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Abstract

This is the first in a series of papers on projective positive energy representations of
gauge groups. Let „ ! M be a principal fiber bundle, and let �c.M;Ad.„// be
the group of compactly supported (local) gauge transformations. If P is a group of
“space–time symmetries” acting on„!M , then a projective unitary representation
of �c.M;Ad.„//ÌP is of positive energy if every “timelike generator” p0 2 p gives
rise to a HamiltonianH.p0/whose spectrum is bounded from below. Our main result
shows that in the absence of fixed points for the cone of timelike generators, the pro-
jective positive energy representations of the connected component �c.M;Ad.„//0
come from 1-dimensional P -orbits. For compact M this yields a complete classi-
fication of the projective positive energy representations in terms of lowest weight
representations of affine Kac–Moody algebras. For noncompactM , it yields a classi-
fication under further restrictions on the space of ground states.

In the second part of this series we consider larger groups of gauge transfor-
mations, which contain also global transformations. The present results are used to
localize the positive energy representations at (conformal) infinity.
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Chapter 1

Introduction

This is the first in a series of papers where we analyze the projective positive energy
representations of gauge groups.

Our main motivation is the Wigner–Mackey classification [60, 113] of projective
unitary representations of the Poincaré group. Every irreducible such representation
is labeled by an SO".1; d � 1/-orbit in momentum space Rd , together with an irre-
ducible unitary representation of the corresponding little group. It is called a positive
energy representation if for every 1-parameter group of timelike translations, the cor-
responding Hamilton operator is bounded from below. This excludes the tachyonic
orbits, leaving the positive mass hyperboloids p�p� D m2, the positive light cone
p�p

� D 0, p0 > 0, and the origin p D 0. The corresponding little groups yield an
intrinsic description of spin (for the positive mass hyperboloids) and helicity (for the
positive light cone).

In this series of papers we aim to extend this picture with an infinite-dimensional
group G of gauge transformations, placing internal symmetries and space-time sym-
metries on the same footing.

1.1 Outline of Part I and II of this series

For a gauge theory with structure groupK, the fields over the space-time manifoldM
are associated to a principal K-bundle „!M . We consider the equivariant setting,
where the group P of space-time symmetries acts by automorphisms on„!M , and
the Lie algebra p of P contains a distinguished cone C � p of “timelike generators”.
For Minkowski space, this is of course the Poincaré group P with the cone C of
timelike translations.

The relevant group G of gauge transformations depends on the context. It always
contains the group

Gc WD �c.M;Ad.„//

of compactly supported vertical automorphisms of „! M , and it is this group that
we will focus on in Part I of this series. In Part II we consider also global gauge
transformations. The group G is then larger than Gc , but it may be smaller than the
group �.M; Ad.„// of all vertical automorphisms due to boundary conditions at
infinity.

A projective unitary representation of G Ì P assigns to every timelike generator
p0 2 C a one-parameter group of projective unitary transformations, and hence a
selfadjoint Hamiltonian H.p0/ that is well defined up to a constant.
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Our main objective is to study the projective unitary representations of G Ì P
that are of positive energy, in the sense that the Hamiltonians H.p0/ are
bounded from below.

Perhaps surprisingly, this places rather stringent restrictions on the representation
theory of G , leading to a complete classification in favorable cases.

1.1.1 Outline of Part I

In the first part of this series, we focus on the group Gc D �c.M;Ad.„// of compactly
supported gauge transformations. Our main result concerns the case whereM has no
fixed points for the cone C of timelike generators, andK is a 1-connected, semisimple
Lie group.

Localization theorem. For every projective positive energy representation . N�;H /

of the identity component �c.M;Ad.„//0, there exists a 1-dimensional, P -equiva-
riantly embedded submanifold S � M and a positive energy representation N�S of
�c.S;Ad.„// such that the following diagram commutes,

�c.M;Ad.„//0

rS

��

N�
// PU.H /

�c.S;Ad.„//;
N�S

77

where the vertical arrow denotes restriction to S .

This effectively reduces the classification of projective positive energy represen-
tations to the 1-dimensional case. If M is compact, then

S D

k[
jD1

Sj

is a finite union of circles. If K is noncompact and simple, then we show that all
positive energy representations are trivial. If K is compact, then the group

�.S;Ad.„// Š
kY

jD1

�.Sj ;Ad.„//

is a finite product of twisted loop groups, yielding a complete classification in terms
of tensor products of highest weight representations for the corresponding affine Kac–
Moody algebras [32, 54, 94, 104].

To some extent these results generalize to the case of noncompact manifolds M ,
where S can then have infinitely many connected components. We are able to classify



Outline of Part I and II of this series 3

the projective positive energy representations under the additional assumption that
they admit a cyclic ground state vector which is unique up to scalar. These vacuum
representations are classified in terms of infinite tensor products of vacuum repre-
sentations of affine Kac–Moody algebras. In particular, every such representation
is of type I. Without the vacuum condition, the classification is considerably more
involved. We study in detail the case where all connected components of S are circles.
Under a geometric “spectral gap” condition, we reduce the classification of projec-
tive positive energy representations to the representation theory of UHF C �-algebras,
yielding a rich source of representations of type II and III.

1.1.2 Outline of Part II

In the second part of this series, we consider the case where G contains global as
well as compactly supported gauge transformations. To study the projective positive
energy representations, we use the exact sequence

1! Gc ! G ! G=Gc ! 1:

By the results from Part I on the positive energy representations of Gc , the problem
essentially reduces to the group G=Gc of gauge transformations “at infinity”.

Needless to say, the resulting representation theory is very sensitive to the bound-
ary conditions at infinity. We focus on the situation where M is an asymptotically
simple space-time in the sense of Penrose [24, 37, 91, 92], and G consists of gauge
transformations that extend smoothly to the conformal boundary. For the motivating
example of the Poincaré group acting on d -dimensional Minkowski space, we obtain
the following detailed account of the projective positive energy representation theory.

Minkowski space in dimension d > 2. In this setting we show that the projective
positive energy representations of G depend only on the 1-jets of the gauge transfor-
mation at spacelike infinity �0 and at past and future timelike infinity �˙. This reduces
the problem to the classification of projective positive energy representations of the
(finite-dimensional!) semidirect product�

SO".1; d � 1/ �K3
�
Ë
�
Rd ˚ .k3 ˝Rd�/

�
;

where SO.1; d � 1/ acts on Rd in the usual fashion, and K acts on its Lie algebra k

by the adjoint representation. The three copies of K encode the values of the gauge
transformation at �0 and �˙, whereas the three copies of the additive group k ˝ Rd�

encode the derivatives.
In the special case where the derivatives act trivially, we recover a projective

positive energy representations of the Poincaré group Rd Ì SO".1; d � 1/, together
with 3 projective unitary representations of the structure groupK. More generally, by
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Mackey’s theorem of imprimitivity, the irreducible projective positive energy repre-
sentations are labeled by an orbit of SO".1; d � 1/�K3 in Rd ˚ .k3 ˝Rd�/ whose
energy is bounded from below, together with a projective unitary representation of
the corresponding little group. In general these little groups will not contain the three
copies ofK, giving rise to phenomena that are reminiscent of spontaneous symmetry
breaking.

Minkowski space in dimension d D 2. In contrast to the higher dimensional case,
the projective positive energy representations in dD2 do not in general factor through
a finite-dimensional Lie group. For simplicity, we consider the group G of gauge
transformations that extend smoothly to the conformal compactification of 2-dimen-
sional Minkowski space. Here the three points �0 and �˙ at space- and timelike infinity
are collapsed to a single point I , and past and future null infinity I� and IC are
identified along lightlike geodesics (cf. [92]). The boundary of this space is a union of
two circles S1L and S1R (corresponding to left and right moving modes) that intersect
transversally in a single point I . We prove that the positive energy representations of
G depend only on the values of the gauge transformations at null infinity

I D .S1L [ S1R/ n ¹I º;

and on the 2-jets at the single point I .
At the Lie algebra level, the problem therefore reduces to classifying the projec-

tive positive energy representations of the abelian extension

0! jkj ! g! geq ! 0:

Here, the equalizer Lie algebra

geq D
®
.�; �/ 2 �.S1L; ad.„// � �.S1R; ad.„//I �.I / D �.I /

¯
represents the values of the infinitesimal gauge transformations on the conformal
boundary S1L [ S1R, the abelian Lie algebra jkj with underlying vector space k rep-
resents the mixed second derivatives at I , and geq acts on jkj by evaluating at I and
composing with the adjoint representation.

Even in the untwisted case, where „ is the trivial K-bundle, the classification of
the projective positive energy representations is by no means trivial. This is because
the positive energy condition is not with respect to rigid rotations of S1

L=R
, but with

respect to the translations of the real projective line

S1L=R D R [ ¹I º

fixing the point I at infinity.
Under the restrictive additional condition that the projective unitary representa-

tions are of positive energy with respect to rotations as well as translations, we obtain



Structure of the present memoir 5

a classification in terms of highest weight representations of the two untwisted affine
Kac–Moody algebras corresponding to S1L and S1R, together with a projective positive
energy representation of the finite-dimensional Lie group of 2-jets of gauge transfor-
mations at I .

Although the Kac–Moody representations are familiar from the construction of
loop group nets in conformal field theory, the positive energy representations involv-
ing 2-jets (which are Poincaré invariant but not conformally invariant) appear to be a
novel feature.

1.2 Structure of the present memoir

For a closed quantum system that is described by a Hilbert space H , any two states
that differ by a global phase are physically indistinguishable. The state space of the
system is therefore described by the projective Hilbert space P .H /. By Wigner’s
theorem, a connected Lie group G acts on the projective Hilbert space P .H / by
projective unitary transformations, resulting in a projective unitary representation
N�WG ! PU.H /.

1.2.1 Positive energy representations

Since we are interested in the group of compactly supported gauge transformations,
we need to work with infinite-dimensional Lie groups modeled on locally convex
spaces, or locally convex Lie groups for short. In Chapter 2 we recall and extend
some recent results from [52, 76] that allow us to go back and forth between smooth
projective unitary representations of a locally convex Lie group G, smooth unitary
representations of a central Lie group extension G], and the derived representations
of its Lie algebra g].

In Chapter 3 we introduce projective positive energy representations in the con-
text of a Lie group P that acts smoothly on G by automorphisms. For a distinguished
positive energy cone C� p, we require that the spectrum of the corresponding selfad-
joint operators in the derived representation is bounded from below. Since a represen-
tation is of positive energy for the cone C if and only if it is of positive energy for the
1-parameter subgroups generated by C� p, we can always reduce to the case P DR,
where the non-negative spectrum condition pertains to a single Hamilton operatorH .
Using the Borchers–Arveson theorem, we further reduce the classification to the min-
imal representations, where H � 0 is the smallest possible Hamilton operator with
non-negative spectrum.

In Chapter 4 we then turn to our subject proper, namely the locally convex Lie
group Gc of compactly supported gauge transformations. We consider the setting
where M is a manifold, P is a Lie group acting smoothly on M , and K ! M is



Introduction 6

a bundle of 1-connected semisimple Lie groups that is equipped with a lift of this
action. The group Gc D �c.M;K/ of compactly supported sections then carries a
smooth action of P by automorphisms, and we consider the smooth projective uni-
tary representations of the semidirect product �c.M;K/ Ì P .

The motivating example is of course the case where K D Ad.„/ is the adjoint
bundle of a principal fiber bundle„!M , and �c.M;Ad.„// is the group of vertical
automorphisms of „ that are trivial outside a compact subset of M . The reason for
the minor generalization to bundles of Lie groups is purely technical; the reduction to
simple structure groups in Section 4.2 is somewhat easier in that setting.

1.2.2 The localization theorem
The main result in the present memoir is the following localization result (a minor
generalization of the one in Section 1.1.1), which essentially reduces the classification
of projective positive energy representations to the 1-dimensional case.

Localization theorem (Theorem 7.19). Let . N�;H / be a projective positive energy
representation of �c.M;K/ Ì P . If the cone C has no fixed points in M , then there
exists a 1-dimensional, P -equivariantly embedded submanifold S �M such that on
the connected component �c.M;K/0, the projective representation N� factors through
the restriction homomorphism rS W�c.M;K/0 ! �c.S;K/.

We sketch the proof in the special case that the structure group K of K is a
compact simple Lie group. The result for (not necessarily compact) semisimple Lie
groups is reduced to the simple case in Section 4.2, and to the compact simple case in
Section 6.1. We requireK to be 1-connected, but this is by no means essential; results
beyond 1-connected groups are discussed in Sections 7.1 and 8.3.

Further, we will assume without loss of generality that P is the additive group
R of real numbers. The corresponding flow is then given by a non-vanishing vector
field vM on M , which lifts to a vector field v on K . We denote the corresponding
derivation of the gauge algebra by D� WD Lv� . The reduction from P to R is carried
out in Section 7.5 by considering the 1-parameter subgroups of P that are generated
by elements of the positive energy cone C � p.

Step 1. Let K ! M be the bundle of Lie algebras derived from K ! M . Then,
every smooth projective unitary representation of �c.M;K/ Ì R gives rise to an
R-invariant 2-cocycle ! on the compactly supported gauge algebra �c.M;K/. In
Section 4.3 we show that every such cocycle is cohomologous to one of the form

!.�; �/ D �.�.�; dr�// for �; � 2 �c.M;K/; (1.1)

wherer is a Lie connection on K!M , � is a positive definite invariant bilinear form
on the Lie algebra k of K, and �W�1c.M/! R is a closed current that is invariant
under the flow.
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Step 2. The positive energy condition for .�;H / gives rise to a Cauchy–Schwarz
inequality for the derived Lie algebra representation d�. In Section 3.4 we show that
if Œ�;D�� D 0 and !.�;D/ D 0, then

h ; id�.D�/ i2 � 2!.�;D�/h ;H i (1.2)

for every smooth unit vector  . Moreover, !.�; D�/ is non-negative. In Chapter 5
this is used to show that the closed current � from (1.1) takes the form

�.˛/ D

Z
M

.ivM ˛/.x/d�.x/

for a flow-invariant regular Borel measure � on M . In terms of this measure, the
Cauchy–Schwarz inequality (1.2) becomes

h ; id�.Lv�/ i
2
� 2h ;H ikLv�k

2
�: (1.3)

In other words, if � is in the image of the derivation

D D Lv;

then the expectation value of the unbounded operator id�.�/ is controlled in terms
of the energy h ;H i, and the L2-norm of � with respect to the measure �. In fact,
a small but important refinement allows one to control the expectation of id�.�/ in
terms of similar data if � is not in the image of the derivation.

Step 3. In Chapter 6 we use the Cauchy–Schwarz estimate (1.3) and its refinement
to show that

˙ id�.�/ � k�k�1C k�k�H (1.4)

as unbounded operators. The measure � is absolutely continuous with respect to �,
with a density that is upper semi-continuous and invariant under the flow. From a
technical point of view, this is the heart of the proof. It allows us to extend d� to
a positive energy representation of the Banach–Lie algebra H 2

@
.M;K/ of sections

that are twice differentiable in the direction of the flow, but only �-measurable in the
direction perpendicular to the flow.

Step 4. The final steps of the proof are carried out in Chapter 7. Every point in M
admits a flow box U0 � I ' U � M , where the flow fixes all points in U0 and acts
by translation on the interval I � R for small times. Accordingly, the flow-invariant
measure on U decomposes as

� D �0 ˝ dt:

Since the sections in H 2
@
.U;K/ � H 2

@
.M;K/ need only be measurable in the direc-

tion perpendicular to the flow, we can continuously embed C1c .I; k/ as a Lie subal-
gebra of H 2

@
.U;K/ by multiplying with an indicator function �E for a Borel subset

E � U0 of finite measure. This yields a projective unitary representation of C1c .I; k/
with central charge 2��0.E/.
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Step 5. Since the dense space of analytic vectors for H is analytic for the extension
of d� to H 2

@
.M;K/, the projective unitary representation of C1c .I; k/ extends to the

1-connected Lie groupG that integrates C1c .I; k/. This gives rise to a smooth central
T -extension G] ! G. For every smooth map � WS2 ! G, the pullback ��G] ! S2

is a principal circle bundle, and integrality of the corresponding Chern class implies
that 2��0.E/ 2 N0. Since this holds for every Borel set, we conclude that �0 is a
locally finite sum of point measures, and hence that �D�0˝ dt is concentrated on a
closed embedded submanifold SU � U of dimension 1. Since the argument is local,
the measure � is concentrated on a closed, embedded, 1-dimensional submanifold
S �M . Using (1.4), one shows that d� vanishes on the ideal of sections that vanish
�-almost everywhere. This proves the theorem at the Lie algebra level. The result at
the group level follows because �c.S;K/ is 1-connected.

1.2.3 Classification of positive energy representations

For manifolds with a fixed point free R-action, the Localization theorem effectively
reduces the projective positive energy representation theory to the 1-dimensional
setting.

Compact manifolds. For compact manifolds M , we show in Chapter 8 that the
localization theorem leads to a full classification. Indeed, since

S D

k[
jD1

Sj

is a finite union of periodic orbits Sj , the group �.S;K/ is a finite product of twisted
loop groups �.Sj ;K/. The projective positive energy representations of twisted loop
groups are classified in Section 8.1, using the rich structure and representation theory
of affine Kac–Moody Lie algebras [54], combined with the method of holomorphic
induction for Fréchet–Lie groups developed in [77, 79].

This leads to a full classification of projective positive energy representations of
�.M;K/, which is detailed in Section 8.2. Up to unitary equivalence, every irre-
ducible projective positive energy representation is determined by the following data.

• Finitely many periodic R-orbits Sj � M , each equipped with a central charge
cj 2 N.

• For every pair .Sj ; cj /, an anti-dominant integral weight �j of the corresponding
affine Kac–Moody algebra with central charge cj 2 N.

Moreover, every projective positive energy representation is a direct sum of irre-
ducible ones.

Noncompact manifolds. For noncompact manifolds M , the situation is somewhat
more intricate. Here S is a union of countably many R-orbits Sj , each of which
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is diffeomorphic to either R or S1. These two cases are considered separately in
Chapter 9.

In Section 9.1 we consider the case where S consists of countably many lines.
Since the bundle K trivializes over every line, the gauge group �c.S;K/ is a weak
direct product of countably many copies of C1c .R;K/. In order to arrive at a (partial)
classification, we impose the additional condition that the projective positive energy
representation admit a cyclic ground state vector � 2H that is unique up to a scalar.
In Theorem 9.11 we show that these vacuum representations are classified up to uni-
tary equivalence by a non-zero central charge cj 2N for every connected component
Sj ' R. The proof proceeds by reducing to the (important) special case M D R,
where the classification is essentially due to Tanimoto [102].

In Section 9.2 we consider the case where S consists of infinitely many circles.
Here we impose the much less restrictive condition that H is a ground state repre-
sentation. This means that H is generated under �c.S;K/ by the space of ground
states, but we do not require these ground states to be unique. We show that under
an (essentially geometric) spectral gap condition, every positive energy representa-
tion is automatically a ground state representation. Since �c.S;K/ admits projective
positive energy representations of Type II and III, it is necessary to consider factor
representations instead of irreducible ones. If all orbits in M are periodic, we show
that the minimal, factorial ground state representations of �c.M;K/ are classified up
to unitary equivalence by 3 pieces of data. The first two are the same as in the case of
compact manifolds.

• Countably many periodic orbits Sj �M , equipped with a central charge cj 2 N.

• For every pair .Sj ; cj / an anti-dominant integral weight �j of the corresponding
affine Kac–Moody algebra with central charge cj .

The integral weight �j gives rise to a unitary lowest weight representation H�j of the
corresponding affine Kac–Moody algebra. Using the ground state projections Pj , we
consider the collection of finite tensor products of the compact operators K.H�j / as
a directed system of C �-algebras. Its direct limit

B D
O
j

K.H�j /

has a distinguished ground state projection

P1 D
O
j

Pj :

The third datum needed to characterize a minimal factorial ground state representa-
tion is the following.

• A factorial representation of B that is generated by fixed points of the projec-
tion P1.
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Since P1BP1 is a UHF C �-algebra, this provides a rich supply of representations
of type II and III, in marked contrast with the compact case.

1.3 Connection to the existing literature

Abelian structure groups. If the structure Lie algebra k is merely assumed to be
reductive, then it decomposes as a direct sum k D z˚ k0, where z is abelian and the
commutator algebra k is semisimple. Since this decomposition is invariant under all
automorphism, we obtain a corresponding decomposition on the level of Lie algebra
bundles K Š Z ˚ K0. Accordingly, the Lie algebra g D �c.M;K/ decomposes as
a direct sum g D z ˚ g0 and this decomposition is orthogonal with respect to any
2-cocycle because g0 is perfect. Therefore, the classification of the positive energy
representations basically reduces to the cases where k is semisimple and where k is
abelian. We refer to Solecki’s paper [100] for some interesting results concerning
groups of maps with values in the circle group, and to [98] for related results pertain-
ing to defects in conformal field theory. G. Segal’s paper [97] contains a number of
interesting results on projective positive energy representations of loop groups with
values in a torus.

Integrating representations of infinite-dimensional Lie groups. The technique to
integrate representations of infinite-dimensional Lie algebras to groups by first verify-
ing suitable estimates has already been used by R. Goodman and N. Wallach in [32]
to construct the irreducible unitary positive energy representations of loop groups
and diffeomorphism groups. Their technique has later been refined by V. Toledano–
Laredo [104] to larger classes of infinite-dimensional Lie algebras. Related results on
integrating Lie algebra representations can be found in [52].

Non-commutative distributions. In [3] an irreducible unitary representation of GcD

�c.M;Ad.„// is called a non-commutative distribution. In view of the Borchers–
Arveson theorem [13], an irreducible projective positive energy representation of
Gc Ì˛ R remains irreducible when restricted to Gc . In this sense we contribute to
the program outlined in [3] by classifying those non-commutative distributions for
M compact and K compact semisimple for which extensions to positive energy rep-
resentations exist.

Tensor product representations. For any, not necessary compact, Lie group K, the
group C.X;K/ has unitary representations obtained as finite tensor products of evalu-
ation representations. However, for some noncompact groups, such asKDfSU1;n.C/,
one even has “continuous” tensor product representations which are irreducible and
extend to groups of measurable maps (cf. [101] for finite-dimensional target groups,
[48], [9], [15], [16], [21], [23, 108], [14, 107] for semisimple target groups, [35] for a
general discussion and classification results for locally compact target groups, [6] for
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classification results for compact and nilpotent target groups, and [88] for an example
where the target group U.1/ is infinite-dimensional). In the algebraic context, these
representations also appear in [47] which contains a classification of various types
of unitary representations generalizing highest weight representations. All these rep-
resentations are most naturally defined on groups of measurable maps, so that they
neither require a topology nor a smooth structure on X .

Derivative and energy representations. One of the first references concerning uni-
tary representations of groups of smooth maps such as C1.R; SU.2;C// is [22],
where the authors introduce the concept of a derivative representation which depends
only on the derivatives up to some order N in some point t0 2 R. These ideas can be
combined with continuous tensor product representations to obtain factorizable rep-
resentations that do not extend to groups of measurable maps [89], [90]. Further, there
exist factorial representations of mapping groups defined most naturally on groups of
Sobolev H 1-maps, the so-called energy representations (cf. [45, 46], [2], [109], [3],
[4], [99], [5], [1]).

Central extensions. The problem of classifying all smooth projective irreducible
unitary representations of gauge groups is still wide open. Our treatment in Chapter 5
of the present memoir, as well as our earlier work on bounded representations [51],
suggests that a classification of the central extensions of gauge algebras can be a
key step towards this goal. The second Lie algebra homology of sln.A/ for a uni-
tal ring A is due to Bloch [10] and Kassel–Loday [56], and the full homology ring
of gl.A/ was characterized in terms of the cyclic homology of A by Tsygan and
Loday–Quillen [57, 58, 106]. Some of these arguments were adapted to C1.M; k/
with semisimple k by Pressley–Segal [94, Section 4.2], and to A˝ k for general Lie
algebras k by [36,82, 115] in the setting where A is commutative. For non-trivial Lie
algebra bundles, the universal central extension of the gauge algebra was obtained
in [53] from the compactly supported trivial case [61] using a localization trick.

The case where M is a torus. In [105] (see also [3, Section 5.4]) Torresani studies
projective unitary “highest weight representations” of C1.Td ; k/, where k is com-
pact simple. Besides the finite tensor products of so-called evaluation representations
(elementary representations) he finds finite tensor products of evaluation representa-
tions of C1.Td ; k/ŠC1.Td�1;C1.T ; k//, where the representations of the target
algebra C1.T ; k/ are projective highest weight representations (semi-elementary
representations). Our results in Chapter 8 reduce to this picture in the special case
of a circle action on a torus.

Norm continuous representations. In a previous paper [50], we considered the
related problem of classifying norm continuous unitary representations of the con-
nected groups �c.M;K/0. In this case the problem also reduces to the case where k

is compact semisimple and the representations are linear rather than projective. For
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every irreducible representation �, there exists an embedded 0-dimensional subman-
ifold S , i.e., a locally finite subset, S �M such that � factors through the restriction
map �c.M;K/! �c.S;K/Š k.S/. IfM is compact, it follows that � is a finite tensor
product of irreducible representations obtained by composing an irreducible represen-
tation of k with the evaluation in a point s 2 S . In particular, it is finite-dimensional.
If M is noncompact, then the bounded representation theory of the LF-Lie algebra
�c.M;K/ is “wild” in the sense that there exist bounded factor representations of
type II and III. The main result in [50] is a complete reduction of the classification of
bounded irreducible representations to the classification of irreducible representations
of UHF C �-algebras.

Type III representations from noncompact orbits. For noncompactM , a different
source of representations comes from the group C1c .R;K/ corresponding to a single
noncompact connected component of S . Here representations of Type III1 were con-
structed in [19,112]. Other results in this context have recently been obtained in [17],
where solitonic representations of conformal nets on the circle are constructed from
non-smooth diffeomorphisms. These in turn provide positive energy representations
of C1c .R; K/ Š C

1
c .T n ¹�1º; K/ which do not extend to loop group representa-

tions [17, Theorem 3.4, Section 4.2]. In particular, irreducible representations of this
type are obtained.



Chapter 2

Projective representations of Lie groups

In this chapter, we introduce Lie groups modeled on locally convex vector spaces, or
locally convex Lie groups for short. This is a generalization of the concept of a finite-
dimensional Lie group that captures a wide range of interesting examples (cf. [71] for
an overview), including gauge groups, our main object of study. We then summarize
the central results from [52], which allow us to go back and forth between smooth
projective unitary representations of a locally convex Lie groupG and smooth unitary
representations of a central Lie group extension G] of G. On the identity component
G0, these are characterized by representations of the corresponding Lie algebra g].

2.1 Locally convex Lie groups

Let E and F be locally convex spaces, U � E open and f WU ! F a map. Then, the
derivative of f at x in the direction h is defined as

@hf .x/ WD lim
t!0

1

t
.f .x C th/ � f .x//

whenever it exists. We set Df.x/.h/ WD @hf .x/. The function f is called differen-
tiable at x if Df.x/.h/ exists for all h 2 E. It is called continuously differentiable if
it is differentiable at all points of U and

Df WU �E ! F; .x; h/ 7! Df.x/.h/

is a continuous map. Note that this implies that the maps Df.x/ are linear (cf. [30,
Lemma 1.2.11]). The map f is called a C k-map, k 2 N [ ¹1º, if it is continuous,
the iterated directional derivatives

Djf .x/.h1; : : : ; hj / WD .@hj � � � @h1f /.x/

exist for all integers 1 � j � k, x 2 U and h1; : : : ; hj 2 E, and all maps

Djf WU �Ej ! F

are continuous. As usual, C1-maps are called smooth.
Once the concept of a smooth function between open subsets of locally convex

spaces is established, it is clear how to define a locally convex smooth manifold (cf.
[71], [30]).
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Definition 2.1. A locally convex Lie group G is a group equipped with a smooth
manifold structure modeled on a locally convex space for which the group multipli-
cation and the inversion are smooth maps. Morphisms of locally convex Lie groups
are smooth group homomorphisms.

We write 1 2 G for the identity element. The Lie algebra g of G is identified
with the tangent space T1.G/, and the Lie bracket is obtained by identification with
the Lie algebra of left invariant vector fields. It is a locally convex Lie algebra in the
following sense.

Definition 2.2. A locally convex Lie algebra is a locally convex vector space g with
a continuous Lie bracket Œ � ; � �Wg� g! g. Morphisms of locally convex Lie algebras
are continuous Lie algebra homomorphisms.

Definition 2.3. A smooth map expW g! G is called an exponential function if each
curve x.t/ WD exp.tx/ is a one-parameter group with  0x.0/ D x. A Lie group G is
said to be locally exponential if it has an exponential function for which there is an
open 0-neighborhood U in g mapped diffeomorphically by exp onto an open subset
of G.

2.2 Smooth representations

Let G be a locally convex Lie group with Lie algebra g and exponential function
expW g! G. In the context of Lie theory, it is natural to study smooth (projective)
unitary representations on a complex Hilbert space H . We take the scalar product on
H to be linear in the second argument, and denote the group of unitary operators by
U.H /.

2.2.1 Unitary representations

A unitary representation .�;H / of G is a Hilbert space H with a group homomor-
phism �WG! U.H /. A unitary equivalence between .�;H / and .�0;H 0/ is a unitary
transformation U WH ! H 0 such that

U ı �.g/ D �.g/0 ı U for all g 2 G:

Definition 2.4 (Continuous unitary representations). A unitary representation .�;H /

is called continuous if the orbit mapG!H Wg 7! �.g/ is continuous for all  2H

(see [78] for more details).

Definition 2.5 (Smooth unitary representations). We call  2 H a smooth vector if
the orbit map g 7! �.g/ is smooth, and write H1 �H for the subspace of smooth
vectors. We say that � is smooth if H1 is dense in H (see [52] for more details).
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Every smooth representation is continuous. A representation � is called bounded
if �WG ! U.H / is continuous with respect to the norm topology on U.H /. Bound-
edness implies continuity, but many interesting continuous representations, including
the (smooth!) positive energy representations that are the main focus of this memoir,
are unbounded. For some recent results on the automatic smoothness of unbounded
unitary representations satisfying certain spectral conditions such as semibounded-
ness (Definition 6.31), we refer to [114].

Definition 2.6. (Derived representation) For a smooth unitary representation .�;H /,
the derived representation d�Wg! End.H1/ of the Lie algebra g is defined by

d�.�/ WD
d

dt

ˇ̌̌̌
tD0

�.exp t�/ :

Remark 2.7 (Selfadjoint generators). The closure of any operator d�.�/ coincides
with the infinitesimal generator of the unitary one-parameter group �.exp t�/. In par-
ticular, the operators i � d�.�/ are essentially selfadjoint by Stone’s theorem (cf. [95,
Section VIII.4]).

2.2.2 Projective unitary representations

Let H be a Hilbert space. The projective Hilbert space is denoted by P .H /, and
its elements are denoted Œ � D C for non-zero  2 H . We denote the projective
unitary group by

PU.H / WD U.H /=T1

and write xU for the image of U 2 U.H / in PU.H /.
A projective unitary representation . N�;H / of a locally convex Lie group G is a

complex Hilbert space H with a group homomorphism N�WG ! PU.H /. A unitary
equivalence between . N�;H / and . N�0;H 0/ is a unitary transformation U WH ! H 0

such that xU ı N�.g/ D N�.g/0 ı xU for all g 2 G.
A projective unitary representation yields an action of G on P .H /. Since P .H /

is a Hilbert manifold, we can use this to define continuous and smooth projective
representations.

Definition 2.8 (Continuous projective unitary representations). A projective unitary
representation . N�;H / is called continuous if the orbit mapG! P .H /Wg 7! N�.g/Œ �

is continuous for all Œ � 2 P .H /.

Definition 2.9 (Smooth projective unitary representations). A ray Œ � 2 P .H / is
called smooth if its orbit map g 7! N�.g/Œ � is smooth, and we denote the set of
smooth rays by P .H /1. A projective unitary representation . N�;H / is called smooth
if P .H /1 is dense in H (cf. [52, 78]).
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2.3 Central extensions

In this memoir, we are primarily interested in smooth projective unitary representa-
tions N�WG ! PU.H / of a locally convex Lie group G. We call N� linear if it comes
from a smooth unitary representation �WG ! U.H /.

Although not every smooth projective unitary representation of G is linear, it can
always be viewed as a smooth linear representation of a central extension ofG by the
circle group

T Š R=2�Z:

Definition 2.10 (Central group extensions). A central extension of G by T is an
exact sequence

1! T ! G] ! G ! 1

of locally convex Lie groups (the arrows are smooth group homomorphisms) such
that the image of T is central in G] and G] ! G is a locally trivial principal T -
bundle. An isomorphism ˆWG] ! G]0 of central T -extensions is an isomorphism of
locally convex Lie groups that induces the identity maps on G and T .

For a smooth projective unitary representation . N�;H / of G, the group

G] WD
®
.g; U / 2 G � U.H / W N�.g/ D xU

¯
(2.1)

is a central Lie group extension of G by T [52, Theorem 4.3]. Its smooth unitary
representation

�WG] ! U.H /; .g; U / 7! U

reduces to z 7! z1 on T and induces N� on G. Since the restriction of � to the identity
component G]0 is determined by the derived Lie algebra representation [52, Proposi-
tion 3.4], it is worthwhile to take a closer look at central extensions of locally convex
Lie algebras.

Definition 2.11 (Central Lie algebra extensions). A central extension of a locally
convex Lie algebra g by R is an exact sequence

0! R! g] ! g! 0

of locally convex Lie algebras (the arrows are continuous Lie algebra homomor-
phisms) such that the image of R is central in g]. An isomorphism 'W g] ! g]0 of
central extensions is an isomorphism of locally convex Lie algebras that induces the
identity maps on g and R.

The group extensions of Definition 2.10 give rise to Lie algebra extensions in the
sense of Definition 2.11. In order to classify the latter, we introduce continuous Lie
algebra cohomology.
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Definition 2.12. The continuous Lie algebra cohomology spaceHn.g;R/ of a locally
convex Lie algebra g is the cohomology of the complex C �.g;R/, where C n.g;R/
consists of the continuous alternating linear maps gn ! R with differential

ıWC n.g;R/! C nC1.g;R/

defined by

ı!.�0; : : : ; �n/ WD
X

0�i<j�n

.�1/iCj!
�
Œ�i ; �j �; �1; : : : ; y�i ; : : : ; y�j ; : : : ; �n

�
:

The second Lie algebra cohomology H 2.g;R/ classifies central extensions up to
isomorphism. The 2-cocycle !Wg2 ! R gives rise to the Lie algebra

g]! WD R˚! g

with the Lie bracket

Œ.z; �/; .z0; � 0/� WD
�
!.�; � 0/; Œ�; � 0�

�
:

Equipped with the obvious maps R! g
]
! ! g, this defines a central extension of g.

Every central extension is isomorphic to one of this form, and two central extensions
are isomorphic if and only if the corresponding cohomology classes Œ!� 2 H 2.g;R/
coincide [52, Proposition 6.3].

The following theorem collects some of the main results of our previous paper
[52, Corollary 4.5, Theorem 7.3]. It allows us to go back and forth between smooth
projective unitary representations of G, smooth unitary representations of a central
extension G] of G, and the corresponding representations of its Lie algebra g].

Theorem 2.13 (Projective G-representations and linear g]-representations).
.a/ Every smooth projective unitary representation . N�;H / ofG gives rise to a cen-

tral extension T ! G]! G of locally convex Lie groups, and a smooth unitary rep-
resentation .�;H / ofG]. In turn, this gives rise to the central extension R! g] ! g

of locally convex Lie algebras and the derived representation d�Wg] ! End.H1/ of
g] by essentially skew-adjoint operators.

.b/ If G is connected, then . N�;H / and . N�0;H 0/ are unitarily equivalent if and
only if the derived Lie algebra representations .d�;H1/ and .d�0;H 01/ are unitar-
ily equivalent. This means that there exists an isomorphism 'W g] ! g]0 of central
extensions and a unitary isomorphism U WH ! H 0 such that

UH1 � H10

and
d�0.'.�// ı U D U ı d�.�/ for all � 2 g]:
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2.4 Integration of projective representations

In this section we discuss the integrability of (projective) unitary representations of
Banach–Lie algebras, based on the existence of analytic vectors. Here our main result
is the integrability theorem for projective representations of Banach–Lie groups (The-
orem 2.18) that we derive with the methods from [76].

Definition 2.14. Let .�;D/ be a representation of the topological Lie algebra g on
the pre-Hilbert space D . We say that

(i) � is a �-representation if all operators �.x/, x 2 g, are skew-symmetric,

(ii) � is strongly continuous if all the maps g!D ; x 7! �.x/� are continuous,

(iii) � 2D is an analytic vector if there exists a 0-neighborhoodU � g such thatP1
nD0

k�.x/n�k
nŠ

<1 for every x 2 U . The analytic vectors form a linear
subspace D! � D .

Remark 2.15. If g is a Banach–Lie algebra, then [76, Proposition 4.10] implies that
� 2D is an analytic vector if and only if it is an analytic vector for all operators �.x/,
x 2 g in the sense that there exists an s > 0 such that

1X
nD0

snk�.x/n�k

nŠ
<1:

We shall need the following lemma that is not spelled out explicitly in [76].

Lemma 2.16. Let .�;D/ be a strongly continuous �-representation of the Banach–
Lie algebra g. Then, D! is a �.g/-invariant subspace.

Proof. Following [76, Definition 3.2], we call a linear functional ˇWU.g/! C on
the enveloping algebra of g an analytic functional if all n-linear maps

gn ! C; .x1; : : : ; xn/ 7! ˇ.x1 � � � xn/

are continuous and the series
P1
nD0

ˇ.xn/
nŠ

converges for every x in a 0-neighborhood
of g. According to [76, Proposition 6.3], a vector � 2 D is analytic if and only if the
functional ˇ�.D/ WD h�; �.D/�i is analytic, where �WU.g/! End.D/ denotes the
extension of � to the enveloping algebra. For � 2 D! and x 2 g, the functional

ˇ�.x/�.D/ WD h�.x/�; �.D/�.x/�i D ˇ�..�x/Dx/

is also analytic by [76, Theorem 3.6], so that �.x/� 2 D! by [76, Proposition 6.3].
This shows that �.g/D! � D! .

To formulate the integrability theorem for projective representations, we first give
a precise definition of a projective �-representation of a topological Lie algebra g.
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Definition 2.17. Suppose that !Wg2 ! R is a continuous 2-cocycle and that

g]! D R˚! g

is the corresponding central extension. Then, any �-representation .�];D/ with

�].1; 0/ D i1

leads to a linear map

�Wg! End.D/; �.x/ WD �].0; x/

satisfying
Œ�.x/; �.y/� D �.Œx; y�/C !.x; y/i1:

We then call .�;D/ a projective �-representation with cocycle !.

Theorem 2.18 (Integrability theorem for projective representations). Let G be a 1-
connected Banach–Lie group with Lie algebra g, and let .�;D/ be a projective
strongly continuous �-representation of g on the dense subspace D of the Hilbert
space H . If D contains a dense subspace of analytic vectors, then there exists a
smooth projective unitary representation x� WG! PU.H / on H with the property that
x�.expx/ D q.e�.x// for x 2 g, where qWU.H /! PU.H / denotes the quotient map.

Proof. We proceed as in the proof of [76, Theorem 6.8]. Using Lemma 2.16, we see
that we may assume, without loss of generality, that D D D! , so that D consists of
analytic vectors. According to Nelson’s theorem [86], the operators �.x/, x 2 g, are
essentially skew-adjoint, so that their closures generate unitary one-parameter groups.
The same holds for the operators y�.t; x/, .t; x/ 2 g]. This leads to a map

z� Wg] ! U.H /; x 7! ey�.t;x/ D eite�.x/:

From the proof of [76, Theorem 6.8], we immediately derive that

z�..t; x/ � .s; y// D z�.t; x/z�.s; y/

holds for .t; x/; .s; y/ in some open 0-neighborhood U ] � g]. This implies that

q.e�.x�y// D q.e�.x//q.e�.y//

for x;y in some open 0-neighborhood U � g. Now [12, Chapter 3, Section 6, Lemma
1.1] implies the existence of a unique homomorphism x� WG ! PU.H / such that
x�.exp x/ D q.e�.x// holds for all elements x in some 0-neighborhood of g.

That x� is a smooth projective representation (Definition 2.5) follows from the
analyticity of the orbit maps G ! P .H /; g 7! x�.g/Œv� for v 2 D! , which in turn
follows from

x�.exp x/Œv� D Œe�.x/v�:
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2.5 Double extensions

Suppose that G is a locally convex Lie group and ˛WR! Aut.G/ a homomorphism
defining a smooth R-action on G. Then, the semidirect product G Ì˛ R is a Lie
group with Lie algebra g ÌD R, where D 2 der.g/ is the infinitesimal generator of
the R-action on g induced by ˛.

If N�WG Ì˛ R! PU.H / is a smooth projective unitary representation, then The-
orem 2.13 yields a central extension

T ! yG WD .G Ì˛ R/] ! G Ì˛ R

with a smooth unitary representation � of yG on H that induces N�. From Theorem 2.13,
we see that the restriction of N� to .G Ì˛ R/0 is determined up to unitary equivalence
by the derived representation d� of the central extension ygD .g ÌD R/]. We identify
g with the linear subspace ¹0º � g � ¹0º of yg. We write

C WD .1; 0; 0/ and D WD .0; 0; 1/

for the central element and derivation in R˚! .g ÌD R/ respectively, so that

yg D RC ˚! .g ÌRD/: (2.2)

We trust that using the same symbol for the derivationD 2 der.g/ and the Lie algebra
element D 2 yg that implements it will not lead to confusion. Note that in the repre-
sentation d� of yg, the central element C acts by i1. Writing .z; x; t/D zC C xC tD,
the bracket in yg takes the form

ŒzC C x C tD; z0C C x0 C t 0D�

D
�
!.x; x0/C t!.D; x0/ � t 0!.D; x/

�
C C .Œx; x0�C tDx0 � t 0Dx/:



Chapter 3

Positive energy representations

In this chapter we introduce positive energy representations and some tools to handle
them. In Section 3.1 we give the precise definition on both the linear and the projective
level, and in Section 3.2 we define equivariant positive energy representations. In
Section 3.3, we use the Borchers–Arveson theorem to reduce the classification of
positive energy representations to the so-called minimal ones. Finally, in Section 3.4
we describe the key tool of this memoir in a first general form: the Cauchy–Schwarz
estimates for projective positive energy representations. Here we will discuss them for
general groups, but they will be refined in the context of gauge algebras in Section 5.3
below.

3.1 Positive energy representations

Let G be a locally convex Lie group with Lie algebra g and let ˛WR! Aut.G/ be
a homomorphism defining a smooth R-action on G. Then, it also induces a smooth
action ˛g on g and we write D 2 der.g/ for its infinitesimal generator

Dx WD
d

dt

ˇ̌̌̌
tD0

˛
g
t .x/ for x 2 g:

In this section, we investigate smooth projective unitary representations of G that
extend to projective positive energy representations of G Ì˛ R.

Definition 3.1 (Projective positive energy representations). A smooth, projective,
unitary representation N�WG Ì˛ R ! PU.H / is called a positive energy represen-
tation if one (hence any) strongly continuous homomorphic lift U WR ! U.H / of
xU WR! PU.H /; t 7! N�.1; t / has a generator

H WD i
d

dt

ˇ̌̌̌
tD0

Ut

whose spectrum is bounded below. We then callH a Hamiltonian and note that Ut D
e�itH holds in the sense of functional calculus.

Remark 3.2. By adding a constant, we can always choose a Hamiltonian H that
satisfies Spec.H/ � Œ0;1/.

We have seen in Section 2.5 that every smooth projective unitary representation
N� of G Ì˛ R gives rise to a smooth linear representation .�;H / of a locally convex
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Lie group yG D .G Ì˛ R/], a central T -extension of G Ì˛ R with Lie algebra

yg D R˚! .g ÌD R/ D RC ˚! .g ÌRD/

as in (2.2).

Definition 3.3 (Linear positive energy representations). Let �W yG ! U.H / be a
smooth unitary representation of yG. Then, � gives rise to a derived representation
d� of yg on the space H1 of smooth vectors. We call

H WD id�.D/

the Hamiltonian and we say that � is a positive energy representation if

d�.C / D i1 and if Spec.H/ � Œ0;1/:

Remark 3.4. (a) If d�.C / D i1 and Spec.H/ � ŒE0;1/ is bounded below, we can
always replace D by D C E0C to obtain a positive Hamiltonian. Note that this does
not change the cocycle! on gÌD R, only the isomorphism between yg and .gÌD R/].

(b) For a cocycle ! on g ÌD R, the relation

!.D; Œ�; ��/ D !.D�; �/C !.�;D�/

shows that the linear functional iD! measures the non-invariance of the restriction of
! to g � g under the derivation D. It also shows that if the Lie algebra g is perfect,
then the linear functional iD!Wg! R is completely determined by the restriction of
! to g � g.

3.2 Equivariant positive energy representations

We will also need an equivariant version of positive energy representations. Let P be
a Lie group with Lie algebra p and let ˛WP ! Aut.G/ be a homomorphism defining
a smooth P -action on G.

Definition 3.5 (Equivariant projective positive energy representations). A smooth,
projective, unitary representation N�WG Ì˛ P ! PU.H / is called a positive energy
representation with respect to p 2 p if the projective representation

N�pWG Ì˛ıexpp R! PU.H /

defined by
N�p.g; t/ WD N�.g; exp.pt//

is of positive energy in the sense of Definition 3.1. The positive energy cone C � p is
the set of all elements p 2 p for which N� is a positive energy representation.
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Note that C is an AdP -invariant cone. In particular, the representation N� is of
positive energy with respect to p 2 p if and only if it is of positive energy for all
elements in the cone generated by the adjoint orbit AdP .p/ � p of p.

The homomorphism ˛WP ! Aut.G/ can be twisted by an inner automorphism
Adg0 , g0 2 G, yielding

˛0 D Adg0˛Ad�1g0 :

Essentially, these inner twists do not affect the class of equivariant projective positive
energy representations.

Proposition 3.6. Let . N�;H / be an equivariant projective positive energy representa-
tion of G Ì˛ P , and let

xU0 WD N�.g0/:

Then
N�0.g; p/ WD xU0 N�.Ad�1g0 .g/; p/

xU�10

is an equivariant projective positive energy representation of G Ì˛0 P with the same
restriction to G, and with the same positive energy cone C � p.

Proof. To see that N�0 is a projective representation of G Ì˛0 P , one checks that the
following is a commutative diagram of group homomorphisms:

G Ì˛ P
N�
//

.Adg0 ;IdP /

��

PU.H /

AdU0
��

G Ì˛0 P
N�0
// PU.H /:

For the positive energy condition, note that any lift t 7! Vt of t 7! N�.exp.tp// yields
a lift t 7! U0VtU

�1
0 of t 7! N�0.exp.tp// whose generator has the same spectrum.

3.3 Minimal representations

The following refinement of the Borchers–Arveson theorem [13] will be used in the
proof of Corollary 3.9 below.

Theorem 3.7. Let H be a Hilbert space and let M � B.H / be a von Neumann
algebra. Further, let .Ut /t2R be a strongly continuous unitary one-parameter group
on H for which M is invariant under conjugation with the operators Ut , so that we
obtain a one-parameter group ˛WR! Aut.M/ by

˛t .M/ WD Ad.Ut /M WD UtMU �t for M 2M:
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If Ut D e�itH with H � 0, then the following assertions hold:

(i) there exists a strongly continuous unitary one-parameter group .Vt /t2R in
M with

Ad.Vt / D ˛t and Vt D e
�itH0

withH0 � 0. It is uniquely determined by the requirement that it is minimal
in the sense that, for any other one-parameter group .V 0t /t2R with these
properties, the central one-parameter group V 0t V�t D e

�itZ in M satisfies
Z � 0,

(ii) if VT D 1 for some T > 0 and F � H is an M-invariant subspace, then
the subspace

F0 WD
®
� 2 F W H0� D 0

¯
is M-generating in F ,

(iii) if ˛T D idM for some T > 0, then VT D 1.

Proof. (i) This is the Borchers–Arveson theorem (see [11, Theorem II.4.6]; also [13,
Theorem 3.2.46] and [8] for a detailed discussion).

(ii) If VT D 1, then Spec.H0/ � 2�
T

Z. In particular, H0 is diagonalizable. If F0
is not M-generating in F , then

E WD .MF0/
?
\ F

is a non-zero M-invariant subspace of F with

inf Spec.H0jE/ �
2�

T
:

As
H0 WD kerH0 � E?;

we also have MH0 � E?. Since MH0 is invariant under M and M0, the orthogonal
projection Z onto

H1 WD .MH0/
?

is central in M. On this subspace we have inf Spec.H0jH1/ �
2�
T

, so that

H WD H0 �Z
2�

T
� 0;

contradicting minimality.
(iii) If ˛T D idM, then VT is contained in the center Z.M/ DM \M0 of M. As

Z.M/ is a direct sum of L1-algebras, there exists a non-negative Z � 0 in Z.M/

with Spec.Z/ � Œ0; 2�
T
� and VT D eiTZ . Now

V 0t WD e
�it.H0CZ/ D Vte

�itZ
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also has a non-negative generator H1 WD H0 CZ and satisfies V 0T D 1. In particular,

Spec.H1/ �
2�

T
Z:

We claim that the minimality of V implies that, for every "> 0, the central support
of the spectral projection P WD PH0 Œ0; "� of H0 in M equals 1. To see this, note that
the central support Q of P is the orthogonal projection onto the closed subspace
generated by MPH . If this subspace is proper, then the restriction H1 of H0 to
H1 WD .1 �Q/H satisfies H1 � "1, so that

H 0 WD H0 � ".1 �Q/ � 0:

The minimality of H0 now yields 1 D Q.
We now show that Spec.Z/ � ¹0; 2�

T
º, which implies that

VT D V
0
T e
�iTZ

D V 0T D 1:

Assume that this is not the case. Then, there exists a non-zero spectral value 0<a< 2�
T

of Z. Let " > 0 be such that 0 < a � 2" < a C 2" < 2�
T

and consider the spectral
projection Q WD PZ.Œa � "; a C "�/ for Z, which is contained in Z.M/. Since the
central support of PH0 Œ0; "� is 1, we have QPH0.Œ0; "�/ 6D 0, so that

Spec.QH0/ \ Œ0; "� ¤ ;:

Since Spec.QZ/ � Œa � "; aC "�, this leads to

Spec..H0 CZ/Q/ \ Œa � "; aC 2"� 6D ;:

This contradicts

Spec..H0 CZ/Q/ D Spec.H1Q/ � Spec.H1/ �
2�

T
Z:

Using the Borchers–Arveson theorem, every smooth positive energy representa-
tion .�;H / can be brought in the following standard form.

Definition 3.8 (Minimal representations). A positive energy representation .�;H /

of yG is called minimal if the 1-parameter group Ut D �.exp.tD// is minimal with
respect to the von Neumann algebra �. yG/00.

Corollary 3.9. Let .�;H / be a positive energy representation of yG and let G] � yG
be the inverse image of the subgroup G of G Ì˛ R, so that yG Š G] ÌR. Then, there
exists a unitary 1-parameter group .Wt /t2R in the commutant �. yG/0 such that the
representation �0.g; t/ WD �.g; t/W �1t has the following properties:

(i) �0. yG/
00 D �.G]/00,
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(ii) if � is irreducible, then so is �jG] ,

(iii) if ˛T D idG , then �0.1; T / D 1 and, for every closed �. yG/-invariant sub-
space F � H , the subspace F0 WD ¹� 2 F W H0� D 0º is yG-generating
in F ,

(iv) �0 is a smooth positive energy representation.

Proof. (i) Theorem 3.7 implies that Ut WD �.exp tD/ can be written as Ut D VtWt ,
where .Vt /t2R is a continuous unitary one-parameter group in the von Neumann alge-
bra M WD �.G]/00 and Wt 2 �.G]/0.

(ii) If � is irreducible, then Schur’s Lemma implies that Wt 2 T1, hence that the
restriction �jG] remains irreducible.

(iii) follows from Theorem 3.7 (iii) and (ii).
(iv) As Vt D �0.1; t / has a positive generator, �0 also is a positive energy repre-

sentation. It remains to see that �0 is smooth. Since .Wt /t2R lies in the commutant
�. yG/0, all its spectral subspaces are invariant under yG. Therefore, � is a direct sum
of subrepresentations for which W is norm continuous. We may therefore assume,
without loss of generality, that W is norm continuous. Then, we can consider W as
a smooth representation of yG and therefore �0.g; t/ D �.g; t/W�t is a smooth repre-
sentation of yG.

In view of the factorization �.g; t/ D �0.g; t/Wt , we can adopt the point of view
that we know all positive energy representations if we know the minimal ones. On
the level of the irreducible representations, the only difference is a phase factor cor-
responding to the minimal energy level. In general, the ambiguity consists in unitary
one-parameter groups of the commutant, and these can be classified in terms of spec-
tral measures.

3.4 Cauchy–Schwarz estimates (general case)

We show that the requirement that a representation be of positive energy severely
restricts the class of cocycles that may occur.

Let � be a positive energy representation of yG. For a smooth unit vector  2H1

the expectation values

hH i WD h ;H i and hid�.�/i WD h ; id�.�/ i

of H and � 2 g are defined. The following is a non-commutative adaptation of [85,
Theorem 2.8].

Lemma 3.10 (Cauchy–Schwarz estimate). Let � be a positive energy representation
of yG, and let � 2 g be such that Œ�; D�� D 0. Then, for every unit vector  2 H1,
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we have �
hid�.D�/i C !.�;D/

�2
� 2!.�;D�/hH i ;

and further !.�;D�/ � 0.

Proof. Since H D id�.D/ has non-negative spectrum, the expectation value of the
energy in the state defined by exp.td�.�// is non-negative for all t 2 R;

0 � hH iexp.td�.�// D he
�t add�.�/H i : (3.1)

Since Œ�;D�� D 0, the exponential series terminates at order 2,

exp.�t add�.�//.H/ D id�.e�t ad�D/

D id�
�
D C tD� � t!.�;D/C �

t2

2
!.�;D�/C

�
D H C t

�
id�.D�/C !.�;D/

�
C
t2

2
!.�;D�/; (3.2)

so that substitution in (3.1) yields the inequality

0 � hH i C t
�
hid�.D�/i C !.�;D/

�
C
t2

2
!.�;D�/ for t 2 R:

The proposition now follows from the simple observation that at2 C bt C c � 0 for
all t 2 R is equivalent to 0 � a; c and b2 � 4ac.

The Cauchy–Schwarz estimate will play an important role in the rest of the mem-
oir. We will use it mainly in situations where !.D;g/D ¹0º, so that the bilinear form
.�; �/ 7! !.�;D�/ is symmetric. This is the case for gauge algebras (cf. Remark 5.8),
but also more generally for locally convex Lie algebras with an admissible derivation
in the sense of [52, Definition 9.1, Proposition 9.10].

In Chapter 5 we use Lemma 3.10 to show that .�; �/ 7! !.�; D�/ is a positive
semidefinite form on the gauge algebra g, and that every cocycle coming from a
positive energy representation can be represented by a measure (Theorem 5.7). In
Chapter 6, we make extensive use of the bound on the expectation value hid�.D�/i 
in terms of the average energy hH i afforded by Lemma 3.10. In fact, we shall need
such bounds also for Lie algebra elements which are not in the image of D. The
following refinement of the Cauchy–Schwarz estimate was designed for this purpose.

We start out with a proposition on Lie algebras which are Mackey complete, in
the sense that every smooth curve �W Œ0; 1�! g has a weak integral

R 1
0
�.t/dt in g.

For a Mackey complete Lie algebra g, the operatorZ 1

0

es adyds

on g is denoted eady�1
ady

.
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Proposition 3.11. Let yg D R˚! g be a central extension of a Mackey complete Lie
algebra g of the Lie group G with exponential function exp. Then, the adjoint action
Adyg of G on yg satisfies

Adygexpy.z; x/ D

�
z C !

�
y;
eady � 1

ady
.x/

�
; eadyx

�
:

Proof. This is verified by solving the ODE

 0.t/ D Œ.0; y/; .t/� with .0/ D .z; x/:

Writing .t/ D .˛.t/; et ady .x//, it leads to ˛0.t/ D !.y; et adyx/.

Lemma 3.12 (Refined Cauchy–Schwarz estimate). Let g be a Mackey complete Lie
algebra, and let � be a positive energy representation of yG. Let �; � 2 g be such that
Œ�;D�� D 0 and Œ�;D�� D 0. Then, for all s 2 R, we have�˝

id�.e�s ad�D�/
˛
 
C !.�;D/C !

�
e�s ad� � 1

ad�
.D�/; �

��2
� 2!.�;D�/

�
hH i C s.hid�.D�/i C !.�;D//C

s2

2
!.�;D�/

�
:

In particular, if !.�;D/ D 0, !.�;D/ D 0 and !.adnd�.�/.D�/; �/ D 0 for all n � 0,
then ˝

id�
�
e�s ad�D�

�˛2
 
� 2!.�;D�/

�
hH i C shid�.D�/i C

s2

2
!.�;D�/

�
:

Proof. We write Ws;t WD exp.td�.�// exp.sd�.�//, and exploit the fact that the oper-
ator Hs;t WD W �s;tHWs;t has non-negative spectrum. Repeated use of (3.2) on

Hs;t D exp.�s add�.�//
�

exp.�t add�.�//H
�

yields
Hs;t D A0.s/C A1.s/t C A2t

2

with

A0.s/ D H C s.id�.D�/C !.�;D/1/C
s2

2
!.�;D�/1;

A1.s/ D !.�;D/1C exp.�s add�.�//.id�.D�//;

A2 D
1

2
!.�;D�/1:

With the preceding proposition, we obtain for exp.�s add�.�//.id�.D�// the expres-
sion

id�.e�s ad�D�/C !

�
e�s ad� � 1

ad�
.D�/; �

�
1;
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and thus

A1.s/ D !.�;D/1C id�
�
e�s ad�.D�/

�
C !

�
e�s ad� � 1

ad�
.D�/; �

�
1:

Consider the expectation value hHs;t i � 0. Setting

˛0.s/ WD hA0.s/i ; ˛1.s/ WD hA1.s/i and ˛2 WD hA2i ;

we observe that
hHs;t i D ˛0.s/C ˛1.s/t C ˛2t

2

is a non-negative polynomial in t of degree at most 2. From this, we obtain the
inequality ˛1.s/2 � 4˛2˛0.s/. This is the first inequality mentioned above, the second
one is a direct consequence.





Chapter 4

Covariant extensions of gauge algebras

The results in the preceding chapter concerned the general level of Lie groups of the
form G Ì˛ R. Now we turn to the specifics of gauge groups. After introducing gauge
groups and their Lie algebras in Section 4.1, we describe in Section 4.2 a procedure
that provides a reduction from semisimple to simple structure Lie algebras, at the
expense of replacing M by a finite covering manifold yM . In Section 4.3, we recall
the classification [51] of 2-cocycles for the extended gauge algebra g ÌD R.

4.1 Gauge groups and gauge algebras

Let K!M be a smooth bundle of Lie groups, and let K!M be the corresponding
Lie algebra bundle with fibers

Kx D Lie.Kx/:

If M is connected, then the fibers Kx of K ! M are all isomorphic to a fixed
structure group K, and the fibers Kx of K are isomorphic to its Lie algebra

k D Lie.K/:

Definition 4.1 (Gauge group). The gauge group is the group �.M;K/ of smooth
sections of K!M , and the compactly supported gauge group is the group �c.M;K/

of smooth compactly supported sections.

Definition 4.2 (Gauge algebra). We define the gauge algebra as the Fréchet–Lie
algebra �.M;K/ of smooth sections of K! M , equipped with the pointwise Lie
bracket. The compactly supported gauge algebra �c.M;K/ is the LF-Lie algebra of
smooth compactly supported sections.

The compactly supported gauge group �c.M;K/ is a locally convex Lie group,
whose Lie algebra is the compactly supported gauge algebra �c.M;K/. It is locally
exponential, with expW �c.M;K/ ! �c.M;K/ given by pointwise exponentiation
[51, Proposition 2.3].

Definition 4.3. In the following we write z�c.M;K/0 for the simply connected cov-
ering group of the identity component �c.M;K/0 and

q� W z�c.M;K/0 ! �c.M;K/0

for the covering map. Then, z�c.M;K/0 has the same Lie algebra �c.M;K/ as the
gauge group �c.M;K/, and its exponential function Exp satisfies q� ı Exp D exp.
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4.1.1 Gauge groups from principal fiber bundles

The motivating example of a gauge group is of course the group Gau.„/ of vertical
automorphisms of a principal K-bundle � W„!M .

Definition 4.4. A vertical automorphism of a principal fiber bundle � W„! M is a
K-equivariant diffeomorphism ˛W„! „ such that � ı ˛ D � . The group Gau.„/
of vertical automorphisms is called the gauge group of „.

In order to interpret Gau.„/ as a gauge group in the sense of Definition 4.1, define
the bundle of groups Ad.„/!M with typical fiber K by

Ad.„/ WD „ �K= �;

where the relation � is given by .pk; h/ � .p; khk�1/ for p 2 „ and k; h 2 K. We
obtain an isomorphism

Gau.„/ ' �.M;Ad.„//

by mapping the section � 2 �.M;Ad.„// to the corresponding vertical automor-
phism ˛� 2 Gau.„/, defined by

˛� .p/ D p � k

if �.�.p// is the class of .p; k/ in Ad.„/ D „ �K= �.
The bundle of Lie algebras associated to „ is the adjoint bundle ad.„/!M ,

defined as the quotient
ad.„/ WD „ �Ad k

of „ � k modulo the relation .pk;X/ � .p;Adk.X// for p 2 „, X 2 k and k 2 K.
Here Adk 2 Aut.k/ is the Lie algebra automorphism induced by the group automor-
phism h 7! khk�1.

The compactly supported gauge group Gauc.„/ � Gau.„/ is the group of verti-
cal bundle automorphisms of„ that are trivial outside the preimage of some compact
subset ofM . Since it is isomorphic to �c.M;Ad.„//, it is a locally convex Lie group
with Lie algebra gauc.„/ D �c.M; ad.„//.

Remark 4.5. In applications to gauge theory on noncompact manifolds M , the rele-
vant group G of gauge transformations may be smaller than Gau.„/ due to boundary
conditions at infinity. One expects G to contain at least Gauc.„/, or perhaps even
some larger Lie group of gauge transformations specified by a decay condition at
infinity (cf. [31, 110]). In Part II of this series of papers, we will focus on the case
where M D Rd is Minkowski space, and G � �.Rd ;Ad.„// is the group of gauge
transformations that extend continuously to the conformal completion of Minkowski
space. If the extension of „ to the conformal completion is trivial, then G contains
global as well as compactly supported gauge transformations.
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4.1.2 Gauge groups and space-time symmetries

An automorphism of � WK!M is a pair .;M /2Diff.K/�Diff.M/with � ı  D
M ı � , such that for each fiber Kx , the map  jKx

WKx !KM .x/ is a group homo-
morphism. Since M is determined by  , we will omit it from the notation. We denote
the group of automorphisms of K by Aut.K/.

Definition 4.6 (Geometric R-actions). In the context of gauge groups, we will be
interested in R-actions ˛WR ! Aut.�.M;K// which are of geometric type, i.e.,
derived from a 1-parameter group  WR! Aut.K/ by

˛t .�/ WD �t ı � ı M;t :

The R-action on �.M;K/ preserves the subgroup �c.M;K/0 on which it defines a
smooth action. Moreover, it lifts to a smooth action on the simply connected covering
group z�c.M;K/0 (cf. [62, Theorem VI.3]).

Remark 4.7. If K is of the form Ad.„/ for a principal fiber bundle „!M , then a
1-parameter group of automorphisms of „ induces a 1-parameter group of automor-
phisms of K .

The 1-parameter group ˛WR!Aut.�.M;K// of group automorphisms differen-
tiates to a 1-parameter group ˛gWR! Aut.�.M;K// of Lie algebra automorphisms
given by

˛
g
t .�/ D

d

d"

ˇ̌̌̌
"D0

�t ı e
"�
ı M;t :

The corresponding derivation D WD d
dt

ˇ̌
tD0
˛

g
t of �.M;K/ can be described in terms

of the infinitesimal generator of  ,

v WD
d

dt

ˇ̌̌̌
tD0

�t 2 V.K/:

We identify the element � 2 �.M;K/ with the vertical, fiberwise left invariant vector
field„� 2 V.K/ defined by„�.kx/D d

d"

ˇ̌
"D0

kxe
"�.x/. Using the equality Œv;„� �D

„D.�/, we write
D.�/ D Lv�:

For g D �c.M;K/, the Lie algebra g ÌD R then has the bracket

Œ� ˚ t; � 0 ˚ t 0� D
�
Œ�; � 0�C .tLv�

0
� t 0Lv�/

�
˚ 0: (4.1)

Remark 4.8. Alternatively, we can consider  WR!Aut.K/ as a smooth 1-parameter
group of bisections of the gauge groupoid G .K/ � M , the Lie groupoid whose
objects are points x; y 2 M , and whose morphisms are Lie group isomorphisms
Kx ! Ky . It gives rise to a smooth 1-parameter family P of bisections of the Lie



Covariant extensions of gauge algebras 34

groupoid G .K/� M , whose morphisms from x to y are Lie algebra isomorphisms
Kx!Ky . Its generator vD� d

dt
jtD0 P is thus a section of its Lie algebroid a.K/!M ,

called the Atiyah algebroid. A section � 2 �.M;K/ can be considered as an element
of �.M; der.K// � �.M; a.K//, and we interpret Lv� as the commutator Œv; �� in
�.M;a.K//. We will need this picture in Section 4.2, where the bundle of Lie groups
is not available.

4.2 Reduction to simple structure algebras

In this memoir, we consider gauge algebras with a semisimple structure algebra k.
The following theorem shows that, without further loss of generality, we may restrict
attention to the case where k is simple.

Theorem 4.9 (Reduction from semisimple to simple structure algebras). If K!M

is a smooth locally trivial bundle of Lie algebras with semisimple fibers, then there
exists a finite cover yM ! M and a smooth locally trivial bundle of Lie algebras
yK! yM with simple fibers such that there exist isomorphisms �.M;K/ ' �. yM; yK/

and �c.M;K/ ' �c. yM; yK/ of locally convex Lie algebras.

This is proven in [51, Theorem 3.1]. In brief, one uses local trivializations of
K!M to give a manifold structure to

yM WD
[
x2M

Spec.Kx/;

where Spec.Kx/ is the finite set of maximal ideals Ix � Kx . The bundle of Lie alge-
bras is then defined by

yK WD
[
Ix2 yM

Kx

ı
Ix;

and one shows that the natural projection � W yK! yM is a locally trivial vector bundle.
Note that the finite cover yM !M is not necessarily connected, and that the isomor-
phism classes of the fibers of yK ! yM are not necessarily the same over different
connected components of yM .

Remark 4.10. Since a smooth 1-parameter family of automorphisms of K!M acts
naturally on the maximal ideals, we obtain a smooth action on the Lie algebra bundle
yK! yM . We denote the corresponding section of the Atiyah algebroid a.yK/! yM

by yv 2 �. yM; a.yK//, and we denote the corresponding vector field on yM by

v yM WD ��yv:

Since yK has simple fibers, the Atiyah algebroid a.yK/ fits in the exact sequence

yK! a.yK/! T yM;
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where the first map is given by the pointwise adjoint action, and the second by the
anchor. Note that the action on yM is locally free or periodic if and only if the action
on M is. In that case, the period on yM is a multiple of the period on M .

In many situations, the connected components of yM are diffeomorphic to M .
However, non-trivial covers yM ! M do occur naturally, for example in connection
to non-orientable 4-manifolds.

Example 4.11. If the fibers of K!M are simple, then yM DM .

Example 4.12. If K D M � k is trivial, then yM D M � Spec.k/ and all connected
components of yM are diffeomorphic to M .

Example 4.13. Suppose that M is connected, and that the typical fiber k of K!M

is a semisimple Lie algebra with r simple ideals that are mutually non-isomorphic.
Then,

yM D

rG
iD1

M

is a disjoint union of copies of M .

Example 4.14 (Frame bundles of 4-manifolds). Let M be a 4-dimensional Rie-
mannian manifold. Let „ WD OF.M/ be the principal O.4;R/-bundle of orthogonal
frames, and let K D ad.„/. Then, K D O.4;R/ and k D so.4;R/ is isomorphic to

suL.2;C/˚ suR.2;C/:

The group �0.K/ is of order 2, the non-trivial element acting by conjugation with
T D diag.�1; 1; 1; 1/. Since this permutes the two simple ideals, the manifold yM is
the orientable double cover of M . This is the disjoint union yM D ML tMR of two
copies of M if M is orientable, and a connected twofold cover yM !M if it is not.

4.3 Central extensions of gauge algebras

Let g be the compactly supported gauge algebra �c.M;K/, where K! M is a Lie
algebra bundle with simple fibers. In this section, we classify all possible central
extensions of gÌD R. This amounts to calculating the continuous second Lie algebra
cohomology H 2.g ÌD R;R/ with trivial coefficients. In Chapter 5, we will charac-
terize those cocycles coming from a positive energy representation.

4.3.1 Universal invariant symmetric bilinear forms

Let k be a finite-dimensional, simple real Lie algebra. Then, its automorphism group
Aut.k/ is a closed subgroup of GL.k/, hence a Lie group with Lie algebra der.k/' k.
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Since k acts trivially on the space

V.k/ WD S2.k/
ı
.k � S2.k//

of k-coinvariants of the twofold symmetric tensor power S2.k/, the Aut.k/-represen-
tation on V.k/ factors through �0.Aut.k//. The universal k-invariant symmetric bilin-
ear form is defined by

�W k � k ! V.k/; �.x; y/ WD Œx ˝s y� D
1

2
Œx ˝ y C y ˝ x�:

We associate to � 2 V.k/� the R-valued, der.k/-invariant, symmetric, bilinear form

�� WD � ı �:

This correspondence is a bijection between V.k/� and the space of der.k/-invariant
symmetric bilinear forms on k.

Since k is simple, we haveV.k/'C if k admits a complex structure, and V.k/'R
if it does not (cf. [84, Appendix B]). In the latter case, k is called absolutely simple.
The universal invariant symmetric bilinear form can be identified with the Killing
form of the real Lie algebra k if V.k/'R and with the Killing form of the underlying
complex Lie algebra if V.k/'C. In particular, in the important special case that k is a
compact simple Lie algebra, a universal invariant bilinear form �W k � k! V.k/ is the
negative definite Killing form given by tr.ad x ad y/. However, in the following, we
shall always use the normalized invariant positive definite symmetric bilinear form �

that satisfies
�.i˛_; i˛_/ D 2 (4.2)

for the coroots ˛_ corresponding to long roots in the root decomposition of kC

(cf. [68, 94] and Appendix A).

4.3.2 The flat bundle V D V.K/

If K!M is a bundle of Lie algebras with simple fibers, then we denote by V !M

the vector bundle with fibers Vx D V.Kx/. It carries a canonical flat connection d,
defined by

d�.�; �/ WD �.dr�; �/C �.�; dr�/ for �; � 2 �.M;K/;

where r is a Lie connection on K, meaning that

dr Œ�; �� D Œdr�; ��C Œ�; dr�� for all �; � 2 �.M;K/:

Since the fibers are assumed to be simple, any two Lie connections differ by a K-
valued 1-form, so that the preceding definition is independent of the choice of r
(cf. [53]).



Central extensions of gauge algebras 37

Let ki be the fiber of K over a connected component Mi of M . If ki is absolutely
simple (hence, in particular, when k is compact), we have V.ki /'R, and �0.Aut.k//
acts trivially on V.ki /. In this case, V !Mi is the trivial line bundleMi �R!Mi .

If ki possesses a complex structure, then V.ki / ' C, and ˛ 2 Aut.ki / flips the
complex structure on C if and only if it flips the complex structure on ki . In this case,
V !Mi is a vector bundle of real rank 2.

Remark 4.15. In the context of positive energy representations, we will see in Theo-
rem 6.2 below that k must be compact, so that V !M is the trivial real line bundle.
Although we need to consider the a priori possibility of non-trivial bundles, then, it
will become clear in the course of our analysis that they will not give rise to positive
energy representations.

4.3.3 Classification of central extensions

We define 2-cocycles !�;r on g ÌD R whose classes span the cohomology group
H 2.g ÌD R;R/. They depend on a V -valued 1-current � 2 �1c.M;V /

0, and on a Lie
connection r on K. A 1-current � 2 �1c.M;V /

0 is said to be

(L1) closed if �.dC1c .M;V // D 0,

(L2) vM -invariant if �.LvM�
1
c.M;V // D ¹0º.

Given a closed, vM -invariant current � 2 �1c.M;V /
0, we define the 2-cocycle !�;r

on g ÌD R by skew-symmetry and the equations

!�;r.�; �/ D �.�.�; dr�//; (4.3)

!�;r.D; �/ D �.�.Lvr; �//; (4.4)

where we write � for .�; 0/ 2 gÌD R andD for .0; 1/ 2 gÌD R as in (2.2). We define
the der.K/-valued 1-form Lvr 2 �

1.M; der.K// by

.Lvr/w.�/ D Lv.dr�/w � rwLv� D Lv.rw�/ � rwLv� � rŒvM ;w�� (4.5)

for allw 2V.M/, � 2�.M;K/. Since the fibers of K!M are simple, all derivations
are inner, so we can identify Lvr with an element of �1.M;K/. Using the formulae

d�.�; �/ D �.dr�; �/C �.�; dr�/; (4.6)

LvM �.�; �/ D �.Lv�; �/C �.�; Lv�/; (4.7)

Lv.dr�/ � drLv� D ŒLvr; ��; (4.8)

it is not difficult to check that !�;r is a cocycle. Skew-symmetry follows from (4.6)
and (L1). The vanishing of ı!�;r on g follows from (4.6), the derivation property
of r and invariance of �. Finally, iDı!�;r D 0 follows from skew-symmetry, (4.8),
(4.7), (L2) and the invariance of �.
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Note that the class Œ!�;r � inH 2.gÌD R;R/ depends only on �, not onr. Indeed,
two connection 1-forms r and r 0 differ by A 2 �1.M; der.K//. Using der.K/ ' K,
we find

!�;r0 � !�;r D ı�A with �A.� ˚ t / WD �.�.A; �//:

According to the following theorem, every continuous Lie algebra 2-cocycle on
g ÌD R is cohomologous to one of the type !�;r as defined in (4.3) and (4.4).

Theorem 4.16 (Central extensions of extended gauge algebras). Let K ! M be a
bundle of Lie groups with simple fibers, equipped with a 1-parameter group of auto-
morphisms with generator v 2 V.K/. Let gD �c.M;K/ be the compactly supported
gauge algebra, and let g ÌD R be the Lie algebra (4.1). Then, the map � 7! Œ!�;r �

induces an isomorphism�
�1c.M;V /

ı
.d�0c.M;V /C LvM�

1
c.M;V //

�0 �
�! H 2.g ÌD R;R/

between the space of closed, vM -invariant V -valued currents and H 2.g ÌD R;R/.

This is proven in [51, Theorem 5.3]. The proof relies heavily on the description
of H 2.g;R/ provided in [53, Proposition 1.1].

Remark 4.17 (Temporal gauge). If the Lie connection r on K can be chosen so as
to make v 2 V.K/ horizontal, rvM � D Lv� for all � 2 �.M;K/, then equation (4.5)
shows that Lvr D ivMR, where R is the curvature of r. For such connections, (4.4)
is equivalent to

!�;r.D; �/ D �.�.ivMR; �//:



Chapter 5

Cocycles for positive energy representations

Having classified all the possible 2-cocycles on �c.M;K/ Ì R, we now address the
restrictions that are imposed on these cocycles by the Cauchy–Schwarz estimates
from Section 3.4.

In Section 5.1 we derive a local normal form of the cocycle ! in a flow box around
a point m 2 M , where vM 2 V.M/ does not vanish. In Section 5.2, we use this to
derive a global normal form for !, provided that vM is nowhere vanishing. It turns out
that ! is characterized by a measure � on the covering space yM . In Section 5.3, we
plug this information back into the Cauchy–Schwarz estimate. This yields the basic
estimates needed for the continuity results in Chapter 6.

The setting of this chapter is as follows. As before, � WK ! M is a bundle of
Lie groups with semisimple fibers, and K! M is the corresponding bundle of Lie
algebras. We consider positive energy representations of yG, where G D �c.M;K/ is
the compactly supported gauge group with Lie algebra gD �c.M;K/. In fact, we will
work mainly at the Lie algebra level, so our results continue to hold for the slightly
more general case that G D z�c.M;K/0 is the simply connected cover of the identity
component. Using Section 4.2, we identify gD �c.M;K/with gD �c. yM; yK/, where
yK! yM is a Lie algebra bundle with simple fibers over a covering space yM ofM . We
assume that the 1-parameter group of automorphisms is of geometric type in the sense
of Definition 4.6. The analogs of the generators vM 2 V.M/ and v 2 �.M;a.K// for
yK are denoted by ��yv 2 V. yM/ and yv 2 �. yM; a.yK//.

5.1 Local gauge algebras

The following simple lemma will be used extensively throughout the rest of the mem-
oir. It gives a normal form for the pair .�c.M;K/; v/ in the neighborhood of a point
m 2M where the vector field vM does not vanish.

Definition 5.1 (Good flowbox). A good flowbox is a v-equivariant, local trivialization
.I � U0/ �K ! K of K over an open neighborhood U � M that is equivariantly
diffeomorphic to I � U0. Here I � R is a bounded open interval, and U0 � Rn�1 is
open. Note that for n D 1, we may take U0 D ¹0º.

In particular, we have coordinates t WD x0 for I and Ex WD .x1; : : : ; xn�1/ for U0
such that vM 2 V.U / corresponds to @t 2 V.I � U0/.

Lemma 5.2. For any point m 2 M with vM .m/ ¤ 0, there exists a good flowbox
U ' I � U0 containing m. Under the trivialization U � k ! KjU , the induced
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isomorphism C1c .U; k/ ' �c.U;K/ yields an inclusion

IU WC
1
c .U; k/ Ì@t R ,! �c.M;K/ ÌD R:

Proof. Since vM .m/ ¤ 0, we can find a neighborhood U �M of m and local coor-
dinates t; x1; : : : ; xn�1 such that the vector field vM on U is of the form @t . We may
assume that U ' I � U0 where U0 � Rn�1 corresponds to t D 0 and I � R cor-
responds to Ex D 0. We choose U0 sufficiently small for there to exist a trivialization
ˆWU0 � K ! KjU0 , which we then extend to a trivialization U � K ' KjU over
U by .t; x; k/ 7! .�t /ˆ.x; k/. As d

dt
jtD0.�t / D v, the vector field v 2 V.K/ is

horizontal in this trivialization.

We consider gU WD C
1
c .U; k/ as a subalgebra of gD �c.M;K/ and wish to study

the restriction d�U of the representation d� to the subalgebra

ygU WD R˚! .gU Ì@t R/:

Note that the subalgebra ygU ,! yg does not correspond to a Lie subgroup of yG unless
U is  -invariant, so we cannot work at the level of Lie groups.

If A 2 �1.U; k/ is the local connection 1-form corresponding to the Lie connec-
tionr, then up to coboundaries, by (4.3) and (4.4) the restriction!U of! to gU Ì@t R
takes the form

!U .fX; gY / ' �U .�.fX; dg � Y C gŒA; Y �// (5.1)

!U .@t ; fX/ ' �U .�.@tA; fX//; (5.2)

for some �U 2 �1c.U; V .k//
0, where f; g 2 C1c .U;R/ and X; Y 2 k.

Proposition 5.3. Let m 2 M be a point with vM .m/ ¤ 0 and let U ' I � U0 be
a good flowbox (cf. Definition 5.1). Let �WU0 ,! M be the corresponding inclusion.
Then, the map �1c.U; V .k//! �c.U0; �

�T �M ˝ V.k//; ˇ 7! x̌, defined by the inte-
gration

x̌.x1; : : : ; xn�1/ WD

Z 1
�1

ˇ.t; x1; : : : ; xn�1/dt;

yields a split exact sequence

0! L@t�
1
c.U; V .k// ,! �1c.U; V .k//! �c.U0; �

�T �M ˝ V.k//! 0

of locally convex spaces. In particular, �U W�1c.U; V .k//! R factors through a con-
tinuous linear map x�U0 W�c.U0; �

�T �M ˝ V.k//! R.

Proof. The second statement follows from the first because

�U .L@t�
1
c.U; V .k/// D ¹0º
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by Theorem 4.16. The kernel of ˇ 7! x̌ is precisely L@t�
1
c.U; V .k// by the funda-

mental theorem of calculus. A bump function ' 2 C1c .I;R/ of integral 1 yields the
required continuous right inverse �c.U0; ��T �M ˝ V.k// ! �1c.U; V .k// for the
integration map by sending Ex 7! ˇ.Ex/ to .t; Ex/ 7! '.t/ˇ.x1; : : : ; xn�1/.

For X D Y we obtain with (5.1) the relation

!.@tfX; fX/ D �U
�
@tf � df � �.X;X/

�
:

Unlike (5.1), which holds only modulo coboundaries, this equation is exact because
.@tf /X and fX commute. Lemma 3.10 (the Cauchy–Schwarz estimate) then yields

� �U
�
@tf � df � �.X;X/

�
� 0: (5.3)

This allows us to characterize �U as follows.

Proposition 5.4. Let m 2 M be a point with vM .m/ ¤ 0. Then, there exists an
open neighborhood U � M of m such that, for each X 2 k, there exists a unique
vM -invariant positive locally finite regular Borel measure �U;X on U such that the
functional �U;X 2�1c.U;R/

0 defined by �U;X .ˇ/ WD��U .ˇ � �.X;X// takes the form

�U;X .ˇ/ D

Z
U

.ivMˇ/d�U;X .m/:

Proof. Introduce coordinates x0 WD t and Ex WD .x1; : : : ; xn�1/ on U ' I � U0 as in
Definition 5.1. Define �U;i2C1c .U;R/

0, iD0; : : : ;n� 1, by �U;i .f / WD �U;X .f dxi /
and let �i 2C1c .U0;R/

0 be the corresponding distribution onU0 (cf. Proposition 5.3),
so

�U;i .f / D �i . Nf /

with
Nf .Ex/ WD

Z
I

f .t; Ex/dt:

Then,

�U;X .f dg/ D
n�1X
iD0

�i .f @ig/ for all f; g 2 C1c .U;R/:

Equation (5.3) then yields

�0
�
.@tf /2

�
C

n�1X
iD1

�i
�
@tf @if

�
� 0: (5.4)

First, we show that �0.h2/ � 0 for any h in C1c .U0;R/. Note that every element
B of C1c .I;R/ satisfies Z

I

B@tBdt D 0:
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We choose B ¤ 0, normalize it byZ
I

.@tB/
2dt D 1

and define
f .t; Ex/ WD B.t/h.Ex/:

We then have

.@tf /2 D h
2 and @tf @if D h@ih

Z
I

B@tBdt D 0 for i � 1:

Therefore, (5.4) yields �0.h2/ � 0 as required.
Since �0 extends1 to a positive linear functional on Cc.U0;R/, Riesz’ representa-

tion theorem [96, Theorems 2.14 and 2.18] yields a unique locally finite regular Borel
measure �0 on U0 such that �0.f / D

R
U0
fd�0.x/. This implies

�U;0.f / D

Z
U

f .u/d�U;X .u/;

with �U;X the product of �0 with the Lebesgue measure on I .
To finish the proof, we now prove that �i D 0 for i > 0. It suffices to show that

�i .h
2/ D 0 for all h 2 C1c .U0;R/. Choose BC ; BS 2 C1c .I;R/ so thatZ

I

BS .t/B
0
C .t/dt D 1;

choose C; S 2 C1c .U0;R/ so that

C.x/ D cos
� nX
iD1

kix
i

�
and S.x/ D sin

� nX
iD1

kix
i

�
for x 2 supp.h/, ki 2 Z, and set

f .t; Ex/ WD h.Ex/
�
BC .t/C.Ex/C BS .t/S.Ex/

�
:

Then, with

E WD

Z
I

�
jB 0C .t/j C jB

0
S .t/j

�2
dt;

we have

0 � .@tf /2 D h
2.Ex/

Z
I

�
B 0C .t/C.Ex/C B

0
S .t/S.Ex/

�2
dt � Eh2.x/:

1For every compact S � U0, there exists a ' 2 C1c .U0;R/ with 'jS > 1. With LS D
�0.'

2/, it then follows from the inequality �0.kf k1'2 ˙ f / � 0 that j�0.f /j � LSkf k1
for all f with support in S .
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Making repeated use ofZ
I

F.t; Ex/@tF.t; Ex/dt D 0 and
Z
I

B 0CBS C B
0
SBCdt D 0;

we find, for i D 1; : : : ; n � 1,

@tf @if D kih
2:

Equation (5.4) then yields

�0
�
.@tf /2

�
C

n�1X
iD1

ki�i .h
2/ � 0 for all ki 2 Z; (5.5)

where the function f depends on the ki . As �0..@tf /2/�E�0.h2/, the non-negative
term �0..@tf /2/ is bounded by a number that does not depend on ki . It therefore
follows from inequality (5.5) that �i .h2/ D 0 for all i > 0, as was to be proven.

5.2 Infinitesimally free R-actions

In Section 4.2, we saw that �c.M;K/ is isomorphic to the gauge algebra �c. yM; yK/,
where yK ! yM is a Lie algebra bundle with simple fibers over a cover yM ! M .
The decomposition yM D

Fr
iD1

cMi in connected components therefore gives rise to
a direct sum decomposition

�c.M;K/ D

rM
iD1

�c. yMi ; yK/; (5.6)

where yK! yMi is a Lie algebra bundle with simple fibers isomorphic to ki .

5.2.1 Reduction to compact simple structure algebras

If vM is non-vanishing, then we can restrict attention to the terms in (5.6) where ki is
a compact simple Lie algebra.

Corollary 5.5. Suppose that ki is not compact, and let m 2 yMi be a point such that
��yvm ¤ 0. Let U � yMi be as in Proposition 5.4 and let �U 2 �1c.U; V .ki //

0 be as in
(5.1) and (5.2). Then, �U W�1c.U; V .k//! R is zero. Consequently, !U is cohomol-
ogous to zero on �c.U; yK/.

Proof. It suffices to show that �U;X D 0 for all X 2 ki . If X;Y 2 ki with �.X;X/ D
��.Y; Y /, then �U;X D ��U;Y implies �U;X D �U;Y D 0. If ki is a complex Lie
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algebra, i.e., V.ki / ' C (cf. Section 4.3.1), then the previous argument with Y D iX
yields �U;X D 0 for all X 2 ki . If V.ki / ' R, then ki is noncompact if and only if
¹�.X;X/IX 2 kiº D R. Therefore, the same reasoning applies.

Corollary 5.6. If � is a positive energy representation of yG and vM has no zeros,
then ! is cohomologous to a cocycle that vanishes on the subalgebras �c. yMi ; yK/,
where ki is noncompact.

Proof. By Theorem 4.16 applied to �c. yM; yK/, the class Œ!� 2 H 2.g ÌD R;R/ is
uniquely determined by a V -valued current �W�c. yM;V /! R. Since vM is every-
where non-zero, the same holds for ��yv. If ki is noncompact, by Corollary 5.5, yMi

can be covered with open sets Uij such that � vanishes on �c.Uij ;V /. As every ele-
ment of �c. yMi ;V / can be written as a finite sum of elements of �c.Uij ;V /, the
current � vanishes on �c. yMi ;V /.

5.2.2 Reduction of currents to measures

Let �W yG ! U.H / be a positive energy representation, where G D z�c.M;K/0 is
the simply connected Lie group with Lie algebra g D �c.M;K/, which covers the
identity component of the compactly supported gauge group. This gives rise to a Lie
algebra cocycle ! on g ÌD R. Using the results of Section 4.2, we identify the gauge
Lie algebra gD�c.M;K/with gD�c. yM; yK/, where yK! yM is a Lie algebra bundle
with simple fibers. The cocycle ! can then be represented by a measure on yM .

Theorem 5.7. Suppose that vM has no zeros, and that ! is a 2-cocycle on g ÌD
R induced by a positive energy representation �W yG ! U.H /. Then, there exists a
positive, regular, locally finite Borel measure � on yM invariant under the flow  yM on
yM induced by K , such that ! is cohomologous to the 2-cocycle !�;r , given by

!�;r.�; �/ D �

Z
yM

�.�;rcvM �/d�.m/; (5.7)

!�;r.D; �/ D �

Z
yM

�.icvM .Lyvr/; �/d�.m/ for �; � 2 �c. yM; yK/: (5.8)

The support of � is contained in the union of the connected components yMi where
the fibers of yK are compact simple Lie algebras. In (5.7) and (5.8), we identify � with
the positive definite invariant bilinear form normalized as in (4.2).

Proof. As vM is nowhere zero, we can cover yM by good flowboxes U � yM in
the sense of Definition 5.1. In the corresponding local trivialization �c.U; yK/ '
C1c .U; k/ (cf. Lemma 5.2), we may assume that k is compact by Corollary 5.5. We
normalize � as in (4.2) and define �U as �U;X for any X 2 k with �.X;X/D 1. If U
and U 0 are two such open sets, then the measures �U and �U 0 from Proposition 5.4
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coincide on the intersection U \ U 0, as both measures are uniquely determined by
the cocycle !. The measures �U thus splice together to form a positive regular
locally finite Borel measure on yM . Equations (5.7) and (5.8) then follow immedi-
ately from (4.3), (4.4) in Section 4.3.3, and (5.1), (5.2).

Remark 5.8. As the cohomology class Œ!�;r � is independent of the choice of the Lie
connection, we are free to choose r so that yv is horizontal. In that case, we have

icvM .Lyvr/ D 0 and Lyv� D r��yv�

(cf. Remark 4.17). Equation (5.8) then becomes

!�;r.D; �/ D 0:

From Examples 4.11-4.14 in Section 4.2, we obtain the following.

Example 5.9. If K ! M has simple fibers, then yM D M . The class Œ!�;r � then
corresponds to a measure � on M . It vanishes on the connected components of M
where the fibers of K!M are noncompact.

Example 5.10. Suppose that M is connected, and that the typical fiber k D
Lr
iD1 ki

is the direct sum of r mutually non-isomorphic simple ideals ki . Then, yM is the
disjoint union of r copies of M . The class Œ!�;r � is then given by r measures �i on
M , one for each simple ideal. The same holds if K DM � k is trivial, and the ki are
not necessarily non-isomorphic.

Example 5.11 (Frame bundles of 4-manifolds). (cf. Examples 4.14). Suppose that
M is a Riemannian 4-manifold, and K D ad.OF.M// is the adjoint bundle of its
orthogonal frame bundle. If M is orientable, then !� D !�L C !�R is the sum of
two cocycles with measures �L and �R on M corresponding to the simple factors
suL.2;C/ and suR.2;C/ of so.4;R/. If M is not orientable, then !� is described
by a single measure � on the orientable cover yM !M .

5.3 Cauchy–Schwarz estimates revisited

Using the explicit form of the cocycles determined in Theorem 5.7, we revisit the
Cauchy–Schwarz estimates of Section 3.4. In this section, we assume that K! M

has semisimple fibers, and that the vector field vM on M is nowhere vanishing. As
before, we identify �c.M;K/ with �c. yM; yK/, where yK! yM has simple fibers.

Define the positive semidefinite symmetric bilinear form on g D �c. yM; yK/ by

h�; �i� WD

Z
yM

�.�; �/d�.m/: (5.9)
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Using Theorem 5.7 and Remark 5.8, we may replace ! by !�;r for a Lie connection
r on yK that makes yv horizontal. In that case, we have icvM .Lyvr/ D 0 and Lyv� D
r��yv� (cf. Remark 4.17). We may thus assume, without loss of generality, that the
cocycle associated to a positive energy representation takes the form

!.�; �/ D �h�; Lyv�i� D hLyv�; �i�; !.D; �/ D 0: (5.10)

The Cauchy–Schwarz estimate (Lemma 3.10) can now be reformulated as follows.

Lemma 5.12 (Cauchy–Schwarz Estimate). Let � be a positive energy representation
of yG, where G D z�c.M;K/0 is the simply connected gauge group. If the vector field
vM on M has no zeros, then, after replacing the linear lift d�Wg! End.H1/ of the
projective representation d� of g by d�C i�1 for some continuous linear functional
�Wg! R, we have

hid�.Lyv�/i
2
 � 2hH i kLyv�k

2
� for all � 2 g with ŒLyv�; �� D 0 (5.11)

and every unit vector  2 H1.

Proof. First we observe that the passage from ! to an equivalent cocycle corresponds
to replacing the subspace g � yg by the subspace �.�/C C � , � 2 g, where �Wg! R
is a continuous linear functional. For the representation d� this changes the value
of d�.�/ by adding i�.�/, so that we can achieve a cocycle of the form (5.10) by
Theorem 5.7. Now we apply Lemma 3.10 with iD!�;r D 0 and !�;r.�; D�/ D
kLyv�k

2
�.

In the same vein, the refined Cauchy–Schwarz estimate, Lemma 3.12, can be
reformulated as follows.

Lemma 5.13. Under the assumptions of Lemma 5.12, we have�˝
id�.e�s ad�.Lyv�//

˛
 
�

�
e�s ad� � 1

ad�
.Lyv�/; Lyv�

�
�

�2
� 2kLyv�k

2
�

�
hH i C shid�.Lyv�/i C

s2

2
kLyv�k

2
�

�
(5.12)

for all s 2 R, and for all �; � 2 �c. yM; yK/ such that Œ�; Lyv�� D 0 and Œ�; Lyv�� D 0.



Chapter 6

Continuity properties

Having determined which cocycles are compatible with the Cauchy–Schwarz esti-
mates, we now turn to the classification of positive energy representations for the
central extensions that correspond to these cocycles. This will be achieved in Chap-
ter 7, using continuity and extension results developed in the present chapter.

In this chapter, we assume that the flow vM is nowhere vanishing. Further, we
assume that the fibers of K ! M are simple Lie algebras. This entails no loss of
generality compared to semisimple fibers, as one can switch to the Lie algebra bundle
yK! yM in that case by the results in Section 4.2.

In Section 6.1, we use the Cauchy–Schwarz estimate 5.12 to further reduce the
problem to the case where K has compact simple fibers. In Section 6.2, we use the
refined Cauchy–Schwarz estimate of Lemma 5.13 to bound id�.�/ in terms of the
Hamilton operator H , the L2-norm k�k� with respect to the measure � of Theo-
rem 5.7, and theL2-norm k�kB� with respect to the product of�with a suitable upper
semi-continuous functionBWM !RC. In Section 6.3, we interpret these estimates as
a continuity property, and use this to define an extension of d� to a spaceH 1

B�.M;K/

of sections that are differentiable in the direction of the orbits, but merely measur-
able in the transversal direction. In Section 6.4, we construct a subspace H 1

@
.M;K/

of bounded sections that is closed under the pointwise Lie bracket. Finally, in Sec-
tion 6.5, we show that by extending to H 1

B�.M;K/ and restricting to H 1
@
.M;K/, one

obtains a representation of the latter Lie algebra that is compatible with the Hamil-
tonian H . On a subalgebra H 2

@
.M;K/ of sections that are twice differentiable in the

orbit direction, we then show that there is a dense set of uniformly analytic vectors.
In Chapter 7, this will be needed in order to integrate the Lie algebra representation
to the group level.

6.1 Reduction to compact simple structure algebras

As a direct consequence of Lemma 5.12, we see that d�.Lv�/ vanishes for all � 2 g

with Œ�; Lv�� D 0 and kLv�k� D 0. We use this to show that every positive energy
representation factors through a gauge algebra with compact structure algebra.

Proposition 6.1. For g D �c.M;K/ with vM without zeros, we have

g D DgC ŒDg;Dg�:

Considered as subsets of yg D R˚! .g ÌD R/, with ! as in Theorem 5.7, we have

R˚! g D DgC ŒDg;Dg�:
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Proof. By a partition of unity argument, it suffices to prove this for g D C1c .U; k/,
where U D I � U0 is a good flowbox (cf. Definition 5.1) and

D� D
d

dt
�

(cf. Lemma 5.2). If f 2 C1c .U; k/ and X 2 k, then fX lies in Dg � g if and only if

f0.x/ WD

Z 1
�1

f .t; x/dt

is zero in C1c .U0;R/. Fix � 2 C1c .I;R/ with
R1
�1

�.t/dt D 0 and
R1
�1

�2.t/dt D 1.
Then,

fX D .f � �2f0/X C �
2f0X with .f � �2f0/X 2 Dg:

To show that �2f0X 2 ŒDg; Dg�, choose � 2 C1c .U0; k/ such that �jsupp.f0/ D 1,
and choose Yi ; Zi 2 k such that X D

Pr
iD1ŒYi ; Zi �. Since

rX
iD1

Œ�f0Yi ; ��Zi � D �
2f0X

with �f0Yi ; ��Zi 2 Dg, we have

fX D .f � �2f0/X C

rX
iD1

Œ�f0Yi ; ��Zi � 2 DgC ŒDg;Dg�: (6.1)

This holds for the Lie bracket in g as well as for the Lie bracket in yg. The relationZ 1
�1

�
d

dt
�dt D 0

implies !.�f0Yi ; ��Zi / D 0. This shows that g D Dg C ŒDg; Dg� in g and also
g � DgC ŒDg;Dg� in yg. Since ! is not identically zero onDg �Dg, the subspace
DgC ŒDg;Dg� of yg cannot be proper and thus RC � DgC ŒDg;Dg�. This shows
that

yg D RC C g D DgC ŒDg;Dg�:

Theorem 6.2 (Reduction to compact structure algebra). LetMi �M be a connected
component such that the (simple) fibers of KjMi are not compact. Suppose that vM
is non-vanishing on Mi . Then, after twisting by a functional � 2 �c.Mi ;K/

0 if nec-
essary, every positive energy representation d� of �c.M;K/ vanishes on the ideal
�c.Mi ;K/.

Proof. By a partition of unity argument, it suffices to consider the restriction of d� to
C1c .U; k/ for a good flowbox U �Mi (cf. Definition 5.1). Every � 2 DC1c .U; k/ is
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a finite sum of elements of the form f 0X , with f 2 C1c .U;R/ and X 2 k. Since k is
noncompact, � vanishes on Mi by Theorem 5.7. Since

kf 0Xk� D 0 and ŒfXi ; f
0Xi � D 0;

it follows from Lemma 5.12 that, after twisting by � so as to change ! to !�;r , we
have d�.f 0Xi / D 0. Since d�.DC1c .U; k// D ¹0º, Proposition 6.1 yields

d�.C1c .U; k// D ¹0º:

Thus, d�.�c.Mi ;K// D ¹0º, as required.

This shows that we can restrict attention to bundles K!M with compact simple
fibers. (Note that the result requires a non-zero vector field on M , so this is compat-
ible with the unitary highest weight representations of C1.S1; su1;n�1.C// studied
in [47].) In conjunction with Proposition 6.1, Lemma 5.12 can also be used to prove
the following.

Corollary 6.3. If g D �c.M;K/, where K! M has compact simple fibers, then,
after twisting by � 2 �c.M;K/0 if necessary, every positive energy representation d�
of yg vanishes on the ideal

I� WD
®
� 2 gI�.¹x 2M I �.x/ ¤ 0º/ D 0

¯
of sections that vanish �-almost everywhere.

Proof. By a partition of unity argument, we may assume that g D C1c .U; k/, with
U � M a good flowbox (Definition 5.1). Let � 2 I� and consider the open subset
O� WD ¹x 2M I �.x/ ¤ 0º, which is the “open support” of � . Since � is a linear com-
bination of terms fX with smaller or equal open support, we may assume that � D
fX for f 2 C1c .U;R/ and X 2 k. If fX 2Dg, then fX 2 I� implies kfXk� D 0
and hence d�.fX/ D 0 by Lemma 5.12. Decompose fX as in equation (6.1),

fX D .f � �2f0/X C

rX
iD1

Œ�f0Yi ; ��Zi �:

As O� is open and � D dt ˝ �0, we have �.O�/ D 0 if and only if �0.p.O�//
vanishes, where pWU ! U0 is the projection on the orbit space. Now .f � �2f0/X

and �f0Yi are in Dg and vanish outside p�1p.O�/, so that their images under d�
vanish. Indeed, as these are both of the form Lv� with kLv�k� D 0 and ŒLv�; ��D 0,
this follows from Lemma 5.12. We conclude that d�.fX/ D 0, as required.

6.2 Extending the estimates from Dg to g

To see that d� factors through a linear map on g=I�, we used the Cauchy–Schwarz
estimate of Lemma 5.12. Using the refined Cauchy–Schwarz estimate of Lemma 5.13,
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we then extend d� to a linear map on g=I�, the L2-completion of g=I� with respect
to the measure �.

Note that an extension to the subspace Dg=I� � g=I� can already be achieved
using the “ordinary” Cauchy–Schwarz estimate of Lemma 5.12. Indeed, for � 2 Dg,
one can use (5.11) to show that d�.�/ satisfies an operator inequality of the form

˙ id�.�/ � k�k�.˛1C ˇH/ (6.2)

for certain constants ˛;ˇ > 0. With this, one can prove that d�WDg=I�! End.H1/
is weakly continuous with respect to the L2-topology on Dg=I�, and that it extends
to the L2-completion Dg=I�.

In order to extend d� to the full space g=I�, however, we will need an analog of
(6.2) that holds not just for � 2 Dg, but for all � 2 g. This is Proposition 6.16, which
we prove using the refined Cauchy–Schwarz estimate of Lemma 5.13.

6.2.1 The local gauge algebra with fibers k D su.2 ; C/

First, we restrict our attention to the compact structure algebra k D su.2;C/. We will
later derive the general case from this example. Let �.a;b/D�tr.ab/ be the invariant
bilinear form on k, normalized so that elements x with

Spec.ad x/ D ¹0;˙2iº satisfy �.x; x/ D 2:

Further, let U 0 � U be a good pair of flowboxes in the sense of the following
definition. We write U b V if the closure of U is contained in an open subset of V .

Definition 6.4 (Good pair of flowboxes). Let U 0 ' I 0 �U 00 and U ' I �U0 be good
flowboxes in the sense of Definition 5.1, and let U 0 � U . We call U 0 � U a good pair
of flowboxes if I 0 b I and U 00 b U0.

Remark 6.5. Note that U 00 D U0 D ¹0º is allowed! Unless specified otherwise, we
assume that I 0 D .�T 0=2; T 0=2/ and I D .�T=2; T=2/ with 0 < T 0 < T <1.

Remark 6.6. Recall thatM is equipped with a flow-invariant measure�, which takes
the form dt ˝ �0 on I � U0. To a good pair of flowboxes, we can therefore assign
the number

T

T � T 0
�0.U0/

T 0
D

�.U /

T 0.T � T 0/
;

which will play a significant role throughout this chapter. If this is not too large, we
think of the flowboxes as “sufficiently quadratic”.

In view of Lemma 5.2, we restrict attention to the case where the Lie algebra is
g D C1c .I � U0; k/, and v D @t . For z 2 C1c .U

0;C/, we define �.z/ 2 g by

�.z/.t; u/ WD

�
0 z.t; u/

�Nz.t; u/ 0

�
(6.3)
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and note that Œ�; @
@t
�� D 0. We also consider the element � 2 g defined by

�.t; u/ WD �.u/

�
i�.t/ 0

0 �i�.t/

�
; (6.4)

where � 2 C1c .I;R/ and � 2 C1c .U0;R/ are such that �.t/ D t for t 2 I 0 and
�.u/ D 1 for u 2 U 00. It also satisfies�

�;
@

@t
�

�
D 0:

Thus, �.u/�.t/Dt onU 0, hence, in particular, on the support of every z2C1c .U
0;C/.

On C1c .R;C/, we define the usual scalar product

hf; gidt WD

Z 1
�1

f .t/g.t/dt

and the Fourier transform

yf .k/ WD

Z 1
�1

f .t/e�iktdt; k 2 R:

For z 2 C1c .U;C/, we will denote by yz.k; u/ the “parallel” Fourier transform, i.e.,
the Fourier transform of t 7! z.t; u/ evaluated at k.

We can choose � such that k� 0k2
dt

is arbitrarily close to T T 0

T�T 0
, and we can choose

0 � � � 1 so that k�k2�0 � �0.U0/. Thus, k�� 0k2� can be chosen arbitrarily close to
T T 0

T�T 0
�0.U0/. Therefore, for every " > 0, there exists an � 2 C1c .U;C/ as in (6.4)

satisfying

kLv�k
2
� D 2

T T 0

T � T 0
�0.U0/C ": (6.5)

For � as in (6.4), Lemma 5.13 yields the following estimate.

Proposition 6.7. Let z 2 C1c .U
0;C/, and let k 2 R be such that yz.k; u/ D 0 for all

u 2 U 00. Then, we have˝
id�.�.z//

˛2
 
� 4kzk2�

�
hH i �

1

2
khid�.Lv�/i C

1

8
k2kLv�k

2
�

�
:

Proof. Since Œ�.z/; �.z/0� D 0 and Œ�; �0� D 0, we may apply Lemma 5.13. First, we
evaluate the left-hand side of inequality (5.12). Since �.t/�.u/ D t on supp.�.z//,
we have ad�.�.z// D �.2tiz/. Since Lv�.z/ D �.z

0/, we have

e�s ad�.Lv�.z// D �.z
0e�2its/:

As �.�.z/; Lv�/ D 0 for all z 2 C1c .U
0;C/, we have�

e�s ad� � 1
ad�

.Lv�.z//; Lv�

�
�

D

�
�

�
e�2tis � 1

2it
z0
�
; Lv�

�
�

D 0:
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On the right-hand side of inequality (5.12), we have kLv�.z/k
2
� D 2kz

0k2�. We thus
obtain ˝

id�.�.z0e�2ist //
˛2
 
� 4kz0k2�

�
hH i C shid�.Lv�/i C

s2

2
kLv�k

2
�

�
for all s 2 R and z 2 C1c .U

0;C/. Note that w 2 C1c .U
0;C/ is of the form w D

z0e�2ist for some z 2 C1c .U;C/ if and only if the parallel Fourier transform yw.k;u/
vanishes for k D �2s. Since in that case kwk2� D kz

0k2�, the proposition follows.

We thus obtain a 1-parameter family of inequalities indexed by k 2 R, the case
k D 0 reducing to the Cauchy–Schwarz estimate because yz.0; u/ D 0 is equivalent
to �.z/ 2 Dg. The idea of the following proposition is to lift the requirement that
the Fourier transform vanish by showing that every z 2 C1c .U

0;C/ can be written,
in a controlled way, as the sum of two functions whose parallel Fourier transform
vanishes for some k 2 R.

Proposition 6.8. There exist a; b 2 R such that, for all z 2 C1c .U
0;C/ for which

U 0 D I 0 � U 00 contained in U D I � U0, we have˝
id�.�.z//

˛2
 
� .aC bhH i /k�.z/k

2
� (6.6)

for constants a and b that depend on the interval lengths T D jI j and T 0 D jI 0j and
on �0.U0/, but not on z or  .

Proof. Let k be an arbitrary real number not equal to zero, and choose a function
� 2 C1c .I

0;C/ with y�.0/ ¤ 0 and y�.k/ D 0. (Such functions certainly exist. For
instance, one can choose �.t/ D ˛0.t/eikt for some ˛ 2 C1c .I

0;R/ with y�.0/ D
y̨0.�k/ D �ik y̨.�k/ 6D 0.) If we split z into z D z0 C zk with

zk.t; u/ WD yz.0; u/y�.0/
�1�.t/ and z0 WD z � zk;

then yz0.0;u/D 0 and yzk.k;u/D 0. We apply Proposition 6.7 separately to both terms
on the right-hand side of

jhid�.�.z//i j � jhid�.�.z0//i j C jhid�.�.zk//i j

to obtain

jhid�.�.z//i j � 2kz0k�
q
hH i C 2kzkk�

r
hH i C

k2

4

T T 0

T � T 0
�0.U0/:

(6.7)
Indeed, the term khid�.Lv�/i can be assumed non-positive by switching k with �k
and � with N� if necessary. The term kLv�k

2
� is then estimated by (6.5), and we take

the limit " # 0.
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Since jyz.0; u/j2 � T 0kz. � ; u/k2
dt

, we have kyz.0; � /k2�0 � T
0kzk2�. It follows that

kzkk� can be estimated in terms of kzk� as

kzkk� D kyz. � ; 0/k�0k
y�.0/�1�kdt �

p
T 0ky�.0/�1�kdtkzk�:

Similarly, kz0k� can be estimated in terms of kzk� by means of

kz0k� � kzk� C kzkk�

and the above estimate on kzkk�. Substituting this into (6.7), we derive the estimate

hid�.�.z//i2 � 4kzk
2
�

�
1C 2

p
T 0ky�.0/�1�kdt

�2�
hH i C

k2

4

T T 0

T � T 0
�0.U0/

�
:

(6.8)
Since k�.z/k2� D 2kzk

2
�, equation (6.8) is equivalent to (6.6) with the constants

a WD 2

�
k2

4

T T 0

T � T 0
�0.U0/

��
1C 2

p
T 0ky�.0/�1�kdt

�2
; (6.9)

b WD 2
�
1C 2

p
T 0ky�.0/�1�kdt

�2
: (6.10)

This completes the proof.

For �.z/ of the form (6.3) in a gauge algebra g D C1c .U
0; k/ with k D su.2;C/,

we can now prove an operator inequality of the form (6.2).

Proposition 6.9. There exist constants a; b 2 R, depending on T , T 0 and �0.U0/,
such that for all ˛; ˇ with ˛2 � a and 2˛ˇ � b, we have

˙ id�.�.z// � k�.z/k�.˛1C ˇH/ for z 2 C1c .U
0;C/ (6.11)

as an inequality of unbounded operators on H with domain containing H1.

Proof. Note that the inequality (6.11) is equivalent to

h ; id�.�.z// i2 � k�.z/k2�h ; .˛1C ˇH/ i2 for all  2 H1:

As ˇ2h ;H i2 � 0, this follows from Proposition 6.8 under the above conditions
on ˛ and ˇ.

Remark 6.10. The estimate (6.11) is rather crude for large energies, in the sense that
one expects d�.�/ �

p
H , not d�.�/ � H .

It will be convenient to gain more control over the constants a and b in Proposi-
tion 6.8, and the constants ˛; ˇ in Proposition 6.9. For this, we need to remove the
dependence on � in (6.9) and (6.10).



Continuity properties 54

Proposition 6.11. The constants a and b in Proposition 6.8 can be chosen as

a D
T

T � T 0

�
�0.U0/

T 0

�
�2b; (6.12)

with

b D 2

�
1C

2p
1 � .sin.�/=�/2

�2
: (6.13)

Here, � > 0 can be chosen at will.

Remark 6.12. It will be convenient to choose � D � . Then, b attains its minimal
value b D 18, and a D 18�2 T

T�T 0
�0.U0/
T 0

.

Proof. In (6.9) and (6.10), we need to minimize the expression
p
T 0ky�.0/�1�kdt

over all � 2 C1c .I
0;C/ with y�.k/D 0 and y�.0/¤ 0, where k 2 R� is arbitrary. Since

y�.k/ D heikt ; �idt and y�.0/ D h1; �idt , this amounts to maximizing

F.�/ WD
�p
T 0ky�.0/�1�kdt

��1
D
jh1; �idt j

k1kdtk�kdt
:

Since F is continuous on L2.I 0/ n ¹0º, and C1c .I
0;C/ is dense in L2.I 0/, F.�max/

is maximal on the projection �max of 1 on the orthogonal complement of the function
eikt 2 L2.I 0/. This is essentially a two-dimensional problem in the space spanned by

e0 WD
1
p
T 0
1 and ek WD

1
p
T 0
eikt ;

with

he0; e0i D hek; eki D 1 and he0; eki D
sin.kT 0=2/
kT 0=2

: (6.14)

It follows that �max D e0 � hek; e0iek , and F.�max/D
p
1 � jhe0; ekij2. Using (6.14),

we find

F.�max/ D

s
1 �

�
sin.kT 0=2/
kT 0=2

�2
: (6.15)

Equations (6.12) and (6.13) are now obtained from (6.9) and (6.10) with k D 2�=T 0

by substituting the maximal value (6.15) for F.�/ D .
p
T 0ky�.0/�1�kdt /

�1.

6.2.2 The local gauge algebra with compact simple fibers

We now extend Proposition 6.8 to the case where k is an arbitrary compact simple
Lie algebra. With I 0 � U 00 and I � U0 a good pair of flowboxes (cf. Definition 6.4),
we consider gU 0 WD C

1
c .I

0 �U 00; k/ and gU WD C
1
c .I �U0; k/ as subalgebras of the

Lie algebra g D �c.M;K/.
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Lemma 6.13. Let d� be a positive energy representation of yg, and let � > 0. Then,
we have

˙ id�.�/ � k�k�
�
K.�/1C �H

�
for all � 2 gU 0 ; (6.16)

where K.�/ is a constant independent of � . More precisely,

K.�/ D max
�
9dk=�; 3�

r
2dk

T

T � T 0
�0.U0/

T 0

�
; (6.17)

where dk is the dimension of k.

Proof. Using the root decomposition of kC with respect to the complexification tC

of a maximal abelian subalgebra t � k, one obtains a basis .X1; : : : ; Xdk
/ of k with

�.Xi ; Xj / D 2ıij , where �� is the Killing form of k and such that every Xj is con-
tained in some su.2;C/-triple in k [42, Proposition 6.45]. Every � 2 gU 0 can then be
written as � D

P
i fiXi for fi 2 C1c .U

0
0 � I

0;R/. Since every Xi is contained in an
su.2;C/-triple, we can apply Proposition 6.9 to fiXi 2 gU 0 with z D fi . We obtain

˙id�.fXi / � kfXik�.˛1C ˇH/;

and thus

˙id�.�/ �
� dkX
iD1

kfXik�

�
.˛1C ˇH/:

As the different terms fiXi are orthogonal, we have
Pdk

iD1 kfiXik� �
p
dkk�k�, and

we obtain
˙ id�.�/ � k�k�

�p
dk˛1C

p
dkˇH

�
: (6.18)

By Proposition 6.9, we are allowed to choose any ˛ and ˇ with ˛2 � a and 2˛ˇ � b.
Following Remark 6.12, we take aD 18�2�.�0.U0/=T 0/ and bD 18. The inequality
(6.18) therefore holds for any value of ˇ > 0 if we set

˛ D max
�
9=ˇ; 3�

r
2

T

T � T 0
�0.U0/

T 0

�
: (6.19)

Inequality (6.16) now follows from (6.18) with ˇ D �=
p
dk and K.�/ D

p
dk˛.

Proposition 6.14. For all � 2 gU 0 and t > 0, the spectrum of tH ˙ id�.�/ is bounded
below. More precisely,

�max

 
9dkk�k

2
�=t; 3�k�k�

r
2dk

T

T � T 0
�0.U0/

T 0

!
� inf

�
Spec.tH ˙ id�.�//

�
:

(6.20)

Proof. If k�k� D 0, then d�.�/ D 0 by Corollary 6.3. In that case, (6.20) simply
follows from the fact that H has non-negative spectrum. If k�k� ¤ 0, we apply
Lemma 6.13 with � D t=k�k�.
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6.2.3 Global estimates and the bounding function

We need to derive suitable estimates of the type (6.16) globally, on the full Lie algebra
�c.M;K/ rather than merely on C1c .U; k/. In this section, we show how to do this
for compact as well as noncompact manifolds M , under the assumption that vM is
nowhere vanishing.

For compact manifolds, we will derive an estimate of the form (6.16), albeit with
a larger constant K.�/. In the noncompact case, however, the expression k�k�K.�/
in (6.16) will have to be replaced by k�kB"�, where B"WM ! RC is a suitable upper
semi-continuous function on M that is invariant under the flow, and k�kB"� is the
L2-norm of � 2 �c.M;K/ with respect to the measure B"�,

k�k2B"� D h�; �iB"�; h�; �iB"� D

Z
M

�.�; �/B".m/d�.m/: (6.21)

In this setting, we will prove that

˙id�.�/ � k�kB"�1C "k�k�H for all � 2 �c.M;K/:

Note that, since vM is nowhere vanishing on M , every m 2 M is contained in a
good pair of flow boxes in the sense of Definition 6.4.

Definition 6.15. For m 2 M , define b.m/ as the infimum of the set of numbers
T

T�T 0
�0.U0/
T 0

, ranging over all good pairs of flowboxes U 0 b U containing m.

Proposition 6.16. The function bWM ! RC is invariant under the flow .M;t /t2R.
Further, it is upper semi-continuous, hence, in particular, measurable.

Proof. The invariance under the flow follows from the fact that U 0 � U is a good
pair of flow boxes aroundm if and only if M;t .U 0/ � M;t .U / is a good pair of flow
boxes around M;t .m/. For the upper semi-continuity, note that for every " > 0, there
is a good pair of flowboxes U 0 � U around m such that

T

T � T 0
�0.U0/

T 0
< b.m/C ":

For everym0 in the open neighborhood U 0 ofm, we thus have b.m0/ � b.m/C ".

Theorem 6.17. Let d� be a positive energy representation of yg, and let " > 0. Then,
we have

˙ id�.�/ � k�kB"�1C "k�k�H for every � 2 �c.M;K/: (6.22)

Here, B"WM ! RC is the upper semi-continuous function defined by

B".m/ WD max
�
81d2k .dM C 1/

4="2; 18�2dk.dM C 1/
2b.m/

�
; (6.23)

with b.m/ as in Definition 6.15. It is invariant under the flow .M;t /t2R.
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Proof. Let d be a Riemannian metric on M for which M is complete, so that closed
bounded subsets of M are compact by the Hopf–Rinow theorem. Let V �M be the
compact support of � 2 �c.M;K/. Since b is upper semi-continuous, the functions
ˇnWM ! RC defined by

ˇn.m/ WD sup¹b.m0/I d.m;m0/ � 1=nº

constitute a decreasing sequence converging pointwise to b as n!1. We now show
that the functions ˇn are upper semi-continuous. To see this, note that, for every
m0 2M and every " > 0, there exists an n 2 N with b.m/ < b.m0/ C "=2 for m
in the closed ball xW2=n.m0/ with radius 2=n around m0. Since this ball is compact,
it contains finitely many mi such that it is covered by open neighborhoods Oi of mi
such that b.m/ � b.mi /C "=2 for all m 2 Oi . If d.m; m0/ < 1

n
, then W1=n.m/ �S

i Oi , so that ˇn.m/ < ˇn.m0/C ". In particular, ˇn is measurable, and bounded on
the compact set V .

For every n 2 N, choose a cover of V by finitely many open balls Wri .mi / of
radius ri � 1=n aroundmi , with the property thatWri .mi /� U

0 b U for a good pair
U 0 b U of flow boxes with T

T�T 0
�0.U0/
T
� b.mi /C 1=n. Since b.mi / � ˇn.m/ for

all m 2 Wri .mi /, it follows that

T

T � T 0
�0.U0/

T
� ˇn.m/C 1=n for all m 2 Wri .mi /: (6.24)

By the Brouwer–Lebesgue paving principle [44, Theorem V1], there exists a finite
subcover .Wj /j2J with the property that every point m 2 V is contained in at most
dM C 1 sets.

Let 'j be a partition of unity with respect to .Wj /j2J . By Lemma 6.13, applied
to � WD "=.dM C 1/, we obtain˙id�.'j �/ � k'j �k�.Kj .�/1C �H/, where Kj .�/
is given by (6.17) for a good pair of flowboxes U 0 b U containing Wj . From (6.17)
and (6.24), we find that

Bn;�.m/ WD max
�
.9dk=�/

2; 18�2dk.ˇn.m/C 1=n/
�
� Kj .�/

2 for all m 2 Wj :

As k'j �k�K.�/ � k'j �kBn;��, we have ˙id�.'j �/ � k'j �kBn;��1 C �k'j �k�H
for all j 2 J , and thus

˙id�.�/ �
�X
j2J

k'j �kBn;��

�
1C �

�X
j2J

k'j �k�

�
H:

Since k.'j �/.m/k� � k�.m/k� , and since at most dM C 1 of the values 'j .m/ are
non-zero, it follows thatX

j2J

k'j �k� � .dM C 1/k�k� and
X
j2J

k'j �kBn;�� � .dM C 1/k�kBn;��;
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so that
˙ id�.�/ � .dM C 1/.k�kBn;��1C �k�k�H/: (6.25)

To obtain (6.22) from (6.25), recall that �WD"=.dMC1/. The second term on the right
is thus .dMC1/�k�k�D"k�k�, as required. For the first term, note that ˇnC1=n
is a bounded, decreasing sequence converging pointwise to b on V . The bounded,
decreasing sequence .dM C 1/2Bn;�.m/ thus converges to B".m/ in (6.22), where
" D .dM C 1/�. By the dominated convergence theorem, we find that, for n!1,
the squared norm ..dM C 1/k�kBn;�/

2 approachesZ
V

k�k2�.dM C 1/
2Bn;�d�.m/!

Z
V

k�k2�B"d�.m/ D k�k
2
B"�

:

Since (6.25) holds for every n 2 N, the proposition follows.

Note that if the function bWM !RC of Definition 6.15 is bounded, then so is B".
If we define K."/2 WD kB"k1, then we recover the inequality

˙ id�.�/ � k�k�.K."/1C "H/; (6.26)

since k�kB"� � K."/k�k�. This happens, in particular, if M is compact because the
upper semi-continuous function B" is then automatically bounded.

Corollary 6.18. Suppose that M is compact and vM is nowhere vanishing on M .
Then, for every " > 0, there exists a constant K."/ > 0 such that (6.26) holds for all
� 2 �.M;K/.

Another important situation in which B" is bounded is for product manifolds of
the form M D R �†.

Corollary 6.19. Suppose thatM 'R�† with vM D @
@t

. Then, the inequality (6.26)
holds for the compactly supported gauge algebra gD�c.M;K/, with constantK."/D
9dk.dM C 1/

2=" depending on M and K only through the dimension.

Proof. For .t; x/ 2 R � †, choose U 00 b U0 � † with U0 � † relatively compact,
and x 2 U 00. For T 0 sufficiently large, .t; x/ is contained in the good pair of flowboxes
U 0 D U 00 � .�T

0=2; T 0=2/, and U D U0 � .�T=2; T=2/ for T D 2T 0. Since

T

T � T 0
�0.U0/

T 0
D 2�0.U0/=T

0

approaches 0 for T 0 !1, it follows that b.t; x/ D 0. In particular,

B".m/ D 81d
2
k .dM C 1/

4="2

is constant, and the result follows.



Extending representations to Sobolev spaces 59

6.3 Extending representations to Sobolev spaces

In this section, we extend the map d� to the Hilbert completion L2B�.M;K/ of g=I�
with respect to the inner product (6.21) corresponding to B"�.

Note that since k�k� is dominated by a multiple of k�kB"�, the inner product
h�; �i� is continuous on L2B�.M;K/. As the difference between k�kB"� and k�kBz"�
for "; z" > 0 is a multiple of k�k�, the space L2B�.M;K/ and its topology are indepen-
dent of ". (This is why we omit " from the notation in L2B�.M;K/.)

6.3.1 The completion L2
B�

.M; K/ in L2-norm

We use Theorem 6.17 to extend d� from g to L2B�.M;g/. Define

�� D k�kB"�1C "k�k�H;

and note that its domain D.��/ is contained in the domain D.H/ of H . With this
notation, (6.22) becomes

0 � �� ˙ id�.�/; (6.27)

as an inequality of unbounded operators on H1. Further, define

A WD 1CH with D.A/ D D.H/: (6.28)

Proposition 6.20. Let 0 < " � 1. There exists a map r from L2B�.M;K/ to the un-
bounded, skew-symmetric operators on H such that D.r.�// contains D.H/ for
all � 2 L2B�.M;K/, r.�/jH1 D d�.�/ for all � 2 g, and, for all  2 D.H/, the
functional

L2B�.M;K/! C defined by � 7! hr.�/i 

is continuous. Furthermore, there exists a continuous map

�WL2B�.M;K/! B.H /

into the bounded operators such that k�.�/k � k�kB"�, �.�/ is skew-hermitian, �.�/
leaves the domain of A1=2 invariant, and

r.�/ D A1=2�.�/A1=2;

as an equality of unbounded operators on D.H/.

Proof. Let �n be a sequence in g=I� for which k� � �nkB"� ! 0, and hence also
k� � �nk� ! 0. Without loss of generality, we assume that k� � �nkB"� �

1
2

and
"k� � �nk� �

1
2

for all n, so that

�� � ��n C A �
1

2
A: (6.29)
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Define the sesquilinear forms

B˙n WH
1
�H1 ! C; B˙n . ; �/ WD

˝
 ; ..�� C A/˙ id�.�n//�

˛
:

The forms B˙n are positive definite; combining (6.29) with inequality (6.27) applied
to �n, we find

B˙n . ;  / � h ; .�� � ��n C A/ i �
1

2
h ;A i �

1

2
k k2: (6.30)

By (6.27) and the convergence of �n, we find that BCn . ;  / is a Cauchy sequence
for every  2 H1,

jBCn . ;  / � B
C
m . ;  /j D jh ; id�.�n � �m/ ij � h ;��n��m i ! 0:

It follows thatBC. ;�/ WD limn!1B
C
n . ;�/ defines a positive definite, sesquilinear

form H1 �H1! C. Here we use that the estimate (6.30) is independent of n. The
same argument applies to B�. ; �/ WD limn!1 B

�
n . ; �/. Note that

1

2
h ;A i � B˙. ;  / � h ; .2�� C A/ i � c�h ;A i (6.31)

for some c� > 0. The forms B˙ therefore extend uniquely to closed, sesquilinear
forms xB˙WD.A1=2/ � D.A1=2/ ! C. In turn, the forms xB˙ define a Friedrichs
extension; a closed, possibly unbounded positive operator b˙.�/WD.H/! H , such
that xB˙. ; �/ D h ; b˙.�/�i for all  ; � 2 D.H/ (cf. [25, Appendix I.A.2]). Set

r.�/ WD
1

2i
.bC.�/ � b�.�//:

Since bC.�/ and b�.�/ are selfadjoint, r.�/ is skew-symmetric. If � 2 g, then

h ; r.�/�i D h ; d�.�/�i for all  ; � 2 H1;

so r.�/ is an extension of d�.�/.
Define

�.�/WD.A1=2/! D.A1=2/; �.�/ WD A�1=2r.�/A�1=2:

Then, for  ; � 2 D.A1=2/, we have A�1=2 ;A�1=2� 2 D.H/. Therefore,

h ; �.�/�i D �h�.�/ ; �i D
1

2i
. xBC � xB�/.A�1=2 ;A�1=2�/: (6.32)

By (6.31) and Cauchy–Schwarz, we have

j xB˙. ; �/j � c�kA
1=2 kkA1=2�k;
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so jh ; �.�/�ij � c�k kk�k by (6.32). Therefore, �.�/ extends to a hermitian oper-
ator on H . As such, the operator norm k�.�/k is the supremum of jh ; �.�/ ij over
all  in the unit sphere of H . For  2 A1=2H1, (6.27) yields

jh ; �.�/ ij D lim
n!1

jhA�1=2 ; d�.�n/A�1=2 ij � h ;A�1=2��A�1=2 i:

We claim that

A�1=2��A
�1=2
� k�kB"� for 0 < " < 1: (6.33)

In fact, since �� and A commute, this is equivalent to �� � Ak�kB�, which in turn is
equivalent to

k�kB"�1C "k�k�H � k�kB"�.1CH/

and this to "k�k� � k�kB"�, which, for " < 1, follows from the estimate

B" � 81d
2
k .dM C 1/

4="2 > 1:

With (6.33), we find

jh ; �.�/ ij � k�kB"�k k
2 for  2 A1=2H1:

To prove that k�.�/k � k�kB"�, it therefore suffices to show that A1=2H1 is dense
in H . First, we show thatAH1 is dense in H . Since exp.i tA/D eit exp.i tH/ leaves
the space H1 of smooth vectors invariant, the restriction A0 of A to H1 is essen-
tially selfadjoint [95, Section VIII.4]. Suppose that ?A0H1. Then, 2D.A�0/D

D.A/, and A�0 D A D 0. Since A is injective,  D 0 and AH1 is dense in H .
Applying the contraction A�1=2, we find that A1=2H1 is dense in A�1=2H . Since
A�1=2H D D.A1=2/ is dense in H , we conclude that A1=2H1 is dense in H , as
required.

For s 2 R, denote by Hs the Hilbert space completion of D.As/ with respect to
the inner product

h ; �is D hA
s ;As�i:

Denote the corresponding norm by k ks D kAs k, and denote the norm of a con-
tinuous operator AWHs ! Ht by kAks;t . As

r.�/ D A1=2�.�/A1=2

with k�.�/k � k�kB"�, the operator r.�/WD.A/!H extends to a bounded operator
r.�/WH1=2 ! H�1=2, with

kr.�/ k�1=2 � k�kB"�k k1=2: (6.34)

We thus have
kr.�/k1=2;�1=2 � k�kB"�:
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6.3.2 The completion in Sobolev norm

Note that convergence of �n to � in L2B�.M;K/ only implies weak operator conver-
gence of r.�n/ to r.�/, as operators on the pre-Hilbert space D.H/. In this section,
we define a subspace H 1

B�.M;K/ of L2B�.M;K/ where convergence to � implies
strong convergence to r.�/.

Definition 6.21 (Parallel Sobolov spaces). For k � 0, the parallel Sobolev norm qk
is defined by

qk.�/ WD

kX
nD0

k�kn; where k�kn WD kDn�kB"�:

The parallel Sobolev space H k
B�.M;K/ � L

2
B�.M;K/ is the Banach completion of

g=I� with respect to the norm qk .

Proposition 6.22. Let r be as in Proposition 6.20. If � 2H k
B�.M;K/, then r.�/maps

D.H kC1/ into D.H k/. For k D 1, we have

ŒH; r.�/� D ir.D�/ (6.35)

as an equality of unbounded operators on D.H 2/. Furthermore, if � 2 H k
B�.M;K/,

then r.�/ extends to a continuous operator HkC1=2 ! Hk�1=2 with

kr.�/ kk�1=2 �

kX
jD0

�
k

j

�
k�kj k kk�jC1=2: (6.36)

Finally, for all � 2H 1
B�.M;K/, the skew-symmetric operator r.�/ is essentially skew-

adjoint.

Proof. We prove that for � 2 H k
B�.M;K/, r.�/ maps D.H kC1/ into D.H k/. We

proceed by induction on k. SinceH 0
B�.M;K/D L

2
B�.M;K/, the case k D 0 follows

from Proposition 6.20. Suppose that the statement holds for all � 2 H k
B�.M;K/. For

� 2H kC1
B� .M;K/ and 2D.H kC2/, we show that r.�/ 2D.H kC1/. SinceH kC1

is selfadjoint, it suffices to show that � 7! hr.�/ ; H kC1�i is a continuous, linear
functional on H1 with respect to the subspace topology induced by the inclusion
in H .

Let �n 2 g=I� be a sequence such that �n ! � and D�n ! D� in L2B�.M;K/.
Since Hr.�n/ D r.�n/H C ir.D�n/ on H1, we have

hr.�/ ;H kC1�i D � lim
n!1
h ; r.�n/H

kC1�i

D � lim
n!1
hH ; r.�n/H

k�i C lim
n!1
h ; ir.D�n/H

k�i

D hr.�/H C ir.D�/ ;H k�i: (6.37)
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As  2 D.H kC2/, both H and  are in D.H kC1/. Since � 2 H kC1
B� .M;K/, we

have �;D� 2 H k
B�.M;K/, so that r.�/H C ir.D�/ 2 D.H k/ by the induction

hypothesis. From (6.37), we thus find that

hr.�/ ;H kC1�i D
˝
H k.r.�/H C ir.D�/ /; �

˛
;

which is manifestly continuous in the variable �. We conclude that r.�/ maps the
domain D.H kC2/ to D.H kC1/. Moreover, for k D 0, we find that

Hr.�/ � r.�/H � ir.D�/

vanishes on D.H 2/.
The inequality (6.36) is proven in a similar fashion. Assume by induction that

(6.36) holds for all � 2 H k
B�.M;K/ and  2 HkC1=2, the case k D 0 being (6.34).

We recall that k ks D kAs k with A D 1CH (see (6.28)). For � 2 H kC1
B� .M;K/

and  2 HkC3=2, we use Ar.�/ D r.�/A C ir.D�/ to see that

kr.�/ kkC1=2 D kAr.�/ kk�1=2 � kr.�/A kk�1=2 C kr.D�/kk�1=2:

By the induction hypothesis with kA kk�jC1=2 D k k.kC1/�jC1=2 (for the first
term) and kD�kjDk�kjC1 (for the second), we find that kr.�/ kkC1=2 is bounded by

kX
jD0

�
k

j

�
k�kj k k.kC1/�jC1=2 C

kX
jD0

�
k

j

�
k�kjC1k kk�jC1=2:

Since
�
k
j

�
C
�
k
j�1

�
D
�
kC1
j

�
, we have

kr.�/ kkC1=2 �

kC1X
jD0

�
k C 1

j

�
k�kj k kkC1�jC1=2;

as required.
Finally, if � 2 H 1

B�.M;K/, then �; D� 2 L2B�.M;K/. By (6.34), the operators
r.�/ and ŒA; r.�/�D ir.D�/ from D.H/ to H extend continuously to bounded oper-
ators H1=2 ! H�1=2. It then follows from a result of Nelson [87, Proposition 2] that
r.�/ is essentially skew-adjoint.

If we estimate k�kj � qk.�/ and k kk�jC1=2 � k kkC1=2 in (6.36), we find that
r.�/WHkC1=2 ! Hk�1=2 satisfies

kr.�/ kk�1=2 � 2
kqk.�/k kkC1=2;

so the linear map H k
B�.M;K/ �HkC1=2 ! Hk�1=2 defined by .�;  / 7! r.�/ is

jointly continuous. For k D 1, we find from (6.36) the slightly stronger estimate

kr.�/ k � kr.�/ k1=2 � q1.�/kA
3=2 k: (6.38)



Continuity properties 64

In particular, convergence of �n to � in H 1
B�.M;K/ implies strong convergence of

r.�n/ to r.�/ on D.A3=2/.

6.4 Sobolev–Lie algebras

Having established that the positive energy representation d� extends to a contin-
uous map r on H k

B�.M;K/, we would like to determine whether r gives rise to a
Lie algebra representation. Since the spaces H k

B�.M;K/ do not inherit the Lie alge-
bra structure from g=I�, we introduce two spaces of bounded Sobolev sections of
K!M , both equipped with the pointwise Lie bracket.

For an open subset N � M , we define the Lie algebra H k
b
.N;K/ of bounded

parallel Sobolev sections, and a certain subalgebra H k
@
.N;K/ of sections that vanish

to order k at the boundary of the 1-point compactification ofN . As before, the under-
lying measure is the restriction to N of the flow-invariant measure B"� on M . For
convenience of notation, we will denote this measure by � D B"�.

6.4.1 The Lie algebra L2
b
.N; K/ of bounded L2-sections

Let N be an open subset of M , and let � be a measurable section of K! N . Then,

k�k� D
p
�.�; �/

is a measurable function on N . We define k�k1 to be the essential supremum of
k�k� with respect to �, and we define L1.N;K/ to be the Lie algebra of equivalence
classes of essentially bounded, measurable sections of K! N . This is a Banach–Lie
algebra with respect to the norm k�k1, and the Lie bracket coming from the point-
wise bracket of sections. We define L2

b
.N;K/ to be the space of equivalence classes

of sections which are both essentially bounded and square integrable with respect to
�. Since both L2.N;K/ and L1.N;K/ are complete, it follows that L2

b
.N;K/ is a

Banach space with respect to the norm k�k� C k�k1.
Let ck be a constant such that

kŒX; Y �k� � ckkXk�kY k� (6.39)

for all X; Y 2 k. Then, we find

kŒ�; ��k� � ckk�k1k�k� ; (6.40)

kŒ�; ��k1 � ckk�k1k�k1: (6.41)

It follows that the Lie bracket Œ � ; � �WL2
b
.N;K/�L2

b
.N;K/!L1.N;K/ takes values

in L2
b
.N;K/ and is continuous with respect to the norm p0.�/ WD k�k� C k�k1.

In particular, L2
b
.N;K/ is a Banach–Lie algebra, and the inclusion L2

b
.N;K/ ,!

L1.N;K/ is a continuous homomorphism of Banach–Lie algebras. If N � N 0, then
L2
b
.N;K/ is a subalgebra of L2

b
.N 0;K/ in the natural fashion.
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6.4.2 The “parallel” Sobolev–Lie algebras H k
b

.N; K/

Recall from Definition 4.6 that a one-parameter group .t /t2R of automorphisms of
K!M gives rise to a one-parameter group .˛t /t2R of automorphisms of

g D �c.M;K/:

In the same way, we obtain a one-parameter group of automorphisms of L2
b
.M;K/.

Indeed, since the Killing form is invariant under automorphisms, k˛t .�/k� D
k�k� ı M;t , so that, in particular, k˛t .�/k1 D k�k1. Further, since the measure
� D B"� is invariant under the flow M;t (Theorem 5.7), we find k˛t .�/k� D k�k� .

Since ˛t is a one-parameter group of unitary transformations of the Hilbert space
L2�.M;K/, it is generated by a skew-adjoint operator D. We define H 1

� .N;K/ to
be the intersection of its domain with L2�.N;K/, and we define H 1

b
.N;K/ to be

the space of all � 2 H 1
� .N;K/, where both k�k1 and kD�k1 are finite. In other

words, H 1
b
.N;K/ is the space of equivalence classes of essentially bounded, square

integrable sections � of K! N such that the L2-limit

D.�/ WD L2- lim
t!0

1

t
.˛t .�/ � �/

exists, and kD.�/k1 is finite.

Proposition 6.23. The space H 1
b
.N;K/ is a Lie subalgebra of L2

b
.N;K/, and the

generator DWH 1
b
.N;K/! L2

b
.N;K/ satisfies

D.Œ�; ��/ D ŒD.�/; ��C Œ�;D.�/� for all �; � 2 H 1
b .N;K/: (6.42)

Proof. Let �; � 2H 1
b
.N;K/, and denote by L2-lim the limit with respect to the norm

k�k� . First, we show that Œ�; �� is in the domain of D:

D.Œ�; ��/ D L2- lim
t!0

1

t
.˛t .Œ�; ��/ � Œ�; ��/

D L2- lim
t!0

ŒD�; ˛t .�/�C L
2- lim
t!0

�
1

t
.˛t .�/ � �/ �D.�/; ˛t .�/

�
C L2- lim

t!0
Œ�;
1

t
.˛t .�/ � �/� D ŒD�; ��C Œ�;D��:

In the last step, we used the inequality (6.40) three times. Since kD�k1 is bounded
and L2-limt!0 ˛t .�/ D �, it follows from (6.40) that the first term is given by

L2- lim
t!0

ŒD�; ˛t .�/� D ŒD�; ��:

Similarly, since k�k1 is bounded andL2-limt!0
1
t
.˛t .�/� �/DD.�/, the third term

equals Œ�;D.�/�. To see that the second term is zero, note that k˛t .�/k1 D k�k1. It
then follows from (6.40) and the fact that L2-limt!0

1
t
.˛t .�/ � �/ �D.�/ D 0.
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This shows not only that Œ�; �� is in the domain of D, but also that (6.42) holds.
By (6.41), it follows that kD.Œ�; ��/k1 � ck.kD�k1k�k1Ck�k1kD�k1/ is finite,
so that Œ�; �� 2 H 1

b
.N;K/.

This allows us to define parallel Sobolev–Lie algebras of order k 2 N. We set

H 0
b .N;K/ WD L

2
b.N;K/;

and define H 1
b
.N;K/ as above. For k � 2, we define H k

b
.N;K/ as

H k�1
b .N;K/ \D�1.H k�1

b .N;K//:

In other words, � is in H k
b
.N;K/ if both � and D� are in H k�1

b
.N;K/.

Proposition 6.24. The space H k
b
.N;K/ is a Lie subalgebra of H k�1

b
.N;K/.

Proof. The proof is by induction on k, where k D 1 is Proposition 6.23. If �; � 2
H k
b
.N;K/, then �;D.�/; �;D.�/ 2H k�1

b
.N;K/. SinceH k�1

b
.N;K/ is a Lie algebra,

it follows that D.Œ�; ��/ D ŒD.�/; �� C Œ�; D.�/� is in H k�1
b

.N;K/. Thus, Œ�; �� 2
H k
b
.N;K/, as required.

On H k
b
.N;K/, we define for every n 2 ¹0; : : : ; kº the derived norms

k�kn;1 WD kD
n�k1 and k�kn WD kD

n�k� :

The parallel C k-norm qCk and the parallel Sobolev norm qk are defined by

qCk .�/ WD

kX
nD0

k�kn;1 and qk.�/ WD

kX
nD0

k�kn; (6.43)

respectively. We equipH k
b
.N;K/ with the topology derived from the combined norm

pk.�/ WD

kX
nD0

k�kn;1 C k�kn: (6.44)

Note that for � 2H k
b
.N;�/, we have pk�1.�/�pk.�/, but also pk�1.D.�// � pk.�/.

It follows that both the inclusion �WH kC1
b

.N;K/ ,! H k
b
.N;K/ and the derivative

DWH kC1
b

.N;K/! H k
b
.N;K/ are continuous.

Proposition 6.25. For every k � 0, H k
b
.N;K/ is a Banach–Lie algebra with respect

to the norm pk . The Lie bracket is separately continuous with respect to the Sobolev
norm qk .

Proof. By the derivation property and (6.39), we have

kDn.Œ�; ��/k� � ck

nX
jD0

�
n

j

�
kDj �k�kD

n�j�k� :
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Since kŒ�; ��kn D kDn.Œ�; ��/k� and kŒ�; ��kn;1 D kDn.Œ�; ��/k1, it follows that

kŒ�; ��kn � ck

nX
jD0

�
n

j

�
k�kj;1k�kn�j ;

kŒ�; ��kn;1 � ck

nX
jD0

�
n

j

�
k�kj;1k�kn�j;1:

Taking n D k and estimating the binomial coefficients by 2k , it follows that

qk.Œ�; ��/ � 2
kckqCk .�/qk.�/; (6.45)

qCk .Œ�; ��/ � 2
kckqCk .�/qCk .�/: (6.46)

This shows that the Lie bracket is continuous for the norm pk , and separately contin-
uous for the Sobolev norm qk .

To show that H k
b
.N;K/ is complete, we note that H 0

b
.N;K/ D L2

b
.N;K/ is a

Banach space, and proceed by induction on k. Let �n 2 H k
b
.N;K/ be a sequence

with pk.�n � �m/! 0. Then, pk�1.�n � �m/! 0 and pk�1.D.�n/ �D.�m//! 0,
so by induction, there exist �;„ 2 H k�1

b
.N;K/ with

pk�1.� � �n/! 0 and pk�1.„ �D.�n//! 0:

SinceDWH 1
� .M;K/!L2.M;K/ is the generator of a strongly continuous 1-parame-

ter group of unitary operators, Stone’s theorem implies that it is selfadjoint, and
hence, in particular, closed. It follows that � lies in the domain of D, and D.�/ D „
lies in H k�1

b
.N;K/. Thus, � 2 H k

b
.N;K/, and

pk.� � �n/ � pk�1.� � �n/C pk�1.D.�/ �D.�n//! 0:

We denote by H1
b
.N;K/ the Fréchet–Lie algebra arising from the inverse limit

of the Banach–Lie algebras H k
b
.N;K/ with respect to the natural inclusions

�WH kC1
b

.N;K/ ,! H k
b .N;K/:

The derivative DWH1
b
.N;K/! H1

b
.N;K/ is a continuous derivation, giving rise

to the Fréchet–Lie algebra H1
b
.N;K/ ÌRD.

6.4.3 Boundary conditions and the Lie algebras H k
@

.N; K/

Let H 1
@
.N;K/ be the closure of �c.N;K/ in H 1

b
.N;K/ with respect to the parallel

Sobolev norm q1.�/ D k�k� C k�k1;� .

Proposition 6.26. The space H 1
@
.N;K/ is a closed Lie subalgebra of H 1

b
.N;K/. In

particular, it is a Banach–Lie algebra with respect to the subspace topology, induced
by the norm p1.�/ of (6.44).
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Proof. Since H 1
@
.N;K/ is by definition closed with respect to the Sobolev norm

q1.�/, it is a fortiori closed with respect to the larger norm p1.�/ that defines the
Banach space topology onH 1

b
.N;K/. AsH 1

@
.N;K/ is a closed subspace of a Banach

space, it is a Banach space itself.
It remains to show that H 1

@
.N;K/ is closed under the Lie bracket. For every

� 2 H 1
b
.N;K/, the linear operator ad� WH 1

b
.N;K/! H 1

b
.N;K/ is continuous with

respect to the norm q1.�/, as

q1.ad�.�// � 2ckqC1.�/q1.�/

by (6.45). If � 2 �c.N;K/, then ad.�/ maps �c.N;K/ to �c.N;K/. As ad� is con-
tinuous for the norm q1, it also maps H 1

@
.N;K/ to H 1

@
.N;K/. It follows that, for all

� 2 H 1
@
.N;K/, ad� maps �c.N;K/ to H 1

@
.N;K/. By continuity with respect to q1,

it therefore maps H 1
@
.N;K/ to H 1

@
.N;K/, and we conclude that H 1

@
.N;K/ is closed

under the Lie bracket.

For k � 2, we define H k
@
.N;K/ as the space of all � 2 H k

b
.N;K/ such that both

� and D.�/ lie in H k�1
@

.N;K/.

Proposition 6.27. The space H k
@
.N;K/ is a closed Lie subalgebra of H k

b
.N;K/. In

particular, it is a Banach–Lie algebra with respect to the subspace topology, induced
by the norm pk.�/ of (6.44).

Proof. We proceed by induction on k, the case k D 1 being Proposition 6.26. Recall
that both the inclusion �WH k

b
.N;K/ ,! H k�1

b
.N;K/ and the derivative

DWH k
b .N;K/! H k�1

b .N;K/

are continuous. Since

H k
@ .N;K/ D �

�1.H k�1
@ .N;K// \D�1.H k�1

@ .N;K//

is the intersection of two closed subspaces, it is a closed subspace ofH k
b
.N;K/ itself.

To show that it is closed under the Lie bracket, suppose that �; � 2 H k
@
.N;K/, so that

�; �; D�;D� 2 H k�1
@

.N;K/. As H k�1
@

.N;K/ is a Lie algebra, it follows that Œ�; ��
and D.Œ�; ��/ D ŒD.�/; ��C Œ�; D.�/� are both in H k�1

@
.N;K/. From this, one sees

that also Œ�; �� 2 H k
@
.N;K/.

Note that the 2-cocycle !.�; �/ D hD�; �i� on g is continuous for the Sobolev
norm q1.�/ and hence extends uniquely toH k

@
.N;K/. This defines a continuous cen-

tral extension of H k
@
.N;K/,

RC ˚! H
k
@ .N;K/:
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Define the Fréchet–Lie algebraH1
@
.N;K/ as the inverse limit of the Banach–Lie

algebras H k
@
.N;K/ under the natural inclusions H k

@
.N;K/! H k�1

@
.N;K/. Since

DWH1
@
.N;K/!H1

@
.N;K/ is a continuous derivation, we obtain the double exten-

sion of Fréchet–Lie algebras�
RC ˚! H

1
@ .N;K/

�
ÌRD:

6.4.4 Intervals and blocks

Suppose thatN '†� I , where I �R is an open, not necessarily finite interval with
the Lebesgue measure dt , and † is a .dM � 1/-dimensional manifold with locally
finite measure �0. The bundle KjN ' N � k is trivial, and the translation by t 0 sends
.x; t/ to .x; t � t 0/ wherever it is defined. In this cartesian product situation, it will be
useful to separate the variables in † from those in I .

Define a bilinear map

T WL2b.†;R/ � L
2
b.I; k/! L2b.N; k/; T .f; �/.x; t/ D f .x/�.t/:

It is continuous since kf �k� D kf k�0k�kdt and kf �k1 D kf k1k�k1.

Proposition 6.28. The product T .f; �/ D f � defines a continuous bilinear map

T WL2b.†;R/ �H
k
@ .I; k/! H k

@ .N; k/:

Proof. Since kf �k� D kf k�0k�kdt , and since time translation acts only on � , it fol-
lows that f � 2D.D/ if and only if � 2D.D/, andD.f �/D fD.�/. From this, one
derives that T maps L2

b
.†;R/ �H k

b
.I; k/ to H k

b
.N; k/, with kf �kn D kf k�0k�kn

and kf �kn;1 D kf k1k�kn;1.
Suppose that � 2 H 1

@
.I; k/, so that there exists a sequence �n 2 C1c .I; k/ with

k� � �nkdt ! 0 and kD.�/�D.�n/kdt ! 0. For every f 2 L2
b
.†;R/, it is possible

to find a sequence fn 2 C1c .†;R/ with kf � fnk�0 ! 0. Then

kf � � fn�nk� � kf � fnk�0k�kdt C kfnk�0k� � �nkdt ! 0:

Similarly, one finds that kD.f �/ �D.fn�n/k� D kfD.�/ � fnD.�n/k ! 0. It fol-
lows that T maps L2

b
.†;R/ �H 1

@
.I; k/ to H 1

@
.N; k/. From D.f �/ D fD.�/, one

then finds that it maps L2
b
.†;R/ �H k

@
.I; k/ to H k

@
.N; k/.

In Lemma 7.10, we will need the above result in the following form.

Corollary 6.29. Let E � † be a subset of finite measure, and let �E be the corre-
sponding indicator function. Then, the map �E WH k

@
.I; k/ ! H k

@
.N;K/ defined by

�E .�/.x; t/ D �E .x/�.t/ is a continuous Lie algebra homomorphism.
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6.5 The continuous extension theorem

It follows from Proposition 6.20 that the Lie algebra representation d� extends from
g D �c.M;K/ to L2B�.M;K/. In the following theorem, we show that this extension
yields a Lie algebra representation of RC ˚! H 1

@
.M;K/, which is compatible with

the derivation DWH 1
@
.M;K/! L2

b
.M;K/.

Theorem 6.30 (Continuous extension). Let � be a positive energy representation of
yG with derived representation d�, and let N �M be an open subset.

(a) There exists a linear map r from L2
b
.N;K/ to the unbounded, skew-sym-

metric operators on H with domain D.H/ such that r.�/ coincides with
d�.�/ for all � 2 �c.N;K/ and  2 H1.

(b) This defines a representation of the Banach–Lie algebra RC ˚! H 1
@
.N;K/

by essentially skew-adjoint operators. For �; � 2 H 1
@
.N;K/, the operators

r.�/ and r.�/ map D.H 2/ to D.H/. On D.H 2/, we have the commutator
relation

Œr.�/; r.�/� D r.Œ�; ��/C i!.�; �/1; (6.47)

where !.�; �/ D hD�; �i�.

(c) If � 2 H 1
@
.N;K/, then D� 2 L2

b
.N;K/ and

Œd�.D/; r.�/� D r.D�/:

In particular, we obtain a positive energy representation of the Fréchet–Lie
algebra .RC ˚! H1@ .N;K// ÌRD.

Proof. The derived representation d� is defined on the Lie algebra

yg D
�
RC ˚! g

�
ÌRD:

By Proposition 6.20, we obtain an extension r of d� to L2B�.M;K/, hence, in partic-
ular, to L2

b
.N;K/. From Proposition 6.22, we see that r.�/ is essentially skew-adjoint

for � in the smaller spaceH 1
B�.M;K/ � L

2
B�.M;K/, and that Œd�.D/; r.�/�D r.� 0/

for all � 2 H 1
B�.M;K/, hence, in particular, for � 2 H 1

@
.N;K/ � H 1

B�.M;K/.
By Cauchy–Schwarz and the inequality (6.38), we have

jhr.�/ ; r.�/�ij � kA3=2 kkA3=2�kq1.�/q1.�/ (6.48)

for all  ; � 2 D.H 2/ and �; � 2 H 1
B�.M; g/, where A WD 1CH and q1 is the par-

allel Sobolev norm of (6.43). Further, by Proposition 6.22, the products r.�/r.�/ and
r.�/r.�/ are well defined on D.H 2/. Since

h ; Œr.�/; r.�/��i D �hr.�/ ; r.�/�i C hr.�/ ; r.�/�i;
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it follows that the bilinear form

H 1
B�.M;K/ �H

1
B�.M;K/! C; .�; �/ 7! h ; Œr.�/; r.�/��i

is continuous with respect to the parallel Sobolev norm q1. In particular, its restriction
to

H 1
@ .N;K/ � H

1
B�.M;K/

is continuous with respect to q1.
Similarly, using Cauchy–Schwarz and (6.38), we find for �; � 2 H 1

@
.N;K/ that

jh�; r.Œ�; ��/ ij � k�kkA3=2 kq1.Œ�; ��/:

Since the Lie bracket on H 1
@
.N;K/ is separately continuous for the norm q1 by

Proposition 6.25, it follows that the bilinear formH 1
@
.N;K/�H 1

@
.N;K/!C defined

by
.�; �/ 7! h�; r.Œ�; ��/ i

is separately continuous with respect to q1.
As the cocycle !.�; �/ D hD�; �i� extends to a bilinear map on H 1

@
.N;K/ that

is continuous with respect to q1, the bilinear form

.�; �/ 7!
˝
�;
�
Œr.�/; r.�/� � r.Œ�; ��/ � i!.�; �/

�
 
˛

is separately continuous for the q1-topology. Since it vanishes on the dense subset
�c.N;K/ � H

1
@
.N;K/, it is identically zero. It follows that

Œr.�/; r.�/� D r.Œ�; ��/ C i!.�; �/ 

for all 2D.H 2/. The operator r.Œ�;��/C i!.�;�/1 with domain containing D.H/

is thus an essentially skew-adjoint extension of the operator Œr.�/; r.�/� with domain
D.H 2/.

6.5.1 Semibounded representations

The concept of a semibounded representation, introduced in [73,75], is much stronger
than that of a positive energy condition. As results in [81] show, it provides enough
regularity to lead to a sufficient supply of C �-algebraic tools to decompose represen-
tations as direct integrals.

Definition 6.31 (Semibounded representations). A smooth representation .�;H / of
a locally convex Lie group G is called semibounded if the function

s�Wg! R [ ¹1º; s�.x/ WD sup.Spec.id�.x/// (6.49)

is bounded on a neighborhood of some point x0 2 g. Then, the set W� of all such
points x0 is an open Ad.G/-invariant convex cone in g.
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For Lie groups G which are locally exponential or whose Lie algebra g is bar-
relled1, a semibounded representation is bounded if and only if W� D g [73, The-
orem 3.1 and Proposition 3.5]. The positive energy representation r of H 1

@
.N;K/

fulfills the following semiboundedness condition.

Proposition 6.32. Let � 2 L2B�.M;K/, and let t > 0. Then

�k�kB1� � 9k�k
2
�dk.dM C 1/

2=t � inf.Spec.ir.tD ˚ �///:

In particular, the spectrum of tH ˙ ir.�/ is bounded below for every t > 0, and this
bound is uniform on an open neighborhood of D in L2B�.M;K/ ÌRD.

Proof. Using Proposition 6.20, one finds that the map L2B�.M;K/! C defined by

� 7! h�� ˙ ir.�/i 

is continuous for every  2 D.H/, and every " > 0. It is non-negative on the dense
subspace �c.M;K/ by Theorem 6.17, and hence on all of L2B�.M;K/ by continuity.
If k�k� D 0, then r.�/ D 0, and the proposition holds trivially. If k�k� ¤ 0 and
" WD t=k�k�, then

�� D tH C k�kB"�1

satisfies 0 � h�� ˙ ir.�/i , and thus

�k�kB"�k k
2
� h ; tH ˙ ir.�/;  i:

Since
k�kB"� � k�kB1� C 9k�k�dk.dM C 1/

2=";

the result follows by substituting " D t=k�k�.

Corollary 6.33. The positive energy representation d� of the Lie algebra�
RC ˚! �c.M;K/

�
ÌRD

is semibounded and the cone W� contains the open half space�
RC ˚! �c.M;K/

�
�RCD:

Proof. This follows from Proposition 6.32 because d� comes from a group rep-
resentation, the central element C is represented by a constant, and the inclusion
�c.M;K/ ,! L2B�.M;K/ is continuous.

1These are the locally convex spaces for which the Uniform Boundedness Principle holds.
All Fréchet spaces and locally convex direct limits of Fréchet spaces are barrelled, which
includes, in particular, LF spaces of test functions on noncompact manifolds.
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6.5.2 Analytic vectors

A vector  in a Banach space X is called analytic for an unbounded operator A
on X if  2

T
n2N D.An/, and the series

P1
nD0

sn

nŠ
kAn k has positive radius of

convergence RA > 0.

Lemma 6.34. Let � 2 H 2
@
.N;K/, and considerH and r.�/ as unbounded operators

on H . If  2H is an analytic vector forH , then it is also analytic for r.�/. If  has
radius of convergence RH for H , then the exponential series

exp.r.�// D
1X
nD0

1

nŠ
r.�/n 

is absolutely convergent on the ball defined by

p2.�/ < �
1

2ck
log

�
1 �

.2ck/
2

.ck C 1/2

�
1 � exp

�
�
.ck C 1/

2

2ck
RH

���
: (6.50)

Proof. We apply [86, Theorem 1] to r.�/ and A D 1CH , considered as unbounded
operators on the Banach space H1=2. For � 2 H 1

B�.M;K/ and  2 D.H 2/ � H1=2,
the inequality (6.38) yields

kr.�/ k1=2 � q1.�/kA k1=2: (6.51)

By (6.35), we have adr.�/A D �ir.D�/. If � 2 H 2
@
.N;K/, then by definition, both �

and D� are in H 1
@
.N;K/. It follows that also adn�1� .D�/ 2 H 1

@
.N;K/ for n � 1. By

(6.47) and induction, we find

adnr.�/.A/ D �iadn�1r.�/.r.D�// D �ir.adn�1� .D�//C !.�; adn�2� .D�//1 (6.52)

as an equality of unbounded operators from D.H 2/ to H1=2. From (6.40) and (6.45),
we infer that

kadn� .D�/kB"� � .ckk�k1/
n
kD�kB"�; (6.53)

q1
�
adn� .D�/

�
� .2ckqC1.�//

nq1.D�/: (6.54)

Next we estimate kadnr.�/.A/ k1=2. Applying (6.52) and noting that

j!.�; �/j D jhD�; �i�j � kD�k�k�k� and kD�k� � kD�kB"�;

the second term on the right-hand side of (6.52) satisfies

k!.�; adn�2� .D�// k1=2 � .ckk�k1/
n�2
kD�k2B"�k k1=2: (6.55)

Applying (6.51) and (6.54) to the first term on the right-hand side of (6.52), we find

kr.adn�1� .D�// k1=2 � .2ckqC1.�//
n�1q1.D�/kA k1=2: (6.56)
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Combining (6.55) and (6.56) with (6.52), and using that k k1=2 � kA k1=2, we find

kadnr.�/.A/ k1=2 � cnkA k1=2;

with
cn D q1.D�/

�
kD�kB"� C .2ckqC1.�//

�
.2ckqC1.�//

n�2: (6.57)

Since the series

�.s/ WD

1X
nD1

cn

nŠ
sn

has positive radius of convergence, we may now fix some t0 > 0 with �.t0/ < 1 and
assume that 0 � s; t � t0. Applying [86, Theorem 1] to H1=2 guarantees that for

$.s/ WD

Z s

0

.1 � �.t//�1dt;

we have
1X
nD0

sn

nŠ
kr.�/n k1=2 �

1X
nD0

.c �$.s//n

nŠ
kAn k1=2; with c WD q1.�/

as in (6.51). Since kr.�/n k � kr.�/n k1=2 and kAn k1=2 � kAnC1 k, this yields

1X
nD0

sn

nŠ
kr.�/n k �

1X
nD0

.c �$.s//n

nŠ
kAnC1 k: (6.58)

To get an explicit estimate on the radius of convergence, note that all norms of (deriva-
tives of) � occurring in (6.57) are dominated by p2.�/ (cf. (6.44)). The estimate
cn � ab

n with

a WD .1C 2ck/=.2ck/
2 and b WD 2ckp2.�/

yields �.s/ � a.ebs � 1/. Accordingly, �.t0/ < 1 is ensured if

bt0 < log
�
1C

1

a

�
D � log

�
1 �

1

1C a

�
:

In particular, s D 1 is allowed if p2.�/ < 1
2ck

log.1C 1
a
/. Substituting this in

$.s/ D

Z s

0

.1 � �.t//�1dt

and integrating, we obtain

$.s/ � �
1

.1C a/b
log..1C a/e�bs � a/: (6.59)
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If  is an analytic vector forH , it is analytic forAD 1CH with the same radius
of convergence RH . The right-hand side of (6.58) therefore converges absolutely if
c �$.s/ < RH , where c D q1.�/. Since q1.�/ � p2.�/, we find c

b
�

1
2ck

, and hence
c

.1Ca/b
� 2ck=.ck C 1/

2. Substituting this in (6.59), we find that c �$.s/ � RH if

bs � � log
�
1 �

1

1C a

�
1 � exp

�
�
.ck C 1/

2

2ck
RH

���
< � log

�
1 �

1

1C a

�
:

Putting s D 1, and substituting a and b in the above equation, we find that (6.58)
converges if p2.�/ satisfies (6.50).





Chapter 7

The localization theorem

In this section, we use the continuity and analyticity results from Chapter 6 to prove
a localization theorem. Our main result reduces the classification of positive energy
representations of the identity component �c.M;K/0 to the case where the base
manifold M is one-dimensional. We start in the setting of a fixed point free R-action
on the manifold M , and extend this to more general Lie group actions in Section 7.5.

7.1 Statement and discussion of the theorem

Theorem 7.1 (Localization theorem). Let � WK !M be a Lie group bundle whose
fibers are 1-connected semisimple. Let K WR! Aut.K/ be a homomorphism that
defines a smooth action on K , and induces a fixed-point free flow M on M . Then,
for every projective positive energy representation

N�W�c.M;K/0 ! PU.H /

of the connected gauge group �c.M;K/0, there exists a one-dimensional, closed,
embedded, flow-invariant submanifold S � M such that N� factors through a pro-
jective positive energy representation N�S of the connected Lie group �c.S;K/. The
diagram

�c.M;K/0

rS

��

N�
// PU.H /

�c.S;K/

N�S

88

commutes, where rS W�c.M;K/0 ! �c.S;K/ is the restriction homomorphism.

Remark 7.2. It is convenient to define �c.;;K/ WD ¹1º, so that the above theorem
holds for the trivial representation with S D ;.

Remark 7.3 (Localization for the simply connected cover). In fact, we will prove a
slightly stronger result: every projective positive energy representation

N�W z�c.M;K/0 ! PU.H /

of the simply connected cover of �c.M;K/0 factors through zrS WD rS ı q� , where
q� W z�c.M;K/0 ! �c.M;K/ is the covering map and

rS W�c.M;K/0 ! �c.S;K/
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the restriction. This strengthening of Theorem 7.1 is needed in Part II, where we
handle localization for gauge groups on manifolds with boundary.

Note that M is not required to be compact or connected, and that the fibers of
K ! M are not required to be compact. The result for noncompact M is a major
feature, which we will use extensively later on (see Chapter 9 and Part II). Allowing
noncompact fibers, however, is not a big step. Indeed, noncompact simple fibers result
in trivial representations by Theorem 6.2, so we already know that the theorem holds
with S D ; in that case. Before proceeding with the proof in Section 7.2, we show
that the assumption of 1-connectedness of the fibers is not essential.

Remark 7.4 (Non-simply connected fibers). Suppose that the typical fibers of the
bundle K ! M are connected, but not necessarily simply connected. Let Ki be the
typical fiber over the connected component Mi of M , and let zKi be its 1-connected
universal cover. The kernel �1.Ki / of the covering map zKi � Ki is a finite, central
subgroup, yielding a central extension

�1.Ki / ,! zKi � Ki : (7.1)

The natural inclusion Aut.Ki / ,!Aut. zKi /, obtained by the canonical lift of automor-
phisms, yields a Lie group bundle zKi !Mi with fiber zKi over eachMi , and hence a
Lie group bundle zK!M overM . It comes with a natural bundle map zK!K over
the identity of M , which restricts to the universal covering map on every fiber. The
kernel Z � zK of this map is a bundle of discrete, abelian groups, whose fibers over
Mi are isomorphic to �1.Ki /. Analogous to (7.1), we thus obtain an exact sequence
of Lie group bundles

Z ,! zK �K:

The 1-parameter group K WR!Aut.K/ lifts to  zK WR!Aut. zK/with the same
infinitesimal generator v2�.M;a.K// (cf. Remark 4.8). As every smooth section � 2
�c.M;K/0 lifts to a section of zK because the natural map �c.M; zK/! �c.M;K/

is a covering morphism of Lie groups, the projection zK !K yields a surjective Lie
group homomorphism, and hence an exact sequence

�c.M;Z/ ,! �c.M; zK/! �c.M;K/: (7.2)

Since the fibers of Z are discrete, the group �c.Mi ;Zi / of compactly supported sec-
tions of Zi ! Mi is trivial if Mi is noncompact. If Mi is compact, �c.Mi ;Zi / can
be identified with �1.Ki /�1.Mi /, the fixed point subgroup of �1.Ki / under the mon-
odromy action �1.Mi /! Aut.�1.Ki //. We thus obtain an isomorphism

�c.M;Z/ '
Y0

i2I
�1.Ki /

�1.Mi / (7.3)

of discrete groups where
Q0
i2I �1.Ki /

�1.Mi / denotes the weak direct product of the
finite abelian groups �1.Ki /�1.Mi / (all tuples with finitely many non-zero entries),



Statement and discussion of the theorem 79

running over all i for which the connected component Mi is compact. In particu-
lar, it follows from (7.2) and (7.3) that projective positive energy representations of
�c.M;K/0 correspond to projective positive energy representations of �c.M; zK/0
that are trivial on

ZŒM� WD �c.M;Z/ \ �c.M; zK/0:

Note that the embedding S ,! M yields a “diagonal” morphism ZŒM� ! ZŒS�.
The term “diagonal” is justified by the special case where K is a trivial bundle over
a compact, connected manifold M . Then, the embedded 1-dimensional submanifold
; ¤ S � M is the disjoint union of N circles, and ZŒM� ' �1.K/ can literally be
identified with the diagonal subgroup of ZŒS� ' �1.K/N .

Combining Theorem 7.1 with Remark 7.4, we obtain a localization theorem for
bundles whose fibers are not necessarily simply connected.

Corollary 7.5 (Localization theorem for non-simply connected fibers). Suppose that
the fibers of K ! M are connected, but not necessarily simply connected. Then, N�
arises by factorization from a projective positive energy representation of �c.S; zK/

that is trivial on the image of ZŒM� in ZŒS�.

Remark 7.6 (Abelian groups). In the localization Theorem 7.1 we have assumed that
the fiber Lie groupK is semisimple. We now explain why this is crucial and that there
is no localization for abelian target groups, so that the localization theorem does not
extend to bundles with general compact fiber Lie algebras. To this end, letK D .k;C/
be a finite-dimensional real vector space and fix a positive definite scalar product �
on k. Further, let M be a smooth manifold and consider the Lie group G WD g WD

C1c .M; k/, which can be identified with the group of compactly supported sections
of the trivial bundle K DM �K. We also fix a smooth flow M WR! Diff.M/, its
generator vM 2 V.M/, and a M -invariant positive Radon measure � on M . Then

�g.�; �/ WD

Z
M

�.�; �/d�

defines a positive semidefinite scalar product on g, invariant under the R-action on g

given by
˛t� WD � ı M .t/;

whose infinitesimal generator is D� D LvM � . Then

!.�; �/ WD �g.D�; �/ D

Z
M

�.LvM �; �/d�

is an R-invariant skew-symmetric form on the abelian Lie algebra g, hence a Lie
algebra 2-cocycle. Combining in [85, Theorems 3.2 and 5.9], it now follows that all
these cocycles are obtained from projective positive energy representations of the
groups G Ì˛ R. This shows that, for abelian fibers, no restrictions on the measure �
exist.
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Example 7.7. We consider the Lie algebra g D C1.Td ; k/, k compact simple and
˛t .�/ D � ı t , where

t .z1; : : : ; zd / D
�
e2�it�1z1; : : : ; e

2�it�d�1zd�1; e
2�itzd

�
:

This means that vM is the invariant vector field on the Lie group Td Š Rd=Zd with
exponential function

exp.x1; : : : ; xd / D
�
e2�ix1 ; : : : ; e2�ixd

�
whose value in 1 is given by x D .�1; : : : ; �d�1; 1/. This action has a closed orbit if
and only if the one-parameter group A WD exp.Rx/ is closed, which is equivalent to
�j 2 Q for all j .

If this condition is satisfied, then A Š T and the ˛-orbits are the A-cosets in the
group Td . This situation is also studied by Torresani in [105]. If this condition is not
satisfied, then the localization theorem implies that there are no non-trivial projective
positive energy representations.

Remark 7.8. The localization theorem also yields partial information for flows with
fixed points, and for manifolds with boundary.

(a) If the vector field vM has zeros, then

M� WD
®
x 2M W vM .x/ 6D 0

¯
is an open flow-invariant submanifold of M and the localization theorem applies to
the bundle KjM� . In this context, this theorem does not provide a complete reduc-
tion to the one-dimensional case for two reasons. One is that the representations of
�c.M

�;K/ do not uniquely determine those of �c.M;K/ and the other reason is that
the 1-dimensional submanifold S ofM� need not be closed inM , so that the extend-
ability of the representation of �c.M�;K/ to the Lie algebra �c.M;K/ provides
“boundary conditions at infinity” for the corresponding representations of �c.S;K/.
We will further explore these boundary conditions in future work.

(b) Similarly, if xM is a manifold with boundary, then both its interiorM D xM n@M
and its boundary @M are invariant under the flow. In Part II of this series of papers,
we apply the localization theorem to M and @M separately, and combine the infor-
mation to obtain classification results for positive energy representations of the gauge
group �. xM;K/. The main challenge here is that although every projective unitary
representation of �. xM;K/ automatically restricts to �c.M;K/, we heavily rely on
the positive energy condition to obtain a representation of �c.@M;K/.

Example 7.9. A typical example of a flow with fixed points is the 2-sphereM D S2,
where

M;t .x; y; z/ D

0@ cos.t/ sin.t/ 0

� sin.t/ cos.t/ 0

0 0 1

1A0@xy
z

1A (7.4)
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is the rotation around the z-axis with unit angular velocity, and P D S2 � k is the
trivial bundle. The lift of the infinitesimal action is then given by

v.x; y; z/ D .y@x � x@y/C A.x; y; z/; (7.5)

where the first part is the horizontal lift of the infinitesimal action corresponding
to (7.4), and the second part is the vertical vector field corresponding to a smooth
function AWS2 ! k.

Then, M� D S2 n ¹.0; 0;˙1/º, and the integral curves on S2 are precisely the
circles of latitude. Therefore, S is either compact and a finite union of circles, or it is
noncompact and an infinite union of circles. More precisely,

S D
®
.x; y; z/ 2 S2 W z 2 J

¯
;

where J � .�1; 1/ is a discrete set that has at most two accumulation points ˙1,
corresponding to the two fixed points of the circle action. We return to this example
in Section 9.3.

7.2 Localization at the Lie algebra level

The remainder of this chapter is devoted to the proof of Theorem 7.1. We start by
proving the statement at the level of Lie algebras. This proceeds through several lem-
mas. In the first one, relying heavily on Theorem 6.30 and Lemma 6.34, we derive
integrality results for the flow-invariant measure � of Section 5.2.2.

Lemma 7.10. Suppose that the fibers of K! M are simple Lie algebras. Consider
a good flow box U ' U0 � I � M around x 2 M in the sense of Definition 5.1, so
that the restriction of the invariant measure � to U ' U0 � I takes the form

�jU D �0 ˝ dt:

Then, for every measurable subset E � U0,

�0.E/ 2
1

2�
N0:

Proof. We may assume without loss of generality that the fibers of K over U are
compact, as �0.E/ would otherwise be zero by Corollary 5.5. Let �E WU0 ! ¹0; 1º
be the indicator function of E. Consider the Lie algebra homomorphism

�E WRC ˚! H
2
@ .I; k/! RC ˚! H

2
@ .U; k/; zC ˚ � 7! zC ˚ �E�

whose continuity follows from Corollary 6.29. If we pull back the representation r of
RC ˚! H 2

@
.U; k/ of Theorem 6.30 along �E , we obtain a projective �-representation



The localization theorem 82

of the Banach–Lie algebra h WD H 2
@
.I; k/. By Lemma 6.34, its space of analytic vec-

tors is dense in H .
Since h consists of functions I ! k and it contains C1c .I; k/, the fact that z.k/D

¹0º implies that the center of h is trivial. As h is a Banach–Lie algebra, it is in partic-
ular locally exponential, so there exists a 1-connected Lie group H with Lie algebra
h by [71, Theorem IV.3.8] (see [30] for a complete proof).

Now Theorem 2.18 provides a smooth, projective, unitary representation

� WH ! PU.H /:

By Theorem 5.7, the corresponding Lie algebra cocycle is given by

!.�; �/ D �

Z
U

�.�E�;rvM .�E�//d� D �

Z
U0�I

�.�E�; �E�
0/d�0dt

D ��0.E/

Z
I

�.�; �0/dt D �0.E/

Z
I

�.� 0; �/dt:

Theorem 2.13 now implies the existence of a central Lie group extension H ] of H
by T Š R=2�Z with Lie algebra h

]
! D RC ˚! h.

This in turn implies integrality conditions on the values of �0.E/. To see how
these can be obtained, we associate to ! the corresponding left invariant 2-form� on
H with �1 D !. This form defines a period homomorphism

per! W�2.H/! R; Œ�� 7!

Z
�

�

(cf. [69, Definition 5.8]) and [69, Lemma 5.11] implies that

im.per!/ � 2�Z:

Since the rescaling map

 WC1c .I; k/! C1c ..��; �/; k/; .�/.�/ D �

�
T

2�
�

�
from the interval I D .�T=2; T=2/ to the interval .��; �/ is an isomorphism of Lie
algebras, the cocycle

R
I
�.� 0; �/dt on C1c .I; k/ has the same period group as the

cocycle
R �
��
�.� 0; �/d� on C1c ..��; �/; k/. In [70, Lemma V.11], it was shown that

this, in turn, has the same period group as the cocycle
R �
��
�.� 0; �/d� on C1c .S

1; k/.
By [68, Theorem II.5], the period group of 1

2�

R �
��
�.� 0; �/d� is 2�Z, provided that

� is normalized as in (4.2). Combining all this, we conclude that �0.E/ 2 1
2�

Z.

As the measure 2��0 takes integral values, the following proposition shows that
it is automatically discrete.
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Proposition 7.11. Let � be a locally finite, regular Borel measure on a locally com-
pact space †. If � takes values in N0 [ ¹1º, then there exists a locally finite subset
ƒ � † and natural numbers cx D �.¹xº/ such that

� D
X
x2ƒ

cxıx :

Proof. By regularity, � is determined by its values on compact subsets, so it suffices
to assume that † is compact and to show that, in this case, � is a finite sum of Dirac
measures.

Let F be the family of compact subsets of full measure. For F1;F2 2 F , we have

�.F1 n F2/ D �.F2 n F1/ D 0;

so that F1 \ F2 also has full measure. This shows that F is closed under finite inter-
sections. We show that

C WD
\
F 2F

F

has full measure. Let V be an open set containing C . Since the open complements F c

cover the compact set V c , there exist finitely many Fi such that F c1 [ � � � [ F
c
k
� V c ,

and hence F1 \ � � � \ Fk � V . Since F is closed under finite intersections, every
open set V containing C has full measure. By regularity, we conclude that C has full
measure itself.

Pick x 2 C . For any open neighborhood U of x in C , the minimality of C implies
that �.C nU/< �.C /, so that �.U / > 0. LetU be an open neighborhood of x inC for
which �.U / is minimal; here we use that the values of � are contained in N0. For any
smaller open neighborhood V �U of x inC we then have �.V /D �.U / and therefore
�.U n V / D 0. This implies that �.K/ D 0 for any compact subset K � U n ¹xº and
hence that �.U n ¹xº/ D 0 by the regularity of �. Now the minimality of C entails
that C D ¹xº [ .C n U/. Since x 2 C was arbitrary, it follows that C is discrete,
hence finite: C D ¹x1; : : : ; xkº. Accordingly, the restriction of � to a compact subset
is the finite sum

� D

kX
jD1

�.¹xj º/ıxj

of Dirac measures.

Recall from Theorem 4.9 that the bundle K ! M of semisimple Lie algebras
gives rise to a bundle yK! yM of simple Lie algebras with �c.M;K/ ' �c. yM; yK/.
By Remark 4.10, it inherits the 1-parameter group of automorphisms.

Lemma 7.12. If the flow on M has no fixed points, then the support yS of � is a
one-dimensional, flow-invariant, closed embedded submanifold of yMcpt, the part of
yM over which the fibers of yK are compact.
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Proof. Since the flow on M has no fixed points, the vector field vM on M has no
zeros. As the same holds for its lift to yM , every point x 2 yM is contained in a good
flow boxU ŠU0 � I in the sense of Definition 5.1. In any such flow box, the measure
� is of the form �0 ˝ dt , where �0 is a regular measure on U0. From Lemma 7.10
and Proposition 7.11, we conclude that �0 has finite support in U0, so that yS \ U Š
F � I , where F � U0 is a finite subset. This implies that yS is a one-dimensional,
closed embedded submanifold invariant under the flow on yM . The final statement
follows from Theorem 6.2.

Combined with Corollary 6.3, this shows that Theorem 7.1 holds at the level of
Lie algebras.

Lemma 7.13. There exists a 1-dimensional, closed, embedded, flow-invariant sub-
manifold S �M such that the projective positive energy representation d� of the Lie
algebra �c.M;K/ factors through the restriction map rk

S W�c.M;K/! �c.S;K/.

Proof. Combining Lemma 7.12 with Corollary 6.3 and Theorem 6.2, we conclude
that the projective Lie algebra representation d� of �c. yM; yK/ vanishes on the ideal

J yS WD
®
� 2 �c. yM; yK/ W �j yS D 0

¯
:

It follows that the projective positive energy representation of �c.M;K/ vanishes
on JS WD ¹� 2 �c.M;K/ W �jS D 0º, where S � M is the image of yS under the
finite, R-equivariant covering map yM !M . Since yS � yM is a 1-dimensional, closed,
embedded, flow-invariant submanifold, the same holds for S �M . This implies that
the projective representation factors through the restriction map

rk
S W�c.M;K/! �c.S;K/;

which is a quotient map of locally convex spaces.

7.3 Twisted loop groups

Let S be a one-dimensional, embedded, flow-invariant submanifold of M . Then, it
is the disjoint union S D

F
j2J Sj of its connected components Sj , which are either

diffeomorphic to R (for a non-periodic orbit), or to S1 Š R=Z (for a periodic orbit).
Fix j 2 J and let K D Kj denote the fiber of KjSj . If Sj Š R, then the bundle

KjSj is trivial, i.e., equivalent to

Sj �K Š R �K:

This trivialization can be achieved R-equivariantly, using an integral curve in the
corresponding frame bundle Aut.K/! R, a principal bundle with fiber Aut.K/.
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The action of R on K is then simply given by

t .x; k/ D .x C t; k/ for t; x 2 R and k 2 K: (7.6)

If Sj Š S1 is a periodic orbit, then the universal covering map qj W zSj ! Sj can
be identified with the quotient map R! R=Z. If the period of the orbit Sj is T , then
we scale the R-action on S1 D R=Z by 1=T , yielding

S1;t .Œx�/ D Œx C t=T �:

We have seen above that the pullback q�j .KjSj / is equivariantly equivalent to the
trivial bundle R �K on which R acts by translation in the first factor. The action of
the fundamental group �1.Sj /Š Z on R�K is given by bundle automorphisms that
commute with the R-action; there exists an automorphism ˆ 2 Aut.K/ such that

n � .x; k/ D .x C n;ˆ�n.k// for all n 2 Z:

Accordingly, we have an equivariant isomorphism

KjSj Š .R �K/= �;

where
.x; k/ � .x C n;ˆ�n.k//

for all x 2 R; k 2 K and n 2 Z. We write the equivalence classes as Œx; k�, and we
denote the K-bundle over S1 D R=Z obtained in this way by

Kˆ WD .R �K/= �; with Kˆ ! R=Z

given by
Œx; k� 7! Œx� D x C Z:

The R-action is given in these terms by

t .Œx; k�/ D Œx C t=T; k�:

Note that
T .Œx; k�/ D Œx C 1; k� D Œx;ˆ.k/�;

so that ˆ can be interpreted as a holonomy.
Recall that, for two automorphismsˆ;‰ 2Aut.K/, the correspondingK-bundles

Kˆ and K‰ are equivalent if and only if the classes Œˆ� and Œ‰� are conjugate in the
component group �0.Aut.K//, and they are R-equivariantly isomorphic if and only
if ˆ and ‰ are conjugate in Aut.K/. Indeed, any isomorphism �‰;ˆWKˆ ! K‰

inducing the identity on the base is of the form

�‰;ˆ.Œx; k�/ D Œx; �x.k/�;
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where �WR! Aut.K/ is smooth and satisfies

�xC1 D ‰
�1
ı �x ıˆ for all x 2 R: (7.7)

Such a smooth curve � exists if and only if Œˆ� and Œ‰� are conjugate in the finite
group �0.Aut.K//. In particular, the set of equivalence classes of group bundles with
fiberK over S1 corresponds to the set of conjugacy classes in the group �0.Aut.K//,
which is finite for a semisimple compact Lie group K. This follows from the com-
pactness of the group Aut.K/�Aut. zK/ŠAut.k/ as a subgroup of GL.k/ preserving
the scalar product �.

The bundle isomorphism �‰;ˆ is R-equivariant if and only if the function � is
constant. Accordingly, the two bundles Kˆ and K‰ are R-equivariantly isomorphic
if and only if ˆ and ‰ are conjugate in Aut.K/, so that equivariant isomorphism
classes of principal K-bundles over S1 correspond to conjugacy classes in the group
Aut.K/ (cf. [94, Section 4.4] and [20, Section 9]).

The group �c.R=Z;Kˆ/ is isomorphic to the twisted loop group

Lˆ.K/ WD
®
� 2 C1.R; K/ W .8x 2 R/�.x C 1/ D ˆ�1.�.x//

¯
(7.8)

with Lie algebra

L'.k/ WD
®
� 2 C1.R; k/ W .8x 2 R/ �.x C 1/ D '�1.�.x//

¯
; (7.9)

where ' 2 Aut.k/ is the automorphism of k induced by ˆ. The R-action on L'.k/ is
given by

˛t .�/.x/ D �.x C t=T / and D� D
1

T
� 0:

In some situations it is convenient to use a slightly different normalization for
which ˆ is of finite order, but then the R-action becomes more complicated. If K is
compact, then Aut.K/ is compact as well. In this case, there exists a finite subgroup
F �Aut.K/with Aut.K/DF Aut.K/0 (see [42, Theorem 6.36]) and we may choose
a representative ˆ0 of Œˆ� 2 �0.Aut.K// in such a way that ˆ0 2 F .

If �ˆ;ˆ0 WKˆ0 ! Kˆ is a group bundle isomorphism specified by the smooth
curve �WR! Aut.K/ satisfying

�xC1 D ˆ
�1�xˆ0 for x 2 R

(see (7.7)), then the R-action on �c.R=Z;Kˆ0/ Š Lˆ0.K/ takes the form

z̨t .�/.x/ D �
�1
x �xCt=T �.x C t=T / for � 2 Lˆ0.K/:

On the Lie algebra level we obtain the corresponding derivation given by

zD� D
1

T
.� 0 C ıl.�/�/;
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where

ıl.�/WR! L.Aut.K// D der.k/; ıl.�/x D
d

dt

ˇ̌̌̌
tD0

��1x �tCx

is the left logarithmic derivative of �. Identifying k via the adjoint representation with
der.k/, we obtain a smooth curve AWR! k with ad ıA D ıl.�/ for which

zD� D
1

T
.� 0 C ŒA; ��/: (7.10)

Note that A belongs to the twisted loop algebra L'0.k/; since �xC1 D ˆ�1�xˆ0, we
have

��1xC1�xC1Ct D ˆ
�1
0 .�

�1
x �xCt /ˆ0;

and hence
ıl.�/xC1 D '

�1
0 ıl.�/x'0:

It follows that the curve A satisfies

AxC1 D '
�1
0 Ax;

so that A 2 L'0.k/.

Remark 7.14. We denote by L
]
ˆ.K/c the central T -extension of Lˆ.K/ corre-

sponding to the Lie algebra cocycle

!.�; �/ D
c

2�

Z 1

0

�.� 0; �/dt; c 2 Z

with period group 2�cZ (see the discussion in Section 7.2). If the central charge c
is 1, we omit the subscript and simply write L

]
ˆ.K/. Since the Lie algebra L'.k/ of

Lˆ.K/ is perfect [62, Theorem VI.3] implies that the R-action ˛ on Lˆ.K/ lifts to
a smooth R-action ˛] on L

]
ˆ.K/c , and we obtain a double extension of the form

yLˆ.K/c Š L
]
ˆ.K/c Ì˛] R:

The c-fold cover T � T W z 7! zc extends to a c-fold cover L
]
ˆ.K/�L

]
ˆ.K/c , for

which the following diagram commutes:

T

zc

��

// L
]
ˆ.K/

//

��

Lˆ.K/

id

��

T // L
]
ˆ.K/c

// Lˆ.K/:

Using this covering map, we can identify the representations of Lˆ.K/c with those
representations of Lˆ.K/ for which the roots ¹z 2 T I zc D 1º � T of order c act
trivially.
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7.4 Localization at the group level

To obtain the localization result at the group level, we need the following factorization
lemma.

Lemma 7.15. Let r WG ! H be an open, surjective morphism of locally exponential
Lie groups, and let RWG! U be a continuous homomorphism of topological groups
such that

L.kerR/ WD
®
x 2 g W exp.Rx/ � kerR

¯
� ker L.r/ D L.ker r/:

Then, R factors through a continuous homomorphism xRWG=.ker r/0 ! U and r
induces a covering morphism G=.ker r/0 ! H of Lie groups.

Proof. In view of [71, Proposition IV.3.4] (see [30] for a complete proof),N WD ker r
is a closed, locally exponential Lie subgroup of G. In particular, its identity compo-
nent N0 is open in N , so that the isomorphism G=N !H of locally exponential Lie
groups leads to a covering morphism G=N0 ! H ([71, Theorem IV.3.5]). For every
x 2 L.N /, we have exp.Rx/ � kerR, so that N0 D hexp L.N /i � kerR. Therefore,
R factors through G=N0.

Lemma 7.16. Let S �M be a closed, 1-dimensional submanifold and suppose that
the fibers of KjS ! S are 1-connected, semisimple Lie groups. Then, �c.S;K/ is
1-connected.

For S Š R=TZ Š S1, it follows in particular that, for a 1-connected Lie group
K and an automorphism ˆ 2 Aut.K/, the twisted loop group.

LT
ˆ.K/ WD

®
� 2 C1.R; K/ W .8t 2 R/ �.t C T / D ˆ�1.�.t//

¯
(7.11)

is 1-connected.

Proof. If S has connected components .Sj /j2J with typical fiber Kj of KjSj , then

�c.S;K/ Š
Y0

j2J
�c.Sj ;K/: (7.12)

(We refer to [26, Proposition 7.3] for a discussion of weak direct products of Lie
groups.)

If Sj ' S1, then �c.Sj ;K/ is isomorphic to the twisted loop group LT
ĵ
.Kj /,

where ĵ is an automorphism of Kj . Since �0.Kj /, �1.Kj / vanish, �2.Kj / van-
ishes as well1. The long exact sequence of homotopy groups corresponding to the

1Since Kj is homotopy equivalent to a maximal compact subgroup, this follows from Car-
tan’s theorem [64, Theorem 3.7].
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Serre fibration ev0WLT
ĵ
.Kj /! Kj thus yields an isomorphism between the homo-

topy groups �0 and �1 of LT
ĵ
.Kj / and LT

ĵ
.Kj /� WD ker.ev0/. Since the inclu-

sion LT
ĵ
.Kj /� ,! LT

ĵ
.Kj /�;ct into the group of continuous, based, twisted loops

is a homotopy equivalence by [84, Corollary 3.4], and since �m.LT
ĵ
.Kj /�;ct/ '

�m.�Kj / ' �mC1.Kj / for m 2 N0 (cf. [84, page 391]), we conclude that LT
ĵ
.Kj /

is 1-connected.
If Sj 'R, then �c.Sj ;K/' C1c .R;Kj / is 1-connected by [70, Theorem A.10].

From [28, Proposition 3.3], we then conclude that the locally exponential Lie group
(7.12) is 1-connected.

With these topological considerations out of the way, we now complete the proof
of the localization theorem.

Proof of Theorem 7.1. In Lemma 7.13, we showed that the projective positive energy
representation d� of �c.M;K/ factors through the restriction map

rk
S W�c.M;K/! �c.S;K/;

so it remains to prove the corresponding factorization on the group level. For this,
apply Lemma 7.15 to the locally exponential Lie groups G D z�c.M;K/0 and H D
�c.S;K/ (which are both 1-connected by Lemma 7.16), and the topological group

U D PU.H /:

The homomorphism r is the homomorphism zrS W z�c.M;K/0 ! �c.S;K/, induced
by the restriction rS W�c.M;K/0! �c.S;K/, and R is the projective representation
N�W z�c.M;K/0 ! PU.H /. We conclude that N� factors through a projective positive
energy representation of the 1-connected Lie group �c.S;K/.

Since every representation of �c.M;K/0 defines by pullback a representation of
its simply connected covering, the assertion also follows for representations of this
group. This concludes the proof of the theorem.

7.5 Localization for equivariant representations

In this section we extend the localization Theorem 7.1 to the equivariant setting,
where the action of R on M is replaced by a smooth action of a Lie group P on M .
The positive energy condition (cf. Section 3.2) then refers not to an R-action, but to
the positive energy cone C � p inside the Lie algebra p of P .

LetM be a manifold, letP be a Lie group acting smoothly onM , and let K!M

be a bundle of 1-connected, semisimple Lie groups that is equipped with a lift of
this action. We denote the P -action on M by M WP ! Diff.M/, its lift to K by
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 W P ! Aut.K/, and the corresponding action on the compactly supported gauge
group by ˛WP ! Aut.�c.M;K//. On the infinitesimal level, the action of P on M
gives rise to the action vM Wp! V.M/; p 7! vpM of the Lie algebra p WD L.P /.

Let . N�;H / be a smooth, projective, positive energy representation of the semidi-
rect product �c.M;K/ Ì˛ P (cf. Definition 3.5), with positive energy cone C � p.

Definition 7.17. The fixed point set † � M of the positive energy cone C � p (a
closed convex invariant cone in p) is defined as

† WD
®
m 2M W .8p 2 C/vpM .m/ D 0

¯
:

Since the positive energy cone C is AdP -invariant, its fixed point set† is a closed,
P -invariant subset of M . In the following we first consider the fixed-point-free sce-
nario † D ;, and return to the general case in [49, Part II].

Definition 7.18. Let N� be a smooth, projective, unitary representation of �c.M;K/.
The support of N�, denoted supp. N�/, is defined as the complement of the union of
all open subsets U � M for which the kernel of N� contains the normal subgroup
�c.U;K/. Similarly, the support of d� is the complement of the union of all open
sets U �M such that the kernel of d� contains �c.U;K/.

Note that the support is a closed subset of M . If the representation N� extends to
the semidirect product �c.M;K/ Ì˛ P , then the support of N� is invariant under the
action ofP onM . This leads to severe restrictions for positive energy representations.

Theorem 7.19 (Equivariant localization theorem). Let . N�;H / be a smooth, projec-
tive, positive energy representation of �c.M;K/0 Ì˛ P , and suppose that C has no
fixed points. Then, there exists a 1-dimensional, P -equivariantly embedded subman-
ifold S �M such that N� factors through the restriction homomorphism

rS W�c.M;K/0 ! �c.S;K/:

Remark 7.20 (Equivariant localization for the simply connected cover). Since the
P -action on �c.M;K/ preserves the identity component �c.M;K/0, it lifts to the
simply connected cover z�c.M;K/0. In this context the same result remains valid:
every smooth, projective, positive energy representation N� of z�c.M;K/ Ì˛ P factors
through the homomorphism zrS W z�c.M;K/0! �c.S;K/ obtained by composing the
restriction rS with the covering map.

Proof. For every p 2 C, let Up � M be the open set of points in M where vpM
is non-vanishing. Applying Lemma 7.13 to the manifold Up , with the gauge group
�c.Up;K/ and the R-action p̨.t/ WD ˛.exp.tp//, one finds an embedded, 1-dimen-
sional submanifold Sp � Up such that the projective Lie algebra representation d�
factors through the restriction map rk

Sp
W �c.Up;K/ ! �c.Sp;K/. The support of
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d�j�c.Up ;K/ is thus contained in Sp . It actually equals Sp because the cocycle on
�c.Up;K/ is given by a measure with support Sp . The sets Sp and Sp0 therefore coin-
cide on Up \ Up0 , so the union S D

S
p2C Sp is a 1-dimensional, closed embedded

submanifold ofM . Here we use that the Up coverM because C has no common fixed
point. Since gSp D SAdg.p/ for every g 2 P , the union S is P -invariant.

Let IS WD ¹� 2 �c.M;K/I �jS D 0º be the vanishing ideal of S in �c.M;K/.
Since any � 2 IS can be written as a finite sum of �p 2 ISp � �c.Up;K/, and since the
restriction of d� to �c.Up;K/ vanishes on ISp , we conclude that d� vanishes on IS .
From Lemma 7.15 and Lemma 7.16, we then find (as in the proof of Theorem 7.1) that
N� factors through the restriction �c.M;K/0! �c.S;K/ and that the corresponding
assertion holds for representations of the covering group z�c.M;K/0.

The building blocks for the positive energy representations therefore come from
actions of P on 1-dimensional manifolds on which C has no fixed point. According
to the classification of hyperplane subalgebras of finite-dimensional Lie algebras [40,
41], an effective action of a connected finite-dimensional Lie group P on a simply
connected one-dimensional manifold is of one of the following 3 types:

• the action of P D R on the line R,

• the action of the affine group P D Aff.R/0 on the real line R,

• the action of P DfSL.2;R/ on the real line R, considered as the simply connected
cover of P1.R/ Š S1.

In the infinite-dimensional context, the action of the simply connected covering group
P DeDiffC.S1/ on R Š zS1 is a natural example.





Chapter 8

The classification for M compact

If the flow M on M has no fixed points, the localization Theorem 7.1 reduces the
classification of projective positive energy representations of the identity component
�c.M;K/0 of the compactly supported gauge group to the situation where the base
manifold is a closed, embedded, flow-invariant submanifold S � M of dimension
one.

The connected components of S are either diffeomorphic to R (for a non-periodic
orbit), or to S1 Š R=Z (for a periodic orbit). Since a gauge group on R is equivari-
antly isomorphic to C1c .R; K/ (with R acting by translation), and a gauge group on
S1 is equivariantly isomorphic to a twisted loop group (with R acting by rotation),
the gauge group on S is a product of twisted loop groups and groups of the form
C1c .R; K/.

In this chapter, we describe the complete classification of positive energy repre-
sentations for twisted loop groups. This leads to a classification of the positive energy
representations of �c.M;K/0 for which the one-dimensional submanifold S is com-
pact. Since this is automatically the case if M is compact, we arrive at a complete
classification in this setting.

8.1 Positive energy representation of twisted loop groups

We now describe the complete classification of projective positive energy representa-
tions for twisted loop groups.

In this section K denotes a 1-connected compact (hence semisimple) Lie group,
ˆ 2 Aut.K/ is an automorphism of finite order ˆN D idK , and ' D L.ˆ/ 2 Aut.k/
is the corresponding automorphism of k. We further assume that the invariant form �

on k is normalized in such a way that

�.i˛_; i˛_/ D 2

for all long roots ˛. We denote the (twisted) loop groups and algebras by Lˆ.K/

and L'.k/ respectively, as in (7.8) and (7.9). The (double) extensions with c D 1 are
denoted by L

]
ˆ.K/ and yLˆ.K/, cf. Remark 7.14.

Definition 8.1. We call a positive energy representation .�;H / of yLˆ.K/

(i) basic if Ut WD �.exp tD/ � �.L]
ˆ.K//

00 for every t 2 R,

(ii) periodic if UT D 1 for some T > 0.

Note that if � is minimal (Definition 3.8), then it is in particular basic.
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Remark 8.2. If .�;H / is periodic with UT D 1, then [79, Lemma 5.1] implies that
the space H1 of smooth vectors is invariant under the operators

pn.v/ WD
1

T

Z T

0

e�2�int=TUtvdt:

These are orthogonal projections onto the eigenvectors ofH D id�.D/ for the eigen-
values �2�n=T , n 2 Z.

Recall from Section 7.3 that with the identification S1 ' R=Z and with ˆN D
idK , we have

D.�/ D
1

T
.� 0 C ŒA; ��/:

It will be convenient to introduce the derivative

d.�/ D
d

dx
�; so that D D

1

T
.dC adA/: (8.1)

Remark 8.3 (Independence of positive energy condition from lift of R-action). From
Proposition 6.32, applied to M D R=Z, it follows that a smooth representation of
L
]
ˆ.K/ is of positive energy with respect to the derivation D if and only if it is of

positive energy with respect to the derivation d. Then, the representation is semi-
bounded in the sense of Definition 6.31. As this holds for D D 1

T
.dC adL/ with any

T > 0 and L 2L'.k/, the positive energy condition does not depend on the choice of
the vector field v on Kˆ DR�ˆ K lifting the vector field vM D 1

T
d
dt

on S1 ŠR=Z.

FromˆN D idK , we immediately derive that 'N D idk . For ygD yL'.k/, we define
the canonical triangular decomposition by

ygC D yg
C

C ˚ yg
0
C ˚ yg

�
C

with
yg˙C WD

X
˙n>0

ygnC;

where

ygnC WD ker
�

dC
2�in

N
1
�

for n 2 Z

(see (A.1) in the appendix). For g D L'.k/, we have the analogous decomposition

gC D gCC ˚ g0C ˚ g�C

with
gCC D yg

C

C and g�C D yg
�
C:

For a smooth unitary representation of yLˆ.K/, we define its minimal energy
subspace with respect to id�.d/ by

E WD .H1/g
�
C for .H1/g

�
C WD

®
 2 H1 W .8x 2 g�C/d�.x/ D 0

¯
: (8.2)
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Lemma 8.4. For every smooth positive energy representation .�;H / of yLˆ.K/, the
subspace E is generating for L

]
ˆ.K/.

Proof. Note that E is defined in terms of �j
L
]
ˆ
.K/

. In view of Corollary 3.9 and the
fact that ˛N D idLˆ.K/, we may therefore assume, without loss of generality, that �
is periodic.

Let H 0 �H denote the smallest closed L
]
ˆ.K/-invariant subspace containing E .

Then, H 0 is U -invariant, and the representation of yLˆ.K/ on .H 0/? is also a positive
energy representation. If .H 0/? 6D ¹0º, then its minimal energy subspace F is non-
zero by Remark 8.2, and since it contains smooth vectors, we obtain a contradiction
to F ?E . Therefore, .H 0/? D ¹0º and the subspace E is L

]
ˆ.K/-generating.

We now abbreviate

G WD Lˆ.K/; yG WD yLˆ.K/ and G] WD L
]
ˆ.K/ (8.3)

and denote the corresponding groups of fixed points by

L D Kˆ; yL WD Fix˛. yG/ Š T �Kˆ �R; L] WD yL \G] Š T � L:

From the discussion in [79, Section 5.2 and Appendix C], it follows that the homo-
geneous space G=L Š yG=yL Š G]=L] carries the structure of a complex Fréchet
manifold on which yG acts analytically, and the tangent space in the base point is
isomorphic to the quotient space ygC=.yg

0
C C gCC/. For any bounded unitary represen-

tation .�L; E/ of yL, we then obtain a holomorphic vector bundle E WD yG �yL E over
yG=yL. We write �hol.G=L;E/ for the space of holomorphic sections of E.

Definition 8.5 (Holomorphically induced representations). A unitary representation
.�;H / of yG is said to be holomorphically induced from .�L; E/ if there exists a
G-equivariant linear injection ‰WH ! �hol.G=L; E/ such that the adjoint of the
evaluation map

ev1yLWH ! E D E1yL

defines an isometry ev�
1yL
WE ,! H . If there exists a unitary representation .�;H /

holomorphically induced from .�L;E/, then it is uniquely determined [77, Definition
3.10]. We then call the representation .�L; E/ of yL (holomorphically) inducible. The
same statements apply to G] and L].

Let tı � k' be maximal abelian, so that

t D RC ˚ tı ˚Rd

is maximal abelian in yL'.k/. We write T ] D T � T ı for the torus group with Lie
algebra t] D RC ˚ tı. Let �C be a positive system for the affine Kac–Moody Lie
algebra yL'.kC/ with respect to the Cartan subalgebra tC such that, for all ˛ 2 �, the
relation ˛.id/ > 0 implies ˛ 2 �C (cf. Appendix A and [38, Chapter X]).
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Proposition 8.6. A bounded representation .�L; E/ of

L] D exp.RC/ � L Š T � L

is holomorphically inducible if and only if

d�L.Œz�; z�/ � 0 for all z 2 gnC; n > 0: (8.4)

In particular, the irreducible, holomorphically inducible representations of L] are
parametrized by the anti-dominant, integral weights � of the form

� D .�.C /; �0; 0/ 2 it
� (8.5)

of the affine Kac–Moody Lie algebra yL'.kC/ with respect to the Cartan subalgebra
tC and the positive system�C. Here the central charge c WD �i�.C / is contained in
N0, and for every central charge c there are only finitely many such representations
with �.C / D ic

Proof. Since the representation �L of the compact group L] is a direct sum of irre-
ducible representations, we may assume that it is a representation with lowest weight
� with respect to the positive system of roots �C0 of .k'C; t

ı
C/.

The necessity of (8.4) follows from [79, Proposition 5.6]. To show that � is anti-
dominant for . yL'.kC/; tC; �

C/, we need that �..˛; n/_/ � 0 for .˛; n/ 2 �C. We
distinguish the cases n > 0 and n D 0. If n > 0, we use (A.2) in Appendix A, to see
that (8.4) implies �..˛; n/_/ � 0 for 0 6D ˛ 2 �0, the root system of .k'C; t

ı
C/. For

n D 0, the assertion follows from �.ˇ_/ � 0 for ˇ 2 �C0 .
Next, we prove the integrality of �. For ˛ 6D 0, the relation

exp.2�i.˛; n/_/ D 1 (8.6)

in T ] follows from the fact that

k.˛; n/ WD spanR

®
x˝ en � x

�
˝ e�n; i.x˝ enC x

�
˝ e�n/; i.˛; n/

_
¯
Š su.2;C/:

Since � corresponds to a character of T ], the relation (8.6) implies that

exp.2�i�..˛; n/_// D 1;

so that �..˛; n/_/ 2 Z. We conclude that � is anti-dominant integral.
We now argue that every integral, anti-dominant weight � as in (8.5) specifies a

holomorphically inducible representation .�L; E�/ of L]. In fact, the unitarity of the
corresponding lowest weight module L.�;��C/ of the affine Kac–Moody algebra
yL'.kC/ ([54, Theorem 11.7]) can be used as in the proof of [79, Theorem 5.10] to

see with [79, Theorem C.6] that .�L; E�/ is holomorphically inducible.
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The following theorem is well-known for untwisted loop groups L.K/, but we
did not find an appropriate statement in the literature for the twisted case. It requires
some refined methods based on holomorphic induction which we draw from [79].

Theorem 8.7. If K is 1-connected and .�;H / is a positive energy representation of
yLˆ.K/, then its restriction to L

]
ˆ.K/ is a finite direct sum of factor representations

of type I , hence, in particular, a direct sum of irreducible representations.

Proof. Since the assertion only refers to the restriction �j
L
]
ˆ
.K/

, we may assume,
without loss of generality, that � D �0 is minimal (Definition 3.8 and Theorem 3.7).
Then, ˛N D idLˆ.K/ implies that � is periodic and that every subrepresentation is
generated by the fixed points of

Ut D �.1; t / D e�itH :

In view of Remark 8.2, the space H1 of smooth vectors for yG D yLˆ.K/ (see
(8.3)) is invariant under the projections pnWH ! Hn onto the eigenspaces of H D
id�.D/. Since � D �0 is minimal, we have Hn D ¹0º for n < 0 and H0 is gener-
ating. Now H0 \H1 is contained in E , the closure of .H1/g

�
C from (8.2). As the

intersection H0 \H1 is dense in H0, we have H0 � E .
Recall that

yL D Fix˛. yG/ Š L �R Š T �Kˆ �R:

As Kˆ is compact and UN D 1 follows from 'N D idk , �.yL/ is a compact sub-
group of U.H /. Hence, the yL-invariant subspace H0 � E is a direct sum of finite-
dimensional subrepresentations. In particular, it decomposes into isotypic compo-
nents Ej WD Ej ˝Mj , j 2 J , where Mj Š B.Ej ;H0/

yL is the multiplicity space of
the (finite-dimensional) irreducible representation .�Lj ; Ej /. It also follows that the
representation of yL on each Ej is semisimple in the algebraic sense and that the irre-
ducible subrepresentations are of the formEj ˝ , 2Mj . As a consequence, every
yL-invariant subspace of Ej is of the form Ej ˝M0j for a linear subspace M0j �Mj .

The dense subspace .H1/g
�
C of E is invariant under the projections onto the

isotypic components because they are given by integration over a compact group1.
This implies that Ej \ .H

1/g
�
C is dense in Ej . In view of the preceding discussion,

we thus obtain
Ej \ .H

1/g
�
C Š Ej ˝M1j

for a dense linear subspace M1j � Mj . In view of Lemma 8.4, we now have to
show that, for every  2 M1j , the subspace Ej ˝  � E generates an irreducible
subrepresentation of

G] D L
]
ˆ.K/:

1This follows by differentiation under the integral sign, see [30, Proposition 1.3.23].
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For the untwisted case, i.e., ˆ D idK , this follows from [68, Proposition VII.1].
For the twisted case we have to invoke the machinery of holomorphic induction
described in Definition 8.5. For the following argument, observe that L

]
ˆ.K/ is con-

nected by Lemma 7.16. On the finite-dimensional subspaceE WDEj ˝ � .H1/g
�
C ,

the representation of yL is bounded. Hence, [79, Theorem C.3] implies that the yG-
subrepresentation .�0;H 0/ of .�;H / generated by E is holomorphically induced
from the yL-representation .�L; E/. In view of [79, Theorem C.2], the irreducibility
of .�L; E/ implies the irreducibility of .�0;H 0/.

We have seen in the proof of Proposition 8.6 that the holomorphically inducible
irreducible representations �L of yL are parametrized by a set of anti-dominant integral
weights of an affine Kac–Moody algebra yL .kC/ with a fixed central charge. This
implies the finiteness of the possible types.

The following corollary can be used to deal with gauge groups if the structure
group K is not 1-connected. It covers in particular the case K D Aut.k/ that arises
from structure groups of Lie algebra bundles K! S1.

Corollary 8.8 (Non-connected fibers). If K is a compact Lie group with simple Lie
algebra and .�;H / a positive energy representation of yLˆ.K/, then its restriction to
L
]
ˆ.K/ is a finite direct sum of factor representations of type I , hence, in particular,

a direct sum of irreducible representations.

Proof. Since K is compact with simple Lie algebra, the groups �0.K/ and �1.K/
are finite. Therefore, the exact sequence

1! �1.K/= im.�1.ˆ/ � id/ ,! �0.Lˆ.K//� �0.K/
ˆ
! 1

from [84, Remark 2.6 (a)] implies that �0.Lˆ.K// is finite. The identity component
Lˆ.K/0 is isomorphic to Lˆ. zK0/, where zK0 is the simply connected covering of the
identity component K0 of K. Now the assertion follows by combining Theorem 8.7
with Theorem C.1.

Remark 8.9 (Explicit aspects of the Borchers–Arveson theorem).
(a) Let .�;H / be a positive energy representation of yLˆ.K/ for which the restric-

tion �] to L
]
ˆ.K/ is isotypic. Then, the proof of Theorem 8.7 shows that �] is

holomorphically induced from .�L; E/, where E Š E ˝M and .�L; E/ is an irre-
ducible representation of L], and hence of Kˆ.

That the representation is basic, UR � �.G
]/00, is equivalent to UR commut-

ing with the commutant �.G]/0. Since the restriction to E yields an isomorphism
�.G]/0 ! �L.L]/0 D �L.L/0 ([79, Theorem C.2]) and E is invariant under UR, the
inclusion UR � .�.G

]/0/0 is equivalent to

URjE � .�
L.L/0/0 D B.E/˝ 1:
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Since yLD T �Kˆ �R, whereKˆ is considered as a subgroup of constant sections,
we have URjE � �.yL/

0. The representation is therefore basic if and only if URjE is
contained in

�.yL/0 \ �L.L/00 D C1;

that is, if and only if U acts on E by a character.
(b) We construct an example which is not basic, but which is factorial on G].

Let .�;H / be an irreducible positive energy representation of yG D yLˆ.K/. For any
non-trivial character �WR! T , the representation �˚ .y�˝ �/ with y�.g; t/ WD �.t/
is factorial on G], but not on yG.

8.2 The classification theorem for compact base manifolds

Let M be a manifold on which the flow M has no fixed points, and let K be a com-
pact, connected, simple Lie group. We now obtain a full classification of the projective
positive energy representations of �c.M;K/0 in the case where M is compact, by
combining the localization Theorem 7.1 with the results on twisted loop groups from
Section 8.1.

8.2.1 One-dimensional manifolds with compact components

By Theorem 7.1 and Corollary 7.5, every projective positive energy representation
of �c.M;K/0 factors through the gauge group �c.S; zK/ of a 1-dimensional, R-
equivariantly closed embedded submanifold S � M . If S is compact, then it is the
disjoint union of finitely many circles Sj on which R acts with period Tj .

In this section we assume that S is a (not necessarily finite) union of circles. The
restricted gauge group G WD �c.S; zK/ is then a restricted direct product of twisted
loop groups L

ĵ
. zKj /, where zKj is the 1-connected cover of the structure group Kj

of KjSj . On the Lie algebra level, we have a direct sum of Lie algebras

g Š
M
j2J

L'j .kj /:

As in (8.1), the infinitesimal generator D of the R-action acts on � 2 g by

D.�/ D
M
j2J

1

Tj
.dj �j C ŒAj ; �j �/;

where Aj 2 L'j .k/ is determined by the R-action according to (7.10).
Let .d�;H / be a positive energy representation of g] D RC ˚! g with cocycle

!.�; �/ D
X
j2J

cj

2�

Z 1

0

�.� 0j ; �j /dt with cj 2 N0:
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For each j , d� restricts to a positive energy representation of the centrally extended
twisted loop algebra L

]
'j .kj / with central charge cj . By Proposition 8.6 and Re-

mark 8.3 (cf. [94, Chapter 9] for the untwisted case), the irreducible positive energy
representations of L

]
'j .kj / with central charge cj are precisely the irreducible unitary

lowest weight representations .d��;H�/ with integral anti-dominant weight � satis-
fying �.C / D icj . Since there are finitely many of these, the representation can be
written as a finite sum

H D
M
�

H
j

�
˝M

j

�
(8.7)

where the sum runs over the integral anti-dominant weights of L
]
'j .kj / with central

charge cj (cf. (8.5)) and L
]
'j .kj / acts trivially on the multiplicity space M

j

�
(Theo-

rem 8.7).
Now suppose that .�;H / is a positive energy factor representation of G]. Then,

the restriction to a normal subgroup

Gj WD L
ĵ
. zK/

decomposes discretely with finitely many isotypes (Theorem 8.7). For a subsetF �J ,
we denote the corresponding normal subgroup of G by

GF WD
M
j2F

L
ĵ
. zKj /:

Since Gj commutes with GJn¹j º, the factoriality of � on G] implies that the restric-
tion of � to G]j is factorial as well. Hence, there is only one summand in (8.7), and
we have

H D H
j

�
˝H 0

for some multiplicity space H 0. Although a priori we only have a single operator H
for all components Sj , we now obtain an operator d�.dj / satisfying

Œd�.dj /; d�.�i /� D ıijd�.� 0j /

from the minimal implementation2 in Corollary 3.9.
Since

H 0 WD H �
i

Tj
d�.dj C Aj /

commutes with yL'j .k/, we obtain a positive energy representation on H 0 with Hamil-
tonian H 0, but now for the group G]

Jn¹j º
. Continuing this way, we obtain for each

2One could also use the Segal–Sugawara construction ([55, Section 3] and [32]), but this
leads to a non-zero minimal eigenvalue; see Section 9.1.1 for more details.
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j 2 J an integral anti-dominant weight �j of central charge cj , and for each finite
subset F � J a tensor product decomposition

� D �F ˝ �
0
F ; H D HF ˝H 0F with HF WD

O
j2F

H�j (8.8)

into positive energy representations for the gauge groups G]F and G]
JnF

.

8.2.2 Compact base manifolds

For gauge groups over a compact base manifold M , we thus obtain the following
classification result. It contains in particular Torresani’s classification for linear flows
on a torus; see [105] and [3, Section 5.4].

Theorem 8.10. Let M be a compact manifold with a fixed point free R-action M ,
and let K!M be a bundle of Lie groups with compact, simple, connected fibers. Let
N�W�.M;K/0 ÌR! PU.H / be a minimal projective positive energy representation
with respect to a lift  of the R-action to K . Then, there exist finitely many R-orbits
Sj �M , j 2 J , with central charge cj 2 N0 such that N� arises by factorization from
an isotypic positive energy representation �S of

yG D G] ÌR;

where
G WD �.S; zK/ '

Y
j2J

L
ĵ
. zKj /:

If �S is irreducible, then
H D

O
j2J

H�j

is a tensor product of lowest weight representations .��j ;H�j / of the corresponding
affine Kac–Moody group yL

ĵ
. zKj /, where �j is an integral anti-dominant weight of

central charge cj . On the level of the Lie algebra

yg D RC �!

�M
j2J

L'j .k/ ÌRD

�
;

the central element acts by d�.C / D i1, and the generator D acts by

d�.D/ D
X
j2J

1

Tj
d��j .dj C Aj /;

where Aj 2 L'j .k/ is specified by the R-action on G.
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Proof. Since M is compact, the R-invariant, embedded, one-dimensional submani-
fold S is a union of finitely many periodic orbits. By Corollary 7.5, the projective
positive energy representation N� of �.S;K/0 thus arises by factorization from a pro-
jective positive energy representation of G D �.S; zK/, which is trivial on the image
Z of the diagonal groupZŒM� inZŒS� (cf. Remark 7.4). It then follows from (8.8) and
the discussion in Section 8.2.1 that every factorial positive energy representation is a
multiple of a product of lowest weight representations as described above. The only
thing left to check is that this representation restricts to a character on the image Z
of ZŒM� in G. Since Z is a subgroup of the central group ZŒS� D

Q
j2J �1.Kj /

ĵ ,
it is in particular contained in the group

Q
j2J .

zKj / ĵ of constant sections, which is
connected by [39, Theorem 12.4.26]. Its Lie algebra

L
j2J k'j is contained in the

radical of the cocycle !. Since L. zKj / ĵ is 1-connected (Lemma 7.16), this implies
thatZ is not only central inG, but also in yG. In particular, every factor representation
restricts to a character on Z.

Remark 8.11 (Semisimple groups). In Theorem 8.10, the restriction to simple fibers
is by no means essential. For Lie group bundles K !M with compact semisimple,
1-connected fibers, the representation still localizes to an embedded 1-dimensional
submanifold S �M by Theorem 7.1. As M is compact, S consists of finitely many
circles Sj . Since the fibers of K ! M are 1-connected, the passage from M to the
finite cover yM (Theorem 4.9) yields not only a Lie algebra bundle yK! yM , but also
a Lie group bundle yK! yM with simple, compact fibers. By the same argument as in
Remark 4.10, the R-action on K !M lifts to yK ! yM . Applying Theorem 8.10 to
yK ! yM , we find that the minimal factorial positive energy representations are again

multiples of the irreducible ones. The latter are now parametrized by embedded cir-
cles ySj;r � yM , together with an integral anti-dominant weight �j;r with central charge
�j;r.C /D icj;r . Here, the circle ySj;r � yM is a finite cover of the circle Sj �M . The
weight �j;r is associated to the Kac–Moody algebra yL

ĵ;r
.kj;r/, where kj;r is a simple

ideal in the semisimple Lie algebra kj , and ĵ;r is the smallest power of the holonomy
around Sj that maps kj;r to itself.

8.3 Extensions to non-connected groups

In this section we discuss several phenomena related to non-connected variants of the
group G. Dealing with non-connected groups is typically more complicated because
they may not have a simply connected covering group, nor do central extensions or
representations of the identity component always extend to the whole group.

This suggests the following classification scheme to deal with projective positive
energy representations of G Ì˛ R if G is not connected.

• Determine which central extensions ofG0 extend to the non-connected groupsG.
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• Determine which of these do this in an R-equivariant fashion. This leads us to
central extensions of the non-connected group G Ì˛ R.

• Determine the irreducible positive energy representations of the non-connected
groups yG in terms of the representations of yG0 (this may be carried out with
Mackey’s method of unitary induction, as in [104]).

The following factorization theorem reduces the classification of the irreducible
representations to the corresponding problem for the identity component G0 and the
group �0.G/ of connected components. It shows in particular that no additional dif-
ficulties arise if K is a 1-connected simple group. We shall use the notation

G ! �0.G/; g 7! Œg�

for the quotient map.

Theorem 8.12 (Factorization theorem for non-connected gauge groups). Suppose
that K is a 1-connected simple compact Lie group, that M is compact and that vM
has no zeros. Then, every positive energy representation .�;H / of G] D �.M;K/]

can be written as �.g/ D �0.g/�.Œg�/, where �0 factors through a 1-dimensional,
closed, R-equivariantly embedded submanifold S �M , and �W�0.G/! U.H / is a
representation that commutes with �0.G]0/ D �.G

]
0/. In particular, every irreducible

positive energy representation of G] is of the form �0 ˝ � where both �0 and � are
irreducible, and, conversely, any such tensor product is irreducible.

Proof. Let .�;H / be a positive energy representation of G]. From Theorem 8.10 we
know that the restriction of � to G]0 factors through an evaluation homomorphism

evWG ! GS WD �.S;K/ Š
Y
j2J

L
ĵ
.K/;

that is, there exists a positive energy representation �1 of G]S such that

�j
G
]
0

D �1 ı ev j
G
]
0

:

Since K is 1-connected, the groups L
ĵ
.K/ are connected and therefore GS is con-

nected. Then, �0 WD �1 ı ev is a positive energy representation of G] that coincides
with � on G]0.

This construction shows in particular that �0.G/ acts trivially on the set of equiv-
alence classes of irreducible positive energy representation of G]0. Indeed, for every
irreducible representation �1 of G]S , the representation �0 extends the representation
�1 ı ev j

G
]
0

to a representation of G] on the same space.

As every positive energy representation ofG] decomposes onG]0 into irreducible
ones (Theorem 8.10), it follows that �.G]/ preserves all the G]0 isotypic subspaces
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Hj Š Fj ˝Mj , j 2 J , and on these the representation of G]0 has the form �j ˝ 1.
Extending �j to a representation z�j ofG], the restriction of � from H to Hj takes the
form z�j ˝ �j , where �j W�0.G]/Š �0.G/!U.Mj / is a unitary representation on the
multiplicity space. Putting everything together, we obtain a factorization � D �0 ˝ �,
where � is a representation of �0.G/ that commutes with �.G]0/.

In view of Schur’s Lemma, our construction shows in particular that the represen-
tation � is irreducible if and only if it is isotypical on G]0, that is, H D F ˝M, and
the representation � of �0.G/ on M is irreducible.

Remark 8.13. (a) IfK is connected but not simply connected and k is a compact sim-
ple Lie algebra, then the classification in [104] shows that not all central extensions of
L.K/0 extend to the whole group L.K/, so that the situation becomes more compli-
cated. Likewise, irreducible projective positive energy representations of L.K/0 do
not in general extend to the whole group L.K/. In [104] one finds a classification of
the irreducible projective positive energy representations of the groups L.K/ for con-
nected simple groupsK. Here the new difficulty is that the group �0.L.K//Š �1.K/
acts non-trivially on the alcove whose intersection with the weight lattice classi-
fies the irreducible projective positive energy representations of the connected group
L.K/0 Š L. zK/ for a fixed central charge.

(b) If we start with a projective representation of the non-connected gauge group
�c.M;K/, we get a representation of the image of �c.M;K/ in �c.S;K/, which
is a restricted direct product of twisted loop groups. It maps �c.M;K/0 onto the
identity component, but additional information is contained in the images of the other
connected components. We then get a projective representation of a Lie group whose
Lie algebra is �c.S;K/ and whose group of connected components is an image of
�0.�c.M;K//. Its action on the Lie algebra does not permute the ideals of the type
L'.k/, so it acts on each twisted loop algebra separately by the adjoint action of some
element of Lˆ.K/. This suggests that one needs a description of those Lie algebra
cocycles ! on �c.M;K/ that actually correspond to central Lie group extensions
of the full group �c.M;K/. Here the obstructions lie in H 3.�0.�c.M;K//; T /.
We refer to [72] for further details on such obstructions and for methods of their
computation.

(c) For a bundle of Lie groups K!M , passing to the simply connected covering
of the structure group K may not always be possible. For this, an obstruction class in
H 3.M;�1.K// has to vanish (see [83]). Since �1.K/ is finite for semisimple compact
groups K, this is a torsion class. So for a discrete central subgroup D � K, every
bundle with structure group K factorizes to a bundle with structure group K=D, but
in general, not all bundles with structure group K=D are of this form.



Chapter 9

The classification for M noncompact

Even in the noncompact case, the techniques developed so far open up a number of
new perspectives. The localization Theorem 7.1 allows us to restrict attention to a
1-dimensional invariant submanifold S �M . If M is noncompact, then S can have
infinitely many connected components Sj , each of which is diffeomorphic to either
R or S1. We consider these two cases separately.

In Section 9.1 we consider the case where S consists of infinitely many lines. In
order to arrive at a (partial) classification, we impose the additional condition that the
positive energy representation . N�;H / admits a cyclic ground state vector� 2H that
is unique up to scalar. In Theorem 9.11 we show that these vacuum representations are
classified up to unitary equivalence by a central charge cj 2 N0 for every connected
component Sj ' R. The proof proceeds by reducing to the (important) special case
M D R, where the classification is essentially due to Tanimoto [102].

In Section 9.2 we consider the case where S consists of infinitely many circles.
Here we impose the much less restrictive condition that H is a ground state repre-
sentation. This means that H is generated by the space of ground states, but we do
not require these ground states to be unique. We show that this condition is auto-
matically satisfied if the periods (9.6) of the R-action are uniformly bounded. In
Theorem 9.16 we classify this type of representations in terms of C �-algebraic data,
using techniques similar to those used in [50] for norm-continuous representations.
The possibility of an infinite-dimensional space of ground states gives rise to inter-
esting phenomena, such as factor representations of type II and III.

Finally, in Section 9.3, we briefly explore a simple situation where the R-action
has a fixed point. The main thing we wish to point out is that the lift of the R-action
at the fixed point has a qualitative influence on the type of representation theory that
one encounters. In Part II of this series we develop the necessary tools to resolve the
positive energy representation theory in more detail.

9.1 Infinitely many lines

In contrast to the case of (twisted) loop groups, the classification of projective positive
energy representations ofC1c .R;K/, forK a compact 1-connected simple Lie group,
is an open problem—closely related to the classification problem for representations
of loop group nets (cf. [103, 111] and Remark 9.4).

A large class of examples can be obtained by restricting projective positive energy
representations of the loop group G WD L.K/ to Gcs WD C

1
c .R; K/, where the lat-
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ter is considered as a subgroup by identifying the circle with the real projective line
P1.R/ D R [ ¹1º. The restriction of an irreducible projective positive energy rep-
resentation of L.K/ remains irreducible, essentially by [103, Corollary IV.1.3.3]. In
Section 9.1.1 we show that the restriction remains of positive energy as well. This is
not a priori clear, since the positive energy is defined in terms of rotations of the circle
for G and in terms of translations on the real line for Gcs.

It is not true that all projective unitary positive energy representations ofGcs arise
by restriction in this way, and the classification remains an open problem. We can,
however, classify the projective positive energy representations under the additional
assumption that they admit a cyclic ground state vector which is unique up to scalar.
These vacuum representations were classified by Tanimoto for the Lie algebra of
k-valued Schwartz functions [102], and in Section 9.1.2 we use Theorem 6.30 to
push these results to the compactly supported setting.

Finally, in Section 9.1.3, we classify the vacuum state representations for a non-
compact manifold M with a free R-action. The proof proceeds by identifying the
restricted gauge group �c.S;K/ with the weak productY0

j
C1c .Sj ; K/;

where j labels the connected components Sj ' R. We then use the results from
Appendix D, where we show that the classification of vacuum representations for a
weak product of Lie groups reduces to the same problem for each of its factors.

9.1.1 Restriction from L.K/ to C1c .R; K/

By identifying the circle S1 with the real projective line P1.R/ D R [ ¹1º, we can
consider Gcs WD C

1
c .R; K/ as a subgroup of the loop group G WD L.K/.

Note that the natural R-action by translations on Gcs does not agree with the R-
action by rigid rotations on G. In terms of the real projective line, the rotation action
of R=Z is given by the fractional linear maps

Rt .x/ D
cos�t � x C sin�t
� sin�t � x C cos�t

; x 2 R [ ¹1º; Œt � 2 R=Z;

whereas the translation action of is given by Tt .x/ D x C t .

Proposition 9.1 (Restriction of positive energy representations). Let .�;H / be an
irreducible positive energy representation of L].K/ with respect to the R-action by
rotations. Then, the restriction of � to C1c .R; K/

] is an irreducible positive energy
with respect to the R-action by translations.

We first prove that the restriction remains irreducible, and then continue with the
positive energy condition.
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Proof of irreducibility. Let G� WD ¹� 2 G W �.1/ D 1º be the subgroup of based
loops. Since �.G]�/00 D C1 by1 [103, Corollary IV.1.3.3], it suffices to show that
�.G

]
cs/ is dense in �.G]�/ for the strong operator topology. By [79, Appendix A],

the representation of G] extends to a smooth representation of the Banach–Lie group
H 1.S1; K/ of H 1-loops, whose Lie algebra is the space H 1.S1; k/ of H 1-functions
�W S1 ! k. Since these are the absolutely continuous functions whose derivatives
are L2, the derivative � 7! � 0 maps the subspace H 1

� .S
1; k/ of H 1-functions that

vanish in the base point homeomorphically to

L2�.S
1; k/ D

²
� 2 L2.S1; k/ W

Z
S1
�.t/dt D 0

³
:

In this space the subspace ¹�0 W � 2 C1c .R; k/º is easily seen to be dense. Since G]� is
connected, this implies that �.G]cs/ is dense in �.G]�/.

To prove the positive energy condition for the restriction, we need to compare the
generator d0 of rigid rotations with the generator d1 of translations. In sl.2;R/, these
are given by

d0 D
1

2

�
0 1

�1 0

�
; d1 D

�
0 1

0 0

�
: (9.1)

The fact that d0 and d1 generate the same Ad-invariant closed convex cone in the Lie
algebra sl.2;R/ leads to the following characterization (cf. [59, Section 1.3]).

Lemma 9.2. For a unitary representation .�;H / of fSL.2;R/, the generator id�.d0/
is bounded from below if and only if id�.d1/ is bounded from below. Moreover, if this
is the case, then id�.d0/ � 0 and id�.d1/ � 0.

In particular, an fSL.2;R/-representation is of positive energy for d0 if and only if
it is of positive energy for d1. To prove that the restriction from L.K/] to C1c .R;K/
is of positive energy with respect to d1, it therefore suffices to extend the action
by rigid rotations to an action of fSL.2;R/. This is done using the Segal–Sugawara
construction.

Proof of positive energy. Recall from [32, Section 7] and [33] that every irreducible
projective positive energy representation . N��;H�/ of L.K/ with lowest weight �
extends to a projective representation of the semidirect product

L.K/ Ì DiffC.S1/;

where DiffC.S1/ acts on L.K/ by ˛'.�/ WD � ı '�1. The cocycle

!.�; �/ D
c

2�

Z
S1
�.� 0.t/; �.t//dt (9.2)

1Alternatively, one can use [102, Theorem 6.4], which uses [7, Corollary 1.2.3].
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is easily seen to be invariant under the action of DiffC.S1/, but it is much harder
to verify the covariance of the representations N��. In [32, Section 7.2], the repre-
sentation of the Virasoro algebra obtained from the Segal–Sugawara construction is
integrated to a group representation. Since this respects the semidirect product struc-
ture of L.K/ Ì DiffC.S1/, it follows in particular that

N�� ı ' Š N�� for every ' 2 DiffC.S1/: (9.3)

By Schur’s Lemma and the irreducibility of N��, the projective representation N�P

of DiffC.S1/ on H� is uniquely determined by the intertwining property

N�P .'/ N��.�/ N�
P .'/�1 D N�.˛'�/ for � 2 L.K/; ' 2 DiffC.S1/:

Since DiffC.S1/ contains the group of rigid rotations with respect to which N�� is a
positive energy representation, the Hamiltonian H D id�P .d0/ associated to d0 is
bounded below. Since �P is a positive energy representation of the Virasoro group,
it restricts to a positive energy representation of its subgroup fSL.2;R/, the simply
connected cover of the group PSL.2;R/� DiffC.S1/ of fractional linear transforma-
tions of S1 Š P1.R/. By Lemma 9.2, the generator id�P .d1/ then has non-negative
spectrum.

Remark 9.3. Since the cocycle (9.2) is invariant under the action of DiffC.S1/, twist-
ing N��with ' 2 DiffC.S1/ leads to an irreducible projective unitary representation
N�� ı ' with the same central charge c. By Proposition 8.6, there are only finitely many
types of such representations satisfying the positive energy condition. If we knew a
priori that this twist preserves the positive energy condition (which is presently not
the case), then we could bypass the integration procedure in [32], and construct the
projective representation of DiffC.S1/ as follows.

By the Epstein–Hermann–Thurston theorem, Diff.M/0 is a simple group for
every compact connected smooth manifold M (see [18]). In particular, DiffC.S1/
is a simple group. Since it has no normal subgroup of finite index, it acts trivially
on any finite set. This implies that N�� ı ' Š N�� for every ' 2 DiffC.S1/. The uni-
taries that implement this equivalence constitute a projective unitary representation
of DiffC.S1/.

Remark 9.4. The class of positive energy representations is by no means exhausted
by the representations of Proposition 9.1. We briefly sketch the construction of a class
of type III1 factor representations, following [19, 112].

Recall from [32, Section 7.2] that an irreducible positive energy vacuum represen-
tation � of G] D L].K/ gives rise to a vacuum representation �P of DiffC.S1/]. If
we lift the R-action by translations along the 2-fold covering qWS1!R[ ¹1ºŠ S1,
we obtain a flow on S1 with exactly two fixed points. Its generator v is obtained from
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the vector field d0 generating rigid rotations by multiplication with a non-negative
function. This implies that the operator id�P .v/ is bounded from below.

Let I � S1 be one of the two connected components of q�1.R/ and identify

Gcs D C
1
c .R; K/

with C1c .I; K/. Then, the restriction of � to G]cs is a factor representation of type
III1. Combining this with the one-parameter group generated by the vector field v,
we obtain a projective positive energy representation of G]cs Ì R with respect to the
translation action on R ([112, Proposition 3.2]). We refer to [17, 112] for further
details (see also the Remark after [103, Theorem IV.2.2.1]).

More generally, we may consider smooth vector fields v 2 V.S1/ which are
non-negative multiples f d0, f � 0, of the generator d0 of rigid rotations. For vac-
uum representations of L.K/ Ì DiffC.S1/, the corresponding selfadjoint operator
id�P .v/ is bounded from below (cf. [19]). If I � S1 is an open interval on which v
has no zeros but for which v vanishes in the boundary @I , then we obtain an embed-
ding

C1c .R; k/ ÌR Š C1c .I; k/ ÌR ,! L.k/ ÌRv

that integrates to the group level, where we obtain a projective positive energy repre-
sentation of C1c .R; K/.

9.1.2 Vacuum representations of C1c .R; K/

Although the classification of projective positive energy representations . N�;H / of
C1c .R; K/ is an open problem in general, it can be resolved under the additional
assumption that H admits a unique, cyclic ground state.

Definition 9.5. Let .�;H / be a positive energy representation of yG.

(a) A ground state vector is a vector � 2 D.H/ � H such that H� D E0�
for E0 WD inf.spec.H//. We denote the space of ground state vectors by E .

(b) A ground state representation is a positive energy representation .�;H / that
is generated by its space of ground states, in the sense that the linear span of
�. yG/E is dense in H .

(c) A vacuum representation is a ground state representation where the ground
state is unique up to scalar, E D C�.

At the Lie algebra level, we obtain analogous definitions if we replace the require-
ment that �. yG/E is dense in H by the requirement that

U.g/� D U.g]/�

is dense in H . Although the translation between these two concepts requires some
caution, the two notions turn out to be compatible for positive energy representations.
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Proposition 9.6. Let .�;H / be a positive energy representation of yG with ground
state vector �. Then, U.g]/� is dense in H if and only if � is cyclic under �.G]/.

Proof. For a closed interval I � R, let

GI WD
®
� 2 G D C1c .R; K/ W �.R n I / D ¹eº

¯
denote the Fréchet–Lie subgroup of maps supported by I . We claim that the Lie group
G
]
I is BCH, i.e., it is locally exponential and its Lie algebra g

]
I is BCH, which means

that the Baker–Campbell–Hausdorff series defines an analytic local multiplication
on a 0-neighborhood of g ([30, Theorem 15.7.1]). For GI this follows from [30,
Example 7.1.4 (c)] because the BCH property is inherited from the target group K.
Further [30, Theorem 15.4.19] implies that the centrally extended Lie algebra g

]
I is

also locally exponential and the proof of this theorem shows that the analyticity of
the local multiplication is inherited by the central extension.

Lemma 6.34 implies that � is an analytic vector for each element in g
]
I , so that

[76, Proposition 4.10] further entails that � is an analytic vector for G]I . Hence, the
closure of U.g

]
I /� is G]I -invariant. As the interval I was arbitrary, the closure of

U.g]/� is invariant under G], hence also under2 yG, because � is an H -eigenvector.
This shows that U.g]/� is dense in H if and only if � is cyclic under �.G]/.

The vacuum representations for the Lie algebra g�D�.R;k/ of k-valued Schwartz
functions have been classified by Yoh Tanimoto.

Theorem 9.7 (Tanimoto’s classification theorem; [102, Corollary 5.8]). Let .�;H1/
be a vacuum representation of yg� with respect to the R-action by translations. Sup-
pose that for all ;�2H1, the functional � 7! h ;�.�/�i is a tempered distribution.
Then, .�;H1/ is characterized up to unitary equivalence by its central charge c 2
N0.

Using the continuity results from Chapter 6, we show that Tanimoto’s classifica-
tion theorem remains true for the smaller Lie algebra gcs WD C

1
c .R; k/ of compactly

supported smooth k-valued functions. This is an important improvement because the
relevant Lie algebra for the classification of ground states of loop group nets is not
�.R; k/, but C1c .R; k/ (cf. [102, Section 6]).

As usual, we denote

ygcs WD
�
RC ˚! gcs

�
ÌRD and yg� WD

�
RC ˚! g�

�
ÌRD;

2For the concept of an analytic map to make sense, we need the group to be analytic. Since
the R-action on G need not be analytic, the semidirect product G Ì˛ R is in general not an
analytic Lie group. In particular, yG need not be an analytic Lie group.
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whereD acts by infinitesimal translations. Since the inclusion of �.R; k/ inH 1
@
.R; k/

is continuous, the following is an immediate consequence of Theorem 6.30.

Proposition 9.8. Let .�;H / be a positive energy representation of the group

yGcs WD .C
1
c .R; K/ ÌR/]:

Then, the derived representation d� of ygcs extends uniquely to a positive energy rep-
resentation r of yg� such that, for all  ; � 2 H1, the functional � 7! h ; r.�/�i is a
tempered distribution.

Combined with Theorem 9.7, this immediately yields the classification of vacuum
representations in the compactly supported setting.

Theorem 9.9 (Vacuum representations ofC1c .R;K/). LetK be a 1-connected, com-
pact, simple Lie group and Gcs D C

1
c .R;K/. Then, a vacuum representation .�;H /

of yGcs is characterized up to unitary equivalence by its central charge c 2 N0.

Proof. By Proposition 9.6, the derived representation d� of ygcs is a vacuum repre-
sentation which by Proposition 9.8 extends to a continuous representation of the Lie
algebra yg� . By [102, Corollary 5.8], the latter is determined up to isomorphism by its
central charge c 2 N0. Since Gcs is connected (Lemma 7.16), the representation � of
yGcs is uniquely determined by its derived Lie algebra representation (Theorem 2.13),
and the result follows.

In Section 9.1.1, we saw that the restriction of an irreducible positive energy rep-
resentation of L].K/ (with respect to rotations) yields an irreducible positive energy
representation of C1c .R; K/

] (with respect to translations). We now show that the
unique vacuum representation of C1c .R; K/

] with central charge c arises by restric-
tion of the irreducible positive energy representation of L].K/ with lowest weight

� D .ic; 0; 0/:

Proposition 9.10. The irreducible lowest weight representation of L].K/ with low-
est weight � restricts to a vacuum representation of C1c .R; K/

] if and only if the
restriction �0 of � to it is zero.

Proof. Recall from Section 9.1.1 that every irreducible projective positive energy rep-
resentation of L.K/ ÌRd0 with lowest weight � extends to L.K/ Ì DiffC.S1/. By
Lemma 9.2, this induces a unitary representation offSL.2;R/ � DiffC.S1/];

which is of positive energy not only with respect to d0 2 sl.2;R/, but also with
respect to d1 2 sl.2;R/ (cf. (9.1)).
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Recall from Remark 8.9 that the space E0 of ground states for id�.d0/ is an
irreducible unitaryK-representation. Its lowest weight �0 is the restriction of � to it.
By the formula in [32, Theorem 3.5 (iii)], the minimal eigenvalue of H0 D id�.d0/
is a positive multiple of the Casimir eigenvalue for K on E0. In particular, it vanishes
if and only if �0 D 0, which is the case if and only if dim E0 D 1,

inf Spec.H0/ D 0” �0 D 0” dim E0 D 1: (9.4)

By a result of Mautner and Moore [63, 66],

ker.d�.d0// D ker.d�.d1// (9.5)

coincides with the subspace of vectors that are fixed under fSL.2;R/ (See Appendix E
for a simplified direct proof.). If �0 D 0, the ground state forH1 WD id�.d1/ is there-
fore unique up to a scalar.

Conversely, suppose that the space E1 of ground states forH1 is non-trivial. Since
the adjoint orbit through d1 contains RCd1, the spectrum of H1 D id�.d1/ is scale
invariant. Any ground state H1� D E� then has E D 0, and will satisfy H0� D 0
by (9.5). Since H0 is non-negative, it has minimal eigenvalue zero, the space E0 of
ground states for id�.d0/ is one-dimensional. We conclude that �0 D 0, and that
E1 � E0 is one-dimensional as well.

9.1.3 Vacuum representations for noncompact manifolds

Let K!M be a bundle of 1-connected simple compact Lie groups over a 2nd count-
able manifold M , equipped with a smooth R-action by automorphisms.

Theorem 9.11. If the action of R on M is free, then up to unitary equivalence, there
is a bijective correspondence between the following.

(a) Smooth projective unitary representations N�W�c.M;K/0 ! PU.H / extend-
ing to a vacuum representation of �c.M;K/

]
0 Ì˛ R with smooth ground state

vector �.

(b) Closed, embedded, 1-dimensional flow-invariant submanifolds S , together
with a non-zero central charge cj 2N for every connected component Sj'R
of S .

Under this correspondence we have

.H ; �/ D
O
j2J

.Hj ; �j / and �.g/ D
O
j2J

�j .gjSj /;

where .�j ;Hj ;�j / is the restriction to C1c .R;K/' �c.Sj ;K/ of the lowest weight
representation of L].K/ with lowest weight � D .cj ; 0; 0/ and J is the countable set
of connected components of S .
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Proof. By the localization Theorem 7.1, every projective positive energy representa-
tion N� factors through �c.S;K/ for a closed, embedded, 1-dimensional submanifold
S �M . It follows that � factors through �c.S;K/]. SinceM is 2nd countable, S has
at most countably many connected components Sj , j 2 J , and the freeness of the
action implies that each of these is R-equivariantly isomorphic to R. By Lemma D.3,
the Lie group �c.S;K/ is isomorphic to the weak product

G WD
Y0

j2J
Gj ; with Gj D �c.Sj ;K/:

The cocycle  Wg� g! R on g WD L.G/D
L
j2J gj vanishes on gi � gj for i ¤ j .

Since every Gj is connected, this implies that

G] Š

�Y0

j2J
G
]
j

��
N;

where N �
Q0
j2J Tj is the kernel of the smooth character

�W
Y0

j2J
Tj ! T ; .zj /j2J 7!

Y
j2J

zj :

The vacuum representations of G] therefore correspond to vacuum representations
of the weak product

Q0
j2J G

]
j such that the central subgroup

Q0
j2J Tj acts by �. We

may assume, without loss of generality, that the ground state energy is zero,H�D 0.
By Theorem D.6, every vacuum representation .�;H ; �/ of the weak productQ0

j2J G
]
j is a product of vacuum representations .�j ;Hj ; �j / of G]j , and by Propo-

sition D.7, � is smooth with smooth ground state vector � if and only if all the �i are
smooth with smooth ground state �j .

Since �j is irreducible by Proposition D.5, its restriction to the central subgroup
Tj � G

]
j is a character �j WTj ! T . The product � D

N
j2J �j acts by � on the

center
Q0
j2J Tj if and only if �j .z/ D z1 for all j 2 J .

Using the free R-action to identify KjSj with R�K, we obtain an R-equivariant
isomorphism between Gj D �c.Sj ;K/ and C1c .R; K/ (cf. Section 7.3). By Theo-
rem 9.9, the vacuum representations ofG]j are characterized up to unitary equivalence
by their central charge cj 2 N0, and by Proposition 9.10, .�j ;Hj ; �j / is unitar-
ily equivalent to the restriction to C1c .R; K/ of the lowest weight representation of
L].K/ with � D .cj ; 0; 0/. If cj D 0, then the corresponding representation is trivial,
so we can omit both Sj and cj from the description.

9.2 Infinitely many circles

We continue with the case where all connected components Sj of S are circles. In
marked contrast with the case of infinitely many lines, the projective positive energy
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representations associated to a single connected component Sj are well understood,
allowing us to classify the projective positive energy representations of �c.S;K/

under the much weaker condition that the Hilbert space H is generated by the space
E of ground states. These are the ground state representations of Definition 9.5.

As before, we assume that K is a 1-connected compact Lie group, which is not
a serious restriction as long as K is connected (cf. Remark 7.4). In Section 9.2.1
we describe the spectral gap condition, an essentially geometric sufficient condition
for all positive energy representations to be generated by the space of ground states.
The main result of this section is Theorem 9.16 in Section 9.2.2, where we describe
the ground state representations in terms of the representation theory of UHF C �-
algebras.

9.2.1 The spectral gap condition

Following the line of reasoning in Chapter 8, we associate to every compact connected
component Sj a “local” Hamiltonian Hj . If these local Hamiltonians have a uniform
spectral gap, we say that .�;H / satisfies the spectral gap condition. We show that this
(essentially geometric) condition guarantees that the positive energy representations
are generated by their space of ground states.

We continue with the notation

G D �c.S;K/ Š
Y0

j2J
L

ĵ
.Kj /;

where
Q0
j2J denotes the weak direct product as in Section D.1. As in Section 7.3, we

identify Sj with R=Z, where the time translation S;t acts on Œxj � 2 Sj by

S;t .Œxj �/ D

�
xj C

t

Tj

�
:

The derivation acts on �j 2 L
ĵ
.kj / by

D�j D
1

Tj
.dj �j C ŒAj ; �j �/:

By choosing a suitable parametrization of KjSj , we may assume that Aj is con-
stant (see [79, Proposition 2.14] or [65, Section 5.2]) and lies in the maximal abelian
subalgebra tı of k'j (Theorem B.2). By acting with the 'j -twisted Weyl group W ,
i.e., the Weyl group of the underlying Kac–Moody Lie algebra, we may also assume
that dj C Aj lies in the positive Weyl chamber, i.e., .˛; n/.i.dj C Aj // � 0 for all
positive roots .˛; n/ 2 �C ([65, Section 3] and Appendix A).

In the following .��j ;H�j / denotes the irreducible positive energy representation
of

G
]
j Š L

]

ĵ
.Kj / Š �.Sj ;K/]
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with lowest weight �j (cf. Section 8.2). Then, the minimal eigenspace V 0j of dj in
H�j is an irreducible Kˆ-representation. Since Aj is anti-dominant, the minimal
eigenspace W 0

j of Hj (which is also finite-dimensional by Kac–Moody theory) con-
tains all weight vectors v� in V 0j with �.Aj /D 0. Note thatW 0

j is 1-dimensional for
generic Aj and increases in dimension as dj C Aj is contained in a smaller face of
the Weyl chamber (or, equivalently, as Aj is contained in a smaller face of the Weyl
alcove), and that W 0

j D V
0
j D V�0

j
if Aj D 0. We denote the orthogonal projection

H�j ! V 0j by Pj , and for a finite subset F � J , we set

PF WD
Y
j2F

Pj :

Let .�;H / be a factorial projective positive energy representation of G]. Recall
from Section 8.2.1 that, for every finite subset F � J , we have a tensor product
decomposition H D HF ˝H 0F . Here

HF D

O
j2F

H�j

is a positive energy representation of G]F with Hamiltonian

HF D
X
j2F

H�j ;

where

H�j D id��j

�
1

Tj
.dj C Aj /

�
�
i

Tj
�j .dj C Aj /1

is the minimal non-negative Hamiltonian on H�j from Section 3.3. The other factor

H 0F is a minimal positive energy representation of G]
JnF

with Hamiltonian H 0, and
we have

H D HF ˝ 1C 1˝H 0:

The ground states for a yG-representation (in the sense of Definition 9.5) can be
characterized in terms of the “local” Hamiltonians as follows.

Lemma 9.12. For a factorial minimal positive energy representation .�;H / of yG, a
vector � 2 D.H/ � H is a ground state vector if and only if H�j� D 0 for every
j 2 J .

Proof. “)”: Suppose first that � is a ground state vector. Then, 0 � H�j � H
implies that H�j� D 0.

“(”: Conversely, suppose that H�j� D 0 holds for all j 2 J . By minimality,
the cyclic subspace generated by � under G] is yG-invariant and the corresponding
representation on this subspace is minimal. We may therefore assume that� is cyclic.
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For every finite subset F � J ,� is fixed by the operators V Ft WD e
�itHF , t 2 R.

These operators satisfy

V Ft �.g/V
F
�t D �.˛t .g// for g 2 G]F ; t 2 R:

For any finite superset F 0 � F we then have

V F
0

t �.g/� D �.˛t .g//� D V
F
t �.g/� for g 2 G]F :

This means that V Ft and V F
0

t coincide on the closed subspace HF generated by
�.G

]
F /�. Since the union of these subspaces is dense in H , we obtain a unitary one-

parameter group .Vt /t2R on H whose restriction to HF coincides with .V Ft /t2R.
This implies that

Vt�.g/V�t D �.˛t .g// for g 2 G]; t 2 R:

Write Vt D e�it
zH for a positive selfadjoint operator zH . Then, our construction

shows that zH coincides with HF D
P
j2F H�j on HF , and thus zH � 0. By mini-

mality of H , we have 0 � H � zH , so that zH� D 0 leads to H� D 0.

Definition 9.13 (Spectral gap). We say that the family .�j ; Aj ; Tj /j2J satisfies the
spectral gap condition if there exists a positive real number �E such that, for every
j 2 J ,

Spec.H�j / � ¹0º [ Œ�E;1/:

The spectral gap condition is essentially geometric in nature. Recall that for
m 2M , the R-action t yields a group automomorphism t .m/WKm ! KM .m/.
The spectral gap condition is automatically satisfied if the period

T .m/ WD inf
®
t > 0I M;t .m/ D m; t D Id 2 Aut.Km/

¯
(9.6)

is uniformly bounded on M . Indeed, the R-action on �.Sj ;K/ then has period
Tj � supm2M T .m/, so the spectrum of dj C Aj in every minimal unitary positive
energy representation will be contained in .2�i=Tj /Z.

Proposition 9.14 (Spectral gaps yield ground state vectors). Let .�;H / be a facto-
rial minimal positive energy representation of yG such that the corresponding family
.�j ; Aj ; Tj /j2J satisfies the spectral gap condition with some �E > 0. Then, H is
generated under G] by the subspace kerH of ground state vectors.

Proof. The minimality implies that 0 is the infimum of the spectrum ofH , so that the
spectral projection

P WD P.Œ0;�E=2�/

is non-zero. First we show that PH is contained in the kernel of every H�j . In fact,
the operator H �H�j is non-negative. Since the minimal non-zero spectral value of
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H�j is��E, it follows that PH � kerH�j . Lemma 9.12 now shows thatH�D 0.
Therefore, F WD PH coincides with the subspace kerH of ground state vectors.

Next we show that F is generating under G]. Let H1 � H be the closed sub-
space generated by F under G]. Then, we obtain a G]-invariant decomposition
H D H1 ˚H2. Minimality of � now implies that it is also yG-invariant, so that the
Hamiltonian H decomposes accordingly as H D H 1 ˚H 2. Since F \H2 D ¹0º,
we obtain H2 D ¹0º by minimality of H 2 and the first part of the proof. This shows
that H D H1 is generated by F under G].

9.2.2 Classification in terms of UHF C �-algebras

As in [50], where we dealt with norm continuous representations of gauge groups, we
aim at a description of the factor representations of positive energy in terms of C �-
algebras. As semiboundedness is crucial to obtain corresponding C �-algebras ([81]),
we first observe that positive energy representations are semibounded (cf. Defini-
tion 6.31).

Applying Corollary 6.33 withMDS , we immediately obtain the following result.

Theorem 9.15. If all connected components of S are compact, then every projective
positive energy representation .�;H / of

�c.S;K/ Š
Y0

j2J
L

ĵ
.Kj /

is semibounded with the affine hyperplane �c.S;K/] �D contained in the open cone
W�, so that W� is an open half space. In particular, it is a positive energy representa-
tion for all derivations

DA WD D � adA; A 2 �c.S;K/:

Let .�;H / be a factorial minimal positive energy representation of yG and let
.�j ; Aj ; Tj /j2J be as above. Since the projection Pj WH�j ! V 0j onto the minimal
energy space forH�j in H�j is finite-dimensional, Pj is a compact operator. We may
therefore consider the direct limit

B WD
O
j2J

�
K.H�j /; Pj

�
(9.7)

of the C �-algebras

BF WD

O
j2F

�
K.H�j /; Pj

�
; F � J finite;
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where the tensor product of the non-unital algebras K.H�j / is constructed as in [34]
with the inclusions

BF1 ,! BF2 ;

A 7! A˝
O

j2F2nF1

Pj

for finite subsets F1 � F2 of J . We write B ˝
N
j2JnF Pj for the image of B 2 BF

in B and
P1 WD

O
j2J

Pj :

If J is finite, then B Š BJ and the above tensor product is finite. The C �-algebra B

carries a natural one-parameter group of automorphisms .˛B
t /t2R specified by

˛B
t .B/ D e

�itHFBeitHF for t 2 R; B 2 BF ;

which fixes the projection P1.
Since every ground state representation can be written as a direct sum of cyclic

ones, we may assume, without loss of generality, that H has a cyclic ground state
� 2 H . This defines a state of B by

!.B/ WD h�;B�i for B 2 BF

because Pj projects onto the kernel of H�j which contains �. Conversely, if .�;H /

is a representation of the C �-algebra B that is generated by a vector � with

�.P1/� D �;

then we obtain commuting representations of the multiplier algebras B.H�j / of
K.H�j /. In particular, we recover a unitary representation of the restricted productY0

j2J
U.H�j /;

and hence, a unitary representation ofG]. This representation extends canonically to a
minimal positive energy representation of yG, where the HamiltonianH is determined
uniquely by

e�itH�.B/� D �.˛B
t .B//� for B 2 B:

The representations constructed above are now positive energy representations for the
C �-dynamical system .B;R; ˛B/ generated by ground states (cf. [13]).

From this correspondence, we derive the following noncompact analog of Theo-
rem 8.10.
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Theorem 9.16. Let B be the C �-algebra constructed for .�j ; Aj ; Tj /j2J with a
possibly infinite index set J as above. Then, the above construction yields a one-to-
one correspondence between the following.

(a) Isomorphism classes of minimal factorial positive energy representations of
yG corresponding to the family .�j ; Aj ; Tj /j2J .

(b) Isomorphism classes of factorial representations of B that are generated by
fixed points of the projection P1.

Proof. “(a))(b)”: Let .�;H / be a factorial minimal positive energy representation
of yG corresponding to the family .�j ; Aj ; Tj /j2J . As J is at most countably infinite,
we may assume, without loss of generality, that J D N (the case of finite J is proved
along the same lines) and put Bn WD BFn for Fn D ¹1; : : : ; nº. Then, we inductively
choose factorizations of .�;H / as .�Fn ˝ �

0
Fn
;HFn ˝H 0Fn/ with

HFn D H�1 ˝ � � � ˝H�n ; �Fn Š ��1 ˝ � � � ˝ ��n :

We then obtain a consistent sequence of representations of the C �-algebras Bn on
the subspaces Hn WDHFn ˝ E 0n, where E 0n �H 0Fn is the minimal eigenspace of H 0F
on H 0Fn , by

�nWBn ! B.HFn ˝ E 0n/; �n.B/ WD B ˝ 1 for B 2 Bn:

As the union of the subspaces .Hn/n2N is dense in H , we thus obtain a non-degenerate
representation .�;H / of B satisfying

�Fn.g/�n.B/ D �n.�Fn.g/B/ for g 2 G]Fn ; B 2 Bn; (9.8)

and �.P1/ is the projection onto the minimal eigenspace ofH . Note that (9.8) deter-
mines the representation � uniquely in terms of the representation .�;H / of B.

“(b))(a)”: Suppose, conversely, that .�;H / is a factorial representation of B

generated by the subspace E WD P1H . Then, the union of the closed subspaces

Hn WD �.Bn/�.P1/H

is dense in H . Since the representation of Bn Š K.HFn/ on Hn is non-degenerate,
we obtain consistent factorizations

Hn Š H�1 ˝ � � � ˝H�n ˝ E 0n Š HFn ˝ E 0n with �.B/ D B ˝ 1E0n
; B 2 Bn:

This implies the existence of smooth unitary representations �n of the groups G]Fn on
Hn which are uniquely determined by

�n.g/�.B/�.P1/ D �.�Fn.g/B/�.P1/ for g 2 G]Fn ; B 2 Bn:
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The uniqueness implies that �nC1.g/jHn D �n.g/ for g 2 G]Fn , so that we obtain

a unitary representation of G] D
S
F G

]
F on H which naturally extends to yG D

G] ÌR. Its continuity follows from [27, Lemma 4.4].
For the smoothness we use [114, Theorem 2.9]: The Lie algebra yg is the union of

the subalgebras ygFn , and the representation is smooth on the corresponding subgroup
yGFn . Further, the element D 2

T
n ygFn lies in the interior of the open cones

W�j yGFn
� g

]
Fn
C .0;1/D;

which are open half spaces (Theorem 9.15). To apply Zellner’s theorem, we have to
show that the groups yGFn have the Trotter property, i.e., for any two elements x; y in
the Lie algebra, we have

exp.t.x C y// D lim
n!1

�
exp

�
t

n
x

�
exp

�
t

n
y

��n
in the sense of uniform convergence on compact subsets of R. We first use [80, Theo-
rem 4.11] to see thatGFn ÌR has the Trotter property; as these groups are C 0-regular
([29, Theorem J]) and [80, Theorem 4.15] implies that the central extension yGFn also
has the Trotter property. As any two elements x; y 2 yg are contained in some ygFn ,
the group yG also has the Trotter property. Therefore, [114, Theorem 2.9(a)] implies
that the dense subspace D1.d�.D// of smooth vectors of the Hamiltonian coincides
with D1c .yg/, the set of all vectors � in the common domain of all finite products of
elements in yg, for which all maps

ygn ! H ; .x1; : : : ; xn/ 7! d�.x1/ � � � d�.xn/�

are continuous and n-linear. As the subgroup G] is locally exponential (see [74,
Lemma 4.3]) now implies that � is a smooth vector forG], and since it is also smooth
forH D id�.D/, [74, Theorem 7.2] further entails that it is smooth for yG. This proves
the smoothness of �.

Clearly, the two constructions are mutually inverse, up to unitary equivalence.

Remark 9.17. (a) By Lemma 9.12, the preceding theorem covers all minimal facto-
rial representations for which .�j ; Aj ; Tj /j2J satisfies the spectral gap condition.

(b) The projection P1 2 B defines the hereditary subalgebra A WD P1BP1
onto which

"WB ! A; B 7! P1BP1

defines a conditional expectation, so, in particular, a completely positive map. From
this perspective, the representations specified in Theorem 9.16 are precisely those
obtained by Stinespring dilation from the completely positive maps that have the
form ! D � ı ", where .�;F / is a non-degenerate representation of A.
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For nj WD trPj , we have

A Š
O
j2J

Mnj .C/;

showing that A is a UHF algebra [93]. The representation theory of these algebras
also appears naturally in the context of norm continuous representations of gauge
groups (cf. [50]). If infinitely many of the nj are > 1, this leads to factor represen-
tations of type II and III. So the situation depends on the size of the minimal energy
spaces in H�j . In particular, we obtain factorial representations as infinite tensor
products corresponding to factorial product states on A because they correspond to
product states on B. We refer to [50] for details on the connection between norm-
continuous representations of the restricted product

Q0
j2J Kj of the compact groups

Kj and representations of infinite tensor products of matrix algebras.

9.3 A simple example with fixed points

In Part II of this series, we will focus on the type of phenomena one encounters when
the R-action on M is not fixed point free. To give a preview of the problems one
encounters there, we briefly revisit the simple example of the circle action on S2,
lifted to an R-action on the trivial bundle K D S2 �K (cf. Example 7.9). The fixed
points are then the “north pole” n D .0; 0; 1/ and the “south pole” .0; 0;�1/.

Since every projective positive energy representation ofG DC1.S2;K/ restricts
to a projective positive energy representation of the normal subgroup

G� D C1c .S
2
n ¹n; sº; K/;

we can apply the techniques developed so far toG�. The two problems that remain are
then to determine if a representation extends from G� to G, and, if so, to classify the
possible extensions. We will pursue these problems elsewhere, and for the moment
content ourselves with describing the representation theory of G�. Although the Lie
algebra bundle K! S2 is trivial, the R-action (7.5) on K that covers the circle action
on S2 will in general not be trivializable. It turns out that the lift of the circle action at
the fixed points n; s 2 S2 has a qualitative effect on the positive energy representation
theory of G�.

By Theorem 7.1, every projective positive energy representation of G� factors
through a projective positive energy representation of C1c .S;K/, where

S D
®
.x; y; z/ 2 S2 W z 2 J

¯
is a union of circles labeled by a discrete subset J � .�1; 1/ that has at most two
accumulation points ˙1, corresponding to the fixed points n and s. Recall from
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Example 7.9 that the fundamental vector field for the R-action is of the form

v.x; y; z/ D .y@x � x@y/C A.x; y; z/;

with A.x; y; z/ 2 k. For simplicity, consider first the case where A 2 k is independent
of .x; y; z/. If we identify the loop algebras of the various circles in the obvious
manner, then the infinitesimal R-action is represented by the same element dj CAj D
dCA for every circle Sj . It follows that .�j ;Aj ;Tj /D .�j ;A;2�/, so theC �-algebra
AD P1BP1 that governs the ground state representations is essentially determined
by a sequence �j of anti-dominant integral weights for the affine Kac–Moody algebra
yL.k/.

The operators Hj D i��j .d C A/ are readily seen to satisfy the spectral gap
property 9.13. Indeed, the operators i��j .d/ on H�j have a uniform spectral gap
because the R-action on S2 is periodic. Since A 2 k has a uniform spectral gap in all
finite-dimensional lowest weight representations, it also has a uniform spectral gap in
the minimal eigenspaces W 0

j of the operators i��j .d/. The spectral gap for Hj then

follows from the fact that d commutes with A in yL.k/.
By Proposition 9.14, every factorial positive energy representation of yG� is a

ground state representation, so the factorial projective positive energy representations
are completely classified by Theorem 9.16.

(a) If A is an inner point of the Weyl chamber, then the minimal eigenspace of
Hj in an irreducible k-representation is always 1-dimensional, W 0

j D C�j .
In this case every projective irreducible positive energy representation is a
vacuum representation, and it is of the form

.H ; �/ D
O
j2j

.H�j ; �j / (9.9)

by the results in Section D.2. Moreover, every factorial positive energy rep-
resentation of yG� is of type I, i.e., a direct sum of irreducible representations.
This follows from the fact that, if in the construction of Section 9.2 all projec-
tions Pj are of rank 1, then the projection P1 2 B has the property that the
subalgebra P1BP1 is one-dimensional. In particular, P1aP1 D '.a/P1
defines a state of B and every representation .�;H / of B generated by the
range of �.P1/ is a multiple of the GNS representation .�' ;H'/. For unit
vectors �j 2 im.Pj /, (9.7) implies that

.H' ; �'/ Š
O
j2J

.H�j ; �j /;

that the representation �' is faithful, and that �'.B/ Š K.H'/:



A simple example with fixed points 123

(b) If A lies in at least one face of the Weyl alcove, then the spaceW 0
j of ground

states need not be 1-dimensional. The projective positive energy factor rep-
resentations of g� are then classified by the lowest weights �j , together with
a representation of the UHF C �-algebra

A D
O
j2J

B.W 0
j /:

If W 0
j is of dimension > 1 for infinitely many j , then this is an infinite

tensor product of matrix algebras. By [93] it follows that G� admits factor
representations of type II and III.

IfA.x;y;z/ is not constant andA.n/ andA.s/ are inner points of the Weyl alcove,
then the situation remains qualitatively the same as in (a). Indeed, the holonomy with
respect to A on Sj will approach exp.A.n// or exp.A.s// as zj !˙1, so the spectral
gap condition holds for all but finitely many circles. In this case one finds a tensor
product decomposition analogous to (9.9), where all but finitely terms are vacuum
representations. In particular, the space of ground states is finite-dimensional.

However, if either A.n/ or A.s/ is not an inner point of the Weyl alcove, then
the spectral gap condition need no longer be satisfied. The ground state representa-
tions can still be classified in the manner outlined above, but these can no longer be
expected to exhaust the positive energy representations.





Appendix A

Twisted loop algebras and groups

Let K be a simple compact Lie group, ˆ 2 Aut.K/ and ' D L.ˆ/ 2 Aut.k/. We
assume that 'N D idK and let

LT
ˆ.K/ WD

®
� 2 C1.R; K/ W .8t 2 R/�.t C T / D ˆ�1.�.t//

¯
be the corresponding twisted loop group. The rotation action .˛tf /.s/ WD f .s C t /
satisfies

˛NT D idLˆ.K/ :

The Lie algebra of LT
' .K/ is the twisted loop algebra

LT
' .k/ WD

®
� 2 C1.R; k/ W .8t 2 R/�.t C T / D '�1.�.t//

¯
:

Accordingly, we obtain

yLT
' .k/ WD

�
R˚! LT

' .k/
�
ÌD R; D� D � 0;

where

!.�; �/ WD
c

2�T

Z T

0

�.� 0.t/; �.t//dt

for some c 2 Z (the central charge). Here � is the Killing form of k, normalized as in
(4.2) by �.i˛_; i˛_/ D 2 for the coroots corresponding to long roots.

We write
LT;]
' .k/ D R˚! LT

' .k/:

Let tı � k' be a maximal abelian subalgebra, so that zk.t
ı/ is maximal abelian

in k by [79, Lemma D.2] (see also [54]). Then, t D R˚ tı ˚ R is maximal abelian
in yLT

' .k/ and the corresponding set of roots � can be identified with the set of pairs
.˛; n/, where

.˛; n/.z; h; s/ WD .0; ˛; n/.z; h; s/ D ˛.h/C is
2�n

NT
; n 2 Z; ˛ 2 �n: (A.1)

Here, �n � i.tı/� is the set of tı-weights in

knC D
®
x 2 kC W '

�1.x/ D e2�in=Nx
¯
:

For .˛; n/ 6D .0; 0/, the corresponding root space is

LT;]
' .kC/

.˛;n/
D k

.˛;n/
C ˝ en D .k

˛
C \ knC/˝ en; where en.t/ D e

2�int
NT :
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The set
�� D

®
.˛; n/ W 0 6D ˛ 2 �n; n 2 Z

¯
has an N -fold layer structure

�� D

N�1[
nD0

��n � .nCNZ/; where ��n WD �n n ¹0º:

For n 2 Z and x 2 k
.˛;n/
C with Œx; x�� D ˛_, the element en ˝ x 2 L

T;]
' .kC/

.˛;n/

satisfies .en ˝ x/� D e�n ˝ x�, which leads to the coroot

Œen ˝ x; .en ˝ x/
�� D .˛; n/_ D

�
� i

cn

NT

k˛_k2

2
; ˛_; 0

�
D ˛_ �

icn

NT

k˛_k2

2
C;

(A.2)
where C D .1; 0; 0/. Here, we have used that

!.en ˝ x; e�n ˝ x
�/ D

icn

NT
�.x; x�/

and

�.x; x�/ D
1

2
�.Œ˛_; x�; x�/ D

1

2
�.˛_; Œx; x��/ D

1

2
�.˛_; ˛_/ D �

1

2
k˛_k2:

Since k is simple, �� does not decompose into two mutually orthogonal proper
subsets ([79, Lemma D.3]), so that

yLT
' .k/

alg
C WD tC C

X
.˛;n/2�

LT;]
' .kC/

.˛;n/

is an affine Kac–Moody–Lie algebra (see [54, Theorem 8.5] and [38, Chapter X]). In
this context the root .˛; n/ is real if and only if ˛ 6D 0. Choosing a positive system
�C � � such that the roots .˛; n/, n > 0, are positive, the lowest weights of unitary
lowest weight representations of yLT

' .k/ are the anti-dominant integral weights

P .t; �C/ WD
®
� 2 it� W .8.˛; n// 0 ¤ ˛; .˛; n/ 2 �C) �..˛; n/_ / 2 N0

¯
:

Note that, for n > 0, we have

�..˛; n/_ / D �.˛_/C
cn

NT

k˛_k2

2
;

so that we obtain c > 0 as a necessary condition for the existence of non-trivial unitary
lowest weight modules.
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Twisted conjugacy classes in compact groups

In this appendix we collect some more details concerning twisted conjugacy classes
in compact groups.

A Cartan subgroup of a compact Lie group K is an abelian subgroup S topolog-
ically generated by a single element s (sZ is dense in S ) which has finite index in its
normalizer NK.S/ D ¹k 2 K W kSk�1 D Sº.

Remark B.1. (a) For any Cartan subgroup S , the identity component S0 is an abelian
compact Lie group, hence a torus, and since tori are divisible, the short exact sequence
S0 ,! S� �0.S/ splits, so that S Š S0 � �0.S/. By construction, �0.S/ is a finite
cyclic group. If s0 2 S0 is a topological generator, then, for every N 2 Z, the closure
of sNZ

0 is a closed subgroup of finite index in S0, hence equal to S0. This implies that
the topological generators of S are the elements of the form sD .s0; s1/2S0 ��0.S/,
where s0 is a topological generator of S0 and s1 is a generator of the cyclic group
�0.S/.

(b) By [14, Proposition IV.4.2], every element k 2 K is contained in a Cartan
subgroup S such that the connected component kS0 generates �0.S/. The preceding
discussion now shows that there exists an element s0 2 S0 such that z WD ks0 is a
topological generator of S . Now [14, Proposition IV.4.3] implies that every element
g 2 kK0 D zK0 is conjugate to an element of kS0.

Theorem B.2. Let K be a compact connected Lie group and ˆ 2 Aut.K/ be an
automorphism of finite order N 2 N. We consider the twisted conjugation action of
K on itself given by

g � k WD gkˆ.g/�1 for g; k 2 K:

Then, the orbit of every element inK under this action intersects a maximal torus T ˆ

of the subgroup Kˆ of ˆ-fixed points.

Proof. We consider the compact Lie group K1 WD K ÌˆZ, where ˆZ � Aut.K/ is
the finite subgroup generated by ˆ. For g; k 2 K, we then have

.g; 1/.k;ˆ/.g; 1/�1 D .gkˆ.g/�1; ˆ/;

so that the conjugacy classes in the cosetK � ¹ˆº � K1 correspond to the ˆ-twisted
conjugacy classes in K.

According to Remark B.1 (b), the element .1; ˆ/ 2 K1 is contained in a Cartan
subgroup S which is generated by an element of the form zD .s0;ˆ/. As S0 is abelian
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and commutes with .1; ˆ/, it is contained in Kˆ. Let T ˆ � Kˆ be a maximal torus
containing S0. Then, T ˆ commutes with S , so that the finiteness of NK.S/=S shows
that T ˆ � S0. We conclude that

S D T ˆ �ˆZ

is a Cartan subgroup of K1. Therefore, Remark B.1 (b) implies that every ˆ-twisted
conjugacy class in K intersects S0 D T ˆ � Kˆ.

We refer to [65] for more details on twisted conjugacy classes in compact groups,
representatives, and stabilizer groups.

Remark B.3. If ˆ is not of finite order, then the situation is more complicated. If,
however, K is a compact Lie group with semisimple Lie algebra, then Aut.K/ is a
compact group with the same Lie algebra and one can apply the theory of Cartan
subgroups of compact Lie groups to Aut.K/.
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Restricting representations to normal subgroups

Theorem C.1. Let G be a group, and let N E G be a normal subgroup of finite
index. Suppose that .�;H / is a unitary representation of G whose restriction �jN
decomposes discretely with finitely many isotypic components. Then, the same holds
for � .

Proof. We consider the two von Neumann algebras

N WD �.N/00 �M WD �.G/00:

Let

H D

mM
jD1

Hj ; with Hj D Fj ˝ Cj

be the isotypic decomposition for N , where the representations .�j ;Fj / of N are
irreducible and N acts on Hj by �j WD �j ˝ 1. Then

N 0 D �.N/0 Š

mM
jD1

B.Cj /:

The conjugation action of G on N 0 factors through an action of the finite group
G=N . We have to show that M0 D .N 0/G=N also is a finite direct sum of full operator
algebras.

Let F WD ¹Œ�j � W j D 1; : : : ; mº � yN be the support of the restriction �jN . This
set decomposes under the natural action of G=N on the unitary dual yN into finitely
many orbits F1; : : : ; Fk . The group G permutes the isotypic subspaces Hj of N and,
accordingly,

�k Š �j ı c
�1
g jN if and only if �.g/Hj D Hk :

This follows from the relation �k.n/�.g/ D �.g/�j .g�1ng/ for g 2 G, n 2 N . We
conclude that

Pj WD
®
g 2 G W �.g/Hj D Hj

¯
D
®
g 2 G W �j ı cg Š �j

¯
:

For every g 2 Pj , we thus obtain a unitary operator Ug WFj ! Fj such that

� ı cg D Ug�U
�1
g :

Since Fj is irreducible, Ug is well defined modulo T . The projective unitary repre-
sentation N�j .g/D ŒUg � of Pj yields a central extension qj WP

]
j ! Pj , a homomorphic
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liftN ,! P
]
j and an extension �]j WP

]
j ! U.Fj / of the unitary representation �j ofN

to P ]j . Accordingly, the representation of P ]j on Hj takes the form

�j .qj .p// D �
]
j .p/˝ ǰ .p/;

where ǰ WP
]
j ! U.Cj / a unitary representation with ker ǰ � N .

Let H DH1˚ � � � ˚Hk denote the decomposition of H underG, corresponding
to the decomposition of F under G=N , so that each subspace H j is a sum of certain
subspaces H`. We may assume, without loss of generality, that G=N acts transitively
on F , i.e., that

H D span.�.G/H1/ D
M

Œg�2G=P1

�.g/H1:

This means that .�;H / is induced from the representation �]1 ˝ ˇ1 of P1 on H1.
The subspace H1 is generating for G, and hence separating for the commutant

M0. As H1 is isotypic for N , the commutant M0 � N 0 leaves H1 invariant; like-
wise all subspaces Hj are M0-invariant. Since an operator A 2 B.H1/ extends to an
element of M0 if and only if it commutes with P1, we have

M0 Š .�
]
1 ˝ ˇ1/.P1/

0
D 1˝ ˇ.P ]1 /

0:

Since ˇ.P ]1 / is a finite group, the assertion follows from the fact that every unitary
representation of a finite group decomposes discretely with finitely many isotypes.
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Vacuum representations

In this appendix, we show that vacuum representations of weak products of topolog-
ical groups arise as products of vacuum representations.

D.1 Weak products and R-actions

The weak product of a sequence .Gn/n2N of topological groups is defined as

G WD
Y0

n2N
Gn D

1[
ND1

GN ; GN D G1 � � � � �GN ;

where the group structure is inherited from the product group
Q
n2NGn. However, we

will need a topology that is finer than the product topology. We equip G with the box
topology, for which a basis of e-neighborhoods consists of the sets G \

Q1
nD1 Un,

where Un � Gn is an e-neighborhood in Gn. By [27, Lemma 4.4], this turns G into
a topological group, and G is the direct limit in the category of topological groups of
the increasing sequence of subgroups GN , endowed with the product topology.

To study vacuum representations of weak products, consider a sequence of topo-
logical groups .Gn;R; ˛n/n2N with homomorphisms ˛nWR! Aut.Gn/ that defines
a continuous action of R on Gn. The homomorphisms ˛nWR! Aut.Gn/ combine to
a homomorphism ˛WR! Aut.G/ by

˛t .g1; : : : ; gN ; e; : : :/ WD .˛1;t .g1/; : : : ; ˛N;t .gN /; e; : : :/;

where Aut.G/ denotes the group of topological automorphisms.

Proposition D.1. The above map ˛ is a continuous action of R on G.

Proof. To see this, we first note that all orbit maps are continuous because the sub-
groups GN carry the product topology. Since all automorphisms ˛t are continuous
by [27, Lemma 4.4], it suffices to verify continuity of the action in all pairs .0; g/ 2
R � GN . So we have to find for every sequence .Un/n2N of e-neighborhoods in Gn
an " > 0 and a sequence of e-neighborhoods Vn � Gn such that

˛n;t .gnVn/ � gnUn for jt j < "; n 2 N:

As Œ�1; 1� � R is compact, we find for every n 2 N an identity neighborhood Vn �
Wn � Gn such that WnWn � Un and ˛n;t .Vn/ � Wn for jt j � 1. For n � N we now
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choose " > 0 in such a way that ˛n;t .gn/ 2 gnWn holds for jt j � ". Then

˛n;t .gnVn/ D ˛n;t .gn/˛n;t .Vn/ � gnWnWn � gnUn

holds for jt j < " and n � N . For n > N , we have gn D e and

˛n;t .gnVn/ D ˛n;t .Vn/ � Wn � Un for jt j � ":

Therefore, ˛ defines a continuous action on the weak direct product G.

If, in addition, the groups Gn are Lie groups, then the box topology on G is
compatible with a Lie group structure on G ([27, Remark 4.3]).

Lemma D.2. If all groupsGn are locally exponential, then ˛ defines a smooth action
on G.

Proof. By [27, Remark 4.3], the group G is locally exponential as well. Therefore,
it suffices to show that the R-action on the Lie algebra g Š

L
n2N gn (the locally

convex direct sum), is smooth. Let Dn 2 der.gn/ denote the infinitesimal generator
of the smooth actions ˛n on gn. Then

˛.t; x/ D .etDnxn/n2N D e
tDx for D.xn/ D .Dnxn/

and the tangent map of ˛ is given by

d˛.t; x/.s; y/ D sD.˛.t; x//C ˛.t; y/:

AsDWg! g is a continuous linear operator, we inductively obtain from the continuity
of ˛ (Proposition D.1) that ˛ is C k for each k 2 N, and hence that ˛ is smooth.

The weak products encountered in this memoir are mostly of the following form.

Lemma D.3. Suppose that the smooth manifold S has countably many connected
components and that K ! S is a Lie group bundle. Then, the Lie group �c.K/ is
isomorphic to the restricted Lie group product

Q0
n2N �c.KjSn/.

Proof. Since the groups G D �c.K/ and Gn D �c.KjSn/ are locally exponential, it
suffices to verify that the Lie algebra g D �c.K/ is the locally convex direct sum of
the ideals gn D �c.KjSn/. That the summation map

ˆW
M
n2N

�c.KjSn/! g

is continuous follows from the universal property of the locally convex direct sum.
That its inverse ˆ�1 is also continuous, follows from its continuity on the Fréchet
subspaces �D.K/, where D � S is compact, because any compact subset intersects
at most finitely many connected components.
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D.2 Vacuum representations

LetG be a topological group, and let ˛WR!Aut.G/ be a homomorphism that defines
a continuous action of R on G.

Definition D.4. A triple .�;H ; �/ is called a vacuum representation of .G;R; ˛/, if
�WG Ì˛ R! U.H / is a continuous unitary representation,� 2H is a G-cyclic unit
vector, and the selfadjoint operator H , defined by Ut WD �.e; t/ D e�itH for t 2 R,
satisfies ker.H �E01/ D C� for E0 D inf.spec.H//.

The following is an immediate consequence of [8, Proposition 5.4].

Proposition D.5. For a vacuum representation .�;H ;�/ of .G;R; ˛/, the following
assertions hold:

(a) UR � �.G/
00,

(b) the representation �jG of G on H is irreducible.

Proof. (a) The one-parameter group .U 0t /t2R defined by U 0t WD e
itE0Ut is minimal

for the von Neumann algebra �.G/00 (cf. Definition 3.8) by [8, Proposition 5.4], hence
contained in �.G/00, and this implies (a).

(b) From (a) it follows that the closed subspace

C� D ker.H �E01/ � H

is invariant under the commutant M0 WD �.G/0 of M WD �.G/00. As � is generating
for M, it is separating for M0, so that dim ker.H0 � E01/ D 1 leads to M0 D C1.
Now the assertion follows from Schur’s Lemma.

Let .Gn;R; ˛n/n2N be a sequence of topological groups, with for each n 2 N
a homomorphism ˛nWR ! Aut.Gn/ that defines a continuous action of R on Gn.
The following theorem identifies the vacuum representations of the weak product
.G;R; ˛/ in terms of vacuum representations of the triples .Gn;R; ˛n/.

Theorem D.6. For any sequence .�n;Hn;�n/ of vacuum representations of .Gn;R;
˛n/ with minimal energy E0 D 0, the infinite tensor product

.H ; �/ WD

1O
nD1

.Hn; �n/ (D.1)

carries a continuous vacuum representation of .G;R; ˛/, defined by

�.g1; : : : ; gn; e; : : :/ WD �1.g1/˝ � � � ˝ �n.gn/˝ 1nC1 ˝ � � � : (D.2)

Conversely, every vacuum representation of .G;R; ˛/ with E0 D 0 is equivalent to
such a representation.
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Proof. First, we prove that if all .�n;Hn; �n/ are vacuum representations, then so is
their infinite tensor product. Since the �n are unit vectors, the infinite tensor product
Hilbert space H is defined. It contains the subspaces

HN
WD H1 ˝ � � � ˝HN ˝�NC1 ˝ � � � Š H1 ˝ � � � ˝HN ;

whose union is dense in H . On HN , the representation �N of GN ÌR, defined by

�N ..g1; : : : ; gN /; t/ WD �1.g1; t /˝ � � � ˝ �N .gN ; t /;

is continuous with cyclic vector � D ˝1nD1�n. The representation .�;H / of G now
is a direct limit of the representations .�N ;HN / of the subgroups GN , hence a con-
tinuous unitary representation. Further, the invariance of�n under the one-parameter
group U nt WD �n.e; t/ implies that

Ut .v1˝ � � � ˝ vN ˝�NC1˝ � � � / WDU
1
t v1˝ � � � ˝U

N
t vN ˝�NC1˝ � � � (D.3)

defines a continuous unitary one-parameter group on H satisfying

Ut�.g/U
�
t D �.˛t .g// for g 2 G; t 2 R:

By �.g; t/ WD �.g/Ut , we thus obtain a continuous unitary representation of G on H

for which � is a G-cyclic unit vector fixed by the one-parameter group .Ut /t2R.
Writing

Ut D e
�itH and U nt D e

�itHn

for selfadjoint operatorsHn � 0, (D.3) implies thatH � 0. To see that kerH D C�,
we decompose

H D HN
˝KN for N 2 N:

Accordingly,
Ut D Vt ˝Wt with Vt D U 1t ˝ � � � ˝ U

N
t ;

and both one-parameter groups .Vt /t2R and .Wt /t2R have positive generators HV
and HW . From [8, Lemma A.3] we thus infer that

H D .HV ˝ 1KN /C .1HN ˝HW /

in the sense of unbounded operators, hence, in particular, that

D.H/ D .D.HV /˝KN / \ .HN
˝D.HW //:

We conclude that, for every N 2 N,

kerH � kerHV ˝KN
D �1 ˝ � � � ˝�N ˝KN ;
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and this shows that

kerH �
\
N

�1 ˝ � � � ˝�N ˝KN
D C�:

Therefore, .�;H ; �/ is a vacuum representation of .G;R; ˛/.
Now we assume, conversely, that .�;H ; �/ is a vacuum representation of the

triple .G;R; ˛/. Then, the subspace

HN
WD span �.GN /�

carries a vacuum representation of .GN ;R; ˛N /. In particular, this representation is
irreducible by Proposition D.5. The group G is a topological product

G D GN �G>N ; where G>N WD
Y0

n>N
Gn;

and the representation � is irreducible by Proposition D.5. Since its restriction to GN

carries an irreducible subrepresentation, the restriction to GN is factorial of type I,
hence of the form

�jGN D �
N
˝ 1

with respect to some factorization H D HN ˝KN . Starting with N D 1 and pro-
ceeding inductively, we see that

�N Š �1 ˝ � � � ˝ �N

for vacuum representations .�n;Hn;�n/ of .Gn;R; ˛n/. In particular, we obtain fac-
torizations

� D �N ˝ z�N D �1 ˝ � � � ˝�N ˝ z�N ;

so that we may identify HN with the subspace

HN
˝ z�N � H :

As � is G-cyclic, the union of these GN -invariant subspaces is dense in H . This
implies that the vacuum representation .�;H ; �/ is equivalent to the infinite tensor
product ˝n2N.�n;Hn; �n/ of the ground state representations .�n;Hn; �n/. This
completes the proof.

The following allows us to reduce the classification of smooth vacuum represen-
tations to the local case, under the assumption that the ground state is smooth.

Proposition D.7. Suppose that the Gn are Lie groups and that the R-actions on Gn
are smooth. Then, the vacuum representation .�;H ;�/ is smooth with smooth vector
� if and only if the vacuum representations .�n;Hn; �n/ are smooth with smooth
vector �n.
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Proof. If .�;H ;�/ is a smooth representation with�2H1, then�will be a smooth
vector for every .Hn; �n; �/ as well. Since � is cyclic in Hn, the latter will be a
smooth representation.

Suppose, conversely, that the vacuum representations .�n;Hn; �n/ are smooth,
and that�n 2H1n for all n 2N. From Theorem D.6, we know that the tensor product
representation .�;H ;�/ is continuous and cyclic. To show that the vacuum represen-
tation .�;H ; �/ D

N1
nD1.�n;Hn; �n/ is smooth with smooth vector � 2 H1, it

suffices by [74, Theorem 7.2] to show that '.g/ WD h�; �.g/�i is a smooth function
from G to C.

Note that ' is the infinite product
Q1
nD1 'n.gn/ of the smooth, positive definite

functions 'nWGn ! C defined by 'n.g/ WD h�n; �n.g/�ni. To see that 'WG ! C
is smooth, note that it can be decomposed into the smooth maps

G D
Y0

n2N
Gn

ˆ1
��! 1C

Y0

n2N
C

ˆ2
��! 1C `1.N/

ˆ3
��! C;

where 1 D .1/n2N and

ˆ1..gn// D .'n.gn//; ˆ2..zn// D .zn/; ˆ3..zn// D
Y
n2N

zn:

Here, the smoothness of ˆ1 follows from the compatibility with the box manifold
structure, ˆ2 is continuous affine, and ˆ3 is holomorphic. It follows that

' D ˆ3 ıˆ2 ıˆ1

is smooth, and hence that .�;H ; �/ is a smooth vacuum representation with smooth
vector �.



Appendix E

Ergodic property of 1-parameter subgroups of eSL.2 ; R/

We give a simplified proof for the following characterization of the ergodic property
for 1-parameter subgroups of fSL.2;R/ due to Mautner and Moore. Define the 1-
parameter groups x.t/, y.t/ and h.t/ in SL.2;R/ by

x.t/ D

�
1 t

0 1

�
; y.t/ D

�
1 0

t 1

�
; and h.t/ D

�
et 0

0 e�t

�
;

and let zx.t/, zy.t/ and zh.t/ be their lift to fSL.2;R/.

Lemma E.1. Let .�;H / be a continuous unitary representation of fSL.2;R/, and let
� 2 H be a unit vector. Then, the following are equivalent:

(a) �.zx.t//� D � for all t 2 R,

(b) �.zh.t//� D � for all t 2 R,

(c) �.g/� D � for all g 2 fSL.2;R/.

This well-known result plays an important role in ergodic theory. It is due to
Calvin Moore [66,67], and in the proof below we almost literally follow his argument
for the implication (a))(b) from [67, page 7]. The implication (b))(c) is due to
Mautner [63], and this is implicitly used by Moore in [67], and by Howe and Moore
in their seminal paper [43]. In his proof, Mautner uses the classification of irreducible
unitary representations of fSL.2;R/. We bypass this with a simple argument.

Proof. For (a))(b), let w.t/ D x.t/y.�t�1/x.t/, and note that we have

h.t/ D w.et /w.1/�1 for all t 2 R:

If we define zw.t/ WD zx.t/zy.�t�1/zx.t/, then the curve t 7! zw.et / zw.1/�1 covers h.t/.
Since it is the identity for t D 0, we have zw.et / zw.1/�1D zh.t/. Since k�. zw.t//�kD 1
for all t ¤ 0, it follows from

lim
jt j!1

h�. zw.t//�;�i D lim
jt j!1

h�.zy.�t�1//�;�i D 1

that limjt j!1 �. zw.t//� D �. So for  D �. zw.1//�, we find limt!1 �.zh.t// D

�. For every s 2 R we thus have

� D lim
t!1

�.zh.s C t // D �.zh.s// lim
t!1

�.zh.t// D �.zh.s//�;

so � is fixed by zh.s/ for all s 2 R.
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For (b))(a), note that since

x.te�2s/ D h.�s/x.t/h.s/ for all s; t 2 R;

the same equation zx.te�2s/ D zh.�s/zx.t/zh.s/ holds in fSL.2;R/ (both sides are the
identity for s D t D 0). The invariance of � under the 1-parameter group zh then
implies

h�.zx.te�2s//�;�i D h�.zx.t//�;�i:

Since lims!1 zx.te
�2s/ is the identity, we have h�.zx.t//�; �i D 1, and it follows

that �.zx.t//� D � for all t 2 R.
Since h.s/y.t/h.�s/ D y.te�2s/, a similar argument shows that if � is fixed by

zh, then it is fixed by zy. It follows that if either (a) or (b) hold, then� is fixed by zx.t/,
zy.t/ and zh.t/ alike, and hence by the group fSL.2;R/ that they generate.
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