaches with uniform frequency arbitrarily close to a
set of recurrent motions. Furthermore, the concept of recurrent motion can be used to derive
definite results about the motion in an arbitrary dynamical system; a significant feature of
the theory being that it is valid for systems with any degree of freedom. This is in contrast to
Poincaré’s theory of periodic motion which is known to be valid only for systems with two
degrees of freedom.

The theory developed in Birkhoff’s papers and further expounded in Dynamical
Systems formed the bedrock on which Birkhoff’s Chicago lecture and its related manuscript
were built, and it is to these we now turn.

2. Birkhoff’s forgotten manuscript

In September 1941 the University of Chicago celebrated its 50th anniversary. It was
a celebration that had been two years in the planning. Honorary degrees were awarded and a
symposium was held in conjunction with the American Association for the Advancement of
Science. According to an account in the university magazine, the celebration was sufficiently
“significant that, in a world at war, it attracted national and even world wide attention” [30,

p. 6].
As one of the leading figures in American mathematics and a former student of the

university, Birkhoff was a natural choice for an honorary degree and symposium speaker, the
citation describing him as the “leading contributor to the fundamentals of dynamics.” The
only other mathematician amongst the 34 others on the rostrum was Birkhoff’s close friend
and long-standing colleague Oswald Veblen, also a Chicago protégé.
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For the subject of his lecture, Birkhoff chose “Some unsolved problems of theo-
retical dynamics,” a topic well in keeping with the anniversary theme of “New Frontiers in
Education and Research.” The symposium was well advertised prior to the celebrations and
before Birkhoff delivered his lecture he was asked by Nature if he could provide the jour-
nal with a summary. However, the summary did not appear in Nature but in Science and
it appeared some three months after the lecture had been delivered [19]. In fact, the lecture
was ready only about a week before it was due to be delivered, as Birkhoff admitted to Eric
O’Connor, one of his former doctoral students:

During the last few weeks I have been extremely occupied with the address which
I have to give next week at Chicago. In it I take a look at Classical Dynamics from
the abstract point of view and suggest about a dozen problems, many of them
new, which seem to be most directly in the line of further advance. In one or two
instances I indicate a partial answer to these. It now looks as though the paper
will be in good shape for the 24th September, when I have to deliver it, but it has
been a very close squeak!10

The idea of presenting a programme for research in dynamics was not new for
Birkhoff. Some 13 years earlier, in 1928, he had given a series of lectures at the University of
Berlin on “Some Problems of Dynamics” and the lectures were published in German in a con-
densed form [15]. In these lectures, having emphasized the importance of qualitative dynam-
ical ideas for the exact sciences, he discussed various examples including the billiard ball
problem, the motion of a particle on a smooth convex surface and on a smooth closed surface
of negative curvature, and the three-body problem. On that occasion, he listed six problems:

I To construct a dynamical system on a three-dimensional closed phase space, in
which the ordinal r of central motion is > 3.

II To prove that in the case of the Hamiltonian problem with two degrees of free-
dom, with closed phase space and with at least one stable periodic motion, the
periodic motions are everywhere dense.

III To prove that in the case of all Hamiltonian problems with closed phase space
the recurrent motions are everywhere dense.

IV To prove, for a given conservative transformation T , the existence of corre-
sponding Hamiltonian systems in particular of geodesic type.

V If T is any conservative transformation with a fixed point P of stable type, then
determine the necessary conditions so that there are infinitely many points Pn

existing in the neighborhood of P which are fixed points of T m.

VI To prove, in the case with two degrees of freedom, the existence of a dynamical
system that has a periodic motion of stable type, which is not truly stable.

10 Letter from Birkhoff to O’Connor, 18 September 1941. HUG 4213.2.2, Birkhoff Papers,
Harvard University Archives.
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Of these, only the first three relate to problems Birkhoff discussed in Chicago. The first was
solved in 1946 by A. G. Maier [34]. In 1941 the problems were republished in Russian to
accompany the Russian edition of Dynamical Systems, where they are described as “impor-
tant, unsolved problems.” Further work remains to be done to establish the extent of interest
generated by these problems subsequent to both the German and the Russian publications.

Nine years after his lectures in Berlin, Birkhoff returned to the same theme but this
time in Paris. In 1937 he gave a lecture at the Institut Henri Poincaré entitled “Quelques
problèmes de la Dynamique théorique.” Birkhoff referred to this lecture in a footnote of the
manuscript where he said that in Paris he had made reference to “one or two of the problems
listed in the present paper” but without identifying which ones, and no further information
on this lecture has so far come to light.

Birkhoff received the Chicago invitation in November 1940, and in April 1941 he
was invited by Otto Schmidt and Anisim Bermant to contribute to the celebratory 50th
volume of Matematicheskii Sbornik, the prestigious Russian mathematical journal founded
in 1866.11 For some time Russian mathematicians had been closely following Birkhoff’s
work, especially in dynamics, as is evident from Krylov’s remark of 1924 given above. Also
in the 1920s, a group in Pavel Aleksandrov’s topology seminar in Moscow had specialized in
studying Birkhoff’s publications;12 and in 1936 Birkhoff had been invited by A. A. Markov
to speak on the ergodic theorem and related topics at an international conference due to take
place in Leningrad in 1937, although in the event the conference was canceled.13 Birkhoff
cannot have taken long to decide that an article laying out his programme for dynamics would
make a fitting contribution to the journal, knowing that the Chicago meeting would provide
him with an excellent opportunity to test out his ideas before committing them to print.

In May 1943, Birkhoff wrote to his Russian colleagues to let them know that he had
“written out an extensive article not wholly completed as yet on ‘Some Unsolved Problems
of Theoretical Dynamics’,” mentioning that he had spoken on the subject “in a preliminary
way” in Chicago (Figure 1), but that he had decided to delay sending the article to Russia until
after the cessation of hostilities.14 But it was not to be. On 12 November 1944, Birkhoff, aged
only 60, died unexpectedly.15 Thus the manuscript, which runs to some 40 pages, was never
submitted. It remains as a hand-annotated typescript, with additional handwritten leaves,
among Birkhoff’s papers in the Harvard University Archives.16 In a footnote appended to

11 Letter from Schmidt and Bermant to Birkhoff, 2 April 1941. HUG 4213.2.2, Birkhoff
Papers, Harvard University Archives.

12 Letter from Aleksandrov to Birkhoff, 19 October 1926. HUG 4213.2, Birkhoff Papers, Har-
vard University Archives.

13 Letter from Birkhoff to Markov, 26 February 1936; letter from Markov to Birkhoff, 7 May
1936. HUG 4213.2, Birkhoff Papers, Harvard University Archives.

14 Letter from Birkhoff to Schmidt and Bermant, 18 May 1943. HUG 4213.2.2, Birkhoff
Papers, Harvard University Archives.

15 As described by his Harvard colleague, Edwin B. Wilson, Birkhoff had some time in hand
before a lunchtime visit to his son, Garrett, and had taken the occasion to rest but when his
wife went to find him he had passed away [43, p. 578].

16 HUG 4213.52, Birkhoff Papers, Harvard University Archives.
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Figure 1

Birkhoff delivering his symposium lecture [30, p. 6]. Courtesy of the University of Chicago Library.

the title page of the manuscript, Birkhoff stated that he had written the paper with the dual
purpose of reading it in Chicago and publishing it in the anniversary volume of the Russian
journal. Comparing the manuscript with the summary, and taking into account the delay of
the publication of the latter, it seems likely that Birkhoff, having lectured from the manuscript
then used it to prepare the summary and in the course of the latter’s preparation further
annotated the manuscript.

The manuscript opens as follows:

It scarcely seems too much to say that all the basic problems of point-set theory,
topology, and the theory of functions of real variables present themselves natu-
rally in purely dynamical contexts. Some of these dynamical problems are best
formulated and solved in terms of an underlying abstract space, as important
recent Russian and American work has shown. Others are inherently of more
special character.
In the present paper I venture to set forth certain unsolved problems of this type
which seem to me worthy of further study. The problems are arranged as much
as possible in order of decreasing abstractness. They are formulated in terms of
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positive conjectures in the belief that this procedure is most likely to stimulate
further research. In each case indications of the underlying reasons for these
conjectures are made. Some new definitions are given, as for instance that of
a “dynamical” flow in an abstract metric space; and some partial results are
deduced, as for instance the brief proof in the concluding section that the non-
existence of other periodic lunar orbits beside the fundamental variational orbit
and the allied retrograde orbit of G.W. Hill’s theory of the motion of the Moon
about the Earth would imply that all possible lunar orbits with the same constant
of Jacobi have the same mean angular advance of perigee per synodic revolution.

The summary opens rather differently. There Birkhoff gives a pathway for the devel-
opment of his ideas—he traces them from Poincaré, who first realized that the study of
dynamical systems led directly to problems in topology, on through the abstract ideas of E. H.
Moore—describing how these ideas fed into his own work.17 Although Moore deserved a
high billing, it was also a diplomatic move on Birkhoff’s part to be explicit about the con-
tribution of Moore, his former thesis advisor and first head of the University’s mathematics
department, who had died in 1932. In the manuscript, the reference to Moore, although
laudatory, is considerably abbreviated and consigned to a footnote.

Altogether there are 17 problems, the first ten are formulated in terms of abstract
spaces, the 11th is concerned with extensions of results of Karl Sundman on the three-body
problem to the motion of a gas. And the last six, which are concerned with n-dimensional
spaces, are of a topological nature. The paper is also divided up into sections which imposes
a useful classification on the problems. The manuscript also includes a “provocative form of
conclusion.” In the prelecture press release, Birkhoff referred to only ten problems without
listing them, so it is possible that he had originally intended to present only ten problems and
it was expanding the paper that led to the “close squeak” referred to in the letter to O’Connor
mentioned above.18 In what follows, the section headings and the problems themselves are
taken directly from the manuscript. Other material from the manuscript will be given in
quotation marks followed by a page number.

The first problem, a conjecture about the interrelationship between continuous and
discrete flows in an abstract space R, is precursored by three sections on continuous and
discrete flows, including an explanation of geodesic flow. As Birkhoff observed in a footnote,
the idea of using “this kind of abstract setting for a dynamical problem” did not originate with
him but in an article of 1933 by Hassler Whitney, one of Birkhoff’s research students [41].

17 Birkhoff felt especially grateful to Moore for impressing him “with the importance of the
abstract domain and for stimulating [him] on the abstract side.” Letter from Birkhoff to
Raymond Archibald, 5 April 1938. HUG 4213.4.5, Birkhoff Papers, Harvard University
Archives.

18 Another difference between the press release and the summary is that in the former Hassler
Whitney and Norbert Wiener are identified as American authors of recent work on abstract
dynamics while the latter refers simply to “American mathematicians.” University of
Chicago Development Campaigns and Anniversaries Records, Box 12, Folder 11.
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The idea is that in R, which is a compact metric space, a type of reduction of a continuous
flow to a discrete one may be effected by showing that there exists a surface of section in R

on which the flow can be studied. Each point in R represents a state of motion and as time
passes there is a steady flow of R into itself, with each point tracing out a “curve of motion,”
each curve representing a complete motion of the dynamical system [19, p. 598]. As Birkhoff
noted, he had already shown “in the n-dimensional case, and very recently Ambrose and
Kakutani had established in the abstract case, a kind of converse reduction of a continuous
flow to a discrete flow may be made, providing one is content to introduce discontinuous
flows” (p. 5). His hope was for a more complete result, and he felt certain that the conjecture
would be shown to hold. Since he did not give a citation for the Ambrose and Kakutani paper
which had been submitted for publication in 1941 and appeared in 1942 [2], it would appear
that he did not return to the manuscript in the years following the lecture apart from reporting
on its existence to Schmidt and Bermant.

Problem 1. Any (continuous) flow without equilibrium points in a compact metric space R

admits of a complete open surface of section † in R, on which the flow defines an extensibly-
discrete flow Q D �.P / obtained by following any point P of � to the first subsequent
point Q of † on the same stream line. Conversely, given any metric space † on which an
extensibly-discrete flow, Q D �.P /, is defined, then it is possible to imbed † in an isometric
compact metric space R and to define a continuous flow in R, so that † forms a complete
open surface of section for this flow, for which Q D �.P / in the related extensibly-discrete
flow.

Birkhoff next discussed recurrent motions and central motions, central motions
being those which recur infinitely often close to any particular state of the motion, or at
least have such motions in the infinitesimal vicinity of any state. Having observed that “all
the motions of a dynamical system will be central if and only if every molecule of the system
overlaps itself as time increases or decreases” (p. 9), he noted that in the classical case there
are many examples in which all the motions are central. And it was this that led him to ask
the analogous question of recurrent motions, i.e., “what are the circumstances such that all
the motions of a dynamical system will be recurrent?” (p. 10).

This last question provides the basis for Problems 2 and 3 in which Birkhoff conjec-
tured that all the motions of a continuous flow would be recurrent if and only if the flow may
be decomposed into a set of irreducible constituent flows which are “homogeneous,” i.e.,
such that the stream lines are topologically indistinguishable from one another. As an exam-
ple, he cited the two-body problem—two particles interacting gravitationally with no other
forces acting—as being of this type, providing the value of the energy constant is sufficiently
small, with the irreducible constituents being the individual periodic motions.

Problem 2. All the motions of a regionally transitive (discrete or continuous) flow in a
compact metric space R will be recurrent if and only if the flow is “homogeneous,” in the
sense that an automorphism of the flow exists (with possible modification of the definition
of the “time”) which takes an arbitrary point P into a second arbitrary point Q.
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Problem 3. All the motions of regionally transitive flows in a compact metric space R will
be recurrent if and only if the closest set of motions formed by any motion M and its limit
motions is homogeneous in the subspace RM of these motions [and] every minimal closed
component of the flow is homogeneous.

As contrasting illustrations, Birkhoff gave as examples the two-body problem in
which all the motions are periodic and the billiard ball problem which, “although ‘integrable’,
has a family of non-recurrent motions, namely those which pass infinitely often through the
two foci and are doubly asymptotic (homoclinic in the sense of Poincaré) to the major axis”
(p. 13).

Conservative flows. In ordinary dynamical systems, conservative flows are those with an
invariant volume integral, e.g., the flow of an incompressible liquid. Here Birkhoff con-
sidered the extension of conservative flows to the abstract case. By 1941 this had become
an active area of research and in the summary he named several Russian mathematicians
(Beboutov, Bogolyubov, Krylov, Stepanov) and American mathematicians (Halmos, Oxtoby,
Ulam, von Neumann, Wiener, Wintner) who had made important studies of such flows [19,

p. 599], although rather curiously he did not mention them in the manuscript.
In the fourth problem, which was preceded by a four-page introduction, Birkhoff

conjectured that if the abstract flow is so regular as to be “geodesic” then it will be con-
servative if all the motions are central, while in the fifth he conjectured that the recurrent
motions are necessarily everywhere densely distributed in the abstract space of a geodesic
conservative flow. As he pointed out, Poincaré’s recurrence theorem makes the latter con-
jecture a very natural one.19 However, he did not “expect the periodic motions to be always
everywhere dense in the conservative case or even in the case of a dynamical flow.” (p. 17).

Problem 4. A geodesic flow all of whose motions are central always admits an invariant
positive volume integral.

Problem 5. The recurrent motions are everywhere dense in any conservative flow, at least
if it be geodesic.

Ergodic theory and conservative flow. Birkhoff opened this section with a short discussion
relating to his own “individual ergodic theorem,” observing that the theorem implies “that for
conservative systems almost all motions have definite habits of recurrence with regard to any
measurable type of behaviour.” (p. 18). He also noted the priority of von Neumann’s “mean
ergodic theorem.”20 In the summary, he avoided any mention of ergodic theory but instead
used features of the billiard ball problem, such as the fact that in the long run the ball will be

19 Roughly speaking, Poincaré’s recurrence theorem says that if the flow is volume-preserving
then, at some point in the future, the system will return arbitrarily close to its initial state.
For a discussion of the theorem, see [4, pp. 86–87].

20 An account of the relationship between Birkhoff’s individual ergodic theorem and
von Neumann’s mean ergodic theorem, which also explains the confusing chronology of
publication, is given by J. D. Zund [45].
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on any designated part of the table a definite proportion of the time, in order to demonstrate
the significance of conservative flow. Problem 6 proposes a topological characterization of
conservative flows based on this fact of recurrence.

Problem 6. If a continuous flow in a compact metric space has the property that for any
open region of R, the exceptional sets for which a positive mean sojourn time � (the same in
both senses of the time) fails to exist are always of measure 0 with respect to some measureR

dP , then there exists necessarily at least one invariant integral
R

�dP .

Birkhoff also noted that “an important paper” by Oxtoby and Ulam containing ques-
tions “closely related” to Problem 6 was in the pipeline [36]. This paper, which Koopman
summarised as a “thorough and detailed study of the group of measure-preserving and mea-
surability preserving automorphisms (homeomorphisms into itself) in polyhedra, their met-
rical transitivity, equivalence, and the whole bearing of such questions on ergodic theory,”21

appeared in 1941, the absence of its publication details providing a further indication that
Birkhoff did not edit the manuscript in the years after it was written.

Discontinuous conservative flows. This section and its accompanying problem are on two
handwritten pages. These pages open with the words “Very recently” (p. 190) and a footnote
gives a full citation for a paper published by Ambrose in July 1941 [1], showing that these
pages were written either shortly before, or possibly soon after, the lecture was given. The
flows now considered are “measure-preserving flows which are 1–1 except over sets of mea-
sure 0 and carry measurable sets into measurable sets (in particular, sets of measure 0 into
sets of measure 0) and conserve a positive volume integral” (p. 190), and such flows are, as
Birkhoff noted, of particular interest from the point of view of probability, and in this context
he mentioned that they had recently been studied by von Neumann, Kakutani, Ambrose, and
Halmos. In the summary Wiener and Wintner are exchanged for Ambrose and Kakutani, and
there is no mention of probability.

Having established that the underlying space can be taken as a line segment of unit
length, and relaxed the condition of continuity on a conservative flow, Birkhoff proposed a
characterization of the invariants of the flow based on what he termed “packing coefficients.”
He explained the latter as follows: “Make the total �-measure 1 by choosing the total measure
as a unit. Select any n � 1 and consider all ways of decomposing a minimal metrically
transitive constituent into a measurable set † and its first n � 1 images under [a discrete flow]
T , say S1; : : : ; S .n�1/ in such a way that these sets are disjoint. To each such decomposition
there will be a measure of the complementary point set. We will call the lower bound of
these quantities the ‘nth packing fraction’ and denoted it by �n, and it is easy to prove that
the inequality �n � 1=n always holds.” (p. 1900).

Problem 7. Any such discontinuous conservative transformation T is completely character-
ized by its “spectrum,” determining the nature of the metrically transitive constituents, and
by the packing coefficients �1; �2; : : :, for every such constituent. These packing coefficients
may be taken arbitrarily except for the fact that n�n forms a decreasing sequence.

21 Mathematical Reviews M0005803.
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Dynamical flows. The next three problems, Problems 8–10, derive from Birkhoff’s attempt
to define abstractly a “dynamical flow” where he takes as his model Pfaffian systems,22 rather
than Hamiltonian systems of classical dynamics. However, this part of the manuscript is a
little tricky to follow as there are six handwritten pages inserted between two typescript pages
(pp. 21–22/23). Unlike the other handwritten pages, there is nothing to show exactly where
the text from these pages should be inserted. It is evident that wherever they are inserted
the typed text would need to be adjusted for the narrative to flow. The first five of these
pages provide the justification for a result he had deduced from the properties of his abstract
definition of a line integral, a result he needed for his definition of a continuous dynamical
flow which involves the existence of a line integral (in an abstract sense which he made
precise). The final handwritten page contains only Problem 8 (after which all subsequent
problems in the typescript were renumbered). It is notable that in the summary he remarked,
that “the crucial part of the characterization of a dynamical flow lay in the suitable definition
of a line integral in any abstract ‘geodesic space’ R”, and a few lines later observed that “the
question of an adequate characterization of a dynamical flow beyond the obvious properties
of conservativeness and continuity has been especially baffling” [19, p. 599], which suggests
that he returned to this part of the manuscript after he gave the lecture.

Problem 8. Any dynamical flow is necessarily conservative with reference to a completely
additive measure with positive measure on any open set.

In Problems 9 and 10, Birkhoff returned to the question of the denseness of periodic
motions, the question he had addressed in his Acta Mathematica paper of 1925. Now he
reformulated the question in an abstract setting with the added condition of stability. He
defined a periodic motion to be stable (topologically) “if there are other complete motions
in its "-neighborhood”, adding that a similar definition can be made for ‘stable’ recurrent
motions’, providing neighboring recurrent motions of the same minimal set are excluded
from consideration (p. 25). He defined a completely unstable flow as one in which there
are no stable periodic or recurrent motions, for example, geodesics on a closed surface of
negative curvature, and here he cited the well-known work of Hadamard (1898) and Morse
(1921, 1924).

Problem 9. In any regionally-transitive nonhomogeneous flow of dynamical type the peri-
odic motions are everywhere dense.

Problem 10.

(a) In a regionally transitive dynamical flow not of completely unstable type, the
stable periodic motions are everywhere dense, and the set of such motions is
dense on itself (i.e., in the infinitesimal neighborhood of any stable periodic
motion there exist infinitely many other stable periodic motions). Furthermore,

22 Birkhoff had first defined Pfaffian systems in his Colloquium Lectures of 1920, and later
considered them in [13] and in Dynamical Systems. They were brought to further promi-
nence by Lucien Feraud in an explanatory paper of 1930 [24].
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in the neighborhood of any stable recurrent motion there are similarly infinitely
many other stable periodic motions.

(b) In any regionally transitive dynamical flow of completely unstable type, which
is furthermore not homogeneous, the unstable periodic motions are everywhere
dense.

On a possible extension of some work of Sundman. Next Birkhoff asked for the general-
ization to a gas of certain remarkable results on the three-body problem produced in the early
years of the 20th century by the Finnish mathematical astronomer Karl Sundman. Birkhoff
was a strong advocate for Sundman’s theoretical “solution” to the three-body problem which,
due to its practical limitations, had met with a mixed reception.23 He had even gone as far
as to say that “the recent work of Sundman is one of the most remarkable contributions to
the problem of three bodies which has ever been made” [13, p. 260]. Of particular relevance
here are Sundman’s results concerning triple and binary collisions, namely that a triple colli-
sion can occur only if all three integrals of angular momentum are simultaneously zero, and
that the singularity at binary collision is of removable type. Birkhoff had already shown in
Dynamical Systems how the essence of Sundman’s argument can be used under other laws
of force and for a system of more than three bodies to establish that, with similar initial con-
ditions, a simultaneous near approach of the bodies cannot occur, hence the generalization
to a gas was a natural next step. The problem was formulated rather vaguely—indeed, in the
summary he admitted it was incomplete [19, p. 599]—but he chose to include it because it
provided “an interesting illustration of a dynamical flow in a kind of Euclidean space R of
infinitely many dimensions, intermediate in type between the flows in abstract metric space
and in n-dimensional Euclidean space” (p. 27).

Problem 11. To determine equations of state and initial conditions of a free bounded gas
such that the diameter of the gas can never be less than a specifiable d > 0 despite the fact
that such configurations are compatible with the known integrals.

Following on, Birkhoff now turned to problems relating to motions in n-dimensional
space.

A problem concerning central motions in n-dimensional space. Problem 12 is essen-
tially the first problem he presented in Berlin, and which was solved by Maier in 1946, now
extended to the n-dimensional case. On this occasion, Birkhoff used the notion of “wander-
ing motions” W0 of a space R, a notion he had introduced in Dynamical Systems, and which
here he described (none too clearly) as “those which can be embedded in a molecule which
never overlaps itself as time increases or decreases” (p. 27). When the wandering motions
are removed from R, there remains a closed subspace, M1 D R � W0, of lower dimension,
which can then be considered from the same point of view. Using this idea, Birkhoff formed
“a well-ordered set M D M0;M1; : : : , which is enumerable and terminates in the set of cen-

23 A detailed discussion of Sundman’s work on the three-body problem and its reception is
given in my article [6].
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tral motions Mc .” Emphasizing the fact that in the known cases the series contain at most n

terms, he proposed the following form of the problem:

Problem 12. To construct a continuous flow in a closed manifold of n > 2 dimensions for
which the well-ordered series M D M0; M1; M2; : : : leading to the central motions Mc

contains more than n and if possible an infinite number of terms.

A problem in the 3-dimensional case. Problem 13 was suggested by recent work of the
Hungarian mathematician Béla Kerékjártó on “regular” or nearly regular transformations
of 2-dimensional closed surfaces of arbitrary genus.24 Here Birkhoff conjectured that 3-
dimensional flows that are “regular” have one of only three different forms.

Problem 13. For an ordinary 3-dimensional manifold R3, to show that the only regular
discrete flows are topologically equivalent to one of the following:

(1) R3, a 3-dimensional torus with a transformation

�1 D �1 C ˛1; �2 D �2 C ˛2; �3 D �3 C ˛3;

with �1; �2; �3 being angular coordinates for the torus.

(2) R3, the product of a surface of sphere and circle, and the transformation of each
of these a pure rotation.

(3) R3, a 3-dimensional hypersphere and the transformation of a rigid rotation of
this sphere.

A problem in the 2-dimensional case. Birkhoff now moved to problems connected with
analytic transformations, the ideas emerging from the first of his papers on the restricted
three-body problem [21]. In the first of these problems, he conjectured that a particular trans-
formation of the surface of a sphere into itself with two fixed points, which is such that
all iterations of the transformation produce no other fixed points, is a pure rotation when
considered topologically.

Problem 14. A 1–1 direct analytic, conservative transformation T of the surface of a sphere
into itself with two and only two fixpoints P , Q for T and all its iterations is topologically
equivalent to a pure rotation of the sphere about an axis through an angle incommensurable
with 2� .

From this he was led to propose the following analogous problem for a plane circular
ring:

Problem 15. A 1–1 direct analytic conservative transformation of a circular ring into itself,
in which two boundaries are invariant and which possess no periodic points is topologically
equivalent to a rotation of the ring through an angle ˛ incommensurable with 2� .

24 Birkhoff was well acquainted with Kerékjártó. In 1925 he had supported his promotion in
Szeged, and in 1928 he had visited Szeged to lecture on Poincaré’s last geometric theorem.
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A conjectural supplement to Poincaré’s last geometric theorem. In the final two prob-
lems Birkhoff returned again to Poincaré’s last geometric theorem. Unsurprisingly, he
thought these two problems, since they express conjectures which in a sense represent a
complement to the theorem, were the ones likely to generate the most interest.

In Problem 16, Birkhoff conjectured that the theorem would hold in the case when
the points on the two concentric circles Ca and Cb , are advanced by the same angular distance
(in contrast to the original theorem where the points are advanced by distinct distances), that
is, their rotation numbers ˛ are equal, provided that some nearby points of the ring become
separated widely in an angular sense when the transformation T is repeated sufficiently often,
as happens when the rotation numbers are unequal.

Problem 16. Let T be a 1–1 continuous discrete conservative transformation T of a circular
ring into itself which leaves the two circular boundaries individually invariant, with equal
rotation numbers ˛ along these boundaries. Then if nearby pairs of points exist which sep-
arate indefinitely in an angular sense under indefinite iteration of T , there will necessarily
exist periodic points.

This was followed by a conjecture on the partial converse, the case when the
common rotation number ˛ is not a rational multiple of 2� .

Problem 17. Under the same hypotheses concerning T as in the first part of Problem 16, let
us further require only that for no preliminary deformation of the ring in itself can the angular
deviation of all pairs of points less than 2� apart in angular sense be made to remain less
than 2� C " under all iterations of T (" arbitrary). There will then exist periodic points on
the ring. Furthermore, if ˛ and ˛ denote the lower and upper bounds of the rates of angular
advance for such periodic point groups then we have ˛ < ˛ and ˛ � ˛ � ˛ and, for any
relatively prime integers m and n > 0 such that

˛ < 2
m

n
� < ˛;

there exist at least two periodic point groups of n points whose angular coordinates increase
by 2m� under the nth power of T .

Birkhoff then considered the particular case when the given transformation can be
expressed as the product of two involutory transformations, showing that in this case the first
part of the conjecture is true.

Application to the restricted problem of three bodies. In the final part of the paper
Birkhoff applied the above result to the planar restricted three-body problem, the version of
the problem treated in the 1870s by the American mathematical astronomer George William
Hill in his work on the lunar theory—work which had famously inspired Poincaré—giving
the differential equations as Hill had done (p. 33):

d 2x

dt2
� 2
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dt
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@�

@x
;

d 2y
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� 2
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;
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together with the equation for the Jacobian constant C ,�
dx

dt

�2

C

�
dy

dt

�2

D 2� � C:

He described the “actual case” of the Sun–Earth–Moon problem in which the Earth is con-
sidered to lie at the origin in the x; y plane, the Sun is at infinity in the direction of the
positive x-axis and the “infinitesimal” Moon is rotating in the x; y plane at unit angular
velocity with the Earth and the Sun, where the positive constant C0 is such that the Moon
can never escape from the closed region 2� D C about the Earth, symmetric in x D 0 and
y D 0. By considering values of C greater than or equal to C0, and applying the result from
the previous section, Birkhoff was led to the result he mentioned in the introduction to the
manuscript and here described as a “provocative form of conclusion” (p. 35):

Assuming that a surface of section of the type stated exists for C D C0, the non-
existence for C D C0 of doubly symmetric periodic orbits other than the funda-
mental variational periodic orbit of Hill and the corresponding retrograde orbit
would imply that all possible lunar orbits whatsoever with C D C0 have exactly
the same mean rate of angular advance of perigee per synodic revolution.

He further remarked in a footnote that, although the figures of the computed orbits show the
initial assumption is valid, “a rigorous and mathematical proof might be a complicated and
tedious matter!” In the summary he mentioned that he had “pointed out how the absence
of infinitely many periodic orbits would indicate that a new qualitative integral exists, in
addition to the usual analytic integral of Jacobi” [19, p. 600], but this remark was omitted
from the manuscript.

Epilogue. The manuscript ended with a very short epilogue in which Birkhoff expressed
the hope that his problems would “accelerate further advances,” but admitted that he thought
most of them were likely to “present difficulties which may be difficult to surmount” (p. 35).

3. Conclusion

So far little evidence has come to light of mathematicians responding directly to
the summary of Birkhoff’s lecture. Stanislaw Ulam, the Polish mathematician and emigré
to the United States,25 wrote to Birkhoff in November of 1941 to say that he had heard
various reports of Birkhoff’s “extremely interesting talk” and asked him for a copy of the
summary.26 And in the following January, Shizo Kakutani thanked Birkhoff for a reprint of

25 On Birkhoff’s suggestion, Ulam had spent time at Harvard during 1936–1939. Later in 1939
Ulam left Poland for good in advance of the German invasion, and in 1940 was appointed
to one of Birkhoff’s former institutions, the University of Wisconsin-Madison, with the
support of Birkhoff.

26 Letter from Ulam to Birkhoff, 25 November 1941. HUG 4213.2.2, Birkhoff Papers, Harvard
University Archives.
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the summary and said that he was “hoping to solve one of the problems.”27 But Kakutani did
not say which one and he does not appear to have published on any of them. Had Birkhoff’s
manuscript been published, the situation might have been rather different. For it is only in
the manuscript that the problems are set out in full and put formally into their mathematical
context. The summary, being meant for a general audience, focusses on the historical rather
than the mathematical detail. Indeed, the editor of Science, the psychologist James McKeen
Cattell, told Birkhoff that he was “anxious to obtain papers on mathematical subjects” but
that there were difficulties due to “the fact that the English used by mathematicians is not
always understood by other scientific men,” and so “complicated mathematical equations
that only mathematicians can understand” must be avoided.28 Furthermore, the fact that the
summary was published in Science and not in a mathematical journal, and that it appeared
during the War, meant it was unlikely to have had high visibility amongst mathematicians,
particularly in Europe.

The manuscript is not an easy read and although Birkhoff makes several references
to material in Dynamical Systems for purposes of clarification not everyone found the latter
easy reading either. Walter Gottschalk, who became one of the leading exponents of topo-
logical dynamics, had this to say:

Somewhere I read that G.D. Birkhoff once said that if he thought mathematics
exposition to be important, he would be the world’s best expositor. Birkhoff was
certainly not the world’s best expositor and indeed he came close to the extremum
in the other direction. I think this attitude had an important delaying effect on
the initial development of topological dynamics. In his American Mathematical
Society Colloquium volume [20], Birkhoff included a discussion of the topological
properties of continuous flows determined by a system of first order ordinary dif-
ferential equations. … The style of writing he adopted was so inadequate in clarity
and precision that almost any beginning reader had to be discouraged from con-
tinuing. It was not at all clear what the theorems were and the offered proofs were
largely suggestive intuitive discussions [26].

It must also be said that Gottschalk himself was not always an easy read either.29 Never-
theless, Gottschalk’s criticisms did chime with the Russian view. In 2002 George Lorentz

27 Letter from Kakutani to Birkhoff, 26 January 1942. HUG 4213.2.2, Birkhoff Papers, Har-
vard University Archives.

28 Letters from McKeen Cattell to Birkhoff, 5 September 1941 and 8 October 1941. HUG
4213.2, Birkhoff Papers, Harvard University Archives.

29 Paul Halmos, when reviewing Topological Dynamics [27], the book Gottschalk wrote
together with his thesis supervisor Gustav Hedlund, remarked: “The chief fault of the book
is its style. The presentation is in the brutal Landau manner, definition, theorem, proof, and
remark following each other in relentless succession. The omission of unnecessary verbiage
is carried to the extent that no motivation is given for the concepts and the theorems, and
there is a paucity of illuminating examples.” And he ended his review: “Conclusion: the
book is a mine of information, but you sure have to dig for it.” [29].
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recalled that Andrey Markov Jr., one of the editors of the original Russian edition of Dynam-
ical Systems, “made sarcastic corrections of some of its errors” [32, p. 196].30 Although in their
preface the Russian editors urge a critical reading of the proofs—they don’t think they have
found all the mistakes—they do acknowledge the correctness of the theorems. Even Jürgen
Moser in the introduction to the 1966 English edition conceded that “to the modern reader
the style of [the] book may appear less formal and rigorous than it is now customary” while
fully acknowledging its inspirational role [20, p. iii]. Thus had Birkhoff’s manuscript been
published when he had hoped, it still may have taken some time before mathematicians were
able to rise to the challenges laid down by his problems. Whether Birkhoff was right in his
assessment of the direction of travel has yet to be ascertained and further research remains
to be done in order to see the extent to which his problems have been tackled, if indeed they
have, and to what effect.
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1. Introduction

Today mathematics constitutes an integral part of our lives on a variety of levels.
For those present at this conference (and many others), the discipline of mathematics is their
chosen profession which is subdivided in a multitude of individual areas. In addition, scien-
tists other than those of the mathematical sciences also use its concepts and methods in their
professional lives whenever they work with data that can be represented numerically. Thus,
the education in these sciences often includes mathematical training that is specifically tai-
lored to their needs. Furthermore, mathematics also plays an important role in everybody’s
daily life using numerical practices and mathematical measuring in many contexts, for exam-
ple, in structuring the day by means of measuring time or by quantifying the many things
like items of food or other objects. Although, as many mathematicians have encountered
from nonmathematicians when asked what they do for a living, some seem to take pride
in “always having been bad at mathematics.” But even for these people, it would be hard
to imagine them getting by without it. The unenthusiastic statement thus may less reflect
on the subject itself than on the methods used in teaching it. Several attempts to present
the appeal of mathematics to a general audience have succeeded, for example, the volume
The Mathematical Experience (1981) by Philip Davis and Reuben Hersh [4] which won the
National Book Award in 1983. These days, mathematics influences various areas of our lives
as has been demonstrated with numerous examples by the Cambridge mathematician Tom
Körner in his book The Pleasures of Counting (1996) [8]. While the examples chosen by Tom
Körner mostly originate from a more modern context the history of mathematics has been
traced back to begin as early as in the 3rd millennium BCE with the invention of writing in
Egypt and Mesopotamia.

My own research has always focused on ancient Egyptian mathematics, which can
provoke an ambivalent reaction from historians of mathematics. On the one hand, Egypt
(along with Mesopotamia) provides one of the earliest types of evidence for mathematical
concepts and techniques in history. On the other hand, ancient Egyptian mathematics has
been judged by some of its more recent readers as lagging behind its potential, and the occa-
sional judgment went as far as blaming their clumsy mathematical techniques for a lack of
development in other areas that would have depended on them. While the history of math-
ematics was initially often performed as a judgmental assessment of mathematical sources
read from a modern point of view, (most) historians and (most) mathematicians alike have
since realized that it is much more rewarding to attempt learning about mathematical con-
cepts of a historic period as they were used and practiced in their time. It may be trivial
to solve an ancient mathematical problem with a modern mathematical toolbox, and thus
equally boring. However, to learn how this problem was thought of in its time and tackled
with the then available tools is as complex as it is rewarding. This has consequences for the
methodology deemed appropriate in the history of mathematics. It also has consequences
for the evaluation of ancient mathematical cultures. While this has been the focus of some
of my earlier work [6], this contribution has a different aim, trying to bridge gaps between
periods and cultures. Because then as today the practice of mathematics has had multiple
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aspects as described in the initial sentences and it is through an analysis of these aspects that
parallels as well as differences between ancient and modern mathematics can be seen. My
contribution will look at some of these aspects from the mathematics of ancient Egypt.

2. Invention of number system and its early uses

The earliest evidence we have for ancient Egyptian numbers comes from a grave-
yard in Abydos. The stratification of society of ancient Egypt can be traced by the sizes and
contents of tombs in graveyards. Cemetery U at Abydos, situated to the north of the Early
Dynastic royal tombs, contains approximately 600 tombs and covers the entire Predynastic
period; see Hartung [5, p. 317]. The tomb Uj of that cemetery has become rather well known in
Egyptology for the about 100 incised tags that were found within it. The incisions were either
pictograms resembling later hieroglyphic signs or groups of strokes or a coiled rope resem-
bling later Egyptian number notation. All of the tags had a hole, which points to them having
been attached to some sort of goods about which they would provide information of some
kind. They are considered the first evidence of writing from ancient Egypt; see Baines [1].
Despite the difficulties of interpreting these earliest sources, the tags may point to a parallel
to Mesopotamia in the invention of writing and the number system, where this was prompted
by administrative needs; see Robson [15]. In case of the tags found in the tomb Uj, it is pos-
sible to interpret them as some sort of administrative practice denoting, for instance, owner
or provenance and quantities, a practice that was presumably first used in daily life and then
as well in the context of burials. At this point it is noteworthy that as in Mesopotamia, the
first evidence of writing from ancient Egypt includes as well the first evidence of numbers.

Evidence from the Old Kingdom indicates that the use of what we think of as math-
ematics was located in the context of administration. While there are no mathematical texts
from this period in ancient Egypt, two archives of that time show that numbers and metro-
logical units were used to audit resources of larger structures like temples; see the work of
Posener-Kriéger and Demichelis [12,13]. Later evidence points to an ongoing tradition of this
administrative context for the practice and development of mathematics. The Lahun Papyri,
the largest papyri find from the Middle Kingdom, include a large number of accounts; see
Collier and Quirke [3]. Evidence from all periods of ancient Egypt indicates that numbers,
metrology, and mathematical practices were used to monitor and audit resources of various
kinds (goods as well as manpower). The Egyptian systems of numeration and metrologies
constitute the basis of this administrative oversight.

However, even then there were further uses of numbers. An early object that displays
the Egyptian number system is the ritual mace-head of king Narmer, the last king of dynasty 0
(c. 3000 BCE). The decoration of the mace-head includes the picture of a tribute of 400,000
oxen, 1,422,000 smaller cattle, and 120,000 prisoners that were presented to king Narmer.
The mace-head illustrates that the number system with its symbols to indicate powers of ten
up to one million was in use as early as in dynasty 0. The large numbers indicated on the
mace-head likely do not indicate quantities of an actual tribute, but were probably meant to
represent the power of this king through their size. These first early examples of numbers
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both originate from a royal context. The restricted use of writing and numbers in the service
of the Egyptian king and his institutions is another characteristic that has to be kept in mind
when analyzing the mathematics of ancient Egypt.

In the control of the king’s resources, a professional group emerged whose most
common name denotes its crucial skill: scribes. Scribes were active in the administration.
The complex system of responsibilities is reflected in a variety of individual titles that are
attested since the Old Kingdom; see Jones [7]. The basic requirement for the profession of
scribe was the ability to read and write. It can be assumed that this was passed down from
father to son. Likewise, it can be assumed that “writing” included not only the handling
of script but also the handling of numbers. The following sections of this paper will out-
line the use of mathematics by scribes in the Old, Middle, and New Kingdoms as well as
mathematical applications in Egyptian culture beyond the realm of administration.

3. The Old Kingdom: Early evidence of mathematical

concepts and practices

The first period that is recognized as a period of remarkable cultural achievements
in ancient Egypt is the Old Kingdom (c. 2686–2160 BCE). During the Old Kingdom, Egyp-
tian kings were buried in pyramids. Several kings of the 5th Dynasty chose an area northwest
of the modern village of Abusir for their pyramids. In the late 19th century, papyri were pur-
chased by several museums that came from the administration of the cult for one of these
kings. Taken together, these papyri constitute the largest papyrus find from the Old Kingdom.
The Abusir papyri contain, among other things, accounts and papyri from the cult operations
that took place there, such as service lists of priests, ration lists, lists of sacrifices for temples,
and others. They are the oldest preserved papyri that are extant. They also contain informa-
tion about the further development of Egyptian mathematics in the form of the creation of
metrological systems. The ration lists contain quantities of grain, meat, and beer, each given
in the corresponding units. Also attested in these papyri is the use of tables, which are recog-
nizable as such not only by tabular arrangement of entries, but also by formatting with rows
and columns marked by line and column headings. From these texts we obtain information
about the activity of the scribes who, at temples or at the royal court, prepared these accounts
and lists and through their work performed the administration of the empire, its resources
and especially its goods produced at the lower levels.

Further information about these persons, who were responsible for the control of
important parts of the Egyptian productions, for example, of bread and beer, by means of
mathematical techniques, can be obtained from their tombs. There we find representations
of the production processes, such as the bakery and brewery, in which the scribes overseeing
them are a central part. For example, in the tomb of Nianchchnum and Chnumhotep, the
production of bread and beer is depicted from the allocation of the grain to the delivery
of the products; see Moussa and Altenmüller [10, plates 23, 26, 34–35]. When the grain is
allotted, it is shown how one person measures the flour, another counts the amount of flour
that is taken, a scribe keeps a record of it, and one person receives it. This is followed by the
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depiction of the production of bread and beer from the flour. Finally, the delivered products
are measured and noted by a scribe. In the depiction of the delivery, the bakers are shown
bringing the products, as well as an auditing process, the result of which is noted down by a
scribe.

This detailed audit of resources is also evident in the later mathematical texts of
the Middle Kingdom. In these texts, a large number of problems deal with the management
and control of resources; in particular, the number of bread-and-beer-problems, which at 19
accounts for slightly less than 1/5 of all mathematical problems, is striking. Despite the lack
of evidence in form of mathematical texts of the Old Kingdom, the papyri and representation
of daily life practices provide ample evidence for the further advancing of mathematics in
ancient Egypt. Metrological systems for a variety of goods were created and used and thus
a mathematical record of resources established.

Apart from the depictions of scribes in the context of executing numerical pro-
cesses, the tombs of high-ranking officials also contain the so-called autobiographies of
the tomb-owner. Ancient Egyptian autobiographies differ fundamentally from modern auto-
biographies. An ancient Egyptian autobiography refers to a text written in the 1st person
singular describing the career and proper actions of the tomb’s owner. It served to vindicate
the tomb owner and represented a guarantee that he would pass the judgment of the dead by
proving that he had lived his life according to the moral principles of ancient Egypt. Con-
sequently, no negative events appear in the autobiography, the path of life is described as
a continuous ascent to ever new responsibilities. In comparison to modern autobiography,
personal areas of life, such as family and the expression of emotions, are missing.

Egyptian autobiographies are attested throughout pharaonic history and allow us to
trace changes in the perception and self-assessment of the scribes’ profession. By describing
the professional activities of scribes, they also provide evidence for the role of mathematics
in the life of a scribe. For the Old Kingdom, the autobiography of Weni from the 6th Dynasty
is one of the most remarkable examples—not least because Weni served successively under
three pharaohs, Teti, Pepi I, and Merenre. Weni is thought to have been active for a period of
70 years, his career must have begun in his youth. The text of his autobiography was written
in carefully executed hieroglyphics on a stone slab that once formed the wall of a one-room
burial chapel in Abydos (for a translation cf. Lichtheim [9, pp. 18–23]). The autobiography of
Weni lists services performed by Weni for the king and rewards that Weni received in return.
These rewards were either in the form of material goods or in the form of a promotion to a
higher position. Particular emphasis is placed on activities in which Weni acted entirely on
his own—demonstrating a special form of trust in him by the king. In this autobiography,
explicit reference is made at least once to mathematical activities. Weni says of himself that
he counted everything that could be counted in Upper Egypt twice for the king and that he
counted every activity twice that had to be done for the Upper Egyptian residence as well.
Through their accounting, the scribes monitored all kinds of resources for their king which
placed themselves in a position of power. During the Old Kingdom, the autobiographies
document that the level of success of a scribe was measured by his proximity to the king
whom he served.
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Summing up, the evidence from the Old Kingdom indicates the proliferation of
using mathematics in the organization of resources and the evolution of a professional group
that used mathematical practices. Some members of that group held exalted positions within
Egyptian society as is indicated by the size and endowment of their tombs.

During the First Intermediate Period (2160–2055 BCE), the central rule of Egypt
by a single king broke down. This breakdown seems to have been affected by several causes,
which taken together could not be overcome by the former royal authority. The Egyptian liter-
ature of the following Middle Kingdom successfully attempted to reestablish royal authority
by presenting how the new kings had overcome this dark age and its difficulties. The descrip-
tion of the First Intermediate Period given from a later royal point of view has led Egyptol-
ogists initially to assess this period as a dark one, associated with social and political insta-
bilities, an assessment that probably holds for some years of the First Intermediate Period.
Its beginning, with famines caused by climatic changes and the failure of the former king to
maintain control over all of Egypt, must have been a drastic change for the Egyptian popu-
lation. However, the autobiographies of some local nomarchs indicate that these problems
were then mastered. During the First Intermediate Period, while the central administrative
framework was lacking, the individual nomarchs presumably continued their administrative
roles towards the population of their towns or regions. The individual success of a nomarch,
as it is expressed in the autobiographies, was measured through his ability to ensure social
and economic stability within his own region and through his conduct towards the weaker
members of society. In the work of an official, mathematical knowledge must have played an
important role in order to assess (for example) the available grain rations. Using this knowl-
edge, however, was no longer perceived as a service to the king. Instead, the nomarchs saw
themselves as installed through the power of the gods.

4. The discipline of mathematics in the Middle Kingdom

(and after)

As is well known, several papyri about mathematics are extant from the Middle
Kingdom (c. 2055–1650 BCE) and the Second Intermediate Period (c. 1650–1550 BCE).
The most famous of them are the Rhind Mathematical Papyrus [11] and the Moscow Mathe-
matical Papyrus [16]. The Rhind papyrus, named after Alexander Henry Rhind, the Scottish
lawyer who purchased the text, is kept today in London in the British Museum. The Moscow
Mathematical Papyrus is named after the city of its current location in the Pushkin State
Museum of Fine Arts.

Their initial appearance at this point in time may, of course, be due to the haphazard
circumstances of preservation. However, they may also reflect the conscious attempt of the
Middle Kingdom rulers to reestablish control over administrative structures that they had
lost during the First Intermediate Period. Egyptian mathematical texts may contain math-
ematical problems and their solutions and mathematical tables used for fraction reckoning
and conversion of measures. The Rhind Mathematical Papyrus, being in two pieces, has the
inventory numbers BM 10057 and BM 10058. BM 10057 measures 295.5 cm by 32 cm,
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BM 10058 199.5 cm by 32 cm. The gap between both pieces is assumed to be approximately
18 cm. The Rhind Mathematical Papyrus provides a corpus of some 70 problems and several
tables. Most of the problems are grouped together according to their content.

The Moscow Mathematical Papyrus is the second largest extant source text. While
its total length is approximately 544 cm, its height is only 8 cm. It consists of one big piece
and nine little fragments. The Moscow Papyrus contains 25 problems, of which the first three
are too damaged to determine more than a probable type of problem. In addition, unlike the
problems of the Rhind Papyrus, those of the Moscow papyrus were not arranged in groups of
problems according to their content but seem to be written down in no apparent order. The
Moscow papyrus also holds two duplicate problems in numbers 8 (identical with problem
no. 5) and 13 (identical with problem no. 9). However, among the problems of the Moscow
papyrus are two of the most interesting for historians of mathematics, problem no. 10 about
the area of a curved surface and problem no. 14 about the volume of a truncated pyramid.

Egyptian mathematical problem texts are written in a distinct style: A problem text
begins by stating a mathematical problem (title). After the type of problem is announced,
some specific data in the form of numerical values are given, thus specifying the problem to
one concrete instance or object. This is followed by instructions (the procedure) for its solu-
tion. Title, and specifications of the problem and the following instructions are expressed in
prose, using no mathematical symbolism. The title (and other parts of the text) may be accen-
tuated by the use of red ink. Each instruction usually consists of one arithmetic operation
(addition, subtraction, multiplication, division, halving, squaring, extraction of the square
root, calculation of the inverse of a number) and the result of it is given. The instructions
always use the specific numerical values assigned to the problem. Abstract formulas, or equa-
tions with variables did not exist. This style, which is also used in Mesopotamian problem
texts, has been characterized by Jim Ritter as rhetoric, numeric, and algorithmic [14, p. 44].

Historiographic assessment of Egyptian mathematics has followed two paths so far,
first the description of the mathematics found in these texts by means of modern mathemat-
ical terminology. In this line of inquiry, Egypt was praised to provide very early evidence
for “algebraic equations” and other early mathematical knowledge, like that of calculat-
ing the area of certain geometric shapes. In comparison with contemporary evidence from
Mesopotamia, however, it fell short and, compared with later evidence from ancient Greece,
it was lacking the feature of general mathematical theorems and their proofs. The second,
more sophisticated line of inquiry of research on ancient Egyptian (and Mesopotamian)
mathematics attempts to understand mathematical structures within the source texts, e.g.,
by assessing and comparing the procedures used in solving mathematical problems. Again,
Mesopotamia has fared somewhat better than Egypt, which may, however, be the result of
the very different quantities of sources available. This line of inquiry is not yet exhausted at
this point.

The contents of the problems enforce the impression that the context of ancient
Egyptian mathematics remained within the area of administration. However, while most of
the problems can be understood as mathematical solutions to actual administrative tasks, sev-
eral problems point to an awareness of mathematical knowledge as such, for example, prob-
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lem 79 of the Rhind Papyrus that asks to compute the total of a number of items comprised of
a house and cats, mice and cereal found within. Likewise, the phrasing of problem 67 of the
Rhind Papyrus, ostensibly computing the produce of a herdsman, points to the existence of a
different type of mathematical setting, comparable with so-called recreational mathematics.

Due to the fragmentary state of preservation, only two titles of mathematical papyri
are known. Of these two, one fits the assessment of mathematics as a tool in administration.
Fragment UC32162 of the Lahun Mathematical Papyri contains fragments of two problems,
a calculation of areas and a calculation of the produce of a fowler. Before the text of these
problems a title reading “[Method] of calculating the matters of accounting” is extant. The
other title is found at the beginning of the Rhind Mathematical Papyrus, and reads “Method
of calculating for inquiring into nature, and for knowing all that exists, [every] mystery,
[…] every secret” which seems to point to an appreciation of mathematical knowledge that
exceeds its simple utility in administration.

Thus, while the disciplinary context of mathematics in ancient Egypt remains within
administration, the recognition that its application may be wider than the accounting of
resources is indicated by the content and title of the Rhind Papyrus. Sources from later peri-
ods provide examples of these further applications.

5. Further uses of mathematical concepts and practices

in ancient Egypt

After the Second Intermediate Period there is a lack of sources as far as mathemati-
cal texts are concerned. However, mathematics still features quite prominently in the lives of
the scribes as literary texts indicate. Instead of school books of individual subjects, a variety
of texts, which were presumably circulated among New Kingdom scribes, is extant. They
include compositions describing the superiority of the scribal profession over any other pro-
fession, eulogies to scribal teachers, and model letters. This corpus of texts is referred to
as the Late Egyptian Miscellanies. At least some of these texts include references to math-
ematical practices. The theme of scribal superiority above all other professions is the topic
of the following excerpt, section 4,2–5,7 of Papyrus Lansing, which was titled “All callings
are bad except that of the scribe” by its first translator, Ricardo Caminos [2, pp. 384–385].
Reference to scribal work is made twice within this section, first when describing how the
profit of the merchants is taken away by the tax-people (scribes!), and again at the end of
the passage when the profession of the scribe is compared to the aforementioned profes-
sions: “But the scribe, it is he that reckons the produce of all those.” Both of these references
are with respect to the mathematical abilities of the scribe, who has to calculate the taxes
of the merchants before carrying them off and who also calculates the output of the other
professions, presumably to determine their taxes. These references provide evidence for the
ongoing use of mathematics in administration as well as the gains that those proficient in it
were to expect. Likewise, mathematics features in the text of Papyrus Anastasi I, a fictional
letter from the context of a learned debate between two scribes. The debate includes a set of
mathematical problems: the calculation of bricks needed to construct a ramp; the number of
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workers needed to transport an obelisk; the number of workers needed to move sand when
a colossal statue has to be erected in a given time; and the calculation of rations for a mil-
itary excursion. Although these problems are phrased like their earlier counterparts of the
mathematical texts, the numerical information given in Papyrus Anastasi I does not suffice to
actually solve these problems. Their intention may have been to remind the numerate reader
of his mathematical education. To us, the text is a source that provides us with an idea of the
variety of numerate tasks that a scribe had to master. In addition, it also informs us about
areas of their profession that scribes thought of as meaningful and valuable. Thus, although
there is practically no evidence for mathematical texts, administrative documents and evi-
dence from literary texts leave no doubt that mathematics continued to play an important
role in the scribal profession during the New Kingdom.

In addition, by this time mathematics had also acquired another function in ancient
Egyptian society. Not only did it provide the means to perform administrative tasks, but it did
so in a way that was considered to fulfill the requirements of acting according to the Egyp-
tian moral code. The normative framework of this moral code is expressed by the Egyptian
term Maat. This term comprises the idea, that there is a certain perfect order of the cosmos
and everything in it. Therefore, the term Maat is closely linked or may express ideas of
truth, order and justice. From the idea of a perfect order of the cosmos then follow certain
codes of conduct to which every Egyptian was supposed to adhere in his or her daily life.
For some literate members of Egyptian society, the respective rules were explicitly stated
in a genre of ancient Egyptian literature called teachings or instructions. Extant Teachings
(with settings from the Old Kingdom on) provide examples for scribes (Loyalist Teaching,
Teaching of Khety, Instruction of Any and Instruction of Amenemope), viziers (Instruction
addressed to Kagemni and Teaching of the Vizier Ptahhotep), princes (Instruction of Prince
Hardjedef ) or even kings (Teaching for KingMerikare, Teaching of King Amenemhat). From
the four examples of teachings addressed to scribes, The Teaching of Amenemope, includes
several references to mathematics beginning with the introduction of its fictional author
Amenemope, which identifies him as the person who controls the measuring of agricul-
tural affairs including the registration of land and audit of the vessels used to measure grain.
The authority of the scribe, formally provided by his being in the service of the king, de facto
originates from his numerical and metrological expertise, which enable him to execute the
tasks mentioned in his introduction. Further references to numerical and metrological duties
occur throughout the following 30 chapters of instructions. It is explicitly mentioned that a
scribe must not “falsify the temple rations” (Chapter 5), “move the markers on the borders of
fields, or shift the position of the measuring-cord,” “be greedy for a cubit of land, or encroach
on the boundaries of a widow” (Chapter 6), “move the scales or alter the weights, or diminish
the fractions of the measure,” “desire a measure of the fields, or neglect those of the treasury,”
“make for himself deficient weights” (Chapter 16), “disguise the measure, so as to falsify its
fractions,” and “force it (the measure) to overflow, or let its belly be empty” (Chapter 17).
The teaching illustrates, on the one hand, the role that was by now assigned to mathemat-
ics, i.e., to provide justice, and, on the other hand, it indicates the awareness that consisted
in a dishonest scribe who would falsify mathematical results. In depictions of metrological
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practices and administrative texts that document them, this awareness is also reflected, since
it seems to have been the rule that there was rarely a single scribe entrusted with measuring
and recording the respective results, but usually a group of scribes who would then check
each other’s work. In the context of this ensuring of justice, it is noteworthy that the issue
of setting numerical values, e.g., the amounts of produce that were expected of a worker, is
never discussed nor addressed explicitly. The king was simply expected to execute his power
according to the rules of Maat.

Mathematical practices also were used in another context that provides evidence for
the concurrence of mathematics and justice in ancient Egypt, namely the judgement of the
dead. In order to prove worthy for the afterlife, the deceased had to pass judgement of his way
of life. In order to be successful, the deceased first had to recite sins that he did not commit
during his lifetime. Then his heart was weighed on a balance against a feather, a symbol of
the goddess Maat. If the balance showed equilibrium between the heart and the feather, the
judgement was passed successfully and the dead would be presented to Osiris. It was the
mathematical operation of weighing that ensured a just judgement of the deceased.

6. Conclusion

From its first beginnings in Egypt and Mesopotamia, mathematics as a discipline
has made immense progress, the history of which is traced in the history of mathematics. If
this is done in a historically correct way, it can provide fascinating glimpses into a variety
of mathematical cultures. At the same time, mathematics has at all times remained a key
element in our daily lives. The two aspects have always been intertwined.

In using mathematics for daily life purposes, the aspect of justice and reliability are
key characteristics that can be demonstrated as early as in ancient Egypt, and presumably
ever since. However, as history and especially the crisis of recent years indicate, using math-
ematics does not in itself guarantee success. Ancient Egyptian sources indicate an awareness
of the potential weaknesses of measuring on an abstract level (as seen in the teachings) as
well as in practice (as seen by the depiction of several scribes that are meant to perform
the measuring and thus are meant to check each other). The success of mathematical prac-
tice therefore depended on two aspects, the quality of a mathematical technique that was
developed to solve a given problem and the quality of its execution by its practitioners.
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discovery of calculus
in India
K. Ramasubramanian

Abstract

Weaving through the emergence and convergence of various mathematical ideas that
led towards the discovery of calculus in India provides an enthralling experience for afi-
cionados of mathematics and its diverse history. This article attempts to briefly capture
some of the milestones in the journey made by Indian mathematicians through two eras
that paved the way for the discovery of infinite series for � and some of the trigonometric
functions in India around the middle of the 14th century. In the first part we shall discuss
the developments during what may be called the classical period, starting with the work of
Āryabhaṭa (c. 499 CE) and extending up to the work Nārāyaṇa Paṇḍita (c. 1350). The work
of the Kerala School starting with Mādhava of Saṅgamagrāma (c. 1340), which has a more
direct bearing on calculus, will be dealt with in the second part. The third part recounts
the story of the 19th century European discovery of infinite series in India which seems to
have struck a wrong note among the targeted audience in Europe with a serious cascading
effect.
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1. Introduction

Couched in sublime poetry in a variety of rhythmic meters and codified in the
classical Sanskrit language, a journey through the history of mathematics in India could
be extremely fascinating and at the same time quite challenging too. The journey would
indeed be highly enriching to those who have mastered the language and understood the
subtlety of expressions and figures of speech employed in it. However, for those untrained
in the nuances of such a knowledge system, it would be difficult to appreciate the beauti-
ful blend of mathematics and poetry—usually characterized with brevity without sacrificing
the perspicuity—that we find in most of the texts composed over the last two millennia.
The distinct style adopted by the Indian mathematicians for practising (thinking, codifying,
transmitting, etc.) mathematics, by directly plunging into results without much mathemati-
cal elaborations, has been succinctly and beautifully brought out by A. A. K. Ayyangar in his
article [17, p. 4.101]:1

The Hindu mind has always shown peculiar aptitude for fundamental thinking,
digging down into the depths of thought with the minimum of external equipment,
while other minds are after heavy superstructures with complicated scaffolding,
tools and machinery. One extra-ordinary illustration of this trait of the Hindu
mind we have in Ramanujan.

Perhaps being fascinated by this peculiar way of doing mathematics by Hindus, using poetic
verses, and aphoristic expressions, some of the of European scholars who were serving
the British establishment in various capacities—starting from the final decades of the 18th
century—embarked on their journey to study the civilizational basis of India, and the route
adopted by Indians to excel in mathematics and astronomy, besides arts, architecture, aes-
thetics, philosophy and other disciplines.2

One such European scholar who got deeply attracted towards the mathematics and
astronomy of the Kerala School was the then civil servant of the East India Company, Charles
M. Whish (1792–1833). Having been posted at the Malabar region of Kerala for more than
a decade, Whish started interacting with the local pundits and gained proficiency in both the
local language Malayalam and Sanskrit. He also began to communicate some of his fasci-
nating findings concerning the breakthroughs made by the native astronomers of Kerala, by
way of both authoring papers and sharing them with the Madras Literary Society. A remark-
able paper of his carrying the details of signal contributions made by the Kerala School
of mathematicians, which flourished during the medieval period (14–16 centuries CE), got
published in the Transactions of Royal Asiatic Society of Great Britain and Ireland in 1834—
unfortunately, only posthumously—due to his premature death in 1833.

1 Ayyangar, who came out in flying colors, with his Master’s degree at the age of 18 years,
has done remarkable research particularly with respect to second-order indeterminate equa-
tions.

2 See, for instance, [12].
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It is this paper, which for the first time brings to the notice of European scholars the
discovery of the infinite series for � , and some of the trigonometric functions by the Kerala
mathematicians, almost three centuries before their advent in Europe. Strangely, this paper
of Whish, instead of generating curiosity, discussion, and excitement among the European
scholars, remained largely disregarded for almost a century. This deafening silence—along
with the discount of its contents, among the historians of mathematics in the West—got
broken only in the decades to follow from the 1940s, when some of the Indian mathemati-
cians such as C. T. Rajagopal, Mukunda Marar, and others brought to fore the sophisticated
mathematics produced by this school in the form of a series of articles [22, 23, 25, 26]. Dur-
ing the same period, Ramavarma Thampuran and Akhileswara Ayyar also brought out an
edition of the first part (dealing with mathematics) of seminal text of Kerala astronomy and
mathematics, Yuktibhāṣā (c. 1530), along with detailed explanations in Malayalam [28].

The Kerala School that we refer to in this article commences with Mādhava of
Saṅgamagrāma (c. 1340–1420), the originator of this guru-paraṃparā or “lineage of teach-
ers.” His followers include Dāmodara, Parameśvara, Nīlakanṭḥa Somayājī, Jyesṭḥadeva,
Śaṅkara Vāriyar, and others. Though Mādhava’s works containing the infinite series are
not available to us, the later mathematicians in this tradition unanimously ascribe the series
to Mādhava. In some of the recent studies, it has been convincingly argued by modern schol-
ars that these series expansions for � and other trigonometric functions, and the evaluation
of derivatives of various functions (while computing instantaneous velocities) rely indis-
pensably on the central ideas of infinitesimal calculus, which include local approximation
by linear function (see Section 3.4 of the present article).3

It is, however, important to understand that these breakthroughs achieved in the
Kerala School of Mathematics cannot be narrowed to only the scope of work made in a
span of two centuries. It is the continuum of mathematical ideas evolved by various Indian
mathematicians spanning over nine centuries before—starting at least from the time of Ārya-
bhaṭa (5th century)—till the dawn of the Kerala School that has led to the convergence point
which has led Mādhava (14th century) to invent infinitesimal methods, thereby marking the
advent of the discipline of calculus, though largely restricted to the consideration of the
circular functions.4

This paper attempts to string the pearl of ideas and breakthroughs through the his-
tory of mathematics in India that led to this advent. The evolution of poignant ideas is traced
in two parts. The first part, covered in Section 2, deals with precalculus breakthroughs and
the germinating ideas for calculus that were intuitively apprehended in India well before
Mādhava came on the scene. The second part, dealt with in Section 3, captures the discov-
ery of calculus in the Kerala School. Section 4 of this paper recounts the story of how the
revelations of the work of the Kerala School brought out by Whish seems to have struck a
wrong note and alarmed some of the leading figures in the British academic establishment
which led to the denigration and suppression of this work for almost a century.

3 The reader is also referred to the articles [13,14,24].
4 For a detailed discussion on this evolution readers may refer to [15,27].
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2. Developments in the Classical Era of Indian

mathematics

In this section, we shall consider some of the ideas and methods developed in Indian
mathematics, during the period 450–1350 CE, which have a bearing on the later work of the
Kerala School. In particular, we shall focus on the following topics: the notion and mathe-
matics of zero and infinity; iterative approximations for irrational numbers; summation of
powers of natural numbers; the discrete form of the harmonic equation for the sine function
given by Āryabhaṭa; and the emergence of the notion of instantaneous velocity of a planet
in astronomy.

2.1. Notion of zero and infinity
2.1.1. Philosophical and cultural context of zero and infinity
Select passages in Upaniṣads, as well as contemporary Buddhist and Jaina philoso-

phy, point to the philosophical and cultural context that has possibly led to the development
of the fundamental and intriguing concepts such as void and the infinite which later got incor-
porated in mathematics as zero and infinity. In this section, we present quotes from different
ancient literature in this regard.

The śānti-mantra of the Īśāvāsyopaniṣad refers to the ultimate absolute reality, the
Brahman, as pūrṇa, the perfect, complete or full. Talking of how the universe emanates from
the Brahman, it states:

पूणर्मदः पूणर्ࣻमदं पूणЄمणूर्मुदՊते।
पूणर्ࡺ पूणर्मादाय पूणर्मेवावऀशࡈते॥
pūrṇamadaḥ pūrṇamidaṃ pūrṇātpūrṇamudacyate।
pūrṇasya pūrṇamādāya pūrṇamevāvaśiṣyate॥
That (Brahman) is pūrṇa; this (the universe) is pūrṇa; [this] pūrṇa emanates from
[that] pūrṇa; even when pūrṇa is drawn out of pūrṇa, what remains is also pūrṇa.

In the Kṛṣṇa-Yajurveda Taittirīya-Brāhmaṇa (Kāṭhaka 3.49), we have the word
śūnya (generally employed to mean zero in mathematics) appearing in the form of a com-
pound word with a negative particle (nañ) tagged to it. This is in the context of describing
the glory of the sun:

वेदरैशू۠ःࣾࢇभरेࣻत सूयर्ः।
vedairaśūnyastribhireti sūryaḥ।

Pāṇini’s Aṣṭādhyāyī (c. 500 BCE) has the notion of lopa which functions as a null-
morpheme. Lopa appears in several sūtras, starting with

अदशर्नं लोपः। (1.1.60).
adarśanaṃ lopaḥ।
That which gets voided is [termed] lopaḥ.
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The word śūnya also appears twice as a symbol in Piṅgala’s Chandaḥ-śūtra (c. 300
BCE). In Chapter VIII, while enunciating an algorithm for evaluating any positive integral
power of 2 in terms of an optional number of squaring and multiplication (duplication) oper-
ations, śūnya is used as a marker:

रूपे शू۠म्। ःڙࣾ शू۠।े (8.29-30).
rūpe śūnyam। dviḥ śūnye।
If you get one (rūpe) [as the remainder after doing modulo 2 arithmetic] place
zero [as the marker]. If you get zero [as the remainder] place two.

Different schools of Indian philosophy have related notions such as the notion of
absence (abhāva) in Nyāya School, and the śūnyavāda among the Bauddhas.

2.1.2. The mathematics of zero
The Brāhmasphuṭa-siddhānta (c. 628 CE) of Brahmagupta seems to be the first

available text that thoroughly discusses the mathematics of zero. While describing arith-
metic, the six operations with zero (śūnya-parikarma) are also discussed in Chapter XVIII
on algebra (kuṭṭakādhyāya). While zero divided by zero is stated to be zero, any other quan-
tity divided by zero is said to be taccheda (that with zero denominator). Of the six verses,
two are presented below and the rest are paraphrased here [5, pp. 309–310]:

धनयोधर्नमृणमृणयोः धनणर्योरۖरं समैѺं खम्।
ऋणमैѺं च धनमृणधनशू۠योः शू۠म्॥ ...
खोڔतृमृणं धनं वा तՃेदं खमृणधनࣺवभѱं वा।
ऋणधनयोवर्गर्ः ंࡼ खं खࡺ पदं कृࣻतयर्त् तत्॥
dhanayordhanamṛṇamṛṇayoḥ dhanarṇayorantaraṃ samaikyaṃ kham।
ṛṇamaikyaṃ ca dhanamṛṇadhanaśūnyayoḥ śūnyam॥ ...
khoddhṛtamṛṇaṃ dhanaṃ vā tacchedaṃ khamṛṇadhanavibhaktaṃ vā।
ṛṇadhanayorvargaḥ svaṃ khaṃ khasya padaṃ kṛtiryat tat॥
… [The sum of] positive (dhana) and negative (ṛṇa), if they are equal, is zero
(kham). The sum of a negative and zero is negative, of a positive and zero is pos-
itive and of two zeros, zero (śūnya). … Negative subtracted from zero is positive,
and positive from zero is negative. Zero subtracted from negative is negative,
from positive is positive, and from zero is zero (ākāśa).

… The product of zero and a negative, of zero and a positive, or of two zeroes is
zero. A zero divided by zero is zero. … A positive or a negative divided by zero is
that with zero denominator (taccheda). The square (kṛti) of a positive or negative
number is positive; the square and square-root (padam) of zero is zero.
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Bhāskarācārya (c. 1150), while discussing the mathematics of zero in his work Bīja-
gaṇita, explains that infinity (ananta-rāśi) which results when some number is divided by
zero is called khahara. He also graphically describes [4, p. 6] the characteristic property of
infinity that it is unaltered even if a huge quantity (bahu) is added to or taken away from it
with a beautiful simile:5

खहरो भवेत् खेन भѱࠥ राऀशः॥ …
अऌࡹअۢकारः खहरे न राशावࣺप प्रࣺवࣺࡋेप ࣺनःसृतेषु।
बहुࣺࡋप कालेऽनۖऽेՊुतेा߲यसृࣼࡺ भूतगणेषु यڙत्॥
khaharo bhavet khena bhaktaśca rāśiḥ॥…
asminvikāraḥ khahare na rāśāvapi praviṣṭeṣvapi niḥsṛteṣu।
bahuṣvapi syāllayasṛṣṭikāle’nante’cyute bhūtagaṇeṣu yadvat॥
A quantity divided by zero will be (called) khahara (an entity with zero as divisor).
… In this quantity, khahara, there is no alteration even if many are added or
taken out, just as there is no alteration in the Infinite (ananta), Infallible (acyuta)
[Brahman] even though many groups of beings enter in or emanate from [It] at
times of dissolution and creation.

From the above illustrations it is discernible that Indian mathematicians began dab-
bling with the notions of zero and infinity in varied mathematical contexts.

2.2. Irrationals and iterative approximations
2.2.1. Approximation for surds in Śulbasūtras
Śulbasūtras (c. 800 BCE) that form a part of Kalpasūtras (one of the six Vedāṅ-

gas) are essentially manuals that contain systematic procedures (algorithms) for the exact
construction of altars that were laid out on leveled ground by manipulating cords of various
lengths tied to a gnomon. The manuals also contain certain other mathematical details that
are relevant to the construction, and are composed in the form of short, cryptic phrases—
usually prose, although sometimes including verses—called sūtras (literally “string” or
“rule, instruction”). The term for the measuring-cords called śulba got associated with the
name to this set of texts as the Śulbasūtras or “Rules of the cord.” Starting with simple shapes
involving symmetrical figures such as squares and rectangles, triangles, trapezia, rhomboids,
and circles, the texts move on to discuss the construction of complex shaped figures such
that of falcon. Frequently, one also finds problems pertaining to transformation of one shape
into another. Hence, the Śulbasūtra rules often involve what we would call area-preserving
transformations of plane figures, and thus include the earliest known Indian versions of cer-
tain geometric formulas and constants. More interestingly, Baudhāyana-śulvasūtra gives the
following approximation for

p
2 [33, (1.61-2), p. 19]:

5 This simile can be better appreciated by those who are reasonably familiar with the funda-
mental tenets of Hinduism and its philosophy.
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प्रमाणं तृतीयेन वधर्येـՂ चतुथϺनाىचतुःࢇशंोनेन। सࣺवशेषः।
pramāṇaṃ tṛtīyena vardhayettacca caturthenātmacatustriṃśonena। saviśeṣaḥ।
The measure [of the side] is to be increased by its third and this [third] again by
its own fourth less the thirty-fourth part [of the fourth]. That is the approximate
diagonal (saviśeṣa).

p
2 � 1 C

1

3
C

1

3 � 4
�

1

3 � 4 � 34

D
577

408

� 1:4142156: (1)

The above approximation is accurate to 5 decimal places. From certain other pre-
scriptions [33, (1.58), p. 19] given in this text, one could discern the approximation for � to be
given as � � 3:0883.

2.2.2. Approximation for � by Āryabhaṭa
Āryabhaṭa (c. 499) gives the following approximate value for � : 6

चतुरࣾधकं शतमगुणं थाࡰाषࣼڙ सहस्राणाम्।
अयुतڙयࣺवࡺޱ࠻ासۚो वृـपिरणाहः॥
caturadhikaṃ śatamaṣṭaguṇaṃ dvāṣaṣṭistathā sahasrāṇām।
ayutadvayaviṣkambhasyāsanno vṛttapariṇāhaḥ॥
One hundred plus four multiplied by eight and added to sixty-two thousand: This
is the approximate measure of the circumference of a circle whose diameter is
twenty-thousand.

Thus as per the above verse, � �
62832
20000

D 3:1416.
It appears that Indian mathematicians (at least in the Āryabhaṭan tradition) employed

the method of successive doubling of the sides of a circumscribing polygon—starting from
the circumscribing square leading to an octagon, etc.—to find successive approximations to
the circumference of a circle. This method has been described in the later Kerala texts Yukti-
bhāṣā (c. 1530) of Jyeṣṭhadeva and the Kriyākramakarī commentary (c. 1535) of Śaṅkara
Vāriyar on the Līlāvatī, of Bhāskarācārya.

2.3. Summation of geometric series
The result obtained by summing the geometric series 1 C 2 C 22 C � � � C 2n is stated

in Chapter VIII of Piṅgala’s Chandaḥ-sūtra (c. 300 BCE). It is quite remarkable that Piṅgala
also gives a systematic algorithm for evaluating any positive integral power of a number (2 in
this context) in terms of an optimal number of squaring and multiplication operations.

6 [2, p. 45], Gaṇitapāda, verse 10.
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Mahāvīrācārya (c. 850), in his Gaṇita-sāra-saṅgraha gives the sum of a geometric
series and also explains Piṅgala’s algorithm for finding the required power of the common
ratio between the terms of the series [16, pp. 28–29]:

पदࣻमतगुणहࣻतगुऀणतप्रभवः णुधनंڎाࡺ तदाښनूम्।
एकोनगुणࣺवभѱं गुणसӴࣽलतं ࣺवजानीयात्॥
padamitaguṇahatiguṇitaprabhavaḥ syādguṇadhanaṃ tadādyūnam।
ekonaguṇavibhaktaṃ guṇasaṅkalitaṃ vijānīyāt॥
The first term when multiplied by the product of the common ratio (guṇa) taken
as many times as the number of terms (pada) [in the series], gives rise to the
guṇadhana. This guṇadhana,7 when diminished by the first term and divided
by the common ratio less one, is to be understood as the sum of the geometrical
series (guṇa-saṅkalita).

If a is the first term and r the common ratio, then what is stated in the verse above may be
expressed as

a C ar C ar2
C � � � C arn�1

D
a.rn � 1/

.r � 1/
: (2)

Vīrasena (c. 816), in his commentary Dhavalā on the Ṣaṭkhaṇḍāgama, has made use of the
sum of the following infinite geometric series in his evaluation of the volume of the frustum
of a right circular cone:8

1 C
1

4
C

�
1

4

�2

C � � � C

�
1

4

�n

C � � � D
4

3
: (3)

The proof of the above result is outlined by Nīlakaṇṭha Somayājī in his Āryabhaṭīya-bhāṣya.
Nīlakaṇṭha presents this discussion in the context of deriving an approximation for a small
arc in terms of the corresponding chord in a circle. More details are presented in Section 3.1
of the article.

2.4. Āryabhaṭa’s computation of Rsine-differences
In the mathematical section of Āryabhaṭīya (c. 499), Āryabhaṭa presents two dif-

ferent methods for the computation of tabular Rsine values. While the first is the usual
geometric method, the second is an ingenious method which is based on computing the
Rsine-differences employing the important property that the second-order differences of
Rsines are proportional to the Rsines themselves:9

प्रथमाՂापիाधЄښरैूनं खइؓतं तीयाधर्म्।ڙࣾ
त٧थमիाधЅशैैࡰࡰरैूनाࣺन शेषाऀण॥

7 This is a technical term employed to refer to arn in (2).
8 See, for instance, [29, pp. 203–205].
9 [2, p. 51], Gaṇitapāda, verse 12.
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prathamāccāpajyārdhādyairūnaṃ khaṇḍitaṃ dvitīyārdham।
tatprathamajyārdhāṃśaistaistairūnāni śeṣāṇi॥
The first Rsine divided by itself and then diminished by the quotient will give
the second Rsine-difference. The same first Rsine, diminished by the quotients
obtained by dividing each of the preceding Rsines by the first Rsine, gives the
remaining Rsine-differences.

Let the quadrant be divided into 24 equal parts, and let Ji denote R sin.i˛/ where
˛ D 2250 for i D 1; 2; : : : ; 24. Now J1 D R sin.2250/, J2 D R sin.4500/, : : : , J24 D

R sin.90ı/, are the 24 Rsines. Let �1 D J1, �2 D J2 � J1, : : : , �k D Jk � Jk�1, be
the first-order Rsine-differences. Then, the prescription given in the above verse may be
expressed as

�2 D J1 �
J1

J1

(4)

D �1 �
J1

J1

: (5)

In general,
�kC1 D �k �

Jk

J1

.k D 1; 2; : : : ; 23/: (6)

Since Āryabhaṭa also takes �1 D J1 D R sin.2250/ � 2250, the above relations reduce to

�2 D 2240; (7)

�kC1 � �k D
�Jk

2250
.k D 1; 2; : : : ; 23/: (8)

The renowned mathematician David Mumford refers to the above equation as “the differen-
tial equation for the sine function in its finite difference form” [24].

2.5. Instantaneous velocity of a planet (tātkālika-gati)
In Indian astronomy, the motion of a planet is computed by making use of two cor-

rections: the manda-saṃskāra which essentially corresponds to the equation of center and
the śīghra-saṃskāra which corresponds to the conversion of the heliocentric longitudes to
geocentric longitudes.

In Figure 1, C is the center of a circle on which the mean planet P0 is located; CU

is the direction of the ucca (aphelion or apogee as the case may be); P is the true planet
which lies on the epicycle of (variable) radius r centered at P0, such that P0P is parallel to
CU . If M is the mean longitude of a planet, ˛ the longitude of the ucca, then the correction
(manda-phala) �� is given by

R sin.��/ D

�
r

K

�
R sin.M � ˛/: (9)
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Figure 1

Manda correction.

Here K is the karṇa (hypotenuse) or the (variable) distance of the planet from
the center of the concentric. The texts on Indian astronomy while giving the manda-phala,
present the following formula:

R sin.��/ D

�
r0

R

�
R sin.M � ˛/; (10)

where r0 is the tabulated (or mean) radius of the epicycle in the measure of the concentric
circle of radius R.

Thus there seems to have been an implicit understanding among the Indian astro-
nomers in accepting this model that the true planet P moves on the variable epicycle of
radius r in a way such that the following equation is satisfied:

r

K
D

r0

R
: (11)

For small r , the left-hand side of (10) is usually approximated by the arc itself. Thus we have

�� D

�
1

R

��
r0

R

�
R sin.M � ˛/: (12)

The manda-correction is to be applied to the mean longitude M , to obtain the true or manda-
corrected longitude � given by

� D M � ��

D M �

�
r0

R

��
1

R

�
R sin.M � ˛/: (13)
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If nm and nu are the mean daily motions of the planet and the ucca, then the true longitude
of the planet on the next day may be expressed as

� C n D .M C nm/ �

�
r0

R

��
1

R

�
R sin.M C nm � ˛ � nu/: (14)

Thus the true daily motion .n/, obtained by finding the difference of the two equations (13)
and (14) is given by

n D nm �

�
r0

R

��
1

R

��
R sin

®
.M � ˛/ C .nm � nu/

¯
� R sin.M � ˛/

�
: (15)

The second term in the above is the correction to mean daily motion (gati-phala), which
strictly involves evaluating the rate of change of the sine function. While an expression for
this has been pursued by Bhāskara I (c. 629) in his Mahābhāskarīya, the correct formula for
the true daily motion of a planet, employing the Rcosine as the “rate of change” of Rsine,
seems to have been first given by Muñjāla (c. 932) in his short manual Laghumānasa [18,

p. 125] and also by Āryabhaṭa II (c. 950) in his Mahā-siddhānta [20, p. 58]:

कोࣺटफलӫी भुࣼѱगर्իाभѱा कलाࣺदफलम्॥
koṭiphalaghnī bhuktirgajyābhaktā kalādiphalam॥
The koṭiphala multiplied by the [mean] daily motion and divided by the radius
gives the minutes of the correction [to the rate of the motion].

Essentially, the above verse gives the true daily motion in the form

n D nm � .nm � nu/

�
r0

R

��
1

R

�
R cos.M � ˛/: (16)

Bhāskarācārya (c. 1150) in his Siddhānta-śiromaṇi clearly distinguishes the true
daily motion from the instantaneous rate of motion [32]. And he gives the Rcosine correction
to the mean rate of motion as the instantaneous rate of motion. He further emphasizes the
fact that the velocity is changing every instant and this is particularly important in the case
of the moon because of its rapid motion [27, pp. 225–227].

3. Kerala School of Mathematics and Astronomy

The banks of the river Nīlā in the south Malabar region of Kerala witnessed for over
300 years, beginning from about the mid-14th century, what may arguably be considered the
golden age of Indian mathematics. The Kerala School of Mathematics and Astronomy pio-
neered by Mādhava (c. 1340–1420) of Saṅgamagrāma, extended well into the 19th century
as exemplified in the work of Śaṅkaravarman (c. 1830), Rājā of Kaḍattanāḍu. Only a cou-
ple of astronomical works of Mādhava (Veṇvāroha, Lagnaprakaraṇa and Sphuṭacandrāpti)
seem to be extant now. Most of his celebrated mathematical discoveries—such as the infinite
series for � and the sine and cosine functions—are available only in the form of citations in
later works.
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Mādhava’s disciple Parameśvara (c. 1380–1460) of Vaṭasseri is reputed to have
carried out detailed observations for around 55 years. Though a large number of original
works and commentaries written by him have been published, one of his important works
on mathematics, the commentary Vivaraṇa on Līlāvatī of Bhāskarācārya, is yet to be pub-
lished. Nīlakaṇṭha Somayājī (c. 1444–1550) of Kuṇḍagrāma, disciple of Parameśvara’s son
Dāmodara (c. 1410–1520), is the most celebrated member of Kerala School after Mādhava.
Nīlakaṇṭha has cited several important results of Mādhava in his various works, the most
prominent of them being Tantrasaṅgraha (c. 1500) and Āryabhaṭīya-bhāṣya. In the latter
work, while commenting on the Gaṇitapāda of Āryabhaṭīya, Nīlakaṇṭha has also provided
ingenious demonstrations or proofs for various mathematical formulae [21].

However, the most detailed exposition of the work of the Kerala School, starting
from Mādhava, and including the seminal contributions of Parameśvara, Dāmodara, and
Nīlakaṇṭha, is to be found in the famous Malayalam work Gaṇita-yuktibhāṣā (henceforth
simply Yuktibhāṣā) (c. 1530) of Jyeṣṭhadeva (c. 1500–1610), who was a junior contempo-
rary of Nīlakaṇṭha. The direct lineage from Mādhava continued at least till Acyuta Piśāraṭi
(c. 1550–1621), a disciple of Jyeṣṭhadeva, who wrote many important independent works in
Sanskrit, as well as a couple of commentaries in the local language Malayalam.

In the following sections we shall present an overview of the contribution of the
Kerala School to the development of calculus (during the period 1350–1500), following
essentially the exposition given in Yuktibhāṣā. In order to indicate some of the concepts
and methods developed by the Kerala astronomers, we first take up the summation of infi-
nite geometric series as discussed by Nīlakaṇṭha Somayājī in his Āryabhaṭīya-bhāṣya, that
was alluded to just before. We then consider the derivation of binomial series expansion and
the estimation of the sum of integral powers of integers, 1k C 2k C � � � C nk for large n, as
presented in Yuktibhāṣā. These results constitute the basis for the derivation of the infinite
series for �

4
and its various fast convergents given by Mādhava. Following this, we shall

outline another interesting work of Mādhava on the estimation of the end-correction terms
called the antya-saṃskāra,10 that had enabled him to arrive at the transformation of the �-
series to fast convergent ones—whose multifarious forms may be noted from a citation in
Section 4.3.

3.1. Discussion of the sum of an infinite geometric series
In his Āryabhaṭīya-bhāṣya, while explaining the upapatti (rationale) behind an inter-

esting approximation for the arc of a circle in terms of the jyā (Rsine) and the śara (Rversine),
Nīlakaṇṭha presents a detailed demonstration of how to sum an infinite geometric series. The
context of this discussion is Nīlakaṇṭha’s pursuit to approximate the arc of a circle in terms
of jyā (sine) and śara (versine). The verse that succinctly presents this approximation is the
following:

10 Interestingly, this term in common parlance refers to the last rites to be performed.
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सٟशंाࣺदषुवगЄत् իावगЄ؊ात् पदं धनुः प्रायः।
satryaṃśādiṣuvargāt jyāvargāḍhyāt padaṃ dhanuḥ prāyaḥ।
The arc is nearly (prāyaḥ) equal to the square root of the sum of the square of the
śara added to one-third of it, and the square of the jyā.

In Figure 2, AB is the arc whose length (assumed to be small) is to be determined
in terms of the chord lengths AD and BD. In the Indian mathematical literature, the arc
AB , the semichord AD, and the segment BD are referred to as the cāpa, jyārdha, and śara,
respectively. As can be easily seen from the figure, this terminology arises from the fact that
these geometrical objects look like a bow, string, and arrow, respectively. Denoting them by
c, j , and s, the expression for the arc given by Nīlakaṇṭha may be written as

c �

s�
1 C

1

3

�
s2 C j 2: (17)

The proof of the above equation which has been discussed in detail by Sarasvati Amma [29,

pp. 179–182] involves a summation of an infinite geometric series given by (19).

Figure 2

Arc-length in terms of jyā and śara.

The question that Nīlakaṇṭha poses as he commences his detailed discussion on the
sum of geometric series is very important and pertinent to the current discussion. In fact,
this is a general question that arises quite naturally whenever one encounters the sum of an
infinite series [1, p. 106]:

कथं पुनः तावदवे वधर्ते तावڙधर्ते च ?
kathaṃ punaḥ tāvadeva vardhate tāvadvardhate ca ?

How does one know that [the sum of the series] increases only up to that [limiting
value] and that it certainly increases up to that [limiting value]?
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Proceeding to answer the above question, Nīlakaṇṭha first states the general result

a

��
1

r

�
C

�
1

r

�2

C

�
1

r

�3

C � � �

�
D

a

r � 1
: (18)

Here, the left-hand side is an infinite geometric series with the successive terms
being obtained by dividing by a common divisor, r , known as cheda, whose value is assumed
to be greater than 1. He further notes that this result is best demonstrated by considering a
particular case, say a D 1 and r D 4. In his own words [1, pp. 106–107]:

उՊते — एवं यः तु߰Ճेदपरभागपरޮरायाः अनۖायाः अࣺप संयोगः, तࡺ
अनۖानामࣺप क߾मानࡺ योगࡺ आښावयࣺवनः परޮरांशՃेदात्
एकोनՃेदांशसां सवर्त्र समानमेव। तښथा — चतुरंशपरޮरायामेव तावत् प्रथमं
प्रࣻतपाښते।
ucyate — evaṃ yaḥ tulyacchedaparabhāgaparamparāyāḥ anantāyāḥ api
saṃyogaḥ, tasya anantānāmapi kalpyamānasya yogasya ādyāvayavinaḥ param-
parāṃśacchedāt ekonacchedāṃśasāmyaṃ sarvatra samānameva। tadyathā —
caturaṃśaparamparāyāmeva tāvat prathamaṃ pratipādyate।
It is being explained. Thus, in an infinite (ananta) geometrical series
(tulyaccheda-parabhāga-paramparā)11 the sum of all the infinite number of terms
considered will always be equal to the value obtained by dividing by a factor
which is one less than the common factor of the series. That this is so will be
demonstrated by first considering the series obtained with one-fourth (caturaṃśa-
paramparā).

What is intended to be demonstrated is��
1

4

�
C

�
1

4

�2

C

�
1

4

�3

C � � �

�
D

1

3
: (19)

It is noted that one-fourth and one-third are the only terms appearing in the above equation.
Nīlakaṇṭha first defines these numbers in terms of one-twelfth of the multiplier a referred to
by the word rāśi. For the sake of simplicity, we take the rāśi to be unity:

3 �
1

12
D

1

4
I 4 �

1

12
D

1

3
: (20)

Having defined them, Nīlakaṇṭha first obtains the sequence of results:
1

3
D

1

4
C

1

.4 � 3/
;

1

.4 � 3/
D

1

.4 � 4/
C

1

.4 � 4 � 3/
;

1

.4 � 4 � 3/
D

1

.4 � 4 � 4/
C

1

.4 � 4 � 4 � 3/
;

11 This compound word that has been coined in Sanskrit for the geometric series is very cute
and merits attention. It literally means “A series of terms (paramparā) in which the succes-
sive ones (parabhāga) are obtained by the same divisor (tulyaccheda) [as the previous].”

5797 The history and historiography of the discovery of calculus in India



and so on, which leads to the general result

1

3
�

�
1

4
C

�
1

4

�2

C � � � C

�
1

4

�n�
D

�
1

4

�n�
1

3

�
: (21)

Nīlakaṇṭha then goes on to present the following crucial argument to derive the sum of the
infinite geometric series: As we sum more terms, the difference between 1

3
and sum of powers

of 1
4

(as given by the right-hand side of the above equation) becomes extremely small, but
never zero. Only when we take all the terms of the infinite series together, do we obtain the
equality

1

4
C

�
1

4

�2

C � � � C

�
1

4

�n

C � � � D
1

3
: (22)

3.2. Derivation of binomial series expansion
The text Yuktibhāṣā presents a very interesting derivation of the binomial series for

.1 C x/�1 by making iterative substitutions in a simple algebraic identity. The method given
here may be summarized as follows:

Consider the product a. c
b
/, where some quantity a is multiplied by the multiplier c,

and divided by the divisor b. Here, a is called guṇya, c the guṇaka and b the hāra, which
are all assumed to be positive integers, with b > c. Now the above product can be rewritten
as

a

�
c

b

�
D a � a

.b � c/

b
: (23)

In the expression a .b�c/
b

of the equation above, if we want to replace the division by b (the
divisor) by division by c (the multiplier), then we have to make a subtractive correction
(called śodhya-phala) which amounts to the following equation:

a
.b � c/

b
D a

.b � c/

c
�

�
a

.b � c/

c
�

.b � c/

b

�
: (24)

Now, in the second term (inside parentheses) if we again replace the division by the divisor
b by the multiplier c, then we have to make a subtractive-correction once again. Proceeding
thus we obtain an alternating series:

a
c

b
D a � a

.b � c/

c
C a

�
.b � c/

c

�2

� � � � C .�1/m�1a

�
.b � c/

c

�m�1

C .�1/ma

�
.b � c/

c

�m

C � � � : (25)

It may be noted that if we set .b�c/
c

D x, then c
b

D
1

.1Cx/
. Hence, the series given by (25) is

none other than the well-known binomial series
a

1 C x
D a � ax C ax2

� � � � C .�1/maxm
C � � � ;

which is known to be convergent for �1 < x < 1.
Regarding the question of termination of the process, both texts, Yuktibhāṣā and

Kriyākramakarī, clearly mention that logically there is no end to the process of generating
śodhya-phalas.
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It is also noted that the process may be terminated after having obtained the desired
accuracy by neglecting the subsequent phalas as their magnitudes become smaller and
smaller. In fact, Kriyākramakarī explicitly mentions that .b � c/ should be smaller than c,
so that the successive phalas become smaller and smaller. In other words, the text, besides
presenting a technique to turn a simple algebraic expression into an infinite series, also states
the condition that would ensure the convergence of the series.

3.3. Estimation of sums of integral powers of natural numbers
The word employed in the Indian mathematical literature for summation is saṅkalita.

Yuktibhāṣā gives a general method of estimating the sums of integral powers of natural num-
bers or samaghāta-saṅkalita.12 The detailed procedure given in the text, which is tantamount
to providing a proof by induction may be outlined as follows. Before proceeding further with
the discussion, a brief note on the notation employed may be useful. We employ S to denote
the sum with a subscript and superscript. The subscript denotes the number of terms that are
being summed and the superscript denotes the nature of the numbers that are being summed.
For the sum of natural numbers, we use (1) as the superscript. For squares of natural num-
bers, we use (2), and so on. Now, the sum of the first n natural numbers may be written
as:

S .1/
n D n C .n � 1/ C � � � C 1

D n C Œn � 1� C Œn � 2� C � � � C
�
n � .n � 2/

�
C

�
n � .n � 1/

�
D n � n �

�
1 C 2 C � � � C .n � 1/

�
: (26)

When n is very large, the quantity to be subtracted from n2 is practically (prāyeṇa) the same
as S

.1/
n , thus leading to the estimate

S .1/
n � n2

� S .1/
n ; or S .1/

n �
n2

2
: (27)

The sum of the squares of the natural numbers up to n may be written as

S .2/
n D n2

C .n � 1/2
C � � � C 12: (28)

It can also easily be shown that

nS .1/
n � S .2/

n D S
.1/
n�1 C S

.1/
n�2 C S

.1/
n�3 C � � � : (29)

For large n, we have already estimated that S
.1/
n �

n2

2
. Thus, for large n, the right-hand side

of (29) can be written as

nS .1/
n � S .2/

n �
.n � 1/2

2
C

.n � 2/2

2
C

.n � 3/2

2
C � � � : (30)

Thus, the excess of nS
.1/
n over S

.2/
n is essentially S

.2/
n

2
for large n, so that we obtain

nS .1/
n � S .2/

n �
S

.2/
n

2
: (31)

12 The compound sama-ghāta in this context means the product of a number with itself.
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Again, using the earlier estimate for S
.1/
n , we obtain the result

S .2/
n �

n3

3
: (32)

Proceeding along these lines, Yuktibhāṣā presents an argument essentially based on mathe-
matical induction that the summation of the kth powers of natural numbers for a large n may
be written as

S .k/
n �

nkC1

.k C 1/
: (33)

3.4. Mādhava’s infinite series for π
The infinite series for � attributed to Mādhava is cited by Śaṅkara Vāriyar in his

commentaries Kriyākramakarī and Yuktidīpikā. Mādhava’s quoted verse runs as follows [19,

p. 379]:

ࠖासे वािरࣾधࣺनहते रूपहृते ࠖाससागराࣾभहते।
ࣻत्रशराࣺदࣺवषमसԕाभѱमृणं ंࡼ पृथक् क्रमात् कुयЄत्॥
vyāse vāridhinihate rūpahṛte vyāsasāgarābhihate।
triśarādiviṣamasaṅkhyābhaktamṛṇaṃ svaṃ pṛthak kramāt kuryāt॥
The diameter multiplied by four and divided by unity [is found and saved]. Again
the products of the diameter and four are divided by the odd numbers (viṣama-
saṅkhyā) three, five, etc., and the results are subtracted and added sequentially [to
the earlier result saved].

The words paridhi and vyāsa in the above verse refer to the circumference (C ) and diam-
eter (D), respectively. Hence the content of the verse above, expressed in the form of an
equation, becomes

C D
4D

1
�

4D

3
C

4D

5
�

4D

7
C � � � : (34)

Rearranging the terms and using the notation � , we get
�

4
D 1 �

1

3
C

1

5
�

1

7
C � � � : (35)

We shall now present the derivation of the above result as outlined in Yuktibhāṣā
of Jyeṣṭhadeva and Kriyākramakarī of Śaṅkara Vāriyar. For this purpose, let us consider
the quadrant OP0PnA of the square circumscribing the given circle (see Figure 3). Let r

be the radius of the circle. Divide the side P0Pn.D r/ into n equal parts (n large). Then
P0Pi (i D 1; 2; : : : ; n) are the bhujās (sides) and ki D OPi are the karṇas (hypotenuses) of
the triangle to be conceived of. The points of intersection of these karṇas and the circle are
marked as Ai s.

It is straightforward to see that the bhujās P0Pi , the karṇas ki , and the East–West
line OP0 form right-angled triangles. Hence we have the relation

k2
i D r2

C

�
ir

n

�2

: (36)
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Figure 3

Geometrical construction used in the proof of the infinite series for � .

Considering two successive karṇas, and the pairs of similar triangles OPi�1Ci and
OAi�1Bi , and Pi�1Ci Pi and OP0Pi , it can be shown that the length of the segment Ai�1Bi

is given by

Ai�1Bi D

�
r

n

��
r2

ki�1ki

�
: (37)

Now the text presents the crucial argument that, when n is large, the Rsines Ai�1Bi can be
taken as the arc-bits Ai�1Ai themselves.

पिरࣾधखؓࡺ अधर्իा पिरۀशं एव।
paridhikhaṇḍasya ardhajyā paridhyaṃśa eva।
The Rsines (ardhajyā) corresponding to the arc-bits (paridhikhaṇḍa) are essen-
tially the arc-bits themselves.

Recalling that A0 will merge with P0, we can easily see that
nX

iD1

Ai�1Ai D
C

8
: (38)

Thus, one-eighth of the circumference of the circle can be written as the sum of the
contributions made by the individual segment Ai�1Bi given by (37). That is,

C

8
�

�
r

n

���
r2

k0k1

�
C

�
r2

k1k2

�
C

�
r2

k2k3

�
C � � � C

�
r2

kn�1kn

��
: (39)
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It is further argued that the denominators may be replaced by the square of either of the
karṇas since the difference is negligible. Hence we obtain:

C

8
D

nX
iD1

r

n

�
r2

k2
i

�
D

nX
iD1

�
r

n

��
r2

r2 C . ir
n

/2

�
D

nX
iD1

�
r

n
�

r

n

�
. ir

n
/2

r2

�
C

r

n

�
. ir

n
/2

r2

�2

� � � �

�
: (40)

In the series expression for the circumference given above, factoring out powers of r
n

, the
sums involved are the even powers of the natural numbers. Now, recalling the estimates that
were obtained earlier (33) for these sums when n is large, we arrive at the result (35), which
was rediscovered by Gregory and Leibniz almost three centuries later.

3.5. Derivation of end-correction terms (antya-saṃskāra)
It is well known that the series given by (35) for �

4
is an extremely slowly converging

series. Mādhava seems to have found an ingenious way to circumvent this problem with a
technique known as antya-saṃskāra. The nomenclature stems from the fact that a correction
(saṃskāra) is applied towards the end (anta) of the series after we terminate it, by considering
only a certain number of terms from the beginning. We can, of course, terminate the series
at any term we desire, provided we find a correction 1

ap
to be applied, that happens to be a

good approximation for the rest of the truncated terms in the series. This seems to have been
the thought process that has gone in in discovering this antya-saṃskāra technique.

Suppose we terminate the series after the term 1
p

and consider applying the correc-
tion term 1

ap
, then

�

4
D 1 �

1

3
C

1

5
�

1

7
C � � � C .�1/

p�3
2

1

p � 2
C .�1/

p�1
2

1

p
C .�1/

pC1
2

1

ap

: (41)

Three successive approximations to the correction divisor ap given by Mādhava may be
expressed as:

ap.1/ D 2.p C 2/;

ap.2/ D .2p C 2/ C
4

.2p C 2/
;

ap.3/ D .2p C 2/ C
4

2p C 2 C
16

2pC2

:

(42)

Yuktibhāṣā contains a detailed discussion on how these correction terms of succes-
sive orders are arrived at. While the discussion in the text goes only up to the three terms as
above, presumably because the expressions become increasingly cumbersome, the idea that
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the partial quotients of the continued fraction

.2p C 2/ C
22

.2p C 2/ C
42

.2p C 2/ C
62

.2p C 2/ C � � �

serve as correction factors to higher and higher orders is seen to be inherently present in the
reasoning. A graph depicting the variation of error in the estimate of � using the three suc-
cessive end-corrections by truncating the series at different values of p is shown in Figure 4.
It may be noted that, when we use the third-order end-correction, by just considering about
25 terms in the series, we are able to obtain the � value correct to 10 decimal places.

Figure 4

Graph depicting the accuracy that is obtained in estimating the value of � by truncating the series at different
values of p and employing the three corrections given by (42).

The following accurate value of � (correct to 11 decimal places), given by Mād-
hava, has been cited by Nīlakaṇṭha in his Āryabhaṭīya-bhāṣya and by Śaṅkara Vāriyar in his
Kriyākramakarī:13

13 [1, p. 42], comm. on Gaṇitapāda verse 10; [19, p. 377].
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ࣺवबुधनेत्रगजाࣹहहुताशनࣻत्रगुणवेदभवारणबाहवः।
नवࣺनखवर्ࣻमते वृࣻतࣺवࡰरे पिरࣾधमानࣻमदं जगदुबुर्धाः॥
vibudhanetragajāhihutāśanatriguṇavedabhavāraṇabāhavaḥ।
navanikharvamite vṛtivistare paridhimānamidaṃ jagadurbudhāḥ॥

The � value given above is

� �
2827433388233

9 � 1011
D 3:141592653592 : : : (43)

The 13-digit number appearing in the numerator has been specified using object-numeral
(bhūta-saṅkhyā) system, whereas the denominator is specified by word numerals.14

4. Historiography of the inception of calculus in India

4.1. Brief note on Charles Whish and his collections
Charles Matthew Whish (1794–1833), as noted earlier, was instrumental in first

bringing to the notice of modern mathematical scholarship the achievements of the Kerala
School through his historic paper that got posthumously published in TRAS (1934) [36].
The fact that Whish had discovered them more than a decade before the paper got published
is evident from the correspondence between John Warren and George Hyne that has been
noted down by the former in his Kālasaṅkalita [35]. It may also be mentioned here that the
collection of manuscripts that Whish had made—which the author of this paper had an occa-
sion to look at—amply demonstrates the fact that he was interested not only in astronomy
and mathematics, but also in a wide variety of topics that includes vedic literature, itihāsas
and purāṇas. Fortunately, these manuscripts were deposited in the Royal Asiatic Society of
Great Britain and Ireland in July 1836 by his brother, and are still well preserved in the Royal
Asiatic Society, London.

The personal notes (see Figure 5) found in various manuscripts in Whish’s collection
also reveal that during his stay in South Malabar, he had got in touch with several scholars,
and read some of the Sanskrit and Malayalam texts with them. Given his abiding interest
to acquire scholarship in a variety of fields by familiarizing with the culture, language, and
knowledge systems of India—and also share it back with his counterparts in Europe—it is
highly unfortunate that Charles Whish suffered a premature death in 1833 at the age of 38
years.15

14 In the bhūta-saṅkhyā system, vibudha = 33, netra = 2, gaja = 8, ahi = 8, hutāśana = 3,
tri = 3, guṇa = 3, veda = 4, bha = 27, vāraṇa = 8, bāhu = 2. In word numerals, nikharva
represents 1011. Hence, nava-nikharva = 9 � 1011.

15 The list of European tombs in the district of Cuddapah prepared by C. H. Mounsey in
1893 mentions: “Sacred to the memory of C. M. Whish, Esquire of the Civil Service, who
departed this life on the 14th April 1833, aged 38 years.”
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Figure 5

Excerpts from Whish’s manuscript showing the verses in Malayalam along with his metrical markings and a
portion from his mathematical notes in English (Courtesy: RAS, London).

4.2. About Kālasaṅkalita
Kālasaṅkalita, published in 1825 by John Warren who was the director of the

Madras observatory for sometime, is a compendium of the different methods employed
by the pañcāṅga-makers for reckoning time. The main purpose of preparing this text was
to facilitate a comparison of the European and Indian chronologies, as is mentioned in the
preface: “… their chief object being merely to explain the various modes according to which
the Natives of India divide time, in these southern provinces, and to render their Kalendars
intelligible. These may therefore be properly considered rather as instruments contrived for
Chronological purposes, than as Astronomical Tracts.”

It turns out that the text is useful in several other respects as well, especially from
a historical perspective. Among other things, the one which is of particular interest to us in
this paper is the exchange of ideas that took place among the three civil servants of the East
India Company, namely, Warren, Whish, and Hyne, particularly with regard to the invention
of the infinite series expansion by the “Natives.”

4.3. Extracts from the exchanges between Whish, Hyne, and Warren
In the Second Memoir of Kālasaṅkalita on the Hindu Lunisolar year, before com-

mencing his discussion on śaṇku16 and the diurnal problems associated with it, John Warren
notes:

16 The term śaṇku refers to a very simple contrivance, yet a powerful tool that has been exten-
sively employed by Indian astronomers – right from the period of the Śulvasūtras (c. 800
BCE) – to carry out a variety of experiments related to shadow measurements.
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Before entering into the resolution of the Problems which depend on the length of
the Meridian shadow, it is proper to enquire …
Of their manner of resolving geometrically the ratio of the diameter to the circum-
ference of a circle, I never saw any Indian demonstration: the common opinion,
however, is that they approximate it in the manner of the ancients, by exhaustion;
that is, by means of inscribed and circumscribed Polygons. However, a Native
Astronomer who was a perfect stranger to European Geometry, gave me the well-
known series 1 �

1
3

C
1
5

C � � � . This person reduced the five first terms of the series
before me, which he called Bagah Anoobanda, or Bagah Apovacha; to shew that
he understood its use. This proves at least that the Hindus are not ignorant of the
doctrine of series …

This passage clearly indicates that John Warren is confronting a dilemma: on the one
hand, he has met “a Native Astronomer who was a perfect stranger to European Geometry”
giving the well-known series 1 �

1
3

C
1
5

C � � � and, on the other hand, “he never saw any
Indian demonstration” of the series. To the above passage, Warren appends a note where he
mentions:

I owe the following note to Mr. Hyne’s favor: “The Hindus never invented the
series; it was communicated with many others, by Europeans, to some learned
Natives in modern times. Mr. Whish sent a list of the various methods of demon-
strating the ratio of the diameter and circumference of a Circle employed by the
Hindus to the literary society, being impressed with the notion that they were the
inventors. I requested him to make further inquiries, and his reply was that he had
reasons to believe them entirely modern and derived from Europeans, observing
that not one of those who used the Rules could demonstrate them. Indeed, the
pretensions of the Hindus to such a knowledge of geometry, is too ridiculous to
deserve refutation.” I join in substance Mr. Hyne’s opinion, but do not admit that
the circumstance that none of the Sastras mentioned by Mr. Whish, who used the
series could demonstrate them, would alone be conclusive.

John Warren returns to this issue in “Fragments II” attached at the end of his treatise
Kālasaṅkalita, entitled “On certain infinite Series collected in different parts of India, by
various Gentlemen, from Native Astronomers.”— Communicated by George Hyne, Esq. of
the H. C.’s Medical Service, which we reproduce below:

“MY DEAR SIR,
I have great pleasure in communicating the Series, to which I alluded …

C D 4D

�
1 �

1

3
C

1

5
� � � �

�
; (44)

C D
p

12D2 �

p
12D2

3 � 3
C

p
12D2

32 � 5
�

p
12D2

33 � 7
C � � � ; (45)

5806 K. Ramasubramanian



C D 2D C
4D

.22 � 1/
�

4D

.42 � 1/
C

4D

.62 � 1/
� � � � ; (46)

C D 8D

�
1

.22 � 1/
C

1

.62 � 1/
C

1

.102 � 1/
C � � �

�
; (47)

C D 8D

�
1

2
�

1

.42 � 1/
�

1

.82 � 1/
�

1

.122 � 1/
� � � �

�
; (48)

C D 3D C
4D

.33 � 3/
�

4D

.53 � 5/
C

4D

.73 � 7/
� � � � ; (49)

C D 16D

�
1

15 C 4:1
�

1

35 C 4:3
C

1

55 C 4:5
� � � �

�
: (50)

I am, my dear Sir, most sincerely, your’s,
MADRAS, 17th August 1825. G. HYNE.”

Based on the nature of exchanges recorded by Warren in 1825, it is quite clear that:

1. Whish was convinced that the infinite series were discovered by the “Natives.”

2. Hyne was convinced that the infinite series were NOT discovered by the
“Natives” but was only borrowed, and that the Hindus were merely pretend-
ing as originators of the series.

3. Warren decides to go with the opinion of Hyne, though initially he felt that the
latter’s argument is not “conclusive.”

Under such circumstances, with a lot of communication back and forth, one could
only imagine how challenging it would have been for Whish17 to swim against the current,
and place on record his own understanding regarding the knowledge of the infinite series, or
of their demonstration in the Indian astronomical tradition. The mere fact the paper authored
by him in 1820s got accepted for publication in the 1830s posthumously, stands testimony
to his courage, perseverance, assiduity, and tenacity with which he would wear down his
opponents.

One of the remarkable statements in the paper of Whish that is of particular interest
to us in the present context is: “A further account of the Yucti-Bhāshā, the demonstrations
of the rules for the quadrature of the circle by infinite series, with the series for the sines,
cosines, and their demonstrations, will be given in a separate paper.” Unfortunately, Whish
did not survive to publish this paper with demonstrations from Yuktibhāṣā, which could
have silenced all those who doubted whether these series listed by them were discovered by
Indians.

17 It may also be recalled that Whish was hardly 30-year old in 1825, whereas George Hyne
and Warren were seniors. Warren was the director of Madras Observatory around 1805
and Hyne was a senior member of Madras Literary Society who was appointed as the first
Secretary of the Committee of Public Instruction by the Madras Government.
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More striking and intriguing development connected with Whish’s paper than what
is narrated above, is the kind of consensus that seems to have emerged among the European
indologists and historians of mathematics and astronomy to undermine and suppress it for
almost a hundred years since its publication in 1834. Either the work itself was not referenced
in their writings, or even if it were, some of the well-established mathematicians, such as
Augustus De Morgan and scholar administrators such as Charles P. Brown dismissed it—far
more strongly than was done by Hyne—by castigating it as “hoax” and “forgery” [11], [6,

pp. 48–49].
Not providing reference to this paper of Whish on the contributions of the Ker-

ala School, or discussing its contents, is certainly not out of ignorance, which is perfectly
understandable. But strangely it seems to be a volitional act! See, for instance, the scholarly
monograph of Geroge Thibaut (in German) on Indian Astronomy, Astrology, and Mathemat-
ics [34, p. 2] which makes note of 1827 article of Whish, on the Greek origin of the Hindu
Zodiac. However, it mysteriously fails to mention this 1934 paper of Whish, though the paper
is germane to the subject of his discussion. We present below a clip (Figure 6) of the relevant
section from Thibaut’s volume, along with a concise translation (done with the help Google).

Figure 6

A clip of the relevant section from Thibaut’s volume

J. WARREN’S work entitled Kālasaṅkalita, which contains a wealth of instruc-
tion on calendar and chronological, and generally astronomical, calculations,
especially according to the South Indian methods. A treatise by C. M. WHISH,
published in Madras in 1827, is the first to delve into the probable influence of
Greek astronomy and astrology on India.

Similarly, the popular translation of Sūryasiddhānta by Ebenezer Burgess [7, p. 174],
and the review article by John Burgess of the European studies of Indian astronomy in the
18th and 19th centuries [8, pp. 746–750] do not refer to the 1934 paper of Whish while they
take note of his other contributions.

Furthermore, David Eugene Smith (1860–1944), in his seminal two-volume history
of mathematics completed in 1925, simply refers to the article of Whish, but does not touch
upon its content except for noting that it deals with Indian values for � . Thus we find an
interesting period of almost a century in European historiography where either both the title
and the content, or at least the content of Whish’s article remained an untouchable!

Fortunately, the references given by David Smith [31, p. 309] caught the attention of
the renowned historian of Indian mathematics, Bibhutibhusan Datta, who drew attention to
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the various infinite series mentioned in Whish’s article in an article published in 1926 [10].
This was followed a decade later by Datta’s colleague, Avadesh Narayan Singh, who referred
to the various manuscripts of the Kerala texts which discuss these infinite series [30]. And the
next decade finally saw the publication of a series of articles by C. T. Rajagopal and his col-
laborators and the edition of the mathematics part of Yuktibhāṣā by Ramavarma Thampuran
and Akhileswara Ayyar (for details, please, see [22,23,25,26,28]).

5. Concluding remarks

It is quite evident from the above mathematical and historical discussions that the
mathematicians of the Kerala School, around the 14th century, had clearly mastered the
technique of handling the infinitesimal, the infinite and the notion of limit—the three pil-
lars on which the edifice of calculus rests upon. The context and purpose for which the
Kerala mathematicians developed these techniques are different from those in which they
got developed in Europe a couple of centuries later. It must also be mentioned here that
the Kerala mathematicians had restricted their discussions to the quadrature of a circle and
certain trigonometric functions.18 However, their mathematical formulation of the problem
involving the “infinitesimally” small and summing up the “infinite” number of the resulting
infinitesimal contributions, along with a clear understanding of the mathematical subtleties
involved in it, are not in any way fundamentally different from the way it would be formulated
or understood today.

While there were a number of European mathematicians and indologists who
expressed their appreciations for the contributions made by Indians, the historiography cap-
tured in Section 4, in no uncertain terms reveals that there were many others who promulgated
their views and tried to suppress the discovery of Kerala mathematicians, by brazenly dis-
counting their work.19 The cascading effect of it has resulted in some well-known authors
producing books even in 1930s—almost a century after the publication of the Whish’s his-
toric paper—containing descriptions such as “… the Hindus may have inherited some of the
bare facts of Greek science, but not the Greek critical acumen. Fools rush in where angels
fear to tread [9]20 …” that are quite misleading, derailing, and damaging. It is perhaps a
fitting tribute to Whish that today at least most historians of mathematics are aware of this
“neglected chapter” in the history of mathematics. For this reason, the following statement
by David Mumford is quite relevant [24]:

It is high time that the full story of Indian mathematics from Vedic times through
1600 became generally known. I am not minimizing the genius of the Greeks and

18 The mathematicians of Europe, however, took a different approach to the subject, by con-
sidering an arbitrary curve for analysis, and by providing formal definitions and generalized
treatment to the topic.

19 The episode essentially reminds us of the important lesson: if we look through a malicious
goggle, then even the genuine narratives may sound to be an elaborate hoax!

20 Quoted by A. A. K. Ayyangar in his article [3].
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their wonderful invention of pure mathematics, but other peoples have been doing
math in different ways, and they have often attained the same goals independently.
Rigorous mathematics in the Greek style should not be seen as the only way to
gain mathematical knowledge.
… the muse of mathematics can be wooed in many different ways and her secrets
teased out of her. And so they were in India …

Apart from the topics discussed in the present article, several other ideas of calcu-
lus seem to have been employed by Indian astronomers in their studies related to planetary
motion. For instance, one of the verses in the second chapter of Tantrasaṅgraha deals with
the derivative of the inverse sine function.21 We would also like to refer the reader to the lit-
erature for the very interesting proof of the sine and cosine series given in the Yuktibhāṣā. As
has been remarked recently by Divakaran [15, p. 335] that, unlike the derivation that was given
by Newton, which involved “guessing” successive terms “from their form,” the Yuktibhāṣā
approach of “integrating the difference/differential equation for sine and cosine is entirely
different and very modern”, which has also been briefly touched upon by Mumford in his
article cited above.

For most of us who have got trained completely in the modern scheme of educa-
tion, it may be hard to imagine doing mathematics without the “luxury” of expressing things
“neatly” in symbolic forms. It is equally hard to think of expressing power series for trigono-
metric functions, derivatives of functions, and the like, purely in metrical forms. But that
is how knowledge seems to have been preserved and handed down from generation to gen-
eration in India for millennia starting from Vedic age till the recent past. It only proves the
point: equations may be handy but not essential; notations may be useful, but not indispens-
able. Formal definitions and structures are certainly valuable and helpful, but the absence of
them does not inhibit or stagnate the birth and development of mathematical ideas. After all,
mathematics is mathematics irrespective of how, where, and why it is practiced!
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