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The Lipschitz extension modulus e(M) of a metric space M is the infimum over those L ∈ [1,∞]
such that for any Banach space Z and any 𝒞𝒞 𝒞 M, any 1-Lipschitz function f ∶ 𝒞𝒞 𝒞 Z can be
extended to an L-Lipschitz function F ∶ M 𝒞 Z. Johnson, Lindenstrauss and Schechtman proved
(1986) that if X is an n-dimensional normed space, then e(X) ≲ n. In the reverse direction, we
prove that every n-dimensional normed space X satisfies e(X) ≳ nc, where c > 0 is a universal
constant. Our core technical contribution is a geometric structural result on stochastic clustering
of finite dimensional normed spaces which implies upper bounds on their Lipschitz extension
moduli using an extension method of Lee and the author (2005). The separation modulus of a
metric space (M, dM) is the infimum over those σ ∈ (0,∞] such that for any Δ > 0 there is a
distribution over random partitions of M into clusters of diameter at most Δ such that for every
two points x, y ∈ M the probability that they belong to different clusters is at most σdM(x, y)/Δ.
We obtain upper and lower bounds on the separation moduli of finite dimensional normed spaces
that relate them to well-studied volumetric invariants (volume ratios and projection bodies). Using
these connections, we determine the asymptotic growth rate of the separation moduli of various
normed spaces. If X is an n-dimensional normed space with enough symmetries, then our bounds
imply that its separation modulus is equal to vr(X∗)√n up to factors of lower order, where
vr(X∗) is the volume ratio of the unit ball of the dual of X. We formulate a conjecture on
isomorphic reverse isoperimetric properties of symmetric convex bodies (akin to Ball’s reverse
isoperimetric theorem (1991), but permitting a non-isometric perturbation in addition to the
choice of position) that can be used with our volumetric bounds on the separation modulus to
obtain many more exact asymptotic evaluations of the separation moduli of normed spaces. Our
estimates on the separation modulus imply asymptotically improved upper bounds on the
Lipschitz extension moduli of various classical spaces. In particular, we deduce an improved upper
bound on e(ℓnp) when p > 2 that resolves a conjecture of Brudnyi and Brudnyi (2005), and we
prove that e(ℓn∞) ≍ √n, which is the first time that the growth rate of e(X) has been evaluated
(as dim(X) 𝒞 ∞) for any finite dimensional normed space X.
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Abstract

The Lipschitz extension modulus e.M/ of a metric space M is the infimum over
those L 2 Œ1;1� such that for any Banach space Z and any C �M, any 1-Lipschitz
function f W C! Z can be extended to anL-Lipschitz function F WM! Z. Johnson,
Lindenstrauss and Schechtman proved (1986) that if X is an n-dimensional normed
space, then e.X/ . n. In the reverse direction, we prove that every n-dimensional
normed space X satisfies e.X/ & nc , where c > 0 is a universal constant. Our core
technical contribution is a geometric structural result on stochastic clustering of finite
dimensional normed spaces which implies upper bounds on their Lipschitz exten-
sion moduli using an extension method of Lee and the author (2005). The separation
modulus of a metric space .M; dM/ is the infimum over those � 2 .0;1� such that
for any � > 0 there is a distribution over random partitions of M into clusters of
diameter at most � such that for every two points x; y 2M the probability that they
belong to different clusters is at most �dM.x; y/=�. We obtain upper and lower
bounds on the separation moduli of finite dimensional normed spaces that relate them
to well-studied volumetric invariants (volume ratios and projection bodies). Using
these connections, we determine the asymptotic growth rate of the separation moduli
of various normed spaces. If X is an n-dimensional normed space with enough sym-
metries, then our bounds imply that its separation modulus is equal to vr.X�/

p
n up

to factors of lower order, where vr.X�/
p
n.X�/ is the volume ratio of the unit ball of

the dual of X. We formulate a conjecture on isomorphic reverse isoperimetric proper-
ties of symmetric convex bodies (akin to Ball’s reverse isoperimetric theorem (1991),
but permitting a non-isometric perturbation in addition to the choice of position) that
can be used with our volumetric bounds on the separation modulus to obtain many
more exact asymptotic evaluations of the separation moduli of normed spaces. Our
estimates on the separation modulus imply asymptotically improved upper bounds on
the Lipschitz extension moduli of various classical spaces. In particular, we deduce
an improved upper bound on e.`np/ when p > 2 that resolves a conjecture of Brudnyi
and Brudnyi (2005), and we prove that e.`n1/ �

p
n, which is the first time that the

growth rate of e.X/ has been evaluated (as dim.X/!1) for any finite dimensional
normed space X.

Dedicated with awe to the memory of Jean Bourgain.

Keywords. Lipschitz extension, randomized clustering, convex geometry, local
theory of Banach spaces, projection bodies, volume ratios, Wasserstein spaces,
spectral geometry, Dirichlet eigenvalues, Cheeger sets, reverse isoperimetry
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Chapter 1

Introduction

Our core technical contribution is a geometric structural result (stochastic cluster-
ing) for subsets of finite dimensional normed spaces. It provides new links between
nonlinear questions in metric geometry and volumetric issues in convex geometry.
An unexpected aspect of our statement is that it contradicts an impossibility result
of the well-known work [76] by Charikar, Chekuri, Goel, Guha and Plotkin in the
computer science literature, thus leading to bounds that were previously thought to
be impossible. This is reconciled in Section 1.7, where we explain the source of the
error in [76].

The aforementioned link opens up a vista that allows one to apply the extensive
literature on the linear theory to important and well-studied nonlinear questions. It
also raises new fundamental issues within the linear theory that we will only begin
to address here. So, in order to fully explain both the history and the ideas and
their consequences, we will start with a quick overview of some of our main results
that assumes familiarity with standard concepts in the respective areas. We will then
present a gradual and complete introduction to our work that specifies all of the nec-
essary background.

1.1 Brief highlights of main results

Associate to every separable complete metric space .M; dM/ two bi-Lipschitz invari-
ants e.M/; SEP.M/ 2 .0;1� called, respectively, the Lipschitz extension modulus
of M and the separation modulus of M, that are defined as follows. The Lipschitz
extension modulus of M is the infimum over those L 2 .0;1� such that for every
Banach space Z and every subset C �M, every 1-Lipschitz function f W C! Z can
be extended to a Z-valued L-Lipschitz function that is defined on all of M. The sep-
aration modulus of M is the infimum over those � 2 .0;1� such that for any � > 0

there is a distribution over random partitions1 of M into clusters of diameter at most
� such that for every two points x;y 2M the probability that they belong to different
clusters is at most �dM.x; y/=�.

The question of estimating the Lipschitz extension modulus received great scruti-
ny over the past century; see Section 1.3 for an indication of (a small part of) the

1We are suppressing here measurability issues that are addressed in Section 1.7 and Sec-
tion 3.1.
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extensive knowledge on this topic. The separation modulus was introduced by Bartal
in the mid-1990s and received a lot of attention in the computer science literature
due to its algorithmic applications; see Section 1.7.3 for the history. Its connection to
Lipschitz extension was found by Lee and the author [171, 173], who proved that

e.M/ . SEP.M/:

By a well-known theorem of Johnson, Lindenstrauss and Schechtman [140], every
normed space X satisfies e.X/ D O.dim.X//. Here we obtain a power-type lower
bound on e.X/ in terms of dim.X/.

Theorem 1. There is a universal constant c > 0 such that e.X/ > dim.X/c for every
normed space X.

Theorem 1 improves over the previously best-available bound

e.X/ > ec
p

log dim.X/
I

see Remark 98 for the history of this question. Despite substantial efforts, the asymp-
totic growth rate (as dim.X/!1) of e.X/ was not previously known (even up to
lower order factors) for any sequence of normed spaces.

Theorem 2. For every n 2 N we have2 e.`n1/ �
p
n.

The previously best-known upper bound on e.`n1/ was nothing better than the
aforementioned general O.n/ bound of [140]. Theorem 2 is just one instance of our
asymptotically improved upper bounds on the Lipschitz extension moduli of many
normed spaces of interest; we also get, e.g., the best-known bound when X D `np for
any p > 2. Nevertheless, currently `n1 is essentially3 the only normed space whose
Lipschitz extension modulus is known up to lower order factors (by Theorem 2), and
the same question even for the Euclidean space `n2 remains a well-known longstand-
ing open problem; see Section 1.3 for more on this.

All of the upper bounds on the Lipschitz extension modulus that we obtain herein
use the upper bound on the separation modulus that appears in Theorem 3 below.
This theorem also contains a new lower bound on the separation modulus, which we

2We use the following conventions for asymptotic notation, in addition to the usual
O.�/; o.�/; �.�/ notation. Given a; b > 0, by writing a . b or b & a we mean that a 6 Cb
for some universal constant C > 0, and a� b stands for .a . b/^ .b . a/. If we need to allow
for dependence on parameters, we indicate it by subscripts. For example, in the presence of an
auxiliary parameter q, the notation a .q b means that a 6 C.q/b, where C.q/ > 0may depend
only on q, and similarly for a &q b and a �q b.

3The proof of Theorem 2 artificially gives more such spaces, e.g., `n1 ˚ `
n
2

, or `n1 ˚X for
any normed space X with dim.X/ 6

p
n.
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will see shows that in several cases of interest our results are a sharp evaluation of the
asymptotic growth rate of the separation modulus.4

Theorem 3. Let XD .Rn;k � kX/ and YD .Rn;k � kY/ be normed spaces whose unit
balls satisfy BY � BX. Then

vr.X�/
p
n . SEP.X/ .

diamX*.…BY/

voln.BY/
: (1.1)

In the left-hand side of (1.1), vr.X�/ is the volume ratio [293, 294] of the dual
X�, i.e., it is the nth root of the ratio of the volume of BX* and maximal volume of an
ellipsoid that is contained in BX* . In the right-hand side of (1.1), …BY is the projec-
tion body [251] of BY, and diamX*.�/ denotes diameter with respect to the metric on
Rn that is induced by X�. We will recall the definition of a projection body later5 and
it suffices to mention now that the mappingK 7!…K, which is of central importance
in convex geometry (see [47,102,190,282] for an indication of the extensive literature
on this topic), associates to every convex body K � Rn a convex body …K � Rn

that encodes isoperimetric properties of K.
A key contribution of Theorem 3 is the role of the auxiliary normed space Y,

which appears despite the fact that we are interested in the separation modulus of X.
By substituting Y D X into the right-hand side of (1.1) one does get a meaningful
estimate, and in particular the resulting bound is O.n/, i.e., (1.1) implies the bound
of [140]. However, we will see that by introducing a suitable perturbation Y of X, the
second inequality in (1.1) can sometimes be significantly stronger than the special
case Y D X. We will exploit this powerful degree of freedom heavily; its geometric
significance is discussed in Section 1.4.

The previously best-known upper and lower estimates on the separation moduli
of normed spaces are due to [76], where it was proved that

SEP.`n1/ � n and SEP.`n2/ �
p
n:

By bi-Lipschitz invariance, this implies that any n-dimensional normed space X sat-
isfies

n

dBM.`
n
1;X/

. SEP.X/ . dBM
�
`n2;X

�p
n; (1.2)

4Our approach also pertains to subsets of normed spaces, e.g., we will prove that for any
p 2 Œ1;1�, n 2 N and r 2 ¹1; : : : ; nº, the separation modulus of the set of n-by-n matrices of
rank at most r , equipped with the Schatten–von Neumann-p norm, is equal up to lower order
factors to max¹

p
r; r1=pº

p
n, which is new even in the Euclidean (Hilbert–Schmidt) setting

p D 2. However, for the purpose of this initial overview we will restrict attention to bounds for
the entire space X.

5By [187, 188] the mapping that assigns a convex body K � Rn to its projection body
…K is characterized axiomatically as the unique (up to scaling) translation-invariant SLn.R/-
contravariant Minkowski valuation.
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where dBM.�; �/ denotes the Banach–Mazur distance. Both of the bounds in (1.2) can
be inferior to those that follow from Theorem 3. For example, suppose that n D m2

for some m 2 N and consider X D `m1.`m1 /. Then,

dBM.X; `n1/ � dBM.X; `n2/ �
p
n

by the work [163] of Kwapień and Schütt. Therefore, in this case (1.2) becomes the
estimates

p
n.SEP.X/. n, while we will see that (1.1) implies that SEP.X/� n3=4.

The following corollary collects examples of applications of Theorem 3 that we
will deduce herein.

Corollary 4 (Examples of consequences of Theorem 3). The following statements
hold for any n 2 N.

• For any p > 1, the separation modulus of `np satisfies

SEP
�
`np
�
� nmax¹ 12 ;

1
p º: (1.3)

More generally, let .E; k � kE/ be any n-dimensional normed space with a 1-
symmetric basis e1; : : : ; en. Then, SEP.E/ is equal to the following quantity up to
lower order factors:

ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
:

• For any p > 1, the separation modulus of the Schatten–von Neumann trace class
Snp on Mn.R/ is

SEP
�
Snp
�
D nmax¹1; 12C

1
p ºCo.1/ D dim

�
Snp
�max¹ 12 ;

1
4C

1
2p ºCo.1/: (1.4)

More generally, let .E; k � kE/ be any n-dimensional normed space with a 1-
symmetric basis e1; : : : ; en and denote its unitary ideal by SE D .Mn.R/; k � kSE/.
Then, SEP.SE/ is equal to the following quantity up to lower order factors:

ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
p
n:

• For any p; q > 1, the separation modulus of the `np.`
n
q/ norm on Mn.R/ is

SEP
�
`np.`

n
q/
�
� nmax¹1; 1pC

1
q ;
1
2C

1
p ;
1
2C

1
q º

D dim
�
`np.`

n
q/
�max¹ 12 ;

1
2pC

1
2q ;

1
4C

1
2p ;

1
4C

1
2q º: (1.5)

• For any p; q > 1, the separation modulus of Mn.R/ equipped with the operator
norm k � k`np!`nq from `np to `nq is equal to the following quantity up to lower order
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factors: 8̂̂̂̂
<̂
ˆ̂̂:
n
3
2�

1
min¹p;qº if p; q > 2;

n
1
2C

1
max¹p;qº if p; q 6 2;

n if p 6 2 6 q;
nmax¹1; 1q�

1
pC

1
2 º if q 6 2 6 p:

• For any p; q > 1, the separation modulus of the projective tensor product `np y̋ `
n
q ,

i.e., the norm on Mn.R/ whose unit ball is the convex hull of the set

¹.xiyj / 2 Mn.R/I .x1; : : : ; xn/ 2 B`np ^ .y1; : : : ; yn/ 2 B`nq º;

is equal to the following quantity up to lower order factors:´
n
3
2 if max¹p; qº > 2;
n
1C 1

max¹p;qº if max¹p; qº 6 2:

All of the results in Corollary 4 are new, except for the range 1 6 p 6 2 of (1.3),
which is due to [76]. The range p 2 .2;1� of (1.3) is SEP.`np/�

p
n, which is incom-

patible with the statement SEP.`np/� n
1�1=p of [76]. We will explain the reason why

the latter assertion of [76] is erroneous in Remark 78.
The wealth of knowledge that is available on the volumetric quantities that appear

in (1.1) leads to new estimates that relate the separation modulus of an n-dimensional
normed space X to classical invariants of X. We will derive several such results herein,
without attempting to be encyclopedic. As a noteworthy example, we will deduce
from the first inequality in (1.1) that if BX is a polytope with �n vertices, then

SEP.X/ &
n

p
log �

: (1.6)

We will also deduce that if T2.X/ denotes the type 2 constant of X (see (1.77) or the
survey [203]), then

SEP.X/ & max
®p

dim.X/; T2.X/2
¯
: (1.7)

We will see that both (1.6) and (1.7) are sharp for the entire range of the relevant
parameters (e.g., in the two extremes, the case X D `n1 corresponds to � D O.1/ and
T2.X/�

p
n in (1.6) and (1.7), respectively, and the case when X isO.1/-isomorphic

to `n2 corresponds to log � � n and T2.X/ D O.1/ in (1.6) and (1.7), respectively).

1.1.1 A conjectural isomorphic reverse isoperimetric phenomenon

The lower bound on SEP.X/ in Theorem 3 is not always sharp. Indeed, consider the
space X D `n1 ˚ `

n
2 for which SEP.X/ � n yet vr.X�/

p
dim.X/ � n3=4. It could be,

however, that the upper bound on SEP.X/ in Theorem 3 is optimal for every X.
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Question 5. Is the separation modulus of any normed space XD .Rn;k � kX/ bounded
above and below by some universal constant multiples of the minimum of the quantity
diamX*.…BY/= voln.BY/ over all those normed spaces Y D .Rn; k � kY/ that satisfy
BY � BX?

See Remark 23 for an explanation why the minimum that is described in Ques-
tion 5 is affine invariant, which is necessary for Question 5 to make sense, since the
separation modulus is a bi-Lipschitz invariant.

For sufficiently symmetric spaces, we expect that the lower bound on SEP.X/ in
Theorem 3 is sharp.

Conjecture 6. Every finite dimensional normed space X with enough symmetries
satisfies

SEP.X/ � vr.X�/
p

dim.X/: (1.8)

The notion of having enough symmetries was introduced in [103]; its definition is
recalled in Section 1.6.2. We prefer to formulate Conjecture 6 using this notion at the
present introductory juncture even though weaker requirements are needed for our
purposes because it is a standard assumption in Banach space theory and it suffices
for all of the most pressing applications that we have in mind.

The upper bound on SEP.X/ in (1.8) implies by [173] that

e.X/ . vr.X�/
p

dim.X/;

which would be a valuable Lipschitz extension theorem due to the fact that estimat-
ing the volume ratio is typically tractable given the variety of tools and extensive
knowledge that are available in the literature. For example, Milman and Pisier [219]
proved (improving by lower-order factors over a major theorem of Bourgain and Mil-
man [49, 50]; see also [217]), that any finite dimensional normed space X satisfies

vr.X/ . C2.X/
�
1C logC2.X/

�
; (1.9)

where C2.X/ is the cotype 2 constant of X (see (1.77) or the survey [203]). Therefore,
if (1.8) holds, then

e.X/ . C2.X/
�
1C logC2.X/

�p
dim.X/; (1.10)

which would be a remarkable generalization of the bound e.`n2/ .
p
n of [173].

We expect that Theorem 3 already implies Conjecture 6, as expressed in the fol-
lowing conjecture which would yield a positive answer to Question 5 for normed
spaces with enough symmetries.

Conjecture 7. If X D .Rn; k � kX/ is a normed space with enough symmetries, then
there is a normed space Y D .Rn; k � kY/ that satisfies

BY � BX and
diamX*.…BY/

voln.BY/
. vr.X�/

p
n:
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As an illustrative example of Conjecture 7, consider the space X D `n1. We then
have vr..`n1/

�/D vr.`n1/DO.1/. One can compute that…B`n1 D 2
n�1B`n1 . There-

fore, diam`n
1
.…B`n1/= voln.B`n1/ � n, so taking Y D `n1 in Theorem 3 only gives

the bound SEP.`n1/ . n. However, we will prove that there exists a normed space
Y D .Rn; k � kY/ with BY � B`n1 for which diam`n

1
.…BY/= voln.BY/ .

p
n. More

generally, we will prove that Conjecture 7 (hence also Conjecture 6, by Theorem 3)
holds for any normed space for which the standard basis of Rn is 1-symmetric, and
we will also see that Conjecture 7 holds up to a logarithmic factor for its unitary ideal.

The minimization in Question 5 can be viewed as a shape optimization prob-
lem [130] that could potentially be approached using calculus of variations. Given
an origin-symmetric convex body K � Rn, it asks for the minimum of the affine
invariant functional L 7! outradiusKı.…L/= voln.L/ over all origin-symmetric con-
vex bodies L � K, where for any two origin-symmetric convex bodies A; B � Rn

we denote the minimum radius of a dilate of A that circumscribes B by

outradiusA.B/ D min¹r > 0 W B � rAº

and
Kı D ¹y 2 Rn W sup

x2K

hx; yi 6 1º

is the polar of K. Conjecture 7 asserts that if K has enough symmetries, then this
minimum is bounded above and below by universal constant multiples of vr.Kı/

p
n.

The minimization problem in Question 5 also has an isoperimetric flavor. As such,
its investigation led us to formulate the following conjectural twist of Ball’s reverse
isoperimetric phenomenon [22], which we think is a fundamental geometric open
question and it would be valuable to understand it even without its consequences that
we derive herein.

The isoperimetric quotient of a convex bodyK �Rn is defined (see [126, p. 269]
or [286]) to be

iq.K/ D
voln�1.@K/

voln.K/
n�1
n

: (1.11)

Using this notation, the classical Euclidean isoperimetric theorem states that

iq.K/ > iq
�
B`n

2

�
D

n
p
�

�
�
n
2
C 1

� 1
n

�
p
n: (1.12)

The following theorem of Ball [22] shows that a judicious choice of the scalar product
on Rn ensures that the isoperimetric quotient of a convex body can also be bounded
from above.

Theorem 8 (Ball’s reverse isoperimetric theorem [22]). For every n 2 N and every
origin-symmetric convex body K � Rn there exists a linear transformation S 2
SLn.R/ such that iq.SK/ 6 2n D iq.Œ�1; 1�n/.
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We expect that in the isomorphic regime (i.e., permitting non-isometric O.1/
perturbations), origin-symmetric convex bodies have asymptotically better reverse
isoperimetric properties than what is guaranteed by Theorem 8. In fact, we conjecture
that if in addition to passing fromK to SK for some S 2 SLn.R/, aO.1/-perturbation
of SK is allowed, then the isoperimetric quotient can be decreased to be of the same
order of magnitude as that of the Euclidean ball.

Conjecture 9 (Isomorphic reverse isoperimetry). There is a universal constant c > 0
with the following property. For every n2N and every origin-symmetric convex body
K � Rn, there exist a linear transformation S 2 SLn.R/ and an origin-symmetric
convex body L � Rn with cSK � L � SK and iq.L/ .

p
n.

Conjecture 9 can be restated analytically as the assertion that any n-dimensional
normed space is at Banach–Mazur distance O.1/ from a normed space whose unit
ball has isoperimetric quotient O.

p
n/. We will prove that Conjecture 9 holds when

K is the unit ball of `np for any p 2 Œ1;1� and n 2 N, and we will also see that
Conjecture 9 holds up to lower-order factors for any Schatten–von Neumann trace
class.

The requirementL� cSK of Conjecture 9 implies that n
p

voln.L/>c n
p

voln.K/.
So, the following weaker conjecture is implied by Conjecture 9; we will prove it for
any 1-unconditional body.

Conjecture 10 (Weak isomorphic reverse isoperimetry). For every n 2 N and every
origin-symmetric convex bodyK �Rn there exist a linear transformation S2SLn.R/
and an origin-symmetric convex bodyL� SK that satisfies n

p
voln.L/& n

p
voln.K/

and iq.L/ .
p
n.

In Section 1.6 we will elucidate the relation between the task of bounding from
above the rightmost quantity in (1.1) and isomorphic reverse isoperimetry. While
Conjecture 9 is the strongest version of the isomorphic reverse isoperimetric phe-
nomenon that we expect holds in full generality, we will see that it would suffice to
prove its weaker variant Conjecture 10 for the purpose of using Theorem 3. In par-
ticular, consider the following symmetric version of Conjecture 10, which we will
prove in Section 1.6 implies Conjecture 7 (hence, using Theorem 3, it also implies
Conjecture 6).

Conjecture 11 (Symmetric version of Conjecture 10). For every n 2 N and every
normed space X D .Rn; k � kX/ with enough symmetries whose isometry group is
a subgroup of the orthogonal group On � GLn.R/, there is a normed space Y D
.Rn; k � kY/ with BY � BX and n

p
voln.BY/ & n

p
voln.BX/ such that iq.BY/ .

p
n.

The only difference between Conjecture 10 and Conjecture 11 is that if we impose
the further requirement thatK is the unit ball of a normed space with enough symme-
tries whose isometry group consists only of orthogonal matrices, then we are naturally
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conjecturing that S can be taken to be the identity matrix, i.e., there is no need to
change the standard Euclidean structure on Rn.

We will prove Conjecture 11 for various spaces, including `np.`
n
q/ for any p;q > 1

and n 2 N, and any finite dimensional space with a 1-symmetric basis. Also, we will
show that Conjecture 11 holds up to a factor of O.

p
logn/ for any unitarily invariant

norm on Mn.R/. In general, an argument that was shown to us by B. Klartag and
E. Milman and is included in Section 7 (see also Section 1.6.3) shows that Conjec-
ture 10 and Conjecture 11 hold up to a factor of O.log n/. We will see that these
results lead to Corollary 4, and in general we will deduce that Conjecture 7, and
hence, thanks to Theorem 3, also Conjecture 6, hold up to lower order factors. Thus,
we will obtain the following theorem.

Theorem 12. SEP.X/� vr.X�/dim.X/ 12Co.1/ for any normed space X with enough
symmetries.

Assuming Conjecture 11, it is possible to compute the exact asymptotic growth
rate of the separation moduli of several important matrix spaces. For example, if
Conjecture 11 holds for Sn1, then we will see that the o.1/ term in (1.4) could be
removed altogether, i.e.,

8.p; n/ 2 Œ1;1� �N; SEP
�
Snp
�
� nmax¹1; 12C

1
p º: (1.13)

Also, assuming Conjecture 11 the lower order factors in the last two statements of
Corollary 4 could be removed, namely we will see that Conjecture 11 implies that the
separation modulus of Mn.R/ equipped with the operator norm k � k`np!`nq from `np to
`nq satisfies

SEP
�
Mn.R/; k � k`np!`nq

�
�

8̂̂̂̂
<̂
ˆ̂̂:
n
3
2�

1
min¹p;qº if p; q > 2;

n
1
2C

1
max¹p;qº if p; q 6 2;

n if p 6 2 6 q;
nmax¹1; 1q�

1
pC

1
2 º if q 6 2 6 p;

(1.14)

and the separation modulus of the projective tensor product `np y̋ `
n
q satisfies

SEP
�
`np y̋ `

n
q

�
�

´
n
3
2 if max¹p; qº > 2;
n
1C 1

max¹p;qº if max¹p; qº 6 2:
(1.15)

Remark 174 describes ramifications of these conjectural statements to norms of algo-
rithmic importance.

Roadmap. The rest of the Introduction effectively restarts the description of the
present work, with many more details/definitions/background/ideas of proofs, than
what we have included above. We organized the introductory material in this way
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because this work pertains to multiple mathematical disciplines, including notably
Banach spaces, convex geometry, nonlinear functional analysis, metric embeddings,
extension of functions, and theoretical computer science. The backgrounds of poten-
tial readers are therefore varied, so even though the above overview achieves the goal
of presenting the main results quickly, it inevitably includes terminology that is not
familiar to some. The aforementioned organizational choice makes the ensuing dis-
cussion accessible. Additional background can be found in the monographs [181,220,
305] (Banach space theory), [36] (nonlinear functional analysis), [201, 244] (metric
embeddings), [64] (extension of functions), as well as the references that are cited
throughout.

While the ensuing extended introductory text is not short, it achieves more than
merely a description of the results, history, concepts and methods: it also contains
groundwork that is needed for the subsequent sections. Thus, reading the Introduc-
tion will lead to a thorough conceptual understanding of the contents, leaving to the
remaining sections considerations that are for the most part more technical.

We will start by focusing on the classical Lipschitz extension problem because it
is more well known than the stochastic clustering issues that lead to most of our new
results on Lipschitz extension, and also because it requires less technicalities (e.g., a
suitable measurability setup) than our subsequent treatment of stochastic clustering.
Throughout the Introduction (and beyond), we will formulate conjectures and ques-
tions that are valuable even without the links to Lipschitz extension and clustering
that are derived herein. After the Introduction, the rest of this work will be orga-
nized thematically as follows. Section 2 is devoted to proofs of our various lower
bounds, namely impossibility results that rule out the existence of extensions and
clusterings with certain properties. Section 3 and Section 4 deal with positive results
about random partitions. Specifically, Section 3 is of a more foundational nature as
it describes the concepts, basic constructions, and proofs of measurability statements
that are needed for later applications in the infinitary setting (of course, measurabil-
ity can be ignored for statements about finite sets). Section 4 analyses in the case
of normed spaces a periodic version of a commonly used randomized partitioning
technique called iterative ball partitioning, and computes optimally (up to univer-
sal constant factors) the probabilities of its separation and padding events. Section 5
shows how to pass from random partitions to Lipschitz extension, by adjusting to the
present setting the method that was developed in [173]. Section 5 also contains further
foundational results on Lipschitz extension, as well questions and conjectures that are
of independent interest. Section 6 contains a range of volume and surface area esti-
mates that are needed in conjunction with the theorems of the preceding sections in
order to deduce new Lipschitz extension and stochastic clustering results for various
normed spaces and their subsets. Section 7 proves that Conjecture 10 and Conjec-
ture 11 hold up to a factor of O.logn/, and also shows that the approach that leads to
this result cannot fully resolve Conjecture 11.
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1.2 Basic notation

Given a metric space .M; dM/, a point x 2M and a radius r > 0, the corresponding
closed ball is denoted BM.x; r/D ¹y 2M W dM.y;x/6 rº. If .X;k � kX/ is a Banach
space (in this work, all vector spaces are over the real scalars unless stated otherwise),
then denote by BX the unit ball centered at the origin. Under this notation we have
BX D BX.0; 1/ and BX.x; r/ D x C rBX for every x 2 X and r > 0.

If .M; dM/; .N; dN/ are metric spaces and  WM! N, then for C �M the
Lipschitz constant of  on C is denoted k kLip.CIN/ 2 Œ0;1�. Thus, if C contains at
least two points, then

k kLip.CIN/
def
D sup

x;y2C
x¤y

dN

�
 .x/;  .y/

�
dM.x; y/

:

In the special case ND R we will use the simpler notation k kLip.CIR/ D k kLip.C/.
If .X;k � kX/; .Y;k � kY/ are isomorphic Banach spaces, then their Banach–Mazur

distance dBM.X;Y/ is the infimum of the products of the operator norms kT kX!Y

and kT �1kY!X over all possible (surjective) linear isomorphisms

T W X! Y:

The (bi-Lipschitz) distortion of a metric space .M; dM/ into a metric space .N; dN/,
denoted c.N;dN/.M; dM/ or cN.M/ if the underlying metrics are clear from the
context, is the infimum over those D 2 Œ1;1� for which there exists a mapping
� WM! N and (a scaling factor) � > 0 such that

8x; y 2M; �dM.x; y/ 6 dN

�
�.x/; �.y/

�
6 D�dM.x; y/: (1.16)

Fix n 2N. Throughout what follows, Rn will be always be endowed with its stan-
dard Euclidean structure, i.e., with the scalar product hx;yi D x1y1C � � � C xnyn for
x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 Rn. Given z 2 Rn X ¹0º, the orthogonal pro-
jection onto its orthogonal hyperplane z? D ¹x 2 Rn W hx; zi D 0º will be denoted
Projz? W R

n ! Rn. For 0 < s 6 n, the s-dimensional Hausdorff measure of a closed
subset A � Rn is denoted vols.A/. Integration with respect to the s-dimensional
Hausdorff measure is indicated by dx. If 0 < vols.A/ <1 and f W A! R is con-
tinuous, then write

�
A
f .x/ dx D vols.A/�1

�
A
f .x/ dx.

Given a normed space .X; k � kX/ and p 2 Œ1;1�, `np.X/ is the vector space Xn

equipped with the norm

8x D .x1; : : : ; xn/ 2 Xn; kxk`np.X/ D
�
kx1kX C � � � C kxnkX

� 1
p ;

where for p D 1 this is understood to be kxk`n1.X/ D maxj2¹1;:::;nº kxj kX. It is
common to use the simpler notation `np D `

n
p.R/ and we write as usual Sn�1 D @B`n

2
.
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M

F

))
C
?�

IdC!M

OO

f
// Z

Figure 1.1. Given K > 1, the assertion that the Lipschitz extension modulus of a metric space
M satisfies e.M/ < K means that for all subsets C �M, all Banach spaces Z and all 1-
Lipschitz mappings f W C ! Z, there is a K-Lipschitz mapping F WM ! Z such that the
above diagram commutes, where IdC!M W C!M is the formal inclusion.

The Schatten–von Neumann trace class Snp is the (n2-dimensional) space of all n by
n real matrices Mn.R/, equipped with the norm that is defined by

8T 2 Mn.R/; kT kSnp D
�
Tr
�
.T T �/

p
2

�� 1
p D

�
Tr
�
.T �T /

p
2

�� 1
p ;

where kT kSn1 D kT k`n2!`
n
2

is the operator norm of T when it is viewed as a linear
operator from `n2 to `n2 .

1.3 Lipschitz extension

As we recalled in Section 1.1, one associates to every metric space .M; dM/ a bi-
Lipschitz invariant6, called the Lipschitz extension modulus of .M;dM/ and denoted
e.M; dM/ or e.M/ if the metric is clear from the context, by defining it to be the
infimum over those K 2 Œ1;1� with the property that for every nonempty subset
C �M, every Banach space .Z; k � kZ/ and every Lipschitz function f W C ! Z
there is a mapping F WM ! Z that extends f , i.e., F.x/ D f .x/ whenever x 2
C, and kF kLip.M;Z/ 6 Kkf kLip.C;Z/; see Figure 1.1. All of the ensuing extension
theorems hold for a larger class of target metric spaces that need not necessarily
be Banach spaces, including Hadamard spaces and Busemann nonpositively curved
spaces [57], or more generally spaces that posses a conical geodesic bicombing (see,
e.g., [86]). This greater generality will be discussed in Section 5, but we prefer at
this introductory juncture to focus on the more classical and highly-studied setting of
Banach space targets.

When .X;k � kX/ is a finite dimensional normed space, the currently best-available
general bounds on the quantity e.X/ in terms of dim.X/ are contained the following
theorem.

6The assertion that e.M/ is a bi-Lipschitz invariant refers to the fact that the definition
immediately implies that if .N; dN/ is another metric space into which .M; dM/ admits a
bi-Lipschitz embedding, then e.M/ 6 cN.M/e.N/.
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Theorem 13. There is a universal constant c > 0 such that for any finite dimensional
normed space X,

dim.X/c . e.X/ . dim.X/: (1.17)

The bound e.X/ . dim.X/ in (1.17) is a famous result of Johnson, Lindenstrauss
and Schechtman [140], which they proved by cleverly refining the classical extension
method of Whitney [312]; different proofs of this estimate were found by Lee and the
author [173] as well as by Brudnyi and Brudnyi [61] (see also the discussion in the
paragraph following equation (1.37) below). It remains a major longstanding open
problem to determine whether the bound of [140] could be improved to

e.X/ D o
�

dim.X/
�
:

The new content of Theorem 13 is the lower bound on e.X/, which improves
over the previously known bound e.X/ > exp.c

p
log dim.X//; see Remark 98 for

the history of this question. It is a very interesting open problem to determine the
supremum over those c for which Theorem 13 holds.7 More generally, it is natural to
aim to evaluate the precise power-type behavior of e.X/ as dim.X/!1 for specific
(sequences of) finite dimensional normed spaces X. However, prior to the present
work and despite many efforts over the years, this was not achieved for any finite
dimensional normed space whatsoever.

Theorem 14 (Restatement of Theorem 2). For every n 2 N we have e.`n1/ �
p
n.

The bound e.`n1/ &
p
n follows from a combination of [60, Theorem 4] and [62,

Theorem 1.2]. The new content of Theorem 14 is the upper bound e.`n1/ .
p
n

(and, importantly, the extension procedure that leads to it; see below). The previously
best-known upper bound on e.`n1/ was the aforementioned O.n/ estimate of [140].
The question of evaluating the asymptotic behavior of e.`np/ as n ! 1 for each
p 2 Œ1;1� is natural and longstanding; it was stated in [60, Problem 2] and reiterated
in [63, Section 4], [62, Problem 1.4] and [64, Problem 8.14]. Theorem 14 answers this
question when p D1. The upper bound on e.`n1/ of Theorem 14 is a special case of
a general extension criterion that provides the best-known Lipschitz extension results
in other settings (including for `np when p > 2), but we chose to state it separately
because it yields the first (and currently essentially only) family of normed spaces for
which the growth rate of their Lipschitz extension moduli has been determined.

Remark 15. It is also meaningful to study extension of � -Hölder functions for any
0 < � 6 1. Namely, one can analogously define the � -Hölder extension modulus of a
metric space .M; dM/, denoted e� .M/. Alternatively, this notion falls into the above

7Our proof of the lower bound on e.X/ of Theorem 13 shows that this supremum is at least
1
12

; see equation (2.5).
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Lipschitz-extension framework because one can define

e� .M/
def
D e

�
M; d �M

�
: (1.18)

The results that we obtain herein also yield improved estimates on � -Hölder extension
moduli; see Corollary 140. However, when � < 1 we never get a matching lower
bound (the reason why we can do better in the Lipschitz regime � D 1 is essentially
due to the fact that Lipschitz functions are differentiable almost everywhere). For
example, in the setting of Theorem 14 we get the upper bound

8� 2 .0; 1�; e�
�
`n1
�
. n

�
2 ; (1.19)

but the best lower bound on e� .`n1/ that we are at present able to prove is

e�
�
`n1
�
& nmax¹ �4 ;

�
2C�

2�1º
D

´
n
�
4 if 0 6 � 6

p
65�1
8

;

n
�
2C�

2�1 if
p
65�1
8
6 � 6 1:

(1.20)

We conjecture that e� .`n1/ �� n
�
2 , but proving this for � < 1 would likely require a

genuinely new idea.

Question 16. Despite its utility in many cases, the extension method that underlies
Theorem 14 does not yield improved bounds for some important spaces, including
notably `n1 and `n2 . Thus, determining the asymptotic behavior of e.`n1/ and e.`n2/ as
n!1 remains a tantalizing open question. Specifically, the currently best-known
bounds on e.`n1/ are

p
n . e

�
`n1
�
. n; (1.21)

where the first inequality in (1.21) is due to Johnson and Lindenstrauss [138] and the
second inequality in (1.21) is the aforementioned general upper bound of [140] on
the Lipschitz extension modulus of any n-dimensional normed space. The currently
best-known bounds in the Hilbertian setting are

4
p
n . e

�
`n2
�
.
p
n; (1.22)

where the first inequality in (1.22) is due to Mendel and the author [210] (a different
proof of this lower bound on e.`n2/ follows from [231]), and the second inequality
in (1.22) is from [173].

By the bi-Lipschitz invariance of the Lipschitz extension modulus, the second
inequality in (1.22) implies the following bound from [173], which holds for every
finite dimensional normed space X:

e.X/ . dBM
�
X; `dim.X/

2

�p
dim.X/: (1.23)

This refines the upper bound on e.X/ in (1.17) because dBM.X; `dim.X/
2 / 6

p
dim.X/

by John’s theorem [137].
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Remark 17. In the context of the aforementioned question whether the bound
e.X/ . dim.X/ of [140] is optimal, by (1.23) we see that e.X/ D o.dim.X// unless
the Banach–Mazur distance between X and Euclidean space is of order

p
dim.X/.

Structural properties of such spaces of extremal distance to Euclidean space have
been studied in [15, 43, 142, 221, 255]; see also [305, Chapters 6 and 7]. In particu-
lar, the Mil’man–Wolfson theorem [221] asserts that this holds if and only if X has a
subspace of dimension k D k.dim.X// whose Banach–Mazur distance to `k1 isO.1/,
where limn!1 k.n/ D1.

As dBM.`
n
p; `

n
2/� n

jp�2j=.2p/ for all n 2N and p 2 Œ1;1� (see [139, Section 8]),
it follows from (1.23) that

e
�
`np
�
.

´
n
1
p if p 2 Œ1; 2�;

n1�
1
p if p 2 Œ2;1�:

(1.24)

(1.24) was the previously best-known upper bound on e.`np/, and here we improve it
for every p > 2.

Theorem 18. For every n 2 N and every p 2 Œ1;1� we have e.`np/ . n
max¹ 12 ;

1
p º.

Theorem 14 is the case p D 1 of Theorem 18. We do not know if Theorem 18
is optimal (perhaps up to lower order factors) as n!1 for fixed p 2 Œ2;1/, but
we conjecture that this is indeed the case, which would resolve [60, Problem 2]. The
currently best-known lower bound on e.`np/ for every p 2 Œ1;1� is

e
�
`np
�
&

8̂̂̂̂
<̂
ˆ̂̂:
n
1
p�

1
2 if 1 6 p 6 4

3
;

4
p
n if 4

3
6 p 6 2;

n
1
2p if 2 6 p 6 3;
n
1
2�

1
p if 3 6 p 61:

(1.25)

A lower bound on e.`np/ that coincides with (1.25) when p 2 Œ1; 4=3� [ Œ3;1� is
stated in [64, Corollary 8.12], but [64, Corollary 8.12] is weaker than (1.25) when
4=3<p < 3. The reason for this is that the lower bound of [210] on e.`n2/ that appears
in (1.22) was not available when [64] was written, but (1.25) for 4=3 < p < 3 follows
quickly by combining the first inequality in (1.22) with [99]; see Remark 2.4.

Remark 19. Theorem 18 resolves negatively a conjecture that A. Brudnyi and Y.
Brudnyi posed as Conjecture 5 in [60]. They conducted a comprehensive study of the
linear extension problem for real-valued Lipschitz functions, where one considers for
a metric space .M;dM/ a quantity �.M/which is defined the same as e.M/, but with
the further requirements that the function f is real-valued and that the extended func-
tion F depends linearly on f . Namely, �.M/ is the infimum over those K 2 Œ1;1�
such that for every C �M there is a linear operator ExtC W Lip.C/! Lip.M/ that
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assigns to every Lipschitz function f W C! R a function ExtCf WM! R satisfying
ExtCf .s/ D f .s/ for every s 2 C, and

kExtCf kLip.M/ 6 Kkf kLip.C/:

They also considered a natural variant of this quantity when M D X is a Banach
space, denoted �conv.X/, which is defined almost identically to �.X/ except that now
the subset C is only allowed to be any convex subset of X rather than a subset of X
without any additional restriction. Conjecture 5 in [60] states that

8.p; n/ 2 Œ1;1� �N; �
�
`np
�
�p �conv

�
`np
�p
n: (1.26)

Theorem 18 implies that this conjecture is false for every p 2 .2;1�. Indeed, the
asymptotic behavior of �conv.`

n
p/ was evaluated in [63, Theorem 2.19], where it was

shown that
8p 2 Œ1;1�; �conv

�
`np
�
� n

ˇ̌
1
2�

1
p

ˇ̌
:

Consequently, �conv.`
n
p/
p
n � n1�

1
p when p > 2. Next, in [62] a quantity �.M/

was associated to a metric space .M; dM/ by defining it almost identically to the
definition of e.M/, except that the target Banach space Z is allowed to be any finite
dimensional Banach space rather than any Banach space whatsoever. By definition
�.M/ 6 e.M/, but actually �.M/ D �.M/ thanks to [62, Theorem 1.2] (see the
work [11] of Ambrosio and Puglisi for more on this “linearization phenomenon”).
Using these results in combination with Theorem 18, we see that for every p 2 .2;1�,
as n!1 we have

�
�
`np
�
D �

�
`np
�
6 e

�
`np
�
.
p
n D o

�
n1�

1
p
�
:

Thus, �.`np/ D o
�
�conv.`

n
p/
p
n
�

as n!1 for any p > 2, in contrast to the conjec-
ture (1.26) of [60].

Prior to passing to the general Lipschitz extension theorem that underlies the new
results that were described above, we will further illustrate its utility by stating one
more concrete application. For each p 2 Œ1;1� and n 2 N, if k 2 ¹1; : : : ; nº, then let
.`np/6k denote the subset of Rn consisting of those vectors with at most k nonzero
coordinates, equipped with the metric that is inherited from `np .

Theorem 20. For every p 2 Œ1;1�, every n 2 N and every k 2 ¹1; : : : ; nº we have

e
�
.`np/6k

�
. kmax¹ 1p ;

1
2 º:

Theorem 18 is the special case k D n and p > 2 of Theorem 20. If 1 6 p 6 2 and
k D n, then Theorem 20 is the estimate (1.24), which is the best-known upper bound
on e.`np/ for p in this range. However, for general k 2 ¹1; : : : ; nº Theorem 20 yields
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a refinement of (1.24) in the entire range p 2 Œ1;1� which does not seem to follow
from previously known results. In particular, the case p D 2 of Theorem 20 becomes

e
�
.`n2/6k

�
.
p
k: (1.27)

Even though (1.27) concerns a Euclidean setting, its proof relies on a construction that
employs a multi-scale partitioning scheme using balls of an auxiliary metric on Rn

that differs from the ambient Euclidean metric. The utility of such a non-Euclidean
geometric reasoning despite the Euclidean nature of the question being studied is
discussed further in Section 1.4.

1.4 A volumetric upper bound on the Lipschitz extension modulus

We will prove that Theorem 20 (hence also its special cases Theorem 14 and The-
orem 18) is a consequence of Theorem 21 below, which is a Lipschitz extension
theorem for subsets of finite dimensional normed spaces in terms of volumes of
hyperplane projections of their unit balls. Throughout what follows, for dealing with
volumetric notions we will adhere to the following conventions. Given n 2 N, when
we say that X D .Rn; k � kX/ is a normed space we mean that the underlying vector
space is Rn and that k � kX W Rn! Œ0;1/ is a norm on Rn. This is, of course, always
achievable by fixing any scalar product on an n-dimensional normed space. While the
ensuing statements hold in this setting, i.e., for an arbitrary identification of X with
Rn, a judicious choice of such an identification is beneficial; the discussion of this
important matter is postponed to Section 1.6.2 because it is not needed for the initial
description of the main results. We will continue using the notation

BX D ¹x 2 Rn W kxkX 6 1º

for the unit ball of X. Also, given C�Rn we denote by CX the metric space consisting
of the set C equipped with the metric that is inherited from k � kX. This notation is
important for us because we will crucially need to simultaneously consider more than
one norm on Rn.

Theorem 21. Suppose that n 2 N and that X D .Rn; k � kX/ and Y D .Rn; k � kY/

are two normed spaces. Then, for every C � Rn we have the following upper bound
on the Lipschitz extension modulus of CX:

e.CX/ .
�

sup
x;y2C
x¤y

kx � ykX

kx � ykY

�
sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BY

�
voln.BY/

�
kx � yk`n

2

kx � ykX

�
: (1.28)

We will next discuss the geometric meaning of Theorem 21 and derive some of
its consequences, including Theorem 20. Firstly, by homogeneity the case C D Rn
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of (1.28) becomes

e.X/ .
�

sup
y2@BY

kykX
�

sup
x2@BX

�
voln�1

�
Projx?BY

�
voln.BY/

kxk`n
2

�
: (1.29)

The quantity supy2@BY kykX in (1.29) is the norm kIdnkY!X of the identity matrix
Idn 2 Mn.R/ as an operator from Y to X. Alternatively,

sup
y2@BY

kykX D
1

2
diamX.BY/;

where for each C � Rn we denote its diameter with respect to the metric that X
induces by

diamX.C/ D sup
x;y2C

kx � ykX:

Given a convex bodyK � Rn, let…�K � Rn be the polar of the projection body
of K, which is defined to be the unit ball of the norm k � k…*K on Rn that is given by
setting for every x 2 Rn X ¹0º,

kxk…*K
def
D
1

2

�
@K

ˇ̌
hx;NK.y/i

ˇ̌
dy D voln�1

�
Projx?K

�
kxk`n

2
; (1.30)

where NK.y/ 2 Sn�1 denotes the unit outer normal to @K at y 2 @K (which is
uniquely defined almost everywhere with respect to the surface-area measure on @K),
and the final equality in (1.30) is the Cauchy projection formula (see, e.g., [102,
Appendix A]). The projection body …K of K is the polar of …�K. These impor-
tant notions were introduced by Petty [251]. When X D .Rn; k � kX/ is a normed
space let …�X be the normed space whose unit ball is …�BX. Let …X D .…�X/� be
the normed space whose unit ball is …BX.

By substituting (1.30) into (1.29) we get the following interpretation of our bound
on e.X/ in terms of analytic and geometric properties of projection bodies; it is worth-
while to state it as a separate corollary even though it is only a matter of notation
because of its intrinsic interest and also because these alternative viewpoints were
useful for guiding some of the subsequent considerations.

Corollary 22. Any two normed spaces X D .Rn; k � kX/;Y D .Rn; k � kY/ satisfy

e.X/ .
diamX.BY/ diam…*Y.BX/

voln.BY/
�
kIdnkY!XkIdnkX!…*Y

voln.BY/

D
kIdnkX!YkIdnk…Y!X*

voln.BY/
�

diamX.BY/ diamX*.…BY/

vol.BY/
: (1.31)

The penultimate step in (1.31) is duality (the norm of an operator equals the norm
of its adjoint) and the final quantity in (1.31) relates Theorem 21 to the second esti-
mate in Theorem 3.
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Remark 23. It is worthwhile to note that Corollary 22 has the right affine invari-
ance. For S 2 SLn.R/ let SXD .Rn; k � kSX/ be the normed space whose unit ball is
SBX. Equivalently, kxkSX D kS

�1xkX for every x 2Rn. Then X and SX are isomet-
ric, so e.SX/ D e.X/. We have .SX/� D .S�/�1X� (by definition), and ….SBY/ D

.S�/�1…BY by [251]. From this we see that diam.SX/*.…BSY/ D diamX*.…BY/.
Thus, the minimum of the right-hand side of (1.31) over all normed spaces Y D
.Rn; k � kY/ is also invariant under the action of SLn.R/.

The special case of Theorem 21 in which the normed space Y coincides with
the given normed space X is in itself a nontrivial bound on the Lipschitz extension
modulus. Examining this special case first will help elucidate how the idea arose to
introduce an auxiliary space Y that may differ from X, and why this can yield stronger
estimates. If X D Y, then the bound (1.28) becomes

e.CX/ . sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BX

�
voln.BX/

�
kx � yk`n

2

kx � ykX

�
: (1.32)

Correspondingly, the bound (1.29) becomes

e.X/ . sup
z2@BX

�
voln�1

�
Projz?BX

�
voln.BX/

kzk`n
2

�
D

diam…*X.BX/

voln.BX/
: (1.33)

Even these weaker estimates suffice to obtain new results, e.g., we will see that this
is so if 2 6 p D O.1/ and X D `np . However, as we will soon explain, (1.33) does
not imply an upper bound on `n1 that is better than the aforementioned general bound
of [140]. Despite this shortcoming of (1.32) and (1.33) relative to (1.28), it is worth-
while to state these special cases of Theorem 21 separately because they are simpler
than (1.28) and hence perhaps somewhat easier to remember. Moreover, a naïve way
to enhance the applicability of (1.32) is to leverage the fact that the Lipschitz exten-
sion modulus is a bi-Lipschitz invariant, so that

e.CX/ 6 kIdnkLip.CY;CX/kIdnkLip.CX;CY/e.CY/:

Consequently, by estimating e.CY/ through (1.32) we formally deduce from (1.32)
that

e.CX/ .
�

sup
x;y2C
x¤y

kx � ykX

kx � ykY

��
sup
x;y2C
x¤y

kx � ykY

kx � ykX

�

� sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BY

�
voln.BY/

�
kx � yk`n

2

kx � ykY

�
: (1.34)

We do not see how to deduce Theorem 18 and Theorem 20 from (1.34). However, we
will show that (1.34) suffices for proving Theorem 14 (as well as some other results
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that will be presented later). In summary, even the case of Theorem 21 in which the
auxiliary space Y coincides with X is valuable, but Theorem 21 does not follow from
merely combining its special case Y D X with bi-Lipschitz invariance.

Given a normed space X D .Rn; k � kX/ and z 2 Rn X ¹0º, the quantity

1

n
voln�1

�
Projz?BX

�
kzk`n

2
(1.35)

is equal to the volume of the cone

Conez.BX/
def
D conv

�
¹zº [ Projz?BX

�
� Rn (1.36)

whose base is the .n � 1/-dimensional convex set Projz?BX � z
? and whose apex

is z. In (1.36) and throughout what follows, conv.�/ denotes the convex hull. Thus,
the estimate (1.33) can be restated as follows:

e.X/ . n sup
z2@BX

voln
�
Conez.BX/

�
voln.BX/

: (1.37)

Through (1.37) we see that the geometric interpretation of the “bad spaces” X
for (1.33) is that these are the spaces that have a “pointy direction” z 2 @BX for which
the volume of the cone Conez.BX/ is a significant fraction of the volume of BX.
Examples will be presented next, but note first that a short geometric argument (see
the proof of [109, Lemma 5.1]) shows that voln.Conez.BX// 6 voln.BX/=2, so the
right-hand side of (1.37) is at most n=2. Hence, (1.33) is a refinement of the classical
bound e.X/ . n of [140].

Nevertheless, a “vanilla” application of (1.33) does not yield an asymptotically
better estimate than that of [140] even when X D `n1. Indeed, B`n1 D Œ�1; 1�

n and a
simple argument (see [75]) shows that

8z 2 Rn X ¹0º;
voln�1

�
Projz? Œ�1; 1�

n
�

voln.Œ�1; 1�n/
D
kzk`n

1

2kzk`n
2

: (1.38)

So, by considering the all 1’s vector z D 1¹1;:::;nº 2 @B`n1 we see that for X D
`n1 the right-hand side of (1.33) is at least n=2. The right-hand side of (1.33) is at
least n=2 when X D `n1 , as seen by taking z D .1; 0; : : : ; 0/ 2 @B`n

1
. Such “prob-

lematic" directions z 2 @BX can sometimes be the overwhelming majority of @BX.
Consider Ball’s counterexample [21] to the Shepard Problem [287], which states that
for any n 2 N there is a normed space X D .Rn; k � kX/ such that voln.BX/ D 1

yet voln�1.Projz?BX/ &
p
n for every z 2 Sn�1. Since voln.B`n

2
/ 6 .3=

p
n/n while

voln.BX/ D 1, the proportion of those z 2 @BX for which kzk`n
2
>
p
n=4 tends to 1

as n!1 (exponentially fast). Any such z satisfies

voln�1.Projz?BX/

voln.BX/
kzk`n

2
& n:
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These obstacles can sometimes be overcome by perturbing the given normed
space X prior to invoking (1.33), i.e., by using of Theorem 21 with a suitably chosen
auxiliary normed space YD .Rn;k � kY/. In particular, k � k`n

2
6 n1=2�1=pk � k`np when

p > 2 by Hölder’s inequality, so Theorem 18 follows from a substitution of the space
Ynp of Theorem 24 below into Theorem 21 (with X D `np), or even into (1.34).

Theorem 24. For any n 2 N and p 2 Œ1;1� there is a normed space

Ynp D .R
n; k � kYnp /

that satisfies

8x 2 Rn X ¹0º; kxkYnp � kxk`np ; and
voln�1

�
Projx?BYnp

�
voln

�
BYnp

� . n
1
p : (1.39)

The case p D 1 of Theorem 24 implies Theorem 20 by an application of The-
orem 21. Indeed, fix p > 1 and n 2 N. Suppose that x; y 2 .`np/6k for some k 2
¹1; : : : ; nº. Then x � y has at most 2k nonzero coordinates. Therefore, if Yn1 is as in
Theorem 24, then by Hölder’s inequality we have

.2k/�max¹ 12�
1
p ;0ºkx � yk`n

2
6 kx � yk`np 6 .2k/

1
p kx � yk`n1 � k

1
p kx � ykYn1 :

(1.40)
Theorem 20 follows by substituting these bounds and the case p D 1 of (1.39)
into (1.28). Observe that we would have obtained the weaker bound e..`np/6k/ .
k1=pC1=2 if we used (1.34) instead of (1.28).

If p D O.1/, then one can take Ynp D `np in Theorem 24. In fact, the direction
z 2 Sn�1 at which

max
z2Sn�1

voln�1
�
Projz?B`np

�
(1.41)

is attained was determined by Barthe and the author in [32]. This result implies that

8p > 1; max
z2Sn�1

voln�1
�
Projz?B`np

�
voln.B`np /

� n
1
p

p
min¹p; nº: (1.42)

As [32] computes (1.41) exactly, the implicit constant factors in (1.42) can be eval-
uated, but in the present context such precision is of secondary importance. While
(1.42) follows from [32] (see the deduction in [227]), we will give a self-contained
proof of (1.42) in Section 6 as a special case of a more general result that we will
use for other purposes as well. In the range q 2 .2;1/, a different approach to com-
puting (1.41) was found in [157]. Earlier methods for estimating (1.41) with worse
lower order factors are due to [223, 286]; the latter is an adaptation of an idea (used
for related purposes) in [45].

For each k 2 ¹1; : : : ; nº, by applying (1.28) with Y D `nq for some q > p, using
(1.42) with p replaced by q, and optimizing the resulting bound over q, one obtains
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a result that matches Theorem 20 up to unbounded lower order factors. More pre-
cisely, the best that one can get with this approach is when

q D max
°
2 log

�n
k

�
; p
±

if p 6 log.2k/. If p > log.2k/, then use (1.28) with Y D `nlog.2k/.
Theorem 24 provides an auxiliary space Y for which a use of (1.28) removes

the above lower order factors, and yields a sharp result when p D 1 (we conjecture
that it is sharp for any p > 2). Regardless of whether we apply (1.28) with the space
YD Yn1 of Theorem 24 or with YD `nq for a suitable choice of q > p, we have seen
that without using an auxiliary space Y ¤ `np in (1.28) we do not come close to such
results.

Even though in Theorem 21 we are interested in extending functions that are
Lipschitz in the metric that is induced by the given norm k � kX, the underlying reason
for the bounds of Theorem 21 is a partitioning scheme (to be described below) that
iteratively carves out balls in the metric that is induced by the auxiliary norm k � kY.
So, the perturbation of X into Y amounts to exhibiting a Lipschitz extension operator
through the use of a multi-scale construction that utilizes geometric shapes that differ
from balls in the ambient metric. This strategy is feasible because the quantity e.CX/

in the left-hand side of (1.32) is a bi-Lipschitz invariant, while the volumes that appear
in the right-hand side of (1.32) scale exponentially in n. Hence, by passing to an
equivalent norm one could hope to reduce the right-hand side of (1.32) significantly,
while not changing the left-hand side of (1.32) by too much.

This perturbative approach is decisively useful for X D `n1. When one unravels
the ensuing proofs, the upper bound on e.`n1/ of Theorem 14 arises from a multi-
scale construction of an extension operator (using a gentle partition of unity [173])
that utilizes a partition of space that is obtained by iteratively removing sets of the
form xC rBYn1 , where Yn1 is as in Theorem 24. If one carries out the same procedure
while using balls of the intrinsic metric of `n1 (namely, hypercubes x C rŒ�1; 1�n

in place of x C rBYn1 , which look like hypercubes with “rounded corners”), then
only the weaker bound e.`n1/ . n is obtained. We already mentioned that such a
phenomenon even occurs in the proof of the Euclidean estimate (1.27).

The following two examples describe further uses of Theorem 21; we will work
out several more later.

Example 25. In the forthcoming work [234], the author and Schechtman prove (for
an application to metric embedding theory) the following asymptotic evaluation of
the maximal volumes of hyperplane projections of the unit balls of the Schatten–von
Neumann trace classes:

8q > 1; max
A2Mn.R/X¹0º

voln2�1
�
ProjA?BSnq

�
voln2

�
BSnq

� � n
1
2C

1
q

p
min¹q; nº: (1.43)
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Upon substitution into Theorem 21, this yields the following new estimates on the
Lipschitz extension moduli of Schatten–von Neumann trace classes, which holds for
every p > 1 and every integer n > 2:

e
�
Snp
�
.

´
n
1
2C

1
p if p 2 Œ1; 2�;

n
p

min¹p; lognº if p 2 Œ2;1�:
(1.44)

Indeed, by Hölder’s inequality

k � kSn
2
6 nmax¹0; 12�

1
p ºk � kSnp ;

so (1.44) for p 6 log n follows from a substitution of these point-wise bounds and
(1.43) when q D p into the case X D Y D Snp of Theorem 21. The case p > log n
of (1.44) follows from the same reasoning using (1.43) when q D log n and Theo-
rem 21 for X D Snp and Y D Snq , since in this case dBM.Snp;S

n
q/ . 1. Note that, since

dim.Snp/ D n
2, for every p 2 Œ1;1� the bound on e.Snp/ in (1.44) is o.dim.Snp//, i.e.,

it is asymptotically better than what follows from [140].
More generally, given p > 1, an integer n > 2 and r 2 ¹3; : : : ; nº, let .Snp/6r be

the set of n by n matrices of rank at most r , equipped with the metric inherited from
Snp . Then, (1.44) has the following strengthening:

e
�
.Snp/6r

�
. rmax¹ 1p ;

1
2 º
p
n �

8<:
q

max¹log.n
r
/; pº if p 6 log r;

p
logn if p > log r:

(1.45)

To justify (1.45), apply Theorem 21 with X D Snp and Y D Snq for some q > p
while using (1.43), and optimize the resulting bound over q. Specifically, as for
A;B 2 .Snp/6r the matrix A�B has at most 2r nonzero singular values, by Hölder’s
inequality we have

kA � BkSn
2
6 .2r/max¹0; 12�

1
p ºkA � BkSnp

and
kA � BkSnp 6 .2r/

1
p�

1
q kA � BkSnq :

In combination with (1.43), we therefore get the following bound from (1.28):

e
�
.Snp/6r

�
.
�

sup
A;B2.Snp/6r

A¤B

kA � BkSnp

kA � BkSnq

�
sup

A;B2.Snp/6r
A¤B

�
n
1
2C

1
q
p
q
kA � BkSn

2

kA � BkSnp

�
. r

1
p�

1
q n

1
2C

1
q
p
qrmax¹ 12�

1
p ;0º: (1.46)

The q > p that minimizes the right-hand side of (1.46) is max¹2 log.n=r/; pº, yield-
ing (1.45) when p 6 log r . If p > log r , then kA � BkSnp � kA � BkSnlog r

for every
A;B 2 .Snp/6r , so (1.45) reduces to its special case p D log r .
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We conjecture that it is possible to replace the logarithmic factor in (1.45) by a
universal constant, i.e.,

e
�
.Snp/6r

�
. rmax¹ 1p ;

1
2 º
p
n: (1.47)

As we will see in Section 1.6, Conjecture 26 below is equivalent to the symmetric
isomorphic reverse isoperimetry conjecture (see Conjecture 47) for Mn.R/ equipped
with the operator norm, which is an especially interesting special case of this much
more general conjectural phenomenon; by reasoning as we did in the above deduc-
tion of Theorem 20 from (the special case p D 1 of) Theorem 24 (recall the dis-
cussion immediately following (1.40)), a positive answer to Conjecture 26 would
imply (1.47).

Conjecture 26. For every n 2 N there exists a normed space

Y D .Mn.R/; k � kY/

such that for every nonzero n by nmatrix A 2 Mn.R/X ¹0º we have kAkY � kAkSn1

and
voln2�1.ProjA?BY/ . voln2.BY/

p
n:

Example 27. Since the `n1.`
n
1/ norm on Mn.R/ is isometric to `n

2

1 , by Theorem 24
there is a normed space Y D .Mn.R/; k � kY/ that satisfies

kAk`n1.`n1/ 6 kAkY . kAk`n1.`n1/

for every A 2 Mn.R/, and

max
A2Mn.R/X¹0º

voln2�1
�
ProjA?BY

�
voln2.BY/

D O.1/:

By Hölder’s inequality, for every p; q 2 Œ1;1� and A 2 Mn.R/ we have

kAk`np.`nq/ 6 n
1
pC

1
q kAk`n1.`n1/ 6 n

1
pC

1
q kAkY

and
kAk`n

2
.`n
2
/ 6 nmax¹ 12�

1
p ;0ºCmax¹ 12�

1
q ;0ºkAk`np.`nq/:

Therefore, Theorem 21 gives the Lipschitz extension bound

e
�
`np.`

n
q/
�
. n

1
pC

1
qCmax¹ 12�

1
p ;0ºCmax¹ 12�

1
q ;0º D nmax¹1; 1pC

1
q ;
1
2C

1
p ;
1
2C

1
q º: (1.48)

As in the case of `np , we get (1.48) if p; q D O.1/ by using Theorem 21 with Y D
X D `np.`np/, but otherwise we need to work with an auxiliary space Y ¤ X as above.
Specifically, in Section 6 we will prove the following asymptotic evaluation of the
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maximal volume of hyperplane projections of the unit ball of `np.`
n
q/:

max
A2Mn.R/X¹0º

voln2�1
�
ProjA?B`np.`nq/

�
voln2

�
B`np.`nq/

�

�

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

n if n 6 min¹
p
p; qº;

p
qn

1
2C

1
q if q 6 n 6 pp;

p
p if

p
p 6 n 6 min¹p; qº;

p
pqn

1
q�

1
2 if max¹

p
p; qº 6 n 6 p;

n
1
2C

1
p if p 6 n 6 q;

p
qn

1
pC

1
q if n > max¹p; qº:

(1.49)

The intricacy of (1.49) is perhaps unexpected, though it is nonetheless sharp in all
of the six ranges (depending on the relative locations of p; q; n and, somewhat curi-
ously,

p
p) that appear in (1.49). By reasoning analogously to the discussion follow-

ing (1.42), one can prove a bound on e.`np.`
n
q// that matches (1.48) up to lower order

factors by applying Theorem 21 with Y D `nr .`ns / and then optimizing over r; s > 1.
For the sole purpose of this application, only the range n > max¹p; qº of (1.49) is
needed. However, results such as (1.49) have geometric interest in their own right
for all of the possible values of the relevant parameters. We will actually prove a
version of (1.49) for `np.`

m
q / even when n ¤ m; the case of rectangular matrices is

independently interesting, but we will also use it elsewhere (see Remark 56 below).

Problem 28. Determine the exact maximizers of volumes of hyperplane projections
of the unit balls of Snp and `np.`

n
q/, i.e., for which A 2 Mn.R/ X ¹0º are the maxima

in (1.43) and (1.49) attained.

1.5 A dimension-independent extension theorem

In the preceding sections we stated all of the extension theorems using the traditional
setup that aims to extend a Lipschitz function to a function that is Lipschitz with
respect to the given metric. However, all of our new (positive) extension theorems
are a consequence of Theorem 29 below, which is a nonstandard Lipschitz extension
theorem.

Theorem 29 asserts that if X D .Rn; k � kX/ is a normed space and f is a 1-
Lipschitz function from a subset of Rn to a Banach space Z, then f can be extended
to a Z-valued function that is defined on all of Rn and is O.1/-Lipschitz with respect
to the metric that is induced on Rn by the norm jjj � jjj D 2k � k…*X= voln.BX/, i.e., a
suitable rescaling of the norm whose unit ball is the polar projection body of BX. This
rescaling ensures that jjj � jjj dominates k � kX; indeed, by an elementary geometric
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argument (see Remark 112),

8x 2 Rn; kxkX 6
2kxk…*X

voln.BX/
6 nkxkX: (1.50)

Thus, the conclusion of Theorem 29 that the extended function is Lipschitz with
respect to jjj � jjj is less stringent than the traditional requirement that it should be
Lipschitz with respect to k � kX, but Theorem 29 has the feature that the upper bound
on the Lipschitz constant is independent of the dimension.

Theorem 29. Fix n 2 N and a normed space X D .Rn; k � kX/. Fix also a Banach
space .Z; k � kZ/. Suppose that C � Rn and f W C! Z is 1-Lipschitz with respect
to the metric that is induced by k � kX, i.e., kf .x/ � f .y/kZ 6 kx � ykX for every
x; y 2 C. Then, there exists F W Rn ! Z that coincides with f on C and satisfies

8x; y 2 Rn; kF.x/ � F.y/kZ .
kx � yk…*X

voln.BX/
:

To see how Theorem 29 implies Theorem 21, denote (in the setting of the state-
ment of Theorem 21):

M D sup
x;y2C
x¤y

�
kx � ykX

kx � ykY

�
(1.51)

and

M 0 D sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BY

�
voln.BY/

�
kx � yk`n

2

kx � ykX

�
: (1.52)

Thus, every x; y 2 C satisfy kx � ykX 6Mkx � ykY and, recalling (1.30), also

kx � yk…*Y

voln.BY/
6M 0kx � ykX:

Let .Z;k � kZ/ be a Banach space. Consider an arbitrary subset C0 � C. If f W C0!Z is
1-Lipschitz with respect to the metric that is induced by k � kX, then the function f=M
is 1-Lipschitz with respect to the metric that is induced by Y. By Theorem 29 (with
X replaced by Y, C replaced by C0, f replaced by f=M ) we therefore see that there
exists F W Rn! Z (for Theorem 21 we only need F to be defined on C) that extends
F and satisfies kF.x/ � F.y/kZ .Mkx � yk…*Y= voln.BY/ 6MM 0kx � ykX for
all x; y 2 C. This coincides with (1.28).

Remark 30. Given p > 1, consider what happens when we apply Theorem 29 to the
space Ynp of Theorem 24. We get that for any C � Rn and any Banach space Z, if
f W C! Z is 1-Lipschitz with respect to the `np metric, then f can be extended to
F W Rn ! Z that is O.n1=p/-Lipschitz with respect to the Euclidean metric. When
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p < 2, the Lipschitz assumption on f is less stringent than requiring it to be O.1/-
Lipschitz with respect to the Euclidean metric, but we then get an extension F that
is O.n1=p/-Lipschitz with respect to the Euclidean metric; this upper bound on the
Lipschitz constant of F is asymptotically larger than theO.

p
n/ bound that we would

get if f were assumed to be 1-Lipschitz with respect to the Euclidean metric and we
applied the second inequality in (1.22), but we get it while requiring less from f .
In particular, when p D 1 we see that any Z-valued function on a subset of Rn that
is 1-Lipschitz with respect to the `n1 metric can be extended to a Z-valued function
defined on all of Rn whose Lipschitz constant with respect to the Euclidean metric is
O.n/, while an application of [140] will give an extension that isO.n/-Lipschitz with
respect to the `n1 metric. On the other hand, if p > 2, then the Lipschitz assumption
on f is more stringent than requiring it to be O.1/-Lipschitz with respect to the
Euclidean metric, but we then get an extension F that is O.n1=p/-Lipschitz with
respect to the Euclidean metric, which is asymptotically better than theO.

p
n/ bound

from (1.22). In particular, when pD1we see that any Z-valued function on a subset
of Rn that is 1-Lipschitz with respect to the `n1 metric can be extended to a Z-valued
function on all of Rn whose Lipschitz constant with respect to the Euclidean metric
is O.1/.

1.6 Isomorphic reverse isoperimetry

All of the applications that we found for Theorem 21 proceed by bounding the vol-
umes of hyperplane projections of BY that appear in right-hand side of (1.28) by

MaxProj.BY/
def
D max

z2Sn�1
voln�1

�
Projz?BY

�
: (1.53)

Thus, it follows from (1.29) that for any two normed spaces X D .Rn; k � kX/ and
Y D .Rn; k � kY/ with BY � BX we have

e.X/ .
MaxProj.BY/

voln.BY/
diam`n

2
.BX/: (1.54)

Even though there could conceivably be an application of (1.29) that is more
refined than (1.54), in this section we will investigate the ramifications of bounding
MaxProj.BX/ as a way to use Theorem 21. This will relate to the isomorphic reverse
isoperimetric phenomena that we conjectured in Section 1.1.1.

Any origin-symmetric convex body L � Rn satisfies

MaxProj.L/ &
voln�1.@L/
p
n

: (1.55)
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Indeed, this follows immediately from the following classical Cauchy surface area
formula (see, e.g., [282, equation (5.73)]) by bounding the integrand by its maximum:

voln�1.@L/ D
2
p
��

�
nC1
2

�
�
�
n
2

�  
Sn�1

voln�1
�
Projz?L

�
dz

�
p
n

 
Sn�1

voln�1
�
Projz?L

�
dz:

Remark 31. Using (1.55), Theorem 24 implies that Conjecture 9 (isomorphic reverse
isoperimetry) holds (with S the identity mapping) when K D B`np for any p > 1 and
n 2 N. Indeed, let Ynp be the normed space from Theorem 24. By the first inequality
in (1.40) we have

voln
�
BYnp

� 1
n � voln

�
B`np

� 1
n � n�

1
p ; (1.56)

where the last equivalence in (1.56) is a standard computation (e.g., [263, p. 11]).
By (1.55) and (1.56), the second inequality in (1.40) implies that the isoperimetric
quotient of BYnp is O.

p
n/. So, Conjecture 9 holds for K D B`np if we take L to be a

rescaling by a universal constant factor of BYnp so that L � K.

Thanks to (1.55), if we set K D BX and L D BY in (1.54), then the right-hand
side of (1.54) satisfies

MaxProj.L/
voln.L/

diam`n
2
.K/ &

voln�1.@L/
p
n voln.L/

diam`n
2
.K/

D
iq.L/
p
n
�

diam`n
2
.K/

voln.L/
1
n

&
diam`n

2
.K/

voln.K/
1
n

; (1.57)

where we recall notation (1.11) for the isoperimetric quotient iq.�/ and the last step
uses the isoperimetric theorem (1.12) and the assumption L � K. The following
proposition explains what it would entail for one to be able to reverse (1.57) after
an application of a suitable linear transformation; in particular, it shows that one can
find S 2 SLn.R/ and an origin-symmetric convex body L � SK such that

MaxProj.L/
voln.L/

diam`n
2
.SK/ .

diam`n
2
.SK/

voln.K/
1
n

if and only if Conjecture 10 on weak isomorphic reverse isoperimetry holds for K.

Proposition 32. The following two statements are equivalent for every n 2 N, every
origin-symmetric convex body K � Rn and every ˛ > 0.

(1) There exist a linear transformation S 2 SLn.R/ and an origin-symmetric con-
vex body L � SK with

MaxProj.L/
voln.L/

voln.K/
1
n . ˛: (1.58)
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(2) There exist a linear transformation S 2 SLn.R/ and an origin-symmetric con-
vex body L � SK that satisfies n

p
voln.L/ > ˇ n

p
voln.K/ and iq.L/ 6 


p
n

for some ˇ & 1=˛ and 
 . ˛ with 
=ˇ . ˛.

Proof. For the implication (1))(2) we introduce the notations 
 D iq.L/=
p
n and

ˇ D n
p

voln.L/= n
p

voln.K/. Then,

˛
(1.58)
&

MaxProj.L/
voln.L/

voln.K/
1
n

(1.55)
&

voln�1.@L/
voln.L/

p
n

voln.K/
1
n D




ˇ
:

Since by the isoperimetric theorem (1.12) we have 
 & 1, it follows from this that
ˇ & 1=˛, and since L� SK and S 2 SLn.R/, we have voln.L/6 voln.K/, so ˇ 6 1
and it also follows from this that 
 . ˛.

For the implication (2))(1), fix T 2 SLn.R/ that satisfies

voln�1.@TL/ D min
®
voln�1.@T 0L/ W T 0 2 SLn.R/

¯
;

i.e., TL is in its minimum surface area position [250]. So, voln�1.@TL/6voln�1.@L/
by the definition of T , and by Proposition 3.1 in the work [104] of Giannopoulos and
Papadimitrakis combined with (1.55) we have

MaxProj.TL/ �
voln�1.@TL/
p
n

:

Consequently, if L satisfies part (2) of Proposition 32, then

MaxProj.TL/
voln.TL/

voln.K/
1
n �

voln�1.@TL/
voln.TL/

p
n

voln.K/
1
n

6
voln�1.@L/

voln.TL/
p
n

voln.K/
1
n

D
iq.L/
p
n

�
voln.K/
voln.L/

� 1
n

6



ˇ
. ˛:

Hence, (1) holds with S replaced by TS 2 SLn.R/ andL replaced by TL� TSK.

Since when ˛ . 1 in Proposition 32 the assertion of its part (2) coincides with
Conjecture 10, it follows that Conjecture 10, and a fortiori Conjecture 9, imply that
for any normed space X D .Rn; k � kX/ there is S 2 SLn.R/ such that e.X/ is at most
a universal constant multiple of diam`n

2
.SBX/=

n
p

voln.BX/. Indeed, this follows by
applying Theorem 21 to the normed spaces X0 D .Rn; k � kX0/ and Y D .Rn; k � kY/

whose unit balls are SBX and L, respectively, where S and L are as in part (1) of
Proposition 32 for K D BX, while noting that e.X0/ D e.X/ since X0 is isometric
to X. We record this conclusion as the following corollary.
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Corollary 33. If Conjecture 10 holds for a normed space XD .Rn;k � kX/, then there
is S 2 SLn.R/ such that

e.X/ .
diam`n

2
.SBX/

voln.BX/
1
n

: (1.59)

The upshot of Corollary 33 is that the right-hand side of (1.59) involves only
Euclidean diameters and nth roots of volumes, which are typically much easier to
estimate than extremal volumes of hyperplane projections. This comes at the cost of
having to find the auxiliary linear transformation S 2 SLn.R/, but we expect that in
concrete settings it will be simple to determine S . Moreover, in all of the specific
examples of spaces for which we are interested (at least initially) in estimating their
Lipschitz extension modulus, S should be the identity mapping. We will discuss this
matter and its consequences in Section 1.6.2.

Remark 34. There is a degree of freedom that the above discussion does not exploit.
Let X D .Rn; k � kX/ be a normed space. By (1.31), we know that e.X/ is bounded
from above by a constant multiple of the minimum of diam…*Y.BX/= voln.BY/ over
all the normed spaces YD .Rn;k � kY/ for which BY � BX. By (1.54), to control this
minimum it suffices to estimate the minimum of MaxProj.BY/= voln.BY/ over all
such Y, which relates to isomorphic reverse isoperimetric phenomena. But, we could
also take a normed space W D .Rm; k � kW/ for m > n such that BW \ Rn D BX

(we need that W contains an isometric copy of X), estimate either of the two minima
above for the super-space W, and then use e.X/ 6 e.W/. Thus, it would suffice to
embed X into a larger normed space that exhibits good isomorphic reverse isoperime-
try. Our conjectures imply that such an embedding step is not needed, namely we
expect that the desired isomorphic reverse isoperimetric property holds for X. Nev-
ertheless, it could be that by finding a suitable super-space W one could bound e.X/
while circumventing the difficulty of proving Conjecture 10 for X. For example, if
X is a subspace of `m1 for some m D O.n/, then by Theorem 14 we know that
e.X/ .

p
n, but this is because we know that `m1 has the desired isomorphic reverse

isoperimetric property, and it is not clear how to prove it for X itself. It is also unclear
how to construct for a given normed X a super-space W that could be used as above.
We leave the exploration of this possibility for future research.

1.6.1 A spectral interpretation, reverse Faber–Krahn and the Cheeger space of
a normed space

We will henceforth quantify the extent to which Conjecture 10 holds through the
following condition:

iq.L/
p
n

�
voln.K/
voln.L/

� 1
n

D
voln.K/

1
n

p
n

�
voln�1.@L/

voln.L/

�
6 ˛: (1.60)
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The factors iq.L/=
p
n and .voln.K/= voln.L//1=n that appear in the left-hand side

of (1.60) are at least a positive universal constant (by, respectively, the isoperimetric
theorem and the assumed inclusion L � K), so (1.60) implies that

iq.L/ 6 ˛
p
n and n

p
voln.L/ & ˛�1 n

p
voln.K/:

Thus, if ˛ D O.1/, then (1.60) is equivalent to the conclusion of Conjecture 10.
However, even though Conjecture 10 expresses our expectation that (1.60) is always
achievable with ˛ D O.1/ upon a judicious choice of the Euclidean structure on Rn,
in lieu of Conjecture 10 it would still be valuable to obtain (1.60) with ˛ unbounded
but slowly growing. In such a situation, the bi-parameter quantification that we used
in part (2) of Proposition 32 contains more geometric information than (1.60), but
below we will work with (1.60) in order to simplify the ensuing discussion; this suf-
fices for our purposes because (1.60) is what shows up in all of the applications herein
(per the proof Proposition 32) since they all proceed by bounding the right-hand side
of (1.54) from above.

Alter and Caselles proved [7] that for every convex body K � Rn there is a
unique measurable set A � K, which we call the Cheeger body of K and denote
ChK, satisfying Per.A/= voln.A/ 6 Per.B/= voln.B/ for every measurable B � K
with voln.B/ > 0, where Per.�/ denotes perimeter in the sense of Caccioppoli and
de Giorgi; this notion is covered in [9] but we do not need to recall its definition
here since the perimeter of a convex body coincides with the .n � 1/-dimensional
Hausdorff measure of its boundary. It was proved in [7] that ChK is convex and
its boundary is C 1;1. Further information on this remarkable theorem can be found
in [7], where ChK is characterized in terms of the mean curvature of its boundary
through the work [8] of Alter, Caselles and Chambolle (see also the precursor [74]
by Caselles, Chambolle and Novaga which obtained these statements under stronger
assumptions on K).

Beyond the fact that it allows us to use the notation ChK and call it the Cheeger
body ofK, the aforementioned uniqueness statement will be used substantially in the
ensuing reasoning. It implies in particular that if K is origin-symmetric, then so is
ChK. Consequently, if X D .Rn; k � kX/ is a normed space, then ChBX is the unit
ball of a normed space that we denote by Ch X and call the Cheeger space of X.

For a convex body K � Rn, let �.K/ be the smallest Dirichlet eigenvalue of the
Laplacian onK, namely it is the smallest � > 0 for which there is a nonzero function

' W K ! R

that is smooth on the interior of K, vanishes on the boundary of K, and satisfies
�'D��' on the interior ofK; see, e.g., [77,81,265] for background on this classical
topic. If X D .Rn; k � kX/ is a normed space, then we denote

�.X/ D �.BX/:
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The quantity h.K/D voln�1.@ChK/=voln.ChK/ is called the Cheeger constant
of K; it relates to �.K/ by

2

�

p
�.K/ 6 h.K/ D

voln�1.@ChK/
voln.ChK/

6 2
p
�.K/: (1.61)

It is important for our purposes that the constants appearing in (1.61) are independent
of the dimension n. The second inequality in (1.61) is the Cheeger inequality for the
Dirichlet Laplacian on Euclidean domains. Cheeger’s proof of it for compact Rie-
mannian manifolds without boundary appears in [78] and that proof works mutatis
mutandis in the present setting; see its derivation in, e.g., the appendix of [174]. The
first inequality in (1.61) can be called the Buser inequality for the Dirichlet Lapla-
cian on convex Euclidean domains, since Buser proved [69] its analogue for compact
Riemannian manifolds without boundary that have a lower bound on their Ricci cur-
vature. In our setting, this reverse Cheeger inequality is more recent, namely it was
noted for planar convex sets by Parini [246] and in any dimension by Brasco [53]. It
can be justified quickly using the convexity of K and its Cheeger body ChK as fol-
lows. By a classical theorem of Pólya we have �.K/6 �2.voln�1.@K/=voln.K//2=4
(Pólya proved this for planar convex sets, but in [144] Joó and Stachó carried out
Pólya’s approach for convex bodies in Rn for any n 2 N). Therefore,

�.K/ 6 �.ChK/ 6
�
� voln�1.@ChK/
2 voln.ChK/

�2
D
�2

4
h.K/2;

since ChK is convex.
Let jn=2�1;1 be the smallest positive zero of the Bessel function Jn=2�1; see [14,

Chapter 4] for a treatment of Bessel functions and their zeros, though here we will
only need to know that jn=2�1;1 � n (see [306] for more precise asymptotics). By
classical computations (see, e.g., [129, equation (1.29)]),

�
�
B`n

2

�
D j 2n

2�1;1
:

The Faber–Krahn inequality [95, 159] (see also, e.g., [77, 265]) asserts that �.K/ is
at least the first Dirichlet eigenvalue of a Euclidean ball whose volume is the same as
the volume of K. Thus,

�.K/ voln.K/
2
n > �

�
B`n

2

�
voln

�
B`n

2

� 2
n D j 2n

2�1;1
voln

�
B`n

2

� 2
n � n;

where we used the straightforward fact that �.rK/ D �.K/=r2 for every r > 0.
Observe that (1.61) can be rewritten as follows for every convex body K � Rn:

2

�

�
�.K/ voln.K/

2
n

n

� 1
2

6
iq.ChK/
p
n

�
voln.K/

voln.ChK/

� 1
n

6 2
�
�.K/ voln.K/

2
n

n

� 1
2

:
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Hence, for every ˛ > 0 we have

iq.ChK/
p
n

�
voln.K/

voln.ChK/

� 1
n

. ˛ ” �.K/ voln.K/
2
n . ˛2n: (1.62)

Since ChK is convex, the convex body L � K that minimizes the left-hand side
of (1.60) is equal to ChK. We therefore see that Conjecture 35 below is equivalent
to Conjecture 10. Furthermore, if one of these two conjectures hold for a matrix S 2
SLn.R/, then the same matrix would work for the other conjecture.

Conjecture 35 (Reverse Faber–Krahn). For any origin-symmetric convex bodyK �
Rn there exists a volume-preserving linear transformation S 2 SLn.R/ such that

�.SK/ vol.K/
2
n � n:

Remark 36. One can also wonder about exact maximizers in the context of Con-
jecture 35. Specifically, Bucur and Fragalà stated in [67, p. 389] that they expect
that for any origin-symmetric convex body K � Rn with voln.K/ D 1 there exists
S 2 SLn.R/ such that �.SK/6 �.Œ0; 1�n/D �2n. If true, then this would be a beauti-
ful statement even though it does not have substantial impact on Conjecture 10 and its
implications herein (it would only influence the value of the implicit constant factors
in our statements, which incur further losses that are most likely not sharp in other
steps of their derivations). The only available evidence for the aforementioned (spec-
ulative) exact statement is the partial result of [67] in the planar case n D 2, which
proves that it indeed holds when K � R2 is a convex axisymmetric octagon that has
four of its vertices lying on the axes at the same distance from the origin; see specif-
ically [67, Proposition 10], whose proof involves delicate reasoning that incorporate
computer-assisted steps. A complete result for n D 2 has been subsequently obtained
by the same authors in [68] for the analogous question in which one replaces the
Dirichlet eigenvalue of the Laplacian by the Cheeger constant. Namely, [68, Theo-
rem 1.1] states that for every origin-symmetric convex bodyK �R2 with vol2.K/D
1 there exists S 2 SL2.R/ such that h.SK/ 6 h.Œ0; 1�2/ D 2C

p
� (furthermore, in

this case S can be taken to be the matrix that puts K in John position, i.e., the ellipse
of maximal area that is contained in SK is a circle).

This above spectral interpretation of Conjecture 10 is useful for multiple pur-
poses, including the following lemma whose proof appears in Section 6.1. For its
statement, as well as throughout the ensuing discussion, recall that a basis x1; : : : ; xn
of an n-dimensional normed space .X; k � kX/ is a 1-unconditional basis of X if

k"1a1x1 C � � � C "nanxnkX D ka1x1 C � � � C anxnkX

for every choice of scalars a1; : : : ; an 2 R and signs "1; : : : ; "n 2 ¹�1; 1º. When we
say that XD .Rn;k � kX/ is an unconditional normed space, we mean that the standard
(coordinate) basis e1; : : : ; en of Rn is a 1-unconditional basis of X.
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Lemma 37 (Closure of Conjecture 10 under unconditional composition). Fix n 2 N
and m1; : : : ; mn 2 N. Let X1 D .Rm1 ; k � kX1/; : : : ;Xn D .Rmn ; k � kXn/ be normed
spaces. Also, let ED .Rn;k � kE/ be an unconditional normed space. Define a normed
space X D .Rm1 � � � � �Rmn ; k � kX/ by

8x D .x1; : : : ; xn/ 2 Rm1 � � � � �Rmn ; kxkX
def
D


�kx1kX1 ; : : : ; kxnkXn

�


E:

Suppose that there exist ˛ > 0, linear transformations S1 2 SLm1.R/; : : : ; Sn 2
SLmn.R/, and normed spaces Y1 D .Rm1 ; k � kY1/; : : : ;Yn D .Rmn ; k � kYn/ such
that

BYk � SkBXk and
iq
�
BYk

�
p
mk

�
volmk

�
BXk

�
volmk

�
BYk

�� 1
mk

6 ˛; (1.63)

for every k 2 ¹1; : : : ; nº. Then, there exist a normed space

Y D .Rm1 � � � � �Rmn ; k � kX/

and S 2 SL.Rm1 � � � � �Rmn/ such that

BY � SBX and
iq.BY/

p
m1 C � � � Cmn

�
volm1C���Cmn.BX/

volm1C���Cmn.BY/

� 1
m1C���Cmn

. ˛: (1.64)

As (1.63) with ˛ D O.1/ is immediate when n0 D 1, Lemma 37 establishes
Conjecture 10 for when K is the unit ball of an unconditional normed space X D
.Rn;k � kX/. This holds, in particular, for XD `np , though we will prove in Section 6.1
that the stronger conclusion of Conjecture 9 holds in this case (recall Remark 31).
Lemma 37 also shows that Conjecture 10 holds for, say, X D `np.`mq /; we expect that
the reasoning of Section 6.1 could be adapted to yield Conjecture 9 for these spaces
as well, but we did not attempt to carry this out. Other spaces that satisfy (1.63)
with ˛ slowly growing will be presented in Section 1.6.2; upon their substitution into
Lemma 37, more examples for which Conjecture 10 holds up to lower-order factors
are obtained (of course, we are conjecturing here that it holds for any space).

Remark 38. Say that a normed space X D .Rn; k � kX/ is in Cheeger position if

8S 2 SLn.R/;
voln�1.@ChBX/

voln.ChBX/
6

voln�1.@ChSBX/

voln.ChSBX/
:

Observe that if X is in Cheeger position, then its Cheeger space Ch X is in minimum
surface area position, namely, voln�1.@ChBX/ 6 voln�1.@S ChBX/ for every S 2
SLn.R/. Indeed, S ChBX � SBX, so by the definition of the Cheeger body of SBX we
have voln�1.@S ChBX/= voln.ChBX/ > voln�1.@ Ch SBX/= voln.Ch SBX/. At the
same time, voln�1.@Ch SBX/= voln.Ch SBX/ > voln�1.@ChBX/= voln.ChBX/ by
the definition of the Cheeger position, so voln�1.@S ChBX/ > voln�1.@ChBX/. This
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shows that in the proof of the implication (2))(1) of Proposition 32, if we worked
with L D Ch SK, then there would be no need to introduce the additional linear
transformation T 2 SLn.R/. It would be worthwhile to study the Cheeger position for
its own sake even if it were not for its connection to reverse isoperimetry. In particular,
we do not know if the converse of the above deduction holds, namely whether it is true
that if Ch X is in minimum surface area position, then X is in Cheeger position. We
also do not know if the Cheeger position is unique up to orthogonal transformation (as
is the case for the minimum surface area position [104]); we did not investigate these
matters since they are not needed for the present purposes, but we expect that the
characterisations of the Cheeger body in [7] would be relevant here. One could also
define that a normed space XD .Rn; k � kX/ is in Dirichlet position if �.X/ 6 �.SX/
for every S 2 SLn.R/. It is unclear how the Cheeger position relates to the Dirichlet
position and it would be also worthwhile to study the Dirichlet position for its own
sake. By (1.61), working with either the Cheeger position or the Dirichlet position
would be equally valuable for the reverse isoperimetric questions in which we are
interested here.

1.6.2 Symmetries and positions

Thus far we considered an arbitrary scalar product on an n-dimensional normed space
through which we identified its underlying vector space structure with Rn. How-
ever, the Lipschitz extension modulus is insufficiently understood for “very nice”
normed spaces (including even the Euclidean space `n2) that belong to a natural class
of normed spaces that have a canonical identification with Rn. It therefore makes
sense to first focus on this class.

For a finite dimensional normed space .X; k � kX/, let Isom.X/ be the group of
all of the isometric automorphism of X, i.e., all the linear operators U W X! X that
satisfy kUxkX D kxkX for every x 2 X. We will denote the Haar probability measure
on the compact group Isom.X/ by hX.

Definition 39. We say that a finite dimensional normed space .X; k � kX/ is canoni-
cally positioned if any two Isom.X/-invariant scalar products on X are proportional to
each other. In other words, if h�; �i WX�X!R and h�; �i0 WX�X!R are scalar prod-
ucts on X such that hUx; Uyi D hx; yi and hUx; Uyi0 D hx; yi0 for every x; y 2 X
and every U 2 Isom.X/, then there necessarily exists � 2 R such that h�; �i0 D �h�; �i.

On any finite dimensional normed space X there exists at least one scalar product
h�; �i W X � X! R that is invariant under Isom.X/, as seen, e.g., by averaging any
given scalar product h�; �i0 on X with respect hX, i.e., defining

8x; y 2 X; hx; yi def
D

�
Isom.X/

hSx; Syi0 dhX.S/:
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Definition 39 concerns those spaces X for which such an invariant scalar product is
unique up to rescaling, so there is (essentially, i.e., up to rescaling) no arbitrariness
when we identify X with Rdim.X/.

Example 40. The class of n-dimensional canonically positioned spaces includes
those normed spaces .X; k � kX/ that have a basis e1; : : : ; en such that for any dis-
tinct i; j 2 ¹1; : : : ; nº there are a permutation � 2 Sn with �.i/ D j and a sign
vector "D ."1; : : : ; "n/ 2 ¹�1; 1ºn with "i D �"j such that T� ; S" 2 Isom.X/, where
we denote T�x D

Pn
iD1 a�.i/ei and S"x D

Pn
iD1 "iaiei for x D

Pn
iD1 aiei 2 X

with a1; : : : ; an 2 R. Indeed, let h�; �i be a scalar product on X that is Isom.X/-
invariant. For every distinct i; j 2 ¹1; : : : ; nº, if � 2 Sn and " 2 ¹�1; 1ºn are as above,
then hei ; ei i D he�.i/; e�.i/i D hej ; ej i while hei ; ej i D h"iei ; "j ej i D �hei ; ej i, so
hei ; ej i D 0.

Example 40 covers all of the spaces for which we think that it is most press-
ing (given the current state of knowledge) to understand their Lipschitz extension
modulus, including normed spaces .E; k � kE/ that have a 1-symmetric basis, i.e.,
a basis e1; : : : ; en 2 E such that k

Pn
iD1 "ia�.i/eikE D k

Pn
iD1 aieikE for every

."; �/ 2 ¹�1; 1ºn � Sn. In particular, `np , and more generally Orlicz and Lorentz
spaces (see, e.g., [181]), are canonically positioned. We will use below the common
convention that a normed space .Rn;k � k/ is said to be symmetric if it is 1-symmetric
with respect to the standard (coordinate) basis e1; : : : ; en of Rn.

Example 40 also includes matrix norms

X D .Mn.R/; k � kX/

that remain unchanged if one transposes a pair of rows or columns, or changes the
sign of an entire row or a column, such as Snp . More generally, if ED .Rn; k � kE/ is a
symmetric normed space, then its unitary ideal SE D .Mn.R/; k � kSE/ is canonically
positioned (see, e.g., [37]), where for T 2 Mn.R/ one denotes its singular values by
s1.T / > � � � > sn.T / and defines kT kSE D k.s1.T /; : : : ; sn.T //kE. More examples
of such matrix norms are projective and injective tensor products (see, e.g., [276]) of
symmetric spaces, where if XD .Rn;k � kX/ and YD .Rm;k � kY/ are normed spaces,
then their projective tensor product X y̋Y is the norm on Mn�m.R/ D Rn ˝ Rm

whose unit ball is the convex hull of ¹x ˝ y W .x; y/ 2 BX � BYº, and their injective
tensor product X {̋Y is the dual of X�y̋Y� (equivalently, X {̋Y is isometric to the
operator norm from X� to Y; see, e.g., [87, Section 1.1]).

Henceforth, when we will say that a normed space XD .Rn;k � kX/ is canonically
positioned it will always be tacitly assumed that the standard scalar product h�; �i on
Rn is Isom.X/-invariant, i.e., Isom.X/ is a subgroup of the orthogonal group On �
Mn.R/. This is equivalent to the requirement that for every symmetric positive definite
matrix T 2 Mn.R/, if T U D UT for every U 2 Isom.X/, then there is � 2 .0;1/
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such that T D �Idn. Indeed, any scalar product h�; �i0 W Rn � Rn ! R is of the form
hx;yi0 D hT x;yi for some symmetric positive definite T 2Mn.R/ and all x;y 2Rn,
and using the Isom.X/-invariance of h�; �i we see that h�; �i0 is Isom.X/-invariant if and
only if T commutes with all of the elements of Isom.X/.

Remark 41. A symmetry assumption that is common in the literature is enough sym-
metries. A normed space .X; k � kX/ is said [103] to have enough symmetries if any
linear transformation T W X! X must be a scalar multiple of the identity if T com-
mutes with every element of Isom.X/. By the above discussion, if X has enough
symmetries, then X is canonically positioned. The converse implication does not hold,
i.e., there exist normed spaces that are canonically positioned but do not have enough
symmetries. For example, let Rot�=2 2 O2 be the rotation by 90 degrees and let G be
the subgroup of O2 that is generated by Rot�=2. Thus, G is cyclic of order 4. Suppose
that

X D .R2; k � kX/

is a normed space with Isom.X/ D G; the fact that there is such a normed space
follows from the general result [118, Theorem 3.1] of Gordon and Loewy on existence
of norms with a specified group of isometries, though in this particular case it is
simple to construct such an example (e.g., the unit ball of X can be taken to be a
suitable non-regular octagon). Since Isom.X/ is Abelian, the matrix Rot�=2 commutes
with all of the elements of Isom.X/ yet it is not a multiple of the identity matrix, so X
does not have enough symmetries. Nevertheless, X is canonically positioned. Indeed,
suppose that T 2 M2.R/ is a symmetric matrix that commutes with Rot�=2. Then,
Rot�=2 preserves any eigenspace of T , which means that any such eigenspace must
be ¹0º or R2. But T is diagonalizable over R, so it follows that for some � 2 R
we have T D �Id2. If n is even, then one obtains such an n-dimensional example by
considering `n=21 .X/. However, a representation-theoretic argument due to Emmanuel
Breuillard (private communication; details omitted) shows that if n is odd, then any
n-dimensional normed space has enough symmetries if and only if it is canonically
positioned.

The following lemma is important for us even though it is an immediate conse-
quence of the (major) theorem of [7] that the Cheeger body of a given convex body
in Rn is unique (recall Section 1.6.1).

Lemma 42. Let X D .Rn; k � kX/ be a normed space such that Isom.X/ 6 On is a
subgroup of the orthogonal group. Then the isometry group of its Cheeger space Ch X
satisfies

Isom.Ch X/ � Isom.X/:

Consequently, if X is canonically positioned, then also Ch X is canonically posi-
tioned.
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Proof. For any U 2 Isom.X/ we have

voln�1.@U ChBX/

voln.U ChBX/
D

voln�1.@ChBX/

voln.ChBX/
;

and alsoU ChBX�UBXDBX, sinceU 2On. Consequently, (by definition),U ChBX

is a Cheeger body of BX. The uniqueness of the Cheeger body now implies that
U ChBX D ChBX. Therefore, U 2 Isom.Ch X/.

The following corollary is a quick consequence of Lemma 42.

Corollary 43. Let E D .Rn; k � kE/ be a symmetric normed space. Then, its Cheeger
space Ch E is also symmetric and there exists a (unique) symmetric normed space
�E D .Rn; k � k�E/ such that the Cheeger space of the unitary ideal SE is the unitary
ideal of �E, i.e., Ch SE D S�E.

Proof. The assertion that Ch E is symmetric coincides with requiring that Isom.Ch E/
contains the group ¹�1; 1ºn Ì Sn D ¹T"S� W .";�/ 2 ¹�1; 1ºn � Snº 6 On, where we
recall the notation of Example 40. We are assuming that Isom.E/ � ¹�1; 1ºn Ì Sn,
so this follows from Lemma 42. For U; V 2 On define RU;V W Mn.R/! Mn.R/ by
.A 2 Mn.R// 7! UAV . Since Isom.SE/ � ¹RU;V W U; V 2 Onº, by Lemma 42 so
does Isom.ChSE/. A normed space .Mn.R/; k � k/ that is invariant under RU;V for all
U; V 2 On is the unitary ideal of a symmetric normed space F D .Rn; k � kF/; see,
e.g., [37, Theorem IV.2.1]. This F is unique (consider the values of k � kSF on diagonal
matrices), so we can introduce the notation F D �E.

The same reasoning as in the proof of Corollary 43 shows that if

E D .Rn; k � kE/

is an unconditional normed space, then so is Ch E. Thus, the space Y in Lemma 37
when

X1 D � � � D Xn D R

that satisfies (1.64) can be taken to unconditional, as seen by an inspection of the
proof of Lemma 37 (specifically, the operator S in (1.64) that arises in this case is
diagonal, so SE is also unconditional and we can take Y D ChSE).

Problem 44. We associated above to every symmetric normed space

E D .Rn; k � kE/

two symmetric normed spaces Ch E D .Rn; k � kCh E/ and �E D .Rn; k � k�E/. It
would be valuable to understand these auxiliary norms on Rn, and in particular how
they relate to each other. By the definition of the Cheeger body, its convexity and
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uniqueness, Ch E is the unique minimizer of the functional

F 7!
voln�1

�
@BF

�
voln

�
BF
� D

�
@BF

1 dx�
BF
1 dx

(1.65)

over all symmetric normed spaces F D .Rn; k � kF/ with BF � BE; denote the set of
all such F by Sym.� BE/. In contrast to (1.65), �E is the unique minimizer of the
functional

F 7!

�
@BF

Q
16i<j6n jx

2
i � x

2
j j dx�

BF

Q
16i<j6n jx

2
i � x

2
j j dx

(1.66)

over the same domain Sym.� BE/. To justify (1.66), observe first that by Corol-
lary 43 we know that �E is the unique minimizer of the following functional over
Sym.� BE/:

F 7!
voln2�1

�
@BSF

�
voln2

�
BSF

� D lim
"!0C

��
BSFC"BSn

2

�
XBSF

1 dx

"
�
BF
1 dx

: (1.67)

We claim that for every F 2 Sym.� BE/ and " > 0,�
BSF C "BSn

2

�
X BSF

D
®
A 2Mn.R/ W s.A/

def
D
�
s1.A/; : : : ; sn.A/

�
2
�
BF C "B`n

2

�
X BF

¯
; (1.68)

where we denote the singular values of A 2 Mn.R/ by s1.A/ > � � � > sn.A/. Indeed,
if A belongs to the right-hand side of (1.68), then ks.A/kF > 1 and s.A/ D x C y
for x; y 2 Rn that satisfy kxkF 6 1 and kyk`n

2
6 ". Write A D UDV , where D 2

Mn.R/ is the diagonal matrix whose diagonal is the vector s.A/ 2 Rn, and U; V 2
On. Let D.x/;D.y/ 2 Mn.R/ be the diagonal matrices whose diagonals equal x; y,
respectively. By noting that kAkSF D ks.A/kF > 1 and AD UDxV CUDyV , where
kUD.x/V kSF 6 1 and kUD.y/V kSn

2
6 ", we conclude thatA belongs to the left-hand

side of (1.68). The reverse inclusion is less straightforward. If A belongs to the left-
hand side of (1.68), then kAkSF > 1 and A D B C C , where B; C 2 Mn.R/ satisfy
kBkSF D ks.B/kF 6 1 and kCkSn

2
6 ". By an inequality of Mirsky [222] we have

ks.A/� s.B/k`n
2
6 kA�BkSn

2
DkCkSn

2
6 ". Hence s.A/D s.B/C .s.A/� s.B//2

.BF C "B`n
2
/XBF, i.e., A belongs to the right-hand side of (1.68). With (1.68) estab-

lished, since membership of a matrix A in either BF or .BF C "B`n
2
/ X BF depends

only on s.A/, by the Weyl integration formula [311] (see [12, Proposition 4.1.3] for
the formulation that we are using),

�
.BSFC"BSn

2
/XBSF

1 dx
�
BF
1 dx

D

�
.BFC"B`n

2
/XBF

Q
16i<j6n jx

2
i � x

2
j j dx�

BF

Q
16i<j6n jx

2
i � x

2
j j dx

:
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Thus (1.66) follows from (1.67). Analysing the functional in (1.66) seems nontrivial
but likely tractable using ideas from random matrix theory. It would be especially
interesting to treat the case ED `n1. While we have a reasonably good understanding
of the (isomorphic) geometry space Ch `n1, its noncommutative counterpart �`n1 is
still mysterious and understanding its geometry is closely related to Conjecture 10
(and likely also Conjecture 9) in the important special case of the operator norm Sn1;
see also Remark 172.

If XD .Rn;k � kX/ is canonically positioned and � is a Borel measure on Rn that
is Isom.X/-invariant, i.e., �.UA/ D �.A/ for every U 2 Isom.X/ and every Borel
subset A � Rn, then consider the scalar product

8x; y 2 Rn; hx; yi0
def
D

�
Rn
hx; zihy; zi d�.z/:

For every U 2 Isom.X/ and x; y 2 Rn we have

hUx;Uyi0 D

�
Rn
hUx; zihUy; zi d�.z/ D

�
Rn
hx; U�1zihy; U�1zi d�.z/

D

�
Rn
hx; zihy; zi d�.z/ D hx; yi0;

where the second step uses the Isom.X/-invariance of h�; �i, and the third step uses the
Isom.X/-invariance of �. Hence hx; yi0 D �hx; yi for some � 2 R and every x; y 2
Rn. By considering the case x D y of this identity and integrating over x 2 Sn�1 one
sees that necessarily n� D

�
Rn kzk

2
`n
2

d�.z/. Hence,

8x; y 2 Rn;

�
Rn
hx; zihy; zi d�.z/ D

�
Rn kzk

2
`n
2

d�.z/

n
hx; yi: (1.69)

By establishing (1.69) we have shown that if

X D .Rn; k � kX/

is a canonically positioned normed space, then any Isom.X/-invariant Borel measure
on Rn is isotropic [55,107] (the converse also holds, i.e., X is canonically positioned
if and only if every Isom.X/-invariant Borel measure on Rn is isotropic). In particular,
let �X be the measure on Sn�1 that is given by

�X.A/ D voln�1.¹x 2 @BX W NX.x/ 2 Aº/

for every measurable A � Sn�1, where for x 2 @BX the vector NX.x/ 2 S
n�1 is

the (almost-everywhere uniquely defined) unit outer normal to @BX at x, i.e., recall-
ing (1.30), we use the simpler notation NBX D NX. In other words, �X is the image
under the Gauss map of the .n � 1/-dimensional Hausdorff measure on @BX. Then,
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�X is Isom.X/-invariant because every U 2 Isom.X/ is an orthogonal transforma-
tion and NX ı U D U ı NX almost everywhere on @BX. By [250], this implies that
X is in its minimum surface area position (recall the proof of Proposition 32), so
MaxProj.BX/ � voln�1.@BX/=

p
n by [104, Proposition 3.1].

The following corollary follows by substituting the above conclusion into Theo-
rem 21.

Corollary 45. Suppose that n 2 N and that X D .Rn; k � kX/ and Y D .Rn; k � kY/

are two n-dimensional normed spaces. Suppose also that Y is canonically positioned
and BY � BX. Then,

e.X/ .
voln�1.@BY/ diam`n

2
.BX/

voln.BY/
p
n

:

The assumption in Corollary 45 that Y is canonically positioned can be replaced
by the requirement MaxProj.BY/ . voln�1.@BY/=

p
n, which is much less stringent.

In particular, by [104, Proposition 3.1] it is enough to assume here that BY is in its
minimum surface area position; see also Section 6.2.

We will denote the John and Löwner ellipsoids of a normed space XD .Rn;k � kX/

by JX and LX, respectively; see [128]. Thus, JX � Rn is the ellipsoid of maximum
volume that is contained in BX and LX �Rn is the ellipsoid of minimum volume that
contains BX. Both of these ellipsoids are unique [137]. The volume ratio vr.X/ of X
and external volume ratio evr.X/ of X are defined by

vr.X/ def
D

�
voln.BX/

voln.JX/

� 1
n

and evr.X/ def
D

�
voln.LX/

voln.BX/

� 1
n

: (1.70)

By the Blaschke–Santaló inequality [39, 278] and the Bourgain–Milman inequal-
ity [50],

evr.X/ � vr.X�/: (1.71)

By the above discussion, we can quickly deduce the following theorem that relates
the Lipschitz extension modulus of a canonically positioned space to volumetric and
spectral properties of its unit ball.

Theorem 46. Suppose that n 2 N and that X D .Rn; k � kX/ is a canonically posi-
tioned normed space. Then,

e.X/ .
diam`n

2
.BX/

p
n

p
�.X/ � evr.X/

q
�.X/ voln.BX/

2
n

� vr.X�/
q
�.X/ voln.BX/

2
n : (1.72)

In fact, the minimum of the right-hand side of (1.54) over all those normed spaces YD
.Rn; k � kY/ for which BY � BX is bounded above and below by universal constant
multiples of diam`n

2
.BX/

p
�.X/=n.
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Proof. By Lemma 42 the Cheeger space ChX is canonically positioned. So, by Corol-
lary 45 with Y D Ch X,

e.X/ .
voln�1.@ChBY/ diam`n

2
.BX/

voln.ChBY/
p
n

(1.61)
.

diam`n
2
.BX/

p
n

p
�.X/:

This proves the first inequality in (1.72). The final equivalence in (1.72) is (1.71).
To prove the rest of (1.72), let rmin D min¹r > 0 W rB`n

2
� BXº denote the radius of

the circumscribing Euclidean ball of BX. We claim that rminB`n
2
D LX. Indeed, for

every U 2 Isom.X/ � On the ellipsoid ULX contains BX and has the same volume
as LX, so because the minimum volume ellipsoid that contains BX is unique [137], it
follows thatULXDLX. Hence, the scalar product that corresponds to LX is Isom.X/-
invariant and since X is canonically positioned, this means that LX is a multiple
of B`n

2
. Now,

voln.BX/
1
n evr.X/ (1.70)

D voln
�
rminB`n

2

� 1
n �

rmin
p
n
D

diam`n
2
.BX/

2
p
n

:

The above reasoning shows that the minimum of the right-hand side of (1.54)
over all the normed spaces Y D .Rn; k � kY/ with BY � BX is at most a universal
constant multiple of diam`n

2
.BX/

p
�.X/=n (take YD Ch X). In the reverse direction,

for any such Y by (1.55) with L D BY we have

MaxProj.BY/

voln.BY/
&

voln�1.@BY/

voln.BY/
p
n
>

voln�1.@ChBX/

voln.ChBX/
p
n

(1.61)
>

2
p
�.X/

�
p
n
;

where the penultimate step follows from the definition of the Cheeger body ChBX.

It is natural to expect that if X D .Rn; k � kX/ is a canonically positioned normed
space, then in Conjecture 9 for K D BX holds with S the identity matrix and with
L being the unit ball of a canonically positioned normed space. We formulate this
refined special case of Conjecture 9 as the following conjecture.

Conjecture 47. Fix n 2 N and a canonically positioned normed space

X D .Rn; k � kX/:

Then, there exists a canonically positioned normed space Y D .Rn; k � kY/ that satis-
fies k � kY � k � kX and iq.BY/ .

p
n.

Theorem 48 below shows that Conjecture 47 holds if X D `np for any p > 1 and
infinitely many dimensions n 2 N; specifically, it holds if n satisfies the mild arith-
metic (divisibility) requirement (1.73) below. An obvious question that this leaves is
to prove Conjecture 47 for X D `np and arbitrary .p; n/ 2 Œ1;1� �N. We expect that
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this question is tractable by (likely nontrivially) adapting the approach herein, but we
did not make a major effort to do so since obtaining Conjecture 47 for such a dense
set of dimensions n suffices for our purposes (the bi-Lipschitz invariants that we con-
sider can be estimated from above for any n 2 N since the requirement (1.73) holds
for some N 2 N \ Œn; O.n/� and `np embeds isometrically into `Np ). In Section 6 we
will prove Theorem 48, and deduce Theorem 24 from it. Recall Remark 31, which
explains that Conjecture 9 when K is the unit ball of `np follows (with S the identity
matrix) from Theorem 24. Thus, we do know that a body L as in Conjecture 9 exists
for all the possible choices of p > 1 and n 2 N, and (1.73) is only relevant to ensure
that L is the unit ball of a canonically positioned normed space.

Theorem 48. Fix n 2 N and p > 1. Conjecture 47 holds for X D `np if the following
condition is satisfied:

9m 2 N; m j n and max¹p; 2º 6 m 6 ep: (1.73)

The following conjecture is a variant of Conjecture 11.

Conjecture 49. Fix n 2 N and suppose that X D .Rn; k � kX/ is a canonically posi-
tioned normed space. Then, there exists a normed space Y D .Rn; k � kY/ with BY �

BX yet n
p

voln.BY/ & n
p

voln.BX/ such that iq.BY/ .
p
n.

Conjecture 47 requires Y to be canonically positioned while Conjecture 49 does
not. The reason for this is that if any normed space Y satisfies the conclusion of
Conjecture 49, then also the Cheeger space Ch X of X satisfies it (this is so because
the convex body L that minimizes the second quantity in (1.60) is, by definition, the
Cheeger body of K D BX), and by Lemma 42 the Cheeger space of X inherits from
X the property of being canonically positioned. This use of the uniqueness of the
Cheeger body will be important below. By (1.62), Conjecture 49 is equivalent to the
following symmetric version of Conjecture 35.

Conjecture 50. If X D .Rn; k � kX/ is a canonically positioned normed space, then
�.X/ vol.BX/

2
n � n:

The following corollary is a substitution of Conjecture 50 into Theorem 46.

Corollary 51. If Conjecture 49 (equivalently, Conjecture 50) holds for a canonically
positioned normed space X D .Rn; k � kX/, then the right-hand side of (1.54) when
Y D Ch X is O.evr.X/

p
n/. Consequently,

e.X/ . evr.X/
p
n � vr.X�/

p
n: (1.74)

It is worthwhile to note that by [19], the rightmost quantity in (1.74) is maximized
(over all possible n-dimensional normed spaces) when XD `n1 , in which case we have
evr.`n1/

p
n � n.
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Remark 52. We currently do not have any example of a normed space

X D .Rn; k � kX/

for which (1.74) provably does not hold. If (1.74) were true in general, or even if it
were true for a restricted class of normed spaces that is affine invariant and closed
under direct sums, such as spaces that embed into `1 with distortion O.1/, then it
would be an excellent result. When one leaves the realm of canonically positioned
spaces, (1.74) acquires a self-improving property8 as follows. Suppose that X is in
Löwner position, i.e., LX D B`n

2
. Fix m 2 N and consider the .nCm/-dimensional

space X0 D X˚1 `m2 . If (1.74) holds for X0, then

e.X/ 6 e.X0/

. evr.X0/
p

dim.X0/

.

 
volnCm

�
B
`
nCm
2

�
voln.BX/ volm

�
B`m

2

�! 1
nCm
p
nCm

D

�
voln.LX/

voln.BX/

� 1
nCm

 
volnCm

�
B
`
nCm
2

�
voln

�
`n2
�

volm
�
B`m

2

�! 1
nCm
p
nCm

� evr.X/
n

nCmn
n

2.nCm/m
m

2.nCm/ : (1.75)

The value of m that minimizes the right-hand side of (1.75) is

m � n log.evr.X/C 1/;

for which (1.75) becomes

e.X/ .
q
n log

�
evr.X/C 1

�
: (1.76)

As evr.X/ 6
p
n by John’s theorem, (1.76) gives e.X/ .

p
n logn, which would be

an improvement of [140]. Also, by (1.9) the bound (1.76) gives

e.X/ .
p
n log.C2.X/C 1/;

which is better than the conjectural bound (1.10). Here and throughout what follows,
for 1 6 p 6 2 6 q the (Gaussian) type-p and cotype-q constants [204] of a Banach
space .X; k � kX/, denoted Tp.X/ and Cq.X/, respectively, are the infimum over those

8We recommend checking that the analogous stabilization argument does not lead to a
similar self-improvement phenomenon in Conjecture 9, Conjecture 10 and Corollary 33; the
computations in Section 4 of [198] are relevant for this purpose.
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T 2 Œ1;1� and C 2 Œ1;1�, respectively, for which the following inequalities hold
for every m 2 N and every x1; : : : ; xm 2 X, where the expectation is with respect to
i.i.d. standard Gaussian random variables g1; : : : ; gm:

1

C

 
mX
jD1

kxj k
q
X

! 1
q

6

 
E

"




 mX
jD1

gjxj







2

X

#! 1
2

6 T

 
mX
jD1

kxj k
p
X

! 1
p

: (1.77)

This observation indicates that it might be too optimistic to expect that (1.74) holds
in full generality, but it would be very interesting to understand the extent to which it
does. Obvious potential counterexamples are `n1˚ `

m
2 ; if (1.74) holds for these spaces,

then e.`n1/ .
p
n logn by the above reasoning (with m � n logn), which would be a

big achievement because the best-known bound remains e.`n1/ . n from [140].

Lemma 53 below, whose proof appears in Section 6.1, shows that Conjecture 49
holds for a class of normed space that includes any normed spaces with a 1-symmetric
basis, as well as, say, `np.`

m
q / for any n;m 2N and p;q > 1. Other (related) examples

of such spaces arise from Lemma 151 below.

Lemma 53. Let X D .Rn; k � kX/ be an unconditional normed space. Suppose that
for any j; k 2 ¹1; : : : ; nº there is a permutation � 2 Sn with �.j / D k such that
k
Pn
iD1 a�.i/eikX D k

Pn
iD1 aieikX for every a1; : : : ; an 2 R. Then, Conjecture 49

holds for X. Therefore, we have �.X/ voln.BX/
2=n � n and e.X/ . evr.X/

p
n.

By [293, Theorem 2.1], any unconditional normed space XD .Rn;k � kX/ satisfies
vr.X/ . C2.X/

p
n, where C2.X/ is the cotype-2 constant of X (this is an earlier

special case of (1.9) in which the logarithmic term is known to be redundant). Hence,
if X satisfies the assumptions of Lemma 53, then we know that

e.X/ . C2.X�/
p
n: (1.78)

By combining [22, Theorem 6] and (1.71), for any p 2 Œ1;1�, if a normed space XD
.Rn; k � kX/ is isometric to a quotient of Lp (equivalently, the dual of X is isometric
to a subspace of Lp=.p�1/), then

evr.X/ . evr
�
`np
p�1

�
� min

®
n
1
p�

1
2 ; 1

¯
:

Consequently, if X D .Rn; k � kX/ satisfies the assumptions of Lemma 53 and is also
a quotient of Lp , then

e.X/ . nmax¹ 12 ;
1
p º: (1.79)

Both (1.78) and (1.79) are generalizations of Theorem 18.
Lemma 54 below, whose proof appears in Section 6.3, shows that the unitary

ideal of any n-dimensional normed space with a 1-symmetric basis (in particular,
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any Schatten–von Neumann trace class), satisfies Conjecture 49 up to a factor of
O.
p

logn/. Upon its substitution into Lemma 151 below, more such examples are
obtained.

Lemma 54. Let ED .Rn;k � kE/ be a symmetric normed space. Conjecture 49 holds
up to lower order factors for its unitary ideal SE. More precisely, there is a normed
space Y D .Mn.R/; k � kY/ such that BY � BSE and

voln2.BY/
1

n2 � voln2
�
BSE

� 1
n2 and n . iq.BY/ . n

p
logn: (1.80)

Therefore, we have

n2 . �
�
SE
�

voln2
�
BSE

� 2
n2 . n2 logn and e.SE/ . evr.SE/n � evr.E/n:

For the final assertion of Lemma 54, the fact that evr.SE/ � evr.E/ follows by
combining Proposition 2.2 in [285], which states that vr.SE/� vr.E/, with (1.71) and
the duality S�E D SE* (e.g., [289, Theorem 1.17]).

The proof of Lemma 54 also shows (see Remark 172 below) that if we could
prove Conjecture 49 for Sn1, then it would follow that SE satisfies Conjecture 49 for
any symmetric normed space E D .Rn; k � kE/, i.e., the logarithmic factor in (1.80)
could be replaced by a universal constant.

By substituting Lemma 54 into Corollary 51 and using volume ratio computations
of Schütt [285], we will derive in Section 6.3 the following proposition.

Proposition 55. If E D .Rn; k � kE/ is a symmetric normed space, then

e.E/ . diam`n
2

�
BE
�
ke1 C � � � C enkE

and
e
�
SE
�
. diam`n

2

�
BE
�
ke1 C � � � C enkE

p
n logn:

The following remark sketches an alternative approach towards Conjecture 9
when K is the hypercube Œ�1; 1�n that differs from how we will prove Theorem 24.
It yields the desired result up to a lower order factor that grows extremely slowly.
Specifically, it constructs an origin-symmetric convex body L � Œ�1; 1�n with

iq.L/ D eO.log�n/ and Œ�1; 1�n � eO.log�n/L:

Here, for each x > 1 the quantity log�x is defined to be the k 2 N such that

tower.k � 1/ 6 x < tower.k/

for the sequence ¹tower.i/º1iD0 that is defined by tower.0/ D 1 and tower.i C 1/ D
exp.tower.i//. We think that this approach is worthwhile to describe despite the fact
that it falls slightly short of fully establishing Conjecture 9 for Œ�1; 1�n due to its
flexibility that could be used for other purposes, as well as due to its intrinsic interest.
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Remark 56. Fix n 2N and q > 1. Since the nth root of the volume of the unit ball of
`nq is of order n�1=q and `nq is in minimum surface area position, we can restate (1.42)
as

iq
�
B`nq

�
� min¹

p
qn; nº: (1.81)

In particular, for Y D `nq with q D logn, we have k � kY � k � k`n1 and

iq.Y/ .
p
n logn;

which already comes close to the conclusion of Conjecture 9. We can do better using
the following evaluation of the isoperimetric quotient of the unit ball of `np.`

m
q /, which

holds for every n;m 2 N and p; q > 1:

iq
�
B`np.`mq /

�
�

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

nm m 6 min
®
p
n
; q
¯
;

n
p
qm q 6 m 6 p

n
;

p
pnm p

n
6 m 6 min¹p; qº;

p
pqn max

®
p
n
; q
¯
6 m 6 p;

m
p
n p 6 m 6 q;

p
qnm m > max¹p; qº:

(1.82)

We will prove (1.82) in Section 6. Note that when m D 1 this yields (1.81). The case
n D m of (1.82) is equivalent to (1.49) since `np.`

m
q / is canonically positioned (it

belongs to the class of spaces in Example 40) and using a simple evaluation of the
volume of its unit ball (see (6.6) below). The range of (1.82) that is most pertinent
for the present context is m > max¹p; qº, which has the feature that the factor that
multiplies the quantity

p
nm D

q
dim

�
`np.`

m
q /
�

is O.
p
q/ and there is no dependence on p. This can be used as follows. Suppose

that n D ab for a; b 2 N satisfying a � n= log n and b � log n. Identify `n1 with
`a1.`

b
1/. If we set YD `ap.`bq/ for p D loga � logn and q D log b � log logn, then

k � kY � k � k`n1 , while
iq.BY/ �

p
n log logn

by (1.82). By iterating we get that for infinitely many n 2 N there is a normed space
Y D .Rn; k � kY/ for which

k � kY 6 k � k`n1 6 e
O.log�n/

k � kY and iq.BY/ D e
O.log�n/:

Even though the set of n 2 N for which this works is not all of N, it is quite dense in
N per Lemma 163 below. This will allow us to deduce that a space Y with the above
properties exists for every n 2 N; see Section 6.1 for the details.
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Remark 57. Recalling Remark 38, Conjecture 10 is equivalent to the assertion that
if a normed space X D .Rn; k � kX/ is in Cheeger position, then iq.ChBX/ .

p
n

and voln.ChBX/
1=n & voln.BX/

1=n. Since Ch X is in minimum surface area position
when X is in Cheeger position (as explained in Remark 38), the proof of Proposi-
tion 32 shows that Conjecture 10 implies that if X is in Cheeger position, then

e.X/ .
diam`n

2
.BX/

voln.BX/
1
n

: (1.83)

In fact, the right-hand side of (1.54) is at most the right-hand side of (1.83) for
a suitable choice of normed space Y D .Rn; k � kY/, specifically for Y D Ch X.
The discussion in Section 1.6.2 was about establishing (1.83) when X is canoni-
cally positioned (conceivably that assumption implies that X is in Cheeger position
or close to it, which would be a worthwhile to prove, if true). Even though, as we
explained earlier, given the current state of knowledge, understanding the Lipschitz
extension problem for canonically positioned spaces is the most pressing issue for
future research, it would be very interesting to study if (1.83) holds in other situa-
tions. For examples, we pose the following two natural questions.

Question 58. Does (1.83) hold if the normed space X D .Rn; k � kX/ is in minimum
surface area position?

The extent to which…X is close to being in minimum surface area position when
X is in minimum surface area position seems to be unknown. Therefore, the con-
nection between Question 59 below and Question 58 is unclear, but even if there is
no formal link between these two questions, both are natural next steps beyond the
setting of canonically positioned normed spaces.

Question 59. Let ZD .Rn;k � kZ/ be a normed space in minimum surface area posi-
tion. Does (1.83) hold for the normed space XD…Z whose unit ball is the projection
body of BX?

If Z D .Rn; k � kZ/ is a normed space in minimum surface area position, then

diam`n
2
.…BZ/

voln.…BZ/
1
n

�
p
n: (1.84)

Indeed, because Z is in minimum surface area position, by [104, Corollary 3.4] we
have

voln.…BZ/
1
n �

voln�1.@BZ/

n
;

and also by combining [104, Proposition 3.1] and (1.55) we have

MaxProj.BZ/ �
voln�1.@BZ/
p
n

:
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We can therefore justify (1.84) using these results from [104] and duality as follows:

diam`n
2
.…BZ/

voln.…BZ/
1
n

�
nkIdnk…Z!`n

2

voln�1.@BZ/
D
nkIdnk`n

2
!…*Z

voln�1.@BZ/

D
nmaxz2Sn�1 kzk…*Z

voln�1.@BZ/

(1.30)
D

nMaxProj.BZ/

voln�1.@BZ/
�
p
n:

By this observation, a positive answer to Question 59 would show that e.…Z/ .
p
n

for any normed space Z D .Rn; k � kZ/. Indeed, if we take S 2 SLn.R/ such that SZ
is in minimum surface area position, then by [251] we know that …Z and …SZ are
isometric, so e.…Z/ D e.…SZ/. As the class of projection bodies coincides with the
class of zonoids [41, 283], which coincides with the class of convex bodies whose
polar is the unit ball of a subspace of L1, we have thus shown that a positive answer
to Question 59 would imply the following conjecture (which would simultaneously
improve (1.23) and generalize Theorem 18).

Conjecture 60. For any normed space X D .Rn; k � kX/ we have

e.X/ . cL1.X
�/
p
n:

Note that Conjecture 60 is consistent with the estimate e.X/ . evr.X/
p
n that

has been arising thus far. Indeed, if X� is isometric to a subspace of L1 (it suffices to
consider only this case in Conjecture 60 by a well-known differentiation argument;
see, e.g., [36, Corollary 7.10]), then we have the bound evr.X/ . 1 which can be seen
to hold by combining (1.71) with (1.9), since C2.X�/ 6 C2.L1/ . 1.9

Relating e.X/ to evr.X/ is valuable since the Lipschitz extension modulus is for
the most part shrouded in mystery, while the literature contains extensive knowl-
edge on volume ratios (we have already seen several examples of such consequences
above, and we will derive more later). Section 6.3 contains examples of volume ratio
evaluations for various canonically positioned normed spaces. Through their substi-
tution into Corollary 51, they illustrate how our work yields a range of new Lipschitz
extension results, some of which are currently conjectural because they hold assuming
Conjecture 49 for the respective spaces; specifically, consider the Lipschitz extension
bounds that correspond to using (1.14) and (1.15) with [173].

9Alternatively, evr.X/ . 1 can be justified by writing X D …Z for some normed space
Z D .Rn; k � kZ/ (using [41, 283]), and then applying the bound (1.84) that we derived above
(this even demonstrates that the external volume ratio of …Z is O.1/ when Z is in minimum
surface area position rather when Z is in Löwner position). Actually, the sharp bound evr.X/ 6
evr.`n1/ holds, as seen by combining [22, Theorem 6] with Reisner’s theorem [271] that the
Mahler conjecture [193] holds for zonoids.
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1.6.3 Intersection with a Euclidean ball

Fix an integer n > 2 and a canonically positioned normed space X D .Rn; k � kX/.
A natural first attempt to prove Conjecture 49 for X is to consider the normed space
YD .Rn;k � kY/ such that BY DBX \ rB`n

2
for a suitably chosen r > 0 (equivalently,

we have kxkY Dmax¹kxkX;kxk`n
2
=rº for every x 2Rn). However, we checked with

G. Schechtman that this fails even when X D `n1. Specifically, if the nth root of the
volume of B`n1 \ .rB`n2 / is at least a universal constant, then necessarily r &

p
n, but

8s > 0; iq
�
B`n1 \ .s

p
nB`n

2
/
�
&s n: (1.85)

A justification of (1.85) appears in Section 7 below. In terms of the quantification
(1.60) of Conjecture 49 that is pertinent to the applications that we study herein, we
will also show in Section 7 that

min
r>0

iq
�
B`n1 \ .rB`n2 /

�
p
n

�
voln.B`n1/

voln
�
B`n1 \ .rB`n2 /

�� 1n �plogn; (1.86)

where the minimum in the right-hand side of (1.86) is attained at some r > 0 that
satisfies r �

p
n= logn.

Even though the above bounds demonstrate that it is impossible to resolve Con-
jecture 49 by intersecting with a Euclidean ball, this approach cannot fail by more
than a lower-order factor; the reasoning that proves this assertion was shown to us
by B. Klartag and E. Milman in unpublished private communication that is explained
with their permission in Section 7. Specifically, we have the following proposition.

Proposition 61. For any normed space X D .Rn; k � kX/ there exist a matrix S 2
SLn.R/ and a radius r > 0 such that forLD .SBX/\ .rB`n

2
/�SBX we have iq.L/.

p
n and n

p
voln.L/ & n

p
voln.BX/=K.X/, where K.X/ is the K-convexity constant

of X. If X is canonically positioned, then this holds when S is the identity matrix.

For Proposition 61, the K-convexity constant of X is an isomorphic invariant
that was introduced by Maurey and Pisier [204]; we defer recalling its definition to
Section 7 since for the discussion here it suffices to state the following bounds that
relate K.X/ to quantities that we already encountered. Firstly,

K.X/ . log
�
dBM.`

n
2;X/C 1

�
. logn; (1.87)

The first inequality in (1.87) is a useful theorem of Pisier [256, 257]. The second
inequality in (1.87) follows from John’s theorem [137], though for this purpose it
suffices to use the older Auberbach lemma (see [27, p. 209] and [83, 300]). By [257]
(see also, e.g., [143, Lemma 17]) the rightmost quantity in (1.87) can be reduced if X
is a subspace of L1, namely we have

K.X/ . cL1.X/
p

logn: (1.88)
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Secondly, K.X/ relates to the notion of type that we recalled in (1.77) through the
following bounds:

T1C c

K.X/2
.X/

1
2 . K.X/ 6 inf

p2.1;2�
e.CTp.X//

p
p�1

; (1.89)

where c; C > 0 are universal constants. The qualitative meaning of (1.89) is that the
K-convexity constant of a Banach space is finite if and only if it has type p for some
p > 1; this is a landmark theorem of Pisier (the ‘if’ direction is due to [259] and
the ‘only if’ direction is due to [254]). Since in our setting X is finite dimensional
(dim.X/ D n > 2), such a qualitative statement is vacuous without its quantitative
counterpart (1.89). The first inequality in (1.89) can be deduced from [260] (together
with the computation of the implicit dependence on p in [260] that was carried out
in [131, Lemma 32]). The second inequality in (1.89) follows from an examination
of the proof in [259]. We omit the details of both deductions as they would result in a
(quite lengthy and tedious) digression. It would be very interesting to determine the
best bounds in the context of (1.89).

Proposition 61 combined with (1.87) implies that Conjecture 10 holds up to a
logarithmic factor in the sense that for every integer n > 2, any origin-symmetric
convex body K � Rn admits a matrix S 2 SLn.R/ and an origin-symmetric convex
body L � SK such that

iq.L/
p
n

�
voln.K/
voln.L/

� 1
n

. logn: (1.90)

Furthermore, by (1.88) the log n in (1.90) can be replaced by
p

logn if K is the
unit ball of a subspace of L1 (equivalently, the polar of K is a zonoid), and by the
second inequality in (1.89) if p > 1, then the log n in (1.90) can be replaced by
a dimension-independent quantity that depends only on p and the type-p constant
of the norm whose unit ball is K. Also, Corollary 33 holds with the right-hand side
of (1.59) multiplied by logn, and the reverse Faber–Krahn inequality of Conjecture 35
holds up to a factor of .log n/2, i.e., for any origin-symmetric convex body K � Rn

there is S 2 SLn.R/ such that �.SK/ vol.K/2=n . n.log n/2. If X D .Rn; k � kX/ is
a canonically positioned normed space, then it follows that for a suitable choice of
normed space Y D .Rn; k � kY/ the right-hand side of (1.28), and hence also e.X/
by Theorem 21, is at most a universal constant multiple of evr.X/

p
n log n, and also

n . �.X/ voln.BX/
2=n . n.logn/2.

1.7 Randomized clustering

All of the new upper bounds on Lipschitz extension moduli that we stated above rely
on a geometric structural result for finite dimensional normed spaces (and subsets
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thereof). Beyond the application to Lipschitz extension, this result is of value in its
own right because it yields an improvement of a basic randomized clustering method
from the computer science literature.

The link between random partitions of metric spaces and Lipschitz extension was
found in [173]. We will adapt the methodology of [173] to deduce the aforemen-
tioned Lipschitz extension theorems from our new bound on randomized partitions
of normed spaces. In order to formulate the corresponding definitions and results, one
must first set some groundwork for a notion of a random partition of a metric space,
whose subsequent applications necessitate certain measurability requirements.

A framework for reasoning about random partitions of metric spaces was devel-
oped in [173], but we will formulate a different approach. The reason for this is that
the definitions of [173] are in essence the minimal requirements that allow one to use
at once several different types of random partitions for Lipschitz extension, which
leads to definitions that are more cumbersome than the approach that we take below.
Greater simplicity is not the only reason why we chose to formulate a foundation that
differs from [173]. The approach that we take is easier to implement, and, impor-
tantly, it yields a bi-Lipschitz invariant, while we do not know if the corresponding
notions in [173] are bi-Lipschitz invariants (we suspect that they are not, but we did
not attempt to construct examples that demonstrate this). The Lipschitz extension
theorem of [173] is adapted accordingly in Section 5, thus making the present article
self-contained, and also yielding simplification and further applications. Neverthe-
less, the key geometric ideas that underly this use of random partitions are the same
as in [173].

Obviously, there are no measurability issues when one considers finite metric
spaces (in our setting, finite subsets of normed spaces). The ensuing measurability
discussions can therefore be ignored in the finitary setting. In particular, the computer
science literature on random partitions focuses exclusively on finite objects. So, for
the purpose of algorithmic clustering, one does not need the more general treatment
below, but it is needed for the purpose of Lipschitz extension.

1.7.1 Basic definitions related to random partitions

Let .M; dM/ be a metric space. Suppose that P � 2M is a partition of M. For x 2
M, denote by P.x/ �M the unique element of P to which x belongs. The sets
¹P.x/ºx2M are often called the clusters of P. Given � > 0, one says that P is �-
bounded if diamM.P.x// 6 � for every x 2M, where

diamM.S/ D sup¹dM.x; y/ W x; y 2 Sº

denotes the diameter of ¿ ¤ S �M.
Suppose that .Z; F/ is a measurable space, i.e., Z is a set and F � 2Z is a � -

algebra of subsets of Z. Recall (see [133] or the convenient survey [309]) that if
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.M; dM/ is a metric space, then a set-valued mapping

� W Z! 2M

is said to be strongly measurable if for every closed subset E �M we have

��.E/
def
D
®
z 2 Z W E \ �.z/ ¤ ¿

¯
2 F: (1.91)

Throughout what follows, when we say that P is a random partition of a met-
ric space .M; dM/, we mean the following (formally, the objects that we will be
considering are random ordered partitions into countably many clusters). There is a
probability space .�;Prob/ and a sequence of set-valued mappings®

�k W �! 2M
¯1
kD1

:

We write P! D ¹�k.!/º1
kD1

for each ! 2 � and require that the mapping ! 7! P!

takes values in partitions of M. We also require that for every fixed k 2 N, the set-
valued mapping �k W � ! 2M is strongly measurable, where the � -algebra on �
is the Prob-measurable sets. Given � > 0, we say that P is a �-bounded random
partition of .M; dM/ if P! is a �-bounded partition of .M; dM/ for every ! 2 �.

Remark 62. Recall that when we say that X D .Rn; k � kX/ is a normed space we
mean that the underlying vector space is Rn, equipped with a norm k � kX W Rn !
Œ0;1/. By doing so, we introduce a second metric on X, i.e., Rn is also endowed
with the standard Euclidean structure that corresponds to the norm k � k`n

2
. This leads

to ambiguity when we discuss �-bounded partitions of X for some � > 0, as there
are two possible metrics with respect to which one could bound the diameters of the
clusters. In fact, a key aspect of our work is that it can be beneficial to consider another
auxiliary norm k � kY on Rn, as in, e.g., Theorem 21, thus leading to three possible
interpretations of �-boundedness of a partition of Rn. To avoid any confusion, we
will adhere throughout to the convention that when we say that a partition P of X is
�-bounded we mean exclusively that all the clusters of P have diameter at most �
with respect to the norm k � kX.

1.7.2 Iterative ball partitioning

Fix � 2 .0;1/. Iterative ball partitioning is a common procedure to construct a �-
bounded random partition of a metric probability space. We will next describe it to
clarify at the outset the nature of the objects that we investigate, and because our new
positive partitioning results are solely about this type of partition. Thus, our contri-
bution to the theory of random partitions is a sharp understanding of the performance
of iterative ball partitioning of normed spaces, and, importantly, the demonstration
of the utility of its implementation using balls that are induced by a suitably chosen
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auxiliary norm rather than the given norm that we aim to study. On the other hand,
our impossibility results rule out the existence of any random partition whatsoever
with certain desirable properties.

The iterative ball partitioning method is a ubiquitous tool in metric geometry and
algorithm design. To the best of our knowledge, it was first used by Karger, Motwani
and Sudan [152] and the aforementioned work [76] in the context of normed spaces,
and it has become very influential in the context of general metric spaces due to its
use in that setting (with the important twist of randomizing the radii) by Calinescu,
Karloff and Rabani [71]. To describe it, suppose that .M; dM/ is a metric space and
that � is a Borel probability measure on M. Let ¹Xkº1kD1 be a sequence of i.i.d.
points sampled �. Define inductively a sequence ¹�kº1

kD1
of random subsets of M

by setting �1 D BM.X1; �=2/ and

8k 2 ¹2; 3; : : : ; º; �k
def
D BM

�
Xk;

�

2

�
X

k�1[
jD1

BM

�
Xj ;

�

2

�
:

By design, diamM.�
k/6�. Under mild assumptions on M and� that are simple

to check, �k will have the measurability properties that we require below and P D

¹�kº1
kD1

will be a partition of M almost-surely. While initially the clusters of P are
quite “tame,” e.g., they start out as balls in M, as the iteration proceeds and we discard
the balls that were used thus far, the resulting sets become increasingly “jagged.”
In particular, even when the underlying metric space .M; dM/ is very “nice,” the
clusters of P need not be connected; see Figure 1.2. Nevertheless, we will see that
such a simple procedure results in a random partition with probabilistically small
boundaries in sense that will be described rigorously below.

In the present setting, the metric space that we wish to partition is a normed space
X D .Rn; k � kX/, so it is natural to want to use the Lebesgue measure on Rn in the
above construction. Since this measure is not a probability measure, we cannot use
the above framework directly. For this reason, we will in fact use a periodic variant
of iterative ball partitioning of X by adapting a construction that was used in [173].

1.7.3 Separation and padding

Fix�> 0. Let P be a�-bounded random partition of a metric space M. As a random
“clustering” of M into pieces of small diameter, P yields a certain “simplification”
of M. For such a simplification to be useful, one must add a requirement that it
“mimics” the geometry of M in a meaningful way. The literature contains multiple
definitions that achieve this goal, leading to applications in both algorithms and pure
mathematics. We will not attempt to survey the literature on this topic, quoting only
the definitions of separating and padded random partitions, which are the simplest
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Figure 1.2. A schematic depiction of (randomized) iterative ball partitioning of a bounded sub-
set of R2, where R2 is equipped with a norm whose unit ball is a regular hexagon. The centers
of the above hexagons are chosen independently and uniformly at random from a large region
that contains the given subset of R2. At each step of the iteration, a new hexagon appears, and it
carves out a new cluster which consists of the part of the hexagon that does not intersect any of
the clusters that have been formed in the previous stages of the iteration. The first few clusters
that are formed by this procedure are typically hexagons, but at later stages the clusters become
more complicated and less “round.” In particular, they can eventually become disconnected, as
exhibited by the region that is shaded black above.

and most popular notions of random partitions of metric spaces among those that
have been introduced.

Definition 63 (Separating random partition and separation modulus). Let .M; dM/

be a metric space. For �; � > 0, a �-bounded random partition P of .M; dM/ is
� -separating if

8x; y 2M; Prob
�
P.x/ ¤ P.y/

�
6
�

�
dM.x; y/: (1.92)

The separation modulus10 of .M; dM/, denoted SEP.M; dM/ or simply SEP.M/ if
the metric is clear from the context, is the infimum over those � > 0 such that for
every � > 0 there exists a � -separating �-bounded random partition of .M; dM/.
If no such � exists, then write SEP.M; dM/ D 1. Similarly, for n 2 N, the size-n
separation modulus of .M; dM/, denoted SEPn.M; dM/ or simply SEPn.M/ if the
metric is clear from the context, is the infimum over those � > 0 such that for every
S �M with jS j 6 n and every�> 0 there exists a � -separating�-bounded random

10In [227] we called the same quantity the “modulus of separated decomposability.”
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partition of .S; dM/. In other words,

SEPn.M; dM/
def
D sup

S�M
jS j6n

SEP.S; dM/:

While the notions that we presented in Definition 63 are standard (see below for
the history), it will be beneficial for us (e.g., for proving Theorem 29) to introduce
the following terminology.

Definition 64 (Separation profile). Let .M; dM/ be a metric space. We say that a
metric d WM �M! Œ0;1/ on M is a separation profile of .M; dM/ if for every
� > 0 there exists a �-bounded random partition P� of .M; dM/ that is defined on
some probability space .��;Prob�/ such that

8x; y 2M; d.x; y/ > sup
�2.0;1/

�Prob�
�
P�.x/ ¤ P�.y/

�
: (1.93)

So, the separation modulus of .M; dM/ is the infimum over those � > 0 for
which �dM is a separation profile of .M; dM/. Definition 64 would make sense for
functions d WM �M ! Œ0;1/ that need not be metrics on M, but we prefer to
deal only with separation profiles of .M; dM/ that are metrics on M so as to be
able to discuss the Lipschitz condition with respect to them; observe that the right-
hand side of (1.93) is a metric on M, so any such function is always at least (point-
wise) a metric that is a separation profile of .M; dM/. If d WM �M! Œ0;1/ is a
separation profile of .M; dM/, then d.x; y/ > dM.x; y/ for all x; y 2M because
diamM.PdM.x;y/�".x// 6 dM.x; y/ � " < dM.x; y/ for any 0 < " < dM.x; y/, so
we necessarily have y … PdM.x;y/�".x/ (deterministically) and therefore

d.x; y/ > .dM.x; y/ � "/ProbdM.x;y/�"

�
PdM.x;y/�".x/ ¤ PdM.x;y/�".y/

�
D dM.x; y/ � ": (1.94)

Definition 65 (Padded random partition and padding modulus). Let .M; dM/ be a
metric space. For ı;p;� > 0, a�-bounded random partition P of .M; dM/ is .p; ı/-
padded if

8x 2M; Prob
h
BM

�
x;
�

p

�
� P.x/

i
> ı: (1.95)

Denote by PADı.M; dM/, or simply PADı.M/ if the metric is clear from the con-
text, the infimum over those p > 0 such that for every � > 0 there exists a .p; ı/-
padded �-bounded random partition P of .M; dM/. If no such p exists, then write
PADı.M; dM/ D1. For every n 2 N, denote

PADnı .M; dM/
def
D sup

S�M
jS j6n

PADı.S; dM/:
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See Section 3 for a quick justification why the above definition of random par-
tition implies that the events that appear in (1.92) and (1.95) are indeed Prob-mea-
surable.

Qualitatively, condition (1.92) says that despite the fact that P decomposes M

into clusters of small diameter, any two nearby points are likely to belong to the same
cluster. Condition (1.95) says that every point in M is likely to be “well within” its
cluster (its distance to the complement of its cluster is at least a definite proportion
of the assumed upper bound on the diameter of that cluster). Both of these require-
ments express the (often nonintuitive) property that the “boundaries” that the random
partition induces are “thin” in a certain distributional sense, despite the fact that each
realization of the partition consists only of small diameter clusters that can sometimes
be very jagged. Neither of the above two definitions implies the other, but it follows
from [170] that if P is a .p; ı/-padded �-bounded random partition of .M; dM/,
then there exists a random partition P0 of .M; dM/ that is .2�/-bounded and .4p=ı/-
separating.

Separating and padded random partitions were introduced in the articles [29, 30]
of Bartal, which contained decisive algorithmic applications and influenced a flurry
of subsequent works that obtained many more applications in several directions.
Other works considered such partitions implicitly, with a variety of applications; see
the works of Leighton–Rao [175], Awerbuch–Peleg [18], Linial–Saks [184], Alon–
Karp–Peleg–West [4], Klein–Plotkin–Rao [156] and Rao [269]. The nomenclature of
Definition 63 and Definition 65 comes from [124, 160, 170, 171, 173].

By [29], for every metric space .M; dM/ and every integer n > 2, we have the
bound SEPn.M/ . log n. It was observed by Gupta, Krauthgamer and Lee [124]
that [29] also implicitly yields the padding bound PADn0:5.M/ . logn. It was proved
in [29] that both of these estimates are sharp.

Random partitions of normed spaces were first studied by Peleg and Reshef [248]
for applications to network routing and distributed computing. The aforementioned
work [76] improved and generalized the bounds of [248], and influenced later works;
see, e.g., [173], and the work [13] of Andoni and Indyk. Similar partitioning schemes
appeared implicitly in earlier work [152] on algorithms for graph colorings based on
semidefinite programming.

1.7.4 From separation to Lipschitz extension

As we already explained, the connection between random partitions and Lipschitz
extension was found in [173]. Here we will use the following theorem to deduce
Theorem 29. It implies in particular the bound

e.M/ . SEP.M/ (1.96)
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of [173] and its proof is an adaptation of the ideas of [173] to both the present setup
(extension to a function that is Lipschitz with respect to a different metric) and our
different measurability requirements from the random partitions; we stress, however,
that even though we cannot apply [173] directly as a “black box,” the geometric ideas
that underly the proof of Theorem 66 are the same as those of [173].

Theorem 66. Suppose that d is a separation profile of a locally compact metric space
.M; dM/. For every Banach space .Z; k � kZ/ and every subset C �M, if f W C! Z
is 1-Lipschitz with respect to the metric dM, i.e., kf .x/ � f .y/kZ 6 dM.x; y/ for
every x; y 2M, then there is F WM! Z that extends f and is O.1/-Lipschitz with
respect to the metric d, i.e., kF.x/ � F.y/kZ . d.x; y/ for every x; y 2M.

1.7.5 Bounds on the separation and padding moduli of normed spaces

To facilitate the ensuing discussion of upper and lower bounds on the separation
and padding moduli of (subsets of) normed spaces, we will first record two of their
rudimentary properties. Firstly, the following lemma formally expresses the afore-
mentioned advantage of the definitions in Section 1.7.3 over those of [173], namely
that the moduli SEP.�/ and PADı.�/ are bi-Lipschitz invariants; its straightforward
proof appears in Section 3.

Lemma 67 (Bi-Lipschitz invariance of separation and padding moduli). Let .M;dM/

be a complete metric space that admits a bi-Lipschitz embedding into a metric space
.N; dN/. Then

SEP.M; dM/ 6 c.N;dN/.M; dM/SEP.N; dN/ (1.97)

and

8ı 2 .0; 1/; PADı.M; dM/ 6 c.N;dN/.M; dM/PADı.N; dN/: (1.98)

Secondly, we have the following tensorization property of the separation and
padding moduli, whose simple proof appears in Section 3. For s 2 Œ1;1� and met-
ric spaces .M1; dM1

/; .M; dM2
/, the metric dM1˚sM2

WM1 �M2 ! Œ0;1/ on
the Cartesian product M1 �M2 is defined by setting for every .x1; x2/; .y1; y2/ 2
M1 �M2,

dM1˚sM2

�
.x1; x2/; .y1; y2/

� def
D
�
dM.x1; y1/

s
C dN.x2; y2/

s
� 1
s : (1.99)

With the usual convention that when s D 1 the right-hand side of (1.99) is equal to
the maximum of dM.x1;y1/ and dN.x2;y2/. The metric space .M1�M2;dM1˚sM2

/

is will be denoted M1 ˚s M2.
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Lemma 68 (Tensorization of separation and padding moduli). For any s 2 Œ1;1�
and ı1; ı2 2 .0; 1/, any two metric spaces .M1; dM1

/ and .M2; dM2
/ satisfy

SEP.M1 ˚s M2/ 6 SEP.M1/C SEP.M2/; (1.100)

and
PADı1ı2.M1 ˚s M2/ 6

�
PADı1.M1/

s
C PADı2.M2/

s
� 1
s : (1.101)

The following theorem shows that the bi-Lipschitz invariant PADı.�/ is not suf-
ficiently sensitive to distinguish substantially between normed spaces, as its value is
essentially independent of the norm.

Theorem 69. For every n 2 N, every normed space X D .Rn; k � kX/ satisfies

8ı 2 .0; 1/;
1

1 �
n
p
ı
6
1

2
PADı.X/ 6

1C
n
p
ı

1 �
n
p
ı
: (1.102)

Therefore, PADı.X/ � max¹1; dim.X/
log.1=ı/º for every finite dimensional normed space X

and ı 2 .0; 1/.

As we explained above, in the setting of Theorem 69 the fact that

PAD 1
2
.X/ D O.n/

is well known. We will prove the upper bound on PADı.X/ that appears in (1.102),
i.e., with sharp dependence on both n and ı, in Section 4.1. The fact that PAD0:5.X/
is at least a universal constant multiple of n was proved in the manuscript [170].
Because [170] is not intended for publication, we will prove the lower bound on
PADı.X/ that appears in (1.102) in Section 2.6, by following the reasoning of [170]
while taking more care than we did in [170] in order to obtain sharp dependence on ı
in addition to sharp dependence on n.

In contrast to Theorem 69, the separation modulus of a finite dimensional normed
space can have different asymptotic dependencies on its dimension. For example, we
have SEP.`n2/ �

p
n and SEP.`n1/ � n by [76]. Using Lemma 67, we see from this

that every normed space X D .Rn; k � kX/ satisfies the a priori bounds

n

dBM.`
n
1;X/

. SEP.X/ . dBM.`
n
2;X/
p
n; (1.103)

which we already quoted in the above overview as (1.2).
Giannopoulos proved [105] that every n-dimensional normed space X satisfies

dBM.`
n
1; X/ . n5=6, so the first inequality in (1.103) implies that SEP.X/ & 6

p
n.

Alternatively, the fact that SEP.X/ > nc for some universal constant c > 0 follows
from by combining Theorem 1 with (1.96). Actually, we always have

SEP.X/ &
p
n; (1.104)
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which coincides with the first half of (1.7). Observe that (1.104) cannot follow from a
“vanilla” application of the first inequality in (1.103) by Szarek’s work [295]. In fact,
the first inequality of (1.103) must sometimes yield a worse power type dependence
on n than in (1.104), because Tikhomirov proved in [302] that there is a normed space
XD .Rn; k � kX/ that satisfies dBM.`

n
1;X/ > na for some universal constant a > 1=2.

Nevertheless, we can prove (1.104) by the following a “hereditary” application
of (1.103). Bourgain–Szarek [51] and independently Ball (see [51, Remark 7], [296,
Remark 7], [305, p. 138]) proved (relying on the Bourgain–Tzafriri restricted invert-
ibility principle [52]) that there is m 2 ¹1; : : : ; nº with m � n such that cX.`

m
1 / .p

n (in fact, by [51] any 2n-dimensional normed space has Banach–Mazur distance
O.
p
n/ from `n1 ˚ `

n
2). Hence, SEP.X/ & SEP.`m1 /=cX.`

m
1 / � m=cX.`

m
1 / &

p
n,

by (1.97).
The second half of (1.7) is the following lower bound on SEP.X/ in terms of the

type 2 constant of X:
SEP.X/ & T2.X/2: (1.105)

We will prove (1.105) in Section 2.2 using Talagrand’s refinement [298] of Elton’s
theorem [92], by the same hereditary use of (1.103), namely showing that there is
m 2 ¹1; : : : ; nº for which m=cX.`

m
1 / & T2.X/2.

Remark 70. It is impossible to improve (1.7) for all the values of the relevant param-
eters, as seen by considering XD `n�m2 ˚2 `

m
1 for eachm 2 ¹1; : : : ; nº. Indeed, since

in this case T2.X/ �
p
m,

SEP.X/
(1.100)
6 SEP

�
`n�m2

�
C SEP

�
`m1
�

�
p
n �mCm �

p
nC k � max

®p
dim.X/; T2.X/2

¯
:

Thanks to (1.71), the following theorem is a restatement of the lower bound on
SEP.X/ in Theorem 3.

Theorem 71. For every n 2 N, any normed space X D .Rn; k � kX/ satisfies

SEP.X/ & evr.X/
p
n:

As evr.X/ > 1 (by definition), Theorem 71 implies (1.104), via a proof that dif-
fers from the above reasoning. Also, Theorem 71 is stronger than the first inequality
in (1.103) because evr.`n1/ �

p
n, and hence

evr.X/
p
n >

evr.`n1/
dBM.`

n
1;X/

p
n �

n

dBM.`
n
1;X/

:

We will prove Theorem 71 in Section 2.5 by adapting to the setting of general normed
spaces the strategy that was used in [76] to treat `n1 . The volumetric lower bound on
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SEP.X/ of Theorem 71 is typically quite easy to use and it often leads to estimates
that are better than the first inequality in (1.103).

For example, by [285, Proposition 2.2] the Schatten–von Neumann trace class Snp
satisfies

8p > 1; evr
�
Snp
�
� nmax¹ 1p�

1
2 ;0º: (1.106)

By substituting (1.106) into Theorem 71 we get that

81 6 p 6 2; SEP.Snp/ & n
1
p�

1
2

q
dim

�
Snp
�
� n

1
pC

1
2 : (1.107)

An upper bound that matches (1.107) is a consequence of the second inequality
in (1.103) as follows

SEP
�
Snp
�
. dBM

�
Snp; `

n2

2

�q
dim

�
Snp
�
D dBM

�
Snp;S

n
2

�
n D n

1
pC

1
2 :

We therefore have
81 6 p 6 2; SEP

�
Snp
�
� n

1
pC

1
2 :

At the same time, the first inequality in (1.103) does not imply (1.107) since by
a theorem of Davis (which was published only in the monograph [305]; see Theo-
rem 41.10 there), for every 1 6 p 6 2 we have

dBM
�
`n
2

1 ;S
n
p

�
� n: (1.108)

So, the first inequality in (1.103) only implies the weaker bound SEP.Snp/ & n. Of
course, this rules out a “vanilla” use of (1.103) and a hereditary application of (1.103)
as we did above could conceivably lead to (1.107), i.e., there could bem 2 ¹1; : : : ; nº
such thatm=cSnp .`

m
1 / is at least the right-hand side of (1.107). However, this possibil-

ity seems to be unlikely, as it would mean that the following conjecture has a negative
answer, which would entail finding a remarkable (and likely valuable elsewhere) sub-
space of Snp .

Conjecture 72. Fix 1 6 p 6 2 and 0 < ı 6 1. If n;m 2 N satisfy m > ın2, then

dBM.`
m
1 ;X/ &p;ı n

for every m-dimensional subspace X of Snp .

Thus, (1.108) is the case ı D 1 of Conjecture 72, which asserts that the same
asymptotic lower bound persists if we consider subspaces of Snp of proportional di-
mension rather than Snp itself. Conjecture 72 is attractive in its own right, but it also
implies that (1.107) does not follow from a hereditary application of the first inequal-
ity in (1.103). To see this, suppose for contradiction that there were m 2 ¹1; : : : ; nº
such that

m

cSnp .`
m
1 /
&p n

1
pC

1
2 : (1.109)
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By Rademacher’s differentiation theorem [267] there is an m-dimensional subspace
X of Snp satisfying

cSnp .`
m
1 / D dBM.`

m
1 ;X/ &

dBM.`
m
1 ; `

m
2 /

dBM.Snp;S
n
2/
D

p
m

n
1
p�

1
2

: (1.110)

By contrasting (1.110) with (1.109) we deduce that necessarilym &p n2, so an appli-
cation of Conjecture 72 givesm=cSnp .`

m
1 /.p n, which contradicts (1.109) since p<2.

Remark 73. The Löwner ellipsoid of `n1.`
n
1/ is
p
nB`n

2
.`n
2
/, and B`n1.`n1 / D .B`n1 /

n.
Consequently,

evr
�
`n1.`

n
1/
�
n D n

 
.�n/

n2

2 =�
�
n2

2
C 1

�
2n
2
=.nŠ/n

! 1

n2

� n
3
2 :

Therefore, Theorem 71 gives

SEP
�
`n1.`

n
1/
�
& n

3
2 : (1.111)

We will soon see that (1.111) is optimal, though unlike the above discussion for Snp
when 1 6 p 6 2, this does not follow from the second inequality in (1.103) because
by [163],

dBM
�
`n
2

2 ; `
n
1.`

n
1/
�
� dBM

�
`n
2

1 ; `
n
1.`

n
1/
�
� n: (1.112)

(1.112) also shows that (1.111) does not follow from the first inequality in (1.103).
It seems that the method used in [163] to prove (1.112) is insufficient for prov-
ing that (1.111) does not follow from a hereditary application of the first inequal-
ity in (1.103). Analogously to Conjecture 72, we conjecture that this is impossible,
which is a classical-sounding question about Banach–Mazur distances of independent
interest.

Before passing to a description of our upper bounds on the separation modulus,
we formulate the following corollary of Theorem 71 on the separation modulus of
norms whose unit ball is a polytope; it restates the lower bound (1.6) and establishes
its optimality.

Theorem 74. Fix n 2 N and a normed space X D .Rn; k � kX/. Suppose that BX

is a polytope that has exactly �n vertices (note that necessarily � > 2, since BX is
origin-symmetric). Then

SEP.X/ &
n

p
log �

: (1.113)

Moreover, this bound cannot be improved in general.



Randomized clustering 63

As an example of a consequence of Theorem 74, let

G D .Rn; k � kG/

be a Gluskin space [111], i.e., it is a certain random norm on Rn whose unit ball
has O.n/ vertices; see the survey [196] for extensive information about this impor-
tant construction and its variants. The expected Banach–Mazur distance between two
independent copies of G is at least cn for some universal constant c > 0, so the
expected Banach–Mazur distance between G and `n1 is at least

p
cn. Thus, the first

inequality in (1.103) only shows that SEP.G/&
p
n in expectation, while Theorem 74

shows that SEP.G/ & n=
p

logn. It would be interesting to determine the growth rate
of EŒSEP.G/�. In particular, can it be that EŒSEP.G/� & n?

Proof of Theorem 74. By applying a linear isometry of X we may assume that B`n
2

is
the Löwner ellipsoid of BX. Since BX is a polytope with �n vertices that is contained
in B`n

2
, we have

n
p

voln.BX/ .
p

log �
n

by a result of Maurey [258] (see also [25, 28, 48, 72, 73, 112, 164] and the expository
treatments in [24, 55]). Hence, evr.X/ &

p
n= log �, so (1.113) follows from Theo-

rem 71.
Consider the following (dual of an) example of Figiel and Johnson [98]. Fix

m 2 N. Let Z D .Rm; k � kZ/ be a normed space with dBM.`
m
2 ; Z/ . 1 such that

BZ is a polytope of eO.m/ vertices; e.g., BZ can be taken to be the convex hull of
a net of Sm�1. For k 2 N, let X D `k1.Z/. So, dim.X/ D km and BX is a poly-
tope of 2keO.m/ vertices. Thus (1.113) becomes SEP.X/ & k

p
m. At the same time,

since dBM.`
m
2 ;Z/ . 1 we have dBM.`

km
2 ;X/ .

p
k, so by (1.103) in fact SEP.X/ .

p
k �
p
km D k

p
m, i.e., (1.113) is sharp in this case.

Theorem 29 follows from Theorem 66 thanks to the following randomized parti-
tioning theorem.

Theorem 75. For every n 2 N and every normed space X D .Rn; k � kX/, the metric
d that is defined by

8x; y 2 Rn; d.x; y/ D
4kx � yk…*X

voln.BX/

is a separation profile for X.

To illustrate Theorem 75, fix 1 6 p 61 and apply it when X is the space Ynp
of Theorem 24. By using Theorem 75 we see that for every � > 0 there is a random
partition P of Rn with the following properties.

(1) For every x 2 Rn we have diam`np
.P.x// 6 �.
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(2) For every x; y 2 Rn we have

Prob
�
P.x/ ¤ P.y/

�
.
kx � yk…*Ynp

voln.BYnp /

(1.30)^(1.39)
.

n
1
p

�
kx � yk`n

2
: (1.114)

In comparison to the O.
p
n/-separating partition of `n2 from [76], when p < 2 the

above random partition has smaller clusters in the sense that their diameter in the `np
metric is at most�, which is more stringent than the requirement that their Euclidean
diameter is at most �. This improved control on the size of the clusters comes at the
cost that in the probabilistic separation requirement (1.114) the quantity that multi-
plies the Euclidean distance increases from O.

p
n/ to O.n1=p/. When p > 2 this

tradeoff is reversed, i.e., we get an asymptotic improvement in the separation guar-
antee (1.114) at the cost of requiring less from the cluster size, namely the diameter
of each cluster is now guaranteed to be small in the `np metric rather than the more
stringent requirement that it is small in the Euclidean metric.

Theorem 76 below follows from Theorem 75 the same way we deduced Theo-
rem 21 from Theorem 29.

Theorem 76. Fix n 2 N and two normed spaces X D .Rn; k � kX/;Y D .Rn; k � kY/.
Every closed C � Rn satisfies

SEP.CX/

6 4
�

sup
x;y2C
x¤y

kx � ykX

kx � ykY

�
sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?.BY/

�
voln.BY/

�
kx � yk`n

2

kx � ykX

�
: (1.115)

Proof of Theorem 76 assuming Theorem 75. Let M , M 0 be as in (1.51) and (1.52).
By Theorem 75 applied to Y, for every � > 0 there is a random partition P of Rn

that is .�=M/-bounded with respect to Y, i.e.,

diamX
�
P.x/

�
M

(1.51)
6 diamY

�
P.x/

�
6
�

M

for every x 2 Rn, and also, recalling Definition 64, for every distinct x; y 2 Rn we
have

�

M
Prob

�
P.x/ ¤ P.y/

�
6
4kx � yk…*Y

voln.BY/

(1.30)
D

4 voln�1
�
Proj.x�y/?.BY/

�
kx � yk`n

2

voln.BY/

(1.52)
6 4M 0kx � ykX:

The special case C D Rn of Theorem 76 coincides (with an explicitly stated
constant factor) with the upper bound on SEP.X/ in Theorem 3, since under the
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normalization BY � BX we have

SEP.X/
(1.30)^(1.115)
6 4

supz2@BX kzk…*Y

voln.BY/

D 4
kIdnkX!…*Y

voln.BY/
D 4
kIdnk…Y!X*

voln.BY/
D 2

diamX*.…BY/

voln.BY/
:

Also, Theorem 76 is stronger than the second inequality in (1.103) because by apply-
ing a linear isometry of X we may assume without loss of generality that kxkX 6
kxk`n

2
6 dBM.`

n
2;X/kxkX for all x 2 Rn, in which case the special case C D Rn and

Y D `n2 of (1.115) implies that

SEP.X/ 6
4 voln�1

�
B`n�1

2

�
voln

�
B`n

2

� dBM.`
n
2;X/ D

4�
n�1
2 �

�
n
2
C 1

�
�
n
2�
�
n�1
2
C 1

� dBM.`
n
2;X/

D
2
3
2 C o.1/
p
�

dBM.`
n
2;X/
p
n:

The right-hand side of (1.115) coincides (up to a universal constant factor) with
the right-hand side of (1.28), so all of the upper bounds for the Lipschitz extension
modulus that we derived in the previous sections from Theorem 21 hold for the sep-
aration modulus, by Theorem 76. For the separation modulus, we get several lower
bounds from Theorem 71 that either provably match our upper bounds up to lower
order factors, or match them assuming our conjectural isomorphic reverse isoperime-
try. We will next spell out some of those consequences on randomized clustering of
high dimensional norms.

Theorem 77. For every p > 1, n 2 N and k; r 2 ¹1; : : : ; nº we have

SEP
�
.`np/6k

�
� kmax¹ 1p ;

1
2 º (1.116)

and

rmax¹ 1p ;
1
2 º
p
n . SEP

�
.Snp/6r

�
. rmax¹ 1p ;

1
2 º
p
n �

8<:
q

max¹log.n
r
/; pº if p 6 log r;

p
logn if p > log r:

(1.117)

Moreover, if Conjecture 49 holds for X D Snp , then in fact

SEP
�
.Snp/6r

�
� rmax¹ 1p ;

1
2 º
p
n:

Proof. The deduction of the upper bounds on the separation modulus that appear
in (1.116) and (1.117) from Theorem 76 are identical, respectively, to the ways we
deduced Theorem 20 and (1.45) from Theorem 21.



66 Introduction

For the first inequality in (1.116), since .`np/6k contains an isometric copy of `kp ,
we have

SEP
�
.`np/6k

�
> SEP

�
`kp
�
&

k

dBM
�
`kp ; `

k
1

� (1.103)
�

k

kmax¹1� 1p ;
1
2 º
D kmin¹ 1p ;

1
2 º;

where the asymptotic evaluation of dBM.`
k
p ; `

k
q/ for all p;q > 1 is due Gurariı̆, Kadec’

and Macaev [125].
For the first inequality in (1.117), use the fact that .Snp/6r contains an isometric

copy of Sr�np , which is the Schatten–von Neumann trace class on the r-by-n real
matrices Mr�n.R/, whose norm is given by

8A 2Mr�n.R/; kAkSr�np
D
�
Tr
�
.AA�/

p
2

�� 1
p : (1.118)

We then have the following rectangular version of (1.106) whose derivation is ex-
plained in Remark 171:

evr
�
Sr�np

�
� rmax¹ 1p�

1
2 ;0º: (1.119)

The desired lower bound on SEP..Snp/6r/ is now an application of Theorem 71.

Remark 78. Theorem 3.3 in [76] asserts that SEP.`np/ � n
max¹1=p;1�1=pº for every

p > 1. Therefore, when p > 2 it was previously thought that SEP.`np/ � n1�1=p ,
which contradicts the case k D n of (1.116). While [76] provides a complete and
correct proof that SEP.`np/ � n

1=p when 1 6 p 6 2, in the range p > 2 the assertion
SEP.`np/ � n

1�1=p in [76] is justified through the use of a result from reference [14]
in [76], which is cited there as a “personal communication” with P. Indyk (dated April
1998). This reference was never published. After discovering Theorem 77, we con-
firmed with Indyk that his aforementioned personal communication with the authors
of [76] contained a gap.

Corollary 79. Conjecture 49 implies Conjecture 6. Namely, if Conjecture 49 holds
for a canonically positioned normed space X D .Rn; k � kX/, then

SEP.X/ � evr.X/
p
n � vr.X�/

p
n: (1.120)

In particular, if X satisfies the assumptions of Lemma 53 (e.g., if X is symmetric),
then (1.120) holds. Furthermore, if E D .Rn; k � kE/ is a symmetric normed space,
then SEP.SE/ D evr.E/n1Co.1/. More precisely,

evr.E/n . SEP.SE/ . evr.E/n
p

logn:

Proof. The lower bound on SEP.X/ in (1.120) is Theorem 71 (thus, it requires neither
Conjecture 49 nor X being canonically positioned). The matching upper bound on
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SEP.X/ in (1.120) follows from Corollary 51 and the fact that by Theorem 76 the
separation modulus of any (not necessarily canonically positioned) normed space

X D .Rn; k � kX/

is bounded from above by the right-hand side of (1.54). The rest of the assertions of
Corollary 79 follow from Lemma 53 and Lemma 54.

By incorporating Proposition 61 into the same reasoning as in the justification of
Corollary 79, we also deduce the following stronger version of Theorem 12.

Theorem 80. If X D .Rn; k � kX/ is a canonically positioned normed space, then

evr.X/
p
n . SEP.X/ . K.X/ evr.X/

p
n

(1.87)
. evr.X/

p
n logn:

Section 6.3 contains volume ratio computations that show how Corollary 79 and
Theorem 80 imply Corollary 4, as well as the conjectural (i.e., conditional on the
validity of Conjecture 49 for the respective spaces) asymptotic evaluations (1.14)
and (1.15), and several further results of this type. Most of the volume ratio compu-
tations in Section 6.3 rely on the available literature (notably Schütt’s work [285]),
with a few new twists that are perhaps of independent geometric/probabilisitic interest
(e.g., Lemma 173).

1.7.6 Dimension reduction

Fix n 2 N and a metric space .M; dM/. Recall that in Definition 63 we denoted by
SEPn.M; dM/ the supremum over all the separation moduli of subsets of M of size
at most n. In [76] it was shown that SEPn.`2/ .

p
logn. Indeed, this follows from

the Johnson–Lindenstrauss dimension reduction lemma [138], which asserts that any
n-point subset of `2 can be embedded with O.1/ distortion into `m2 with m . log n,
combined with the proof in [76] that SEP.`m2 / .

p
m.

One might expect that the optimal bounds that we know for SEP.`np/ in the
entire range p 2 .1;1/ also translate to improved bounds on SEPn. p̀/. The term
“improved” is used here to mean any upper bound of the form op.log n/ as n!1,
since the benchmark general result is the aforementioned upper bound

SEPn.M; dM/ . logn

from [29], which holds for any n-point metric space .M; dM/. This bound is sharp in
general [29], so (because every n-point metric space embeds isometrically into `n1)
we cannot hope to get a better bound on SEPn.`1/ despite the fact that we obtained
here an improved upper bound on SEP.`n1/.

The obstacle is that when p 2 Œ1;1� X ¹2º no bi-Lipschitz dimension reduction
result is known for finite subsets of p̀ , and poly-logarithmic bi-Lipschitz dimension
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reduction is impossible if p 2 ¹1;1º; the case p D 1 is due to Matoušek [200]
(see also [228, 230]) and the case p D 1 is due to Brinkman and Charikar [58] (see
also [172,232,240,270]). When p 2 Œ1;1�X ¹1;2;1º remarkably nothing is known,
i.e., neither positive results nor impossibility results are available for bi-Lipschitz
dimension reduction, and it is a major open problem to make any progress in this
setting; see [229] for more on this area. Despite this obstacle, we have the following
theorem that treats the range p 2 Œ1; 2�.

Theorem 81. For every p 2 .1; 2� and n 2 N we have

.logn/
1
p . SEPn. p̀/ .

.logn/
1
p

p � 1
:

The lower bound on SEPn. p̀/ of Theorem 81 can be deduced from [76]; see
Section 4.2 for the details. An upper bound of SEPn. p̀/ .p .logn/1=p was obtained
when p 2 .1; 2� in the manuscript [170]. As [170] is not intended for publication, a
proof of the upper bound on SEPn. p̀/ that is stated in Theorem 81 is included in
Section 4.2, where we perform the argument with more care than the way we initially
did it in [170], so as to obtain the best dependence on p that is achievable by this
approach. Nevertheless, we conjecture that the dependence on p in Theorem 81 could
be removed altogether, though this would likely require a substantially new idea.

Conjecture 82. The dependence on p in Theorem 81 can be improved to

SEPn. p̀/ . .logn/
1
p :

So, if p 6 1C c.log log logn/= log logn for some universal constant c > 0, then
Theorem 81 does not improve asymptotically over SEPn. p̀/ . log n, while Conjec-
ture 82 would imply that SEPn. p̀/ D o.logn/ if and only if

lim
n!1

.p � 1/ log logn D1:

For fixed p 2 .2;1/, at present we do not see how to obtain an upper bound on
SEPn. p̀/ of the form op.logn/ as n!1. We state this separately as an interesting
and challenging open question.

Question 83. Is it true that for every n 2 N and p 2 .2;1/ we have

lim
n!1

SEPn. p̀/

logn
D 0‹

More ambitiously, is it true that SEPn. p̀/ .p
p

logn?

Note that SEPn.X/ &
p

logn for any infinite-dimensional normed space X, be-
cause by Dvoretzky’s theorem [90] we have cX.`

m
2 / D 1 for every m 2 N, and there-

fore SEPn.X/ > SEPn.`2/ �
p

logn.
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1.8 Consequences in the linear theory

Even though the purpose of the present article was to investigate the nonlinear invari-
ants e.�/ and SEP.�/, by relating them to volumetric quantities and other linear invari-
ants of Banach spaces (such as type and cotype), we arrive at consequences that have
nothing to do with nonlinear issues. In this section, we will give a flavor of such con-
sequences, though we will not be exhaustive since it would be more natural to pursue
them separately for their own right in future work.

Denote the Minkowski functional of an origin-symmetric convex body K � Rn

by k � kK , i.e., it is the norm on Rn whose unit ball is equal toK. The following theo-
rem coincides with the second inequality in (1.1) upon a straightforward application
of duality as we did in (1.31); this formulation is intended to highlight how we are
bounding a convex-geometric quantity by a bi-Lipschitz invariant.

Theorem 84 (Nonsandwiching between a convex body and its polar projection body).
Fix n 2N and ˛;ˇ 2 .0;1/. LetK;L� Rn be origin-symmetric convex bodies with
voln.L/ D 1. Suppose that

˛L � K � ˇ…�L: (1.121)

Then,
ˇ

˛
& SEP

�
Rn; k � kK

�
: (1.122)

Since the separation modulus of a metric space is at least the separation modu-
lus of any of its subsets, by combining (1.122) with the first inequality in (1.1) we
see that the sandwiching hypothesis (1.121) implies the following purely volumetric
consequence for every linear subspace V � Rn:

ˇ

˛
& evr

�
K \ V

�p
n � vr

�
ProjVK

ı
�p
n: (1.123)

In particular, using evr.`n1/ �
p
n, we record separately the following special case

of (1.123).

Corollary 85 (Nonsandwiching of the cross-polytope). Fix n 2N and ˛;ˇ 2 .0;1/.
If L � Rn is a convex body of volume 1 that satisfies ˛L � B`n

1
� ˇ…�L, then

necessarily ˇ=˛ & n.

The geometric meaning of Theorem 84 when L D K is spelled out in the follow-
ing corollary.

Corollary 86 (Every origin-symmetric convex body admits a large cone). For every
n 2 N, every origin-symmetric convex body K � Rn has a boundary point z 2 @K
that satisfies

voln
�
Conez.K/

�
voln.K/

&
1

n
SEP

�
Rn; k � kK

�
: (1.124)
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To see that Corollary 86 coincides with the case L D K of Theorem 84, simply
recall the definition of the polar projection body …�K in (1.30), while also recalling
that for z 2 Rn X ¹0º we denote the cone whose base is Projz?.K/ � z

? and whose
apex is z by Conez.K/, and the volume of Conez.K/ is given in (1.35).

A substitution of (1.104) into Corollary 86 shows that any origin-symmetric con-
vex body K � Rn has a boundary point z 2 @K that satisfies

voln
�
Conez.K/

�
voln.K/

&
1
p
n
: (1.125)

It seems (based on inquiring with experts in convex geometry) that the classical-
looking geometric statement (1.125) did not previously appear in the literature. How-
ever, in response to our inquiry Lutwak found a different proof of (1.125) which in
addition shows that the best possible constant in (1.125) is 1=

p
2� . More precisely,

we have the following proposition, whose proof (which relies on classical Brunn–
Minkowski theory, unlike the indirect way by which we found (1.125)), is included
in Section 2.7 (this proof is a restructuring of the proof that Lutwak found; we thank
him for allowing us to include it here).

Proposition 87 (Lutwak). For every n 2 N, any origin symmetric convex body K �
Rn satisfies

max
z2@K

voln
�
Conez.K/

�
voln.K/

>
�
�
n
2

�
2
p
��

�
nC1
2

� > 1C 1
4n

p
2�n

: (1.126)

Moreover, the first inequality in (1.126) holds as equality if and only if K is an ellip-
soid.

A substitution of (1.105) into Corollary 86 yields the following geometric in-
equality.

Corollary 88. Fix n 2 N and suppose that K � Rn is an origin-symmetric convex
body. There is a boundary point z 2 @K such that the following inequality holds for
every x1; : : : ; xn 2 K:

voln
�
Conez.K/

�
voln.K/

&
1

n

 
Sn�1






 nX
iD1

�ixi







2

K

d�: (1.127)

By combining [303] with Lemma 102 below, the maximum of the right-hand side
of (1.127) over all possible x1; : : : ; xn 2 K is bounded above and below by universal
constant multiples of T2.Rn; k � kK/2=n (recall the definition (1.77) of the type-2
constant), so Corollary 88 is indeed a substitution of (1.105) into (1.124).

Returning to Corollary 86, recall that both the cross-polytope B`n
1

and the hyper-
cube Œ�1; 1�n are examples of extremal symmetric convex bodies K � Rn that have



Consequences in the linear theory 71

a boundary point z 2 @K for which the volume of Conez.K/ is a universal con-
stant proportion of the volume of K (the Euclidean ball is an example of a convex
body that is not extremal in this regard). But, there is a difference between the cross-
polytope and the hypercube in terms of the stability of this property. Specifically,
there is an origin-symmetric convex body K � Œ�1; 1�n � O.1/K such that for
every z 2 @K the left-hand side of (1.124) is at most a universal constant multi-
ple of 1=

p
n. In contrast, the following proposition shows that the extremality of

maxz2@B`n
1

voln.Conez.B`n
1
//=voln.B`n

1
/ (up to constant factors) persists underO.1/

perturbations.

Proposition 89. Fix n 2 N and ˛; ˇ 2 .0;1/. Suppose that K � Rn is an origin-
symmetric convex body that satisfies ˛K � B`n

1
� ˇK. Then there exists a boundary

point z 2 @K such that
voln

�
Conez.K/

�
voln.K/

&
˛

ˇ
:

Proposition 89 is a direct consequence of Corollary 86, the bi-Lipschitz invari-
ance of the modulus of separated decomposability, and the lower bound SEP.`n1/ & n
of [76].

The following proposition is an application in a different direction of the results
that we described in the preceding sections.

Proposition 90. If .E;k � kE/ is a finite dimensional normed space with a 1-symmetric
basis, then every subspace X of E satisfies

evr.X/
p

dim.X/ . evr.E/
p

dim.E/: (1.128)

Proposition 90 holds because SEP.E/ . evr.E/
p

dim.E/ by Corollary 79, while

SEP.X/ & evr.X/
p

dim.X/

by Theorem 71, so (1.128) follows from SEP.X/ 6 SEP.E/. This justification shows
that Proposition 90 holds for a class of spaces that is larger than those that have a
1-symmetric basis, and Conjecture 6 would imply that Proposition 90 holds when E
is any canonically positioned normed space.

Nevertheless, Proposition 90 fails to hold true without any further assumption on
the normed space E. For example, the computation in Remark 52 shows that for any
n;m 2 N with n > 2 and m � n logn, the space E D `n1 ˚ `

m
2 satisfies

evr.E/
p

dim.E/ .
p
n logn

while its subspace X D `n1 satisfies evr.X/
p

dim.X/ � n.
Proposition 90 shows that if E has a 1-symmetric basis, then among the linear

subspaces X of E the invariant evr.X/
p

dim.X/ is maximized up to universal constant
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factors at X D E. The fact we are multiplying here the external volume ratio of X by
the square root of its dimension is an artifact of our proof and it would be interesting
to understand what correction factors allow for such a result to hold.

Question 91. Characterize (up to universal constant factors) those A W Œ1;1/ !
Œ1;1/ with the property that for any n > 1 we have evr.X/A.k/ 6 evr.E/A.n/ for
every normed space .E; k � kE/ of dimension at most n that has a 1-symmetric basis,
every k 2 ¹1; : : : ; nº, and every k-dimensional subspace X of E.

Proposition 90 shows that ifA.n/�
p
n, thenA W Œ1;1/! Œ1;1/ has the proper-

ties that are described in Question 91. At the same time, no A W Œ1;1/! Œ1;1/ with
A.n/ D O.1/ can be as in Question 91. Indeed, for any such A consider the symmet-
ric normed space E D `n1. There is a universal constant � > 0 such that any normed
space X with dim.X/ 6 � log n is at Banach–Mazur distance at most 2 from a sub-
space of `n1.11 In particular, this holds for XD `m1 whenm 2N satisfiesm 6 � logn,
so we get that

A.� logn/
p

logn � evr
�
`m1
�
A.� logn/ 6 2 evr

�
`n1
�
A.n/ � A.n/: (1.129)

So, A.n/ &
p

logn and by iterating (1.129) one gets the slightly better lower bound
A.n/&

p
.logn/ log logn, as well asA.n/&

p
.logn/.log logn/ log log logn and so

forth, yielding in the end the estimate

A.n/ >
�Qlog�n

kD1
logŒk� n

� 1
2

eO.log�n/
; (1.130)

where for k 2 N [ ¹0º we denote the kth iterant of the logarithm by logŒk�, i.e.,
logŒ0� x D x for x > 0, and

logŒk�x > 0 H) logŒkC1� x D log
�
logŒk� x

�
: (1.131)

There is no reason to expect that the lower bound (1.130) is close to being optimal,
but in combination with Proposition 90 it does show that the answer to Question 91
is likely nontrivial.

These considerations lead to the following open-ended question. The literature
contains multiple results showing that `np maximizes certain geometric invariants
(for examples, Banach–Mazur distance to `n2 [176], or volume ratio [22]) among all

11This assertion is standard, here is a quick sketch. Take a ı-net N of the unit sphere of X�

for a sufficiently small universal constant ı > 0 and consider the embedding x 7! .x�.x//x�2N

from X to `1.N/. Since log jNj � dim.X/, this gives a distortion 2-embedding (say, for ı D
1=10) of X into `n1 provided log n is at least a sufficiently large universal constant multiple of
dim.X/.
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the n-dimensional subspaces or quotients of Lp . Is there an analogous theory in the
spirit of (1.128) in the much more general setting of spaces that have a 1-symmetric
basis? This could be viewed as a symmetric space variant of the classical work of
Lewis [176, 177]. An interesting step in this direction can be found in [304]; specif-
ically, see [304, Theorem 1.2], which could be relevant to Question 91 through the
approach of [22, Section 2].





Chapter 2

Lower bounds

In this section we will prove the impossibility results that were stated in the Intro-
duction. Throughout what follows, all Banach spaces will be tacitly assumed to be
separable. Given a Banach space X, its Banach–Mazur distance to a Hilbert space will
be denoted dX 2 Œ1;1�, i.e., dX D dBM.X;H/ where H is a Hilbert space with either
dim.H/D dim.X/ when dim.X/ <1, or HD `2 when X is infinite dimensional. By
a classical result of Enflo [93, Theorem 6.3.3] (see also [36, Corollary 7.10]) we have
dX D c2.X/.

2.1 Proof of Theorem 13

Recall that the (Gaussian) type 2 and cotype 2 constants of a Banach space .X;k � kX/,
denoted T2.X/ and C2.X/, respectively, are the infimum over those T 2 Œ1;1� and
C 2 Œ1;1�, respectively, for which the following inequalities hold for every m 2 N
and every x1; : : : ; xm 2 X:

1

C 2

mX
jD1

kxj k
2
X 6 E

"




 mX
jD1

gjxj







2

X

#
6 T 2

mX
jD1

kxj k
2
X; (2.1)

where henceforth g1; g2; : : : will always denote i.i.d. standard Gaussian random vari-
ables. The following theorem of Kwapień [162] is fundamental (see also [261, Theo-
rem 3.3] or [305, Theorem 13.15]).

Theorem 92. Every Banach space .X; k � kX/ satisfies dX 6 T2.X/C2.X/.

We will use Theorem 92 to estimate the following quantity, which in turn will be
used to get the best bound that we currently have on the constant c that appears in the
lower bound on e.X/ of Theorem 13.

Definition 93 (Lindenstrauss–Tzafriri constant). Suppose that .X;k � kX/ is a Banach
space. Define LT.X/ to be the infimum over those K 2 Œ1;1� such that for every
closed linear subspace V � X there exists a projection Proj W X� V from X onto V
whose operator norm satisfies kProjkX!X 6 K.

So, the Lindenstrauss–Tzafriri constant of a Hilbert space equals 1, and Sobczyk
proved [290] that

8n 2 N; LT
�
`n1
�
� LT

�
`n1
�
�
p
n: (2.2)
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We chose the nomenclature of Definition 93 in reference to the famous solution [180]
by Lindenstrauss and Tzafriri of the complemented subspace problem, which asserts
that if .X; k � kX/ is a Banach space for which LT.X/ <1, then X is isomorphic to a
Hilbert space, i.e., dX <1. Moreover, if X is infinite dimensional, then it was shown
in [180] that

dX . LT.X/4:

This dependence was improved in [147] by Kadec and Mitjagin, who established the
following theorem, which is the currently best-known bound in the Lindenstrauss–
Tzafriri theorem (see also [3, 97, 150, 262, 264] for subsequent improvements of the
implicit universal constant factor and further generalizations).

Theorem 94. Every infinite dimensional Banach space .X; k � kX/ satisfies

dX . LT.X/2:

When dim.X/ < 1 the question of bounding dX by a function of LT.X/ was
left open in [180]. This question, which was eventually solved by Figiel, Linden-
strauss and Milman [99, Theorem 6.7], turned out to be significantly more subtle
than its infinite dimensional counterpart. The currently best-known estimate is due to
Tomczak-Jaegermann [305, Theorem 29.4], who proved the following theorem.

Theorem 95. Every finite dimensional Banach space .X; k � kX/ satisfies

dX . LT.X/5:

The proof of Theorem 95 is achieved in [305] through an interesting combination
of the proof of the Lindenstrauss–Tzafriri theorem [180] with the finite dimensional
machinery of [99] and Milman’s Quotient of Subspace Theorem [216].

The following theorem is a link between the Lindenstrauss–Tzafriri constant and
Lipschitz extension.

Theorem 96. Every Banach space .X; k � kX/ satisfies e.X/ > LT.X/.

Proof. By Remark 98, if dim.X/ D 1, then e.X/ D 1, so we may assume that
dim.X/ < 1. Fix L > e.X/ and let V � X be a linear subspace of X. Then, the
identity mapping from V to V can be extended to anL-Lipschitz mapping � WX!V.
In other words, � is an L-Lipschitz retraction from X onto V. By a classical theorem
of Lindenstrauss [179] (see also its elegant alternative proof by Pełczyńsky in [247,
p. 61]), there is a projection of norm at most L from X onto V. This proves that
LT.X/ 6 L.

The following theorem is the lower bound e.`n2/ & 4
p
n of [210] that we already

quoted in (1.22), in combination with the bi-Lipschitz invariance of the Lipschitz
extension modulus.
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Theorem 97. For every n 2 N, any normed space X D .Rn; k � kX/ satisfies

e.X/ &
4
p
n

dX
:

Remark 98. The question whether e.`2/ is finite or infinite was open for quite some
time: it was first stated in print in [140, p. 137], and it was also posed by Ball in [23,
p. 170] (Ball conjectured that e.`2/ D 1). We answered it in [224] by proving that
limn!1 e.`n2/ D 1. Due to Dvoretzky’s theorem [90] this implies that e.X/ is at
least an unbounded function of dim.X/ for any normed space X, and in particular
e.X/ D 1 if dim.X/ D 1. A rate at which e.`n2/ tends to 1 was not specified
in [224], but the reasoning of [224] was inspected quantitatively in [173, Remark 5.3],
yielding an explicit lower bound that depends on an auxiliary parameter, and it was
noted in [62] that an optimization over this parameter yields the estimate e.`n2/& 8

p
n.

A further improvement from [210] (whose proof refines ideas of Kalton [149, 151])
was the aforementioned estimate e.`n2/ & 4

p
n (a different proof of this bound follows

from [231]), which is the currently best-known lower bound on e.`n2/. By Milman’s
sharpening [215] of Dvoretzky’s theorem [90], it follows that every normed space X
satisfies e.X/ & 4

p
logn. As we explained in Section 1.3, the bound e.`n1/ &

p
n is

classical (specifically, by substituting (2.2) into Theorem 96). In combination with
the Alon–Milman theorem [5] (see also [299]), the fact that both e.`n2/ D n

�.1/ and
e.`n1/ D n

�.1/ formally implies that

e.X/ > e�
p

logn

for some universal constant � > 0 and every n-dimensional normed space X, which
was the best-known general lower bound on the Lipschitz extension modulus prior to
Theorem 1.

The above results imply as follows the lower bound on e.X/ of Theorem 13. By
combining Theorems 95 and 96, we have e.X/ & 5

p
dX. In combination with Theo-

rem 97, it therefore follows that

e.X/ & max
²
4
p
n

dX
; 5
p

dX

³
> 24
p
n; (2.3)

where the last step follows from elementary calculus and holds as equality when

dX D n
5
24 :

We will derive a better lower bound on e.X/ than (2.3) through the following
theorem which improves over the power of LT.X/ in Theorem 95, showing that in
the finite dimensional setting one can come close (up to logarithmic factors) to the
infinite dimensional bound of Theorem 94; see also Remark 103 below.
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Theorem 99. For every integer n > 2, any n-dimensional Banach space .X; k � kX/

satisfies
dX . LT.X/2.logn/3: (2.4)

Assuming Theorem 2.3, reason analogously to (2.3) while using (2.4) in place of
Theorem 95 to get

e.X/ & max
²
4
p
n

dX
;

p
dX

.logn/3

³
>

n
1
12

.logn/2
; (2.5)

where equality holds in the final step of (2.5) if and only if dX D
6
p
n.logn/2.

Prior to proving Theorem 99, we will record the following two standard lemmas
that will be used in its proof; both will be established in correct generality that also
treats infinite dimensional Banach spaces even though here we will need them only
in the finite dimensional setting (the infinite dimensional formulations are relevant to
the discussion in Remark 103).

Lemma 100. For every Banach space .X; k � kX/ we have LT.X�/ 6 LT.X/C 1.

Proof. We may assume that LT.X/ < 1. Then X is reflexive (even isomorphic to
Hilbert space), by [180]. Fix a closed linear subspace W of X� and denote its pre-
annihilator by

?W def
D

\
x�2W

®
x 2 X W x�.x/ D 0

¯
� X:

Suppose thatK > LT.X/. By the definition of LT.X/ there exists Proj WX!X that is a
projection from X onto ?W whose operator norm satisfies kProjkX!X 6 K. Observe
that for every x� 2 X� and x 2 ?W,�

x� � Proj�x�
�
.x/ D x�.x/ � x�.Projx/ D 0;

since Projx D x. This shows that�
IdX� � Proj�

�
.X�/ � .?W/? D

®
x� 2 X� W x�.?W/ D ¹0º

¯
DW;

where the last step follows from the double annihilator theorem since X is reflex-
ive and hence W is weak� closed in X�. If x� 2 W, then for any x 2 X we have
Proj�x�.x/D x�.Projx/D 0, as Projx 2 ?W. Hence Proj�x�D 0, and so IdX� � Proj�

acts as the identity when it is restricted to W, i.e., IdX� � Proj� W X� ! X� is a pro-
jection from X� onto W. It remains to note that

kIdX� � Proj�kX*!X* 6 1C kProj�kX*!X* D 1C kProjkX!X 6 K C 1:

The following simple lemma shows that the Lindenstrauss–Tzafriri constant is a
bi-Lipschitz invariant.



Proof of Theorem 13 79

Lemma 101. Any two Banach spaces .W; k � kW/ and .X; k � kX/ satisfy

LT.W/ 6 cX.W/LT.X/: (2.6)

Proof. We may assume that cX.W/ <1 and LT.X/ <1. By [180], the latter assump-
tion implies that X is isomorphic to a Hilbert space, and hence it is reflexive. We may
therefore apply a classical differentiation argument (see e.g., [36, Corollary 7.10]) to
deduce that there is a closed subspace Y of X such that

dBM.W;Y/ D cX.W/:

In other words, for everyD > cX.W/ there is a linear isomorphism T WW! Y satis-
fying kT kW!YkT

�1kY!W <D. If V is a closed subspace of W andK > LT.X/, then
there is a projection Proj from X onto TV with kProjkX!TV < K. Now, T �1ProjT is
a projection from W onto V of norm less than DK.

The type-2 constant of a normed space .X;k � kX/ is equal to its “equal norm type-
2 constant,” namely to the infimum over those T > 0 for which the second inequality
in (2.1) holds for everym 2N and every choice of vectors x1; : : : ; xm 2X that satisfy
the additional requirement

kx1kX D � � � D kxmkXI

this is a well-known result of Pisier, though it first appeared in James’ important
work [134], where it had a vital role. We will likewise need to use this result, with the
twist that we require a small number of unit vectors for which the type-2 constant of
X is almost attained. The classical proof of the aforementioned equivalence between
type-2 and “equal norm type-2” [134, p. 2] increases the number of vectors poten-
tially uncontrollably, so we will preform the analysis more carefully in the following
lemma, which shows that one need not increase the number of vectors when passing
from general vectors to unit vectors.

Lemma 102 (Equal norm type 2 without increasing the number of vectors). Fix n 2
N and 0 < ˇ 6 1. Let .X; k � kX/ be a normed space and suppose that there exist
vectors x1; : : : ; xn 2 X X ¹0º that satisfy 

E

"




 nX
iD1

gixi







2

X

#! 1
2

> ˇT2.X/

 
nX
iD1

kxik
2
X

! 1
2

: (2.7)

Then, there also exist unit vectors y1; : : : ; yn 2 ¹xi=kxikXº
n
iD1 � @BX that satisfy 

E

"




 nX
iD1

giyi







2

X

#! 1
2

& ˇ2T2.X/
p
n:
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Proof. We may assume without loss of generality the following normalized version
of assumption (2.7):

nX
iD1

kxik
2
X D 1 and E

"




 nX
iD1

gixi







2

X

#
> ˇ2T2.X/2: (2.8)

For every k 2 N define a subset Ik of ¹1; : : : ; nº by

Ik
def
D

²
i 2 ¹1; : : : ; nº W

1

2k
< kxikX 6

1

2k�1

³
: (2.9)

So, ¹Ikºk2N is a partition of ¹1; : : : ; nº as 0 < kxikX 6 1 for all i 2 ¹1; : : : ; nº by the
first equation in (2.8). Write

m
def
D

�
log2

�
3
p
n

ˇ

��
and U

def
D

m[
kD1

Ik �
®
1; : : : ; 22.m�k/

¯
: (2.10)

With this notation, Lemma 102 will be proven if we show that there exists S � U
with jS j D n such that�

E

�



 X
.i;j /2S

gij
kxikX

xi





2
X

�� 1
2

& ˇ2T2.X/
p
n; (2.11)

where ¹gij º1i;jD1 are i.i.d. standard Gaussian random variables.
To prove (2.11), observe first that by the contraction principle (see, e.g., [168,

Section 4.2]) we have�
E

�



 X
.i;j /2S

gij
kxikX

xi





2
X

�� 1
2

>

 
E

"




 mX
kD1

2k�1
X
i2Ik

22.m�k/X
jD1

1¹.i;j /2Sºgijxi







2

X

#! 1
2

;

(2.12)
where we used the fact that 1=kxikX > 2k�1 for every k 2 N and i 2 Ik (by the
definition (2.9) of Ik). Also,

1
(2.8)
D

nX
iD1

kxik
2
X D

1X
kD1

X
i2Ik

kxik
2
X

(2.9)
6

1X
kD1

jIkj

22k�2

6
4
Pm
kD1 2

2.m�k/jIkj C
P1
kDmC1 jIkj

22m

(2.10)
6

ˇ2.4jU j C n/

9n
:
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This simplifies to give that jU j> 2n=ˇ2 >n. We can therefore average the right-hand
side of (2.12) over all the n-point subsets of U to get the following estimate:

1�
jU j
n

� X
S�U
jS jDn

 
E

"




 mX
kD1

2k�1
X
i2Ik

22.m�k/X
jD1

1¹.i;j /2Sºgijxi
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X

#! 1
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X
i2Ik

22.m�k/X
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�
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��
jU j
n

� gijxi
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2

D
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2jU j
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2m�1n
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2

X

#! 1
2

; (2.13)

where the first step of (2.13) uses convexity, the penultimate step of (2.13) uses the
fact that   

22.m�k/X
jD1

gij

!
i2Ik

!m
kD1

and
��
2m�kgi

�
i2Ik

�m
kD1

have the same distribution, and for the final step of (2.13) recall the definition (2.10)
of m.

It follows from (2.12) and (2.13) that there must exist S � U with jS j D n such
that �

E

�



 X
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kxikX
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�� 1
2

&
n
3
2

ˇjU j

 
E

"




 mX
kD1

X
i2Ik

gixi







2

X

#! 1
2

: (2.14)

To use (2.14), we claim that jU j . n=ˇ2. Indeed,

1
(2.8)
D

nX
iD1

kxik
2
X D

1X
kD1

X
i2Ik

kxik
2
X

(2.9)
>

mX
kD1

jIkj

22k
(2.10)
D
jU j

22m

(2.10)
>

ˇ2jU j

81n
:

By combining the aforementioned upper bound on the size of U with (2.12) and
(2.14), we see that 
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From this, we deduce the desired estimate (2.11) by combining as follows the second
inequality in our assumption (2.8) with the triangle inequality and the definition (2.1)
of the type-2 constant T2.X/: 
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kD1
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gixi
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kDmC1
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i2Ik

gixi







2

X

#!1
2

(2.1)
> ˇT2.X/ � T2.X/

 
1X

kDmC1

X
i2Ik

kxik
2
X

! 1
2

(2.9)
> ˇT2.X/ �

T2.X/
p
n

2m

(2.10)
� ˇT2.X/:

Proof of Theorem 99. We will prove that the type 2 constant of X satisfies

T2.X/ . LT.X/.logn/
3
2 : (2.15)

After (2.15) will be proven, we deduce Theorem 99 as follows. We first claim that the
estimate (2.15) implies the same upper bound on the cotype 2 constant of X. Namely,
we also have

C2.X/ . LT.X/.logn/
3
2 : (2.16)

Indeed,

C2.X/ 6 T2.X�/ . LT.X�/.logn/
3
2

. LT.X/.logn/
3
2 ; (2.17)

where the first step of (2.17) follows from a standard duality argument [204] (see also,
e.g., [220, Section 9.10], [253, Section 4.9] or [3, Proposition 6.2.12]), the second step
of (2.17) is an application of (2.15) to X�, and the third step of (2.17) is application
of Lemma 100. The desired estimate (2.4) now follows by a substitution of (2.15)
and (2.16) into Theorem 92 (Kwapień’s theorem).

By [99, Lemma 6.1] (see also the exposition of this fact in [141, p. 546]) there
exists an integer1

1 6 m 6
n.nC 1/

2
(2.18)

1By [303], if one does not mind losing a universal constant factor in (2.19), then one could
takemD n here, but for the purpose of the ensuing reasoning it suffices to use the much simpler
result [99, Lemma 6.1].
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and x1; : : : ; xm 2 X X ¹0º such that 
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iD1

gixi
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X

#! 1
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D T2.X/

 
mX
iD1

kxik
2
X

! 1
2

(2.19)

By Lemma 102, it follows that there exist y1; : : : ; ym 2 @BX and a universal constant
0 < 
 < 1 such that
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X

#! 1
2

> 
T2.X/
p
m; (2.20)

where the first step in (2.20) holds by (the Gaussian version of) Kahane’s inequal-
ity [148] (see, e.g., [168, Corollary 3.2] and specifically [167, Corollary 3] for the
(optimal) constant that we are quoting here even though its value is of secondary
importance in the present context). If we denote

ı
def
D

T2.X/
p
m

; (2.21)

then a different way to write (2.20) is

E

"




 mX
iD1

giyi







X

#
> ım: (2.22)

Because we ensured that y1; : : : ; ym are unit vectors in X, we may use a theorem
of Rudelson and Vershynin [274, Theorem 7.4] (an improved Talagrand-style two-
parameter version of Elton’s theorem; see Remark 103), to deduce from (2.22) that
there are two numbers 0 < s 6 1 and ı . t 6 1 that satisfy

t
p
s &

ı�
log
�
2
ı

�� 3
2

; (2.23)

such that there exists a subset J of ¹1; : : : ; mº whose cardinality satisfies

jJ j > sm; (2.24)

and moreover we have

8.aj /j2J 2 RJ ; t
X
j2J

jaj j .



X
j2J

ajyj





X
6
X
j2J

jaj j: (2.25)

(2.25) means that the Banach–Mazur distance between span.¹yj ºj2J / and `jJ j1 is
O.1=t/. Hence,

cX
�
`
jJ j
1

�
.
1

t
: (2.26)
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Now, the justification of (2.15), and hence also the proof of Theorem 99, can be
completed as follows:

LT.X/
(2.6)
>

LT
�
`
jJ j
1

�
cX
�
`
jJ j
1

� (2.2)^(2.26)
& t

p
jJ j

(2.24)
> t
p
sm

(2.23)
&

ı
p
m�

log
�
2
ı

�� 3
2

(2.21)
D


T2.X/�
log
� 2pm

T2.X/

�� 3
2

&
T2.X/

.logn/
3
2

; (2.27)

where the final step of (2.27) holds because T2.X/> 1 and logm. logn by (2.18).

Remark 103. In the proof of Theorem 99 we relied on [274, Theorem 7.4], which
improves (in terms of the power of the logarithm in (2.23)) Talagrand’s refinement
[298] of Elton’s theorem [92] (which is itself a major quantitative strengthening of an
important theorem from [254]). Continuing with the notation of Theorem 99, Elton’s
theorem is a similar statement, except that the size of the subset J is a definite propor-
tion of m that depends only on the parameter ı for which (2.22) holds, and also the
parameter t for which (2.25) holds depends only on ı. The asymptotic dependence
on ı in Elton’s theorem [92] was improved by Pajor [245], a further improvement
was obtained in [298], and the optimal dependence on ı was found by Mendelson
and Vershynin in [213]. However, plugging this sharp dependence into our proof of
Theorem 99 shows that the classical formulation of Elton’s theorem is insufficient for
our purposes. The two-parameter formulation of Elton’s theorem that was introduced
in [298] allows for the subset J to have any size through the parameter s in (2.24),
but imposes a relation between s and t such as (2.23), thus making it possible for us
to obtain Theorem 99.

The only reason why the logarithmic factor in (2.4) occurs is our use of a
Talagrand-style two-parameter version of Elton’s theorem, for which the currently
best-known bound [274] is (2.23). Thus, if (2.23) could be improved to t

p
s & ı,

i.e., if Question 104 below has a positive answer, then the conclusion (2.4) of Theo-
rem 99 would become dX . LT.X/2. This would improve Theorem 95 to match the
bound of Theorem 94 which is currently known only for infinite dimensional Banach
spaces. Moreover, since the resulting bound is independent of the dimension of X,
this would yield a new proof of the Lindenstrauss–Tzafriri solution of the comple-
mented subspace problem; the infinite dimensional statement follows formally from
its finite dimensional counterpart (e.g., [3, Theorem 12.1.6]), though all of the steps
that led to Theorem 99 work for any reflexive Banach space. Question 104 is interest-
ing in its own right regardless of the above application to the complemented subspace
problem. In particular, a positive answer to Question 104 would resolve the question
that Talagrand posed in the remark right after Corollary 1.2 in [298], though we warn
that he characterises this in [298] as “certainly a rather formidable question.”
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Question 104. Fix 0 < ı < 1 and n 2 N. Let .X; k � kX/ be a Banach space and
suppose that x1; : : : ; xn 2 @BX satisfy EŒk

Pm
iD1 gixikX� > ın. Does this imply that

there are two numbers 0 < s, t 6 1 satisfying t
p
s & ı and a subset J � ¹1; : : : ; nº

with jJ j > sn such that k
P
j2J ajxj kX > t

P
j2J jaj j for every a1; : : : ; an 2 R?

2.2 Proof of (1.105)

Because by [76] we know that SEP.`n1/ � n for every n 2 N, using bi-Lipschitz
invariance we see that in order to prove (1.105) it suffices to show that for any normed
space X D .Rn; k � kX/,

9m 2 ¹1; : : : ; nº;
m

cX.`
m
1 /
> T2.X/2: (2.28)

We will prove (2.28) using Talagrand’s two-parameter refinement of Elton’s the-
orem [298] that we discussed in Remark 103 (it is worthwhile to note that the afore-
mentioned improvements over [298] in [213, 274] do not yield a better bound in the
ensuing reasoning. Also, the classical formulation of Elton’s theorem is insufficient
for our purposes, even if one incorporates the asymptotically sharp dependence on ı
from [213]). Suppose that k 2N and x1; : : : ;xk 2BX. Let g1; : : : ;gk be i.i.d. standard
Gaussian random variables. Denote

E
def
D E

"




 kX
jD1

gjxj







X

#
:

By [298, Corollary 1.2], there exist a universal constant C 2 Œ1;1/ and a subset
S � ¹1; : : : ; kº satisfying

m
def
D jS j >

E2

Ck
;

and such that for every .aj /j2S 2 RS we have

E
p
Ckm

�
log
�
eCkm
E2

��C X
j2S

jaj j 6



X
j2S

ajxj





X
6
X
j2S

jaj j:

Consequently,

cX
�
`m1
�
6
p
Ckm

E

�
log
�
eCkm

E2

��C
:

Therefore,

m

cX.`
m
1 /
>

E
p
m

p
Ck

�
log
�
eCkm
E2

��C > eC�
1
2

2CCCC1
�
E2

k
�
E2

k
;



86 Lower bounds

where the last step uses the fact that the function u 7!
p
u=.log.eCku=E2//C attains

its minimum on the ray ŒE2=.Ck/;1/ at u D e2C�1E2=.Ck/. It remains to choose
x1; : : : ; xk so that E2=k � T2.X/2. This is possible because the equal norm type 2
constant of X equals T2.X/, so there are x1; : : : ; xk 2 @BX for which

T2.X/
p
k �

 
E

"




 kX
jD1

gjxj







2

X

#! 1
2

� E;

where the last step uses Kahane’s inequality.

2.3 Hölder extension

In this section we will prove the lower bound on e� .`n1/ in (1.20) for every n 2 N
and 0 < � 6 1. It consists of two estimates, the first of which is

e� .`n1/ & n
�
2C�

2�1; (2.29)

and the second of which is
e� .`n1/ & n

�
4 : (2.30)

We will justify (2.29) and (2.30) separately.
Note that (2.29) is vacuous if �=2C �2 � 16 0, i.e., if 0 < � 6 .

p
17� 1/=2. The

reason for this is that (2.29) is based on a reduction to the linear theory from [233]
(extending the approach of [138] to the Hölder regime), that breaks down for func-
tions which are too far from being Lipschitz. Specifically, for a Banach space X and
a closed subspace E of X, let �.EIX/ be the projection constant [122] of E relative
to X, i.e., it is the infimum over those � 2 Œ1;1� for which there is a projection Proj
from X onto E whose operator norm satisfies kProjkX!E 6 �. Also, let e� .XIE/ be
the infimum over those L 2 Œ1;1� such that for every C � X and every f W C! E
that is � -Hölder with constant 1, there is F W X! E that extend f and is � -Hölder
with constant L. With this notation, it was proved in [233] (see equation (106) there)
that

e� .XIE/ &
�.EIX/�

dim.E/ 1��
2 dim.X/�.1��/c2.E/1��

: (2.31)

Using the bounds dim.E/6dim.X/ and c2.E/6
p

dim.E/ (John’s theorem) in (2.31),
we get that

e� .XIE/ &
�.EIX/�

dim.X/1��2
: (2.32)

By [290] there is a linear subspace E of `n1 with �.EI `n1/�
p
n, using which (2.32)

implies (2.29).
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Remark 105. In [233] it was deduced from (2.31) that

e� .`n1/ & n
�2� 12 : (2.33)

Specifically, by [153] there is a linear subspace E of `n1 with c2.E/. 1 and dim.E/D
bn=2c; call such E a Kašin subspace of `n1 . By [275] we have �.EI`n1/�

p
n, so (2.33)

follows by substituting these parameters into (2.31). For XD `n1, the poorly comple-
mented subspace that we used above can be taken to be the orthogonal complement
of any Kašin subspace of `n1 . Such a subspace of `n1 has pathological properties [98];
in particular its Banach–Mazur distance to a Euclidean space is of order

p
n. So, a

“vanilla” use of (2.31) leads at best to (2.29). However, we expect that it should be
possible to improve (2.29) to

e� .`n1/ & n
�2� 12 : (2.34)

If (2.34) holds, then (1.20) improves to

e� .`n1/ & n
max¹ �4 ;�

2� 12 º D

´
n
�
4 if 0 6 � 6 1C

p
33

8
;

n�
2� 12 if 1C

p
33

8
6 � 6 1:

For (2.34), it would suffice to prove the following variant of Conjecture 7 for random
subspaces of `n1. Let E be a subspace of Rn of dimension m D bn=2c that is chosen
from the Haar measure on the Grassmannian. We conjecture that there is a universal
constant D > 1 such that with high probability there is an origin-symmetric convex
body L � BE that satisfies MaxProj.L/= volm.L/ . 1. If this indeed holds, then by
using it in the proof of (2.31) in [233] we can deduce (2.34) (specifically, replace
in [233, Lemma 20] the averaging over B`m

2
by averaging over L; we omit the details

of this adaptation of [233]).

Proof of (2.30). Fix k; m 2 N satisfying k 6 2m 6 n=2 whose value will be spec-
ified later so as to optimize the ensuing reasoning (see (2.48) below). Denote ` D
b.4m=k/c and define C D C.k;m; n/ � `n1.C/ by

C
def
D
®
Em.ks/ W s 2 ¹1; : : : ; `º

n
¯
;

where for every s D .s1; : : : ; sn/ 2 Rn we define Em.s/ 2 Cn by

Em.s/
def
D

nX
jD1

e
�i
2m sj ej :

Denote the standard basis (delta masses) of RC by ¹ısºs2C. Let RC
0 be the hyper-

plane of RC consisting of those .as/s2C D
P
s2C asıs with

P
s2C as D 0. Suppose

that X� D .RC
0 ; k � kX� / is a normed space that satisfies

8x; y 2 C; kıx � ıykX� D kx � yk
�
`n1.C/

(2.35)
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and

8� 2 RC
0 ;

�
k

m

��
k�k`1.C/ . k�kX� . k�k`1.C/: (2.36)

For this, X� can be taken to be the normed space whose unit ball is

BX� D conv
²

1

kx � yk�
`n1.C/

.ıx � ıy/ W x; y 2 C; x ¤ y

³
� RC

0 ; (2.37)

which is the maximal norm on RC
0 satisfying (2.35). To check that (2.36) holds for

the choice (2.37), note that, as 1 6 k 6 2m, distinct x; y 2 C satisfy

k

m
. kx � yk`n1.C/ . 1:

It is simple to deduce (2.36) from this, as done in [233, Lemma 7]. The choice (2.37)
makes X� be the Wasserstein-1 space over .C; d� /, where d� is the � -snowflake of
the `n1.C/ metric, i.e., d� .x; y/ D kx � yk�`n1.C/ for x; y 2 `n1.C/; see Section 5.1.

By virtue of (2.35), if we define f W C! X� by setting

8x 2 C; f .x/
def
D ıx �

1

jCj

X
y2C

ıy ;

then f is � -Hölder with constant 1. We claim that if m > �
p
n, then by (2.35) every

F W `n1.C/! X� satisfies

1

.4m/n

nX
jD1

X
s2¹1;:::;4mºn



F �Em.s C 2mej /� � F �Em.s/�

X�

.
m2C�

k� .12m/n

X
"2¹�1;0;1ºn

X
s2¹1;:::;4mºn



F �Em.s C "/� � F �Em.s/�

X�
: (2.38)

Indeed, (2.38) follows from a substitution of (2.35) into the following inequality
from [209, Remark 7.5]:

1

.4m/n

nX
jD1

X
s2¹1;:::;4mºn



F �Em.s C 2mej /� � F �Em.s/�

`1.C/
.

m2

.12m/n

X
"2¹�1;0;1ºn

X
s2¹1;:::;4mºn



F �Em.s C "/� � F �Em.s/�

`1.C/:
Suppose that F W ¹1; : : : ; 4mºn! X� is � -Hölder with constant L > 1 on the set

.¹1; : : : ; 4mºn; k � k`n1.C//, i.e.,

x; y 2 ¹1; : : : ; 4mºn; kF.x/ � F.y/kX� 6 Lkx � yk
�
`n1.C/

:
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Then, each of the summands that appear in the right-hand side of (2.38) is at most
2L=m� . Consequently,

1

n.4m/n

nX
jD1

X
s2¹1;:::;4mºn



F �Em.s C 2mej /� � F �Em.s/�

X�
.
Lm2

k�n
: (2.39)

If F also extends f , then F.Em.s// D f .Em.s0// for every s 2 Nn, where we use
the notation s0 D .s01; : : : ; s

0
n/ and for each u 2 N we let u0 be an element ˛ of

¹k; 2k; : : : ; `kº for which j˛ � u mod .4m/j is minimized, so that s0 2 C and

8s 2 Nn; kEm.s/ �Em.s
0/k`n1.C/ .

k

m
: (2.40)

Hence, for any j 2 ¹1; : : : ; nº and s 2 ¹1; : : : ; 4mºn we have

2� D


 � 2e �i2m sj ej

�`n1.C/

D kEm.s C 2mej / �Em.s/k
�
`n1.C/

(2.41)

6 kEm..s C 2mej /0/ �Em.s0/k�`n1.C/
C kEm..s C 2mej /

0/ �Em.s C 2mej /k
�
`n1.C/

C kEm.s
0/ �Em.s/k

�
`n1.C/

6 kEm..s C 2mej /0/ �Em.s0/k�`n1.C/ C
2k�

m�
(2.42)

D


ıEm..sC2mej /0/ � ıEm.s0/

X�

C
2k�

m�
(2.43)

D


f �Em..s C 2mej /0/� � f �Em.s0/�

X�

C
2k�

m�
(2.44)

D


F �Em..s C 2mej /0/� � F �Em.s0/�

X�

C
2k�

m�
(2.45)

6


F �Em.s C 2mej /� � F �Em.s/�

X�

C


F �Em..s C 2mej /0/� � F �Em.s C 2mej /�

X�

C


F �Em.s0/� � F �Em.s/�

X�

C
2k�

m�

6


F �Em.s C 2mej /� � F �Em.s/�

X�

C LkEm..s C 2mej /
0/ �Em.s C 2mej /k

�
`n1.C/

C LkEm.s
0/ �Em.s/k

�
`n1.C/

C
2k�

m�
(2.46)

6


F �Em.s C 2mej /� � F �Em.s/�

X�

C
2.LC 1/k�

m�
; (2.47)
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where for (2.41) recall the definition of Em, in (2.42) and (2.47) we used (2.40),
in (2.43) we used (2.35), for (2.44) recall the definition of f , in (2.45) we used the
fact that F extends f and ¹.sC 2mej /0; s0º � C, and in (2.46) we used the fact that F
is � -Hölder with constantL. By averaging this inequality over .j;s/ chosen uniformly
at random from ¹1; : : : ; nº � ¹1; : : : ; 4mºn and applying (2.39), we conclude that

1 .
�
m2

k�n
C
k�

m�

�
L: (2.48)

This holds whenever k; m 2 N satisfy k 6 2m 6 n=2 and m > �
p
n, so choose

m�
p
n and k � 4

p
n to minimize (up to constants) the right-hand side of (2.48) and

deduce the desired lower bound L & n�=4.

By [210, Lemma 6.5], for every � 2 .0; 1� and n 2 N we have

e� .`n2/ & n
�
4 : (2.49)

In combination with (2.30) and [5], this implies that there is a universal constant c > 0
such that

e� .X/ > ec�
p

logn (2.50)

for every n-dimensional normed space X and every � 2 .0; 1�.

Conjecture 106. For any � 2 .0; 1� there is c.�/ > 0 such that e� .X/ > dim.X/c.�/

for every normed space X.

Conjecture 106 has a positive answer when the Hölder exponent is close enough
to 1. Specifically, if

0:9307777 : : : D

p
193C 1

16
< � 6 1; (2.51)

then

e� .X/ &
n
�.8�2���6/
20��8

.logn/
3�2

5��2

: (2.52)

Indeed, by bi-Lipschitz invariance, (2.49) implies the following generalization of
Theorem 97:

e� .X/ &
n
�
4

d�X
:

Also,

e� .X/
(2.31)
&

LT.X/�

n.1��/.�C
1
2 /d1��X

(2.4)
&

d
�
2

X =.logn/
3�
2

n.1��/.�C
1
2 /d1��X

D
d
3�
2 �1

X

n.1��/.�C
1
2 /.logn/

3�
2

:
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Therefore, in analogy to (2.5) we see that

e� .X/ & max

´
n
�
4

d�X
;

d
3�
2 �1

X

n.1��/.�C
1
2 /.logn/

3�
2

µ
: (2.53)

Elementary calculus shows that (2.53) implies (2.52) in the range (2.51). If � does
not satisfy (2.51), then (2.53) does not imply a lower bound e� .X/ that depends only
on n and grows to1 with n; for such � the best lower bound that we know is (2.50).
The application of (2.38) in the above proof of (2.30) can be mimicked using other
bi-Lipschitz invariants to prove Conjecture 106 for various normed spaces, such as
`n2.`

n
1/ or Sn1 , using [237] and [235], respectively. We do not know if Conjecture 106

holds even when, say, X D `n1 .

2.4 Justification of (1.25)

In the range p 2 Œ1; 4=3� [ ¹2º [ Œ3;1� the bound in (1.25) is a combination of [64,
Corollary 8.12] and [210, Theorem 1.17]. We only need to justify (1.25) in the range
p 2 .4=3; 3/X ¹2º because it was not previously stated in the literature. Suppose first
that p 2 .4=3; 2/. By [99], there is k 2 ¹1; : : : ; nº with k � n such that c`np .`

k
2/ � 1.

Hence,
e
�
`np
�
& e

�
`k2
�
& 4
p
k � 4
p
n;

where the penultimate inequality follows from [210, Theorem 1.17]. Analogously, if
q 2 .2; 3/, then by [99] there ism 2 ¹1; : : : ; nº withm� n2=q such that c`nq .`

m
2 /� 1.

We therefore have
e
�
`nq
�
& e

�
`m2
�
& 4
p
m � n

1
2q :

2.5 Proof of the lower bound on SEP.X/ in Theorem 3

Thanks to (1.71), the first part of Theorem 107 below coincides with the lower bound
on SEP.X/ in Theorem 3, except that in (2.54) below we also specify the constant
factor that our proof provides (there is no reason to expect that this constant is optimal;
due to the fundamental nature of this randomized clustering problem it would be
interesting to find the optimal constant here). The second part of Theorem 107 relates
to dimension reduction by controlling the cardinality of a finite subset C of X on
which the lower bound is attained. We conjecture that the first part of (2.55) below
could be improved to jCj1=n D O.1/; an inspection of the ensuing proof suggests
that a possible route towards this improved bound is to incorporate a proportional
Dvoretzky–Rogers factorization [51, 106, 297] in place of our use of the “vanilla”
Dvoretzky–Rogers lemma [91].
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Theorem 107. For every n2N, any n-dimensional normed space .X;k � kX/ satisfies

SEP.X/ > evr.X/
2.nŠ/

1
2n�

�
1C n

2

� 1
n

p
�n

D

p
2C o.1/

e
p
�

evr.X/
p
n: (2.54)

Furthermore, there exists a finite subset C of X satisfying

jCj
1
n .

p
n

evr.X/
and SEP.CX/ & evr.X/

p
n: (2.55)

Our proof of Theorem 107 builds upon the strategy that was used in [76] to treat
`n1 . A combinatorial fact on which it relies is Lemma 108 below, which is implicit in
the proof of [76, Lemma 3.1]. After proving Theorem 107 while using Lemma 108,
we will present a proof of Lemma 108 which is a quick application of the Loomis–
Whitney inequality [185]; the proof in [76] uses a result of [4] which is proved in [4]
via information-theoretic reasoning through the use of Shearer’s inequality [80]; the
relation between the Loomis–Whitney inequality and Shearer’s inequality is well
known (see, e.g., [64]), so our proof of Lemma 108 is in essence a repackaging of
the classical ideas.

Lemma 108. Fix n;M 2 N and a nonempty finite subset� of Zn. Suppose that P is
a random partition of � that is supported on partitions into subsets of cardinality at
most M , i.e.,

Prob
�

max
�2P
j�j 6M

�
D 1:

Then, there exists i 2 ¹1; : : : ; nº and x 2 � \ .� � ei / for which

Prob
�
P.x/ ¤ P.x C ei /

�
>

1
n
p
M
�
1

n

nX
iD1

j� X .� � ei /j

j�j
: (2.56)

Proof of Theorem 107 assuming Lemma 108. By suitably choosing the identification
of X with Rn, we may assume without loss of generality that X D .Rn; k � kX/ and
B`n

2
is the Löwner ellipsoid of BX. Then,

evr.X/ D
�voln.B`n

2
/

voln.BX/

� 1
n

D

p
�

�
�
1C n

2

� 1
n voln.BX/

1
n

: (2.57)

By the Dvoretzky–Rogers lemma [91], there exist contact points

x1; : : : ; xn 2 S
n�1
\ @BX

that satisfy

8k 2 ¹1; : : : ; nº;


Projspan.x1;:::;xk�1/?.xk/




`n
2

>
r
n � k C 1

n
: (2.58)
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Let ƒ D ƒ.x1; : : : ; xn/ � Rn denote the lattice that is generated by x1; : : : ; xn,
namely

ƒ D

nX
iD1

Zxi D

´
nX
iD1

kixi W k1; : : : ; kn 2 Z

µ
:

By (2.58), ƒ is a full-rank lattice. Denote the fundamental parallelepiped of ƒ by
Q D Q.x1; : : : ; xn/, i.e.,

Q D

nX
iD1

Œ0; 1/xi D

´
nX
iD1

sixi W 0 6 s1; : : : ; sn < 1

µ
:

Since x1; : : : ; xn 2 BX, we have Q �Q � nBX and by (2.58) the volume of Q (the
determinant of ƒ) satisfies

det.ƒ/ D voln.Q/ D
nY
kD1



Projspan¹x1;:::;xk�1º?.xk/



`n
2

(2.58)
>

nY
kD1

r
n � k C 1

n
D

p
nŠ

n
n
2

: (2.59)

Fix m 2 N and �;� > 0. Denote

Cm D Cm.x1; : : : ; xn/ D ƒ \ .mQ/

D

´
nX
iD1

kixi W k1; : : : ; kn 2 ¹0; : : : ; m � 1º

µ
;

and suppose that P is � -separating �-bounded random partition of Cm. The fact that
P is �-bounded means that � � � � �BX for every � � Cm with ProbŒ� 2 P� > 0.
Recalling that Q �Q � nBX, this implies that

BX �
1

�C n

�
.� CQ/ � .� CQ/

�
: (2.60)

Now,
p
�

�
�
1C n

2

� 1
n evr.X/

D voln.BX/
1
n >

2

�C n
voln.� CQ/

1
n

D
2

�C n

�
j�j voln.Q/

� 1
n >

2.nŠ/
1
2n

.�C n/
p
n
j�j

1
n ; (2.61)

where the first step of (2.61) is (2.57), the second step of (2.61) uses (2.60) and
the Brunn–Minkowski inequality, the third step of (2.61) holds because the paral-
lelepipeds ¹
 C Q W 
 2 �º are disjoint, and the final step of (2.61) is (2.59). If
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T 2 GLn.R/ is given by Tei D xi , then by (2.61) the random partition

T �1P
def
D ¹T �1� W � 2 Pº

of T �1Cm D ¹0; : : : ; m � 1ºn satisfies the assumptions of Lemma 108 with

M D
.�n/

n
2 .�C n/n

2n�
�
1C n

2

�p
nŠ
�

1

evr.X/n
:

If we choose�D ¹0; : : : ;m� 1ºn D T �1Cm in Lemma 108, then we have j�j Dmn

and
j� X .� � ei /j D m

n�1

for every i 2 ¹1; : : : ; nº, so it follows from Lemma 108 that there exist i 2 ¹1; : : : ; nº
and x 2 Cm such that

Prob
�
P.x/ ¤ P.x C ei /

�
> evr.X/

2.nŠ/
1
2n�

�
1C n

2

� 1
n

.�C n/
p
�n

�
1

m
: (2.62)

At the same time, the left-hand side of (2.62) is at most �=�, since P is � -separating
and kxikX 6 1. Thus,

� > evr.X/
2�.nŠ/

1
2n�.1C n

2
/
1
n

.�C n/
p
�n

�
�

m
: (2.63)

By lettingm!1 in (2.63) and then letting�!1 in the resulting estimate, we
get (2.54). Also, if we set�D n in (2.63), then for sufficiently largem�

p
n=evr.X/

we have
SEP.Cm/ & evr.X/

p
n;

giving (2.55).

We will next provide a proof of Lemma 108 whose main ingredient is the follow-
ing lemma.

Lemma 109 (Application of Loomis–Whitney). Fix an integer n > 2 and a finite
subset � of Zn. For x 2 Zn and i 2 ¹1; : : : ; nº, let di .xI�/ 2 N [ ¹0º be the number
of times that the oriented discrete axis-parallel line x C Zei transitions from � to
Zn X � , and let g.xI�/ be the geometric mean of d1.xI�/; : : : ; dn.xI�/. Thus

8i 2 ¹1; : : : ; nº; di .xI�/
def
D
ˇ̌
¹k 2 Z W x C kei 2 � ^ x C .k C 1/ei … �º

ˇ̌
and

g.xI�/
def
D

n
p
d1.xI�/ � � � dn.xI�/:

Then,
1

n

nX
iD1

j� X .� � ei /j >
�X
x2Zn

g.xI�/
n
n�1

�n�1
n > j�j

n�1
n : (2.64)
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Proof. The second inequality in (2.64) holds because d1.xI �/; : : : ; dn.xI �/ > 1
for every x 2 � (as j�j < 1), and hence g.�I �/ > 1�.�/ point-wise. For the first
inequality in (2.64), observe that for each i 2 ¹1; : : : ; nº,

j� X .� � ei /j D
X
x2Zn

1�.x/1ZnX�.x C ei /

D

X
y2Proj

e?
i

�

�X
k2Z

1�.y C kei /1ZnX�

�
y C .k C 1/ei

��
D

X
y2Proj

e?
i

Zn

di .yI�/:

Consequently,

1

n

nX
iD1

j� X .� � ei /j D
1

n

nX
iD1



di .�I�/ 1
n�1



n�1
`n�1.Proj

e?
i

Zn/

>
nY
iD1



di .�I�/ 1
n�1



n�1n
`n�1.Proj

e?
i

Zn/

>
X
x2Zn

nY
iD1

di .Proje?
i
x/

1
n�1 ;

where the second step is an application of the arithmetic-mean/geometric-mean in-
equality and the final step is an application of the Loomis–Whitney inequality [185]
(see [288, Theorem 3] for the functional version of the Loomis–Whitney inequality
that they are using here); we note that even though this inequality is commonly stated
for functions on Rn rather than for functions on Zn, its proof for functions on Zn is
identical (in fact, [185] proves the continuous inequality by first proving its discrete
counterpart).

Note that when n D 1 Lemma 109 holds trivially if we interpret (2.64) as the
estimate j� X .� � 1/j > maxx2Z g.xI�/ > 1, since in this case

g.xI�/ D j� X .� � 1/j

for every x 2 Z.
The following corollary of Lemma 109 is a deterministic counterpart of Lemma

108.

Corollary 110. Fix n;M 2 N and a nonempty finite subset� of Zn. Suppose that P
is a partition of � with

max
�2P
j�j 6M: (2.65)
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Then,

1

n

nX
iD1

j¹x 2 � \ .� � ei / W P.x/ ¤ P.x C ei /ºj

>
j�j
n
p
M
�
1

n

nX
iD1

j� X .� � ei /j: (2.66)

Proof. Observe that for each fixed i 2 ¹1; : : : ; nº we have

j� X .� � ei /j C
X

x2�\.��ei /

1P.x/¤P.xCej /

D j� X .� � ei /j C
X

x2�\.��ei /

�X
�2P

1�.x/1ZnX�.x C ei /
�

D

X
x2Zn

X
�2P

1�.x/1ZnX�.x C ei /

D

X
�2P

j� X .� � ei /j; (2.67)

where the first step of (2.67) holds because P is a partition of � and the second step
of (2.67) holds because

1�.x/1ZnX�.x C ei / D 0

for every � � � if x 2 Zn X�, and if x 2 � X .� � ei /, then

1�.x/1ZnX�.x C ei / D 1

for exactly one � 2 P (specifically, this is satisfied only for � D P.x/ because we
have x C ei 2 Zn X� � Zn X P.x/). Now,

1

n

nX
iD1

j¹x 2 � \ .� � ei / W P.x/ ¤ P.x C ei /ºj C
1

n

nX
iD1

j� X .� � ei /j

(2.67)
D

X
�2P

1

n

nX
iD1

j� X .� � ei /j

(2.64)
>

X
�2P

j�j
n�1
n

(2.65)
>

1
n
p
M

X
�2P

j�j D
j�j
n
p
M
;

where the last step holds because P is a partition of �.

Proof of Lemma 108. Denoting

p D max
i2¹1;:::;nº

max
x2�\.��ei /

ProbŒP.x/ ¤ P.x C ei /�;
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the goal is to show that p is at least the right-hand side of (2.56). This follows from
Corollary 110 because

pj�j >
p

n

nX
iD1

j� \ .� � ei /j

>
1

n

nX
iD1

X
x2�\.��ei /

Prob
�
P.x/ ¤ P.x C ei /

�
D
1

n

nX
iD1

X
x2�\.��ei /

E
�
1P.x/¤P.xCei /

�
D E

"
1

n

nX
iD1

j¹x 2 � \ .� � ei / W P.x/ ¤ P.x C ei /ºj

#
(2.66)
>
j�j
n
p
M
�
1

n

nX
iD1

j� X .� � ei /j:

2.6 Proof of the lower bound on PADı.X/ in Theorem 69

Fixing n 2 N, a normed space XD .Rn; k � kX/, and ı 2 .0; 1/, recalling the notation
in Definition 65 we will prove here that

PADı.X/ > sup
m2N

PADmı .X/ >
2

1 �
n
p
ı
; (2.68)

which gives the first inequality in (1.102).

Proof of (2.68). Suppose that 0 < " < 1 and r > 2. Let N" be any "-net of rBX.
Then, log jN"j � n log.r="/ (see, e.g., [244, Lemma 9.18]). Fix a (disjoint) Voronoi
tessellation ¹Vxºx2N" of rBX that is induced by N". Thus, ¹Vxºx2N" is a partition of
rBX into Borel subsets such that x 2 Vx � x C "BX for every x 2 N". So, for every
w 2 rBX there is a unique net point x.w/ 2 N" such that w 2 Vx.w/.

Fix p > supm2N PADm
ı
.X/ > PADı.N"/. Assume from now that 0 < " < 1=.2p/

and r > 1=p � 2" (eventually we will consider the limits "! 0 and r ! 1). By
the definition of PADı.N"/, there exists a probability distribution P over 1-bounded
partitions of N" such that

8y 2 N"; Prob
��
y C

1

p
BX

�
\N" � P.y/

�
> ı: (2.69)

For every y 2 N" define

P�.y/
def
D

[
z2P.y/

Vz D
®
w 2 rBX W x.w/ 2 P.y/

¯
:
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Then ¹P�.y/ºy2N" is a (finitely supported) random partition of rBX into Borel sub-
sets.

We claim that for every y 2 N" the following inclusion of events holds:²
w 2 Rn W w C

1 � 2"p

p
BX � P�.y/

³
C

1 � 2"p

.1C 2"/p

�
P�.y/ � P�.y/

�
� P�.y/:

(2.70)
Indeed, take any w 2 Rn such that

w C
1 � 2"p

p
BX � P�.y/;

and also take any u; v 2 P�.y/. By the definition of P� we have x.u/;x.v/ 2 P.y/.
As P is 1-bounded, we have kx.u/ � x.v/kX 6 1. Therefore,

ku � vkX 6 ku � x.u/kX C kx.u/ � x.v/kX C kv � x.v/kX 6 1C 2":

Hence,
1 � 2"p

.1C 2"/p
.u � v/ 2

1 � 2"p

p
BX;

so the assumption on w implies that

w C
1 � 2"p

.1C 2"/p
.u � v/ 2 P�.y/:

This is precisely the assertion in (2.70). By the Brunn–Minkowski inequality, (2.70)
gives

voln
�
P�.y/

� 1
n > 2

1 � 2"p

.1C 2"/p
voln

�
P�.y/

� 1
n

C voln

�²
w 2 Rn W w C

1 � 2"p

p
BX � P�.y/

³� 1
n

:

This simplifies to give the following estimate:

voln

�²
w 2 Rn W w C

1 � 2"p

p
BX � P�.y/

³�
6
�
1 � 2

1 � 2"p

.1C 2"/p

�n
voln

�
P�.y/

�
: (2.71)

Now,

voln

�²
w 2 rBX W w C

1 � 2"p

p
BX � P�

�
x.w/

�³�
D

X
y2N"

voln

�²
w 2 P�.y/ W w C

1 � 2"p

p
BX � P�

�
x.w/

�³�
(2.72)
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D

X
y2N"

voln

�²
w 2 P�.y/ W w C

1 � 2"p

p
BX � P�.y/

³�
(2.73)

6
�
1 � 2

1 � 2"p

.1C 2"/p

�n X
y2N"

voln
�
P�.y/

�
(2.74)

D

�
1 � 2

1 � 2"p

.1C 2"/p

�n
rn voln.BX/: (2.75)

Here (2.72) holds because ¹P�.y/ºy2N" is a partition of rBX. The identity (2.73)
holds because, since by the definition of P� we havew 2P�.x.w// for everyw 2 rBX

and the sets ¹P�.y/ºy2N" are pairwise disjoint, if w 2 P�.y/ for some y 2 N" then
necessarily P�.x.w// D P�.y/. The estimate (2.74) uses (2.71). The identity (2.75)
uses once more that ¹P�.y/ºy2N" is a partition of rBX.

We next claim that for every w 2 .r C 2" � 1=p/BX the following inclusion of
events holds:²�

x.w/C
1

p
BX

�
\N" � P

�
x.w/

�³
�

²
w C

1 � 2"p

p
BX � P�

�
x.w/

�³
: (2.76)

Indeed, suppose that w 2 X satisfies .x.w/C .1=p/BX/ \N" � P.x.w// and also
kwkX 6 r C 2" � 1=p. Fix any z 2 X such that kw � zkX 6 .1 � 2"p/=p. Then we
have kzkX 6 kwkX C kw � zkX 6 r , so z 2 rBX and therefore x.z/ 2 N" is well
defined. Now,

kx.w/�x.z/kX6kx.w/�wkXCkw� zkXCkz �x.z/kX6"C
1 � 2"p

p
C "D

1

p
:

So, our assumption onw implies that x.z/2P.x.w//. By the definition of P�.x.w//,
this means that z 2P�.x.w//, thus completing the verification of (2.76). Due to (2.69)
and (2.76) we conclude that

8w 2

�
r C 2" �

1

p

�
BX; Prob

�
w C

1 � 2"p

p
BX � P�

�
x.w/

��
> ı: (2.77)

Finally,

ı

�
r C 2" �

1

p

�n
voln.BX/

(2.77)
6

�
.rC2"� 1p /BX

Prob
�
w C

1 � 2"p

p
BX � P�

�
x.w/

��
dw

D E

�
voln

�²
w 2

�
r C 2" �

1

p

�
BX W w C

1 � 2"p

p
BX � P�

�
x.w/

�³��
(2.75)
6

�
1 � 2

1 � 2"p

.1C 2"/p

�n
rn voln.BX/:
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This simplifies to give the estimate

n
p
ı

�
1 �

1

pr
C
2"

r

�
6 1 � 2

1 � 2"p

.1C 2"/p
:

By letting r !1, then "! 0, and then

p! sup
m2N

PADmı .X/;

the desired bound (2.68) follows.

2.7 Proof of Proposition 87

The final lower bound from the Introduction that remains to be proven is Proposi-
tion 87. The ensuing reasoning is a restructuring of a proof that was shown to us by
Lutwak.

Lemma 111. Every origin-symmetric convex body K � Rn satisfies
�
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du >
n2�

�
n
2

�
2
p
��

�
nC1
2

� voln.K/2: (2.78)

Equality in (2.78) holds if and only if K is an ellipsoid.

Before proving Lemma 111, we will explain how it implies Proposition 87.

Proof of Proposition 87 assuming Lemma 111. The following standard identity fol-
lows from integration in polar coordinates (its quick derivation can be found, for
example, on [263, p. 91]):

voln.K/ D
1

n

�
Sn�1

du
kuknK

: (2.79)

Hence,
�
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du 6
��

Sn�1

du
kuknK

�
max
u2Sn�1

voln�1
�
Proju?.K/

�
kukK

(2.79)
D n voln.K/ max

z2@K

�
kzk`n

2
voln�1

�
Projz?.K/

��
D n2 voln.K/ max

z2@K
voln

�
Conez.K/

�
: (2.80)

The desired inequality (1.126) follows by contrasting (2.80) with (2.78). Conse-
quently, if there is equality in (1.126), then (2.78) must hold as equality as well,
so the characterization of the equality case in Proposition 87 follows from the char-
acterization of the quality case in Lemma 111.



Proof of Proposition 87 101

The important Petty projection inequality [252] (see also [194, 281] for different
proofs, as well as the survey [190]) states that for every convex body K � Rn, the
affine invariant quantity

voln.K/n�1 voln.…�K/ (2.81)

is maximized whenK is an ellipsoid, and ellipsoids are the only maximizers of (2.81).
Recall that the polar projection body …�K is given by (1.30), which shows in partic-
ular that voln�1.B`n�1

2
/…�B`n

2
D B`n

2
. Hence,

voln.K/n�1 voln.…�K/ 6 voln.B`n
2
/n�1 voln.…�B`n

2
/

D

 
voln

�
B`n

2

�
voln�1

�
B`n�1

2

�!n D  2p���nC12 �
n�
�
n
2

� !n
:

At the same time, by combining (1.30) and (2.79) we have

voln.…�K/ D
1

n

�
Sn�1

du

voln�1
�
Proju?.K/

�n :
Consequently, Petty’s projection inequality can be restated as the following estimate:

�
Sn�1

du

voln�1
�
Proju?.K/

�n 6  2p���nC12 �
n�
�
n
2

� !n
n

voln.K/n�1
; (2.82)

together with the assertion that (2.82) holds as an equality if and only if K is an
ellipsoid.

Proof of Lemma 111. Observe that

voln.K/

D
1

n

�
Sn�1

 
1

voln�1
�
Proju?.K/

� n
nC1

! 
voln�1

�
Proju?.K/

� n
nC1

kuknK

!
du (2.83)

6
1

n

��
Sn�1

du

voln�1
�
Proju?.K/

�n� 1
nC1

��
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du
� n
nC1

(2.84)

6
1

n

 
2
p
��

�
nC1
2

�
n�
�
n
2

� ! n
nC1

n
1
nC1

voln.K/
n�1
nC1

��
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du
� n
nC1

;

(2.85)

where (2.83) is (2.79), in (2.84) we used Hölder’s inequality with the conjugate expo-
nents 1C 1

n
and nC 1, and (2.85) is an application of (2.82). This simplifies to give

the desired inequality (2.78).
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Remark 112. Fix n 2N, a normed space XD .Rn;k � kX/ and x 2 Sn�1. Both of the
bounds in (1.50) follow from elementary geometric reasoning (convexity and Fubini’s
theorem). Recalling (1.30), the second inequality in (1.50) is voln�1.Projx?BX/ 6
nkxkX voln.BX/=2; its justification can be found in the proof of [109, Lemma 5.1]
(this was not included in the version of [109] that appeared in the journal, but it
appears in the arxiv version of [109]). The rest of (1.50) is

voln.BX/kxkX 6 2 voln�1.Projx?BX/I

since we did not find a reference for the derivation of this simple lower bound on
hyperplane projections, we will now quickly justify it. For every u 2 Projx?BX let
s.u/ D inf¹s 2 R W uC sx 2 BXº and t .u/ D sup¹t 2 R W uC tx 2 BXº. For every
u 2 Projx?BX we have uC t .u/x 2 BX, and by symmetry also �u � s.u/x 2 BX.
Hence, by convexity

1

2

�
uC t .u/x

�
C
1

2

�
�u � s.u/x

�
D
t .u/ � s.u/

2
x 2 BX:

By the definition of t .0/, this means that .t.u/ � s.u//=2 6 t .0/ D 1=kxkX. Conse-
quently, using Fubini’s theorem (recall that x 2 Sn�1) we conclude that

voln.BX/ D

�
Proj

x?
BX

�
t .u/ � s.u/

�
du

6
�

Proj
x?
BX

2

kxkX
du D

2

kxkX
voln�1

�
Projx?BX

�
:



Chapter 3

Preliminaries on random partitions

This section treats basic properties of random partitions, including measurability
issues that we need for subsequent applications. As such, it is of a technical/founda-
tional nature and it can be skipped on first reading if one is willing to accept the
measurability requirements that are used in the proofs that appear in Section 4 and
Section 5.

Recall that a random partition P of a metric space .M; dM/ was defined in the
Introduction as follows. One is given a probability space .�;Prob/ and a sequence of
set-valued mappings ¹�k W�! 2Mº1

kD1
such that for each fixed k 2N the mapping

�k W �! 2M is strongly measurable relative to the � -algebra of Prob-measurable
subsets of�, i.e., the set .�k/�.E/D ¹! 2� WE \�k.!/¤¿º is Prob-measurable
for every closed E �M. We require that P! D ¹�k.!/º1

kD1
is a partition of M for

every ! 2 �.
Definition 63 and Definition 65 (of separating and padded random partitions,

respectively) assumed implicitly that the quantities that appear in the left-hand sides
of equations (1.92) and (1.95) are well defined, i.e., that the events ¹P.x/ ¤ P.y/º

and ¹BM.x; r/ � P.x/º are Prob-measurable for every x; y 2M and r > 0. This
follows from the above definition, because for every closed subset E �M we have®

! 2 � W P!.x/ ¤ P!.y/
¯

D

[
k;`2N
k¤`

�®
! 2 � W ¹xº \ �k.!/ ¤ ¿

¯
\
®
! 2 � W ¹yº \ �`.!/ ¤ ¿

¯�
and ®

! 2 � W E 6� P!.x/
¯

D

[
k;`2N
k¤`

�®
! 2 � W ¹xº \ �k.!/ ¤ ¿

¯
\
®
! 2 � W E \ �`.!/ ¤ ¿

¯�
:

Another “leftover” from the Introduction is the proof of Lemma 67, which asserts
that the moduli of Definition 63 and Definition 65 are bi-Lipschitz invariants. The
proof of this simple but needed statement is the following direct use of the definition
of a �-bounded random partition.

Proof of Lemma 67. Fix D > c.N;dN/.M; dM/. There is an embedding � WM! N

and a scaling factor �>0 such that (1.16) holds. Fix�>0 and let P be a ��-bounded
random partition of N. Suppose that P is induced by the probability space .�;Prob/,
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i.e., there are strongly measurable mappings ¹�k W � ! 2Nº1
kD1

such that P! D
¹�k.!/º1

kD1
for every ! 2�. For every k 2N the mapping ! 7! ��1.�k.!// 2 2M

is strongly measurable. Indeed, if E �M is closed then, because M is complete and
� is a homeomorphism, also �.E/ � N is closed. So,

¹! 2 � W �.E/ \ �k.!/ ¤ ¿º D ¹! 2 � W E \ ��1.�k.!// ¤ ¿º

is Prob-measurable, as required. Therefore, if we define Q! D ¹��1.�k.!//º1
kD1

for
! 2 �, then Q is a random partition of M.

Q is�-bounded since for x 2M and u;v 2 Q.x/ we have �.u/;�.v/ 2 P.�.x//,
hence dM.u; v/ 6 dN.�.u/; �.v//=� 6 diamN.P.�.x///=� 6 �, using (1.16) and
that P is ��-bounded. For every x;y 2M the events ¹Q.x/¤Q.y/º and ¹P.�.x//¤
P.�.y//º coincide. So, if P is � -separating for some � > 0,

Prob
�
Q.x/ ¤ Q.y/

�
D Prob

�
P
�
�.x/

�
¤ P

�
�.y/

��
6

�

��
dN

�
�.x/; �.y/

� (1.16)
6

D�

�
dM.x; y/:

This shows that Q is .D�/-separating, thus establishing the first assertion (1.97) of
Lemma 67.

Suppose that P is .p; ı/-padded for some p>0 and 0< ı < 1. Fix x 2M. Assum-
ing that the event ¹BN.�.x/; ��=p/ � P.�.x//º occurs, if z 2 BM.x; �=.Dp//,
then dN.�.z/; �.x// 6 �DdM.z; x/ 6 ��=p by (1.16). Thus,

�.z/ 2 BN

�
�.x/;

��

p

�
and therefore �.z/ 2 P.�.x//, i.e., z 2 Q.x/. This shows the inclusion of events²

BN

�
�.x/;

��

p

�
� P

�
�.x/

�³
�

²
BM

�
x;

�

Dp

�
� Q.x/

³
:

Since P is .p; ı/-padded, it follows from this that also Q is .Dp; ı/-padded, thus
establishing the second assertion (1.98) of Lemma 67.

The final basic “leftover” from the Introduction is the following simple proof of
Lemma 68.

Proof of Lemma 68. Fix�>0 and suppose that �1 > SEP.M1/ and �2 > SEP.M2/.
Define

�1 D �
� �1

�1 C �2

� 1
s

and �2 D �
� �2

�1 C �2

� 1
s

: (3.1)

Let P�1 be a �1-separating �1-bounded random partition of M1. Similarly, let P�2
be a �2-separating �2-bounded random partition of M2. Assume that P�1 and P�2
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are independent random variables. Let P� be the corresponding product random par-
tition of M1 �M2, i.e., its clusters are give by

8.x1; x2/ 2M1 �M2; P�.x1; x2/ D P�1.x1/ � P�2.x2/: (3.2)

By (3.1) we have�s1C�
s
2 D�

s , so P� is a�-bounded random partition of the met-
ric space M1 ˚s M2 (the required measurability is immediate). It therefore remains
to observe that every .x1; x2/; .y1; y2/ 2M1 �M2 satisfy

Prob
�
P�.x1; x2/ ¤ P�.y1; y2/

�
D 1 � Prob

�
P�1.x1/ D P�1.y1/

�
Prob

�
P�2.x2/ D P�2.y2/

�
(3.3)

6 1 �
�
1 �

�1dM1
.x1; y1/

�1

��
1 �

�2dM2
.x2; y2/

�2

�
(3.4)

D
�1dM1

.x1; y1/

�1
C
�2dM2

.x2; y2/

�2
�
�1�2dM1

.x1; y1/dM2
.x2; y2/

�1�2
(3.5)

6
�� �1
�1

� s
s�1

C

� �2
�2

� s
s�1

� s�1
s �
dM1

.x1; y1/
s
C dM2

.x2; y2/
s
� 1
s (3.6)

D
�1 C �2

�
dM1˚sM2

�
.x1; x2/; .y1; y2/

�
; (3.7)

where (3.3) uses (3.2) and the independence of P�1 and P�2 , the bound (3.4) is an
application of the assumption that P�1 is �1-separating and P�2 is �2-separating,
(3.6) is an application of Hölder’s inequality, and (3.7) follows from (1.99) and (3.1).
This proves (1.100). Note that even though we dropped the quadratic additive im-
provement in (3.5), this does not change the final bound in (1.100) due to the need
to work with all possible scales � > 0 and all possible values of dM1

.x1; y1/ and
dM2

.x2; y2/.
To prove (1.101), fix p1 > PADı1.M1/ and p2 > PADı2.M2/ and replace (3.1)

by

�1 D
�p1�

ps1 C ps2
� 1
s

and �2 D
�p2�

ps1 C ps2
� 1
s

:

This time, we choose P�1 to be a .p1; ı1/-padded �1-bounded random partition
of M1. Similarly, let P�2 be a .p2; ı2/-padded �2-bounded random partition of
M2, with P�1 and P�2 independent, and we again combine them as in (3.2) to
give the product partition P� of M1 �M2. By reasoning analogously, P� is a
..ps1 C ps2/

1=s; ı1ı2/-padded �-bounded random partition of M1 ˚s M2.

3.1 Standard set-valued mappings

Recall that a metric space .M; dM/ is said to be Polish if it is separable and complete.
Polish metric spaces are the appropriate setting for Lipschitz extension theorems that
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are based on the assumption that for every � > 0 there is a probability distribution
over �-bounded partitions of M with certain properties. Indeed, a Banach space-
valued Lipschitz function can always be extended to the completion of M while
preserving the Lipschitz constant, and the mere existence of countably many sets
of diameter at most � that cover M for every � > 0 implies that M is separable.

Theorem 66 assumes local compactness. Even though this assumption is more
restrictive than being Polish, it suffices for the applications that we obtain herein
because they deal with finite dimensional normed spaces. It is, however, possible
to treat general Polish metric spaces by working with a notion of measurability of
set-valued mappings that differs from the strong measurability that was assumed in
Section 1.7. We call this notion standard set-valued mappings; see Definition 113.

The requirements for a set-valued mapping to be standard are quite innocuous
and easy to check. In particular, the clusters of the specific random partitions that
we will study are easily seen to be standard set-valued mappings. It is also simple to
verify that the clusters of the random partitions that we construct are strongly mea-
surable. So, we have two approaches, which are both easy to work with. We chose to
work in the Introduction with the requirement that the clusters are strongly measur-
able because this directly makes the quantity SEP.�/ be bi-Lipschitz invariant, and it
is also slightly simpler to describe. Nevertheless, in practice it is straightforward to
check that the clusters are standard, and even though we do not know that this leads to
a bi-Lipschitz invariant (we suspect that it does not), it does lead to an easily imple-
mentable Lipschitz extension criterion that holds in the maximal generality of Polish
spaces.

Definition 113 (Standard set-valued mapping). Suppose that .Z; dZ/ is a Polish met-
ric space and that � � Z is a Borel subset of Z. Given a metric space .M; dM/, a
set-valued mapping � W �! 2M is said to be standard if the following three condi-
tions hold.

• For every x 2M the set ¹! 2 � W x 2 �.!/º is Borel.

• The set G� D ��.M/ D ¹! 2 � W �.!/ ¤ ¿º is Borel.

• For every x 2M the mapping .! 2 G�/ 7! dM.x;�.!// is Borel measurable on
G� .

The following extension criterion is a counterpart to Theorem 66 that works in
the maximal generality of Polish metric spaces; its proof, which is an adaptation of
ideas of [173], appears in Section 5.

Theorem 114. Let .M; dM/ be a Polish metric space and fix another metric d on
M. Suppose that for every � > 0 there is a Polish metric space Z�, a Borel subset
�� � Z�, a Borel probability measure Prob� on �� and a sequence of standard
set-valued mappings ¹�k� W��! 2Mº1

kD1
such that P!�D¹�

k
�.!/º

1
kD1

is a partition
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of M for every ! 2��, for every x 2M and ! 2�� we have diamM.P
!
�.x//6�,

and
8x; y 2M; �Prob�

�
! 2 �� W P

!
�.x/ ¤ P!�.y/

�
6 d.x; y/:

Then, for every Banach space .Z; k � kZ/, every subset C �M and every 1-Lipschitz
mapping f W C! Z, there exists a mapping F WM! Z that extends f and satisfies
kF.x/ � F.y/kZ . d.x; y/ for every x; y 2M (namely, F is Lipschitz on M with
respect to the metric d). Moreover, F depends linearly on f .

3.2 Proximal selectors

For later applications we need to know that set-valued mappings that are either strong-
ly measurable or standard admit certain auxiliary measurable mappings that are (per-
haps approximately) the closest point to a given (but arbitrary) nonempty closed
subset of the metric space in question. We will justify this now using classical descrip-
tive set theory.

Lemma 115. Fix a measurable space .�; F/. Suppose that .M; dM/ is a metric
space and that S �M is nonempty and locally compact. Let � W � ! 2M be a
strongly measurable set-valued mapping such that �.!/ is a bounded subset of M

for every ! 2 �. Then there exists an F-to-Borel measurable mapping 
 W �! S

that satisfies dM.
.!/;�.!//D dM.S;�.!// for every ! 2� for which �.!/¤¿.

Proof. For every ! 2 � define a subset ˆ.!/ � S as follows:

ˆ.!/
def
D

8<: ¹s 2 S W dM.s; �.!// D dM.S; �.!//º if �.!/ ¤ ¿;

S if �.!/ D ¿:

The goal of Lemma 115 is to show the existence of an F-to-Borel measurable map-
ping 
 W � ! S that satisfies 
.!/ 2 ˆ.!/ for every ! 2 �. Since .S; dM/ is
locally compact, it is in particular Polish, so by the measurable selection theorem
of Kuratowski and Ryll-Nardzewski [161] (see also [309] or [291, Chapter 5.2]) it
suffices to check that ˆ.!/ is nonempty and closed for every ! 2 �, and that we
have ¹! 2 � W E \ ˆ.!/ D ¿º 2 F for every closed E � S . Since S is locally
compact, every closed subset of S is a countable union of compact subsets, so it
suffices to check the latter requirement for compact subsets of S , i.e., to show that
¹! 2 � W K \ˆ.!/ D ¿º 2 F for every compact K � S .

Fix ! 2 �. If �.!/ D ¿ then ˆ.!/ D S is closed (since S is locally compact)
and nonempty by assumption. If �.!/ ¤ ¿ then the continuity of s 7! dM.s; �.!//

on S implies that ˆ.!/ is closed. Moreover, in this case since �.!/ is bounded and
S is locally compact, the continuous mapping s 7! dM.s; �.!// attains its minimum
on S , so that ˆ.!/ ¤ ¿.
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It therefore remains to check that ¹!2� WK\ˆ.!/D¿º 2F for every nonempty
compact K ¨ S . Fixing such a K, since S is locally compact and hence separable,
there exist ¹�iº1iD1 � K and ¹�j º1jD1 � S that are dense in K and S , respectively.
Denote G� D ¹! 2� W �.!/¤ ¿º. Then G� 2 F, because � is strongly measurable.
Observe that the following identity holds:®

! 2 � W K \ˆ.!/ D ¿
¯

D
®
! 2 G� W 8� 2 K; dM.�; �.!// > dM.S; �.!//

¯
D

1[
mD1

1\
iD1

1[
jD1

²
! 2 G� W dM.�i ; �.!// > dM.�j ; �.!//C

1

m

³
: (3.8)

The verification of (3.8) proceeds as follows. Since ˆ.!/ ¤ ¿ for every ! 2 � and
K ¤ ¿, if K \ ˆ.!/ D ¿ then ! 2 G� (otherwise ˆ.!/ D S ). This explains the
first equality (3.8). For the second equality in (3.8), note that since �.!/ is bounded
and K is compact, inf�2K dM.�; �.!// is attained. Therefore, the second set in (3.8)
is equal to A D ¹! 2 G� W dM.K; �.!// > dM.S; �.!//º. If ! 2 A, then there is
m 2 N such that dM.K; �.!// > dM.S; �.!//C 2=m, implying in particular that
dM.�i ; �.!// > dM.S;�.!//C 2=m for every i 2N. As ¹�j º1jD1 is dense in S , for
every i 2 N there is j 2 N such that dM.�i ; �.!// > dM.�j ; �.!//C 1=m. Hence,
the second set in (3.8) is contained in the third set in (3.8). For the reverse inclusion,
if ! is in third set in (3.8) then

dM.K; �.!// D inf
i2N

dM.�i ; �.!// > inf
j2N

dM.�j ; �.!// D dM.S; �.!//:

By (3.8), it suffices to show that ¹! 2 G� W dM.x;�.!// > dM.y;�.!//C rº 2F

for every fixed x; y 2 S and r > 0. For this, it suffices to show that for every z 2M

the mapping ! 7! dM.z; �.!// is F-to-Borel measurable on G� . Since G� 2 F, this
is a consequence of the strong measurability of � , because for every t > 0 we have

¹! 2 G� W dM.z; �.!// > tº

D

1[
kD1

G� \

²
! 2 � W BM

�
z; t C

1

k

�
\ �.!/ D ¿

³
:

Lemma 115 is a satisfactory treatment of measurable nearest point selectors for
strongly measurable set-valued mappings, though under an assumption of local com-
pactness. We did not investigate the minimal assumptions that are required for the
conclusion of Lemma 115 to hold. We will next treat the setting of standard set-valued
mappings without assuming local compactness.

Let .Z; dZ/ be a Polish metric space. Recall that a subset A of Z is said to be uni-
versally measurable if it is measurable with respect to every complete � -finite Borel
measure � on Z (see, e.g., [154, p. 155]). If .M; dM/ is another metric space and
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� � Z is Borel, then a mapping  W �!M is said to be universally measurable
if  �1.E/ is a universally measurable subset of � for every Borel subset E of M.
Finally, recall that A �M is said to be analytic if it is an image under a continu-
ous mapping of a Borel subset of a Polish metric space (see, e.g., [154, Chapter 14]
or [136, Chapter 11]). By Lusin’s theorem [189, 192] (see also, e.g., [154, Theo-
rem 21.10]), analytic subsets of Polish metric spaces are universally measurable.

Lemma 116. Let .M; dM/ and .Z; dZ/ be Polish metric spaces and fix a Borel
subset � � Z. Fix also � > 0 such that diam.M/ > �. Suppose that � W �! 2M

satisfies the following two properties.

(1) For every ! 2 � such that �.!/ ¤ ¿ we have diamM.�.!// < �.

(2) For every x 2M and t 2 R the set ¹! 2� W �.!/¤ ¿^ dM.x;�.!// > tº

is analytic.

Then, for every closed subset ¿ ¤ S �M there exists a universally measurable
mapping 
 W �! S such that

8.!; x/ 2 � �M; x 2 �.!/ H) dM.x; 
.!// 6 dM.x; S/C�:

Proof. For every ! 2 �, define a subset ‰.!/ � S as follows:

‰.!/

def
D

8<:
T
x2M¹s 2 S W dM.x; s/62dM.x; �.!//C dM.x; S/C�º if �.!/ ¤ ¿;

S if �.!/ D ¿:
(3.9)

We will show that there exists a universally measurable mapping 
 W �! S such
that 
.!/ 2 ‰.!/ for every ! 2 �. Since S is a closed subset of M, it is Pol-
ish. Hence, by the Kuratowski–Ryll-Nardzewski measurable selection theorem [161],
it suffices to prove that ‰.!/ is nonempty and closed for every ! 2 �, and that
‰�.E/D¹! 2� WE \‰.!/¤¿º is universally measurable for every closedE �S .

By design, ‰.!/ D S is nonempty and closed if �.!/ D ¿. So, fix ! 2 � such
that �.!/ ¤ ¿. Then ‰.!/ is closed because if ¹skº1kD1 � ‰.!/ and s 2M satisfy
limk!1 dM.sk; s/ D 0, then for every k 2 N and x 2M, since sk 2 ‰.!/ we have
dM.sk; x/ 6 2dM.x; �.!//C dM.x; S/C�. Hence, by continuity also

dM.s; x/ 6 2dM.x; �.!//C dM.x; S/C�

for every x 2M, i.e., s 2 ‰.!/.
We will next check that ‰.!/¤ ¿ for every ! 2� such that �.!/¤ ¿. Denote

"! D � � diamM.�.!//. By assumption (1) of Lemma 116 we have "! > 0, so we
may choose s! 2 S and y! 2 �.!/ that satisfy dM.y! ; s!/ 6 dM.�.!/; S/C "! .
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We claim that s! 2 ‰.!/. Indeed, for every x 2M and z 2 �.!/ we have

dM.x; s!/ 6 dM.x; z/C dM.z; y!/C dM.y! ; s!/

6 dM.x; z/C diamM.�.!//C dM.�.!/; S/C "!

6 dM.x; z/C dM.z; S/C�

6 dM.x; z/C dM.x; S/C dM.x; z/C�; (3.10)

where in the penultimate step of (3.10) we used the fact that dM.�.!/;S/6dM.z;S/,
since z 2 �.!/, and in the final step of (3.10) we used the fact that p 7! dM.p; S/ is
1-Lipschitz on M. Since (3.10) holds for every z 2 �.!/, it follows that

dM.x; s!/ 6 2dM.x; �.!//C dM.x; S/C�:

Because this holds for every x 2M, it follows that s! 2 ‰.!/.
Having checked that ‰ takes values in closed and nonempty subsets of S , it

remains to show that ‰�.E/ is universally measurable for every closed E � S . To
this end, since M is separable, we may fix from now on a sequence ¹xj º1jD1 that is
dense in M. Note that by the case t D 0 of assumption (2) of Lemma 116, for every
j 2 N the following set is analytic:

¹! 2 � W �.!/ ¤ ¿ ^ dM.xj ; �.!// > 0º D
®
! 2 � W �.!/ ¤ ¿ ^ xj … �.!/

¯
:

Countable unions and intersections of analytic sets are analytic (see, e.g., [154, Propo-
sition 14.4]), so we deduce that the following set is analytic:
1[
jD1

®
! 2 � W �.!/ ¤ ¿ ^ xj … �.!/

¯
D
®
! 2 � W �.!/ ¤ ¿ ^ ¹xj º1jD1 6� �.!/

¯
D
®
! 2 � W �.!/ ¤ ¿

¯
; (3.11)

where for the final step of (3.11) observe that, since ¹xj º1jD1 is dense in M, if ¹xj º1jD1
were a subset of �.!/ then it would follow that �.!/ is dense in M. This would
imply that diamM.�.!// D diam.M/ > �, in contradiction to assumption (1) of
Lemma 116. We have thus checked that the set G� D ¹! 2� W �.!/¤¿º is analytic,
and hence by Lusin’s theorem [189, 192] it is universally measurable. Now,

‰�.E/
(3.9)
D .� X G�/

[ ¹! 2 G� W 9 s 2 E 8x 2M; dM.x; s/ 6 2dM.x; �.!//C dM.x; S/C�º:

Hence, it remains to prove that the following set is universally measurable:®
! 2 G� W 9 s 2 E 8x 2M; dM.x; s/ 6 2dM.x; �.!//C dM.x; S/C�

¯
D
®
! 2 G� W 9 s 2 E 8j 2 N; dM.xj ; s/ 6 2dM.xj ; �.!//C dM.xj ; S/C�

¯
;

(3.12)

where we used the fact that ¹xj º1jD1 is dense in M.
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Consider the following subset C of � �E:

C
def
D
®
.!; s/ 2 G� �E W 8j 2 N; dM.xj ; s/ 6 2dM.xj ; �.!//C dM.xj ; S/C�

¯
:

The set in (3.12) is �1.C/, where �1 W � �E ! � is the projection to the first coor-
dinate, i.e., �1.!; s/ D ! for every .!; s/ 2 � � E. Since continuous images and
preimages of analytic sets are analytic (see, e.g., [154, Proposition 14.4]), by another
application of Lusin’s theorem it suffices to show that C is analytic. We already
proved that G� � � is analytic, so there is a Borel subset L of a Polish space Y

and a continuous mapping � W L! � such that �.L/ D G� . Denoting the identity
mapping onE by IdE WE!E, since � mapsL onto G� , the set C is the image under
the continuous mapping � � IdE of the following subset of Y �E:®

.y; s/ 2 L �E W 8j 2 N; dM.xj ; s/ 6 2dM

�
xj ; �.�.y//

�
C dM.xj ; S/C�

¯
D

1\
jD1

®
.y; s/ 2 L �E W dM.xj ; s/ 6 2dM

�
xj ; �.�.y//

�
C dM.xj ; S/C�

¯
:

Hence, since continuous images and countable intersections of analytic sets are ana-
lytic, by yet another application of Lusin’s theorem we see that it suffices to show that
for every fixed x 2M the following set is analytic, where for every q 2Q we denote
Aq D ¹.y; s/ 2 L �E W q < dM.x; s/º D L � ¹s 2 E W q < dM.x; s/º:®

.y; s/ 2 L �E W dM.x; s/ 6 2dM

�
x; �.�.y//

�
C dM.x; S/C�

¯
D

\
q2Q

��
.L �E/ X Aq

�
[
�
Aq \

®
.y; s/ 2 L �E W 2dM

�
x; �.�.y//

�
> q � dM.x; S/ ��

¯��
;

Since Aq is Borel for all q 2 Q, it suffices to show that the following set is analytic
for every t 2 R:®
.y; s/ 2 L �E W dM

�
x;�.�.y//

�
> t

¯
D ��1

�®
! 2 G� W dM.x; �.!// > t

¯�
�E:

Since a preimage under a continuous mapping of an analytic set is analytic, the above
set is indeed analytic due to assumption (2) of Lemma 116 and the fact that E is
closed.

Remark 117. The proof of Lemma 116 used the assumption diam.M/ > � only to
deduce that the set

G� D ¹! 2 � W �.!/ ¤ ¿º

is analytic from (the case t D 0 of) assumption (2) of Lemma 116. Hence, if we add
the assumption that G� is analytic to Lemma 116, then we can drop the restriction
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diam.M/ > � altogether. Alternatively, recalling equation (3.11) and the paragraph
immediately after it, for the above proof of Lemma 116 to go through it suffices to
assume that �.!/ is not dense in M for any ! 2 �.

Recalling Definition 113, Lemma 116 and Remark 117 imply the following corol-
lary. Indeed, by Remark 117 we know that we can drop the assumption diam.M/>�
of Lemma 116, and when � is a standard set-valued mapping the sets that appears in
assumption (2) of Lemma 116 are Borel.

Corollary 118. Fix�> 0. Let .M; dM/ and .Z; dZ/ be Polish metric spaces and fix
a Borel subset � � Z. Suppose that � W �! 2M is a standard set-valued mapping
such that diamM.�.!// < � for every ! 2 G� . Then for every closed ¿ ¤ S �M

there exists a universally measurable mapping 
 W �! S that satisfies

8.!; x/ 2 � �M; x 2 �.!/ H) dM.x; 
.!// 6 dM.x; S/C�:

3.3 Measurability of iterative ball partitioning

The following set-valued mapping is a building block of much of the literature on
random partitions, including the present investigation. Fix a metric space .M; dM/

and k 2 N. Define a set-valued mapping � WMk � Œ0;1/k ! 2M by setting

�
�
Ex; Er

� def
D BM.xk; rk/ X

k�1[
jD1

BM.xj ; rj / (3.13)

for .Ex; Er/ D .x1; : : : ; xk; r1; : : : ; rk/ 2Mk � Œ0;1/k . We can think of � as a ran-
dom subset of M if we are given a probability measure Prob on Mk � Œ0;1/k .
The measure Prob can encode the geometry of .M; dM/; for example, if .M; dM/

is a complete doubling metric space, then in [173] this measure arises from a dou-
bling measure on M (see [191,308]). The measure Prob can also have a “smoothing
effect” through the randomness of the radii (see, e.g., [1,30,71,96,173,208,238,239];
choosing a suitable distribution over the random radii is sometimes an important
and quite delicate matter, but this intricacy will not arise in the present work. For
finite dimensional normed spaces, a random subset as in (3.13) was used in [76,152].
Note that given � > 0, if the measure Prob is supported on the set of those .Ex; Er/ 2
Mk � Œ0;1/k for which rk 6 �=2, then the mapping � takes values in subsets of
M of diameter at most �.

While the definition (3.13) is very simple and natural, in order to use it in the ensu-
ing reasoning we need to know that it satisfies certain measurability requirements.
Note first that the set-valued mapping � in (3.13) has the following basic measurabil-
ity property: for every fixed y 2M the set ¹.Ex; Er/ 2Mk � Œ0;1/k W y 2 �.Ex; Er/º is
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Borel. Indeed, by definition we have®�
Ex; Er

�
2Mk

� Œ0;1/k W y 2 �
�
Ex; Er

�¯
D

k�1\
jD1

®�
Ex; Er

�
2Mk

� Œ0;1/k W dM.y; xj / > rj
¯

\
®�
Ex; Er

�
2Mk

� Œ0;1/k W dM.y; xk/ 6 rk
¯
:

In other words, the indicator mapping .Ex; Er/ 7! 1�.Ex;Er/.y/ is Borel measurable for
every fixed y 2M.

Lemma 119. Fix k 2 N. Let .M; dM/ be a Polish metric space and suppose that
� WMk � Œ0;1/k ! 2M be given in (3.13). Then

��.S/ D
®
.Ex; Er/ 2Mk

� Œ0;1/k W S \ �.Ex; Er/ ¤ ¿
¯

is analytic for every analytic subset S �M. Consequently, for every complete � -finite
Borel measure � on Mk � Œ0;1/k , if F� denotes the � -algebra of �-measurable
subsets of Mk � Œ0;1/k , then � is a strongly measurable set-valued mapping from
the measurable space .Mk � Œ0;1/k;F�/ to 2M.

Proof. Since S is analytic, there exists a Borel subset T of a Polish metric space Z

and a continuous mapping  W T !M such that  .T / D S . Consider the following
Borel subset B of the Polish space Mk � Œ0;1/k �Z (B is Borel because it is defined
using finitely many continuous inequalities)

B
def
D
®
.Ex; Er; t/ 2Mk

� Œ0;1/k � T W dM. .t/; xk/ 6 rk
^ 8j 2 ¹1; : : : ; k � 1º; dM. .t/; xj / > rj

¯
:

Then ��.S/ D �.B/, where

� WMk
� Œ0;1/k �Z!Mk

� Œ0;1/k

is the projection onto the first two coordinates, i.e., �.Ex; Er; z/ D .Ex; Er/ for .Ex; Er; z/ 2
Mk � Œ0;1/k � Z. Since � is continuous, it follows that ��.S/ is analytic. By
Lusin’s theorem [189, 192], it follows that ��.S/ is universally measurable. In par-
ticular, if � is a complete � -finite Borel measure on Mk � Œ0;1/k and F� is the
� -algebra of �-measurable subsets of Mk � Œ0;1/k , then ��.E/ 2 F� for every
closed subset E �M. Recalling (1.91), this means that � is a strongly measurable
set-valued mapping from the measurable space .Mk � Œ0;1/k;F�/ to 2M.

Lemma 120 below contains additional Borel measurability assertions that will be
used later. Its assumptions are satisfied, for example, when M is a separable normed
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space, which is the case of interest here. We did not investigate the maximal generality
under which the conclusion of Lemma 120 holds.

In what follows, given a metric space .M; dM/, for every x 2M and r > 0 the
open ball of radius r centered at x is denoted Bo

M.x; r/ D ¹y 2M W dM.x; y/ < rº.

Lemma 120. Suppose that .M; dM/ is a separable metric space such that

8.x; r/ 2M � .0;1/; BM.x; r/ D B
o
M.x; r/: (3.14)

Fix k 2 N and let � WMk � .0;1/k ! 2M be given in (3.13). Then the following
set is Borel measurable:

G� D
®
.Ex; Er/ 2Mk

� .0;1/k W �.Ex; Er/ ¤ ¿
¯
:

Also, for each y 2M the mapping from G� to R that is given by

.Ex; Er/ 7! dM.y; �.x; r//

is Borel measurable.

Proof. Let D�M be a countable dense subset of M. The assumption (3.14) implies
that D \ �.Ex; Er/ is dense in �.Ex; Er/ for every .Ex; Er/ 2 Mk � .0;1/k . This is
straightforward to check as follows. Fix y 2 �.Ex; Er/ and ı > 0. We need to find
q 2 D \ �.Ex; Er/ with dM.q; y/ < ı. Recalling (3.13), since y 2 �.Ex; Er/ we know
that dM.y;xk/6 rk , and also dM.y;xj / > rj for every j 2 ¹1; : : : ; k � 1º, i.e., � > 0
where

�
def
D min

®
ı; dM.y; x1/ � r1; : : : ; dM.y; xk�1/ � rk�1

¯
:

By (3.14) there is z 2 Bo
M.xk; rk/ with dM.z; y/ < �=2. Denote

�
def
D min

²
rk � dM.z; xk/;

1

2
�

³
:

Then � > 0, so the density of D in M implies that there is q 2D with dM.q; z/ < �.
Consequently,

dM.q; y/ 6 dM.q; z/C dM.z; y/ < �C
�

2
6 ı:

It remains to observe that q 2 �.Ex; Er/, because

dM.q; xk/ 6 dM.q; z/C dM.z; xk/ < �C dM.z; xk/ 6 rk;

and also for every j 2 ¹1; : : : ; k � 1º we have

dM.q; xj / > dM.y; xj / � dM.y; z/ � dM.z; q/

> dM.y; xj / �
�

2
� � > dM.y; xj / � � > rj :
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For every .Ex; Er/ 2 Mk � .0;1/k , we have �.Ex; Er/ ¤ ¿ if and only if D \

�.Ex; Er/ ¤ ¿. Consequently,

G� D
®�
Ex; Er

�
2Mk

� .0;1/k W �
�
Ex; Er

�
¤ ¿

¯
D

[
q2D

®�
Ex; Er

�
2Mk

� .0;1/k W q 2 �
�
Ex; Er

�¯
:

Since D is countable and we already checked in the paragraph immediately preceding
Lemma 119 that ¹.Ex; Er/ 2Mk � .0;1/k W y 2 �.Ex; Er/º is Borel measurable for every
y 2M, we get that G� is Borel measurable.

Next, dM.y; �.Ex; Er// D dM.y;D \ �.Ex; Er// for every .Ex; Er/ 2 G� and y 2M.
So, for every t > 0 we have®�

Ex; Er
�
2 G� W dM

�
y; �

�
Ex; Er

��
< t

¯
D

[
q2D\Bo

M.y;t/

®�
Ex; Er

�
2Mk

� .0;1/k W q 2 �
�
Ex; Er

�¯
:

It follows that ¹.Ex; Er/ 2 G� W dM.y; �.Ex; Er// < tº is Borel measurable for every
t 2 R.

Corollary 121 below follows directly from the definition of a standard set-valued
mapping due to Lemma 120 and the discussion in the paragraph immediately preced-
ing Lemma 119.

Corollary 121. Let .M; dM/ be a Polish metric space satisfying (3.14). Then, for
every k 2 N the set-valued mapping � WMk � .0;1/k ! 2M in (3.13) is standard.





Chapter 4

Upper bounds on random partitions

In this section, we will prove the existence of random partitions with the separation
and padding properties that were stated in the Introduction.

4.1 Proof of Theorem 75 and the upper bound on PADı.X/
in Theorem 69

Theorem 122 below asserts that every normed space X D .Rn; k � kX/ admits a ran-
dom partition that simultaneously has desirable padding and separation properties.
In the literature, such properties are obtained for different random partitions: sepa-
rating partitions of normed spaces use iterative ball partitioning with deterministic
radii, while padded partitions also rely on randomizing the radii. At present, we do
not have in mind an application in which good padding and separation properties are
needed simultaneously for the same random partition, so it is worthwhile to note this
feature for potential future use but in what follows we will use Theorem 122 to obtain
two standalone conclusions that yield upper bounds on the moduli of padded and
separated decomposability (in fact, the separation profile of Theorem 75).

Theorem 122. Fix n2N and a normed space XD .Rn;k � kX/. For every�2 .0;1/
there exists a�-bounded random partition P� of X such that for every x;y 2Rn and
every ı 2 .0; 1/ we have

Prob
�
P�.x/ ¤ P�.y/

�
� min

²
1;

voln�1
�
Proj.x�y/?.BX/

�
� voln.BX/

kx � yk`n
2

³
(4.1)

and

Prob
�
P�.x/ �

1 �
n
p
ı

1C
n
p
ı
�
�

2
BX

�
D ı:

By the conventions of Remark 62, the �-boundedness of Theorem 122 is with
respect to the norm k � kX, i.e., the clusters of the random partition P� have X-diameter
at most �. By the definitions in Section 1.7.1, the notion of random partition implies
that each of the clusters of P� is strongly measurable, but we will see that they are
also standard (recall Definition 113).

Remark 123. For every M > 0, consider the metric space L6M
1 D .L1; dM / that is

given by
8f;2 L1; dM .f; g/

def
D min

®
M; kf � gkL1

¯
:
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A useful property [211, Lemma 5.4] of this truncated L1 metric is cL1.L
6M
1 / . 1,

i.e.,L6M
1 embeds back intoL1 with bi-Lipschitz distortionO.1/. Theorem 122 gives

a different proof of this since if XD `n1, then by (1.38) the right-hand side of (4.1) is
equal to min¹2�; kx � yk1º=.2�/. At the same time, if P!� D ¹�

k
�.!/º

1
kD1

, then the
left-hand side of (4.1) embeds isometrically into an L1.�/ space via the embedding

.f 2 L1/ 7!
�
! 7!

�
1�k.!/.f /

�1
kD1

�
2 L1.ProbI `1/:

By (1.30), the right-hand side of (4.1) equals min¹�; kx � yk…*Xº=�. But, by [41]
the class of finite dimensional normed spaces whose unit ball is a polar projection
body coincides with those finite dimensional normed spaces that embed isometrically
into L1, so this does not give a new embedding result.

We will first describe the construction that leads to the random partition whose
existence is asserted in Theorem 122. This construction is a generalization of the
construction that appears in the proof of [173, Lemma 3.16], which itself combines
a coloring argument with a generalization of the iterated ball partitioning technique
that was used in the Euclidean setting in [76, 152].

In the rest of this section we will work under the assumptions and notation of
Theorem 122. Let ƒ � Rn be a lattice such that ¹z C BXºz2ƒ have pairwise disjoint
interiors (equivalently, kz � z0kX > 2 for distinct z; z0 2 ƒ) and

S
z2ƒ.z C 3BX/ D

Rn (i.e., for every x 2 Rn there is z 2 ƒ such that kx � zkX 6 3). The existence
of such a lattice follows from the work of Rogers [273] (see [315, Remark 6]). The
constant 3 here is not the best-known (see [70, 315]); we prefer to work with an
explicit constant only for notational convenience despite the fact that its value is not
important in the present context.

Denote the X-Voronoi cell of ƒ, i.e., the set of points in Rn whose closest lattice
point is the origin, by

V
def
D
®
x 2 Rn W kxkX D min

z2ƒ
kx � zkX

¯
:

Then V � 3BX and the translates ¹z C Vºz2ƒ cover Rn and have pairwise disjoint
interiors.

Remark 124. Our choice of the above lattice is natural since it is adapted to the
intrinsic geometry of X D .Rn; k � kX/ and it leads to a simpler probability space
in the construction below. Nevertheless, for the present purposes this choice is not
crucial, and one could also work with any other lattice, including Zn. In that case, one
could carry out the ensuing reasoning while adapting it to geometric characteristics
of the lattice in question (its packing radius, covering radius and the diameter of
its Voronoi cell, all of which are measured with respect to the metric induced by
k � kX). This requires several changes in the ensuing discussion, resulting in slightly
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more cumbersome computations that incorporate these geometric characteristics of
the lattice. All of these quantities are universal constants for our choice of ƒ.

Define graph G D .ƒ; EG/ whose vertex set is the lattice ƒ and whose edge set
EG is given by

8w; z 2 ƒ; ¹w; zº 2 EG ” w ¤ z ^ inf
a2wCV
b2zCV

ka � bkX 6 10:

So, if ¹w; zº 2 EG and x 2 BX then there are u; v 2 V such that

k.w C u/ � .z C v/kX 6 10

and therefore, since V � 3BX, we have

kw � .z C x/kX 6 k.w C u/ � .z C v/kX C kukX C kvkX C kxkX 6 17:

Hence z C BX � w C 17BX. It follows that if w 2 ƒ and z1; : : : ; zm 2 ƒ are the
distinct neighbors of w in the graph G then the balls ¹zi C BXº

m
iD1 have disjoint

interiors (since distinct elements of the lattice ƒ are at X-distance at least 2), yet
they are all contained in the ball wC 17BX. By comparing volumes, this implies that
m 6 17n. In other words, the degree of the graph G is at most 17n, and therefore
(by applying the greedy algorithm, see, e.g., [59]) its chromatic number is at most
17n C 1 6 52n, i.e., there is � W ƒ! ¹1; : : : ; 52nº such that

8w; z 2 ƒ; w ¤ z ^ inf
a2wCV
b2zCV

ka � bkX 6 10 H) �.w/ ¤ �.z/: (4.2)

Consider the Polish space Z
def
D VN � ¹1; : : : ; 52nºN . In what follows, every ! 2Z

will be written as ! D .Ex; E
/, where Ex D .x1; x2; : : :/ 2 VN and E
 D .
1; 
2; : : :/ 2
¹1; : : : ; 52nºN . Denote by � the normalized Lebesgue measure on V and by � the
normalized counting measure on ¹1; : : : ; 52nº, i.e., for every Lebesgue measurable
A � Rn and every F � ¹1; : : : ; 52nºN we have

�.A/
def
D

voln.A \ V/

voln.V/
and �.F /

def
D
jF j

52n
:

Henceforth, the product probability measure �N � �N on Z will be denoted by Prob.
For every k 2 N, z 2 ƒ and .Ex; E
/ 2 Z define a subset �k;z.Ex; E
/ � Rn by

�.z/ D 
k H) �k;z
�
Ex; E


� def
D .z C xk C BX/ X

k�1[
jD1

[
w2ƒ

�.w/D
j

.w C xj C BX/;

�.z/ ¤ 
k H) �k;z
�
Ex; E


� def
D ¿: (4.3)
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Lemma 125. For every k 2N and z 2 ƒ the set-valued mapping �k;z WZ! 2Rn is
both strongly measurable and standard (where the underlying � -algebra on Z is the
Prob-measurable sets).

Proof. For every �1; : : : ; �k 2 ¹1; : : : ; 52nº consider the cylinder set

C.�1; : : : ; �k/
def
D
®�
Ex; E


�
2 Z W .
1; : : : ; 
k/ D .�1; : : : ; �k/

¯
:

As ¹C.�1; : : : ;�k/ W .�1; : : : ;�k/2 ¹1; : : : ;52nºkº is a partition of Z into finitely many
measurable sets, it suffices to fix from now on a k-tuple of colors E�D .�1; : : : ; �k/ 2
¹1; : : : ; 52nºk and to show that the restriction of �k;z to C.�1; : : : ;�k/ is both strongly
measurable and standard.

Observe that for each fixed z 2 ƒ and 
 2 ¹1; : : : ; 52nº there is at most one
w 2 ƒ that satisfies �.w/ D 
 and .z C V C BX/ \ .w C V C BX/ ¤ ¿. Indeed,
if both w 2 ƒ and w0 2 ƒ satisfied these two requirements then we would have
�.w/ D 
 D �.w0/ and there would exist a; a0; b; b0 2 V and u; u0; v; v0 2 BX such
that w C aC u D z C b C v and w0 C a0 C u0 D z C b0 C v0. Hence,

inf
˛2wCV
ˇ2w0CV

k˛ � ˇkX 6 k.w C a/ � .w0 C a0/kX

D k.z C b C v � u/ � .z C b0 C v0 � u0/kX

6 kbkX C kb
0
kX C kvkX C kv

0
kX C kukX C ku

0
kX

6 3C 3C 1C 1C 1C 1 D 10;

where we used the fact that b; b0 2 V � 3BX. By (4.2) this contradicts the fact that
�.w/ D �.w0/.

Having checked that the above w is unique, denote it by w.
; z/ 2 ƒ. If there
is no w 2 ƒ that satisfies �.w/ D 
 and .z C VC BX/ \ .w C VC BX/ ¤ ¿ then
let w.
; z/ 2 ƒ be an arbitrary (but fixed) lattice point such that .z C V C BX/ \

.w.
; z/ C V C BX/ D ¿. Observe that w.�.z/; z/ D z. Under this notation, for
every x1; : : : ; xk 2 V and 
1; : : : ; 
k�1 2 ¹1; : : : ; 52nº we have

.z C xk C BX/ X

k�1[
jD1

[
w2ƒ

�.w/D
j

.w C xj C BX/

D .w.�.z/; z/C xk C BX/ X

k�1[
jD1

.w.
j ; z/C xj C BX/:

Equivalently, if we denote for every Ey D .y1; : : : ; yk/ 2 .Rn/k ,

‚k
�
Ey
� def
D .yk C BX/ X

k�1[
jD1

.yj C BX/;
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then the definition (4.3) can be rewritten as the assertion that the restriction of �k;z

to C. E�/ is the constant function ¿ if �.z/ ¤ �k , whereas if �.z/ D �k , then we
define �k;z.Ex; E
/ D ‚k.w. E�; z/ C Ex/ for every .Ex; E
/ 2 C. E�/, where we use the
notation w. E�; z/ D .w.�1; z/; : : : ; w.�k; z// 2 .Rn/k . The desired measurability of
the restriction of �k;z to C. E�/ now follows from Lemma 119 and Corollary 121.

Since the sets ¹z C Vºz2ƒ cover Rn, for every rational point q 2 Qn we can fix
from now on a lattice point zq 2 ƒ such that q 2 zq C V. Define a subset � � Z D

VN � ¹1; : : : ; 52nºN by

�
def
D

1\
mD1

\
q2Qn

1[
kD1

²�
Ex; E


�
2 Z W �.zq/ D 
k ^ k.zq C xk/ � qkX 6

1

m

³
: (4.4)

We record for ease of later use the following simple properties of �.

Lemma 126. � is a Borel subset of Z that satisfies ProbŒ�� D 1. Furthermore, for
every .Ex; E
/ 2 � the set ¹z C xk W .k; z/ 2 N �ƒ ^ �.z/ D 
kº is dense in Rn.

Proof. The fact that � is Borel is evident from its definition (4.4). Also, if .Ex; E
/ 2
�, u 2 Rn and " 2 .0; 1/, then choose q 2 Qn such that ku � qkX < "=2. Setting
m D d2="e 2 N, it follows from (4.4) that there exists k 2 N satisfying �.zq/ D 
k
and k.zq C xk/ � qkX 6 1=m 6 "=2. By our choice of q, it follows that

.zq C xk/ � u

X < ":

Since this holds for every " 2 .0; 1/, the set ¹z C xk W .k; z/ 2 N �ƒ ^ �.z/ D 
kº
is dense in Rn. It remains to show that ProbŒ�� D 1. Indeed,

ProbŒZ X��

(4.4)
6

1X
mD1

X
q2Qn

Prob

"
1\
kD1

Z X

²�
Ex; E


�
2Z W �.zq/D
k ^ k.zqCxk/�qkX6

1

m

³#

D

1X
mD1

X
q2Qn

lim
`!1

�
1 �

voln
��
q � zq C

1
m
BX
�
\ V

�
52n voln.V/

�`
D 0; (4.5)

where for the penultimate step of (4.5) recall that ProbD �N � �N . For the final step
of (4.5) note that voln..q � zq C rBX/ \ V/ D voln..q C rBX/ \ .zq C V// > 0 for
every fixed q 2 Qn and r 2 .0;1/, because zq 2 ƒ was chosen so that q 2 zq C V

(and V is a convex body).

The following lemma introduces the random partition that will be used to prove
Theorem 122.
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Lemma 127. P
def
D ¹�k;zj� W�! 2Rnº.k;z/2N�ƒ is a 2-bounded random partition of

X D .Rn; k � kX/, each of whose clusters are both strongly measurable and standard
set-valued mappings.

Proof. Since � is a Borel subset of Z, for each .k; z/ 2 N � ƒ the measurability
requirements for the restriction of �k;z to� follow from Lemma 125. Fix .Ex; E
/ 2Z.
Recalling (4.3), if �k;z.Ex; E
/¤¿, then diamX.�

k;z.Ex; E
//6 diamX.zC xk CBX/6
2. Note also that by (4.3) if �k;z.Ex; E
/ ¤ ¿, then

�k;z
�
Ex; E


�
D .z C xk C BX/ X

k�1[
jD1

[
w2ƒ

�j;w
�
Ex; E


�
:

Hence �k;z.Ex; E
/\�j;w.Ex; E
/D¿ for every distinct j;k 2N and for everyw;z 2ƒ.
We claim that also

�k;z.Ex; E
/ \ �k;w.Ex; E
/ D ¿

for every k 2N and every distinctw;z 2ƒ. Indeed, it suffices to check this under the
assumption that �.w/ D �.z/ D 
k , since otherwise ¿ 2 ¹�k;z.Ex; E
/; �k;w.Ex; E
/º.
So, suppose that

�.w/ D �.z/ D 
k yet �k;z.Ex; E
/ \ �k;w.Ex; E
/ ¤ ¿:

By (4.3), this implies that there are u; v 2 BX such that w C xk C u D z C xk C v.
Hence, for every ˛; ˇ 2 V,

k.w C ˛/ � .z C ˇ/kX D k˛ � ˇ C v � ukX

6 k˛kX C kˇkX C kukX C kvkX

6 3C 3C 1C 1 < 10;

where we used the fact that V� 3BX. Sincew and z are distinct and �.w/D�.z/, this
is in contradiction to (4.2). We have thus shown that the sets ¹�k;z.Ex; E
/º.k;z/2N�ƒ

are pairwise disjoint.
Note that by the definition (4.3), for every .Ex; E
/ 2 Z we have

1[
kD1

[
z2ƒ

�k;z
�
Ex; E


�
D

[
.k;z/2N�ƒ
�.z/D
k

.z C xk C BX/: (4.6)

Indeed, it is immediate from (4.3) that the left-hand side of (4.6) is contained in the
right-hand side of (4.6). If u belongs to the right-hand side of (4.6), then let k be
the minimum natural number for which there is z 2 ƒ with u 2 z C xk C BX and
�.z/ D 
k . Consequently, for all j 2 ¹1; : : : ; k � 1º and w 2 ƒ with �.w/ D 
j we
have u … w C xj C BX, and hence by (4.3) we have v 2 �k;z.Ex; E
/, as required. By
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Lemma 126, if .Ex; E
/ 2 �, then ¹z C xk W .k; z/ 2 N �ƒ ^ �.z/ D 
kº is dense in
Rn, and therefore the right-hand side of (4.6) is equal to Rn. Thus P takes values in
partitions of Rn.

Definition 128 introduces convenient notation that will be used several times in
what follows.

Definition 128. If M � Rn is Lebesgue measurable and .k; z/ 2 N �ƒ, then define
Hk;zM � � by

Hk;zM

def
D
®�
Ex; E


�
2 � W �.z/ D 
k ^ z C xk 2M

¯
: (4.7)

If S;T � Rn are Lebesgue measurable and .k; z/ 2 N �ƒ, then define Kk;zS;T � � by

Kk;zS;T

def
D Hk;zS X

k�1[
jD1

[
w2ƒ

Hj;wT : (4.8)

The meaning of the set in (4.8) is that it consists of all of those .Ex; E
/ 2 � such
that the kth coordinate of E
 2 ¹1; : : : ; 52nºN is the color of the lattice point z 2 ƒ,
the kth coordinate of Ex 2 VN satisfies xk 2 S� z, and for no j 2 ¹1; : : : ; k � 1º and
no lattice point w 2 ƒ do the same assertions hold with S replaced by T.

Lemma 129. Suppose that S;T � Rn are Lebesgue measurable sets of positive vol-
ume such that S � T. Suppose also that diamX.T/ 6 4. Then the sets®

Kk;zS;T

¯
.k;z/2N�ƒ

are pairwise disjoint and

Prob

"
1[
kD1

[
z2ƒ

Kk;zS;T

#
D

voln.S/
voln.T/

: (4.9)

Proof. The definition of the product measure Prob implies that for any Lebesgue
measurable M � Rn and every .j; w/ 2 N �ƒ we have

Prob
�
Hj;wM

�
D �

�
M � w

�
�
�
�.w/

�
D

voln
�
V \ .M � w/

�
52n voln.V/

D
voln

�
.VC w/ \M

�
52n voln.V/

: (4.10)

We claim if diamX.M/ 6 4, then ¹Hj;wM ºw2ƒ are pairwise disjoint for every fixed
j 2 N. Indeed, otherwise

9
�
Ex; E


�
2 Hj;wM \ Hj;zM



124 Upper bounds on random partitions

for some distinct lattice points w; z 2 ƒ. Then, w C xj ; z C xj 2 M and �.w/ D

j D �.z/. Hence,

kw � zkX D k.w C xj / � .z C xj /kX 6 diamX.M/ 6 4:

Since V � 3BX, it follows that for every ˛; ˇ 2 V we have

k.w C ˛/ � .z C ˇ/kX 6 kw � zkX C k˛kX C kˇkX 6 4C 3C 3 D 10;

which, by virtue of (4.2), contradicts the fact that w ¤ z and �.w/ D �.z/.
Since ¹Hj;wM ºw2ƒ are pairwise disjoint and ¹w C Vºw2ƒ cover Rn and have pair-

wise disjoint interiors,

Prob
h [
w2ƒ

Hj;wM

i
D

X
w2ƒ

Prob
�
Hj;wM

�
(4.10)
D

1

52n voln.V/

X
w2ƒ

voln
�
.VCw/\M

�
D

voln.M/
52n voln.V/

: (4.11)

As S� T, we have diamX.S/6 diamX.T/6 4. So, ¹Hk;zS ºz2ƒ are pairwise disjoint
for every k 2 N by the case M D S of the above reasoning. Recalling (4.8), this
implies that for every k 2 N and distinct w; z 2 ƒ,

Kk;wS;T \ Kk;zS;T D ¿:

To establish that ¹Kk;zS;Tº.k;z/2N�ƒ are pairwise disjoint it therefore remains to check
that

Kk;zS;T \ Kj;wS;T D ¿
for every j; k 2 N with j < k and any w; z 2 ƒ. This is so because if .Ex; E
/ 2
Kk;zS;T , then .Ex; E
/ … Hj;wT by (4.8). Therefore, either �.w/ ¤ 
j or w C xj … T � S.
Consequently, �

Ex; E

�
… Hj;wS � Kj;wS;T:

This concludes the verification of the disjointness of ¹Kk;zS;Tº.k;z/2N�ƒ.
As for every k 2N and z 2ƒ, the membership of .Ex; E
/ 2 ¹1C; : : : ; 52nºN �VN

in Hk;zS and Hk;zT depends only on the kth coordinates of Ex and E
 , it follows from the
independence of the coordinates that

Prob
�
Kk;zS;T

� (4.8)
D Prob

"
Hk;zS \

 
k�1\
jD1

�
� X

[
w2ƒ

Hj;wT

�!#

D Prob
�
Hk;zS

� k�1Y
jD1

�
1 � Prob

h [
w2ƒ

Hj;wT

i�
(4.10)^(4.11)
D

voln
�
.VC z/ \ S

�
52n voln.V/

�
1 �

voln.T/
52n voln.V/

�k�1
: (4.12)
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Hence, since we already checked that ¹Kk;zS;Tº.k;z/2N�ƒ are pairwise disjoint,

Prob

"
1[
kD1

[
z2ƒ

Kk;zS;T

#

D

1X
kD1

X
z2ƒ

Prob
�
Kk;zS;T

�
(4.12)
D

1

52n voln.V/

�X
z2ƒ

voln
�
.VC z/ \ S

�� 1X
kD1

�
1 �

voln.T/
52n voln.V/

�k�1
D

voln.S/
voln.T/

;

where in the final step we used once more the fact that the sets ¹w C Vºw2ƒ cover
Rn and have pairwise disjoint interiors. This completes the verification of the desired
identity (4.9).

The following lemma is a computation of the probability of the “padding event”
corresponding to the random partition P, as a consequence of Lemma 129. In [208]
a similar argument was carried out for general finite metric spaces, but it relied on a
different random partition in which the radius of the balls is also a random variable
(namely, the partition of [71]). This subtlety is circumvented here by using properties
of normed spaces that are not available in the full generality of [208].

Lemma 130. Let P be the random partition of Lemma 127. For every � 2 .0; 1/ and
u 2 Rn we have

Prob
�
uC �BX � P.u/

�
D

�
1 � �

1C �

�n
: (4.13)

Proof. For every k 2 N, z 2 ƒ and r 2 .0;1/ define E
k;z
u;r ;F

k;z
u;r � � by

Ek;zu;r
def
D Hk;zuCrBX

and Fk;zu;r
def
D Kk;z

uC.1�r/BX;uC.1Cr/BX
; (4.14)

i.e., we are using here the notations of Definition 128 for the following sets:

M D uC rBX; S D uC .1 � r/BX; and T D uC .1C r/BX:

We claim that

8.k; z/ 2 N �ƒ;
®�
Ex; E


�
2 � W �k;z

�
Ex; E


�
� uC �BX

¯
D Fk;zu;�: (4.15)

As uC .1 � �/BX � uC .1C �/BX and

diamX.uC .1C �/BX/ D 2.1C �/ 6 4;
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once (4.15) is proven we could apply Lemma 129 to deduce the desired identity (4.13)
as follows:

Prob
�
uC �BX � P.u/

�
(4.3)
D Prob

�®�
Ex; E


�
2 � W 9.k; z/ 2 N �ƒ; �k;z

�
Ex; E


�
� uC �BX

¯�
(4.15)
D Prob

"
1[
kD1

[
z2ƒ

Fk;zu;�

#
(4.9)^(4.14)
D

voln.uC .1 � �/BX/

voln.uC .1C �/BX/
D

�
1 � �

1C �

�n
:

To establish (4.15), suppose first that .Ex; E
/ 2 F
k;z
u;� . By the definition of Fk;zu;� we

therefore know that

8.j; w/ 2 ¹1; : : : ; k � 1º �ƒ;
�
Ex; E


�
2 E

k;z
u;1�� yet

�
Ex; E


�
… E

j;w
u;1C�:

Hence, by the definition of Ej;wu;1�� we know that

�.z/ D 
k and z C xk 2 uC .1 � �/BX;

which (using the triangle inequality), implies that z C xk C BX � uC �BX. At the
same time, if j 2 ¹1; : : : ; k � 1º and w 2 ƒ, then by the definition of Ej;wu;1C�, the fact

that .Ex; E
/…Ej;wu;1C� means that if �.w/D 
j then necessarily kwC xj �ukX>1C �,
which (using the triangle inequality) implies that .w C xj CBX/\ .uC �BX/ D ¿.
Hence, the ball uC �BX does not intersect the union of the balls®

w C xj C BX W .j; w/ 2 ¹1; : : : ; k � 1º �ƒ ^ �.w/ D 
j
¯
:

Since �.z/ D 
k , due to (4.3), this implies that

�k;z
�
Ex; E


�
\ .uC �BX/ D .z C xk C BX/ \ .uC �BX/ D uC �BX;

i.e., .Ex; E
/ belongs to the left-hand side of (4.15).
To establish the reverse inclusion, suppose that �k;z.Ex; E
/� uC �BX. The defini-

tion (4.3) implies in particular that �k;z.Ex; E
/� zC xk CBX and that for �k;z.Ex; E
/
to be nonempty we must have �.z/D 
k . So, we know that zC xk CBX � uC �BX

and �.z/ D 
k . Assuming first that z C xk ¤ u, consider the vector

v D uC
�

ku � z � xkkX
.u � z � xk/:

Then, v 2 uC �BX and hence also v 2 z C xk C BX, i.e.,

1 > kv � z � xkkX D ku � z � xkkX C �:

This shows that kz C xk � ukX 6 1� �, i.e., z C xk 2 uC .1� �/BX. We obtained
this conclusion under the assumption that z C xk ¤ u, but it of course holds trivially
also when z C xk D u. We have thus shown that .Ex; E
/ 2 E

k;z
u;1��.



Proof of Theorem 75 and the upper bound on PADı.X/in Theorem 69 127

By the definition of Fk;zu;� , it remains to check that

8.j; w/ 2 ¹1; : : : ; k � 1º �ƒ;
�
Ex; E


�
… E

j;w
u;1C�: (4.16)

Assume for the purpose of obtaining a contradiction that (4.16) does not hold. Then,
let jmin be the minimum j 2 ¹1; : : : ; k � 1º for which .Ex; E
/ 2 E

j;w
u;1C� for some

w 2 ƒ. Hence, �.w/ D 
jmin and w C xjmin 2 uC .1C �/BX. If w C xjmin ¤ u, then
the vector

uC
�

kw C xjmin � ukX
.w C xjmin � u/

is at X-distance � from u and also at X-distance j� � kw C xjmin � ukXj 6 1 from
w C xjmin , where we used the fact that kw C xjmin � ukX 6 1 C �. We have thus
shown that .wC xjmin CBX/\ .uC �BX/¤¿ under the assumptionwC xjmin ¤ u,
and this assertion trivially holds also if w C xjmin D u. By the minimality of the
index jmin, for every j 2 ¹1; : : : ; jmin � 1º and everyw0 2ƒwith �.w0/D 
j we have
w0 C xj … u C .1 C �/BX, i.e., kw0 C xj � ukX > 1 C �. Hence, by the triangle
inequality .w0 C xj C BX/ \ .uC �BX/ D ¿. The definition of �jmin;w.Ex; E
/ now
shows that .uC �BX/ \ �

jmin;w.Ex; E
/ ¤ ¿, and since by Lemma 127 we know that
�jmin;w.Ex; E
/ and �k;z.Ex; E
/ are disjoint (as jmin < k), this contradicts the premise
�k;z.Ex; E
/ � uC �BX.

The probability of the “separation event” corresponding to the random partition
P is estimated in the following lemma by using Lemma 129, together with input from
Brunn–Minkowski theory.

Lemma 131. Let P be the random partition of Lemma 127. For every u; v 2 Rn we
have

Prob
�
P.u/ ¤ P.v/

�
� min

²
1;

voln�1
�
Proj.u�v/?.BX/

�
voln.BX/

ku � vk`n
2

³
: (4.17)

More precisely, if we denote  .0/ D 0 and

8w 2 Rn X ¹0º;  .w/
def
D

voln�1
�
Projw?.BX/

�
voln.BX/

kwk`n
2
D
kwk…*X

voln.BX/
; (4.18)

then for every u; v 2 Rn we have

2e .u�v/ � 2

2e .u�v/ � 1
6 Prob

�
P.u/ ¤ P.v/

�
6

2 .u � v/

1C  .u � v/
: (4.19)

In particular, (4.19) implies the following more precise version of (4.17):

2e � 2

2e � 1
min

®
1;  .u � v/

¯
6 Prob

�
P.u/ ¤ P.v/

�
6 2min

®
1;  .u � v/

¯
:

Moreover, (4.19) shows that ProbŒP.u/ ¤ P.v/� D 2 .u � v/C O. .u � v/2/ as
u! v.



128 Upper bounds on random partitions

Proof. If ku� vkX > 2, then ProbŒP.u/¤ P.v/�D 1 because P is 2-bounded. Since
.2e .u�v/ � 2/=.2e .u�v/ � 1/ < 1, the first inequality in (4.19) holds. By (1.50) we
have  .u � v/ > ku � vkX=2 > 1, so 2 .u � v/=. .u � v/ C 1/ > 1 and hence
the second inequality in (4.19) holds. We will therefore assume from now on that
ku � vkX 6 2.

Denote I.u; v/ D .uC BX/ \ .v C BX/ and U.u; v/ D .uC BX/ [ .v C BX/.
We claim that

8.k; z/ 2 N �ƒ;
®
.Ex; E
/ 2 � W ¹u; vº � �k;z.Ex; E
/

¯
D Kk;z

I.u;v/;U.u;v/
; (4.20)

where we recall the notation that was introduced in Definition 128. Assuming (4.20)
for the moment, we will next explain how to conclude the proof of Lemma 131.

Note that I.u; v/� U.u; v/ and diamX.U.u; v//6 ku� vkXC 2diamX.BX/6 4.
Consequently, by Lemma 129,

Prob
�
P.u/ D P.v/

�
(4.3)
D Prob

�®�
Ex; E


�
2 � W 9.k; z/ 2 N �ƒ; ¹u; vº � �k;z

�
Ex; E


�¯�
(4.20)
D Prob

"
1[
kD1

[
z2ƒ

Kk;z
I.u;v/;U.u;v/

#
(4.9)
D

voln
�
I.u; v/

�
voln

�
U.u; v/

�
D

voln
�
.uC BX/ \ .v C BX/

�
2 voln.BX/ � voln

�
.uC BX/ \ .v C BX/

� :
Hence,

Prob
�
P.u/ ¤ P.v/

�
D
2 � 2 voln..uCBX/\.vCBX//

voln.BX/

2 � voln..uCBX/\.vCBX//
voln.BX/

: (4.21)

Now, by the work [280, Corollary 1] of Schmuckenschläger we have the following
general estimates:

1 �  .u � v/ 6
voln

�
.uC BX/ \ .v C BX/

�
voln.BX/

6 e� .u�v/; (4.22)

where  .�/ is defined in (4.18). The mapping t 7! .2 � 2t/=.2 � t / is decreasing
on Œ0; 1�, so (4.19) is consequence of (4.21) and (4.22). The remaining assertions of
Lemma 131 (in particular the asymptotic evaluation (4.17) of the separation prob-
ability) follow from (4.19) by elementary calculus. Observe that for the purpose of
bounding the separation modulus of X from above, we need only the first inequality
in (4.22); since it is stated in [280] but not proved there, for completeness we will
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include its elementary proof in Section 4.1.1 below. The second inequality in (4.22)
is used here only to show that our bounds are sharp; its proof in [280] relies on a more
substantial use of Brunn–Minkowski theory.

It remains to verify (4.20). Fix .k; z/ 2 N � ƒ. Suppose first that .Ex; E
/ is an
element of the right-hand side of (4.20). Recalling the definitions (4.7) and (4.8), this
implies that �.z/ D 
k and z C xk 2 .u C BX/ \ .v C BX/, while for every j 2
¹1; : : : ; k � 1º and w 2 ƒ with �.w/D 
j we have wC xj … .uCBX/[ .vCBX/.
By the triangle inequality these facts imply that z C xk C BX � ¹u; vº and the union
of the balls ®

w C xj C BX W .j; w/ 2 ¹1; : : : ; k � 1º �ƒ ^ �.w/ D 
j
¯

contains neither of the vectors u; v. The definition (4.3) of �k;z.Ex; E
/ now shows that
¹u; vº � �k;z.Ex; E
/.

For the reverse inclusion, assume that ¹u; vº � �k;z.Ex; E
/. Then �.z/ D 
k and
¹u; vº � z C xk C BX by (4.3), which implies that

z C xk 2 .uC BX/ \ .v C BX/ D I.u; v/:

If there were j 2 ¹1; : : : ;k � 1º andw 2ƒ such that .wC xj CBX/\ ¹u;vº¤¿ and
�.w/ D 
j , then when one subtracts w C xj C BX from z C xk C BX one removes
at least one of the vectors u; v, which by (4.3) would mean that one of these two
vectors is not an element of �k;z.Ex; E
/, in contradiction to our assumption. Hence
for all j 2 ¹1; : : : ; k � 1º and w 2 ƒ with �.w/ D 
j we have u … w C xj C BX

and v … w C xj C BX, i.e., w C xj … .uC BX/ [ .v C BX/ D U.u; v/. This shows
that .Ex; E
/ belongs to the right-hand side of (4.20), thus completing the proof of
Lemma 131.

Proof of Theorem 122. By rescaling, namely considering the norm .2=�/k � kX, it
suffices to treat the case�D 2. The desired random partition will then be the partition
P of Lemma 127 and the conclusions of Theorem 122 follow from Lemma 130 and
Lemma 131.

4.1.1 Proof of the first inequality in (4.22)

The proof of the first inequality in (4.22) is a simple and elementary application of
standard reasoning using Fubini’s theorem. Denote

t
def
D kv � uk`n

2
and x

def
D
1

t
.v � u/ 2 Sn�1:

Then,
voln

�
.uC BX/ \ .v C BX/

�
D voln

�
BX \ .tx C BX/

�
;
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W BX

uC ˛ux

uC.˛uCt /x

u

w

V

U

x

uC ˇux

uC .ˇu C t /x

tx C BX

w C ˇwx

w C ˛wx

Figure 4.1. A schematic depiction of the partition of BX into the sets U , V , W (with the sets
U , W shaded), as well as the line segments parallel to x that are used in the justification of the
estimate (4.23).

The desired estimate is therefore equivalent to the following assertion:

voln.BX/ 6 voln
�
BX \ .tx C BX/

�
C t � voln�1

�
Projx?.BX/

�
: (4.23)

To prove (4.23), partition BX into the following three sets:

U
def
D BX \ .tx C BX/; (4.24)

V
def
D
®
y 2 BX X .tx C BX/ W Projx?.y/ 2 Projx?.U /

¯
; (4.25)

W
def
D BX X .U [ V / D

®
y 2 BX W Projx?.y/ … Projx?.U /

¯
: (4.26)

A schematic depiction of this partition, as well as the notation of ensuing discussion,
appears in Figure 4.1. We recommend examining Figure 4.1 while reading the follow-
ing reasoning because it consists of a formal justification of a situation that is clear
when one keeps the geometric picture in mind.

For z 2 Projx?.BX/ let ˛z 2 R be the smallest real number such that z C ˛zx 2
BX and let ˇz 2 R be the largest real number such that z C ˇzx 2 BX. Thus the
intersection of the line z C Rx with BX is the segment w C Œ˛z; ˇz�x � Rn. Since
kxk`n

2
D 1, by Fubini’s theorem we have

voln.BX/ D

�
Proj

x?
.BX/

.ˇz � ˛z/ dz

D

�
Proj

x?
.U /

.ˇu � ˛u/ duC
�

Proj
x?
.W /

.ˇw � ˛w/ dw: (4.27)
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To see why the final step of (4.27) holds, simply observe that by (4.26) we have
Projx?.BX/D Projx?.U /[Projx?.W /, and the sets Projx?.U /;Projx?.W / have dis-
joint interiors (in the subspace x?).

Since U D BX \ .tx C BX/ is convex, for every u in the interior of Projx?.U /
the line uCRx intersects U in an interval, say .uCRx/\ U D uC Œ
u; ıu�x with

u; ıu 2R satisfying 
u < ıu such that uC 
ux;uC ıux 2 @U and uC sx 2 int.U /
for every s 2 .
u; ıu/. Also,

.uCRx/ \ BX D uC Œ˛u; ˇu�x

with u C ˛ux; u C ˇux 2 @BX. Thus Œ
u; ıu� � Œ˛u; ˇu�. Since u C 
ux 2 U �
tx C BX, it follows that 
w � t 2 Œ˛w ; ˇw �. But 
u 2 Œ˛u; ˇu�, so ˇu � ˛u > t and
therefore ˛u C t; ˇu � t 2 Œ˛u; ˇu�, or equivalently uC .˛u C t /x; uC .ˇu � t /x 2
BX. As uC ˛ux;uC ˇux 2 @BX, we have uC .˛uC t /x 2 BX \ .txC @BX/� @U

and uC ˇux 2 .@BX/ \ .tx C BX/ � @U . Hence 
u D ˛u C t and ıu D ˇu, from
which we conclude that

u 2 Projx?.U / H) .uCRx/ \ U D uC Œ˛u C t; ˇu�x; (4.28)

and therefore also

u 2 Projx?.U / H) .uCRx/ \ V
(4.25)
D BX X

�
.uCRx/ \ U

�
(4.28)
D uC Œ˛u; ˛u C t �x: (4.29)

Another application of Fubini’s theorem now implies that
�

Proj
x?
.U /

.ˇu � ˛u/ du

D

�
Proj

x?
.U /

vol1
�
.uCRx/ \ U

�
duC

�
Proj

x?
.U /

t du

D voln.U /C t voln�1
�
Projx?.U /

�
D voln.U /C t

�
voln�1

�
Projx?.BX/

�
� voln�1

�
Projx?.W /

��
; (4.30)

where the first step of (4.30) uses (4.28) and (4.29) and for the last step of (4.30)
recall the definition (4.26).

Observe next that

w 2 Projx?.W / H) ˇw � ˛w 6 t: (4.31)

Indeed, ifw 2Projx?.W / yet ˇw �˛w > t thenwC .ˇw � t /x belongs to the interval
joining w C ˛wx and w C ˇwx. We therefore have w C .ˇw � t /x 2 BX by the
convexity ofBX, or equivalentlywC ˇwx 2 txCBX. Recalling thatwC ˇwx 2BX,
this means that wC ˇwx 2 BX \ .txCBX/. By the definition (4.24) of U , it follows
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that w 2 Projx?.U /. By the definition (4.26) of W , this means that w … Projx?.W /,
a contradiction.

Having established (4.31) we see that
�

Proj
x?
.W /

.ˇw � ˛w/ dw
(4.31)
6 t voln�1

�
Projx?.W /

�
: (4.32)

The estimate (4.23) now follows from a substitution of (4.30) and (4.32) into
(4.27).

4.2 Proof of Theorem 81

For any m 2 N, because evr.`m1 / �
p
m, by the second part (2.55) of Theorem 107

there exists C � Rm with jCj 6 eˇm for some universal constant ˇ > 0 such that
SEP.C`m

1
/ & m (as we are considering here `m1 rather than more general normed

spaces, this statement is due [76]). Fix an integer n > 2 and 1 6 p 6 2. Let m be the
largest integer such that eˇm 6 n. Thus m � logn and

SEPn. p̀/ > SEP
�
C`mp

�
>

SEP
�
C`m
1

�
dBM

�
`m1 ; `

m
p

� & m

dBM
�
`m1 ; `

m
p

� D m 1
p � .logn/

1
p :

This proves the lower bound on SEPn. p̀/ in Theorem 81.
It remains to prove the upper bound on SEPn. p̀/ in Theorem 81, i.e., that for all

x1; : : : ; xn 2 p̀ ,

SEP
�
¹x1; : : : ; xnº; k � k`p

�
.
.logn/

1
p

p � 1
: (4.33)

The proof of (4.33) will refer to the following technical probabilistic lemma.

Lemma 132. Suppose that p 2 .1;1/ and let X be a nonnegative random variable,
defined on some probability space .�; Prob/, that satisfies the following Laplace
transform identity:

8u 2 Œ0;1/; E
�
e�uX2

�
D e�u

p
2
: (4.34)

Then

EŒX� D
�
�
1 � 1

p

�
p
�

�
p

p � 1
: (4.35)

Moreover, we have

8t 2 .0;1/; Prob
�
X 6 t

�
6 exp

 
�

�
p
2

� p
2�p

�
1 � p

2

�
t
2p
2�p

!
: (4.36)
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Proof. Suppose that ˛ 2 .0; 1/. Then every x 2 .0;1/ satisfies� 1
0

1 � e�ux

u1C˛
dx D x˛

� 1
0

1 � e�v

v1C˛
dx D

�.1 � ˛/

˛
x˛; (4.37)

where the first step of (4.37) is a straightforward change of variable and the last step
of (4.37) follows by integration by parts. The case ˛ D 1=2 of (4.37) implies (4.35)
as follows:

EŒX� D E

�
1

2
p
�

� 1
0

1 � e�uX2

u
3
2

du
�
D

1

2
p
�

� 1
0

1 � E
�
e�uX2

�
u
3
2

du

(4.34)
D

1

2
p
�

� 1
0

1 � e�u
p
2

u
3
2

du D
1

p
p
�

� 1
0

1 � e�v

v1C
1
p

dv
(4.37)
D

�
�
1 � 1

p

�
p
�

:

The small ball probability estimate (4.36) is a consequence of the following stan-
dard use of Markov’s inequality. For every u; t 2 .0;1/ we have

Prob
�
X 6 t

�
D Prob

�
e�uX2 > e�ut2

�
6 eut2E

�
e�uX2

�
D eut

2�u
p
2
: (4.38)

The value of u 2 .0;1/ that minimizes the right-hand side of (4.38) is

u D u.p; t/
def
D

� p
2t2

� 2
2�p

:

A substitution of this value of u into (4.38) simplifies to give the estimate (4.36).

Proof of (4.33). Fix distinct x1; : : : ; xn 2 p̀ . It suffices to prove (4.33) when p 2
.1; 2/, since the quantity that appears in the right-hand side of (4.33) remains bounded
as p ! 2�, and every finite subset of `2 embeds isometrically into p̀ for every p 2
Œ1; 2� (see, e.g., [314, Chapter III.A]). We will therefore assume in the remainder of
the proof of (4.33) that p 2 .1; 2/.

Marcus and Pisier proved [197, Section 2] the following statement, relying on a
structural result for p-stable processes; its deduction from the formulation in [197]
appears in [169, Lemma 2.1]. There exists a probability space .�; Prob/ for which
there is a Prob-to-Borel measurable mapping .! 2�/ 7! T! 2 L. p̀; `2/ (we denote
by L. p̀; `2/ the space of bounded operators from p̀ to `2, equipped with the strong
operator topology) such that for every ! 2 � and x 2 p̀ X ¹0º the random variable

.! 2 �/ 7!
kT!.x/k`2
kxk`p

has the same distribution as the random variable X of Lemma 132 (in particular, its
distribution is independent of the choice of x 2 p̀ X ¹0º). Consequently, for every
i; j 2 ¹1; : : : ; nº we have�

�



T!.xi / � T!.xj /k`2 dProb.!/ D kxi � xj k`pEŒX�
(4.35)
�
kxi � xj k`p

p � 1
: (4.39)
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It also follows from the above discussion and Lemma 132 that for every t 2 .0;1/
we have

Prob
h [
i;j2¹1;:::;nº

®
! 2 � W kT!.xi / � T!.xj /k`2 > tkxi � xj k`p

¯i
6

X
i;j2¹1;:::;nº

i¤j

Prob
�²
! 2 � W

kT!.xi / � T!.xj /k`2
kxi � xj k`p

< t

³�

(4.36)
6

�
n

2

�
exp

 
�

�
p
2

� p
2�p

�
1 � p

2

�
t
2p
2�p

!
: (4.40)

If we choose

t D t .n; p/
def
D

r
p

2

�
2 � p

4 logn

� 1
p�

1
2

;

then the right-hand side of (4.40) becomes less than 1=2. In other words, this shows
that there exists a measurable subset A � � with ProbŒA� > 1=2 such that for every
! 2 A and i; j 2 ¹1; : : : ; nº,

kxi � xj k`p 6

s
2

p

�
4 logn
2 � p

� 1
p�

1
2

kT!.xi / � T!.xj /k`2

6 4.logn/
1
p�

1
2 kT!.xi / � T!.xj /k`2 : (4.41)

The last step of (4.41) uses the elementary inequality�
2

2 � p

� 2�p
2p

s
2

p
6 4;

which holds (with room to spare) for every p 2 Œ1; 2/.
¹T!.x1/; : : : ; T!.xn/º � `2 is a subset of Hilbert space of size at most n, so by

the Johnson–Lindenstrauss dimension reduction lemma [138] there is k 2 N with
k . log n such that for every ! 2 � there is a linear operator Q! W `2 ! Rk such
that for all i; j 2 ¹1; : : : ; nº,

kT!.xi / � T!.xj /k`2 6 kQ!T!.xi / �Q!T!.xj /k`k
2

6 2kT!.xi / � T!.xj /k`2 : (4.42)

An examination of the proof in [138] reveals that the mapping

! 7! Q!

can be taken to be Prob-to-Borel measurable, but actually Q! can be chosen from a
finite set of operators (see, e.g., [2]).
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Fix� 2 .0;1/. Since by [76] we have SEP.`k2/ .
p
k, there exists a probability

space .‚;�/ and a mapping � 7! R� that is a random partition of Rk for which

8.!; �; i/ 2 � �‚ � ¹1; : : : ; nº; diam`k
2

�
R�
�
Q!T!.xi /

��
6

�

4.logn/
1
p�

1
2

;

(4.43)
and also every ! 2 � and i; j 2 ¹1; : : : ; nº satisfy

�
�®
� 2 ‚ W R�

�
Q!T!.xi /

�
¤ R�

�
Q!T!.xj /

�¯�
.

p
k

�=
�
4.logn/

1
p�

1
2
�

Q!T!.xi / �Q!T!.xi /

`k

2

.
.logn/

1
p

�



T!.xi / � T!.xi /

`2 ; (4.44)

where the last step of (4.44) uses the right-hand inequality in (4.42) and the fact that
k . logn.

Recalling the set A � � on which (4.41) holds for every i; j 2 ¹1; : : : ; nº, let �
be the probability measure on A defined by

�ŒE� D
ProbŒE�
ProbŒA�

for every Prob-measurable E � A (recall that ProbŒA� > 1=2). For every .!; �/ 2
A �‚ define a partition P.!;�/ of ¹x1; : : : ; xnº by setting for every i 2 ¹1; : : : ; nº,

P.!;�/.xi /
def
D

°
x 2 ¹x1; : : : ; xnº W Q!T!.x/ 2 R�

�
Q!T!.xi /

�±
: (4.45)

Then, for every .!; �/ 2 A �‚ and every i 2 ¹1; : : : ; nº we have

diam`p

�
P.!;�/.xi /

�
D max

u;v2¹1;:::;nº

Q!T!.xu/;Q!T!.xv/2R
� .Q!T!.xi //

kxu � xvk`p

6 4.logn/
1
p�

1
2 max

u;v2¹1;:::;nº

Q!T!.xu/;Q!T!.xv/2R
� .Q!T!.xi //

kT!.xu/ � T!.xv/k`2

6 4.logn/
1
p�

1
2 max

u;v2¹1;:::;nº

Q!T!.xu/;Q!T!.xv/2R
� .Q!T!.xi //

kQ!T!.xu/ �Q!T!.xv/k`k
2

6 4.logn/
1
p�

1
2 diam`k

2

�
R�
�
Q!T!.xi /

��
6 �; (4.46)

where the first step of (4.46) uses (4.45), the second step of (4.46) uses (4.41), the
third step of (4.46) uses (4.42), and the final step of (4.46) uses (4.43). Also, every
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distinct i; j 2 ¹1; : : : ; nº satisfy

� � �
�®
.!; �/ 2 A �‚ W P.!;�/.xi / ¤ P.!;�/.xj /

¯�
D

�
A

�
�®
� 2 ‚ W R�

�
Q!T!.xi /

�
¤ R�

�
Q!T!.xj /

�¯�
d�.!/

.
1

ProbŒA�

�
A

.logn/
1
p

�



T!.xi / � T!.xi /

`2dProb.!/

6
2.logn/

1
p

�

�
�



T!.xi / � T!.xi /

`2 dProb.!/

.
.logn/

1
p

p � 1
�
kxi � xj k`p

�
; (4.47)

where the first step of (4.47) uses (4.45), the second step of (4.47) uses (4.44), the
third step of (4.47) uses ProbŒA�> 1

2
, and the last step of (4.47) uses (4.39). By (4.46)

and (4.47), the proof of (4.33) is complete.



Chapter 5

Barycentric-valued Lipschitz extension

In this section, we will explain how separation profiles relate to Lipschitz extension.
We cannot invoke [173] as a “black box” because we need a more general result and
our definition of random partitions differs from that of [173]. But, the modifications
that are required in order to apply the ideas of [173] in the present setting are of a sec-
ondary nature, and the main geometric content of the phenomenon that is explained
below is the same as in [173].

In addition to making the present article self-contained, there are more advan-
tages to including here complete proofs of Theorem 66 and Theorem 114. Firstly,
the reasoning of [173] was designed to deal with a more general setting (treating
multiple notions of random partitions at once), and it is illuminating to present a
proof for separating decompositions in isolation, which leads to simplifications. Sec-
ondly, since [173] appeared, alternative viewpoints have been developed that relate
it to optimal transport, as carried out by Kozdoba [158], Brudnyi and Brudnyi [62],
Ohta [243], and culminating more recently with a comprehensive treatment by
Ambrosio and Puglisi [11]. Here we will frame the construction using the optimal
transport methodology, which has conceptual advantages that go beyond yielding a
clearer restructuring of the argument. The optimal transport viewpoint had an impor-
tant role in quantitative improvements that were obtained in [231, 233], as well as
results that will appear in forthcoming works. As a byproduct, we will use this view-
point to easily derive a stability statement for convex hull-valued Lipschitz extension
under metric transforms.

5.1 Notational preliminaries

We will start by quickly setting notation and terminology for basic concepts in mea-
sure theory and optimal transport. Everything that we describe in this subsection is
standard and is included here only in order to avoid any ambiguities in the subsequent
discussions.

Given a signed measure� on a measurable space .�;F/, its Hahn–Jordan decom-
position is denoted � D �C � ��, i.e., �C; �� are disjointly supported nonnegative
measures. The total variation measure of � is j�j D �CC��. For A 2 F, the restric-
tion of � to A is denoted �bA, i.e., �bA.E/ D �.A \ E/ for E 2 F. If .�0;F0/ is
another measurable space and f W �! �0 is a measurable mapping, then the push-
forward of � under f is denoted f#�. Thus f#�.E/ D �.f

�1.E// for E 2 F0, or
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equivalently

8h 2 L1.f#�/;

�
�0
h
�
!0
�

df#�
�
!0
�
D

�
�

h.f .!// d�.!/:

Suppose from now on that .M; dM/ is a Polish metric space. A signed Borel
measure � on M has finite first moment if

�
M dM.x; y/dj�j.y/ <1 for all x 2M.

Note that this implies in particular that j�j.M/ <1, because if x;x0 2M are distinct
points, then the mapping .y 2M/ 7! ŒdM.x; y/C dM.x

0; y/�=dM.x; x
0/ belongs to

L1.j�j/ and takes values in Œ1;1/ by the triangle inequality.
The set of all of the signed Borel measures on M of finite first moment is denoted

M1.M; dM/ or simply M1.M/ if the metric is clear from the context. The set of all
nonnegative measures in M1.M/ is denoted MC1 .M/, the set of all � 2 M1.M/ with
total mass 0, i.e., �C.M/D ��.M/, is denoted M01.M/, and the set of all probability
measures in M1.M/ is denoted P1.M/.

Given �; � 2 MC1 .M/ with �.M/ D �.M/, a Borel measure � on M �M is a
coupling of � and � if

�.E �M/ D �.A/ and �.M �E/ D �.A/

for every Borel subsetE �M. The set of couplings of � and � is denoted….�;�/�
MC1 .M �M/. Note that .� � �/=�.M/ D .� � �/=�.M/ 2….�; �/, so….�; �/ ¤
¿. The Wasserstein-1 distance between � and � that is induced by the metric dM,
denoted WdM

1 .�; �/ or simply W1.�; �/ if the metric is clear from the context, is the
infimum of

�
M�M dM.x; y/d�.x;y/ over all possible couplings � 2….x;y/. Since

.M; dM/ is Polish, the metric space .P1.M/;W1/ is also Polish; see, e.g., [42] or [10,
Proposition 7.1.5]. Throughout what follows, P1.M/ will be assumed to be equipped
with the metric W1. The Kantorovich–Rubinstein duality theorem (see, e.g., [307,
Theorem 5.10]) asserts that

W1.�; �/ D sup
 WM!R
k kLip.M/D1

��
M
 d� �

�
M
 d�

�
: (5.1)

Note that (5.1) implies that W1.�C �; � C �/ D W1.�; �/ for every � 2 MC1 .M/.
For � 2 M01.M/ we have �C.M/ D ��.M/, so we can define1:

k�kW1.M/ D W1.�
C; ��/:

1Note for later use that if �; � 2 MC
1
.M/ satisfy �.M/ D �.M/, then � � � 2 M0

1
.M/

and k�� �kW1.M/ DW1.�; �/. For a standard justification of the latter assertion, see, e.g., the
simple deduction of [236, equation (2.2)].



Refined extension moduli 139

This turns M01.M/ into a normed space whose completion is called the free space over
M (also known as the Arens–Eells space over M), and is denoted F.M/; see [16,
113,310] for more on this topic, and note that while F.M/ is commonly defined as the
closure of the finitely supported measures in M01.M/ with respect to the Wasserstein-
1 norm, since the finitely supported measures are dense in M01.M/ (see, e.g., [307,
Theorem 6.18]), the definitions coincide. It follows from (5.1) that the dual of F.M/

is canonically isometric to the space of all the real-valued Lipschitz functions on
M that vanish at some (arbitrary but fixed) point x0 2M, equipped with the norm
k � kLip.M/.

Suppose that .Z; k � kZ/ is a separable Banach space and fix � 2 M1.M/. By
the Pettis measurability criterion [249] (see also [36, Proposition 5.1]), any f 2
Lip.MI Z/ is j�j-measurable. Moreover, we have kf kZ 2 L1.j�j/ because if we
fix x 2M, then for every y 2M,

kf .y/kZ 6 kf .y/ � f .x/kZ C kf .x/kX

6 kf kLip.MIZ/dM.y; x/C kf .x/kX 2 L1.j�j/;

where the last step holds by the definition of M1.M/ and the fact that it implies
that j�j.M/ < 1. By Bochner’s integrability criterion [40] (see also [36, Propo-
sition 5.2]), it follows that the Bochner integrals

�
M f d�C and

�
M f d�� are

well-defined elements of Z, so we can consider the vector

If .�/
def
D

�
M
f d� D

�
M
f d�C �

�
M
f d�� 2 Z: (5.2)

If � 2 M01.M/, then If .�/D
�

M�M.f .x/� f .y//d�.x; y/ for every coupling � 2
….�C; ��/. Consequently, kIf .�/kZ 6 kf kLip.MIZ/

�
M�M dM.x; y/ d�.x; y/, so

by taking the infimum over all � 2 ….�C; ��/ we see that the norm of the linear
operator If from .M01.M/; k � kW1/ to Z satisfies

kIf k.M0
1
.M/;k�kW1 /!Z 6 kf kLip.MIZ/: (5.3)

Since M01.M/ is dense in F.M/, it follows that If extends uniquely to a linear opera-
tor If WF.M/!Z of norm at most kf kLip.MIZ/. So, even though elements of F.M/

need not be measures, one can consider the “integral” If .�/ 2 Z of f 2 Lip.MIZ/
with respect to � 2 F.M/; see [114] for more on this topic.

5.2 Refined extension moduli

Continuing with the notation that was introduced by Matoušek [199], we will con-
sider the following parameters related to Lipschitz extension. Suppose that .M; dM/,
.N; dN/ are metric spaces and that C �M. Denote by e.M;CIN/ the infimum over
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those K 2 Œ1;1� such that for every f W C ! N with kf kLip.CIN/ < 1 there is
F WM! N that extends f and satisfies

kF kLip.MIN/ 6 Kkf kLip.CIN/:

The supremum of e.M;CIN/ over all subsets C�M will be denoted e.MIN/. Note
that when N is complete, N-valued Lipschitz functions on C automatically extend to
the closure of C while preserving the Lipschitz constant, so we may assume here that
C is closed. The supremum of e.M;CIZ/ over all Banach spaces .Z; k � kZ/ will be
denoted below by e.M; C/. Thus, the notation e.M/ of the Introduction coincides
with the supremum of e.M;C/ over all subsets C �M.

If .M; dM/ is a metric space, C �M, and .Z; k � kZ/ is a Banach space, then it
is natural to consider variants of the above definitions with the additional restrictions
that the extended mapping F is required to take values in either the closure of the lin-
ear span of f .C/ or the closure of the convex hull of f .C/. Namely, let espan.M;CIZ/
be the infimum over those K 2 Œ1;1� such that for every f W C! Z there exists

F WM! span
�
f .C/

�
that extends f and satisfies

kF kLip.MIZ/ 6 Kkf kLip.CIZ/: (5.4)

Analogously, let econv.M; CI Z/ be the infimum over K 2 Œ1;1� such that for
every f W C! Z there exists

F WM! conv
�
f .C/

�
that extends f and satisfies (5.4). We then define econv.M;C/ to be the supremum of
econv.M;CIZ/ over all possible Banach spaces .Z; k � kZ/. Note that while one could
attempt to define espan.M; C/ similarly, there is no point to do so because it would
result in the previously defined quantity e.M; C/. By considering the supremum of
econv.M;C/ over all subsets C �M, one defines the quantity econv.M/.

Remark 133. By [179] one can have e.M;CIZ/De.MIZ/D1 yet espan.M;C;Z/D
1 for some metric space .M; dM/, some C�M and some Banach space .Z;k � kZ/.
Indeed, if X is a closed reflexive subspace of `1 and V � X is a closed uncom-
plemented subspace of X, then by [179] (see also [36, Corollary 7.3]) there is no
Lipschitz retraction from X onto V. Equivalently, the identity mapping from V to V
cannot be extended to a Lipschitz mapping from X to V. Hence, since span.V/DV�
`1, we have espan.X;VI`1/D1. In contrast, e.XI`1/D 1 by the nonlinear Hahn–
Banach theorem (see [206] or, e.g., [36, Lemma 1.1]). By combining [290] with the
discretization method of [138] (see also [195]), one can quantify the above example
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by showing that for arbitrarily large n 2 N there are Banach spaces .X; k � kX/ and
.Z; k � kZ/, and a subset C � X with jCj D n for which we have

espan.X;CIZ/
e.X;CIZ/

&

s
logn

log logn
: (5.5)

(In fact, in (5.5) one can have e.X;CIZ/ D e.XIZ/ D 1.) At present, the right-hand
side of (5.5) is the largest asymptotic dependence on n that we are able to obtain
for this question, and it remains an interesting open problem to determine the best
possible asymptotics here.

Most, but not all, of the Lipschitz extension methods in the literature, including
Kirszbraun’s extension theorem [155], Ball’s extension theorem [23] and methods
that rely on (variants of) partitions of unity such as in [61, 140, 166, 173], yield
convex hull-valued extensions, i.e., they actually provide bounds on the quantity
econv.M; CI Z/. Nevertheless, it seems likely that there is no ' W Œ1;1/ ! Œ1;1/

such that econv.M/ 6 '.e.M// for every Polish metric space .M; dM/, though if
such an estimate were available, then it would be valuable; see, e.g., Remark 141. In
fact, we propose the following conjecture.

Conjecture 134. There exists a Polish metric space .M; dM/ for which e.M/ <1

yet econv.M/ D1.

Remark 135. By definition, for every metric space .M; dM/, every Banach space
.Z; k � kZ/ and every C �M,

econv.M;CIZ/ > espan.M;CIZ/ > e.M;CIZ/:

We explained in Remark 133 that the second of these inequalities can be strict (in a
strong sense). However, as a complement to Conjecture 134, we state that to the best
of our knowledge it is unknown whether this is so for the first of these inequalities,
i.e., if it could happen that espan.M;CIZ/ <1 yet econv.M;CIZ/ D1. We suspect
that this is possible, but if not, then it would be interesting to investigate how one
could bound econv.M;CIZ/ from above by a function of espan.M;CIZ/. We do know
that there are a metric space .M; dM/, a Banach space .Z; k � kZ/, a subset C �M

and a Lipschitz mapping f W C! Z that can be extended to a Lipschitz mapping that
takes values in span.f .C// but cannot be extended to a Lipschitz mapping that takes
values in conv.f .C//. To see this, let ¹ej º1jD1 be the standard basis of `1. For n 2 N
setm.n/D n.n� 1/=2 and let Xn be the span of ¹em.n/C1; : : : ; em.nC1/º in `1. Thus,
Xn is isometric to `n1 and `1 D .

L1
nD1 Xn/1. By [290], there is a linear subspace

Vn of Xn such that every linear projection Q W Xn ! Vn satisfies

kQkXn!Vn &
p
n:
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By the method of [138], it follows that there exists2 An � BVn D Vn \ B`1 with
jAnj 6 nO.n/ such that kFnkLip.XnIVn/ &

p
n for any Fn W Xn! Vn that extends the

formal identity IdAn!Vn W An ! Vn. By compactness, there exists ın 2 .0; 1/ such
that if we define

Cn D An [
®
ınem.n/C1; : : : ; ınem.nC1/

¯
[ ¹0º;

then also kˆnkLip.XnIXn/&
p
n for any mappingˆn from Xn to the polytope conv.Cn/

that extends the formal identity IdCn!Xn . Consider the subset

C D

1[
�

nD1

Cn � `1:

Suppose thatˆ W `1! conv.C/ extends IdC!`1 . Then, for each n 2N the mapping
Rn ı .ˆjXn/ W Xn ! Xn extends IdCn!`1 and takes values in conv.Cn/, where we
denote the canonical restriction operator from `1 to Xn by Rn W `1 ! Xn. Hence,

kˆkLip.`1IXn/ > kRn ı .ˆjXn/kLip.XnIXn/ &
p
n:

Since this holds for every n 2 N, the mapping ˆ is not Lipschitz. Consequently, we
have econv.`1; CI `1/ D 1. At the same time, by construction we have span.C/ D
span.¹ej º1jD1/ D c0 (recall that c0 commonly denotes the subspace of `1 consist-
ing of all those sequences that tend to 0). So, any 2-Lipschitz retraction � of `1
onto c0 extends IdC!`1 and takes values in span.C/; the existence of such a retrac-
tion � is due to [179] (see also [36, Example 1.5]). If espan.`1; CI `1/ were finite,
then this example would answer the above question,3 but we suspect that in fact
espan.`1;CI `1/ D1.

Proposition 136 is a convenient characterization of the quantities e.M; C/ and
econv.M; C/; while it was not previously stated explicitly in this form, its proof is
based on well-understood ideas.

Proposition 136. Suppose that .M; dM/ is a metric space, C is a Polish subset of M

and s0 2 C. Fix two nonnegative functions d WM�M! Œ0;1/ and " W C W! Œ0;1/.
Then, the following two equivalences hold.

2The subset An can be taken to be any "n-net of the unit sphere of Vn, for any "n . n�3=2.
Note, however, that the bound that follows from [138] (and also [195, Appendix C]) is "n .
n�2, and this suffices for the present purposes; see [233, Theorem 23] for the above stated
weaker requirement from "n.

3And, it would show that for arbitrarily large k 2 N there exist a metric space
.M; dM/, a Banach space .Z; k � kZ/ and a subset S � M with jSj D k such that
econv.M;SIZ/=espan.M;SIZ/ &

p
.log k/= log log k. It would then remain an interesting open

question to determine the largest possible asymptotic dependence on k here.
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(1) The following two statements are equivalent.

• For every Banach space .Z; k � kZ/ and every mapping f W C! Z that
is 1-Lipschitz with respect to the metric dM there exists F WM! Z that
satisfies the following two conditions.

– kF.s/ � f .s/kZ 6 ".s/ for every s 2 C.

– kF.x/ � F.y/kZ 6 d.x; y/ for every x; y 2M.

• There exists a family ¹�xºx2M of elements of the free space F.C/ with
the following properties.

– k�s � ıs C ıs0kF.C/ 6 ".s/ for every s 2 C.

– k�x � �ykF.C/ 6 d.x; y/ for every x; y 2M.

(2) The following two statements are equivalent.

• For every Banach space .Z;k � kZ/ and every mapping f WC!Z that is 1-
Lipschitz with respect to the metric dM there exists F WM! conv.f .C//
that satisfies the following two conditions.

– kF.s/ � f .s/kZ 6 ".s/ for every s 2 C.

– kF.x/ � F.y/kZ 6 d.x; y/ for every x; y 2M.

• There exists a family ¹�xºx2M of probability measures in P1.C/ with the
following properties.

– WdM
1 .�s; ıs/ 6 ".s/ for every s 2 C.

– WdM
1 .�x; �y/ 6 d.x; y/ for every x; y 2M.

In the setting of Proposition 136, if ".s/ D 0 for every s 2 C and also d D KdM

for some K > 1, then in [11, Definition 2.7] a family ¹�xºx2M � F.C/ as in part
(1) of Proposition 136 is called a K-random projection of M onto C, and in [243,
Definition 3.1] a family ¹�xºx2M � P1.C/ as in part (2) of Proposition 136 is called
a stochastic K-Lipschitz retraction of M onto C while in [11, Definition 2.7] it is
called a strong K-random projection of M onto C.

Proof of Proposition 136. Suppose first that ¹�xºx2M �F.C/ and ¹�xºx2M�P1.C/
are as in the two parts of Proposition 136. Let .Z; k � kZ/ be a Banach space and
fix a 1-Lipschitz function f W C ! Z. Since C is Polish and hence separable, by
replacing Z with the closure of the linear span of f .C/ we may assume that Z is
separable. Recalling the notation (5.2) and the discussion immediately following it
for the (integration) operator

If W M1.M/ [F.M/! Z;

define two (linear) mappings

Ext�Cf;Ext�Cf WM! Z
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by setting for every x 2M,

Ext�Cf .x/
def
D f .s0/C If .�x/ and Ext�Cf .x/

def
D If .�x/

(5.2)
D

�
C

f d�x : (5.6)

Observe that since �x is a probability measure, Ext�Cf .x/ belongs to the closure of
the convex hull of f .C/.

For every x; y 2M we have

Ext�Cf .x/ � Ext�Cf .y/




Z D


If .�x � �y/




Z

(5.3)
6 k�x � �ykF.C/ 6 d.x; y/;

and similarly (using Kantorovich–Rubinstein duality),

Ext�Cf .x/ � Ext��f .y/




Z 6 WdM
1 .�x; �y/ 6 d.x; y/:

Also, for every s 2 C we have

Ext�Cf .s/ � f .s/




Z D


If .�s � ıs C ıs0/




Z 6 k�s � ıs C ıs0kF.C/ 6 ".s/;

and similarly,

Ext�Cf .s/ � f .s/




Z D


If .�s � ıs/




Z 6 WdM

1 .�s; ıs/ 6 ".s/:

Conversely, define f W C ! F.C/ by setting f .s/ D ıs � ıs0 for each s 2 C.
Then f is 1-Lipschitz. Fix F WM! F.C/. Writing F.x/ D �x for each x 2M, the
assumptions of the first half of part (1) of Proposition 136 coincide with the assertions
of its second half. As C is Polish, P1.C/ is closed in F.C/. Therefore,

conv
�
f .C/

�
D P1.C/ � ıs0 ;

where the closure is with respect to the topology of F.C/. Thus, if

F.M/ � conv
�
f .C/

�
;

then �x
def
D F.x/C ıs0 2 P1.C/ and the assumptions of the first half of part (2) of

Proposition 136 coincide with the assertions of its second half.

The proof of Proposition 136 shows that even though in the first parts of the two
equivalences in Proposition 136 one assumes merely the existence of an F with the
desired properties, it follows that such an F can in fact be chosen to depend linearly
on the input f , per (5.6).

Due to Proposition 136, the following question is closely related to Conjecture
134, though we think that it is also of independent interest.

Question 137. Characterize those Polish metric spaces .M; dM/ for which there
exists a Lipschitz mapping � W F.M/ ! P1.M/ (recall that by default P1.M/ is
equipped with the Wasserstein-1 metric) and x0 2M such that �.ıy � ıx0/ D ıy for
every y 2M.
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5.3 Barycentric targets

Following [210], say that a metric space .M; dM/ is W1-barycentric with constant
ˇ > 0 if there is a mapping B W P1.M/ !M that satisfies B.ıx/ D x for every
x;2M, and also

8�; � 2 P1.M/; dM

�
B.�/;B.�/

�
6 ˇWdM

1 .�; �/:

The infimal ˇ for which this holds is denoted ˇ1.M/. This notion (and variants
thereof) were studied in various contexts; see, e.g., [17,33,94,119,165,173,178,210,
241,243,292]. Any normed space X is W1-barycentric with constant 1, as seen by con-
sidering B.�/ D

�
X x d�.x/. Other examples of spaces that are W1-barycentric with

constant 1 include Hadamard spaces and Busemann nonpositively curved spaces [57],
or more generally spaces with a conical geodesic bicombing [86].

Thanks to Proposition 136, convex hull-valued (approximate) extension theorems
automatically generalize to extension theorems for mappings that take value in W1-
barycentric metric spaces.

Proposition 138. Let .M; dM/ be a metric space and let C �M be a Polish subset
of M. Fix d WM �M! Œ0;1/ and " W C! Œ0;1/. Assume that for every Banach
space .Z; k � kZ/ and every f W C! Z that is 1-Lipschitz with respect to dM there is
F WM! conv.f .C// that satisfies

8s 2 C; kF.s/ � f .s/kZ 6 ".s/

and
8x; y 2M; kF.x/ � F.y/kZ 6 d.x; y/:

Fix � W C ! .1;1/ and � WM �M ! .1;1/, as well as ˇ > 0 and a concave
nondecreasing function ! W Œ0;1/ ! Œ0;1/ with !.0/ D 0. If .N; dN/ is a W1-
barycentric metric space with constant ˇ and � W C ! N has modulus of uniform
continuity ! with respect to dM, namely dN.f .s/; f .t// 6 !.dM.s; t// for every
s; t 2 C, then there is ˆ WM!N such that dN.ˆ.s/; �.s// 6 !.�.s/".s// for every
s 2 C and dN.ˆ.x/;ˆ.y// 6 !.�.x; y/d.x; y// for every x; y 2M.

Proof. By Proposition 136, there is a collection of measures ¹�xºx2M � P1.C/ such
that

8s 2 C; WdM
1 .�s; ıs/ 6 ".s/ and 8x; y 2M WdM

1 .�x; �y/ 6 d.x; y/:

Hence, for every s 2 C and x; y 2M there are couplings �s 2….�s; ıs/ and �x;y 2
….�x; �y/ such that

�
C�C

dM.u; v/ d�s.u; v/ 6 �.s/".s/



146 Barycentric-valued Lipschitz extension

and �
C�C

dM.u; v/ d�x;y.u; v/ 6 �.x; y/d.x; y/:

Since .� � �/#�s 2 ….�#�s; �#ıs/ and .� � �/#�x;y 2 ….�#�x; �#�y/, it follows
that

WdN
1 .�#�s; �#ıs/ 6

�
N�N

dN.a; b/ d.� � �/#�s.a; b/

D

�
N�N

dN

�
�.u/; �.v/

�
d�s.u; v/

6
�

N�N
!
�
dN.u; v/

�
d�s.u; v/

6 !
��

N�N
dN.u; v/ d�s.u; v/

�
6 !

�
�.s/".s/

�
;

where the penultimate step uses the concavity of !. For the same reason, also

WdN
1 .�#�x; �#�y/ 6 !

�
�.x; y/d.x; y/

�
:

Since .N; dN/ is ˇ-barycentric there is B W P1.N/!N satisfying B.ız/D z for
every z;2 N, and

8�1; �2 2 P1.N/; dN

�
B.�1/;B.�2/

�
6 ˇWdN

1 .�1; �2/:

Define ˆ WM! N by

8x 2M; ˆ.x/
def
D B.�#�x/:

Then, for every s 2 C we have

dN

�
ˆ.s/; �.s/

�
6 ˇWdN

1

�
�#�s; �#ıs

�
6 !

�
�.s/".s/

�
:

For the same reason also dN.ˆ.x/; �.y//6!.�.x; y/d.x; y// for every x; y2M.

Because (as we will soon see) all of our new Lipschitz extension theorems are in
fact bounds on econv.�/, the following immediate corollary of Proposition 138 (with d

a multiple of dM and ! linear) shows that they apply to barycentric targets and not
only to Banach space targets.

Corollary 139. Fix ˇ > 0. Suppose that M is a Polish metric space and that N is a
complete W1-barycentric metric space with constant ˇ. Then,

econv.M;N/ 6 ˇeconv.M/:
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Another noteworthy special case of Proposition 138 is when !.s/ D s� for some
0 < � 6 1, i.e., in the setting of Hölder extension that we discussed in Remark 15
and Section 2.3. Analogously to (1.18), we denote the convex hull-valued � -Hölder
extend modulus of a metric space .M; dM/ by

e�conv.M/ D econv
�
M; d �M

�
:

Corollary 140. Suppose that M is a Polish metric space. Then, for every 0 < � 6 1
we have

e� .M/ 6 e�conv.M/ 6 econv.M/� :

Because the upper bound on e.`n1/ that we obtain in Theorem 14 is actually an
upper bound on econv.`

n
1/, Corollary 140 implies (1.19). More generally, Proposi-

tion 138 implies that

econv
�
M; ! ı dM

�
6 sup
d>0

!
�
econv.M/d

�
!.d/

6 econv.M/

for any concave nondecreasing function ! W Œ0;1/! Œ0;1/ with !.0/ D 0.

Remark 141. The question of how Lipschitz extension results imply extension re-
sults for other moduli of uniform continuity was studied in [224] and treated defini-
tively by Brudnyi and Shvartsman in [65] using an interesting connection to the
Brudnyı̆–Krugljak K-divisibility theorem [66] (see also [82]) from the theory of
real interpolation of Banach spaces. In particular, by [65] we have e� .M/ . e.M/2,
which remains the best-known bound on e� .M/ in terms of e.M/ and it would be
interesting to determine if it could be improved. As Corollary 140 shows that a better
bound is available in terms of e�conv.M/, Conjecture 134 and Question 137 could be
relevant for this purpose.

5.4 Gentle partitions of unity

The following definition describes a numerical parameter that underlies the extension
method of [173].

Definition 142 (Modulus of gentle partition of unity). Suppose that .M; dM/ is a
metric space and that C �M is nonempty and closed. Define the modulus of gentle
partition of unity of M relative to C, denoted GPU.M; dMIC/ or simply GPU.MIC/
when the metric is clear from the context, to be the infimum over those g 2 .0;1�

such that for every x 2M there is a Borel probability measure �x supported on C

with the requirements that if s 2 C, then �s D ıs , and also for every x; y 2M we
have �

C

dM.s; x/ dj�x � �y j.s/ 6 gdM.x; y/:
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The modulus of gentle partitions of unity of M, denoted GPU.M; dM/ or simply
GPU.M/ when the metric is clear from the context, is defined to be the supremum of
GPU.M; dMIC/ over all nonempty closed subsets C �M.

The nomenclature of Definition 142 is derived from [173], though we warn that
Definition 142 considers objects that are not identical to those that were introduced
in [173]. In [173] the measures ¹�xºx2MXC were also required to have a Radon–
Nikoým derivative with respect to some reference measure�. This additional require-
ment arises automatically from the constructions of [173] but it is not needed for any
of the known applications of gentle partitions of unity, so it is beneficial to remove
it altogether. The formal connection between [173] and Definition 142 was clarified
in [11].

In anticipation of the proof of Theorem 66, one can generalize Definition 142 to
the case of general profiles, analogously to what we did in Definition 64.

Definition 143 (Gentle partition of unity profile). Suppose that .M; dM/ is a metric
space and that C �M is nonempty and closed. A metric d WM �M! Œ0;1/ is
called a gentle partition of unity profile for .M; dM/ relative to C if for every x 2M

there is a Borel probability measure �x supported on C with the requirements that if
s 2 C, then �s D ıs , and also for every x; y 2M we have

�
C

dM.s; x/ dj�x � �y j.s/ 6 d.x; y/:

If d is a gentle partition of unity profile for .M; dM/ relative to every closed subset
¿ ¤ C �M, then we say that d is a gentle partition of unity profile for .M; dM/.

Note in passing that if d is a gentle partition of unity profile for .M; dM/ relative
to C, then for every x 2M the probability measure �x in Definition 143 has finite
first moment. Indeed, for any s0 2 C,

�
C

dM.s0; s/ d�x.s/ D
�
C

dM.s0; s/ d
�
�x � ıs0

�
.s/

6
�
C

dM.s0; s/ d
ˇ̌
�x � �s0

ˇ̌
.s/ 6 d.s0; x/ <1; (5.7)

where we used the fact that �s0 D ıs0 , since s0 2 C.
Suppose that .M; dM/ is a Polish metric space. The following estimate is implicit

in [173]:
econv.M/ 6 2GPU.M/:

In fact, the same reasoning as in [173] leads to the following more general lemma.

Lemma 144. Suppose that .M; dM/ is a Polish metric space and that C �M is
nonempty and closed. Assume that d WM�M! Œ0;1/ is a gentle partition of unity
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profile for .M; dM/ relative to C. Then, for every Banach space .Z; k � kZ/ and every
1-Lipschitz mapping f W C! Z there exists

F WM! conv
�
f .C/

�
that extends f and satisfies kF.x/ � F.y/kZ 6 2d.x; y/ for every x; y 2M.

Proof. Let ¹�xºx2M be probability measures as in Definition 143. Then, ¹�xºx2M �

P1.C/ by (5.7). So, by Proposition 136 (with " � 0) it suffices to check that for every
x; y 2M we have W1.�x; �y/ 6 2d.x; y/. To this end, fix � > 0 and s0 2 C such
that dM.x; s0/ 6 dM.x;C/C �. Then, for every s 2 C we have

dM.s; s0/ 6 dM.s; x/C dM.x; s0/ 6 dM.s; x/C dM.x;C/C � 6 2dM.s; x/C �:

Consequently, every 1-Lipschitz function  W C! R satisfies�
C

 d�x �
�
C

 d�y D
�
C

�
 .s/ �  .s0/

�
d.�x � �y/.s/

6
�
C

j .s/ �  .s0/j dj�x � �y j.s/

6
�
C

dM.s; s0/ dj�x � �y j.s/

6
�
C

.2dM.s; x/C �/ dj�x � �y j.s/

6 2d.x; y/C 2�:

The desired conclusion follows by letting

�! 0

and using the Kantorovich–Rubinstein duality (5.1).

5.5 The multi-scale construction

Suppose that .M; dM/ is a Polish metric space and fix another metric d on M. In
this section we will show that there is a universal constant ˛ > 1 with the following
property. Assume that either .M; dM/ is locally compact and d is a separation mod-
ulus for .M; dM/ per Definition 64, or the assumptions of Theorem 114 are satisfied.
We will prove that either of these assumptions implies that ˛d is a gentle partition
of unity profile for .M; dM/. By Lemma 144 this gives Theorems 66 and 114, and
will show that in fact these extension results are both convex hull-valued and via a
linear extension operator. This also implies that every locally compact metric space
M satisfies

GPU.M/ . SEP.M/: (5.8)
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Remark 145. The bound (5.8) need not be sharp. Indeed, it was proved in [173] that
if M is finite, then

GPU.M/ .
log jMj

log log jMj
: (5.9)

However, by [29] sometimes SEP.M/ & log jMj (and always SEP.M/ . log jMj).
A shorter presentation of the proof of (5.9) can be found in [226], and a different
proof of (5.9) will appear in the forthcoming work [207]. Also, in the forthcoming
work [212] it is proved that (5.9) is optimal.

The following theorem is a precise formulation of what we will prove in this
section.

Theorem 146. Let .M; dM/ be a Polish metric space and fix another metric d on
M. Suppose that for every � > 0 there is a probability space .��; Prob�/ and a
sequence of set-valued mappings ¹�k� W��! 2Mº1

kD1
such that one of the following

two measurability assumptions hold.

• Either .M; dM/ is locally compact and �k� is strongly measurable for each fixed
k 2 N and � > 0,

• or �� is a Borel subset of some Polish metric space Z� and Prob� is a Borel
probability measure supported on ��, and �k� is a standard set-valued mapping
for each fixed k 2 N and � > 0.

Suppose that the following three requirements hold.

(1) P!� D ¹�
k
�.!/º

1
kD1

is a partition of M for every ! 2 ��,

(2) diamM.P
!
�.x// < � for every x 2M and ! 2 ��,

(3) �Prob�
�
! 2 �� W P

!
�.x/ ¤ P!�.y/

�
6 d.x; y/ for every x; y 2M.

Then, ˛d is a gentle partition of unity profile for .M;dM/ for some universal constant
˛ 2 Œ1;1/.

Suppose from now on that C is a nonempty closed subset of M. We will first set
notation and record basic properties of a sequence of bump functions that will be used
in the proof of Theorem 146; this part of the discussion is entirely standard and has
nothing to do with random partitions.

Fix a 1-Lipschitz function  W Œ0;1/! Œ0;1/ such that supp. / � Œ1; 4� and
 .t/ D 1 for every t 2 Œ2; 3� (these requirements uniquely determine  , which is
piecewise linear). Define for each n 2 Z,

8x 2M; �n.x/ D �
C
n .x/

def
D  

�
2�ndM.x;C/

�
:

Then k�nkLip.M/ 6 2�n and if �n.x/ ¤ 0 then necessarily 2n 6 dM.x; C/ 6 2nC2.
We also denote

8x 2M; ˆ.x/ D ˆC.x/
def
D

X
m2Z

�n.x/:
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For each x 2M, at most two summands in the sum that defines ˆ.x/ do not
vanish. If x 2MXC, then since C is closed we have dM.x;C/> 0, and therefore there
is n 2 Z for which 2n 6 dM.x;C/ < 2

nC1. For this value of n we have �n.x/ D 1,
so ˆ.x/ > 1 for every x 2M X C. Finally, for each n 2 Z define

8x 2M; �n.x/ D �
C
n .x/

def
D

´
�n.x/
ˆ.x/

if x 2M X C;

0 if x 2 C:

By design,
P
n2Z �n.x/ D 1 for every x 2M X C. Further properties of these bump

functions are recorded in the following basic lemma, for ease of later reference.

Lemma 147. Suppose that x;y 2M satisfy dM.x;C/> dM.y;C/ > dM.x;y/. Then
for every n 2 Z,

2n

dM.y;C/
…

�
1

4
; 2

�
H) �n.x/ D �n.y/ D �n.x/ D �n.y/ D 0 (5.10)

and

2n�1 < dM.y;C/ < 2
nC2

H)
ˇ̌
�n.x/ � �n.y/

ˇ̌
.
dM.x; y/

dM.y;C/
: (5.11)

Proof. Our assumption implies that dM.x; C/; dM.y; C/ > 0, so x; y 2M X C. To
prove (5.10), suppose first that 2n > 2dM.y; C/. Then, since supp. / � Œ1; 4� and
2�ndM.y;C/ 6 1 we have �n.y/ D �n.y/ D 0. Also,

dM.x;C/ 6 dM.x; y/C dM.y;C/ < 2dM.y;C/ 6 2n;

so 2�ndM.x;C/ 6 1 and hence �n.x/ D �n.x/ D 0. The remaining case of (5.10) is
when dM.y;C/ > 2nC2. When this holds we have 2�ndM.x;C/ > 2�ndM.y;C/ > 4
and therefore ¹2�ndM.x; C/; 2

�ndM.y; C/º \ supp. / D ¿. Consequently, in this
case we have �n.x/ D �n.y/ D �n.x/ D �n.y/ D 0.

To prove (5.11), assume that 2n�1 < dM.y; C/ < 2nC2. Recalling that (point-
wise) on M X C we have �n D �n=ˆ for all n 2 Z and ˆ > 1, and moreover
k�nkLip.M/ 6 2�n, we conclude as follows:ˇ̌

�n.x/ � �n.y/
ˇ̌
6
ˇ̌
�n.x/ � �n.y/

ˇ̌
ˆ.x/

C
�n.y/

ˆ.x/ˆ.y/

ˇ̌
ˆ.y/ �ˆ.x/

ˇ̌
6 2�ndM.x; y/C

X
n2Z

ˇ̌
�n.x/ � �n.y/

ˇ̌
(5.10)
6 2�ndM.x; y/C

X
n2Z

2n�1<dM.y;C/<2nC2

2�ndM.x; y/

�
dM.x; y/

dM.y;C/
:
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The interaction between ¹�nºn2Z and the random partitions of Theorem 146 is
the content of the following lemma. Note that by reasoning as in (1.94), the metric d

in Theorem 146 must satisfy

8x; y 2M; d.x; y/ > dM.x; y/:

Lemma 148. In the setting of Theorem 146, if x 2M X C and y 2M X ¹xº satisfy
dM.x;C/ > dM.y;C/, thenX

n2Z

1X
kD1

�
�2n

ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/

.
d.x; y/

dM.y;C/C dM.x; y/
: (5.12)

Proof. As
P
n2Z �n.x/ D

P
n2Z �n.y/ D 1 and

1X
kD1

1�k
2n
.!/.x/ D

1X
kD1

1�k
2n
.!/.y/ D 1

for every n 2Z and ! 2�2n , the left-hand side of (5.12) is at most 2. Since d.x;y/>
dM.x; y/, it follows that (5.12) holds if dM.y; C/ 6 dM.x; y/. So, we will assume
in the rest of the proof of Lemma 148 that dM.x; y/ < dM.y;C/ (thus, in particular,
y 2M X C), in which case the right-hand side of (5.12) becomes at least a universal
constant multiple of the quantity d.x; y/=dM.y;C/.

We claim that for every n 2 Z the following inequality holds for every ! 2 �2n :
1X
kD1

ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
.
�
2�ndM.x; y/C 1¹P!

2m
.x/¤P!

2n
.y/º

�
1
¹ 14<

2n

dM.y;C/
<2º
: (5.13)

Assuming (5.13) for the moment, we will conclude the proof of (5.12) in the remain-
ing case dM.x; y/ < dM.y;C/ as follows:X
n2Z

1X
kD1

�
�2n

ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/

.
X
n2Z

2n�1<dM.y;C/<2nC2

�
2�ndM.x; y/C Prob2n

�®
! 2 �2n W P

!
2n.x/ ¤ P!2n.y/

¯��
.

X
n2Z

2mn�1<dM.y;C/<2nC2

2�n
�
dM.x; y/C d.x; y/

�
�

d.x; y/

dM.y;C/
�

d.x; y/

dM.y;C/C dM.x; y/
;
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where the first step uses (5.13), the second step is where we used condition (3) of
Theorem 146, the penultimate step uses d.x; y/ > dM.x; y/, and in the final step
uses the assumption dM.x; y/ < dM.y;C/.

It therefore remains to establish (5.13). By Lemma 147, if it is not the case that
2n�1 < dM.y;C/ < 2

nC2, then �n.x/ D �n.y/ D 0, so both sides of (5.13) vanish.
Thus, we may assume from now that 2n�1 < dM.y;C/ < 2

nC2. Under this assump-
tion, if P!2n.x/ ¤ P!2n.y/, then the right-hand side of (5.13) is at least 1, while the
left-hand side of (5.13) consists of a sum of two numbers, each of which is at most
1. It therefore remains to establish (5.13) when P!2n.x/ D P!2n.y/ (and still 2n�1 <
dM.y;C/ < 2

nC2). In this case, (5.13) becomes the inequality j�2n.x/ � �2n.y/j 6
dM.x; y/=dM.y;C/, which we proved in Lemma 147.

Proof of Theorem 146. By Lemma 115 and Corollary 118, for every � > 0 there
exists a Prob�-to-Borel measurable mapping 
k� W �m ! C such that

8! 2��; �k�.!/¤¿ H) dM

�

k�.!/;�

k
�.!/

�
6 dM

�
C; �k�.!/

�
C�: (5.14)

(In fact, in the locally compact setting of Theorem 146, the use of Lemma 115 shows
that the additive � term in the right-hand side of (5.14) can be removed).

For every x 2M X C define a Borel measure �x supported on C by

�x
def
D

X
n2Z

1X
kD1

�n.x/
�

k2n

�
#

�
Prob2n

�
¹!2�2n Wx2�

k
2n
.!/º

�
: (5.15)

In other words, for every Borel-measurable mapping h W C! Œ0;1/ we have

�
C

h.s/ d�x.s/ D
X
n2Z

1X
kD1

�n.x/

�
¹!2�2n Wx2�

k
2n
.!/º

h
�

k2n.!/

�
dProb2n.!/: (5.16)

Since P!2n is a partition of X for every n 2 Z and ! 2 �2n , the special case h D 1C

of (5.16) implies that

�x.C/ D
X
n2Z

1X
kD1

�n.x/Prob2n
�®
! 2 �2n W x 2 �

k
2n.!/

¯�
D

X
n2Z

�n.x/Prob2n

"´
! 2 �2n W x 2

1[
kD1

�k2n.!/

µ#
D

X
n2Z

�n.x/ D 1:

Thus �x is a probability measure. Consequently, if we also denote �s D ıs for every
s 2 C, then the proof of Theorem 146 will be complete if we show that

8x; y 2M;

�
C

dM.s; x/ dj�x � �y j.s/ . d.x; y/: (5.17)
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It suffices to prove (5.17) when x; y 2M are distinct and ¹x; yº 6� C. Indeed,
if ¹x; yº � C then �x D ıx and �y D ıy , so the left-hand side of (5.17) is equal to
dM.x; y/, which is at most d.x; y/. Hence, in the rest of the proof of Theorem 146
we will assume without loss of generality that x 2MX C and dM.x;C/> dM.y;C/.

We claim that the left-hand side of (5.17) can be bounded from above as follows:
�
C

dM.s; x/ dj�x � �y j.s/ 6 dM.x; y/

C

X
n2Z

1X
kD1

�
�2n

dM

�

k2n.!/; x

�ˇ̌
�n.x/1�k

2n
.!/.x/��2n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/:

(5.18)

Indeed, if x; y 2M X C, then �x; �y are defined according to (5.15), so that
�
C

dM.s; x/ dj�x � �y j.s/

6
X
n2Z

1X
kD1

�
C

dM.s; x/

d
��

k2n

�
#

ˇ̌
�n.x/Prob2n

�
¹!2�2n Wx2�

k
2n
.!/º
��n.y/Prob2n

�
¹!2�2n Wy2�

k
2n
.!/º

ˇ̌�
.s/

D

X
n2Z

1X
kD1

�
�2n

dM

�

k2n.!/; x

�ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/;

thus establishing (5.18) in this case. The remaining case is when x 2M X C and
y 2 C, so that �x is given in (5.15) and �y D ıy . We can then use the following
(crude) estimate:
�
C

dM.s; x/ dj�x � �y j.s/

6
�
C

dM.s; x/ d�y.s/C
�
C

dM.s; x/ d�x.s/

D dM.x; y/C
X
n2Z

1X
kD1

�
�2n

dM

�

k2n.!/; x

�
�n.x/1�k

2n
.!/.x/ dProb2n.!/: (5.19)

It remains to observe that because y 2C we have �n.y/D 0 for all n2Z and therefore
the right-hand side of (5.19) coincides with the right-hand side of (5.18).

Next, we claim that for every .n; k/ 2 Z �N and every ! 2 �2n we have

dM

�

k2n.!/; x

�ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
.
�
dM.y;C/C dM.x; y/

�ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
: (5.20)
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By substituting the point-wise estimate (5.20) into (5.18) and using dM.x; y/ 6
d.x; y/ the desired estimate (5.17) follows from Lemma 148, thus completing the
proof of Theorem 146.

To verify (5.20), note first that both sides of (5.20) vanish unless x 2 �k2n.!/ or
y 2 �k2n.!/ and also, due to Lemma 147, 2n�1 < dM.y;C/ < 2

nC2. So, assume from
now on that

¹x; yº \ �k2n.!/ ¤ ¿ and 2n�1 < dM.y;C/ < 2
nC2: (5.21)

Our goal (5.20) then becomes to deduce that

dM

�

k2n.!/; x

�
. dM.y;C/C dM.x; y/: (5.22)

Choose a point z 2 �km.!/ such that

dM

�

k2n.!/; z

�
6 dM

�

k2n.!/; �

k
2n.!/

�
C 2n

(5.14)
D dM

�
C; �k2n.!/

�
C 2nC1

(5.21)
� dM

�
C; �k2n.!/

�
C dM.y;C/: (5.23)

If x 2 �k2n.!/, then

dM

�
C; �k2n.!/

�
6 dM.x;C/ 6 dM.x; y/C dM.y;C/

and
dM.x; z/ 6 diamM

�
�k2n.!/

�
6 2n

(5.21)
� dM.y;C/:

By combining these two estimates with (5.23) and the triangle inequality, we see that

dM

�

k2n.!/; x

�
6 dM

�

k2n.!/; z

�
C dM.z; x/ . dM.x; y/C dM.y;C/:

Hence, the desired estimate (5.22) holds when x 2 �k2n.!/.
It remains to check (5.22) when y 2 �k2n.!/, in which case we proceed similarly

by noting that now
dM

�
C; �k2n.!/

�
6 dM.y;C/;

and
dM.y; z/ 6 diamM

�
�k2n.!/

�
6 2n

(5.21)
� dM.y;C/:

By combining these two estimates with (5.23) and the triangle inequality, we conclude
that

dM

�

k2n.!/; x

�
6 dM

�

k2n.!/; z

�
C dM.z; y/C dM.y; x/

. dM.y;C/C dM.x; y/:





Chapter 6

Volume computations

In this section we will prove volume estimates that occur in our bounds on the sepa-
ration modulus.

6.1 Direct sums

Fix n 2 N and a normed space X D .Rn; k � kX/. Throughout what follows, the (nor-
malized) cone measure [120] on @BX will be denoted �X. Thus, for every measurable
A � @BX,

�X.A/
def
D

voln.Œ0; 1�A/
voln.BX/

D
voln.¹sv W .s; v/ 2 Œ0; 1� � Aº/

voln.BX/
: (6.1)

The probability measure �X is characterized by the following “generalized polar
coordinates” identity, which holds for every f 2 L1.Rn/; see, e.g., [242, Proposi-
tion 1]:

�
Rn
f .x/ dx D n voln.BX/

� 1
0

rn�1
��

@BX

f .r�/ d�X.�/

�
dr: (6.2)

As a quick application of (6.2), we will next record for ease of later reference the
following computation of the volume of the unit ball of an p̀ direct sum of normed
spaces.

Lemma 149. Fix n;m1; : : : ;mn 2N and normed spaces ¹Xj D .Rm1 ;k � kXmj /º
n
jD1.

Then

8p 2 Œ1;1�; volm1C���Cmn.BX1˚p ���˚pXn/ D

Qn
jD1 �

�
1C

mj
p

�
volmj

�
BXj

�
�
�
1C m1C���Cmn

p

� :

(6.3)

Proof. This follows by induction on n from the following identity (direct application
of Fubini), which holds for every a; b 2 N and any two normed spaces X D .Ra; k �
kX/ and Y D .Rb; k � kY/:

volaCb.BX˚pY/ D

�
BX

volb
��
1 � kxk

p
X
� 1
pBY

�
dx

D volb.BY/

�
BX

�
1 � kxk

p
X
� b
p dx
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(6.2)
D vola.BX/ volb.BY/

� 1

0

ara�1
�
1 � rp

� b
p dr

D vola.BX/ volb.BY/
�
�
1C b

p

�
�
�
1C a

p

�
�
�
1C aCb

p

� :

By Lemma 149, for every m 2 N, every normed space X D .Rm; k � kX/ satisfies

volnm
�
B`np.X/

�
D
�
�
1C m

p

�n
�
�
1C nm

p

� volm.BX/
n; (6.4)

and hence,

volnm
�
B`np.X/

� 1
nm �

volm.BX/
1
m

n
1
p

: (6.5)

In particular, for every m; n 2 N and 1 6 p; q 61 we have

volnm
�
B`np.`mq /

�
D
2nm�

�
1C 1

q

�nm
�
�
1C m

p

�n
�
�
1C m

q

�n
�
�
1C nm

p

� ; (6.6)

and hence,

volnm
�
B`np.`mq /

� 1
nm �

1

n
1
pm

1
q

: (6.7)

The following simple lemma records an extension of (6.5) to m-fold iterations of
the operation X 7! `np.X/, i.e., to spaces of the form

`nmpm

�
`nm�1pm�1

�
� � � `n1p1 .X/ � � �

��
I

the main point for us here is that the implicit constants remain bounded as m!1.

Lemma 150. Fix ¹nkº1kD0 � N and ¹pkº1kD1 � Œ1;1�. Let X D .Rn0 ; k � kX/ be a
normed space and define

8k 2 N [ ¹0º; XkC1 D `nkpk .Xk/; where X0 D X:

Then, for every m 2 N we have

voln0���nm
�
BXm

� 1
n0���nk �

voln0
�
BX
� 1
n0Qm

kD1 n
1
pk

k

:

Proof. With the convention that an empty product equals 1, by applying (6.4) induc-
tively we see that

voln0���nm
�
BXm

�
D voln0

�
BX
�n1���nm mY

kD1

�
�
1C n0���nk�1

pk

�nk ���nm
�
�
1C n0���nk

pk

�nkC1���nm :
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Hence,

voln0���nm
�
BXm

� 1
n0���nk

Qm
kD1 n

1
pk

k

voln0
�
BX
� 1
n0

D

mY
kD1

�
�
1C n0���nk�1

pk

� 1
n0���nk�1

�
�
1C n0���nk

pk

� 1
n0���nk

n
1
pk

k

D

mY
kD1

fn0���nk�1;nk

�
1

pk

�
; (6.8)

where for u; v; t > 0 we denote

fu;v.t/
def
D

�.1C ut/
1
u

�.1C uvt/
1
uv

vt :

Since .log�.z//0 D
�1
0

se�zs

1�e�s
ds for z > 0 (see, e.g., [313, Chapter XII]), if u; t > 0

and v > 1, then

d
dt

logfu;v.t/ D log v C
� 1
0

�
e�uts � e�uvts

� se�s

1 � e�s
ds > 0:

Thus, fu;v is increasing on Œ0;1/, and therefore we get from (6.8) that

1 D

mY
kD1

fn0���nk�1;nk .0/ 6
voln0���nm

�
BXm

� 1
n0���nk

Qm
kD1 n

1
pk

k

voln0
�
BX
� 1
n0

6
mY
kD1

fn0���nk�1;nk .1/ D
.n0Š/

1
n0 n1 � � �nm�

.n0 � � �nm/Š
� 1
n0���nm

6 e:

The first part of Lemma 151 below is a restatement of Lemma 37 from the Intro-
duction. Qualitatively, it shows that the class of spaces for which Conjecture 10 holds
is closed under unconditional composition, namely, norms of the form (6.9) below.
The second part of Lemma 151 is further information that pertains to Conjecture 49,
i.e., to the symmetric version of the weak reverse isoperimetric conjecture, for which
we want the operator S to be the identity mapping (i.e., weak reverse isoperimetry
holds without the need to first change the “position” of the given normed space).

Lemma 151. Fix n;m1; : : : ; mn 2 N. Let

X1 D .Rm1 ; k � kX1/; : : : ;Xn D .R
mn ; k � kXn/

be normed spaces. Also, let E D .Rn; k � kE/ be an unconditional normed space.
Define a normed space X D .Rm1 � � � � �Rmn ; k � kX/ by

8x D .x1; : : : ; xn/ 2Rm1 � � � � �Rmn ; kxkX
def
D


�kx1kX1 ; : : : ;kxnkXn

�


E: (6.9)



160 Volume computations

Then, Conjecture 10 (equivalently, Conjecture 35) holds for the space X if it holds
for all of the spaces X1; : : : ;Xn.

More precisely, suppose that there exist S12SLm1.R/; : : : ;Sn2SLmn.R/, normed
spaces Y1 D .Rm1 ; k � kY1/; : : : ;Yn D .Rmn ; k � kYn/, and ˛ > 0 such that for every
k 2 ¹1; : : : ; nº we have

BYk � SkBXk and
iq
�
BYk

�
p
mk

�
volmk

�
BXk

�
volmk

�
BYk

�� 1
mk

6 ˛: (6.10)

Then, there exist a normed space Y D .Rm1 � � � � �Rmn ; k � kX/ and a linear trans-
formation S 2 SL.Rm1 � � � � �Rmn/ such that

BY � SBX and
iq.BY/

p
m1 C � � � Cmn

�
volm1C���Cmn.BX/

volm1C���Cmn.BY/

� 1
m1C���Cmn

. ˛: (6.11)

If furthermore S1; : : : ;Sn are all identity mappings (of the respective dimensions),
then S can be taken to be the identity mapping provided the following two conditions
hold: 




 nX

iD1

ei







E






 nX
iD1

ei







E*

. n (6.12)

and 
nY
kD1

m
mk
k

volmk
�
BXk

�! 1
m1C���Cmn

.
m1 C � � � Cmn

n
min

k2¹1;:::;nº
volmk

�
BXk

� 1
mk :

(6.13)
Note that (6.13) is satisfied in particular if mi � mj and

volmi .BXi /
1
mi � volmi .BXj /

1
mj

for every i; j 2 ¹1; : : : ; nº.

Prior to proving Lemma 151 we will make some basic observations. Firstly,
(6.9) indeed defines a norm because it is well known that the requirement that E D
.Rn; k � kE/ is an unconditional normed space is equivalent to (see, e.g., [181, Propo-
sition 1.c.7]) the following “contraction property”:

8a; x 2 Rn; k.a1x1; : : : ; anxn/kE 6 kak`n1kxkE: (6.14)

Thus, kxkE 6 kykE if x; y 2 Rn satisfy jxi j 6 jyi j for every i 2 ¹1; : : : ; nº, so the
triangle inequality for (6.9) follows from applying the triangle inequalities entry-wise
for each of the norms ¹k � kXi º

n
iD1, using this monotonicity property, and then apply-

ing the triangle inequality for k � kE.
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It is well known that condition (6.12) holds (as an equality) when E is a symmetric
normed space (see, e.g., [182, Proposition 3.a.6]). More generally, condition (6.12)
holds (also as an equality) in the setting of the following simple averaging lemma,
which shows in particular that Lemma 151 implies Lemma 53.

Lemma 152. Let XD .Rn;k � kX/ be a normed space such that for every two indices
j; k 2 ¹1; : : : ; nº there exists a permutation � D �jk 2 Sn with �.j / D k such that
k
Pn
iD1 a�.i/eikX D k

Pn
iD1 aieikX for every a1; : : : ; an 2 R. Then,




 nX

iD1

ei







X






 nX
iD1

ei







X*

D n:

Proof. Denote S.X/ D ¹� 2 Sn W T� 2 Isom.X/º, where T� 2 GLn.R/ was defined
in Example 40 for each � 2 Sn. Then, S.X/ is a subgroup of Sn that we are assuming
acts transitively on ¹1; : : : ; nº. Consequently,

8i; j 2 ¹1; : : : ; nº; j¹� 2 S.X/ W �.i/ D j ºj D
jS.X/j
n

: (6.15)

For every a1; : : : ; an 2 R we have

1

jS.X/j

X
�2S.X/

nX
iD1

a�.i/ei D

nX
iD1

 
nX

jD1

j¹� 2 S.X/ W �.i/ D j ºj
jS.X/j

aj

!
ei

(6.15)
D

Pn
jD1 aj

n

nX
iD1

ei :

Hence, ˇ̌̌̌
ˇ
*

nX
jD1

ej ;

nX
jD1

aj ej

+ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ nX
jD1

aj

ˇ̌̌̌
ˇ

D
n


 1
jS.X/j

P
�2S.X/

Pn
iD1 a�.i/ei




X

Pn

iD1 ei




X

6
n

jS.X/j
P
�2S.X/



Pn
iD1 a�.i/ei




X

Pn

iD1 ei




X

D
n


Pn

iD1 aiei




X

Pn
iD1 ei




X

;

where the penultimate step uses convexity and the final step uses the assumption that
T� is an isometry of X for every � 2S.X/. Since this holds for every a1; : : : ; an 2R,
we have k

Pn
iD1 eikX* 6 n=k

Pn
iD1 eikX. The reverse inequality holds for any normed

space X D .Rn; k � kX/ because h
Pn
iD1 ei ;

Pn
iD1 ei i D n.
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By combining Lemmas 151 and 152 we obtain the following corollary that estab-
lishes Conjecture 49 for the iteratively nested p̀ spaces of Lemma 150, provided it
holds for the initial space X.

Corollary 153. Fix ¹nkº1kD0 � N and ¹pkº1kD1 � Œ1;1�. Let X D .Rn0 ; k � kX/ be
a normed space and define

8k 2 N; XkC1 D `nkpk .Xk/; where X0 D X:

Suppose that ˛ > 0 and there exists a normed space YD .Rn0 ;k � kY/ with BY � BX

and that satisfies
iq.BY/
p
n0

�
voln0.BX/

voln0.BY/

� 1
n0

6 ˛: (6.16)

Then, for everym 2N there is a normed space Ym D .Rn0���nm ;k � kYm/ that satisfies
BYm � BXm and

iq
�
BYm

�
p
n0 � � �nm

�
voln0���nm

�
BXm

�
voln0���nm

�
BYm

�� 1
n0���nm

. ˛;

To see why Corollary 153 indeed follows from Lemmas 151 and 152, observe
that if we start with E0 D R and define inductively EkC1 D `

nk
pk .Ek/, then for each

m 2 N the space Em is unconditional and satisfies the assumptions of Lemma 152.
The space Ym of Corollary 153 is the same space that is defined in Lemma 151 if we
take E D Em, and also X1 D � � � D Xm D X, which ensures that (6.13) holds.

Proof of Lemma 151. Denote

M
def
D

nX
kD1

mk D dim.X/ and 8k 2 ¹1; : : : ; nº; �k
def
D volmk .BXk /

1
mk : (6.17)

Fix numbers c; C1; : : : ; Cn; 
1; : : : ; 
n; w1; : : : ; wn; w�1 ; : : : ; w
�
n ; ˇ1; : : : ; ˇn > 0

that satisfy the following conditions (their values will be specified later). Firstly, we
require that 




 nX

iD1

wiei







E

D






 nX
iD1

w�i ei







E*

D 1: (6.18)

Secondly, we require that

8k 2 ¹1; : : : ; nº; wkw
�
k >

mk


kM
: (6.19)

Finally, we require that

8k 2 ¹1; : : : ; nº;
1

cwk�k
6 ˇk 6

Ck

wk�k
; (6.20)
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Denote

D
def
D

� nY
kD1

ˇ
mk
k

� 1
M

:

Consider the block diagonal linear operator S WRm1 � � � � �Rmn!Rm1 � � � � �Rmn

that is given by

8x D .x1; : : : ; xn/ 2 Rm1 � � � � �Rmn ; Sx
def
D

1

D

�
ˇ1S1x1; : : : ; ˇnSnxn

�
: (6.21)

The normalization by D in (6.21) ensures that S 2 SL.Rm1 � � � � �Rmn/.
Since

Pn
kD1w

�
k
ek is a unit functional in E�, we have



S�1x

X
(6.9)^(6.21)
D D






 nX
kD1

kS�1
k
xkkXk

ˇk
ek







E

(6.18)
> D

*
nX
kD1

w�kek;

nX
kD1

kS�1
k
xkkXk

ˇk
ek

+
(6.19)
>

D

M

nX
kD1

mkkS
�1
k
xkkXk


kwkˇk
;

for every x D .x1; : : : ; xn/ 2 Rm1 � � � � �Rmn . This shows that

SBX �

´
x 2 Rm1 � � � � �Rmn W

nX
kD1

mkkS
�1
k
xkkXk


kwkˇk
6
M

D

µ
D
M

D
B
.

1w1ˇ1
m1

S1X1/˚1���˚1.

nwnˇn
mn

SnXn/
:

Using Lemma 149, we therefore have

volM .BX/
1
M 6

M

D
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�
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1w1ˇ1
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k
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6
e

D

 
nY
kD1

.
kCk/
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! 1
M

: (6.22)
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Next, for every x D .x1; : : : ; xn/ 2 Rm1 � � � � �Rmn we have



S�1x

X
(6.9)^(6.21)
D D






 nX
kD1

kS�1
k
xkkXk

ˇk
ek







E

(6.14)
6 D

�
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k2¹1;:::;nº

kS�1
k
xkkXk

wkˇk

�




 nX
kD1

wkek







E

(6.18)
D D max

k2¹1;:::;nº

kS�1
k
xkkXk

wkˇk
:

This establishes the following inclusion:

SBX �
1

D

nY
kD1

wkˇkSkBXk
def
D �: (6.23)

Thanks to (1.62), the assumption (6.10) of Lemma 151 implies that

8k 2 ¹1; : : : ; nº; �
�
SkBXk

�
�2k

(6.17)
D �

�
SkBXk

�
volmk

�
BXk

� 2
mk . ˛2mk : (6.24)

For each k 2 ¹1; : : : ;nº take fk W SkBXk !R that is smooth on the interior of SkBXk ,
vanishes on @SkBXk , and satisfies �fk D ��.SkBXk /fk on the interior of SkBXk .
Define f W �! R by

8x D .x1; : : : ; xn/ 2 � D
1

D

nY
kD1

wkˇkSkBXk ; f .x/
def
D

nY
kD1

fk

�
D

wkˇk
xk

�
;

Thus f � 0 on the boundary of � and on the interior of � it is smooth and satisfies

�f D �D2

 
nX
kD1

�
�
SkBXk

�
.wkˇk/2

!
f (6.25)

Hence,

�.SX/ D �.SBX/
(6.23)
6 �.�/

(6.25)
6 D2
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�
SkBXk

�
.wkˇk/2

!
(6.20)
6 .cD/2

 
nX
kD1

�
�
SkBXk

�
�2k

!
(6.24)
. .c˛D/2M: (6.26)

By combining (6.22) and (6.26) we see that

�.SX/ volM .BX/
2
M . c2

 
nY
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.
kCk/
mk

! 2
M
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Another application of (1.62) now shows that the desired conclusion (6.11) holds with
Y D ChSX (recall the definition of Cheeger space in Section 1.6.1) provided

c

 
nY
kD1

.
kCk/
mk

! 1
M

. 1: (6.27)

To get (6.11), by the Lozanovskiı̆ factorization theorem [186] there exist weights
w1; : : : ; wn; w

�
1 ; : : : ; w

�
n > 0 such that (6.18) holds and also wkw�k D mk=M for

every k 2 ¹1; : : : ; nº. Thus (6.19) holds (as equality) if we choose 
1 D � � � D 
n D 1.
If we take c D C1 D � � � D Cn D 1 and ˇk D 1=.wk�k/ for each k 2 ¹1; : : : ; nº, then
both (6.20) and (6.27) also hold (as equalities). With these choices, (6.11) holds.

Suppose that the additional assumptions (6.12) and (6.13) hold. Denote

� D
1

n






 nX
iD1

ei







E






 nX
iD1

ei







E*

:

Thus, � D O.1/ by (6.12). Consider the weights w1 D � � � D wn D 1=k
Pn
iD1 eikE

and w�1 D � � � D w
�
n D 1=k

Pn
iD1 eikE* , so that (6.18) holds by design. This choice

also ensures that if we take 
k D mk=.�M/ for each k 2 ¹1; : : : ; nº, then (6.19)
holds (as an equality). Next, choose Ck D �k for each k 2 ¹1; : : : ; nº, as well as
ˇ1 D � � � D ˇn D k

Pn
iD1 eikE and c D 1=mink2¹1;:::;nº �k . This ensures that (6.20)

holds, and also that (6.27) coincides with the assumption (6.13), since �DO.1/. The
desired conclusion (6.11) therefore holds with Sx D .S1x1; : : : ; Snxn/ in (6.21). In
particular, if Sk D Idmk for every k 2 ¹1; : : : ; nº, then we can take S D IdRm1�����Rmn

in (6.11).

The following lemma provides a formula for the cone measure of Orlicz spaces.
Fix a convex increasing function  W Œ0;1/ ! Œ0;1� that satisfies  .0/ D 0 and
limx!1 .x/D1 (so, if limx!a�  .x/D1 for some a 2 .0;1/, then we require
that  .x/ D 1 for every x > a). Henceforth, the associated Orlicz space (see, e.g.,
[268]) `n D .R

n; k � k`n / will always be endowed with the Luxemburg norm that is
given by

8x 2 Rn; kxk`n D inf

´
s > 0 W

nX
iD1

 

�
jxi j

s

�
6 1

µ
: (6.28)

Lemma 154. Fix n 2 N. Suppose that  W Œ0;1/ ! Œ0;1� is convex, increas-
ing, continuously differentiable on the set ¹x 2 .0;1/ W  .x/ < 1º, and satisfies
limx!1  .x/ D1 and  .0/ D 0. Define a function 'n W R

n ! Œ0;1/ by setting

8� D .�1; : : : ; �n/ 2 Rn; 'n .�/
def
D

Pn
iD1  

�1.j�i j/ 
0
�
 �1.j�i j/

�Qn
iD1  

0
�
 �1.j�i j/

� : (6.29)
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Then, for every g 2 L1.�`n / we have

nŠ

2n
voln

�
B`n 

� �
@B`n

 

g.�/ d�`n .�/

D

�
@B`n

1

g
�
 �1.j�i j/ sign.�1/; : : : ;  �1.j�nj/ sign.�n/

�
'n .�/ d�`n

1
.�/: (6.30)

For example, when  .t/ D tp for some p > 1 and every t > 0, in which case
`n D `

n
p , Lemma 154 gives

�
@B`np

g d�`n D
�
�
1C n

p

�
nŠ�

�
1C 1

p

�n �
@B`n

1

g ıM n
1!p.�/

j�1 � � � �nj
1� 1p

d�`n
1
.�/;

where M1!p W Rn ! Rn is the Mazur map [205] from `n1 to `np , i.e.,

8x 2 Rn; M n
1!p.x1; : : : ; xn/ D

�
jx1j

1
p sign.x1/; : : : ; jxnj

1
p sign.xn/

�
:

As another special case of Lemma 154, consider the following family of Orlicz spaces
�n
ˇ
D .Rn; k � k�n

ˇ
/:

8ˇ > 0; �nˇ
def
D `n ˇ ; (6.31)

where

t > 0;  ˇ .t/
def
D

8<: 1
ˇ

log
�
1
1�t

�
if 0 6 t < 1;

1 if t > 1:
(6.32)

Observe that by considering the case g� 1 of (6.30) we obtain the following identity:
�
@B`n

 

g d�`n 

D

�
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1

g
�
 �1.j�i j/ sign.�1/; : : : ;  �1.j�nj/ sign.�n/

�
'n .�/ d�`n

1
.�/

�
@B`n

1

'n .�/ d�`n
1
.�/

; (6.33)

where we recall that 'n is defined in (6.29). When  D  ˇ as in (6.32) for some
ˇ > 0 (we will eventually need to work with ˇ � n), for every � 2 @B`n

1
we have
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D
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eˇ j�i j � 1

�
: (6.34)
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Consequently, (6.33) gives the following identity, which we will need later:
�
@B�n

ˇ

g d��n
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D
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�
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�
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.�/

:

Proof of Lemma 154. For each i 2 ¹1; : : : ;nº define fi WRn!R by setting fi .0/D 0
and

8y 2 Rn X ¹0º; fi .y/ D kyk`n
1
 �1

�
jyi j

kyk`n
1

�
sign.yi /:

Consider f D .f1; : : : ; fn/ W Rn! Rn. Then, kf .y/k`n D kyk`n1 for every y 2 Rn.
Hence, f .B`n

1
/ D B`n . Now,
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1
.�/;

where in the final step we used the fact f is positively homogeneous of order 1, and
hence its derivative is homogeneous of order 0 almost everywhere (f is continuously
differentiable on ¹y 2 RnI y1; : : : ; yn ¤ 0º). Since the volume of the unit ball of `n1
equals 2n=nŠ, it remains to check that the Jacobian of f satisfies

detf 0.�/ D

Pn
iD1  

�1.j�i j/ 
0
�
 �1.j�i j/

�Qn
iD1  

0
�
 �1.j�i j/

� D 'n .�/;

for every � 2 @B`n
1

with �1; : : : ; �n ¤ 0. This indeed holds because for every such �
and i; j 2 ¹1; : : : ; nº we have

@jfi .�/ D
ıij � �i sign.�j /
 0
�
 �1.j�i j/

� C  �1.j�i j/ sign.�i / sign.�j /:

Hence, f 0.�/ D A.�/ C u.�/ ˝ v.�/, where A.�/ 2 Mn.R/ is the diagonal matrix
Diag..1= 0. �1.j�i j///niD1/ and the vectors u.�/; v.�/ 2 Rn are defined by setting

u.�/ D

�
 �1.j�i j/ sign.�i / �

�i

 0
�
 �1.j�i j/

��n
iD1

; v.�/ D
�
sign.�i /

�n
iD1
2 Rn:
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By the textbook formula for the determinant of a rank-1 perturbation of an invertible
matrix (e.g., [214, Section 6.2]), it follows that

detf 0.�/ D
�
1C hA.�/�1u.�/; v.�/i

�
detA.�/
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iD1  

�1.j�i j/ 
0
�
 �1.j�i j/

�Qn
iD1  

0
�
 �1.j�i j/

� :

Another description of �X is the fact (see, e.g., [242, Lemma 1]) that the Radon–
Nikodým derivative of the .n � 1/-dimensional Hausdorff (non-normalized surface
area) measure on @BX with respect to the (non-normalized cone) measure voln.BX/�X

is equal at almost every x 2 @BX to n times the Euclidean length of the gradient at x
of the function u 7! kukX. In other words, for any g 2 L1.@BX/,�

@BX

g.x/ dx D n voln.BX/

�
@BX

g.x/


rk � kX.x/




`n
2

d�X.x/: (6.35)

The special case g � 1 of (6.35) gives the following identity:

voln�1.@BX/

voln.BX/
D n

�
@BX



rk � kX.x/



`n
2

d�X.x/

D

 
BX

krk � kX.x/k`n
2

kxkn�1X
dx; (6.36)

where the second equality in (6.36) is an application of (6.2) because it is straightfor-
ward to check that krk � kX.rx/k`n

2
D krk � kX.x/k`n

2
for any r > 0 and x 2 Rn at

which the norm k � kX is smooth.

Remark 155. By applying Cauchy–Schwarz to the first equality in (6.36), we see
that

voln�1.@BX/

voln.BX/
6 n
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@BX
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� 1
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�
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�
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rk � kX.x/



`n
2

dx
� 1
2

; (6.37)

where the final step of (6.37) is an application of (6.35) with g.x/D krk � kX.x/k`n
2

.
If k � kX is twice continuously differentiable on Rn X ¹0º and ' W R! Œ0;1/ is twice
continuously differentiable with '0.1/ > 0 and '00.0/ D 0, then because for every
x 2 @BX the vector rk � kX.x/=krk � kX.x/k`n

2
is the unit outer normal to @BX at x,
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by the divergence theorem we have
�
@BX

�
�
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�
.x/ dx D
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D '0.1/
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`n
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dx:

A substitution of this identity into (6.37) give the following bound:

voln�1.@BX/

voln.BX/
6
p
np

'0.1/

� 
@BX

�
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' ı k � kX

�
.x/ dx

� 1
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: (6.38)

In particular, for every p > 2 we have
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voln.BX/
6
r
n

p

� 
BX
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�
k � k

p
X
�
.x/ dx

� 1
2

: (6.39)

It is worthwhile to record (6.38) separately because this estimate is sometimes con-
venient for getting good bounds on voln�1.@BX/. In particular, by using (6.39) when
X is an p̀ direct sum one can obtain an alternative derivation of some of the ensu-
ing estimates. Another noteworthy consequence of (6.37) is when there is a transitive
subgroup of permutations G 6 Sn such that k.x�.1/; : : : ; x�.n//kX D kxkX for all
x 2 Rn and � 2 G. Under this further symmetry assumption, the first inequality
of (6.37) becomes

voln�1.@BX/

voln.BX/
6 n

3
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��
@BX

�
@k � kX

@x1
.x/

�2
d�X.x/

� 1
2

:

The following lemma provides a probabilistic interpretation of the cone mea-
sure which generalizes the treatment of the special case X D `np by Schechtman–
Zinn [279] and Rachev–Rüschendorf [266].

Lemma 156 (Probabilistic representation of cone measure). Fix n 2 N and let X D
.Rn; k � kX/ be a normed space. Suppose that ' W Œ0;1/! Œ0;1/ is a continuous
function such that '.0/ D 0, '.t/ > 0 when t > 0 and

�1
0
rn�1'.r/ dr <1. Let V

be a random vector in Rn whose density at each x 2 Rn is equal to

1

n voln.BX/
�1
0
rn�1'.r/ dr

'
�
kxkX

�
; (6.40)
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where we note that (6.40) in indeed a probability density by (6.2). Then, the density
of kVkX at s 2 Œ0;1/ is equal to sn�1'.s/=

�1
0
rn�1'.r/dr . Moreover, the following

two assertions hold:

• V=kVkX is distributed according to the cone measure �X,

• kVkX and V=kVkX are (stochastically) independent.

Proof. The density of kVkX at s 2 Œ0;1/ is equal to

d
ds
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kVkX 6 s

� (6.40)
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:

The rest of Lemma 156 is equivalent to showing that for every measurable A � @BX

and � > 0,
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�

V
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2 A j kVkX D �
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D �X.A/:

To prove this identity, observe first that for every a; b 2 R with a < b we have
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���
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Hence, it follows from the definition (6.1) that
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: (6.41)

Consequently,
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where the penultimate step holds as ' is continuous at � and '.�/ > 0, and the final
step uses (6.41).
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Lemma 157. Fix m; n 2 N and p 2 .1;1/. Suppose that X D .Rm; k � kX/ is a
normed space. Let R1; : : : ; Rn be i.i.d. random variables taking values in Œ0;1/
whose density at each t 2 .0;1/ is equal to
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: (6.42)
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Proof. For almost every x D .x1; : : : ; xn/ 2 `np.X/ we have
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where we used the straightforward fact that the gradient of any (finite dimensional)
norm is homogeneous of order 0 (on its domain of definition, which is almost every-
where).

Let
V D .V1; : : : ;Vn/
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be a random vector on `np.X/ whose density at x D .x1; : : : ; xn/ 2 `np.X/ is

1
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(6.46)
By combining Lemma 156 with the first equality in (6.36), we see that
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Also, using the formula from Lemma 156 for the density of kVk`np.X/, for q > �nm
we have
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Consequently,
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where the first step of (6.49) uses the independence of kVk`np.X/ and V=kVk`np.X/,
by Lemma 156, and the final step of (6.49) is a substitution of (6.47) and the case
q D p � 1 of (6.48). Hence,
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where in the last step we used the identity (6.45).
The product structure of the density of V in (6.46) means that V1; : : : ; Vn are

(stochastically) independent. By Lemma 156, for each i 2 ¹1; : : : ; nº the random
vector Vi=kVikX is distributed on @BX according to the cone measure �X, and it is
independent of the random variable

Ri
def
D kVik

2p�2
X ; (6.51)
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whose density at t 2 .0;1/ is equal (using Lemma 156 once more) to

d
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1
2p�2

�
D

d
dt

� t
1

2p�2

0

sm�1e�s
p

�1
0
rm�1e�r

p dr
ds

D
p

2.p � 1/�
�
m
p

� t m
2p�2�1e�t

p
2p�2

:

Hence, the identity (6.50) which we established above coincides with the desired
identity (6.43).

To prove the identity (6.44), let R be a random variable whose density at each
t 2 .0;1/ is given by (6.42), i.e., R1; : : : ;Rn are independent copies of R. Then, for
every ˛ > �m=.2p � 2/ we have

E
�
R˛
�
D

p

2.p � 1/�
�
m
p

� � 1
0

t
m

2p�2C˛�1e�t
p

2p�2 dt D
�
�
2˛ C m�2˛

p

�
�
�
m
p

� : (6.52)

Using Lemma 156 (including the independence of Vi=kVikX and kVikX), we have
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where we recall (6.51) and the last step of (6.53) is the case ˛ D 1 of (6.52). At the
same time,

E

"
nX
iD1

kVik
2p�2
X





rk � kX

�
Vi
kVikX

�



2
`m
2

#

D E

�
kVk2p�2

`np.X/





rk � k`np.X/� V

kVk`np.X/

�



2
`n
2
.`m
2
/

�
D E

�
kVk2p�2

`np.X/

�
E

�



rk � k`np.X/� V

kVk`np.X/

�



2
`n
2
.`m
2
/

�
D
�
�
nmC2p�2

p

�
�
�
nm
p

� �
@B`np.X/



rk � k`np.X/

2`n
2
.`m
2
/
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where the first step of (6.54) uses the identity (6.45), the second step of (6.54) uses
the independence of kVk`np.X/ and V=kVk`np.X/ per Lemma 156, and the final step of
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uses the case q D 2p � 2 of (6.48) and Lemma 156. The desired identity (6.44) now
follows by substituting (6.54) into (6.53).

The following lemma will have a central role in the proof of Theorems 24 and 48.

Lemma 158. Suppose that n;m 2 N and ˇ > 0 satisfy ˇ 6 m�1
2

. Then,

81 6 p 6 m; iq
�
B`np.�mˇ /

�
�
p
nm D

q
dim

�
`np.�

m
ˇ
/
�
:

Recall that the normed space �m
ˇ
D .Rm; k � k�m

ˇ
/ was defined in (6.31) and (6.32).

Prior to proving Lemma 158, we will show how it implies Theorem 48, and then
deduce Theorem 24.

Proof of Theorem 48 assuming Lemma 158. By the assumption (1.73) of Theorem
48, write nD km for some k;m 2N with max¹2;pº6m6 ep . Then .m� 1/=2 > 0
and m > p, so we may apply Lemma 158 with n replaced by k and ˇ D .m � 1/=2.
Denoting Y D `kp.�mˇ /, the conclusion of Lemma 158 is that iq.BY/ �

p
n.

Y is canonically positioned (it is a space from Example 40). To prove Theorem 48,
it remains to check that k � kY � k � k`np , where, since n D km, we identify Rn with
Mk�n.R/, namely we identify `np with `kp.`

m
p /.

In fact, for any ˇ > 0 (not only our choice ˇ D .m � 1/=2 above) we will check
that

8x 2 Rm;
�
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ˇ
m

�
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ˇ
6 kxk`m1 6 kxk�mˇ : (6.55)

It follows from (6.55) that k � k�m
ˇ
� k � k`m1 when ˇ � m. But, k � k`mp � k � k`m1 by

the assumption ep > m. So,

ˇ � n H) k � kY D k � k`kp.�mˇ /
� k � k`kp.`

m
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� k � k`kp.`

m
p /
D k � k`np :

Fix x 2 Rm. To verify the second inequality in (6.55), the definition (6.32) givesPm
iD1 ˇ .jxi j=s/D1when 0< s6 kxk`m1 , so kxk�m

ˇ
>kxk`m1 by (6.28) and (6.31).

For the first inequality in (6.55), by direct differentiation it is elementary to verify that
the function u 7! log.1=.1 � u//=u is increasing on the interval Œ0; 1/. Thus,
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Provided ˛ > 1 � e�ˇ=m, the choice s D m log.1=.1 � ˛//kxk`m1=.˛ˇ/ satisfies the
requirement s > kxk`m1=˛, so we get from (6.28) and (6.56) that

kxk�m
ˇ
6
m log

�
1
1�˛

�
˛ˇ

kxk`m1 : (6.57)

The optimal choice of ˛ in (6.57) is ˛ D 1 � e�ˇ=m, giving the first inequality
in (6.55).

Having proved Theorem 48 (assuming Lemma 158, which we will soon prove),
we have also already established Theorem 24 provided n 2 N and p > 1 satisfy the
divisor condition (1.73). Indeed, the space Y that Theorem 48 provides is canonically
positioned and hence by the discussion in Section 1.6.2 it is also in its minimum
surface area position, so by [104, Proposition 3.1] we have
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1
n

(6.4)
� n

1
p ;

where the penultimate step uses the fact that iq.BY/ �
p
n by Theorem 48, and also

that by Theorem 48 we have k � kY � k � k`np , which implies that the nth root of the
volume of the unit ball of Y is proportional to the nth root of the volume of the unit
ball of `np .

The deduction of Theorem 24 for the remaining values of p > 1 and n 2 N uses
the following identity, which we will also use in the proof of Proposition 164 below.

Lemma 159. Fix n;m 2 N. Suppose that K � Rn and L � Rm are convex bodies.
Then,
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:

Proof. Fix z 2 SnCm�1. By Cauchy’s projection formula [102] that we recalled in
(1.30), we have
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where NK�L.w/ is the (almost-everywhere defined) unit outer normal to @.K � L/
at w 2 @.K � L/. Now,
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If we write each w 2 Rn as w D .w1; w2/ where w1 2 Rn and w2 2 Rm, then
for almost every (with respect to the .nC m � 1/-dimensional Hausdorff measure)
w 2 @K �L we have NK�L.w/ D .NK.w1/; 0/. Also, NK�L.w/ D .0;NL.w2// for
almost every w 2 K � @L. We therefore have
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where the last step is two applications of the Cauchy projection formula (in Rn and
Rm). Hence,
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Consequently,
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We can now prove Theorem 24 in its full generality using the fact that we proved
Theorem 48.

Proof of Theorem 24. Let m 2 N satisfy max¹2; pº 6 m 6 ep (if 1 6 p 6 2, then
takemD 2, and if p > 2, then such anm exists because ep � p > e2 � 2 > 5). Write
nD kmC r for some k 2N [ ¹0º and r 2 ¹0; : : : ;m� 1º. If r D 0, thenm divides n
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and we can conclude by applying Theorem 48 as we did above (recall the paragraph
immediately before Lemma 159). So, assume from now that r > 1.

By Theorem 48 there is a canonically positioned normed space YD .Rkm;k � kY/

such that iq.BY/�
p
km and k � kY � k � k`kmp

. Define Ynp DY˚1�rˇ , where ˇ� r
and iq.�r

ˇ
/ �
p
r ; such ˇ exists trivially if r D 1, and if r > 2, then its existence

follows from an application of Lemma 158 (with the choices nD 1 and p D mD r).
Since ˇ � r , by (6.55) we have k � k�r

ˇ
� k � k`r1 . Also, k � k`r1 � k � k`rp since

ep > m > r . Consequently, for every .x; y/ 2 Rkm �Rr we have
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Recalling the definition of Ynp , this means that k � kYnp � k � k`np .
Since both Y and �r

ˇ
are canonically positioned and hence in their minimum

surface area positions,
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Consequently, since BYnp D BY � B�r
ˇ

, by Lemma 159 we conclude that

MaxProj
�
BYnp

�
voln

�
BYnp

� D

 
MaxProj.BY/

2

volkm.BY/2
C

MaxProj
�
B�r

ˇ

�2
volr

�
B�r

ˇ

�2
! 1
2

�
�
.km/

2
p C r

2
p
� 1
2 � .kmC r/

1
p D n

1
p :

The following lemma will be used in the proof of Lemma 158.

Lemma 160. Suppose thatm 2 N, r 2 N [ ¹0º and ˇ > 0 satisfy ˇ 6 mCr�2
2

. Then
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: (6.58)

Proof. Let H1; : : : ;Hm be independent random variables whose density at each s 2 R
is equal to e�jsj=2. Then, jH1j; : : : ; jHmj are exponential random variables of rate 1,
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and therefore if we denote

�
def
D

mX
iD1

jHi j;

then � has �.m; 1/ distribution, i.e., its density at s > 0 equals sm�1e�s=.m � 1/Š;
the proof of this standard probabilistic fact can be found in, e.g., [89]. By [266, 279]
(or Lemma 156), the random vector .H1; : : : ;Hm/=� is distributed according to �`m
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and is independent of � . Thus, for every k 2 N,
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Consequently,
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eˇt .1 � t /mCr�2 dt; (6.59)

where the last step is the integral form of the remainder of the Taylor series of the
exponential function.

It is mechanical to check that (6.58) holds for m 2 ¹1; 2º, so assume for the rest
of the proof of Lemma 160 that m > 3. We then see from (6.59) that our goal (6.58)
is equivalent to showing that
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: (6.60)

For the upper bound in (6.60), estimate the integrand using
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where we used ˇ < mCr�2
2

. For the lower bound in (6.60), since .1 � t /mCr�2 & 1
when 0 6 t 6 1

mCr�2
,
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where in the last step we used the assumption ˇ < mCr�2
2

once more.

Proof of Lemma 158. By combining the case g � 1 of (6.30) with (6.34), we see that
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Since we are assuming in Lemma 158 that ˇ . m, in combination with (6.4) we get
from (6.61) that
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At the same time, by applying Cauchy–Schwarz to the identity (6.43) of Lemma 157
we have
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where the random variable R1 is as in Lemma 157, i.e., its density is in (6.42), and the
last step is an application the evaluation (6.52) of its moments and Stirling’s formula,
using the assumption 1 6 p 6 m.

Recalling (6.31) and (6.32), even though k � k�m
ˇ

is defined implicitly by (6.28),
we can computerk � k�m

ˇ
.�/ for almost every � 2 @B�m

ˇ
as the unique vector v 2Rm
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and satisfies hv; �i D 1. Indeed, since @�m
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as the zero set of the function ‰ˇ W Rn ! Rn that is given by
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the following vector is normal to @B�m
ˇ

for almost every � 2 @B�m
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where the first equality in (6.64) holds for any  ˇ that satisfies the conditions of
Lemma 154, and for the second equality in (6.64) recall the definition (6.32) of the
specific  ˇ that we are using here. Therefore,
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where the first step of (6.65) is a substitution of (6.64) into (6.33) while using (6.34)
and that �1

ˇ
.t/D 1� e�ˇt for every t > 0, the second step of (6.65) uses the inequal-

ity et > t C 1 which holds for any t 2 R, and the final step of (6.65) is an application
of Lemma 160. Now, a combination of (6.63) and (6.65) gives
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By combining (6.62) and (6.66) we conclude that
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The reverse inequality, namely iq.B`np.�mˇ // &
p
nm, follows from the isoperimetric

theorem (1.12), so the proof of Lemma 158 is complete. Note that this also shows
that all of the inequalities that we derived in the above proof of Lemma 158 are in
fact asymptotic equivalences. This holds in particular for (6.66), i.e.,
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The following asymptotic evaluation of the surface area of the sphere of `np.`
m
q /

in the entire range of possible values of p; q > 1 and m; n 2 N is an application of
Lemma 157; by (6.7) it is equivalent to (1.82).

Theorem 161. For every n;m 2 N and p; q 2 Œ1;1� we have
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Proof. By continuity we may assume that p; q 2 .1;1/. Suppose that G is a sym-
metric real-valued random variable whose density at each s 2 R is equal to

1

2�
�
1C 1

q

�e�jsjq : (6.67)

Let G1; : : : ;Gm be independent copies of G. Set U
def
D .G1; : : : ;Gm/2Rm. By the prob-

abilistic representation of the cone measure on @B`mq in [266, 279] (or Lemma 156),
the random vector U=kUk`mq is distributed according to the cone measure on @B`mq ,
and moreover it is independent of kUk`mq .

Consider the following random variable:
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If we let N1; : : : ;Nn;R1; : : : ;Rn be independent random variables such that N1; : : : ;Nn
have the same distribution as N, and R1; : : : ;Rn are as in Lemma 157, then Lemma
157 gives that
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where for (6.69) we introduce the following notation:

Z
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! 1
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: (6.70)

Let R be a random variable that takes values in Œ0;1/ whose density at each
t 2 .0;1/ is given by (6.42), i.e., R1; : : : ;Rn are independent copies of R. We com-
puted the moments of R in (6.52) and by Stirling’s formula this gives the following
asymptotic evaluations:
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We also need an analogous asymptotic evaluation of moments of the random vari-
able N in (6.68). Observe that the random variables N and kUk`mq are independent,
since U=kUk`mq and kUk`mq are independent and N is a function U=kUk`mq . Conse-
quently, for every ˇ > 0 we have
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Since (e.g., by Lemma 156) the density of kUk`mq at s 2 .0;1/ is proportional to
sm�1e�s

q
, we can compute analogously to (6.48) that

E
�
kUk.2q�2/ˇ

`mq

�
D

�1
0
sm�1C.2q�2/ˇe�s

q
ds�1

0
rm�1e�r

q dr
D
�
�
2ˇ C m�2ˇ

q

�
�
�
m
q

� :

Therefore, (6.74) implies that
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By considering each of the values ˇ 2 ¹1
2
; 1; 2º in this identity and using Stirling’s

formula, we get the following asymptotic evaluations of moments of N in terms of
moments of kUk`m
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:
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Due to (6.75), (6.76), (6.77), we will next evaluate the corresponding moments of
kUk`m

2q�2
. Recalling the density (6.67) of G, for every ˇ > �1=.2q � 2/ we have

E
�
jGj.2q�2/ˇ

�
D

1

�
�
1C 1

q

� � 1
0

s.2q�2/ˇe�s
q

ds D
�
�
2q�2
q
ˇ C 1

q

�
q�
�
1C 1

q

� :

Hence,

E
�
jGjq�1

�
� E

�
jGj2q�2

�
� E

�
jGj4q�4

�
�
1

q
: (6.78)

We therefore have
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Consequently, using Hölder’s inequality we get the following estimate:
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This simplifies to give
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At the same time, by Cauchy–Schwarz,
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Also, by the subadditivity of the square root on Œ0;1/,
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By combining (6.83) and (6.84) we see that (6.82) is in fact sharp, i.e.,
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By substituting (6.85) into (6.75), and correspondingly (6.79) into (6.76) and
(6.80) into (6.77), we get the following asymptotic identities:
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By combining (6.72) and (6.87) we see that
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Using Cauchy–Schwarz, this implies the following upper bound on the final term
in (6.69):
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Also, recalling (6.70) and using the subadditivity of the square root on Œ0;1/ in
combination with (6.71) and (6.86), we have the following additional upper bound on
the final term in (6.69):
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It follows from (6.89) and (6.90) that
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(6.91)

We will next prove that (6.91) is optimal in all of the six ranges that appear
in (6.91); by (6.69) and (6.6), this will complete the proof of Theorem 161. Recall-
ing (6.70) and using (6.72), (6.73), (6.87), (6.88), the fourth moment of Z can be
evaluated (up to universal constant factors) as follows:
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By using Hölder’s inequality similarly to (6.81), we conclude that
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Lemma 162 below applies Theorem 161 iteratively to obtain an upper bound on
the surface area of the unit sphere of nested p̀ norms on k-tensors (the case k D 2
corresponds to n by m matrices equipped with the `np.`

m
q / norm). The second part

of Lemma 162, namely the conclusion (6.94) below, is an implementation of the
approach towards Conjecture 9 for the hypercube that we described in Remark 56.

Lemma 162. Suppose that k; n1; : : : ; nk 2 N and p1; : : : ; pk 2 Œ1;1� are such that
n1 > max¹3; p1 � 2º and n1n2 � � � nj�1 > pj � 2 for every j 2 ¹2; : : : ; kº. Define
normed spaces Y0;Y1; : : : ;Yk by setting Y0 D R and inductively Yj D `

nj
pj .Yj�1/

for j 2 ¹1; : : : ; kº. Then,
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Hence, using the natural identification of the vector space that underlies Yk with
Rdim.Yk/ D Rn1n2���nk , if in addition we have n1 D O.1/ and pj D log nj for every
j 2 ¹1; : : : ; kº, then

BYk � B`dim.Yk/
1

� eO.k/BYk and
MaxProj

�
BYk

�
voldim.Yk/

�
BYk

� 6 eO.k/; (6.94)

where we recall the notation (1.53).

Proof. Suppose that n;m 2 N and p 2 .1;1/. By applying Cauchy–Schwarz to the
right-hand side of (6.43) while using the case ˛ D 1 of (6.52), we see that for every
normed space X D .Rm; k � kX/ we have
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(6.95)
If also m > max¹3; p � 2º, then by Stirling’s formula (6.95) gives the following esti-
mate:
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By continuity we may assume that p1; : : : ; pk 2 .1;1/. Denote d0 D 1 and for
j 2 ¹1; : : : ; kº denote dj D dim.Yj / D n1n2 � � � nj . We will naturally identify Yj
with .Rdj ; k � kYj /. As Yk D `
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pk .Yk�1/, we deduce from (6.96) that
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At the same time, by (6.44) for every j 2 ¹1; : : : ; kº we have�
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If also j > 2, then dj�1 > n1 > 3 and by assumption dj�1 > pj � 2, so by Stirling’s
formula (6.98) gives that for every j 2 ¹2; : : : ; kº we have

�
@BYj



rk � kYj



2
`
dj
2

d�Yj � n

2
pj
�1

j

�
@BYj�1



rk � kYj�1



2
`
dj�1
2

d�Yj�1 : (6.99)

When j D 1 we have d0 D 1 and n1 > max¹3; p1 � 2º, and therefore by Stirling’s
formula (6.98) gives
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Hence, by applying (6.99) iteratively in combination with the base case (6.100), we
conclude that
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A substitution of (6.101) into (6.97) yields the desired estimate (6.93).
To deduce the conclusion (6.94), note that for every j 2 ¹1; : : : ; kº we have the

point-wise bounds
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It follows by induction that
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where the final step holds if pj D log nj for every j 2 ¹1; : : : ; kº. This implies the
inclusions in (6.94). Furthermore, Yk belongs to the class of spaces from Example 40.
Hence Yk is canonically positioned and by the discussion in Section 1.6.2 know that
BY0 is in its minimum surface area position. Therefore,
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where the first step uses [104, Proposition 3.1], the second step is (6.93), and the final
step holds because p1DO.1/ and pj D lognj . This completes the proof of (6.94).

The following technical lemma replaces a more ad-hoc argument that we previ-
ously had to deduce Proposition 164 below from Lemma 162; it is due to Noga Alon
and we thank him for allowing us to include it here. This lemma shows that the set of
super-lacunary products n1n2 � � � nk that can serve as dimensions of the space Yk in
Lemma 162 for which (6.94) holds is quite dense in N.

Lemma 163. For every integer n > 3 there are k; m 2 N [ ¹0º and integers n1 <
n2 < � � � < nk that satisfy

• n D n1n2 � � �nk Cm,

• n1 2 ¹6; 7º and niC1 6 2ni 6 n3iC1 for every i 2 ¹1; : : : ; k � 1º,

• m 6 .logn/1Co.1/.

Prior to proving Lemma 163, we will make some preparatory (mechanical) obser-
vations for ease of later reference. Note first that the conclusion niC1 6 2ni 6 n3iC1
of Lemma 163 can be rewritten as

8i 2 ¹1; : : : ; k � 1º; log2 niC1 6 ni 6 log 3p
2
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It follows by induction that
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where, as we also did in (1.131), we denote the iterates of a function ' W .0;1/! R
by 'Œj � D ' ı 'Œj�1� W .'Œj�1�/�1.0;1/! R for each j 2 N, with the convention
'Œ0�.x/ D x for every x 2 .0;1/. Since n1 2 ¹6; 7º, it follows from (6.102) that

k � log�nk . log�n: (6.103)

Consequently,
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This implies the following (quite crude) bounds on nk:

n
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. nk .

n

logn
: (6.104)

Note in particular that thanks to (6.104) we know that (6.103) can be improved to
k � log�n.
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Proof of Lemma 163. Let M � N be the set of all those x 2 N that can be written as
x D n1n2 � � �nk for some k;n1; : : : ; nk 2N that satisfy nk > nk�1 > � � �> n1 2 ¹6;7º
and

8i 2 ¹1; : : : ; k � 1º; niC1 6 2ni 6 n3iC1: (6.105)

The goal of Lemma 163 is to show that there exists x 2M such that

n � .logn/1Co.1/ 6 x 6 n: (6.106)

By adjusting the o.1/ term, we may assume that n is sufficiently large, say, n > n.0/
for some fixed n.0/ 2 N that will be determined later. We will then find x 2M with
a representation x D n1n2 � � �nk as above and

n � n1n2 � � �nk�1 6 x 6 n: (6.107)

This would imply the desired bound (6.106) because
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. .logn/1Co.1/:

We will first construct ¹yiº1iD1 �M such that y1 D 7 and yi < yiC1 < 12yi for
every i 2 N. Furthermore, for each i 2 N there are k; n1; : : : ; nk 2 N with yi D
n1n2 � � �nk such that nk > nk�1 > � � � > n1 2 ¹6; 7º and

8j 2 ¹1; : : : ; k � 1º; n2jC1 6 2
nj 6 2n2jC1; (6.108)

which is a more stringent requirement than (6.105). Note in passing that (6.108)
implies the (crude) bound

kY
jD1

�
1C

1

nj

�
6 2: (6.109)

To verify (6.109), note that since ¹nj ºkjD1 is strictly increasing and the second inequal-
ity in (6.108) holds, it is mechanical to check that n1 > 6, n2 > 7, n3 > 8, n4 > 12
and njC1 > 3nj for every j 2 ¹4; 5; : : : ; k � 1º. So,

kY
jD1

�
1C

1

nj

�
6
�
1C

1

6

��
1C

1

7

��
1C

1

8

�
e
P1
sD0

1
12�3s

D

�
1C

1

6

��
1C

1

7

��
1C

1

8

�
e
1
8 6 2:

Suppose that yi has been defined with a representation yi D n1n2 � � �nk that fulfils
the above requirements. Definem0;m1; : : : ;mk 2N withm0 D 6,mk D nk C 1 and
mj 2 ¹nj ; nj C 1º for all j 2 ¹1; : : : ; k � 1º by induction as follows. Assuming that
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mjC1 has already been constructed for some j 2 ¹1; : : : ; k � 1º, let

mj
def
D

´
nj if m2jC1 6 2nj ;
nj C 1 if m2jC1 > 2

nj :
(6.110)

Definition (6.110) implies that mj < mjC1. Indeed, nj < njC1 so if mj D nj ,
then nj < njC1 6 mjC1 since mjC1 > njC1 by the induction hypothesis. On the
other hand, if mj D nj C 1, then since the first inequality in (6.108) holds, the defi-
nition (6.110) necessitates that mjC1 D nj C 1, so mj < mjC1 in this case as well.

Next, Definition (6.110) also ensures that the requirement (6.108) is inherited by
¹mj º

k
jD1, i.e.,

8j 2 ¹1; : : : ; k � 1º; m2jC1 6 2
mj 6 2m2jC1: (6.111)

Indeed, if mj D nj , then m2jC1 6 2nj D 2mj by (6.110), i.e., the first inequality
in (6.111) holds, and the second inequality in (6.111) holds because mjC1 > njC1
and (6.108) holds. On the other hand, ifmj Dnj C 1, then by (6.110) we havemjC1D
nj C 1 andm2jC1 > 2

nj , which directly gives the second inequality in (6.111), and in
combination with (6.108) we also get the first inequality in (6.111) because

mjC1

2mj
D
.nj C 1/

2

2njC1

(6.108)
6

.nj C 1/
2

2n2j
6 1;

where the final step uses nj > 6, though nj > 1=.
p
2 � 1/ D 2:414 : : : is all that is

needed for this purpose.
If the above construction producesm1 2 ¹6; 7º, then define yiC1 Dm1m2 � � �mk .

Otherwise necessarily m1 D n1 C 1 D 8, so (6.111) holds also when j D 0 (recall
that m0 D 6, hence m21 D 26 D 2m0), so we can define yiC1 D m0m1 � � �mk and
thanks to (6.111) in both cases yiC1 has the desired form. Moreover,

yiC1

yi
6 6

kY
jD1

�
1C

1

nj

�
(6.109)
6 12:

This completes the inductive construction of the desired sequence ¹yiº1iD1 �M.
With the sequence ¹yiº1iD1 �M at hand, will next explain how to obtain for each

integer n > n.0/, where n.0/ 2 N is a sufficiently large universal constant that is yet
to be determined, an element x 2M that approximates n as in (6.107). Let i 2 N be
such that yi 6 n 6 yiC1 and denote y D yi . Thus, there are k; n1; : : : ; nk 2 N for
which y D n1n2 � � �nk such that nk > nk�1 > � � � > n1 2 ¹6; 7º and (6.108) holds.

If y > n � n1n2 � � �nk�1, then x D y has the desired approximation property, so
suppose from now that y < n � n1n2 � � �nk�1, or equivalently

n

n1n2 � � �nk�1
>

y

n1n2 � � �nk�1
C 1 D nk C 1:
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Hence, if we define

n0k
def
D

j n

n1n2; : : : ; nk�1

k
and x D n1n2 � � �nk�1n

0
k;

then n0
k
> nk C 1 & n=.log n/2, where we used (6.104). Consequently, recalling

(6.102), there is a universal constant n.0/ 2 N such that if n > n.0/, then n0
k
>

max¹144; nk�1º. Thus, the sequence n1; n2; : : : ; nk�1; n0k is still increasing. Since
by design x satisfies (6.107), it remains to check that x 2M, i.e., that (6.105) holds.
Since n1; : : : ; nk are assumed to satisfy the more stringent requirement (6.108), we
only need to check that

n0k 6 2
nk�1 6 .n0k/

3: (6.112)

The second inequality in (6.112) is valid since (6.108) holds and n0
k
> nk . To justify

the first inequality in (6.112), observe that y 6 n 6 12y, as yiC1 6 12yi . Conse-
quently,

n0k 6 n=.n1n2 � � �nk�1/ 6 12y=.n1n2 � � �nk�1/ D 12nk :

Therefore,

2nk�1
(6.108)
> n2k >

�
n0
k

12

�2
> n0k;

where the last step uses the fact that n0
k
> 144.

We are now ready to extend the conclusion (6.94) of Lemma 162 to all dimensions
n 2 N. Namely, we will prove the following proposition, which comes very close to
proving Conjecture 9 for the hypercube Œ�1; 1�n via a route that differs from the way
by which we proved Theorem 24.

Proposition 164. For any n 2 N there is a normed space Y D .Rn; k � kY/ that for
every x 2 Rn X ¹0º we have

kxk`n1 6 kxkY 6 eO.log�n/
kxk`n1 and

voln�1
�
Projx?BY

�
voln.BY/

6 eO.log�n/:

Furthermore, Y can be taken to be an `1 direct sum of nested p̀ spaces as in
Lemma 162.

Proof. Let M � N be the set of integers from the proof of Lemma 163, namely m 2
M if and only if there are integers nk > nk�1 > � � � > n1 2 ¹6; 7º that satisfy (6.105)
such that m D n1n2 � � � nk . By Lemma 162, there exists C > 1 such that for every
m 2M there is a normed space Ym D .Rm; k � kYm/ that satisfies

k � k`m1 6 k � kYm 6 eC log�m
k � k`m1 and

MaxProj
�
BYm

�
voln

�
BYm

� 6 eC log�m:
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By applying Lemma 163 iteratively write nDm1C � � � CmsC1 form1; : : : ;ms 2
M and msC1 2 ¹1; 2º that satisfy miC1 6 .logmi /c for every i 2 ¹1; : : : ; sº, where
c > 1 is a universal constant. Denote YmsC1 D `msC11 and consider the `1 direct sum

Y def
D Ym1 ˚1 Ym2 ˚1 � � � ˚1 YmsC1 D .Rn; k � kY/:

Then k � k`n1 6 k � kY 6maxi2¹1;:::;sC1º eC log�mi k � k
`
mi
1
6 eC log�nk � k`n1 . We claim

that
MaxProj.BY/

voln.BY/
6 eO.log�n/:

SinceBYDBYm1 �BYm2 � � � � �BYmsC1 , by an inductive application of Lemma
159 we have

MaxProj
�
BY
�

voln
�
BY
� 6

 
sC1X
iD1

MaxProj
�
BYmi

�2
volmi

�
BYmi

�2
! 1
2

6

 
sC1X
iD1

e2C log�mi

! 1
2

. eC log�n;

where the first step uses Lemma 159, the penultimate step is our assumption on Ymi ,
and the final step has the following justification. Recall that miC1 6 .logmi /c for
every i 2 ¹1; : : : ; sº, where c > 1 is a universal constant. So,miC2 6 cc.log logmi /c

for every i 2 ¹1; : : : ; s � 1º. Fix n0 2 N such that cc.log log n/c 6 log n for every
n > n0. Then, miC2 6 logmi if mi > n0, hence log�miC2 6 log�mi � 1. Let i0 be
the largest i 2 ¹1; : : : ; s C 1º for which mi < n0. Then,

log�m2i 6 log�m2 � i 6 log�n � i

and log�m2jC1 6 log�m1 � j 6 log�n � j if 2i; 2j C 1 2 ¹1; : : : ; i0 � 1º. We also
have j¹i0; : : : ; s C 1ºj D O.1/. Consequently,

sC1X
iD1

e2C log�mi 6 e2C log�n
1X
kD0

e�2Ck CO.1/ . e2C log�n:

Remark 165. A straightforward way to attempt to compute the surface area of the
unit sphere of a normed space XD .Rn;k � kX/ is to fix a direction z 2 Sn�1 and con-
sider @BX as the union of the two graphs of the functions ‰X

z ;  
X
z W Projz?.BX/! R

that are defined by setting ‰X
z .x/ and  X

z .x/ for each x 2 Projz?.BX/ to be, respec-
tively, the largest and smallest s 2 R for which x C sz 2 @BX. We then have

voln�1.@BX/ D

�
Proj

z?
.BX/

q
1C kr‰X

z .x/k
2
`n
2

dx

C

�
Proj

z?
.BX/

q
1C kr X

z .x/k
2
`n
2

dx: (6.113)
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When X D `np for some p 2 .1;1/ and z D en,

8x 2 Proje?n
�
B`np

�
D B`n�1p

; ‰
`np
en .x/ D � 

`np
en .x/ D

�
1 � kxk

p

`n�1p

� 1
p :

Therefore, (6.113) becomes

voln�1
�
@B`np

�
voln�1

�
B`n�1p

� D 2 
B
`n�1p

 
1C .1 � kxk

p

`n�1p

/�
2.p�1/
p

n�1X
iD1

jxi j
2.p�1/

! 1
2

dx:

By [31], a point chosen from the normalized volume measure on B`n�1p
is equidis-

tributed with �
jG1j

p
C � � � C jGn�1j

p
C Z

�� 1p .G1; : : : ;Gn�1/ 2 Rn�1;

where G1; : : : ;Gn�1;Z are independent random variables, the density of G1; : : : ;Gn�1
at s 2 R is equal to 2�.1C 1=p/�1e�jsj

p
and the density of Z at t 2 Œ0;1/ is equal

to e�t . Consequently,

voln�1
�
@B`np

�
voln�1

�
B`n�1p

� D 2E" 1C Z�
2.p�1/
p

n�1X
iD1

jGi j
2.p�1/

! 1
2
#
: (6.114)

Optimal estimates on moments such as the right-hand side of (6.114) were derived
(in greater generality) in [225], using which one can quickly get asymptotically sharp
bounds on the left-hand side of (6.114). It is possible to implement this approach to
get an alternative treatment of `np.`

m
q /, though it is significantly more involved than

the different way by which we proceeded above, and it becomes much more tedious
and technically intricate when one aims to treat hierarchically nested p̀ norms as we
did in Lemma 162. Nevertheless, an advantage of (6.113) is that it applies to normed
spaces that do not have a product structure as in Lemma 157, which is helpful in other
settings that we will study elsewhere.

6.2 Negatively correlated normed spaces

Our goal here is to further elucidate the role of symmetries in the context of the
discussion in Section 1.6.2. Fix n 2 N and 
 > 1. Say that a normed space X D
.Rn; k � kX/ is 
 -negatively correlated if the standard scalar product h�; �i on Rn is
invariant under its isometry group Isom.X/, i.e., Isom.X/ 6 On, and there exists a
Borel probability measure � on Isom.X/ such that

8x; y 2 Rn;

�
Isom.X/

jhUx; yij d�.U / 6


p
n
kxk`n

2
kyk`n

2
: (6.115)
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We were inspired to formulate this notion by the proof of [286, Theorem 1.1]. It is
tailored for the purpose of bounding volumes of hyperplane projections of BX from
above in terms of the surface area of @BX, as exhibited by the following lemma which
generalizes the reasoning in [286].

Lemma 166. Fix n 2 N and 
 > 1. If X D .Rn; k � kX/ is 
 -negatively correlated,
then

MaxProj.BX/ 6



2
p
n

voln�1.@BX/:

Proof. Recall that for every y 2 @BX at which @BX is smooth we denote the unit outer
normal to @BX at y by NX.y/ 2 S

n�1. By the Cauchy projection formula (1.30) for
every x 2 Sn�1 we have

voln�1
�
Projx?.BX/

�
D
1

2

�
@BX

jhx;NX.y/ij dy:

Since every U 2 Isom.X/ is an orthogonal transformation and NX ı U
� D U � ıNX

almost surely on @BX,

voln�1
�
Projx?.BX/

�
D
1

2

�
@BX

jhUx;NX.y/ij dy:

By integrating this identity with respect to �, we therefore conclude that

voln�1
�
Projx?.BX/

�
D
1

2

�
@BX

��
Isom.X/

jhUx;NX.y/ij d�.U /
�

dy

6



2
p
n

voln�1.@BX/;

where we used (6.115) and the fact that kxk`n
2
D 1 and kNX.y/k`n

2
D 1 for almost

every y 2 @BX.

By substituting Lemma 166 into Theorem 76 and using (1.96), we get the follow-
ing corollary.

Corollary 167. Fix n 2 N and 
 > 1. If X D .Rn; k � kX/ is 
 -negatively correlated,
then

e.X/ . SEP.X/ 6 2

voln�1.@BX/ diam`n

2
.BX/

voln.BX/
p
n

:

Corollary 167 generalizes Corollary 45 since any canonically positioned normed
space is 1-negatively correlated. Indeed, suppose that

X D .Rn; k � kX/

is canonically positioned. Recall that in Section 1.6.2 we denoted the Haar probability
measure on Isom.X/ by hX. Fix x; y 2 Rn. The distribution of the random vector
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Ux when U is distributed according to hX is Isom.X/-invariant, and therefore it is
isotropic. Hence,

�
Isom.X/

jhUx; yij dhX.U / 6
��

Isom.X/
hUx; yi2 dhX.U /

� 1
2

(1.69)
D
kyk`n

2
p
n

��
Isom.X/

kUxk2`n
2

dhX.U /

� 1
2

D
1
p
n
kxk`n

2
kyk`n

2
;

where the final step uses the fact that each U 2 Isom.X/ is an orthogonal transforma-
tion.

One way to achieve (6.115), which is close in spirit to the considerations in [286],
is when there are � � ¹�1; 1ºn and … � Sn such that U";� 2 Isom.X/ for every
."; �/ 2 � �…, where U";� 2 GLn.R/ is given by

8x D .x1; : : : ; xn/ 2 Rn; U";�x
def
D
�
"1x�.1/; : : : "nx�.n/

�
;

and also there are ˛; ˇ > 0 such that

8w 2 Rn;
1

j�j

X
"2�

jh"; wij 6 ˛kwk`n
2

(6.116)

and

8i; j 2 ¹1; : : : ; nº; j¹� 2 … W �.i/ D j ºj 6 ˇ
j…j

n
: (6.117)

Under these assumptions, X is 
 -negatively correlated with 
 D ˛
p
ˇ. Indeed, we

can take � in (6.115) to be the uniform distribution over the finite set

¹U";� W ."; �/ 2 � �…º � Isom.X/;

since every x; y 2 Rn satisfy

1

j� �…j

X
.";�/2��…

jhU";�x; yij
(6.116)
6
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j…j

X
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˛

 
nX
iD1

.x�.i/yi /
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! 1
2

6 ˛

 
nX
iD1

�
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j…j

X
�2…

x2�.i/
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y2i

! 1
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nX
iD1
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nX
jD1

j¹� 2 … W �.i/Dj ºjx2j

!
y2i

!1
2

(6.117)
6

˛
p
ˇ

p
n
kxk`n

2
kyk`n

2
:
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Condition (6.116) can be viewed as a negative correlation property of the coor-
dinates of sign vectors that are chosen uniformly from � . Condition (6.117) roughly
means that for each i 2 ¹1; : : : ;nº the sets ¹� 2… W �.i/D 1º; : : : ; ¹� 2… W �.i/D nº
form an approximately equitable partition of…. This holds with ˇ D 1 if… is a tran-
sitive subgroup of Sn. One could formulate weaker conditions that ensure the validity
of the conclusion of Lemma 166 (e.g., considering bi-Lipschitz automorphisms of X
rather than isometries of X), and hence also the conclusion of Corollary 167, though
we will not pursue this here as we expect that in concrete cases such issues should be
easy to handle.

6.3 Volume ratio computations

Here we will present asymptotic evaluations of volume ratios of some normed spaces,
for the purpose of plugging them into results that we stated in the Introdcution. Due
to the large amount of knowledge on this topic that is available in the literature, we
will only give a flavor of such applications. The main reference for the contents of
this section is the valuable work [285].

We will start by examining the iteratively nested p̀ products ¹Xkº1kD0 that we
considered in Corollary 153, in the special case when the initial space X D X0 is a
canonically positioned normed space for which Conjecture 49 holds. Thus, we are
fixing ¹nkº1kD0 � N and ¹pkº1kD1 � Œ1;1�, and assuming that

X D .Rn0 ; k � kX/

is a canonically positioned normed space satisfying Conjecture 49, i.e., (6.16) holds
with ˛ D O.1/; the case X D R is sufficiently rich for our present illustrative pur-
poses, but one can also take X D E to be any symmetric space, per Lemma 54. By
Corollary 153 and Corollary 79, if we define inductively

8k 2 N; XkC1 D `nkpk .Xk/; where X0 D X;

then, because ¹Xkº1kD1 are canonically positioned (they belong to the class of spaces
in Example 40),

8m 2 N; SEP.Xm/ � evr.Xm/
p

dim.Xm/ D evr.Xm/
p
n0 � � �nm: (6.118)

Let ¹Hkº
1
kD0

be the sequence of Euclidean spaces that arise from the above con-
struction with the same ¹nkº1kD0 � N but with pk D 2 for all k 2 N and X D `n02 .
Thus, for eachm2N the Euclidean space Hm can be identified naturally with `n0���nm2 .
Under this identification, by a straightforward inductive application of Hölder’s
inequality and the fact that the p̀ norm deceases with p, the Löwner ellipsoid of
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Xm satisfies1

LXm �

 
mY
kD1

n
max¹ 12�

1
pk
;0º

k

!
.LX/

n1���nm :

Also, by Lemma 150 we have

voln0���nm
�
BXm

� 1
n0���nk �

voln0
�
BX
� 1
n0Qm

kD1 n
1
pk

k

:

These facts combine to give the following consequence of (6.118):

SEP.Xm/ � evr.X/
mY
kD1

n
max¹ 12 ;

1
pk
º

k
:

In particular, when we take X D R and consider only two steps of the above
iteration, we get the following asymptotic evaluation of the separation modulus of the
`np.`

m
q / norm the space of n-by-mmatricesMn�m.R/ for any n;m 2N and p;q > 1;

the case of square matrices was stated in the Introduction as (1.5):

SEP
�
`np.`

m
q /
�
� nmax¹ 1p ;

1
2 ºmmax¹ 1q ;

1
2 º D max

®p
nm;m

1
q
p
n; n

1
p
p
m; n

1
pm

1
q

±
:

Next, fix an integer n > 2 and let E D .Rn; k � kE/ be an unconditional normed
space. Given q 2 Œ2;1� andƒ > 1, one says (see, e.g., [182, Definition 1.f.4]) that E
satisfies a lower q-estimate with constantƒ if for every ¹ukº1kD1 � Rn with pairwise
disjoint supports we have 

1X
kD1

kukk
q
E

! 1
q

6 ƒ






 1X
kD1

uk







E

: (6.119)

Note that by (6.14) this always holds with ƒ D 1 if q D1.
In concrete cases it is often mechanical to evaluate up to universal constant factors

the minimum radius of a Euclidean ball that circumscribes BX, but it is always within
a O.
p

logn/ factor of the expression

RE
def
D max

¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
: (6.120)

More precisely, if E satisfies a lower q-estimate with constant ƒ, then

RE 6 outradius`n
2
.BX/ . ƒ.logn/

1
2�

1
qRE: (6.121)

1As Xm is canonically positioned, this holds as an equality, but for the present purposes we
just need the stated inclusion.
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The first inequality in (6.121) is immediate because k
P
i2S eik

�1
E
P
i2S ei 2 BE if

¿ ¤ S � ¹1; : : : ; nº. For a quick justification of the second inequality in (6.121),
note that by homogeneity we may assume without loss of generality that keikE > 1
for every i 2 N. Therefore, using (6.14) we see that if x D .x1; : : : ; xn/ 2 BE, then
maxi2¹1;:::;nº jxi j 6 1. Consequently, if we fix x 2 BE and denote for each k 2 N,

Sk D Sk.x/
def
D

²
i 2 ¹1; : : : ; nº W

1

2k
< jxi j 6

1

2k�1

³
; (6.122)

then the sets ¹Skº1kD1 are a partition of ¹1; : : : ; nº and in particular
P1
kD1 jSkj D n.

Next,

ƒRE > ƒREkxkE > RE

 
1X
kD1




 X
i2Sk

xiei




q
E

! 1
q

>

 
1X
kD1

R
q
E





X
i2Sk

1

2k
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q
E

! 1
q
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1X
kD1

jSkj
q
2

2kq

! 1
q

: (6.123)

The second step of (6.123) uses (6.119), the penultimate step of (6.123) uses (6.14)
and (6.122), and the final step of (6.123) uses (6.120). Now, for every 0 < � < 1 we
have

kxk`n
2
D

 
1X
kD1

X
i2Sk

x2i

! 1
2
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jSkj

22.k�1/

! 1
2

D 2
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jSkj
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22k.1��/
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�2�2k�

! 1
2

6 2

 
1X
kD1

jSkj
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2

22kq

! 1��
q
 
1X
kD1

jSkj

! �
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1X
kD1

2�
2kq�

.q�2/.1��/

!. 12� 1q /.1��/
. .ƒRE/

1��n
�
2 ��.

1
2�

1
q /; (6.124)

where the second step of (6.124) uses (6.122), the penultimate step of (6.124) uses
trilinear Hölder with exponents 1=� , q=.2.1� �// and 1=..1� 2=q/.1� �//, and the
final step of (6.124) uses (6.123), the fact that

1X
kD1

jSkj D n;

and elementary calculus. By choosing � D 1= logn in (6.124), we get (6.121).
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By the Lozanovskiı̆ factorization theorem [186] there exist w1; : : : ; wn > 0 such
that 




 nX

iD1

wiei







E

D






 nX
iD1

1

wi
ei







E*

D
p
n: (6.125)

We will call any w1; : : : ;wn > 0 that satisfy (6.125) Lozanovskiı̆ weights for E. They
can be found by maximizing the concave function w 7!

Pn
iD1 logwi over w 2 BE

(see also, e.g., [263, Chapter 3]), which can be done efficiently if E is given by an
efficient oracle; their existence can also be established non-constructively using the
Brouwer fixed point theorem [135]. By [285, Lemma 1.2] (note that we are using a
different normalization of the weights than in [285]),

voln.BE/
1
n �

.w1 � � �wn/
1
n

p
n

: (6.126)

By combining (6.121) and (6.126), we get the following lemma.

Lemma 168. Fix an integer n > 2 and let E D .Rn; k � kE/ be an unconditional
normed space. Suppose that E satisfies a lower q-estimate with constant ƒ for some
q > 2 and ƒ > 1. Then,

evr.E/ .
max¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
n
p
w1 � � �wn

ƒ.logn/
1
2�

1
q ;

for any Lozanovskiı̆ weights w1; : : : ; wn > 0 for E. If the Löwner ellipsoid of E is a
multiple of B`n

2
, then

max¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
n
p
w1 � � �wn

. evr.E/

.
max¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
n
p
w1 � � �wn

ƒ.logn/
1
2�

1
q :

The following corollary is a consequence of Lemma 168 because if

E D .Rn; k � kE/

is a normed space that satisfies the assumptions of Lemma 53 (in particular, E is
unconditional), then by Lemma 152

w1 D w2 D � � � D wn D

p
n

ke1 C � � � C enkE

are Lozanovskiı̆ weights for E.
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Corollary 169. If E D .Rn; k � kE/ a normed space that satisfies the assumptions of
Lemma 53, then

ke1 C � � � C enkE
p
n

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
. evr.E/ .

ke1 C � � � C enkE
p
n

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�p
logn:

Hence, by Corollary 79 we have

ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
. SEP.E/ . ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�p
logn;

More succinctly, this can be written in the following form, which we already stated in
Corollary 4:

SEP.E/ D ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
no.1/:

By [285, Proposition 2.2], the unitary ideal of any symmetric normed space E D
.Rn; k � kE/ satisfies

vr.SE/ � vr.E/: (6.127)

This implies that
evr.SE/ � evr.E/; (6.128)

by (1.71) combined with S�E D SE* , though a straightforward adjustment of the proof
of (6.127) in [285] yields (6.128) directly, without using the much deeper result
(1.71). We therefore have the following corollary.

Corollary 170. If E D .Rn; k � kE/ is a symmetric normed space, then

ke1 C � � � C enkE
p
n

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
. evr.SE/ .

ke1 C � � � C enkE
p
n

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�p
logn:

Hence, by Corollary 79 we have

ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
p
n

. SEP.SE/ . ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
p
n logn;
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More succinctly, this can be written in the following form, which we already stated in
Corollary 4:

SEP.SE/ D ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
n
1
2Co.1/:

Remark 171. In the above discussion, as well as in the ensuing treatment of ten-
sor products, we prefer to consider square matrices rather than rectangular matrices
because the setting of square matrices exhibits all of the key issues while being nota-
tionally simpler. Nevertheless, there are two places in which we do need to work
with rectangular matrices, namely the above proof of Proposition 164 and the proof
of the first inequality in (1.117). For the latter, fix p > 1 and n; m 2 N. As in the
proof of Theorem 77, denote the Schatten–von Neumann trace class on the n-by-m
real matrices Mn�m.R/ by Sn�mp ; recall (1.118). The following asymptotic identity
implies (1.119) (recall that in the setting of (1.119) we have r 2 ¹1; : : : ; nº)

evr
�
Sn�mp

�
�
�
min¹n;mº

�max¹ 1p�
1
2 ;0º: (6.129)

Volumes of unit balls of Schatten–von Neumann trace classes have been satisfacto-
rily estimated in the literature, starting with [293] and the comprehensive work [285],
through the more precise asymptotics in [146,277]. Unfortunately, all of these works
dealt only with square matrices. Nevertheless, these references could be mechani-
cally adjusted to treat rectangular matrices as well. Since (6.129) does not seem to
have been stated in the literature, we will next sketch its derivation by mimicking the
reasoning of [285], though the more precise statements of [146,277] could be derived
as well via similarly straightforward modifications of the known proofs for square
matrices. We claim that

volnm
�
BSn�mp

� 1
nm �

1�
min¹n;mº

� 1
p
p

max¹n;mº
: (6.130)

(6.130) gives (6.129) since Sn�mp is canonically positioned, so by Hölder’s inequality
its Löwner ellipsoid is

LSn�mp
D
�
min¹n;mº

�max
®
1
2�

1
p ;0
¯
BSn�m

2
:

To prove (6.130), note first that it follows from its special case p D 1. Indeed, as
Sn�m1 D .Sn�m1 /�, by the Blaschke–Santaló inequality [39, 278] and the Bourgain–
Milman inequality [50] the case p D 1 of (6.130) follows from its case p D1. Now,
(6.130) follows in full generality since by Hölder’s inequality:

1�
min¹n;mº

� 1
p

BSn�m1 � BSn�mp
�
�
min¹n;mº

�1� 1pBSn�m
1

:
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The upper bound volnm.BSn�m1 /1=.nm/ . 1=
p

max¹n;mº follows from the inclusion
BSn�m1 �

p
min¹n;mºBSn�m

2
. To justify the matching lower bound, if ¹"ij ºi;j2N are

i.i.d. Bernoulli random variables, then by [35, Theorem 1],

E

"




 nX
iD1

mX
jD1

"ij ei ˝ ej







Sn�m1

#
.
p

max¹n;mº;

This implies the lower bound volnm.BSn�m1 /1=.nm/ & 1=
p

max¹n;mº by an applica-
tion of [285, Lemma 1.5].

Proof of Lemma 54. By [285, equation (2.2)] we have

voln2
�
BSE

� 1
n2 �

1

ke1 C � � � C enkE
p
n
: (6.131)

In particular,

8q > 1; voln2
�
BSnq

� 1
n2 �

1

n
1
2C

1
q

: (6.132)

Because Snq is canonically positioned (it belongs to the class of spaces in Example 40),
and hence it is in its minimum surface area position, by combining [104, Proposi-
tion 3.1] and (1.55) we see that

voln2�1
�
@BSnq

�
voln2

�
BSnq

� �
nMaxProj

�
BSnq

�
voln2

�
BSnq

� (1.43)
� n

3
2C

1
q

p
min¹q; nº: (6.133)

Consequently,

iq
�
BSnq

�
D n

voln2�1
�
@BSnq

�
voln2

�
BSnq

� voln2
�
BSnq

� 1
n2

(6.132)^(6.133)
�

n
3
2C

1
q

p
min¹q; nº

n
1
2C

1
q

D n
p

min¹q; nº: (6.134)

Because by (6.14) we have

8x 2 Rn; kxkE 6 ke1 C � � � C enkEkxk`n1 ;

every matrix A 2 Mn.R/ satisfies

kAkSE 6 ke1 C � � � C enkEkAkSn1 6 ke1 C � � � C enkEkAkSnq :

Consequently,
1

ke1 C � � � C enkE
BSnq � BSE : (6.135)
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Moreover,

iq
�

1

ke1 C � � � C enkE
BSnq

�
D iq

�
BSnq

� (6.134)
� n

p
min¹q; nº

and

voln2
�

1

ke1 C � � � C enkE
BSnq

� 1

n2 (6.132)
�

1

ke1 C � � � C enkEn
1
2C

1
q

(6.131)
�

voln2
�
BSE

� 1
n2

n
1
q

:

By choosing q D log n we get (1.80) for the normed space Y whose unit ball is the
left-hand side of (6.135).

Remark 172. An inspection of the proof of Lemma 54 reveals that if Conjecture 49
holds for Sn1, then also Conjecture 49 holds for SE for any symmetric normed space
ED .Rn; k � kE/. Indeed, we would then take Y0 D .Mn.R/; k � kY0/ to be the normed
space whose unit ball is

BY0 D
1

ke1 C � � � C enkE
ChSn1 D

1

ke1 C � � � C enkE
S�`n1 ;

where we recall Corollary 43. If Conjecture 49 holds for Sn1, then we would have
n � iq.ChSn1/ D iq.BY0/, and also

voln2
�
ChSn1

� 1
n2 � voln2

�
Sn1

� 1
n2

(6.132)
�

1
p
n
;

from which we see that

voln2
�
BY0

� 1
n2 D

voln2
�
ChSn1

� 1
n2

ke1 C � � � C enkE
�

1

ke1 C � � � C enkE
p
n

(6.131)
� voln2

�
BSE

� 1
n2 :

This proves Conjecture 49 for SE. Note in passing that this also implies that

1
p
n
� voln2

�
S�`n1

� 1
n2

(6.131)
�

1

ke1 C � � � C enk�`n1
p
n
:

Hence, if Conjecture 49 holds for Sn1, then we would have ke1 C � � � C enk�`n1 � 1.
More generally, by mimicking the above reasoning we deduce that if Conjecture 49
holds for SE, then ke1 C � � � C enk�E � ke1 C � � � C enkE, which would be a modest
step towards Problem 44.

Fix n 2 N and p; q > 1. We claim that the volume ratio of the projective tensor
product `np y̋ `

n
q satisfies

vr
�
`np y̋ `

n
q

�
� p̂;q.n/; (6.136)



204 Volume computations

where

p̂;q.n/
def
D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

1 if 1 6 p; q 6 2;

n
1
2�

1
p if q 6 2 6 p 6 q

q�1
;

n
1
q�

1
2 if q 6 2 6 q

q�1
6 p;

n
1
2�

1
q if p 6 2 6 q 6 p

p�1
;

n
1
p�

1
2 if p 6 2 6 p

p�1
6 q;

1 if p; q > 2 and 1
p
C

1
q
> 1

2
;

n
1
2�

1
p�

1
q if 1

p
C

1
q
6 1

2
:

(6.137)

Assuming (6.137) for the moment, by substituting it into Theorem 3 we get that

SEP
�
`np {̋ `

n
q

�
& n vr

��
`np {̋ `

n
q

���
D n vr

�
`np� y̋ `

n
q�

�

� n p̂�;q�.n/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

n if p; q > 2;

n
1
pC

1
2 if q

q�1
6 p 6 2 6 q;

n
3
2�

1
q if p 6 q

q�1
6 2 6 q;

n
1
qC

1
2 if p

p�1
6 q 6 2 6 p;

n
3
2�

1
p if q 6 p

p�1
6 2 6 p;

n if p; q 6 2 and 1
p
C

1
q
6 3

2
;

n
1
pC

1
q�

1
2 if 1

p
C

1
q
> 3

2
:

Since for any two normed spaces X D .Rn; k � kX/ and Y D .Rn; k � kY/ the space
of operators from X� to Y is isometric to the injective tensor product X� {̋Y (see,
e.g., [87]), we get from this that

SEP
�
Mn.R/; k � k`np!`nq

�
D SEP

�
`np� {̋ `

n
q

�

&

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

n if p 6 2 6 q;
n
3
2�

1
p if 2 6 p 6 q;

n
3
2�

1
q if 2 6 q 6 p;

n
1
qC

1
2 if p 6 q 6 2;

n
1
pC

1
2 if q 6 p 6 2;

n if 2p
pC2
6 q 6 2 6 p;

n
1
q�

1
pC

1
2 if q 6 2p

pC2
:

(6.138)

Note that the rightmost quantity in (6.138) coincides with the right-hand side of
(1.14). Since `np {̋ `

n
q belongs to the class of spaces in Example 40, a positive answer
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to Conjecture 11 for `np {̋ `
n
q would imply the following asymptotic evaluation of

SEP.`np {̋ `
n
q/, which is equivalent to (1.14):

SEP
�
`np {̋ `

n
q

�
�

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

n if p; q > 2;
n
1
2C

1
p if q

q�1
6 p 6 2 6 q;

n
3
2�

1
q if p 6 q

q�1
6 2 6 q;

n
1
2C

1
q if p

p�1
6 q 6 2 6 p;

n
3
2�

1
p if q 6 p

p�1
6 2 6 p;

n if p; q 6 2 and 1
p
C

1
q
6 3

2
;

n
1
pC

1
q�

1
2 if 1

p
C

1
q
> 3

2
:

Furthermore, by Theorem 80 the leftmost quantity in (6.138) is bounded from above
by O.log n/ times the rightmost quantity in (6.138), thus implying the fourth bullet
point of Corollary 4.

The asymptotic evaluation (6.136) of vr.`np y̋ `
n
q/ was proved in [285] up to con-

stant factors that depend on p, q, namely [285, Theorem 3.1] states that

8p; q > 1; vr
�
`np y̋ `

n
q

�
�p;q p̂;q.n/: (6.139)

If 2 2 ¹p; qº and also min¹p; qº 6 2, then (6.139) is due to Szarek and Tomczak-
Jaegermann [293]. More recently, Defant and Michels [84] generalized (6.139) to
projective tensor products of symmetric normed spaces that are either 2-convex or 2-
concave. The proof of (6.139) in [285] yields constants that degenerate as min¹p; qº
tends to 1. We will therefore next improve the reasoning in [285] to get (6.136).

Lemma 173. Fix n 2 N and p; q > 1. Let ¹"ij ºi;j2¹1;:::;nº be i.i.d. Bernoulli random
variables (namely, they are independent and each of them is uniformly distributed
over ¹�1; 1º). Then,

E

"




 nX
iD1

nX
jD1

"ij ei ˝ ej







`np {̋ `

n
q

#
� nˇ.p;q/

def
D

´
n
1
pC

1
q�

1
2 if max¹p; qº 6 2;

n
1

min¹p;qº if max¹p; qº > 2:
(6.140)

Citing the work [79] of Chevet, a version of Lemma 173 appears as [285, Lemma
2.3], except that in [285, Lemma 2.3] the implicit constants in (6.140) depend on p, q.
An inspection of the proof of (6.139) in [285] reveals that this is the only source of
the dependence of the constants on p, q (in fact, for this purpose [285] only needs
half of (6.140), namely to bound from above its left-hand side by its right-hand side).
Specifically, all of the steps within [285] incur only a loss of a universal constant
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factor, and the proof of (6.139) in [285] also appeals to inequalities in the earlier
work [284] of Schütt, as well a classical inequality of Hardy and Littlewood [127];
all of the constants in these cited inequalities are universal. Therefore, (6.136) will be
established after we prove Lemma 173.

Proof of Lemma 173. We will denote the random matrix whose .i; j / entry is "ij by
E 2 Mn.R/. Then, the goal is

E
�
kEk`n

p�
!`nq

�
� nˇ.p;q/: (6.141)

In fact, the lower bound on the expected norm in (6.141) holds always, i.e., for a
universal constant c > 0,

8A 2 Mn.¹�1; 1º/; kAk`n
p�
!`nq
> cnˇ.p;q/: (6.142)

A justification of (6.142) appears in the proof of Proposition 3.2 of Bennett’s work
[34] (specifically, see the reasoning immediately after [34, inequality (15)]), where it
is explained that we can take c D 1 if min¹p�; qº > 2 or max¹p�; qº 6 2, and that
we can take c D 1=

p
2 otherwise.

Next, let ¹gij ºi;j2¹1;:::;nº be i.i.d. standard Gaussian random variables. By [79,
Lemme 3.1],

E

"




 nX
iD1

nX
jD1

gij ei ˝ ej







`np {̋ `

n
q

#
� nmax¹ 1pC

1
q�

1
2 ;
1
p º
p
p C nmax¹ 1pC

1
q�

1
2 ;
1
q º
p
q:

(6.143)
Consequently,

E

"




 nX
iD1

nX
jD1

"ij ei ˝ ej







`np {̋ `

n
q

#
6
r
�

2
E

"




 nX
iD1

nX
jD1

gij ei ˝ ej







`np {̋ `

n
q

#
. nˇ.p;q/

p
max¹p; qº; (6.144)

where the first step of (6.144) is a standard comparison between Rademacher and
Gaussian averages (a quick consequence of Jensen’s inequality; e.g., [204]) and the
final step of (6.144) uses (6.143). This proves the desired bound (6.140) when

max¹p; qº 6 2;

so suppose from now on that max¹p; qº > 2.
It suffices to treat the case p> 2. Indeed, if p6 2, then q > 2 since max¹p;qº> 2,

so by the duality
kEk`n

p�
!`nq
D kE�k`n

q�
!`np

;
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and the fact that the transpose E� has the same distribution as E, the case p 6 2
follows from the case p > 2. It also suffices to treat the case q 6 p because if q > p,
then k � k`nq 6 k � k`np point-wise, and therefore

kEk`n
p�
!`nq
6 kEk`n

p�
!`np

:

Consequently, since ˇ.p; q/D ˇ.p;p/ when q > p, the case q > p follows from the
case q D p.

So, suppose from now that p > 2 and q 6 p. If we denote

r
def
D
q.p � 2/

p � q
;

with the convention r D1 if q D p, then r > 1 and

1

q
D
1 � �

r
C
�

2
; where � def

D
2

p
2 Œ0; 1�: (6.145)

Hence, by the Riesz–Thorin interpolation theorem [272, 301] we have

kEk`n
p�
!`nq
6 kEk1��`n

1
!`nr
kEk�`n

2
!`n

2

D
�

max
i2¹1;:::;nº



Eei

`nr �1��kEk�`n2!`n2 D n 1��r kEk�`n2!`n2 :
By taking expectations of this inequality, we get that

E
�
kEk`n

p�
!`nq

�
6 n

1��
r E

�
kEk�`n

2
!`n

2

�
6 n

1��
r

�
E
�
kEk`n

2
!`n

2

���
. n

1��
r C

�
2 D n

1
q D nˇ.p;q/; (6.146)

where the second step of (6.146) uses Jensen’s inequality, the third step of (6.146)
uses the classical fact that the expectation of the operator norm from `n2 to `n2 of an
n� nmatrix whose entries are i.i.d. symmetric Bernoulli random variables isO.

p
n/

(this follows from (6.144), though it is older; see, e.g., [35]), the penultimate step
of (6.146) uses (6.145), and the last step of (6.146) uses the definition of ˇ.p; q/
in (6.140) while recalling that we are now treating the case p > 2 and q 6 p.

A substitution of Lemma 173 into the proof of [285, Lemma 3.2] yields the fol-
lowing asymptotic evaluations of the n2-roots of volumes of the unit balls of injective
and projective tensor products; the statement of [285, Lemma 3.2] is identical, except
that the constant factors depend on p; q, but that is due only to the dependence of the
constants on p, q in [285, Lemma 2.3], which Lemma 173 removes

voln2
�
B`np {̋ `nq

� 1
n2 � n�ˇ.p;q/ and voln2

�
B`np y̋ `nq

� 1
n2 � nˇ.p

�;q�/�2: (6.147)



208 Volume computations

Since `np y̋ `
n
q belongs to the class of spaces in Example 40, its Löwner ellipsoid

is the minimal multiple of the standard Euclidean ball BSn
2

that superscribes the unit
ball of `np y̋ `

n
q , namely

L`np y̋ `nq D R.n; p; q/BSn
2
;

where, since B`np y̋ `nq is the convex hull of B`np ˝ B`nq ,

R.n; p; q/ D max
x2B`np
y2B`nq

kx ˝ ykSn
2

D
�

max
x2B`np

kxk`n
2

��
max
y2B`nq

kyk`n
2

�
D nmax¹ 12�

1
p ;0ºCmax¹ 12�

1
q ;0º: (6.148)

By combining (6.147) and (6.148) we get that

vr
�
`np� {̋ `

n
q�

� (1.71)
� evr

�
`np y̋ `

n
q

�
D R.n; p; q/

� voln2.BSn
2
/

voln2.B`np y̋ `nq /

� 1

n2

� nmax¹ 12�
1
p ;0ºCmax¹ 12�

1
q ;0º�ˇ.p

�;q�/C1

(6.140)
D

´p
n if max¹p; qº > 2;

n
1

max¹p;qº if max¹p; qº 6 2:
(6.149)

A substitution of (6.149) into Theorem 3 gives

SEP
�
`np y̋ `

n
q

�
&

´
n
3
2 if max¹p; qº > 2;
n
1C 1

max¹p;qº if max¹p; qº 6 2:
(6.150)

Furthermore, if Conjecture 11 holds for `np y̋ `
n
q , then (6.150) is sharp, namely (1.15)

holds. Also, by Theorem 80 the left-hand side of (6.150) is bounded from above by
O.log n/ times the right-hand side of (6.150), thus implying the fifth bullet point of
Corollary 4.

Remark 174. The above results imply clustering statements (and impossibility
thereof) for norms that have significance to algorithms and complexity theory. For
example, the cut norm [101] on Mn.R/ is O.1/-equivalent [6] to the operator norm
from `n1 to `n1 . So, by (1.13) the separation modulus of the cut norm on Mn.R/ is
predicted to be bounded above and below by universal constant multiples of n3=2,
and by Theorem 80 we know that it is at least a universal constant multiple of n3=2

and at most a universal constant multiple of n3=2 log n. As another notable example,
we proved that

SEP.`n1 y̋ `
n
1/ & n

3
2 :
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Moreover, if Conjecture 11 holds for `n1 y̋ `
n
1, then SEP.`n1 y̋ `

n
1/ � n3=2 and by

Theorem 80 we have
SEP.`n1 y̋ `

n
1/ . n

3
2 logn:

Grothendieck’s inequality [121] implies that

8A 2 Mn.R/; kAk`n1 y̋ `n1 � 

1!1
2 .A/; (6.151)

where 
1!12 .A/ is the factorization-through-`2 norm (see [261]) of A as an operator
from `n1 to `n1, i.e.,


1!12 .A/
def
D min

X;Y2Mn.R/
ADXY

kXk`n
2
!`n1kY k`n1!`

n
2

D min
X;Y2Mn.R/
ADXY

max
i;j2¹1;:::;nº

krowi .X/k`n
2
kcolumnj .Y /k`n

2
:

Above, for i; j 2 ¹1; : : : ;nº andM 2Mn.R/we denote by rowi .M/ and columnj .M/

the i th row and j th column of M , respectively. See [183] for the justification of
(6.151), as well as the importance of the factorization norm 
1!12 to complexity the-
ory (see [38,202] for further algorithmic significance of factorization norms). Thanks
to the above discussion, we know that

n
3
2 . SEP

�
Mn.R/; 


1!1
2

�
. n

3
2 logn;

and that SEP.Mn.R/; 
1!12 /� n3=2 assuming Conjecture 11. To check that this does
not follow from the previously known bounds (1.2), we need to know the asymptotic
growth rate of the Banach–Mazur distance between `n1 y̋ `

n
1 and each of the spaces

`n
2

1 ; `
n2

2 . However, these Banach–Mazur distances do not appear in the literature. In
response to our inquiry, Carsten Schütt answered this question, by showing that

dBM
�
`n
2

2 ; `
n
1
y̋ `n1

�
� dBM

�
`n
2

1 ; `
n
1
y̋ `n1

�
� n: (6.152)

More generally, Schütt succeeded to evaluate the asymptotic growth rate of the
Banach–Mazur distance between `np y̋ `

n
q and `np {̋ `

n
q to each of `n

2

1 ; `
n2

2 for every
p; q 2 Œ1;1� (this is a substantial matter that Schütt communicated to us privately
and he will publish it elsewhere). Due to (6.152), an application of (1.2) only gives the
bounds n. SEP.`n1 y̋ `

n
1/. n2, which hold for every n2-dimensional normed space.

More generally, Schütt’s result shows that (1.13) and (1.15) do not follow from (1.2).

The volume computations of this section are only an indication of the available
information. The literature contains many more volume estimates that could be sub-
stituted into Theorem 3 and Conjecture 6 to yield new results (and conjectures) on
separation moduli of various spaces; examples of further pertinent results appear
in [20, 85, 88, 104, 110, 115–117, 145, 146, 285].





Chapter 7

Logarithmic weak isomorphic isoperimetry in minimum
dual mean width position

In this section we will prove the results that we stated in Section 1.6.3. We first claim
that for every integer n > 2 and every r > 0 we have

iq
�
B`n1 \ .rB`n2 /

�
D iq

�
Œ�1; 1�n \ .rB`n

2
/
�

&

 
min

®p
n; r

¯�
1 �

1

max
®
1; r2

¯�n�12 C 1!pn: (7.1)

Observe that (7.1) implies (1.85). Furthermore, (7.1) implies the direction& in (1.86)
because

min
r>0

iq
�
B`n1 \ .rB`n2 /

�
p
n

�
voln.B`n1/

voln
�
B`n1 \ .rB`n2 /

�� 1n
> min

r>0

iq
�
B`n1 \ .rB`n2 /

�
p
n

�
2n

voln
�
rB`n

2

�� 1n
& min

r>0

 
min

²p
n

r
; 1

³�
1 �

1

max
®
1; r2

¯�n�12 C 1

r

!
p
n

�
p

logn;

where the penultimate step uses (7.1) and the final step is elementary calculus. Since
the K-convexity constant of `n1 satisfies K.`n1/ �

p
logn (see [263, Chapter 2]),

the matching upper bound in (1.86) will follow after we will prove (below) Proposi-
tion 61. This will also show that Proposition 61 is sharp, though it would be worth-
while to find out if it is sharp even for some normed space X D .Rn; k � kX/ for
which K.X/ � logn; such a space exists by a remarkable (randomized) construction
of Bourgain [44].

To prove (7.1), note first that if 0 < r 6 1, then rB`n
2
� Œ�1; 1�n and therefore

80 < r 6 1; iq
�
Œ�1; 1�n \ .rB`n

2
/
�
D iq.rB`n

2
/ �
p
n: (7.2)

Similarly, note that if r >
p
n, then rB`n

2
� Œ�1; 1�n and therefore

8r >
p
n; iq

�
Œ�1; 1�n \ .rB`n

2
/
�
D iq

�
Œ�1; 1�n

�
� n: (7.3)

Both (7.2) and (7.3) coincide with (7.1) in the respective ranges. The less trivial range
of (7.1) is when 1< r <

p
n, in which case the boundary of Œ�1;1�n\ .rB`n

2
/ contains



212 Logarithmic weak isomorphic isoperimetry in minimum dual mean width position

the disjoint union of the intersection of rB`n
2

with the 2n faces of Œ�1; 1�n, each of
which is isometric to the following set:

Œ�1; 1�n�1 \
�p
r2 � 1B`n�1

2

�
:

Together with the straightforward inclusion

Œ�1; 1�n�1 \
�p
r2 � 1B`n�1

2

�
�

r
1 �

1

r2

�
Œ�1; 1�n�1 \ .rB`n�1

2
/
�
;

the above observation implies that if 1 < r <
p
n, then

voln�1
�
@
�
Œ�1; 1�n \ .rB`n

2
/
��

> 2n
�
1 �

1

r2

�n�1
2

voln�1
�
Œ�1; 1�n�1 \ .rB`n�1

2
/
�

D n

�
1 �

1

r2

�n�1
2

voln
��
Œ�1; 1�n�1 \ .rB`n�1

2
/
�
� Œ�1; 1�

�
> n

�
1 �

1

r2

�n�1
2

voln
�
Œ�1; 1�n \ .rB`n

2
/
�
; (7.4)

where the final step (7.4) is a consequence of the straightforward inclusion�
Œ�1; 1�n�1 \ .rB`n�1

2
/
�
� Œ�1; 1� � Œ�1; 1�n \ .rB`n

2
/:

By combining (7.4) with the definition (1.11) of the isoperimetric quotient, we see
that

iq
�
Œ�1; 1�n \ .rB`n

2
/
�
>
n
�
1 � 1

r2

�n�1
2 voln

�
Œ�1; 1�n \ .rB`n

2
/
�

voln
�
Œ�1; 1�n \ .rB`n

2
/
�n�1
n

D n

�
1 �

1

r2

�n�1
2

voln
�
Œ�1; 1�n \ .rB`n

2
/
� 1
n : (7.5)

When r 6
p
n we have

Œ�1; 1�n \ .rB`n
2
/ �

h
�

r
p
n
;
r
p
n

in
:

In combination with (7.5), this implies that

81 < r <
p
n; iq

�
Œ�1; 1�n \ .rB`n

2
/
�
> 2r
p
n

�
1 �

1

r2

�n�1
2

:

As also iq.Œ�1; 1�n \ .rB`n
2
// &

p
n by the isoperimetric theorem (1.12), this com-

pletes the proof of (7.1).
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Passing to the proof of Proposition 61, observe first that for every r > 0 we have

voln
�
BX \ .rB`n

2
/
�

voln.rB`n
2
/

D
voln

�
¹x 2 rB`n

2
W kxkX 6 1º

�
voln.rB`n

2
/

> 1 �
 
rB`n

2

kxkX dx D 1 �
nr

nC 1
M.X/; (7.6)

where the penultimate step in (7.6) is Markov’s inequality and the final step in (7.6)
is integration in polar coordinates using the following standard notation for the mean
of the norm on the Euclidean sphere:

M.X/ def
D

 
Sn�1

kzkX dz:

We will also use the common notationM �.X/ def
DM.X�/. By setting r D 1=.2M.X//

in (7.6) we get that

voln

�
BX \

�
1

2M.X/
B`n

2

�� 1
n

>
�
1

2
voln

�
1

2M.X/
B`n

2

�� 1
n

�
1

M.X/
p
n
: (7.7)

This simple consideration gives the following general elementary lemma.

Lemma 175. Let X D .Rn; k � kX/ be a normed space. If we denote r D 1=.2M.X//
and L D BX \ .rB`n

2
/, then we have

voln.L/
1
n &

1

M.X/
p
n

and
MaxProj.L/

voln.L/
n�1
n

. 1: (7.8)

Proof. The first inequality in (7.8) follows from (7.7). For the second inequality
in (7.8), observe that Projz?.L/� Projz?.rB`n2 / for every z 2 Sn�1, since L� rB`n

2
.

Consequently,

MaxProj.L/ 6 MaxProj
�
rB`n

2

�
D rn�1 voln�1

�
B`n�1

2

�
� voln

�
rB`n

2

�n�1
n . voln.L/

n�1
n ; (7.9)

where the penultimate step of (7.9) is a standard computation using Stirling’s formula
and the final step of (7.9) uses the first inequality in (7.7).

By (1.55), the second inequality in (7.8) implies that iq.L/.
p
n. Hence, in order

to use Lemma 175 in the context of Conjecture 10 it would be beneficial to choose
S 2 SLn.R/ for which M.SX/ is small. So, fix ı > 0 and suppose that

ıM.SX/ 6 min
T2SLn.R/

M.TX/: (7.10)
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By compactness, this holds for some S 2 SLn.R/ with ı D 1, in which case the polar
of SBX is in minimum mean width position and we will say that SX is in minimum
dual mean width position (the terminology that is used in [108] is that SBX has min-
imal M ). By [107], the matrix in SLn.R/ at which minT2SLn.R/M.TX/ is attained
is unique up to orthogonal transformations. We allow the flexibility of working with
some universal constant 0 < ı < 1 rather than considering only the minimum dual
mean width position since this will encompass other commonly used positions, such
as the `-position (see [55, Section 1.11]). By [107], X is in minimum dual mean width
position if and only if the measure d�X.z/ D kzkX dz on Sn�1 is isotropic. Since �X

is evidently Isom.X/-invariant, by (1.69) if X is canonically positioned, then it is in
minimum dual mean width position.

Let 
 denote the standard Gaussian measure on R, i.e., its density at u 2R equals
exp.�u2=2/=

p
2� . The (Gaussian)K-convexity constantK.X/ of X is defined [204]

to be the infimum over those K > 0 that satisfy �
R@0






 1X
iD1

g0i

�
R@0

gif .g/ d
˝@0.g/







2

X

d
˝@0.g0/

! 1
2

6 K
��

R@0
kf .g/k2X d
˝@0.g/

� 1
2

;

for every measurable f WR@0!X with
�

R@0 kf .g/k
2
X d
˝@0.g/ <1. By [100] there

is T 2 SLn.R/ such that M.TX/M �.TX/ 6 K.X/. By the above assumption (7.10)
we know that ıM.SX/ 6M.TX/, so ıM.SX/ 6 K.X/=M �.TX/. Next, we always
have

M.X/ >
�voln.B`n

2
/

voln.BX/

� 1
n

I

see, e.g., [218, Section 2] and [132, Lemma 30] for two derivations of this well-known
volumetric lower bound on M.X/. Applying this lower bound to the dual of TX, we
get M �.TX/ > .voln.B`n

2
/= voln.BX*//1=n. The Blaschke–Santaló inequality [39,

278] states that
voln.B`n

2
/

voln.BX*/
>

voln.BX/

voln.B`n
2
/
;

so we conclude that ıM.SX/
p
n . K.X/= n

p
voln.BX/. A substitution of this bound

into Lemma 175 gives the following proposition:

Proposition 176. Fix 0 < ı 6 1 and a normed space X D .Rn; k � kX/. Suppose that
S 2 SLn.R/ satisfies

ıM.SX/ 6 min
T2SLn.R/

M.TX/:
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Then, denoting r D 1=.2M.SX// we have

voln
�
.SBX/ \ .rB`n

2
/
� 1
n &

ı

K.X/
voln.BX/

1
n

and
MaxProj

�
.SBX/ \ .rB`n

2
/
�
. voln

�
.SBX/ \ .rB`n

2
/
�n�1
n :

Furthermore, if X is canonically positioned, then this holds when S is the identity
matrix and ı D 1.

By (1.55), Proposition 176 implies Proposition 61, with the additional informa-
tion that the conclusion of Proposition 61 holds with S the identity matrix if X is
in minimum dual mean width position, in which case we obtain an upper bound on
MaxProj.L/. Hence, by the reasoning in Section 1.6, if X is in minimum dual mean
width position, then

SEP.X/ . K.X/
diam`n

2
.BX/

voln.BX/
1
n

:
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(negatively) in [54], where it is proved that econv.M/ . e.M/2 for every Polish met-
ric space .M; dM/. It is also proved in [54] that e.`n2;N/ �

4
p
n for any 1-net N

of `n2 and e.`n2;Z
n/ � 6

p
n; both of these asymptotic evaluations of Lipschitz exten-

sion moduli answer questions that were posed in the precursor [227] of the present
work. Finally, the lower order factor in the main result of [231] is removed in [54],
thus showing that an old Lipschitz almost-extension result of Bourgain [46] is sharp
up to universal constant factors. Beyond the aforementioned examples of statements
from [54], multiple other new results on Lipschitz extension and separation mod-
uli are obtained in [54]. The discussion in Remark 41 (more generally, the role that
canonically positioned norms play herein), evolved (very substantially) to the forth-
coming work [56] which investigates the question of when is it possible to construct
a norm with prescribed group of isometries; as demonstrated in [56], it turns out that
the answer to this old inverse problem is quite subtle.
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The Lipschitz extension modulus e(M) of a metric space M is the infimum over those L ∈ [1,∞]
such that for any Banach space Z and any 𝒞𝒞 𝒞 M, any 1-Lipschitz function f ∶ 𝒞𝒞 𝒞 Z can be
extended to an L-Lipschitz function F ∶ M 𝒞 Z. Johnson, Lindenstrauss and Schechtman proved
(1986) that if X is an n-dimensional normed space, then e(X) ≲ n. In the reverse direction, we
prove that every n-dimensional normed space X satisfies e(X) ≳ nc, where c > 0 is a universal
constant. Our core technical contribution is a geometric structural result on stochastic clustering
of finite dimensional normed spaces which implies upper bounds on their Lipschitz extension
moduli using an extension method of Lee and the author (2005). The separation modulus of a
metric space (M, dM) is the infimum over those σ ∈ (0,∞] such that for any Δ > 0 there is a
distribution over random partitions of M into clusters of diameter at most Δ such that for every
two points x, y ∈ M the probability that they belong to different clusters is at most σdM(x, y)/Δ.
We obtain upper and lower bounds on the separation moduli of finite dimensional normed spaces
that relate them to well-studied volumetric invariants (volume ratios and projection bodies). Using
these connections, we determine the asymptotic growth rate of the separation moduli of various
normed spaces. If X is an n-dimensional normed space with enough symmetries, then our bounds
imply that its separation modulus is equal to vr(X∗)√n up to factors of lower order, where
vr(X∗) is the volume ratio of the unit ball of the dual of X. We formulate a conjecture on
isomorphic reverse isoperimetric properties of symmetric convex bodies (akin to Ball’s reverse
isoperimetric theorem (1991), but permitting a non-isometric perturbation in addition to the
choice of position) that can be used with our volumetric bounds on the separation modulus to
obtain many more exact asymptotic evaluations of the separation moduli of normed spaces. Our
estimates on the separation modulus imply asymptotically improved upper bounds on the
Lipschitz extension moduli of various classical spaces. In particular, we deduce an improved upper
bound on e(ℓnp) when p > 2 that resolves a conjecture of Brudnyi and Brudnyi (2005), and we
prove that e(ℓn∞) ≍ √n, which is the first time that the growth rate of e(X) has been evaluated
(as dim(X) 𝒞 ∞) for any finite dimensional normed space X.
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