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A C∗-algebra satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and Schochet if
it is equivalent in Kasparov’s KK-theory to a commutative C∗-algebra. This paper is
motivated by the problem of establishing the range of validity of the UCT, and in particular,
whether the UCT holds for all nuclear C∗-algebras.

We introduce the idea of a C∗-algebra that “decomposes” over a class 𝒞𝒞 of C∗-algebras.
Roughly, this means that locally there are approximately central elements that approximately
cut the C∗-algebra into two C∗-subalgebras from 𝒞𝒞 that have well-behaved intersection.
We show that if a C∗-algebra decomposes over the class of nuclear, UCT
C∗-algebras, then it satisfies the UCT. The argument is based on a Mayer–Vietoris principle
in the framework of controlled KK-theory; the latter was introduced by the authors in an
earlier work. Nuclearity is used via Kasparov’s Hilbert module version of Voiculescu’s
theorem, and Haagerup’s theorem that nuclear C∗-algebras are amenable.

We say that a C∗-algebra has finite complexity if it is in the smallest class of C∗-algebras
containing the finite-dimensional C∗-algebras, and closed under decomposability; our main
result implies that all C∗-algebras in this class satisfy the UCT. The class of C∗-algebras with
finite complexity is large, and comes with an ordinal-number invariant measuring the
complexity level. We conjecture that a C∗-algebra of finite nuclear dimension and real rank
zero has finite complexity; this (and several other related conjectures) would imply the UCT
for all separable nuclear C∗-algebras. We also give new local formulations of the UCT, and
some other necessary and sufficient conditions for the UCT to hold for all nuclear
C∗-algebras.
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Abstract

A C �-algebra satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and
Schochet if it is equivalent in Kasparov’s KK-theory to a commutative C �-algebra.
This paper is motivated by the problem of establishing the range of validity of the
UCT, and in particular, whether the UCT holds for all nuclear C �-algebras.

We introduce the idea of a C �-algebra that “decomposes” over a class C of C �-
algebras. Roughly, this means that locally there are approximately central elements
that approximately cut the C �-algebra into two C �-subalgebras from C that have
well-behaved intersection. We show that if a C �-algebra decomposes over the class
of nuclear, UCT C �-algebras, then it satisfies the UCT. The argument is based on a
Mayer–Vietoris principle in the framework of controlled KK-theory; the latter was
introduced by the authors in an earlier work. Nuclearity is used via Kasparov’s Hilbert
module version of Voiculescu’s theorem, and Haagerup’s theorem that nuclear C �-
algebras are amenable.

We say that a C �-algebra has finite complexity if it is in the smallest class of
C �-algebras containing the finite-dimensional C �-algebras, and closed under decom-
posability; our main result implies that all C �-algebras in this class satisfy the UCT.
The class of C �-algebras with finite complexity is large, and comes with an ordinal-
number invariant measuring the complexity level. We conjecture that a C �-algebra
of finite nuclear dimension and real rank zero has finite complexity; this (and sev-
eral other related conjectures) would imply the UCT for all separable nuclear C �-
algebras. We also give new local formulations of the UCT, and some other necessary
and sufficient conditions for the UCT to hold for all nuclear C �-algebras.
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Chapter 1

Introduction

Our aim in this memoir is to present some new techniques to establish the Universal
Coefficient Theorem in C �-algebraK-theory, and some new necessary and sufficient
conditions for the Universal Coefficient Theorem to hold for all nuclear C �-algebras.

Unless otherwise stated, anything in this introduction calledA orB is a separable
C �-algebra.

1.1 The universal coefficient theorem

A C �-algebra A satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and
Schochet [55] if for any C �-algebra B , there is a canonical short exact sequence

0! Ext.K�.A/;K�.B//! KK.A;B/! Hom.K�.A/;K�.B//! 0:

Equivalently (see [55, p. 456] or [60, Proposition 5.2]), A satisfies the UCT if it is
KK-equivalent to a commutative C �-algebra.

The UCT is known to hold for a large class of C �-algebras. The fundamental
examples are the C �-algebras in the bootstrap class N . This is the smallest collec-
tion of separable, nuclear C �-algebras that contains all type I C �-algebras, and that
is closed under the following operations: extensions; stable isomorphisms; inductive
limits; and crossed products by R and Z. Rosenberg and Schochet [55] showed that
any C �-algebra in N satisfies the UCT. Another important class of examples was
established by Tu in [64, Proposition 10.7]; building on the work of Higson and Kas-
parov [35] on the Baum–Connes conjecture for a-T-menable groups, Tu showed that
the groupoid1 C �-algebra of any a-T-menable groupoid satisfies the UCT. In particu-
lar, Tu’s work applies to the groupoid C �-algebras of amenable groupoids.

There has been other significant work giving sufficient conditions for the UCT
to hold, and in some cases also necessary conditions as well as the work mentioned
already, one has for example [60, Proposition 5.2], [53, Corollary 8.4.6], [21], [43,
Remark 2.17], [6, Theorem 4.17], [4], and [5]. Nonetheless, the bootstrap class and
the class of C �-algebras of a-T-menable groupoids, which are defined in terms of
global properties of the C �-algebras involved, remain the most important classes of
C �-algebras known to satisfy the UCT.

1To be more precise, we need standard assumptions so that the groupoid C�-algebra is
defined and separable. Here, appropriate assumptions are that the groupoid is locally compact,
Hausdorff, and second countable, and that it admits a Haar system.
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On the other hand, Skandalis [60, p. 571] has shown2 that there are C �-algebras
that do not satisfy the UCT. Skandalis’s examples are quite concrete; they are reduced
group C �-algebras of countably infinite hyperbolic groups with property (T), and
in particular are exact [44, Section 6.E]. Looking to more exotic examples, failures
of exactness can also be used to produce non-UCT C �-algebras; see for example
[14, Remark 4.3].

Despite these counterexamples, there are no known nuclear C �-algebras that do
not satisfy the UCT. Whether or not the UCT holds for all nuclear C �-algebras is
a particularly important open problem. One reason for this is the spectacular recent
progress (see for example [11, 23, 24, 26, 27, 42, 50, 63]) in the Elliott program [22]
to classify simple, separable, nuclear C �-algebras by K-theoretic invariants. Estab-
lishing the range of validity of the UCT is now the only barrier to getting the “best
possible” classification result in this setting.

On the other hand, work inspired by the Elliott program has led to recent, and
again spectacular, success in the general structure theory of nuclear C �-algebras,
including the recent solution of a large part of the Toms–Winter conjecture [12, 13].
Our motivation in the current paper is to try to bridge the gap between properties
that are relevant in this structure theory – in particular the theory of nuclear dimen-
sion [70] introduced by Winter and Zacharias – and properties that imply the UCT.
In particular, our aim is to give local conditions that imply the UCT, in contrast to
the global conditions from the work of Rosenberg and Schochet [55] and Tu [64]
mentioned above.

1.2 Decompositions and the main theorem

We now introduce our sufficient condition for the UCT. For the statement below, if
X is a metric space, S is a subset of X , x 2 X , and " > 0 we write “x 2" S” if there
exists s 2 S with d.x; s/ < ".

Definition 1.1. Let C be a class of unital C �-algebras. A unital C �-algebra3 A

decomposes over C if for every finite subset X of the unit ball of A and every " > 0
there exist C �-subalgebras C , D, and E of A that are in the class C and contain 1A,
and a positive contraction h 2 E such that

(i) kŒh; x�k < " for all x 2 X ;

(ii) hx 2" C , .1 � h/x 2" D, and h.1 � h/x 2" E for all x 2 X ;

(iii) for all e in the unit ball of E, e 2" C and e 2" D.

2See also the exposition in [34, Sections 6.1 and 6.2].
3Not necessarily separable. For applications to the UCT, only the separable case is relevant,

but the definition admits interesting examples in the non-separable case, and it seems plausible
there will be other applications.
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One should think of C and D as being approximately (unitizations of) ideals in
A such that C C D D A, and E being approximately equal to (the unitization of)
C \D. We will discuss examples later.

Here, is our main theorem, which was inspired by our earlier work on the Künneth
formula (in collaboration with Oyono-Oyono) [48, 67], and by our earlier work on
finite dynamical complexity and finite decomposition complexity (in collaboration
with Guentner and Tessera) [29, 31]. See Corollary 7.5 below for the proof.

Theorem 1.2. If A is a separable, unital C �-algebra that decomposes over the class
of separable, nuclear C �-algebras that satisfy the UCT, then A is nuclear and satis-
fies the UCT.

One can thus think of decomposability as an addition to the closure operations
that are used in the definition of the bootstrap class N .

1.3 C �-algebras with finite complexity

Following the precedent established by [30] in coarse geometry, the notion of decom-
posability suggests a complexity hierarchy on C �-algebras.

Definition 1.3. Let D denote a class of unital C �-algebras. For an ordinal number ˛,

(i) if ˛ D 0, let D0 be the class of C �-algebras D that are locally4 in D ;

(ii) if ˛ > 0, let D˛ be the class of C �-algebras that decompose over C �-
algebras in

S
ˇ<˛ Dˇ .

A unital C �-algebra D has finite complexity relative to D if it is in D˛ for some ˛.
If D is the class of finite-dimensional C �-algebras, we just say that D has finite
complexity.

If a unital C �-algebra D has finite complexity relative to D , the complexity rank
of D relative to D is the smallest ˛ such that D is in D˛ . If D is the class of finite-
dimensional C �-algebras, we just say the complexity rank of D with no additional
qualifiers.

The following result is equivalent to Theorem 1.2 above. However, we think the
reframing in terms of complexity is quite suggestive.

Theorem 1.4. Let C be a class of separable, unital, nuclear C �-algebras that satisfy
the UCT. Then, the class of separable, unital C �-algebras that have finite complexity
relative to C consists of nuclear C �-algebras that satisfy the UCT.

4A C�-algebra is locally in a class D if for any finite subset X of D and any " > 0 there is
a C�-subalgebra C of D that is in D , and such that x 2" C for all x 2 X .
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In particular, every separable C �-algebra of finite complexity is nuclear and sat-
isfies the UCT.

Examples 1.5. We can now give some non-trivial examples of C �-algebras that
decompose over natural, simpler, classes.

(i) In Proposition A.1, we show that for

2 � n <1;

the Cuntz algebra On has complexity rank one.

(ii) In [31], Guentner and the authors introduced “finite dynamical complex-
ity” for groupoids, which also comes with a notion of complexity rank. In
Proposition A.8 we show that if G is a locally compact, Hausdorff, étale,
principal, ample groupoid with compact base space, then the complexity
rank of C �r .G/ is bounded above by that of G. The class of groupoids
with finite dynamical complexity is quite large; see Examples A.9 and A.11
below.

Combining part (ii) above with Theorem 1.4 gives a new proof of the UCT for the
groupoid C �-algebras of a large class of groupoids. However, we cannot claim any
genuinely new examples; this is because the groupoids involved are all amenable, so
the UCT for their C �-algebras also follows from Tu’s theorem [64] (see Remark A.13
below for more details).

1.4 Kirchberg algebras

Generalizing the Cuntz algebras from (i) above, recall that a Kirchberg algebra is a
separable, nuclear C �-algebra A such that for any non-zero a 2 A, there are b; c 2 A
such that bacD 1A. Kirchberg algebras are closely connected to the UCT problem for
nuclear C �-algebras thanks to the following theorem of Kirchberg; see [53, Corollary
8.4.6] or [43, Remark 2.17].

Theorem 1.6 (Kirchberg). To establish the UCT for all separable, nuclear C �-
algebras, it suffices to establish the UCT for any Kirchberg algebra with zero K-
theory.

Theorems 1.4 and 1.6 imply that if any Kirchberg algebra with zero K-theory
has finite complexity, then the UCT holds for all separable, nuclear C �-algebras.
Conversely, if the UCT holds for all separable, nuclear C �-algebras, then from the
Kirchberg–Phillips classification theorem [42, 50] (see also [53, Corollary 8.4.2] for
the precise statement we want here), any unital Kirchberg algebra with zeroK-theory
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will be isomorphic to the Cuntz algebra O2, and so will have complexity rank one by
Examples 1.5 (i). We summarize this discussion in the theorem below.

Theorem 1.7. The following are equivalent:

(i) Any Kirchberg algebra with zero K-theory has complexity rank one.

(ii) All separable nuclear C �-algebras satisfy the UCT.

Generalizing Examples 1.5 (i) above Jaime and the first author show in [37] that
a Kirchberg algebra that satisfies the UCT has complexity rank one if and only if its
K1 group is torsion free, and that moreover any UCT Kirchberg algebra has com-
plexity rank at most two. From Theorem 1.7, if one could prove this without the UCT
assumption, then the UCT for all separable nuclear C �-algebras would follow.

The paper [37] also discusses several other connections between complexity rank,
real rank zero, and nuclear dimension. We will not go into this any more deeply
here; suffice to say that these other connections inspired us to make the following
conjectures.

Conjecture 1.8. Any separable unital C �-algebra with real rank zero and finite nuc-
lear dimension has finite complexity.

Conjecture 1.9. Any separable unital C �-algebra with finite nuclear dimension has
finite complexity relative to the class of subhomogeneous5 C �-algebras.

Thanks to Theorem 1.7 and the fact that all Kirchberg algebras have nuclear
dimension one (see [9, Theorem G]) and real rank zero (see [72]), either of these
conjectures implies the UCT for all separable, nuclear C �-algebras. There are many
other related conjectures one could reasonably make that imply the UCT for all nuc-
lear C �-algebras. About the strongest such conjecture would be that any separable,
nuclear C �-algebra with real rank zero has finite complexity6. One of the weakest is
that any Kirchberg algebra with zero K-theory has finite complexity.

1.5 A local reformulation of the UCT

We now discuss the methods that go into the proof of Theorem 1.2.

5Recall that a C�-algebra C is subhomogeneous if there isN 2N and a compact Hausdorff
space X such that C is a C�-subalgebra of MN .C.X//; see for example [8, Section IV.1.4]
for background.

6It would also be natural to drop the real rank zero assumption, and then only ask for finite
complexity relative to the subhomogeneous C�-algebras, or even just relative to the type I
C�-algebras.
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In our earlier work [68], we introduced controlledKK-theory groupsKK".X;B/
associated to a C �-algebra B , a finite subset X of a C �-algebra A and a constant
" > 0. Very roughly (we give more details below), one defines these by representing
A in “general position” inside the stable multiplier algebra M.B ˝K/ of B . The
group KK".X; B/ then consists of the “part of the K-theory of B that commutes
with X , up to "”.

To be more precise about this, assume that A and B are C �-algebras, and assume
for simplicity7 that A is unital. Let � W A! M.B ˝K/ be a faithful, unital, and
strongly unitally absorbing8 representation. Fixing such a representation, identify A
with a diagonal subalgebra of M2.M.B ˝K// via the representation � ˚ � . For
a finite subset X of the unit ball of A and " > 0, define P".X; B/ to be the set
of projections in M2.M.B ˝K// such that p-

�
1 0
0 0

�
is in M2.B ˝K/, and such

that kŒp; x�k < " for all x 2 X . The associated controlled KK-theory group9 is then
defined to be the set

KK0" .X;B/ WD �0.P".X;B//

of path components in P".X; B/. One can show that this group is determined up to
canonical isomorphism by the subset inclusion X � A, by B , and by "; it does not
depend on the choice of representation.

Note that if X D ¿, then KK0" .¿; B/ is canonically isomorphic to the usual
K-theory group K0.B/ (for any "); this is what we mean when we say KK".X; B/
consists of the “part of the K-theory of B that commutes with X , up to "”.

Now, if 0 < ı � " and if Y � X are finite subsets of A1, then there is an inclusion
Pı.Y; B/ � P".X;B/ that induces a “forget control map”

KKı.Y; B/! KK".X;B/:

In [68, Theorem 1.1], we showed that there is a short exact “Milnor sequence” relat-
ing the inverse system built from these forget control maps to the usual KK-group
KK.A;B/; see Theorem 2.13 below for details. This sequence is an analogue of the
Milnor sequence appearing in Schochet’s work [56, 57]; however, unlike Schochet’s
version, it is local in nature, and does not require the UCT.

Our first goal in this memoir is to use the Milnor sequence to establish the fol-
lowing “local reformulation” of the UCT.

7The theory also works for C�-algebras that are not unital, but the definitions are a little
more complicated.

8Roughly, a strongly unitally absorbing representation is one that satisfies the conclusion
of Voiculescu’s theorem for all representations of A on Hilbert B-modules; for the current
discussion, it is just important that such a representation always exists. See Definition 2.5 below
for details.

9It is canonically a group, with the operation given by Cuntz sum in an appropriate sense.
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Theorem 1.10. Let A be a unital C �-algebra. Then, the following are equivalent:

(i) A satisfies the UCT.

(ii) Let B be a separable C �-algebra such that K�.B/ D 0, and let � W A!
M.SB ˝K/ be a strongly unitally absorbing representation into the stable
multiplier algebra of the suspension of B . Then, for any finite subset X of
A and any " > 0 there exists a finite subset Y of A containing X and ı � "
such that the canonical forget control map

KKı.Y; SB/! KK".X; SB/

for the suspension of B is zero.

This is a key ingredient in our main results, but we hope it will prove to be useful
in its own right. Note in particular that there are no assumptions on A other than that
it is separable and unital10.

There is a technical variation of Theorem 1.10 that applies to nuclearC �-algebras,
and that plays an important role in our arguments. The key point is one of order of
quantifiers; condition (ii) from Theorem 1.10 starts with quantifiers of the form

“8B 8� 8X 8" 9Y 9ı : : : ”:

If A is nuclear, the same statement is true with the order of quantifiers replaced with

“8" 9ı 8B 8� 8X 9Y : : : ”;

i.e., ı depends only on " and not on any of the other choices involved. To establish
this, we adapt an averaging argument due to Christensen, Sinclair, Smith, White, and
Winter [17, Section 3], which is in turn based on Haagerup’s theorem that nuclear
C �-algebras are amenable [33].

1.6 Strategy for the proof of the main theorem

Assume that A is a nuclear, unital C �-algebra that decomposes with respect to the
class of nuclear UCT C �-algebras as in the statement of Theorem 1.2. Assume more-
over that K�.B/ D 0. Thanks to Theorem 1.10 above, to establish the UCT for A it
suffices to show that for any finite subset X of the unit ball A1 of A, and any " > 0
there exist Y � X and ı � " such that the canonical forget control map

KK0ı .Y; SB/! KK0" .X; SB/

is zero.

10Unitality is not really necessary – we do not do it in this memoir, but similar techniques
establish the result above for non-unital separable C�-algebras, with appropriately reformu-
lated controlled KK-groups.
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Our approach to this is inspired directly by our earlier work with several col-
laborators; this includes the work on the Künneth formula of Oyono-Oyono and the
second author [48], and separately by the first author [67]; the work of Guentner and
the authors on the Baum–Connes conjecture for transformation groupoids with finite
dynamical complexity [31]; and the work of Guentner, Tessera, and the second author
on the stable Borel conjecture for groups of finite decomposition complexity [29].
These other papers all use controlled K-theory as opposed to KK-theory; the sem-
inal result along these lines is the second author’s work on the Novikov conjecture
for groups with finite asymptotic dimension [71].

In the current context, we use decomposability and a Mayer–Vietoris argument.
Let 
 > 0 be a very small constant, which is in particular smaller than ". Then, any
suitably small11 ı > 0 will have the following property. Let h and C , D, and E be
nuclear UCT algebras as in the definition of decomposability for the given set X and
parameter ı. Let YC , YD and YE be finite subsets of the unit balls C1, D1, and E1
respectively that contain hX [ ¹hº, .1� h/X [ ¹hº and h.1� h/X [ ¹hº respectively
up to ı-error, and so that YC and YD both contain YE up to ı-error. Let

Y D YC [ YD [ YE [X:

Then, one can construct a diagram12 of the form

KK0
ı
.Y; SB/

��

�C˚�D// KK0
2ı
.YC ; SB/˚KK

0
2ı
.YD; SB/

KK
 .YE ; S
2B/

@ // KK0" .X; SB/

;

(1.1)
where the vertical arrow is the canonical forget control map. This diagram has the
“exactness” property that if Œp� goes to zero under the map

�C ˚ �D W KK
0
ı .Y; B/! KK02ı.YC ; SB/˚KK

0
2ı.YD; SB/ (1.2)

then the image of Œp� under the forget control map KK0
ı
.Y; SB/! KK0" .X; SB/ is

in the image of the map

@ W KK
 .YE ; S
2B/! KK0" .X; SB/: (1.3)

11The size of 
 depends linearly on " and the size of ı depends linearly on 
 ; the constants
involved are very large.

12The form of this diagram is not new; the basic idea is modeled on [29, Diagram (5.8)]
from the work of the Guentner, Tessera, and the second author on the stable Borel conjecture
for groups with finite decomposition complexity. See also [31, Proposition 7.6] from work of
the Guentner and the authors in a more closely related context.
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However, as K�.B/ D 0, if 
 and ı are small enough, one can use Theorem 2.15 (in
the stronger form for nuclear C �-algebras) to choose YC , YD , and YE large enough
so that the maps in lines (1.2) and (1.3) are zero. This completes the proof.

In the detailed exposition below we structure the proof to give it as “local” a flavor
as possible, partly as we suspect that the ideas might be useful in other contexts. The
two main “local”(ish) technical results are recorded as Propositions 7.1 and 7.2 below.

The argument above is directly inspired by the classical Mayer–Vietoris principle.
Indeed, assume that C and D are nuclear ideals in A with intersection E, and such
that

A D C CD:

Then, there is13 an exact Mayer–Vietoris sequence

� � � ! KK0.E; SB/! KK0.A;B/! KK0.C;B/˚KK0.D;B/! � � � :

In particular, if the groups at the left and right are zero, then the group in the middle
is also zero. Our analysis of the diagram in line (1.1) is based on a concrete construc-
tion of this classical Mayer–Vietoris sequence that can be adapted to our controlled
setting. The idea has its roots in algebraic K-theory, going back at least as far as
[46, Chapter 2]. Having said this, there is significant work to be done adapting these
classical ideas to the analytic superstructure that we built in [68], and the resulting
formulas and arguments end up being quite different.

Remark 1.11. It would be very interesting to remove the nuclearity hypothesis from
Theorem 1.2, or at least to replace it with something weaker such as exactness. Let
us explain how nuclearity is used in the proof of Theorem 1.2, in the hope that some
reader will see a way around it.

The first use of nuclearity is to show that any nuclear, unital C �-algebra admits
strongly unitally absorbing representations whose restriction to any nuclear, unital
C �-subalgebra is also strongly unitally absorbing; see Corollary 2.7 below. The proof
of this is based on Kasparov’s version of Voiculescu’s theorem for Hilbert modules
[40, Section 7]. It seems plausible from the discussion in Remark 2.8 below that some
form of nuclearity is necessary for this to hold, but we do not know this.

The second place nuclearity is used is via an averaging argument due to Chris-
tensen, Sinclair, Smith, White, and Winter [17, Section 3]; this is applicable to nuc-
lear C �-algebras thanks to Haagerup’s theorem that nuclear C �-algebras are always
amenable [33]. This lets us prove a stronger version of Theorem 1.10; see Corol-
lary 2.22 below. We do not know if this result holds without nuclearity; see Remark
2.19 for a more detailed discussion.

13It is not in the literature as far as we can tell. For nuclear C�-algebras, it can be derived
from the usual long exact sequence in KK-theory using, for example, the argument of [69,
Proposition 2.7.15].
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1.7 Notation and conventions

For a subset S of a metric space X , x 2 X and " > 0, we write “x 2" S” if there is
s 2 S with d.x; s/ < ". For elements x; y of a metric space X , we write “x �" y” if
d.x; y/ < ".

We write `2 for `2.N/. Throughout, the lettersA andB are reserved for separable
C �-algebras. The letter C will refer to a possibly non-separable C �-algebra. The unit
ball of C (or a more general normed space) is denoted by C1, its unitization is CC, its
multiplier algebra is M.C/, its suspension is SC , and its n-fold suspension is SnC .
We write Mn or Mn.C/ for the n � n matrices, and Mn.C / for the n � n matrices
over a C �-algebra C .

Our conventions on Hilbert modules follow those of Lance [45]. We will write
HB WD `2 ˝ B for the standard Hilbert B-module, and LB , respectively KB , as
shorthand for the C �-algebra L.HB/ of adjointable operators on HB , respectively
the C �-algebra K.HB/ of compact operators on HB . We will typically identify LB

with the “diagonal subalgebra” 1Mn ˝LB ofMn˝LB DMn.LB/. Thus, we might
write “Œx; y�” for the commutator of x 2 LB and y 2 Mn.LB/, when it would be
more strictly correct to write something like “Œ1Mn ˝ x; y�”.

The symbol “˝” always denotes a completed tensor product: either the external
tensor product of Hilbert modules (see [45, Chapter 4] for background on this), or the
minimal tensor product of C �-algebras (see for example [10, Chapter 3]).

We will sometimes write 0n and 1n for the zero matrix and identity matrix of
size n when this seems helpful to avoid confusion, although we will generally omit
the subscripts to avoid clutter. If n � m, we will also use 1n 2 Mm.C/ for the rank
n projection with n ones in the top-left part of the diagonal and zeros elsewhere.
Given an n � n matrix a and an m � m matrix b, a ˚ b denotes the “block sum”
.nCm/ � .nCm/ matrix defined by

a˚ b WD

�
a 0

0 b

�
:

Finally, K�.A/ WD K0.A/ ˚ K1.A/ denotes the graded K-theory group of a
C �-algebra, and KK�.A; B/ WD KK0.A; B/˚KK1.A; B/ the graded KK-theory
group. We will typically just write KK.A;B/ instead of KK0.A;B/.

1.8 Outline of the paper

Chapter 2 gives our reformulation of the UCT in terms of a concrete vanishing condi-
tion for controlled KK-theory. The key ingredients for this are the Milnor sequence
from [68, Theorem 1.1], and some ideas around the Mittag–Leffler condition from
the theory of inverse limits (see for example [66, Section 3.5]). We also show that
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a stronger vanishing result holds for nuclear, UCT C �-algebras using an averaging
argument of Christensen, Sinclair, Smith, White, and Winter [17, Section 3]; the aver-
aging argument is in turn based on Haagerup’s theorem [33] that nuclearity implies
amenability.

Chapter 3 discusses our controlled KK0-groups. We introduced these in [68],
but we need a technical variation here. This is essentially because in [68] we were
setting up general theory, and for this it is easier to work with projections in a fixed
C �-algebra. In this memoir we are doing computations with concrete algebraic for-
mulas, where it is more convenient to work with general idempotents, and to allow
taking matrix algebras. We will, however, use both versions in this memoir, as we
need to relate our work back here to the general theory of [68]. We also introduce
controlled KK1-groups in a concrete formulation using invertible operators; in our
earlier work [68] we (implicitly) defined controlled KK1-groups using suspensions,
but here we also need the more concrete version.

Chapter 4 collects together some technical facts. These are all analogues for
controlled KK-theory of well-known results from K-theory; for example, we prove
“controlled versions” of the statements that homotopic idempotents are similar, and
that similar idempotents are homotopic (up to increasing matrix sizes). Some argu-
ments in this chapter are adapted from the work of Oyono-Oyono and the second
author [47] on controlled K-theory.

Chapter 5 revisits the vanishing conditions of Chapter 2. Using the techniques
of Chapter 4, we reformulate these results in the more flexible setting allowed by
Chapter 3. This gives us the vanishing conditions that are the first main technical
ingredient needed for Theorem 1.2.

Chapter 6 establishes the second main technical ingredient needed for Theorem
1.2. Here, we construct a “Mayer–Vietoris boundary map” for controlledKK-theory,
and prove that it has an exactness property. The construction is an analogue of the
usual index map of operator K-theory (see for example [54, Chapter 9]), although
concrete formulas for the Mayer–Vietoris boundary map unfortunately seem to be
missing from the C �-algebra literature. The formulas we use are instead inspired by
classical formulas from algebraic K-theory [46, Chapter 2], adapted to reflect our
analytic setting.

Finally, in the main body of the paper, Chapter 7 puts everything together and
gives the proofs of Theorem 1.2 and Theorem 1.4. We also include technical “local”
vanishing results that we hope to elucidate the structure of the proof, and might be
useful in other contexts.

The paper concludes with Appendix A, which gives examples of C �-algebras
with finite complexity. We first use a technique of Winter and Zacharias [70, Sec-
tion 7] to show that the Cuntz algebras On with 2 � n <1 have complexity rank
one. We then use our joint work with Guentner on dynamic complexity [31] to show
that ample, principal, étale groupoids with finite dynamical complexity and compact
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base space have C �-algebras of finite complexity; we also get a similar result without
the ampleness assumption if we allow C �-algebras with finite complexity relative to
subhomogeneous C �-algebras.



Chapter 2

Reformulating the UCT

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB are
respectively the adjointable and compact operators on the standard Hilbert B-module
`2 ˝ B .

Our goal in this chapter is to recall the definition of the controlled KK-theory
groups, and then to reformulate the universal coefficient theorem in these terms.

We first recall the definition of the controlled KK-theory groups from [68]; to be
precise, we need the version from [68, Sections A.1 and A.2] that is specific to unital
C �-algebras. We need a definition.

Definition 2.1. Let B be a separable C �-algebra. Choose a unitary isomorphism
`2 Š C2 ˝ `2 ˝ `2, which induces a unitary isomorphism

`2 ˝ B Š .C2
˝ `2 ˝ `2/˝ B

of Hilbert B-modules. With respect to this isomorphism, let e 2LB be the projection
corresponding to

�
1 0
0 0

�
˝ 1`2˝`2˝B . We call e the neutral projection. A subset X of

LB is called large if every x 2X is of the form 1C2˝`2 ˝ y for some y 2L.`2˝B/

with respect to this decomposition.

Definition 2.2. Let B be a separable C �-algebra. Let " > 0, let X be a finite, large,
subset of the unit ball of LB and let e 2 LB be the neutral projection as in Defini-
tion 2.1. Let P".X;B/ consist of those projections p in LB such that

(i) p � e 2KB ; and

(ii) kŒp; x�k < " for all x 2 X .

Define KK".X;B/ to be the set �0.P".X;B// of path components of P".X;B/. We
write Œp� 2 KK".X;B/ for the class of p 2 P".X;B/.

Choose now isometries t1; t2 2 B.`2/ satisfying the Cuntz relation

t1t
�
1 C t2t

�
2 D 1;

and define si WD 1C2 ˝ ti ˝ 1`2˝B 2 LB . Define an operation onKK".X;B/ by the
Cuntz sum

Œp�C Œq� WD Œs1ps
�
1 C s2qs

�
2 �:

The same proof as [68, Lemma A.4] shows that KK".X; B/ is an abelian group,
with identity element given by the class Œe� of the neutral projection.

We finish this section with two ancillary lemmas. The first is extremely well-
known; we include an argument for completeness as we do not know a convenient
reference.
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Lemma 2.3. Let a and b be elements of a unital C �-algebra with b normal. Then,
any z in the spectrum of a is contained within distance ka � bk of the spectrum of b.

Proof. We need to show that if z is further than ka � bk from the spectrum of b, then
a � z is invertible. Indeed, in this case the continuous functional calculus implies that
k.b � z/�1k < ka � bk�1. Hence,

k.a � z/.b � z/�1 � 1k � k.a � z/ � .b � z/kk.b � z/�1k < 1;

whence .a � z/.b � z/�1 is invertible, and so a � z is invertible too.

Lemma 2.4. Let B be a separable C �-algebra, let " > 0, and letX be a finite, large,
subset of the unit ball of LB . With notation as in Definition 2.2, the groupKK".X;B/
is countable.

Proof. As B is separable KB is separable, and so the set P".X;B/ is also separable.
Let S be a countable dense subset of P".X; B/. It suffices to show that the map
S ! KK".X;B/ defined by p 7! Œp� is surjective.

Let p 2 P".X;B/ be arbitrary, and define

ı WD min
²
1

4
." �max

x2X
kŒp; x�k/;

1

2

³
:

Let q 2 S be such that kp � qk < ı, and let pt WD .1 � t /p C tq for t 2 Œ0; 1�.
Then, for each t 2 Œ0; 1�, kpt � pk < ı, so Lemma 2.3 and that pt is a positive
contraction implies that the spectrum pt is contained in Œ0; ı/ [ .1 � ı; 1�. Let �
be the characteristic function of .1

2
;1/. Then, k�.pt / � ptk < ı for all t , whence

k�.pt / � pk < 2ı for all t , from which it follows that kŒ�.pt /; x�k < " for all t and
all x 2X . As pt � e 2KB for all t , it follows from the fact that KB is an ideal in LB

that �.pt / � e 2 KB too. Hence, .�.pt //t2Œ0;1� is a path connecting p and q within
P".X;B/ so Œp� D Œq�, and we are done.

2.1 The general case

We need a special class of representations on Hilbert B-modules, essentially taken
from work of Thomsen [62, Definition 2.2] (see also [68, Definition A.11]). We do
not need the details of the definition below, and only include it for completeness; all
we really need are the facts about existence of such representations in Lemma 2.6
below.

Definition 2.5. Let A be a separable, unital C �-algebra, and let B be a separable
C �-algebra. A representation � W A ! LB is unitally absorbing if for any unital
completely positive map � WA!LB there exists a sequence of isometries .vn/ in LB
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such that kv�n�.a/vn � �.a/k ! 0 as n!1, and such that v�n�.a/vn � �.a/ 2KB

for all n 2 N.
For a representation � WA!LB DL.HB/, let �1 WA!L.H˚1B / be its infinite

amplification, which we identify with a representation �1 W A! LB via a choice of
unitary isomorphism .`2/˚1 Š `2 as in the string of identifications below

L.H˚1B / D L..`2 ˝ B/˚1/ D L..`2/˚1 ˝ B/ Š L.`2 ˝ B/ D LB

(all of the identifications labeled “=” are canonical). A unital representation � W A!
LB is strongly unitally absorbing if there is a unitally absorbing representation

� W A! LB

such that � D �˚1.

Note that a (strongly) unitally absorbing representation is faithful. The following
result is essentially due to Thomsen and Kasparov. Our main use of part (ii) occurs
much later in the paper.

Lemma 2.6. Let A be a separable, unital C �-algebra, and let B be a separable
C �-algebra. Then,

(i) There exists a strongly unitally absorbing representation � W A! LB .

(ii) Assume in addition that A or B is nuclear. Let � W A ! B.`2/ be any
faithful unital representation, let � WB.`2/!LB be the canonical inclusion
arising from the decomposition HB D `2 ˝ B , and let � W A! LB be the
infinite amplification of � ı � . Then, � is strongly unitally absorbing.

Proof. For part (i), Thomsen shows in [62, Theorem 2.4] that a unitally absorbing
representation � W A! LB exists under the given hypotheses. Its infinite amplifica-
tion � is then strongly unitally absorbing.

For part (ii), note first that identifying .� ı �/1 with .� ı .�˚1//1 we may
assume � is the infinite amplification of some faithful unital representation A !
B.`2/. Having made this assumption, note that �.A/\K.`2/D¹0º. In [40, Theorem
5], Kasparov shows that if A is a separable, unital C �-algebra and � W A! B.`2/

is a faithful representation such that �.A/ \K.`2/ D ¹0º, and moreover if either A
or B is nuclear, then the composition � ı � satisfies the condition Thomsen gives in
[62, Theorem 2.1, condition (4)]. Comparing [62, Theorem 2.1] and Definition 2.5,
we see that � ı � is unitally absorbing. Hence, � D .� ı �/˚1 is strongly unitally
absorbing.

The following corollary is immediate from part (ii) of Lemma 2.6.

Corollary 2.7. Let A be a separable, unital, nuclear C �-algebra, and let B be a
separable C �-algebra. Then, there exists a strongly unitally absorbing representation
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� W A! LB such that the restriction of � to any unital, nuclear C �-subalgebra of A
is also strongly unitally absorbing.

Remark 2.8. Corollary 2.7 is one of the two places nuclearity is used in the proof of
Theorem 1.2, so it would be interesting to establish the corollary under some weaker
assumption than nuclearity. The following observation shows that the method we used
to establish Corollary 2.7 cannot extend beyond the nuclear case, however.

Let A be a separable, unital C �-algebra, and let A D B . Let � W A! B.`2/ be
a unital representation, and let � WD � ı � W A ! LA be as in Lemma 2.6 (ii). We
claim that if � is unitally absorbing, then A is nuclear1. Let � W A! LA be the �-
homomorphism a 7! 1`2 ˝ a. If � is unitally absorbing then for any " and finite subset
X of A there is an isometry v 2 LA such that kv��.a/v � �.a/k < " for all a 2 X .
For each n, let pn 2 B.`2/ be the orthogonal projection onto `2.¹1; : : : ; nº/, and let
qn WD pn ˝ 1A 2 LA. Note that q1LAq1 identifies canonically with A, and up to this
identification q1�.a/q1 D a for all a 2 A, so in particular kq1v��.a/vq1 � ak < "
for all a 2 X . As .qn/ converges strictly to the identity in LA, and as q1v 2 KA, we
have moreover that q1v�qn�.a/qnvq1 converges in norm to q1v��.a/v�q1, so there
is n such that kq1v�qn�n.a/qnvq1 � ak < " for all a 2 X . We thus have ucp maps

A
a 7!qn�.a/qn // qn.B.`

2/˝ 1A/qn ŠMn.C/
b 7!q1v

�bvq1 // A

whose composition agrees with the identity on X to within " error. As X and " were
arbitrary, this implies nuclearity of A (see for example [10, Chapter 2]).

To state the main result of [68], we need some more definitions.

Definition 2.9. Let A be a separable, unital C �-algebra, and let B be a separable
C �-algebra. A representation � W A! LB is large if there is a unitally absorbing
representation � W A! LB such that with respect to the choice of isomorphism

`2 ˝ B Š C2
˝ `2 ˝ `2 ˝ B

of Definition 2.1, we have �.a/ D 1C2˝`2 ˝ �.a/ for all a 2 A.

Lemma 2.6 (i) implies that large representations exist for any (separable)A andB .
Note that if � is large in the sense of Definition 2.9 then for any X � A, the subset
�.X/�LB is large in the sense of Definition 2.1. In particular, if we identifyX with
�.X/, the group KK".X;B/ of Definition 2.2 makes sense.

Definition 2.10. Let C be a C �-algebra, and let XC consist of all pairs of the form
.X; "/ where X is a finite subset of C1, and " > 0. Put a partial order on XC by

1The following argument is inspired by [60, Théorème 1.5, Definition 1.6, and Remarque
1.7].
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stipulating that .X; "/ � .Y; ı/ if ı � ", and if for all x 2 X there exists y 2 Y with
kx � yk � 1

2
." � ı/.

A good approximation of C is a cofinal sequence2 ..Xn; "n//
1
nD1 of elements

of XC .

Note that if X � Y and ı � ", then .X; "/ � .Y; ı/; in particular, this implies
that XC is a directed set. Note also that good approximations exist if and only if C is
separable: if ."n/ is a decreasing sequence that tends to zero, and .Xn/ is an increasing
sequence with dense union in C1, then ..Xn; "n//1nD1 is a good approximation; and
if ..Xn; "n//1nD1 is a good approximation, then

S1
nD1Xn is a countable dense subset

of C1.

Definition 2.11. Let B be a separable C �-algebra, and let XLB be the directed set
from Definition 2.10 above for the C �-algebra LB . If .X; "/ � .Y; ı/ and X and Y
are both large in the sense of Definition 2.1, then with notation as in Definition 2.2
there is an inclusion

Pı.Y; B/ � P".X;B/: (2.1)

We call the canonical map

KKı.Y; B/! KK".X;B/

induced by the inclusion in line (2.1) above a forget control map.

We now briefly recall some terminology from homological algebra; see for exam-
ple [66, Section 3.5] or [58, Section 3] for more background on this material3. An
inverse system of abelian groups consists of a sequence of abelian groups and homo-
morphisms

� � �
�n // An

�n�1 // An�1
�n�2 // � � �

�2 // A2
�1 // A1:

Associated to such a system is a homomorphism

� W
Y
n2N

An !
Y
n2N

An; .an/ 7! .�n.anC1//:

The inverse limit, denoted lim
 
An, is defined to be the kernel of id � �, and the lim

 

1-

group, denoted lim
 

1An, is defined to be the cokernel of id � �. Note that if m � n,
there is a canonical homomorphism Am ! An defined as �n ı �nC1 ı � � � ı �m�1.
The inverse system satisfies the Mittag–Leffler condition if for any n there is N � n

2A sequence .sn/1nD1 in a partially ordered set S is cofinal if s1 � s2 � s3 � � � � and if for
all s 2 S there is n such that s � sn.

3Readers interested in a more sophisticated and general treatment can also see [38].



Reformulating the UCT 18

such that for all m � N , the image of the canonical map Am ! An equals the image
of the canonical map AN ! An.

Proposition 2.12. Let .An/ be an inverse system of abelian groups. If .An/ satisfies
the Mittag–Leffler condition, then lim

 

1An D 0. Conversely, if lim
 

1An D 0 and each
An is countable, then the inverse system satisfies the Mittag–Leffler condition.

Proof. It is well-known that the Mittag–Leffler condition implies vanishing of

lim
 

1An D 0I

see for example [66, Proposition 3.5.7]. The converse in the case of countable groups
follows from [28, Proposition on page 242].

Now, let A be a separable, unital C �-algebra, let B be a separable C �-algebra,
and use a large representation � W A! LB (see Definition 2.9) to identify A with a
C �-subalgebra of LB . Let ..Xn; "n//1nD1 be a good approximation of A as in Defini-
tion 2.10, so the forget control maps of Definition 2.11 form an inverse system

� � � ! KK"n.Xn; B/! KK"n�1.Xn�1; B/! � � � ! KK"1.X1; B/

from which we define lim
 
KK"n.Xn; B/ and lim

 

1KK"n.Xn; B/ as above.
The following is [68, Proposition A.10].

Theorem 2.13. Let A and B be separable C �-algebras with A unital. Let

� W A! LB

be a large representation, and use this to identify A with a C �-subalgebra of LB . Let
..Xn; "n//

1
nD1 be a good approximation for A. Then, there is a short exact sequence

0! lim
 

1KK"n.Xn; SB/! KK.A;B/! lim
 
KK"n.Xn; B/! 0:

We are now almost ready to state and prove our reformulation of the UCT. It
will be convenient to use the following well-known reformulation of the UCT; see
[55, p. 457] or [60, Proposition 5.3] for a proof.

Theorem 2.14. A separable C �-algebra A satisfies the UCT if and only if for any
separable C �-algebra B such that K�.B/ D 0 we have that

KK.A;B/ D 0:

Theorem 2.15. Let A be a separable C �-algebra. The following are equivalent:

(i) A satisfies the UCT.
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(ii) Let B be a separable C �-algebra with K�.B/ D 0. Let

� W A! LSB

be a large representation, and use this to identify A with a C �-subalgebra
of LSB . Then, for any .X; 
/ in the set XA of Definition 2.10, there is
.Z; "/ 2 XA with .X; 
/ � .Z; "/ and so that the forget control map

KK".Z; SB/! KK
 .X; SB/

of Definition 2.11 is zero.

Proof. Assume first that A satisfies condition (i), and let X , ", B and � be as in
condition (ii). Let ..Xn; "n//1nD1 be a good approximation of A with X1 D X and
"1 D 
 . As A satisfies the UCT and as K�.B/ D 0, we have KK.A;B/ D 0. Hence,
using Theorem 2.13, lim

 

1KK"n.Xn; SB/ D 0. Lemma 2.4 implies that the groups

KK"n.Xn; SB/ are all countable, whence by Proposition 2.12, the inverse system
.KK"n.Xn; SB//

1
nD1 satisfies the Mittag–Leffler condition. On the other hand, as

A satisfies the UCT and K�.SB/ D 0, we have KK.A; SB/ D 0 by Theorem 2.14.
Hence, by Theorem 2.13 again, lim

 
KK"n.Xn; SB/ D 0, whence the definition of the

inverse limit implies that for any n,\
m�n

Image
�
KK"m.Xm; SB/! KK"n.Xn; SB/

�
D 0:

The Mittag–Leffler condition implies that there is N � n such that\
m�n

Image
�
KK"m.Xm; SB/! KK"n.Xn; SB/

�
D Image

�
KK"N .XN ; SB/! KK"n.Xn; SB/

�
so we may conclude that the forget control map

KK"N .XN ; SB/! KK"n.Xn; SB/

is zero. In particular, such anN exists for nD 1, and we may setZDXN and "D "N .
Conversely, say A satisfies condition (ii). Using Theorem 2.14, it suffices to show

that if B is a separable C �-algebra with K�.B/ D 0, then KK.A; B/ D 0. Let
�2 W A! LS2B (respectively, �3 W A! LS3B ) be a large representation, and use
this to identify A with a C �-subalgebra of LS2B (respectively, LS3B ). Using condi-
tion (ii) we may construct a good approximation ..Xn; "n//1nD1 for A in the sense of
Definition 2.10 such that for any n the maps

KK"nC1.XnC1; S
3B/! KK"n.Xn; S

3B/ (2.2)
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and
KK"nC1.XnC1; S

2B/! KK"n.Xn; S
2B/ (2.3)

are zero. As the maps in line (2.2) are all zero, the inverse system

.KK"n.Xn; S
3B//1nD1

satisfies the Mittag–Leffler condition, whence by Proposition 2.12 we have that

lim
 

1KK"n.Xn; S
3B/ D 0:

On the other hand, the fact that the maps in line (2.3) are all zero and the definition
of the inverse limit immediately imply that lim

 
KK"n.Xn; S

2B/ D 0. Hence, in the
short exact sequence

0! lim
 

1KK"n.Xn; S
3B/! KK.A; S2B/! lim

 
KK"n.Xn; S

2B/! 0

from Theorem 2.13 the left and right groups are zero, whence KK.A; S2B/ D 0.
Hence, by Bott periodicity, KK.A;B/ D 0 as desired.

We include the following remark as the comparison to the existing literature might
help orient some readers; it also gives a sense of why Corollary 2.7 is useful (our main
use of that corollary will come later in the paper).

Remark 2.16. Theorem 2.15 can be used to deduce a weak version of a theorem
of Dadarlat [21, Theorem 1.1]. Dadarlat shows that if A is a separable nuclear C �-
algebra such for any finite subset X of A and any " > 0, one has a UCT subalgebra C
of A such that x 2" C for all x 2 X , then A satisfies the UCT. Theorem 1.2 implies
the special case of Dadarlat’s theorem where the subalgebras C can also be taken
nuclear.

To see this, note first that as a C �-algebra satisfies the UCT (respectively, is
nuclear) if and only if its unitization satisfies the UCT (respectively, is nuclear) by
[55, Proposition 2.3 (a)] (respectively, by [10, Exercise 2.3.5]), we may assume that
A is unital. We aim to establish the condition in Theorem 2.15 (ii). Let then B be
a separable C �-algebra with K�.B/ D 0. Using Corollary 2.7, there exists a large
representation � W A! LSB such that the restriction of � to any unital nuclear C �-
subalgebra of A is also large. Let X be a finite subset of A1, and let " > 0. Let C be
a nuclear, unital, UCT C �-subalgebra of A such that x 2"=5 C for all x 2 X . Let X 0

be a finite subset of C1 such that for each x 2 X there is x0 2 X 0 such that

kx � x0k < 2"=5:

Then, the forget control map

KK"=5.X
0; SB/! KK".X;B/ (2.4)
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of Definition 2.11 is defined. As C satisfies the UCT, and as the restriction of � to C
is also large, condition (ii) from Theorem 2.15 gives a finite subset Y of C1 and ı > 0
such that the forget control map

KKı.Y; SB/! KK"=5.X
0; SB/ (2.5)

is defined and zero. Composing the forget control maps in lines (2.4) and (2.5), we
have established the condition from Theorem 2.15 (ii) for A, and are done.

It would be interesting if one could use these techniques to recover Dadarlat’s
theorem without the extra nuclearity assumption on the UCT subalgebras. This would
seem to require better control over the representations involved; however, compare
Remark 2.8 above.

2.2 The nuclear case

In this section, we prove a stronger version of Theorem 2.15 in the special case that
the C �-algebra A is nuclear. The key ingredient for this is an averaging argument
due to Christensen, Sinclair, Smith, White, and Winter [17, Section 3], which in turn
relies on Haagerup’s theorem [33] that nuclear C �-algebras are amenable.

Let us recall some terminology about bimodules.

Definition 2.17. Let A be a unital C �-algebra. An A-bimodule is a Banach space E
equipped with left and right module actions of A such that 1Ae D e1A D e for all
e 2 E, and such that kaekE � kakAkekE and keakE � kekEkakA for all a 2 A and
e 2 E.

The following reformulation of nuclearity is implicit in [17, Section 3]; the reader
is encouraged to see that reference for further background.

Lemma 2.18. Let A be a unital C �-algebra. Then, the following are equivalent:

(i) A is nuclear;

(ii) for any " > 0 and any finite subset X of A, there exist contractions

a1; : : : ; an 2 A

and scalars t1; : : : ; tn 2 Œ0; 1� such that
Pn
iD1 ti D 1, such that




1A � nX

iD1

tiaia
�
i







A

< ";

and such that for any A-bimodule E, any e 2 E1, and any x 2 X ,




x
 

nX
iD1

tiaiea
�
i

!
�

 
nX
iD1

tiaiea
�
i

!
x







E

< ": (2.6)
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Proof. We will need to recall the projective tensor product of Banach spaces. Let
E and F be (complex) Banach spaces, and let E ˇ F denote their algebraic tensor
product (over C). The projective norm of g 2 E ˇ F is defined by

kgk WD inf
nX
iD1

keikEkfikF ; (2.7)

where the infimum is taken over all ways of writing g as a sum
Pn
iD1 ei ˝ fi of

elementary tensors. The projective tensor product of E and F , denoted E y̋ F , is the
completion of E ˇ F for the projective norm. If A is a C �-algebra, we make A y̋ A
into an A-A-bimodule via the actions defined on elementary tensors by

a.b ˝ c/ WD ab ˝ c and .b ˝ c/a WD b ˝ ca: (2.8)

Now, it is shown in [17, Lemma 3.1]4 that a unital C �-algebra is nuclear if and only
if the following holds: “for any " > 0 and any finite subset X of A, there exist con-
tractions a1; : : : ; an 2 A and scalars t1; : : : ; tn 2 Œ0; 1� such that

Pn
iD1 ti D 1, such

that 




1A � nX
iD1

tiaia
�
i







A

< ";

and such that 




x
 

nX
iD1

tiai ˝ a
�
i

!
�

 
nX
iD1

tiai ˝ a
�
i

!
x







A y̋A

< " (2.9)

for all x 2 X .” For the sake of this proof, let us call this the “CSSWW” condition. It
suffices for us to show that condition (ii) is equivalent to the CSSWW condition.

First assume A satisfies condition (ii) above. Then, taking E D A y̋ A and e D
1A˝ 1A shows that A satisfies the CSSWW condition. Conversely, say A satisfies the
CSSWW condition. Let X be a finite subset of A and let " > 0, and let a1; : : : ; an
and t1; : : : ; tn satisfy the properties in the CSSWW condition with respect to this X
and ". Let E be an A-bimodule, and e 2 E1. Consider the map

� W Aˇ A! E; a˝ b 7! aeb

from the algebraic tensor product (over C) of A with itself to E. Using the definition
of the projective tensor norm (line (2.7) above), it is straightforward to check that �

4This is based on several deep ingredients: the key points are the result of Connes [20,
Corollary 2] that amenability for a C�-algebra implies nuclearity; the converse to this due
to Haagerup [33, Theorem 3.1]; and Johnson’s foundational work on amenability and virtual
diagonals [39, Section 1].
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is contractive for that norm, whence it extends to a contractive linear map

� W A y̋ A! E:

Moreover, the extended map � is clearly an A-bimodule map for the bimodule struc-
ture on A y̋ A defined in line (2.8). Applying � to the expression inside the norm in
line (2.9) therefore implies the inequality in line (2.6), so we are done.

Remark 2.19. We will only need to apply Lemma 2.18 in the special case that the
bimodule E in part (ii) is a C �-algebra containing A as a unital C �-subalgebra, with
the bimodule actions defined by left and right multiplication. The corresponding,
formally weaker, variant of condition (ii) still implies nuclearity, as we now sketch5.
LetA be a unital C �-algebra satisfying the variant of condition (ii) from Lemma 2.18,
whereE is a C �-algebra containing A as a unital C �-subalgebra. Let � W A!B.H/

be an arbitrary unital representation, which we use to make B.H/ an A-bimodule.
Let I be the directed set consisting of all pairs i D .X; "/ whereX is a finite subset of
A, and " > 0, and where .X; "/ � .Y; ı/ ifX � Y and ı � ". For each i D .X; "/ 2 I ,
let a.i/1 ; : : : ; a

.i/
ni and t .i/1 ; : : : ; t

.i/
ni have the properties in Lemma 2.18 (ii). For each i ,

define a ccp map

�i W B.H/! B.H/; b 7!

niX
jD1

t
.i/
j �.a

.i/
j /b�.a

.i/
j /�;

and let � W B.H/! B.H/ be any point-ultraweak limit point of the net .�i / (such
exists by [10, Theorem 1.3.7], for example). Then, one checks that � is a conditional
expectation from B.H/ onto �.A/0, whence the latter is injective. As � was arbitrary,
this implies that A is nuclear; indeed, applying this to the universal representation �
implies that �.A/0 is injective, whence

A�� D �.A/00

is injective by [8, Theorem IV.2.2.7], whence A is nuclear by the main result of [16].

Variants of the next lemma we need are well-known; see for example the lemma
on page 332 of [3], which we could have used for a purely qualitative version. For the
sake of concreteness, we give a quantitative6 version.

5This also gives an approach to the theorem of Connes that amenable C�-algebras are
nuclear that is maybe slightly more direct than the original argument from [20, Corollary 2].
However, it still factors through the theorem that injective von Neumann algebras are semi-
discrete (see [19, Theorem 6] for the case of factors, and [65] for the general case), so cannot
really be said to be genuinely simpler.

6The estimate it gives is optimal in some sense; to see this consider C D M2.C/, x D�
ı 0
0 1�ı

�
, and c D

�
0 1
1 0

�
.



Reformulating the UCT 24

Lemma 2.20. Let ı 2 Œ0; 1
2
/, and let x be a self-adjoint element in a C �-algebra C

with spectrum that does not intersect the interval .ı;1� ı/. Let � be the characteristic
function of .1

2
;1/. Then, for any c 2 C ,

kŒ�.x/; c�k �
1

1 � 2ı
kŒx; c�k:

Proof. Let N > kxk. Let 
 be the positively oriented rectangular contour in the
complex plane with vertices at 1

2
˙ iN , and 2N ˙ iN . Then, by the holomorphic

functional calculus, �.x/ D 1
2�i

R


.z � x/�1dz. Hence, for any c 2 C , Œ�.x/; c� D

1
2�i

R


Œ.z � x/�1; c�dz. Applying the formula

Œ.z � x/�1; c� D .z � x/�1Œc; x�.z � x/�1

and estimating gives

kŒ�.x/; c�k �
kŒc; x�k

2�

Z



k.z � x/�1k2d jzj: (2.10)

Let 
1 be the side of 
 described by ¹1
2
C i t j �N � t � N º, and let 
2 be the union

of the other three sides. Then, for z in the image of 
2, the continuous functional
calculus implies that

k.z � x/�1k � .N � kxk/�1:

As the length of 
2 is 4N , we thus see thatZ

2

k.z � x/�1k2kd jzj �
4N

.N � kxk/2
: (2.11)

On the other hand, for z D 1
2
C i t in the image of 
1, the continuous functional

calculus gives k.z � x/�1k � ..1
2
� ı/2 C t2/�1=2, whenceZ


2

k.z � x/�1k2d jzj �

Z N

�N

1

.1
2
� ı/2 C t2

dt

�

Z 1
�1

1

.1
2
� ı/2 C t2

dt D
�

1
2
� ı

: (2.12)

Combining lines (2.10), (2.11), and (2.12) we get

kŒ�.x/; c�k �
kŒc; x�k

2�

 
4N

.N � kxk/2
C

�
1
2
� ı

!
:

Letting N !1 gives kŒ�.x/; c�k � kŒc;x�k
1�2ı

, which is the claimed estimate.

The following lemma is our key application of Lemma 2.18.
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Lemma 2.21. Let " 2 .0; 1/. Let B be a separable C �-algebra, and let A be a sep-
arable, unital, nuclear C �-algebra. Let � W A! LSB be a large representation (see
Definition 2.9), and use this to identify A with a C �-subalgebra of LSB .

Let X be a finite subset of A1, and let .Y; ı/ be an element of the set XA of
Definition 2.10 such that .X; "/ � .Y; ı/. Then, there exists a finite subset Z of A1
containing X and a homomorphism

�� W KK"=8.Z;B/! KKı.Y; B/

such that the following diagram

KK"=8.Z;B/

��
�� ''

KKı.Y; B/ // KK".X;B/

(where the unlabeled maps are forget control maps as in Definition 2.11) commutes.

Proof. Let X , Y , and ı be as in the statement. If ı � "=8, we may just take Z D Y
and �� the forget control map. Assume then that ı < "=8. According to Lemma 2.18
there exists contractions a1; : : : ; an 2 A and t1; : : : ; tn 2 Œ0; 1� such that

Pn
iD1 ti D 1,

such that 




1A � nX
iD1

tiaia
�
i







A

< ı=4;

and such that for all y 2 Y and b in the unit ball of LB ,




y
 

nX
iD1

tiaiba
�
i

!
�

 
nX
iD1

tiaiba
�
i

!
y







LSB

< ı=4: (2.13)

We set Z WD X [ ¹a�1 ; : : : ; a
�
nº, and claim this works.

Let p 2P"=8.Z;B/, let e 2LB be the neutral projection (see Definition 2.1), and
define

˛.p/ WD

nX
iD1

tiaipa
�
i C

 
e �

nX
iD1

tiaiea
�
i

!
2 LB :

As the representation is large, we may use the fixed isomorphism `2 ˝ B Š C2 ˝

`2 ˝B to identify LB withM2.LB/ and have that with respect to this identification,
operators in A are diagonal matrices, and e D

�
1 0
0 0

�
. In particular, e commutes with

all the ai , and so we have

kp � ˛.p/k �







 
1 �

nX
iD1

tiaia
�
i

!
p






C nX
iD1

tikai Œp; a
�
i �k C







 
1 �

nX
iD1

tiaia
�
i

!
e







<
ı

4
C
"

8
C
ı

4
: (2.14)
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As ı < "=8 and as "< 1, we see that kp� ˛.p/k< 1
4

. As p is a projection, Lemma 2.3
implies that

spectrum.˛.p// \ .1=4; 3=4/ D ¿: (2.15)

Let � be the characteristic function of .1
2
;1/, so � is continuous on the spectrum

of ˛.p/ and we may define �.p/ WD �.˛.p//. The rest of the proof will be spent
showing that the formula Œp� 7! Œ�.p/� defines a homomorphism

�� W KK"=6.Z;B/! KKı.Y; B/

with the claimed properties.
We first claim that if p 2 P"=8.Z;B/, then �.p/ is in Pı.Y; B/. Note first that

˛.p/ � e D

nX
iD1

tiai .p � e/a
�
i ;

which is in KB . As KB is an ideal in LB , it follows f .˛.p// � f .e/ is in KB for
any polynomial f . Letting .fn/ be a sequence of polynomials that converges uniform
to � on the spectrum of ˛.p/ and letting n!1, we see that �.˛.p// � e is in KB .
Let now y 2 Y and apply the inequality in line (2.13) once with b D p and once with
b D e (and use that Œe; y� D 0) to deduce that

kŒ˛.p/; y�k < ı=2: (2.16)

Lines (2.16), (2.15), and Lemma 2.20 imply that kŒ�.˛.p//; y�k < ı, completing the
proof that �.p/ is an element of Pı.Y;B/. Moreover, it is straightforward to see that
the assignment

P"=8.Z;B/! Pı.Y; B/; p 7! �.p/

takes homotopies to homotopies and Cuntz sums to Cuntz sums. Hence, we do indeed
get a well-defined homomorphism

�� W KK"=8.Z;B/! KKı.Y; B/; Œp� 7! Œ�.p/�

as claimed.
It remains to show that the diagram

KK"=8.Z;B/

��
�� ''

KKı.Y; B/ // KK".X;B/

commutes. For this, let p 2 P"=8.Z; B/ represent a class in KK"=8.Z; B/, and for
t 2 Œ0; 1�, define

pt WD .1 � t /p C t˛.p/:
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Then, by line (2.14), we have that kpt � pk < "
8
C

ı
2
< 1

4
for all t 2 Œ0; 1�, so in

particular
spectrum.pt / \ .1=3; 3=4/ D ¿ for all t 2 Œ0; 1�: (2.17)

Hence, �.pt / is a well-defined projection for all t 2 Œ0; 1�. We claim that �.pt / is an
element of P".X;B/ for all t 2 Œ0; 1�; as �.p1/ D �.˛.p// and �.p0/ D p, this will
complete the proof.

For this last claim, note first that pt � e 2 KB for all t 2 Œ0; 1�, whence (ana-
logously to the case of �.˛.p// argued above) �.pt / � e 2 KB for all t 2 Œ0; 1�.
Moreover, for all z 2 Z,

kŒpt ; z�k � kŒpt � p; z�k C kŒp; z�k < 2
� "
8
C
ı

2

�
C
"

8
<
"

2
;

where the last inequality used that ı < "=8. Hence, by line (2.17) and Lemma 2.20,
kŒ�.pt /; z�k < " for all z 2 Z, and so in particular for all z 2 X . This completes the
proof that �.pt / 2 P".X;B/ for all t 2 Œ0; 1�, so we are done.

Corollary 2.22. Let A be a separable, unital, nuclear C �-algebra. The following are
equivalent:

(i) A satisfies the UCT.

(ii) Let " 2 .0; 1/, and let B be a separable C �-algebra B with K�.B/ D 0.
Let

� W A! LSB

be a large representation, and use this to identify A with a C �-subalgebra
of LSB . Then, for any finite subset X of A1 there is a finite subset Z of A1
such that .X; "/ � .Z; "=8/ in the sense of Definition 2.10, and so that the
forget control map

KK"=8.Z; SB/! KK".X; SB/

of Definition 2.11 is zero.

Proof. Using Theorem 2.15, it suffices to show that condition (ii) from that theorem
implies condition (ii) from the current corollary (the converse is immediate). Let then
", B , � , and X be as in the statement. Then, condition (ii) from Theorem 2.15 gives
.Y; ı/ � .X; "/ in the sense of Definition 2.10 such that the associated forget control
map

KKı.Y; SB/! KK".X; SB/

of Definition 2.11 is zero. Lemma 2.21 then gives a finite subset Z of A1 containing
X and a homomorphism

�� W KK"=8.Z; SB/! KKı.Y; SB/; Œp� 7! Œ�.p/�
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such that the following diagram

KK"=8.Z; SB/

��
�� ((

KKı.Y; SB/ // KK".X; SB/

commutes (the unlabeled arrows are forget control maps). Hence, the diagonal forget
control map in the above diagram is zero, which is what we wanted to show.



Chapter 3

Flexible models for controlled KK -theory

In this section (as throughout), if B is a separable C �-algebra, then LB and KB

denote respectively the adjointable and compact operators on the standard Hilbert
B-module `2 ˝ B . For each n, we consider LB as a subalgebra of Mn.LB/ via the
“diagonal inclusion” LB D 1Mn ˝LB �Mn ˝LB DMn.LB/.

Our goal in this chapter is to give flexible models for controlled KK-theory that
will be useful for computations. Contrary to the usual conventions of C �-algebra K-
theory, we base our new even and odd groups on idempotents and invertibles rather
than projections and unitaries. The extra flexibility this allows is very useful for com-
putations. The main reason for not writing the whole paper using the more flexible
model is that we previously established Theorem 2.13 in [68] using the version of
controlledKK-theory from Definition 2.2 above, so need to use that model where we
are directly applying Theorem 2.13. Moreover, we need the results from Chapter 4
in the current paper (which are also independently needed in Chapter 6) to relate the
two models.

3.1 The even case

Our goal in this section is to define a variant of the controlled KK-theory groups of
Chapter 2, but based on idempotents rather than projections. For the next definition,
we recall that CC denotes the unitization of a C �-algebra C , and that if a 2Mn.C /

and b 2Mm.C / are matrices over a C �-algebra, then a˚ b denotes the matrix
�
a 0
0 b

�
in MnCm.C /.

Definition 3.1. Let B be a separable C �-algebra, let X be a subset1 of the unit ball
of LB , let � � 1, let " > 0, and let n 2 N. Define Pn;�;".X;B/ to be the collection of
pairs .p; q/ of idempotents in Mn.K

C

B / satisfying the following conditions:

(i) kpk � � and kqk � �;

(ii) kŒp; x�k < " and kŒq; x�k < " for all x 2 X ;

(iii) the classes Œ�.p/�; Œ�.q/� 2 K0.C/ defined by the images of p and q under
the canonical quotient map � WMn.K

C

B /!Mn.C/ are the same.

1Unlike Definition 2.2, we do not require X to be “large” in the sense of Definition 2.1.
Essentially, largeness is needed to ensure that the setsKK".X;B/ of Definition 2.2 are groups;
we show the sets we define in Definition 3.1 are groups by using matrix arguments and a weaker
equivalence relation in this definition.
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Define

P1;�;".X;B/ WD

1G
nD1

Pn;�;".X;B/;

i.e., P1;�;".X;B/ is the disjoint union of all the sets Pn;�;".X;B/.
Equip each Pn;�;".X; B/ with the norm topology it inherits from Mn.LB/ ˚

Mn.LB/, and equip P1;�;".X; B/ with the disjoint union topology. Let � be the
equivalence relation on P1;�;".X;B/ generated by the following relations:

(i) .p; q/ � .p ˚ r; q ˚ r/ for any element .r; r/ 2 P1;�;".X; B/ with both
components the same;

(ii) .p1; q1/ � .p2; q2/ whenever these elements are in the same path compon-
ent of P1;�;".X;B/.2

DefineKK0�;".X;B/ to be equal as a set to P1;�;".X;B/=�, and provisionally define
a binary operationC on KK0�;".X;B/ by

Œp1; q1�C Œp2; q2� WD Œp1 ˚ q1; p2 ˚ q2�:

The next lemma is essentially the same as [68, Lemma A.21].

Lemma 3.2. With notation as in Definition 3.1,KK0�;".X;B/ is a well-defined abelian
group with identity element the class Œ0; 0� of the zero idempotent.

Proof. Checking directly from the definitions shows that KK0�;".X; B/ is a well-
defined (associative) monoid with identity element the class Œ0;0�. A standard rotation
homotopy shows that KK0�;".X; B/ is commutative. To complete the proof we need
to show that any element Œp; q� has an inverse. We claim that this is given by Œq; p�.
Indeed, applying the rotation homotopy��

p 0

0 q

�
;

�
cos.t/ sin.t/
� sin.t/ cos.t/

��
q 0

0 p

��
cos.t/ � sin.t/
sin.t/ cos.t/

��
; t 2 Œ0; �=2�

shows that .p ˚ q; q ˚ p/ � .p ˚ q; p ˚ q/, and the element .p ˚ q; p ˚ q/ is
equivalent to .0; 0/ by definition of the equivalence relation.

The following lemma gives a useful description of cycles .p; q/ 2 P1;�;".X;B/

that define the zero class in KK0�;".X;B/.

Lemma 3.3. With notation as in Definition 3.1, let .p;q/ 2Pn;�;".X;B/, and assume
that Œp; q� D 0 in KK0�;".X; B/. Then, there is m 2 N and an element .s; s/ of
PnC2m;�;".X; B/ such that .p ˚ 1m ˚ 0m; q ˚ 1m ˚ 0m/ is in the same path com-
ponent of PnC2m;2�;".X;B/ as .s; s/.

2Equivalently, both are in the same Pn;�;".X; B/, and are in the same path component of
this set.
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Proof. For elements .p1; q1/ and .p2; q2/ in P1;�;".X; B/ let us write .p1; q1/!
.p2; q2/ if

.p2; q2/ D .p1 ˚ r; q1 ˚ r/

for some .r; r/ 2P1;�;".X;B/; .p1; q1/
h
� .p2; q2/ if there is a path connecting these

elements; and .p1; q1/ .p2; q2/ if .p2; q2/! .p1; q1/. Then, Œp; q�D 0means that

there is some sequence of moves from ¹!; ; h�º starting at .p; q/ and finishing at

.0; 0/. It is not difficult to see the following: any time a move from ¹!; ; h�º is
consecutively repeated we may replace it by a single move of the same type; any

occurrence of “ h�!” may be replaced by an occurrence of “! h
�”; any occurrence

of “ h
�” may be replaced by an occurrence of “ h� ”; any occurrence of “ !” or

“ h
�!” may be replaced by “! h

� ” (we leave the details to the reader in each
case). Using these replacements, we see that our moves relating .p; q/ to .0; 0/ may
be assumed to be of the form

.p; q/!
h
� .0; 0/;

or in other words that there are elements .r; r/ and .t; t/ in P1;�;".X; B/ such that
.p ˚ r; q ˚ r/ is homotopic to .t; t/.

To complete the proof, note then that .p˚ r ˚ 1� r;q˚ r ˚ 1� r/ is homotopic
to .t ˚ 1 � r; t ˚ 1 � r/. For t 2 Œ0; �=2�, define

rt WD

�
r 0

0 0

�
C

�
cos.t/ � sin.t/
sin.t/ cos.t/

��
0 0

0 1 � r

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
so .rt /t2Œ0;�=2� is a path connecting r ˚ 1 � r and 1˚ 0. One computes that krtk �
1C � � 2� for all t , and that kŒrt ; x�k < " for all x 2 X . Hence, with s D t ˚ 1 � r
we get the claimed result.

We will need a more general variation of Definitions 2.10 and 2.11.

Definition 3.4. Let C be a C �-algebra. Let X0C consist of all triples of the form
.X; �; "/ where X is a finite subset of the unit ball of C , � � 1, and " > 0. Put a
partial order on X0C by .X; �; "/ � .Y; �; ı/ if ı � ", � � � and if for all x 2 X there
exists y 2 Y with kx � yk � 1

2�
." � ı/.

Let now B be a separable C �-algebra. Then, if .X; �; "/ � .Y; �; ı/ in X0
LB

, one
checks that for each n we have

Pn�;ı.Y; B/ � Pn;�;".X;B/: (3.1)

We call the canonical map

KK0�;ı.Y; B/! KK0�;".X;B/

induced by the inclusions in line (3.1) above a forget control map.
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3.2 The odd case

Our goal in this section is to introduce an odd parity version of the controlled KK-
theory groups of the previous section. For the statement, recall that CC denotes the
unitization of a C �-algebra C .

Definition 3.5. Let B be a separable C �-algebra, let X be a subset of the unit ball of
LB , let � � 1, let " > 0, and let n 2 N. Define Un;�;".X;B/ to be the subset of those
invertible elements u in Mn.K

C

B / satisfying the following conditions:

(i) kuk � � and ku�1k � �;

(ii) kŒu; x�k < " and kŒu�1; x�k < " for all x 2 X .

Define

U1;�;".X;B/ WD

1G
nD1

Un;�;".X;B/;

i.e., U1;�;".X;B/ is the disjoint union of all the sets Un;�;".X;B/.
Equip each Un;�;".X; B/ with the norm topology it inherits from Mn.LB/, and

equip
F1
nD1 Un;�;".X; B/ with the disjoint union topology. Define an equivalence

relation on U1;�;".X;B/ to be generated by the following relations:

(i) for any k 2 N, if 1k 2 Uk;�;".X;B/ is the identity element, then

u � u˚ 1kI

(ii) u1�u2 if both are elements of the same path component of U1;2�;".X;B/.3

DefineKK1�;".X;B/ to be U1;�;".X;B/= �, and provisionally define a binary oper-
ationC on KK1�;".X;B/ by

Œu1�C Œu2� WD Œu1 ˚ u2�:

Lemma 3.6. With notation as in Definition 3.5,KK1�;".X;B/ is a well-defined abelian
group with identity element the class Œ1B � of the unit of B .

Proof. It is straightforward to check thatKK1�;".X;B/ is a monoid, and the class Œ1� is
neutral by definition. A standard rotation homotopy shows that KK1�;".X;B/ is com-
mutative. It remains to show that inverses exist. We claim that for u 2 Un;�;".X;B/,
the inverse of the class Œu� is given by Œu�1�. Indeed, consider the homotopy

ut WD

�
u 0

0 1

��
cos.t/ � sin.t/
sin.t/ cos.t/

��
1 0

0 u�1

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
; t 2 Œ0; �=2�:

3Equivalently, both are in the same Un;2�;".X; B/, and are in the same path compon-
ent of this set. Notice also the switch from � to 2� here, which is needed for our proof that
KK1�;".X;B/ is a group.
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This connects u ˚ u�1 and 12k , so it suffices to show that this passes through
U2n;2�;".X; B/. For the commutator condition, we compute that for a 2 X and t 2
Œ0; 2��

Œa; ut � D

�
Œa; u� 0

0 Œu�1; a�

��
cos2.t/ cos.t/ sin.t/

cos.t/ sin.t/ � cos2.t/

�
:

The scalar matrix on the right has norm jcos.t/j, and the matrix on the left has norm
at most max¹kŒa; u�k; kŒa; u�1�kº < ", so kŒa; ut �k < ". For the norm condition, we
compute that

utD

�
u 0

0 �u�1

��
cos2.t/ cos.t/ sin.t/

cos.t/ sin.t/ � cos2.t/

�
C

�
sin2.t/ � cos.t/ sin.t/

cos.t/ sin.t/ sin2.t/

�
:

The first scalar matrix appearing above has norm jcos.t/j, and the second has norm
jsin.t/j. We thus have that kutk � �jcos.t/j C jsin.t/j, which is at most4 2� as
required.

Definition 3.7. Let C be a C �-algebra, and let X0C be the directed set of Definition
3.4 above. Let B be a separable C �-algebra. Then, if .X; �; "/ � .Y; �; ı/ in X0

LB
,

one checks that for each n we have

Un;�;ı.Y; B/ � Un;�;".X;B/ (3.2)

for all n. We call the canonical map

KK1�;ı.Y; B/ � KK
1
�;".X;B/

induced by the inclusions in line (3.2) above a forget control map.

4We suspect the optimal estimate is � – this is the case if u is normal, for example – but
were unable to do better than

p
1C �2 in general.





Chapter 4

Homotopies, similarities, and normalization

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB

denote respectively the adjointable and compact operators on the standard Hilbert
B-module `2 ˝ B . For each n, we consider LB as a subalgebra of Mn.LB/ via the
“diagonal inclusion” LB D 1Mn ˝LB �Mn ˝LB DMn.LB/.

Our goal is to establish some technical lemmas about the controlled KK-groups
KK0�;".X; B/ and KK1�;".X; B/ and the underlying sets of cycles P1;�;".X; B/ and
U1;�;".X; B/ from Definitions 3.1 and 3.5 respectively. These are all variants of
standard facts from C �-algebra K-theory, but the arguments are more involved as
we need to do extra work to control commutator estimates. Some of the material
is adapted from the foundational work of Oyono-Oyono and the second author on
controlled K-theory [47]; those authors work in the “dual” setting to us in some
sense, and similar techniques are often useful.

Most of the results in this chapter come with explicit estimates. We have generally
not tried to get optimal estimates, but as it might be useful for future work we have
tried to point out where one might expect the estimates to be optimal where this is
simple to do.

4.1 Background on idempotents

In this section we look at idempotents in C �-algebras and their relationship to pro-
jections. Most of this is well-known; nonetheless, we give proofs for the sake of
completeness where we could not find a good reference.

To establish notation, let us first note that if p 2 B.H/ is an idempotent, then
with respect to the decomposition H D Image.p/˚ Image.p/?, p has a matrix rep-
resentation

p D

�
1 a

0 0

�
(4.1)

for some a 2 B.Image.p/?; Image.p//; conversely, any operator admitting a mat-
rix of this form with respect to some orthogonal direct sum decomposition of the
underlying Hilbert space defines an idempotent.

Lemma 4.1. If p is an idempotent bounded operator on a Hilbert space that is
neither zero nor the identity, then

k1 � pk D kpk and kp � p�k � kpk:
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Proof. Writing p as in line (4.1) (and using that neither Image.p/ nor Image.p/? are
the zero subspace), we compute that

kpk2 D kpp�k D k1C aa�k D 1C kak2 (4.2)

and moreover that

k1 � pk2 D k.1 � p/�.1 � p/k D k1C a�ak D 1C kak2 D kpk2:

Looking now at p � p�, we see that

.p � p�/.p � p�/� D

�
0 a

�a� 0

��
0 �a

a� 0

�
D

�
aa� 0

0 a�a

�
;

whence kp � p�k2 D kak2 � kpk2.

Corollary 4.2. If � � 1, and p is any idempotent in a C �-algebra with kpk � �, then
k1 � pk � �, kp � p�k � �, and k2p � 1k � 2�.

Proof. The estimates for k1� pk and kp � p�k are immediate from Lemma 4.1 (and
direct checks for the degenerate cases p D 0 and p D 1). The estimate for 2p � 1
follows as

2p � 1 D p � .1 � p/:

It will be convenient to formalize a standard construction in C �-algebraK-theory
for turning idempotents into projections (compare for example [7, Proposition 4.6.2]).

Definition 4.3. Let p be an idempotent in a C �-algebra C . Define

z WD 1C .p � p�/.p� � p/ 2 CC;

and note that z � 1CC so z is invertible. Define

r WD pp�z�1;

which is an element of C . We call r the projection1 associated to p.

Remark 4.4. If C is a concrete C �-algebra and p is an idempotent with matrix
representation as in line (4.1), then one computes that the associated projection has
matrix representation

r D

�
1 0

0 0

�
(4.3)

with respect to the same decomposition of the underlying Hilbert space. In particular,
r is the projection with the same image as the idempotent p.

1It will be shown to be a projection in the next lemma.
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Lemma 4.5. Let p be an idempotent in a C �-algebra C , and assume that kpk � �
for some � � 1. Let r be the projection associated to p as in Definition 4.3, and for
t 2 Œ0; 1� define rt WD .1 � t /p C t r . Then, the following hold:

(i) The element r is a projection in C , and there is an invertible u 2 CC such
that upu�1 D r . Moreover, u and its inverse have norm at most 1C kpk,
and u is connected to the identity through a path of invertibles such that
all the invertibles in the path and all of their inverses have norm at most
1C kpk.

(ii) Each rt is an idempotent such that krtk � � for all t , and the map t 7! rt
is �-Lipschitz.

(iii) For any c 2 C and t 2 Œ0; 1� we have

kŒrt ; c�k � .1C 2t/kŒp; c�k C tkŒp; c
��k:

(iv) The map

¹p 2 C j p D p2º ! ¹p 2 C j p D p2 D p�º

that takes an idempotent to its associated projection is 1-Lipschitz.

Proof. Part (i) as in line (4.1), we may write p D
�
1 a
0 0

�
, and note as in line (4.2) that

kpk D
p
1C kak2, so in particular kak � kpk. Using the discussion in Remark 4.4

we see that u D
�
1 a
0 1

�
satisfies upu�1 D r , and that the path ut D

�
1 ta
0 1

�
connects u

to the identity through invertibles of norm at most 1C ktak � 1C kpk. The claims
on the norms of the inverses follow as

�
1 ta
0 1

��1
D
�
1 �ta
0 1

�
.

(Or see for example the proof of [7, Proposition 4.6.2]).
For part (ii), we write p as in line (4.1), note that kak � �, and also that r has the

matrix representation as in line (4.3). This implies the claimed properties.
For part (iii), we again write p as a matrix as in line (4.1). Let c 2 C , and with

respect to the same decomposition of the underlying Hilbert space, let us write

c D

�
c11 c12
c21 c22

�
:

Then, one computes that

Œp; c� D

�
ac21 c12 C ac22 � c11a

�c21 �c21a

�
: (4.4)

As the conditional expectation that sends a matrix to its diagonal is contractive, we
have 



�ac21 0

0 �c21a

�



 � kŒp; c�k
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and combining this with line (4.4) gives



� 0 c12 C ac22 � c11a

�c21 0

�



 � 2kŒp; c�k: (4.5)

One computes that the top right entry of Œp � p�; c� is ac22 � c11a, whence

kac22 � c11ak � kŒp � p
�; c�k � kŒp; c�k C kŒp; c��k:

This and line (4.5) together imply that



� 0 c12
�c21 0

�



 � 3kŒp; c�k C kŒp; c��k: (4.6)

As r has the matrix representation from line (4.3), the left-hand side of the inequal-
ity in line (4.6) equals kŒr; c�k, and so line (4.6) can be rewritten as the inequality
kŒr; c�k � 3kŒp; c�k C kŒp; c��k. As rt D .1 � t /p C t r , this implies the claimed
estimate.

For part (iv) we may assume that C is a concrete C �-algebra. As noted in Remark
4.4, the projection r associated to an idempotent p is then simply the orthogonal
projection with the same image as p. In this language, part (iv) is [41, Chapter One,
Theorem 6.35].

4.2 From similarities to homotopies

Our goal in this short section is to establish an analogue of the standard K-theoretic
fact that similar idempotents are homotopic, at least up to increasing matrix sizes.
Compare for example [7, Proposition 4.4.1].

Proposition 4.6. Let B be a separable C �-algebra, let X be a subset of the unit ball
of LB , and let � � 1 and " > 0. Let .p0; q/ and .p1; q/ be elements of Pn;�;".X;B/,
and let u2Un;�;".X;B/ be such that up0u�1Dp1. Then, the elements .p0˚ 0n;q˚
0n/ and .p1˚ 0n; q˚ 0n/ are in the same path component of P2n;�3;3�2".X;B/, and
in particular, .p0; q/ and .p1; q/ define the same class in KK0

�3;3�2"
.X;B/.

The analogous statement holds with the roles of the first (“p”) and second (“q”)
components reversed.

Proof. Define

vt WD

�
cos.t/ � sin.t/
sin.t/ cos.t/

��
1 0

0 u

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
2M2n.K

C

B /:

Then, the path

t 7! .vt .p0 ˚ 0n/v
�1
t ; q ˚ 0n/; t 2 Œ0; �=2�
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connects .p0 ˚ 0n; q ˚ 0n/ to .p1 ˚ 0n; q ˚ 0n/ through P2n;�3;3�2".X; B/. We
leave the direct checks involved to the reader.

4.3 Normalization

Our goal in this section is to show that cycles forKK0�;".X;B/ andKK1�;".X;B/ can
be assumed to have prescribed “scalar part”, at least up to some deterioration of �
and ".

The following lemma is well-known without the Lipschitz condition2; see for
example [7, Theorem 4.6.7] or [36, Corollary 4.1.8].

Lemma 4.7. Let L > 0. Then, if .pt /t2Œ0;1� is an L-Lipschitz path of projections in a
unital C �-algebra C , there is a .3L/-Lipschitz path .ut /t2Œ0;1� of unitaries in C such
that u0 D 1, and such that pt D utp0u�t for all t 2 Œ0; 1�.

We need a preliminary lemma.

Lemma 4.8. Let � � 1, and let C be a unital C �-algebra. Then, the map

¹c 2 C j c � ��1º ! C; c 7! c�1=2

is 1
2
�3=2-Lipschitz3.

Proof. For any positive real number t , one has

t�1=2 D
2

�

Z 1
0

.�2 C t /�1d�;

whence for any positive invertible elements c; d 2 C

c�1=2 � d�1=2 D
2

�

Z 1
0

�
.�2 C c/�1 � .�2 C d/�1

�
d�: (4.7)

Using the formula

.�2 C c/�1 � .�2 C d/�1 D .�2 C c/�1.d � c/.�2 C d/�1

and assuming that c � ��1 and d � ��1, the continuous functional calculus implies
that

k.�2 C c/�1 � .�2 C d/�1k � kc � dk.�2 C ��1/�2:

2The constant 3 appearing in the statement is not optimal; one can see from the proof that
3 can be replaced with 2C ", for any " > 0. We do not know what the optimal constant is.

3The constant is optimal in some sense; this follows as the absolute value if the derivative
of the function t 7! t�1=2 on Œ��1;1/ has maximum value 1

2
�3=2.
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This inequality and line (4.7) imply that

kc�1=2 � d�1=2k �
2kc � dk

�

Z 1
0

.�2 C ��1/�2d�:

The integral on the right-hand side equals .��3=2/=4, whence the result.

Proof of Lemma 4.7. We first claim that it suffices to show we can choose a ı > 0 such
that if Œt1; t2� is a sub-interval of Œ0; 1� of length at most ı, and t 7! pt is a projection-
valued L-Lipschitz function on Œt1; t2�, then there is a unitary-valued .3L/-Lipschitz
function t 7!ut on Œt1; t2� such that u0D 1 and pt Dutp0u�t for all t 2 Œt1; t2�. Indeed,
if we can do this, then let 0D t0 < t1 < � � �< tN D 1 be a partition of the interval Œ0; 1�
such that each subinterval has length at most ı, and for each i 2 ¹0; : : : ;N � 1º choose
a unitary-valued .3L/-Lipschitz function t 7! u

.i/
t on Œti ; tiC1� such that u.i/ti D 1

and pt D u
.i/
t pti .u

.i/
t /
� for all t 2 Œti ; tiC1�. The function on Œ0; 1� defined on each

subinterval Œti ; tiC1� by

t 7! u
.i/
t u

.i�1/
ti

u
.i�2/
ti�1
� � �u

.0/
t1

then has the right properties to establish the lemma.
Let us then establish the statement in the claim. Let " > 0 be small enough that

.1 � .2C "/"/�1=2 C .1C "/2.1 � .2C "/"/�3=2 � 3;

and let ı > 0 be such that if t; s 2 Œ0; 1� satisfy jt � sj � ı, then kps � ptk < ". Let
Œt1; t2� be an interval of length at most ı. For t 2 Œt1; t2�, define

xt WD ptpt1 C .1 � pt /.1 � pt1/

and note that

kxt � 1k D k.2pt � 1/.pt1 � pt /k � k2pt � 1kkpt1 � ptk < ";

and so each xt is invertible, kxtk < 1C ", and also kx�1t k < .1 � "/
�1 by the Neu-

mann series formula for the inverse. One computes that xtpt1 D ptpt1 D ptxt , and
so xtpt1x

�1
t D pt . Moreover, pt1x

�
t D x

�
t pt , and so pt1x

�
t xt D x

�
t ptxt D x

�
t xtpt1 ,

i.e., x�t xt commutes with pt1 . If we define wt WD xt .x�t xt /
�1=2, we have that wt is

unitary and moreover

wtpt1w
�1
t D xt .x

�
t xt /

�1=2pt1.x
�
t xt /

1=2x�1t D xtpt1x
�1
t D pt :

It remains to show that the path defined on Œt1; t2� by t 7! wt is .3L/-Lipschitz.
We first note that for s; t 2 Œt1; t2�, we have that

kxs � xtk D k.pt � ps/.2pt1 � 1/k � kpt � psk � Ljs � t j (4.8)
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by assumption that .pt / is L-Lipschitz. Using that kxtk < 1C ", this implies that for
any s; t 2 Œt1; t2�

kx�t xt � x
�
s xsk � kx

�
t � x

�
s kkxtk C kx

�
s kkxt � xsk < 2.1C "/Ljs � t j:

Moreover, k1� x�t xtk < .2C "/", whence 1� .2C "/" � x�t xt and so in particular

k.x�t xt /
�1=2
k � .1 � .2C "/"/�1=2 for all t 2 Œt1; t2�: (4.9)

Hence, moreover Lemma 4.8 (with � D .1 � .2C "//�1) implies that for any s; t 2
Œt1; t2�

k.x�t xt /
�1=2
� .x�s xs/

�1=2
k � .1 � .2C "/"/�3=2.1C "/Ljs � t j: (4.10)

Lines (4.8), (4.10), and (4.9) combined with the fact that

kxtk < 1C "

for all t 2 Œt1; t2� implies that for any s; t 2 Œt1; t2�

kwt � wsk � kxt � xskk.x
�
t xt /

�1=2
k C kxskk.x

�
t xt /

�1=2
� .x�s xs/

�1=2
k

� .1 � .2C "/"/�1=2Ljs � t j C .1C "/2.1 � .2C "/"/�3=2Ljs � t j

which implies the desired estimate by choice of ".

For the statement of the next definition, recall that for l 2 ¹1; : : : ; nº, we let
1l 2 Mn.C/ be the rank l projection with l ones in the top-left part of the diagonal
and zeros elsewhere.

Definition 4.9. With notation as in Definition 3.1, define

P 1
n;�;".X;B/ WD

®
.p; q/ 2 Pn;�;".X;B/ j 9l 2 N such that .p; q/ � .1l ; 1l/

is in Mn.KB/˚Mn.KB/
¯
:

Define P 1
1;�;".X;B/ to be the disjoint union of these sets as n ranges over N.

Here, is the first of our main goals for this section; it allows control of the “scalar
part” of cycles for KK0�;".X;B/.

Proposition 4.10. Let B be a separable C �-algebra. Let X be a self-adjoint4 subset
of the unit ball of LB , let " > 0, let � � 1, and let n 2 N.

(i) Any element Pn;�;".X;B/ is in the same path component of Pn;4�3;".X;B/

as an element of P 1
n;4�3;"

.X;B/5.

4We mean here that X D X�, not the stronger assumption that every x 2 X is self-adjoint.
5If � D 1, one can replace 4�3 with 1 in the statement; we leave the details to the reader.
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(ii) If two elements .p0; q0/ and .p1; q1/ of P 1
n;�;".X; B/ are connected by a

path in Pn;�;".X; B/, then they are connected by a path in P 1
n;�;4".X; B/.

Moreover, if L � 1 is such that there is an L-Lipschitz path in Pn;�;".X;B/

connecting .p0; q0/ and .p1; q1/, then there is a .20�L/-Lipschitz path in
P 1
n;�;4".X;B/ connecting .p0; q0/ and .p1; q1/.

Proof of Proposition 4.10. For part (i), we assume that .p; q/ is an element of
Pn;�;".X; B/. Hence, by definition of Pn;�;".X; B/, if KCB is the unitization of KB

and � WMn.K
C

B /!Mn.C/ is the canonical quotient map then the classes Œ�.p/� and
Œ�.q/� in K0.C/ are the same, so in particular the idempotents �.p/ and �.q/ have
the same rank. Using Lemma 4.5 (i), there are paths of invertibles .ut /t2Œ0;1� and
.vt /t2Œ0;1� in Mn.C/ and projections r; s such that u1 D v1 is the identity, such that
u0ru

�1
0 D �.p/, such that v0sv�10 D �.q/, and such that the norms of all the ut , all

the vt and their inverses are all at most 1C � � 2�. On the other hand, r and s have the
same rank, whence there are paths of unitaries .ut /t2Œ1;2� and .vt /t2Œ0;1� in Mn.C/
such that u1 D v1 is the identity, and such that u2ru�2 D 1l , and v2sv�2 D 1l . As
scalar matrices commute with X , the path ..utpu�1t ; vtqv

�1
t //t2Œ0;2� passes through

Pn;4�3;".X;B/, and connects .p; q/ to an element of P 1
n;4�3;"

.X;B/ as required.
For part (ii), we just look at the statement involving Lipschitz paths; the case of

general continuous paths follows (in a simpler way) from the same arguments, and is
left to the reader. Assume that .p0; q0/ and .p1; q1/ are elements of P 1

n;�;".X;B/ that
are connected by an L-Lipschitz path that passes through Pn;��".X;B/. In particular,
there exists l 2 N such that �.p0/ D �.q0/ D 1l D �.p1/ D �.q1/. Let r0 be the
projection associated to p0 as in Definition 4.3. As in Lemma 4.5 (ii), the path defined
for t 2 Œ0; 1� by t 7! .1 � t /p0 C t r0 is �-Lipschitz and connects p0 and r0 through
idempotents of norm at most �. Moreover, Lemma 4.5 (iii) implies that for all x 2 X
and all t 2 Œ0; 1�

kŒ.1 � t /p0 C t r0; x�k � .1C 2t/kŒp0; x�k C tkŒp0; x
��k:

As X D X�, this implies that kŒ.1 � t /p0 C t r0; x�k < 4" for all x 2 X , and all t 2
Œ0; 1�. Note also that �..1� t /p0C t r0/D 1l for all t . Similarly, we get s0 which has
the same properties with respect to q0. We have thus shown that .p0; q0/ is connected
to the element .r0; s0/ via a �-Lipschitz path in P 1

n;�;4".X; B/. Completely analog-
ously, .p1; q1/ is connected to its associated projection .r1; s1/ via a �-Lipschitz
path in P 1

n;�;4".X; B/. Moreover, using Lemma 4.5 (iv), we have that .r0; s0/ and
.r1; s1/ are connected by an L-Lipschitz path of projections in Pn;1;4".X; B/, say
..rt ; st //t2Œ0;1�.

Now, consider the path .�.rt /; �.st //t2Œ0;1� in Mn.C/˚Mn.C/, which is also
L-Lipschitz. Lemma 4.7 gives .3L/-Lipschitz paths .ut /t2Œ0;1� and .vt /t2Œ0;1� of
unitaries in Mn.C/ such that �.rt / D ut�.r0/u

�
t and �.st / D vt�.s0/v

�
t for all
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t 2 Œ0; 1�. The path ..u�t rtut ; v
�
t stvt //t2Œ0;1� then passes through P 1

n;1;4".X; B/, is
.6L/-Lipschitz, and connects .r0; s0/ to .u�1r1u1; v

�
1 s1v1/.

Summarizing where we are, we have the following paths:

(i) A �-Lipschitz path through P 1
n;�;4".X;B/, parametrized by Œ0; 1�, and that

connects .p0; q0/ and .r0; s0/.

(ii) A .6L/-Lipschitz path through P 1
n;1;4".X; B/, parametrized by Œ0; 1�, and

that connects .r0; s0/ and .u�1r1u1; v
�
1 s1v1/.

(iii) A �-Lipschitz path through P 1
n;�;4".X;B/, parametrized by Œ0; 1�, and that

connects .p1; q1/ and .r1; s1/.

We claim that there is a 2�-Lipschitz path passing through P 1
n;1;4".X; B/, paramet-

rized by Œ0; 1� and connecting .u�1r1u1; v
�
1 s1v1/ and .r1; s1/. Concatenating this new

path with the three paths above (and using that � � 1 and thatL� 1), and rescaling the
two �-Lipschitz paths by 1=12, the 6L-Lipschitz path by 4=12, and the 6�-Lipschitz
by 6=12, this will give us a .20�L/-Lipschitz path connecting .p0; q0/ and .p1; q1/
through P 1

n;1;4".X;B/, which will complete the proof.
To establish the claim note that u1 commutes with 1l , and is therefore connec-

ted to the identity in Mn.C/ via a �-Lipschitz path of unitaries that all commute
with 1l , say .ut /t2Œ1;2�. Similarly, we get a �-Lipschitz path .vt /t2Œ1;2� with the same
properties with respect to v1. The path ..u�t r1ut ; v

�
t s1vt //t2Œ1;2� then passes through

P 1
n;1;4".X;B/, is 2�-Lipschitz, and connects .u�1r1u1; v

�
1 s1v1/ to .r1; s1/, so we are

done.

We now move on to results that let us prescribe the “scalar part” of cycles for
KK1, which is much simpler.

Definition 4.11. With notation as in Definition 3.5, define

U1
n;�;".X;B/ WD ¹u 2 Un;�;".X;B/ j u � 1 2Mn.KB/º:

Define U1
1;�;".X;B/ to be the disjoint union of these sets as n ranges over N.

We need a slight variant of the well-known fact that the group of invertibles in a
C �-algebra deform retracts onto the group of unitaries.

Lemma 4.12. Let � � 1, let C be a unital C �-algebra, and let C�1� be the set of
invertible elements u 2 C such that kuk � � and ku�1k � �. Then, the unitary group
of C is a deformation retract of C�1� . In particular, Mn.C/�1� is connected.

Proof. Let u 2 C�1� , and for t 2 Œ0; 1
2
� define ut WD u.u�u/�t . This is a homotopy

between the identity u 7! u0 on C�1� and the map u 7! u1=2; the latter is a retraction
of C�1� onto the unitary group of C , giving the first part. In particular, it follows that
C�1� is connected if and only if C�11 is connected; as the unitary group of Mn.C/ is
connected, this gives the last statement.
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Proposition 4.13. Let B be a separable C �-space, let X be a subset of the unit ball
of LB , let " > 0, let � � 1, and let n 2 N.

(i) Any element v 2Un;�;".X;B/ is connected to an element of U1
n;�2;�"

.X;B/

by a path in Un;�2;�".X;B/.

(ii) If two elements v0; v1 2 U1
n;�;".X; B/ are in the same path component of

Un;�;".X;B/, then they are in the same path component of U1
n;�2;�"

.X;B/.

Proof. For part (i), let KCB be the unitization of KB , let � WMn.K
C

B /!Mn.C/ be
the canonical quotient map, and set w D �.u�1/. Using Lemma 4.12, there is a path
.wt /t2Œ0;1� of invertibles connecting w D w1 to the identity and all with norm at most
�. Then, the path .wtv/t2Œ0;1� is in Un;�2;�".X; B/ and connects v to the element
u WD w1v, which satisfies �.u/ D 1, and so 1 � u 2Mn.KB/.

For part (ii), let .vt /t2Œ0;1� be a path in Un;�;".X; B/ connecting v0 and v1. Let
wt D �.v�1t /, and note that w0 D w1 D 1. Moreover, kwtk � � for all t . Then,
ut WD wtvt is a path connecting v0 and v1 in U1

n;�2;�"
.X;B/ as required.

4.4 From homotopies to similarities

Our goal in this section is to establish a controlled variant of the fact that homotopic
idempotents are similar; compare for example [7, Proposition 4.3.2]. This requires
some work, as we need to control the “speed” of the homotopy in order to control the
commutator estimates for the invertible element appearing in the similarity. The final
target is Proposition 4.17 below; the other results build up to it.

Lemma 4.14. Let � � 1, and let p0 and p1 be idempotents in a C �-algebra C with
norm at most �, and such that kp0 �p1k � 1=.12�2/. Then, there is a path .pt /t2Œ0;1�
of idempotents connecting p0 and p1, and with the following properties:

(i) each pt is an idempotent in C of norm at most 2�;

(ii) for all c 2 C and t 2 Œ0; 1�,

kŒc; pt �k � 21�
2 max
iD0;1

kŒc; pi �kI

(iii) the function t 7! pt is 1-Lipschitz.

Proof. For each t 2 Œ0; 1�, define rt WD .1 � t /p0 C tp1 2 C , and define

ut WD .1 � rt /.1 � p0/C rtp0 2 C
C:

Corollary 4.2 implies that k2p0 � 1k � 2�, whence

k1 � utk D k.2p0 � 1/.p0 � rt /k � 2�kp0 � p1k � 1=6:
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In particular, ut is invertible, kutk � 7=6, and ku�1t k � 6=5 by the Neumann series
formula of the inverse. Define pt WD utp0u�1t , which is an idempotent inC . We claim
that the path .pt /t2Œ0;1� has the desired properties. Note first that r0 D p0, whence
u0 D 1, and so the path .pt /t2Œ0;1� does start at the original p0. On the other hand,
u1p0 D r1p0 D p1p0 D p1u1, whence u1p0u�11 D p1. Thus, the path .pt / does
connect p0 and p1.

For part (i), note that as utp0 D rtp0, we get

kptk D krtp0u
�1
t k � k.rt � p0/p0u

�1
t k C kp0u

�1
t k �

1

12�2
�
6

5
C �

6

5
� 2�:

For part (ii), let ı D maxiD0;1 kŒc; pi �k. We compute using the identity 1 � ut D
.2p0 � 1/.p0 � rt / that

kŒut ; c�k D kŒ1 � ut ; c�k � kŒ2p0 � 1; c�kkp0 � rtk C k2p0 � 1kkŒp0 � rt ; c�k

� 2kŒp0; c�kkp0 � rtkCk2p0 � 1k.kŒp0; c�kCkŒrt ; c�k/:

Using that k2p0 � 1k � 2� again, this implies that

kŒut ; c�k � 2ı
1

12�2
C 2� � 2ı D

�
4� C

1

6�2

�
ı:

Hence, also

kŒu�1t ; c�k D ku
�1
t Œc; ut �u

�1
t k �

36

25

�
4� C

1

6�2

�
ıkck

and so

kŒpt ; c�k D kŒutp0u
�1
t ; c�k

� kŒut ; c�kkp0kku
�1
t k C kutkkŒp0; c�kku

�1
t k C kutkkp0kkŒu

�1
t ; c�k

�

�
4� C

1

6�2

�
ı�
6

5
C
7

5
ı C

7

6
�
36

25

�
4� C

1

6�2

�
ı

� 21�2ı

as claimed. Finally, for part (iii), we again use that k2p0 � 1k � 2� to compute that
for any s; t 2 Œ0; 1�,

kus � utk D k.2p0 � 1/.rs � rt /k � k2p0 � 1kjs � t jkp0 � p1k � 2�js � t j
1

12�2

D
1

6�
js � t j

and so

ku�1s � u
�1
t k D ku

�1
t .ut � us/u

�1
s k �

36

25

1

6�
js � t j D

6

25�
js � t j:
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Hence,

kpt � psk � k.ut � us/p0u
�1
t k C kusp0.u

�1
t � u

�1
s /k

�
1

6�
js � t j�

6

5
C
7

6
�
6

25�
js � t j

� js � t j

as claimed.

The next lemma gives universal control over the “speed” of a homotopy between
idempotents (at the price of moving to larger matrices). The basic idea is not new; see
for example [47, Proposition 1.31]. We give a complete proof, however, as we need to
incorporate commutator estimates and work with idempotents rather than projections.

Lemma 4.15. Let B be a separable C �-algebra, let X be a subset of the unit ball of
LB , let " > 0, and let n 2 N. Let .p0; q0/ and .p1; q1/ be elements of the same path
component of Pn;�;".X; B/. Then, there is k 2 N and a homotopy ..rt ; st //t2Œ0;1� in
P.2kC1/n;2�;21�2".X; B/ such that .ri ; si / D .pi ˚ 1nk ˚ 0nk; qi ˚ 1nk ˚ 0nk/ for
i 2 ¹0; 1º, and such that the map t 7! .rt ; st / is .16�/-Lipschitz.

Proof. Let ..pt ; qt //t2Œ0;1� be an arbitrary homotopy in Pn;�;".X; B/ connecting
.p0; q0/ and .p1; q1/. Let ı > 0 be such that if s; t 2 Œ0; 1� satisfy js � t j � ı, then
kps � ptk � 1=.12�

2/ and kqs � qtk � 1=.12�2/. Let 0 D t0 < t1 < � � � < tk D 1
be a sequence of points in Œ0; 1� such that tiC1 � ti � ı for all i . We claim that this
k works, and to show this we build an appropriate homotopy by concatenating the
various steps below.

(i) Connect .p0 ˚ 1nk ˚ 0nk; q0 ˚ 1nk ˚ 0nk/ to�
p0 ˚ .1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …

k times

; q0 ˚ .1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …
k times

�
via a 2-Lipschitz rotation homotopy parametrized by Œ0; �=2� and passing through
P.2kC1/n;�;".X;B/.

(ii) In the i th “block” 1n ˚ 0n, use the homotopy�
1 � pti 0

0 0

�
C

�
cos.t/ � sin.t/
sin.t/ cos.t/

��
0 0

0 pti

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
(parametrized by t 2 Œ0; �=2�) to connect 1n ˚ 0n to 1 � pti ˚ pti , and similarly
for q. In order to compute commutator estimates, note that rearranging gives that the
homotopy above is the same as�

1 0

0 0

�
C

�
pti 0

0 pti

��
� cos2.t/ � sin.t/ cos.t/
� sin.t/ cos.t/ cos2.t/

�
; t 2 Œ0; �=2�:
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The scalar matrix appearing on the right above has norm jcos.t/j, whence every ele-
ment in this homotopy has norm at most 2�. Hence, our homotopy connects the result
of the previous stage to

.p0˚ 1�pt1 ˚pt1 ˚ � � �˚ 1�ptk ˚ptk ;q0˚ 1� qt1 ˚ qt1 ˚ � � �˚ 1� qtk ˚ qtk /

through P.2kC1/n;2�;".X;B/, and is 2�-Lipschitz.
(iii) From Corollary 4.2, each idempotent 1�pti has norm at most �. For each i 2

¹1; : : : ; kº, using that k.1�pti /� .1�pti�1/k � 1=.12�
2/, Lemma 4.14 gives a path

of idempotents connecting 1 � pti and 1 � pti�1 and with the following properties:
it is 1-Lipschitz; it consists of idempotents of norm at most 2�; each idempotent r in
the path satisfies kŒr; x�k � 21�2" for all x 2 X . We get similar paths with respect to
the elements 1� qti , and use these paths to connect the result of the previous stage to

.p0˚1� pt0˚pt1˚ � � � ˚1� ptk�1˚ptk ; q0˚1� qt0˚qt1˚ � � � ˚1� qtk�1˚qtk /

via a 1-Lipschitz path in P.2kC1/n;2�;21�2".X;B/.
(iv) Use an analog of the homotopy in step (ii) in each block of the form pti ˚

1 � pti (and similarly for q) to connect the result of the previous stage to�
.1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …

k times

˚ptk ; .1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …
k times

˚qtk
�
:

This passes through P.2kC1/n;2�;".X;B/, and is 2�-Lipschitz.
(v) Finally, noting that ptk D p1 and qtk D q1, use a rotation homotopy paramet-

rized by Œ0; �=2� to connect the result of the previous stage to .p1˚ 1nk ˚ 0nk; q1˚
1nk ˚ 0nk/. This passes through P.2kC1/n;�;".X;B/ and is 2�-Lipschitz.

Concatenating the five homotopies above gives a 2�-Lipschitz homotopy, para-
metrized by Œ0; 2� C 1�, that passes through P.2kC1/n;2�;".X;B/ and connects .p0˚
1nk ˚ 0nk; q0 ˚ 1nk ˚ 0nk/ and .p1 ˚ 1nk ˚ 0nk; q1 ˚ 1nk ˚ 0nk/. Reparametriz-
ing by Œ0; 1�, we get a .16�/-Lipschitz homotopy as required.

Before we get to the main result of this section, we give one more elementary
lemma; we record it as it will be used multiple times below.

Lemma 4.16. Say x and y1; : : : ; yn are elements of a C �-algebra such that

kŒx; yi �k � ı and kyik � m

for all i . Then, if y WD y1y2 � � �yn, we have kŒx; y�k � nmn�1ı.

Proof. This follows from the formula

Œx; y� D

nX
iD1

� Y
1�j<i

yj

�
Œx; yi �

� Y
i<j�n

yj

�
;
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which itself follows from induction on n and the usual Leibniz formula Œx; y1y2� D
y1Œx; y2�C Œx; y1�y2.

Here, is the main result of this section. The basic idea of the proof is contained
in [47, Corollary 1.32], but as usual we need to do more work in order to get our
estimates.

Proposition 4.17. Let B be a separable C �-algebra, let X be a self-adjoint subset
of the unit ball of LB , let � � 1, and let " > 0. Let M D 2.100�/

3
. With notation

as in Definition 4.9, let n 2 N, and let .p; q/ be in the same path component of
P 1
n;�;".X; B/ as an element .r; r/ with both entries the same. Then, there is m 2 N

and (with notation as in Definition 4.11) an element u 2 U1
nC2m;M;M".X; B/ such

that
u.p ˚ 1m ˚ 0m/u

�1
D q ˚ 1m ˚ 0m:

Proof. Let k 2 N be as in the conclusion of Lemma 4.15, so there exists a .16�/-
Lipschitz homotopy in P.2kC1/n;2�;21�2".X;B/ between .p˚ 1nk ˚ 0nk; q˚ 1nk ˚
0nk/ and .r ˚ 1nk ˚ 0nk; r ˚ 1nk ˚ 0nk/. Set m D kn. Proposition 4.10 gives a
.20� � 16�/-Lipschitz path ..pt ; qt //t2Œ0;1� passing through P 1

nC2m;2�;84�2"
.X; B/

that connects .p˚ 1nk ˚ 0nk; q˚ 1nk ˚ 0nk/ and .r ˚ 1nk ˚ 0nk; r ˚ 1nk ˚ 0nk/.
To simplify notation, note this path is .29�2/-Lipschitz, and that it passes through
P 1
nC2m;2�;27�2"

.X;B/.
Define N WD d213�3e (where dye is the least integer at least as large as y), and

define ti D i=N for i 2 ¹0; : : : ; N º. As the path ..pt ; qt //t2Œ0;1� is .29�2/-Lipschitz,
for any i 2 ¹1; : : : ; N º, kpti � pti�1k � .16�/

�1. For i 2 ¹1; : : : ; N º, define

vi WD pti�1pti C .1 � pti�1/.1 � pti /:

As kpti k � 2� for all i , Corollary 4.2 implies that

k2pti � 1k � 4� (4.11)

for all i , and so

k1 � vik D k.2pti�1 � 1/.pti�1 � pti /k � 4� � .16�/
�1
�
1

2
:

It follows that each vi is invertible, kvik � 2, and (by the Neumann series formula
for the inverse) kv�1i k � 2. Note also that as the homotopy ..pt ; qt //t2Œ0;1� passes
through P 1

.2kC1/n;2�;27�2"
.X;B/ all the elements pti must have the same “scalar part”

(i.e., the same image under the canonical map MnC2m.K
C

B /!MnC2m.C/), and so
the elements vi must satisfy

1 � vi 2MnC2m.KB/:
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Moreover, for x 2 X , using line (4.11) again we see that

kŒvi ; x�k D kŒvi � 1; x�k

D kŒ.2pti�1 � 1/.pti�1 � pti /; x�k

� 2kŒpti�1 ; x�k.kpti�1kCkpti k/Ck2pti�1�1k.kŒpti�1 ; x�kCkŒpti ; x�k/

� 12� � 27�2":

Hence, moreover

kŒv�1i ; x�k D kv�1i Œx; vi �v
�1
i k � 4 � 12� � 2

7�2" � 213�3":

At this point we have that each vi is an element of U1
nC2m;2;213�3"

.
Note also that vipti D pti�1pti D pti�1vi , and so viptiv

�1
i D pti�1 for each i .

Define v to be the product v1v2 � � � vN , so v satisfies v�1p0v D p1, or in other words

v�1.p ˚ 1m ˚ 0m/v D r ˚ 1m ˚ 0m:

Note that 1� v 2MnC2m.KB/. As kvik � 2 and kv�1i k � 2 for each i , we have that
kvk � 2N and similarly kv�1k � 2N . Moreover, for any x 2 X , Lemma 4.16 gives
kŒv; x�k � N2N�1 � 213�3" and similarly kŒv�1; x�k � N2N�1 � 213�3". Applying
the same construction with .qt / in place of .pt /, we get an invertible element w
such that w�1.q ˚ 1m ˚ 0m/w D r ˚ 1m ˚ 0m, such that 1 � w 2 MnC2m.KB/,
such that kwk � 2N , kw�1k � 2N , and such that kŒw; x�k � N2N�1 � 213�3" and
kŒw�1; x�k � N2N�1 � 213�3" for all x 2 X . Define u D wv�1. As N D d213�3e,
this has the claimed properties.





Chapter 5

Reformulating the UCT II

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB

denote respectively the adjointable and compact operators on the standard Hilbert
B-module `2 ˝ B . For each n, we consider LB as a subalgebra of Mn.LB/ via the
“diagonal inclusion” LB D 1Mn ˝LB �Mn ˝LB DMn.LB/.

Our goal in this chapter is to reformulate the vanishing results on the UCT of
Chapter 2 in terms of the groups KKi�;".X; B/ of Chapter 3. We look at the even
(i D 0) and odd (i D 1) cases separately.

5.1 The even case

Lemma 5.1. Let � � 1 and " > 0. Let B be a separable C �-algebra, and let X be
a self-adjoint subset of the unit ball of LB . Then, there is a homomorphism  � W

KK�
�;"=4

.X;B/! KK�1;".X;B/ such that the diagrams

KK01;".X;B/

''

KK0
�;"=4

.X;B/

 �

OO

// KK0�;".X;B/

(5.1)

and
KK0

1;"=4
.X;B/ //

((

KK01;".X;B/

KK0
�;"=4

.X;B/

 �

OO

(5.2)

commute, where the unlabeled arrows are the forget control maps of Definition 3.4.

Proof. Let .p; q/ be an element of Pn;�;"=4.X; B/. Let r and s be the projections
associated to p and q respectively as in Definition 4.3. Using Lemma 4.5 parts (i)
and (iii) we may define a map

 W Pn;�;"=4.X;B/! Pn;1;".X;B/; .p; q/ 7! .r; s/:

Allowing n to vary, and noting that the process of taking associated projections takes
homotopies to homotopies (by part (iv) of Lemma 4.5) and block sums to block sums,
we get a well-defined homomorphism

 � W KK
0
�;"=4.X;B/! KK01;".X;B/:
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To check commutativity of the diagram in line (5.1), it suffices to show that if
.r; s/ 2 Pn;1;".X; B/ is the pair of projections associated to .p; q/ 2 Pn;�;"=4.X; B/

as above, then .r; s/ and .p; q/ are in the same path component of Pn;�;".X; B/.
This follows from parts (ii) and (iii) of Lemma 4.5. Commutativity of the diagram
in line (5.2) is immediate; if .p; q/ is in Pn;1;".X; B/ for some n, then p and q are
themselves projections, so equal their associated projections.

The following lemma records some results from [68, Section A.3] that we will
need. For the statement, recall the notion of a unitally strongly absorbing representa-
tion from Definition 2.5 above.

Lemma 5.2. In the statement of this lemma, all unlabeled arrows are forget control
maps as in Definitions 2.11 and 3.4. Let A be a separable unital C �-algebra, and
let B be a separable C �-algebra. Let � W A! LB be a strongly unitally absorbing
representation of A, which we use to identify A with a C �-subalgebra of LB .

Let " > 0, and let X be a finite subset of A1. Then, there exist homomorphisms

˛ W KK01;".X;B/! KK5".X;B/

and
ˇ W KK".X;B/! KK01;".X;B/

that are natural with respect to forget control maps; more precisely if .X; "/ � .Y; ı/
in XA as in Definition 2.10 then the diagrams

KK0
1;ı
.Y; B/

ˇ

��

// KK01;".X;B/

ˇ

��

KK0
ı
.Y; B/ // KK0" .X;B/

and

KK0
1;5ı

.Y; B/ // KK01;5".X;B/

KK0
ı
.Y; B/ //

˛

OO

KK0" .X;B/

˛

OO

are defined and commute.
Moreover, the diagrams

KK01;".X;B/

˛

��

// KK01;5".X;B/

KK5".X;B/

ˇ

66

and
KK".X;B/

ˇ

��

// KK5".X;B/

KK01;".X;B/

˛

77

commute.
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Proof. Let � WA!M2.LB/ be (the amplification of) our fixed representation. In the
language of [68, Appendix A.2], the groups KK".X; B/ are the same as the groups
that are called there KK�;p" .X;B/, while in the language of [68, Appendix A.3], the
groups KK01;".X;B/ would there be called KK�0;m" .X;B/. The lemma thus follows
from the arguments of [68, Lemmas A.22, A.23, and A.24].

We are now able to deduce a version of Corollary 2.22 for the groups of Defini-
tion 3.1.

Corollary 5.3. Let A be a separable, unital, nuclear C �-algebra. The following are
equivalent:

(i) A satisfies the UCT.

(ii) Let � � 1 and " 2 .0;1/. LetB be a separable C �-algebra withK�.B/D 0.
Let � WA!LSB be a strongly unitally absorbing representation, which we
use to identify A with a C �-subalgebra of LSB . Then, for any finite subset
X of A1, there is a finite subset Z of A1 such that

.X; �; "/ � .Z; �; "=160/

in the sense of Definition 3.4, and such that the forget control map

KK0�;"=160.Z; SB/! KK0�;".X; SB/

of Definition 3.4 is zero.

(iii) There exist � � 1 and � � � with the following property. Let 
 > 0, let B
be a separable C �-algebra withK�.B/ D 0, and let X be a finite subset of
A1. Let

� W A! LSB

be a strongly unitally absorbing representation, which we use to identify A
with a C �-subalgebra of LSB . Then, there is " > 0 and a finite subset Z of
A1 such that .X; �; 
/ � .Z; �; "/ in the sense of Definition 3.4, and such
that the forget control map

KK0�;".Z; SB/! KK0�;
 .X; SB/

of Definition 3.4 is zero.

Proof. In the following proof, all unlabeled arrows are forget control maps as in
Definition 2.11, or Definition 3.4. Assume first that condition (i) from the statement
holds, and let � � 1 and " > 0; we may assume moreover that " < 1. Let a finite subset
X be given as in condition (ii). Then, by the equivalence from Corollary 2.22, there
is a finite subset Z of A1 such that the forget control map

KK"=8.Z; SB/! KK".X; SB/
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is zero. Replacing Z by Z [Z� if necessary, we may assume that Z is self-adjoint.
Lemma 5.2 gives a commutative diagram

KK"=8.Z; SB/
0 // KK".X; SB/

ˇ

��

KK0
1;"=40

.Z; SB/ //

˛

OO

KK01;".X; SB/;

whence the bottom horizontal map is zero. On the other hand, Lemma 5.1 (see in
particular line (5.1)) gives a map  � such that the bottom triangle in the diagram
below

KK0
1;"=40

.Z; SB/
0 //

&&

KK01;".X; SB/

��

KK0
�;"=160

.Z; SB/

 �

OO

// KK�;".X; SB/

commutes. The top triangle also commutes as all the maps involved are forget control
maps, whence the bottom horizontal map is zero. This gives us condition (ii) from the
statement.

Condition (ii) clearly implies condition (iii), so it remains to show that condi-
tion (iii) implies condition (i). For this, it suffices to establish condition (ii) from
Theorem 2.15, so let 
 > 0 and a finite subset X of A1 be given. Then, according to
condition (iii) there are � � � � 1, " > 0 and a finite subset Z of A1 such that the
forget control map

KK0�;".Z; SB/! KK0�;
=20.X; SB/

is defined and zero. Replacing Z with Z [ Z� if necessary, we may assume Z is
self-adjoint. Using Lemma 5.1 (see in particular line (5.2)) there is a map  � such
that the top right triangle in the diagram below commutes

KK01;".Z; SB/
//

��

KK1;
=20.X; SB/

�� ''

// KK1;
=5.X; SB/

KK0�;".Z; SB/ 0
// KK�;
=20.X; SB/ // KK0

�;
=20
.X; SB/:

 �

OO

The rest of the diagram also commutes, as all the arrows are forget control maps,
whence the composition

KK01;".Z; SB/! KK1;
=20.X; SB/! KK1;
=5.X; SB/
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of the two top horizontal maps is zero. Using Lemma 5.2, there is a commutative
diagram

KK".Z; SB/ //

ˇ

��

KK
 .X; SB/

KK01;".Z; SB/ 0
// KK1;
=5.X; SB/:

˛

OO

The top horizontal map is therefore zero; this is the conclusion we need for The-
orem 2.15, condition (ii), so we are done.

5.2 The odd case

For the statement of the next lemma, consider the Hilbert module `2˝ SB associated
to the suspension SBDC0..0;1/;B/ of a separableC �-algebraB . LetCsb.X;M.C//
denote the C �-algebra of bounded and strictly continuous functions from a locally
compact space X to the multiplier algebra M.C/ of a C �-algebra C . For any C �-
algebra C there are canonical identifications

LC DM.C ˝K/

(see for example [45, Theorem 2.4]) and M.C0.X; C // D Csb.X;M.C// (see for
example [1, Corollary 3.4]). Hence, there is a canonical identification

LSB D Csb..0; 1/;LB/: (5.3)

We identify LB DL.`2˝B/with aC �-subalgebra of LSB DL.`2˝B˝C0.0;1//

via the �-homomorphism a 7! a ˝ 1C0.0;1/. We recall also that KCB denotes the
unitization of KB .

Lemma 5.4. Let B be a separable C �-algebra. Let � � 1, " > 0, and let X be a
subset of the unit ball of LB . Then,

(i) Elements of Pn;�;".X; SB/ (see Definition 3.1) identify canonically with
continuous paths .pt ; qt /t2Œ0;1� of idempotents in Mn.K

C

B / ˚Mn.K
C

B /

satisfying the following conditions:

(a) for all t 2 Œ0; 1�, kptk � � and kqtk � �;

(b) for all t 2 Œ0; 1� and all x 2 X , kŒpt ; x�k < " and kŒqt ; x�k < ";

(c) there are p; q 2 Mn.C/ such that p0 D p1 D p, q0 D q1 D q and
such that if � W Mn.K

C

B / ! Mn.C/ is the canonical quotient map
then �.pt / D p and �.qt / D q for all t 2 Œ0; 1�.

Moreover, the element .p;q/ is in the subset P 1
n;�;".X;SB/ of Definition 4.9

if and only if p and q are equal to 1l for some l 2 N.
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(ii) Elements of Un;�;".X; SB/ (see Definition 3.5) identify with continuous
paths .ut /t2Œ0;1� of invertibles in Mn.K

C

B / satisfying the following condi-
tions:

(a) for all t 2 Œ0; 1�, kutk � � and ku�1t k � �;

(b) for all t 2 Œ0; 1� and all x 2 X , kŒut ; x�k < " and kŒu�1t ; x�k < ";

(c) there is u 2Mn.C/ such that u0 D u1 D u and such that if

� WMn.K
C

B /!Mn.C/

is the canonical quotient map then �.ut / D u for all t 2 Œ0; 1�.

Moreover, the element is in the subset U1
n;�;".X; SB/ of Definition 4.11 if

and only if u is the identity.

Proof. We have a canonical identification

KCSB D ¹f 2 C.Œ0; 1�;K
C

B / j �.f .t// D f .0/ D f .1/ for all t 2 Œ0; 1�º:

Part (i) follows directly by comparing this with Definitions 3.1 and 4.9; similarly,
part (ii) follows from comparing this with Definitions 3.5 and 4.11. We leave the
details to the reader.

Lemma 5.5. For any � � 1 there exists a positive constant M1 with the following
property. Let " > 0, let A be a separable, unital, nuclear C �-algebra that satisfies the
UCT, and let B be a separable C �-algebra with K�.B/ D 0. Let � W A! LSB be a
strongly unitally absorbing representation that factors through the subalgebra B.`2/

(such exists by Lemma 2.6), and use this to identify A with a C �-subalgebra of LSB .
Then, for any finite subset X of A1 there exists a finite subset Z of A1 such that

the forget control map

KK1�;".Z; SB/! KK1M1;M1".X; SB/

of Definition 3.7 is defined and zero.

Proof. We claim M1 D 2
.200�8/3 � 320�7 works. Using Corollary 5.3 there is a finite

subset Z of A1 such that the forget control map

KK0
�8;2�6"

.Z; SB/! KK0
�8;320�6"

.X; SB/ (5.4)

of Definition 3.4 is zero. We claim this set Z works.
Let u be an arbitrary element of Un;�;".Z; B/. Using Proposition 4.13 (i), and

with notation as in Definition 4.11, there is an element v of U1
n;�2;�"

.Z; B/ in the
same path component of Un;�2;�".Z;B/ as u. Define now a path .vt /t2Œ0;1� by

vt WD

�
cos.�t=2/ � sin.�t=2/
sin.�t=2/ cos.�t=2/

��
1 0

0 v

��
cos.�t=2/ sin.�t=2/
� sin.�t=2/ cos.�t=2/

��
v�1 0

0 1

�
:

(5.5)
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Note that each vt is an element of U1
2n;�4;2�3"

.Z;B/. Define

pt WD vt

�
1 0

0 0

�
v�1t :

Write p for the path .pt /, and note that according to Lemma 5.4 (i), we may identify
the pair .p; 1n ˚ 0n/ with (using the notation of Definition 4.9) an element of
P 1
2n;�8;2�7"

.Z; SB/, and therefore also a class Œp; 1n ˚ 0n� 2 KK0�8;2�7".Z; SB/.
By assumption, the forget control map in line (5.4) is zero, and therefore the image
of Œp; 1n˚ 0n� inKK0

�8;320�7"
.X;SB/ is zero. For notational simplicity, at this point

let us define "1 WD 320�7".
Now, Lemma 3.3 gives m 2 N and .s; s/ 2 P2.nCm/;2�8;"1.X; SB/ such that

.p ˚ 1m ˚ 0m; 1n ˚ 0n ˚ 1m ˚ 0m/ and .s; s/ are in the same path component
of the set P2.nCm/;2�8;"1.X; SB/. Let x be a unitary matrix in M2.nCm/.C/ such
that x.1n ˚ 0n ˚ 1m ˚ 0m/x� D 1nCm ˚ 0nCm. As x is connected to the identity
through unitaries, the element .x.p˚ 1m˚ 0m/x�; 1nCm˚ 0nCm/ is also homotopic
to .s; s/ in P2.nCm/;2�8;"1.X;SB/; moreover (with notation as in Definition 4.9), it is
in P 1

2.nCm/;2�8;"1
.X; SB/. We may now apply Proposition 4.17 to see that if

M D 2.200�
8/3

then there is k 2 N and an element w of U1
2.nCmCk/;M;M"1

.X; SB/ such that

w.x.p ˚ 1m ˚ 0m/x
�
˚ 1k ˚ 0k/w

�1
D 1nCm ˚ 0nCm ˚ 1k ˚ 0k :

Write v for the path defined in line (5.5) above, which naturally defines an element of
LSB using the identification in line (5.3). Then, if we define

y WD w.x ˚ 12k/.v ˚ 12.mCk// 2 LSB ;

we have

y.1n ˚ 0n ˚ 1m ˚ 0m ˚ 1k ˚ 0k/y
�1
D 1n ˚ 0n ˚ 1m ˚ 0m ˚ 1k ˚ 0k :

In other words, the element y commutes with 1n˚ 0n˚ 1m˚ 0m˚ 1k ˚ 0k . Define

z WD .1n ˚ 0n ˚ 1m ˚ 0m ˚ 1k ˚ 0k/y.1n ˚ 0n ˚ 1m ˚ 0m ˚ 1k ˚ 0k/:

Using Lemma 5.4 (ii), we may think of z as a continuous path .zt /t2Œ0;1� in
UnCmCk;M;M"1.X; B/. Now, write w as a path .wt /t2Œ0;1�, and note that as w is in
U1
2.nCmCk/;M;M"1

.X;SB/, then by Lemma 5.4 (ii), w0 D w1 D 12.nCm/. Moreover,
v0 D 12n by definition. Hence, z0 D x ˚ 1k . On the other hand v1 D u ˚ u�1 ˚

12.mCk/ and so z1 D .x ˚ 1k/.u˚ 1mCk/. Hence, .x ˚ 1k/�z defines a homotopy
in UnCmCk;M;M"1.X;B/ between 1nCmCk and u˚ 1mCk . This implies Œu� maps to
zero in KK1M;M"1.X; SB/, which completes the proof.





Chapter 6

A Mayer–Vietoris boundary map

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB

denote respectively the adjointable and compact operators on the standard Hilbert
B-module `2 ˝ B . For each n, we consider LB as a subalgebra of Mn.LB/ via the
“diagonal inclusion” LB D 1Mn ˝LB �Mn ˝LB DMn.LB/.

Our goal in this chapter is to construct and analyse a “Mayer–Vietoris boundary
map” in controlledKK-theory. The main results of the chapter prove the existence of
this boundary map (Proposition 6.1) and show it has an exactness property (Proposi-
tion 6.6). These results are the technical heart of the paper.

6.1 Existence

Here, is the construction of the boundary map.

Proposition 6.1. Define an increasing functionN0 W Œ1;1/! Œ0;1/ by the formula
N0.�/ D 2

27�24. This function has the following properties.
Let � � 1, let N0 D N0.�/, let " > 0, let B be a separable C �-algebra, and let

X be a subset of the unit ball of LB . Let h 2 LB be a positive contraction such that
kŒh; x�k < " for all x 2 X . Then, there is a homomorphism

@ W KK1�;".h.1 � h/X [ ¹hº; B/! KK0N0;N0".X [ ¹hº; B/

defined by applying the following process to a class fromKK1�;".h.1� h/X[¹hº;B/:

(i) Choose a representativew 2Un;�;".h.1� h/X [ ¹hº;B/ for the class, and
use Proposition 4.13 (i) to find an element

u 2 U1
n;�2;�"

.h.1 � h/X [ ¹hº; B/

that is in the same path component as w in Un;�2;�".h.1� h/X [ ¹hº; B/.

(ii) Define

c D c.u; h/ WD huC .1 � h/; d D d.u; h/ WD hu�1 C .1 � h/ (6.1)

in Mn.LB/, and

v D v.u; h/ WD

�
1 c

0 1

��
1 0

�d 1

��
1 c

0 1

��
0 1

�1 0

�
2M2n.LB/: (6.2)
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(iii) Define

@Œw� WD

�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
:

Moreover, the boundary map is “natural with respect to forget control maps”; pre-
cisely, if for some � � � and " � ı, the boundary maps

@ W KK1�;".h.1 � h/X [ ¹hº; B/! KK0N0.�/;N0.�/".X [ ¹hº; B/

and
@ W KK1�;ı.h.1 � h/X [ ¹hº; B/! KK0N0.�/;N0.�/ı.X [ ¹hº; B/

both exist, then the diagram

KK1�;".h.1 � h/X [ ¹hº; B/
@ //

��

KK0
N0.�/;N0.�/"

.X [ ¹hº; B/

��

KK1
�;ı
.h.1 � h/X [ ¹hº; B/

@ // KK0
N0.�/;N0.�/ı

.X [ ¹hº; B/

(with vertical maps the forget control maps of Definitions 3.4 and 3.7) commutes.

In order to make the proof more palatable, we split off some computations as
lemmas. The proofs of these lemmas are elementary, but the second one is quite
lengthy. We record them for the sake of completeness, but recommend the reader
skips the proofs.

Lemma 6.2. Let B be a separable C �-algebra. Let u 2 Mn.LB/ be an invertible
element such that 1� u 2Mn.KB/, and let h 2 LB be a positive contraction. Then,
the elements c D c.u; h/ and d D d.u; h/ from line (6.1) above have the following
properties.

(i) The elements cd � 1 and dc � 1 are in Mn.KB/.

(ii) If � � 1 and " > 0 are such that kuk � �, ku�1k � �, kŒh; u�k < ", and
kŒh; u�1�k < ", then cd � 1 and dc � 1 are both closer than .� C 1/" to
h.1 � h/.uC u�1 � 2/.

Proof. We just look at the case of cd � 1 for both parts (i) and (ii); the case of dc � 1
is similar. Note first that because 1 � u is in Mn.KB/ and Mn.KB/ is an ideal in
Mn.LB/, we must have that 1 � u�1 is in Mn.KB/ also. We compute that

cd � 1 D huhu�1 C .1 � h/hu�1 C hu.1 � h/ � 2hC h2

D h2 C huŒh; u�1�C h.1 � h/u�1

C h.1 � h/uC Œh; u�.1 � h/ � 2hC h2: (6.3)
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Using that u and u�1 equal 1modulo the idealMn.KB/, we compute that this equals
0 modulo Mn.KB/. Hence, cd � 1 is in Mn.KB/

Looking at part (ii), note that the terms huŒh; u�1� and Œh; u�.1 � h/ in line (6.3)
above have norms at most �" and " respectively. Hence, cd � 1 is within .� C 1/" of
h2C h.1� h/u�1C h.1� h/u� 2hC h2, which equals h.1� h/.uC u�1 � 2/.

Lemma 6.3. LetB be a separableC �-algebra. Let � � 1, "> 0, and letX be a subset
of the unit ball of LB . Let h 2 LB be a positive contraction such that kŒh; x�k < "
for all x 2 X , and let u be an element of the set U1

n;�;".h.1 � h/X [ ¹hº; B/ from
Definition 4.11. Let c D c.u; h/ and d D d.u; h/ be as in line (6.1) above, and let
v D v.u; h/ be as in line (6.2).

Then, kvk � .� C 2/3, kv�1k � .� C 2/3, and the pair�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
is an element of P 1

2n;36�6;216�5"
.X [ ¹hº; B/ from Definition 4.9.

Proof. From the definition of v in line (6.2) above,

v D

�
c.dc � 2/ 1 � cd

dc � 1 �d

�
(6.4)

and

v�1 D

�
0 �1

1 0

��
1 �c

0 1

��
1 0

d 1

��
1 �c

0 1

�
D

�
�d dc � 1

1 � cd c.dc � 2/

�
:

Hence,

v

�
1 0

0 0

�
v�1 D

�
cd.2 � cd/ c.dc � 2/.dc � 1/

.1 � dc/d .dc � 1/2

�
and so

v

�
1 0

0 0

�
v�1 �

�
1 0

0 0

�
D

�
�.cd � 1/2 .cd � 1/c.dc � 2/

.1 � dc/d .dc � 1/2

�
: (6.5)

This formula, part (i) of Lemma 6.2, and the fact thatMn.KB/ is an ideal inMn.LB/

imply that

v

�
1 0

0 0

�
v�1 �

�
1 0

0 0

�
2M2n.KB/;

whence v
�
1 0
0 0

�
v�1 is in M2n.K

C

B /, and v
�
1 0
0 0

�
v�1 and

�
1 0
0 0

�
have the same image

under the image of the canonical quotient map

� WM2n.K
C

B /!M2n.C/:
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Note moreover that kvk � .� C 2/3 and kv�1k � .� C 2/3 from the formula for v
(whence also v�1) as a product of four matrices in line (6.2). As � � 1, this implies
that 



v �1 0

0 0

�
v�1





 � .� C 2/6 � 36�6:
To complete the proof that the pair�

v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
defines an element of P 1

2n;36�6;216�5"
.X; B/ it remains to check the relevant com-

mutator estimates, i.e., condition (ii) from Definition 3.1 with x in X [ ¹hº and "
replaced by 216�5". As

�
1 0
0 0

�
(and indeed, any scalar matrix) commutes with ele-

ments of X [ ¹hº exactly, it suffices to show that



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��



 � 216�5" (6.6)

for all x 2 X [ ¹hº. We focus on the case when x is in X ; the case when x D h

follows from similar (and much simpler) estimates that we leave to the reader.
Working towards the estimate in line (6.6), we compute that the element in line

(6.5) equals �
cd � 1 0

0 dc � 1

��
1 � cd c.dc � 2/

�d dc � 1

�
: (6.7)

The second matrix above satisfies



�1 � cd c.dc � 2/

�d dc � 1

�



 � k1 � cdk C kckkdc � 2k C kdk C kdc � 1k
� ..� C 1/2 C 1/C .� C 1/..� C 1/2 C 2/

C .� C 1/C ..� C 1/2 C 1/:

As � C 1 � 1, we therefore see that



�1 � cd c.dc � 2/

�d dc � 1

�



 � 8.� C 1/4: (6.8)

On the other hand, using part (ii) of Lemma 6.2, the first matrix in line (6.7) above
is closer than ".� C 1/ to h.1 � h/.u C u�1 � 2/ (we identify this as usual with
the diagonal matrix with both entries equal to h.1 � h/.uC u�1 � 2/). Hence, the
difference in line (6.5) is closer than 8.� C 1/5" to

h.1 � h/.uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

�
:
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Hence, for x 2 X ,



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��




< 16.� C 1/5"C





�x; h.1 � h/.uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



: (6.9)

As kŒx; h�k < ", we have kŒx; h.1 � h/�k < 2"; combining this with line (6.8) gives



�x; h.1 � h/.uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��




< 2" � 8.� C 1/5 C





h.1 � h/�x; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



:
Combining this with line (6.9) gives



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��




< 32.� C 1/5"C





h.1 � h/�x; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



: (6.10)

Every entry of the matrix .u C u�1 � 2/
�
1�cd c.dc�2/
�d dc�1

�
can be written as a sum

of at most 30 terms, each of which is a product of at most 5 elements from the set
¹u; u�1; h; 1º, each of which has norm at most �. As kŒh.1 � h/x; y�k < " for all
y 2 ¹u; u�1; h; 1º, Lemma 4.16 gives



�h.1 � h/x; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



 < 4 � 30 � 5 � �4": (6.11)

On the other hand, kŒh.1 � h/; y�k < 2" for all y 2 ¹u; u�1; h; 1º, whence



�h.1 � h/; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��
x





 < 4 � 30 � 5 � �4": (6.12)

Finally, note that

h.1 � h/

�
x; .uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

��
D

�
h.1 � h/x; .uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

��
C

�
h.1 � h/; .uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

��
x;
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so combining lines (6.10), (6.11), and (6.12) implies



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��



 < 1232.� C 1/5":
Recalling that � � 1, this is enough for the estimate in line (6.6).

We are now ready for the proof of Proposition 6.1.

Proof of Proposition 6.1. Assume that w 2 Un;�;".h.1 � h/X [ ¹hº; B/, and let

u 2 U1
n;�2;�"

.h.1 � h/X [ ¹hº; B/

be in the same path component asw in Un;�2;�".h.1� h/X [¹hº;B/; u is guaranteed
to exist by Proposition 4.13 (i). Define v WD v.u; h/ as in line (6.2), so Lemma 6.3
gives an element�

v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
2 P2n;36�12;216�11".X [ ¹hº; B/:

Moreover, if u0 WD u, and u1 is another choice of element in

U1
n;�2;�"

.h.1 � h/X [ ¹hº; B/

that is connected to w in Un;�2;�".h.1 � h/X [ ¹hº; B/ then Proposition 4.13 (ii)
implies that there is a homotopy .ut /t2Œ0;1� that connects u0 and u1 through

U1
n;�4;�"

.h.1 � h/X [ ¹hº; B/:

Let vt WD v.ut ; h/ be as in line (6.2). Then, Lemma 6.3 implies that the path

t 7!

�
vt

�
1 0

0 0

�
v�1t ;

�
1 0

0 0

��
; t 2 Œ0; 1�

has image in P 1
2n;36�24;216�21"

.X [ ¹hº; B/. In particular, the class

@Œw� 2 KK0
36�24;216�21"

.X [ ¹hº; B/

does not depend on the choice of u, so at this point we have a well-defined set map

Un;�;".h.1 � h/X [ ¹hº; B/! KK0
36�24;216�21"

.X [ ¹hº; B/:

We next claim that this map sends block sums on the left to sums on the right.
For this, assume thatw1 andw2 are elements of Un;�;".h.1� h/X [ ¹hº;B/. Let

u1 and u2 be elements of U1
n;�2;�"

.h.1� h/X [ ¹hº;B/ that are connected tow1 and
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w2 respectively in U1
n;�2;�"

.h.1� h/X [ ¹hº; B/. For i 2 ¹1; 2º let vi D v.ui ; h/ be
as in line (6.2), and let v WD v.u1 ˚ u2; h/ 2M4n.LB/. Then, the pairs�

v1

�
1n 0

0 0

�
v�11 ˚ v2

�
1n 0

0 0

�
v�12 ;

�
1n 0

0 0

�
˚

�
1n 0

0 0

��
and �

v

�
12n 0

0 0

�
v�1;

�
12n 0

0 0

��
in M4n.K

C

B / ˚M4n.K
C

B / differ by conjugation by the same (scalar) permutation
matrix in each component, and so define the same class in KK0

36�24;216�21"
.X [

¹hº; B/.
At this point, we have a semigroup homomorphism

Un;�;".h.1 � h/X [ ¹hº; B/! KK0
36�24;216�21"

.X [ ¹hº; B/:

We claim that it respects the equivalence relation definingKK1�;".h.1�h/X[¹hº;B/.
First, we check that w ˚ 1k goes to the same class as w. As we already know
we have a semigroup homomorphism, it suffices to show that 1k goes to zero in
KK0

36�24;216�20"
.X [ ¹hº; B/. For this, note that if v WD v.1k; h/ is as in line (6.2),

then v D 12k , whence the image of 1k in KK0
36�24;216�21"

.X [ ¹hº; B/ is the class
Œ1k ˚ 0k; 1k ˚ 0k�, which is zero by definition.

Let us now show that elements of Un;�;".h.1 � h/X [ ¹hº; B/ that are homo-
topic through Un;2�;".h.1 � h/X [ ¹hº; B/ go to the same class. For this, say that
w0 and w1 are homotopic through Un;2�;".h.1 � h/X [ ¹hº; B/. Choose u0 and u1
in U1

n;�2;�"
.h.1 � h/X [ ¹hº; B/ that are connected to w0 and w1 respectively in

Un;�2;�".h.1 � h/X [ ¹hº; B/ as in Proposition 4.13 (i). Using Proposition 4.13 (ii),
u0 and u1 are connected by a homotopy .ut /t2Œ0;1� in U1

n;4�4;2�"
.h.1�h/X[¹hº;B/.

Let vt WD v.ut ; h/ be as in line (6.2). Then, Lemma 6.3 implies that the path�
vt

�
1 0

0 0

�
v�1t ;

�
1 0

0 0

��
defines a homotopy between the images of w0 and w1 in P 1

2n;314�24;227�21"
.X [

¹hº; B/. We thus see that N0.�/ WD 227�24 has the desired property, and we are done
with the existence of @.

As the formulas for the boundary map @ do not depend on the constants � and "
the naturality statement is clear.

6.2 Exactness

We now turn to the exactness property of the boundary map. In order to state this, we
need two lemmas.
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Lemma 6.4. Let B be a separable C �-algebra. Let X and Y be subsets of the unit
ball of LB , " > 0 and � � 1. Let h 2LB be a positive contraction such that kŒh;x�k<
" for all x 2 X . With notation as in Definition 3.1, let

.p; q/ 2 Pn;�;".X [ Y [ ¹hº; B/

(respectively, with notation as in Definition 4.9, let .p; q/ 2P
.1/
n;�;".X [ Y [ ¹hº;B/).

Then,
.p; q/ 2 Pn;�;2".hX [ Y [ ¹hº; B/

(respectively, .p; q/ 2 P 1
n;�;2".hX [ Y [ ¹hº; B/).

In particular, there are homomorphisms

�h W KK
0
�;".X [ Y [ ¹hº; B/! KK0�;2".hX [ Y [ ¹hº; B/

and

�1�h W KK
0
�;".X [ Y [ ¹hº; B/! KK0�;2"..1 � h/X [ Y [ ¹hº; B/

induced by the identity map on cycles .p; q/.

Proof. We compute that for x 2 X ,

kŒp; hx�k � khkkŒp; x�k C kŒp; h�kkxk < "C ":

These estimates hold similarly for q so .p; q/ 2 P 1
n;�;2".hX [ Y [ ¹hº; B/. As the

identity map on cycles takes homotopies to homotopies, and block sums to block
sums, existence of the homomorphism �h is clear. Existence of �1�h follows on not-
ing that the assumptions on h also holds for 1 � h.

We leave the direct checks needed for the proof of the next lemma for the reader.

Lemma 6.5. Let B be a separable C �-algebra. Let X and Y be subsets of the unit
ball of LB , " > 0 and � � 1. Assume moreover that there is ı > 0 such that for
all y 2 Y , x 2ı X . Then, for any 
 � �ı C " and � � �, the forget control map of
Definition 3.4

KK0�;".X;B/! KK�;
 .Y; B/

is well-defined.

The next proposition is the exactness property of the Mayer–Vietoris boundary
map that we are aiming for. We refer the reader to Section 1.6 for motivation behind
the statement. For the statement, recall that for an element x and subset Y of a metric
space, and for " > 0, we write “x 2" S” to mean that there is y 2 Y with d.x; y/ <
". Moreover, in the statement below, all unlabeled arrows between controlled KK-
groups are the forget control maps of Definition 3.4 or Definition 3.7.
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Proposition 6.6. The increasing functions N1; N2 W Œ1;1/! Œ1;1/ defined by

N1.�/ D 2
9000000�3 and N2.�/ D 2

37�25:

satisfy the following properties.
Let � � 1, and let " > 0. Let � � �, and let ı � 3�". Let N1 WD N1.�/, and let

� � N1 and 
 � N1ı. With notation as in Proposition 6.1, define

N0 WD N0.�/;

and let N2 WD N2.�/.
Let B be a separable C �-algebra, and let X be a self-adjoint subset of the unit

ball of LB . Let h 2LB be a positive contraction such that kŒh; x�k < " for all x 2 X .
Let Yh, Y1�h, and Y be self-adjoint subsets of the unit ball of LB such that y 2" Yh
and y 2" Y1�h for all y 2 Y . With notation as in Definition 4.9, let .p; q/ be an
element of P 1

n;�;".X [ Yh [ Y1�h [ ¹hº; B/. With �h and �1�h as in Lemma 6.4, and
suing Lemma 6.5 to define the right hand vertical maps in each case, assume that the
images of Œp; q� under the maps

KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

��

KK0�;".X [ Yh [ ¹hº; B/
�h // KK0�;2".hX [ Yh [ ¹hº; B/

��

KK0
�;ı
.hX [ Y [ ¹hº; B/

(6.13)

and

KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

��

KK0�;".X [ Y1�h [ ¹hº; B/
�1�h // KK0�;2"..1 � h/X [ Y1�h [ ¹hº; B/

��

KK0
�;ı
.hX [ Y [ ¹hº; B/

(6.14)

are zero.
Then, with notation as in Definition 4.11, there exists an element

u 2 U1
1;N1;N1ı

.h.1 � h/X [ ¹hº [ Y;B/
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such that in the diagram below

KK1
N1;N1ı

.h.1 � h/X [ ¹hº [ Y;B/

��

KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

��

KK1�;
 .h.1 � h/X [ ¹hº; B/
@ // KK0N0;N0
 .X [ ¹hº; B/

��

KK0N2;N2
 .X [ ¹hº; B/

the images of the classes Œu� 2 KK1
N1;N1ı

.h.1 � h/X [ ¹hº [ Y / and

Œp; q� 2 KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

in the bottom right group KK0N2;N2
 .X [ ¹hº; B/ are the same.

Just as for Proposition 6.1, to make the argument more palatable, we split off
some computations as two technical lemmas. As in that earlier case, the arguments
we give for these lemmas are elementary, but quite lengthy (in fact, much longer than
the earlier ones). We record them for the sake of completeness, but again recommend
that the reader skips the proofs.

Lemma 6.7. Let B be a separable C �-algebra. Let � � 1 and let 
 > 0. Let X
and Y be self-adjoint subsets of the unit ball of LB . Let h 2 LB be a positive con-
traction such that kŒh; x�k < 
 for all x 2 X . Let .p; q/ 2 P 1

n;�;
 .X [ Y [ ¹hº; B/

(see Definition 4.9 for notation), and let uh 2 U1
n;�;
 .hX [ ¹hº [ Y;B/ and u1�h 2

U1
n;�;
 ..1 � h/X [ ¹hº [ Y;B/ (see Definition 4.11 for notation).

Then, the element
u WD u1�h.1 � p/C uhp (6.15)

is in U1
n;2�2;10�


.h.1 � h/X [ ¹hº [ Y;B/.

Proof. We split the computations into the points labeled (i), (ii), (iii), (iv), and (v)
below.

(i) As uh � 1 2Mn.KB/ and u1�h � 1 2Mn.KB/, we compute from line (6.15)
that u � 1 2Mn.KB/.

(ii) Note that
k1 � pk � � (6.16)

by Corollary 4.2. Hence, max¹kuhk;ku1�hk;kpk;k1�pkº � �, and so by line (6.15),
kuk � 2�2.

(iii) Let y 2 Y . Then, by definition, kŒa; y�k < 
 for all a 2 ¹uh; u1�h; p; 1� pº.
Hence, the definition of u from line (6.15) implies that kŒy; u�k is bounded above by

kŒy; u1�h�kk1 � pk C ku1�hkkŒy; 1 � p�k C kŒy; uh�kkpk C kuhkkŒy; p�k < 4�
:
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(iv) Using the definition of u from line (6.15) and the assumptions on uh, u1�h
and p directly together with line (6.16) implies that

kŒu; h�k � kŒh; u1�h�kk1 � pk C ku1�hkkŒh; 1 � p�k

C kŒh; uh�kkpk C kuhkkŒh; p�k

< 4�
:

(v) Let x 2 X and note that

Œh.1 � h/x; uh� D .1 � h/Œhx; uh�C Œh; uh�.1 � h/x:

As kŒhx; uh�k < 
 , as kŒh; uh�k < 
 , as h is a positive contraction, and as x is a
contraction, we get

kŒh.1 � h/x; uh�k � kŒhx; uh�kk1 � hk C khxkkŒ1 � h; uh�k < 2
: (6.17)

Completely analogously, we see that

kŒh.1 � h/x; u1�h�k < 2
: (6.18)

We see also that

kŒh.1 � h/x; p�k � kŒx; p�kkh.1 � h/k C kŒ1 � h; p�kkhxk C kŒh; p�kk.1 � h/xk

< 3
:

Combining this with lines (6.16), (6.17), (6.18), we get

kŒh.1 � h/x; u�k � kŒh.1 � h/x; u1�h�kk1 � pk C ku1�hkkŒh.1 � h/x; 1 � p�k

C kŒh.1 � h/x; uh�kkpk C kuhkkŒh.1 � h/x; p�k

< 2�
 C 3�
 C 2�
 C 3�


D 10�
:

Putting the points (i), (ii), (iii), (iv), and (v) above together (and using that � �
1) we conclude that, u is an element of U1

n;2�2;10�

.h.1 � h/X [ ¹hº [ Y; B/ as

claimed.

Lemma 6.8. With assumptions as in Lemma 6.7, let

u WD u1�h.1 � p/C uhp 2 U1
n;2�2;10�


.h.1 � h/X [ ¹hº [ Y;B/

be the element considered there. Let v WD v.u; h/ be as in line (6.2) above, and define

w WD

�
u1�h.1 � p/ �q

p .1 � p/u�1
1�h

�
2M2n.LB/:

Then, w is invertible, and vw�1 is in U2n;.2�/8;237�25
 .X [ ¹hº; B/.
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Proof. Using the assumptions on kpk, ku1�hk, ku�11�hk and line (6.16) to estimate
k1 � pk, we have

kwk � ku1�h.1 � p/k C kqk C kpk C k.1 � p/u
�1
1�hk � 4�

2:

A direct computation shows that w is invertible with inverse

w�1 D

�
.1 � p/u�1

1�h
p

�q u1�h.1 � p/

�
: (6.19)

This satisfies the same norm estimate as w, and so we get the norm estimates

kwk � .2�/2 and kw�1k � .2�/2: (6.20)

Lemma 6.3 and the fact that kuk � 2�2 implies that kvk � .2�2 C 2/3 and kv�1k �
.2�2 C 2/3. As � � 1, we thus see that

kvk � .2�/6 and kv�1k � .2�/6: (6.21)

Lines (6.20) and (6.21) then imply

kvw�1k � .2�/8 and kwv�1k � .2�/8: (6.22)

To complete the proof, we need to show that for all x 2 X [ ¹hº, we have
kŒvw�1; x�k < 237�25
 and kŒwv�1; x�k < 237�25
 . We focus first on the case of
vw�1, and look first at Œh; vw�1�.

Let c WD huC .1 � h/ and d WD hu�1 C .1 � h/ be as in line (6.1). It will be
technically convenient to define

S WD ¹h; 1 � h; p; q; 1 � p; 1 � q; uh; u
�1
h ; u1�h; u

�1
1�h; u; u

�1; c; dº; (6.23)

and to define Sn to be the set of all products of at most n elements from S . Note that
for every s 2 S we have ksk � .2�/2, and kŒs; h�k < 10�
 . Hence, by Lemma 4.16,
for all n 2 N we have

s 2 Sn) kŒh; s�k < n.2�/2.n�1/10�
: (6.24)

Using the formula in line (6.4) above,

Œh; v� D

 
Œcdc; h� � 2Œc; h� Œcd; h�

Œh; dc� Œd; h�

!
and so

kŒh; v�k � kŒcdc; h�k C 2kŒc; h�k C kŒcd; h�k C kŒh; dc�k C kŒd; h�k:
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Each summand on the right-hand side above is of the form kŒh; s�k where s 2 S3 for
S as in line (6.23). Hence, line (6.24) implies that

kŒh; v�k < 6 � 3 � .2�/4 � 10�
 � 211�5
: (6.25)

We also compute that

Œh; w�1� D

 
Œh; .1 � p/u�1

1�h
� Œh; p�

Œq; h� Œh; u1�h.1 � p/�

!
;

whence

kŒh; w�1�k � kŒh; .1 � p/u�11�h�k C kŒh; p�k C kŒq; h�k C kŒh; u1�h.1 � p/�k:

Each commutator appearing above is of the form Œh; s� for some s 2 S2 as in line
(6.23), whence line (6.24) gives

kŒh; w�1�k < 4 � .2�/2 � 10�
 � 27�3
: (6.26)

On the other hand,

kŒh; vw�1�k � kŒh; v�kkw�1k C kvkkŒh; w�1�k:

Combining this with lines (6.20), (6.21), (6.25), and (6.26), as well as that � � 1, we
see that

kŒh; vw�1�k < 211�5
 � .2�/2 C .2�/6 � 27�3
 � 214�9
: (6.27)

Now, let us look at Œx; vw�1� for x 2 X . The definition of v from line (6.2) gives

vw�1 D

�
c.dc � 1/ 1 � cd

dc � 1 0

�
w�1 �

�
c 0

0 d

�
w�1

D

�
cd � 1 0

0 dc � 1

��
c �1

1 0

�
w�1 �

�
c 0

0 d

�
w�1:

Hence, the formula for w�1 from line (6.19) gives

vw�1 D

 
cd � 1 0

0 dc � 1

! 
c.1 � p/u�1

1�h
cp � u1�h.1 � p/

.1 � p/u�1
1�h

p

!
„ ƒ‚ …

y1

� h

 
1 � q uhp

�u�1
h
q 1 � p

!
„ ƒ‚ …

y2

� .1 � h/

 
.1 � p/u�1

1�h
p

�q u1�h.1 � p/

!
„ ƒ‚ …

y3

: (6.28)
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We now estimate kŒvw�1; x�k for each x 2 X by looking at each of the terms y1, y2,
and y3 separately.

(i) First, we look at y1 from line (6.28). Let x 2 X . Lemma 6.2 implies that



�cd � 1 0

0 dc � 1

�
� h.1 � h/.uC u�1 � 2/





 < .� C 1/
 (6.29)

(where, as usual, we identify h.1� h/.uC u�1 � 2/ with the corresponding diagonal
matrix). Let

z1 WD

 
c.1 � p/u�1

1�h
cp � u1�h.1 � p/

.1 � p/u�1
1�h

p

!
: (6.30)

As in line (6.16), k1 � pk � �, whence using that � � 1,

kz1k � kckk1 � pkku
�1
1�hk C kckkpk C ku1�hkk1 � pk

C k1 � pkku�11�hk C kpk

� .2�2 C 1/�2 C .2�2 C 1/� C �2 C �2 C �

� 9�4: (6.31)

Combining this with line (6.29), we see that

ky1 � h.1 � h/.uC u
�1
� 2/z1k

�





�cd � 1 0

0 dc � 1

�
� h.1 � h/.uC u�1 � 2/





kz1k
< 9�4.� C 1/
 � .2�/5
:

As kxk � 1, this implies that

kŒx; y1�k � kŒx; y1 � h.1 � h/.uC u
�1
� 2/z1�k

C kŒx; h.1 � h/.uC u�1 � 2/z1�k

< .2�/5
 C kŒx; h.1 � h/.uC u�1 � 2/z1�k:

Hence, we see that

kŒx; y1�k < .2�/
5
 C kŒŒx; h.1 � h/�; .uC u�1 � 2/z1�k

C kŒh.1 � h/x; .uC u�1 � 2/z1�k

C kŒh.1 � h/; .uC u�1 � 2/z1�xk: (6.32)

Looking at line (6.30), every entry of the matrix .uC u�1 � 2/z1 is a sum of at most
8 elements from the set S4, where S is as in line (6.23). Hence, by line (6.24), we see
that

kŒh.1 � h/; .uC u�1 � 2/z1�k < 4 � 2 � 8 � 4 � .2�/
6
� 12�2
 � 218�8
: (6.33)
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We have kŒx; h.1 � h/�k < 2
 , and line (6.31) implies

k.uC u�1 � 2/z1k � .4�
2
C 2/ � 9�4 � 26�6;

whence
kŒŒx; h.1 � h/�; .uC u�1 � 2/z1�k � 2

8�6
: (6.34)

Combining lines (6.32), (6.33), and (6.34) thus implies that

kŒx; y1�k � 2
19�8
 C kŒh.1 � h/x; .uC u�1 � 2/z1�k: (6.35)

Note now that for every element s 2 S we have that at least one of the following
holds: (a) kŒs; x�k < 16�2
 for all x 2 X ; or (b) kŒs; .1 � h/x�k < 16�2
 for all
x 2 X ; or (c) kŒs; .1� h/x�k < 16�2
 for all x 2 X ; or (d) kŒs; h.1� h/x�k < 16�2

for all x 2 X . In any of these cases, using that kŒs; h�k � 12�2
 for any s 2 S , we get
that for any s 2 S and x 2 X , kŒs; h.1 � h/x�k < 40�2
 . Applying Lemma 4.16, we
therefore see that

s 2 Sn) kŒh.1 � h/x; s�k < n.2�/2.n�1/40�2
: (6.36)

As we have observed above already, every entry in the matrix .uC u�1 � 2/z1 is a
sum of at most 8 elements from the set S4, where S is as in line (6.23). From line
(6.36) we therefore see that

kŒh.1 � h/x; .uC u�1 � 2/z1�k < 4 � 4 � .2�/
4
� 40�2
 � 214�6
:

Combining this with line (6.35) above therefore implies

kŒx; y1�k < 2
20�8
:

(ii) Now, we look at the element y2 from line (6.28) above. If x 2 X , we see that

Œx; y2� D

�
xh;

�
1 � q uhp

�u�1
h
q 1 � p

��
C

�
h;

�
1 � q uhp

�u�1
h
q 1 � p

��
x: (6.37)

We have that �
h;

�
1 � q uhp

�u�1
h
q 1 � p

��
D

�
Œq; h� Œh; uhp�

Œu�1
h
q; h� Œp; h�

�
:

Each entry in the matrix on the right is the commutator of h with an element of S2,
where S is as in line (6.23) above. Hence, by line (6.24), we see that



�h;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 4 � 2 � .2�/2 � 12�2
 � 29�4
:



A Mayer–Vietoris boundary map 74

Combining this with line (6.37) gives

kŒx; y2�k <





�xh;� 1 � q uhp

�u�1
h
q 1 � p

��



C 29�4
: (6.38)

On the other hand�
xh;

�
1 � q uhp

�u�1
h
q 1 � p

��
D

�
Œx; h�;

�
1 � q uhp

�u�1
h
q 1 � p

��
C

�
hx;

�
1 � q uhp

�u�1
h
q 1 � p

��
: (6.39)

As kŒh; x�k < 
 , we have



�Œx; h�;� 1 � q uhp

�u�1
h
q 1 � p

��



 � 2




� 1 � q uhp

�u�1
h
q 1 � p

�



:
As k1 � pk � � and k1 � qk � � by Corollary 4.2, every entry of the matrix on the
right has norm at most �2, and so



�Œx; h�;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 23�2
:
Hence, line (6.39) implies that



�xh;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 



�hx;� 1 � q uhp

�u�1
h
q 1 � p

��



C 23�2
: (6.40)

The commutator appearing on the right above equals 
Œq; hx� Œhx; uh�p C uhŒhx; p�

Œu�1
h
; hx�q � u�1

h
Œhx; q� Œp; hx�

!
:

Using that uh 2 U1
n;�;
 .hX; B/, and applying Lemma 6.4, the norm of each entry

above is at most 2�
 , whence



�hx;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 23�
:
Combining this with lines (6.38) and (6.40) therefore implies that

kŒx; y2�k < 2
10�4
:

(iii) Finally, we look at y3 from line (6.28). This can be handled very similarly
to the case of y2, giving the estimate kŒx; y3�k < 210�4
 for all x 2 X ; we leave the
details to the reader.
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Putting together the concluding estimates of points (i), (ii), and (iii) above, we
see that kŒx; vw�1�k < 221�8
 for all x 2 X . Combining this with line (6.27), we see
that

kŒx; vw�1�k < 221�9
 (6.41)

for all x 2 X [ ¹hº.
To complete the proof, let us estimate kŒx; wv�1�k for x 2 X [ ¹hº. Using the

formula Œx; wv�1� D wv�1Œvw�1; x�wv�1, we see that

kŒx; wv�1�k � kwv�1kkŒvw�1; x�kkwv�1k:

Lines (6.41) and (6.22) therefore imply that

kŒx; wv�1�k � 237�25


and we are finally done.

Finally, we are ready for the proof of Proposition 6.6.

Proof of Proposition 6.6. With notation as in the statement, let

.p; q/ 2 P 1
n;�;".X [ Yh [ Y1�h [ ¹hº; B/;

and assume that the images of Œp; q� in KK0
�;ı
.hX [ Y [ ¹hº; B/ and KK0

�;ı
..1 �

h/X [ Y [ ¹hº; B/ under the maps in lines (6.13) and (6.14) are zero.
Note first that the map in line (6.13) is induced by the identity map on cycles, so

Lemma 3.3 applied to the cycle .p; q/ in Pn;�;ı.hX [ Y [ ¹hº;B/ implies that there
exists k 2 N such that .p˚ 1k ˚ 0k; q ˚ 1k ˚ 0k/ is in the same path component of
PnC2k;2�;ı.hX [ Y [ ¹hº; B/ as an element of the form .r; r/. Replacing .r; r/ with
.yry�; yry�/ for some appropriate unitary y 2MnC2k.C/ and using that the unitary
group of MnC2k.C/ is connected, we may assume that .r; r/ is in P 1

nC2k;2�;ı
.hX [

Yh [ ¹hº; B/ (see Definition 4.9 for notation). Moreover, as

.p; q/ 2 P 1
n;�;ı.X [ Yh [ Y1�h [ ¹hº; B/

there is a unitary z 2MnC2k.C/ such that .z.p˚ 1k ˚ 0k/z�; z.q ˚ 1k ˚ 0k/z�/ is
in P 1

n;�;ı
.hX [ Y [ ¹hº; B/. As the elements .r; r/ and .z.p ˚ 1k ˚ 0k/z�; z.q ˚

1k˚ 0k/z
�/ of P 1

n;2�;ı
.hX [Y [¹hº;B/ are connected by a path Pn;2�;ı.hX [Y [

¹hº;B/, we may use Proposition 4.10 (ii) to connect them by a path in P 1
n;2�;4ı

.hX [

Y [ ¹hº; B/. Precisely analogously (increasing k if necessary), we may assume that
.z.p ˚ 1k ˚ 0k/z

�; z.q ˚ 1k ˚ 0k/z
�/ is in the same path component of

P 1
n;2�;4ı..1 � h/X [ Y1�h [ ¹hº; B/

as an element of the form .s; s/.



A Mayer–Vietoris boundary map 76

For notational simplicity, write m D n C 2k, and let M WD 4 � 2.200�/
3
. Then,

(with notation as in Definition 4.11), Proposition 4.17 gives j 2 N and elements

uh 2 U1
mC2j;M;Mı.hX [ ¹hº [ Y;B/

and
u1�h 2 U1

mC2j;M;Mı..1 � h/X [ ¹hº [ Y;B/

such that

uh.z.p ˚ 1k ˚ 0k/z
�
˚ 1j ˚ 0j /u

�1
h D z.q ˚ 1k ˚ 0k/z

�
˚ 1j ˚ 0j (6.42)

and

u1�h.z.p ˚ 1k ˚ 0k/z
�
˚ 1j ˚ 0j /u

�1
1�h D z.q ˚ 1k ˚ 0k/z

�
˚ 1j ˚ 0j : (6.43)

For notational simplicity, rename z.p ˚ 1k ˚ 0k/z� ˚ 1j ˚ 0j and z.p ˚ 1k ˚
0k/z

� ˚ 1j ˚ 0j as p and q respectively and rewrite m C 2j as n; if the conclu-
sion of the proposition holds for this new pair then it also holds for the original pair
thanks to the definition of the controlled KK0 groups (see Definition 3.1), so this
makes no real difference. In this new language, lines (6.42) and (6.43) can be rewrit-
ten uhpu�1h D q and u1�hpu�11�h D q respectively.

Define now
u WD u1�h.1 � p/C uhp;

which we claim has the properties in the statement. Using Lemma 6.7 with � D M
and 
 D Mı, we see that (with notation as in Definition 4.11), u is an element of
U1
n;2M2;10M2ı

.h.1 � h/X [ ¹hº [ Y; B/. Recalling that M D 4 � 2.200�/
3
, we see

that
N1.�/ D 2

9000000�3

has the desired property.
To complete the proof, it remains to show that if N2 D N2.�/ D 2252000000�

3
,

then @Œu� D Œp; q� in KK0N2;N2
 .X [ ¹hº; B/.
Now, v WD v.u; h/ is as in line (6.2), we have

@Œu� D

�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
:

Define now

w WD

�
u1�h.1 � p/ �q

p .1 � p/u�1
1�h

�
2M2n.LB/:

Applying Lemma 6.8 with

� DM and 
 DMı;
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we see that w is in U2n;.2M/8;237M25ı.X [ ¹hº; B/. For notational simplicity, set
M1 WD 2

37M 25. Proposition 4.6 implies that in KK0
M3
1
;3M3

1
ı
.X [ ¹hº; B/

@Œu� D

�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
D

�
.vw�1/�1v

�
1 0

0 0

�
v�1.vw�1/;

�
1 0

0 0

��
D

�
w

�
1 0

0 0

�
w�1;

�
1 0

0 0

��
:

Computing, we see that

w

�
1 0

0 0

�
w�1 D

�
1 � q 0

0 p

�
;

whence

@Œu� D

��
1 � q 0

0 p

�
;

�
1 0

0 0

��
(6.44)

in the group KK0
M3
1
;3M3

1
ı
.X [ ¹hº; B/.

Note now that the matrix
�
1�q q
q 1�q

�
2M2n.K

C

B / has norm at most 2� (as kqk �
� � �, and so k1 � qk � � by Corollary 4.2), and that it satisfies



�x;�1 � q q

q 1 � q

��



 < " < ı
for all x 2 X [ ¹hº. Hence,

�
1�q q
q 1�q

�
2U2n;2�;ı.X [ ¹hº; B/. Applying Proposi-

tion 4.6 again and using that � �M1, the identity�
1 � q q

q 1 � q

��
1 0

0 0

��
1 � q q

q 1 � q

�
D

�
1 � q 0

0 q

�
shows that the class on the right-hand side of line (6.44) is the same as the class��

1 � q 0

0 p

�
;

�
1 � q 0

0 q

��
inKK0

M6
1
;9M9

1
ı
.X [ ¹hº;B/. Using a rotation homotopy, this is the same as Œp; q� by

definition of KK0
M6
1
;9M9

1
ı
.X [ ¹hº; B/; recalling that

M1 WD 2
37M 25; M D 4 � 2.200�/

3

;

and that � � 29000000�
3

we see that N2.�/ D 237�25 indeed has the right prop-
erties.





Chapter 7

Main theorems

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB are
respectively the adjointable and compact operators on the standard Hilbert B-module
`2 ˝ B . We identify LB with the “diagonal subalgebra” 1Mn ˝LB �Mn ˝LB D

Mn.LB/ for each n.
In this chapter we prove our main result; that is, the class of separable and nuclear

C �-algebras with the UCT is closed under decomposability.

7.1 Two technical “local” controlled vanishing results

In order to make the structure of the proof of Theorem 1.2 as clear as we can, in
this section we split off two “local” technical results. These are based on our work in
Chapters 5 and 6; given the material in these earlier chapters, at this point the proofs
are essentially bookkeeping.

The next result is the first key technical ingredient we need; it is based on the
material from Chapter 5. For the statement, recall that if x and S are respectively an
element and subset of a metric space, and " > 0, then “x 2" S” means that there is
s 2 S with d.x; s/ < ".

Proposition 7.1. There exists a function M W Œ1;1/ ! Œ1;1/ with the following
property. Let � � 1, and let M WDM.�/. Let B be a separable C �-algebra such that

K�.B/ D 0:

Let " > 0, and let X be a finite subset of the unit ball of LSB . Let F � LSB be a
separable, nuclear, unitalC �-subalgebra of LSB such that the identity representation
F !LSB is strongly unitally absorbing (see Definition 2.5), such that for all x 2 X ,
x 2" F , and such that F satisfies the UCT.

Then, for each i 2 ¹0; 1º there exists a finite subset Z of F1 such that the forget
control map

KKi�;".Z;B/! KKiM;M".X;B/

of Definition 3.4 (for i D 0) or Definition 3.7 (for i D 1) is zero.

Proof. Let us focus on the case of i D 0 first. Let Y be a finite subset of F1 such that
for all x 2 X there exists y 2 Y with kx � yk < ". Then, for any n, any ı > 0, we
see that with notation in Definition 3.1

Pn;�;ı.Y; SB/ � Pn;�;ıC2�".X; SB/:
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Hence, the forget control map

KK0�;ı.Y; SB/! KK0�;ıC2�".X; SB/ (7.1)

is defined. On the other hand, Corollary 5.3 implies that there is a finite subset Z of
F1 such that the forget control map

KK0�;".Z; SB/! KK0�;160".Y; SB/

is defined and zero. Taking ı D 160", and composing this with the forget control map
in line (7.1) above, we see that the forget control map

KK0�;".Z; SB/! KK0�;.160C2�/".Y; SB/

is well-defined and zero. We are therefore done in the case i D 0; any functionM sat-
isfyingM.�/ � 160C 2� will work. The case of i D 1 is similar (although requiring
a much larger M.�/), using Lemma 5.5 in place of Corollary 5.3.

The second key technical result we need is as follows; it is based on the material
from Chapter 6.

Proposition 7.2. Let X be a finite subset of the unit ball of LB , let " > 0, and let
� � 1. Assume there exists a positive contraction h 2 LB , finite self-adjoint subsets
Zh, Z1�h, and Zh.1�h/ of the unit ball of LB , and �; � � 1 and ı; 
 > 0 with the
following properties:

(i) kŒh; x�k < " for all x 2 X ;

(ii) for each z 2 Zh.1�h/, z 2" Zh and z 2" Z1�h;

(iii) with N1 WD N1.�/ as in Proposition 6.6, the forget control map

KK1N1;N1ı.h.1 � h/X [ ¹hº [Zh.1�h//! KK1�;
 .h.1 � h/X [ ¹hº; B/

of Definition 3.7 is defined and zero;

(iv) the forget control map

KK0
4�2;2"

.Zh [ hX [ ¹hº; B/

! KK0�;ı.hX [ ¹hº [Zh.1�h/; B/

of Definition 3.4 is defined and zero;

(v) the forget control map

KK0
4�2;2"

.Z1�h [ .1 � h/X [ ¹hº; B/

! KK0�;ı..1 � h/X [ ¹hº [Zh.1�h/; B/

of Definition 3.4 is defined and zero.
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Then, if Z WD Zh [Z1�h [ X [ ¹hº and N2 WD N2.�/ is as in Proposition 6.6, we
have that the forget control map

KK0�;".Z;B/! KK0N2;N2
 .X;B/

of Definition 3.4 is zero.

Proof. We need to show that an arbitrary class ˛ 2 KK0�;".X; B/ vanishes under the
forget control map

KK0�;".Z;B/! KK0N2;N2
 .X;B/:

Using Proposition 4.10 (i), with notation as in Definition 4.9, we may assume that
there is a cycle .p; q/ 2 P 1

n;4�3;"
.Z; B/ such that Œp; q� 2 KK0

4�3;"
.Z; B/ agrees

with the image of ˛ under the forget control map

KK0�;".Z;B/! KK0
4�3;"

.Z;B/:

It thus suffices to show that Œp; q� 2KK0
4�3;"

.Z;B/ vanishes under the forget control
map

KK0
4�2;"

.Z;B/! KK0N2;N2
 .X;B/

(we leave the check that this map is defined under our assumptions to the reader).
Now, with notation as in Proposition 6.6, the composition

KK0
4�2;"

.X [Zh [Z1�h [ ¹hº; B/

��

KK0
4�2;"

.X [Zh [ ¹hº; B/
�h // KK0

4�2;2"
.hX [Zh [ ¹hº; B/

��

KK0
�;ı
.hX [Zh.1�h/ [ ¹hº; B/

(compare line (6.13)) is the zero map; indeed, the right-hand vertical map is zero by
assumption (iv). Similarly, using assumption (v), we see that the composition

KK0
4�2;"

.X [Zh [Z1�h [ ¹hº; B/

��

KK0
4�2;"

.X [Z1�h [ ¹hº; B/
�1�h // KK0

4�2;2"
..1 � h/X [Z1�h [ ¹hº; B/

��

KK0
�;ı
..1 � h/X [Zh.1�h/ [ ¹hº; B/
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(compare line (6.14)) is zero. Hence, Proposition 6.6 gives us an element

u 2 U1
1;N1;N1ı

.h.1 � h/X [ ¹hº [Zh.1�h/; B/

such that in the diagram below (with N0 D N0.�/ as in Proposition 6.1)

KK1
N1;N1ı

.h.1 � h/X [ ¹hº [Zh.1�h/; B/

��

KK0
4�2;2"

.Z;B/

��

KK1�;
 .h.1 � h/X [ ¹hº; B/
@ // KK0N0;N0
 .X [ ¹hº; B/

��

KK0N2;N2
 .X [ ¹hº; B/

(7.2)

the images of the classes Œu� 2 KK1
N1;N1ı

.h.1 � h/X [ ¹hº [Zh.1�h// and Œp; q� 2
KK0�;".Z; B/ in the bottom right group KK0N2;N2
 .X [ ¹hº; B/ are the same; a for-
tiori their images are also the same if we further compose with the forget control
map

KK0N2;N2
 .X [ ¹hº; B/! KK0N2;N2
 .X;B/:

Assumption (iii) implies, however, that the left-hand vertical map in line (7.2) is zero,
however, so we are done.

7.2 Proof of the main theorems

We are now ready for our main results. For the statement of the first of these, we
recall what it means for a C �-algebra to decompose over a class of C �-algebras
from Definition 1.1 above. After giving a proof of this, we will use it to establish the
theorems from the introduction.

Theorem 7.3. Let � � 1 and 
 > 0. Let M1 WD M.4/ be as in Proposition 7.1.
Let N1 WD N1.M1/ be as in Proposition 6.6. Let M2 WD M.N1/ be as in Proposi-
tion 7.1. Let N2 WD N2.M2/ be as in Proposition 6.6. Then, any � � N2 and " 2
.0; 
.2N2M2N1M1/

�1/ have the following property.
Let A be a separable, unital C �-algebra that decomposes over the class of nuc-

lear C �-algebras that satisfy the UCT. Let B be any separable C �-algebra such that
K�.B/ D 0. Then, for any finite subset X of A1, and " > 0, there is a finite subset Z
of A1, such that the forget control map

KK0�;".Z; SB/! KK0�;
 .X; SB/

of Definition 3.4 is defined and zero.
In particular, A satisfies the UCT.
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Proof. The claim that A satisfies the UCT follows as the vanishing property in the
statement of Theorem 7.3 implies condition (iii) from Corollary 5.3. It thus suffices
to prove the vanishing property. Let � and " satisfy the given assumptions.

As A is decomposable with respect to the family of nuclear C �-subalgebras that
satisfy the UCT, there are nuclear, UCT C �-subalgebras C ,D and E of A and a pos-
itive contraction h 2E such that for all x 2X , kŒh;x�k< ", hx 2" C , .1 � h/x 2" D,
and h.1� h/x 2" E, and such that all e 2 E we have that e 2" C , and e 2" D. Repla-
cing C , D, and E by the C �-subalgebra of A spanned by the algebra and the unit of
A, we may assume that C ,D, and E are unital subalgebras of A (note that the unitiz-
ation of a nuclear C �-algebra that satisfies the UCT is nuclear and satisfies the UCT;
see [10, Exercise 2.3.5] for nuclearity and [55, Proposition 2.3 (a)] for the UCT).

Represent A on LSB using a representation with the properties in Corollary 2.7
(with B replaced by SB), and identify A (therefore also C , D, and E) with unital
C �-subalgebras of LSB using this representation. Note that the restrictions of this
representation to each of E, C , D, (and the representation of A itself) are strongly
unitally absorbing.

Throughout the rest of the proof, all unlabeled arrows are forget control maps as
in Definitions 3.4 or 3.7 as appropriate.

Using Proposition 7.1 there exists a finite self-adjoint subset Zh.1�h/ of E1 such
that the forget control map

KK1N1;2N1M1".h.1 � h/X [Zh.1�h/ [ ¹hº; SB/

! KK1M2;2M2N1M1".h.1 � h/X [ ¹hº; SB/ (7.3)

is zero. Similarly, Proposition 7.1 and the facts that for all z 2 Zh.1�h/ � E1, z 2" C
and z 2" D gives finite self-adjoint subsets Zh and Z1�h of C1 and D1 respectively
such that the forget control maps

KK04;2".hX [Zh [ ¹hº; SB/

! KK0M1;2M1".hX [Zh.1�h/ [ ¹hº; SB/ (7.4)

and

KK04;2"..1 � h/X [Z1�h [ ¹hº; SB/

! KK0M1;2M1"..1 � h/X [Zh.1�h/ [ ¹hº; SB/ (7.5)

are defined and zero. Expanding Zh and Z1�h if necessary (using that for all e 2 E,
e 2" C , and e 2" D), we may assume that,

for all z 2 Z; z 2" Zh and z 2" Z1�h: (7.6)

We are now in a position to apply Proposition 7.2 with the given " and �, �DM1,
ı D 2M1", � D M2 and 
 as given: assumption (i) follows by choice of h; assump-
tion (ii) follows from line (7.6); assumption (iii) follows as the map in line (7.3) is
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zero; assumption (iv) follows as the map in line (7.4) is zero; and assumption (v) fol-
lows as the map in line (7.5) is zero. Therefore, Proposition 7.2 implies that the forget
control map

KK0�;".Z; SB/! KK0�;
 .X; SB/

is zero and we are done.

To establish the main results as stated in the introduction, we need a basic lemma.

Lemma 7.4. The class of unital, nuclear C �-algebras is closed under decomposab-
ility.

Proof. Let A be a unital C �-algebra that decomposes over the class of unital nuclear
C �-algebras. Let a finite subset X of A and " 2 .0; 1/ be given. To show that A is
nuclear, it will suffice to construct a finite rank ccp map

� W A! A

such that �.x/ �" x for all x 2 X (compare for example [8, Lemma IV.3.1.6, (iii)]).
We may assume that X contains the unit of A.

Let then C , D, E1, and h be as in the definition of decomposability (Defini-
tion 1.1) with respect to the finite set X and the parameter ı D 1

18
."=.1C "//2, and

with C and D nuclear. Note that for any x 2 X , kŒh1=2; x�k � 5
4
kŒh; x�k1=2 by the

main result of [49], whence

khx � h1=2xh1=2k �
5

4
kŒh; x�k1=2 <

5

4
ı1=2 < 2ı1=2I (7.7)

as hx 2ı C , and as ı < 1, this implies that h1=2xh1=2 23ı1=2 C . Choose a finite subset
Y of C such that for all x 2 X there is yx 2 Y with

kyx � h
1=2xh1=2k < 3ı1=2: (7.8)

Similarly, there is a finite subset Z of D such that for all x 2 X there is zx 2 Z with

kzx � .1 � h/
1=2x.1 � h/1=2k < 3ı1=2:

Now, as C and D are nuclear there are diagrams

C
 C

  

C

FC

�C

>>

and

D
 D

!!

C

FD

�D

>>

1One does not actually need E at all in the proof.
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where all the arrows are ccp maps; FC and FD are finite dimensional C �-algebras;
and for all y 2 Y , and all z 2 Z,

�C . C .y// �ı1=2 y and  D.�D.z// �ı1=2 z: (7.9)

Using Arveson’s extension theorem (see for example [10, Theorem 1.6.1]), extend
 C and  D to ccp maps defined on all of A, which we keep the same notation for.
Define

�0 W A! A; a 7! �C . C .h
1=2xh1=2//C �D. D..1 � h/

1=2x.1 � h/1=2//;

and note that �0 is completely positive. For any x 2 X , let yx have the property in
line (7.8). As  C is contractive, this and lines (7.9) and (7.7) imply that

�C . C .h
1=2xh1=2// �3ı1=2 �. C .yx// �ı1=2 yx �3ı1=2 h

1=2xh1=2 �2ı1=2 hx:

Precisely analogously, for any x 2 X ,

�D. D..1 � h/
1=2x.1 � h/1=2// �9ı1=2 .1 � h/x

and so for any x 2 X , �0.x/ �18ı1=2 x. Applying this to x D 1 implies in particular
that k�0k D k�0.1/k � 1 � 18ı1=2. Hence, if we define

� W A! A; a 7!
�0.a/

k�0.1/k

then � is a ccp map such that

k�.x/ � xk �
18ı1=2

1 � 18ı1=2

for all x 2 X . Using the choice of ı, this completes the proof.

The next corollary is Theorem 1.2 from the introduction; it is an immediate con-
sequence of Lemma 7.4 and Theorem 7.3.

Corollary 7.5. If a separable, unital C �-algebra decomposes over the class of nuc-
lear, unital C �-algebras that satisfies the UCT, then it is nuclear and satisfies the
UCT.

The next result is Theorem 1.4 from the introduction. For the definition of finite
complexity and the classes D˛ used below, see Definition 1.3.

Corollary 7.6. Let C be a class of separable, unital, nuclearC �-algebras that satisfy
the UCT. Then, the class of separable unital C �-algebras that have finite complexity
relative to C consists of nuclear C �-algebras that satisfy the UCT.

In particular, every separable C �-algebra of finite complexity is nuclear and sat-
isfies the UCT.
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Proof. With notation as in Definition 1.3, let D0 D C , and for each ordinal ˛, let
D˛;sep consist of the separable C �-algebras in the class D˛ from Definition 1.3. We
proceed by transfinite induction to show that each D˛;sep consists of nuclear, UCT
C �-algebras. If ˛ D 0, this is just the well-known fact that AF C �-algebras satisfy
the UCT. If ˛ > 0 (and either a successor or limit ordinal) then any C �-algebra in
D˛;sep decomposes over C �-algebras in

S
ˇ<˛ Dˇ;sep , and so is nuclear and UCT

by Corollary 7.5 and the inductive hypothesis.



Appendix A

Examples

In this appendix we give some examples of C �-algebras with finite complexity.

A.1 Cuntz algebras

The material in this section is based closely on work of Winter and Zacharias [70,
Section 7]1. Our aim is to establish the following result.

Proposition A.1. For any n with 2 � n <1, the Cuntz algebra On has complexity
rank one.

We should remark that the proof of Proposition A.1 uses classification results for
Cuntz algebras, and so depends on prior knowledge of the UCT; it therefore cannot
be said that Proposition A.1 gives a new proof of the UCT for Cuntz algebras (and
even if it did, it would be quite a complicated one!). Indeed, the main point of estab-
lishing Proposition A.1 for us is to use it as an ingredient in Theorem 1.7 from the
introduction, not to establish the UCT.

We should also remark that Proposition A.1 was subsequently generalized in [37,
Theorem 1.5]; nonetheless, we hope that the different argument given here still has
some interest.

We now embark on the proof of Proposition A.1. We will follow the notation from
[70, Section 7]. Fix n 2N with n� 2. LetH be an n-dimensional Hilbert space, with
fixed orthonormal basis ¹e1; : : : ; enº. Define

�.n/ WD

1M
lD0

H˝l ; (A.1)

where H˝l is the l th tensor power of H (and H˝0 is by definition a copy of C). Let
Wn be the set of all finite words based on the alphabet ¹1; : : : ; nº. In symbols

Wn WD

1G
kD0

¹1; : : : ; nºk

(with ¹1; : : : ; nº0 by definition consisting only of the empty word). For each � D
.i1; : : : ; ik/ 2 Wn, define e� WD ei1 ˝ � � � ˝ eik , and define e¿ to be any unit-length

1More specifically, it is based on the slightly different approach to the material in [70,
Section 7] suggested in [70, Remark 7.3].
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element of H˝0 D C. Then, the set ¹e� j � 2 Wnº is an orthonormal basis of �.n/.
For � 2 Wn, write j�j for the length of �, i.e., j�j D k means that

� D .i1; : : : ; ik/

for some i1; : : : ; ik 2 ¹1; : : : ; nº. Then, the canonical copy of H˝k inside �.n/ from
line (A.1) has orthonormal basis ¹e� j j�j D kº.

For each i 2 ¹1; : : : ; nº let Ti be the bounded operator on �.n/ that acts on basis
elements via the formula

Ti W e� 7! ei ˝ e�:

The Cuntz–Toeplitz algebra Tn is defined to be the C �-subalgebra of B.�.n// gen-
erated by T1; : : : ; Tn. We note that each Ti is an isometry, and that 1 �

Pn
iD1 TiT

�
i

is the projection onto the span of e¿. It follows directly from this that Tn contains
all matrix units with respect to the basis ¹e�º of �.n/, and therefore contains the
compact operators K on �.n/. Moreover, in the quotient Tn=K , the images si of the
generators Ti satisfy the Cuntz relations s�i si D 1 and

Pn
iD1 sis

�
i D 1, and therefore

the quotient is a copy of the Cuntz algebra On.
Now, for x 2 RC, define dxe WD min¹n 2 N j n � xº, and define2

�0;k WD

2k�1M
lDk

H˝l and �1;k WD

2kCdk=2eM
lDkCdk=2e

H˝l : (A.2)

For i 2 ¹0; 1º, define B.0/
i;k
WD B.�i;k/. For each l;m 2 N, we identify H˝l ˝H˝m

with H˝.lCm/ via the bijection of orthonormal bases�
ei1 ˝ � � � ˝ eil

�
˝
�
ej1 ˝ � � � ˝ ejm

�
$ ei1 ˝ � � � ˝ eil ˝ ej1 ˝ � � � ˝ ejm :

Fix for the moment k 2 N (it will stay fixed until Lemma A.2 below). Then, for each
j 2 N we get a canonical identification

�0;k ˝H
˝jk
D

2k�1M
lDk

H˝l ˝H˝jk D

.jC1/k�1M
lDjk

H˝l :

Combining this with line (A.1) we get a canonical identification

�.n/ D

 
k�1M
lD0

H˝l

!
„ ƒ‚ …

DWH0

˚

 
1M
jD0

�0;k ˝H
˝jk

!
:

2In [70, Section 7], �0;k is written �k;2k and �1;k is written �kCdk=2e;2kCdk=2e.
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Let id be the identity representation of B.0/
0;k

on �0;k and write B0;k for the image of

B
.0/

0;k
in the representation on �.n/ that is given by

0H0 ˚

 
1M
kD0

id˝ 1H˝jk

!
with respect to the above decomposition above. Similarly, we get a decomposition

�.n/ D

 
kCdk=2e�1M

lD0

H˝l

!
„ ƒ‚ …

DWH1

˚

 
1M
jD0

�1;k ˝H
˝jk

!

and define B1;k to be the image of B.0/
1;k

under the representation

0H1 ˚

 
1M
kD0

id˝ 1H˝jk

!
:

Now, let f W Œ0; 1�! Œ0; 1� be the piecewise linear function that takes the value 0
on Œ0; 1=6� and Œ5=6; 0�, the value 1 on Œ2=6; 4=6�, and interpolates linearly between 0
and 1 on Œ1=6;2=6� and Œ4=6;5=6�. Let h.0/

0;k
2B

.0/

0;k
be the operator on �0;k that acts on

the summandH˝l from line (A.2) by multiplication by the scalar f ..l � k/=.k � 1//.
Similarly, let h.0/

1;k
2B

.1/

1;k
be the operator on �1;k that acts on the summandH˝l from

line (A.2) by multiplication by the scalar 1 � f ..l � k � dk=2e/=.k � 1//. Let h0;k
and h1;k be the images of h.0/

0;k
and h.0/

1;k
in B0;k and B1;k respectively. Note that the

operator on h0;k C h1;k on �.n/ acts on the summand on H˝l from line (A.1) by
multiplication by 1 as long as l � k C dk=2e. In particular,

h0;k C h1;k equals the identity on �.n/ up to a finite rank perturbation. (A.3)

We will need two technical lemmas about these operators.

Lemma A.2. For any T in the Cuntz–Toeplitz algebra Tn and i 2 ¹0; 1º, we have
that kŒhi;k; T �k ! 0 as k !1.

Proof. We will focus on h0;k; the case of h1;k is essentially the same. It suffices
to consider the case where T is one of the canonical generators Ti of the Cuntz–
Toeplitz algebra. Let e� be a basis element with j�j D jk C l for some j; l 2 N
with l 2 ¹0; : : : ; k � 1º. Then, we compute that Œh0;k; Ti �e� D 0 if j D 0, and that
otherwise

Œh0;k; Ti �e� D
�
f ..l C 1/=.k � 1// � f .l=.k � 1//

�
ei ˝ e�:
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As the elements ¹ei ˝ e� j � 2 Wnº are an orthonormal set, this implies that

kŒh0;k; Ti �k � max
l2¹0;:::;k�1º

jf ..l C 1/=.k � 1// � f .l=.k � 1//j:

The choice of function f implies that the right-hand side above is approximately
6=k, so we are done.

Lemma A.3. For any T in the Cuntz–Toeplitz algebra Tn we have that

(i) for i 2 ¹0; 1º, d.hi;kT;Bi;k/! 0 as k !1;

(ii) d.h0;kh1;kT;B0;k \ B1;k/! 0 as k !1.

Proof. We will focus on the case of h0;k; the other cases are similar. It suffices to
consider T a finite product S1 � � � Sm, where each Sj is either one of the generators
Ti or its adjoint. Using Lemma A.2, we see that Œh1=l

0;k
; Sj �! 0 as k !1 for any j ,

and any l 2 N with l � 1. Hence, the difference

h0;kS1 � � �Sm �
�
h
1=.2m/

0;k
S1h

1=.2m/

0;k

��
h
1=.2m/

0;k
S2h

1=.2m/

0;k

�
� � �
�
h
1=.2m/

0;k
Smh

1=.2m/

0;k

�
tends to zero as k !1. It thus suffices to prove that the distance between each of
the terms h1=.2m/

0;k
Sjh

1=.2m/

0;k
and B0;k tends to zero as k !1. Define pk to be the

strong operator topology limit of h1=l
0;k

as l !1; in other words, pk is the support

projection of h0;k . Then, we have that h1=.2m/
0;k

Sjh
1=.2m/

0;k
D h

1=.2m/

0;k
pkSjpkh

1=.2m/

0;k
.

As h1=.2m/
0;k

is in B0;k , it suffices to prove that the distance between pkTipk and B0;k
tends to zero as k !1. However, pkTipk is actually in B0;k , so we are done.

Now, as in the discussion on [70, p. 488], define

�k.n/ WD

k�1M
lD0

H˝l :

For a word � 2 Wn in ¹1; : : : ; nº, we may uniquely write � D �0�1, where the
lengths j�0j and j�1j satisfy j�0j 2 ¹0; : : : ; k � 1º, and j�1j 2 kN. Then, the bijective
correspondence of orthonormal bases

e� $ e�0 ˝ e�1

gives rise to a decomposition

�.n/ D �k.n/˝ �.n
k/:

Identify the C �-algebra B.�k.n// ˝ Tnk with its image in the representation on
�.n/ arising from the above decomposition. The following is essentially part of [70,
Lemma 7.1].
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Lemma A.4. With notation as above, B.�k.n//˝Tnk contains the finite-dimensional
C �-algebras we have called B0;k and B1;k , and in particular also contains h0;k
and h1;k .

Proof. In the notation of [70, Lemma 7.1], B0;k D ƒk.B.�k;2k//, and

B1;k D ƒk.B.�kCdk=2e;2kCdk=2e//:

Part (i) of [70, Lemma 7.1] says exactly that the image of ƒk is contained in

B.�k.n//˝ Tnk ;

however, so we are done.

It is explained on [70, p. 488] that B.�k.n// ˝ Tnk contains Tn, so we get a
canonical inclusion.

Tn ! B.�k.n//˝ Tnk : (A.4)

The dimension of �k.n/ is dk WD 1 C n C n2 C � � � C nk�1, so we may make the
identification B.�k.n//˝ Tnk D Mdk .Tnk /. With respect to this identification, the
inclusion in line (A.4) takes the compact operators on �.n/ toMdk .K.�.nk///. Tak-
ing the quotient by the compacts on both sides of line (A.4) thus gives rise to an
inclusion

� W On !Mdk .Onk /: (A.5)

In this language, we get the following immediate corollary of Lemmas A.2 and A.3.
To state it, let q W B.�.n//! Q.�.n// be the quotient map from the bounded oper-
ators on �.n/ to the Calkin algebra.

Corollary A.5. For any a2On, we have that the following all tend to zero as k!1:
kŒq.h0;k/; �.a/�k, kŒq.h1;k/; �.a/�k, d.q.h0;k/�.a/;q.B0;k//, d.q.h1;k/�.a/;q.B1;k//,
and d.q.h0;kh1;k/�.a/; q.B0;k \ B1;k//.

We are finally ready for the proof of Proposition A.1.

Proof of Proposition A.1. Let " > 0, and letX be a finite subset of the unit ball of On.
Corollary A.5 implies that for any large k we have that for all a 2X and i 2 ¹0;1º, the
quantities kŒq.hi;k/; �.a/�k, d.q.hi;k/�.a/; q.Bi;k//, and d.q.h0;kh1;k/�.a/; q.B0;k \
B1;k// are smaller than "=2. We may assume moreover that k � 1 modulo n� 1. Fix
this k for the remainder of the proof.

As discussed on [70, p. 488], we have a canonical unital inclusion Onk ! On by
treating suitable products of the generators of On as generators of Onk . Moreover,
dk is equal to k modulo n � 1. It follows that the K-theory of Mdk .On/ is given
by Z=.n � 1/Z in dimension zero and zero in dimension one, with the class Œ1� of
the unit in K0 represented by the residue of k in Z=.n � 1/Z. Hence, the K-theory
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invariants ofMdk .On/ and On agree, as we are assuming that k � 1modulo n � 1. In
particular, the Kirchberg–Phillips classification theorem (see for example [53, Corol-
lary 8.4.8]) gives a unital isomorphism Mdk .On/ Š On. Combining this with the
inclusion Onk ! On mentioned above gives a unital inclusion

ˇ WMdk .Onk /! On: (A.6)

Now, the composition ˇ ı � W On ! On of ˇ as in line (A.6) and � as in line (A.5) is
a unital inclusion, whence necessarily induces an isomorphism on K-theory. As On
satisfies the UCT, ˇ ı � is therefore aKK-equivalence (see for example [55, Proposi-
tion 7.3]). Hence, the uniqueness part of the Kirchberg–Phillips classification theorem
(see for example [53, Theorem 8.3.3, (iii)]) implies that ˇ ı � W On ! On is approx-
imately unitarily equivalent to the identity. Thus, there is a sequence .um/ of unitaries
in On such that

ka � umˇ�.a/u
�
mk ! 0

for all a 2On. Choosem large enough so that ka� umˇ�.a/u�mk< "=2 for all a 2X .
Set h WD umˇ.q.h0;k//u

�
m, C0 WD umˇ.q.B0;k//u

�
m, D0 WD umˇ.q.B1;k//u

�
m,

and E0 WD umˇ.q.B1;k \ B0;k//u�m. Set C to be the C �-subalgebra of On spanned
by C0 and the unit, and similarly for D and E. Our choices, plus the fact that

q.h0;k C h1;k/ D 1

(see line (A.3)), imply that this data satisfies the definition of decomposability (Defin-
ition 1.1), so we are done.

A.2 Groupoids with finite dynamical complexity

In this section, we give another interesting class of C �-algebras with finite com-
plexity, that is, C �-algebras of groupoids with finite dynamical complexity. To avoid
repeating the same assumptions, let us stipulate that throughout this appendix the
word “groupoid” means “locally compact, Hausdorff, étale groupoid”; we will often
also assume that G has compact base space, but not always. For background on this
class of groupoids and their C �-algebras, we recommend [10, Section 5.6], [51, Sec-
tion 2.3], or [59].

Note that if G is a groupoid in this sense, then any open subgroupoid H of G
(i.e., H is an open subset of G that is algebraically a groupoid with the inherited
operations) is also a groupoid in this sense. Again, to avoid too much repetition, let
us say that the word “subgroupoid” means “open subgroupoid”.

The following definitions are essentially contained in the authors’ joint work with
Guentner [31, Definition A.4].
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Definition A.6. Let G be a groupoid, let H be a subgroupoid of G, and let C be a
set of subgroupoids of G. We say that H is decomposable over C if for any compact
subsetK ofH there exists an open cover ¹U0;U1º of r.K/[ s.K/ such that for each
i 2 ¹0; 1º the subgroupoid of H generated by

¹h 2 K j s.h/ 2 Uiº

is contained in an element of C .

Definition A.7. For an ordinal number ˛,

(i) if ˛ D 0, let C0 be the class of groupoids G such that for any compact
subset K of G there is a subgroupoid H of G such that K � H , and such
that the closure of H is compact;

(ii) if ˛ > 0, let C˛ be the class of groupoids that decompose over the collection
of their subgroupoids in the class

S
ˇ<˛ Cˇ .

We say that a groupoid G has finite dynamical complexity if G is contained in C˛ for
some ordinal ˛. If G has finite dynamical complexity, the complexity rank of G is the
smallest ˛ such that G is in C˛ .

The main result of this section is as follows. For the statement, recall that a group-
oid is ample if it has totally disconnected base space, and principal if the units are the
elements g 2 G that satisfy s.g/ D r.g/. Recall also that a C �-algebra is subhomo-
geneous if it is isomorphic to a C �-subalgebra of MN .C.X// for some N 2 N and
compact Hausdorff space X . Recall finally the notion of complexity rank relative to
a class of C �-algebras from Definition 1.3.

Proposition A.8. Let G be a groupoid with compact base space.

(i) The complexity rank of C �r .G/ relative to the class of subhomogeneous
C �-algebras is bounded above by the complexity rank of G.

(ii) If G is ample and principal, then the complexity rank of C �r .G/ (relative
to the class of finite-dimensional C �-algebras) is bounded above by the
complexity rank of G.

In particular, if G is second countable and has finite dynamical complexity, then
C �r .G/ satisfies the UCT.

Before getting into the proof of this, let us discuss some remarks and examples.

Example A.9. Let G.X/ be the coarse groupoid associated to a bounded geometry
metric space X ; see [61, Section 3] or [52, Chapter 10] for background. For such
spaces X , Guentner, Tessera and Yu [29] introduced a notion called finite decompos-
ition complexity; it comes with a natural complexity rank, defined to be the smallest
ordinal ˛ such that X is in the class D˛ of [30, Definition 2.2.1]. Then, [31, The-
orem A.7] shows that G.X/ has finite dynamical complexity if and only if X has
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finite decomposition complexity3; moreover, inspection of the proof shows that the
two complexity ranks agree. It follows from this and [30, Theorem 4.1] that for any
n 2 N there are spaces X such that G.X/ is not in Cn, but is in CN for some finite
N > n. Moreover, it follows from [30, discussion below Definition 2.2.1] or the main
result of [15] that there are spaces X such that G.X/ is in C˛ for some infinite ˛, but
not for any finite ˛.

Example A.9 shows that the range of possible values of the complexity rank for
groupoids is quite rich. As we do not know the corresponding fact for C �-algebras,
the following question is natural.

Question A.10. Are there any circumstances when the complexity rank of C �r .G/ is
bounded above by that of G?

It seems very unlikely that there is a positive answer in general, but it is conceiv-
able that there could be a positive answer for coarse groupoids.

Example A.11. Transformation groupoids provide natural examples with finite com-
plexity rank. Using the main result of [2], the complexity rank of the transforma-
tion groupoid associated to any free action of a virtually cyclic group on a finite-
dimensional space is one. We guess that the techniques used in the proof of [18,
Theorem 1.3] should show that for many discrete groups � , any free action on the
Cantor set X gives rise to a groupoid X Ì � with finite dynamical complexity; how-
ever, we did try to look into the details, and would be interested in any progress here.
These ideas lead to the following conjecture.

Conjecture A.12. If � has finite decomposition complexity then X Ì � has finite
dynamical complexity for any free action of � on the Cantor set.

Remark A.13. Proposition A.8 does not give new information on the UCT; this is
because all groupoids with finite dynamical complexity are amenable by [31, The-
orem A.9], whence their groupoid C �-algebras satisfy the UCT by Tu’s theorem [64,
Proposition 10.7]. However, it seems interesting to have an approach to the UCT for a
large class of groupoids that does not factor through the Dirac-dual-Dirac machinery
employed by Tu.

We now turn to the proof of Proposition A.8. For a subgroupoid H of a group-
oid G, write

H 0 WD H [G.0/;

which is also a subgroupoid of G.

3This result was one of the key motivations for the definition of finite dynamical complexity,
and also motivates the terminology.
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Lemma A.14. Let G be a groupoid with compact base space, and let H be a sub-
groupoid in C˛ . Then, H [G.0/ is a subgroupoid of G that is also in C˛ .

Proof. We proceed by transfinite induction on ˛. For the base case ˛ D 0, let H be
a subgroupoid of G in C0, and let K 0 be a compact subset of H 0. As the base space
in an étale groupoid is open, K WD K 0 n G.0/ is also a compact set, and is contained
inH . AsH is in C0, there exists a subgroupoid L ofH that containsK, and that has
compact closure. Hence, L0 is a subgroupoid ofH 0 that containsK 0 and has compact
closure. Thus, H 0 is in C0 too. The inductive step follows the same idea.

The lemma below is very similar to [67, Lemma B.3].

Lemma A.15. Let G be a groupoid with compact base space. Let H be a sub-
groupoid of G that decomposes over some class C of subgroupoids of G. Then, H 0

decomposes over the collection of subgroupoids L0, where L is a subgroupoid of H
that is in C .

Proof. Let X be a finite subset of the unit ball of C �r .H
0/, and " > 0. As Cc.H/C

C.G.0// is dense in C �r .H
0/, perturbing X slightly, we may assume that X is con-

tained in a subset of C �r .H
0/ of the form Cc.K/ C C.G

.0//, where K is an open
and relatively compact subset of H . The proof of [67, Lemma B.3] gives us open
subgroupoids H1 and H2 of H and a positive contraction h in Cc.H

.0/
1 / � C �r .H1/

such that H1, H2 and H1 \ H2 are in the class C , and such that for all x 2 X ,
hx 2 C �r .H1/, .1 � h/x 2 C

�
r .H2/, and .1 � h/hx 2 C �r .H1 \H2/. Then, the data

h, C WD C �r .H
0
1/, D D C

�
r .H

0
2/, and E D C �r .H

0
1 \H

0
2/ give the desired decom-

posability statement.

Proof of Proposition A.8. For part (i), fix a groupoid G. We show by transfinite in-
duction on ˛ that if H is an open subgroupoid of G in the class C˛ , and if

H 0 D H [G.0/;

then C �r .H
0/ is in the class D˛ of Definition 1.3, where we define D˛ relative to

the class of subhomogeneous C �-algebras. Applying this to H D G then gives the
desired conclusion for C �r .G/.

For the base case, we need to show that if H is an open subgroupoid of G in
the class C0 and if H 0 D H [ G.0/, then C �r .H

0/ is locally subhomogeneous. Let a
finite subset X of C �r .H

0/ and " > 0 be given. As Cc.H 0/ is dense in C �r .H
0/, up to

a perturbation, we may assumeX is contained in Cc.K/ for some open and relatively
compact subset K of H 0. Lemma A.14 implies that H 0 is in C0, whence there is an
open subgroupoid L of H 0 with compact closure that contains K, and therefore so
that X is contained in C �r .L/. On the other hand, C �r .L/ is subhomogeneous by the
proof [32, Lemma 8.14], so we are done with the base case.
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Assume now that ˛ > 0 (and is either a successor ordinal or limit ordinal), and let
H be a subgroupoid of G in the class C˛ . According to Lemma A.15, we have that
H 0 decomposes over°

C �r .L
0/ j L an open subgroupoid of H 0 in

[
ˇ<˛

Cˇ

±
which completes the proof of part (i) by inductive hypothesis.

We now look at part (ii), so let G be principal and ample. We will show that if G
is in C0, then C �r .G/ is locally finite dimensional; thanks to our work in part (i), this
will suffice for the proof.

Let then G be an element of C0. We claim that for any compact subset K of G
there is a compact open subgroupoid of H of G that contains K. The claim shows
that C �r .G/ is locally finite-dimensional. Indeed, up to a perturbation we can assume
any finite subset of C �r .G/ is contained in Cc.K/ for some open and relatively com-
pact subset K of G, and so in C �r .H/ for some compact, open subgroupoid of G. It
is well-known that a compact, Hausdorff, étale, principal groupoid with totally dis-
connected base space has a locally finite-dimensional C �-algebra; for example, this
follows directly from the structure theorem for “CEERs” in [25, Lemma 3.4].

To establish the claim, let a compact subset K of G be given. According to the
definition of C0 there exists an open subgroupoid L of G with compact closure such
that K is contained in L. Note first that as L has compact closure, there is some
m 2 N such that L is covered by m open bisections from G. Hence, in particular,
for any x 2 L.0/, we have that the range fibre Lx has at most m elements. Working
entirely inside L, it suffices to prove that if K is a compact subset of a principal,
ample groupoid L such that supx2L.0/ jL

xj D m <1, then there is a compact, open
subgroupoid H of L that contains K.

Now, as L is ample (and étale), each point l 2 K is contained in a compact, open
subset of L. As finitely many of these compact, open subsets cover K, there is a
compact, open subset K 0 of L such that K � K 0. Let H be the subgroupoid of L
generated by K 0. A subgroupoid generated by an open subset is always open (see for
example [32, Lemma 5.2]), so it suffices to prove thatH is compact. Let .hi /i2I be an
arbitrary net consisting of elements fromH . Each hi can be written as a finite product
hi D k

.1/
i � � �k

.ni /
i , with k.j /i in K 00 WD K 0 [ .K 0/�1 [ s.K 0/[ r.K 0/. As each range

fibre fromL has at mostm elements, we may assume that ni �m for allm; in fact we
may assume it is exactly m, as otherwise we can just “pad” it with identity elements.
Write then hi D k

.1/
i � � � k

.m/
i . As K 00 is compact, we may pass to a subnet of I , and

thus assume that each net .k.j /i /i2I has a convergent subnet, converging to some k.j /

in K 00. It follows on passing to this subnet that .hi / converges to k.1/ � � � k.m/. As we
have shown that every net in H has a convergent subnet, H is compact, completing
the proof.
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This is the first in a series of papers on projective positive energy representations of gauge
groups. Let Ξ → M be a principal fiber bundle, and let Γc(M,Ad(Ξ)) be the group of
compactly supported (local) gauge transformations. If P is a group of “space–time
symmetries” acting on Ξ → M, then a projective unitary representation of Γc(M,Ad(Ξ)) ⋊ P
is of positive energy if every “timelike generator” p0 ∈ 𝔭𝔭 gives rise to a Hamiltonian H(p0)
whose spectrum is bounded from below. Our main result shows that in the absence of fixed
points for the cone of timelike generators, the projective positive energy representations of
the connected component Γc(M,Ad(Ξ))0 come from 1-dimensional P-orbits. For compact M
this yields a complete classification of the projective positive energy representations in terms
of lowest weight representations of affine Kac–Moody algebras. For noncompact M, it yields
a classification under further restrictions on the space of ground states.

In the second part of this series we consider larger groups of gauge transformations, which
contain also global transformations. The present results are used to localize the positive
energy representations at (conformal) infinity.
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