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Abstract

We review several properties of integrals of the Wigner distribution on subsets of
the phase space. Along our way, we provide a theoretical proof of the invalidity
of Flandrin’s conjecture, a fact already proven via numerical arguments in our joint
paper [J. Fourier Anal. Appl. 26 (2020), no. 1, article no. 6] with B. Delourme and
T. Duyckaerts. We use also the J. G. Wood and A. J. Bracken paper [J. Math. Phys.
46 (2005), no. 4, article no. 042103], for which we offer a mathematical perspective.
We review thoroughly the case of subsets of the plane whose boundary is a conic
curve and show that Mehler’s formula can be helpful in the analysis of these cases,
including for the higher-dimensional case investigated in the paper [J. Math. Phys. 51
(2010), no. 10, article no. 102101] by E. Lieb and Y. Ostrover. Using the Feichtinger
algebra, we show that, generically in the Baire sense, the Wigner distribution of a
pulse in L2(R") does not belong to L!(R?"), providing as a byproduct a large class
of examples of subsets of the phase space R?" on which the integral of the Wigner
distribution is infinite. We study as well the case of convex polygons of the plane,
with a rather weak estimate depending on the number of vertices, but independent of
the area of the polygon.

Keywords. Wigner distribution, signal theory, pseudo-differential operators
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Foreword

As indicated by the title of this memoir, this work is a survey of properties of integrals
of the Wigner distribution on subsets of the phase space. Since it is quite lengthy, we
wish in this foreword to describe the content of this article, browsing through the table
of contents, expecting that the reader will find some organization with the way this
memoir is written. In particular, we shall point here what is original in our survey (to
the best of our knowledge) and what was well-known beforehand. There is no doubt
that the fifty-five articles quoted in the references list are a small part of the literature
on the topic and could be probably extended tenfold: we expect nevertheless that our
choice of references will be enough to cover the most important contributions.

Chapter 1 is Preliminaries and definitions and is very classical. We have used
J. Leray’s book [31] and other lecture notes of this author at the Collége de France
such as [30], L. Hérmander’s four-volume treatise, The analysis of linear partial dif-
ferential operators and, in particular, volume III, as well as K. Grochenig’s [16],
Foundations of time-frequency analysis, along with G. B. Folland’s [15], A. Unter-
berger’s [50] and N. Lerner’s [33]. Some details are given, in particular, on positive
quantizations, but that chapter is far from being self-contained, which is probably
unavoidable: the link of properties of the Wigner distribution and of the Weyl quant-
ization of classical Hamiltonians is easy to obtain but turns out to be an important
piece of information for our purpose.

Chapter 2 is stressing the link Quantization of radial functions — Mehler’s formula
and is also very classical: here also the link aforementioned is easy to get but gives
some simplifications in the formulas providing the quantization of radial Hamiltoni-
ans: in one dimension for the configuration space (phase space R?), we are reduced
to check simple integrals related to the Laguerre polynomials, following P. Flandrin’s
method in his 1988 article [13].

Chapter 3 is dealing with Conics with eccentricity < 1. The result for the disc in
R? is due to P. Flandrin and the result for the Euclidean ball in R?” to E. Lieb and
Y. Ostrover in [39]. Using Mehler’s formula simplifies a little bit the presentation, but
leaves open the case of anisotropic ellipsoids for which we formulate a conjecture.

Chapter 4 is dealing with Epigraphs of Parabolas. The results obtained in that
chapter follow easily from Chapter 3 but nevertheless the precise diagonalisation
proven there seems to be new. We formulate also a conjecture on anisotropic parabol-
oids which is closely related to the conjecture in Chapter 3.

Chapter 5 is concerned with Conics with eccentricity > 1. Many of the results
in that chapter are contained in the paper [55] by J. G. Wood and A. J. Bracken;
however since the latter article contains some formal calculations, using for instance
test functions which do not belong to L?(R), we have made a mathematically sound
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presentation. As certainly the most important contribution of this work, we provide a
“theoretical” disproof of Flandrin’s conjecture on integrals of the Wigner distribution
on convex subsets of the phase space: we find, in particular, some a > 0 and some
function u € L?(R) with norm 1 such that

/ Wu,u)(x,&)dxdé > 1,
[0,a]2

where ‘W (u, u) is the Wigner distribution of u. This fact was already proven in our
joint paper [6] with B. Delourme and T. Duyckaerts, using a rigorous numerical argu-
ment.

Chapter 6 is entitled Unboundedness is Baire generic and most of its content is
included in Chapter 12 of K. Grochenig’s book [16]. Using the Feichtinger algebra,
we show that, generically in the Baire sense, the Wigner distribution of a pulse
in L2(R") does not belong to L!(R?"), providing as a byproduct a large class of
examples of subsets of the phase space R2” on which the integral of the Wigner dis-
tribution is infinite. We raise a couple of questions, in particular, whether we can find
apulse u € L2(R") such that

Ei(u) = {(x,i-‘) e R* W(u,u)(x,§) > 0} is connected.

Chapter 7 is Convex polygons in the plane: we study there the sets defined by
the intersection of N half-spaces in the plane R? and the integrals of the Wigner
distribution on these sets. We start with convex cones (N = 2) for which a complete
result is known and we go on with triangles (N = 3) for which we find an upper
bound: the integral of W(u, 1) on a triangle of R? for a normalized pulse in L2(R)
is bounded above by a universal constant. We show also that the integral of W (u, u)
on a convex polygon with N sides of R? for a normalized pulse in L?(R) is bounded
above by a universal constant x+/N . We raise a couple of questions: in particular it
seems possible that the behaviour of convex subsets of the plane is such that there
exists a constant & > 1 such that

for all C convex subset of the plane R?, for all u € L*(R) with [[u|;2g) = 1.
we have // W, u)(x,&)dxdé < a.
C

That would be a weak version of Flandrin’s conjecture: the original Flandrin’s con-
jecture was the above statement with « = 1, which is untrue, but that does not rule
out the existence of a number « > 1 such that the above estimate holds true.

Chapter 8 is entitled Open questions and Conjectures: we review in that chapter
the various conjectures that we meet along the text of the memoir, estimating the
importance and difficulty of the various questions. Chapter A is an appendix con-
taining only classical material, hopefully helping the reader by improving the self-
containedness of this memoir.



Chapter 1

Preliminaries and definitions

1.1 The Wigner distribution

Let u, v be given functions in L?(R"). The function Q, defined on R” x R” by

R" xR" 3 (z,x) —~ u(x + %)ﬁ(x — g) = Q(u,v)(x, z), (1.1.1)

belongs to L2(IR?") from the identity

2 _ 2 2
|, 19000 2P dxdz = [l 91y (1.12)
We have also
suﬂg / 1Q(x,2)|dz < 2" lull L2@my IVl L2®R)- (1.1.3)
XE n n

We may then give the following definition (the reader will find some reminders on
the Fourier transformation in Section A.1 of our appendix).

Definition 1.1.1. Let u, v be given functions in L?(R"). We define the joint Wigner
distribution ‘W(u, v) as the partial Fourier transform with respect to z of the function
2 defined in (1.1.1). We have for (x,§) € R% x Rg, using (1.1.3),

Wu,v)(x,§) = / e“””'su(x + g)ﬁ(x - z)dz. (1.1.4)

R 2
The Wigner distribution of u is defined as W (u, u).

N.B. By inverse Fourier transformation we get, in a weak sense,
- + : Y
u(x1) ® 5(xz) = / W, v) (H 52 6) e m g, (1.1.5)

Lemma 1.1.2. Let u, v be given functions in L*>(R™). The function 'W(u, v) belongs
to L*(R?") and we have

W, V) L2@2ny = ull2@nylvIL2@ny- (1.1.6)

We have also

Wu,v)(x,&) = W, u)(x,§), (1.1.7)

so that W(u, u) is real-valued.
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Proof. Note that the function ‘W (u, v) is in L?(R?") and satisfies (1.1.6) from (1.1.2)
and the definition of ‘W as the partial Fourier transform of 2. Property (1.1.7) is
immediate and entails that 'W(u, u) is real-valued. ]

Remark 1.1.3. We note also that the real-valued function 'W(u, u) can take negative

values, choosing, for instance,
—sz
u(x) = xe

on the real line, we get

1
Wian,un) (. ) = 21267270 (32 g2 - ),
T

In fact, the real-valued function W (u, u) will take negative values unless u is a Gaus-
sian function, thanks to a Theorem due to E. Lieb (see [37] and books [16] and [41]).
As a matter of fact, this range of ‘W(u, u) intersecting R_ for most “pulses” u in
L?(R™) makes rather weird the qualification of W(u, u) as a “quasi-probability”
(anyhow the emphasis must be on quasi, not on probability).

Remark 1.1.4. We have also by Fourier inversion formula, say for u € .#(R"),

u(x + %)ﬁ(x - %) =Q(x,z) = / W(u,u)(x, £)e? ™ #EdE, (1.1.8)

so that, with z = 2x = y, we get the reconstruction formula,
u(y)u(0) =/W(u,u)(§’f)emy'sdé,
as well as
P = [ Woweods. 1©OF = [ W@ odx (119

the former formula following from (1.1.8) and the latter from

/ Wu,u)(x, £)dx = // e‘zngu(x + %)ft(x - %)dzdx
= // e 2mE =Xy (e Vi (x)dx 1 d Xy = |(E)]2.

Lemma 1.1.5. Let u be a function in L*>(R™) which is even or odd. Then, W (u,u) is
an even function.

Proof. Using the notation
u(x) = u(—x), (1.1.10)
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we check
W) x,—8) = [ u(—x o )o(- v - 5z
— 2imzén(  _ Z\% z
/n ¢ u(x 2)v(x + 2>dZ
— —2imz-E Nz, %
[n ¢ u(x + 2)v(x z)dz
= W, 0)(x,§),
so that if i = u, we get W(u,u)(—x, =€) = W, u)(x, §). .

N.B. This lemma is a very particular case of the symplectic covariance property dis-
played below in (1.2.49).

N.B. In part 1 of volume IV in the collected works [54] of Eugene P. Wigner, we find
the first occurrence of what will be called later on the Wigner distribution along with
a physicist point of view.

It turns out that most of the properties of the Wigner distribution (in particular,
Lemma 1.1.5) are inherited from its links with the Weyl quantization introduced by
H. Weyl in 1926 in the first edition of [53] and our next remarks are devised to stress
that link.

1.2 Weyl quantization, composition formulas, positive quantizations

1.2.1 Weyl quantization

The main goal of Hermann Weyl in his seminal paper [53] was to give a simple for-
mula, also providing symplectic covariance, ensuring that real-valued Hamiltonians
a(x, &) get quantized by formally self-adjoint operators. The standard way of dealing
with differential operators does not achieve that goal since for instance the standard
quantization of the Hamiltonian x¢ (indeed real-valued) is the operator x Dy, which
is not symmetric (D, is defined in (A.1.4)); H. Weyl’s choice in that case was

1
x& should be quantized by the operator E(XD » + Dxx), (indeed symmetric),

and more generally, say fora € .7 (R?"), u €. (R"), the quantization of the Hamilto-
nian a(x, £), denoted by Op,, (a), should be given by the formula

Opy@ue) = [ (2T Eurdya
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For v € .(R"), we may consider

(Opy (), v) 2Ry = ///a(x,é)e_zmz'gu<x + g)ﬁ(x — g)dzdxdg

_ // a(x, E) W, v)(x, )dxdE,
R72xR”

and the latter formula allows us to give the following definition.

Definition 1.2.1. Let a € .%/(R?"). We define the Weyl quantization Op,,(a) of the
Hamiltonian a, by the formula

Opy@ue) = [ %2 Juravds,
to be understood weakly as
(Opw(a)u, Ij)y/(Rn)’y(Rn) = (a, W(u, U))y/(RZn),y(RZn). (1.2.1)
We note that the sesquilinear mapping
S R") x L R") 3 (u,v) — Wu,v) € L (R>"),

is continuous so that the above bracket of duality (a, W(u, v)) o (r2n), o ®2n) Makes
sense. We note as well that a temperate distribution a € .%”(R?") gets quantized by a
continuous operator Op,,(a) from .(R") into ./ (R"). This very general framework
is not really useful since we want to compose our operators Op,, (a)Op,, (b). A first
step in this direction is to look for sufficient conditions ensuring that the operator
Op,,(a) is bounded on L2(R"). Moreover, for a € .#’(R?") and b a polynomial in
C|[x, &], we have the composition formula,

Op,,(a)Opy(b) = Op,,(atib), (1.2.2)
_ 1 (_1)\/3\ o p wap
(anb)(x,é)—§(4i”)k |a|-§=k A @208 a)(x. £)(0%0Lb) (x.5). (123)

which involves here a finite sum. This follows from [33, formula (2.1.26)] where
several generalizations can be found (see in particular in that reference the integral
formula (2.1.18) which can be given a meaning for quite general classes of symbols).
As a consequence of (1.2.3), we get that

(afth) = kg(:)a)k(a,b), wo(a,b) = ab, wi(a,b) = #{a,b},

{a.b} = dga - Db — D,adgh, (1.2.4)

where {a, b} is called the Poisson bracket of a and b.
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Proposition 1.2.2. Let a be a tempered distribution on R?". Then, we have
10py (@)l g(L2@ny) < min(2" |z ®2n), l@llL1@®2m)- (1.2.5)

Proof. In fact, we have from (1.2.1), u,v € .Z(R"),
(Opy(@)u, v)2rny = ///a(x,é)u@x — y)l')(y)e_‘””(x_y)'sZ"dydxdé,

and we define for (x, ) € R?" the operator oy ¢ by
(0x.su)(y) = u(2x — y)e HTE=E, (1.2.6)
83

Claim 1.2.3. The operator oy ¢ (called phase symmetry, also known as the Grossman—
Royer operator) is unitary and self-adjoint.

Proof of Claim 1.2.3. Indeed, we have
(07 gu)(y) = (ox gu) (2x — y)e™ H7C=E
— u(2x — (2x — y))e T QI E —din(x—r) €

= u(y), so that 03’5 =1d.
‘We have also

<U;,§M’U>L2(]R") = <M’UX,EU>L2(R")
=W, u)(x,§) = W(u,v)(x,§)
= <O'x,§u, v)Lz(]R”)v
proving that o' £ = Oxg [
We have thus
Op,(a) =2" //a(x,é)ax,gdxdé, (1.2.7)

and the previous claim is proving the first estimate of the proposition. As a con-
sequence of (1.2.7), we obtain that

(Opy(a))* = Op,,(a), so that for a real-valued, (Op,,(a))* = Op,(a).

To prove the second estimate, we introduce the so-called ambiguity function 4 (u, v)
as the inverse Fourier transform of the Wigner function ‘W(u, v), so that for u, v in
the Schwartz class, we have

(A V) (1. y) = / W, v)(x. £)P TN HEN G,
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i.e.,

(A, v))(n,y) = /u(x + %)ﬁ(x - %)eZi”x"’dx, (1.2.8)

which reads as well as

(A, 0))(1, y) = /u(Z n 5)5(% . %)e””'%dzz—" — W, ﬁ)(g, —g)z—".

(1.2.9)

N.B. The ambiguity function is called the Fourier—Wigner transform in G. B. Fol-
land’s book [15].

Remark 1.2.4. With Q(u, v) defined by (1.1.1), we have
W(u,v) = F2(2(u, v)), (1.2.10)

where J, stands for the Fourier transformation with respect to the second variable.
Taking the Fourier transform with respect to the second variable in the previous for-
mula gives, with ¥} (resp., ) standing for the Fourier transform with respect to the
j th variable (resp., all variables),

FoW=06Q, FW=FECQR A=CFW=757CQ,

where € (resp., €; or ;) stands for the “check” operator € in R” x R” given by
(1.1.10) (resp., with respect to the first or second variable), the latter formula being
(1.2.8).

Applying Plancherel formula on (1.2.1), we get
(Opy (@u, v)2rny = (@, A, V)) g (r2n), 5 R20Y-
We note that a consequence of (1.2.3) is that for a linear form L(x, £), we have
L#L = L? and more generally LN = VN,
As a result, considering for (y,n) € R?", the linear form L, , defined by
Lyy(x.§)=x-n+§-y,

we see that
A, v)(1, y) = (Op (M HEN)u 1) 2 @ay,

and thus we get Hermann Weyl’s original formula

Op,(a) = //&(n,y)e"o"”““”’y)dydn»

which implies the second estimate in the proposition. |
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Proposition 1.2.5. Leta € .'(R?"). The distribution kernel k,(x, y) of the operator
Op,,(a) is
ka(x.y) =&[2](¥,y—X), (1.2.11)

where a' stands for the Fourier transform of a with respect to the second variable.
Let k € " (R?") be the distribution kernel of a continuous operator A from . (R™)
into ' (R™). Then, the Weyl symbol a of A is

_ | 2nit r ..t
a(x,§) _/e k(x—i— 2,x 2)dt,

where the integral sign means that we take the Fourier transform with respect to t of
the distribution k(x + %, X — %) on R?" (see Section A.1.1 for the definition of the
Fourier transformation on tempered distributions).

Proof. With u, v € .#(R"), we have defined Op,,(a) via formula (1.2.1) and using
Remark 1.2.4, we get

(Op,, (@)u, D) 7wy, ey = (a(x, ), QPN(x, ©)) v gany o many

(- 3le-3)
<a (t,2),u +2 v 2/ | 1 (R2n), 7 (R21)

()i
<a 2 'y =X ) u()ilx) 7/(R2n), #(R21)’

proving (1.2.11). As a consequence, we find that

t t
k4x+5a—5)=ﬁmx—m

and by Fourier inversion, this entails
. t t
a(x, &) = Fourier; (ka <x + e 5))(5)
—2mit-§ t t
—[e ka(x+§,x—§)dt, (12.12)

where the integral sign means that we perform a Fourier transformation with respect
to the variable 7. |

A particular case of Segal’s formula (see, e.g., [33, Theorem 2.1.2]) is with &
standing for the Fourier transformation on R”,

F*0p,(a)F = Op,, (a(§,—x)).
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1.2.2 The symplectic group
We define the canonical symplectic form o on R” x R” by
(X, Y)=[X,Y]=&-y—n-x withX = (x,8).,Y = (y,n). (1.2.13)
The symplectic group' Sp(n, R) is the subgroup of S € Gl(2n, R) such that
VX, Y e R*™, [SX,SY]=[X.Y], ie., S*0S =0, (1.2.14)

where S* is the transpose and

0 I,
= . 1.2.1
o (_In 0 ) ( 5)
It is easy to prove directly from (1.2.14) that Sp(1, R) = S1(2, R).

Theorem 1.2.6. Let n be an integer > 1. The group Sp(n,R) is included in S1(2n,R)
and generated by the following mappings

1
(14’11 IO) , where A is ann X n symmetric matrix, (1.2.16)
n
-1
(BO 1;)*), B € Gl(n,R), (1.2.17)
I, —-C : . .
0o I , where C is an n X n symmetric matrix. (1.2.18)
n

For A, B, C as above, the mapping

_ B! —-B7IC I, 0\(B™!' o0)\/(I, —-C
S4.B,C = (AB—1 B —AB—lc) - (A In) ( 0 B*) (0 I, )
(1.2.19)
belongs to Sp(n, R). Moreover, we define on R" x R" the generating function S of

the symplectic mapping E 4,p,c by the identity

. (1.2.20)

1 3 3
SCe.m) =5 (Ax.x)+2(Bx.n) + (Cn.n)) so that € (a—n@n) —x @

For a symplectic mapping E, to be of the form (1.2.19) is equivalent to the assumption
that the mapping x — mrnx o} E (x @ 0) is invertible from R" to R"; moreover; if this

mapping is not invertible, the symplectic mapping & is the product of two mappings
of the type E4,B,C.

!This is obviously a group since for Sy, S» € Sp(n, R), the last equation in (1.2.14) implies
that |detS| = 1and [S; S5 X, $1851 Y] =[5 X, S5 Y] = [X. Y], since [S5 ' X, S5 Y] =
[5285 Ty, S$285 1y] = [X, Y]. We shall prove below that the determinant of a symplectic
mapping is actually 1.
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Proof. The expression of E above as well as (1.2.20) follow from a simple direct
computation left to the reader. The inclusion of the symplectic group in the special
linear group follows from the statement on the generators. We consider now E in
Sp(n,R): we have

8= (; g) , where P, Q, R, S, are n X n matrices. (1.2.21)

The equation

*o

[l
&3]

:O',

is satisfied with o = (_(;n 167 ) which means

P*R = (P*R)*, Q*S =(Q*S)", P*S—R*Q=1I,. (1.2.22)

We can note also that the mapping E +— E*

E € Sp(n, R) means

is an isomorphism of Sp(n, R) since

*o

69)]
03]

=0 E—IO_—I(E*)—I — O,—l E_l(—U_l)(E*)_l — (—O'_l),

and since (—o 1) = (_(}n I(;’ ) we get that * € Sp(n, R). As a result,
P Q
E = R 1.2.2
(R S)eSp(n, ) (12.23)
is also equivalent to
PO* = (PQ*)*, RS* = (RS*"*, PS*—QR*=1,. (1.2.24)

Let us assume that the mapping P is invertible, which is the assumption in the last
statement of the theorem. We define then the mappings A, B, C by

A=RP™'!, B=P' Cc=-pP'0Q,
so that we have
A* = P* 'R*pP~ = p*p*RPT = RP7! = 4,
as well as
C*=—Q*P* ' = _p-lpo*p* ' = _p-lop*p* ' =_p-lg =,
and

P=B"' R=4B7', Q0=-B7!C,
S =P (I, + R*Q) = B*(I, — B* '4*B~'C) = B* — AB™'C.
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We have thus proven that any symplectic matrix & as above such that P is invertible
is indeed given by the product appearing in Theorem 1.2.6.

Let us now consider the case where a symplectic mapping & (given by (1.2.23)) is
such that det P = 0; writing R” = ker P & N we have that P is an isomorphism from
N ontoran P. Let By € Gl(n,R) such that By P is the identity on N (see footnote?).

We have
B, 0 P Q\ ( BiP B0
(o B;*‘l) (R S)‘(B;*”R Br‘ls)' (1229

If p = dim(ker P), we have for the n x n matrix B; P the following block decom-

position
BIP — ( Op,p Op,n—p) ,
On—pp  In—p

where 0, stands for an r x s matrix with only O as an entry. On the other hand, we
know from (1.2.22) that the mapping

(BiP)*B; 'R = P*R

~kﬁ.ﬁ ~kﬁ-n*/’

is symmetric. Writing Bf_l R = ( ) where ﬁr, s stands foranr x s

) ) ) Ru—p.p Rn—p.n—p
matrix, this gives the symmetry of

( 0p.p Op,n—p) (NRp,p Rpn—p ) _ (Nop,p Op.n—p )
On—p.p  In—p Rn—p.p Rn—pn-p Rn—p.p Rn—pn—p

implying that R, p,p = 0. The symplectic matrix (1.2.25) is thus equal to

On—p,p In—P

(Rp,p ~Rp,n—p) p*lg ’
On—p.p  Ru—pn—p '

where B0 and BI*_IS are n x n blocks.

The invertibility of (1.2.25) implies that R, , is invertible. We consider now the n x n

symmetric matrix
C = ( Ip.p Op.n—p )
On—p.p On—p.n—p

2This is indeed possible: choosing a supplement space M for P(N), we have

R'"=kerP® N = PWN)® M ,
N—— N—— ———’ N——
dim p dimn—p dimn—p dim p
and we can define By on P(N) by B (P x) = x (without ambiguity since for x1, x, € N with

Pxi = Px> wegetx; —xp €ker PN N ={0}) and By|ps : M — ker P can be chosen as
an isomorphism, so that B{ (P(N)) + B1(M) = N + ker P, which implies rank B} = n.
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and the symplectic mapping

I, C)\ (B 0 PO\ _(I. C B, P B0 (1.2.26)
0 I,J\o By'J\R S 0 I,)\Bf /'R By7's) T
which is a symplectic mapping (2; g:) with
P'=B,P+CB; 'R
On—p.p  In—p On—p.p On—pn—p/) \On—pp Rn—pn—p

_ ( Rp.p Rg,n—p)
On—rpp Inp )’
which is an invertible mapping. From equation (1.2.26) and the first part of our dis-
cussion, we get that

P QN (I, O\(B™' 0)\(l, —C
R s) \«a ,JL o B*)\0o 1,)

with A’, C’ symmetric and B’ invertible and

o (Bi" O\ (I. —C\ (I, O\(B7' 0)\(I. —C
VLo B)\o 5,)\4 I, o B*)\o 1I,)
proving that the E 4 p ¢ generate the symplectic group and more precisely that every

& in the symplectic group is the product of at most two mappings of type 4, 5.c.
This completes the proof of Theorem 1.2.6. |

Corollary 1.2.7. We have Sp(n,R) C S1(2n, R).

Proof. Indeed, the symplectic mappings (1.2.16), (1.2.17), and (1.2.18) do have de-
terminants equal to 1 and since Theorem 1.2.6 implies that they generate the sym-
plectic group, this proves the sought result. ]

Remark 1.2.8. Of course for n > 2, Sp(n, R) is a proper subgroup of S1(2n, R).
Indeed, the following matrix:

S O O =
S O = O
S = = O
- o O O

has determinant 1 but fails to be symplectic: using notation (1.2.21), we see that the
first and the third equation are satisfied, which is not the case for the second one.
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N.B. Since the matrix —/15, belongs to Sp(n, R) ((1.2.14) holds trivially), we find
that S € Sp(n, R) is equivalent to —S € Sp(n, R).

Claim 1.2.9. The symplectic group is also generated by the mappings

(x,8) — (B~ 'x, B*€), B eGIln,R),

(x,§) = (§,—x).
(x,) > (x, €+ Ax), A €Sym(n,R).

Another set of generators of the symplectic group is given by the mappings

(x,£) — (B 'x, B*¢), B eGl(n,R),

(X’E) = (E’ —X),
x, &)~ (x—-CEE), C eSym(»n,R).

Proof. Indeed, we have for C* = C areal symmetric n X n matrix
o -IL,\[(I, —-C 0 I,\_ (I, 0
I, 0 0 I,)\-1, 0) \C L)’
~————— ~—————
o1 o

proving the claim. u

Remark 1.2.10. The symplectic matrix

0 In\ _ 12 In In\o=1/2( In In\ _ -2
(_In 0) - 2 —In ]n 2 _In In - a_1n721/21n’_1n, (1227)

is not of the form E 4 p ¢ but is the square of such a matrix. It is also the case of all
the mappings (xg, £x) — (&, —xx) with the other coordinates fixed. Similarly, the

symplectic matrix
0 —Iy\ _(In -Li\(I. O
L, L,) \o 1,)\I, L,)

is not of the form E 4, g ¢ but is the product E¢ 7,7 E1,1,0.

1.2.3 The metaplectic group
Proposition 1.2.11. Let A, B, C be as in Theorem 1.2.6, and let S be the generating
function of E4,p,c (cf. (1.2.20)). We define the operator My g,c on . (R") by

(Mg g.cv)(x) = / 2S5 () dn(det B)'/?, (1.2.28)
Rﬂ
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where (det B)l/ 2 is a square-root of det B. This operator is an automorphism of
S (R") and of . (R™) which is unitary on L*(R™), and such that, for all a €
y/(RZn)’

Mj g cOpy(a)Ma,p.c = Opy(ac Ea ), (1.2.29)

where B 4, g c is defined in Theorem 1.2.6.

N.B. We have for A, B, C as above,

(Ma,1,00)(x) = ™A%y (x), (1.2.30)
(Mo.B.ov)(x) = (det B)/?v(Bx), (1.2.31)
(Mo,1,cv)(x) = (e!™(CPx:Dxly) (x), (1.2.32)

three operators which are obviously automorphisms of .#(R") and of .%/(R") as
well as unitary operators in LZ(R").

Proof. Formula (1.2.29) is easily checked for each operator (1.2.30), (1.2.31), and
(1.2.32). Since we have

E4,B,c = E4,1,0 E0,B,0 Z0,I,C

and
Ma,gc = Ma,1,0 Mo,B,0o Mo,1,C. (1.2.33)

we get (1.2.29) and the proposition. |

Remark 1.2.12. We define

B) arg(det B) k2m — 2k €{0,2) mod 4 for det B > 0,
m = —— =
n Kamdn — 2k +1€{1,3} mod4 for detB <0,
(1.2.34)
so that

det B = |detB|ei”m(B), (det B)1/2 c |detB|1/2 {el'%m(B)7 ei%(M(B)+2)}.3
We will consider 71(B) as an element of Z /47, so that the function m(B) > e’ zm(B)

is well-defined. For 4, B, C as in Proposition 1.2.11, we may define

(Mj”;;(%)}v)(x) — eim’é(B) |detB|1/2/ ein(Ax2+ZBx-n+Cn2)ﬁ(n)dn’4 (1.2.35)

n

3This is a synthetic way to write

(det B)'/? € {(£1)|detB|/?}if det B > 0, (det B)'/? € {(+i)|detB|'/?} if det B < 0.

4We can of course define M;ﬁ?},c for any m, but to stay in the metaplectic group (cf.
Definition 1.2.13), we have to make sure that m € {m(B), m(B) + 2} modulo 4.
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but we shall omit the super-script m(B) when we do not want to distinguish between
the two roots of det B. We note in particular that we have

Mg, 0 = Wr2@ny.  My3, o= —1d12@n).
and also with the notation (1.2.6),
mm .= eanao, pt2 a3
More generally, we have
fordet B > 0, M\’ c=-M{} o, fordetB <0, M}'} c=—M} . (1.2.36)
We note also that for B € Gl(n, R), we have
m(B*) = m(B) = m(B™"),
since det B = det B* and det(B~!) = (det B) ™! so that
arg(det B) = arg(det B™1).
Moreover, we have for B € Gl(n,R),

arg(det B) if n is even,

det(—B) = (—1)"det B, arg(det(—B)) =
=B =D gldet(=B) {arg(detB)—i—n if n is odd,

so that
m(—B) =n + m(B). (1.2.37)

Examples. Let us start with a one-dimensional example: in Remark 1.2.10, we have
seen, in particular, that

2
0 1\ _J (1 1 VYA S A
(—1 0)_{2 )0 7 b ) T R

where we have used (1.2.19) to get the second equation. We have also with the nota-
tions of Theorem 1.2.6,

(M_y 31/2_yv)(x) = / 2T 3B () a2 14,
R

so that the kernel k1 (x, y) of the operator M_; 51/2 _; is
ki(x,y)
— 21/4 ein(—xz+23/2xr]—n2)e—2inyndn — 21/4e—in/4ein(x2+y2)6—23/2i7rxy
—— ’

use (A.1.7)
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so that the kernel k, of the operator (M_l’zl/z,_l)2 is (using again (A.1.7)),

ka(x.y) = / k1 (e )k (2. y)dz

s . 2 2 . 2 _A; 1/2 . i
:21/26 tn/Zetn'(x +y )/621712 e 2imz2 (x+y)dZ —e tn/4e Ztnxy,

so that
(M—1,21/2,—1)2 — e—lﬂ/4371 ,

with #7 standing for the 1d Fourier transformation. We get similarly that in #» dimen-
sions,
(1"1—1,1,21/21,1,—1,1)2 = i/t (1.2.38)

with ¥ standing for the Fourier transformation. Similar expressions can be obtained
for Fj, the Fourier transformation with respect to the variable xj in n dimensions,
k € [1,n] with

(Myy.Bi.c)” = e 4T

where By is the n x n diagonal matrix with diagonal entries equal to 1 except for the

kth equal to 21/2, the n x n diagonal matrices Ay = Cy with diagonal entries equal
to 0, except for the kth equal to —1.

Definition 1.2.13. The metaplectic group Mp(n) is defined as the subgroup of the
group of unitary operators on L?(R") generated by

My 1,0, where A is an n X n symmetric matrix, cf. (1.2.30), (1.2.39)
Mo.5.0. with B € Gl(n, R), with (det B)? = |detB|2e ™, cf. (1.2.34), (1.2.31),

(1.2.40)
Moy, 1,c, where C is an n x n symmetric matrix, cf. (1.2.32). (1.2.41)

Claim 1.2.14. If M belongs to Mp(n), then —M belongs to Mp(n).

Proof. According to (1.2.36), we have

{2} _ o} _
My 1,0 = Mo 1,0 = —ld2@n
so that —Id; 2gn) belongs to Mp(n), proving the claim. [

Proposition 1.2.15. The metaplectic group Mp(n) is generated by

My, 1,0, where A is an n X n symmetric matrix, cf. (1.2.30), (1.2.42)
Mo.5.0, with B € Gl(n, R), with (det B)? = |detB|2e ™5™, ¢f (1.2.34), (1.2.31),
(1.2.43)

e_i% F ,where ¥ is the Fourier transformation. (1.2.44)
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Proof. We check for C symmetric n X n matrix,
(ME) o™/ 5 v)) () = eI 4e T ),
so that

einn/4($—1(e—iﬂn/4ei7'rC7]2,0(n)))(x) — fezjnx”eincn2ﬁ(n)dn — (Mé?},cv)(x)’

yielding
etnn/4$'—1Mé,01}’Ce—znn/4$ — Mé,OI},C’

so that the group generated by (1.2.42), (1.2.43), (1.2.44) contains (1.2.39), (1.2.40),
and (1.2.41) and thus contains Mp(n). Moreover, (1.2.38) shows that (1.2.44) is
included in Mp(n) so that the group generated by (1.2.42), (1.2.43), and (1.2.44)
is included in Mp(n), proving the proposition. [

Remark 1.2.16. According to (A.1.6) in our appendix and to (1.2.36), we find

(e—irm/4$~)* — einn/4370_0 — e—inn/4$einn/20_0 — e—iﬂn/4$~M(§n_}In o

—inn/43‘; e—irm/z intn/2
9

As a consequence, e 09, € 0o belong to the metaplectic group.

Lemma 1.2.17. For Y € R?", we define the linear form Ly on R*" by
Ly(X) = (oY, X) =Y, X].
For any M € Mp(n) there exists a unique y € Sp(n, R) such that
VY e R*, M*Op,(Ly)M = Opy (L ,1y). (1.2.45)

Proof. Indeed, thanks to (1.2.29) and Definition 1.2.13, we can find y € Sp(n, R)
such that
M*Op,(Ly)M = Op,(Ly o y) = Op,(L,-1y),

since
(Ly o )(X) = (oY, xX) = (x"oxx 'V.X) = (ox 'V.X) = L1y (X).
Moreover, if x1, x> € Sp(n,R) are such that for all Y € R?",
O - OpW(LXz_ly - Lxl—ly) = OpW(L(XZ—l_Xl—l)Y),

we get
L(X2_1_X1_1)Y = 0,

implying VY € R?", ()(51 - XI_I)Y =0,1e, x1 = x2- u
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We can thus define a mapping
W : Mp(n) — Sp(n,R) with W(M) = y satisfying (1.2.45). (1.2.46)

In particular, we have from (1.2.29) in Proposition 1.2.11 and (1.2.38) that

U(Mapc)=EBapc, V(e FF)=0= ( g {)) (1.2.47)
—In

Theorem 1.2.18. The mapping V defined in (1.2.46) is a surjective homomorphism
of groups with kernel {=£1d; 2 gny}.

Proof. This mapping is a homomorphism of groups: if M, M, belong to Mp(n), we
have with y; = W(M;),

(M1 M>)*Op,,(Ly)Mi Ma = M30p,,(L 1) M>
= Opw(sz_lxl_lY) = Opw(L(XloXZ)_lY)s

proving that W(M; M5) = W(M;)¥(M;). Moreover, the homomorphism W is onto,
thanks to (1.2.29) and Theorem 1.2.6. The kernel of W is made with M € Mp(n) such
that for all Y € R2",

M*Op,(Ly)M = Op,(Ly).

i.e.,
[Opy(Ly), M] =0,

so that, thanks to (1.2.3), (1.2.4), if w(x, §) is the Weyl symbol of M (M is an endo-
morphism of .’ (R™) and thus has a distribution kernel as well as a Weyl symbol via
formula (1.2.12)), we get for all (y, n) € R?",

0={n-x—y-&u(x§)} sothatdu =0,

and w is a constant so that M = c¢ Id; >(gny, necessarily with |[c| = 1 (since M is
unitary). Applying Theorem A.2.11 gives ¢ € {#1}, concluding the proof. ]

N.B. The proof of Theorem A.2.11 is relegated in our appendix, and requires some
effort.

Corollary 1.2.19. For y € Sp(n,R), the fiber Y=y} contains exactly two meta-
plectic transformations and more precisely

vy =M. -M},
where M is a metaplectic transformation.

Proof. This corollary is an immediate consequence of Theorem 1.2.18. u
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Theorem 1.2.20 (Symplectic covariance of the Weyl calculus). Let a be in .7’ (R?")
and let y be in Sp(n, R). Then, for a metaplectic operator M such that V(M) = y,
we have

M*Op,(a)M = Op,(ao ). (1.2.48)

Foru,v € Z(R"), we have
W (Mu, Mv) = W(u,v)o x !, (1.2.49)
where ‘W is the Wigner distribution given in (1.1.4).

Proof. The first property follows from (1.2.29) and Definition 1.2.13 whereas (1.2.49)
is a consequence of (1.2.1) and (1.2.48). [ ]

We note also that for Y = (y, ) € R?", the symmetry Sy is defined by
Sy(X)=2Y - X
and is quantized by the phase symmetry oy as defined by (1.2.6) with the formula
Op,,(a o Sy) = 03 Opy(a)oy = oyOpy(a)oy. (1.2.50)
Similarly, the translation Ty is defined on the phase space by
ITy(X)=X+Y
and is quantized by the phase translation ty,
(1) () = u(x — y)eX =2, (1.2.51)
and we have

Opy(a o Ty) = t3O0p,,(a)ty = 17—y Opy,(a)ty.

Remark 1.2.21. Property (1.2.49) can be extended to the affine symplectic group
and we have with the phase translations defined in (1.2.51),

V(X,Y) e R* xR?", W (tyu,1yv) (X) = Wu,v)(X —Y).

We will define the affine group Mp,(n) as the group of unitary transformations of
L?(R™) generated by transformations (1.2.30), (1.2.31), and (1.2.32) and phase trans-
lations given by (1.2.51).

N.B. More information on the metaplectic group is given in J. Leray’s book [31], the
same author’s articles [30,32], as well as A. Weil’s paper [52] (see also V. S. Buslaev’s
article [5], K. Grochenig’s book [16, Chapter 9], H. Reiter’s lecture notes [43]).

Theorem 1 in E. Lieb’s classical article [37] gives a more precise version of
(1.2.53), (1.2.54), and (1.2.55) below.
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Theorem 1.2.22. Let u, v be in L>(R™). Then, 'W(u, v) is a uniformly continuous
function belonging to L>(R?*) N L™ (R?") and using the definitions (1.2.51), (1.2.6)
for the phase translations and phase symmetry, we have

W(u, v)(X) = 2" (oxu, v)2@ny = 2" (txu, Tx V) L2(RN)

= 2"{opT_2x U, V) 12(Rn)» (1.2.52)
W, v)l[L2@eny = lullL2@nllvlL2@n). (1.2.53)
Vp el tool.  Wev)lpmman < 2" LoVl (1259

More generally, for q > 2 and r € [q', q], we have®

n(g—2)

WGt 0) | agony < 27T Nullrn 1]l gny- (12.55)

Moreover, we have

lim [W(u,v)(X)] = 0.
R2"5X,|X|—>+00

Proof. We have with v(x) = v(—x) = (opv)(x),
W(u, U)(x,%') =" / M()C + Z)ﬁ(x _ Z)e—4inz$dz

_on / U(z — (—x))e2iTE=FIOF (o _ p)p-2imz=H)E

> e—4inz§+2in(z—%)&-‘rﬁn(z—%)édZ

=2 /(r(_x,_g)u)(z)(t(x,g)17)(2)dz =2" (r(*x’é)u, ‘E(x,g)ﬁ)Lz(Rn),

or for short
W(u, v)(X) = 2" (tyu, tx V) 12 (gn)-

As a consequence, we find from (1.2.7) that
(Opy (a)u,v) = / a(X)2"(ootyyu, v)dX,
and since (o gu)(y) = u(2x — y)e 4=y e can verify directly that

00T_2x = OYX. (1.2.56)

Indeed, composing the translation of vector —2X in R?” with the symmetry with
respect to 0, we have

1
Y=Y -2X—2X-Y =Y, 5(Y+Y/):X’

> We use the standard notation: for p € [1, +00] we define p’ by the equality % + i 1.
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that is the symmetry with respect to X . Quantifying this equality, we use
(T(—2x,—26)u)(2) = u(z + 2x)62i”(z__72)c)(_25) = u(z + 2x)e HTEHOE
so that we obtain
00(t(-2x,-26))(2) = u(=z + 2x)e” TV = (0, ¢u) (2),

which proves (1.2.56) and thus (1.2.52). Formula (1.2.53) is already proven in (1.1.6)
and (1.2.54) follows from (1.2.52), Holder’s inequality and the fact that tx is an
endomorphism of L? (R") with norm 1 (cf. the expression (1.2.51)). To prove (1.2.55)
we note that from the expression (1.2.10), the Hausdorff—Young’s inequality implies

’ r1/q’ q=2
W, v)logre < 1900Vl pagre < Iul® o1, 2"

o . (1257

and since Young’s inequality® gives

’ 4 7 7
el s [l N ara < Ml Nl parar 101 W Lorar

a,b > q’ with
! A /
1-L =L 7
q a b
i.e.,
1 1 !
q’(—+—):1+q—,
a b q
that is
1_’_1_1
a b
so that

’ ’ ’ 7
el [0l (| Lasar < lellTallvll]
in such a way that (1.2.57) yields

a=2 11
|Watv)losre < 2T fullzallvlr. ab=zg. —+2 =1

which is (1.2.55). We are left with the proof of uniform continuity of W (u, v). We
have for X,Y € R2",

W, v)(Y) — W, v)(X) =2"((oy —ox)u,v)2Rn)
and since 07 = Id (see Claim 1.2.3), we find
W, v)(Y) — W(u,v)(X) = 2"((oyox — Id)oxu, v) 2 gn)

= 2"(oxu, (oxoy —Id)v)2gny-.

®For p,q.r € [1, +o0] with % + % = %,Wehave, If*gller <l fllcelglra.
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According to [33, formula (2.1.16)], we have
ox0y = Tax—pye* X1,
and this implies
W, v)(Y) — W, v)(X)] < 2"|[ullp2@nlle2x-1) V1l L2 RN - (1.2.58)
We have from (1.2.50),
72,0 0(x) —v(x) = v(x — 2)e2 T3¢ _ ()
= (v(x —z)— v(x))eZ"”(x_%)z + v(x)(ezi”(x_%)g - 1),

and thus

ltzv — vl 2Rn)

1/2 i 1/2
< (f lv(x —z) — v(x)|2dx) + (/ [v(x)[?|eF =3¢ — 1|2dx) .

We have the classical result, due to the density in L? of continuous compactly sup-
ported functions,

R3z—

lim 0/ lv(x —z) —v(x)|?dx =0,

and moreover the Lebesgue dominated convergence theorem implies

lim / lu(x)|? [e¥T¢=DE _12 dx =0,
(z,0)—>0,0) /] ~~—~— ———/——
eL!(R") <4

so that

lim ”TZU - U”Lz(Rn) =0.
R275Z—0

As a consequence, (1.2.58) implies the uniform continuity of ‘W (u, v). Moreover, we
have, for ¢, ¥ € S (R"),

W(u7 U) = W(U - ¢’ U) + W(¢’ v — W) + W(¢v W)v
so that

W, ) (x. £)] < / =)+ Z)Jo - 2z
# [ o= v =3)|o(x+ 5)]dz + 1w v

< 2"Ju = Bllpz@ny vl L2wry + 2" v = V¥l L2m) 19l 2R
+ W, ¥)(x,§)l.
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We choose now sequences (¢ ), () of .7 (R"™) converging respectively in L?(R")
towards u, v. We obtain for all k € N,

W, v)(x,8)] < 2"|[u — el L2wmIvL2@ny + 2" v = Yl L2y 19K | L2 (R
+ [ W(dk. ¥i)(x.§).

so that using that ‘W (¢, ¥« ) belongs to .7 (R?"), we get

limsup [ W(u, v)(X)|]
R273X,|X|—>+o0

< 2"lu = ¢xllL2z@my IVl L2@ny + 2" 10 = Yl L2wny 1Pk | L2 )
and thus, taking the limit when k — +o00, we obtain

lim  [|W,v)(X)[] =0,
R2"5X,|X|—>+00

completing the proof of Theorem 1.2.22. |

Remark 1.2.23. Let u be in L2(IR") be an even function. We then have
W(u,1)(0,0) = 2" ul|Zo gy = W, u) ]| Loo @2m)-
On the other hand, if u is odd, we have
Wt u)(0,0) = —2" [ull 22 gny = — W20 | oo grony.

showing that for odd functions the minimum of the Wigner distribution is negative
(we assume u # 0 in L?(R")) and attained at 0. Let us check for instance the (odd)
function #; of Remark 1.1.3. We have

) 2 — o [ 2027y — 4 +OOL ~t (5 —121 ~1/24
luilf2my =2 | x7e x=4) e (2n) 5t t

_2r@a/2y  rajyy 1
- (27)3/2 - (27)3/2 T 23/2n

= —W(ui,u1)(0,0).

1.2.4 On weak versions of the Wigner distribution

Let u, v be in the space ./ (R") of tempered distributions. Then, we can define as
above the tempered distribution Q(u, v) in R?": we set

(Q(u,v)(x,2), P(x, 2)) g/ (R2n), 7 (R27)
= (u(x1) ® 5(x2), (2

, X1 — X )
! 2>>y/(R2n),y(R2n)
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and then we define the Wigner distribution 'W(u, v) as the Fourier transform with
respect to z of Q(u, v), meaning that

('W(u, U), q’)y/(RZn),y(RZn) = (Q(u, U), ?ZW)V’(RZ”),(S’(RZ")?
where

(F2W)(x.£) = /R TR )z

Of course, W(u, v) is only a tempered distribution on R2” and we have the inversion
formula, using the notations of Remark 1.2.4,

Qu,v) = F26,W(u,v).

The above remarks show that there is no difficulty to extend the definition of the joint
Wigner distribution ‘W (u, v) to the case where u, v are both tempered distributions
on R”. Some properties are surviving from the L? theory, in particular the inversion
formula, but one should be reasonably cautious at avoiding writing brackets of duality
as integrals. Theorem 2 in [37] gives a more complete version of the following result.

Theorem 1.2.24. Let u € L*(R") such that W(u,u) € L' (R?"). Then, u belongs to
LP(R"™) forall p € [1, 400] and we have

el ey lull Loo@ry < 2" IW(u, w1 (m2ny-

N.B. We refer the reader to our Section 6.3 and, in particular, Theorem 6.3.3 showing
that the set of u in L2(R") such that ‘W (u, u) belongs to L (R?") is meager.

Proof. Thanks to Theorem 1.2.22, we have W(u,u) € L?(R?") for all p € [1, +00]
and we have in a weak sense,

u(x + %)ﬁ(x - g) - er"“'f'W(u,u)(x, £)dE,

so that
X1+ X2

uCrien) = [ =W (M2 6

and thus we get

[ meoliueeian = [[ [woen(52.6)|agdn = 21wl

i.e.,
lull L1 ey llullLoo®my < 2 (W (u, )| L1 m2ny,

proving the lemma. |
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1.2.5 Composition formulas

The following lemma is classical (see, e.g., [19], [46]); however we shall provide a
proof for the convenience of the reader.

Lemma 1.2.25. Let u, v, f, g be in L>(R"™). Then
(u, g) 2@ (L V) L2@ny = / W, v)(x, ) W(f g)(x.§)dxdE.  (1.2.59)

In other words, the Weyl symbol of the rank-one operator u > (u, g)p2®nyf is
W(f. g). In particular, if f = g is a unit vector in L*>(R") we find that W(f. f)
is the Weyl symbol of the orthogonal projection onto C f.

Proof. Both functions ‘W(u, v), W( f. g) belong to L?(R?"), so that the integral on
the right-hand side of (1.2.59) actually makes sense. Also, ‘W(u, v) is the partial
Fourier transform with respect to the variable z of (x,z) = u(x + z/2)v(x — z/2),
thus applying Plancherel formula’, we obtain that

/ W, v) (6. E)W( . ) (x. E)dxdE
=//u(x—|—Z/2)17(x—z/2)f(x—z/2)g(x+Z/2)dxdz

= (u, &) 2wy (f> V) L2(RN)-
The last property follows from (1.2.1). ]
Using [33, Section 2.1.5], we obtain that for a, b € S (R?")

Op,,(a)Op,,(b) = / / a(Y)b(Z)2*"oyozdYdZ.
R2n xR2n

We get
Op,,(a)Op,,(b) = Op,,(afth), (1.2.60)

TWe refer of course to the formula
(ﬁ, ﬁ)LZ(R”) = <M, U)LZ(]RH),

when using the complex Hilbert space L2(R”). Note however that formula (A.1.3) is using the
real duality between . (R”) and .#”(R") so that to check, with &#*(R%) standing for the
anti-dual of . (]RN ) (i.e., continuous anti-linear forms on . (RN )), we have also

=

(T, ¢) xmny, 7@®Ny =(T,®) o1 rN), 7@®Ny = (T, @) /(RN .7 (RN)
T

= (T, ) Ny, 7@Ny = (T, ) 5+ (®RN), .7 ®RN)-
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with

(ab)(X) = 2*" // e XY X2 (Y)\b(Z)dYdZ (1.2.61)
R27nxR2n

-1
— // e_z”T(E’Z)a(X +2 “)b(z + X)d8dZ (12.62)
R2n xR2n 2

-1 R
=/ e2l”<X’E>a(x + 2 “)b(s)da, (1.2.63)
R2n 2

where [-, -] is the symplectic form (1.2.13) and o is (1.2.15). Formula (1.2.62) is
interesting since very close to the group J! defined in [33, formula (4.1.14)].

Lemma 1.2.26. Let ug, uq,uo,us be in LZ(R”). Then, we have for all X € R27",
(w1 u2) 2| W(o. uz)(X)| < 2" (IW(uo. uz)| * | Wiy, us)|)(X).
Proof. According to Lemma 1.2.25, we have for v € L2(R"),

Op,, (W(u0,12))Op,, (W(u1,u3))v = Op,, (W(uo, u2)) ((v, u3) 1 2RnyU1)
= (v, u3)L2(Rn)(u1, uz)Lz(Rn)Mo
= (U1, u2)p2@n)Opy (W(uo, uz))v,

so that with the notation (1.2.60), we get
W(uo, LQ)fLW(ul, u3) = (ul, u2>L2(Rn)W(u0, u3), (1.2.64)
and using (1.2.63), we get

('W(Mo, uz)fW(uy, u3))(x, £)

A1,u3)(=n,—y)

- // eZi”<X'"+$'y>W(uo,uz>(x Ly g) 7 (Wur, 1)) (1 ) dydn,

where ¥ stands for the Fourier transformation and # for the ambiguity function (cf.
(1.2.8)). With formula (1.2.9), we obtain

(W(uo, u2)fW(uy, uz))(x,§)
= [[ e W )3 - 3. = WG ) 0y,
yielding from (1.2.64) for any X € R?",
(U, uz) 2 W(ug, u3)(X) = fRM e TEYIW (g up) (X — Y)W uz) (Y)Y 2",

which implies the lemma. |
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1.2.6 L2-boundedness

Theorem 1.2.27. Let a be a semi-classical symbol on R?", i.e., a smooth function of
(x, &) depending on h € (0, 1] such that

VieN, pia)= sup 020 a)(x. £ AT < foo. (1.2.65)
(x,£)eR?",he(0,1]
lee]+[B]<l

Then, the operator Op,(a(x, £, h)) is bounded on L*(R™) and such that

I0p,, (a(x. & M)l gr2®ny =< cnpe, (@)
where ¢, and £,, depend only on n.

Proof. Theorem 1.2 in A. Boulkhemair’s article [3] is providing that result (and more)
with
by =[n/2] + 1.

Note also that [33, Theorem 1.1.4] is providing an elementary proof of the above
result for the ordinary quantization of a given by

Opy(@n) () = [ ™ ar. 6. mie)ds
_ // 2TEE G (£ yu(y)dydE. .
N.B. Formula (1.2.63) appears as
(afh)(X) = [Opo(a(x - %))b] (X),

where Opg(-) stands for the ordinary quantization in 2n dimensions.
The following classical result is a consequence of Theorem 1.2.27.

Theorem 1.2.28. Ler C;*° (R2™) be the set of bounded smooth complex-valued func-
tions on R?" such that all derivatives are bounded and let a be in C Pt (R2™). Then,
the operator Op,,(a) is bounded on L*(R™) and the B(L?(R")) norm of Op,,(a) is
bounded above by a fixed semi-norm of a in the Fréchet space C;° (R2m).

1.2.7 On the Heisenberg Uncertainty Relations
Let u € .(R). We have, using the notations (A.1.4),

2Re(Dyu,ixu)2@wy = ([Dx,ix]u, u)2®) = (1.2.66)

2
Z ”u ||L2(]R)’
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implying, in particular,
1 2
[ Dxullp2yllxull 2wy = - 72y

X

which is an equality for u(x) = e~ 2; moreover we infer also from (1.2.66) that

1
(JT(D)ZC + xP)u,u) > 5”””]2}(]1{)’

and for
G, 6) = D WG +E), 0 <<y,
1<j=n

the inequality

1
(Op,, (wqu(x. ). u) 2@ = Ul Fagnyy D Wi (1.2.67)

1<j=n
~———
defined as
trace4 (g )

which is an equality for u(x) = e™" x> Note that the above (optimal) inequality can
be reformulated as

1
I waut W (x.0dxde = 1l g aces (@)

Note also that with the symplectic matrix ¢ defined by (1.2.15), the so-called funda-
mental matrix of g, is defined by

0 —I\(M O 0 —M
_ _1 _ _ . _ .
Fy,=0 Q“_(l 0)(0 M)_(M 0 ) with M =diag(wy,..., Un)

so that

Spectrum Fy,, = {£ipj}1<j<n. trace;(qu) = Z Al
A eigenvalue of F,
with ImA>0
With the notations

{C j = Dx; +1ix;, creation operators,
Cj* = Dy, —ix;, annihilation operators,
we see that

n[CF,Cj]l = n[Dx; —ixj, Dx; +ix;] =1,
and 1

Opu(@u) =7 Y 1y CiC} + 5 traces(gp),

1<j=n

which provides another proof of (1.2.67).
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Lemma 1.2.29 (Quantum Mechanics must deal with unbounded operators®). Let H
be a Hilbert space and let J, K € B(H), then the commutator [J, K] # 1d.
Proof. Let J, K be bounded operators with [J, K]=1d. Then, for all N € N*, we have
[J,KN] = NKNL, (1.2.68)
Indeed, this is true for N = 1 and if it holds for some N > 1, we find that
[J,KNT) = JKNK — KNtV = [J, KNK + KNJK — KNty
=[J.KYIK + KN(UK - KJ) = [J.KVK + KY = (N + DKV,

Note that (1.2.68) implies that for all N € N*, we have KV # 0: of course K # 0
since [J, K] = Id and if we had KV = 0 for some N > 2, (1.2.68) would imply
KN~1 =0 and eventually K = 0. As a consequence, we get from (1.2.68) that for
all N > 2,

NIKN s <217 lsen I KV lsen < 2017 lsen I Kllaen | KV s@.
implying since | KN ™1 gy > 0, that
VN =2, N Z2|J[IK].
which is impossible and proves the lemma. ]
Lemma 1.2.30 (Hardy’s inequality: the study of non-self-adjoint operators may be

useful to determine lowerbounds of self-adjoint operators). Let n € N,n > 3; let u
in L2(R™) such that Vu € L*>(R"), |x|™'u € L?(R"). Then, we have

n—2\> _
IVl = ("5 ) Ity

Proof. We write first

Z ”(Dx, - l¢1)u”i2(Rn)

1<j=<n

1 )
= (|DPPu,u)p2mny + (|70, u) 2 @ny — g((dlwf))% U)2(Rn)s

so that with ¢ (x) = we get the operator inequality

VX
2m|x|2?’

2 —
v - v(n —2)

D? + , sothat —A > |x|™2 v(n—=2—-v) ,
1Dl 472|x|? = 4m?|x|? z x| »—( ,—-«)
largest at v=(n—2)/2
proving the lemma. |

8Thus, QM must involve infinite-dimensional Hilbert spaces and unbounded operators on
them.
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N.B. A modern approach to the Heisenberg uncertainty principle should certainly
begin with reading C. Fefferman’s article [8] as well as E. Lieb’s book [38].

1.2.8 Non-negative quantizations formulas

Lemma 1.2.31. Let y be an even function in . (R?*") with L?(R?") norm equal to
1. We define
Ty = Xtx- (1.2.69)

Then, the function T belongs to . (R*"), is real-valued even and is such that
/ ry(X)ydx =1.
R2n

Let u be in L?>(R"™). Then, the convolution 'W(u, u) x Ty is non-negative. As a result,
the operator with Weyl symbol a x T'y is a non-negative operator whenever a is a
non-negative function.

Proof. Following the book [33], the composition formula (1.2.61) is bilinear continu-
ous from . (R?")?2 into .7 (R?") and we have also

atth = bia.

So that Iy is indeed real-valued. Moreover, we have
/ I(X)dX =22" /// e HmX=YY =215y (Z)dYdZdX
R2n (R27)3

— [1xray =1,

and

[, (—X)=2%" / / e XY= X=Zl5(Y )\ y(Z)dYd Z
R2n xR2n

— 92n // €—4in[—X+Y,—X+Z]i(y)x(z)dYdZ = I'y(X).
R2nxR2n
We have also
(W, u) x Ty)(Y)

- W, u)(Y — X)Ty(X)dX = / W, u)(Y + X)Ty(X)dX
R2n R2n

= [, T N0 = [ Wy ey (T (0ax

= /.. W(r—yu, —yu)(X) (i) (X)dX

= (OPW()?HX)T—YU, T-Y“)LZ(R”) = ”Opw(X)T—Yu”zZ(Rn) >0,
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proving the first statement of non-negativity. Let a be a non-negative function, say in
L'(R?"); we have

Op,(a *Ty)

=" //a(Y)FX(X — Y)deYdX = /a(Y)/(ZHX)(X _ Y)2n0')(dXdY
N /a(Y)/(XﬁX)(T‘Y(X))Zn"XdXdY = /a(Y)rYOpW()?ﬁx)r_de
= / a(Y )ty Op, (Y)Opy () T-ydY

- / a(Y) [Opo (1) ey *[Opy (D T—y]dY = 0.

non-negative operator

ifa(Y) > 0forall Y € R?" and this concludes the proof. ]

We can write as well

OnyasT) = [ a)[rOp(De-r ] [ Op (07 JaY

=/ a(Y)S,(Y)dY, (1.2.70)
]RZn
with
2 (Y) = [ty Opy (X) =y ]* [ty Op,, (1) 7—¥] = (Op,, (x (- — ¥))) “Op,, (x(- — Y)).
(1.2.71)

Remark 1.2.32. The Gaussian case in the previous lemma gives rise to the standard

o . . . 2
non-negativity properties of coherent states. In fact, choosing y(X) = 2"e271X1",
we see that y is even, belongs to the Schwartz space and

_ 2 _
||X||iZ(R211) — 92n Azn e 4| X| dX = 22"4 2n/2 _ 1.

We have also’
I, (X) = 2 // o HTIX—Y.X~Z] 27 (Y PHZP) gy g 7
(Rzn)z
_ 23n/ ATV X] 2 (X+Y PHIY ) gy
RZII
_ 23n/ e4in[Y,X]e—2n(|Y+§|2+\Y—%|2)dY
R2n

_ 23ne—7rX|2/ AT X4V P gy _p3n=mIX P gonp=mIXP o (x).
R2n

% [33, Proposition 4.1.1] is useful to compute the Fourier transform of Gaussian functions
and is a notable asset of the Fourier normalization given in Section A.1.1.
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In that case we find that Op,,(x) is a rank-one orthogonal projection on the funda-
mental state Wy of the harmonic oscillator (| Dx|? + |x|?). According to (A.1.16)
the one-dimensional kth Hermite function is

—1)¥ d \*
Vi (x) = 2(16—\/)1521/46“2(m) (e727*%), (1.2.72)

so that Wy (x) = on/4e=7Ix? We calculate

D0,E) = Wb Uo)(x,§) = 272 [ erltafaihz o) ainity

R}’l
— 2n/28—27t|x|2/ e—n’zz/Ze—ZinZSdZ — zne—2n|x|26—2n|$|2 — X(x’%-)‘
The anti-Wick quantization of a symbol a is defined as (see, e.g., M. Shubin’s

book [47])
Op,y () = / a(Y)XydY, (1.2.73)
RZn

where Xy is the rank-one orthogonal projection given by
2y qu = (U, 7y5 Vo) 1y,5 VYo.

Remark 1.2.33. It is interesting to notice that to produce non-negativity of the oper-
ator with Weyl symbol a * I, when a is a non-negative function, we do not use the
non-negativity of I'y, as a function, which by the way does not always hold (except in
the Gaussian cases), but we use the fact that the quantization of I'y is non-negative,

as it is defined as Op,, (¥#1x) = (Op,,(x))* Opy, ().

Remark 1.2.34. Another important remark is concerned with the Taylor expansion
of a x I'y, we have

(axTy)(X) = /a(X —Y)[(Y)dY = /a(X + V)T (Y)dY

1
= /(a(X) +a/(X)Y + / (1-6)a"(x + QY)YZ)FX(Y)dY
0

1
a(X) + // (1—0)a"(X + 0Y)Y?T,(Y)dY.
0

As a result the difference (a * I'y) — a depends only on the second derivative of a. If
for instance a is a semi-classical symbol, i.e., a smooth function of (x, §) depending
on & € (0, 1] such that

V(a, B) € N" x N, sup 0%922) (x . )3 < oo, (1.274)

(x,§)eR2",he(0,1]
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then the difference Op,, (a) — Op,,(a) is bounded on L2(R") with an O (h) operator-
norm, so that if a happens also to be non-negative, we find

Opw(a) = Opw(a) - Opw(a * FX) + Opw(a * FX)’

O(h) >0
as an operator, as an operator
cf. Theorem 1.2.27

and we obtain a version of the so-called Sharp Gérding inequality,
Op,(a) + Ch > 0 (as an operator).

Theorem 1.2.35. Let y be an even function in the Schwartz space . (R?") with
L2(R*") norm equal to 1 and let Ty be given by (1.2.69). For a € L®(R?"), we
define

Op(x,a) = Opy(a * I'y).

Then, Op(x, a) is a bounded operator in L*>(R™) and we have
10p(x: Dl g2®ny) = lallLoo®2ny- (1.2.75)

Moreover, if a is valued in some interval J of the real line, we have the operator
inequalities
infJ < Op(y,a) <supJ. (1.2.76)

In particular, if a(x,£) > 0 for all (x, ) € R?", we have the operator-inequality
Op(x.a) = 0.

N.B. The non-negativity of the anti-Wick quantization (1.2.73) and its avatars Husimi
[25], Coherent States, Gabor wavelets (see, e.g., [11]), are particular cases of the
above theorem. More information on this topic is available in Section 2.4 of the
book [33]. Another remark is that this result can easily be extended to matrix-valued
symbols as in Remark 2 page 79 of L. Hormander’s [24] and even to symbols valued
in B(H), where H is a Hilbert space.

Proof. We start with Formulas (1.2.70), (1.2.71), entailing
Op(x,a) = /Rzn a(Y)Z,(Y)dY,
with 3, (Y) = [Op,, (x(- = Y)]*Op,, (x(- = ¥)) = v Op,, (1 x) 7y . We note that
Op(x. 1) = /Rz” ty Op,, () Ty dY,

so has Weyl symbol X > [p2, [y(X —Y)dY =1 from Lemma 1.2.31 and thus
Op(yx, 1) = Id. We infer that for u, v € .Z(R"),

(Op (L. v)y2eny = [ a(V){Op (1= V). Op, G = Y)))aY,
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so that with any v > 0,
[{Op(x., a)u, U>L2(R")|

1 _
5“a“Lm(Rz”)/l;ZnE(v”Opw(X('_Y))u”iZ(Rn)+V 1”Opw(X('_Y))v”22(Rn))dY
1 _
= ||a||L°°(]R2”)§(V(Op(X7 Duu) 2wy + v~ {Op(x, Do, v)2®n))

1 _
= llallooqgan3 (V12 + V7 101 2
and taking the infimum of the right-hand side with respect to v, we obtain

I{Op(x, a)u, U)LZ(Rn)| = ||a||L<>°(R2”)”””L2(]R")||U||L2(R”)7

proving (1.2.75). To prove (1.2.76), it is enough to prove the last statement in the
theorem which follows immediately from (1.2.70), (1.2.71) since each operator Xy
is non-negative. The proof of the theorem is complete. ]

It is nice to have examples of non-negative quantizations, but somehow more
importantly, it is crucial to relate these quantizations to the mainstream quantization,
that is to the Weyl quantization. This is what we do in the next theorem, dealing with
semi-classical symbols.

Theorem 1.2.36 (Sharp Garding inequality). Let a be a function defined on R" x
R” x (0, 1] such that a(x, &, h) is smooth for all h € (0, 1] and such that

Y(x, ) € N" x N", sup |(@%0Fa)(x.&. WA~ < +o0. (1.2.77)
(x,E,h)eR xR x(0,1]

Let us assume that the function a is valued in Ry. Then, there exists a constant C
such that
Op,(a) +Ch > 0.

Proof. We have given a proof of this result in Remark 1.2.34 but with a differ-
ent definition for a semi-classical symbol (see (1.2.74)). Starting with our definition
above in (1.2.77), we define

b(x,E,h) = a(h'?x,h='2¢,h),

and we see that b satisfies the estimates (1.2.74) and is a non-negative function so
that, applying Remark 1.2.34, we can find a constant C such that

Op, () + Ch > 0.
We note now that Segal’s formula (1.2.48) applied to the symplectic mapping
(x.§) = (h'2x, h™12%¢),

shows that Op,, () is unitarily equivalent to Op,,(a), providing the sought result. =
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N.B. Several versions of the above theorem can be found in the literature, in par-
ticular, [24, Theorem 18.1.14]. The first proof of this result was given in 1966 by
L. Hormander in [21] for scalar-valued symbols and a proof for systems was given
by P. Lax and L. Nirenberg in [28] on the same year. Far-reaching refinements of that
inequality were given by C. Fefferman and D. H. Phong, who proved in [9] in 1978
that, under the same assumption as in Theorem 1.2.36 for scalar-valued symbols, they
obtain the much stronger

Op,(a) + Ch* > 0. (1.2.78)

A thorough discussion of these questions is given in [24, Section 18.6] and in [33,
Section 2.5] (see also [1]).

1.3 Examples

1.3.1 Hermite functions

We can easily calculate the Wigner distribution of Hermite functions and since the
Wigner distributions respect tensor products as partial Fourier transforms, it is enough
to do in one dimension. With v givenin (1.2.72), the Wigner distribution ‘W (v, ¥%)
appears as the Weyl symbol of Px.; = IPx as defined in (A.1.17). We find that the
Weyl symbol of Py.,, following (A.3.2), is

o g2 (X PHER).

More generally, the paper [27] provides in one dimension
W ) (. §) = (1) 22" L (4 (22 + £)), (13.1)

where Lj is the standard Laguerre polynomial with degree k (see (A.4.1)). As a
result, the Weyl symbol of P, is equal to mg , (x, &) with

T (x.6) = (~1F2e 2 (BPHED St TT L, @n(x? + £2)).

aeN” |a|=k 1<j<n

Note that the leading term in the polynomial (—1)¥ Ly (¢) is t¥/k! and this implies
that the set

{(x,8) € R2, WYk, ye) (x,§) < 0},

where W(Y, ¥x) is given by (1.3.1) is a relatively compact open subset of R2.
Indeed, we have

k
R e e D DI (o)

k!
0<l<k-1

>1/2for | X| > Ro
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which implies that
{X € R |X| > max(Ro. 1)} C {X € R* W(y, ¥)(X) > 0},

and thus
{W@k. ¥i)(X) <0} C {|X] < max(Ro, 1)}.

1.3.2 One-sided exponentials

Let us define for a > 0, f, (1) = H(t)a'/2e=%'/2. We have

W(fas fa)(x,§) = aH(x) e 2imzE =5 (xF2/2) =5 (x=2/2) g

|z]<2x

= aH(x)e_x”f e 2imzk g,

|z|<2x
2x
= 2aH(x)e_’“’/ cos(z2n§)dz
0

sin(4m x§)

=aH(x)e ™ pr:

We can check

400 :
R e e e L

T Jx=0 3

1.2

sin” ¢
/ —dt =,
R I

we verify (see Lemma 1.2.25 and (1.1.4)),

and since

2 +o0 ) 4
J] Wit togranas =2 [ ez [ D dear 1) fols ey

n2 5-2

On the other hand, the ambiguity function 4A( f;, f,;) is the inverse Fourier transform
of ‘W and we have

y

Afar )0 9) = & // H(x)e—““—””")%ﬁfﬂmédxds

+00 —3yl(@a—2inn)
o ae” 2
:a/ p—x(a—2imm) g, _ 4 27T
[

y|/2 a—2imn

which corresponds to [17, formula (9)] noting that with our notations, we have

AL )0, y) = AL L), =),
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where ,/I( [, f) is the normalization chosen in [17]. Going back to the Wigner distri-
bution, that simple example is interesting since we have

{(x.6). W(fa, fa)(x,§) <0}

L ko1 ko1
=kEJN{(x,$)e(O,+oo)xR ,§+Z<x|§|<5—l—§},

and we see that the Lebesgue measure of

« k1 ko1
Ekz{(X,f)G(O,—I—oo)x]R ’§+Z<x|§|<§+§}’

is infinite since
+o00 dx
|Ex| = 2/ — = +00.
0 4X

Moreover, the function W( f,, f.)(x, £) does not belong to L!(R?) since

// H(x)e ™ sin (47 x¢) (;:j;xé)‘dxdg > //(0,+oo)2 e

As a consequence, we have, using the notation for o € R,

sinn

T

dxdn = +o0.

o1+ = max(*a«,0),
[ e .00 dxde = [[ (9 fx.8)_dvae =+

since the real-valued function W( £, f,) does not belong to L!(R?) and is such that

// W(fa fa)(x, £)dxd§ = | fal 2 gy = -

We will see in Section 6.4 several important consequences of that phenomenon for
the quantization of the indicatrix of some subsets of R?, such as

Ex = {(x,8), £ W(fa, fa)(x,£) > O}.

1.3.3 Box functions

We start with 8o (1) = 1, 1(2), for which a straightforward calculation gives

sin2z (1 — 2|x])€)
43 )

W(Bo. o) (x.€) = 1_y ()

More generally, for real parameters a < b, defining

B(t) = (b —a) 21, py(1)e* ™",
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we find
W(B. B)(x. &) =[(b—a)r(§ — )]
x (1[&#](@ SInf47(§ — @) (x — )] + Ljagn 5 (x) sinfdr( — 0)(b — x)]).

Checking now (1) = 1;
tedious) calculation,

11 ](t) signt, we find after a simple (but this time a bit

W(B1, 1) (x, §) = l(lxl < %)251“(4”'x'5) —:2(27“1 —2/x])§)

1\ sin27 (1 — 2|x])§)
)

1
1{ - < < —
+ (4_|x|_2

1.4 Integrals of the Wigner distribution on subsets of the phase space

Lemma 1.4.1. Let E be a measurable subset with finite Lebesgue measure of the
phase space R" x R" and let 1g be the indicator function of the set E. Then, the

operator with Weyl symbol 1 is bounded self-adjoint on L*>(R™) and for any u €
L2(R™), we have

(Opy,(1E)u, u)p2wn) =// Wu,u)(x, &)dxdE. (1.4.1)
E

Proof. 1t follows immediately from (1.2.1) and (1.2.5). [ ]

Remark 1.4.2. A consequence of the above formula is that a spectral analysis of the
operator Op,,(1g) would display interesting extremalization properties for the right-
hand side of (1.4.1); for instance, if

A— = inf(spectrum(Op,,(1£))), A+ = sup(spectrum(Op,,(1£))),
we obtain that for ¥ normalized in L2?(R"), we have
A< // W, u)(x,E)dxdé < Ay,
E
In particular, if A_ is an eigenvalue related to a normalized eigenfunction u_, (resp.,

if A4 is an eigenvalue related to a normalized eigenfunction u ), we get for all u
normalized in L2(R"),

//EW(M_,u—)(x,f)dxdES//E "W(u,u)(x,é)dxdéf//E Wt uy)(x,&)dxdé.
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We shall see below several examples where the operator Op,, (1) is bounded on
L?(R™) with an E having infinite Lebesgue measure. We may note in particular that

Opw(1R2”) = Id,
and for a given non-zero linear form L(x, £) on R?” and

E = {(x,é) e R?" L(x,£) € J}, where J is a subset of R, (1.4.2)

we may find affine symplectic coordinates (y, ) on R?” such that L(x, §) = yy,
implying with (1.2.48) that Op,,(1£) is unitarily equivalent to the orthogonal projec-
tion u + u(y)1y(y1). Although in that case, the quantization of the indicatrix of £
given by (1.4.2) is trivial, we shall see below that in many cases, including some rather
explicit ones, the Weyl quantization of the rough Hamiltonian 1£ (x, £) could be far
from a projection and may have a rather complicated spectrum with a supremum
which could be strictly larger than 1 and an infimum which could be negative.

In some sense, although we have the trivial identity 1g(x, £)?> = 1g(x, £), we
shall see that the quantization process by the Weyl formula is destroying that prop-
erty; to understand integrals of the Wigner distribution on subsets of the phase space,
formula (1.4.1) forces us to consider the Weyl quantization of the function 1g (x, &)
and the Heisenberg Uncertainty Principle shows that non-commutation properties are
governing operators and these properties are of course distorting the classical identit-
ies satisfied by classical Hamiltonians.

We must point out as well that we do not have here at our disposal a semi-classical
version of our quantization which could ensure some bridge between classical proper-
ties and operator-theoretic results as it is the case for the quantization of nice smooth
semi-classical symbols depending on a small parameter 2 such as a C* function
a(x, &, h) satisfying (1.2.77). In particular, for a symbol a satisfying (1.2.77), we have
the following result: if for all (x, &, h) € R” x R"” x (0, 1] we have a(x, &, h) < 1,
then there exists a semi-norm C of the symbol a such that

Id —Op,,(a) + Ch* > 0,
i.e.,
Op,,(a) < Id+Ch?,

an inequality following from the Fefferman—Phong inequality (cf. (1.2.78)) which
implies as well the following lemma.

Lemma 1.4.3. Let a be a semi-classical symbol of order 0, i.e., a smooth function sat-
isfying (1.2.77) such that for all (x,&,h) € R" x R" x (0, 1] we have 0 < a(x,&,h) <
1. Then, there exists a semi-norm C of the symbol a such that

—Ch? < Op,(a) <1d+Ch?%.
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Quantization of radial functions and Mehler’s formula

This section and the following are essentially based upon the author’s paper [36].

2.1 Basic formulas in one dimension

In this section, we work in one dimension and consider a function F in the Schwartz
class of R. We want to calculate somewhat explicitly the Weyl quantization of F(x2+
£2) and also extend that computation to the case where F is merely L>°(R). We have,
say for F in the Wiener algebra % (R) = Fourier(L'(R)),

OpW(F(XZ_i_%-Z)):/Rﬁ(r)opw(eZiﬂf(xz-f—fz))dt’

as an absolutely converging integral of a function defined on R (equipped with the
Lebesgue measure) valued in B(L?(R)) (bounded endomorphisms of L2?(R)). In
fact, applying Mehler’s formula (A.3.1), we find

Op (eZiJT‘E(X2+E2)) — cos(arctan _[) eZin(arctanr)Opw(xz-i-Ez)
w s

operator with Weyl symbol exponential elM
p2imt(x2+£2) with M self-adjoint operator
=27 (arctan T)Op,, (x2+£2)

so that, using the spectral decomposition (A.1.17) of the harmonic oscillator
Op, (7 (x* + £%)),
we get,
dt
Vit

~ 1 dt
— F(T)ezt(k-i-z)arctant ]P;k’
g[l;{ V1412

OPW(F(x2 + 52)) — /R ﬁ(‘[) Z eZi(arctanr)(k.g-%)Pk
k>0

where the use of Fubini theorem is justified by

<400, Pr=0, Y Pr=Id.
k>0

/ Py -
R V1412

‘We have
dt

Vit
= / ﬁ(f)(COS(aI'Ctan 7) + i sin(arctan ‘E))2k+1
R

/ ﬁ(r)e2i(k+%) arctan T
R

dt
V1412
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and, using Section A.8.1, we get

~ : 1
F(_L,)EZI(k-‘rj)a.rctanr
/]R 1+ 12

We have proven the following lemma.

dt

/ F('L')(l + lf)2k+lm.

Lemma 2.1.1. Let F be a tempered distribution on R such that F is locally integ-

rable and such that
/lﬁ(r)l T oo @.1.1)
R V1+12 ‘ o

Then, the operator Op,, (F (x% + 52)) has the spectral decomposition

- \2k
Op,, (F(x* + £%)) = Z/ Fo( +iv? e,

k
Sl A+
F() (1 +it)k
= T APy,
,2/ (iR

where the orthogonal projections Py are defined in (A.1.17).

2.2 Higher-dimensional questions

We work now in n dimensions and consider a function F' in the Schwartz class of
R. We want to calculate somewhat explicitly the Weyl quantization of F (D, <j<n i
(x7 + &7)), where the j; are positive parameters, denoted by

on (F( X wei+8) | autwr= 2w+

1<j=n 1<j=<n

and also extend that computation to the case where F is merely L°°(R). We have,
say for F in the Wiener algebra # (R) = Fourier(L!(R)),

Op,, (F(qu(x.8))) = /R F(x)0p, (X7 21=rzn s CFHED Yar,

as an absolutely converging integral of a function defined on R (equipped with the
Lebesgue measure) valued in 8(L?(R")) (bounded endomorphisms of LZ(R")). In
fact, applying Mehler’s formula (A.3.1), we find by tensorisation,

Op (eZintzlsjgnM_j(ij-i-S})) — l—[ Cos(arctan(fﬂj))eZiﬂ(arCtan(tp,j))Opw(sz--i-éjz)
w b

<j< i
l=j=n exponential elMJ s
with M self-adjoint operator
=271(arctan(‘cu_,~))Opw(sz»-i-éjz)

(2.2.1)

operator with Weyl symbol
e2imTqu(x.8)
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so that, using the spectral decomposition (A.1.19) of the harmonic oscillator, we get

Op,, (F(qu(x.§)))

1
F(e 21 (arctan(zie;)) (et + 2)[[1) —d-[
=[fo = 1 SEaomE

aeN” 1<j<n

1
Z F(‘L’) 1_[ e21(ocj )arctan(rp,j) d‘L'IPa,
aEN"/ 1<j<n Vv 1 +(‘E/"Lj)

where the use of Fubini theorem is justified by
/|F(‘L’)| = < +o0, Py =0, Y Py =1d.
o

We have

~ 1 1
F(‘L’) €2l(a/ 5) arctan(T ;) dt
/R 1_[ V1t (tp)?

1<j=n

f Fo) ] (costaretan(pe; ) + i sin(arctan(u, 7)) ' ——

—dr,
1<j<n V14t (IM]')Z

and, using Section A.8.1, we get

1 1
F(‘E) 1_[ eZz(a, 5) arctan(T ;) dt
/ 1<j<n \% 1+ (T/'Lj)2

. 1 20 +1 1
=/F(r)l_[ At impy) ™ dr
R 1<jen (L+ (Tu)H T2 1+ (tp))?
We have proven the following lemma.

Lemma 2.2.1. Let F be a tempered distribution on R such that Fis locally integ-
rable and such that

~ dt
FT —<+OO
/R' Ol =

Then, the operator Opw(F Q1< j<n i (sz + 5;‘]2))) has the spectral decomposition

: 20 +1
OpW(F( Z /Lj(sz'i‘sjz))) = Z / F(7) l_[ ((ll—iltle:;)aﬁ” dtPy

1<j<n aeN” 1<j<n
A +itp)%
= Z [ F( ) l_[ Wd'ﬂpa,
aeNn 1<j<n K

where Py is the rank-one orthogonal projection onto Wy given by (A.1.18).
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Lemma 2.2.2. Let F be as in Lemma 2.2.2 and let us assume that all the |1; are
equal to u (positive). Then

k
on,(F(u ¥ 2+6))) = X [ Forg e,

1<j=<n k>0

with

IP)k;nz E IP)oe,
aeN"
la|=k

where Py is the rank-one orthogonal projection onto Wy given by (A.1.18).

Proof. With all the u; equal to u > 0, we find

(I +itp;)% (1 4+itp)% (1 4 itp)le!
[ e - -

(=it +t = =iz ¥ (1 —izp)lel+n’

1<j=<n 1<j=<n

which depends only on |«/|, so that applying the previous lemma gives
) (L itp)*
Fle Y 02 +8) Z/ e,
oy (l—l‘L’ Yk+n

giving the sought result. |
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Conics with eccentricity smaller than 1

3.1 Indicatrix of a disc

Let us assume now that with some a > 0,

F=1_

373l
so that
F(x* 4+ §) = 1,02 4£2)<a)-

According to Section A.8.1, we have

so that (2.1.1) holds true. We find in this case,

sinat (1 + i)k

dtr, (3.1.1
rt (1 —it)k+l n GLD

O, (FU? +8) = - F@Pe. Fula) = [

k>0

so that (note that Fi(a) is real-valued since F is real-valued and thus the operator
Op,, (F(x? + £2)) is self-adjoint), and for a > 0, using the result (A.8.2) in Section
A.8.2, we obtain

(1+it)k

(1 _lf)k—i-l O oerdr

Fi(a) = —/ cosat————

_ e {(1+zr)k N (1—it)k }dr

2 (I —in)ktl (1 4 ir)k+l
1 rar i*(x—i)k (=) (r +i)* J
T o € (=i)k+1(r 4 i)k+1 T k1 (7 — j)k+1 t

_ 1)k _ ik 1\k
&b / e””{— ) + (e +) }dr.
R

2im (r +i)ktl (7 —i)kH1

We shall now calculate explicitly both integrals above: let 1 < R be given and let us
consider the closed path (see Figure 3.1)

YR = [-R, RIU {Re'%}o<p<y .
N——

Y2:R
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—=

Figure 3.1. yg = [-R, R]U {Re'?}o<p<x.

‘We have

1 . _ i)k Kk ) Nk
— e””{ (e =) + (e +1) }dt :Res<e"”—(f+l) 1§i)
VR

2im (T4 DR T (= i)kl (t —i)k+

1 d - ,
— E(E)k{emr(f + l)k}h—:i’

and we note that, fora > 0,

Nk Nk
lim par| _ (€= C+D" 1, —o
R—>+00 [y, (r +i)ktl (7 —i)ktl ’

since for R > 2,

f” oiaRe?| (Re'? — i)k (Re'? + i)k iR |0
0 (Reie + i)k—i—l (Reie _ i)k—i—l
(ei9 _ iR_l)k (eie 4 iR_l)k

do

< g e—aRsinG
) (eie + l'R—l)k-l—l (eio _ l'R—l)k-H
(1+p)* (1+ p)*

T
< e~aRsinb jg sup { + }
/0 0<p<1/2 (1- P)k+1 (1- P)k+1

For a > 0, we obtain

T
lim e~aRsinb gpg _
R—>+o0 0
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by dominated convergence. As a result, we get

d\*,
Fi@ =0t () e i)

k
=(—1)"%( d ) (e +im + i),

Lde
a

that is

_1\k
R =S5

k
—& k
0 %) {e™(2a + ¢) }|a=0'
We note that F; belongs to L'(R) as the product of e™ by a polynomial. We have
also that

lim Fi(a) =1 (see Section A.8.3),

a—>—+00

and this yields

a +oo (__1\k k
Fe(a) =1 +/+ F,;(b)dbzl—/ (kl!) e"’(%) {e™ @b + &)}, _odb,

so that
Fr(@) =1—e"?Pr(a), 3.1.2)

with

_1\k p+oo k
Pi(a) = ( kl!) /0 e"(%) {e*(@+1+ 8)k}|8=0dl

(—l)k +oo d k o k
= /0 e T {e7>* 2 (a+1t+e) }lemod!

_1)\k 400 k
= (kl!) /0 et(%) {e™ (@ +0}dr. (3.1.3)

We see that Py is a polynomial with leading monomial 21;(‘11( (by a direct computa-

tion) and Py (0) = 1 (since 0 = F;(0) = 1 — Px(0)) and moreover, using Laguerre
polynomials (see, e.g., (A.4.1) in our Section A.4), we obtain

Pe(a) = (—1)k /+°° ot o2t +2a d k{e—zr—za(Za n 2t)k}d[
k' Jo 2dt

+o00
= (—1)k/ e ' L2t + 2a)dt, (3.1.4)
0
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and this gives in particular
+00
P/(a) = (-1 /0 e '2L) (2t + 2a)dt
+o00
= (—l)k{[e_th (2t + 2a)]§z(’;°° + /(; e "L (2t + 2a)dt}

= (=D Ly (2a) + Pr(a).

Moreover, we have from (3.1.3), for k > 1,

_1\k ptoo k
P,é(a) — ( 1) / ez( d ) {e—ztk(a + l‘)k_l}dt
0

k! dr
—_Dk ptoeo g4 k—1
- / eta(%) {e k(@ + Y
- Jo

(—l)k , d k—1 o B t=+o00
= {[e (E) {e™? k(a + 1)k l}lzo
+o0 d k—1
— [ e (E) {e_Ztk(a + t)k_l}dt}
0

-1 k—1 d k—1
- ((k _) 1! (E) {6_2[(‘1 + t)k_1}|t=0

—1)k—1 ptoo d k—1
+ ((k _) D1 /0 e’(E) {e™ (@ + )k dr

_ (_l)k_l 2t+2a d 1 —2t—2a k—1
= (k __1)!6 E {e (2a + 2t) }|t=0

_1\k—1 p+4oo k—1
+Ek1—)1)!/0 e’(%) (e (a+ )" "dr

= (- L1 (2a) + Pei(a).

so that

Vi =1, Pi(a) = (=D""Li1(2a) + Pror(a) = (=1 Lg(20) + Pr(a).
3.1.5)

This implies for N > 1,
Yo P@- Y D'Liay= )Y P@+ Y (—DFLi(a).

1<k<N 1<k<N 0<k<N-1 0<k<N-1
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yielding
Py@= Po@ = > D'L@a+ ) D LCa),
=1=Lo(a) 1<k<N 0<k<N-1
and
Py@) = Y (-DfLi@a)+ D (-D*Li(a). (3.1.6)
0<k<N 0<k<N-1

Note that the previous formula holds as well for N = 0, since Py = 1 = L.

Although the function R > a — Fy(a) has no monotonicity properties, we prove
below that R > a +— Py (a) is indeed increasing. For that purpose, let us use (3.1.5),
which implies

Pi(a) = (=1 ' Lg12a) + Pry(@), k=1,
Peo1(a) = Pra(@) + (=1L 22a) + (=1 ' Ly1 2a), k=2,
Pi(a) = 2(=1) ' Lg1 Qa) + (=1)* P Li2(20) + Pra(a), k= 2.

We claim that for k > 1,

Pla)y=2 Y (-D'Li(a). (3.17)

0<l<k-—1

That property holds for k = 1 since P;(a) = 1 + 2a: we check P{(a) = 2. Moreover,
we have

Pr (a) = (—l)kLk (2a) + Pr(a) (from the first equation in (3.1.5))
(using 3.1.6)) = (=D LeRa) + > (D'Lia)+ > (=D'Li(2a)

0<i<k 0<l<k-—1

=2 ) (-1'LiQa).

0<i<k
which is the sought formula. As a byproduct we find from (A.4.2)

Va >0, Pl(a)>0,

which implies that for a > 0, Px(a) > P;(0) = 1. We have proven the following
lemma.

Lemma 3.1.1. The polynomial
Pr(a) = e*(1 — Fi(a))

is increasing on R 4,
Pr(0) = 1.
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Let us take a look at the first Pj: we have

P()(Cl) = 1,
Pi(a) =1+ 2a,
Py(a) = 1 + 242,
4 3
&m):1+2a—mz+{;,
8a3 2a*
Ps(a) =1+ 4a®> — — + —,
4((1) + 4a 3 + 3
16a3 4a’
Ps(a) = 1 4+ 2a —4a® + —= g% 4+ °L
3 15
14a* 16a®> 4a°
Ps(a) = 1 + 6a* — 843 — —
6(a) = 1+6a”—8a"+ — 5 T3

26a* N 44a°  4a® N 8a’
3 15 9 315
44a* 324 64a® 164’ 2ad
P =1+ 8a% — 164 - - =
8(@) = 1 +8a"—16a"+ — 5 T4 105 315

64a® 68a* 184a® 324®° 17647

P7(a) = 1 4 2a — 6a® + 12a° —

Po(a) =1+ 2a —8a> + 3 "3 T35 o T 38
2a8 4a°
"5 T agss
Pro(@) = 1 + 104> — 80a3 n 100a* _ 64a°® L 34445 B 496a’ 4 58a8
3 3 3 45 315 315

324° N 4q10
2835 14175°

1003  140a*  1044° 664a 118447
3 3 T3 a5 tas

26a®  1484° 4a'° 8all

45 2835 1575 T

Pi1(a) = 14 2a —10a* +

155925°
Pia(a) = 1 + 124 — 404> + 190a*  160a° +_1184a6 251247 +_478a8
a) = a“ — a _ _
; 3 3 45 315 315

5124° n 184at0 16all n 4412
2835 14175 31185 = 467775°

We note as well that

Pw= Y Ty 2’(—1)"—’(11‘),

o<m<k  m<I<k
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since from (3.1.3),

_1\k ptoo d k
Pr(a) = ( kI!) /0 e’(a) {8_2’(a +t)k}dt

B i +o00 , (_z)k—m k! b
=D Z/O ¢ k=l k= mypm @ T

0<m<k
~+00 (_z)k—m k! k—m
= (D" Y / e > altk‘l"”< )dz
ok 0 (k —m)! (k —m)'m! o<l b l
(—2)k—m k! f k—m
= (-D* k—1—m)!
=D 0<mz<k = m)! (k= mym® mi
o<l<k—m
(—pmak=m gy 1 al e am [
2 (k —m)! LTI BIE D DI AR ) |
0<l+m=<k o<l<k I<m’<k

which is the sought formula.

Lemma 3.1.2. With the polynomial Py defined by (3.1.4), we have

{ Pe(a) =2 0c1ck1 (1! Li(2a) + (=¥ L (2a),
Pl(a) =2 g<i<1 (D' Li2a).

Proof. We may use the already proven (3.1.6), (3.1.7), but we may also prove this
directly by induction on k. ]

Proposition 3.1.3. Let Fy, be given by (3.1.2) with Py defined by (3.1.3). We have

Fr@a)=1—ePa)<1—e% = Fy(a) fora=>0,
Fi(a) = e™*(Pr(a) — Pi(a)) = e (=D)L (2a).
F/(0) = (1), im F/(a)=04, Fie(0)=0, lim Fe(@)=1-. (3.18)

Proof. We use (3.1.2), (3.1.7), and (3.1.6) for the three first equalities, Lemma 3.1.1
for the first inequality. The fourth equality follows from L (0) = 1, while the fifth is
due to the fact that the leading monomial of (—1)* L (2a) is 2Ka¥ / k!. The two last
equalities are a consequence of the first line. ]

Remark 3.1.4. The zeroes of F ,é on the positive half-line are the positive zeroes of
the Laguerre polynomial L divided by 2. When k is even (resp., odd) the function Fj
is positive increasing (resp., negative decreasing) near 0, then oscillates with changes
of monotonicity at each a such that L (2a) = 0 and when 2a is larger than the largest
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zero of Ly, the function Fy is increasing, smaller than 1, with limit 1 at infinity.
Typically, we have F»;(0) = 0, F,;(0) = +1,

0<ayp <az <---<dag—12 <dazp, thezeroesof Ly (2a), 3.1.9)
F5; vanishes simply at bp = 0 and at bj € (a;,a;41) for 1 < j <2/ —1, also at

ba; > asy: 21 + 1 zeroes with a positive (resp., negative) derivative at by, ba, . . ., by

(resp., at by, b3, ..., by;—1). Moreover, we have F5;11(0) = 0, F2’l+1(0) =—1,

0<ayppi+r <aspry1 <---<api+1 <az+1,2+1, the zeroes of Lojy1(2a),

(3.1.10)

F141 vanishes simply at bo =0 and atb; € (a;,a;41) for 1 < j <2/, alsoatby; 11 >

az4+1: 21 + 2 zeroes with a positive (resp., negative) derivative at by, b3, ..., byy41
(resp., at by, ba, ..., by).

We note as well that a consequence of the previous remark is that
min Fy;(a) = min {Fy;(as; ,
min 21(a) 15;‘51{ 21(azj00)}
min F a) = min { F Aoy i ,
min 21+1(a) Osjsl{ 2041(@2j 11,2041) )

where (ap 1) 1<p<k are defined in (3.1.9), (3.1.10).

Theorem 3.1.5. Let a > 0 be given and let

Dy = {(x,é) eR*x?+£% < i}. (3.1.11)
2
Lo}
0.8F
0.6
] — 1
0.4:- Fs
0.2 Fg
_ 5 {0 15
—0.2f

Figure 3.2. Functions Fs, Fg.
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Then, we have

Op,(Ip,) = Y Fi(@)Pr <1—e™“.
k>0

Proof. An immediate consequence of (3.1.1), (3.1.8). Note that the inequality in the
above theorem is due to P. Flandrin in [13] (see also the related references [20], [14]).
[ ]

Curves. Let us display some curves of Ry 3 a — Fr(a) =1 —e % Pr(a).

1.0’-

— 1
0.8
Fo
0.6 — R
0.4 —
—
0.2
— >3
— Faq
40 50 60
F>s
0.2

Figure 3.3. Functions Fy.

3.2 Indicatrix of a Euclidean ball
The following result displays an explicit spectral decomposition on the Hermite basis
for the Weyl quantization of the characteristic function of Euclidean balls.
Theorem 3.2.1. Let a > 0 be given and let
Qan = Op, ({27 (|x|* + [£%) < a}),

be the Weyl quantization of the characteristic function of the Euclidean ball of R*"
with center 0 and radius \/a/(2r). Then, we have

cza,n = Z Fk;n (a)]P)k;n,
k>0

With Py = 3 yenn jo|=k Pa> Where Py is the orthogonal projection onto Wy (defined
in (A.1.18)), with || = 3, _;, & = k and

sinat (1 +it)k
kin(@) /R rt (1—ir)ktn ¢
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The spectral decomposition of the previous theorem allows a simple recovery of
the result of the article [39] by E. Lieb and Y. Ostrover.

Theorem 3.2.2. Leta > 0, @45, Fk.n be defined above. Then, we have

1 +o0 r
Frn(a) <1— / etnlgr =1 L9 (3.2.1)
I'n) J, I'(n)
and thus we have r( )
n,a
Qan=<1- -, 322
an = T () ( )

where the incomplete Gamma function U (-, ) is defined in (A.8.3).

Proof of Theorems 3.2.1 and 3.2.2. We use the results of (the previous) Section 3.1:
Let us assume now that with some a > 0,

F=1rg.51
so that
F(x]* + |£]*) = 127n(|x|> + |§1%) < a).

According to Section A.8.1, we have ﬁ(r) = Sifr%, so that (2.1.1) holds true. We find
in this case, following the results of Lemma 2.2.2,

Op,, (F(|x|2 + |‘§|2)) = Z Fien(@)Pi;n,  Prn = Z Py,

k>0 aeN" |a|=k

sinat (14 i7)k
Fr.n(a) = dr, 3.2.3
kin () /1; nt (1 —ir)k+r ‘ (3.2.3)

where P, is the orthogonal projection onto W, (defined in (A.1.18)), with
ol = > o=k
1<j=zn

This completes the proof of Theorem 3.2.1.
We postpone the proof of Theorem 3.2.2 until after settling a couple of lemmas.

Lemma 3.2.3. Let (k,n) € N x N*. With Fy.,(a) given by (3.2.3), we have

Frp(a) =1—e “Pry(a), where Py, is the polynomial
(_1)k+n—1 /+OO » . d n+k—1 v
Prp(a) = ——— e 't +a)" et — she™s dt,
" (k+n—1)' 0 ds [ ] |s=2¢+2a
(3.2.4)

(_1)k+n—1 +o00 . d n+k—1 B
Pk;n(a) = (k T 1)'2n_1 /0 (l +a) let (E) {(l +a)ke ZZ}dl‘.
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Proof of Lemma 3.2.3. The lemma holds true for n = 1 from Proposition 3.1.3. We
have fora > 0, n > 2,

1 (1 +in)k
/ _
Fk;n(a)— ;/};COSGdeT
_ U e (LFiDF de s L[ gar (1—it)k .
27 Jr (1 —it)ktn 27 Jr (1 +it)ktn
L ikt —i)k LI o (—i)k(zr +i)* i
2im Jr© (—i)kFn(r 4 i)kEn 2im Jr ikt (r i)k
so that
. e THDF
F,é;n(a) =i n(—l)kReS(emrm;l
DR (N
“Gramil) e
and thus

, ll_n(—l)k d k+n—1 ue. & k
Fy.,(a) = (k—l-n—l)!("l;ds) {e G +l;+l) }|€=0

. 1—n k n— k+n—1
_ i (=1)kgn1 (d) {e_a_8(2a+e)k}

i~k +n—1)!\de le=0
= a(—l)k+”_1an_l d fnt —2a—2¢ k
= k=0 \2de (€727 2a +20)%} .

that is

, (_1)k+n—1 . d k+n—1 ok
Fk,n(t) = (k +n— 1)'ett ! % {e S }|S=21

_)k+n—1 4\ k1
— (ki ) 1)'2n_1 ettn—l (E) {€_2ttk}.
n—1!

We have also that lim, s 4o Fg;n(a) = 1 (following the arguments of Section 3.1)
and this yields

—1)ktn—1 +o0 d k+n—1
Fk;n(a) — 1 _ ( ) / ettn—l( ) {e—ZItk}dt

(k +n — 1)12n—1 dt
_ 1k+n—1
e D)
(k +n—1)12n1
X /0 (t + a)”_le’(a) {e72(t + a)¥}dt,

concluding the proof of the lemma. |
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Let us go back to formula (3.2.4), written as

_ k+n— [e.e] n—
( 1) tn—l /+ e—t{(zt + 2(1) ! (_ _ 1)n+k_1[(8 + 2t + 2a)k]} dt
0

-1 — 1!
on k+n-1)! =0
(_1)k+n—1 +o0
= Prpla) = zn—_l/ _th—i-n 12t + 2a)dt, (3.2.5)
0

where the generalized Laguerre polynomial L}er'; _, is defined by (A.4.5) (note that
1 —n 4+ k + n — 1 = k which is not negative).

Lemma 3.2.4. Letn € N*, k € N and let Py, be the polynomial defined in Lemma
3.2.3 (and thus in (3.2.5)). Then, we have

(_1)k+n 1
Pk;n(X) - P]é;n(X) = 2,,—_1 k+n 1(2X) Pk;n(o) =1, (3.2.6)
forn =2, Pl, = Pru_i. (3.2.7)

Proof. From (3.2.5), we find

(_1)k+n—1 +o00
Pin(@) = T/O e 2Ly (2t + 2a)dt
(_1)k+n—1 oo +o00
et {[ _t(Lk+" D@21 +2a)]t 0 +/0 _th+n 1(2t—|—2a)dt}
( l)k-l-n
= 5 Lith120) + P (@),

and since 0 = Fy.,(0) = 1 — Pg.,(0), this proves (3.2.6). Using now (3.2.5) and
(A.4.7), we find that

(_1)k+n +o00 d
Penta) = [ e @+ 200
(_l)k—i-n B oo
ol [ Lo 2t +20)],
+o00
[ el oyen+ 2a>dt}
(—1)k+n +00
T ond { k+n 1(2a)+/ t2(Lk+n 2)(2t+2a)dt}
0
(_1)k+” 1 ( 1)k+n—2 +oo
= onl L 1(20)+T/0 e 'Ly (21 + 2a)dt,
Prn (a)_Plé:n () Py:p—1(a)
from (3.2.6) from (3.2.5)

so that forn > 2, k € N, we obtain (3.2.7), completing the proof of the lemma. [
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Lemma 3.2.5. Let k,n, Py., be as in Lemma 3.2.4. Then, we have

d

j
d_X) Pin = Pron—j- (3.2.8)

vjefo,n—1], (

Moreover, foralla > 0 and all k € N,

JL(n,a)

Pk;n(a) = PO;n(a) = I'(n) '

+00
/ e lt+a)" ldt=e (3.2.9)
0

(n—1)!
Proof. Formula (3.2.8) follows immediately by induction from (3.2.7) since the latter
is proving (3.2.8) for j = 1,n > 2,k € N. Assuming that (3.2.8) holds true for some
1 <j <mn,all k € N, we have P,E’n) = Py ,—; and if j + 1 < n, we obtain from
(3.2.7) that

’

_ p/ _ pU+D
Pk,n—j—l = Pk,n—j - Pk'n

proving (3.2.8). The property (3.2.9) holds true for n=1. From (3.2.7), P.,+1(0)=1,
we find that Py, 41(a) = 1+ f(;l Py, (s)ds and assuming that (3.2.9) holds true for
n, we obtain for a > 0,

a

+00
e It 4+ 5)" Vdrds
= )

+o00 t ns=a
=1+/ e_’[( +5) } dt
0 n! s=0

1 —+o00 1 +o0
=1+ _/ et +a)" —tMdt = —/ e (1 +a)'dt,
n! 0 n! 0

Pemsr(@) = 1+ /

completing the proof of the lemma. ]
We can now prove Theorem 3.2.2, since
Frn(a) =1—e ™ Pru(a)
the estimate (3.2.8) implies indeed

I'(n,a)
I'(n) ’

Fk;n (a) <

concluding the proof. ]

Remark 3.2.6. Our methods of proof in one and more dimensions are quite similar.

* Using Mehler’s formula, we diagonalise in the Hermite basis the quantization of
the indicatrix of the Euclidean ball

Dan = {(x,8) € R 27 (|x|? + [£[?) < a).
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*  Once we get the diagonalisation

Opw(lDa;n) = Z Fk;n(a)Pk;n9
keN

we study explicitly the functions F., and prove that
Fk;n (a)=1- e Pk;n (a),

where Py, is a polynomial given in terms of the generalized Laguerre polynomi-
als

(_1)k+n—1 +o00
Pen(a) = — —— / e Ly (21 + 2a)dt.
0

* Following the Flandrin paper [13], we use Feldheim inequality in [12] to tackle
the case n = 1, and next we use an induction on n, made possible by the rela-
tionship between the standard and the generalized Laguerre polynomials. It is
interesting to note that the functions Fj., have no monotonicity properties: with
value 0 at 0, they have an oscillatory behavior for a < ag_, and for a large enough,
increase monotonically to 1 (see for instance Figures 3.2 and 3.3 in the 1D case);
the inequality

Fk;n(a) <l-e™

holds true for all @ > 0 in all dimensions. On the other hand, the polynomials
Py, are increasing and larger than 1 on the positive half-line.

The key ingredients are thus Mehler’s formula and Feldheim inequality, but it
should be pointed out that the arguments proving Feldheim inequality (formula (6.8)
and Theorem 12) in the R. Askey and G. Gasper’s article [2] are also based upon a ver-
sion of Mehler’s formula which appears thus as the basic result for our investigation.
The paper [39] by E. Lieb and Y. Ostrover has a slightly different line of arguments
and takes advantage of symmetry properties of the sphere. We shall go back to this in
a situation where the symmetry is absent, such as for some general ellipsoids.

3.3 Ellipsoids in the phase space

3.3.1 Preliminaries

We provide below a couple of remarks on ellipsoids in higher dimensions. Let us first
recall a particular case of in [24, Theorem 21.5.3].

Theorem 3.3.1 (Symplectic reduction of quadratic forms). Let g be a positive-definite
quadratic form on R" x R" equipped with the canonical symplectic form (1.2.13).
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Then, there exists S in the symplectic group Sp(n,R) of R?" and ji1, . .., j, positive
such that for all X = (x,§&) € R" x R",

q(SX) = > ui(x}+EM. (3.3.1)

1<j=<n

Note that an interesting consequence of this theorem is that, considering a general
ellipsoid in R?" (with center of gravity at 0),

E={X e R* ¢q(X) <1},

where ¢ is a positive definite quadratic form, we are able to find symplectic coordin-
ates such that g is given by (3.3.1). Note however that no further simplification is
possible and that the j1; are symplectic invariants of E. Note that the volume of E is
given by

n,n

[Eloy = ————.
nULL - fn

3.3.2 Spectral decomposition for the quantization of the characteristic function

of the ellipsoid
Let ay, ..., a, be positive numbers. We consider the ellipsoid E(ay, ..., a,) given
by
x? + &2
E(a) = E(ai,...,ay) = {(x,g:) eR"xR"2r Y —“L—L <1, (332
1<j=<n 4

We define on R” the function

2

2
F(Xy,....Xp) = 1[_1’1](a1 Xy +--+ —Xn).

Aan

Theorem 3.3.2. Let a = (aj)1<j<n be positive numbers and let E(a) be defined by
(3.3.2). Then, we have

Op,(le@) = Y, Fu(a)Py,

aeN”?

where Py is defined in (A.1.19) and Fy(a) = 1 — Ky (a), with

K@ = [y 0O T 07 Ly 333
;>0 I<jzn

Remark 3.3.3. For all « € N”, the functions Fy, K, are holomorphic on

U ={a e C",Vj € [l,n],Rea; > 0}. (3.3.4)
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Indeed, let K be a compact subset of U; there exists p > 0 such that

Y(ay,...,ay) € K, min Rea; > p,
1<j=<n

and as a result for a € K, we have for s € R’jr

em(@sitetansn) T (—1)% Ly, azs;)| < e PO Cr g (1 4 I,

1<j=<n
so that
/Zsjzl suI[; e~(@isittansn) H (=D)% Lo, (2a;s;)|ds
5;20 € 1<j<n
< fryog € PO C (1 Is])ds
=

$; =0

< CK,a/ e PonsI(1 + |s])llds < +oo0.
Rn
Since we have

Ka(a) = s e_(alsl-’r«..—l—llnsn) 1_[ (_l)Olj Laj (2ajS])dS ai---ay,
=

$;>0 1<j<n
this proves the sought holomorphy.
Proof of Theorem 3.3.2. We have
Op,(1g@) = Opy (F(T + &, x5 +£7))
= / F(1)0p,, (eZi” VA (x12'+§/2))dr

A (1+ig)*+!
= Z/ F(‘L’) 1_[ W(ZT}P}‘

aeN” 1<j<n
~ 1 1T )%
=¥ [ PO T Gorsmdrbe
aeN” R” lsjsn( _”j)j

where P, is defined in (A.1.19). On the other hand, we have

~ . 2 2
F(T) — /E—Zln‘pxl[_l’l](_ﬂ:xl + .-+ _”xn)dxl ...dxn
a

An

=a1---an(2n)_”/e_izf ’-"“-’yfl[—l,u(zyj)dy,

60
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so that, with M} defined in (A.4.3), using (A.4.4), we get
Opy, (1E ()

R Z / e TI2T Y Tiaj V) 1[_1,1](Zyj)dy

aeNn VYRR

(1 4+i2m7;)%
———d 1P,
15/1_'1511 (1—i2pgy)u 17"
=day---dy Z/ / e—iZJTZjTjajyjl[_l,l](Zyj)dy l_[ éaj(fj)dTPa
aeN” R® JR” 1<j<n
=dap--an Z/ 110D y) [[ Ges(ajyjdyPa
aeN” R7 1<j<n
= Z/ (Y t/a) [ D% H()e™ Lo, (247)d1 P,
aeN” R 1<j<n
with
Fo(a) = /R ) (1—1[1,+oo](2t_,~/a_,~)) [ D% H@)e™ Lo, (217)d1

1<j=<n

=1 /Rn 1[1,+w1(2fj/aj) l_[ (=D* H(t;)e™ Lo, (2tj)d1, (3.3.5)

1<j=n
where we have used that

Pr.1(0) =1 (cf. Lemma3.1.1),

so that setting

Ka(a) - /th/ajzl e—(t1+...+tn) l_[ (_1)0{}- Lozj (2[j)dt,
tj>0 1<j=<n

we have Fy(a) = 1 — K4(a), concluding the proof of the theorem. ]

Remark 3.3.4. We have from (3.3.5)

Fa(al,...,an):/Rn 1[0,1]( Z Sj) l_[ (—l)afH(Sj)e_ajsjLaj(Zaij)ade,

1<j=<n 1<j=n
and since the set
n
{SER+, Z §;j < 1}
1<j=<n

is compact, we obtain that F,, is an entire function, as well as K, which is indeed
given by (3.3.3) on the open subset U defined in (3.3.4).
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Lemma 3.3.5. With the notations of Theorem 3.3.2, we have with u; = 1/aj,

. ' ﬂ (aj +it)%
F“(")‘( [l “’)/R m( [1 (a,-—m“f“)d’

1<j<n 1<j=n
. L
:/ T (At im)™ (3.3.6)
R T (= i)

1<j=<n
Proof. Mehler’s formula implies in one dimension that
Opw(ez”i’(xz’ng)) =1+ exp [27i(arctan 7)(x* + D2)],
and a simple tensorisation gives
Opw(ez’”r Y (x_/2-+$_/2))
= 1_[(1 + (r,uj)z)_l/2 exp [Zﬂi Z(arctan(ruj))(sz + chj_)],
J J

so that we have

Op, (F(X 3 +8)))
J
= [ F@0p, (20T ae
R

/ ﬁ(r) 1_[(1 + (T/Lj)z)_l/2 exp [Zni Z:(arc'[an(ruj))(xj2 + Dij)]dr
R

J J
Z / F(‘L’)(H(l-ﬁ-(‘[[t] 2~ l/zexp[2z(arctan(tuj))(oej ;)])dﬂP’a
aeN”
-> [ F(r)(l'[(w(mj L

aeNn (1+ (zp)2)%i+s

(1 + ity
% [ Fo( IT gl )ares

aeN” 1<j<n

and for F(t) = 1[—1,1)(2¢), we find F(r) = snt - and the sought result. [

Remark 3.3.6. It is also possible to provide a direct checking for the above lemma,
since with the notations (A.4.3), (A.4.4), we have

(1 + itp))™

m = é\;\j(fﬂj/(zﬂ)),
J
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and thus

Fa(a)=/]RI3(I)HC/}YO;(IMj/(2n))dr
J
= /R F(1) /}R ]:[(—1)%‘ L, (2t))H(tj)e " ¥ 75/ CM gt d

=/ [[D% Lq, (2tj)H(t,~)e"fF(§ ujzj/zn)dz.
n ] ]
Now, since we have
F(§ :Mﬂj/h) = 1[—1,1]( » Mjfj)»
J J

this fits with the expression of Fy in Theorem 3.3.2.

Remark 3.3.7. Another interesting remark is that the expression (3.3.6) depends
obviously only on |a| and @ = a; = --- = a, in the case where all the a; are equal:
indeed, in that case, we have with u = 1/a,

I (I+itp)® (I +itu)!
(=it ™+t (1 —izp)latn’

1<j=n

and this gives another (a posteriori) justification of our calculations in the isotropic
case of Section 3.2. On the other hand, we get also the identity

sin T . _
Foyn(ay, ... ap) = —Re( 1_[ (I—itpy) l)d‘f,

T
R 1<j=n

where the explicit expression (3.3.7) is given for the left-hand side.

Lemma 3.3.8. With the notations of Theorem 3.3.2, the function K, .. a,(a1, ...,

ay) is symmetric in the variables («1,ay, ..., 0y, ay), ie., for a permutation w of
{1,...,n}, we have
Kan(l),...,an(m (aﬂf(l)’ R a][(l’l)) = K(X],...,C(n (al’ ceey an)-

Proof. Formula (3.3.3) yields
Ko@) = fo, 0 [T €109 L, Cays)ds.
5,20 1<j=n

and the domain of integration is invariant by permutation of the variables, entailing
the sought result. |
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Lemma 3.3.9. With the notations of Theorem 3.3.2, we have

Kal,...,ocn (611, ce ,an) =e Pan (an)

=e Pan (an)
1
+ / (_1)otn La” (2an9)e_0an Kal,...,ozn_l (al(l - 9)’ cee an—l(l - 9))d9(1n
0

Proof. The domain of integration is the disjoint union

t t t 3 z
{—‘+ - ”1zl—l,tj20,0§—”fl}u{—”>1,tj20,1§jfn—l},
ai Apn—1 an 7% Aan
so that
Ktxl,...,an (ai.....an) = e Py, (an)

+ / (—=1)*" Lg, (2t,)e ™ Kai,.oan— (al(l—tn/an), o ,an_l(l—tn/an))dtn
0
=e 9 Py, (an)
1
+/ (—=1)% Ly, (2a,0)e =% Ka,.an_y (@1(1=0),....an—1(1 — 0))dbay,
0

which is the sought result. =

Lemma 3.3.10. With the notations of Theorem 3.3.2, we have, assuming that the
(aj)1<j<n are positive distinct numbers,

[Txz) ax

Ko, oai,....an) = o4 Ik#E T
" 2 [k @k — aj)

1<j<n

(3.3.7)

Proof. The latter formula is true for n = 1 since we have
Ko(ay) = e 1.

‘We have also

1

Koenn(ay,...,ap) = e_“”+an/ e_O“"KOGanl(al(l—O),...,an_1(1—9))d9
0

1 .
= e_a” —+ ay / e—@an Z e_a-f(l_e) Hk#] dk d@
0 [T (ax — aj)

1<j=<n-1

1
nk#] Ak e—@ane—aj(l—e)de

=e % 4 q,
1<j<n—1 [Tkzj(ax —aj) Jo
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1
An nk#] Ak e—a_/' / ee(aj—an)dg
1<j<n—1 [Tirj(ax —a;) 0

an nk;éj 4 e% ™4 —1

1<j<n—1 Hk;éj(ak —aj) aj —dn

e 9

an nkyéj ap e % — 79

1<j<n—1 Hk;&](ak _aj) (a] _an)

dnp nkyéj ag 1 )

= e_an 1+
( 1§j§l—1 [Tirjlax —a;) (a; —an)

(237 Hk#] aj e 4j

+

We need to prove that

(1 + Y
1<j=<n-1

That is

[ a= ] @-an

1<l<n-1

which is

1<j<n—1 Hk#;(ak —aj) (an — aj)'

1<l<n-—1

- Hk#j,ls}csn_l o ! = H1515n—1 aj
nk#j,lsksn—l(ak —aj) (aj _ an)

nlslsn—l (a1 —an)

(1+ Z an Hk;éj,lsksn—1 ak 1

1<j<n-1

[ a= ] @-an

1<l<n-—1

1.€.,

M -

1<l<n—1

1<l<n-1

+

1<y Hiziaskesn— (@ —ap) (aj

1<l<n—1

an Hk;éj,lsksn—l Ak 1_[1515”_1(611 - an)

[] @-an+ >

—ap)

[lkzj1<k<n—1l@ar—ay) (a; —an))’

’

an [ xstj1<k<n—1 9k (ax — an)

1<j<n-1

Hk;éj,lsksn—l (ax —aj)

(3.3.8)

Let us reformulate (3.3.8) as an equality between polynomials (to be proven) with

[] @-x+ >

1<l<n-1

1<j<n-1

X [kt j1<k<n—1 9k (ax — X) B

Hk;éj,lsksn—l (ak —aj)

[T a

1<l<n—1
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and let us assume that the (a;)1<;<n—1 are distinct and different from 0. The polyno-
mial @ on the left-hand side has degree less than n — 1 and we have

QO0)=0 Vje[l.n—1],

aj [krj1<k<n—1 @k (ak — a;)
- [l a=o

Qa;) =
’ nk;éj,lsksn—l(ak —aj)

1<i<n-—1

so that @ has degree less than n — 1 with n distinct roots and this proves the identity
(3.3.9) when the (a;)1<;<n—1 are distinct and all different from 0, proving (3.3.7) in
that case; of course we may assume that all a; are positive and noting from (3.3.3)
that K, is continuous on (IR% )", we get formula (3.3.7) in all cases where all the a;
are positive, concluding the proof of the lemma. |

Lemma 3.3.11. With the notations of Theorem 3.3.2, we have, assuming 0 < a; <
-+ < ay, the inequality

Faj .
—aj 1_[15[<] > e Mil<j<n@j — pgx e—aj.

n >
KOEN (a17 ’an) sl Z e (] — 1)' il 1< <n

1<j=n

Remark 3.3.12. The above estimate is sharp in the sense that when all the a; are
equal to the same a > 0, we have proven in (3.2.1) that

—a

e +o0 3 .
Ko(a) = (n—l)!/o e(s+a)"ds
a al
=e T
¢ Z n—1-Dl (n=1)
0o<l<n-—1
vy fee y
=e¢ — =
0o<l<n-—1 I 1<j<n (J o l)'

- Z e 1_[151<jal
(j _1)! lay==ay=a

1<j=n

Proof. The property is true for n = 1 since Ko(a1) = e %!. We check the case n = 2
with a1 < a,, and we find

ai

—a —t1 ,—ax(1—t1/a
K0 (ai,az) = e 1+/ eTema2mn/an) gy,
0
ax—ay _ az—ay _
_ € 1 _ _ e 1
=e M te R —Y——=e¢"" te R

o az —ai

>e 4 4 e %2,
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Let us consider for somen > 3,0 < a; < --- < a, and inductively,

KOGNn(ala CECI 7an)
ai

= 4 Po(ar) + / e KOGN"_1 (612(1 — tl/al), o an(l = tl/al))dtl
0

1
=e “ Po(ar) +a / ™% Koenn-1 (a2(1 = 0)......an(1 = 6))d?
0

> @ —i—a1/ —a6 Z o~ (1= 9)H2<I<J (1—e)f—2d9

|
2<j<n 2)
1
=e % + Z e_“f'(al l_[ al)/ e@i—an) — '(1—0)1 —2d6
2<j=n 2<l<j 0 ( )
N’
1_[1<k<j ak

> e % 4 Z g—“j(

2<j=n

————(1-6)/72d0
1<k<j )/ ( 2)'
1

e

2<j=n 1<k<j
concluding the proof of the lemma. ]
Remark 3.3.13. The reader may have noticed that it is not obvious on formula (3.3.7)

]_[kyé i Ak
Ko..olar,....an) = e—aj—l’
" 2. [k (@ —a))

1<j=n

that Ky is an entire function. Let us start with taking a look at

Ko,o(ai,az)
e ay e a;  axe —aje?
a—ay a4y —az a —a
a1 an _ay aj
_ta) are 272 —qje 2+9
= e 2
dy —dy
_tagtay a(cosh 254 4 sinh 254 — g, (cosh 41592 + sinh 41592
= e 2 - —_—
dy —dy
r . ar—aj
—lata) a —ai (az + ay) sinh(%%5=1L)
=e 2 cosh( ) + 2 ]
B az —daj
[ 1 inh(%&=4
_M dy —day i(a2—|—a1)81n ( > )
=e 2 _cosh + T
_teptar)r a —ai 1 ar —ay
= e 3 [eosh (Z57) + S+ anshe (5 . (3.3.10)
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where shc stands for the even entire function defined by
sinh ¢
shet = .
We have also from Lemma 3.3.5
. | it )%
R = [ —S“”( | PR +.”“’3<+1)dr,
R T\ 2, (I—itp;)%
and defining the function F,(a, A) as the absolutely converging integral,
sin(A7) (1 +itp;)%
Fatay = [ ST O an R = Futa,
R (I —itp;)%
1<j=<n
we get
0Fy 1+ l‘E[L])a/
a—/\(a,)t) = —/ cos(/\r)( l_[ (—icn, )a,+1 dt
1<j=<n
1 : 14+itu;)%
= — elh( 1_[ A o)™ —i_.lrujz,il)df
27 Jr 1<jzn (LTI
L[ (1 - itp)”
+— ezkr( . J : dt
2 15]1_'[5n (1 +itp,)%t!
1 . 1 | ALY 1— j
= or elh( [ ( —I—'”MJJH"' [ ( ltﬂjz +1)d
21 Jr 1<j<n (I —itp;)% 1<j<n (I +itp;)%
_ i (U—it)™
=1 Z Res(e K 1_[ W,T—l/l/«]—lw
1<j=<n 1<j=<n
. lMJ) (laj-i-f)"" . )
=1 Res ;T =14
1 o 4ia; + )%
= P Z Res(e l_[ G (c—ia, )%_H,r =ia;j
1<j=<n 1<j=n

so that assuming that the a; are positive and distinct, we get

e =TT w) ¥ o

1<k<n 1<j<n

d

I1<k=<nk#j

x (E)“" (ei“(_l)af Gaj+0% ] (D™ —(ff"i ;c)?kil)lmia;

68
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:inl—l( L1 “") 2 o

1<k<n 1<j=n

L | | . © o
% ( ) (e—ka(_l)a./ (la] + iU)aj l_[ (_1)0!1( M)W:ty

ido (ioc —iay)*+1

1<k<n,k#j
1
_ (_1\n—1+]a] o
—cor( T a) ¥ o
1<k<n 1<j<n 7
d \oj g
x (d_) ! (e'k"(aj +0)% 1_[ (ak +03k+1)
o Lk k] (0 —ayg) lo=a;
(=%
(M) ¥ 5
1<k<n 1<j<n J*
d \oj ag
() (e [T etOR)
o R C ) lo=a,

Since Fy(a, +00) = 1, thanks to Lemma A.1.7, we find eventually that

1 OF,
Fy(a) = Fy(a, 1) = / — (@, M)dA+1=1-Ky(a),
400 oA
—1)%
Kala) = ( I ak) ch
1<k<n 1<j<n 7

o0 d . o
X / (d_)a, (e_’w(aj +0)% l_[ (@ + o)™ 03k+1) dA
1 o I<k<nk#j (ax —0) lo=a,
oy e
O(j!

I<j=<n

too o d @ . (ax + 0)*ay,

x/ erar (L _y, ((aj +oa; ] —a) da
1 (dg ) \<k<n k] (ax — o) Kt lo=a;

_ Z (=%

— .

1<j<n Y
+o00 d o (a +O‘)ak
~hay (L5 ( 4 o) k—) dx
X/l ¢ (d(f ) (@ +0) 1_[ (ax =) F1 )15y,

1<k<n,k#j
_ (=)@
o Z O(j!

1<j=n

+oo d £\ ar(ay + a;s)*
X/ el (d_ — L) 4 ((aj +ajs)°‘f 1_[ k(k—](xk)-i-l) dtj
aj ajs  aj I<k<nkj (ax —ajs) ls=1
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Foo d o ar(ax +ajs)*
« (L, (Hsaj kk—,) dt
[a,— (ds ) (1+5) [ (ak —a;)*+1 )1y

l<k=<nk#j

Foo d o ax(ax +ajs/t)*
x e l(——1 (l—i—s“-/ Rk T ) drt
[a,- (ds ) +s) I (ax —ajs/0)%+1 ],

l<k<n.k#j
1)%/
-y = /

1<j<n
d e o ta (t(ax — a;) + a; (s + )%
X(d<s+r> 1) ((’“) [ (r(ak+a_/)—a_,-(s+r))ak+l)W:z[d’

l<k=n.k#j
+oo
= X e e

1<j=<n

d aj (5% tag (t(ar —a;j 5) %k
(7_1) ’(Lj' 1—[ ay (t(ak a,)—}-afxs)_H) dt
ds o;! |k =n kot (t(ax +aj)—a;s)% ls=21

= Y (e aj/+°°e—t

1<j<n

X(i_l)“f(so‘;' 1 (t +aj)ax((t +aj)ax —a;) +a;5)”

) k
ds ;! . , )kt ) - dr.
T \<k=n k) ((t +aj)ax +aj) —ajs) ls=2t+2a;

We have also to deal with

I (t +aj)ar((t +aj)ak —aj) +a;s)™*
)ak+l

I<k<n.k+#j ((t +aj)ax +aj)—ajs
and

((t+aj)ax+a;)—a;2t+2a;)) = a;(ax +aj)_2a_/2-+l(ak —aj)=(t+aj)(ax—a;)
(t +aj)ax +aj)—ajs = (t +aj)ax —aj) +a;Q2t+2a; —s)

so that
+o00
Ko(a) = Z (-)% e~ aj/ ot
1<j<n
% (i _ 1)% (ﬂ (t+a,-)ak((z+a,-)(ak+a,-)+a,-(s—zz—zaj))ak)
s U | ckznkts ((t+aj)(ag—aj)—aj(s—21=2a;))%H ls=2+2a;

(3.3.11)
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3.4 A conjecture on integrals of products of Laguerre polynomials

We formulate in this section a conjecture on the behaviour of the functions Ky (a);
as displayed in the previous sections, we know several useful elements for the ana-
lysis of these functions, including some quite explicit expression. However, in the
non-isotropic case, we were not able to prove the estimate Fy(a) < 1, equivalent to
Kq(a) = 0, except for the case o« = 0. We are thus reduced to conjectural statements.

Conjecture 3.4.1. Letn > 1 be an integer and let « = (¢1,...,a,) € N*. Fora =
(ai,...,an) € (0,4+00)", we define
Ka(@ = [icytemy €7 [T D% Lo, @1p)ar,
215_/§ntj/llj21 1<j=<n

where Ly stands for the classical Laguerre polynomial

k vk
Lk(X)=(d 1) X

dx ) kU
Then, we conjecture that, assuming 0 < a; < --- < a,, we have
Ko(a)= Y e gy a1 (3.4.1)
o (j —D!

Remark 3.4.2. A slightly stronger and more symmetrical version of the above con-
jecture is that for n, o, a, Ky as above, we have

Ky(a) = Ko(a). (3.4.2)

It is indeed stronger since we have proven in Lemma 3.3.11 that Ko (a) is greater than
the right-hand side of (3.4.1).

Theorem 3.4.3. The previous conjecture is a proven theorem in the following cases.

(1) Whenn = 1.

(2) Foralln > 1, when all the a; are equal.

(3) Foralln > 1, when a = Onn.

(4) When n = 2 and min(oy, o) = 0.
Proof. (1) When n = 1, we have proven above (in Proposition 3.1.3) that for @ € N,
a >0,

Ky(a) = e % Py(a) > e,
which is indeed (3.4.2) in that case. With the notations of Theorem 3.1.5 (and in
particular where D, is defined in (3.1.11)) this implies
Op,(1p,) <1—e7",

an inequality due to P. Flandrin in 1988 paper [13].
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(2) Assuming that all the a; are equal to a > 0, we have proven in Theorem 3.2.2
that fora € N”, |o| = 3" i, ),

I'(n, _ J=1
Ky(a,...,a) > I(‘}En;l)ze a Z h:Ko(a,...,a),

1<j=<n
since from (3.3.3), we have

Ko(a,...,a) e~ itttn) gy

I OMTEY
tj =0

a
:/ e_(tl+"'+tn)dt+/ e_lnf e_(tl+"'+tn—l)dt
th=>a
thO 0 thza_tn

: : - ¢t —(a—t (a _tn)j_l
(inductively) =e™“ +/ etne=(@=tn) Z ————dly
0 l<ien—1 (j —D!
<jsn
— —a 1 _ — —a ,
’ ( +1§j§1—1 .!) ’ 15]2n (= D!
proving (3.4.2) in that case. With
2 2
D(a) = {(x,i-') S Rzn’ZnM 5 1}’
a
this implies that
( I
Op,(p) =1—e" : :
@ (j—D!

1<j=n
an inequality proven in the 2010 article [39] by E. Lieb and Y. Ostrover.
(3) When o = Onn, we have proven (3.4.1) in Lemma 3.3.11.
(4) When n = 2, from the case n = 1 we have Ky, (a2) = e™%2 Py, (a2), so that
from Lemma 3.3.9, we obtain

Kal,az(al,aZ)
1
= e M Py, (a1) + a / e~far=U=0ax g (20ay) Py, (az(1 — 0))db,
0

and if «1=0, it means that

1
Koy (1. a2) = e +ay / =000 p (4 (1 6))d6
0

1
>e N —i—al/ e a==0a2 49 — K, o(ay,as).
0

and the reasoning is identical for ap = 0, concluding the proof of the theorem. |
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We are interested in the Weyl quantization of the indicatrix of

x}-i—éjz

Dal,m,an = {(va) € RZH’ZJT Z .

1<j<n J

fl}, aj>0,

and we have a weaker conjecture.

Conjecture 3.4.4 (A weak form of Conjecture 3.4.1). With n, o, a, K, as in Conjec-
ture 3.4.1, we conjecture that
Ky(a) = 0. (3.4.3)

Note that inequality (3.4.3) is equivalent to

an) = L.

Remark 3.4.5. In the first place, although the second conjecture is much weaker
than the first, there is no reason to believe that the weak conjecture should be easier
to prove than the first: in particular, in the known cases, it is indeed the proof of the
precise statement (3.4.1) which leads to (3.4.3) and we are not aware of a direct proof
of (3.4.3), even in one dimension.

A summary of our knowledge on the functions K. As proven in Remarks 3.3.3
and 3.3.4, the functions K, are entire functions given on the open subset (3.3.4)
by formula (3.3.3) (see also formula (3.3.10)). Moreover, the function Fy(a) = 1 —
Ky (a) can be expressed as a simple integral for a; > 0,

_ [ sint (I +itp;)% 1
Fa(al,...,an)—/R?< 1_[ —(1—i‘[/,bj)aj+l dT’ Mj _;7

I<j=n J

and we have an explicit expression of the function K, as a sum of simple integ-
rals in (3.3.11). However, having an explicit expression does not mean much and for
instance, we do have several explicit expressions for the Laguerre polynomials but
inequality (A.4.2) remains very hard work, requiring a deep understanding of these
polynomials. We have also an induction formula in Lemma 3.3.9. As a further remark,
we have the following

Lemma 3.4.6. Letn, o, a, Ky as in Conjecture 3.4.1. Then, we have

lim Koi,.0n_1,0n (@i,....an—1,a,) = Kq,,.., Oln_l(a17"‘9an—1)7(3'4‘4)
anp—+00
lim Ko\ as,..0n(@1.02,....a,) = 1. (3.4.5)
a1—>04

Proof. Formula (3.3.3) and the Lebesgue dominated convergence theorem imply the
first equality (3.4.4). Lemma 3.3.9, in which we may swap the variables a; and a;
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gives fora; > 0

Ka],az,...,an (ai,az,....an) = e Pa1 (a1)

and since Py, is a polynomial such that Py, (0) = 1, we get (3.4.5). ]

Reasons to believe in the conjecture. This is true in one dimension, also in n
dimensions for spheres and it is a quadratic problem in the sense that ellipsoids are
convex subsets of R2” characterized by an inequality

{X e R*, p(X) <0},

where p is a polynomial of degree 2 with a positive-definite quadratic part. We shall
see below in this memoir that convexity of a set A does not guarantee that the quant-
ization Op,,(14) is smaller than 1 as an operator and that Flandrin’s conjecture is
not true, but it is hard to believe that such a phenomenon could occur for ellips-
oids. We must point out a specific feature of anisotropy related to Mehler’s formula
(2.2.1):if all the p; are equal to the same p > O (this is the isotropic case), then, with

qu(x. &) = p(x|* +[§]?), we have

Op (e2i7rrqu(x,§')) — (]5(T[L)€2i arctan(Ti) 1< j<n n(sz»-‘rDjz)
W ,

where ¢ (T ) is a scalar quantity. As a consequence, if we quantize F (g, (x,£)), we
get

2i arctan(T (L)

Opy, (F(QM(sz))) :Aﬁ(f)¢(tu)e T’TOPW(QM)dT,

and thus
Opy, (F(g,u(x.€)) = F(Opy(g).  F() = /R F)p(xuye?™ 5 2 g,

and Op,, (F (qu(x, 3;‘))) appears as a function of the self-adjoint operator Op,,(¢,,).
Following the same route in the anisotropic case, we get, with

Q&) = Y i +8),
1<j=zn
u.rctun(ruj)

Opw (F(QIL(X’ S))) = /]R F\(r)(p(ru)eﬁr: Zlf./’fn( 7

)“/(x12'+D12‘)dr

and since % arctan(r ;) does depend on w; (and not only on 1), the operator Op,,
(F(qu(x,§))) is not a function of the self-adjoint operator Op,, (q.).
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As a final comment on the strongest form of the Conjecture (3.4.2), we would say
that it could be seen as a property of the Laguerre polynomials, known in the case
n = 1, where it stands as follows: we define for k € N, the polynomial Py by

+o0
Pr(x) = /(; e_t(—l)kLk(Zx + 2t)dt,

and we have P (0) = 1 from (A.4.4). Moreover, we have the inequality (equivalent
to (3.4.2) forn = 1)
Vx >0, Pr(x)> Pr(0). (3.4.6)

We note that e™* P (x) = fx+°° e~ (—=1)K L (25)ds, so that the unique solution Py

of the Initial Value Problem for the ODE
Pe(x) = PL(x) = (=1)FLi(2x),  P(0) =1,
does satisfy (3.4.6). We note that from Lemma 3.1.2, we have

Pi(X)=2 ) (-D'Li@2X),

o<l<k

so that (3.4.6) is a consequence of Feldheim inequality (A.4.2). Let us reformulate
(3.4.2), using the polynomials Py: fora; > 0,

i ¢
Ka(a)=/t=(t,,...,zn>ew+ [1 5T Py (1)1
Sizjzati/ajz115i=n

0 ..
> Ko(a) =/t=(tl """ <R 1_[ T{—e ’J}dt,

. t
Yi<jntjla;=11<j=sn 7

which is equivalent to

2
[H(l_ 2 S/‘) [T He)gA=e Poyaysp)ds
J

1<jsn / 1<j=n
S/H(l— E sj) l_[ a;H(sj)e %%/ ds,
I<j=<n l<j<n

where H = 1, (Heaviside function). This is equivalent to

o)

1<j=n

f/H(l— Z 57) 1—[ ajH(sj)e % ds,

1<j<n 1<j=n

ad
l_[ H(sj)e %% (aj — T){Paj (ajs;)}ds
5j

1<j=n
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i.e., to

/H(l— > sj) [] H(sje

1<j=n 1<j=<n
0
X ( l_[ aj — H (aj - g){Paj (ajsj)})ds > 0.
1<j<n 1<j<n 7

Note that for n = 1, it means for a > 0,
1
/ e~ (a —aPx(as) + aPj(as))ds
0

1
d
— 1 __p,a . —asP
e+ /0 75 {e k(as)}
=1-e+e“Prla) — Pr(0) = e “(Pr(a) — 1) > 0,
which holds true from (3.4.6).

Remark 3.4.7. There are several classical results on products of Laguerre polyno-
mials, in particular, the article [7], On some expansions in Laguerre polynomials by
A. Erdélyi and also the paper [40], Linearization of the products of the generalized
Lauricella polynomials and the multivariate Laguerre polynomials via their integral
representations by Shuoh-Jung Liu, Shy-Der Lin, Han-Chun Lu and H. M. Srivast-
ava. However, it seems that the non-negativity of the polynomials Py, Po’(;l, do not
suffice to tackle the conjecture in two dimensions and more.



Chapter 4

Parabolas

4.1 Preliminary remarks

We start with a picture, demonstrating that the epigraph of a parabola is an increasing
union of ellipses (see Figure 4.1). It is easy to see that the epigraph of a parabola, i.e.,
the set {(x, £) € R2, £ > x2} is a countable increasing union of ellipses in the sense
that

P={x.6eRE>x" = J{(x.6§) eR*E> x> +k72) . (41D

k>1

Ek

Note that for k > 1 we have & C &1 C P since x2 + k262> x2 4+ (k + 1) 72£2 >
x2, from the fact that £ > 0 on &;. Moreover, if £ > x? and k > £/+/& — x2, we get
(x,§) € .

k3

Remark 4.1.1. The ellipse & is symplectically equivalent to a circle with area #;—

since

k2 2 k2 kz 2 k2
X2k = X7 +k—2(g—7) -0 = (Fly)2+k‘2(kn——) ~7

4 2 4
k2\?> k2
=222+ A%k np—=—) - =,
o ( 2A) 4

so that choosing A such that A=2 = A2k =2, e.g., A = vk, we get

kK2\?\ k2
2 4 g262 g = 1 42 _ -
X"+ kTTET—E (y +( 2)&)) .

and & = {(y.0) eR2,y2 + (%2 < %}, where (v, ¢) are the affine symplectic coordin-

ates

k3/2
=xk'?, =gV,
y=x {=¢ 3

Lemma 4.1.2. Let u € .Z(R). Then, W(u, u) belongs to . (R?) and with &, &
defined by (4.1.1), we have

I v pavs = tim ] wo s < i,

Proof. Since 'W(u,u) belongs to . (R?") C L'(R?"), we may apply the Lebesgue
dominated convergence theorem and (4.1.1) to obtain the equality in the lemma. On
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Figure 4.1. The epigraph of a parabola is an increasing union of ellipses.

the other hand, Theorem 3.1.5 and Remark 4.1.1 imply
_nk3
/ W) (x. £)dxd§ = (Op, (g u.u) < (15 ) JullZa gy < el -
&k

and the sought result. ]
Remark 4.1.3. Moreover, Theorem 3.1.5 and the expression of Fy(a) =1 —e7¢
imply that with vy defined in (A.1.16), we have
_ 3
/ W0, Yo) (x, £)dxd§ = (Op, (Lg) o, Yo) = [Vol] 2y (1 — ™73,
Ex

so that from Lemma 4.1.2, we have [[, W(o, ¥o)(x,§)dxd§ = |y entail-

ing

2
L2R)

sup // W(p, d)(x,E)dxd& = 1.
‘(i)

q)ey(R),llq)lle(R):l
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Remark 4.1.4. We want to study the operator with Weyl symbol H(§ — x?) (H =

1r, is the Heaviside function) and since § — x2 is a polynomial with degree less than

2, see from (1.2.3) that Op,, (H (§ — x?)) commutes with
D, — X2 = eZnix3/3Dxe—2nix3/3

’

and the latter has (continuous) spectrum R: we expect thus that Op,, (H (& - xz))
should have continuous spectrum and be conjugated to a Fourier multiplier.

4.2 Calculation of the kernel

The Weyl symbol of the operator Op,, (1) is
H(E —x?),

(P is defined in (4.1.1), H is the Heaviside function H = 1gr_ ), corresponding to
the distribution kernel k» (x, y) obtained from Proposition 1.2.5 by (we use freely
integrals meaning only Fourier transform in the distributional sense),

2
kp(x,y) = /eZiﬂ(X—y)éH(g_(x + y) )dé:/eZin(x—y)(S-i—(x;y)Z)H(E)dé

2
_ ezin(x—y)(x'fyyl So(y — x) + ;
2 in(y —x)
Soy —x)  e2imx=nCE?
B 2 2in(y — x)
We have
X+y 2 2 2 3 3 2 2
4(x—y) 5 =@ =y)x+y)=x"—y +x7y—yx
_ 4 3 3 1 3
—3(x y )+3(y x)”,
so that 1 s
_ iZ3(y—x)"
kp(x,y) = ol X So(y = x) €_2 i e_iz%y3’
2 2in(y — x)

and the operator Op,, (1) is unitarily equivalent to the operator with kernel

Sy Sy —x) B0
kx,y) = 2 2in(y —x)

We have proven the following result.
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Lemma 4.2.1. The operator with Weyl symbol R? > (x,§) — 1g L& x?) has the
distribution kernel

‘ _ iZ(y—x)3 .
kp(x,y) = ol X So(y = x) e. ° e_’%y3’
2 2in(y — x)

and is thus unitarily equivalent to

1d ie”in’/6
— + convolution with —————pv—. “4.2.1)
2 2 t

o je—imi3/6
Lemma 4.2.2. The distribution

> pv% has the Fourier transform

1 sinmast + g)

5 ds. a=Q/m)">.
2 s

The operator (4.2.1) is the Fourier multiplier w(D;) with
3
1 1 [T sin(sn + %
w(t) = —(l + —/ Mds), n=243723,
2 T J 0o S

Proof. We calculate in the distribution sense (t = as,a = (2/ n)l/ 3,

) e—int3/6 i . —inma3s3/6
/e—Zzntti dt = — e—21nast ds
2t 27 )
3
i —i)sin(%- + 2wast
_ i [ CDsing )
2 Ky
3
1 sinRrast + &
_ b ( ) ds.
2 s

so that with n = 2wat, we get

1 /+°° sin(sn + %)d

wm:%0+; Qzéu—ﬂmzcw,

00 N

proving the lemma. |

Lemma 4.2.3. We have, with n = 24/372/3¢,

+00 ¢j d
() = 1(1+l/ sm(sz—+3)ds)=c(n), a)(O):ng(O), 4.22)

2 o
, 1 53 1 ) $3 .
G'(n) = E/ cos (sn+?)ds=Reg/Rexpz (Sﬂ—f—?)dS:Al(T}), (4.2.3)
R
2 n
G(n) = 3 —|—/(; Ai(§)dE, (4.2.4)

o . . . ; 3
where Ai is Airy function defined as the inverse Fourier transform of t + e!?™") /3,
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Proof. We have

T L i i [
< 313 3 ) O :
(4.2.5)

proving (4.2.2). We have also

1 1
Gn) == + Im [Inverse Fourier Transform{ y > el @7y »?*/ 3pv(z—) }:|
ny

and thus

G'(n) = Im[Inverse Fourier Transform{y > ei@ny)*/3; }]

_ Im(/ezmynei(Zny)3/3l-dy)  Im (%/eimeiﬁmidl) — ai(n),
T

which is (4.2.3), implying (4.2.4). n

Lemma 4.2.4. With G defined in Lemma 4.2.3, we get that G is an entire function,
real-valued on the real line such that

lim G(n) =1, lim G(n) =0, (4.2.6)
n——00

n—-+00

and moreover with 1o the largest zero of the Airy function (1o ~ —2.33811), the
Sfunction G has an absolute minimum at ng with G(n9) ~ —0.274352,

VneR, G(n) <G <1. 4.2.7)

Proof. The first statements follow from Lemma 4.2.3 and (4.2.6) is implied by (4.2.4)
and (A.7.18), (A.7.22). The strict inequality in (4.2.7) follows for n > 0 from (4.2.3)
since Ai is positive on [0, +-00) so that G is strictly increasing there from G(0) = 2/3
to G(400) = 1. The other statements are proven in Section A.7 of the appendix. m

4.3 The main result

Collecting the results of Lemmas 4.2.1, 4.2.2, 4.2.3, 4.2.4, and of Section A.7 in the
appendix, we have proven the following theorem.

Theorem 4.3.1. Let H(§ — x?) = 1{(x,£) € R%, £ > x?2} be the indicatrix of the
epigraph of the parabola with equation § = x>. Then, the operator with Weyl symbol
H (& — x?) is unitary equivalent to the Fourier multiplier G(2*/32/31), where

G(n) = % + /nAi(S)dS = /Tl Ai(&)dE, (Al is the Airy function).
0 —00
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0.8

/2/3

NN /T\ "/“ / &
WAV I AN/ W\ ™ \/

—0.4

G(ng)

Figure 4.2. The function G and its derivative Ai. More details on G are given in Appendix A.7,
Figure A.1.

The function G is entire on C, real-valued on the real line (see Figure 4.2) and such
that
G(R) = [G(no). D).

where 1y is the largest zero of the Airy function. We have

o ~ —2.338107410,
G(no) ~ —0.2743520591.

The operator with Weyl symbol H(§ — x?) is self-adjoint bounded on L*(R) with
norm 1, with spectrum equal to (G (1), 1] (continuous spectrum) and

Vu € L*(R), G(no)llulliz(R) S/ , W, u)(x,§)dxdt < IIMIIiZ(R)-
E>x

4.4 Paraboloids, a conjecture

We are interested now in multi-dimensional versions of the previous results, namely,
we would like to find a bound for integrals of the Wigner distribution on paraboloids
of R?” for n > 2. Let us start with recalling in [24, Theorem 21.5.3], a version of
which was given in our Theorem 3.3.1 in the positive-definite case.

4.4.1 On non-negative quadratic forms

Theorem 4.4.1 (Symplectic reduction of quadratic forms, [24, Theorem 21.5.3]).
Let q be a non-negative quadratic form on R" x R" equipped with the canonical
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symplectic form (1.2.13). Then, there exists S in symplectic group Sp(n,R) of R?",
ref{0,....n}, u1,..., Uy positive, and s € N such thatr + s < n,
so that forall X = (x,§) € R" x R”,

¢(SX)= ) wiGi+EH+ Y

1<j<r r+l1<j<r+s

Definition 4.4.2. Letn € N* and let R?” be equipped with the canonical symplectic
form (1.2.13). Let ¢ be a non-negative quadratic form on R?” with rank 2n — 1 and
T be a non-zero vector in R?” such that g(6T) = 0. A paraboloid $# of R?" with
vertex 0 and shape (¢, T') is defined by

P ={X eR* ¢q(X) <[X.T]}.
A paraboloid @ with vertex m € R?" and shape (g, T') is defined as
Q=P +m,
where # is a paraboloid with vertex 0 and shape (¢, T).

Remark 4.4.3. We can find some symplectic coordinates such that

gX)—[X.T)= Y wGl+EH+ Y. x2+ > (55 —§&t).

1<j<r r+1<j<r+s l<j<n

with 2r + 5 = 2n — 1. We can get rid of the linear terms x; 7; — £;¢; when1 < j <r
by writing

2 2
T; 1 1
;L~(x2+5-2)+x¢~—$~t~=,u-(x~+—1) -HL‘(E'—;) —— (7 +1}),
T\ J J J o J\ M 2,U«j J\ 5/ 2;“«]' 4“’]’ J J

and also of x;7; forr +1 < j <r + s, since

T; 2 72
2 J J
X; + x;1; = (Xj—i-E) —T.
We are left with using affine symplectic coordinates (y, 1) so that

gqX)=[X.Tl= > wOi+n)+ > yi— > ny

1<j<r r+l1<j<r+s r+l1<j<r+s

+ ) Wy —a

r+s+1<j<n

Since we have 2r + s =2n — 1, we getr + s + 1 = 2n —r: we cannot have r + s +
1 < n since it would imply that 2n — r < n and thus r > n, which is incompatible
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with2r +5s=2n—1,r,s > 0. We get thenthats = 2/ + 1,r = n — 1 — [ and since
r+s<n,1<s,wehavel =0,s =1,r =n—1,and

qX)=[X.TI= > w7 +n)+ys—inln—a.

1<j=<n—1
and 1, € R*. With y, = tY/35,,n, = t~/37,, we get

gX) = (XTI = 3 0} + )+ 023G — i — at ™),

1<j<n-1

and the inequality ¢(X) — [X, T] < 0 is equivalent to

SO Pui G+ ) + Fp < e+ at T

1<j=n-1

We can thus assume ab initio that our paraboloid is given by the inequality

Z l)j(sz +Sj2) +x2 <&,

1<j<n-—1

4.4.2 On the kernel for the paraboloid

We shall consider the paraboloid

p=lopernigs T ofrezal

1<j=<n—1

We have with X’ = (x; &) = (x1, ..., Xn—1: 61, ..., En—1),

P = Op,, (H(én —x3—|X/|2)) :/ [fl(.[)Opw(eZinr(én—x%))opw(e_zmrlelz)df

_ Z/ (1) Pyt @0p, (€27 ¥ En—30)) i areum ) @ktn—1) (| |
k>0
1

1

= —Id+— P..,

2 +2i7rZ kin—1
k>0

zln--((g:n_x 1—it 2k+n—1

= lId += ZIF’k-n—l ®/ Op,, (e2/7en= i) (=i
2 20477 int(l + it)ktn-1

D
dt

Let k(x,, y») be the kernel of the operator in the integral, we have

i (I +i(xn — yn))k
7T(xn = yn) (1 —i(xn — yn))k+n_l '

2im

k(xn’yn) —e 3 n J’n) - (xn_Yn)3
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As aresult, we find that P is unitarily equivalent to 13, with

ie= & (14 ix,)¥
wxn, (1 —ixp)ktn=1]

2P = ZPk;n—l ® (]n + convolution with
k>0

We define

1 =T 4k .
Phn-1(T) = 5+ / wr ik

(1—in)k

1 e 2imtt
= - dt,
2 +/ 2iwt (1 +it)ktn-1

and we get that

P = ZPk;n_l ® Wi p—1(Dx,).
k>0

We note that for n = 1, the sum is reduced to k& = 0 with [Py,o = 7, so that we recover
formula (4.2.2) with wg,0 = w. We find also that

P VK
’ . i3 (l—lt) 2intt
Op p1(7) = /e = dt, (4.4.1)

. . . img3 (1—ir)k
6 _ 7
in the sense that the inverse Fourier transform of 7 — e rinkrn=T

tribution derivative of wy ,_;. Going back to the normalization of Lemma 4.2.3, we
have, with n = 24/3n2/3r,

is the dis-

Gk,n—l (7’) = Wk,n—1 (T)’

- - in,3 (1—it)k 1.1
a0 = 7452 [0 G g
1 is3 1—1 _1/321/3 k .
= JE— eT ( . %4 S) elsrlds = Akn—l(’])-
~—  2m (1 + im—1/321/35)k+n—1 ,
1

We have Ao = Ai and Ay ,— is an entire function, real-valued on the real line; we
have

n
Gronr(n) = /_ An1 (E)IE.  Grpet (+00) = 1.

Remark 4.4.4. We claim that the asymptotic properties of the functions Ay ,_; are
analogous to the properties of the standard Airy function and we have indeed from
(4.4.1), _

Wy (©) = (1= iD)*(1 +iD) * "1 F 1 (e T0),



We claim as well that

Parabolas

1
-5 < inf  G(n) <0, sup G(n) =1,

k>0,neR

so that P is bounded on L2(R") and

*/;n Z%%"'Zlﬁj =n—1 (x12+£:12)

k>0,neR

fw(u’ u)(x’ E)dng S ”u”22(Rn)

86



Chapter 5

Conics with eccentricity greater than 1

We want to consider now integrals of the Wigner distribution on “hyperbolic” convex
subsets of the plane such as

€ = {(x.§) e R*, x§ > 0.x > 0}, (5.0.1)

where o is a non-negative parameter. It is convenient to start with the limit-case where
o =0and & = {(x,§) € R?2,x > 0,& > 0} (we will label €, as the quarter-plane).
The indicator function of €g is H (x) H(§) where H = 1g ,_ is the Heaviside function.

N.B. The reader will see a great similarity between our calculations below in this
section and the J. G. Wood and A. J. Bracken paper [55] (see also [4]). This article
is very important for the problem at stake — Integrating the Wigner distribution on
subsets of the phase space — and was a wealthy source of information for us, although
as a mathematician, the author has a quite rigid relationship with calculations, and
feels the need to justify formal manipulations; for instance, we may point out that the
test functions used in [55] are homogeneous distributions of type

1,
—>tiw
2
X , oweR,

which are not in L2(R) (not even in L2 ), a situation which raises some difficulties,

first when you try to normalize in L? these test functions and also when trying
to give a non-formal meaning to their images under the operator with Weyl sym-
bol H(x)H(§), images which are not clearly defined. In our joint paper [6] with
B. Delourme and T. Duyckaerts, proving that Flandrin’s conjecture is not true, we
followed numerical arguments which were quite apart from the arguments of [55].
However, in this memoir, we do follow many of the arguments of [55], along with
avoiding formal calculations.

5.1 The quarter-plane, a counterexample to Flandrin’s conjecture

5.1.1 Preliminaries
We study in this section the operator
Ao = Op,, (H(x)H(§)). (5.1.1)

where H = 1gr_, that is the Weyl quantization of the characteristic function of the
first quarter of the plane.
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Lemma 5.1.1. The operator Ag given by (5.1.1) is bounded self-adjoint on L*(R).

Proof. Since the Weyl symbol of Ay is real-valued, A¢ is formally self-adjoint and
it is enough to prove that Ag is bounded on L?(R). Let us start with recalling the

classical formulas
A So (2 1 1
H(t) = o) +.—pV(—),

2 2im t
sign = —pv| - ),
i t

useful below. The kernel' of A is

~ 1 1
Ko, y) = HO + ) A =) = 14 )3 (ly =0+ pe ).
ino y—x
(5.12)
For A > 0, we define Ag, = (H(x)1[,)(€))", whose distribution-kernel is the

L°°(R?") function

(- SN = y)A)

koa(x,y) = H(x + y)e
w(x —y)

We can thus notice that

kg 5 (x,9)

in(x—y)a SIN(T(x — y)A)
m(x —y)

+ H(x + y)(H(=x)H(y) + H(x)H(-Y))

koa(x,y) = H(x)H(y)e

SN = Y)A) ine—y)a
7(x—y) ’

kg 5 (x,y)
and the operator with distribution-kernel kg 5 18

HOpW(l[O’A](S))H, that is Hl[o,k](D)H,

!"There is no difficulty at defining the product S ((x + »)/2)T(x — y) for S, T tempered
distributions on the real line since we may use the tensor product with

(s(*52 )70 -0 00)

X2 X2
=(s T ,® X1 — > ’
( (x1) ® T(x2) (xl T 2)%(11%2),:7(11%2)

S(R2), 7 (R2)

However, we shall not use directly formula (5.1.2), since want to avoid formal manipulation
involving for instance meaningless products such as H(x)H (y)ko(x, y). We refer the reader
to Remark 5.1.2 for more details on this matter.



The quarter-plane, a counterexample to Flandrin’s conjecture 89

where H stands for the operator of multiplication by the Heaviside function H. On
the other hand, the operator with distribution kernel kg 5, 18 such that

H(-x)H H(x)H(—
K Go )| < H(x 4 ) ZHEDHO) + HEHEY)
wlx — y|
=H(x+y)w+H(X+y)w.
m(y —x) 2(x — )

According to Proposition A.5.1 in Appendix A.7, the Hardy operator and the modified
Hardy operators are bounded on L?(RR) and we obtain that, for ¢, ¥ € .%(R"), with
H =H(x),H = H(—x),

' [ Heton@ W v graxa

1 ~ 1 <
< ||H¢||L2(R)||HW||L2(R)+5||H¢||L2(R)||HW||L2(R)+5||H¢||L2(R)||HW||L2(R)
so that

{409, ¥) 7+ ®),7®)]
e#(R?)

PN
_ ‘ /f HO)HE W) (5.6 dxds‘

= lim ‘// H(X)l[o,A](fE)W(qb,\/f)(x,é)dxdé'

A—>+o00

IA

1 o
I1HO 2y 1HY 2Ry + 3 IHO 2wy | H Y | 22®)
|
+ §”H¢”L2(R)”Hl/f”L2(R)v (5.1.3)

yielding the L2-boundedness of the operator Ay, and this concludes the proof of the
lemma. |

Remark 5.1.2. That cumbersome detour with the operator A, is useful to ensure
that the operator A is indeed bounded on L2(R). The kernel kg of Ay is a distribution
of order 1 and the product H(x)H (y)ko(x, y) is not a priori meaningful, even when
k is a Radon measure.

Even a wave-front-set approach, which would allow the product H (x)pv(1/(y —
X)), does not offer a meaning for the product H(x)H (y)pv(1/(y — x)) since the
wave-front-set of pv(1/(y — x)) is located on the conormal of the first diagonal (i.e.,
{(x,x:&,—&)} xeRr £er*), Whereas the wave-front set at (0, 0) of H(x)H (y) contains
all directions and in particular is antipodal to the conormal of the diagonal at (0, 0).

However, with the proven L2-boundedness of Ay, then the products of operators
HAyH, H AoH, H AOI-VI , H AOPVI make sense and for instance we may approximate
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in the strong-operator-topology the operator HAgH by the operator y(-/&)Ax(:/¢),
where y is a smooth function supported in [1, 400) and equal to 1 on [2, +00). We
have indeed

HAH = (H — x(-/e))AH + x(-/e)A(H — x(-/&)) + x(-/e)Ax(-/¢).
so that foru € L?(R), HAHu = limg—o, x(-/€)Ax(-/&)u. The operator with kernel
1 1
H(x + y)x(x/e)x(y/e)pv——z = x(x/e)x(y/)pV———,
in(y —x) in(y —x)
converges strongly towards the operator H (sign D) H .

Proposition 5.1.3. Ler Ay = Op,, (H(x)H(§)) be the operator with Weyl symbol
H(x)H (&), a priori sending . (R) into ./ (R). Then, Ay can be uniquely extended
to a self-adjoint bounded operator on L*(R) with

142
2

Aol gL2®)) < ~ 1.207 (5.1.4)

N.B. The bound above can be significantly improved (see Proposition 5.4.4 for opti-
mal bounds) and moreover we will show below that the spectrum of Ag actually
intersects (1, +00). In fact, it is easier to start with the information that Ay is indeed
bounded on L?(R).

Proof. The L?(R)-boundedness of Ag is given by Lemma 5.1.1. We are left with
proving the bound (5.1.4): we note that (5.1.3) implies

[{(Aou, u) oyl < |HulZ> gy + I Hull 2@yl Hull L2 w)»
proving the proposition, since the eigenvalues of the quadratic form R? 3 (x1, x3)
x2 + x1x; are (1 £+ +/2)/2. n

We can do much better and actually diagonalise the operator A, using as in
Proposition A.5.1 logarithmic coordinates on each half-line. We state a lemma on
“diagonal” terms whose proof is already given above.

Lemma 5.1.4 (Diagonal terms). Let A be the operator with Weyl symbol H (x) H (§).
With H standing as well for the operator of multiplication by H(x), we have

1d + sign D
HAoH = HH(D)H = 397521 D)

Lemma 5.1.5 (Off-diagonal terms). Let By = 2 Re H AoH = H AoH + H AOPVI .
Then, we have for all u € L*(R),

1 o
[(Bou, u) 2wy < §||H“||L2(R)||Hu||L2(R)~ (5.1.5)
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Proof of Lemma 5.1.5. For u € .(R) such that 0 ¢ supp u, we define forz € R,

¢1(1) = u(e)e'’?,  ¢a(t) = u(—e')e'’?, (5.1.6)
so that
|22y = 161122y
||H“||]242(R) = ||¢2||12Jz(R)-
We have

H(x + y)(H)H(y) + H(x)H ()
2iw(y — x)

(Bow. ) 2ge) = / u ()i (x)dydx

_/ H(—es—i-et)e%

2in(e! + e¥) ¢1(1)¢2(s)dsd1
B / e —e)e ™ usydsar
2im(et + e%) 2 1

_ [ _HE=s) s
_/ 4iﬂcosh(s_;t)¢1(f)¢2(S)dsdt

H(s—1) _
B [ m%@)(ﬁl(s)dsdt,

so that )
(Bou, u)LZ(]R) = (SO * ¢1, ¢2>L2(R) + (SO * ¢2’ d)l)LZ(R)
and -
~ _ H(t) _ iH(t)
Solt) = 4im cosh(t/2) Solt) = 1 cosh(t/2)’ 1.0

We calculate

/m At ctan(sinh(t/2)[F° = & = /0 di
o 4mcosh(r/2) 2n aretants O T4 J_ 4mwcosh(t/2)’

so that
1 1 o
[{Bou,u)r2®)| < §||¢1 Izl P2l 2@y = §||H”||L2(]R)”Hu”L2(R)’

proving the estimate of the lemma for u € .%/(R) such that 0 ¢ supp u. We use now
that we already know that By is a bounded self-adjoint operator on L?(R): let u be
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a function in L2(R) and let (¢ )r>1 be a sequence’ in .(R) such that each ¢
vanishes in a neighborhood of 0 so that limg ¢ = u in L?(R). We find that

[{Bou, u) 12wl
< {Bo(u — ¢x), u) 2yl + [{Bodk, u — dr) 2wyl + [{Bodk, Px) 2(r)l
< 1Boll g2y (It — b llL2ylullz2wy + v — dicll 2y 0kl L2 w))

1 -
t5 I H rcll 2y | H Dk M| 12w »
providing readily the result of the lemma since the multiplication by H and H are
bounded operators on L2(R). [

Remark 5.1.6. The estimate (5.1.5) and Lemma 5.1.4 are already improving (5.1.4),
since the eigenvalues of the quadratic form R2 5 (x1,X2) xl2 + %xlxz are (2 +
V/5)/4, so that the right-hand side of (5.1.4) can be replaced by (2 + +/5)/4 ~ 1.059.
Anyhow, we shall provide below a diagonalisation of Ay and optimal bounds.

N.B. We shall be a little faster in the sequel on the “cumbersome” detours to avoid
formal multiplication of kernels by Heaviside functions but the reader should keep
in mind that it is an important point to secure L?(R)-boundedness before any further
manipulation of the kernels.

5.1.2 An isometric isomorphism

Remark 5.1.7. The mapping ¥ defined by
U: L2(R) — L*(R;C?)
u > ((Hu)(e"e’?, (Hu)(—e")e'’?) (5.1.8)

is an isometric isomorphism of Hilbert spaces: indeed, we have
2y = [ futeean + [ ju-eypetan.
Moreover, if (¢1, ¢2) € L?(R; C?), we may define for x € R*
u(x) = Hx)gr(nx0)x™"2 + H ()¢ (n x|~

and we have

(u)(t) = (¢1(1). $2(0)).

2Such a sequence is easy to find: a first step is to find a sequence (‘l;k) k>1 in the Schwartz
space converging in L2(R) towards u, then consider with a given @ € C°°(R; [0, 1]) such that
w(t) =0for|t] < land w(t) = 1 for |t]| > 2, ¢ (x) = w(kx)pr (x).
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Remark 5.1.8. Using Lemma 5.1.4 and notations (5.1.6) we see that
1 ) 1 e(s+t)/2
(HAoH b2y = 5101y + [[ 50— o1 0@ 0)dsar

_ L2 1
= 2||¢1”L2(]R) +// 4”Tp sin h(t S)¢1([)¢1(S)de[

-/ |$1(r>|2(§ N To(r))dr

t i

with

We have

t

—2imtt
L dr, 5.1.10
4sinh(z/2) ¢ (>.1.10)

To = sign *xpg with po(7) = f

and we note that the function py belongs to .’(R), as the Fourier transform of a
function in .’ (R). Also, we have

/ po(D)dT = 5o(0) =

and this yields with %{% + fo} = 2po (which follows from (5.1.10)) and

1 ~ +o00
3 + To(r) =1 —/ 2p0(t))d T, (5.1.11)
T
since

d 1 ~ +o00
—{— + To +/ 2p0(r’)dt’} =0 and lim (signxp)(r) = =
dt |2 z T—>+00

Theorem 5.1.9. Let Ay be the operator with Weyl symbol H (x)H (§). The operator
Ao is bounded self-adjoint on L*(R) so that we may define, with W defined in (5.1.8),

Ay = WA W,

The operator /To is the Fourier multiplier on L*(R; C?) given by the matrix

s _
Mo(7) = (thO(t) SO(T)), (5.1.12)
So(‘L’) 0

where Ty, So are defined respectively in (5.1.9), (5.1.7). In particular, we have with
= (¢1,42) € L*(R; C?),

(Ag®, D)2 (r.c2) = / 2T (Mo (1) D(1), D(1))c2d .
R
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Remark 5.1.10. As a consequence of Theorem 5.1.9, we find that the spectrum of
the self-adjoint bounded operator A is the closure of the set of eigenvalues of the
matrices Mo (7) when 7 runs on the real line.

Proof. The proof follows readily from Remarks 5.1.7,5.1.8 and Lemmas 5.1.4, 5.1.5.

[
Lemma 5.1.11. Let N be a 2 x 2 Hermitian matrix
an a
N = ().
Then, the eigenvalues A— < Ay of N are such that
Ao<0<1 <Ay, (5.1.13)
if and only if
a2 #0 and |ap? > 1—an;. (5.1.14)

Proof. The characteristic polynomial of N is p(A) = A2 — a1 A — |a;2|? and since
ay is real-valued, has two real roots A < Ay. If (5.1.14) holds true, the roots are
distinct and

p(0) =—lai2]*> <0, p(l)=1—ai —lap|* <0,

implying (5.1.13). Conversely, if (5.1.13) is satisfied, then p(0), p(1) are both negat-
ive, implying (5.1.14), completing the proof of the lemma. |

Lemma 5.1.12. Let us define for v € R,

1 (1% sin(
/ sin(tw) J
0

Iw) = 4 cosh(z/2) &

Then, we have

1
I(w) = — 4+ 0(™?), |w| - +oo.
4w

Proof. Indeed, we have for w € R*,
+oo L cos(tw
I(w) = — / i CO5)
drw Jo cosh(z/2)

1 T cos(tw) 1 .
= % (1 — A —(C()Sh([/Z))z E smh(l/2)dl‘)

= (4 glo)),
T



The quarter-plane, a counterexample to Flandrin’s conjecture 95
with
+o00 d 1
g(w) = —/ ——{sin(tw)}sech(t/2) = tanh(t /2)dt
0 wdt 2

+o0
- %/0 sin(lw)%{sech(lﬂ) tanh(¢/2)}dt

+o0 d d
= _ﬁ/o E{cos(tw)}a{sech(tﬂ) tanh(t/2)}dt
1

_ 1 +o00 d2 . ) ] B .
= m{/0 COS(ta))W{sec (t/2) tanh(r/2)}dt + 5} = 0(07?),

proving the lemma. u

Proposition 5.1.13. The matrix My(t) defined in (5.1.12) is equal to

ap(z) anz(r)
M = 5.1.15
o(r) = (220 @2 (0)). (5.1.15)
with
400 Nt i +o00 e—2in1:t 4

1— = 2 , = — ———dt. (5.1.16
an@ = [ am@e anm = [ S 66

We have
1—ai1(r) = 0(™N) forany N when t — +o0, (5.1.17)
Re(ai2(7)) = + 03 whent — +o0. (5.1.18)

82t

Proof. Formulas (5.1.15), (5.1.16) follow from Theorem 5.1.9, (5.1.11), and (5.1.7).
The estimates (5.1.17) follow from the fact that py belongs to the Schwartz class and
(5.1.18) is a reformulation of Lemma 5.1.12. ]

Theorem 5.1.14. Let Ay be the operator with Weyl symbol H(x)H (§), where H is
the Heaviside function. Then, Ag is a bounded self-adjoint operator on L*(R) such
that

inf(spectrum(A4g)) < 0 < 1 < sup(spectrum(4o)). (5.1.19)

Proof. Using Remark 5.1.10 and Proposition 5.1.13 we find that for t large enough,
Conditions (5.1.14) are satisfied, proving readily (5.1.19). ]

Corollary 5.1.15 (A counterexample to Flandrin’s conjecture). There exists a func-
tion ¢o € .7 (R), with L*>(R) norm equal to 1 such that

/f W(go. do) (x. £)dxdE > 1.
x>0,>0

SA=A,U=C
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Remark 5.1.16. In [13, page 2178], we find the sentence “if is conjectured that
Yu € L?(R), // W, u)(x, E)dxdE < ||u||§2(R), (5.1.20)
€

is true for any convex domain €”, a quite mild commitment for the validity of
(5.1.20), although that statement was referred to later on as Flandrin’s conjecture
in the literature. The second part of the above corollary is providing a disproof of that
conjecture based upon an “abstract” argument used in the proof of Theorem 5.1.14;
the result of that corollary was already known via a numerical analysis argument after
our joint work [6] with B. Delourme and T. Duyckaerts.

Proof. From Theorem 5.1.14, we find ug € L?(R) such that
”uO”iZ(R) < (Aouo, uo)-
Let € Z(R): we have

[{Aouo, uo) — (Ao, ¥)| = [{Ao(uo — V). uo) + (Aoy, uo — ¥)|
< 4ol sz2@®ylluo — ¥ 2@ (ol L2y + 1Vl L2w))-

and thus if (Y )x>1 is a sequence of .#(R) converging towards ug in L?(R), we get

”uO“iZ(R) < (Aouo, uo)

< (AoVk. Vi) + Il Aoll g2®y o — Vil L2y (Inoll 2wy + 1Vl L2r®)) -

=0k, goes to 0 when k — +-o00.

There exists kg > 1 such that for k > k¢, we have

0]
((Aouo,uo) - ||M0||iz(R)) = ? go > 0.

N =

0=<or =<
We obtain that for k > kg,
2 €0
lollz2 gy < (Aotto.uo) = {Aovi. Vi) + —.
and thus

||‘/’k||iz(R) = “Wk”iZ(R) - ||u0||iz(R) +||u0||i2(R)

=0, goes to 0 when k — 400

&
= B + {Aoo.uo) — €0 < B + {AoVk. Vie) + 5 o

= (AoV. Vi) + Ok — %O.
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Choosing now k > k¢ and k large enough to have 6, < g¢/4, we get

1V 2y = (Aovic ¥e) = 5 < (Ao, V).

and since for ¢ = Y, the Wigner distribution 'W(¢, ¢) belongs to .7 (R?), we have
16172y < (Ao, $) = / Hx)H(E) W@, §)(x, §)dxdE,

and noting that this strict inequality above implies that ¢ # 0, we may set o = @ /| P ||
and get the first statement in the corollary.

N.B. The proof above is complicated by the fact that the identity

(@“u,u)p2gny = //R2 a(x,&)Wu,u)(x,&)dxdé,

is valid a priori for u € .#(R") (and in that case ‘W (u, u) belongs to . (R?")), but
could be meaningless as a Lebesgue integral even for Op,, (@) bounded on L2(R™)
and u € L?(R"), since we shall have W(u,u) € L?(R?") but not in L!(R?") (we
shall see in Chapter 6 that generically the Wigner distribution of a pulse u in L?(R")
does not belong to L1 (R?")).

Since W(¢, ¢) belongs to the Schwartz space of R?, the Lebesgue dominated
convergence theorem provides the last statement in the corollary. ]

N.B. The reader will notice that the results of the incoming Section 5.2 in the special
case 0 = 0 imply the results of Section 5.1, which could be then erased, say at the
second reading. However, as far as the first — and maybe only — reading is concerned,
we checked that most of the computational arguments in the next section are much
more involved and it seemed worthwhile to the author to avoid unnecessary complic-
ations for the disproof of Flandrin’s conjecture via the quarter-plane example and set
apart the more involved examples of the hyperbolic regions tackled in Section 5.2.

5.2 Hyperbolic regions
We consider in this section the (5.0.1) set €, with a non-negative o.

5.2.1 A preliminary observation

We want to consider the operator A, with Weyl symbol H(x)H(xé — o) and as in
Section 5.1.1, we would like to secure the fact that A, is bounded on L?(R).
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Claim 5.2.1. For all ¢ > 0 the operator A, is bounded self-adjoint on L2(R).
Proof of the claim. Let us choose

H=0 fort<l
o€ COR:[0.1]) with | 100 ore== (5.2.1)
xo(t) =1 fort > 2.

For ¢, ¥ € .#(R), we have
(Ao — A5). V) 7*®),#R)

/ H)H(E) H(o — x) W(p. ) (x. £) dxdE

€7 (R2)

lim // Ko/ HEH(@ — x6)W(p. ) (x.E)dxdE.  (5.22)

The kernel k. of the operator with Weyl symbol yo(x/e)H(§)H (o — x§) is

xX+y xX—y 9“(%)7”)
Loe(x, J’)—XO( e ) x+y W,
and we have
[[ teatx o ava
oy SIn(FIED)
/f ( " )2 T — () (x)dxdy
n(x y)
2rno(x—y)
we(x —y)
2o (x—y)
// Xo( - ) 2mxdsm(%ﬂ)<¢>(€y)€”2xﬁ(sx)e”zalydx. (5.2.3)
T[(_x—y) N e’ N —’

o tes) e (y) Ve (x)

We note that, assuming as we may that ¢ > 0,

Imo (x. y)H (x)H(y)|

(20 \[SnCEE | 20H@HY) _ 20H@HY) o
BEA 2ro(x=y) x+y T x4y 624
x+y
and
. x 4y [sin (2’“;2; ?) Hx)H()
Imo (x, y)H (x)H ()] ZXO( 5 ) oy 'H( V) = 20—

(5.2.5)
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as well as
> sin (2”;()6 Ny FONH
mo Ce, ) H () H ()| = XO(x;y ) o ‘H(y)H(x) < 2
(5.2.6)

As a consequence, since we have also mg (x, y)I-VI (x) H (y) = 0, the inequalities
(56.2.4), (5.2.5), (5.2.6), the identities (5.2.3), (5.2.2) and Proposition A.5.1 imply that

(Ao — AP, ¥) ), 7 ®)| < 270 | Hell L2ry 1 H Ve ll L2R)
N e’
”H¢I|L2(R)
+ | Hell 2@y | HVe 2wy + 1 Hell L2y 1 H el L2 )
—
”H¢”L2(R)

proving that A9 — A, is bounded on L2(R); with Proposition 5.1.3, this implies that
Ay is also bounded on L?(R), proving the claim. n

N.B. With that important piece of information in Claim 5.2.1, we shall be less strict in
manipulations of kernels and accept below some abuse of language in these matters.

The Weyl quantization of 1, has the kernel

1
ko (x,y) = H(x + y)emoGF) (80(y —Xx) + —pv x), (5.2.7)

y =

a formula to be compared to (5.1.2). Using the Schwartz function ¢ of Corollary
5.1.15, we get from Lebesgue dominated convergence theorem that for o small enough

(Opy, (e, Vo, Po) 12y = //g W(do, po)(x,E)dxd§ > 1.
x§>0,x>0

However, this argument does not work for large positive o and we must go back to a
direct calculation.

5.2.2 Diagonal terms

Denoting by A, the operator with kernel (5.2.7) (and Weyl symbol H (x& — o) H(x)),
we find that for u € #(R), uy+ = Hu, we have

<AUHM, HM)LZ(R)

= /] 4TI Gy Z (80()1 —x)+ va

1 2 41710("?_‘3 ) 1 1 = +t
= §||u+||L2(R+) + //Rz e S+e) —py _esu+(e Yiii(e%)e’ ! dsdt

: x)u+(y)zz+(x>dydx

2im et

=, + ] et LS s,
5 2Ry, R2 Zlnp ! !
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with
$1(1) = uy(ee'/?,
so that
lorll2wy = I+ llL2wy)-
We get

1 e4znotanh(szt) _
AsHu, H —(t dsdt,
. oy = 1l + g ]| sy #0300

and noting that sinh x = xC(x), with C even such that 1/C € .#(R), we find

4ty'r<7tzmh(Y L)

1 -
ot sy = 5101~ 77 ] G eqany# RO s

2
1
2||¢1||L2(R) +(To * d1,P1)12R)
= [ (5 + T ) (528)
R 2

with
1 te4ino‘tanh(%) i

We note that
Ty (t) = sign *pg,
with

1 [e4lﬂﬂ'tdnh( ) )
pg(f) = Z\/‘ We_zwrtrdt, ,Og S y(R), (5210)

since the function
tedino tanh(%)
sinh(z/2)

belongs to the Schwartz space’. Note also that the function p, is real-valued on the
real line. This entails that

Rt

d (1
+ T = 2p¢, (5.2.11)
dt
and since
1 te4i7rc tanh(z/2)
po(T) = — — (>
4 sinh(z/2)

3Indeed, the iterated derivatives of tanh are polynomials of tanh (check this by induction on
the order of derivatives) and thus bounded on the real line; since the function ¢ — ¢/ sinh(z/2)
belongs to the Schwartz space, this proves that the above product is in . (R).
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implying
1
dt = -,
/Rpa(f) T 5
we get that
~ 1
lim T, =+—. 5.2.12
im 7o () 3 ( )
This yields that
1 ~ T T
—+Ty(t)—1= / 200(t)dt = -1 + / 200 (t)d T,
2 +o0 —00

where the last equality follows from (5.2.12): indeed, we have for t >0, from (5.2.11),

1 ~ T T
—+Ty(t)—1= / 204 (t)dt = —1 + / 200 (t)d T, (5.2.13)
2 400 —0Q

and for t < 0,

T

1 ~ T
3 + Ty(x) = / 204(tYdt =1 +/ 200(t))dT’'.

—00 +o0

We note that

1 4
VN e N, sup |r|N'5 + T, (1) — H(1)| < +00. (5.2.14)

teR

Indeed, for T > 0, we have, using p, € .¥(R),

T +o0 N +o0 N
N [ po(td'| < f oo ()N dt' < [ 1o ()Y dv < +o0.
400 T 0

Also, for T < 0, we have

T T 0
N / po(ehd| < / po (D)7 Vd ' < / o (17| ¥ d T < +oc.

oo oo —00

This means that the Fourier multiplier % + T, (7) is somehow “exponentially close”
to H(t) for large values of || and in particular close to 1 for large positive values of
7. We have also

. ; ¢
i e417r0 tanh(%)

f - —2imtt dt
o= e sinh(1/2)
_ 1 T sin(2ntt - 47 o tanh(z/2)) it (5.2.15)
27 Jo sinh(z/2)

The next lemma provides more precise estimates than (5.2.14).
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Lemma 5.2.2. Let t > 0,0 > 0. Defining ay1(t,0) = % g(t) as given by (5.2.9),

we have
2
11 —ay(t,0)| <2e 7 e, (5.2.16)

Proof. Using (5.2.13) and Lemma A.6.3, we find that for 7 > 0,
+o00
1-an@o)l =2 [ lpa(e)ldv
T
400
=2 lp()lar
T

4o oo -2 g1
< 12e e dt
T

entailing the sought result. =

5.2.3 Off-diagonal terms

We want now to check the off-diagonal terms: we have with u € #(R),

uy = Hu, u_ = Hu,
$1(t) = uy(e)e'’?,  ¢a(t) = u_(—e")e'’?,

and
(AUFIu,Hu)Lz(R)
' 1
- //e u—(y)uy(x)dydx
2imw y —x
oceely H(eS — 1 _ s
= // e4l7TO'(eSi_et) (e . e )pV ¢)2([)¢1(s)e%dtds
2im —el — e
imocoth(35L iH(S— )
N // e4 th( ’ ) 4]-[ co h(t S)¢2(t)¢l(s)dtds
= l_// e4in’ocoth(5 (s—l) ¢2(f)¢1(S)dtds
4 ( 3
= (Sa * ¢2’ ¢1)L2(R), (5217)
with

e4imrcoth( %)

i
Sy (1) = EH(;)W. (5.2.18)
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We have also that
: 4imocoth(h
Sy(z) = t [ H(t)%e‘z"””dt
i (1% cos(4mo coth(t/2) — 2mtT)
s 0 cosh(%)
1 [t sin(4wo coth(t/2) — 27t 1)
Cdx ), cosh(%)
i (1% cos(2wtt — 4mo coth(t/2))
~ 4x 0 cosh(%)
1 [T sin(2wtt — 4o coth(r/2
+ i ; ( cosh(1/2) /2) dt. (5.2.19)

Note that from (5.2.9), (5.2.10), we have

dt

dt

dt

dt.

; p4imo tanh(§) 1 /‘+°° sin(2tt — 4o tanh(r/2))
0

fo - —2imtT g,
®© 47[/ s/ ¢ T, Sinh(1/2)

5.2.4 An isometric isomorphism

Theorem 5.2.3. Let 0 > 0 be given, let €, be the set defined by (5.0.1) and let Ay be
the operator with Weyl symbol 1e,, (whose kernel is given by (5.2.7)). The operator
Ayg is bounded self-adjoint on L*(R) so that we may define, with ¥ defined in (5.1.8),

Ay = VAU
The operator Ay is the Fourier multiplier on L2(R; C2) given by the matrix
F T So(0)
Sy (1) 0 ) ’

Mo (7) = ( (5.2.20)

where Ty, Sy are defined respectively in (5.2.9), (5.2.15), (5.2.18). In particular, we
have with ® = (¢1,¢») € L2(R; C?),

(Ae®, @) 2@ic2) = / 2T Mo (1) D (1), D(1)) c2d . (5.2.21)
R
Proof. We have
kernel(HA, H) = e*™ 5% H(x)H(y)H (y — x).
kernel(I-VIAgH + HAGH)
= MTOSF H(x 4+ y)(H)H () + HOH (9) 57—
2im(y — x)
HAzH = 0.
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Proposition A.5.1 in Appendix A.7 is readily giving the L?-boundedness (and self-
adjointness) of
HA-H + HA:H.

We find also that HA; H — % has kernel

HTONE HOH () 5
2in(y — x)
and thus it is enough to study the operator with kernel

s+t 1
4imo < s+ t e 2 4imo tanh($51)

2in(e! —es) 4im sinh(;52)’

e

which is a convolution operator by

Ty (l) _ e4znatanh( )
4smh( )

given by (5.2.9). Formula (5.2.10) implies in particular that YA} is bounded (and real-
valued) on the real line, entailing eventually the boundedness and self-adjointness of
Ag. Formulas (5.2.8), (5.2.17), and (5.2.18) are providing (5.2.21), completing the
proof of the theorem. u

5.2.5 The main result on hyperbolic regions

Theorem 5.2.4. Let 0 > 0 be given and let Ay be the operator defined in Theorem
5.2.3. Then, Ay is a bounded self-adjoint operator on L*(R) such that

inf(spectrum(A4,)) < 0 < 1 < sup(spectrum(Ag)).

The spectrum of Ag is the closure of the set of eigenvalues of My () for T running
on the real line.

Remark 5.2.5. It is enough to prove that, with a given o > 0, there exists T € R such
that M, (7) satisfies (5.1.14).

Proof. We have from (5.2.20), (5.2.15), and (5.2.19),

P 2.
+o0 ¢ 27T Gty

1 +00 sin(2wtt—4mo tanh(z/2)) Lo
My () = + 2z '[ sinh(z/2) dt 47 JO cosh(t/2) dt
o = .
1 [too 27T m)d 0
4iz Jo cosh(t/2) :

_ (an(f, o) an(r, 0)). (5.2.22)

ax(t,0) ax(r,0)
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On the other hand, we have

- 2
1 /+°° 27 TGy
0

apy = =— dt, 5.2.23
12 =02 = cosh(z/2) (5-2.23)
so that . ,
| ptoe sin2w (it — ﬁ)]
Reaix(r,0) = —/ —=—d1. (5.2.24)
4r Jo cosh(3)

We note that the function
eZin(tr—mhz(%)
=
cosh(z/2)

is holomorphic on C\i 7 Z, with simple poles at (2Z + 1)inw (zeroes of cosh(t/2))
and essential singularities at 2Zi & (zeroes of sinh(z/2)). We shall need a more expli-
cit quantitative expression for a,; to obtain a precise asymptotic result which could
be compared to the estimate (5.2.16). The next lemma is proven in [55]; we provide
a proof here for the convenience of the reader.

Lemma 5.2.6. Let t > 0,0 > 0 be given and let a>1(t, o) be given by (5.2.23). We
have

Reasi(r,0) =

6—27121 {/n e2m(tt—20tn(t/2)) _ q sinh(z/2) — sin(¢/2)
( + )dt
0

4 sin(t/2) sinh(z/2) sin(t/2)
T 1 —cos2m(tt — 20 tanh(¢/2))
+ /0 sinh(z/2) di
% cos 27 (tT — 20 tanh(t/2))
_ /n s dt}. (5.2.25)

Proof of Lemma 5.2.6. Let0 < ¢ < w/2 < m < R be given. We consider the closed
path yg g of C\inZ with index,, ,(inZ) =0,

veR =6, RIU[R,R+im]U[R+im e+ in] (5.2.26)
ULin + ee'®0sps—ny2 Uil — e, 6] U {ee'?) 1 25050,

and we have

ezin(zr—mnh%%)
¢ —dz=0. (5.2.27)
ver  cosh(z/2)

We note as well that

e2zn(zr—lanh2(g/2))d e in(R+i)e lunh(iR;”‘))d
I, = 95 - dz=i / ; t
[R,R+ix] cosh(z/2) 0 COSh(%)
, b i Lem RTIL 2dt
_ ieZanr/ e 2T, 4o R e , (5.2.28)
—R—it
0 e 2 (1+e )
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so that - kit
L] < 2e—R/2/ e47r01m(¥is—le—iz)|1d—tR|’
0 —e
and since
I 14 e R0y I (14 e By —eRH) 2 Rying
m 1 —e—R-it | m 11— e—R—it|2 - 11— e—R—it|2 =0,
we get
2
L] < e—R/Zl—”_R, where I is defined in (5.2.28). (5.2.29)
—e

‘We note for future reference the standard formulas,

cosh(%r + Z) =isinhz, sinh(% + Z) =1icoshz, tanh(% + z) = cothz,

(5.2.30)
and we check now
0 2im((inteel®)r—20com(Ztge ) .
Iy = — . - ige’?do
—/2 cosh %
2 0 ezin(seier—latanh(“’;e)) 0
=— 7T . ige'’do, (5.2.31)
—/2 i sinh “zl
and since
. 1)
2in(ee’91—20tanh(%)) ) s
¢ . ige’?| <2 max ™ T A0 SUPz </ 4 cos}féi,
i sinh % ~ "lz|zz/2 |sinh z
the Lebesgue dominated convergence theorem gives
g g g
. _ 2
lim Iy = —we 277, (5.2.32)
e—>04
Defining now
/2 ezin(semr—Zocoth(“zlg)) 0
Is = — . iee'”do, (5.2.33)
0 cosh ‘“’2’9
and noting that
: 6 6 —i6
get? _ 1 + e¢¢ . 1+ e—ee! )1 —e75€ ' )
4o Im coth > = 4o Im l—m = 4o Im I = 2
— e—ee — e—ee
A ; e—ae”’ _ e—se_m A . e—ecos@(e—issine _ eissin@)
=4goIlm —————— = 470Im .
_ 0 _cplB
|1—€ cel! |2 |1_€ ce |2
o —2i)sin(esin 0 4 2sin(esin 6
= 4roe % Im (220) sin( ) _ —47106_“059—( )

_ p—celf |2 _ p—eelf 2 —
[1—e | [1—e |
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we get that
/2 e—ZnersinG /2
R - Ny —1l ,
0  Minj;|<x/4 | coshz| min;|<y/4 | cosh z|
entailing
lim I¢ = 0. (5.2.34)
8—>0+
With
2in(zr_tanh2(g/2))
I =¢ ——dz, (5.2.35)
[e,R]  cosh(z/2)
we have from (5.2.23)
Iim Iy =4iman;. (5.2.36)
e—>04
R—+o00

‘We define now

ezin(zt—mh%%) p T—€ eziﬂ(itr—mh(zl%) y
Is=— 95 G P / e
lieicr—e)]  cosh(z/2) e cosh(it/2)

—4ing —4no
omtt ellan(l/Z) elan(t/2)

[ D gt =i [ e E g
/8 ¢ cos(t/2)l : /8 ¢ cos(t/2)

T—& _471%
=i / L
e cos((mr —5)/2)

__4nossin(s/2)

. —on?t e 2wstT e coals/2)
= —je e —ds,
B sin(s/2)

so that
) T—e e—4mo tan(s/2)
Is = —ie 2"°° / R ) (5.2.37)
e sin(s/2)
‘We have also
eZiﬂ(zr—mhz(%)

Iy = 95 e e
[R+imetin] cosh(z/2)

. . 2
/R 8217r((t+17r)r—lanh((t_ﬁﬂ)/z))
€

dt, 5.2.38
cosh((t +im)/2) ( )
so that using Formulas (5.2.30), we get
) R eZin(tt—Zo‘tanh(!/Z))
I; = —e27 1:[ dt,
B i sinh(z/2)
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and
2 R eZin(tr—Zotanh(t/Z)) T—¢ ot e—47r(rtan(t/2)
I+ Is = i / , dt—/ L ——
’ > ( e sinh(z/2) e sin(t/2)
) T—e eZin(Zt—2atanh(t/2)) eZn(tr—Zatan(t/Z))
— ie—27r T / : _ . dl
. sinh(z /2) sin(z/2)
R eziﬂ(tr—zmanh(t/z))
+ - dt;. 5.2.39
L) (5239

From (5.2.27), (5.2.26), (5.2.28), (5.2.31), (5.2.33), (5.2.35), and (5.2.37), (5.2.38),
we find that
L =—L—{U3+15)— 14— I,

so that taking the limit of both sides* when ¢ — 0., R — 400 we get, thanks to
(5.2.36), (5.2.29), (5.2.39), (5.2.32), and (5.2.34),

5 4 ezin(tr—ZUtanh(t/2)) eZn(tr—20tan(t/2))
dimay = —ie " / _ — , dt
0 sinh(z/2) sin(t/2)

+o00 eZin(tr—Zotanh(t/Z)) 2
+ . dty +mwe “"F,
/,, sinh(z/2) }
implying that
e—27r21: 4 eZin(zr—Zotanh(t/Z)) eZﬂ(tr—ZUtan(t/Z))
az = / - - + - dt
47 0 sinh(z/2) sin(z/2)
B /+oo eZin(tr—Zotanh(t/Z)) sl 16—27[2‘(
. sinh(z/2) 4
that is

az1 =

e 27T /” (ez”(”_z‘”a“(’/z)) cos2m(tt —20tanh(t/2)))dt
0

47 sin(z/2) B sinh(z/2)
e_2”2f /+°° cos 2 (tt — 2otanh(z/2))
sinh(z/2)
e—27” f/ sin2m(tt —20tanh(t/2))d I _5n2,
——e
4 Jo sinh(z/2) 4
o272t /+°° sin27'r(t1’.— 20tanh(z/2)) d. (5.2.40)
4 J, sinh(z/2)

411, 1>, 14, Is, I3 + Is do have limits when & — 04+, R — +4o0.
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yielding
e72m°T [ p2mltt=20an(t/2)) o527 (7 — 20tanh(f/2))
Reay; = - — - dt
47 Jo sin(t/2) sinh(z/2)
o2 /+°° cos 27 (tT — 2otanh(t/2)) s
azr ), sinh(z/2) ’
completing the proof of Lemma 5.2.6. ]

Remark 5.2.7. Formula (5.2.40) also yields

—272r T o
2 (tt — 20tanh(t/2
Ima12=—Ima21=e / sin 27 ( T, otanh(r/ ))dt+7r
4 0 sinh(z/2)
+9° sin 27 (tT — 20tanh(z /2
+/ sin T[(t. aan(/))dt’
. sinh(z/2)
and since from (5.2.22), we have
1 4 1 [T sin(27wtt — 4o tanh(r/2)) dt
al=—-+ — ,
S R P A sinh(t/2)
this gives
e—2n2t 1 6—27121:
Ima12 = . (27‘[(6111 - 5) + 7T) = B ali. (5241)

To complete the proof of Theorem 5.2.4, it will be enough, according to Lemma
5.1.11, to prove that, for T — 400, |a12|?> > 1 —ay;. To achieve that, we note from
(5.2.41) that the imaginary part of a1, is useless and we shall prove simply that

(Rea12)2 > 1 —dail.

To get this we are going to use (5.2.16) and a precise asymptotic behavior for (Re a12)>
displayed in the next lemma and issued from the explicit formula (5.2.25).

Lemma 5.2.8. Let t > 1,0 > 0 be given and let a»,(t, o) be given by (5.2.23). We

have then
2

o8V 1

873t 2w
Proof of Lemma 5.2.8. Since for t > 0 we have sinh(z /2) — sin(z/2) > 0, we get from
(5.2.25),

e_zﬂzr T p2n(tt—20 tan(t/2)) _ | +oo 1
R : = sinh(1/2) "
edny (‘L’ U) = 4 {A sin(l‘/2) /ﬂ smh(t/2) }

e—27r2r 14 e27r(tr—20 tan(z/2)) _ 1 e—2ﬂ2r T
= - dr — In( coth — ).
4 Jo sin(t/2) 27 4

e—27r

Reasi(t,0) > T (5.2.42)

\
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Let us define
o =211, k=210, v=£Kr w12, Pu(s) =5 — v? tans. (5.2.43)
We have

27 (1t — 20 tan(r/2)) = 2t — 20> tan(t/2)) = e (% —v2tan %) =20y (t/2).

We have thus

e T /2 82w¢v(s) —-1 e T® T
Reaszi(r,0) > / , ds — In({coth— ). (5.2.44)
27 Jo sin s 2w 4
————
~0.421908

Defining

—Tw /2 20¢y(s) _ 1
¢ / ¢ T (5.2.45)

Yo() = 5

we can use (5.2.43), (5.2.44), and (A.6.13) to get whenever T > 0,

e—S”ﬁﬁ(l 1 ) _ an

w2t

sin §

27 R ,0) >
wReaz(r,0) > e

so that for t > 1 we find
e—87‘[ﬁﬁ

4727

22t

27 Reari(t,0) > e ,

yielding the lemma. u

We eventually go back to the proof of Theorem 5.2.4: let 0 > 0 be given. From
Lemma 5.2.8 and (5.2.16), we have for 7 > 1,

2
|1 —ay(z,0)] < 2e ™ T,

—8m /T[T 1
e 2
Redari(t,0) > —— — — 277 =

21(r.0) 2 8m3t 2 8n3t

e~ 8TV (1 4n2tes”ﬁ\/‘;)

2
ez:r T

This entails that for t > 79(0), we have

3_87[\/?\/5
Reazi(t,0) > ——, (5.2.46)
16737
and thus a,; # 0 and
e—lGnﬁﬁ
laz1 (0. 7)* = > |1 —an(r.0). (5.2.47)

287672
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where the last inequality above holds true (thanks to (5.2.16)) whenever
e—l6nﬁﬁ
287672
which is indeed true for t > t1(0). As a result for T > max(4o0, 4, 19(0), 71(0)), we

obtain that (5.2.47) is satisfied so that Remark 5.2.5 implies the result of Theorem
5.2.4, completing our proof. ]

2e—ﬂ2te4na

Remark 5.2.9. The functions 79(0), 71(0) can be determined rather easily, the first
one by the condition

472787V

e2n%t

’

| =

T > 19(0) = <

whereas the second one should satisfy

2
> 1(0) = 64”029ﬂ612816ﬂﬁﬁ < o™t

5.3 Comments and further results

5.3.1 Qualitative explanations on the various computations

We would like to go back to our proofs that
la12(z.0) > > |1 —an(r.0)], T — 4o, (5.3.1)

which is our key argument via Lemma 5.1.11 and give a couple of qualitative explan-
ations which may enlighten the calculations. It is of course much simpler to begin
with the case o = 0: in that case, according to Proposition 5.1.13 and (5.1.10), we
have

+o00 '
1 —ay(z,0) =/ 2p0(t)d T, 2p0(‘[)=/ (sm;{%) o2 g

=fo(?), fo € S (R)
holomorphic
on|Imt| < 2m.

so that 2pg(7) = fg(r). We get thus readily that pg belongs to the Schwartz space, as
the Fourier transform of a function in the Schwartz space and this implies in particular
that 1 — a1 (7, 0) has fast decay towards 0 when t — 400, as proven in Proposition
5.1.13. We note also that (5.2.41) gives Imay»(z, 0)2 = e~*"%a;,(z, 0)2/4, and
since the limit of a1y is 1, we do not expect any help from the imaginary part of a;,
to proving (5.3.1). Turning our attention to Rea; in (5.1.18), we have

400 ; 27t
47 Re a1 (t,0) =/ sin (27 17)
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which is the sine-Fourier transform of the function ¢ — H(¢) sech(¢/2) = go(?),
which has a singularity at ¢ = 0: as a consequence, thanks to Lemma A.1.1, the
Fourier transform g, cannot be rapidly decreasing, cannot even belong to L!(R)
(that would imply that g is continuous). Moreover, the sine-Fourier transform above
is the Fourier transform of the odd part of g¢, goaa(?) = sech(z/2) sign¢, which is also
singular at 0, thus goqq cannot be rapidly decreasing and is an odd function, which
is enough to prove, without more calculations, that (5.3.1) holds true. In Section 5.1,
we used a more explicit argument, with providing an equivalent of (5.3.2) equal to
1/(277) near +o00. Summing-up, (5.3.1) in the case 0 = 0 follows from the existence
of a singularity of the function g¢ above, which is discontinuous at 0.

Let us now take a look at the case o > 0, which turns out to be more computa-
tionally involved. We have from (5.2.23)

driaz (t,0) = / H(1) Sech(t/z)e—Mmrcoth(t/2)ezimrdt _ g\/;(‘c),
R
go(t) = H(t) Sech(t/z)e—i4ﬂocoth(t/2)‘

The single discontinuity at t = 0 of g5 when o > 0 is much wilder than for o = 0:
in the latter case, we had only a jump discontinuity with different limits on both
sides, whereas when o > 0, we have an essential discontinuity with an oscillatory
behaviour in (—1, +1) when ¢t — 04 for the real and imaginary parts of a;,. How-
ever, g5 belongs to all L?(R), p € [1, +o¢], so that its Fourier transform belongs
to L?(R), p € [2, +00]: we expect then that both sides of (5.3.1) have limit O for
T — +o00 and we must prove that 1 — a;; decays much faster than a;,. Looking at a
slightly simplified model and using the notations (5.2.43), we define for w, v positive,
a function o presumably close to 4wias;, given by

+oo 1)2 v2
a(w,v) = / 20 gech(s)ds,  py(s) =5 — —, wo(s) =1+ —-
0 N N

Trying our hand with the stationary phase method, we look at

+
’ 2iw 0 ds
_ e i{eiZwuu(S)} s* sech(s) ds
2iw Jo  ds 52 + 2
i [t iZwM(S)i{sz sech(s)}

= — e
2w Jo ds | s2+ 2

sech(s)
Wy (5)

since the boundary term vanishes. Iterating that computation shows that a(w, v) =
O, (w™N) for all N when @ — +o00, meaning that the information of fast decay for
1 —ayy will not suffice to get (5.3.1). Also, it is worth noticing that no fast decay of the
function o occurs when @ — —oo, otherwise Lemma A.1.1 would give smoothness
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for the function s — e~2/%/S F{(s) sech s: in fact, we see also that foro > 0, 7 = —A,
A > 0, we have

+oo
dridn, (—)L, 0) — / Sech(s)e—mno COth(s)e_‘”n‘MdS,
0

and the phase function is ji(s) = —4in(sA 4 o coth(s)) and we have

d o(1 —tanh%?s) (A + o) tanh’s —o
—IsA +ocoth(s)! = A — = ,
ds { Q) tanh? s tanh? s

which does vanish at tanh s = /(A 4+ o). As a result we could say that, for o > 0,
the C*>° wave-front-set (see, e.g., [23, Section 8.1]) of the function g, is reduced to
{0} x (—00,0). It turns out that we can show that the Gevrey-2 wave-front-set of g is
{0} x R*, and it is expressed via the lowerbound estimate (5.2.42); the route that we
took for proving this was an explicit calculation of Re a5, following the paper [55].
Finally, the upper bound (5.2.16) can be improved as

l—ai1(t,0)| < Cppe~ 27T o5 0,
| ,
and is expressing the fact that function
Ze4iﬂ0tanh(%)
ey
sinh(3)

is analytic on the real line, with a radius of convergence on the real line bounded
below by 7 (cf. Proposition A.1.2).

5.3.2 More results and examples: £? balls, corners

For a, ¢ like in Corollary 5.1.15, defining

p
a
X — —i—‘f—z

<(3)}

lim //Q W(do. o) (x. E)dxd§ = f[Mlzwwo,aso)(x,s)dxdb||¢o||zz(R),

QP = {(x’f) € Rz,

a
2

since W(¢o, ¢o) € -7 (R?), we get

p—>+o0

proving that the spectrum of Op,, (1g,,) intersects (1, +o0) for p large enough, show-
ing that a counterexample to Flandrin’s conjecture can be a convex analytic open
bounded set. Moreover, defining

Q4 = {(x,§) e R%, |x| + |£] < a/V2},
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we note that Q, is obtained by rotation and translation of [0, a]? so that we can find
¢1 in the Schwartz space such that

/ W40 O > [y

Since we have

lim Wi(d1, p1)(x, E)dxdé
p=1 //|x|"+s|f°s(a/ﬁ)ﬂ v
- W g )RdE > ey

we get that for p — 1 small enough we have

I W1, d1)(x, dxdE > 61122
|x|P +|€|17 <(a/~/2)?

proving that £? balls are counterexamples to Flandrin’s conjecture for p — 1 or 1/p
small enough.

Convex affine cones with aperture strictly less than w of R? are translations and
rotations of

Yo, = {(x,";‘) e R2\(R_ x {0}),arg(x + i§) € (0, 00)} for some 6y € (0, 7).
(5.3.3)
The vertex of X, and its rotations is defined as 0 and the vertex of the translation of
vector Ty of Xy, is defined as To. We note that all convex affine cones with aperture
strictly less than 7 are symplectically equivalent in R?, since X, is symplectically
equivalent to (the interior of) the quarter plane X, /,: indeed, let 6y be in (0, 7); the
symplectic matrix Mg, defined by

1 —cotan 6y
Mo, = (0 1 )

is such that Mg, (3) = (}), Ma, (COS o ) = (ing, )» Proving that

sin 6
Mg, 26, = Zr/2.

The next result follows from [6, Theorem 1.3] and shows that many counterexamples
to Flandrin’s conjecture can be obtained.

Theorem 5.3.1. Let K be a subset of the closure of a convex affine cone with aperture
strictly less than w and vertex X such that K contains a neighborhood of the vertex
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in the cone’. Then, there exists & > 0 such that, with
K; = Xo + AM(K — X)),

there exists ¢ € . (R) such that
||| w601 61axde > 19120, (5:3.4)
Ky

N.B. Note that (5.3.4) implies that ¢ is not the zero function. Also, taking K con-
vex produces another counterexample to Flandrin’s conjecture since K will be then
convex, but we do not need that assumption to proving the result.

Proof. There is no loss of generality at assuming Xy = 0 and
[0. p0]* C K C Zyj2. po > 0.

Using Corollary 5.1.15, we find ¢ € .7 (R) (so that W(¢o. ¢o) € -7 (R?)) such that

tim [] Wo g0 = [ Wegn. g0 O0dxds > 16012 ey
K )

A—>+o00 /2

implying for A large enough that fle W(do, Po)(x,E)dxdE > || ||i2(R), which is
the sought result. |
5.4 Numerics

Definition 5.4.1. Let 0 > 0 be given. With the 2 x 2 Hermitian matrix M, given by
(5.2.22), we define for 7 € R,

1
1 (.0) = 5(a11(1.0) + /a3, (r.0) + dlanz(z.0)).

A (r.0) = 3 (a11(r.0) ~ Jady (.0) + 4lann(r.0) ).

Remark 5.4.2. According to (5.2.41), we have

As(1,0) = %(an(t, 0) + /a2, (z.0)(1 + e=47°7) 4 4(Reayy(t, 0))2), (5.4.1)

A_(t,0) = %(all(r, o) — \/afl(r,a)(l + e“”’zf) + 4(Reaj(t, o))2>, (5.4.2)

so that the knowledge of a;; and Re ay, suffices for expressing A 1.

>We shall say that the set K has a corner.
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An immediate consequence of Theorem 5.2.4 is the following theorem.

Theorem 5.4.3. Let 0 > 0 be given and let Ay be the self-adjoint operator bounded
in L?(R) defined in Theorem 5.2.4. With the notations of Definition 5.4.1, we have

My 1= sup{spectrum(A4y)} = sup A+(7,0), (5.4.3)
TeR

mg = inf{spectrum(A4,)} = in]}f& A_(t,0). (5.4.4)
TE

Moreover, for all 0 > 0 we have

me <0<1< M,.

5.4.1 The quarter-plane: 0 = 0

Of course, as shown by the respective calculations of Sections 5.1 and 5.2, the case
o = 0, dealing with the quarter-plane is much simpler than the cases where o >
0. Nonetheless, we know explicitly a spectral decomposition of the operator with
Weyl symbol H (x)H (&) from Theorem 5.2.3, but we can calculate without difficulty
numerical expressions of M, mg as defined in (5.4.3), (5.4.4).

Proposition 5.4.4. We have from (A.6.22), (5.2.24),

1 +o00
ayi(z,0) = Reaqz(7,0) = —/ sin(2wt7) sech(t/2)dt,
0

1 4 e—4n2c’ 47

A+(‘L’, O)

1.005 +

1.000 frms

0.995

0.10 0.15 0.20 0.25 0.30

Figure 5.1. The function 7 — A (z, 0) near its maximum, well above 1.
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A-{-(T, O)

0.8

o1 0.2 03

A_(z,0)

—0.2 |

Figure 5.2. The functions t — A4(7,0), A_(7,0).

and we can use these formulas and (5.4.1), (5.4.2), (5.4.3), and (5.4.4) to calculate
numerically

Mo~ 1.00767997007003, (A (z.0) at T ~ 0.138815397930141),
mo ~ —0.155939843191243, (A_(t,0) at T ~ —0.0566304954736227).

5.4.2 On hyperbolic regions

We want now to tackle the case o > 0. In order to use the expressions (A.6.22),
(5.2.25) respectively for a1 and a;,, we need first to evaluate the residue term in
(A.6.22). The mapping z > tanh z is a biholomorphism of neighborhoods of 0 in the
complex plane, so that we have for z near the origin,

¢=tanhz, d&=(1-%dz, z=arcthi = %ln (g)
iw i 2 dé‘
ﬁ) (%)1/2_‘_(%)1/2 (1—2¢2)

=1+ {)_%Jriw(l _ é)—%—iwe—Zi%dé_’

eziwz—zilccothzd 1 +§-
coshz

so that

e2iwz—2i/ccothz . . »
Res (W’ O) = Res((l + g')_j‘Hw(l _ é-)—j—lwe—Zz?’O)' (545)
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Proposition 5.4.5. Let 0 > 0 be given. Then, for any t € R, using the notations,
w = 2nt, kK = 21w0o, we have, for any p € (0, 1),

1 . e’ p
l+e7 270 | e 27 2

apn(r,o) =

. 2iKe_i9 .

Fi4 1+p619 e~ o elf
x Im e jw Lo : df;. (54.6
{/_n Xp(lw g(l—pe’e))\/l—p%m } 640

—Tw /2 ,(sw—ktans) o; h —xt
Reas(1,0) = ¢ 2 ¢ sinh(sw — k tan ) ds + In | coth T
2 0 4

sin §
/2 gin?(sw — k tanh s)
2 d
+ /0 sinh s g
+o0
cos 2(sw — k tanh §)
— dsy, 5.4.7
/,,/2 sinh s S} ( )
—TnTw
Imajs(t,0) = ¢ ai(z, o). (5.4.8)

Proof. Formula (5.4.6) follows from (5.4.5) and (A.6.22) whereas (5.4.7) is (5.2.25)
after a change of variable t = 25, where the second integral term inside the brackets
is evaluated (cf. Lemma A.6.1); formula (5.4.8) is a reminder of (5.2.41). [ ]

N.B. Our choice for p in the numerical calculations of (5.4.6) is p = 3/4, which
is a good compromise between using a value of p clearly away from 1 (to avoid
singularities coming from small denominators in the Log term) and minimize the
oscillations and size coming from the term exp(—2ixp~!
of the latter is

e %) note that the modulus

exp(—2kp ! sin 6),

which is a smooth function of p (flat at 0) when 6 € [0, ], but is unbounded for
p — 04 when 6 € (—m, 0). There is no surprise here since although the residue
does not depend on the choice of p € (0, 1), we cannot get the value of that residue
by letting p go to O because of the part of the path in the lower half-plane. The
argument of exp(—2i /cp_le_ie) is —2kp~! cos @ and taking p too small would be de-
vastating for the calculations because of the strong oscillations triggered by the term
exp(—2ikp~ ! cos 6) all over the circle. Of course for the evaluation of Log/( tzg;z )
is easier for p small, but we have to take into account the constraints in that direction

mentioned above.

Remark 5.4.6. It seems easier numerically for the evaluation of a;; to use (5.4.6)
rather than any other expression (see, e.g., Lemma 5.2.2, (5.2.22), (A.6.14)). How-
ever, the following formula could be interesting, theoretically and numerically: recall-
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1.005—
0.98 F

[ — 1
0.96

i Az, 1/2m)
0-94¢ A(t,2/2m)
0.92} — A(1,3/27)
0.90;

e T e T e T o

Figure 5.3. Functions A4 (t, k/27) with k = 1, 2, 3: their maxima are strictly greater than 1.

ing that sinc x = Si;x, we have from (5.2.22)

1 20w [T K
ay(rt,0) = -+ — sincRws) — cos(2k tanh s)ds
2 7 Jo sinh s
2K +o00
- — sinc(2ks) cos(Qws)ds, (5.4.9)
7 Jo cosh s

but it turns out that numerical calculations involving (5.4.9) seem to be less reliable
than the methods using (5.4.6).

We can also take a look at the following curves.

Remark 5.4.7. In the above figure, in order to put the three curves on the same
picture, we have used three different logarithmic scales on the vertical axis, namely,
we have drawn

T 1+ Log(Ay(r,07)), 1<j<3,0;=j/2m,a1 =20,02 =100,a3 = 500.
Of course, we have
1+ ojLog(A4(r,07)) > 1 <= Log(A4+(t.0;)) > 0 <= Ai(r,0/) > 1,

so that the piece of curves in Figure 5.3 which are above 1 are indeed corresponding
to curves of T — A4 (7, 0;) which go strictly above the threshold 1. We have also

max A4 (7,01) ~ 1 +55x 107> at v ~ 0.402030,
T

max A4 (7,00) ~ 1 +8x 107>  att ~ 0.613262,
T

max A (7,03) ~ 1 4+ 107> at T &~ 0.854746.
T
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We are glad to have a theoretical proof of Theorem 5.2.4 since the numerical analysis
of cases where o is large, say larger than 10, seems to be very difficult to achieve, at
least through a standard use of Mathematica. The reason for that is quite clear since
using our Lemma 5.1.11, we did study the function 8 defined by

B(z,0) = laia(r,0)|* + an(r,0) — 1, (5.4.10)

and proved that for each o > 0 there exists 7y(o) such that for all T > Tj(0) we have
B(z,0) > 0and a2(7,0) # 0. Thanks to Lemma 5.2.2 and (5.2.46) we knew that for
T > To(0), we had

e—l6nﬁ\/5

8,602 = (Reaz1)® < |ar2]?,

|1 _a11| < 26—712184710 <
where the second inequality < is in fact comparing for o fixed two exponential
decays. The numerical analysis of that inequality is certainly quite difficult when
o and t are large since both sides are converging to zero quite fast for o fixed
and T — 4-o0; of course taking the logarithm of both sides looks quite reasonable,
but in practice does not seem really easy numerically. When o = 0, the situation
is much better, since we had to compare (cf. Section 5.3.1) an exponential decay
[1—aqq] < 2¢ " Ttoa polynomial decay

|Rea12|2 ~ T — +o0,

207472’
and this could be an a posteriori explanation for which our numerical argument in [6]
worked smoothly to disprove Flandrin’s conjecture. So to pick up the quarter-plane
((5.0.1) with 0 = 0) to produce a counterexample to that conjecture was indeed a
very wise choice: if you choose instead €, for o large, our Theorem 5.2.4 shows
that it is also a counterexample to Flandrin’s conjecture®, but we have a theoretical
proof for that Theorem and if we depended on a numerical analysis, it is quite likely
that checking numerically the positivity of the function § defined in (5.4.10) could be
rather difficult, even say for 0 = 10.

As a convex subset of the plane on which the integral of the Wigner distribution of some
normalized pulse is strictly larger than 1.



Chapter 6
Unboundedness is Baire generic

In this section, we show that for plenty of subsets E of the phase space R2", the
operator Op,, (1g) is not bounded on L?(R").
6.1 Preliminaries

6.1.1 Prolegomena

Lemma 6.1.1. Let u,v € L?(R") and let W(u,u), W(v,v), be their Wigner distri-
butions. Then, we have

W, u) — W, v)||L2(]R2”) < u- U||L2(Rn)(||u||L2(Rn) + ||U||L2(R"))-

As a consequence if a sequence (uy) is converging in L*(R"), then the sequence
(W(ug,u)) converges in L*>(R?") towards 'W(u, u).

Proof. We have by sesquilinearity W(u,u) — W(v,v) = Wu —v,u) + W(v,u —v),
so that

W, u) = W, v)||L2@eny = W — v, )| L2®2ny + W0, u = v)]|L2®2n)

il l|u — U”LZ(R")(”“”LZ(R") + ||U||L2(R”))7

(1.1.6)

proving the lemma. |

Lemma 6.1.2. Let (uy) be a converging sequence in L*>(R™) with limit u. Let us
assume that there exists Co > 0 such that

Vk e N, // |'W(ug, up)(x,§)|dxd§ < Co.

Then, we have [[ |W(u,u)(x,§)|dxd& < Co.
Proof. Let R > 0 be given. We check

// Wt u) (x £) — Wt i) (v, )| dod &
|x|2+]£]2<R2

5// Wt — g ) (. £)|dxd
|x|2+]£|2<R2

' //|x2+|g|25R2 |Wug, u —ug)(x.§)|dxd§

< VIB2" R (| W(u — ug, w)l|2eny + | Wk, u —ug) || L2@eny)
= VB2 R?" |lu — ur |l 2 ey (1l L2y + N1kl 2 ®n))-
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and thus

/f W) x. £)|dxd €
|x|2+|€2<R2

oy s

+ VIB2*|R? Ju — ug || 2wy (Il 2@y + 1kl L2®ny)
< Co + VIB>" R [u — ug|| 2y (Il L2y + Nutkllz2gny)

implying for all R > 0,

// W) (x. )| dxd < Co.
|x|2+]£]2<R2

and thus the sought result. ]

6.1.2 An explicit construction
We just calculate in this section 'W(vg, vo) for vo = 1[_1/2,1/2].

Remark 6.1.3. When u is supported in a closed convex set J, we have in the integral
(1.1.4) defining W, x £ £ € J = x € J, so that supp W(u,u) C J x R".

We have

_ 2imzE
W(vo. vo)(x,§) = —1/2<x+z/2<1/2 dz,

—1/2<x—z/2<1/2
and the integration domain is

—min(l —2x, 1 4+ 2x) = max(—1 —2x,2x — 1) < z < min(1 —2x, 1 4+ 2x),

which is empty unless 1 —2x,1 4+ 2x > 0, i.e., x € [—1/2, +1/2], and moreover we
have the equivalence
1 -2x<142x <= x>0,

so that

W(vo, vo)(x,§)

1-2x . 14+2x )
— H(x)/ e2imzk g, 4 H(—x)/ e2imzE g,
—(1—2x) —(1+2x)
e2i7r§(l—2x) _ e—2i7r$(1—2x) e2irr§(1+2x) _ e—2in§-‘(1+2x)
=H H(—
(x) 2iné + H(=x) 2iné

sin2z&(1 — 2x)) 1 sin(2w&(1 + 2x))
& + 1[—1/2,0] s .

= 10,1/2)(x) (6.1.1)
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More generally for a, b, w real numbers with a < b and
Ua b (x) = (b —a) ™1 py ()€ ™%, (6.12)
we have
W(abws Yapw)X,§)
(I[QJ#]()C) sin[4m(§ — w)(x —a)] + 1[#’“()6) sin[47 (§ — w)(b — x)])
(b—a)r(§ - o) '
We check now, using (6.1.1), for N > 0,

N | _
[ 1o, v e)laxa = / inGrsC 2x))‘d§dx
0<x<1/4
N2m(1-2x)
Lo
0<x<1/4
Nm | Nm|:
L e [
0<x<1/4 4 0 n
so that
[/|W(vo,v0)(x,§)|dxd§= ~+o00. (6.1.3)

Proposition 6.1.4. Let a, b,  be real numbers with a < b and let us define u p o by
(6.1.2). Then, we have

/ |W(apw tabe) (X, §)|dxds = +oc. (6.1.4)

N.B. Since u, p 4, is a normalized L?(R) function, we also have from (1.1.6), (1.1.9)
that the real-valued 'W(ug p., Ug,b,o) does satisfy

/‘/W(”a’b,wv”a,b,w)(x,s)dx

05 = [ | [ Wtasatasx 1] d
= bl g = 1.
[ Wtasortas e 8P dxdE = apoliag = 1
We shall see in the next sections that most of the time in the Baire Category sense,
we have for u € L2(R"), [[ |W(u,u)(x,§)|dxd§ = +oo.
Proof. The proof is already given above for vg = u_;/2,1/2,0. Moreover, we have

with
1 . b+a

b—a’ " 2(a-—b)’



Unboundedness is Baire generic 124

the formula
iy _Byg—! 1. —
vo(y) =e 2zimo(y=p)e “a,b,w((y — B 1)05 1/2,

sothatu, p , = Mvg, where M belongs to the group Mp,, (n). (cf. Section 1.2.1) and
the covariance property (1.2.49) shows that the already proven (6.1.3) implies (6.1.4).
[

6.2 Modulation spaces

In this section, we use the Feichtinger algebra M 1 introduced in [10] (the termin-
ology Feichtinger algebra goes back to the book [44]). The survey article [26] by
M. S. Jakobsen is a good source for recent developments of the theory as well as
Chapter 12 in the K. Grochenig’s book [16]. We refer the reader to the paper [18] by
K. Grochenig and M. Leinert as well as to J. Sjostrand’s article [48] for the use of
modulation spaces to proving a non-commutative Wiener lemma.

6.2.1 Preliminary lemmas

The following lemmas in this subsection are well-known (see, e.g., [16, Theorem
11.2.5]). However, we provide a proof for the self-containedness of our survey.

Lemma 6.2.1. Let ¢y be a non-zero function in & (R"). For u € ' (R") the follow-
ing properties are equivalent.

1 ueRY).

(i)  W(u,g¢o) € L (R*").

(i) VN € N,supycren |W(u, do)(X)|(1 + | XV < +o0.
Proof. Let us assume (i) holds true; with Q(u, ¢¢) defined in (1.1.1), we find that
Q(u, ¢o) belongs to . (R?"), thus as well as its partial Fourier transform ‘W (u, ¢y),

proving (ii). We have obviously that (ii) implies (iii). Let us now assume that (iii)
holds true. Using (1.1.5), we find

u(x1)go(x2) = / W(u ¢0)(X1 + X2 S)ezin(xl—xz)éd%.’

and thus

o, = [ o g0 (2

X1+ X2

£)H gy vy

- / W, o) (y. £ DE g 2y — xy)dEdy2",

so that the latter equality, the fact that ¢9 belongs to .(R") imply (i) by differenti-
ation under the integral sign, concluding the proof of the lemma. |
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Lemma 6.2.2. Let ¢g, ¢y be non-zero functions in L*>(R™). Let u € L?>(R") such that
W(u, ¢o) belongs to L' (R?"). Then, W(u, ¢1) belongs as well to L' (R?™).

Proof. According to Lemma 1.2.26 applied to ug = u,u; = up = ¢, U3z = ¢1, we
have

||¢0”22W(u5 d)l) € Ll(Rzn)v
since W(u, ¢) belongs to L' (R2") as well as W(go, ¢1). n

Lemma 6.2.3. Let u € L?(R"). The following properties are equivalent.

(i) Forall p € .7 (R"), we have W(u,$) € L' (R?").

(i) For anon-zero ¢ € ./ (R"), we have W(u,¢) € L' (R?").

(iii) W(u,u) belongs to L' (R?™).
Proof. We have obviously (i)=>(ii) and, conversely, Lemma 6.2.2 yields (ii))=(i).
Assuming (i) and using Lemma 1.2.26 with ug = uz = u, u; = up = ¢ € S(R"),
we get

111251 W @, u)(X)| < 2" (1 W (. §)| * [ W(, u)])(X),

so that choosing a non-zero ¢ in the Schwartz space, we obtain (iii). Conversely,
assuming (iii) and using again Lemma 1.2.26 with ug = u, = u, uz = ¢ € S (R"),
uy = ¢ € L (R"), we find

(Vw2 ll W, )01 = 27 (W 0)| 4] W 6) ) (X). (6.2.1)
eL1(R2n) €7 (R21)

Assuming as we may u # 0, we can choose ¥ € .%/(R") such that
(ou)r2 # 0,

so that (6.2.1) implies (i). [ ]

Lemma 6.2.4. Let uy,u,,usz € LZ(R”). Then, we have the inversion formula,
Opy (W(ui,uz))uz = (us, u2>L2(Rn)M1.

Proof. Tt is an immediate consequence of Lemma 1.2.25. |

6.2.2 The space M 1(R")

Definition 6.2.5. The space M !(R") is defined as the set of u € L2(IR") such that, for
all ¢ € L (R"), W(u, ¢) belongs to L' (R?"). According to Lemma 6.2.3, M ' (R")
is also the set of u € L?(R") such that W(u, u) € L'(R?") as well as the set of
u € L2(R") such that, for a non-zero ¢ € .%(R"), W(u, ¢) belongs to L (R?").
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Proposition 6.2.6. Let Vo be the standard fundamental state of the harmonic oscil-
lator 7 (D2 + x?) given by

Vo (x) = 245, 6.2.2)

Then, MY (R™) > u > ||'W(u, o)l 11 (R2n) IS anormon MY (R™). Let ¥ be a non-zero
function in ./ (R™): then M'(R™) 3 u > ||W(u, V)1 (r2n) is @ norm on M(R"™),
equivalent to the previous norm.

Proof. The homogeneity and triangle inequality are immediate, let us check the sep-
aration: let u € L2(R") such that W(u, ) = 0. Then, we have

0= (Op, (Wt Y)Y ) 2y = 14122 gy 1V 12 2 g

proving the sought result. Let ¥ be a non-zero function in .¥’(R"); according to
Lemma 1.2.26 applied to ug = u,u; = upy = o, u3z = ¥, we find

W, ) (X)] < 2" (| W, Yo)l * [W (o, ¥)I)(X),
so that we have
W, )l weny < 2" W0, V)l L1 ey W, Yo)ll 1 r2ny,  (6.2.3)
W, Vo)l weny < 2" WO, Yo)ll L1 wemy | W, ¥) || L1 wa2n).
proving the equivalence of norms. |

Proposition 6.2.7. The space M ' (R"), equipped with the equivalent norms of Pro-
position 6.2.6, is a Banach space. The space . (R") is dense in M ' (R").

Proof. Let (ug)x>1 be a Cauchy sequence in M ' (R"): it means that (W (ug, ¥0))k>1
is a Cauchy sequence in L!(R?"), thus such that

1i]£n Wk, ¥o) = U in LY(R?"). (6.2.4)

On the other hand, from Lemma 1.2.25, we have ux —u; =Op,, (W (ugx—u;, ¥o)) Yo,
so that

lur —ugllL2@m
< 0py, (W(ur —ur, Yol grzwryy =< 2" I1W(ugx —ur, ¥o)llp1 wzny,
of. (1.2.5)

implying that (ux)g>; is a Cauchy sequence in L?(R"), thus converging towards
a function u in LZ(R"). Since from (1.1.6), we have |'W(ux — u, Vo)llL2wany =
lux — ullL2(rn), we obtain as well that

lim W, Yo) = W, o) in LA(R"),
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and this implies along with (6.2.4) that U = W(u, %) in .#’'(R?"). As a result, we
have W(u, ¥o) € L' (R?"), so that u € M '(R") and

lim W, o) = W(u. Yo) in LY (R™),

entailing convergence towards u for the sequence (ux )1 in M ! (R") and the sought
completeness. We are left with the density question and we start with a calculation.

Claim 6.2.8. With the phase symmetry oy, given by (1.2.6) and ¢ by (6.2.2) we
have for X,Y € R?",

W(oy Yo, Yo) (X) = 2"e 2T XY Fmtinlir], (6.2.5)
where the symplectic form is given in (1.2.13).

Proof of the Claim. We have indeed

W(oy.n¥o. Yo)(x.§) = /(O’y’nl/fo) (x T %) Yo (x _ %)e—Zinz«édZ

— [ 1//0(2)} —x— %)eﬁnn-(x—i—i—y)wo(x N %)e_ziﬂz.gdz

- zn/zfe—n(|2y—x—§|2+x—§2)ezmz~(n—s)dze4mn~(x—y)
— 2n/2e4iﬂn-(x—y)/e—Z(IZy—Z|2+|2(y—x)Z)eZiﬂz-(n—é)dZ
= /2 p4imn(x=y) g2y —x|? ydimy-(—E)pn/2 , =2 In—E I

which is the sought formula. u

Let u be a function in M ' (R"). For & > 0 we define
u) = [ W o2 Gy ) ay,
and we have
W o)) = [ WG o) (V)e P2 Wiy Yo o) V)Y,

so that Lemma 6.2.1 and (6.2.5) imply readily that u, belongs to the Schwartz space.
Moreover, we have

u = Op,, (W(u, Vo)) Yo,

from Lemma 6.2.4 and thus

W o) () = [ W o) (12" Wloy Yo Yo) (X)L
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so that
L WG ) ) = Wi ) (X)X

=2 // |W(u, Yo) (V)| W(oy Yo, Yo)(X)| (1 — e_8|Y|2) dYdX.
R2nxR2n

€L (R*") from (6.2.5) and u € M ' (R") €[0,1]

The Lebesgue dominated convergence theorem shows that the integral above tends
to 0 when ¢ — 0, proving the convergence in M ! (R") of the sequence (u;), which
completes the proof of the density. |

Theorem 6.2.9. Let M be an element of the metaplectic group Mp(n) (Definition
1.2.13). Then, M is an isomorphism of M1 (R™) and we have for u € M (R"), ¢ €
S (R"),

W(Mu, Mp) = W(u,¢)o S, (6.2.6)
where M is in the fiber of the symplectic transformation S. In particular, the space
M Y(R™) is invariant by the Fourier transformation and partial Fourier transforma-
tions, by the rescaling (1.2.31), by the transformations (1.2.30), (1.2.32) and also by
the phase translations (1.2.51) and phase symmetries (1.2.6).

Proof. Formula (6.2.6) follows readily from (1.2.49) and if u belongs to M (R"),
we find that
W(Mu, Mg ) = W(u,yg)oS™ !,
N—— N——
e7(R") eL!(R2n)
and since det S = 1, we have

[W(Mu, MYo) |1 w2ny = WU, Yo)llL1 w2nys

implying that W(Mu, M) belongs to L' (R?") so that, thanks to Definition 6.2.5,
we get that Mu belongs to M ' (R"). The same properties are true for M. ]

Remark 6.2.10. From Definition 6.2.5, we see that, for u € M1 (R"), we have
W(u,u) € LY(R?"),

and this implies, thanks to Theorem 1.2.24, that M ! (R") C L'(R"). Moreover, we
have
F(M'R") c M'(R"),

since for u € M '(R"), we have

Wi, Yo) = W(il, Yo)
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and thanks to (6.2.6),
WG o)l @emy = W Yo) 1 man)-
As a consequence we find
F(M'(R") c M'(R") = F2eM'(R") = F>(M'(R")) Cc F(M'(R")),
and consequently
M'(R") = F(M'(R") C F(L'(R")) C Ci)(R"),

where the latter inclusion is due to the Riemann-Lebesgue lemma with Cg)(R")
standing for the space of continuous functions with limit O at infinity. Moreover, for
u € M'(R") and v given by (6.2.2), we get from (1.1.5),

X1+ X2
2

u(x1)Po(x2) =/W(u,w0)( ,g)eﬁn(m—xz)-éd&

so that
u(ry) = / Wt o) (. et E I 2y~ 3 )dydn2”,

implying
Sn
Il ey < W, Yo)ll L1 @am2 4, (6.2.7)

and similarly for p € [1, +o0],
sn _n
lullLe@®ny < W, Yol L1 r2my274 p~ 27,
yielding the continuous injection of M !(R") into L? (R").

Theorem 6.2.11. The space M '(R") is a Banach algebra for convolution and for
pointwise multiplication.

Proof. Let u,v € M'(R"); then the convolution u * v makes sense and belongs to
all L?(R") for p € [1, +o0], since we have u € L'(R"). We calculate

Wk 0, 90) (56 = [ u)Wro ).y, (B0 = s =)
so that
WG v 90 lian < [ OIIW (0. Yol @andy,

and since we have

W(tyv, ¥o)(x,§) = W(v, 1y¥0)(x, g)e—4iﬂy~$’
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we get

WG v 90 lian < [ OIIW, Y0l @andy,
so that using (6.2.3), we obtain
W * v, ¥o)ll L1 r2n
< [ WO IW o, 5yl an dy WO, 90
We can check now that
W0, Ty Yo (x, §) = 2"e 2 EHEmDD 20y,
so that

W v, Yo)ll1@eny < 2" |ullLr e W (. Yo)ll L1 r2ny

9n
< 274w u, m || W v, ny, 6.2.8
< W, Yol w2n) W, ¥o)llL1 w2ny, (6.2.8)
©62.7)

proving that M '(R") is a Banach algebra for convolution when equipped with the
norm .
N(M) = ZT”W(M, w())”Ll(RZH). (629)

On the other hand, for u, v € M (R"), the pointwise product u - v makes sense and
belongs to L' (IR™) (since both functions are in L?(IR")) and we have

u-v="CF@*0),
so that
Wt - v, Yo)(x, §) = W(EF (@ % D), Yo) (x, §) = W(F (@ * D), Yio) (—x, =),
and since Yo = Vg is also even, we get

W -v, Yol L1 rany = IW(F (@ * D), F o)l L1 r2m
= Wi %0, o) llL1 m2ny
of. (1.2.49)
9n ~ ~
< 2% ||wa, || W(D, n
< W@, Yol w2ny | W@, ¥o)ll L1 (r2n)
6.2.8)

on
=24 [ W, o)l L1 @zm | W, Yo)ll L1 w2n),

proving as well that M !(R") is a Banach algebra for pointwise multiplication with
the norm (6.2.9). [ ]
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6.3 Most pulses give rise to a non-integrable Wigner distribution

In the sequel, n is an integer > 1.

Lemma 6.3.1. We have with Vo given by (6.2.2),
wien = e 2@, [ oo pldxds < oo,
2n
Then, MY (R™) is an Fy of L*(R™) with empty interior.
Proof. We have M'(R") = | ycn @n with

Oy = {u c LZ(R"),// W o) (x. §)|dxd € < N}-
R2n

The set @ is a closed subset of L2(R") since if (ug)x>1 is a sequence in @y which
converges in L2(R") with limit u, we get for R > 0,

// W o) (x. )| dxd €
[(x,6)|I<R

< // W — g o) (x, )| dxd + // W Yo) (. B)|dxd &
[(x,6)|I<R [(x,8)|I<R
< llu — ugll L2y (B> | R + N,

implying ffl(x,é)lsR |W(u, ¥o)(x,&)|dxd& < N, and this for any R, so that we obtain
u € ®y. The interior of @y is empty, since if it were not the case, as @ is also
convex and symmetric, 0 would be an interior point of ®y in L?(R") and we would
find pg > 0 such that

lulogn <po= [[  [Woepo)xpldxdg < .
and thus for any non-zero u € L?(R"), we would have

I g0 Ol xaelul gy < N

and thus

lullprr gy < Npg el L2 gy
implying as well L2(R") = M!(R") which is untrue, thanks to the examples of
Section 6.1.2, e.g., (6.1.3), and this proves that the interior of ® is actually empty.

Now the Baire Category Theorem implies that the F, set M !(R") is a subset of
L?(R™) with empty interior. ]
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Let us give another decomposition of the space M ! (R").

Lemma 6.3.2. According to Lemma 6.2.3, we have
MY(R") = {u € Lz(R”),// |W(u,u)(x, §)|dxdE < +oo}.
R72xR”
Then, defining
Fy = {u € LZ(R”),// | W, u)(x, §)|dxdE < N}, (6.3.1)
R72xR”

each Fy is a closed subset of L*>(R™) with empty interior.

Proof. We have . # = M'(R") = |Jyen Fn- The set Fy is a closed subset of
L?(R™) since if (ug)x>1 is a sequence in F which converges in L?(R") with limit
u, we have

V> 1, f/ W(ug, ug) (x, £)|dxdE < N,
R2xR”"?

so that we may apply Lemma 6.1.2 with Cy = N, and readily get that u belongs to
Fn. We have also that interior; 2(gn) () C interiorz 2 gny (M L(R™)) = 0. ]

Theorem 6.3.3. Defining

@G = {u e L2(RM), // W, u)(x, E)|dxdE = +oo} — L2(R")\M(RM),
R” xR

(6.3.2)
we obtain that the set 4 is a dense Gg subset of L*(R™).

Proof. Tt follows immediately from Lemma 6.3.2 and formula {/i)}c = A°, yielding
for # defined in (6.3.1), L*(R") = {interior(|y ?N)}C = F¥- [

Remark 6.3.4. It is interesting to note that the space M !(R") is not reflexive, as
it can be identified to £! via Wilson bases, but it is a dual space. It turns out that
both properties are linked to the fact that M ! (R") is an F, of L?(R") as proven by
Lemmas 6.3.1 and 6.3.2: if X is a reflexive Banach space continuously included in a
Hilbert space H, it is always an F,; of H, since we may write

X = | NBx.
NeN
where By is the closed unit ball of X and N Bx is H-closed since it is weakly compact
(for the topology o (H, H)); we cannot use that abstract argument in the case of the
non-reflexive M ' (R"), so we produced a direct elementary proof above. Also, it can
be proven that if X is a Banach space continuously included in a Hilbert space H, so
that X is an F, of H, then X must have a predual. As a result, the fact that M ! (R")
has a predual appears as a consequence of the fact that M ' (R") is an F, of LZ(R").
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6.4 Consequences on integrals of the Wigner distribution

Lemma 6.4.1. Let & be defined in (6.3.2) and let u € 4. Then, the positive and
negative part of the real-valued 'W(u, u) are such that

// W, u)4+(x,E)dxdE :/ W, u)—(x,E)dxdé = +oo.
Proof. For h € (0, 1], we define the symbol
a(x,§.h) = e HEHE),

and we see that it is a semi-classical symbol in the sense (1.2.65). Let us start a
reductio ad absurdum and assume [ 'W(u, u)_(x, §)dxd§ < 400, (which implies
sinceu €9, [[ W(u,u)4(x,§)dxdé = +00). We note that

(Op, (@& )y = [ a6 Won e ) dvat.
€L2(R2")  eL2(R2n)

and thanks to Theorem 1.2.27, we have also

Sup |(Opw(a('x’ S’h))u’ u)LZ(R")| 5 O—n”u”iZ(Rn)s
he(0,1]

so that
// e HE Wy u)(x, E)dxdE + [/ M HE Wy u)_(x, E)dxdE
= [[ Wiy xpravae.
and thus with 6, € [—1, 1], we have
Bhonllulsqny + [ €O HIW ) (x. dxds
— // e P HE Wy u), (x, E)dxdE. (6.4.1)
Choosing h = 1/m,m € N*, we note that

eI TEIW @ u)  (x,8) < e T WL 1) (x,6).

From the Beppo-Levi Theorem (see, e.g., [34, Theorem 1.6.1]), we get that

m—+o00

lim // e W u) 4 (x, £)dxdE = // W, u)4(x, £)dxd§ = +oo.
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However, the left-hand side of (6.4.1) is bounded above by
U"”””iZ(R") + / W(u,u)—(x,E)dxd€, which is finite,
triggering a contradiction. We may now study the case where

// W, u)y(x,E)dxdé < +o0, // W, u)_(x,E)dxdé = +oo.
The identity (6.4.1) still holds true with a left-hand side going to +o00 when /4 goes to

0 whereas the right-hand side is bounded. This concludes the proof of the lemma. m

N.B. A shorter heuristic argument would be that the identity

[ W odrds = i, wd [ W gdxds = +oc

should imply the lemma, but the former integral is not absolutely converging, so that
argument fails to be completely convincing since we need to give a meaning to the
first integral.

Theorem 6.4.2. Defining ¢ = L*(R")\M'(R") (cf. (6.3.2)) we find that the set d
is a dense Gg set in L>(R™) and for all u € 4, we have'

// W, u)y(x,E)dxdé = // W, u)—(x,&)dxdé = +o0, (6.4.2)
Defining’

Es(u) = {(x.§) € R*", £ W(u,u)(x,§) > 0}, (6.4.3)

we have for allu € 9,
// W(u,u)(x,£)dxdé = +oo, (6.4.4)
E4(u)

and both sets E+ (u) are open subsets of R*" with infinite Lebesgue measure.

Proof. The first statements follow from Theorem 6.3.3 and Lemma 6.4.1. As far
as (6.4.4) is concerned, we note that W(u, u) > 0 (resp., < 0) on E4(u) (resp.,
E_(u)), so that Theorem 6.3.3 implies (6.4.4). Moreover, £ (u) are open subsets
of R?" since, thanks to Theorem 1.2.22, the function ‘W(u, u) is continuous; also,
both subsets have infinite Lebesgue measure from (6.4.2) since ‘W (u, u) belongs to
L2(R?™). ]

'Note that ‘W (u, u) is real-valued.
2Thanks to Theorem 1.2.22, the function W(u, u) is a continuous function, so it makes
sense to consider its pointwise values.
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Remark 6.4.3. There are many other interesting properties and generalizations of
the space M! and in particular a close link between the Bargmann transform, the
Fock spaces and modulation spaces: we refer the reader to Remark 5 on page 243 in
Section 11.4 of [16], to our Section 1.2.8 in this memoir and to Section 2.4 of [33].

Remark 6.4.4. As a consequence of the previous theorem, we could say that for any
generic u in L2(R") (i.e., any u € 4 = L?(R")\M ' (R")), we can find open sets
E, E_ such that the real-valued =W (u, u) is positive on E and

/ W, u)(x,&)dxdé = too.
Ey

We shall see in the next section some results on polygons in the plane and for instance,
we shall be able to prove that there exists a “universal number” ,u;r > 1 such that for
any triangle’ 7 in the plane, we have

Yu € L*(R), // W, u)(x,&)dxdé < M;r||u||iz(R). (6.4.5)
T

Note in particular that we will show that (6.4.5) holds true regardless of the area of the
triangle (which could be infinite according to our definition of a triangle). Although
that type of result may look pretty weak, it gets enhanced by Theorem 6.4.2 which
proves that no triangle in the plane could be a set E4 (u) (cf. (6.4.3)) for a generic u
in L2(R).

3We define a triangle as the intersection of three half-planes, which includes of course the
convex envelope of three points, but also the set with infinite area {(x, £) € R?,x > 0,£ >
0,x + & > A} for some A > 0.






Chapter 7

Convex polygons of the plane

7.1 Convex cones

We have seen in Proposition 5.4.4 and Theorem 5.2.4 that the self-adjoint bounded
operator with Weyl symbol H (x) H (£) does satisfy

1y = mo = Amin(Op,, (H(x)H (£))) < Op,, (H(x)H(§))
< Amax (Opy, (H(x)H (§))) = Mo = i3,
(155 . 115] = spectrum(Op,, (H(x) H(§))). (7.1.1)
with
uy ~ —0.155939843191243, ut ~ 1.00767997007003. (7.1.2)

This result is true as well for the characteristic function of any convex cone (which is
not a half-plane nor the full plane) in the plane since we can map it to the quarter
plane by a transformation in S1(2, R) = Sp(1, R). On the other hand, a concave
cone is the complement of a convex cone and the diagonalisation offered by The-
orem 5.2.3 proves that the spectrum of the Weyl quantization of the indicatrix of a
concave cone is
1- Spectrum(OpW (H(x)H(S))).
We may sum-up the situation by the following theorem.

Theorem 7.1.1. Let ¢ be a convex cone in R? with aperture 0 € [0,2r] (cf. (5.3.3))
and let Ag be the self-adjoint bounded operator with the indicator function of g as
a Weyl symbol.
(1) If 6 = 0, we have Ag = 0.
(2) If 6 € (0, ), the operator Ay is unitarily equivalent to Op,, (H(x) H(§)),
thus with spectrum [i5, uf ] with u; <0 < 1 < uJ, as given in Theorem
5.2.4.
(3) If 0 = 7, X is a half-space and Ay is a proper orthogonal projection, thus
with spectrum {0, 1}.
@) If 0 € (m,2m), Xg is a concave cone and the operator Ay is unitarily equi-
valent to
Id—Op,, (H(x)H(§)),
thus with spectrum [1 — ut, 1 — 5] (see footnote" ).
(5) If 0 = 2w, we have Ay, = 1d.

ISo that we have in particular, from (2), the inequalities 1 — /L;_ <0<Il<l-—p;.
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Remark 7.1.2. It is only in the trivial cases 6 € {0, 7z, 27} that Ay is an orthogonal
projection. These cases are also characterized (among cones) by the fact that the spec-
trum of #yg is included in [0, 1].

Remark 7.1.3. It is interesting to remark that all operators #4g for 6 € (0, &) are
unitarily equivalent and thus with constant spectrum [u; , MEL ] as given in Theorem
5.2.4. Nevertheless, the sequence (#4g)o<g< is Weakly converging to the orthogonal
projection A, whose spectrum is {0, 1}: indeed for ¢ € .Z(R), ¥ € .#(R), we have

(Aod V)2 = //E W, )(x. E)dxdE,

€7 (R2)

and thus the Lebesgue dominated convergence theorem implies that

(Aad, )2y = (Azd, V) 2R)- (7.1.3)

lim
f—>m_

On the other hand, for u, v € L?(R) and sequences (¢ )x>1, (Vi)xk>1 in 7 (R) with
respective limits u, v in LZ(R), we have

(Aou,v)r2®) = (Ao (U — Pr), V) L2®) + (AoPk: v — Vi) 2Ry + (AoPk, Vi) L2(R)>
so that
(Agu, v) 2Ry — (Axtt, V) 12(R)

= (Ag( — Pr), V) L2R) + (AePk. UV — Vi) L2R) + (AePrs Vi) L2(R)
— Az (U — ), V) 2wy — (AP, v — Vi) 2wy — (A Pk Vi) 12(R)>

implying
[{Agu, v)2R) — (AzU, V) 2Ryl

< (u3 + D(llu = el 2@ lvlizwy + 11 — Yl 2@y Ik L2 ®))
+ [{AgPr. Vi) L2y — (Ax k. Vi) L2w)l

and thus, using (7.1.3), we get

lim sup | <eA)9M, U)Lz(R) — (A,,u, U)LZ(R) |
9—)0+
< (13 + DIl = pell 2@ llvlio + v = Vil 2@ loel Lo @))-
Taking now the infimum with respect to k of the right-hand side in the above inequal-
ity, we obtain indeed the weak convergence

li Agu, = (AU, .
9—1>I<I)1+( ou. V) 2®) = (AU, V) 2R)
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Of course, we cannot have strong convergence of the bounded self-adjoint #4g towards
(the bounded self-adjoint) A, because of their respective spectra and the same lines
can be written on the weak limit 0 when 6 — 04 of Ag.

7.2 Triangles

We may consider general “triangles” in the plane that we define as
TEE, = A8 e R Li(x,6) = ¢, j €{1,2,3}},

c¢;j are real numbers and L; are linear forms. To avoid degenerate situations, we shall
assume that

. C1,C2,C C1,C2,C .
forj #k, dLjANdLg #0, |TL11,L22,LS3| >0 and TLll,L22,L33 is not a cone.
(7.2.1)
Note that this includes standard triangles (convex envelope of three non-colinear
points) but also sets with infinite area such as

{(x, £) e R2, x > 0,£>0,x+£&> )L}, where A is a positive parameter. (7.2.2)

Without loss of generality, we may assume that L1(x,§) —c; = x, La(x,§) —cp =&,
so that
TRt = {(x.6) e R*,x > 0, > 0,ax + b§ > v},

where a, b, A are real parameters with a # 0, b # 0 from the assumption (7.2.1);

using the symplectic mapping (x, §) — (ux,&/u) with u = /|b/a|, we see that the
condition ax + b§ > v becomes

x+§& =0,

—_ > 7

xsigna + £signb > A =v/+/|ab|, ie. sz ‘j
_x+§ Zva

—x—£& >9v

The first case requires ¥ > 0 and the other cases b < 0. The only case with finite area
is the fourth case

Tap ={(x.§) € R2,x>06>0,x+&< A} triangle with area A2/2, 1> 0.
(7.2.3)
The second case is

Toa={(x.§eR*x>0>0x—§> -1}, 1>0, (7.2.4)
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the third case is
T ={(x.§) eRLx >0, >0 —x > -1}, A1>0, (7.2.5)
and the first case is
Tia={(x.6eR*x>0£E>0E+x>1}, A1>0. (7.2.6)

Proposition 7.2.1. Let 74 ; be a triangle with finite non-zero area in the plane given
by (7.2.3), where A is a positive parameter. Then, the operator Opy,(1g, ,) is unitarily
equivalent to the operator with kernel

X+ y\sin(r(x — ) = 52)
2 m(x—y) '
The operator Opy, (17, ;) is self-adjoint and bounded on L?(R) so that

1 -
10p,, (A7, )l 8(z2R)) = E(M; + 1+ (/«L;)z) = i3, (7.2.8)

where ;,L;_ is given in (7.1.1).

kaj(x,y) = 1[0,/1]( (7.2.7)

Proof. The kernel k4 3 of Op, (17, ,) is such that

_xty

A

xX+y 2 i (x—

kaj(x,y) = 1[0,1]( 5 )/ Q2T VE g &
0

1 x+y (e2irr(x—y)()t—
— oAl 2 2im(x —y)

- +
— ein’(lx—%)l[o Al xX+y sin(7r(x — y)(A — %)) e_i”uy_%)
’ 2 m(x—y) ’

proving (7.2.7). We note now that the kernel of the operator with Weyl symbol H (§)
HA—-§E—x)is

x+y
2

)—1)

. ity
Ox,y) = «‘f"”(’”_xzz)H()L - y) it Z 32 = T))e—m(xy—%),

2 7(x—y)
and that
Opy, (H(E)H(A —§ —x))
is unitarily equivalent to the operator Op,, (H (x)H(§)) as given by Theorem 7.1.1.
We get then

kaa(x,y) = H(x + y)l(x,y) = H(x){(x, y)H(y)

+ H(x+ ) (H&OH Q) + ﬁ(x)H(y))H(A 2 er y)

. v 5ty
SN (6 = YA =52 | inix—D) iny—2)
w(x—y)
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and we have thus
Op, (17, ;) = HOp, (H(E)H(A —§ — x))H + Qy,
where the kernel w), (x, y) of the operator €2 verifies

H(x + y)(Hx)H (y) + H(x)H(y))
lx =yl
_ H(x+ y)(H&)H(y) + H(x)H(y))
w(lx|+ [y])
We obtain, thanks to Proposition A.5.1 (2), that

lwa(x, y)| <

// lor Ceo N GOl dyde < | gyl Hull2g)-
As a result, we find that

[{Opy, (17, ; Ju, u) 2Ryl < M;”HMHiz(R) + | Hull 2wyl Hull 2wy
proving (7.2.8). ]

Proposition 7.2.2. Let 71 5 be a triangle with infinite area in the plane given by
(7.2.6), where A is a positive parameter. Then, the operator Op, (17, ,) is unitarily
equivalent to the operator with kernel

x 4 y\sin(z(x — y)(A — £2))
o e

kya(x,y) = 1[0,1](
The operator Op,, (17, , ) is self-adjoint and bounded on L?(R) so that

1 /1

where /,L;_ is given in (7.1.1).

Proof. We note that the kernel of the operator Op,,(H (x + & — A)H(§)) is

: i 1 1
Gi(x, y) = 2mEImaOA=5D 2 Gy (y ) 4 ———— ),
2 in(y —x)

so that

Op,(17,,) = HOp, (H(x +§ — VH() H + 2., (7.2.10)

unitarily equivalent to

Op,, (H(x)H (§))
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where the kernel w; , of the operator €, , is equal to
H(x +y)(HE@H®Y) + HEOHD)) (. p).
and such that

(H(x)H (y) + H(x)H(y))
27 (x| + 1))

lwa(x, )| = H(x +y)

’

and, thanks to Proposition A.5.1 (2), we get from (7.2.10) that

1 ~
{Opy (17 )u, u)p2ry| < /‘L;”HMHiZ(R) + E”H“”Lz(R)”Hu”LZ(]R),
which gives (7.2.9). ]

We leave for the reader to check the two other cases (7.2.4), (7.2.5), which are
very similar as well as the degenerate cases excluded by (7.2.1), which are in fact
easier to tackle.

Theorem 7.2.3. Let
~C1,C2,C
T = {JLll,LZZ,L33} ¢j€R, L;
linear form on R?
be the set of triangles of R%. For all T € 7, the operator Opy,(17) is bounded on
L?(R), self-adjoint and we have

1.007680 ~ ;= sup [|Op(Le)l g2y

€ cone

<ud = sup |Op, (A7)l zr2my < fis ~ 1.213668.

T triangle

N.B. The L2 boundedness is easy to prove since it is obvious for triangles with finite
areas and in the case of triangles with infinite area, we may note that in the case
(7.2.6) (resp., (7.2.4), (7.2.5)) they are the union of two cones (resp., one cone) with
a strip [0, 1] x R4. What matters most in the above statement is the effective explicit
bound. Our result does not give an explicit value for pv; and it is quite likely that the
bound given by fi3 is way too large.

Proof. The second inequality is proven in Propositions 7.2.1 and 7.2.2, whereas the
first inequality is a consequence of Theorem 5.3.1. |

Remark 7.2.4. This implies that for any u € L?(R) and any 7 € .7, we have

’/ W, u)(x, )dxd§| < fisull72 gy,  With fis ~ 1.213668.
T
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7.3 Convex polygons

We want to tackle now the general case of a convex polygon in the plane. We consider
Ll LIRS LN ’

tobe N linear forms of x,& (Lj(x,§) =a;& —ajx =[(x,§):(aj,aj)])and cy,....cn
some real constants. We consider the convex polygon

P ={(x.§) eR*Vje{l.....N},Lj(x.§) —¢; > 0}, (7.3.1)

so that

Lp(x.§) = [] HLi(x§-c).

1<j=N

Definition 7.3.1. Let NeN*, let Lq,..., Ly belinear formson R? andletcy,...,cn
be real numbers. The polygon with N 51des Pr g, is defined by (7.3.1). We shall
denote by Ay the set of all polygons with N s1des

N.B. Since we may take some L; = 0in (7.3.1), we see that Zy C Py 1.

Note as above that it includes some convex subsets of the plane with infinite area
such as (7.2.2).

Theorem 7.3.2. Let Py be the set of convex polygons with N sides of the plane R?.

We define

py = sup [0p,(12)llgr2(ry)-

Pe?yn

Then, /,L;_ is given by Theorem 5.2.4 and

VN >3, uf < /N/2.

Proof. Using an affine symplectic transformation, we may assume that Ly (x, &) —
cN = X, so that

lp(x.§)=Hx) [] Hlaj§—ejx—c).

1<j<N-1

and the kernel of the operator Op,, (1) is

kn(x,y) = H(x +y)/e2i”(x_y)5 l_[ H (ajé—oej(x +y) —cj)dé.

: 2
1<j=<N-1

As a result, we have

kn(x,y) = H(x + y)kn-1(x,y),
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where ky_1 is the kernel of Op,,(1p,,_,), where
Pn-1={(x,§) eR Vje{l,....N —1},L;(x,§) —¢; > 0}.

We may assume inductively that for any convex polygon & with k < N — 1 sides,
there exist p,,j such that

Op, (1p,) < .

where u; depends only on k and not on the area of the polygon, a fact already proven
for k = 1,2, 3. We note that with Ay = Op,, (1, ), we have with H standing for the
operator of multiplication by H (x),

HANH = HAy_1H, An_1=O0p,(1p,_,),
since the kernel of HAy H is
H(x)H(y)kn(x.y) = H(x + y)H(x)H(y)kn-1(x,y) = H(x)H(y)kn-1(x, y).

Also, we have, with H (x) = H(—x), that HAnH = 0, since the kernel of that
operator is
H(x)H(y)H(x + y)kn-1(x,y) = 0.

‘We have thus
Ay = HAy_1H +2Re HAN H, (7.3.2)

and the kernel of 2 Re H A NH is
oN(x,y) = H(x + y)(HX)H(y) + H(y) H (X)) kn-1(x, ).
‘We calculate now
. _ X + y
kn-1(x,y) = /ez”’(x y)gl l_!V IH(ajé—aj(—z )—Cj)dé-
<j<N-

We check first the j such that ¢; = 0 (and thus «; # 0)”. Without loss of generality,
we may assume that this happens for 1 < j < Ny so that with some interval J of the
real line, &; = «; /a;,C; = c¢j/aj,

kyo1(x.y) =1 (5 ;L y)/ez"”(x_y)g [T #(e —d/(g) =)

No<j<N-1
a_,->O
~ . Xty ~
X l_[ H(E—aj( 5 )—cj)dé.
No<j<N-1
aj<0

2In this induction proof, we may assume that all the linear forms L;, 1 < j < N are
different from 0, otherwise we may use the induction hypothesis.
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We note that the integration domain is

o) = e (65 +a)

No<j=N-1
aj>0
. - x+y> ~ (x+y>
< < . L=
st<, min G(57) 5 =—(=57)
llj<0

with ¢, ¢ convex piecewise affine functions; since ¢ + v is also a convex function,
we get the — convex — constraint (¢ + ¥)((x + ¥)/2) < 0, so that (x + y)/2 must
belong to a subinterval J of the interval J. As a result we get that

kn-1(x,y)
—1 N(x + y>e_2i”(X—J’)¢(x—5y) _ ezm(x—y)w(%)
AN 2in(x —y)

—im(x=))@+V)CFL) _ pim(x—»)(@+¥)(ZFY)

_ li(x + y);tn(x—y)@—dx)(%) ¢
2

—1 N(x + y> —in(x—y) @9 (ELY) sin(rr(x — ) (¢ + ¥)(3F))
AN 7 — )

2im(x —y)

’

and thus the kernel of 2 Re HANH is

on(x,y) = H(x + ) (HE)HE) + H)HE)

« p-inCr—y)@-w)() ST — ) (@ + NEEH)
m(y —Xx)

x+y)
2

so that, thanks to Proposition A.5.1 (2),
2Re(H Ay Hu,u) < |Hul|Hul,
and with (7.3.2) we obtain, (Ayu, u) < ;L]J(,_l |Hu|? + || Hul ||bvlu||, and we get

y—y + yV (Mp-1)? +1

2

My =
This implies that
VN >3, u} <+/N/2.
since it is true for N = 3 and’ if we assume that it is true for some N > 3, we get

L My +l 1 [N [Nt2 N1
Wi < > sV V5 )=V

2

3Indeed, we have i < fi3 < 1.2137 < 1.2247 ~ /3/2.
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where the latter inequality follows from the concavity of the square-root function
since we have for a concave function F,

IN IN+2 N+1

22 7272 2
and thus I /Ny 1 _/N+2 N1
SF(5) +5F( < F( )
F(5) 3 (7)< F (5
The proof of Theorem 7.3.2 is complete. |

Remark 7.3.3. The above result is weak by its dependence on the number of sides,
but it should be pointed out that it is independent of the area of the polygon (which
could be infinite). Another general comment is concerned with convexity: although
Flandrin’s conjecture is not true, there is still something special about convex subsets
of the phase space and it is in particular interesting that an essentially explicit calcu-
lation of the kernel of the operator Op,, (1) is tractable when J is a polygon with N
sides of R2. Something analogous could probably be done with convex polytopes of
R2",

7.4 Symbols supported in a half-space

Theorem 7.4.1. (1) Let A be a bounded self-adjoint operator on L*(R™) such that
its Weyl symbol a(x, £) is supported in Ry x R?"~1. Then, with H standing for the
orthogonal projection onto

{u e L*(R"),suppu C R_ x R*"'},

we have HAH = 0.
(2) Let A be as above; if A is a non-negative operator, then with H = I — H, we

have
HA=AH =0, A= HAH,

N.B. We have seen explicit examples of bounded self-adjoint operators such that
the Weyl symbol is supported in x > 0 but for which H AH # 0: the quarter-plane
operator (see Section 5.1) has the Weyl symbol H (x) H (£), the kernel of

- - 1
HOp, (H(x)H(§))H is H(x)H(y)H(x + y)mpVy —

which is not the zero distribution and, according to the above result, this alone implies
that

Op,, (H(x)H (§))

cannot be non-negative.
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Proof. Let us prove first that HAH = 0; let ¢, ¥ € C(R") such that
supp ¢ U supp ¥ C (—o0,0) x R"1,

Since the Wigner distribution 'W(¢, ) belongs to .#’(R?") and is given by the integ-
ral

Wip 0. = [ o(x+3)0(x-3)e

we infer right away” that supp W(¢, ¥) C (—00,0) x R?"~1, We know also that
(AD, ¥ ) 2mny = (AP, V) srwm), »@®m) = (@, W(P, V) o (r2n), w21y = 0.

As aresult, the L2(R") bounded operator H AH is such that, foru,v € L2(R"), ¢, ¥
as above,

(ﬁAﬁM, U)Lz(Rn) = ( vAﬁﬁu, ﬁv)Lz(Rn)
= (HAH(HL{ - ¢), HU)Lz(Rn) + (HAH¢, Hv — w>L2(R”)
+ (HAH$, V) 2®n).

(A¢’¢>L2(R”)=O

so that

|(HA]§M, U)Lz(Rn)|

< Al gu2@my(1Hu = bl 2@my vl L2@my + 1 HY = ¥l 2@ 19l 2@n))-
Using now that the set {¢ € C>°(R"), supp$ C (—o0,0) x R"1} is dense’ in

{w € L>(R"), suppw C (—00,0] x R"~"}, (7.4.1)

*In the integrand, we must have, x| + 3+ < —go < 0,x; — 5+ < —¢; < 0 and thus x; <

—(e0 +€1)/2
SLet xo be a function satisfying (5.2.1) and let w be in the set (7.4.1). Let (¢ )k>1 be a
sequence in C2°(R™) converging in L2 (R") towards w; the function defined by

b (x) = ro(—kx1)¢x (x),

belongs to C2°(R"), is supported in (—oo, —1/k] x R”~!, and that sequence converges in
L?(R™) towards w since

Ifx — wllz2emny < lxo(—kx1)(x (x) — w )| L2@ny + 1 (xo(—kx1) — Dw ()|l 22 (mn)

<Il¢x—wll 2 (gn)—> O when k — +o00.

and ||(yo(—kx1) — 1)w(x)||i2(R”) </ 1{—% <x; < 0}|w(x)|2dx which has also limit 0
when k goes to +o00 by the Lebesgue dominated convergence theorem.
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we obtain that (FI AHu, v)2@ny = 0 and the first result. Let us assume that the
operator A is non-negative. We have

A= B? B = B* bounded self-adjoint.
It implies with L2(R") norms and dot-products,
(Au,u) = (HAHu,u) + 2Re(ﬁAHu, Flu)
= (HBBHu,u) + 2Re(H BBHu, Hu)
— |BHu||> + 2Re(BHu, BHu)
= |BHu + BHul||> — |BHu|?
= |Bul® = | BHu|* = (Au,u) — | BHu|?,

andthus BH =0, sothat HB =0and thus HB2=HA=0= AH,sothat HAH =
0= HAH,and A = HAH, concluding the proof of (2). |

Corollary 7.4.2. Let A be a bounded self-adjoint operator on L*(R™) such that its
Weyl symbol is supported in Ry x R?"~1 and such that Re(HAH) # 0, then the
spectrum of A intersects (—oo, 0).

Proof. We have from (1) in the previous theorem,
A= (H + H)A(H + H) = HAH + 2Re HAH,

and from (2), if A were non-negative, we would have AH = 0and Re HAH = 0,
contradicting the assumption. |

Remark 7.4.3. If € is a compact convex body of R?”, we may use the fact (see,

e.g., [45]) that
€= N ;.

$; closed half-spaces
containing K

Then, of course Op,,(1¢) is a bounded self-adjoint operator on L2(R"), and if §; is
defined by
9; ={(x.£) e R? Lj(x.§) > ¢;}.

where L; is a linear form on R? and ¢; a real constant, we obtain with the symplectic
covariance of the Weyl calculus, setting

Hj(x,8) = H(Lj(x,§) —¢;),
that for all $; closed half-spaces containing €, we have
Op,,(Le) = Op,,(H;)Op,(1e)Op,,(H;) + 2Re Op, (H;)Op, (1e)Op,, (H;).

where H (x,€) = H(—L;(x,£) + ¢;).



Chapter 8

Open questions and conjectures

In this section, we review the rather long list of conjectures formulated in the text
and we try to classify their statements by rating their respective interest, relevance
and difficulty. We should keep in mind that the study of Op,, (1) for a subset E of
the phase space is highly correlated to some particular set of special functions related
to E: Hermite functions and Laguerre polynomials for ellipses, Airy functions for
parabolas, homogeneous distributions for hyperbolas and so on. It is quite likely that
the “shape” of E will determine the type of special functions to be studied to getting
a diagonalisation of the operator Op,,(1g).

8.1 Anisotropic ellipsoids and paraboloids

Conjecture 8.1.1. Let E be an ellipsoid in R?" equipped with its canonical sym-
plectic structure. Then, the operator Op,, (1) is bounded on L2(R") (which is obvi-
ous from (1.2.5)) and we have

Op, (1) <1d. (8.1.1)

A sharp version of this result was proven for n = 1 in the 1988 P. Flandrin’s art-
icle [13], and was improved to an isotropic higher-dimensional setting in paper [39]
by E. Lieb and Y. Ostrover. Without isotropy, it remains a conjecture. As described
in more details in Section 3.4, it can be reformulated as a problem on Laguerre poly-
nomials. That conjecture is a very natural one and it would be quite surprising that a
counterexample to (8.1.1) could occur from an anisotropic ellipsoid'. We introduced
in Section 4.4 a conjecture on anisotropic paraboloids directly related to Conjecture
8.1.1.

Conjecture 8.1.2. Let £ be an anisotropic paraboloid in R?" equipped with its
canonical symplectic structure. Then, the operator Op,, (1£) is bounded on L2(R"™)
and we have

Op, (1) <1d. (8.1.2)

In terms of special functions, it is related to a property of Airy-type functions.
As a contrast with ellipses, we do not expect (8.1.2) to leave any room for improve-
ment whereas (8.1.1) can certainly be improved with its right-hand side replaced by
a smaller operator as in (3.2.2).

'We mean by anisotropic ellipsoid a set of type (3.3.2) where 0 < a; < az < --- < ay.
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8.2 Balls for the £? norm

We have seen in Section 5.3.2 that the quantization of the indicatrix of an £7 ball
could have a spectrum intersecting (1, +00) when p # 2. More generally one could
raise the following question.

Question 8.2.1. Let p € [1, +00], p # 2 and let IB%IZ,” be the unit £7 ball in R?". For
A > 0, we define the operator

Pn’p,x = OPW(]'MB%”)'

Is it possible to say something on the spectrum of the operator P, , 3, even in a two-
dimensional phase space (n = 1)? Is there an asymptotic behaviour for the upper
bound of the spectrum of P, , ; when A goes to +00?

8.3 On generic pulses in L2(R")

We have seen that the set § defined in (6.3.2) is generic in the Baire category sense,
but our explicit examples were quite simplistic.

Question 8.3.1. Let g be defined in (6.3.2). Does there exist u € § such that the set
E 4+ (u) (defined in (6.4.3)) is connected?

8.4 On convex bodies
Conjecture 8.4.1. For N > 2, we define

/,Lj\_, = sup Spectrum(Op,, (12)).
& convex bounded
polygon with N sides

Then, the sequence (pﬂ]{,) N>2 1S increasing2 and there exists @ > 0 such that
VN >2, puf <alnN.
N.B. Theorem 7.3.2 is a small step in this direction.
A stronger version of Conjecture 8.4.1 would be the following conjecture.

Conjecture 8.4.2. We define

ut = sup Spectrum(Op,(le)).

€ convex
bounded

Then, we have u* < +o0.

2 According to our Definition 7.3.1 of the set &5 of polygons with N sides is increasing
with respect to N.
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The invalid Flandrin’s conjecture was i = 1 and we know now that j14 > /,L;_ >
1 as given by (7.1.2).

Question 8.4.3. There is a diagonalisation of quantization of the indicator function
of ellipsoids, paraboloids, and hyperbolic regions. Is there a non-quadratic example
of diagonalisation?

Note that the quarter-plane, studied in Section 5.1, is somehow a degenerate
hyperbolic region, but could be seen as a first answer to the above question. In the
phase space R?", an argument of homogeneity, similar to the one used for the quarter-
plane, can probably be useful for handling integrals of the Wigner distribution on
cones.

Question 8.4.4. The value of ,u; is known explicitly, but for M?f, we have only the
upperbound fi3 as given by Theorem 7.2.3. Is it possible to determine explicitly the
value of u;’, either by answering Question 8.4.3, or via another argument?

Conjecture 8.4.5. Let € be a proper closed convex subset of R? with positive Lebes-
gue measure such that Op,,(1¢) is bounded self-adjoint on L?(R) (that assumption
is useless if Conjecture 8.4.2 is proven) with a spectrum included in [0, 1]. Then, € is
the strip [0, 1] x R, up to an affine symplectic map.

All the explicitly available examples are compatible with that conjecture (see also
Remark 7.1.2) and the second part of Theorem 7.4.1 is also an indication in that
direction. It would be nice in that instance to reach a spectral characterization of a
subset modulo the affine symplectic group.






Appendix A

A.1 Fourier transform, Weyl quantization, harmonic oscillator

A.1.1 Fourier transform

For f € .(R"), we define its Fourier transform by
f© = / e 2 f(x)dx, (A.L1)
RN
and we obtain the inversion formula

Fx) = /R P ey (A12)

Both formulas can be extended to tempered distributions: for 7 € . (R, we define
the tempered distribution 7" by

<T—', ¢)Y’(RN),5’(RN) = (T, (i)y’(RN),Y(RN)' (A13)

Note also that with this normalization, it is natural to introduce the operators D§
defined for o« € NV by

ou
o — o [097] J—
Diu = Dxll ---DxNu, Dyx;u = 2in8xj’ (A.14)
so that -
Diu = §*u(§),
with
%-a — ‘111 Rf,N'

It follows readily from (A.1.1), (A.1.2), and (A.1.3) that for u € .¥’(R"), the inver-
sion formula

NPT

=u, (A.1.5)
holds true, where the distribution # (extending (1.1.10)) is defined by

(11, §) @), o @®m) = (. ) 5/ ®n), 7 ®N)-
Using (1.2.6) and denoting the Fourier transformation by %, (A.1.5) read

00F2=1d, [F.,00]=0, sothat F* = F ! =0oF = Foy. (A.1.6)
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This normalization yields simple formulas for the Fourier transform of Gaussian func-
tions: for A a real-valued symmetric positive definite n X n matrix, we define the
function v4 in the Schwartz space by

VA (x) — e—n(Ax,x) i

and we have 1
Ta(E) = (det A)~1/2emm AT 8E),

Similarly, when B is a real-valued symmetric non-singular n x n matrix, the function

wp defined by

wg (x) — ein(Bx,x)

is in L°°(R") and thus a tempered distribution and we have

Wp(£) = |detB| /2 T sien B o—in(BTIEE) (A.1.7)

where sign B stands for the signature of B that is, with E the set of eigenvalues of B
(which are real and non-zero),

sign B = Card(ENR4)—Card(ENR_).

vy (B) v—(B)=index (B)

The integer v_(B) is called the index of B, noted index (B); formula (A.1.7) can be
written as

e—inn/4$(ein(Bx,x)) — i_i“deXB|detB|_1/ze_i”(B_15=5), (A18)
since vy + v_ = n (as B is non-singular),

e d e > — eT("'++V—_2V—) — eiTﬂ sign(B)‘

‘We note also that
sign(det B) = (—1)M* B,

so that
(i7" B|detB|71/2)? = (—1)"~|detB| ! = sign(det B)|detB| ™" = (det B)"",

and thus the prefactor i 7"* B |det B|~1/2 in the right-hand side of (A.1.8) is a square-
root of 1/ det B.
With H standing for the characteristic function of R, we have

\=H+H, 8 =H+H,

D sign= ,—0, Dsign=—, §&sign=—, sign=-—pv—, (principal value)
in in

i im £’
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the latter formula following from the fact that
— 1
&\ sign—pv—- | =0,
iné
which implies
— 1

sign — pv— = ¢§p = 0,
im

since s?g\n - % is odd. We infer from that

and

Lemma A.1.1. Let T be a compactly supported distribution on R" such that

VN €N, (§YNT(&) isbounded, with (§) = 1+ |E|2. (A.1.9)
Then, T is a C*® function.

Proof. Note that T is an entire function, as the Fourier transform of a compactly sup-
ported distribution. Moreover, from (A.1.9) with N = n 4 1, we get that T belongs
to L!(R") and thus T is a continuous function. Moreover, we have for any a € N”,

(D7) = [ el @) e,
——
eLl(R")
so that T is a C°° function. n

Proposition A.1.2. Let p > 0and let f be a holomorphic function on a neighborhood
of {z € C,|Imz| < p} such that

Yy € [—p,pl. / | f(x +iy)|dx < +o0, (A.1.10)

lim | f(£R +iy)|dy = 0. (A.1.11)
R—>+o00 J|y|<p

Then, we have
VEER, |[f(§)| < Ce 2™kl

with
C =max(Cy,C-), Ci= / | f(x £ip)|dx.
R

Conversely, if f is a bounded measurable function such that f (€) is O(e™2""I&l) for
some r > 0, then f is holomorphic on {z € C,|Imz| < r}.
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Proof. If f is holomorphic near {z € C, |Imz| < p}, satisfies (A.1.10) and (A.1.11),
then Cauchy’s formula shows that for |y| < p,

R
/ e 2TOHIE £y 4 iy)dx = 2™¢ lim e 27X £(x +iy)dx
R

R—>+oco J_R
= lim e 72778 £(2)dz
R—>+00 JI—R+iy,R+iy]
= lim e 277 £(2)dz

R—>+00 JI—R+iy,—RJU[-R,R]U[R,R+iy]

A y . .
f(é) + RliI-E (/ e—217r(R+zt)$f(R + il‘)id[
—>+o00 0

y . .
_/ e"2TREIDE £ R +it)idl)-
0

We have for |y| < p,

y . .
‘ / e"HTGERHIOE f(L R 1 ip)idy
0

5/ | f(£R + it)|dte?™PEl,
ltl<p

which goes to 0 when R goes to +o0, thanks to (A.1.11), so that for all y € [—p, p],
we have

[ e fx tiyax = feo)
which implies for y = —psign £ (taken as 0, if § = 0)
FOI= [ 16 Fipldr 2k < cemk
]R W—/
from (A.1.10)

proving the first part of the proposition. Let us consider now a function f in L°°(R)
such that fA(S) is O(e=2""I€l) for some r > 0, and let p € (0, r). We have f(x) =
[ €273 £ (£)d & and for |y| < p, we have Ir 2| £(£)|dE < +oo0, so that f is
holomorphic on {z € C, |Imz| < r} with

Flx+iy) = [ AITEHE £ () d,
R

concluding the proof. ]

A.1.2 Weyl quantization

Let a € .’ (R?"). We have defined the operator Op,,(a), continuous from .#(R")
into .%/(R"), in Section 1.2.1 with the formula

(Opw(a)u, I_J)y/(Rn),y(Rn) = (a, 'W(u, v))y/(Rzn),y(Rzn),
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where the Wigner function 'W(u, v) is defined in Definition 1.1.1. We note that the
sesquilinear mapping .7 (R") x . (R") 3 (u,v) = W(u,v) € % (R?") is continuous
so that the above bracket of duality (a, W(u, v)) o (r2n), 5 ®2n), Mmakes sense. We
note as well that a temperate distribution a € ./ (R?") gets quantized by a continuous
operator Op,,(a) from .#(R") into . (R").

Lemma A.1.3. Let a be a tempered distribution on R?*" and let b be a polynomial of
degree d on R?". Then, we have

attb =" w(a.b), with

0<k<d
1 =D s o
wr(a,b) = Gin)F |a|§|=k 2151 (0F08a)(x, £)(0292D)(x, £), (A.1.12)
wr(b,a) = (—=D)*wi(a,b). (A.1.13)

The Weyl symbol of the commutator [Op,,(a), Op,, (b)] is
cla.b)=2 Y wi(a.b).

0<k<d
k odd

If the degree of b is smaller than 2, we have
1
c(a,b) =2wi(a,b) = —Ha,b},
2mi

and if a is a function of b, the commutator [Op(a), Op,,(b)] = 0.

Remark A.1.4. In particular, if g(x, §) is a quadratic polynomial and a(x, §) =
H(1 — q(x,§)), is the characteristic function of the set {(x, £), g(x, §) < 1}, then
we have [Op,,(a), Op,,(¢)] = 0.

Proof. Applying (1.2.2), (1.2.3), we obtain that this lemma follows from (A.1.13),
that we check now

—1)!8l
@infoat) = Y @ x @b
lal+181=k "

_1)lel
> CDZ 08 0a) (v, £)(@802b) (x. )

a!p!
lee|+1Bl1=k p

_1\k—18BI
= Y E T afaeay 6 (08a2b)(x. £)

wip=k  *P
= (-D*@in)* o (b.a).

which is the sought result. |



Appendix 158

Remark A.1.5. We can note that formula (1.2.61) is non-local in the sense that for
a,b € .7(R?") with disjoint supports, although all wy (a, b) (given by (A.1.12)) are
identically 0, the function afth (which belongs to . (R?")) is different from 0; let
us give an example. Let yo € C°(R; [0, 1]) with support [—1 + &9, 1 — go] with
g0 € (0, 1) and let us consider in R2,

a(x,§) = 1o@)e ™, b(x,£) = folx =2,
so that a, b both belong to . (R?) and
suppa = [—1 + &9, 1 —&o] X R, suppb = [1 + 9,3 — o] X R,

so that the supports are disjoint and all wg (a, b) are identically vanishing. We check
now

(afib)(x,§)

=4 / / / / 20T yo(z — 2)e T e HTETM =D AT E0) gy dydzd ¢
= 4// XO(y)Xo(Z _ 2)6—4n(x—z)2e—4n(x—y)2e4i7r$(z—x+x—y)dydz

B 4(/ xo(y)e—“ﬂfye-‘*ﬂ(x—wzdy)(/ xo(z)e4iﬂfze—4ﬂ<x—2—z>2dz),

so that

(ab)(0.0) = 4 ( / XO(y)e—4”y2dy) ( / m(z)e—“”@“’zdz) -0,

>0 >0

A.1.3 Some explicit computations
We may also calculate with
ua(x) = (2a)4e ™% 4 > 0, (A.1.14)
W(a, ua) (x, §) = (2a)'/? / om2imzE prmalx =3 gmnalv 5P g
_ (za)l/Z / e—2inz-Ee—27mx2e—fmzz/ZdZ
_ (2a)1/2e—27mx221/2a—1/26—n'%{32

— ze—2n(ax2+a_l £2)

which is also a Gaussian function on the phase space (and positive function). The
calculation of

W(ug. ug)(x. §)
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is interesting since we have
42 (Dxb" Dxtg, a) ey, oy = (B Ul ) 51 (Rm), 7 (R
= (b, W(u;, M;));W(RZn)’y(]RZn),

and for b(x, &) real-valued we have

3 b/ 2 b/g: Dy b/ 2 b//
suos = 50+ 3= Jis = 8%+ 325 - = (b4 25 ) =204 122

so that

- b’
4n2//2e—271(ax 152)(§2b+ 6xx )dxdé — (b W(ua, a))

proving that
— 1 _
Wl u,)(x,§) = e2m(ax*+a 152)471252 + ZZGi(e_Z”(“xz’L“ 1‘52))

_ 1
_ 28—27r(ax2+a 1g2) (4”2%‘2 + Z((_4naX)2 — 47'[0))

= 8o 2mlax’+a”lE) (a_1§2 +ax? — L)
4

We obtain that the function 'W(u,, u/,) is negative on

a’ a
1
a 18?2 +ax? < —,
4
which has area 1/4. We may note as well for consistency for u, given by (A.1.14),

we have
_ 2
L= Qa)*(—2max)e ™™ L2, = na,

1
/ W, u,)(x, §)dxdE = 8 a//e—“(yz”z)(ﬁ + 9 — E)dydn

872%a »
= S = ma = |luglz..

For A > 0 and a € .%/(R?"), we define
ay(x,§) = a(A7'x, A§),

and we find that
(ap)” =Uja® Uy, (A.1.15)
for fe SR, (U f)(x)= QA2 U =Uj—1 = (Up)"".

We note that the above formula is a particular case of Segal’s formula (see, e.g.,
[33, Theorem 2.1.2]).
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A.1.4 The harmonic oscillator

The harmonic oscillator #, in n dimensions is defined as the operator with Weyl
symbol 7(|x|?> + |£|?) and thus from (A.1.15), we find that

1 W 1 *
H = Uy (1X? + 42 [E17) U T = Uy (=0 + IXP)U

We shall define in one dimension the Hermite function of level k € N, by

w (X) _ (_l)k 21/4enx2 d , (e—Zerz) (A 1 16)
TN/ NEZE ’ a

and we find that (¥ )xen is a Hilbertian orthonormal basis on L?(R). The one-
dimensional harmonic oscillator can be written as

0, =Z(%+k)IP’k, (A.1.17)

k>0

where P is the orthogonal projection onto .
In n dimensions, we consider a multi-index (o1, .. .,a,) = a € N” and we define
on R”, using the one-dimensional (A.1.16),

V()= [] Ve, (xp). € = Vee{Wa yenn gm0 19 = > . (AL18)

1<j=n 1<j=n

We note that the dimension of & , is

k+n-—1
n—1 )

and that (A.1.17) holds with P, standing for the orthogonal projection onto & ,; the
lowest eigenvalue of #, is n/2 and the corresponding eigenspace is one-dimensional
in all dimensions, although in two and more dimensions, the eigenspaces correspond-
ing to the eigenvalue 7 + k, k > 1 are multi-dimensional with dimension (k :fl_l)
The n-dimensional harmonic oscillator can be written as

n
Ho = (5 + k)IP’k;n,
k>0

where Px., stands for the orthogonal projection onto & , defined above. We have in
particular

Pr.n = Z Py, where PP, is the orthogonal projection onto W,. (A.1.19)

aeN”" |a|=k
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A.1.5 On the spectrum of the anisotropic harmonic oscillator

The standard n-dimensional harmonic oscillator is the operator

1
.8Xj7

1<j=n

and its spectral decomposition is

n
JKZZ(E_{_IC)PIC;W Pr = Z Poy @ -+ @ Py,

k>0 aeN" o) ++ap=k

where Py, stands for the orthogonal projection onto the one-dimensional Hermite
function with level ;. Now let us consider for p = (w1, ..., un) with p; > 0, the
operator

Hop =7 Y (D} +x7) = 710p,(qu(x. £)),

1<j=n
with

D= 3w+ .

1<j=<n

With the notation |u| = 32, ;, pj and - = 3, tj@;, we have

Hwy = Z (%"'M'O‘) (Poy ® - ® Py,),

aeN”

Py

so that the eigenspaces are the same as for J¢, but the arithmetic properties of y make
possible that all eigenvalues (% + u - o) are simple. For instance for

K2

n=20<pu; <pp —¢Q,

231
if B € Z? is such that 11 81 + 282 = 0, this implies that 8 = 0 and thus that all the
eigenvalues of #((,,) are simple.

Remark A.1.6. If 0 < puy <--- < pu, andif forall j € [2,n] we have u; /1 € N,
we then have for ¢ € N”,

Ol'/L:[,Ll(Oll—I- Z M)Zﬂﬂ, 182(131707--'70)€Nn'

a<j<n M1

B1

Sinus cardinal. 1t is a classical result of Distribution Theory that the weak limit
when A — +o0 of the sinus cardinal S'“(xﬁ is wdg, where §¢ is the Dirac mass at 0,
but we wish to extend that result to more general test functions.
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Lemma A.1.7. Let f be a function in L} (R) such that

loc

|f(x) — 4

/ lf(f)'dr < +o0 and 3Fa € C so that / dt < +o00.
=1 7l <t 7l
Then, we have 4
lim / SN 4 )dr = a. (A.1.20)
A—>+o00 JR

N.B. In particular, if f is a Holderian function such that f(z)/t € L'({|z] > 1}) we
get that the left-hand side of (A.1.20) equals f(0).

Proof. Let yo be a function in C2°(R) equal to 1 near the origin and let us define
x1 =1 — yo. We have

/ Sm()n)f( Vit / sin(At) (f(r)_a))(o(r)dr%—a/ Sm(/h))(o(r)dr
R R T T R T

—_—
eL!(R)

+ / SAT) et (o) d.
R N———

eLl'(R)

so that the limit when A — 400 of the first and the third integral is zero, thanks to
the Riemann—Lebesgue lemma. We note also that

sin(A1) _ A](t)

TT 272w

and applying Plancherel’s formula to the second integral yields

sin(At N
= A1) o@)de = [ R
R It|<A/2m)

whose limit when A — 400 is [ xo(t)dt = x0(0) = I, thanks to the Lebesgue
dominated convergence theorem, completing the proof of the lemma. ]

A.2 Further properties of the metaplectic group

A.2.1 Another set of generators for the metaplectic group

Definition A.2.1. Let P, L, Q be n x n real matrices such that P = P*, Q = Q*
and det L # 0. We define the operator Mp 1 o by the formula

(Mp.1.ou)(x) = e_i”"/4(detL)1/2/ (1T UPxX) 2L )@Y Iy () dy.
RYI
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N.B. In that definition, (det L)l/ 2 stands for a choice of a square-root of the real
number det L, that is &=+/detL if det L > 0 and i +/—det L if det L < O.
With m(L) € 7 /47 defined by (1.2.34) we shall also define

n lﬂm( )

) =

de tL|1/z/Rn I TUPEX)=2Lx )0y () dy.

Proposition A.2.2. The operator Mp, 1,0 given in Definition A.2.1 is an automorph-
ism of . (R™) and of ' (R™) which is a unitary operator on L*(R™) belonging to
the metaplectic group (cf. Definition 1.2.13). Moreover, the metaplectic group is gen-
erated by the set
{Mp,L,0}P=pP* 0=0*
det L#0
Proof. Using the notation (1.2.28) and (1.2.37), we see that!

M{m(B)} M{m(B)+n}f eimn/4 M{m(L)} M{m(L) ’l}(}ve—znn/4)

(A21)

and (1.2.44) imply that the set {Mp 1 o} is included in Mp(n) (second formula in
(A.2.1)) whereas the fact that

’

=i 4 _ {o}
Fe i/t = Mo 1,00
the first formula in (A.2.1) and Definition 1.2.13 imply that Mp(n) is generated by
the set {Mp, 1 o}, proving the proposition. ]

Remark A.2.3. From (A.2.1), we deduce, noting m(I,) € {0,2},m(—1,) € {n,n +
2},

{2} {n+2} {0}
—ld2gny = M, 5,0 Mo —1I oMo 1,,0°
so that
{m(L)+2} _ {m(L)} _ ,n+2} ({0} {m(L)}
°MP L,0 ‘MP,L,Q = *Mo —1,,0 oMo 1,0 ‘MP,L,Q .

"We note that m(B) + n € {m(—B), m(—B) + 2} modulo 4: indeed, we have modulo 4

forneven, {0,2} +n = {0,2} , {1,3} +n= {1,3} ,
—— —— —— ——
detB>0 det(—B)>0 detB <0 det(—B)<0

fornodd, {0,2} +n= {1,3} , {1.3} +n= {0,2}
N—— N—— N—— N——
detB>0 det(—B)<0 detB <0 det(—B)>0

We have also m(L) —n € {m(—L), m(—L) + 2} since we know already (from the above
in that footnote) that m(L) —n € {m(—L), m(—L) + 2} — 2n, which gives m(L) —n €
{m(—L),m(—L) + 2} for n even; for n = 2] + 1 odd we get the same result since

m(L) —n € {m(—L).m(—L) + 2} — 4l =2 = {m(~L) — 2,m(~L)} = {m(—L) + 2,m(—L)}.
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Lemma A.2.4. With the homomorphism V defined in (1.2.46) and defining
Ap.L,o =V (MpL o),

we find that
L710 L1
APaL,Q = PL—IQ _ L* PL—I .

Proof. Indeed, from the second formula in (A.2.1), (1.2.38), (1.2.27), and (1.2.47)
we get that

Abio=Ep 1B _ (L Lo 0 ~Iy
P,L,O “P’_L’Q"‘—I,,,Zl/zln,—ln _pL-! —L*—I—PL_IQ I, 0 >

providing the sought result. =

Lemma A.2.5. Let P;,L;, Q;,j = 1,2 be as in Definition A.2.1 and let us assume
that
Mpy.L1,0 MpPy1y,0, =€ P Tdogny, ¢ €R. (A.2.2)

Then, we have
Pi+Q0:=01+P,=0 Ly=-L}, ¢%e{xl}. (A.2.3)

Proof. The assumption (A.2.2) implies that both sides of the equality belong to Mp(n)
and
APiL1.0\ APsL0, = Y(€? 1dr2@n)) = Lon,

where the last equality follows from the fact that e'? Id;2gn) commutes with every
operator Op,,(Ly) given in Lemma 1.2.17. We have thus

L710y Li! L3'0, L'\ (I, ©
PIL7'O1— LY PIL7Y)\PL3'0,— L5 PL3')  \0 I,)°

so that

first line x second column: L7' QL' + LT'PL5' =0= Q01 + P> =0,
second line x first column: (P Ll_1 01 —LT)L;I 0>+ Py Ll_1 (P2L2_1 0,-L%) =0,
second line x second column: (P1L1_1 01— L’f)L;1 + P]Ll_1 P2L2_1 =1,

which gives

(PILTY Q1 = L)L + LY Py L3 =1, = —LiLy =1, = Ly = LT,
-0
PILT'O\L3 0o —LTLy" Qo+ PLLT' Po L3'02—PiLT'LE=0= P1+05=0,
———— N’ ~———

In -0 —1Iy
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providing the sought formulas in (A.2.3), except for the last one. Let «; be the kernel

of Mp; 1;.0; and let k = k1 o k2 be the kernel of the composition (in the left-hand

side of (A.2.2)). We have consequently

K(x,y)

_ (detLl)l/z(detL2)1/2e—irm/2/ei:r{Plx2—2L1x-z+Q122+P222—2L2z-y+Q2y2}dZ

— (det L1)l/z(det(—]jf))l/ze_i”"/zei”{PlXZ—PIYZ} [ e—2i7r{z-(L1x+L;y)}dZ

= (det L1)"/2(det(~L}))1/2e 77/ 2 P> =P s, (L1 x 4 Ly y)

= (detL1)l/z(det(—LT))1/26_i””/2ei”{P1x2_P1y2}80(x — y)|detL|™",
entailing

ePS0(x — ) = k(x,y) = el LML AN (o ominn/2
(A2.2)
= DS (x - y),

proving that ¢’® = ¢?7"(L1) ¢ {41}, The proof of the lemma is complete. [

Claim A.2.6. Let P, L, Q be as in Definition A.2.1. Then, we have
L))\— —m(L
(MEEH T = MmUY (A2.4)
and moreover n — m(L) € {m(—L*), m(—L*) + 2} modulo 4.

Proof of Claim A.2.6. Indeed, calculating the kernel « of M},mIELé}M?Q_rZ(LLQ ,}_ p» We
get

K(x. y) = egf(m(L)+n—m(L)—n)|detL|/em{PxZ—zLx-z+sz—Qz2+zL*z~y—Py2}dZ

= |detL|e'™P**~P¥? 50 (Lx — Ly) = So(x — ).

so that
M{m(L)}M{”_m(L)}

P,L,0M—0,—L*—P = Idz2 g
and since Mp 1 o is unitary, this proves (A.2.4). The last assertion is equivalent to
m(L) € {n — m(—L*),n — m(—L*) — 2}. Since the latter set is equal to {—m(L),
—m(L) — 2} and the mapping

Z.]AZ > x — —x € Z./AZ,

leaves invariant the sets {0, 2}, {1, 3}, we obtain the sought result, concluding the
proof of the claim. |
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Proposition A.2.7. Let P;, Lj, Q;,j = 1,2 be as in Definition A.2.1 and let us
assume that

det(Q1 + P») # 0.
Then, there exist P, L, Q, as in Definition A.2.1 such that

{m(L 1)} {m(L2)} _ 4 Am(L1)+m(L2)—index (Q1+P2)}
MPIsLlaQIMP2aL25Q2 - !MPsLaQ '

More precisely, we have

P=P —L{(Q1+P) 'Li, Q=0:—L01+ P) 'L},
L=LQ1+ P) 'Ly

Moreover, we have
m(L1) +m(L,) —index (Q1 + P») € {m(L),m(L) +2} mod 4.
Proof. The kernel k of Mp,.1,.,0, Mp,,1,,0, 15

K(x,y)
= 1/2 1/2 —imn/2 in{P1x>—2L1x-z24+ Q122+ P22°—2L>z-y+Q0>y?}
(det L) /=(detLy)"/“e e dz
_ 1/2 1/2 —inn/2 in{P1x2+Q2y2%}
(det Ly)"/“(det Ly)/“e e
X/e—zin(L1x+L§y)-zein(Q1+Pz)22dz
_ 1/2 1/2 —imn/2 ,in{P1x2+Q2y?} ,—inm(Q1+P2) N (Lix+L}y)?
(det L1)"/“(det Ly)"/“e e e

x |det(Q; + P2)|—1/26i%sign(Q1+P2)’

according to formula (A.1.7) (see also (A.1.8)), noting that the matrix Q1 + P, is
real symmetric and non-singular. As a result, we have

K(x,y)
in{(P\—L}(Q1+P2) ' L)x24+(Q2—L2(Q) +P2)_1L§y2)}e—2in{L2(Q1 +P2)"'Lixy}

=e
x (det L1)'/?(det Lp) /2™ "/?|det(Q1 + P,)| 7!/ 2e! T sen(@1F2),
We note that, with E;5 standing for the eigenvalues of Q1 + P,
vy = Card(E;p NR;), v_ = Card(E;; NR_) = index (Q1 + P»),
implying that the kernel « is given by

K(x, y) — ei%(m(L1)+m(L2)—n+%(v+—v_))|detL|1/2ein{Px2—2Lx~y+Qy2}’ (A.2.5)
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with
P=P —L{(Q1+P) 'Li, Q0=0,-Ls(01+ P2) 'L, (A2.6)
L =Ly(Q1+ P) 'Ly

Checking the unit factor in front of the right-hand side of (A.2.5), we note that v +
v_ = n since Q1 + P, is non-singular and we get

P B L)L) —n+ 5w —v2)) _ o~ B2 i B (L) +m(La)—4+E 04 —vo)

— o~ B pi B m(L1)+m(L2)—v-)

We have also, since index (Q + P) = index (Q + P»)7!,

(¢! 3O EDFmIA=v-0)2 _ gion(det L) sign(det Ly)(—1)"
= sign(det L) sign(det L,) sign(det(Q + P»)™ 1)
= sign(det L),
entailing that

K(X, y) — e—mT”(det L)1/2ei7'[{P)CZ—ZL)C-y-i-Qyz}7

concluding the proof of the proposition. ]

Lemma A.28. Let P;,L;, Q;, j =1,2,3 be as in Definition A.2.1. Then, there exist
(P',L',Q", (P",L", Q") as in Definition A.2.1 such that

MPlaLlan MPZaL2aQ2MP3aL37Q3 = MP/sL/aQ/MP//aL//’Q//' (A'2'7)

Proof. If det(Q1 + P») # 0, Lemma A.2.7 implies that Mp, 1.,.0, Mp,.1,,0, =
Mpr 17,0 so that (A.2.7) is satisfied with (P”, L”, Q") = (P3, L3, Q3). We may
thus assume in the sequel that det(Q + P») = 0. Then, the kernel of QO + P; is of
dimension r € [1,n]; let us define J as the orthogonal projection onto ker(Q1 + Py).

Claim A.2.9. The matrix J, + (Q1 + P»)? is positive definite (thus invertible).

Proof. Indeed, if J,x + (Q1 + P>2)?>x = 0, we obtain by taking the dot-product with
x that

1|1 + 1(Q1 + Pa)x|* = 0 = x € ker(Q1 + P»), Jyx =0 = x = 0.
This matrix is also non-negative, proving the claim. |

Let us define the real n x n symmetric matrix

P = pLo[Jr +(Q1 + P)?] ' Ls - 0a, (A2.8)
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where p is a positive parameter to be chosen later; we note that P + Q> is invertible.
Also, we have

L3(02 + P)_ILZ —(O1+ P) = M_I[Jr + (01 + Pz)z] — (01 + P).

which is invertible if p (is different from 0 and) does not meet the spectrum of Q1 +
P; (see footnote’). We have also

P — Py = puLy[Jr + (01 + Pz)z]_le — (02 + P3)
= Lo{u[Jr + (01 + P2)*] = L3'(Q2 + Py L5 ') L3,

which is invertible for u large enough®. Eventually, defining
Ao = max(Spectrum |Q> + P1]),
the condition
> max{do. [L3"(Q2 + PHLI . IL3 ' (Q2 + P3)L3T A},
implies that, with P given by (A.2.8), we obtain that the matrices
P+0, 01+ P— L;(Qz + P)_le, P — Pjare invertible.  (A.2.9)

Using now Lemma A.2.7 and the first property in (A.2.9), we get that we can find
P.L, Q as in Definition A.2.1 such that

Mpy,15,0:Mp,1,,0 = Mp 5
with (thanks to (A.2.6)),

P =P, —L5(Q2+ P)'La.
We check now

Mpy 11,0, MPy,Ly,0MP,1,,0 = Mp,L,0, Mp | 5

>The symmetric matrices Q1 + P> and J, can be diagonalised simultaneously so that the
invertibility of
w I + (01 + P2)?] = (Q1 + P2)

is equivalent to u # 0, p,_l)tjz- # Aj,ie., i # A;, where the A; are the non-zero eigenvalues
of Ql + P».
3Indeed, the eigenvalues of [J, + (Q1 + P2)?]~! are 1 and AJTZ where the A; are the
non-zero eigenvalues of Q1 + P». To secure the invertibility of P — Pz, it is thus enough to
have
min(ie, uA;?) > |IL31(Q2 + P3)L3T ),

where the A ; are the non-zero eigenvalues of Q1 + P».
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and we note that
014+ P=0Q,+P,—L3(Q2+ P)'L, isinvertible,

thanks to the second property in (A.2.9) so that, from Lemma A.2.7, we can find
P’, L', Q’ as in Definition A.2.1 such that

Mpy.L, 0, Mp ;5 =Mp.L.0,
and this yields
Mpy,L1,0, MPy,L5,0:MP,1,,0 = Mp,1,0- (A.2.10)

Finally, we check

-1 _
Mp 1,0 MpP3L3,05 = Mo—1,—PMpP;3.15,05,
———

=Mo.—1,,.—P
cf. Claim A.2.6

and since —P + Pj3 is invertible (thanks to the third property in (A.2.9)), we obtain,
using once again Lemma A.2.7, that we can find P”, L”, Q" as in Definition A.2.1
such that

Mply oMPy.L3,05 = Mpr.Lror. (A.2.11)

Gathering the information above, we find that

Mpy,L,,0, MP5,L5,0, MP3,L3,05
_ —1
= Mp,,L,,0, MP>,L5,0:MP,1,,,0 Mp 1, o MP3,15,05.

MP’,L’AQH (A.2.10) ‘MP”.L”.Q”’ (A2.11)
which ends the proof of the lemma. |

Proposition A.2.10. The metaplectic group Mp(n) is equal to the set

{Mp\.L1.0 MPy.L>.0:} P =PF,0,=07%-
detL; #0

In other words, every metaplectic operator of Mp(n) is the product of two operators
of type Mp 1 .o as given by Definition A.2.1.

Proof. From Proposition A.2.2, the metaplectic group is generated by the Mp 1 o
and since the inverse of Mp 1 o iS M_g _r+ _p, thanks to Claim A.2.6, it is enough
to check the products

'MPl,Ll,Ql T ‘MPN,LN,QN

for N > 3. Lemma A.2.8 is tackling the case N = 3 and a trivial recurrence on N
provides the result of the proposition. |
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Theorem A.2.11. Let M be an element of Mp(n) such that M = e'? Id;2gny. ¢ €R.
Then, ¢'® belongs to the set {—1, 1}. In other words, the intersection of the metaplectic
group with the unit circle (identified to the unitary operators in L*>(R"™) defined by
the mappings v + zv where z € S' C C) is reduced to the set {—1,1}.

Proof. Using Proposition A.2.10, the result follows from Lemma A.2.5. |

We may go back to the description given by Proposition 1.2.11 and Definition
1.2.13.

Proposition A.2.12. The metaplectic group Mp(n) is equal to the set

{MAI ,B1,Cy MA25329C2}AJ’=A;,CJ'=C;<’
detBj#O

where the operators My, g c are defined in Proposition 1.2.11.

Proof. Let M be in Mp(n). We have

M = (MAl,Bl,Cl)il ”'(MANsBN’CN):tl

—iﬂn/45(7)i1.“( —irm/437):t1

- ,(MAI:_BI’Cle MAN’_BNacNe
(A.2.1)

+1 +1
= (Ma,—B,.c;Mo.1,.0)" - (May.—By.Cy Mo.1,.0)

9
and since from Claim A.2.6, we have
-1
Mapc = M-c—B*-4,

we find that M is in fact a product of 2N terms of type Mp 1 o, and thanks to
Proposition A.2.10, we get
—irm/437 (e—irm/437)—

1
M = ‘MPhLl,Ql‘MPLLz,Qz = MPIaLlane ‘MP2,L2=Q2

Mp,.—L,.0 . -1
1 1-¥1 —
(‘M7Q2.7L’2“.7P2e trrn/43€7)

= Mp,1,.0,(M_g,—15-p,) "

= Mp,—1,0Mo,1,,0, (Mg, —15.0Mo1,,~P,) "

= Mp,,~L,,0Mo,1,,0, Mo,1,,P> (M—Qz,—L;o)_1

= Mp, —1,.0Mo.1,.0,+P,(M_g, _13,) (cf. formula (1.2.33))

= Mp,,—1,,0,+P,Mar,B7,0 (cf.Lemma A.2.14 below in the next subsection),

proving the proposition. |
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A.2.2 On some subgroups of the metaplectic group

We have seen in (1.2.24), (1.2.22) some equivalent conditions for a matrix

8= (; g) where P, Q, R, S are n x n real matrices, (A.2.12)
to be symplectic. We note here that when E € Sp(n, R), we have
o S* _N*
Bl = (_R* PQ* ) (A.2.13)

as it is easily checked from (1.2.24), (1.2.22). When det P # 0, we proved that & =
E4.B.c as defined in (1.2.19). Also from (A.2.13), we get that if det S # 0 we have

—~—1
o/

= E4,B,C,

~_(In C\(B 0 I, 0
=~ \o 1,)J\o B*')\-4 I,)°

Some other properties of the same type are available when det Q or det R are different
from 0. Indeed, we have for E € Sp(n,R) and o given by (1.2.15),

- (P O\ _ (-0 P\ _ _
ua_(R S)O_(—S R) —=_ EBasBc. (A2.14)

ifdet @ # 0
so that

o o oI 0 B~' 0\/[(I, -C\ (0 —I,
=T UEABCT T4, o B*J\o 1,)\1, o)

If we have det R # 0, using the two first equalities in (A.2.14), we get that (Eo) ™! =
E4,B,c, which gives

—_ (I C\(B 0 I, O\[/0 =—I,
=~ \o ,J\o B*')\-4 1,)J\1, 0 )

However, it is indeed possible when n > 2 to have a symplectic matrix in Sp(n, R) in
the form (A.2.12) such that all blocks are singular, as shown in the following remark.

so that

Remark A.2.13. The 4 x 4 matrix

00 10
01 00| (P O
—1000_(RS)
0 0 01

belongs to Sp(2, R) although all the block 2 x 2 matrices P, Q, R, S, are singular
(with rank 1).
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Lemma A.2.14. With M4 g c defined in Proposition 1.2.11, the sets

£ ={MyBo} a=a*» R={Mopc}c=c*. (A.2.15)
det B#0 det B#0

are subgroups of the metaplectic group (cf. Definition 1.2.13).

Proof. Indeed, £ contains the identity of L?(R") and we have for v € L?(R"),

MAl,Bl,OMA_zl,Bz,OU = MA1,Bl,0{Mo,Bz—l,o{e_mAzsz(x)}}
_ MAI,Bl,O{e—inB;*‘A2351x2v(32—1x)}(det Bz)_l/z
_ einA1x2e—mB;'<B;—1A232—131x2v(32—1le)(detBl)l/z(det By)~1/2
_ ein(Al—B,*B;—lAZB;IBl)x2v(Bz—1le)(detBl)l/z(det Bz)—l/z
= (MAI—B;‘B;—IAsz—lBl,B;lBl,oU)(x)v

so that MAl,Bl,OMX;,Bz,o belongs to the set &£ in (A.2.15), proving that £ is indeed
a subgroup of the metaplectic group. We note also that the bijective mapping

L£>M > F*MF € R, (A.2.16)
(F stands for the Fourier transformation) sends &£ onto R since we have
F*Mg,poF = F*My,1,0FF*MopoF = Mo,1, AMj g1 ¢
= My p+—1 p+—14p-1. (A.2.17)

Moreover, the mapping (A.2.16) is obviously one-to-one and is also onto since, given
By € Gl(n,R) and C; a symmetric n X n matrix, we see from (A.2.17) that

* —_—
F MBl_lclBik_l,Bik_l,OF — MO,BI,CI.

The mapping (A.2.16) also extends to a group isomorphism of Mp(n), proving the
lemma. ]

Remark A.2.15. We may note that
; 2
(M4, .B,.0May.By.00)(x) = 1% (My, p, ov)(B1x)(det By)'/?
= T TBI 42803 (B, By x) (det By) '/ ?(det By)'/?

- (MA] +BTA231 ,B> B ,Ov)(x)’

so that the internal binary operation x can be defined on the set {(A4, B)} 4—4* as
det B#0

(A1, B1) x (A2, B2) = (A1 + B A2B1, B2 By),
for which the identity is (0, /,) and the inverse

(A,B)™! = (=B*14AB~! B7h).
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Remark A.2.16. A consequence of Lemma A.2.14 is, with W defined in (1.2.46),
that

{W(M4,Bo)} a=a* = {B4,B,0} a=a*, {¥Y(Mo,p, c)}c —c* ={Bo,B.c}c=C*,
det B#0 det B#0 et B#0 det B#0

are subgroups of the symplectic group Sp(n, R).

Proposition A.2.17. The metaplectic group Mp(n) is equal to the set

{Ma,.B1.C Mas.By.Co b4y = at.ci=C-
det B; #0

In other words, every metaplectic operator of Mp(n) is the product of two operators
of type M4 g.c as given by Proposition 1.2.11.

Proof. Let M € Mp(n); using Proposition A.2.10, we may assume that

M = Mp, 1,0, MpP,.1,,0,
= Mp,.1,.0,F e Fe Y Mp, 1.0,
(A2.1) = Mp, 1,0, (Mp 1, o, Fe 747
(Claim A.2.6) = Mp, —1,.0,(M_g, _15.—p, Fe ™47

(A2.1), (1233) = Mp, ~L,.0. M2, 15 _p,

= Mp, —1,0Mo.1,,0,(M_g, 15,0Mo.1,,—P>)

= Mp,—1,,0Mo,1,.0, Mo,1,,,, M, L3.0

-1

= MP1,—L1,oMo,In,Q1+PzM__Q2,L;,o
_ -1
= MPl,—Ll,Ql-i‘PzM—Qz,L; 0

(using Lemma A.2.14) = Mp, —1,,0,+P,Ma’.B' 0,
proving the sought result. |

Remark A.2.18. We have used two different sets of generators of the metaplectic

group. First the set 4 = {Mj”;(lé)}} given by (1.2.35) which is somewhat natural,

also allowing us to recover the operator e " /4% where the phase factor appears via
formula (1.2.38). The Identity appears clearly as Mé I} o but the inverse of Méf’gﬁ?}
cannot always be expressed within ¥, .

Also, we have the set 4, = {MX”;?C)}} given in Definition A.2.1, which incorpor-
ates a phase prefactor e *7*/4  looking a priori rather arbitrary but of course necessary
for the sequel (this prefactor is also suggested by (1.2.38)); here to express the iden-
tity, we need to write it as *Mo 1, 0“Mon 1,.0° but the inverse of Mi’f’ggc)} is easily
obtained by Claim A.2.6 within E% Certainly the description given by %, is much
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better, in particular because the calculations leading to Lemma A.2.5 and Proposition
A.2.7 are rather easy as well as the proof of Lemma A.2.8; a statement analogous
to Proposition A.2.10 for ¢ is true (cf. Proposition A.2.12), but its proof is quite
indirect and relies heavily on the results for %,.

A.3 Mehler’s formula

We provide here a couple of statements related to the so-called Mehler’s formula,
appearing as particular cases of L. Hormander’s study in [22] (see also the more recent
K. Pravda-Starov’ article [42]). In the general framework, we consider a complex-
valued quadratic form Q on the phase space R?” such that Re QO < 0: we want to
quantize the Gaussian function (here X stands for (x, §)) a(X) = ¢{@X-X) and to
relate the operator with Weyl symbol a to the operator

exp {Op,, ((QX. X))}

Lemma A.3.1. ForRet > 0,t ¢ in(2Z + 1), we have in n dimensions,
(cosh(z/2))" exp —tOp,,(|x|* + |£[*) = Op, (e_Z‘a“h(%)”(XZJFEZ)).
In particular, fort = —2is,s e R, s ¢ %(1 + 27), we have in n dimensions
(cos s)" exp(2i rsOp,, (|x|* + |£]?)) = Op,, (eZi”ta“S(lxlz’Llslz)). (A3.1)

Lemma A.3.2. Forany z € C,Rez > 0, we have in n dimensions

5 20 1 1-z\F
Op,, (exp—(2z7 (|&*> + |x|?))) = g +Z)”]§)(1 +Z) Pt (A3.2)

where Py, is defined in Section A.1.4 and the equality holds between L*(R")-bound-
ed operators.

We provide first a proof of a particular case of the results of [22].

Lemma A.3.3. ForRet > 0,t ¢ in(2Z + 1), we have in n dimensions,
(cosh(t /2))" exp —twOp,, (|x|? + |£?) = Op,, (e—ztanh(%>”<x2+$2>). (A3.3)

Proof. By tensorisation, it is enough to prove that formula for n = 1, which we
assume from now on. We define

L=¢+ix, L=&—ix, M()=p(1)Op, (e *®rLL)
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where «, 8 are smooth functions of ¢ to be chosen below. Assuming 8(0) = 1, «(0) =
0, we find that M (0) = Id and

M +70p, (|LP)M = Op,, (fe ™11 — Bar|LI?e=* I + (|LP)tpe "),

We have from (1.2.3), since 8)685|L|2 =0,
=0

r——
_ 2 _ 2 1 _ 2
|L|21:Ie ar|L|* _ |L|26’ am|L| + = {|L|2,€ am|L| }

Qs 2ya2 —am|L|? 2 2yq2 —am|L|?
+ — L + L
i3 (RILPI%e R(ILP)aZe ")

— |L|26—om'|L|2

+ @in)? %e—anlle (2((—20mx)2—20m) +2((—2a7r§)2—2an))

4272 [0 %14 2
= |LI% —an|L|? 1— A —am|L]
ILIe 1672 ) T a2t

’

so that
M + nOp,(|LI>)M

= Op,, (Be_“”|L|2 — ,Bdﬂ|L|ze_“”|L|2

N anp 2
L 2 —am|L|? 1— —am|L|
+ nB|L|%e TenZ + T e

= Opw(e_“”|L|2{|L|2(— & + nﬂ(l - %2)) +B+ ?})

‘We solve now

G=1- “T @(0) = 0 <= «(f) = 2tanh(1/2),

and
4 +ap =0, BO)=1+p)= cosh(1/2)’

‘We obtain that
M + n0p,(|LI>)M =0, M(0) = Id,

and this implies
B(1)Op, (e *OLLy = M(r) = exp—tn(|L[*)*,

which proves (A.3.3). ]
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In particular, fort = —2is,s e R, s ¢ %(1 + 27), we have in n dimensions
(cos 5)" exp(2ins0pw(|x|2 + |E|2)) = Op, (ezintans(|x|2+|$|2))_ (A.3.4)

Lemma A.3.4. Foranyz € C, Rez > 0, we have in n dimensions

1 1—z\F
Op, (exp~ @zl + X)) = Z( L ) Pen,

where Py..,, is defined in Section A.1.4 and the equality holds between L?(R™)-bound-
ed operators.

Proof. Starting from (A.3.4), we get for t € R, in n dimensions,
(cos(arctan 7))" exp(2i 7 arctan tOp,,(|x|> + |§]?)) = Op,, (ezinr(|x|2+|§|2)>’

so that using the spectral decomposition of the (rn-dimensional) harmonic oscillator
and (A.8.1), we get

(147223 il nb+Dp, — Op, (ezm(\x|2+|e-|2)),
k>0

which implies

(1+it)**" 2ime(|xI2+IE1%)
(1 + 2) n/2Z ]P on =OPW (e int(|x >’
(14 2)ktz ™
k>0

entailing

k
Z A+iof p — Op (e2im(IXI2+|E\2))
5 w ’

k+n
k>0 lr)

proving the lemma by analytic continuation (we may refer the reader as well to [50,
pages 204-205] and note that for any z € C,Rez > 0, we have | =l <1. ]
A.4 Laguerre polynomials

A 4.1 Classical Laguerre polynomials

The Laguerre polynomials {Lj }rcn are defined by

e 5 - (-0 )

o<l<k
(A4.1)
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and we have

Lo=1,
Li=-X+1,

1
L = E(X2_4X +2),

1
L= 6(_X3 +9X2 — 18X +6),
1
Ly = ﬂ(X4 —16X3 +72X% — 96X + 24),

1
Ls = —(—=X° 4+25X*—200X3 + 600X2 — 600X + 120),

120
1 6 5 4 3 2
Le = 7%(X —36X° + 450X % —2400X> + 5400X 2 — 4320X + 720),
_ —X7 4 49X° — 882X 4 7350X* — 29400X 3 + 52920X 2 — 35280X + 5040

L, =

5040

We get also easily from the above definition that
Liy = Ly — L.

sincewith 7T =d/dX — 1

d Xk+1 d
k! dx (k + 1)!) T dx

Xk
Ly —Ly=TLy = Tk“(—) = Tk“(— —— L1

Formula (6.8) and Theorem 12 in the R. Askey and G. Gasper’s article [2] provide

the inequalities
VkeN.Vx=0. Y (-D'Li(x)>0. (A4.2)
o<l<k

This result follows as well from formula (73) in the 1940 paper [12] by E. Feldheim.
Let us calculate the Fourier transform of the Laguerre polynomials, we have

L = ()

so that
. , ol —1\k88 (- 1k NI
Le®) = @ing = (5—) 2 = (- 52) 8@

As aresult, defining for k € N, ¢ € R,

Mi(t) = (“D)FH@®e " Li(2t), H =1gr,, (A4.3)
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we find, using the homogeneity of degree —k — 1 of S(gk),

1(=D* 1\ w(r (—1)k
M — ) P2 ) s — L
M) = 37 (2 2m) 0 (2)*1+2im

)*/k!
k k
—D (%) {1—|—21n(r—0)}|a 0
_ N T
My () = Z( D (1) k- 1+2m(r ))Hkl =0
AN
_Z( l)k(l) |+ 2in 1+k1

_(DF k (—2)" N

(1 +2in7) ; (l) (1+ 21’711)"_1

G VL SR B

N (1+2i7t‘[)( (1+2inr))

_(=DF —142ime\f 1 1—2im7\*
T +2im)( 1 +2int ) T —|—2im:)(1 +2im)

(1-2izr)k (1 -2im7)?kH!
(14 2imo)k+tl (1 + 4m2g2)k+1

so that

My (7) = (A.4.4)

A.4.2 Generalized Laguerre polynomials

Let @ be a complex number and let k£ be a non-negative integer such that o + k ¢
(=N™). We define the generalized Laguerre polynomial L by

d k k+a d k k+a
Lg(x):x—“eX(E) {e—xxk! }:x_“(ﬁ—l) {xk! } (A4.5)

We note that L7 is indeed a polynomial with degree k with the formula

o= Y - (k)( DR 4ot 1)
k.x - o — o
s Tk +a+t1—k)
( 1)k xk—kl
_ Ik I
0<;<kk1'(k o F e D T T

k -1 1.1
e

o<i<k
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N.B. We recall that the function 1/ T is an entire function with simple zeroes at —N.
As aresult to make sense for the binomial coefficient

k+a) 'k +oa+1)
k—1)] (-=DIT(+a+1)

we need to make sure thatk + o« + 1 ¢ —N,ie,a ¢ —N* — k.

Lemma A4.1. Let o € C\(—N7*) and let k be a non-negative integer. For a = 0,
we have LY = L, where Ly is the classical Laguerre polynomial defined in (A.4.1).
Moreover, we have for | <k,

d 1
(ﬁ) LY = (1) LeH. (A4.7)
Proof. Indeed, we have from (A.4.6)
d ) k +a) (=1mtxmt
- @ _ (] > 7 &
(dX) P=c0t ) (k—m) (m—1)!

I<m<k
k—Il+a+1Y=D"X"

_ (_1\! — (— l7a+l
- p (GO )R

proving the sought formula. u

A.5 Singular integrals

Proposition A.5.1. (1) The (Hardy) operator with distribution kernel

H(x)H(y)
a(x + y)

is self-adjoint bounded on L*(R) with spectrum [0, 1] and thus norm 1.
(2) The (modified Hardy) operators with respective distribution kernels

H(x)H(y) H(x)H(y)

SRELETEETN SEE

H(y —x)

are bounded on L*(R) with norm 1/2.

Proof. Let us prove (1): for ¢ € L2(R,.), we define fort € R, ¢(1) = ¢(e’)e’/?, and
we have to check the kernel

et/2e5/2 1 1 t—s
= —= — sech ,
T[(et + es) jT(e(t—s)/Z + e—(t—s)/Z) 27 ( )
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which is a convolution kernel. Using now the classical formula

/e_Zi”xE sechxdx = 7 sech(2§),

1 t :
—/sech — )e™2""Jt = sech(7w?27),
2 2

a smooth function whose range is (0, 1], proving the first part of the proposition. To
obtain (2), we observe with the notations ¢ (1) = u(e*)e'/2, Y (s) = v(e®)e*/? that
we have to check

we get that

t/2 s/2 _
/H(s—t) e e P OYdids

// H(s — _)(t M) POV (s)dtds = (R * ¢. ¥) 2 w):

7T(€(t S)/z

with N
H(t ~ 1 o0 .
R(1) = # R(1) = —/ sech(t/2)e 21" ¢,

27 cosh(t/2) 27 Jo

so that*
N . 1 +o0
|R(7)| < R(0) = —/ sech(z/2)dt = =
2 0

yielding the sought result. =

A.6 On some auxiliary functions

A.6.1 A preliminary quadrature
Lemma A.6.1. We have

/2 +o00 T
/ (cscs —cschs)ds = / cschsds = Log (coth —),
0 7/2 4

with cscs = 1/sins, cschs = 1/ sinhs.

Proof. Note that the function [0, 7/2] 3 s > m—_;‘n“:, is continuous. Moreover, we
have

ds 1 1 —coss ds 1 coshs — 1
— = —-Log{ —— ] and - = —Log| —— |,
sin § 2 1+ coss sinh s 2 coshs + 1

4We recall that % arctan(sinh s) = sechs.
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so that

/2
f (cscs —cschs)ds
&
1 1 —coss\ 12 1 coshs — 17172
= —| Log| —— —|zLog| ———
2 1 +coss / |, 2 coshs +1/ |,
1 14+ cose) [ coshe—1 1 cosh%+1
= —Log + - Log| ————— ).
2 1 —cose coshe + 1 2 cosh 7 —1

_ <2+0(s2)>(%+0(e4)>
(5 +0(*)2+0(:2))

—1fore > 0

so that we obtain

7'[/2 1 ”/2 —7[/2 2 h 4
/ (cscs —cschs)ds = ELOg(e +e + ) _ Log &% (/%)
0

e —2) = i)
which is the first result. Also, we have | ]:;;o cschsds = % Log(%), yielding

the second result. [

A.6.2 Study of the function p,

We study in this section the real-valued Schwartz function p, given in (5.2.10). Using
the notations

w=2nt, k=210, V=Ko, (A.6.1)
we have
e (T) = / ,Lez"“’(s_”2 anhs) gg = / .s cos(2a)(s — vztanhs))ds.
R sinhs R sinhs
Defining the holomorphic function F by
F(Z) — .LeZiw(Z—vz tanhZ), (A62)
sinh z

we see that F' has simple poles at i7Z* and essential singularities at in(% + Z).
We already know that the function p, belongs to the Schwartz space, but we want to
prove a more precise exponential decay. We start with the calculation of

t+ig ot i T —p? i
/ F(Z)dZ — / 4 e21w(t+z r—v= tanh(z +i 4))dl
R+i % R Sinh(z +1%)

2elA+i)—e I (1—i)

£ .
= e_’”"/ZZx/E/ a9 tt—H(; et @210t T ROV T D FeT(1=D)
R el —(1—1i)e

t+iZ L ojepredt—eTtd=i)
_ e—nw/Zﬁ : .4 e2iot, 2iwy ef(I++e—T(1=0) Jf.
R sinh# + i cosht
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We have
. e'(l+i)—e'(1—1i) —Im sinhz +icoshz) 1
el(1+i)y+et(1—i)) cosht +isinht ) cosh®¢ + sinh?¢’
so that
rw v 2 +(3)? _ 2wv2
/ F(z)dz| <e 2 V2 / esmZi+eon?t
R+i % R +/sinh? ¢ + cosh? ¢
=72 V2e% dt < 6e™ 2 ¢
R +/sinh? ¢ + cosh2
(A.6.3)
Claim A.6.2. We have
lim F(z)dz = lim F(z)dz = 0.
R—>+00 JIR,R+in/4] R—>+00 JI—R,~R+in/4]
Proof of Claim A.6.2. We note first that
¢ F(z)dz = —% F(z)dz,
[~R,—R+in/4] [R,R+irn/4]
so that it is enough to prove one equality. Indeed, for R > 0, we have
95 F(z)dz = /ﬂm ' R+ ”. Q210 (R-+it=v wh(R+i0); g,
[R,R+im/4] o  sinh(R +i7)
so that
¢ F(z)dz
[R,R+in/4]
< /4 2v R? + 12 —2wt62/c Im(tanh(R-i—it))dt
= Jo  |eRFiT||1 — ¢—2R-2ir|
R V4R2 +7t2/ [ R = ‘—’_if} iiildr
C1—e2R
R—V4Rz+nz/4ﬂ a- (4—21?)
- I—e2R 4°
proving the claim. u

Lemma A.6.3. We have for t > 0,0 > 0, ps given in (5.2.10),

0o (7)] < 6™ T4 (A.6.4)
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Proof. We have, with the notations (A.6.1), F givenin (A.6.2) and yg =[-R,—R +
iIZJU[-R+iZ . R+iZJU[R+i%, R]

gtzlim/ F(s)ds = lim (¢ dez) = ¢ F(z)dz,
pu() = lim | Fods= tim (@ Feyz) = ¢ FG)

Claim (A.6.2)

so that (A.6.3) implies the lemma. ]

A.6.3 On the function ¥,
Let v € (0, 1) be given. We study first the function ¢, defined on [0, 7/2) by

2,2
$u(s) = s —vitans, sothat ¢} (s) =1—v*(l +tan’s) = COS#
cos? s
so that
S 0 Sy ty Z
Pl(s) | 1—v2 + 0 — — (A.6.5)
$v(s) | 0 () N\ 0 N\ —o0
We have

sy = arccosv = Z —v + 0O(v3),

forv — 0. (A.6.6)
Pv(sy) = arccosv —vv/1—v2 =Z — 20 + O(v?),

The function ¢, is concave on (0, 7r/2) since we have there
(s) = —v*(=2)(cos §) 3 (—sins) = —v22(coss) 3sins < 0.

‘We have defined in (5.2.45)

V(o) = ds. (A.6.7)

e T® /n/2 e2w¢v(s) -1

2 sin §
Let us start with an elementary lemma.

Lemma A.6.4. Let A > 0 be given. Defining

A o _1

J) =e—*/0 ¢ .

JA) =21+ 00A7%), A +oo, (A.6.8)
VA>0, JA)=A"1—172 (A.6.9)

do,

we have
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Proof. Indeed, we have for A > 0,

A k—1 k k+1
_ —)L o _ _){ A, _ —A A, k + 1
AJ(A) = Ae Z/O o do = \e Zm—e Z(k+1)!7
k>1 k>1 k>1
)kk_H Ak-i—l 1
_ A - :
=) aE i T Gk
k>1 k>1
=e Mt —1-21) + 217! (e—A > M l) (A.6.10)
- = (k+ D) "
R(A)
with
k+2 2 2
0<RM) <e?> (kl+2)'l% < e—*(e*— 1—X— %) x3 = 0(1),
k>1 ’
(A.6.11)
so that

AW =e e —1-V)+1To() =14+1"10()—(1+1)e™d =1+ 171 0(1),
proving (A.6.8). Note also that (A.6.10), (A.6.11) imply, since R(A) > 0,
AJA) = 1—e 21+ 1),
sothat J(A) > A™1 —e™*(1 4+ A7), and thus’ the sought result (A.6.9). n

Remark A.6.5. Considering now the function ¢ defined by

e T /2 e2ws -1
Po(w) = / : ds,
2w Jo sin §

we find that, for @ > 0, using Lemma A.6.4,

—Tw /2 2ws _ 1 —Tw Tw L0 _ 1
Po(w) > ‘ / ¢ ds = & / ¢ do = —J(nw),
2w Jo s 2w Jo o 2

so that
1

C 2n3w?’
It is our goal now to prove a minoration of the same flavour for the function (A.6.7)
defined above.

>
po(®) = 72w

5We leave for the reader to check that for A > 0, e_’l(l + l_l) < 172, which boils down
to study ¢(1) = e *(A? + 1) reaching its maximum for A € R, at Ao = (1 + +/5)/2 with
q(Ao) ~ 0.84 < 1.
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Assuming v € (0, 1/2), we have % <sy <t < % (sy, t, are defined in (A.6.5),
¥y in (A.6.7)),

v p20¢u(s) _ | 7/2 p20¢v(s) _
———ds +/ ———ds
t

sin s

2we”™ Y, (w) = / -
0 sin s

v

ty 62w¢u(s) -1 /2 ds
e e
0 sin s r, ~sins

on (O,t‘)), ¢U(S) Z 0

Sy equ&U(s) -1 /2 ds
[y
0 sin § x/3 Sins

Su g2weu(s) _ In3
- / R P (A.6.12)
0 sin s 2

on (0,s,)
v (s)>0 and ¢/, (s)>0

Claim A.6.6. For s € (0,7/2), we have ¢, (s) > ¢,,(s) sins. Moreover, for s € (0, s,),

1 ?1(5)
we have Sins > PROR

Proof of Claim A.6.6. Indeed, we have

$u(s) — ¢, (s)sins = s —v*tans —sins 4+ vZ(1 + tan” 5) sins

= v2(sins + sinstan® s — tans) + s — sins

5f sins sin s .
=v > — + s —sins
cos?s  coss
vZsins
= > (1 —coss) +s—sins >0, fors e (0,7/2).
cos? s

The last part of the claim follows from the first part and the fact that sin s and ¢, (s)
are both positive on (0, s,). [

Going back now to (A.6.12), we obtain that for v € (0, 1/2) and @ > 0, we have

Sv @200u(s) _ In3
2mwe™® (ui/ — ¢/ (5)ds — —
wv( ) 0 ¢v(s) ¢V()
20¢v(sv) o | In3 In3
N / o — =2 = 20O Qugy () — -
0 o 2 2

so that, using (A.6.9), we get

1 1 1 In3 1
¥y () > —e_”wezw¢”(SV)( — 2) — n——e_”“’,
27 20¢y(sy)  Cwdy(sy)) 2 2n
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and since ¢, (s,) = % — &y, with ¢, € (0, w/2), we find also that ¢, is a concave

function® of v € (0, 1) and
v
— <& =2
2
so that

2¢,(sy) = — 28, € [m —4v, T — V],

so that for v € (0, 1/2], we have’ (assuming @ > 0),

1 1 In3 1
- —nTw w(n—28u) — - 50
Yv(w) = e € (a)(n —2&) (o(r— 251)))2) 2"
> i —4vew L_; —Eieﬂm
~ 2 or  w*(r —2)? 2 2n ’

We recall the notations (A.6.1), so that v = /k/w, i.e., vw = /kw and we get

1 1 1 In3 1
Yo >0, ¥,(0)> 2—6_4V"“’(— - —) — n——e_”‘”, V= Vik/o.
Ed

Tw w2 2 2w
(A.6.13)
A.6.4 An explicit expression for aj
According to (5.2.22), we have
1 1 [*®sinQnrtt — 470 tanh(z/2
a11(7,0) = =~ + — sin@ntz — 4ro tanh(t/2)) ;. (A.6.14)

2 2m J sinh(z/2)

We have used in Section 5.2 the equivalent expression a1 (z7,0) = % + T, (1), where
Ts is defined in (5.2.9) and we were able to prove the estimate in Lemma 5.2.2. It
turns out that (A.6.4) is not optimal, and it is interesting to give an “explicit” expres-
sion for a;; as displayed in [55]. Using the notations (A.6.1), we can write (A.6.14)
as

expi(wt — 2k tanh(t /2))

1 1
ay(r,0) = ——i—E IR{Im

2 sinh(z/2)
1 1 2i — Kk tanh

=~ 4Im lim — exp 2i(ws — tanhs) ;o 4 615)
2 R—>+00 27 JI_R,R] sinh s

“We have from (A.6.6),

d d?
gy = %—arccosv+v\/1—v2, dg‘} =2vV1 -2, 82” =2v/vV1-1v2 <0,
v

dv

so that the concavity gives %v <egy <2v.
"We know that w(r — 2¢,,) > w(r — 4v) > w(w — 2) so that to ensure w(r — 2¢,,) > 4, it
suffices to assume @ > 4/(w — 2).
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Defining the holomorphic function G by

exp2i(wz — k tanh z)

G(z) = , (A.6.16)

27 sinh z

we see that G has simple poles at i 7Z and essential singularities at i n(% + Z). For
R eR\TZ,e € (0,7/2), we have

¢ G(z)dz + ¢ ve G(z)dz + % + G(z)dz
[—R,—¢]U[e,R] VR

— —eplB .
i Vi O)=Rel"
- o<t<nm
=2im ) Res(G.ikm/2). (A.6.17)
keN
km<2R

Claim A.6.7. We have )
lim¢ G(z)dz = L
Ye 2

e—>0

Proof. Indeed, we have

0 . i6 if
exp 2i (wee'” — k tanh(ge .
/ p2i( - 7 ( ))iseledé
— 27 sinh(ge'?)
i 0 eZiwseiggeiG

2n J-n Sinh(gelg) exp (—2ik tanh(ge'”))

2iwz

and since the function z — 24—
sinh z

we get the result of the claim. [

—2ixtanhZ 44 holomorphic near 0 with value 1 at 0,

Lemma A.6.8. We have

Nam—>+o00

lim Im ¢ G(z)dz | =0.
}’_J’r_ T

gtmz

Proof. Indeed, we have with R = % + m%,

. /ﬂ exp 2i(a)Re".9 — K ta.nh(Reie)) iR 40
o 27 sinh(Re’?)

R R F14 eZin cos Ge—ZRa) sin@eiG
= — R€ n
0 1 — ¢—2Rei?

e~Re'? exp (—2ik tanh(Re'?))d0
T

2R n/ZR {e2ia)Rcos96—2Ra}sinOei0
= — e

1 — ¢—2Rei® e Re' exp (—2ik tanh(Reie))}dQ,

T Jo



Appendix 188

so that

(9,

T imI

T
2

/2 ]
/ e—R cos 96—2Rw sin 6

0

G(z)dz)

4
2R
T

eZincosBeiG o )
x Re {We_msme exp (—2ik tanh(Re’e))}dG. (A.6.18)
p— e_

‘We have also

1— e—2Rei9

0y _
tanh(Re'”) = 1o g2Rei? o 2Re?

(A.6.19)

Claim A.6.9. Defining for m € N, 0 € [0, 7], gm(0) = 1 — e_(%“Lm”)em, we find
that
pddf |gm(@)] = Po>0. inf [2-gu(0)]=p1>0.

€[0,n] €[0,n]
meN meN

Proof of Claim A.6.9. If it were not the case, we could find sequences ; €[0, w],m; €
N such that Y
lim e~ (ZFmme™ — (A.6.20)

=400
Taking the logarithm of the modulus of both sides, we would get

lim (% + mln) cosf =0,

[ —>+o00

i.e.,
&l

cos; = lim ¢ =0.

% + mlzt’ [—>+00
Going back to (A.6.20), we find then

lim e—i(%-leﬂ)SinB] =1
[—>+o00

i.e., since sin6; > 0,

2 1/2
lim exp—i z—}—mln) 1—8—1 =1
I—>+00 2 (5 +mym)? ’

implying lim;_, 4o e*(3 77 = [, which is not possible since

e GAmm = _j(—1)™ e {+i},
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proving the first inequality of the claim. The second inequality follows from the same
reductio ad absurdum, starting with

lim e~(GFrmme® _
=400 ’
ending-up with an impossibility since —1 ¢ {#4i}. [

As a consequence of Claim A.6.9 and (A.6.19), we obtain for R = - +m7,
0 € (0, ),

; 2
| tanh(Re'?)| < =.
B1

Formula (A.6.18) gives then

n(f, o)

where for w > 0, the right-hand side goes to zero when R goes to 400, completing
the proof of Lemma A.6.8. ]

2R (™2 o 1
< _/ e—RcosGe—2Ra)sm9_eXp (4K/‘31)d0,
T Jo Bo

Lemma A.6.10. With G defined in (A.6.16), we have

1 s e2iwz—2i/ccothz
27 Z Res(G,ikm/2) = + ( ,0).

Res
—2nw ; —2nw
= 1+e i(l+e ) cosh z

(A.6.21)
Proof. We have Res(G,ikm/2) = Res(Gg,0) and with k = 21,

exp 2i (w(z + lkTﬂ) — i tanh(z + lkTﬂ)) B e—2lnw p2iwz ,=2ik tanhz

Gi(2) = _ =
€ 27 sinh(z + &%) 27 (—1)! sinh z

(_l)le—2lnw

Res(Gy,0) = o

whereas for k = 2/ + 1, we have

exp2i(w(z +ilm + %’) —ktanh(z +ilm + iy”))
27 sinh(z + ilw + %”)
e—(21+1)nw62iwz

Ga+1(2)

6—21 K coth z

27 (—1)%i cosh z

so that

(_1)16—(21+1)nw eziwz—zilccothz
Res 0],

Res(Gar+41,0) = 2mi cosh z
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yielding
27 > Res(G.ikm/2)
keN
-1 l,—Ql+)rw 2iwz—2ik cothz
=3 (e Y (=D'e ’ Res(e ’0)’
e e I coshz
1 e~ e2iwz—2il<cothz
= + Res ,0),
1 +e72m@ (] + ¢ 27®) ( cosh z )
concluding the proof of the lemma. |

Proposition A.6.11. Using the notations (A.6.1), with ay; defined in (A.6.14) (see
also (A.6.15)), we have for t > 0,0 > 0,

1 e T eZi(wz—Kcothz)
all(r, O’) = 1 T e—27rw + 1 n e_277w Im {Res(w,())} (A622)

Proof. Taking the imaginary part of both sides in (A.6.17), and letting R — +o0,
& — 04, we get, using (A.6.21), (A.6.15), Claim A.6.7,

1 i 1 e T® eZiwz—Zi/ccothz
— — 4 Im- =1Imi R 011,
i 2+ 3 ml(l—}—e—zm" +i(1—|—e—2”“’) es( coshz ))

which is (A.6.22). ]

Remark A.6.12. In particular, when 0 = 0, we find for 7 > 0

—4n2t
1 —api(r,0) = [

and since (5.2.24) implies that

0 sin(4nt 1)

cosht

d . .
4i7tt<E{el4””}H(l), sechz>

1 ((i{emmt[-[(t)}, secht> — (b0, sech))

4imt \\dt

1 1 .
= — —Im ——(e!*"* H(t), sech’(¢))
drt 4imt

dt = Im(e"*™ ™ H(t),secht) o1(r,).#®R,)

2w Reaya(t,0) = /
0

=Im

1
—+ 0(t_3), T — +o0o,
4t

we readily find that
Reaiz(7,0) > 1 —a;1(1,0), 17— 400,

providing another proof of Theorem 5.2.4 in the case o = 0.
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o2
ean

Remark A.6.13. Equation (5.2.41) gives also Ima2(7,0) = “~——ai1(z,0), where
(5.2.22) gives, using the notations (A.6.1),
+ cos(tw — 2kcoth(t/2))
Imayr(r,0) = —
47 Jo cosh(z/2)
1 /+°° cos(2(tw—kcotht)) di— 1 / cos(2(tw—«cotht)) gt
2 S cosht 4w g cosht '

With G given by (A.6.16), we note that

Gy = 0G24 12 = &Pz —Kcothz)
2 2 47 cosh z

’

a holomorphic function with simple poles at i JT(% + Z) and essential singularities at
inZ. Following now for G the track of G in Claim A.6.7, Lemmas A.6.8, A.6.10,
and Proposition A.6.11, we get

Imajz(r,0) = lim Re¢ G(z)dz, R, = T + mz, (A.6.23)
m—>+00  JI_R. —e]U[e,Rm] 4 2
8_)0+ ms sf\m

and we have also

35 G(z)dz _9§ +  G(z)dz + 95 + G(z)dz
[=Rm.—€]U[e, Rin] ve YRm

+ )= i0 + _ i
ve 0( 5)1 sfre YRm (()i)t_;;m e'?
~ ikm im
=2i Res(G,ikn/2) = —mwe™® R G —+—1,0
in Z es(G,ikm/2) e Z es( (C-i— > + 2) )
1<k<m 1<k<m
ilm
— _pe™ res(G(c+2Z).0). A.6.24
e Z es( ({'—F > ) ) ( )

2<l<m+1

Claim A.6.14. We have lim,_s gﬁy+ G(z)dz = 0.

. . . 72£ei9
Proof. Indeed, we have —2ik coth gelt = —21K1+8W and for 0 € (0, 7),
—e—
1+ e—ZSei(" (1 + e—Za‘eie)(l _ e—Zse*ie) e—2£e“" _ 6—286719
Im(———— | =Im = = Im =
1 — ¢—2¢€’ |1 _ p—2¢e! |2 |1 — e—2ee'?)2
—2¢i sin @ 2¢i sin @
_ . e —e
—e 2¢&cos O Im -
|1 _ e—28el |2
_ —2i sin(2¢esin 0
—e 2¢ cos O Im )

11— e—2¢ei? |2

4 sin(2esin 6
= —26_2‘90059_|1 _(e_ZSEieTZ <0, ife<un/4,



Appendix 192

so that [e~2ikothee’” | < | implying
5 /4 |eiwsei9| ) F 4 e—wesin@
4rr 56 G(2)dz| < / ———elie’’|d6 = g/ —————db,
Vv o |cosheet?| o |coshee'?|
which goes to zero when ¢ — 04, concluding the proof of Claim A.6.14. u

Claim A.6.15. We have imnsym—+c0 6, + G(z)dz = 0.
Fomg

2

Proof. Indeed, we have, using Claim A.6.9,

) 1+e—2Rmcus<9 < L
T e e L (L
| coth(Rye'”)| = T o 2Bme® | = | |1te2mmei | _ 5 for 8 € [X
|—e2Rmei® | = B> 1OF €[3.7l,
so that

|G(Rmei9)iRmei9|

—Rmel? — Ry cos 6
2o M| < 2e 00 for 6 € [0, Z],
4 R sing ) | 1FeTEme b 2
< Rye K/ﬁoe R,y sin ,
zeRmel 2€Rm cos 6 T
| < T
Cretkme | = TR for 0 € [, 7],
< 2Rm e4/c/ﬂ()e—2me sin @—Ry;, | cos GI’
B1
which goes to 0 when m goes to +o00, proving the claim. ]

Using (A.6.21), we calculate now

27 ) “Res(G(¢ + ”7”), 0)

1>2
1 e T e2iwz—2i/< cothz
= R .0
1 + e 27 + i(1+4e27@) es( cosh z )
—2m(Res(G,im/2) + Res(G, 0))

1 e T eZia)z—Zilc cothz
= R ,0
1+ e 27 + i(1+ e 27@) es( cosh z )

eZiwz—ZiKcothz
+ie"Res| ——— 0] —1
coshz

e—an . e T o eZla)z—Zuc coth z
= — ) —1 ) —e Res| —,0
1 4 e—27@ 1 4 e—27@ coshz

e—2na> e—27rw e2iwz—2i/<cothz
— s —TTW
=——0>5—+ie R, Res| ——— .0},
1+e 1+e coshz
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so that from (A.6.23), (A.6.24), Claims A.6.14 and A.6.15, we obtain

Imalz(r, O)
C e L ( L e (ﬂ)
27 1 + e—27ra) 1 + e—2nw
eZiwz—2iKcothz
xIm{Res| ——,0
{ ( coshz )})

1 e—27ra) e—271w eZi(uz—Zi/c cothz
=" | ———+ e " ————— | Im{Res( ——., 0 ,
2\ 1 4 e 270 1 4 e 270 cosh z

so that

e T e—Zna) e2iwz—2il< cothz
Imalz(T,O') = m{Res(—,O s

I
2(1 + e 27w) + 2(1 + e 27w) coshz
(A.6.25)

recovering (A.6.22) from (5.2.41).

N.B. We note that
€2iwz—2i/< cothz 1 ei(wz—2/< coth(z/2))
Res| —————,0) = —Res 01,
cosh z 2 cosh(z/2)

so that (A.6.25) corroborates formula (A14) in [55]; however, we were not able to
understand formulas (A10), (A11), and (20) in [55].

A.7 Airy function

A.7.1 Standard results on the Airy function

We collect in this section a couple of classical results on the Airy function (see,
e.g., Definition 7.6.8 in Section 7.6 of [23] or the references [51], [49], [29]). For
all the statements of this section whose proofs are not included, we refer the reader to
Chapter 9 of [35].

Definition A.7.1. The Airy function Ai is defined as the inverse Fourier transform of
£ > 01 27E)3/3

Proposition A.7.2. Forany h > 0 and all x € C, we have

Ai(x) = L e%(&+ih)3eix(§+ih)d$ _ e_Xheéi e_hézei(§_5h2)eix5d§‘
27 27

We note that the function R 3 § — e5E+in? belongs to the Schwartz space for any
h > 0 since

i h? 3
FE+ih)* = —he? + = +i(? - shz),

so that e 5E+iN? = e—hézei(%3—éh2)eh3/3_
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Theorem A.7.3. The Airy function Ai is an entire function on C, real-valued on the
real line, which is the unique solution of the initial value problem for the Airy equation
3-1er(/3 3l/er2/3
AM"(x)—xAi(x) =0, Ai(0) = 2—(/) Ai'(0) = ——(/).
b4
(A.7.1)
We have also, for any x € C,

1 [tee 3
Ai(x) = — e 83712 cog 23 + 2 )de,
T Jo 2 6

and the power series expansion of the Airy function is

1/3 Kk
M(x) = 32/32(3 x) ( . )sin(2(k+1)%).

k>0

Lemma A.7.4. For x € C\R_, we have

1 .
A(x) = s e_x1/2§2e153/3d§. (A.7.2)
2 R

Proof. Using Proposition A.7.2, we get (A.7.2) for x > 0 (choosing & = x'/2), and
then we may use an analytic continuation argument. |
Theorem A.7.5. Forall M € N, for all x € C\R_, we have
: L a3z (_l)l 1Y 3102
Ki(x) = —e” 7T x { Y =T 31+5 x + R (x) },

21 |
051§M3 20)!

1
. r'(3M +3+ _(3M+D arg x )\ D72
with |RM(x)|_321(u+2(2M+23,| - )(cos( )) .

(A.7.3)

For x < 0, we have

. g
Aix) = |x|1/4f( ( |x|3/2) + O0(x|” 3/2)) (A7.4)

oy x x|1/4 T 3/2 _3/2
Ai'(x) = NG cos | 7 + §|x| + O(]x| ). (A.7.5)

Lemma A.7.6. With j = e*"/3 we have for all x € C,

Ai(x) + j Ai(jx) + j? Ai(j2x) = 0.
In particular, for r > 0, we have

ni(—r) = 2Re(e T ni(re')). (A7.6)



Airy function 195

Lemma A.7.7. The zeroes of the Airy function are simple and located on (—o0, 0).
We shall use the notation

MTN{0Y) = {mde=0.  Mh+1 <Mk <0, lim g = —oo.
k—+o00
The largest zero of Ai is ng ~ —2.338107410 and Ai(n) is positive for n > ng. We
have also for all k > 0,

Ai(Nak+1) = 0, A" (Mag+1) <0, Ai(nak) = 0, A'(n2x) > 0,
Ai(n) <0 forn € (Mak+1.M2k). Ai(n) > 0 forn € (Mak42.M2k+1), (AT.7T)
Ai"(n) > 0 for n € (Nak+1.M2), Ai"(n) < 0 for n € (Nak42. N2k+1)-(A.7.8)

N.B. The simplicity of the zeroes of the Airy function holds true for any non-zero
solution of the Airy differential equation y” = xy. The solutions of this ODE are
analytic functions and if @ is a double zero, we have y(a) = y’(a) = 0 and thus from
the Airy equation, we get y”(a) = 0; we may then prove by induction on k > 1 that
y(l)(a) =0for0 <! <k + 1:itis proven for k = 1, and if true for some k > 1, we
get

(@) = ey ()® = yE* (@) =0,

proving the final step in the induction; as a consequence, the function has a zero of
infinite order, which is impossible for a non-zero analytic function. Assertion (A.7.8)
follows from the Airy differential equation (A.7.1), from (A.7.7) and n, < 0.

Remark A.7.8. For M = 0, | arg x| < 7/3, we have

7
re+1 3\ 2 5
|Ro(x)| = %M_% (%—) = |x|72 ﬂm < |x[7% x 0.305455,

so that

|Ro(x)| < 0.305455|x|73/2 if |arg x| < /3,
and for |x| > 12, |argx| < w/3 we have |Ry(x)| < 0.007349.

We get then for A > 0, using (A.7.6)

.y ‘ ‘ |
Al(—)\,) = ;Re<eln/3/\—1/4e—l%)\3/2(ﬁe—lﬂ/IZ + Ro(kelﬂ/:;)))

1 5 1 . | N
= —ﬁ/\_l/“ cos (% - 5/\3/2) + = Re{l_l/“Ro(re’”/3)e’”/4e_’%“/2}
1 T 2 1 , _ s
= —A_1/4 . - —13/2 R R A’ in/3\ in/4 —l3l ’
NG sin { -+ 3 + NG e {Ro(Le'™?)ei™/4e \
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so that
1
for A >0, MAi(-A)=—=A"1* + 13/2 + Ro(1) ), (A7.9)
Jr
with  [Ro(1)] < 1732 x 0.172335,
and for A > 12, |Ro(1)| < 0.004146. (A.7.10)

Remark A.7.9. For M =1, |arg x| < 7/3, we have

F(6—+1)| |~ 3(£)_6_%

|R1(x)] <

34(4)! 2
= x|V 1! < |x|73 x 0.377203
221/2  337/4 x5 — ’ ’
and
for [x| > 12, |R;(x)| < 0.000219,
so that

Ai(_r)er—lM sin £+%r3/z +F(7/2) 2 3n T\ -3
VT 4 3 187 1

1
+ T Re {Rl(rezn/3)em/4 —i 3r3/2})

=Lr—1/4 sin z+%r3/2 +F(7/2) sin [ 273/2 T F—3/2
JT 4 3 184/ 4
1 -
+ —R ,
N 1(’))
so that

forr >0, |Ri(r)] <r~3x0.377203, (A.7.11)
forr > 12, |Ry(r)| < 0.000219.

We find for A > 0,

too 1 T2, r'a/2) 2 T
_ — . - < ..3/2 —3/2 <.3/2 _ 2
G4 /A r1/4ﬁ(sm(4 37 )+ TN (3r 4)

Iél(r))dr, (A.7.12)

1
+ﬁ

and we have

+o00
1 12 (7T 2 30
A mr S1n (Z + 57’ dr

_ T 2.3, 1 3t 1 T2 5,
_COS(Z—FgA )13/4\/;—1 A WCOS Z—Fgl’ dl",
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as well as

3 (7 1 T2,
-z Z,.3/2
4A r7/4fcos( +3r )dr

3t 1 T 2
- _> a2 T 2.3/2
= 4A r9/4ﬁr cos(4+ r )a’r

3
3 2 3 9 ptoo )
= ——sin Z+_k3/2 1_9/4———/ r~13/%gin £+—r3/2 dr,
4.7 4 3 4. /w4 J, 4 3

so that

teo ] T, 25 T 2 1
/2 dr = - —/\.3/2
A 1/4\/_ ( + ) r cos(4+3 )13/4 =

39 2
4\/_Sln(jr 513/2))&_9/4 4\/_4f r_13/4sin(%+§r3/2)dr.

(A.7.13)
We have also
oo 1 T(7/2 2
/ LA/D) 52 (2,32 -7\ gy
L 1/4 187 3 4
+
_ I'(7/2) =14 gin 2r3/2 _T dr
187 Ji 3 4
__Ta” cos (22372 _ T\, -9/
187 3 4
[(7/2)9 [T 2
L La/ )_/ cos [ Zr3/2 = L) m13/4y, (A7.14)
187 4 J; 3 4

so that (A.7.13), (A.7.14), and (A.7.12) entail

T 2 1 3 T 2
G(=A) = i 702 : £93/2),-9/4
b COS(4 M PNV P

_ 3 2/+ r~ 134 gin n+zr3/2 dr
4/ 4 J; 4 3

U] cos (%ﬁ/z _ 2)1—9/4

187 4
r(7/2 oo 2

+ 7/ )2/ cos [ 27372 _ ), —13/4 4,
187 4 J, 3 4

1 [t )
+ —/ r AR ().
A

T
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We get then

A3/4 3
G(—)) = ( (”+ A3/2) 4sm( + 13/2)1—6/4
3
VR
T

13/4/ - r13/46in n+%r3/2 dr
4 A 4 3

(7/2) ( )t3/2 _)1—6/4
4

18f
+
L 29 1_‘(7/2)9 3/4/ OOCOS %r3/2_£ 134,
187 4 y 3 4
A3/4 +o00 B
+ _ﬁ "_1/4R1(”)),
so that
—3/4 T 2
G(-1) = —— S I 4272500 ), A7.15
(=) ﬁ(008(4+3 + 1(A) ( )
with
3 I'(7/2 I'(7/2 4
ISt(V)] < - + + (/2 + a/2) + x 0.377203 < 1.80293,

187 = 18Jm = 9w

where we have used (A.7.11) for the bound of the last term above. As a consequence,
if L > 12, we get that
A7281(X)] < 0.0433716. (A.7.16)

This is allowing us to extend the proof of Lemma A.7.15 to all values. Note that the
first 10 values (and more) are accessible numerically.

Since we have
ne = —12.82877675 < —12,

formulas (A.7.9), (A.7.10), (A.7.15), and (A.7.16) imply the following result.
Lemma A.7.10. With Ai and G defined above, we have for —A < ng

K1) = Jl;)t 1/4( ( i W) +Ro(x)),

|Ro(A)| < 1732 % 0.172335 < 0.004146, (A.7.17)
A3/4 T 2 ~
G(-1) = 7(cos (Z + 513/2) + S (A)),

IS1(M)] < 21732 x 1.80293 < 0.0433716.
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A.7.2 More on the Airy function
Proposition A.7.11. We have

+oo 1
Ai(x)dx = -. (A.7.18)
0 3
Proof. According to Theorem A.7.5, the Airy function Ai is rapidly decreasing on the
positive half-line and thus belongs to L!(R ), so that the integral in (A.7.18) makes
sense. Also, we have from Theorem A.7.5 and the Lebesgue dominated convergence
theorem that,
400 +o00

Ki(x)dx = lim Mi(x)e*dxe™ /3, (A.7.19)

0 =04+ Jo

and we shall now calculate the right-hand side of (A.7.19). We have for & > 0,

+ +
OoAi(x)exhdxe_h3/3 =/ oOL/e_hgzei(%?,_Shz)e"xga’éa’x
0 0 27
+oo A
= Yn(—x)dx,
0
with R
Yn(§) = e7hETO? (BT —CrOn?), (A7.20)
so that
too 8 11
Ai xhd —h3/3 — % -, )
/0 i(x)e™dxe > 2]”.st Vn .
1

1 e—h(zns)zei(mfp—(znsmz)>

= % — %<Pvé, e~ sin (% - $h2)>.

We note at this point that, according to (4.2.5), the right-hand side of the above equal-
ity is for & = 0 equal to

so that, with (A.7.19), we are left to proving that

3
lim <pvé, e~ sin (% . Eh2)> . (A.7.21)

h—04 3
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We have
sin(5 —£h%) 0 ™, sin(§) — £h2)e "€ — sin(£))

/ e %73 / £ a*
Cx o fsin) o e g [ Sin@ER?) (g) e
=3 —|—/ E (cos(éh )e l)dE /—5 cos 3 e d€.

I1(h) L(h)
We have
+o00 £2 ; ﬁ »
Ii(h) = /1 %(cos(éhz)e_hs —1)d&
+o0 i(cos(ﬁ))
_ dE 3 2\, ~hE2
/1 = (cos(Eh*)e 1)dé,

and a simple integration by parts® shows that limy,_,¢ 1,1 (/1) = 0; we have also trivi-
ally that

2
0= lim /E (cos(Eh%)e ™" — 1)dE.

h—0
On the other hand, we have

100 < [ 1274 dg = 00
which completes the proof of (A.7.21) as well as the proof of Proposition A.7.11. m

Lemma A.7.12. We have

0

2
lim Ai(x)dx = —. (A.7.22)
R—>+oco J_R 3

Proof. Using (A.7.4), we find for R > 1,

0 R 1
/;R Al(x)dx :A Al(—r)dr :/ Al(_r)dr
R
+/1 ( 1/4fs1n(n 42 3/2) +O(;,—7/4))

proving that the limit in the left-hand side of (A.7.22) is existing.

8The boundary term is easy to handle and for the derivative falling on £ 3, we use that
| cos(éhz)e_hEZ — 1| < 2; if the derivative falls on the other term we get

o0 g
./ 0085(33 ) (2ng cos(Eh2)e % 4 oThE? sin(§h*)h?)d§,
1

which goes trivially to 0 with 4.
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Claim A.7.13. We have
0 0
lim M (x)e*dx =/ Ai(x)dx.
h=04+ J 00 —00
Proof of Claim A.7.13. We have
0 -1 0
/ Ai(x)ex”dx:/ Ai(x)e"hdx-i-/ Ai(x)e*dx,
1

—00 —00 -
[ S ——

with limit [° Ai(x)dx

and using (A.7.4), we have only to check

-1
/ |x|—1/4exh+i%|x\3/2dx
—00
+
_ / oo (VA o—th+izt32 g,
1
+o00 d .
— _/ E{e—th-l-l%t*%/z}(h_l'tl/2)—ll—1/4d[
1
— €_h+i%(/’l _ l-)—l
+o0 ;
+ / e—th-l—i%t?’/z (h _ i[1/2)—21_t—3/4 _ (h _ it1/2)—llz—5/4 dt,
1 2 4
and since the absolute value of the integrand in the last integral is bounded above by
%t_7/4, we get the result of the claim. ]
With (A.7.19), (A.7.20), this gives

+oo 400 3
/ AM(x)dx = hlim M(x)e*dxe /3

00 =0+ J—co

(/R@(—s)ds - wh(O)) 1,

lim
h—>0+

and Proposition A.7.11 provides the result of the lemma. |

A.7.3 Asymptotic expansion for the function G defined in (4.2.4)
Lemma A.7.14. With G defined in (4.2.4), we have

3t 2
G(=A) = 27341 2in (Tﬂ + 5/\3/2) + 007, A= +oo.
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Proof. Property (A.7.22) and (A.7.4) give forn = —A < 0,
2 n n +o00
G(n) = 3 +/0 Ai(§)dE =/_ Ai(§)dE =A Ai(—r)dr

+oo in in
= / 2Re(e 3 Ai(e 3 r))dr
A

(we have used (A.7.6); we use now (A.7.3)for M = 1,x € ei”/3R+)

too 1 T2, '(7/2) 2 T
_ G - < ..3/2 ~\TE) —T7/4 “.3/2
a /A (r1/4ﬁsm (4 T3 ) T T (3r 4)

+ O(r_13/4))dr

+o00
= (2/3)1/271_1/2/ 5712 sin (z + s)ds
%13/2 4

(2/3)321(7/2) [+

—3/2 . o d 01~/
5. %13/2s sin (s 4) s+ 0( ).

We integrate by parts in the first integral with

+o0 T
/ s~ Y2 in (— +s)ds
233/2 4
+o0
=—/ s_l/zi{cos (Z—I-s)}ds
2,32 ds 4
-1/2
= 2A3/2 cos (2 + gk3/2
3 4 3

400
+ / (=1/2)s73/% cos(r/4 + s)ds.

2
513/2

We have to deal with two integrals of type

+o00 d .
/ S_3/2.—€lsds
23/2 ids

. 1 [t .
= (WD / (=3/2)s7%2eids = O(A~4).
A

l 3/2
Eventually we find

T

G(—=A) = A3 47712 ¢o8 (4

2
+ 513/2) + 0oL,

202
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With () x>0 standing for the decreasing sequence of the zeroes of the Airy func-
tion (cf. Lemma A.7.7), we have the following table of variation for the function G.

n ‘—oo e Mkt Mak+1 Mok oM no +00
G'm=a'(mM| 0 - + - + = + 0
G'(m=unm | 0 - 0 + 0 - 0 - 0 — 0 + 0
G(n) 0 o Gu+2) /' Gnakt1) o G(nzk) -+ Gn1)  G(no) /' 1
U G(n)

Na —7.944133589 —0.1187912133

n3 —6.786708100 0.1333996865

N2 —5.520559828 —0.1550343634

m —4.087949444 0.1917571397

1o —2.338107410 —0.2743520591

N9 —12.82877675 0.08315615192

ns —11.93601556 —0.08775971160

n7 —11.00852430 0.09322050200

Ne —10.04017434 —0.09984115980

N5 —9.022650854 0.1080976882

Lemma A.7.15. The zeroes of the function G on the real line are simple and make a
decreasing sequence of negative numbers (£1); <o such that

o Mak42 <6ak+2 < N2k+1 <E2k+1 <Mak <2k, So~—1.38418.  (A.7.23)
The largest ten zeroes of G are given by the following:

o = —1.38418, & = —3.33004, £ = —4.86074, £ = —6.18885,
£y =—7.39024, £5=-8.5022, £¢=—10.5366, & = —11.4826,
fs = —12.3913, £9 = —13.2679.

Forall k € N, we have
G(n2k) <0 < G(N2k+1)s (A.7.24)

and G(nax) (resp., G(Nag+1)) is a local minimum (resp., maximum) of G near 1y
(resp., Nag+1)- Moreover, G(ng) is an absolute minimum of the function G on the real
line.
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N.B. We claim also that

|G(M21)| > G(Mak+1) > |G (M2k42). (A.7.25)

but shall not provide a complete proof for that statement, which is anyway not needed
is our Section 4.3.

Proof. In the first place, we know that G(79) <0 and G strictly increases on [1g, +00)
so that &y ~ —1.38418 is defined as the unique zero of G on (79, 0) since G(0) =
2/3. We may note that we found in particular that Vi > 19, 1 > G(n) > G(no).
Also, the first ten zeroes of G are simple and satisfy (A.7.23), (A.7.24), and (A.7.25).
Moreover, using Lemma A.7.10, we obtain that for A > 12,

3n 2
_13/2
cos (—4 + 3

T 2
: - _13/2
sm(4 + 3

As aresult, if —A is a double zero of G we must have both inequalities above, which
is impossible. As a result all zeroes of G are simple’ and located on (—oo, 0). Let us
consider the interval [n25 41, 72k ], We have

G2 =0= < 0.0433716,

A(=A) =0 => < 0.004146,

Ai(Nak+1) = Ai(nak) =0,  Ai'(Nor41) <0 < Ai'(nar), AL" > 0o0n (Nor41. N2k)-

As a result, we obtain that G has a local minimum at 7,; and a local maximum at
Mok 1. Moreover, we find from (A.7.17) in Lemma A.7.10 and k > 5 that

(2 3/2
max(sm(4+3|nzk| )

which implies that

. T 2 3/2
mln( cos(4 + 3|772k| )

We know that Ai’(n,x) > 0, which implies, thanks'" to (A.7.5)

4

2
sin (z + §|772k+1|3/2)‘) < 0.004146

2
cos (% + 5|n2k+1|3/2) D > 0.99999.

2 2
cos (% + §|7’]2k|3/2) < -0.99999, cos (% + 5|r;2k+1|3/2) > 0.99999,

°Tt is not hard to obtain an asymptotic version of this, namely the same result for A large
enough. However, asymptotic methods provide asymptotic results and to get a result at a finite
distance, we had to use the numerical results of Lemma A.7.10, grounded on a numerical estim-
ate of the constants appearing in Theorem A.7.5.

9Here this is proven if k is large enough from (A.7.5), and we leave to the reader the proof
of a numerical estimate analogous to Lemma A.7.10 for the derivative of the Airy function. A
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and Lemma A.7.10 implies that G(12x) < 0 < G(n2x+1), Which is (A.7.24). Since
the function G is strictly monotone decreasing on the interval [1af 41, 2k], it has a
unique simple zero &4 on the interior of this interval. Analogously, we can prove
that on the interval [1)2x 42, 2k +1], it has a unique simple zero &, .4, on the interior
of this interval, proving that the sequence of zeroes of the function G is decreasing
strictly with

N2k+2 < Eak42 < Nak+1 < a1 < Mok <&k, k>0,

We shall prove a weaker statement than (A.7.25): we know that |G ()| < |G(no)|
for 1 </ < 9 from the numerical values obtained above. Moreover, if A > 12 we find

1G(=A)| < A73477V2(1 + 0.0433716) < 0.0913016 < |G (10)| = 0.2743520591,

proving indeed that G (7o) is the absolute minimum of the function G on the real line,
since the desired estimate is proven for n > 719 and for n < 5y, either G(n) > 0, or
—0.0913016 < G(n) < 0if n < —12. As said above, the values less than 12 are treated
directly by a numerical calculation. The proof of the lemma is complete. |

A.8 Miscellaneous formulas

A.8.1 Some elementary formulas

We define for 7 € R,

/’ dt
arctant = e
0 1+ 2

and we note that arctan t € (—x/2, /2),
YVt eR, tan(arctant) =7, V6 € (—xn/2,7/2), arctan(tanf) = 6.

Moreover, we have for T € R,

) 1
ezarctanr — m(l + i‘L’), (A81)

since for 0 € (—n/2,7/2), T = tand, we have

direct estimate is possible, using (A.7.2) and the identity (to be differentiated) for A > 0,

—1/4 T 2
2 Lsin( =+ 2A%2 ) + a2,
T { (4 3
AS/Z (T i
ao(h) = el (3337 /R mERRY2ET (0 (63 /3) — 1) dE.

M(-2) =
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14 % =
T cos2 0
and thus
1 1
cosf >0=cosf = ——— = —sinf = — (1 + 12)">22¢(1 + 7?),
ST e e )
so that
e'? = ;(1 +it)
V1412
Let a € Ry be given. The Fourier transform of 1_, 4] is
a X _ b 2
/ e 2TxE gy = 2/ cos(rx§)dx = —[sm(2nx§)] -0 = M.
—a 0 E T[E

A.8.2 Taking the derivative of Fy on R+
We have, using a parity argument,
2k+l ( 1)[ 21

: 1 . 2k+1
Fk(a):/Rsmar( +iT1) Z /smar Jr.

2 k+1 2)k+1
mt (1+1?) 0<2] =2k nt (1+1?)

We see also that 1 + 2k + 2 — 2/ = 2k + 3 — 2] > 3 so that we can take the derivative
of Fy and get

cosar ( 2k+1 )(— 1! c? 1 (1+it)k
Fl(a)= Z / (1+12)k+1 r:;/R(cosar)Re((] lt)k+1)dT

0<2l<2k

with absolutely converging integrals. For a > 0, we have

1 i)k
Fi@) =~ / (cosat)%dr, (A.8.2)

since

. A 1d cos(ar)
lim

yim | Wdr makes sense for j < 2k + 1 (and vanishes for j odd).

A.8.3 A proof of the weak limit
We have for u € . (R"), according to (1.2.1),

(127 (2 + £2) < a))"uu) = // W, u) (x. E)ddE,
2n(x2+£2)<a



Miscellaneous formulas 207

so that implies
> Fe(@)(Peu.u) 2y = // W, u)(x, £)dxdE.
k>0 2 (x2+£2)<a

Choosing now u = uy, as a normalized eigenfunction of the harmonic oscillator with
eigenvalue k + %, we obtain

Fe(a) = //2 e, B0

Since the function (x, £) = W(uy, ur)(x, £) belongs to the Schwartz class of R2",
we find that

tim Fe@) = [[ W dxds = il 2o, = 1
Rn

a——+o0o

which is the sought formula.

A.8.4 A different normalization for the Wigner function

The paper [39] is using a different normalization for the Wigner distribution in »
dimensions with

W) 6) = @0 [ (e 3)o(x - 5)e ez

The relationship with definition (1.1.4) is W(u, v)(x, &) = W(u, v)(x, %)(271’)_".
As a result, we find that

6B (k)= s | W u)(x, £)doxd.
”u”Lz(R”)=1 ‘x|2+|$|25R2
is equal to

2= //|x|2+4n2|5|25mW(“’“)(x’f)dxcfé

"u”L2(Rn)_1
= sup // Wu,u)(x,&)dxdé,
”u”LZ(Rn):l 2ﬂ(|x‘2+|‘§|2)§R2
and we have proven here that for u € L?(R") with norm 1

/[ " Wu,u)(x,E)dxdé
[x]2+[g]2< L =&

a _ K=
2 T 27w

1 +o00 T ,R2
<1- / et ldr =1— M
(n—=11J, L'(n)
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where the upper incomplete Gamma function I'(z, x) is given by
400
I'(z,x) = / > le7ldt. (A.8.3)
X

This is indeed the result of [39, Theorem 1].

N.B. Let x > 0 be given and let z € C with Rez > 0. Then, we have

+o0 +o00
I'(z,x) = / (s +x)* e ¥ds = e_x/ (s + x)*te™5ds,
0 0

sothatifz =n + 1,n € N, we find

+00 +oo
I'n+1,x) = e_x/o +x)'e ds=e"" Z (Z)xk/() s"Ke=5ds

0<k<n

k
. n . X
=e Z (k)xkF(n+l—k)=n!e Z R

0<k<n 0<k<n
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Figure A.1. The function G and its derivative the Airy function, on R_.
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