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We analyze the biological scenarios in which a target is close to the forager or far from it. In
particular, for all the efficiency functionals considered here, we show that if the target is
close enough to the forager, then the most rewarding search strategy will be in a small
neighborhood of s = 0. Interestingly, we show that s = 0 is a global pessimizer for some of
the efficiency functionals. From this, together with the aforementioned optimality results, we
deduce that the most rewarding strategy can be unsafe or unreliable in practice, given its
proximity with the pessimizing exponent, thus the forager may opt for a less performant, but
safer, hunting method.

The biological literature has collected several pieces of evidence of foragers diffusing with
very low Lévy exponents, often in relation with a high energetic content of the prey. It is
thereby suggestive to relate these patterns, which are induced by distributions with a very
fat tail, with a high-risk/high-gain strategy, in which the forager adopts a potentially very
profitable, but also potentially completely unrewarding, strategy due to the high value of the
possible outcome.

https://ems.press

ISSN 2747-9080
ISBN 978-3-98547-068-6





Memoirs of the European Mathematical Society

Edited by

Anton Alekseev (Université de Genève) 
Hélène Esnault (Freie Universität Berlin) 
Gerard van der Geer (Universiteit van Amsterdam) 
Susanna Terracini (Università degli Studi di Torino) 
Ari Laptev (Imperial College London) 
Laure Saint-Raymond (Institut des Hautes Études Scientifiques)

The Memoirs of the European Mathematical Society publish outstanding research contributions in 
individual volumes, in all areas of mathematics and with a particular focus on works that are longer 
and more comprehensive than usual research articles.

The collection’s editorial board consists of the editors-in-chief of the Journal of the European 
Mathematical Society and the EMS Surveys in Mathematical Sciences, along with editors of book 
series of the publishing house of the EMS as well as other distinguished mathematicians. 

All submitted works go through a highly selective peer-review process.

Previously published in this series:

J.-M. Delort, N. Masmoudi, Long-Time Dispersive Estimates for Perturbations of a Kink Solution of 
One-Dimensional Cubic Wave Equations

G. Cotti, Cyclic Stratum of Frobenius Manifolds, Borel–Laplace (α, β)-Multitransforms, and Integral 
Representations of Solutions of Quantum Differential Equations

A. Kostenko, N. Nicolussi, Laplacians on Infinite Graphs
A. Carey, F. Gesztesy, G. Levitina, R. Nichols, F. Sukochev, D. Zanin, The Limiting Absorption Princi-

ple for Massless Dirac Operators, Properties of Spectral Shift Functions, and an Application to 
the Witten Index of Non-Fredholm Operators

J. Kigami, Conductive Homogeneity of Compact Metric Spaces and Construction of p-Energy
A. Buium, L. E. Miller, Purely Arithmetic PDEs Over a p-Adic Field: δ-Characters and δ-Modular Forms
M. Duerinckx, A. Gloria, On Einstein’s Effective Viscosity Formula
R. Willett, G. Yu, The Universal Coefficient Theorem for C*-Algebras with Finite Complexity
B. Janssens, K.-H. Neeb, Positive Energy Representations of Gauge Groups I. Localization



 Serena Dipierro 
 Giovanni Giacomin
 Enrico Valdinoci

 The Lévy Flight Foraging 
 Hypothesis in Bounded Regions
 Subordinate Brownian Motions  
and High-risk/High-gain Strategies



Authors

Serena Dipierro 
Department of Mathematics and Statistics 
The University of Western Australia 
35 Stirling Highway 
Crawley, Perth WA 6009, Australia 

Email: serena.dipierro@uwa.edu.au 

Enrico Valdinoci  
Department of Mathematics and Statistics 
The University of Western Australia 
35 Stirling Highway 
Crawley, Perth WA 6009, Australia 

Email: enrico.valdinoci@uwa.edu.au

Giovanni Giacomin 
Department of Mathematics and Statistics 
The University of Western Australia 
35 Stirling Highway 
Crawley, Perth WA 6009, Australia 

Email: giovanni.giacomin@research.uwa.edu.au

Each volume of the Memoirs of the European Mathematical Society is available individually or  
as part of an annual subscription. It may be ordered from your bookseller, subscription agency,  
or directly from the  publisher via subscriptions@ems.press.

ISSN 2747-9080, eISSN 2747-9099 
ISBN 978-3-98547-068-6, eISBN 978-3-98547-568-1, DOI 10.4171/MEMS/10 

  The content of this volume is licensed under the CC BY 4.0 license, with the exception of the 
logo and branding of the European Mathematical Society and EMS Press, and where otherwise 
noted.

Bibliographic information published by the Deutsche Nationalbibliothek 
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;  
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Published by EMS Press, an imprint of the

European Mathematical Society – EMS – Publishing House GmbH 
Institut für Mathematik 
Technische Universität Berlin 
Straße des 17. Juni 136 
10623 Berlin, Germany

https://ems.press

© 2024 European Mathematical Society

Typesetting: AfricanType, Cairo, Egypt 
Printed in Germany 
♾ Printed on acid free paper



Abstract

We investigate the problem of the Lévy flight foraging hypothesis in an ecological
niche described by a bounded region of space, with either absorbing or reflecting
boundary conditions.

To this end, we consider a forager diffusing according to a fractional heat equation
in a bounded domain and we define several efficiency functionals whose optimality
is discussed in relation to the fractional exponent s 2 .0; 1/ of the diffusive equation.

Such an equation is taken to be the spectral fractional heat equation (with Dirich-
let or Neumann boundary conditions).

We analyze the biological scenarios in which a target is close to the forager or far
from it. In particular, for all the efficiency functionals considered here, we show that
if the target is close enough to the forager, then the most rewarding search strategy
will be in a small neighborhood of s D 0.

Interestingly, we show that s D 0 is a global pessimizer for some of the effi-
ciency functionals. From this, together with the aforementioned optimality results,
we deduce that the most rewarding strategy can be unsafe or unreliable in practice,
given its proximity with the pessimizing exponent, thus the forager may opt for a less
performant, but safer, hunting method.

However, the biological literature has already collected several pieces of evidence
of foragers diffusing with very low Lévy exponents, often in relation with a high
energetic content of the prey. It is thereby suggestive to relate these patterns, which
are induced by distributions with a very fat tail, with a high-risk/high-gain strategy, in
which the forager adopts a potentially very profitable, but also potentially completely
unrewarding, strategy due to the high value of the possible outcome.
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risk/high gain
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Preamble

On the one hand, many popular adages share the idea that to achieve a prominent
goal one has to take risks (e.g., “no gain without pain”, “nothing ventured, nothing
gained”, “no guts, no glory”, just to name a few proverbs). On many occasions, the
ambition to a high reward may lead individuals to face potential dangers, and in some
situations there is a full master plan centered around a high-risk/high-gain plan: for
instance, the blueprint of the European Research Council is to fund high-risk/high-
reward research, in which severe conceptual challenges (which, by definition, are
prone to scientific failure) are accepted downsides for a research project to be truly
successful and impactful.

On the other hand, there is nowadays a great interest in the investigation of opti-
mal searching strategies, e.g., in the study of animal behavior, and the research on
this topic has necessarily to be somewhat controversial, given the complexity of the
phenomenon into consideration.

Our view on this point is that the difficulty of addressing the topic of optimal
searching is not only due to the enormous amount of parameters which should be
accounted for (such as predators and prey distributions, previous knowledge of the ter-
ritory, interactions with the environment, social factors, different reactions to adverse
circumstances, competition phenomena, cooperative behaviors, etc.), and not only
due to the difficulty of measuring many of these parameters via objective empirical
observations.

In fact, in our opinion, a core difficulty in this topic stems from the difficulty of
assessing unambiguously and indisputably a suitable notion of “gain” which should
be maximized by a searching algorithm. This gain cannot be limited to the actual
effectiveness of the procedure (i.e., whether or not the predator captures the prey),
but it has to take into account the cost of the procedure itself (e.g., the time needed
for the task, or the energy spent for it), and, at least on some occasions, the possible
value of the outcome of the search.

One of the findings of our research is indeed that the high-risk/high-reward situa-
tion may appear naturally even in very simple situations, therefore the notion of “best
strategy” requires a very careful mathematical setting, in which an efficiency func-
tional is chosen and maximized, and the location of the maxima is confronted with
that of the minima.

In doing so, one discovers immediately some interesting features. First of all, dif-
ferent efficiency functionals can produce different results. This already highlights a
structural complication towards a full understanding of the notion of optimal search-
ing strategy: for instance, in a biological study, different species, or different indi-
viduals of the same species, may, implicitly or explicitly, address a different type of
efficiency functional.
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In addition, in several concrete situations, the maximizers of some efficiency
functional may end up to be dangerously close to the minimizers: this is a clear case
of high-risk/high-reward pattern and, in this “unstable” situation, one should expect
that the practical outcome of the optimal searching pattern be influenced by inter-
mediate strategies aiming at a balance between top performances and conservative
options (e.g., a risk assessment which compromises between the most rewarding and
the safest result). Quite likely, in these conditions, different biological species, or dif-
ferent members of the same group, may end up adopting different search strategies.

Interestingly, in our setting, the situation in which the most rewarding strategy
is arbitrarily close to a complete failure of the searching pattern is related to Lévy
distributions with a very low exponent and a very fat tail. This pattern is known to
be related to foraging modes of “ambush” type (see [13, 16]). The literature has also
collected experimental evidence of some species, such as anglers and blonde skates,
which do follow diffusive paths with very low Lévy exponent: remarkably, a correla-
tion has been found between this type of diffusion and the high content of energy of
the targets (see [16]).

In our setting, this correlation is possibly motivated precisely by the fact that the
most rewarding Lévy exponent happens to be very close to the pessimizer. In a sense,
it can be significant to imagine that such a high-risk/high-gain strategy becomes par-
ticularly suitable when the possible outcome is of exceptional value (in the case of a
biological predator, a prey of exceptionally high energetic content).

That is, in an implicit risk assessment, the value of the target may mitigate the
prospect of an unsuccessful search, thus favoring the emergence, in these specific
situations, of high-risk/high-reward diffusive patterns.

In this work, this general vision will be embodied into a precise mathematical
study of the Lévy flight foraging hypothesis, considering the possibility that processes
with long jumps (instead of standard Gaussian random movements) can optimize
search efficiency by diminishing the repetitions of visits to previously inspected sites.
Different efficiency functionals will be taken into account, with a thorough analy-
sis of their optimizers and pessimizers. This phenomenon in which optimizers and
pessimizers cluster together will be also explicitly detected and discussed.

The Lévy flights will be modeled via a heat equation of fractional type in bounded
domains. We consider the case of a hostile environment (such as a “fence”, modeled
by homogeneous Dirichlet conditions which “annihilate” a biological species out-
side a confinement domain) as well as the case of reflecting boundaries (modeled
by homogeneous Neumann conditions which maintain a biological species within a
niche without altering the number of individuals present in the region).

To implement these boundary conditions in the setting of the fractional heat equa-
tion, we will make use of the spectral version of the fractional Laplacian.

In some of the efficiency functionals that we consider, predators and targets are
modeled as points in the space. In other cases instead we will model predators and
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targets as regions of space (assuming, e.g., that the biological individuals are uni-
formly distributed within these regions): this situation can also be considered as a
technical and conceptual simplification of the notion of “direct vision” which was
previously adopted in the literature, see, e.g., [42]. That is, here we do not introduce
an additional parameter to truncate the Lévy distribution in the proximity of its sin-
gularity (which entails in itself some delicate issues, see [28]) and we do not alter the
diffusive equation to account for foragers directly aiming at the prey when they lie
at short mutual distance. Instead, the diffusive equation is supposed to hold at every
spatial scale and the role of a different region of influence (e.g., induced by uncer-
tainties in the data or by a different hunting pattern at a small scale) is encoded only
in the efficiency functional.

Here, we do not restrict our analysis to the one-dimensional case; in fact, we
deal with an arbitrary large number n of dimensions. We note that the case of higher
dimension is, in many instances, not only a situation of utmost biological interest, but
also a source of technical difficulties and scientific controversies, see, e.g., [7,25,26].





Chapter 1

Introduction to the mathematical setting and main
results

In the last decades, anomalous diffusion has been investigated as an appropriate sub-
stitute for normal diffusion in several branches of science, such as biology and in
particular the foraging theory (see for instance [17, 31, 37, 40, 42]). In this context a
special case of anomalous diffusion occurs when a forager in search of food, rather
than diffusing according to the classical Brownian motion, performs long-jump pat-
terns characterized by a space and time steps scale invariance, see, e.g., [24] and the
references therein.

This type of searches fits the model of the Lévy flight, according to the probabilis-
tic description given in [2, Section 4.3]. In contrast to what happens with the classical
random walk, the forager performing these flights has less chances to revisit inten-
sively the immediate surrounding areas and then being confined in a narrow region.
Therefore, in the biological framework, Lévy flights seem to be a better search strat-
egy when the source of food is scarce and sparsely distributed and there is a large area
to be covered in order to succeed in the hunt.

These kinds of foraging search strategies have been empirically observed in many
ecological systems, see, e.g., [3,17,20–22,30,32,40]. Moreover, several studies have
been made in order to validate the Lévy flight foraging hypothesis from a mathemat-
ical and statistical point of view [4, 39, 41, 42].

In these models a number of assumptions are usually made on the environment,
on targets and foragers. For instance, a low prey density is often assumed and the
targets are randomly distributed in a wide area; the forager does not keep memory of
previous encounters; the forager has scarce information on the area to search and on
the prey location. On the one hand, on some occasions, these structural assumptions
are introduced in order to simplify the problem, which otherwise would be extremely
challenging to be analyzed from a theoretical perspective; on the other hand, some
of these conditions can actually be structurally necessary for the convenience of the
Lévy flight strategy over more standard type of diffusive processes. In any case, the
complexity of the raw problem is a consequence of its dependence on a great number
of environmental, evolutionary and biological variables. Even though an oversimpli-
fication may lead to a less accurate model in some circumstances, we can evince from
a simplified model some remarkable properties, advancing the knowledge on such a
complex topic.

In this memoir we will investigate the Lévy flight foraging hypothesis relying on
a fractional elliptic operator. This is motivated by the fact that in the limit of the time
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step going to zero, the distribution of a seeker performing Lévy flights converges to
the solution of a fractional heat equation, see, e.g., [2, 6, 38].

In order to test the Lévy flights foraging hypothesis, we consider some efficiency
functionals, accounting for the random encounter rate between the forager and the tar-
get. We maximize these efficiency functionals with respect to the fractional exponent,
with the aim of understanding which flight was more advantageous for the forager.
From a biological perspective, this optimization with respect to the fractional expo-
nent corresponds to the possibility of a forager to modify its searching strategy by
tuning, e.g., the average length of a hunting path and the waiting times between dif-
ferent paths.

We will assume that the forager is confined in some bounded region � � Rn,
which plays the role of an ecological niche. Both Dirichlet and Neumann boundary
conditions will be taken into account to describe absorbing and reflecting boundaries.

For us, the choice of a spectral fractional heat equation as a diffusion equation for
the forager was motivated by its stochastic interpretation as a subordinate Brownian
motion in�, see [10]. See also [8,14,15,27,35] and the references therein for several
applications of fractional elliptic equations to biological problems.

In this memoir, we will test the Lévy flight foraging hypothesis by taking into
account different biological configurations, such as

• the case in which the forager starting position and the target location coincide,

• the case in which the forager starting position is located in proximity of the target,

• the case in which the forager and the target, instead of being modeled as material
points, are uniformly distributed in some regions of space.

The situation in which the biological population is not confined into a bounded region
of space and can travel through the whole of Rn is technically different and has been
treated in the papers [12, 13].

The memoir is structured as follows. In Section 1.1, we define the efficiency func-
tionals for the spectral search in the bounded region � � Rn. They will be taken to
be proportional to the encounter rate between the forager and the target. Moreover,
different “penalizations quantities” will be considered, such as the average distance
and the mean square displacement, in order to build physically reliable efficiency
functionals.

Sections 1.2 and 1.3 are devoted to the study of the maximizer for the afore-
mentioned functionals. These maximizers thus correspond to the most rewarding
searching mode. In particular, in Section 1.2 we will assume that the forager start-
ing position and the prey location coincide. This scenario, though physically less
relevant, will let us detect some monotonicity properties of one of the functionals,
when the domain satisfies suitable geometric properties, see Theorem 1.4 below. This
result shows how the search for a maximizer is related to the geometric structure of
the play field.
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In Section 1.3, as well as in Section 1.4 for the case of distributed foragers and
targets, we analyze the case in which the target is in some small neighborhood of
the forager starting position. Here we establish that if the target position converges
to the initial location of the seeker, then the maximizer of the efficiency functionals is
located in a neighborhood of s D 0. This is the content of Theorems 1.7, 1.8, 1.15,
and 1.16.

Furthermore, in Theorems 1.6 and 1.14 it will be proved that for some of these
efficiency functionals the strategy

s D 0
is the unique global minimizer, thus corresponding to the unique pessimizer of the
searching mode. This minimality result, together with the convergence of the best
strategy, will entail that, roughly speaking, the most rewarding strategy may end up
being not reliable, presenting arbitrarily close pessimizers, thus opening the dilemma
of whether in practice one should follow the most performant option, or the safest
one, or, say, a balanced combination of the two (see Remark 1.9 below).

In Chapter 2 we collect the main analytical tools that will be employed in order
to prove our main results.

Finally, in Chapter 3 we prove the results stated in Sections 1.2 and 1.3.

1.1 Efficiency functionals

To measure the effectiveness of a foraging strategy, one can consider different func-
tionals which account for the rate of hunting “success” for the predator versus the
“effort” needed.

The possibility of accounting for different efficiency functionals plays, in our
opinion, a crucial role in biology and ethology, since, while the notion of “foraging
success” may be somewhat objective (as measured for instance by the amount of
food eaten, or by the calories carried by such a food), the notion of “cost spent to
achieve the success” is intrinsically more ambiguous and different biological theo-
ries may end up measuring this concept in different ways. As an example, we recall
the debate about the way honey bees assess how far they have flown (whether based
on the energy expended in flying or on the fatigue required by the action, as con-
jectured in former experiments, or on the image motion of the surrounding landscape
through visual perception, as pointed out in the “optic flow hypothesis” and addressed
in recent tests, see [36]). Related to this, we also recall that in some situations the
measure of the distance traveled can be performed according to a number of possible
strategies (e.g., in the case of ants, which can use optic flow, pheromone and chemical
trails, as well as the “counting” of the number of steps, see [44]). See also [19] and
the references therein for further reading on how animals measure distances.
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The mathematical setting that we consider here goes as follows. We model a for-
ager moving in some bounded region � � Rn through a spectral fractional diffusion
with either Dirichlet or Neumann homogeneous boundary conditions. The domain �
where the diffusion occurs can be seen as an ecological niche where the forager is
confined (the Dirichlet condition corresponding to the case in which the forager is
killed at the boundary of the niche, and the Neumann datum corresponding, e.g., to
fences that prevent the forager to exit the niche).

Specifically, the probability density u D u.t; x/ of the forager satisfies the diffu-
sive equation

@tu.t; x/ D �.��/su.t; x/ for all .t; x/ 2 .0;C1/ ��; (1.1)

with either Dirichlet or Neumann homogeneous boundary conditions.
Here above s is a fractional parameter in .0; 1/ and the operator .��/s represents

the spectral fractional Laplacian, see, e.g., [2, Sections 2.3 and 4.3] for the basics of
this operator. See also [16] for different approaches to the problem of Lévy flights in
(one-dimensional) bounded domains.

We also assume that the targets are scattered in � according to a distribution
p.t; x/, where

.t; x/ 2 Œ0;C1/ ��:
We consider, as an initial measure of the success of the hunting strategy of the

predator, a foraging success functional which accounts for the random encounters
between the forager following the anomalous diffusion equation in (1.1) and the tar-
gets.

Specifically, in the situation considered here, given T 2 .0;C1/ and y 2 �, the
foraging success functional takes the formZ T

0

Z
�

rs.t; x; y/p.t; x/ dx dt; (1.2)

where rs.t; x; y/ represents either the Dirichlet or the Neumann spectral fractional
heat kernel, for some fractional parameter s 2 .0; 1/, see for instance [10,11] and the
beginning of the forthcoming Chapter 2 for definitions and basic properties of these
kernels.

We notice indeed that the quantity in (1.2) is associated with the probability that
a forager starting at the position y 2 � and following the diffusion process modeled
by the fractional heat equation with either Dirichlet or Neumann boundary condition
hits a target distributed according to p.t; x/ in the time interval .0; T /.

To obtain an efficiency functional, we compare this quantity with some other
quantities of physical and biological significance that instead provide a penaliza-
tion for the seeker. Here, we will consider as penalization quantities the time T , the
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average distance traveled by the forager ly.s; T / after a time T and the mean square
displacement Ay.s; T / after a time T .

More explicitly, the average distance traveled by the forager at time T 2 .0;C1/
is given by

ly.s; T / WD
Z T

0

Z
�

j� � yjrs.t; �; y/ d� dt: (1.3)

The probabilistic interpretation underpinning this definition consists in taking into
account the random process Yt starting at y corresponding to a subordinate Brownian
motion which is either killed or reflected at the boundary (the generator of such a
process corresponding to the spectral fractional Laplacian with either Dirichlet or
Neumann datum).

In this framework, the quantity jYt j represents the distance at time t for a single
representation of the process, whence it is natural to consider its expected value

Esy ŒjYt j� D
Z
�

jx � yjrs.t; x; y/ dx

as the mean distance traveled at time t . The setting in (1.3) is thus the average over
time t 2 .0; T / of this quantity.

Similarly, the mean square displacement is given by

Ay.s; T / WD
Z T

0

Z
�

j� � yj2rs.t; �; y/ d� dt (1.4)

and represents the average over time t 2 .0; T / of the expected value of the squared
distance

Esy ŒjYt j2� D
Z
�

jx � yj2rs.t; x; y/ dx:

Interestingly, subordinators related to waiting times may have an intimate con-
nection to biology, since spontaneous patterns of waiting times are known to occur in
nature, and they can be species-specific, depend on body size, foraging modes, prey
preference, etc., see [43].

While the notations in (1.3) and (1.4) are the same for the Dirichlet and the Neu-
mann cases (the difference being only in the fractional heat kernel, which is sensitive
to the boundary conditions), it is convenient to distinguish explicitly between the
two types of boundary data and for this we add the subscript D or N to the nota-
tion, namely we write lyD.s; T /, l

y
N .s; T /, A

y
D.s; T /, and A

y
N .s; T / to emphasize the

dependence of the average distance traveled and of the mean square displacement
with respect to the Dirichlet or the Neumann boundary condition.

As a special case of target distribution p.t; �/, we consider the situation in which
there is only one target located at x 2 �. In this case, the distribution p.t; �/ reduces
to the Dirac’s delta ıx.�/ and the foraging success functional in (1.2) will be denoted
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(depending on the boundary condition) by

ˆ
x;y
D .s; T / D

Z T

0

Z
�

rsD.t; �; y/ıx.�/ d� dt D
Z T

0

rsD.t; x; y/ dt (1.5a)

or

ˆ
x;y
N .s; T / D

Z T

0

Z
�

rsN .t; �; y/ıx.�/ d� dt D
Z T

0

rsN .t; x; y/ dt: (1.5b)

In this memoir we focus on the optimal foraging strategy according to the following
efficiency functionals:

E
x;y
1;D.s; T / WD

ˆ
x;y
D .s; T /

T
;

E
x;y
2;D.s; T / WD

ˆ
x;y
D .s; T /

l
y
D.s; T /

;

E
x;y
3;D.s; T / WD

ˆ
x;y
D .s; T /

A
y
D.s; T /

;

E
x;y
1;N .s; T / WD

ˆ
x;y
N .s; T /

T
;

E
x;y
2;N .s; T / WD

ˆ
x;y
N .s; T /

l
y
N .s; T /

;

E
x;y
3;N .s; T / WD

ˆ
x;y
N .s; T /

A
y
N .s; T /

:

(1.6)

In addition to the functionals in (1.6), we consider the following set-dependent
functionals. Here, the exact initial positions of target and forager are replaced by
uniform densities in two subregions of �. Namely, we assume that the targets are
distributed in � according to

p.t; x/ WD ��1.x/

j�1j ;

for some measurable set�1 � �, where ��1 is the characteristic function of�1 and
j�1j denotes the Lebesgue measure of �1.

The forager diffusing via the spectral fractional heat equation is initially uni-
formly distributed in some measurable set �2 � � and therefore, dropping for the
moment the subscript D and N , its density in .t; x/ 2 .0;C1/ �� is given by

f s.t; x/ WD 1

j�2j
Z
�2

rs.t; x; y/ dy;

see, e.g., [10, Lemma 4] and [11, Lemma 5].
With this notation, the set-dependent forager success functional takes the form

ẑ�1;�2.s; T / WD
Z T

0

Z
�

f s.t; x/p.t; x/ dx dt

D 1

j�1jj�2j
Z T

0

Z
�1��2

rs.t; x; y/ dx dy dt: (1.7)
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Furthermore, in this framework, the average distance traveled by the forager and the
mean square displacement are given by

Ql�2.s; T / WD
Z T

0

Z
�

j� � yjf s.t; �/ d� dt

D 1

j�2j
Z T

0

Z
���2

j� � yjrs.t; �; y/ d� dy dt;

zA�2.s; T / WD
Z T

0

Z
�

j� � yj2f s.t; �/ d� dt

D 1

j�2j
Z T

0

Z
���2

j� � yj2rs.t; �; y/ d� dy dt:

(1.8)

Therefore, by using these set-dependent foraging success functionals and penalization
quantities, we define the set-dependent efficiency functionals as

zE�1;�21;D .s; T / WD
ẑ�1;�2
D .s; T /

T
;

zE�1;�22;D .s; T / WD
ẑ�1;�2
D .s; T /

Ql�2D .s; T /
;

zE�1;�23;D .s; T / WD
ẑ�1;�2
D .s; T /

zA�2
D .s; T /

;

zE�1;�21;N .s; T / WD
ẑ�1;�2
N .s; T /

T
;

zE�1;�22;N .s; T / WD
ẑ�1;�2
N .s; T /

Ql�2N .s; T /
;

zE�1;�23;N .s; T / WD
ẑ�1;�2
N .s; T /

zA�2
N .s; T /

:

(1.9)

1.2 Prey at forager starting position and change of monotonicity

In this section we will assume that the forager starts its search from the prey location.
In this case, all the efficiency functionals in (1.6) diverge if n > 2 or n D 1 and
s 2 .0; 1

2
�, as better specified in the following proposition. For this reason, in this

scenario where the forager starting position coincides with the target location, we
will only work in one dimension.

Proposition 1.1. Let � � Rn be bounded, smooth and connected, x 2 � and E be
any of the efficiency functionals in (1.6) with x D y. Then, for each T 2 .0;C1/, if
either n > 2 or n D 1 and s 2 .0; 1

2
� it holds that E.s; T / D C1.

In the one-dimensional framework, the connectedness hypothesis on� forces the
domain to be an interval. Thus, up to a translation, we can suppose that � D .0; a/
for some a 2 .0;C1/. In this case, several results can be obtained at the same time
for all the efficiency functionals in (1.6).

In the following proposition we establish that the range of the fractional exponent
in which these functionals achieve a finite value coincides with .1

2
; 1�, and that in this

interval they are continuous in s.
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Figure 1.1. Plot of .1
2
; 1/ 3 s 7! ˆx;x

D
.s; T / for � D .0; a/ with x D 2:5, T D 100 and a 2

¹3; 10º. We have approximated ˆD , as explicitly given in (3.5), by summing to the 5 � 105th
term.

Proposition 1.2. Let a 2 .0;C1/, � D .0; a/, x 2 �, T 2 .0;C1/ and E be any
of the efficiency functionals in (1.6) with x D y. Then, E.s; T / 2 .0;C1/ for all s 2
.1
2
; 1� and E.�; T / 2 C..12; 1�/.

In terms of detecting the most rewarding foraging strategy with respect to the
Lévy exponent s, we show that if the initial position of the forager coincides with the
location of the target, then s D 1=2 is the optimizer for all the efficiency functionals
in (1.6).

Theorem 1.3. Let a 2 .0;C1/, � D .0; a/, x 2 � and E be any of the efficiency
functionals in (1.6) with x D y. Then, for all T 2 .0;C1/, the supremum over s 2
.1
2
; 1� of E is attained at s D 1

2
, with

lim
s& 1

2

E.s; T / D C1: (1.10)

Even though the environmental scenario of a forager starting its search precisely
from the target location is physically less relevant than the other cases, it can serve
as an example of the complexity of the optimization problem and its dependence on
external factors, such as the geometrical properties of the domain.

In what follows, we provide an example of change of monotonicity for the func-
tionals in equation (1.5). Specifically, we show that if the interval in which we con-
sider the motion is small enough, then the functionals are strictly decreasing in s. On
the other hand, we prove that if the interval is large enough, then there is a region
of this interval such that if the search starts there, then the monotonicity property is
violated in a neighborhood of the Brownian strategy s D 1, see Figure 1.1.

Theorem 1.4. Let a 2 .0;C1/, � D .0; a/, T 2 .0;C1/ and x 2 �. Let ˆ be any
of the foraging success functional in (1.5) with

x D y:
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Then, if a 2 .0; ��, for every s0 2 .12 ; 1� and s1 2 .s0; 1�, we have that

ˆ.s0; T / > ˆ.s1; T /: (1.11)

Also, for every � 2 .0; 1
2
/ there exists a� 2 .�;C1/ such that if a 2 .a� ;C1/,

then, for every T 2 Œ�a2s;C1/, x 2 .�a; .1� �/a/, s0 2 .1C �2; 1/ and s1 2 .s0; 1�,
it holds that

ˆ
x;x
D .s1; T / > ˆ

x;x
D .s0; T /: (1.12)

Furthermore, for every � 2 .0; 1
2
/ there exists a� 2 .�;C1/ such that if a 2

.a� ;C1/, then, for every T 2 Œ�a2s;C1/, x2.0; .1��/a
2

/[. .1C�/a
2

; a/, s02.1C�2 ; 1/

and s1 2 .s0; 1�, it holds that

ˆ
x;x
N .s1; T / > ˆ

x;x
N .s0; T /: (1.13)

In [10, 11] we studied the monotonicity properties of the fractional heat ker-
nel rs.t; x; x/ with respect to the fractional parameter s and we showed that these
properties depend on the geometry of the domain. This dependence is expressed via
the eigenvalues of either the Dirichlet or the Neumann Laplacian, which are well
known to depend on geometric features of the domain, like its measure or the Haus-
dorff measure of its boundary. For further details on this relation see the comments
after [10, Theorem 8] and [11, Theorem 8] and the references therein.

More precisely, in [10, Theorem 7] we established that if the first eigenvalue of
the Dirichlet Laplacian is greater than 1, then the fractional heat kernel rsD.t; x; x/ is
strictly decreasing in s. Analogously, in [11, Theorem 7] we proved that if the first
nonvanishing eigenvalue �k.x/ of the Neumann Laplacian associated to a nonvanish-
ing eigenfunction in x is greater than 1, then rsN .t; x; x/ is strictly decreasing in s.
The monotonicity property given in (1.11) is thus a consequence of [10, Theorems 7]
and [11] and the definitions in (1.5).

On the other hand, in Theorem 7 of both [10] and [11] we proved that under some
circumstances there is a change of monotonicity for rs.t; x; x/. Indeed, we showed
that if the first eigenvalue of the Dirichlet Laplacian, or �k.x/ as described above for
the Neumann case, is smaller than 1, then for every s0; s1 2 .0; 1/ such that

s0 < s1

there exists some T 2 .0;C1/ such that

rs0.t; x; x/ < rs1.t; x; x/

for all t 2 .T;C1/. This latter change of monotonicity in relation to the size of
the eigenvalues inspired the search for a change of monotonicity also for the effi-
ciency functionals ˆx;xD and ˆx;xN , which is proved to be true, as expressed by equa-
tions (1.12) and (1.13) above.
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1.3 Prey in proximity of the forager

We now turn our attention to the efficiency functionals in (1.6) when the initial posi-
tion of the forager y 2 � is different from the target location x 2 �. We begin by
stating the following continuity result with respect to the fractional exponent s.

Proposition 1.5. Let � � Rn be bounded, smooth and connected. For every

.x; y; T / 2 � �� � .0;C1/

such that x ¤ y, let us denote by Ex;y any of the efficiency functionals in (1.6). Then,
Ex;y.s; T / 2 .0;C1/ for all s 2 .0; 1� and Ex;y.�; T / 2 C..0; 1�/.

In the following result we establish that for each .x; y; T / 2 � �� � .0;C1/,
satisfying x ¤ y, the first Dirichlet functional E

x;y
1;D.s;T / attains its infimum at s D 0.

Moreover, we show that the Dirichlet functionals in (1.6) admit a finite limit for s& 0,
as far as x ¤ y.

Theorem 1.6. Let � � Rn be bounded, smooth and connected. Then, for every
.x; y; T / 2 � �� � .0;C1/ with x ¤ y, it holds that

inf
s2.0;1/

E
x;y
1;D.s; T / D lim

s&0
E
x;y
1;D.s; T / D 0: (1.14)

Moreover, we have that

lim
s&0

E
x;y
2;D.s; T / 2 .0;C1/ and lim

s&0
E
x;y
3;D.s; T / 2 .0;C1/: (1.15)

From Theorem 1.6 we evince that we can extend by continuity the Dirichlet func-
tionals in (1.6) to the whole compact interval Œ0; 1�. Hence, from now on, we will
adopt the notation

E
x;y
j;D .0; T / WD lim

s&0
E
x;y
j;D .s; T /;

for all .x; y; T / 2 � �� � .0;C1/, with x ¤ y and j 2 ¹1; 2; 3º.
The following two theorems are the most important results of this section. We

state that if the forager starting position y 2 � is close enough to the prey location
x 2 �, then the best search strategy for the efficiency functionals in (1.6) will be in
some small neighborhood of s D 0.

Theorem 1.7. Let � � Rn be bounded, smooth and connected and .y; T / 2 � �
.0;C1/. Then, for each " 2 .0; 1/ there exists some ı D ı";y;T;� 2 .0;C1/ such
that for each x 2 Bı.y/ n ¹yº it holds that

sup
s2.0;1/

E
x;y
1;D.s; T / D E

x;y
1;D.s

.1/
x;y;T ; T / with s.1/x;y;T 2 .0; "/: (1.16)
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Moreover, for each j 2 ¹2; 3º it holds that

E
x;y
j;D .0; T / > sup

s2.";1/

E
x;y
j;D .s; T /: (1.17)

We stress that the situation x ¤ y treated in Theorem 1.7 is conceptually quite
different from the case x D y presented in Theorem 1.3: indeed, when the initial
location of the predator is different from the position of the target, the efficiency
functionals are finite for all s 2 .0; 1� independently of the dimension, as stated in
Proposition 1.5.

The result in Theorem 1.7 is general enough to include different Dirichlet effi-
ciency functionals and detects a somewhat “universal” qualitative behavior.

Moreover, an analogous situation holds true also for the Neumann functionals
in (1.6).

Theorem 1.8. Let � � Rn be bounded, smooth and connected and .y; T / 2 � �
.0;C1/. Then, for each " 2 .0; 1/ there exists some ı D ı";y;T;� 2 .0;C1/ such
that for each x 2 Bı.y/ n ¹yº and for all j 2 ¹1; 2; 3º it holds that

sup
s2.0;1/

E
x;y
j;N .s; T / D E

x;y
j;N .s

.j /
x;y;T ; T / with s.j /x;y;T 2 .0; "/: (1.18)

Therefore, from Theorems 1.7 and 1.8 we deduce that if the initial position of the
forager approaches the position of the target, the fractional parameter s 2 .0; 1/max-
imizing the functionals in (1.6) converges to 0. Thus, in the regime of close proximity
of seeker starting position and prey location, the above functionals are maximized by
a search strategy with a very fat tail.

It is interesting to notice that the maximizer s.1/x;y;T of E1;D given by Theorem 1.7
may turn out to be unreliable in practice, differently from the other two maximizers
of the Dirichlet functionals, according to the following remark.

Remark 1.9. On the one hand, Theorem 1.6 establishes that s D 0 is a global mini-
mizer for E1;D . On the other hand, if s.1/x;y;T is a maximizer of E

x;y
1;D.�; T /, then from

Theorem 1.7 we evince that
lim
x!y

s
.1/
x;y;T D 0:

This means that as x approaches y, the maximizer of the functional E
x;y
1;D converges

to s D 0, which is a global minimizer. Therefore, a small perturbation of s.1/x;y;T can
lead to very small values for E1;D , making such choice of the most rewarding frac-
tional exponent quite unreliable. Therefore, in an environmental scenario where the
forager starts its search in proximity of the target and the efficiency functional mod-
elling the energy to maximize is given by E1;D , the “most rewarding” search strategy
is to be considered “unreliable”.
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Things turn out to be different for E
x;y
2;D and E

x;y
3;D . Indeed, if s.j /x;y;T is a maximizer

of the functional E
x;y
j;D .�; T / with j 2 ¹2; 3º, then, according to Theorem 1.7, one still

has the limit
lim
x!y

s
.j /
x;y;T D 0:

Nevertheless, in contrast with the case j D 1, now s D 0 is not necessarily a global
minimum. Actually, see equation (1.17), for each " 2 .0; 1/, if x and y are close
enough, then

E
x;y
j;D .0; T / > sup

s2.";1/

E
x;y
j;D .s; T /;

so that s D 0 in these two cases is “almost” a maximizer. Roughly speaking, we can
say that the functionals E2;D and E3;D present more reliable optimal configurations
than E1;D , since the maximizing fractional exponent is “separated” from the mini-
mizers, whence the most rewarding strategy appears to be safer.

Remark 1.10. It has been observed in [43] that the case s D 0 occurs when some
marine predators, such as anglers and blonde skates, specifically aim at a type of prey
with a high energy content. It is therefore natural to relate the high-energy content
of the prey and the high-risk/high-reward strategy related to s D 0; namely a high
gain prospected by the energy content of the prey may serve as a mitigation of the
chance of failure entailed by searching mode selected and as an indirect encourage-
ment towards a potentially very beneficial, but intrinsically very risky, strategy.

Remark 1.11. One may wonder whether the unreliability of the most rewarding
strategies and the corresponding high-risk/high-reward searching mode are specific
of the situation considered in this memoir, i.e., of a forager confined in a bounded
region and a nearby prey. This is not the case, in fact in the paper [13] we will show
that the same pattern persists, for instance, for a predator diffusing in the whole space
and also for a prey located arbitrarily far from the predator.

The case that will be addressed in [13] is technically different from the one here,
since the spectral analysis cannot be performed in unbounded domains and we will
have to rely on singular integral calculations instead.

In what follows we observe a phenomenon which arises in the one-dimensional
framework as a consequence of Theorem 1.4. In particular, under the same geometric
assumptions of Theorem 1.4 on the domain �, we show that if the target location
x 2 � is sufficiently close to the forager initial position y 2 �, then there exists a
local maximizer s�x;y;T for E

x;y
1;D and E

x;y
1;N in a neighborhood of the Brownian strategy

s D 1.

Corollary 1.12. Let a 2 .0;C1/,�D .0; a/ and T 2 .0;C1/. Then, for every � 2
.0; 1

2
/ and " 2 .0; 1/ there exists a� 2 .�;C1/ such that if a 2 .a� ;C1/, then, for



Prey in proximity of the forager 17

every T 2 Œ�a2s;C1/ and y 2 .�a; .1 � �/a/, there exists some ı D ı�;";y;T;� 2
.0;C1/ such that if x 2 Bı.y/ n ¹yº, then

sup
s2. 1C�2 ;1/

E
x;y
1;D.s; T / D E

x;y
1;D.s

�
x;y;T ; T / with s�x;y;T 2 .1 � "; 1�: (1.19)

Also, for every � 2 .0; 1
2
/ and " 2 .0; 1/ there exists a� 2 .�;C1/ such that

if a 2 .a� ;C1/, then, for every T 2 Œ�a2s;C1/ and y 2 .0; .1��/a
2

/ [ . .1C�/a
2

; a/,
there exists some ı D ı�;";y;T;� 2 .0;C1/ such that if x 2 Bı.y/ n ¹yº, then

sup
s2. 1C�2 ;1/

E
x;y
1;N .s; T / D E

x;y
1;N .Osx;y;T ; T / with Osx;y;T 2 .1 � "; 1�: (1.20)

It is interesting to compare this result with Remark 1.9 on the unreliability of
the most rewarding search strategy for E

x;y
1;D . Indeed, as a consequence of Theo-

rem 1.7 and Corollary 1.12, we have that for each � 2 .0; 1
2
/ and " 2 .0; 1/ there

exists some a� 2 .�;C1/ such that for every a, T and y given as in the state-
ment of Corollary 1.12, there exists some ı� D ı��;";y;T;� 2 .0;C1/ such that, for
every x 2 Bı�.y/ n ¹yº,

sup
s2.0;1/

E
x;y
1;D.s; T / D E

x;y
1;D.s

.1/
x;y;T ; T / with s.1/x;y;T 2 .0; "/;

sup
s2. 1C�2 ;1/

E
x;y
1;D.s; T / D E

x;y
1;D.s

�
x;y;T ; T / with s�x;y;T 2 .1 � "; 1�:

From this, we deduce that in this framework there exist a global and a local max-
imizer. The global maximizer s.1/x;y;T seems to be the most rewarding option for the
forager performing the search. Nevertheless, thanks to Remark 1.9, we also know that
it is extremely unreliable for practical purposes. Indeed, a small deviation from s

.1/
x;y;T

can lead to the unique global minimizer s D 0, that makes the functional vanish.
On the other hand, even though the local maximizer s�x;y;T is not optimal, it could

be a better choice due to its stability. As a matter of fact, as stated in Proposition 1.5,
the functional E

x;y
1;D vanishes nowhere near the Brownian strategy sD 1. Therefore, by

choosing s�x;y;T , even under the presence of a positive error in the choice of the strat-
egy, the outcome would not be heavily affected, as it could be for the most rewarding,
but unreliable, strategy s.1/x;y;T .

This observation highlights how the definition of “best search strategy” is ar-
guable, and how in some contexts it could not coincide with the classical notion of
maximizer of a given energy: after all, what does “best” mean, is it “most rewarding”
or “safest”? Thus, it may be appropriate to define new efficiency functionals that,
rather than depending on an “exact choice” of the fractional exponent s 2 .0; 1/, take
into account a probability measure in .0; 1/ that allows the existence of an error range
for the forager. This new approach will be investigated by the authors in a forthcoming
work.
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1.4 Foragers and targets uniformly distributed in some regions

Now we focus our attention on the study of the functionals in equation (1.9). In this
case, the forager starting position and the prey location are replaced by uniform den-
sities in disjoint subsets �1; �2 � �. We begin by analyzing the continuity of these
functionals with respect to the fractional exponent s 2 .0; 1�.
Proposition 1.13. Let � � Rn be bounded, smooth and connected. For every T 2
.0;C1/ and measurable sets �1; �2 � �, let us denote by zE�1;�2 any of the effi-
ciency functionals in (1.9). Then, zE�1;�2.s; T / 2 .0;C1/ for all s 2 .0; 1� and
zE�1;�2.�; T / 2 C..0; 1�/.

The following result can be considered as the set-dependent counterpart of Theo-
rem 1.6.

Theorem 1.14. Let � � Rn be bounded, smooth and connected. Then, for all T 2
.0;C1/ and smooth and disjoint sets �1; �2 � �, it holds that

inf
s2.0;1/

zE�1;�21;D .s; T / D lim
s&0

zE�1;�21;D .s; T / D 0: (1.21)

Moreover, we have that

lim
s&0

zE�1;�22;D .s; T / 2 .0;C1/ and lim
s&0

zE�1;�23;D .s; T / 2 .0;C1/: (1.22)

From Theorem 1.14 we deduce that we can extend by continuity also the Dirich-
let functionals in (1.9) to the whole compact interval Œ0; 1�. From now on, for j 2
¹1; 2; 3º, we will adopt the notation

zE�1;�2j;D .0; T / WD lim
s&0

zE�1;�2j;D .s; T /;

for all T 2 .0;C1/ and �1; �2 � � satisfying the hypothesis of Theorem 1.14.
In Theorems 1.7 and 1.8 we have established that the Neumann and Dirichlet

functionals in (1.6) have a common feature. Indeed, if the prey location x 2 � is in
a sufficiently small neighborhood of the forager starting position y 2 �, then E

x;y
j;D

and E
x;y
j;N attain their maximum for some value close to s D 0.

This characteristic is somewhat preserved if we consider the set-dependent func-
tionals in (1.9). Indeed, we can show that if �1; �2 are close enough (in a sense that
will be made precise later), then also for the functionals in (1.9) a strongly nonlocal
search strategy will be preferred.

Before stating the precise results we fix some notation. For each B � Rn, y 2 Rn

and r 2 .0;C1/ we denote

ryB WD ¹r.x � y/C y s.t. x 2 Bº: (1.23)
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Theorem 1.15. Let � � Rn be bounded, smooth and connected and .y; T / 2 � �
.0;C1/. Then, for each " 2 .0; 1/ there exists some r D r";y;T;� 2 .0;C1/ such
that for any smooth and disjoint sets �1; �2 � Br.y/ it holds that

sup
s2.0;1/

zE�1;�21;D .s; T / D zE�1;�21;D .s
.1/
�1;�2;T

; T / with s.1/�1;�2;T 2 .0; "/:

Moreover, letK b� be star-shaped with respect to some y 2K. Then, for all j 2
¹2; 3º and " 2 .0; 1/, there exists some r D r";K;T;� such that if �1; �2 � ryK are
smooth and disjoint it holds that

zE�1;�2j;D .0; T / > sup
s2.";1/

zE�1;�2j;D .s; T /: (1.24)

As a consequence of Theorems 1.14 and 1.15 we can deduce that the most reward-
ing strategy may not be the safest, similarly to what happens for the functional E1;D
(recall Remark 1.9). Also, a result analogous to Theorem 1.15 holds true when con-
sidering the Neumann functionals in (1.9).

Theorem 1.16. Let � � Rn be bounded, smooth and connected and .y; T / 2 � �
.0;C1/. Then, for each " 2 .0; 1/ there exists some r D r";y;T;� 2 .0;C1/ such
that for any smooth and disjoint sets �1; �2 � Br.y/ and for each j 2 ¹1; 2; 3º it
holds that

sup
s2.0;1/

zE�1;�2j;N .s; T / D zE�1;�2j;N .s
.j /
�1;�2;T

; T / with s.j /�1;�2;T 2 .0; "/: (1.25)





Chapter 2

Mathematical framework for the efficiency functionals

2.1 Preliminary results and asymptotics

In this section we establish some technical results regarding the efficiency functionals
in (1.5), (1.6), and (1.9). These are the main analytical tools that we will use to prove
the results stated in the introduction.

In Section 2.2 we provide some estimates for the functionals in (1.5) and (1.7).
This is the content of Lemma 2.7, Theorem 2.9, and Corollary 2.11. These results
will be employed in Section 3.2 in order to discuss the environmental scenario where
the prey is in proximity of the forager starting location, and thus to prove Theo-
rems 1.7, 1.8, 1.15, and 1.16. Moreover, we establish the limits of the Dirichlet
functionals in (1.6) and (1.9) as s & 0 as stated in Lemma 2.13. These asymptotics
will be used to prove Theorems 1.6, 1.14, 1.7, and 1.15.

To conclude, in Lemmas 2.15 and 2.16 we show that the Neumann functionals
in (1.3), (1.4), (1.5), (1.7), and (1.8) do not vanish for s & 0, and we provide upper
and lower bounds for their lim inf and lim sup. These results will be used in the proofs
of Theorem 1.8 and 1.16.

To prove these results, it is useful to recall some properties regarding the fractional
heat kernels rsD and rsN . It is well known that for each s 2 .0; 1/ these two kernels can
be written for each .t; x; y/ 2 .0;C1/ �� �� as

rsD.t; x; y/ D
Z C1
0

p�D.l; x; y/�
s
t .l/ d l;

rsN .t; x; y/ D
Z C1
0

p�N .l; x; y/�
s
t .l/ d l;

(2.1)

where p�D and p�N are the classical Dirichlet and Neumann heat kernels in �, while
�st is the density of an s-stable subordinator in .0;C1/ (see, e.g., [10, Definition 4]).
For a proof of this latter fact see for instance [10, Proposition 2] and [11, Proposi-
tion 2].

If s D 1, the kernels r1N and r1D coincide respectively with the classical kernels
p�N and p�D . Furthermore, we also know that the density �st admits the explicit repre-
sentation formula

�st .l/D
1

�

Z C1
0

e�lu�tu
s cos.�s/sin.tus sin.�s// du for all .l; s/2.0;C1/�.0; 1/;

(2.2)
see [23, Proposition 3.1].
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Moreover, we also recall the following fact on the spectral representation of rsD
and rsN . In what follows we denote by ¹�D;kºk and ¹�N;kºk two orthonormal basis of
L2.�/ satisfying´
���D;k D ˇD;k�D;k in �;

�D;k 2 H 1
0 .�/

and

8<:���N;k D ˇN;k�N;k in �;
@�N;k

@�
D 0 on @�;

(2.3)

where 0 < ˇD;1 <ˇD;2 � � � and 0D ˇN;0 <ˇN;1 < � � � are respectively the eigenvalues
of the Laplace operator with homogeneous Dirichlet and homogeneous Neumann
boundary conditions.

Thus, thanks to [10, Theorem 5] and [11, Theorem 5], we can rewrite the Dirichlet
and Neumann kernels rsD and rsN as

rsD.t; x; y/ D
C1X
kD1

�D;k.x/�D;k.y/ exp.�tˇsD;k/;

rsN .t; x; y/ D
C1X
kD0

�N;k.x/�N;k.y/ exp.�tˇsN;k/;
(2.4)

for all s 2 .0; 1� and .t; x; y/ 2 .0;C1/ �� ��.
Now, we establish some results on�st . In what follows we recall a scaling property

for the density �st of the s-stable subordinator. For the convenience of the reader the
statement is proved.

Lemma 2.1. Let l 2 .0;C1/, t 2 .0;C1/ and s 2 .0; 1/. Then, we have that

�st .l/ D
1

t
1
s

�s1

�
l

t
1
s

�
: (2.5)

Proof. Let ˛ WD us cos.�s/, ˇ WD us sin.�s/ and

g.˛; ˇ/ WD e�t˛ sin.tˇ/:

With this notation, we integrate by parts the expression on the right-hand side of (2.2)
and obtain that

�st .l/ D �
1

l�
e�lug.˛; ˇ/

ˇ̌̌C1
0
C 1

�l

Z C1
0

e�lu
d

du
g.˛; ˇ/ du

D 0C 1

�l

Z C1
0

e�lue�t˛stus�1.� cos.�s/ sin.tˇ/C sin.�s/ cos.tˇ// du

D st

�l

Z C1
0

e�lue�tu
s cos.�s/us�1 sin.�s � tus sin.�s// du: (2.6)
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We employ the change of variable v D ut 1s and infer from the last identity that

�st .l/ D
s

�l

Z C1
0

e
� l

t
1
s

v

e�v
s cos.�s/vs�1 sin.�s � vs sin.�s// dv

D 1

t
1
s

st
1
s

�l

Z C1
0

e
� l

t
1
s

v

e�v
s cos.�s/vs�1 sin.�s � vs sin.�s// dv

D 1

t
1
s

�s1

�
l

t
1
s

�
:

Now, we discuss some asymptotic estimates for the density �st .l/ in l . As it is
recalled in [5] by R. Song and proved by Skorohod in [33], one has that

�s1.l/ � 2��.1C s/ sin
��s
2

� 1

l1Cs
for l !C1: (2.7)

Using this estimate and Lemma 2.1 on the time-scaling property of �st one obtains an
interesting asymptotic expansion in the forthcoming Lemma 2.2. As a side comment,
we point out that the asymptotic properties of this type of distributions are relevant to
understand how the tail of �st changes by varying the fractional parameter s, which
in turn provides some important information about the optimization problem that we
analyze in this memoir.

Lemma 2.2. Let s 2 .0; 1/ and t 2 .0;C1/. Then, we have that

�st .t/ � 2��.1C s/ sin
�� s
2

� t

l1Cs
for l !C1: (2.8)

Proof. Thanks to Lemma 2.1, we know that for each s 2 .0; 1/, l 2 .0;C1/ and
t 2 .0;C1/ one has that

�st .l/ D
1

t
1
s

�s1

� l
t
1
s

�
:

Thus, using this identity and the estimate in (2.7) one readily obtains that

�st .l/ �
1

t
1
s

2��.1C s/ sin
��s
2

� t 1Css
l1Cs

D 2��.1C s/ sin
��s
2

� t

l1Cs
;

for l !C1.

The following theorem provides similar estimates to the one given in (2.8) in the
range s 2 .0; 1

2
/. Here, the constants involved are less accurate than the one appearing

in (2.8), but on the other hand we gain some important information. In particular,
while the estimate in (2.8) holds true for l !C1, the ones that we prove below are
true for each l 2 .t 1s ;C1/. This additional information will be used several times.
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Theorem 2.3. Let s 2 .0; 1
2
/ and t 2 .0;C1/. Then, there exists some constant C1 2

.0;C1/, independent of s and l , such that

stC1

�l1Cs
6 �st .l/ for all l 2 .t 1s ;C1/;

�st .l/ 6
st�.1C s/
l1Cs

for all l 2 .0;C1/:
(2.9)

Proof. Thanks to the scaling property proved in Lemma 2.1, it is enough to show the
result for t D 1. Indeed, if for t D 1 the inequalities in (2.9) hold true, then if t > 1
and l > t

1
s , we have in view of (2.5) that

�st .l/ D
1

t
1
s

�s1

�
l

t
1
s

�
>

sC1t

�l1Cs
:

The second inequality in (2.9) is proved similarly. For this reason, we focus our atten-
tion on the case t D 1.

We will first prove the second inequality in (2.9). If s 2 .0; 1
2
/, from (2.2) we

notice that

�s1.l/ 6
sin.�s/
�

Z C1
0

e�lutus du 6
s

�l1Cs
�.1C s/;

which concludes the proof of the second inequality in (2.9).
Now we focus on the proof of the first inequality. To do so, we observe that thanks

to equation (2.6) one has that

�s1.l/ D
s

�l

Z C1
0

e�lue�u
s cos.�s/us�1 sin.�s � us sin.�s// du:

We perform the change of variable lu D � and obtain that

�1s .l/ D
s

�l1Cs

Z C1
0

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d�

DW s

�l1Cs
f .s; l/; (2.10)

where by construction f .s; l/ > 0 for each l 2 .0;C1/ and s 2 .0; 1/.
Now we observe that, for each � > 1 and s 2 .0; 1

2
�,ˇ̌̌̌

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�ˇ̌̌̌
6 e�� :

Thus, by the dominated convergence theorem we obtain that

lim
s&0

Z C1
1

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d� D 0:
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Also, by using the change of variable � s D lsz we deduce thatZ 1

0

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d�

D ls

s

Z 1
ls

0

e�lz
1
s
e�z cos.�s/ sin.�s � z sin.�s// dz

D ls
Z C1
0

�Œ0; l�s �e
�lz

1
s
e�z cos.�s/ sin.�s � z sin.�s//

s
dz:

If s 2 .0; 1
3
/ we also notice thatˇ̌̌̌
�Œ0; l�s �e

�lz
1
s
e�z cos.�s/ sin.�s � z sin.�s//

s

ˇ̌̌̌
6 �e�

z
2 .1C z/;

and therefore, since l > 1, by the dominated convergence theorem we obtain that

lim
s&0

Z 1

0

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d� D �

Z 1

0

e�z.1 � z/ dz:

Consequently, for each l > 1

lim
s&0

f .s; l/ D �
Z 1

0

e�z.1 � z/ dz D �

e
: (2.11)

We also observe that, if s 2 .0; 1
2
�,ˇ̌̌̌

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�ˇ̌̌̌
6 e��� s�1;

for all � 2 .0;C1/.
As a consequence, by the dominated convergence theorem we evince that

lim
l!C1

f .s; l/ D sin.�s/�.s/ > 0; (2.12)

for all s 2 .0; 1
2
�.

Besides, by the definition of f .s; l/, we have that f 2 C..0; 1
2
/ � .1;C1// and

f .s; l/ > 0 for all .s; l/ 2
�
0;
1

2

�
� Œ1;C1/: (2.13)

Therefore, using (2.11), (2.12), and (2.13) we deduce that there exists some C1 2
.0;C1/ such that

C1 6 f .s; l/ for all .s; l/ 2
�
0;
1

2

�
� Œ1;C1/:

In light of this observation and equation (2.10) we deduce that

C1s

�l1Cs
6 �s1.l/:
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2.2 Structural results for the efficiency functionals

Now we develop the main technical tools that will be employed in the proofs of the
results contained in Sections 1.2 and 1.3.

In what follows we adopt the subscript � to refer to the fact that the functional
considered can be the one associated with both the Dirichlet and the Neumann case.

We begin by recalling here the following estimates for the classical Dirichlet heat
kernel in relation to the classical heat kernel. Using the weak maximum principle for
the heat equation one can show that

p�D.t; x; y/ 6
1

.4�t/
n
2

exp
�
�jx � yj

2

4t

�
for all .t; x; y/ 2 .0;C1/ �� ��:

(2.14)
On compact subsets of� and for finite time spans, one can prove the following lower
bound for p�D.t; x; y/.

Lemma 2.4 (See [45, Lemma 2.1]). Let��Rn be bounded, smooth and connected.
Then, there exists a constant T� 2 .0;C1/ such that for each K b �, if we define

TK;� WD min
²
T�; min

x2K

d2.x; @�/

2

³
; (2.15)

then there exist two constants c1; c2 2 .0;C1/, depending on K and �, such that

p�D.t;x;y/>
c1

t
n
2

exp
�
�c2jx � yj

2

t

�
for all .t;x;y/2 .0;TK;���K �K: (2.16)

Using the weak maximum principle, it is also possible to compare the Neumann
heat kernel with the Dirichlet one, as better specified in the following result.

Theorem 2.5. Let � � Rn be bounded, smooth and connected and K 0 b �. Then,
for each s 2 .0; 1� we have that

rsD.t; x; y/ 6 rsN .t; x; y/ for all .t; x; y/ 2 .0;C1/ �� ��: (2.17)

Furthermore, if K � K 0 b � is star-shaped with respect to some x0 2 K, there
exist some constantsCK0;�; cK0;� 2 .0;C1/ and "0 2 .0;1/, depending onK 0 and�,
such that

rsN .t; x; y/ 6 CK0;�r
s
D.t; x"; y"/C cK0;� for all .t; x; y/ 2 .0;C1/ �K �K;

(2.18)
for each " 2 .0; "0/, where .x"; y"/ WD ."x C .1 � "/x0; "y C .1 � "/x0/.
Proof. We begin by proving the lower bound in (2.17). To do so, we observe that
thanks to the maximum principle for the heat equation, one has that

p�D.t; x; y/ 6 p�N .t; x; y/ for all .t; x; y/ 2 .0;C1/ �� ��:
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Therefore, using (2.1) and the latter inequality, we obtain that

rsD.t; x; y/ D
Z C1
0

p�D.l; x; y/�
s
t .l/ d l

6
Z C1
0

p�N .l; x; y/�
s
t .l/ d l D rsN .t; x; y/;

for each .t; x; y/ 2 .0;C1/ �� ��. This concludes the proof of (2.17).
Now we show (2.18). Thanks to [9, Theorem 3.2.9], we have that there exists

some constant c� such that

p�N .t; x; y/6c�max
²
1;

1

t
n
2

³
exp

�
�jx � yj

2

6t

�
for all .t; x; y/2.0;C1/����:

(2.19)
Furthermore, if K � K 0 b �, thanks to Lemma 2.4 we obtain that

p�D.t; x; y/ >
c1

t
n
2

exp
�
�c2jx � yj

2

t

�
for all .t; x; y/ 2 .0; TK0;�� �K 0 �K 0;

(2.20)
where TK0;� is introduced in (2.15) and c1; c2 depends on K 0 and �.

Up to a translation we can assume that K is star-shaped with respect to

x0 D 0:

Now we observe that there exists two constants CK0;� 2 .0;C1/ and "0 2 .0; 1/,
such that

CK0;�c1 > c� and c2"
2 6

1

6
for all " 2 .0; "0/:

As a consequence, if for each " 2 .0; "0/ we call

.x"; y"/ D ".x; y/;

then from (2.19) and (2.20) we obtain that

CK0;�p
�
D.t; x"; y"/ � p�N .t; x; y/

> CK0;�
c1

t
n
2

exp
�
�c2jx" � y"j

2

t

�
� c�
t
n
2

exp
�
�jx � yj

2

6t

�
D c�

t
n
2

�
CK0;�

c1

c�
exp

�
�"2c2 jx � yj

2

t

�
� exp

�
�jx � yj

2

6t

��
>
c�

t
n
2

exp
�
�jx � yj

2

6t

��
exp

�
�
�
"2c2 � 1

6

� jx � yj2
t

�
� 1

�
> 0; (2.21)

for each .t; x; y/ 2 .0; TK0;�� �K �K.
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Thus, using equation (2.1) and the relation in (2.21) we obtain that

rsN .t; x; y/ D
Z C1
0

p�N .l; x; y/�
s
t .l/ d l

D
Z TK0;�

0

p�N .l; x; y/�
s
t .l/ d l C

Z C1
TK0;�

p�N .l; x; y/�
s
t .l/ d l

6 CK0;�

Z TK0;�

0

p�D.l; x"; y"/�
s
t .l/ d l

C c�
Z C1
TK0;�

max
²
1;

1

l
n
2

³
exp

�
�jx � yj

2

6l

�
�st .l/ d l

6 CK0;�

Z C1
0

p�D.l; x"; y"/�
s
t .l/ d l C cK0;�

D CK0;�rsD.t; x"; y"/C cK0;�;

for each .t; x; y/ 2 .0;C1/ �K �K, where we defined

cK0;� WD max
x;y2K0

max
l2ŒTK;�;C1/

c� max
²
1;

1

l
n
2

³
exp

�
�jx � yj

2

6l

�
:

As a useful consequence of Theorem 2.5, we obtain that it is possible to compare
the Neumann functional ˆN with the Dirichlet one ˆD . The result goes as follows.

Corollary 2.6. Let � � Rn be bounded, smooth and connected and K 0 b �. Then,
for each s 2 .0; 1� and T 2 .0;C1/ it holds that

ˆ
x;y
D .s; T / 6 ˆ

x;y
N .s; T / for all .x; y/ 2 C ; (2.22)

where

C WD .� ��/ n ¹.p; p/ s.t. p 2 �º D ®.p; q/ 2 � �� s.t. p ¤ q¯: (2.23)

Furthermore, for each K � K 0 b � star-shaped with respect to some x0 2 K,
s 2 .0; 1/ and T 2 .0;C1/, there exists some "0 2 .0; 1/ such that

ˆ
x;y
N .s; T / 6 CK0;�ˆ

x";y"
D .s; T /C cK0;�T for all .x; y/ 2 C \ .K �K/; (2.24)

for each " 2 .0; "0/, where

.x"; y"/ WD ."x C .1 � "/x0; "y C .1 � "/x0/

and CK0;�; cK0;� 2 .0;C1/ are given in Theorem 2.5.

Proof. Inequalities (2.22) and (2.24) are respectively obtained by integrating over the
time t in .0; T / both sides of (2.17) and (2.18).
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In Lemma 2.7 below we establish a lower bound for ˆx;y� .s; T /, for x 2 � in a
sufficiently small neighborhood of y 2 �.

This estimate is pivotal to determine the asymptotic behavior of the functionals
in (1.6) when x approaches y, providing some information on the best search strategy
in the environmental scenario addressed in Section 1.3, namely where the forager
starts its search in proximity of the target.

Lemma 2.7. Let��Rn be bounded, smooth and connected. If .y;T /2��.0;C1/
and s 2 .0; 1/, then there exists some yı D yıs;y;T;� 2 .0;C1/ such that, for each
x; z 2 Byı.y/ satisfying x ¤ z,

ˆx;z� .s; T / >
Cs;y;�

jx � zjn�2s ; (2.25)

for some constant Cs;y;� 2 .0;C1/.
Proof. In virtue of inequality (2.22) it is enough to show the result for ˆD .

Let y 2 � and let us denote dy WD d.y;@�/
2

, where

d.y; @�/ WD inf
x2@�

jx � yj:

With this notation we set
By WD Bdy .y/:

Now, by (2.15) and (2.16) (used here with K WD By),

p�D.t; x; z/ >
c1

t
n
2

exp
�
�c2jx � zj

2

t

�
for all .t; x; z/ 2 .0; TBy ;�� � By � By :

(2.26)
We also observe that for each x; z 2 Rn such that x ¤ z, the function

g.t/ WD c1

t
n
2

exp
�
�c2jx � zj

2

t

�
has a maximum in "x;z WD 2c2

n
jx � zj2 and it is increasing in .0; "x;z/ and decreasing

in ."x;z;C1/.
We set

ls;y;T WD min¹TBy ;�; T
1
s º

and we choose yı D yıs;y;T;� such that

yıs;y;T;� WD min
²�
nls;y;T

2c2

� 1
2

; dy

³
: (2.27)

It follows that if x; z 2 Byı.y/ with x ¤ z, then "x;z 6 ls;y;T and x; z 2 By .



Mathematical framework for the efficiency functionals 30

To simplify the notation, we simply write "D"x;z . In this way, by (2.1) and (2.26),
if x; z 2 Byı.y/ and x ¤ z we have that

ˆ
x;z
D .s; T / D

Z T

0

Z C1
0

p�D.l; x; z/�
s
t .l/ d l dt

>
Z "s

0

Z "

"
2

p�D.l; x; z/�
s
t .l/ d l dt

>
Z "s

0

Z "

"
2

c1

l
n
2

exp
�
�c2jx � zj

2

l

�
�st .l/ d l dt

>
C

"
n
2

Z "s

0

Z "

"
2

�st .l/ d l dt;
(2.28)

where we set C WD c12n2 e�n.
Now we substitute �st in (2.28) with the expression in (2.2) and obtain that

ˆ
x;z
D .s; T / >

C

�"
n
2

Z "s

0

Z "

"
2

Z C1
0

e�lu�tu
s cos.�s/ sin.tus sin.�s// du dl dt

D C

�"
n
2

Z "

"
2

Z C1
0

Z "s

0

e�lu�tu
s cos.�s/ sin.tus sin.�s// dt du dl

DW L: (2.29)

Setting F.t/ WD e�t˛ sin.tˇ/, with ˛ WD us cos.�s/ and ˇ WD us sin.�s/, for each
T 2 .0;C1/ we integrate by parts and see thatZ T

0

F.t/ dt D � 1
˛
e�t˛ sin.tˇ/

ˇ̌̌T
0
C ˇ

˛

Z T

0

e�t˛ cos.tˇ/ dt

D � 1
˛
e�T˛ sin.Tˇ/ � ˇ

˛2
e�t˛ cos.tˇ/

ˇ̌̌T
0
� ˇ

2

˛2

Z T

0

e�t˛ sin.tˇ/ dt

D � 1
˛
e�T˛ sin.Tˇ/ � ˇ

˛2
e�T˛ cos.Tˇ/C ˇ

˛2
� ˇ

2

˛2

Z T

0

F.t/ dt:

Therefore, by replacing ˛ and ˇ with their corresponding values, one obtains thatZ T

0

F.t/ dt D �cos.�s/
us

e�Tu
s cos.�s/ sin.T us sin.�s//

� sin.�s/
us

e�Tu
s cos.�s/ cos.T us sin.�s//C sin.�s/

us

D 1

us
.sin.�s/ � e�Tus cos.�s/ sin.T us sin.�s/C �s//: (2.30)
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By (2.29), (2.30) and the change of variables .U;L/ D .u"; l
"
/ one obtains that

L D C

�"
n
2

Z "

"
2

Z C1
0

e�lu

us
.sin.�s/ � e�"sus cos.�s/ sin.�s C "sus sin.�s/// du dl

D C

�"
n
2�s

Z 1

1
2

Z C1
0

e�LU

U s
.sin.�s/ � e�U s cos.�s/ sin.�s C U s sin.�s/// dU dL

DW C

�"
n
2�s

Js; (2.31)

where Js does not depend on " and is defined by

Js WD
Z 1

1
2

Z C1
0

e�LU

U s
.sin.�s/ � e�U s cos.�s/ sin.�s C U s sin.�s/// dU dL:

Note also that by construction

Js D 1

"s

Z "

"
2

Z "s

0

�st .l/ dt d l;

which means that Js 2 .0;C1/, since �st .l/ 2 .0;C1/ for each s, t and l .
Accordingly, from (2.29) and (2.31),

ˆ
x;z
D .s; T / >

C��1

"n�2s
Js

D 2se�nc1n
n
2�s

�c
n
2�s

2 jx � zjn�2s
Js

>
Cy;�

jx � zjn�2s Js

D Cs;y;�

jx � zjn�2s ;

where we have defined

Cy;� WD min
s2.0;1/

2se�nc1n
n
2�s

�c
n
2�s

2

and Cs;y;� WD Cy;�Js: (2.32)

This gives the desired result.

As a consequence of Lemma 2.7, we have that if x approaches y, then the func-
tional ˆx;y� .s; T / diverges to infinity as far as n > 2s.

In the following result we make this statement precise. In particular, we show that
divergence holds true as far as n > 2s.
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Theorem 2.8. Let � � Rn be bounded, smooth and connected and T 2 .0;C1/. If
n > 2 or n D 1 and s 2 .0; 1

2
� we have that

lim
.x;y/!.z;z/

ˆx;y� .s; T / D C1; (2.33)

ˆz;z� .s; T / D C1; (2.34)

for each z 2 �.

Proof. We will prove only the Dirichlet case, since the Neumann one follows easily
from the Dirichlet one and (2.17).

We first focus on the proof of (2.34). Using the identity (2.1), equations (2.15)
and (2.16) together with the formula in (2.2) we deduce that if

ıs;x;T WD min¹Tx;�; T 1
s º;

where Tx;� is given in (2.15), then for each ı 2 .0; ıs;x;T / it holds that

ˆ
x;x
D .s; T / D

Z T

0

Z C1
0

p�D.l; x; x/�
s
t .l/ d l dt

D
Z C1
0

p�D.l; x; x/

Z T

0

�st .l/ dt d l

>
Z ı

0

c1

l
n
2

Z ıs

0

�st .l/ dt d l

D 1

�

Z ı

0

c1

l
n
2

Z ıs

0

Z C1
0

e�lu�tu
s cos.�s/ sin.tus sin.�s// du dt d l

>
c1

�ı
n
2

Z ı

0

Z C1
0

Z ıs

0

e�lu�tu
s cos.�s/ sin.tus sin.�s// dt du dl;

(2.35)

where c1 is introduced in (2.16).
Now, in light of (2.30) and (2.35), and using the change of variables .L; U / D

. l
ı
; uı/, we find that

ˆ
x;x
D .s; T /

>
c1

�ı
n
2

Z ı

0

Z C1
0

Z ıs

0

e�lu�tu
s cos.�s/ sin.tus sin.�s// dt du dl

D c1

�ı
n
2

Z ı

0

Z C1
0

e�lu
1

us
.sin.�s/ � e�ısus cos.�s/ sin.ısus sin.�s/C �s// du dl

D c1

�ı
n
2�s

Z 1

0

Z C1
0

e�LU
1

U s
.sin.�s/�e�U s cos.�s/ sin.U s sin.�s/C�s// dU dL

DW c1

�ı
n
2�s

Gs: (2.36)
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We also observe that Gs does not depend on ı and by construction

Gs D 1

ıs

Z ı

0

Z ıs

0

�st .l/ dt d l;

which means that Gs 2 .0;C1/, since �st .l/ 2 .0;C1/ for each s 2 .0; 1/, t 2
.0;C1/ and l 2 .0;C1/.

Therefore, recalling (2.36) we deduce that

ˆ
x;x
D .s; T / > lim

ı&0

c1

�ı
n
2�s

Gs D C1;

if either n > 2 or n D 1 and s 2 .0; 1
2
/.

Hence, to complete the proof of (2.34), it is left to consider the case n D 1 and
s D 1

2
. When s D 1

2
equation (2.2) boils down to

�
1
2
t .l/ D

1

�

Z C1
0

e�lu sin.tu
1
2 / du: (2.37)

Therefore, using the latter identity, (2.15) and (2.16) we obtain that there exists Tx;� 2
.0;C1/ such that if ı 2 .0; Tx;�/, then

ˆ
x;x
D

�
1

2
; T

�
D
Z T

0

Z C1
0

p�D.l; x; x/�
1
2
t .l/ d l dt

>
Z ı

0

Z T

0

p�D.l; x; x/�
1
2
t .l/ dt d l

> c1

Z ı

0

Z T

0

1

l
1
2

�
1
2
t .l/ dt d l

D c1

�

Z ı

0

Z T

0

Z C1
0

1

l
1
2

e�lu sin.tu
1
2 / du dt d l

D c1

�

Z ı

0

Z C1
0

Z T

0

1

l
1
2

e�lu sin.tu
1
2 / dt du dl

D c1

�

Z ı

0

Z C1
0

1

l
1
2

e�lu.1 � cos.T u
1
2 //

1

u
1
2

dudl;

where c1 2 .0;C1/ has been introduced in (2.16).
Furthermore, by making the change of variable luD a in the l variable we deduce

that

ˆ
x;x
D

�
1

2
; T

�
>
c1

�

Z C1
0

Z ıu

0

e�a

a
1
2

.1 � cos.T u
1
2 //

1

u
da du

>
c1

�

Z C1
1
ı

Z ıu

0

e�a

a
1
2

.1 � cos.T u
1
2 //

1

u
da du

DW 	: (2.38)
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We also observe that for each u > 1
ı

one has that

0 < c WD
Z 1

0

e�a

a
1
2

da 6
Z ıu

0

e�a

a
1
2

da 6 �

�
1

2

�
:

Moreover, defining

Qk WD min
²
k 2 N s.t. k > �1

4
C T

2�ı
1
2

³
;

we find that . �
2T
C 2� Qk

T
/2 > 1

ı
, and thus we deduce from (2.38) that

	 >
cc1

�

Z C1
1
ı

1 � cos.T u
1
2 /

u
du

>
cc1

�

C1X
kDQk

Z . 3�2T C
2�k
T /2

. �2T C
2�k
T /2

du

u

D 2cc1

�

C1X
kDQk

ln
� 3�
2k
C 2�

�
2k
C 2�

�
DW 		:

Therefore, using Taylor’s expansion we infer that there exists some zK 2 N with zK >
Qk such that

		 >
2cc1

�

C1X
kD zK

1

2k
C o

�
1

k2

�
D C1: (2.39)

This concludes the proof of (2.34).
Now we prove (2.33). If n > 2s, equation (2.33) is a direct consequence of

inequality (2.25). Therefore, to conclude the proof of (2.33) it is left to show the
case n D 1 and s D 1

2
. In order to achieve this, we observe that if Vx b � is some

neighborhood of x in �, then there exists some k0 2 N such that for each k > k0 it
holds that .xk; yk/ 2 Vx � Vx .

Thus, if we define "k WD jxk � ykj2, in view of (2.15) and (2.16), and recall-
ing (2.37), we obtain that, if k > k0,

ˆ
xk ;yk
D

�
1

2
; T

�
D
Z T

0

Z C1
0

p�D.l; xk; yk/�
1
2
t .l/ d l dt

D
Z C1
0

Z T

0

p�D.l; xk; yk/�
1
2
t .l/ dt d l

>
1

�

Z TVx;�

0

Z T

0

Z C1
0

c1

l
1
2

exp
�
�c2"k

l

�
e�lu sin.tu

1
2 /du dt d l
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D 1

�

Z TVx;�

0

Z C1
0

c1

l
1
2

exp
�
�c2"k

l

�
e�lu

.1 � cos.T u
1
2 //

u
1
2

dudl

>
c1

�

Z C1
2

TVx;�

Z 2
u

1
u

1

l
1
2

exp
�
�c2"k

l

�
e�lu

.1 � cos.T u
1
2 //

u
1
2

dl du; (2.40)

where TVx ;� 2 .0;C1/ and c1; c2 2 .0;C1/ are given respectively in (2.15) and
(2.16).

Now we choose Qj ; j."k/ 2 N such that

Qj WD min
²
j 2 N s.t. j >

T

2�

�
2

TVx ;�

� 1
2

� 1
4

³
;

j."k/ WD max
²
j 2 N s.t. j 6

T

2�"
1
2

k

� 3
4

³
:

Note that if "k is chosen small enough, then Qj < j."k/.
With this choices one has that�

�

2T
C 2� Qj

T

�2
>

2

TVx ;�
and

�
3�

2T
C 2�j."k/

T

�2
6
1

"k
: (2.41)

Therefore, with this latter notation we obtain from (2.40) that

ˆ
xk ;yk
D

�
1

2
; T

�
>
c1

�

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

Z 2
u

1
u

1

l
1
2

exp
�
�c2"k

l

�
e�lu

1

u
1
2

dl du

>
c1

�

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

Z 2
u

1
u

exp.�c2u"k/e�2 dl du

D c1e
�2

�

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

1

u
exp.�c2u"k/ du:

Now, we deduce from (2.41) that since u 6 . 3�
2T
C 2�j."k/

T
/2, then u"k 6 1, and thus

from the latter computations we obtain that

ˆ
xk ;yk
D

�
1

2
; T

�
>
c1e
�c2

�e2

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

1

u
du

D 2c1e
�c2

�e2

j."k/X
jD Qj

ln
� 3�
2k
C 2�

�
2k
C 2�

�
: (2.42)
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As we observed in (2.39), one has that

C1X
kD1

ln
� 3�
2k
C 2�

�
2k
C 2�

�
D C1:

With reference to that, from (2.42) and the latter observation we obtain that

lim
k!C1

ˆ
xk ;yk
D

�
1

2
; T

�
> lim
k!C1

2c1e
�c2

�e2

j."k/X
jD Qj

ln
� 3�
2k
C 2�

�
2k
C 2�

�

D 2c1e
�c2

�e2

C1X
jD Qj

ln
� 3�
2k
C 2�

�
2k
C 2�

�
D C1:

This completes the proof of (2.33).

In the following result we give some upper bounds for the functional ˆx;y� .s; T /.
These estimates, together with the lower bound in (2.25), will turn out to be pivotal
in order to determine the most rewarding search strategy in a regime where the initial
position of the forager is close to the one of the prey, and thus prove Theorems 1.7
and 1.8.

In the Dirichlet framework, the behavior of the functional ˆx;yD .s; T / for x ap-
proaching y could be deduced from the already known estimates on the Green func-
tion G�D .x; y/ of the Dirichlet spectral fractional Laplacian, see [34, Theorem 5.4].

Indeed, the Green function is given by

G�D .x; y/ WD
Z C1
0

rsD.t; x; y/ dt;

for x ¤ y, and therefore
ˆ
x;y
D .s; T / 6 G�D .x; y/;

for each .x; y; T / 2 � �� � .0;C1/ with x ¤ y and s 2 .0; 1/.
Nevertheless, for our optimization purposes we need upper bounds where the

dependence of the constants on the fractional exponent s 2 .0; 1/ is known. In this
sense, the inequalities provided in the following result are more suitable in this con-
text than the ones available in the literature for G�D .

Before stating and proving the theorem, we fix the following notation. For each
n 2 N and s 2 .0; 1/ we define the set

An;s WD
�
0; 1C n

2
� s

�
\
hn
2
� s; 1C n

2
� s

�
: (2.43)
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Theorem 2.9. Let � � Rn be bounded, smooth and connected. Moreover, let K b
� be star-shaped with respect to some x0 2 K. Then, for each s 2 .0; 1/ and T 2
.0;C1/, there exists some C�;K;T;� 2 .0;C1/ such that if n > 3, then

ˆx;y� .s; T / 6
C�;K;T;�

jx � yjn�2s for all .x; y/ 2 C \ .K �K/; (2.44)

where C is given in (2.23).
Furthermore, if n 6 2, s 2 .0; 1/ and � 2 An;s there exists some C�;�;K;T;� 2

.0;C1/ such that

ˆx;y� .s; T / 6
C�;�;K;T;�

jx � yj2� for all .x; y/ 2 C \ .K �K/; (2.45)

where An;s is defined (2.43).

Proof. We will first show the result for the Dirichlet case. To this aim, we recall the
following identityZ C1

0

rsD.t; x; y/ dt D
1

�.s/

Z C1
0

p�D.t; x; y/t
s�1 dt for all .x; y/ 2 C ; (2.46)

see for instance [34, equation (2.4)]. For the convenience of the reader we give a proof
of it in the appendix, see Proposition A.1.

We first prove (2.44). If ..x;y/;T /2C � .0;C1/, thanks to the identity in (2.46)
we have that

ˆ
x;y
D .s; T / D

Z T

0

rsD.t; x; y/ dt 6
Z C1
0

rsD.t; x; y/ dt

D 1

�.s/

Z C1
0

p�D.t; x; y/t
s�1 dt:

Using inequality (2.14) and the change of variable a D jx�yj2
4t

we obtain that

ˆ
x;y
D .s; T / 6

1

�.s/

Z C1
0

t s�1

.4�t/
n
2

exp
�
�jx � yj

2

4t

�
dt

D 4�s

�
n
2�.s/

1

jx � yjn�2s
Z C1
0

a
n
2�1�se�a da

D 4�s

�
n
2�.s/

�.n
2
� s/

jx � yjn�2s : (2.47)

Thus, by defining the constant

CD WD sup
s2.0;1/

4�s

�
n
2�.s/

�

�
n

2
� s

�
;

we conclude the proof of (2.44) for the Dirichlet case.
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Now, we prove (2.45). To this end, we observe that there exists some constant
c3 2 .0;C1/, depending on �, such that for all  2 Œ0; 1/ it holds that

p�D.t;x;y/6
c3

t
n
2C

exp
�
�jx � yj

2

6t

�
for all .t;x;y/2 .0;C1/����; (2.48)

see for instance [9, Theorem 4.6.9].
Accordingly, using the identity given in equation (2.46) and the inequality in

(2.48), we deduce that

ˆ
x;y
D .s; T / D

Z T

0

rsD.t; x; y/ dt

6
Z C1
0

rsD.t; x; y/ dt

D 1

�.s/

Z C1
0

p�D.t; x; y/t
s�1 dt

6
c3

�.s/

Z C1
0

1

t
n
2C�sC1

exp
�
�jx � yj

2

6t

�
dt

D c3

�.s/

Z C1
0

.6�/
n
2C�s�1

jx � yjn�2.s�/ e
�� d�

D Cs;;n;�

�.s/

1

jx � yjn�2.s�/ ; (2.49)

where we applied the change of variable � D jx�yj2
4t

and we defined

Cs;;n;� WD c36n2C�s�1�.n
2
C  � s/;

for all  2 .s � n
2
; 1/ \ Œ0; 1/.

Now, we observe that if we define � WD n
2
C  � s, then � 2 .0; 1C n

2
� s/ \

Œn
2
� s; 1C n

2
� s/, and inequality (2.49) becomes

ˆ
x;y
D .s; T / 6

c3

�.s/
6��1

�.�/

jx � yj2� 6
CD;�

jx � yj2� ; (2.50)

where we defined
CD;� WD sup

s2.0;1/

c3

�.s/
6��1�.�/:

This concludes the proof of (2.45) for the Dirichlet case.
Employing the result in Corollary 2.6 we prove now (2.44) and (2.45) for the

Neumann case. LetK b� and, up to a translation, let us assume that it is star-shaped
with respect to

x0 D 0:
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Then, if T 2 .0;C1/, n > 3 and s 2 .0; 1/, using equations (2.47) and (2.24)
withK 0 DK we obtain the existence of some cK;�;CK;� 2 .0;C1/ and "0 2 .0; 1/,
depending on K and �, such that

ˆ
x;y
N .s; T / 6 CK;�ˆ

x";y"
D .s; T /C cK;�T 6 CK;�

CD"
2s�n

jx � yjn�2s C cK;�T;

for all " 2 .0; "0/ and .x; y/ 2 C \ .K �K/.
Consequently, if in the last equation we choose "1 2 .0; "0/ such that

"1 6 inf
s2.0;1/

�
CK;�CD

d2s�nK

cK;�T

� 1
n�2s

;

which depends on K; � and T , we obtain that for all .x; y/ 2 C \ .K � K/ and
s 2 .0; 1/ it holds that

ˆ
x;y
N .s; T / 6

CK;T;�

jx � yjn�2s ;

with
CK;T;� WD 2 sup

s2.0;1/

Cn"
2s�n
1 CK;�:

Analogously, if n 6 2, s 2 .0; 1/ and � 2 An;s , then one deduces from (2.50)
and (2.24) that

ˆ
x;y
N .s; T / 6 CK;�ˆ

x";y"
D .s; T /C cK;�T 6 CK;�

CD;�"
�2�

jx � yj2� C cK;�T;

for all " 2 .0; "0/ and .x; y/ 2 C \ .K �K/.
As a result, if we choose some "2 2 .0; "0/ satisfying

"
2�
2 6 CK;�CD;�

d
�2�
K

cK;�T
;

which depends on �;K;� and T , we obtain that for all .x; y/ 2 K and s 2 .0; 1/ it
holds that

ˆ
x;y
N .s; T / 6

C�;K;T;�

jx � yj2� ;

where we set
C�;K;T;� WD 2CK;�C�;�"�2�2 :

Remark 2.10. We note that for the Dirichlet case we obtained that the constants in
equation (2.44) and (2.45) can be chosen independently ofK and T . In particular, we
have proved that if n > 3, then

ˆ
x;y
D .s; T / 6

4�s

�
n
2

�.n
2
� s/

jx � yjn�2s (2.51)
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for all .x; y/ 2 C . If n 6 2 and � 2 An;s , where An;s is given in (2.43), then

ˆ
x;y
D .s; T / 6

6��1c3

�.s/

�.�/

jx � yj2� ; (2.52)

for all .x; y/ 2 C .

We now turn our attention to the functional ẑ�1;�2� defined in (1.7). For this, it is
convenient, for every bounded and measurable sets�1;�2 � Rn and each s 2 .0; 1/,
to define

F�1;�2.s/ WD
Z
�1��2

1

jx � yjn�2s dx dy: (2.53)

As a direct consequence of Lemma 2.7 and Theorem 2.9 we obtain the following
upper and lower bounds for ẑ�1;�2� . These bounds will play a crucial role in proving
Theorems 1.15 and 1.16.

Corollary 2.11. Let � � Rn be bounded, smooth and connected, K b � be star-
shaped with respect to some x0 2 K and "0 2 .0; 1/ be given as in Corollary 2.6.
Then, for each s 2 .0; 1/ and T 2 .0;C1/, if n > 3, we have that

ẑ�1;�2
� .s; T / 6

C�;K;T;�

j�1jj�2jF
�1;�2.s/ for all �1; �2 � K;

where F�1;�2 is given in (2.53).
Furthermore, if n 6 2, s 2 .0; 1/ and � 2 An;s , where An;s is given in (2.43), one

has that

ẑ�1;�2
� .s; T / 6

C�;�;K;T;�

j�1jj�2j F
�1;�2

�n � 2�
2

�
for all �1; �2 � K: (2.54)

Moreover, for all s 2 .0; 1� we have that

ẑ�1;�2
� .s; T / >

Cs;y;�

j�1jj�2jF
�1;�2.s/; (2.55)

with Cs;y;� defined in (2.32).

The following result is devoted to the proof of the continuity of the functionals
ˆ�, l� and A� with respect to the space, time and fractional variables. Also, we show
that if n < 2s, then the limit in (2.33) is finite, and similarly ˆz;z� .s; T / < C1 for
each z 2 �.

Proposition 2.12. Let � � Rn be open, bounded, smooth and connected. Then,
ˆ
x;y
� .s; T / 2 .0;C1/ for all .s; .x; y/; T / 2 .0; 1�� C � .0;C1/ andˆx;y� .s; T / 2

C..0; 1� � C � .0;C1//, where C is given in (2.23).
Also, if n D 1, then ˆx;y� .s; T / 2 C..1

2
; 1� �� �� � .0;C1//.
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Moreover, for each T 2 .0;C1/ there exists some M 2 .0;C1/ such that
l
y
N .s; T /, A

y
N .s; T / 2 .0; M/ for all .s; y/ 2 .0; 1� � � and ly� .s; T /, A

y
�.s; T / 2

C..0; 1� �� � .0;C1//.
Furthermore, there exists some M 2 .0;C1/ such that lyD.s; T /, A

y
D.s; T / 2

.0;M/ for all
.s; y; T / 2 .0; 1� �� � .0;C1/:

Proof. The positivity of the functionals follows from (1.3), (1.4) and the fact that
rs�.t; x;y/ is strictly positive for all .t; x;y/ 2 .0;C1/����, see for instance [10,
Corollary 1] and [11, Corollary 1].

Now we establish the continuity statement. Thanks to equation (2.4) we have that

rs�.t; x; y/ D
C1X
kD0

��;k.x/��;k.y/ exp.�tˇs
�;k/;

and each term of the series is continuous in .s; t; x; y/ 2 .0; 1� � .0;C1/ �� ��.
Furthermore, thanks to [11, Proposition 6 and Lemma 6], we have the existence

of some M 2 N such that for each " 2 .0; 1� and ı 2 .0;C1/ it holds that

C1X
kD0

k��;k.x/��;k.y/ exp.�tˇs
�;k/kC0.����.";1/�.ı;C1//

6
MX
kD0

k��;k.x/��;k.y/ exp.�tˇs
�;k/kC0.����.";1/�.ı;C1//

C C 2�;m0;�;0
C1X
kDM

ˇ
2˛.m0/

�;k
exp.�ıˇ"

�;k/

< C1;

where C�;m0;�;0 and ˛.m0/ are positive constants given in Proposition A.1.
Consequently, rs�.t; x; y/ is continuous for all

.s; t; x; y/ 2 .0; 1� � .0;C1/ �� ��:

Suppose now that .�; y/ 2 C , and that ¹.sk; Tk; yk/ºk � .0; 1� � .0;C1/ � �
satisfies

.sk; Tk; yk/! .s; T; y/ 2 .0; 1� � .0;C1/ ��:
Then, since rs�.t; �; y/ is continuous for all .s; y/ 2 .0; 1� ��, we have that

r
sk
� .t; �; yk/�.0;Tk/.t/! rs�.t; �; y/�.0;T /.t/;

for almost every t 2 .0;C1/.
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Moreover, if zT WD supk2N Tk , then using equations (2.1), (2.14), and (2.19) we
obtain that

�Tk .t/r
sk
� .t; �; yk/ 6 � zT .t/

Z C1
0

p�� .l; �; yk/�
sk
t .l/ d l

6 � zT .t/

Z C1
0

C�;l exp
�
�j� � ykj

2

4l

�
�
sk
t .l/ d l

6 � zT .t/M�

Z C1
0

�
sk
t .l/ d l

D � zT .t/M�; (2.56)

where we defined

M� WD sup
l2.0;C1/

sup
k2N

C�;l exp
�
�j� � ykj

2

4l

�
:

The last function in (2.56) is inL1..0;C1//, and thus by the dominated convergence
theorem we obtain thatˆ�;y� .s;T / is continuous for all .s;y;T / 2 .0;1�� .� n ¹�º/�
.0;C1/, and since it is symmetric with respect to the space variables, we deduce the
continuity for all .s; .�; y/; T / 2 .0; 1� � C � .0;C1/.

If nD 1 the eigenfunctions ��;k’s are uniformly bounded inL1.�/ and the eigen-
values ˇ�;k’s are proportional to k2, for each k > 1. More precisely, there exist two
positive constants C�; c� > 0 such that

c�k
2 6 ˇ�;k 6 C�k

2;

for each k > 1, see for instance [29].
Therefore, we have that

rs�.t; x; y/ D
C1X
kD0

��;k.x/��;k.y/ exp.�tˇs
�;k/

6
C1X
kD0

k��;kk2L1.�/ exp.�tˇs
�;k/

6 M 2
�

C1X
kD0

exp.�tcs�k2s/

DW f�;s.t/; (2.57)

where k��;kkL1.�/ 6 M� for some M� 2 .0;C1/ and we adopted the convention

�D;0 D 0 D ˇD;0:
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Thus, if s; sk 2 .12 ;1�, then we can choose also .�;y/2���, and thanks to (2.57)
we have that

�Tk .t/r
sk
� .t; �; yk/ 6 � zT .t/ inf

k2N
f�;sk .t/;

and the right-hand side is L1.0;C1/.
Repeating the above reasoning, if n D 1, we obtain that

ˆx;y� .s; T / 2 C..1
2
; 1� �� �� � .0;C1//:

Now, we observe that

ly� .s; T / D
Z T

0

Z
�

j� � yjrs�.t; �; y/ d� dt

D
Z
�

j� � yj
Z T

0

rs�.t; �; y/ dt d�

D
Z
�

j� � yjˆ�;y� .s; T /: (2.58)

Using this identity, the continuity of ˆ� and the estimates in Theorem 2.9, we con-
clude using the dominated convergence theorem. The proof of the continuity of
A
y
�.s; T / is analogous

Also, if n > 3, from (2.58) and (2.51) we have that

l
y
D.s; T / 6

Cn

�.s/

Z
�

j� � yjn�1 d�;

for some suitable Cn, which proves that lyD is uniformly bounded in .0; 1� � � �
.0;C1/ if n > 3.

The proof of the uniform boundedness in the case n 6 2 is done similarly replac-
ing (2.51) in the above equation with (2.52).

Finally, using [11, (28)] we obtain that

l
y
N .s; T / D

Z T

0

Z
�

j� � yjrsN .t; �; y/ d� dt

6 d�

Z T

0

Z
�

rsN .t; �; y/ d� dt

D d�T:

The proof of the boundedness of A� is analogous.

In the following two lemmas we establish the limits as s & 0 of the Dirichlet
efficiency functionals given in (1.6) and (1.9).
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We will show that ˆD , lD , AD , ẑD , QlD , and zAD all go to 0 linearly in s. More-
over, we will also determine the value of the limit for E2;D , E3;D , zE2;D , and zE3;D so
that we will be able to extend them by continuity in Œ0; 1�.

This asymptotic analysis is a fundamental tool in order to establish Theorems 1.6
and 1.14 and the claims in (1.17) and (1.24).

Lemma 2.13. Let � � Rn be bounded, smooth and connected, and let C be as
in (2.23). Then, for all ..x; y/; T / 2 C � .0;C1/, it holds that

lim
s&0

E
x;y
1;D.s; T / D 0; (2.59)

lim
s&0

E
x;y
2;D.s; T / D

FD.x; y/R
�
j� � yjFD.�; y/ d�

; (2.60)

lim
s&0

E
x;y
3;D.s; T / D

FD.x; y/R
�
j� � yj2FD.�; y/ d�

; (2.61)

where we have defined

FD.x; y/ WD
Z C1
0

p�D.l; x; y/

l
d l for all .x; y/ 2 C : (2.62)

Proof. Equation (2.59) is a direct consequence of (2.51) and (2.52), since �.s/!
C1 for s & 0.

Now we focus on the proof of (2.60). For this, we claim that

lim
s&0

ˆ
x;y
D .s; T /

s
D .1 � e�T .T C 1//FD.x; y/ for all ..x; y/; T / 2 C � .0;C1/:

(2.63)
Thanks to (2.9) and (2.14), if s 2 .0; 1

2
/ we have that

1

s

ˇ̌
p�D.l; x; y/�

s
t .l/

ˇ̌
6

t

.4�l/
n
2

exp
�
�jx � yj

2

4l

�
�.1C s/
l1Cs

: (2.64)

This bound together with (2.1), (D.1) and the dominated convergence theorem yields
to

lim
s&0

rsD.t; x; y/

s
D te�tFD.x; y/; (2.65)

for all .t; .x; y// 2 .0;C1/ � C . Therefore, if s 2 .0; 1
2
/, from (2.1) and (2.64) we

obtain that

rsD.t; x; y/

s
6
Z C1
0

t�.1C s/
.4�/

n
2 l

n
2CsC1

exp
�
�jx � yj

2

4l

�
dl

6
C0t

jx � yjnC2s
DW fx;y.t/; (2.66)
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where we defined

C0 WD sup
s2.0; 12 /

4s�.1C s/
�
n
2

�
�n
2
C s

�
:

Now, clearly we have that
fx;y 2 L1..0; T //; (2.67)

and thus from (2.65), (2.66), and (2.67) we can apply the dominated convergence
theorem to obtain that

lim
s&0

ˆ
x;y
D .s; T /

s
D
Z T

0

te�tFD.x; y/ dt

D .1 � e�T .T C 1//FD.x; y/:

This concludes the proof of (2.63).
Note that using (2.51), (2.52), and (2.63), we obtain that

lim
s&0

l
y
D.s; T /

s
D lim
s&0

1

s

Z T

0

Z
�

j� � yjrsD.t; �; y/ d� dt

D lim
s&0

Z
�

j� � yjˆ
�;y
D .s; T /

s
d�

D .1 � e�T .T C 1//
Z
�

j� � yjFD.�; y/ d�; (2.68)

by means of the dominated convergence theorem. Finally, from (2.63) and (2.68) we
deduce that

lim
s&0

ˆ
x;y
D .s; T /

l
y
D.s; T /

D lim
s&0

R T
0
rsD.t; x; y/ dtR T

0

R
�
j� � yjrsD.t; �; y/ d� dt

s

s

D FD.x; y/R
�
j� � yjFD.�; y/ d�

;

which concludes the proof of (2.60).
It is left to show (2.61). To do so, we observe that applying the same reasoning

we used to show (2.68), one can easily prove that

lim
s&0

A
y
D.s; T /

s
D .1 � e�T .T C 1//

Z
�

j� � yj2FD.�; y/ d�;

for all .y; T / 2�� .0;C1/. From this identity and (2.63) it is immediate to deduce
(2.61).

The following result can be considered as the set functional version of Lemma
2.13.
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Lemma 2.14. Let� be bounded, smooth and connected and�1;�2 �� be smooth
and disjoint. Then, for all T 2 .0;C1/, it holds that

lim
s&0

zE�1;�21;D .s; T / D 0; (2.69)

lim
s&0

zE�1;�22;D .s; T / D j�2j zFD.�1; �2/R
�2��

j� � yjFD.�; y/ d� dy
; (2.70)

lim
s&0

zE�1;�23;D .s; T / D j�2j zFD.�1; �2/R
�2��

j� � yj2FD.�; y/ d� dy
; (2.71)

where
zFD.�1; �2/ WD 1

j�1jj�2j
Z
�1��2

FD.x; y/ dx dy; (2.72)

and FD is given in equation (2.62).

Proof. We begin by proving (2.69). We have that

ẑ�1;�2
D .s; T /

s
D 1

j�1jj�2j
Z
�1��2

ˆ
x;y
D .s; T /

s
dx dy:

Thanks to equations (2.51) and (2.52), if s 2 .0; 1
2
/, there exists some constant yCn

depending on n such that

ˆ
x;y
D .s; T /

s
6
yCn

s�.s/

1

jx � yjn�2s 6
C3

jx � yjn DW g.x; y/; (2.73)

where C3 depends only on �. If �1; �2 are smooth and disjoint, then g 2 L1.�1 �
�2/. Therefore, under these assumptions we can apply the dominated convergence
theorem, which together with (2.63) yields to

lim
s&0

ẑ�1;�2
D .s; T /

s
D .1 � e�T .T C 1// zFD.�1; �2/: (2.74)

Also, thanks to Lemma D.4 and the hypotheses on�1,�2 we have that zFD.�1;�2/
is finite. From this observation and (2.74) one readily deduces (2.69).

Now, we show (2.70). To do so, we claim that

lim
s&0

Ql�2D .s; T /

s
D .1 � e�T .T C 1//

j�2j
Z
�2��

j� � yjFD.�; y/ d� dy; (2.75)

for all T 2 .0;C1/. As a matter of fact

Ql�2D .s; T /

s
WD 1

j�2j
Z
�2

l
y
D.s; T /

s
dy:
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Hence, from (2.73) and the definition of lyD.s; T / we infer the existence of some
C4 2 .0;C1/ such that

l
y
D.s; T /

s
6 C4;

for all s 2 .0; 1
2
/. Therefore, by the dominated convergence theorem we can conclude

the proof of (2.75). The limit in equation (2.70) follows easily from (2.74) and (2.75).
Following the same procedure adopted to prove (2.75), one obtains that

lim
s&0

zA�2
D .s; T /

s
D .1 � e�T .T C 1//

j�2j
Z
�2��

j� � yj2FD.�; y/ d� dy; (2.76)

for all T 2 .0;C1/. Thereby, the limit in equation (2.71) follows easily from (2.74)
and (2.76).

In the following lemma we study the asymptotic behavior of the Neumann func-
tional ˆx;yN .s; T / for s & 0. In particular, we observe that the limit substantially
differs from the one of ˆx;yD , which was indeed vanishing, see Lemma 2.13. With
this result we establish also that the lim inf and lim sup of ˆx;yN .s; T / for s & 0 are
controlled by some quantities that do not depend on x; y 2 �. This feature will let us
prove that if the forager starting position and target location are close enough, then
the most rewarding search strategy for the Neumann functionals in equation (1.6) is
not s D 0.

Lemma 2.15. Let � � Rn be bounded, smooth and connected. Then, there exist
h1; h2 2 C.Œ0;C1// such that for each T 2 .0;C1/ it holds that

h1.T /

T
6 lim inf

s&0
E
x;y
1;N .s; T / 6 lim sup

s&0

E
x;y
1;N .s; T / 6

h2.T /

T
; (2.77)

h1.T /

h2.T /M.y/
6 lim inf

s&0
E
x;y
2;N .s; T / 6 lim sup

s&0

E
x;y
2;N .s; T / 6

h2.T /

M.y/h1.T /
; (2.78)

h1.T /

h2.T / zM.y/
6 lim inf

s&0
E
x;y
3;N .s; T / 6 lim sup

s&0

E
x;y
3;N .s; T / 6

h2.T /

zM.y/h1.T /
; (2.79)

for all .x; y/ 2 C , where we set

M.y/ WD
Z
�

j� � yj d� and zM.y/ WD
Z
�

j� � yj2 d�: (2.80)

Proof. Let .x; y/ 2 C . Notice that if t 2 .0;C1/ we can write

p�N .t; x; y/ D
1

j�j C
C1X
kD1

�N;k.x/�N;k.y/ exp.�t ˇN;k/;
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where �N;k’s and ˇN;k’s are given in (2.3). Now, thanks to [11, Proposition 6 and
Lemma 7], together with Weyl’s law on the asymptotic behavior of the eigenvalues
ˇN;k’s (see for instance [29]), we have that

lim
t!C1

C1X
kD1

�N;k.x/�N;k.y/ exp.�t ˇN;k/ D 0;

from which we deduce that

lim
l!C1

p�N .l; x; y/ D
1

j�j :

Therefore, there exists some t0 2 .1;C1/ such that

1

2j�j 6 p�N .t; x; y/ for all t 2 Œt0;C1/:

Thus, using (2.1), we have that if t1;s D max¹t0; T 1
s º, we can apply Theorem 2.3 and

obtain that

ˆ
x;y
N .s; T / D

Z T

0

Z C1
0

p�N .l; x; y/�
s
t .l/ d l dt

>
1

2j�j
Z T

0

Z C1
t1;s

�st .l/ d l dt

>
C1

2�j�j
Z T

0

Z C1
t1;s

s t

l1Cs
dl dt

>
C1

2�j�j
Z T

0

t

t s1;s
dt

D C1

4�j�j
T 2

t s1;s
:

Therefore, if T 2 .1;C1/ from the above inequality we obtain

lim sup
s&0

ˆ
x;y
N .s; T / > lim inf

s&0
ˆ
x;y
N .s; T / >

C1

4�j�jT; (2.81)

while if T 2 .0; 1� we have that

lim sup
s&0

ˆ
x;y
N .s; T / > lim inf

s&0
ˆ
x;y
N .s; T / >

C1

4�j�jT
2: (2.82)

Hence, we have just proved the left-hand side inequality in (2.77) with

h1.T / WD

8̂̂<̂
:̂

C1

4�j�jT
2 if T 2 .0; 1�;

C1

4�j�jT if T 2 .1;C1/:
(2.83)
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Now we show the right-hand side inequality of (2.77). Using (2.19), we obtain that

ˆ
x;y
N .s; T / D

Z T

0

Z C1
0

p�N .l; x; y/�
s
t .l/ d l

6
Z T

0

Z 1

0

c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/ d l dtC

Z T

0

Z C1
1

c��
s
t .l/ d l dt

6
Z T

0

Z 1

0

c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/ d l dt C c�T: (2.84)

Now, in view of (2.9) we have thatˇ̌̌̌
c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/

ˇ̌̌̌
6
tc��.1C s/
l
n
2C1Cs

exp
�
�jx � yj

2

6l

�
;

and the function on the right-hand side in the above equation is inL1..0;T /� .0; 1//.
Therefore, using also (2.9) we can apply the dominated convergence theorem and

obtain the limit

lim
s&0

Z T

0

Z 1

0

c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/ d l dt D 0: (2.85)

From this equation and (2.84), we can infer that if T 2 .1;C1/

lim inf
s&0

ˆ
x;y
N .s; T / 6 lim sup

s&0

ˆ
x;y
N .s; T / 6 c�T: (2.86)

Also, assuming that T 2 .0; 1�, from (2.9) we obtain thatZ T

0

Z C1
1

c��
s
t .l/ d l dt 6 c�

Z T

0

Z C1
1

st�.1C s/
l1Cs

dl dt D c��.1C s/
2

T 2:

Thus, from this latter observation, the limit in (2.85) and equation (2.84) we deduce
that

lim inf
s&0

ˆ
x;y
N .s; T / 6 lim sup

s&0

ˆ
x;y
N .s; T / 6

c�

2
T 2: (2.87)

In light of (2.86) and (2.87), and defining

h2.T / WD
´
c�T

2 if T 2 .0; 1�;
c�T if T 2 .1;C1/; (2.88)

we conclude the proof of the right-hand side inequality of (2.77).
Now, we prove (2.78). To do so, we claim that

h1.T /M.y/ 6 lim inf
s&0

l
y
N .s; T / 6 lim sup

s&0

l
y
N .s; T / 6 h2.T /M.y/: (2.89)
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We recall that
l
y
N .s; T / D

Z
�

j� � yjˆ�;yN .s; T / d�;

with .y; T / 2 � � .0;C1/. Then, using (2.81), (2.82) and Fatou’s lemma we prove
the left-hand side inequality of (2.78).

Now, we focus on the proof of the right-hand side inequality. Let K b � be any
compact such that it is star-shaped with respect to y and y 2 Ko, and dK 6 1. Then,
in view of (2.44), (2.45) and Proposition D.2 with E D� nK and F D y, we evince
the existence of some u 2 L1.�/ such that

j� � yjˆ�;yN .s; T / 6 u.�/;

for all � 2�. Thus, thanks to Fatou’s lemma and (2.86) we obtain the right-hand side
inequality of (2.78). Note that from (2.77) and (2.89) one evinces (2.78).

It is left to show (2.79). Reasoning analogously to the proof of claim (2.89), one
obtains that

h1.T / zM.y/ 6 lim inf
s&0

A
y
N .s; T / 6 lim sup

s&0

A
y
N .s; T / 6 h2.T / zM.y/:

Making use of this two-sided inequality and (2.77) we conclude the proof of (2.79).

The following result is the Neumann counterpart of Lemma 2.14.

Lemma 2.16. Let � � Rn be bounded, smooth and connected. Then, for all T 2
.0;C1/ and �1; �2 b � smooth and disjoint, it holds that

h1.T /

T
6 lim inf

s&0

zE�1;�21;N .s; T / 6 lim sup
s&0

zE�1;�21;N .s; T /

6
h2.T /

T
; (2.90)

h1.T /

h2.T /P.�2/
6 lim inf

s&0

zE�1;�22;N .s; T / 6 lim sup
s&0

zE�1;�22;N .s; T /

6
h2.T /

h1.T /P.�2/
; (2.91)

h1.T /

h2.T / zP .�2/
6 lim inf

s&0

zE�1;�23;N .s; T / 6 lim sup
s&0

zE�1;�23;N .s; T /

6
h2.T /

h1.T / zP .�2/
; (2.92)

where h1 and h2 are given respectively in (2.83) and (2.88), and we set

P.�2/ WD
kMkL1.�2/
j�2j and zP .�2/ WD

k zMkL1.�2/
j�2j ; (2.93)

where M and zM are defined in (2.80).
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Proof. We begin by proving (2.90). To do so, we notice that by definition we have

ẑ�1;�2
N .s; T / D 1

j�1jj�2j
Z
�1��2

ˆ
x;y
N .s; T / dx dy:

From Proposition 2.12 we know thatˆx;yN .s; T / > 0. Thus, by Fatou’s lemma, (2.81)
and (2.82) we conclude the proof of the left-hand side inequality of (2.90).

Now, if x�1 \ x�2 D ¿, thanks to Proposition D.2 with�1 D E and�2 D F , we
easily obtain the right-hand side inequality of (2.90) using Fatou’s lemma.

We assume now that x�1 \ x�2¤¿. We claim that there exists some z 2L1.�1 �
�2/ such that for all s 2 .0; 1

2
/ it holds that

ˆ
x;y
N .s; T / 6 z.x; y/ for all .x; y/ 2 �1 ��2: (2.94)

We prove claim (2.94). Thanks to the assumption x�1 \ x�2 ¤ ¿, the set A WD @�1 \
@�2 is nonempty.

Since�1;�2 b � and A is compact, then we can choose r > 0 and Pi 2 A with
i 2 ¹1; : : : ; N º such that

A � B WD
N[
iD1

Br.Pi / b �:

If for some i; j 2 ¹1; : : : ;N º it holds that Br.Pi /\Br.Pj /¤¿, then we can choose
Ki;j D Br.Pi / [ Br.Pj / in (2.44) and (2.45) and deduce that

ˆ
x;y
N .s; T / 6

C

jx � yjn ; (2.95)

for all .x; y/ 2 Ki;j � Ki;j with i; j such that Br.Pi / \ Br.Pj / ¤ ¿, where C
depends on B; T;�. Moreover, we define the constant

zCN WD max¹CBr .Pi /;Br .Pj / s.t. Br.Pi / \ Br.Pj / D ¿º; (2.96)

where CBr .Pi /;Br .Pj / is given in (D.4) withE DBr.Pi / and F DBr.Pj /. Therefore,
if x 2 �1 \ Br.Pi / and y 2 �2 \ Br.Pj /, such that Br.Pi / \ Br.Pj / D ¿, then
by (D.3) and (2.96) we see that

ˆ
x;y
N .s; T / 6 zCNT: (2.97)

Finally, if we set

yC�1;�2 WD max¹C�1\K0;�2nK0 ; C�1nK0;�2\K0 ; C�1nK0;�2nK0º;

thanks to Proposition D.2, we obtain that

ˆ
x;y
N .s; T / 6 yC�1;�2T; (2.98)
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for all .x; y/ 2 ..�1 \K 0/� .�2 nK 0//[ ..�1 nK 0/� .�2 \K//[ ..�1 nK 0/�
.�2 nK 0//.

Thanks to (2.95), (2.97), and (2.98) we conclude the proof of claim (2.94).
By that means, we can apply Fatou’s lemma and using (2.77) we prove the right-

hand side inequality in (2.90).
Now, we focus our attention on the proof of (2.91). In order to do so, we claim

that

h1.T /P.�2/ 6 lim inf
s&0

Ql �2N .s; T / 6 lim sup
s&0

Ql �2N .s; T / 6 h2.T /P.�2/: (2.99)

We observe that
Ql �2N WD 1

j�2j
Z
�2

l
y
N .s; T / dy

and, since lyN .s; T / > 0, see Proposition 2.12, using Fatou’s lemma and (2.89) we
prove the left-hand side inequality of (2.99).

Furthermore, we discussed in Proposition 2.12 that lyN .s;T / is uniformly bounded
in .s; y/ 2 .0; 1/ ��. Thus, we can apply again Fatou’s lemma together with (2.89)
and conclude the proof of the right-hand side inequality of (2.99). The inequalities
in (2.90) and (2.99) yields to (2.91).

It is left to show (2.92). To do so, it is enough to show that

h1.T / zP .�2/ 6 lim inf
s&0

zA�2
N .s; T / 6 lim sup

s&0

zA�2
N .s; T / 6 h2.T / zP .�2/: (2.100)

From this and (2.90) it is easy to deduce (2.92). The proof of (2.100) is analogous to
the one of (2.99), and thus it is omitted.



Chapter 3

Proof of the main results

This chapter is devoted to the proofs of the main results discussed in the introduction.
It is divided into two main parts.

In Section 3.1 we prove the results stated in Section 1.2. Namely, we analyze the
environmental scenario where the target location coincides with the forager starting
point.

In Section 3.2 we instead discuss the best search strategy when the prey is in a
small neighborhood of the seeker initial position. In particular, we prove all the results
contained in Sections 1.3 and 1.4.

3.1 Proof of the results in Section 1.2

To prove the results presented in Section 1.2, we consider � D .0; a/ for some a 2
.0;C1/. The normalized eigenfunctions of the Laplacian in .0; a/ with Dirichlet
datum as defined in (2.3) are

�D;k.x/ D
r
2

a
sin
�
�kx

a

�
(3.1)

and the corresponding eigenvalues are

ˇD;k D
�
�k

a

�2
: (3.2)

As a consequence, recalling (2.4), the Dirichlet spectral fractional heat kernel reads
as

rsD.t; x; y/ D
2

a

C1X
kD1

sin
�
�ky

a

�
sin
�
�kx

a

�
exp

�
�t
�
�k

a

�2s�
: (3.3)

This and (1.5) lead to

ˆ
x;y
D .s; T / D 2

a

Z T

0

C1X
kD1

sin
�
�ky

a

�
sin
�
�kx

a

�
exp

�
�t
�
�k

a

�2s�
dt (3.4)

and accordingly, if s 2 .1
2
; 1/,

ˆ
x;y
D .s; T / D 2a2s�1

�2s

C1X
kD1

1

k2s
sin
�
�ky

a

�
sin
�
�kx

a

��
1 � exp

�
�T

�
�k

a

�2s��
:

(3.5)
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We can also compute explicitly the average distance lyD.s;T / and the mean square
displacement A

y
D.s; T / as a series, as showed in detail in Appendix B.

The normalized eigenfunctions of the Laplacian in .0; a/ under Neumann condi-
tions as defined in (2.3) take the form8̂̂̂<̂

ˆ̂:
�N;k.x/ D

r
2

a
cos
�
�kx

a

�
if k 2 ¹1; 2; 3; : : :º;

�N;0.x/ D 1p
a

if k D 0;

and the corresponding eigenvalues are

ˇN;k D
�
�k

a

�2
if k 2 ¹0; 1; 2; 3; : : :º: (3.6)

Therefore, in view of (2.4), the Neumann spectral fractional heat kernel reads as

rsN .t; x; y/ D
1

a
C 2

a

C1X
kD1

cos
�
�kx

a

�
cos
�
�ky

a

�
exp

�
�t
�
�k

a

�2s�
:

Hence, by (1.5),

ˆ
x;y
N .s; T /D T

a
C 2

a

C1X
kD1

Z T

0

cos
�
�kx

a

�
cos
�
�ky

a

�
exp

�
�t
�
�k

a

�2s�
dt (3.7)

and, as a result, when s 2 .1
2
; 1/,

ˆ
x;y
N .s; T /

D T
a
C 2a

2s�1

�2s

C1X
kD1

1

k2s
cos
�
�kx

a

�
cos
�
�ky

a

��
1�exp

�
�T

�
�k

a

�2s��
: (3.8)

Thanks to these preliminary observations, we are now in the position of proving
the results presented in Section 1.2. We begin by showing Proposition 1.1.

We recall that we adopt the subscript � every time that a functional refers to both
the Dirichlet and the Neumann case.

Proof of Proposition 1.1. Let x 2 � and T 2 .0;C1/. Then, thanks to Theorem 2.8
we know that if either n > 2 or n D 1 and s 2 .0; 1

2
� it holds that

ˆx;x� .s; T / D C1: (3.9)

Furthermore, from Proposition 2.12 we have that

lx� .s; T / 2 .0;C1/ and Ax
�.s; T / 2 .0;C1/; (3.10)
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for all s 2 .0; 1�. Therefore, as a direct consequence of (3.9) and (3.10) we obtain the
desired claim.

The proof of Proposition 1.2 that we present here below is a consequence of The-
orem 2.8. For the sake of completeness, in Appendix C we also provide an alternative
proof of Proposition 1.2 which employs directly the spectral structure of the efficiency
functionals.

Proof of Proposition 1.2. Let x 2�D .0; a/, for some a 2 .0;C1/. Then, thanks to
Theorem 2.8 we have that for each s 2 .0; 1

2
� and T 2 .0;C1/ the statement in (3.9)

holds true. Also, if s 2 .1
2
; 1�, in view of Proposition 2.12 one has that

ˆx;x� .s; T / 2 .0;C1/: (3.11)

Furthermore, from Proposition 2.12 we know that for each s 2 .0;1� and T 2 .0;C1/
the statement in (3.10) holds true as well. Therefore, using equation (3.11), in the
notation of Proposition 1.2, we conclude that

E�;j .s; T / 2 .0;C1/ for all s 2
�
1

2
; 1

�
;

for all j 2 ¹1; 2; 3º.
Hence, to complete the proof of Proposition 1.2, it is only left to show the con-

tinuity statement. Thanks to Proposition 2.12 we have that, for each x 2 � and
T 2 .0;C1/, the functionalˆx;x� .�; T / is continuous with respect to s 2 .1

2
; 1�. Also,

the continuity with respect to s 2 .0; 1� of the functionals Ax
�.s; T / and lx� .s; T / was

already established in Proposition 2.12.
As a consequence, recalling (3.10) we conclude that the functionals in (1.6) are

continuous in s 2 .1
2
; 1� for x D y.

Now we prove Theorem 1.3. Here we establish that

s D 1

2

is the best search strategy in .1
2
; 1� when the forager initial point coincide with the

target location.

Proof of Theorem 1.3. We point out that, in order to prove Theorem 1.3, it suffices to
establish (1.10). Indeed, once (1.10) is proved, we already know from Proposition 1.2
that E�;j .s; T / 2 .0;C1/ for all s 2 .1

2
; 1� and j 2 ¹1; 2; 3º and accordingly the

supremum over s 2 .1
2
; 1/ of Ej;� is attained at s D 1=2.

Furthermore, thanks to (C.1) it is enough to show (1.10) for a WD 1. To prove it,
we observe that all the denominators in (1.6) satisfy (3.10). Consequently, the claim
in (1.10) is equivalent to

lim
s& 1

2

ˆx;x� .s; T / D C1: (3.12)
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Thus, from now on we focus on the proof of the claims in (3.12). We establish the
claim for the Dirichlet case, since the Neumann one follows from the Dirichlet one
and (2.22).

For this, we recall (C.4) and we see that there exist K0, N > 1 such that, for
every xN 2 N,

ˆ
x;x
D .s; T / >

1

�2s

xN�1X
`D0

"0

.N C 3`K0/2s :

We now pickL> 0, to be taken as large as we wish in what follows, such that eL 2N,
and we choose xN WD e2L C 1. In this way, we find that

ˆ
x;x
D .s; T / >

1

�2s

exp.2L/X
`Dexp.L/C1

"0

.N C 3`K0/2s >
1

�2s

exp.2L/X
`Dexp.L/C1

"0

.4`K0/2s

D "0

.4�K0/2s

LX
jD1

exp.LCj /X
`Dexp.LCj�1/C1

1

`2s

>
"0

.4�K0/2s

LX
jD1

exp.LCj /X
`Dexp.LCj�1/C1

1

exp.2s.LC j //

D "0.e � 1/
.4�K0/2s

LX
jD1

exp.LC j � 1/
exp.2s.LC j //

D "0.e � 1/
.4�K0/2s exp..2s � 1/LC 1/

LX
jD1

1

exp..2s � 1/j /

D "0.e � 1/
.4�K0/2s exp..2s � 1/LC 1/ �

exp.1 � 2s/.1 � exp..1 � 2s/L//
1 � exp.1 � 2s/

D "0.e � 1/
.4�eK0/2s exp.2.2s � 1/L/ �

.exp..2s � 1/L/ � 1/
1 � exp.1 � 2s/ :

In particular, we can choose L 2 Œ 1
2s�1

; 2
2s�1

� such that eL 2 N and deduce from the
above estimate that

ˆ
x;x
D .s; T / >

"0.e � 1/2
.4�eK0/2se4

� 1

1 � exp.1 � 2s/ :

Sending now s & 1
2

we see that

lim
s& 1

2

ˆ
x;x
D .s; T / D C1;

proving the claim in (3.12) for the Dirichlet case, as desired.
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Finally, we prove Theorem 1.4. In this result, we discuss the impact of some
geometrical properties of the domain, such as the size of it, on the monotonicity of
the efficiency functionals in (1.5) with respect to the fractional exponent.

Proof of Theorem 1.4. We prove the monotonicity properties of ˆ�. To this end, in
the Dirichlet case, when a 2 .0; �� the first eigenvalue of the Laplacian is less than or
equal to 1, thanks to (3.2); hence, we capitalize on [10, Theorem 7] and we conclude
that, for all s0 2 .0; 1/ and s1 2 .s0; 1/, we have that, for every x 2 .0; a/,

r
s0
D .t; x; x/ > r

s1
D .t; x; x/: (3.13)

Similarly, in the Neumann case, when a 2 .0; �� the first nontrivial eigenvalue
of the Laplacian is less than or equal to 1, due to (3.6). This allows us to use [11,
Theorem 7] and obtain that, for all s0 2 .0; 1/, s1 2 .s0; 1/ and x 2 .0; a/,

r
s0
N .t; x; x/ > r

s1
N .t; x; x/: (3.14)

Now, from (1.5), (3.13), and (3.14) it follows that, for all s0 2 .0; 1/, s1 2 .s0; 1/
and x 2 .0; a/,

ˆx;x� .s0; T / > ˆ
x;x
� .s1; T /: (3.15)

From (3.15) we obtain the desired monotonicity property when a 2 .0; ��, as
stated in formula (1.11) of Theorem 1.4.

Now we deal with the case in which a is sufficiently large and we prove (1.12)
and (1.13). To this end, we start with the Dirichlet case, utilize (3.5) with the nota-
tion ˛ WD a

�
and deduce that, for every T 2 .0;C1/ and x 2 .0; a/,

a

2
@sˆ

x;x
D .s; T / D @

@s

"
˛2s

C1X
kD1

1

k2s
sin2

�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��#

D 2˛2s ln˛
C1X
kD1

1

k2s
sin2

�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
� 2˛2s

C1X
kD1

ln k
k2s

sin2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
C 2T˛2s

C1X
kD1

1

k2s
sin2

�
kx

˛

�
exp

�
�T

�
k

˛

�2s��
k

˛

�2s
ln
�
k

˛

�
D 2˛2s

C1X
kD1

ln˛ � ln k
k2s

sin2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
� 2T˛2s

C1X
kD1

ln˛ � ln k
k2s

sin2
�
kx

˛

�
exp

�
�T

�
k

˛

�2s��
k

˛

�2s
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D 2˛2s
C1X
kD1

ln˛ � ln k
k2s

sin2
�
kx

˛

�
�
�
1 � exp

�
�T

�
k

˛

�2s��
1C T

�
k

˛

�2s��
: (3.16)

These observations lead to
a

4˛2s
@sˆ

x;x
D .s; T /

D ln˛ sin2
�x
˛

��
1 � exp

�
� T

˛2s

��
1C T

˛2s

��
C
C1X
kD2

ln˛ � ln k
k2s

sin2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
1C T

�
k

˛

�2s��
:

We also observe that, if f .�/ WD 1 � e�� .1 C �/, we have that f 0.�/ D �e�� > 0

for all � > 0. Accordingly, we see that 1 � e�� .1C �/ > f .0/ D 0 for all � > 0. In
addition, we have that f .�/ 6 1 for all � > 0. As a result,

C1X
kD2

ln˛ � ln k
k2s

sin2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
1C T

�
k

˛

�2s��
>

X
k2N\.˛;C1/

ln˛ � ln k
k2s

sin2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
1C T

�
k

˛

�2s��
> �

X
k2N\.˛;C1/

ln k
k2s

:

From these remarks, we arrive at

a

4˛2s
@sˆ

x;x
D .s; T / > ln˛ sin2

�x
˛

��
1 � exp

�
� T

˛2s

��
1C T

˛2s

��
�

X
k2N\.˛;C1/

ln k
k2s

:

Now, if T 2 Œ�a2s;C1/ D Œ��2s˛2s;C1/, then

1 � exp
�
� T

˛2s

��
1C T

˛2s

�
D f

�
T

˛2s

�
> f .��2s/ > f .�/:

Hence, in this situation,

a

4˛2s
@sˆ

x;x
D .s; T / > ln˛ sin2

�x
˛

�
f .�/ �

X
k2N\.˛;C1/

ln k
k2s

:
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We also recall that Z C1
˛�2

ln �
�2s

d� D 1C .2s � 1/ ln.˛ � 2/
.2s � 1/2.˛ � 2/2s�1

and therefore, if ˛ is large enough,X
k2N\.˛;C1/

ln k
k2s

6
1C .2s � 1/ ln.˛ � 2/
.2s � 1/2.˛ � 2/2s�1 6

2s ln.˛ � 2/
.2s � 1/2.˛ � 2/2s�1

6
2s ln˛

.2s � 1/2.˛ � 2/2s�1 :

Besides, if x 2 .�a; .1 � �/a/ D .�˛�; .1 � �/˛�/ we have thatˇ̌̌
sin
�x
˛

�ˇ̌̌
> sin."�/: (3.17)

These observations lead to
a

4˛2s ln˛
@sˆ

x;x
D .s; T / > sin2.��/f .�/ � 2s

.2s � 1/2.˛ � 2/2s�1

> sin2.��/f .�/ � 2

�2.˛ � 2/� > 0;

as long as ˛ (whence a) is sufficiently large, possibly in dependence of �.
This establishes (1.12) in the Dirichlet case and we now focus on the proof

of (1.13) in the Neumann case. In this situation, recalling (3.8),

a

2
ˆ
x;x
N .s; T / D T

2
C ˛2s

C1X
kD1

1

k2s
cos2

�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
and therefore

a

4˛2s
@sˆ

x;x
N .s; T / D ln˛

C1X
kD1

1

k2s
cos2

�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
�
C1X
kD1

ln k
k2s

cos2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
� T

C1X
kD1

ln˛ � ln k
k2s

cos2
�
kx

˛

�
exp

�
�T

�
k

˛

�2s��
k

˛

�2s
:

This puts us in the same position as in (3.16), but with the sine replaced by the cosine.
Hence, in this case, we only need to detect the analog of (3.17). For this, we observe
that if x 2 .0; .1��/a

2
/ [ . .1C�/a

2
; a/ D .0; .1��/˛�

2
/ [ . .1C�/˛�

2
; ˛�/ we have thatˇ̌̌

cos
�x
˛

�ˇ̌̌
> cos

� .1 � �/�
2

�
:

Thus, the same argument as in the Dirichlet case leads to (1.13).
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3.2 Proof of the results in Sections 1.3 and 1.4

In this section we prove the results stated in Section 1.3. Here we discuss the optimal
search strategy when the forager starting position y 2 � is sufficiently close to the
prey location x 2 �, but does not coincide with it.

We recall that we adopt the subscript � every time that we refer to both the Dirich-
let and the Neumann case.

We start this section by showing that all the functionals defined in (1.6) are con-
tinuous with respect to s 2 .0; 1�.
Proof of Proposition 1.5. Let .x;y;T /2���� .0;C1/ be such that x¤ y. Then,
thanks to Proposition 2.12 we have that

ˆx;y� .s; T / 2 .0;C1/;

and also
ly� .s; T / 2 .0;C1/ and Ay

�.s; T / 2 .0;C1/; (3.18)

for each s 2 .0; 1�. These considerations give that E
x;y
j;� .s; T / for all s 2 .0; 1�.

Now, from Proposition 2.12 and (3.18), we deduce that the functionals E
x;y
j;� .�; T /

are continuous with respect to s 2 .0; 1�.
Now we prove Theorem 1.6. We show that s D 0 is a global minimizer for

E
x;y
1;D.�; T / in .0; 1/ for each x; y 2 � such that x ¤ y and for all T 2 .0;C1/.

Moreover, we discuss the existence of the limit for s & 0 of E2;D and E3;D .

Proof of Theorem 1.6. Let x; y 2� such that x ¤ y and T 2 .0;C1/. Then, thanks
to Lemma 2.13 we have that

lim
s&0

E
x;y
1;D.s; T / D 0:

Since ˆx;yD .s; T / 2 .0;C1/ for each s 2 .0; 1�, see Proposition 2.12, we estab-
lish (1.14). We point out that the existence of the limits in (1.15) was already obtained
in Lemma 2.13.

Besides, making use of the maximum principle for the heat equation, we see that

FD.z; w/ > 0 for all z; w 2 �; (3.19)

and so the right-hand sides of the expressions in (2.60) and (2.61) are nonnegative.
Also, using (D.6) and (3.19) we deduce that the limits in (2.60) and (2.61) are also
positive and finite.

We prove now Theorems 1.7 and 1.8. We recall that this result states that if the
forager starting position is close enough to the target location, then the optimal search
strategy for the functionals in equation (1.6) is in a small neighborhood of s D 0.
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Proof of Theorems 1.7 and 1.8. Let .y;T /2��.0;C1/. We recall the limit in (2.59)
and we observe that

sup
s2.0;1/

E
x;y
1;D.s; T / D E

x;y
1;D.s

.1/
x;y;T ; T / with s.1/x;y;T 2 .0; 1�; (3.20)

for each x 2 � n ¹yº.
Also, From Lemma 2.15 and equation (2.25), we evince that if s0 2 .0; 12 / there

exists some ˇ D ˇs0;y;T;� 2 .0; yı/ such that, if x 2 Bˇ .y/ n ¹yº, then

lim sup
s&0

E
x;y
j;N .s; T / 6 E

x;y
j;N .s0; T /;

for all j 2 ¹1; 2; 3º, where yı is provided in (2.27).
Thus, we deduce that there exists some y̌ D y̌y;T;� such that if x 2 B y̌.y/ n ¹yº,

then
sup
s2.0;1/

E
x;y
j;N .s; T / D E

x;y
1;D.s

.j /
x;y;T ; T / with s.j /x;y;T 2 .0; 1�; (3.21)

for all j 2 ¹1; 2; 3º.
Let us first study the case n 6 2. We recall that thanks to Lemma 2.7, for each

s0 2 .0; 12 / we have the existence of some yı D yıs0;y;T;�, given in (2.27), such that,
for each x 2 Byı.y/ n ¹yº, one has that

ˆx;y� .s0; T / >
Cs0;y;�

jx � yjn�2s0 ; (3.22)

where Cs0;y;� is provided in (2.32). Also, for each s 2 .0; 1/ and � 2 An;s , where
An;s is given in (2.43), thanks to (2.45) we have the existence of some constant
C�;�;Byı.y/;T;�

such that

ˆx;y� .s; T / 6
C�;�;Byı.y/;T;�

jx � yj2� ; (3.23)

for each x 2 Byı.y/ n ¹yº.
Consequently, from the last two inequalities we obtain that if s0 2 .0; 12 /, s1 2

.s0; 1/ and � 2 An;s1 , then

E
x;y
1;� .s0; T /

E
x;y
1;� .s1; T /

D ˆ
x;y
� .s0; T /

ˆ
x;y
� .s1; T /

>
C�;s0;y;�;Byı.y/;T;�

jx � yjn�2s0�2� ; (3.24)

for all x 2 Byı.y/ n ¹yº, where we set

C�;s0;y;�;Byı.y/;T;�
WD Cs0;y;�

C�;�;Byı.y/;T;�
: (3.25)
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As a result, for each " 2 .0; 1/, by choosing s0 WD "
4

, s1 2 ."; 1/ and � WD .n � "/=2
in (3.24), and recalling also (3.20) and (3.21), we infer the existence of some ı.1/ D
ı
.1/
";y;T;� 2 .0; yı/ such that for each x 2 Bı.1/.y/ n ¹yº it holds that

sup
s2.0;1/

E
x;y
1;� .s; T / D E

x;y
1;� .s

.1/
�;x;y;T ; T / with s.1/

�;x;y;T 2 .0; "/:

This concludes the proof of (1.16) and (1.18) with j D 1.
Let us now prove (1.17) for the functional E2;D . To this end, let dy WD d.y;@�/

2

and By WD Bdy .y/. Then, thanks to equation (D.5) in Lemma D.4 we have that there
exists a constant QcBy ;� such that for each x 2 By n ¹yº it holds that

E
x;y
2;D.0; T / D

FD.x; y/R
�
j� � yjFD.�; y/ d�

>
QcBy ;�R

�
j� � yjFD.�; y/ d�

1

jx � yjn : (3.26)

Therefore, using (3.23) and the estimates in (3.26), if s 2 .0; 1/, x 2 Byı.y/ n ¹yº and
� is given as in (2.43), we obtain that

E
x;y
2;D.0; T /

E
x;y
2;D.s; T /

D FD.x; y/R
�
j� � yjFD.�; y/ d�

l
y
D.s; T /

ˆ
x;y
D .s; T /

>
�.s/l

y
D.s; T /R

�
j� � yjFD.�; y/ d�

QcBy ;�
CD;�;Byı.y/;T;�

1

jx � yjn�2� : (3.27)

Now, using (2.68) and the limit

lim
s&0

s�.s/ D 1;

we obtain that

lim
s&0

�.s/l
y
D.s; T /R

�
j� � yjFD.�; y/ d�

D 1 � e�T .T C 1/:

Thanks to this observation and Proposition 2.12, we can define the positive constant

C�;y;Byı.y/;T;�
WD inf

s2.0;1/

�.s/l
y
D.s; T /R

�
j� � yjFD.�; y/ d�

QcBy ;�
CD;�;Byı.y/;T;�

> 0:

Then, we obtain from (3.27) that for each x 2 By n ¹yº, s 2 .0; 1/ and � as in (2.43)
it holds that

E
x;y
2;D.0; T /

E
x;y
2;D.s; T /

>
C�;y;Byı.y/;T;�

jx � yjn�2� : (3.28)

Therefore, for each " 2 .0; 1/ by taking s 2 ."; 1/ and choosing � WD .n � "/=2
in (3.28), we deduce that there exists some ı.2/ D ı

.2/
";y;T;� such that for each x 2

Bı.2/.y/ n ¹yº it holds that

E
x;y
2;D.0; T / > sup

s2.";1/

E
x;y
2;D.s; T /:
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The proof of (1.17) for E3;D is analogous to the one for E2;D and therefore it will be
omitted. This last step concludes the proof of Theorem 1.7 for n 6 2.

Now we show (1.18) when n 6 2 for E2;N . To do so, thanks to Proposition 2.12
and (2.89) we can define the positive constant

zCy;T;� WD inf
s02.0;1/
s12.0;1/

l
y
N .s1; T /

l
y
N .s0; T /

> 0:

Then, if s0 2 .0; 12 /, s1 2 .s0; 1/ and � 2 An;s1 , thanks to equations (3.22) and (3.23)
we have that

E
x;y
2;N .s0; T /

E
x;y
2;N .s1; T /

D ˆ
x;y
N .s0; T /

ˆ
x;y
N .s1; T /

l
y
N .s1; T /

l
y
N .s0; T /

>
zC�;s0;y;K;T;�
jx � yjn�2s0�2� ; (3.29)

for all x 2 Byı.y/ n ¹yº, where we defined

zC�;s0;y;K;T;� WD CN;s0;y;�;Byı.y/;T;� zCy;T;�: (3.30)

Therefore, for each " 2 .0; 1/, by choosing s0 WD "
4

, s1 2 ."; 1/ and � WD .n � "/=2
in (3.29), and recalling (3.21), we deduce the existence of some

ı.2/ D ı.2/";y;T;� 2 .0; y̌/

such that for each x 2 Bı.2/.y/ n ¹yº it holds that

sup
s2.0;1/

E
x;y
2;N .s; T / D E

x;y
2;N .s

.2/
x;y;T ; T / with s.2/x;y;T 2 .0; "/:

This concludes the proof of (1.18) for E2;N . The proof of (1.18) for E3;N is analogous
to the one for E2;N .

It is left to prove Theorems 1.7 and 1.8 when n > 3.
If n> 3, we just have to replace the inequality (3.23) with the one in (2.44). Thus,

repeating the above procedure with this change, the inequalities in (3.24) and (3.29)
become

E
x;y
� .s0; T /

E
x;y
� .s1; T /

>
C�;s0;y;Byı.y/;T;�

jx � yj2.s1�s0/ ; (3.31)

for all s0 2 .0; 12 /, s1 2 .s0; 1/ and x 2 Byı.y/ n ¹yº, where we denoted by E� any of
the functionals E1;D , E1;N and E2;N .

The constant C�;s0;y;Byı.y/;T;� is obtained substituting the constant C�;�;Byı.y/;T;�
with C�;Byı.y/;T;� in (3.25) for E1;D and E1;N , and in (3.30) for E2;N .

Analogously, equation (3.28) becomes

E
x;y
2;D.0; T /

E
x;y
2;D.s1; T /

>
C
.1/

y;Byı.y/;T;�

jx � yj2s1 (3.32)
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for all s 2 .0; 1/ and x 2 Byı.y/ n ¹yº, where we defined

C
.1/

y;Byı.y/;T;�
WD inf

s2.0;1/

�.s/l
y
D.s; T /R

�
j� � yjFD.�; y/ d�

QcBy ;�
CD;Byı.y/;T;�

:

Therefore, for each " 2 .0; 1/, by choosing s0 WD "
2

in (3.31) and s1 2 ."; 1/
in (3.31) and (3.32), we obtain (1.16), (1.17) for E2;D and (1.18) for both E1;N and
E2;N when n > 3.

The proof of (1.17) and (1.18) respectively for E3;D and E3;N are analogous to
the one of E2;D and E2;N when n > 3 and are therefore omitted.

Now, we prove Corollary 1.12. Namely, we establish in the one-dimensional
framework, and under suitable geometric assumptions on the domain, that if the tar-
get location x 2 � is close enough to the forager starting position y 2 �, then there
exists a local maximizer for the functionals E

x;y
1;D and E

x;y
1;N in a neighborhood of the

local Brownian strategy s D 1.

Proof of Corollary 1.12. We will only prove (1.19), since the proof of (1.20) is anal-
ogous. For this, let � 2 .0; 1

2
/. Then, thanks to Theorem 1.4, we have that there

exists some a� 2 .�;C1/ such that, for all a 2 .a� ;C1/, T 2 Œ�a2s;C1/ and
y 2 .�a; �.1 � a//, it holds that

ˆ
y;y
D .s0; T / < ˆ

y;y
D .s1; T /; (3.33)

for all s0 2 .1C�2 ; 1� and s1 2 .s0; 1�.
Now, for any " 2 .1C�

2
; 1/ we define the positive quantity

zı D zı";�;y;T WD ˆy;yD .1; T / �ˆy;yD .1 � "; T /:

Also, thanks to the continuity ofˆx;yD .s; T / with respect to .s; x; y/ 2 .1
2
; 1�����

stated in Proposition 2.12, we can define ı";�y;T;� 2 .0;C1/, such that

jˆx;yD .s; T / �ˆy;yD .s; T /j 6
zı
4

for all s 2
�
1C �
2

; 1

�
:

Thus, using the monotonicity of ˆy;yD in (3.33), we obtain that, for each x 2 � and
s0 2 .1C�2 ; 1 � "/,

ˆ
x;y
D .1; T / �ˆx;yD .s0; T / D ˆx;yD .1; T / �ˆy;yD .1; T /Cˆy;yD .1; T /

�ˆy;yD .s0; T /Cˆy;yD .s0; T / �ˆx;yD .s0; T /

> ˆ
x;y
D .1; T / �ˆy;yD .1; T /C zı
Cˆy;yD .s0; T / �ˆx;yD .s0; T /

> �
zı
4
C zı �

zı
4
D
zı
2
:
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From this, we infer that

sup
s2. 1C�2 ;1/

E
x;y
1;D.s; T / D E

x;y
1;D.s

�
x;y;T ; T / with s�x;y;T 2 .1 � "; 1�;

which proves (1.19).

We now prove Proposition 1.13 and establish the continuity with respect to the
fractional exponent of the set functionals in (1.9).

Proof of Proposition 1.13. Since the proof for the Dirichlet and Neumann case are
analogous, we focus on the Dirichlet framework.

We already established in Proposition 2.12 that for all y 2� and s 2 .0;1/ one has
that (3.18) holds, and also the functionals in (1.3) and (1.4) are uniformly bounded in
.0; 1� ��.

Therefore, by definition we obtain that, for all �2 � �,

Ql�2D .s; T / 2 .0;C1/ and zA�2
D .s; T / 2 .0;C1/; (3.34)

for all s 2 .0; 1� and T 2 .0;C1/.
Besides, thanks to Proposition 2.12 we know that lyD.�; T / and A

y
D.�; T / are

continuous in .0; 1�. Thus, by the dominated convergence theorem we obtain that
Ql�2D .�; T / and zA�2

D .�; T / are continuous in .0; 1�.
Now, we observe that

ẑ�1;�2
D .s; T / D 1

j�1jj�2j
Z T

0

Z
�1��2

rsD.t; x; y/ dx dy dt:

Therefore, thanks to [10, Theorem 6] we obtain that

ẑ�1;�2
D .s; T / 2 .0;C1/: (3.35)

Also, rsD.t; x; y/ is continuous for s 2 .0; 1� for all .t; x; y/ 2 .0;C1/ � � � �,
see, e.g., [10, Theorem 5]. Thanks to [11, Proposition 6 and Lemma 6], we have that,
for each t 2 .0;C1/ and " 2 .0; 1/, the kernel rsD.t; x; y/ is uniformly bounded in
.s; x; y/ 2 ."; 1� � � � �. Thus, as a consequence of the dominated convergence
theorem we obtain that

f .s; t/ WD
Z
�1��2

rsD.t; x; y/ dx dy

is continuous in s 2 .0; 1�.
Additionally, in view of [10, Theorem 6], we see that

jf .s; t/j 6 j�2j for all .s; t/ 2 .0; 1/ � .0;C1/;
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and therefore by the dominated convergence theorem we obtain the continuity of
ẑ�1;�2
D for s 2 .0; 1�.

Finally, the continuity of the functionals in (1.9) with respect to s 2 .0; 1� follows
from (3.34) and the fact that ẑ�1;�2D .�; T / 2 C..0; 1�/ and Ql�2D .�; T /; zA�2

D .�; T / 2
C..0; 1�/.

Now we prove Theorem 1.14. In this result we show that s D 0 is a minimizer
for the functional zE�1;�21;D , where �1 and �2 are disjoint and smooth. Also, we show

that zE�1;�22;D and zE�1;�23;D admit a positive and finite limit for s & 0.

Proof of Theorem 1.14. Let T 2 .0;C1/ and �1; �2 b � be disjoint and smooth.
Then, thanks to Lemma 2.14, we obtain that

lim
s&0

zE�1;�21;D .s; T / D 0:

Furthermore, thanks to (3.35), we see that E
�1;�2
1;D .s; T / 2 .0;C1/ for all s 2 .0; 1�.

This latter observation together with the above limit lead to (1.21).
Now we prove (1.22). The existence of the limits in (1.22) was already established

in Lemma 2.14. Using the fact that�1 and�2 are disjoint and smooth, together with
the inequality in (D.6) and also (3.19), we evince that

zFD.�1; �2/ 2 .0;C1/;
Z
���2

j� � yjFD.�; y/ d� dy 2 .0;C1/

and Z
���2

j� � yj2FD.�; y/ d� dy 2 .0;C1/;

where FD and zFD are given respectively in (2.62) and (2.72). Therefore, from (2.70),
(2.71), and these considerations we conclude the proof of (1.22).

Now we focus our attention on Theorems 1.15 and 1.16. To prove these results,
it is useful to state and prove the following proposition regarding a monotonicity
property with respect to s and a scaling property for the functional F�1;�2 introduced
in (2.53). In what follows we denote by dB the diameter of B for each bounded
set B � Rn.

Proposition 3.1. LetK � Rn be a compact set and�1;�2 � K be measurable sets
such that �1 \�2 D ¿. Then, if dK 6 1, we have that

d

ds
F�1;�2.s/ 6 0 for all s 2 .0; 1/: (3.36)

Moreover, for each r 2 .0;C1/ and y 2 Rn, it holds that

F ry�1;ry�2.s/ D rnC2sF�1;�2.s/: (3.37)
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Proof. We observe that, thanks to the dominated convergence theorem,

d

ds
F�1;�2.s/ D 2

Z
�1��2

ln jx � yj
jx � yjn�2s dx dy:

Hence, if dK 6 1, then
d

ds
F�1;�2.s/ 6 0;

which proves (3.36).
Now we show the scaling property in (3.37). Let r 2 .0;C1/ and, up to a trans-

lation, assume that y D 0. Then, applying the change of variable

.x; y/ D .rX; rY /

we obtain that

F r�1;r�2.s/ D
Z
r�1�r�2

1

jx � yjn�2s dx dy

D
Z
�1��2

r2n

rn�2sjX � Y jn�2s dX dY

D rnC2sF�1;�2.s/;
which completes the proof.

With this preliminary work, we can now prove Theorems 1.15 and 1.16. We recall
that the aim of this result is to show that if �1; �2 � � are disjoint, smooth and
close enough, then the best search strategy for the set efficiency functionals provided
in (1.9) is in a small neighborhood of s D 0.

Proof of Theorems 1.15 and 1.16. Let .y; T / 2 � � .0;C1/. If �1; �2 � � are
smooth and disjoint, then thanks to Theorem 1.14 we have that

sup
s2.0;1/

zE�1;�21;D .s; T / D zE�1;�21;D .s
.1/
�1;�2;T

; T / with s.1/�1;�2;T 2 .0; 1�: (3.38)

Moreover, If P and zP are given as in (2.93), we observe that

inf
�2��

P.�2/ 2 .0;C1/ and inf
�2��

zP .�2/ 2 .0;C1/:

Now, using (2.55) we have that, for s0 2 .0; 12 / and r 2 .0; yı/, where yı D yıs0;y;T;�
has been given in (2.27), then

ẑ�1;�2
N .s0; T / >

Cs0;y;�

.2r/n�2s0
;

for all �1; �2 � Br.y/, where Cs0;y;� is given (2.32).
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Consequently, using also (2.90), (2.91), and (2.92), we deduce that there exists
some ˇ D ˇy;T;� 2 .0; 1/ such that if�1;�2 � Bˇ .y/ are smooth and disjoint, then

sup
s2.0;1/

zE�1;�2j;N .s; T / D zE�1;�2j;N .s
.j /
�1;�2;T

; T / with s.j /�1;�2;T 2 .0; 1�; (3.39)

for all j 2 ¹1; 2; 3º.
We will first prove the results for n 6 2.
We recall that, by Corollary 2.11, if s1 2 .0; 1/ and � 2 An;s1 , where An;s1 is

given in (2.43), then

ẑ�1;�2
� .s1; T / 6

C�;�;Byı.y/;T;�

j�1jj�2j F�1;�2
�n � 2�

2

�
; (3.40)

for all �1; �2 b Byı.y/, where C�;�;Byı.y/;T;� is introduced in Theorem 2.9.
Also, in light of (2.55) we deduce that if s0 2 .0; 12 / and �1; �2 b Byı.y/, then

ẑ�1;�2
� .s0; T / >

Cs0;y;�

j�1jj�2jF
�1;�2.s0/: (3.41)

Now, we define

ı0 WD min
²
yı; 1
2

³
;

and we consider �1; �2 � Bı0.y/ smooth and such that

�1 \�2 D ¿:

Thus, from (1.9), (3.36), (3.37), (3.40), and (3.41) we deduce that if r 2 .0; 1/, s0 2
.0; 1

2
/, s1 2 .s0; 1/ and � 2 .0; n

2
� s0/ \ An;s1 , where An;s1 is given as in (2.43), it

holds that

zEry�1;ry�21;� .s0; T /

zEry�1;ry�21;� .s1; T /
D
ẑ ry�1;ry�2
� .s0; T /

ẑ ry�1;ry�2
� .s1; T /

> C
.1/

s0;�;�;Byı.y/;y;T;�

F ry�1;ry�2.s0/

F ry�1;ry�2.n�2�
2
/

> C
.1/

s0;�;�;Byı.y/;y;T;�

rnC2s0F�1;�2.s0/

r2n�2�F�1;�2.n�2�
2
/

>
C
.1/

s0;�;�;Byı.y/;y;T;�

rn�2s0�2�
; (3.42)

where we defined
C
.1/

s0;�;�;Byı.y/;y;T;�
WD Cs0;y;�

C�;�;Byı.y/;T;�
:

We recall that in writing ry�1 and ry�2 we adopted the notation in (1.23).
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As a result, for all " 2 .0; 1/, by choosing for instance s0 WD "
4

and � WD .n� "/=2
in (3.42), and using also (3.38) and (3.39), we infer that there exists some r .1/ D
r
.1/
";y;T;� such that if �1; �2 b Br.1/ı0.y/ are smooth and satisfy

�1 \�2 D ¿;

then

sup
s2.0;1/

zE�1;�21;� .s; T / D zE�1;�21;� .s
.1/
�;�1;�2;T

; T / with s.1/
�;�1;�2;T

2 .0; "/:

We now focus on the proof of (1.24) for zE2;D . Let K b � and assume that
�1; �2 � K. Then, thanks to equations (2.70) and (D.5) we have that

zE�1;�22;D .0; T / >
QcK;�R

���2
j� � yjFD.�; y/ d� dy

F�1;�2.0/

j�1j ;

where FD and QcK;� are given respectively in (2.62) and (D.7). Then, in light of (2.54)
and (3.40), if s 2 .0; 1/ and � 2 An;s \ .0; 1/, where An;s is given in (2.43), we have
that, for each r 2 .0; 1/,
zEry�1;ry�22;D .0; T /

zEry�1;ry�22;D .s; T /

D jry�2j zFD.ry�1; ry�2/R
��ry�2

j� � yjFD.�; y/ d� dy
Qlry�2D .s; T /

ẑ ry�1;ry�2
D .s; T /

>
jry�2j QcK;��.s/R

��ry�2
j� � yjFD.�; y/ d� dy

Qlry�2D .s; T /

CD;�;K;T;�

F ry�1;ry�2.0/

F ry�1;ry�2.n�2�
2
/
; (3.43)

where CD;�;K;T;� was introduced in Theorem 2.9.
Now, we observe that thanks to the limit in equation (2.75) one has that

lim
s&0

Qlry�2D .s; T /�.s/

D lim
s&0

Qlry�2D .s; T /

s
�.s/s

D .1 � e�T .T C 1//
jry�2j

Z
��ry�2

j� � yjFD.�; y/ d� dy: (3.44)

Let us set the notation

C�;K;T;ry�2;� WD inf
s2.0;1/

jry�2j QcK;��.s/R
��ry�2

j� � yjFD.�; y/ d� dy
Qlry�2D .s; T /

CD;�;K;T;�
:
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In view of (3.44), we see that if such infimum is attained at s D 0, then it does not
depend on ry�2.

If the infimum is attained for some Os 2 .0; 1�, then using Proposition 2.12 and
Lemma D.3 with

f .y/ WD lyD.Os; T / and g.y/ D
Z
�

j� � yjFD.�; y/ d�;

we obtain that
C�;K;T;� WD inf

r2.0;1/
�2�K

C�;K;T;ry�2;� > 0:

As a result, using equation (3.43) and Proposition 3.1, we deduce that if dK 6 1, then

zEry�1;ry�22;D .0; T /

zEry�1;ry�22;D .s; T /
> C�;K;T;�

F ry�1;ry�2.0/

F ry�1;ry�2.n�2�
2
/

>
C�;K;T;�

rn�2�
: (3.45)

Therefore, for all " 2 .0; 1/ and K b � that are start-shaped with respect to y 2 K,
by choosing s 2 ."; 1/ and � WD .n � "/=2 in (3.45), we deduce the existence of
some r .2/ D r .2/";K;T;� such that if �1; �2 � r .1/y K satisfy

�1 \�2 D ¿

and are smooth, then

zE�1;�22;D .0; T / > sup
s2.";1/

zE�1;�22;D .s; T /:

This concludes the proof of (1.24) for zE2;D . The proof of (1.24) for zE3;D will be
omitted, being analogous to the one for zE2;D .

We now prove (1.25) for zE2;N . To do so, we fix some s0 2 .0; 12 /, and, in light of
Proposition 2.12, we define the positive constant

Cs0;T;�2;� WD inf
s12.s0;1/

Ql �2N .s1; T /

Ql �2N .s0; T /
:

Also, if the above infimum is attained for some Os 2 Œs0; 1�, using Lemma D.3 with

f .y/ D lyN .Os; T / and g.y/ D lyN .s0; T /;

we set
Cs0;T;� WD inf

�2b�
Cs0;T;�2;� > 0:

Thus, making use of equations (3.36), (3.37), (3.40), and (3.41), we deduce that
if �1; �2 b Bı0.y/, and K � Bı0.y/, r 2 .0; 1/, s0 2 .0; 12 /, s1 2 .s0; 1/, and
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� 2 An;s1 \ .0; n2 � s0/, we have that

zEry�1;ry�22;N .s0; T /

zEry�1;ry�22;N .s1; T /
D
ẑ ry�1;ry�2
N .s0; T /

Qlry�2N .s0; T /

Qlry�2N .s1; T /

ẑ ry�1;ry�2
N .s1; T /

> C
.1/
�;s0;y;K;T;�

F ry�1;ry�2.s0/

F ry�1;ry�2.n�2�
2
/

D C .1/�;s0;y;K;T;�

rnC2s0F�1;�2.s0/

r2n�2�F�1;�2.n�2�
2
/

>
C
.1/
�;s0;y;K;T;�

rn�2s0�2�
; (3.46)

where we defined

C
.1/
�;s0;y;K;T;�

WD Cs0;y;�

CN;�;Byı.y/;T;�
Cs0;T;�:

Therefore, for each " 2 .0; 1/, by choosing for instance s0 WD "
4

, s1 2 ."; 1/ and � WD
.n� "/=2 in (3.46), and also thanks to (3.39), we deduce that there exists some r .2/ D
r
.2/
";y;T;� 2 .0; ˇ/ such that, for each �1; �2 � Br.2/ı0.y/ smooth and disjoint,

sup
s2.0;1/

zE�1;�22;N .s; T / D zE�1;�22;N .s
.2/
�1;�2;T

; T / with s.2/�1;�2;T 2 .0; "/:

This concludes the proof of (1.25) for zE2;N . The proof of (1.25) for zE3;N is analogous
to the one for zE2;N just concluded and therefore it will be omitted.

This concludes the proof of Theorems 1.15 and 1.16 for n 6 2.
Few changes are in order to show Theorems 1.15 and 1.16 also for n > 3. In par-

ticular, we have to repeat the above arguments by replacing (3.40) with the inequality
in (2.54). The procedure will determine changes only on the constants involved, in
the same fashion of the proof of Theorems 1.7 and 1.8 for n > 3.





Appendix A

Green function for the Dirichlet spectral fractional
Laplacian

Here, we give a proof of a well-known identity for the Green function GsD.x; y/ of
the Dirichlet spectral fractional Laplacian. The Green function is given by

GsD.x; y/ D
1

�.s/

Z C1
0

p�D.t; x; y/t
s�1dt;

see also [1]. Before we state the following result, let us recall the notation

C D ®.x; y/ 2 � �� s.t. x ¤ y¯:
Proposition A.1. Let � � Rn be bounded, smooth and connected. Then, for each
.x; y/ 2 C it holds thatZ C1

0

rsD.t; x; y/dt D
1

�.s/

Z C1
0

p�D.t; x; y/t
s�1dt: (A.1)

Proof. Given x; y 2 C , we let

	.x; y/ WD
Z C1
0

rsD.t; x; y/dt;

J.x; y/ WD 1

�.s/

Z C1
0

p�D.t; x; y/t
s�1dt:

Now, let ¹�kºk be an orthonormal basis of L2.�/ made of eigenfunctions of the
Laplacian with Dirichlet boundary conditions, ordered such that if �k’s are the cor-
responding eigenvalues, then 0 < �1 6 �2 6 � � � (see, for instance, [18]). In view
of [10, Theorem 5] we know that

rsD.t; x; y/ D
C1X
kD1

�k.x/�k.y/ exp.�t�sk/

for each .t; x; y/ 2 .0;C1/ � � � �. In order to prove (A.1), we first show that
	.x; y/ and J.x; y/ are both continuous in C . Thanks to Theorem 2.8 we know thatZ T

0

rsD.t; x; y/dy < C1
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for each T 2 .0;C1/, s 2 .0; 1� and x ¤ y. Moreover, thanks to [11, Proposition 6]
we observe that for each t > T and s 2 .0; 1� it holds that

rsD.t; x; y/ D exp.�t�s1/
C1X
kD1

�k.x/�k.y/ exp.�t .�sk � �s1//

6 cm0;�;0 exp.�t�s1/
C1X
kD1

�
2˛.m0/

k
exp.�T .�sk � �s1//

6 CT;s;� exp.�t�s1/; (A.2)

where the last inequality is a consequence of [11, Lemma 7], and CT;s;� > 0 is a
constant depending on T > 0, s 2 .0; 1� and �. The constants ˛.m0/ and cm0;�;0
have been explicitly defined in [11, Proposition 6]. Therefore, if we call

gsD.t; x; y/ WD
´
rsD.t; x; y/ for all .t; x; y/ 2 .0; T � � C ;

CT;s;� exp.�t�s1/ for all .t; x; y/ 2 .T;C1/ � C ;

we obtain that
gsD.t; x; y/ 2 L1.0;C1/

for each .x; y/ 2 C , and also

rsD.t; x; y/ 6 gsD.t; x; y/

for each .t; x; y/ 2 .0;C1/ �� �� and s 2 .0; 1�. Therefore, thanks to the con-
tinuity of the kernel rsD discussed in [10, Lemma 2], we conclude by the dominated
convergence theorem that 	.�; �/ is continuous in C .

Furthermore, thanks to the inequalities in (2.14) and (A.2) we have that if we
define

fD.t; x; y/ D

8̂<̂
:

1

.4�t/
n
2

exp
�
� jx � yj

2

4t

�
for all .t; x; y/ 2 .0; T � � C ;

CT;1;� exp.�t�1/ for all .t; x; y/ 2 .T;C1/ � C ;

then we get that
fD.t; x; y/t

s�1 2 L1.0;C1/
for each .x; y/ 2 C , and also

p�D.t; x; y/t
s�1 6 fD.t; x; y/t

s�1

for each .t;x;y/2 .0;C1/�C . Thanks to the continuity of p�D (see for instance [10,
Lemma 2]) and the last observations we can apply the dominated convergence theo-
rem and conclude that J.�; �/ 2 C.C/.
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Now, let f 2 C1c .�/ such that f > 0. Then, for each x 2 � we computeZ
�

	.x; y/f .y/dy D
Z
�

Z C1
0

rsD.t; x; y/f .y/dt dy

D
Z C1
0

Z
�

rsD.t; x; y/f .y/dy dt

D
Z C1
0

C1X
kD1

fk�k.x/ exp.�t�sk/dt

D
C1X
kD1

fk�k.x/

�s
k

: (A.3)

In the above computation, we denoted

fk WD
Z
�

f .y/�k.y/dy;

and the identity between the first and the second line, as well as between the second
and the third, are due to [11, Lemma 6]; in addition, the estimates on the coefficients
fk given in [11, Proposition 7].

Similarly, we also observe thatZ
�

J.x; y/f .y/dy D 1

�.s/

Z
�

Z C1
0

p�D.t; x; y/t
s�1f .y/dt dy

D 1

�.s/

Z C1
0

t s�1
Z
�

p�D.t; x; y/f .y/dy dt

D 1

�.s/

Z C1
0

C1X
kD1

fk�k.x/ exp.�t�k/t s�1 dt

D 1

�.s/

C1X
kD1

fk�k.x/

Z C1
0

exp.�t�k/t s�1 dt

D 1

�.s/

C1X
kD1

fk�k.x/
�.s/

�s
k

D
C1X
kD1

fk�k.x/

�s
k

: (A.4)

Therefore, from equations (A.3) and (A.4) we deduce that for each x 2 � and f 2
C1c .�/ such that f > 0 it holdsZ

�

.	.x; y/ � J.x; y//f .y/dy D 0:

Thanks to this latter identity and the fact that J; 	 2 C.C/ we conclude the proof
of (A.1).





Appendix B

Some explicit formulas for the one-dimensional
functionals

Lemma B.1. We have that

l
y
D.s; T / D 2a1C2s

C1X
kD1

�
.�1/kC1
�k

C y

�ka
C y.�1/k

�ka
� 2

.�k/2
sin
��ky
a

��
� sin

��ky
a

��1 � exp.�T .�k
a

�2s
/

.�k/2s

�
; (B.1)

A
y
D.s; T /

D 2a2C2s
C1X
kD1

�
.�1/kC1
�k

C 2.�1/k
.�k/3

� 2

.�k/3
� y

2.�1/k
�ka2

C y2

�ka2
� 2y.�1/

k

�ka

�
� sin

��ky
a

��1 � exp
� � T .�k

a
/2s
�

.�k/2s

�
: (B.2)

Proof. The gist to obtain explicit formulas for the average distance lyD.s; T / and the
mean square displacement A

y
D.s; T / is to compute the L2..0; a// components of the

decomposition in eigenfunctions of the functions jx � yj and .x � y/2. For this, it is
first useful to consider the case a WD 1 and then to reduce to it via a scaling argument.
Thus, we first suppose that a D 1 and note thatZ 1

0

jx � yj sin.�kx/dx D .�1/kC1
�k

C y

�k
C y.�1/k

�k
� 2sin.�ky/

.�k/2
;Z 1

0

.x � y/2 sin.�kx/dx D .�1/kC1
�k

C 2.�1/k
.�k/3

� 2

.�k/3
� y

2.�1/k
�k

C y2

�k
� 2y.�1/

k

�k
:

Therefore, lyD.s; T / and A
y
D.s; T / take the form

l
y
D.s; T / D 2

Z T

0

C1X
kD1

�
.�1/kC1
�k

C y

�k
C y.�1/k

�k
� 2sin.�ky/

.�k/2

�
� sin.�ky/ exp.�.�k/2st /dt

D 2
C1X
kD1

�
.�1/kC1
�k

C y

�k
C y.�1/k

�k
� 2sin.�ky/

.�k/2

�
� sin.�ky/

�
1 � exp.�T .�k/2s/

.�k/2s

�
(B.3)
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and

A
y
D.s; T /

D 2
Z 1

0

C1X
kD1

�
.�1/kC1
�k

C 2.�1/k
.�k/3

� 2

.�k/3
� y

2.�1/k
�k

C y2

�k
� 2y.�1/

k

�k

�
� sin.�ky/ exp.�.�k/2st /dt

D 2
C1X
kD1

�
.�1/kC1
�k

C 2.�1/k
.�k/3

� 2

.�k/3
� y

2.�1/k
�k

C y2

�k
� 2y.�1/

k

�k

�
� sin.�ky/

�
1 � exp.�T .�k/2s/

.�k/2s

�
; (B.4)

which is the desired result for a D 1.
Now we address the case of a general a > 0. To this end, we denote with an

additional subscript a the quantities related to the interval .0; a/ (and, consistently,
with an additional subscript 1 the quantities related to the interval .0; 1/). With this
notation, we infer from (3.1), (3.2) and (3.3) that

�k;a.x/ D
1p
a
�k;1

�
x

a

�
; �k;a D

�k;1

a2
; rsD;a.t; x; y/ D

1

a
rsD;1

�
t

a2s
;
x

a
;
y

a

�
:

As a consequence, by (1.3),

l
y
D;a.s; T / D

Z T

0

Z a

0

j� � yjrsD;a.t; �; y/d� dt

D
Z T

0

Z a

0

ˇ̌̌̌
�

a
� y
a

ˇ̌̌̌
rsD;1

�
t

a2s
;
�

a
;
y

a

�
d� dt

D a1C2s
Z T=a2s

0

Z 1

0

ˇ̌̌̌
Q� � y

a

ˇ̌̌̌
rsD;1

�
Qt ; Q�; y

a

�
dz� d Qt

D a1C2s ly=aD;1

�
s;
T

a2s

�
: (B.5)

This and (B.3) yield that

l
y
D;a.s; T / D 2a1C2s

C1X
kD1

�
.�1/kC1
�k

C y

�ka
C y.�1/k

�ka
� 2

.�k/2
sin
�
�ky

a

��
� sin

�
�ky

a

��
1 � exp.�T .�k

a
/2s/

.�k/2s

�
and this gives (B.1), as desired.
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Furthermore, by (1.4),

A
y
D;a.s; T / D

Z T

0

Z a

0

j� � yj2 rsD;a.t; �; y/d� dt

D 1

a

Z T

0

Z a

0

j� � yj2 rsD;1
�
t

a2s
;
�

a
;
y

a

�
d� dt

D a2C2s
Z T=a2s

0

Z 1

0

ˇ̌̌̌
Qx � y

a

ˇ̌̌̌2
rsD;1

�
Qt ; Qx; y

a

�
d Qx d Qt

D a2C2s A
y=a
D;1

�
s;
T

a2s

�
: (B.6)

Thus, recalling (B.4),

A
y
D;a.s; T /

D 2a2C2s
C1X
kD1

�
.�1/kC1
�k

C 2.�1/k
.�k/3

� 2

.�k/3
� y

2.�1/k
�ka2

C y2

�ka2
� 2y.�1/

k

�ka

�
� sin

�
�ky

a

��
1 � exp

� � T .�k
a
/2s
�

.�k/2s

�
;

which proves (B.2), as desired.

Additionally, the Neumann counterpart of Lemma B.1 reads as follows.

Lemma B.2. We have that

l
y
N .s; T / D aT

�
1

2
C y2

a2
� y
a

�
C 2a1C2s

C1X
kD1

�
1

.�k/2
� 2

.�k/2
cos

�
�ky

a

�
C .�1/k
.�k/2

�

� cos
�
�ky

a

�
1 � exp

� � T .�.2kC1/
a

/2s
�

.�.2k C 1//2s ;

A
y
N .s; T / D a2T

�
1

3
C y2

a2
� y
a

�
C 2a2C2s

C1X
kD1

�
2

.�k/2
� 2y
a
.
.�1/k
.�k/2

� 1

.�k/2
/

�
� cos

�
�ky

a

�
1 � exp

� � T .�k
a
/2s
�

.�k/2s
:

Proof. As in the proof of Lemma B.1, we can focus on the case a WD 1, since the
general case then would follow from scaling. Thus, we consider the coefficients of the
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L2..0; 1// expansion of the functions jx � yj and .x � y/2 in terms of the Neumann
eigenfunctions, thus finding that

Z 1

0

jx � yj cos.�kx/dx D

8̂̂<̂
:̂
1

2
C y2 � y if k D 0;
1

.�k/2
� 2cos.�ky/

.�k/2
C .�1/k
.�k/2

if k ¤ 0;

Z 1

0

.x � y/2 cos.�kx/dx D

8̂̂<̂
:̂
1

3
� y C y2 if k D 0;
2

.�k/2
� 2y

�
.�1/k
.�k/2

� 1

.�k/2

�
if k ¤ 0:

Therefore, lyN .s; T / and A
y
N .s; T / take the form

l
y
N .s; T / D

Z T

0

�
1

2
C y2 � y

�
C 2

C1X
kD1

�
1

.�k/2
� 2cos.�ky/

.�k/2
C .�1/k
.�k/2

�
� cos.�ky/ exp.�t .�.2k C 1//2s/dt

D T
�
1

2
C y2 � y

�
C 2

C1X
kD1

�
1

.�k/2
� 2cos.�ky/

.�k/2
C .�1/k
.�k/2

�
� cos.�ky/

�
1 � exp.�T .�.2k C 1//2s/

.�.2k C 1//2s
�
;

A
y
N .s; T / D

Z T

0

2

�
1

3
C y2 � y

�
C 2

C1X
kD1

�
2

.�k/2
� 2y

�
.�1/k
.�k/2

� 1

.�k/2

��
� cos.�ky/ exp.�t .�k/2s/dt

D T
�
1

3
C y2 � y

�
C 2

C1X
kD1

�
2

.�k/2
� 2y

�
.�1/k
.�k/2

� 1

.�k/2

��
� cos.�ky/

�
1 � exp.�T .�k/2s/

.�k/2s

�
;

as claimed.



Appendix C

Alternative proof of Proposition 1.2

Here, we showcase an alternative proof of Proposition 1.2. The advantage of this
argument is that it does not make use of the explicit formula (2.2) for the density �st
of an s-stable subordinator. The details go as follows.

Proof of Proposition 1.2. As in the proof of Lemma B.1, we denote by an additional
subscript a the quantities related to the interval .0;a/. In particular, by (3.4) and (3.7),

ˆ
x;y
D;a.s; T / D a2s�1ˆx=a;y=aD;1

�
s;
T

a2s

�
; ˆ

x;y
N;a.s; T / D a2s�1ˆx=a;y=aN;1

�
s;
T

a2s

�
:

(C.1)
From this, (B.5) and (B.6) (and the corresponding scaling properties for the Neumann
case), we deduce that it suffices to establish Proposition 1.2 for a WD 1.

Hence, let x D y 2 � D .0; 1/. We have that

1 � exp.�T .�k/2s/
.�k/2s

C 1 � exp.�T .�.2k C 1//2s/
.�.2k C 1//2s

6
1

.�k/2s
C 1

.�.2k C 1//2s 6
2

.�k/2s

and, as a result, we obtain that the series in Lemmas B.1 and B.2 converge absolutely
for all s 2 .0; 1/ and T > 0 and uniformly in s in every set of the form .s0; 1/ with
s0 2 .0; 1/.

Consequently, the convergence or divergence of E.s; T / in this case is equivalent
to that ofˆx;xD .s;T / orˆx;xN .s;T /, depending on the boundary conditions considered.
Hence, when s 2 .0; 1=2�, for all M 2 N, we infer from (3.4) that

ˆ
x;x
D .s; T / > 2

MX
kD1

Z T

0

sin2.�kx/ exp.�t .�k/2s/dt

D 2
MX
kD1

sin2.�kx/.1 � exp.�T .�k/2s//
.�k/2s

(C.2)

and from (3.7) that

ˆ
x;x
N .s; T / > 2

MX
kD1

Z T

0

cos2.�kx/ exp.�t .�k/2s/dt

D 2
MX
kD1

cos2.�kx/.1 � exp.�T .�k/2s//
.�k/2s

: (C.3)
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We now want to check the fact that, when s 2 .0;1=2�, the quantities in (C.2) and (C.3)
are divergent as M ! C1. To this end, we need to estimate “how often” in k the
functions sin2.�kx/ and cos2.�kx/ can get close to zero. This concept is formalized
via the following claim.

Claim 1. Given x 2 .0; 1/,
• there exist "0 > 0 and K0 2 N \ Œ1;C1/ such that for every k0 2 N,

• there exists k 2 ¹k0; k0 C 1; : : : ; k0 CK0º such that sin2.�kx/ > "0.

To prove this, up to exchanging x with 1 � x, we can suppose that x 2 .0; 1
2
�. Thus,

we argue by contradiction and we suppose that, for some x 2 .0; 1
2
�, for every " > 0,

as small as we wish, and every K 2 N, as large as we wish, there exists k";K 2 N
such that for all k 2 ¹k";K ; k";K C 1; : : : ; k";K CKº we have that sin2.�kx/ < ".

This means that for all k 2 ¹k";K ; k";K C 1; : : : ; k";K C Kº the angle �kx is
sufficiently close to either 0 or � , modulo multiples of 2� . Hence, for concreteness,
let us suppose that the angle �k";Kx is sufficiently close to 0 modulo multiples of
2� , namely that

j�k";Kx C 2�J j < ı WD arcsin
p
"

for some J 2 N.
Therefore, for every j 2 N,

�.k";K C j / x C 2�J 2 .�ı C �jx; ı C �jx/:
We also note that, if j 6 ��2ı

�x
and ı is sufficiently small, it follows that

.�ı C �jx; ı C �jx/ � .�ı; � � ı/:
Choosing

K > 1C � � 2ı
�x

;

we thus conclude that, for every j 2 N \ Œ0; ��2ı
�x

�,

�.k";K C j /x C 2�J 2 .�ı; ı/:
Now, we remark that, for sufficiently small ı, we have

� � 2ı
�x

>
2.� � 2ı/

�
>
3

2
:

In particular, we can find j? 2 N \ Œ��2ı
�x
� 1; ��2ı

�x
�. It thereby follows that

ı > �.k";K C j?/x C 2�J D �k";K x C 2�J C �j? x > �ı C �j?x

> �ı C �x
�
� � 2ı
�x

� 1
�
D � � 3ı � �x >

�

2
� 3ı > ı;

provided that ı is sufficiently small. This is a contradiction and Claim 1 is established.
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Similarly, one can prove the following.

Claim 2. Given x 2 .0; 1/,
• there exist "0 > 0 and K0 2 N \ Œ1;C1/ such that for every k0 2 N,

• there exists k 2 ¹k0; k0 C 1; : : : ; k0 CK0º such that cos2.�kx/ > "0.

We now pick arbitrary integersN , xN 2N withN < xN and takeM WD xN.K0C 2/
in (C.2). Thus, assuming N large enough such that exp.�T .�N/2s/ 6 1

2
and using

Claim 1, we conclude that

ˆ
x;x
D .s; T / > 2

xN.K0C2/X
kDN

sin2.�kx/.1 � exp.�T .�k/2s//
.�k/2s

>
xN.K0C2/X
kDN

sin2.�kx/
.�k/2s

>
xN�1X
`D0

NC.`C1/K0C`X
kDNC`K0C`

sin2.�kx/
.�k/2s

>
1

�2s

xN�1X
`D0

NC.`C1/K0C`X
kDNC`K0C`

sin2.�kx/
.N C .`C 1/K0 C `/2s

>
1

�2s

xN�1X
`D0

"0

.N C .`C 1/K0 C `/2s : (C.4)

Sending now xN !C1 we conclude that, when s 2 .0; 1=2�,

ˆ
x;x
D .s; T / >

"0

�2s

C1X
`D0

1

.N C .`C 1/K0 C `/2s D C1: (C.5)

Similarly, combining (C.3) and Claim 2, we find that, when s 2 .0; 1=2�,

ˆ
x;x
N .s; T / D C1:

This and (C.5) yield that E.s; T / D C1 for all s 2 .0; 1=2�, as claimed in the state-
ment of Proposition 1.2.

We now consider the case s 2 .1=2; 1�. In this situation, it follows from (3.5) that,
for every x, y 2 .0; 1/,

ˆ
x;y
D .s; T / 6 2

C1X
kD1

1 � exp.�T .�k/2s/
.�k/2s

6
2

�2s

C1X
kD1

1

k2s
< C1: (C.6)
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Similarly, using (3.8), for all s 2 .1=2; 1� and x, y 2 .0; 1/,

ˆ
x;y
N .s; T / < C1:

From this estimate and (C.6) we infer that E.s; T / 2 .0;C1/ for all s 2 .1=2; 1/, as
desired.



Appendix D

Some technical results

In this chapter we collect some technical results which have been used throughout the
memoir.

Proposition D.1. Let .l; t/ 2 .0;C1/ � .0;C1/. Then,

lim
s&0

�st .l/

s
D te�t

l
: (D.1)

Proof. Thanks to (2.2), we have that

lim
s&0

�st .l/

s
D lim
s&0

1

�

Z C1
0

e�lue�tu
s cos.�s/tus

sin.tus sin.�s//
tuss

du

D
Z C1
0

lim
s&0

e�lu�tu
s cos.�s/tus

sin.tus sin.�s//
tuss

du

D te�t
Z C1
0

e�lu du

D te�t

l
; (D.2)

where we have used the fact that for each s 2 .0; 1
2
/ it holds thatˇ̌̌̌

e�lu�tu
s cos.�s/tus

sin.tus sin.�s//
tuss

ˇ̌̌̌
6 te�lu

�
�.0;1/.u/C �.1;C1/.u/u

1
2

� 2 L1..0;C1//
in order to apply the dominated convergence theorem in (D.2).

Proposition D.2. Let��Rn be bounded, smooth and connected. Then, ifE;F ��
and xE \ xF D ¿, there exists some constant CE;F 2 .0;C1/, depending only on E
and F , such that for all .s; T / 2 .0; 1/ � .0;C1/ it holds that

ˆ
x;y
N .s; T / 6 CE;F T for all .x; y/ 2 E � F: (D.3)

Proof. Thanks to the hypothesis xE \ xF D ¿, we can define the positive constant

Nd WD inf
x2E
y2F

jx � yj:
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Then, by the definition of ˆN and the upper bound in (2.19), we obtain that

ˆ
x;y
N .s; T / WD

Z T

0

Z C1
0

p�N .l; x; y/�
s
t .l/d l dt

6
Z T

0

Z C1
0

c� max
²
1

l
n
2

; 1

³
exp

�
�
Nd2
6l

�
�st .l/d l dt

6
Z T

0

Z C1
0

CE;F�
s
t .l/d l dt

DCE;F T;
where we set

CE;F WD sup
l2.0;C1/

c� max
²
1

l
n
2

; 1

³
exp

�
�
Nd2
6l

�
: (D.4)

This establishes the desired result.

Lemma D.3. Let � � Rn be bounded and f; g 2 C.x�/ be strictly positive in a
compact set K b �. Then,

inf
�2�K

R
�2
f .x/dxR

�2
g.x/dx

2 .0;C1/:

Proof. We set

m WD min
x2K

f .x/ 2 .0;C1/ and M D max
x2K

g.x/ 2 .0;C1/:

Then,

inf
�2�K

R
�2
f .x/dxR

�2
g.x/dx

>
m

M
2 .0;C1/:

We give some lower and upper bounds for the function FD.x; y/ defined in equa-
tion (2.62). This result is applied several times, when proving Theorem 1.7.

Lemma D.4. Let��Rn be bounded, smooth and connected. Then, for eachK b�

there exists some constant QcK;� 2 .0;C1/ such that

FD.x; y/ >
QcK;�
jx � yjn for all .x; y/ 2 C \ .K �K/; (D.5)

where C has been defined in (2.23).
Furthermore, it holds that

FD.x; y/ 6
Cn

jx � yjn for all .x; y/ 2 C ; (D.6)

for some Cn 2 .0;C1/.



Some technical results 87

Proof. We first prove (D.5). Thanks to equations (2.15) and (2.16) we observe that
there exists two constants c1; c2 and some TK;� 2 .0;C1/ depending on � and K,
such that

p�D.t; x; y/ >
c1

t
n
2

exp
�
� c2jx � yj

2

t

�
for all .t; x; y/ 2 .0;C1/ �K �K:

Therefore, thanks to equation (2.62) we deduce that for each .x; y/ 2 C \ .K �K/
it holds that

FD.x; y/ D
Z C1
0

p�D.l; x; y/

l
d l

>
Z TK;�

0

c1

l
n
2C1

exp
�
� c2jx � yj

2

l

�
dl

D c1c
�n2
2

jx � yjn
Z C1
c2jx�yj

2

TK;�

a
n
2�1e�a da

>
QcK;�
jx � yjn ;

where, by calling as usual dK the diameter of K, we defined

Qck;� WD c1c�
n
2

2

Z C1
c2d

2
K

TK;�

a
n
2�1e�a da: (D.7)

This concludes the proof of (D.5).
We now show (D.6). By equation (2.14) and the change of variable � D jx�yj2

4l

we obtain that

FD.x; y/ D
Z C1
0

p�D.l; x; y/

l
d l

6
1

.4�/
n
2

Z C1
0

1

l
n
2C1

exp
�
� jx � yj

2

4l

�
dl

6
1

�
n
2 jx � yjn

Z C1
0

�
n
2�1e�� d�

D �.n
2
/

�
n
2

1

jx � yjn :

Therefore, (D.6) is proved with Cn WD �.n2 /

�
n
2

.
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We investigate the problem of the Lévy flight foraging hypothesis in an ecological niche
described by a bounded region of space, with either absorbing or reflecting boundary
conditions. To this end, we consider a forager diffusing according to a fractional heat
equation in a bounded domain and we define several efficiency functionals whose optimality
is discussed in relation to the fractional exponent s ∈ (0, 1) of the diffusive equation. Such
an equation is taken to be the spectral fractional heat equation (with Dirichlet or Neumann
boundary conditions).

We analyze the biological scenarios in which a target is close to the forager or far from it. In
particular, for all the efficiency functionals considered here, we show that if the target is
close enough to the forager, then the most rewarding search strategy will be in a small
neighborhood of s = 0. Interestingly, we show that s = 0 is a global pessimizer for some of
the efficiency functionals. From this, together with the aforementioned optimality results, we
deduce that the most rewarding strategy can be unsafe or unreliable in practice, given its
proximity with the pessimizing exponent, thus the forager may opt for a less performant, but
safer, hunting method.

The biological literature has collected several pieces of evidence of foragers diffusing with
very low Lévy exponents, often in relation with a high energetic content of the prey. It is
thereby suggestive to relate these patterns, which are induced by distributions with a very
fat tail, with a high-risk/high-gain strategy, in which the forager adopts a potentially very
profitable, but also potentially completely unrewarding, strategy due to the high value of the
possible outcome.
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