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Sparse polynomial approximation is an important tool for approximating high-dimensional
functions from limited samples – a task commonly arising in computational science and
engineering. Yet, it lacks a complete theory. There is a well-developed theory of best s-term
polynomial approximation, which asserts exponential or algebraic rates of convergence for
holomorphic functions. There are also increasingly mature methods such as (weighted)
ℓ1-minimization for practically computing such approximations. However, whether these
methods achieve the rates of the best s-term approximation is not fully understood.
Moreover, these methods are not algorithms per se, since they involve exact minimizers of
nonlinear optimization problems. This paper closes these gaps by affirmatively answering the
following question: are there robust, efficient algorithms for computing sparse polynomial
approximations to finite- or infinite-dimensional, holomorphic and Hilbert-valued functions
from limited samples that achieve the same rates as the best s-term approximation? We do
so by introducing algorithms with exponential or algebraic convergence rates that are also
robust to sampling, algorithmic and physical discretization errors. Our results involve several
developments of existing techniques, including a new restarted primal-dual iteration for
solving weighted ℓ1-minimization problems in Hilbert spaces. Our theory is supplemented by
numerical experiments demonstrating the efficacy of these algorithms.
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Abstract

Sparse polynomial approximation has become an indispensable technique for approx-
imating smooth, high- or infinite-dimensional functions from limited samples. This
is a key task in computational science and engineering – e.g., surrogate modeling
uncertainty quantification, wherein the underlying function is the solution map of a
parametric or stochastic Differential Equation (DE). Yet, sparse polynomial approxi-
mation lacks a complete theory. On the one hand, there is a well-developed theory of
best s-term polynomial approximation, which asserts exponential or algebraic rates
of convergence for holomorphic functions. On the other hand, there are increasingly
mature methods such as (weighted) `1-minimization for computing such approxi-
mations. While the sample complexity of these methods has been analyzed through
compressed sensing theory, whether they achieve the rates of the best s-term approxi-
mation is not fully understood. Furthermore, these methods are not algorithms per
se, since they involve exact minimizers of nonlinear optimization problems. This
work closes these gaps. Specifically, we consider the following question: are there
robust, efficient algorithms for computing sparse polynomial approximations to finite-
or infinite-dimensional, holomorphic and Hilbert-valued functions from limited sam-
ples that achieve the same rates as the best s-term approximation? We answer this
affirmatively by introducing algorithms with exponential or algebraic convergence
rates that are also robust to sampling, algorithmic and physical discretization errors.
We tackle both scalar- and Hilbert-valued functions, this being particularly relevant
in parametric or stochastic DEs. Our results involve several significant developments
of existing techniques, including a novel restarted primal-dual iteration for solving
weighted `1-minimization problems in Hilbert spaces. Our theory is supplemented
by numerical experiments demonstrating the practical efficacy of these algorithms.
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Chapter 1

Introduction

A fundamental task in computational science and engineering involves accurately
approximating a smooth target function from limited data. Such a task arises notably
in the study of parametric models of physical processes. Here the variables represent
the parameters in the system, e.g., material properties, forcing terms, or boundary
information, and the parametric model is often represented as a (system of) Differ-
ential Equations (DEs) or Partial Differential Equations (PDEs) depending on these
parameters. Important objectives involve understanding how the choice of such pa-
rameters affect the output(s) of the system and, in the stochastic setting, understanding
how uncertainty in the parameter values propagates to its output – the latter being one
of the key tasks in computational Uncertainty Quantification (UQ) [62, 91, 128, 131].

1.1 High-dimensional function approximation from limited samples

Abstractly, this task can be recast as that of approximating an unknown target function

f W U! V ; y 7! f .y/;

from sample values (or snapshots)

f .y1/; : : : ; f .ym/: (1.1)

Here, the input space U is typically a subset of Rd (in the finite-dimensional case)
or RN (in the infinite-dimensional case). The output space V could either be a scalar
field, a finite-dimensional vector space or an infinite-dimensional Banach or Hilbert
space.

This problem is challenging in a number of ways. First, the dimension d is high,
since modern parametric models typically involve many parameters. It may also be
infinite, e.g., in the case of a random field represented via its Karhunen–Loève expan-
sion. Therefore, care must be taken to design methods that scale well with dimension.
In addition, the amount of samples m is often highly limited. For example, in the
parametric DE setting, each evaluation of f involves an expensive computational
simulation. The data (1.1) is also always corrupted by errors, due to noise in physical
experiments or numerical error in solving a DE. And finally, since the output f .y/
is often the solution of DE parametrized by the vector y , it may consequently take
values in an infinite-dimensional Banach or Hilbert space. While it is commonplace
to circumvent this issue in practice by considering scalar-valued quantities of inter-
est (i.e., functions of the form g.y/ D Q.f .y// for some known map Q W V ! C),
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approximating the full function f is both of theoretical interest and practical impor-
tance [52].

Remark 1.1. As a further consideration, we note that in many scenarios one may
have substantial flexibility to choose the sample points y1; : : : ; ym 2 U in (1.1).
However, in other scenarios they may be fixed, e.g., when dealing with legacy data.
In this work, we consider Monte Carlo sampling – which may be considered either
as a designed sampling strategy or a fixed one, depending on the setting. Here, the
samples are drawn randomly and independently of an underlying probability measure
on U. This is very common in practice, in particular in UQ settings.

1.2 Smoothness and best s-term polynomial approximation

A key characteristic of parametric model problems is that the target function f is
often smooth. There is now a large body of literature that has established that solution
maps of a wide range of different parametric DEs are holomorphic (i.e., analytic)
functions of their parameters. We mention in passing problems such as elliptic PDEs
with affine and (certain) nonaffine parametric dependence, parabolic PDEs, PDEs
over parametrized domains and shape uncertainty, parametric Initial Value Problems
(IVPs), parametric hyperbolic problems and parametric control problems. Classical
results in this area can be found in, e.g., [146]. For surveys of more recent results, we
refer to [41] and [8] and references therein.

In tandem with the effort to establish holomorphic regularity of parametric DEs,
there has also been a focus on applying polynomial methods, and in particular, best
s-term polynomial approximation to construct finite approximations to such func-
tions. In best s-term approximation, the function f is approximated by an s-term
expansion corresponding to its largest s coefficients (measured in the V -norm) with
respect to a polynomial basis. Common choices include multivariate Taylor polyno-
mials, tensor-product Legendre and Chebyshev polynomials on bounded hypercubes
or tensor-product Hermite and Laguerre polynomials on Rd or Œ0;1/d , respec-
tively. Over the last fifteen years, there have been significant developments in the
approximation theory of such techniques (see Section 1.6). Signature results have
established exponential and algebraic convergence rates for the best s-term approx-
imation. The former assert that the error decays at least exponentially fast in s1=d in
finite dimensions for any holomorphic function. The latter assert that the error decays
algebraically fast; specifically, like s1=2�1=p for some 0 < p < 1. These algebraic
rates also hold in infinite dimensions, thus establishing best s-term approximation as
a (theoretical) means to approximate holomorphic functions of infinitely many vari-
ables. We review several such results in Section 2.6.



Computing sparse polynomial approximations 3

1.3 Computing sparse polynomial approximations

Unfortunately, the best s-term approximation cannot usually be computed from the
samples (1.1). Indeed, constructing it in theory involves computing and then search-
ing over infinitely many coefficients. Both tasks are generally impossible. Therefore,
there has also been a focus on methods to compute accurate polynomial approxima-
tions from sample values.

One line of work focuses on least-squares methods, wherein a polynomial ap-
proximation (or sequence of approximations) is computed in a fixed polynomial
subspace (or sequence of nested subspaces). See Section 1.6 for relevant references.
Such methods are essentially optimal if a (sequence of) polynomial subspace that
gives a quasi-best s-term approximation is known.

However, this information is generally unavailable in practice (although it may
be for certain simple parametric DEs). It essentially equates to knowing the region of
holomorphy of the underlying function, which is itself similar to knowing the order
of importance of the parametric variables, and their relative strengths. To counter
this, there are adaptive least-squares methods [33, 35, 41, 45, 63, 101, 102]. Here one
strives to construct such subspaces adaptively using the given data (1.1), typically
via a greedy procedure. However, these methods currently lack theoretical guaran-
tees [35, 41].

To overcome this limitation, there has also been a substantial focus on methods
inspired by compressed sensing [13, 61, 145]. See Section 1.6 once more for relevant
references. These methods seek a polynomial approximation in a larger subspace,
whose coefficients are defined as a minimizer of an `1- or weighted `1-minimization
problem. A key component of this endeavour has been to determine the sample com-
plexity of such schemes, i.e., quantifying how many (typically Monte Carlo) samples
m are sufficient to obtain an approximation with a certain guaranteed error bound,
involving a (weighted) best approximation error plus a truncation error. Yet, precise
rates of approximation (i.e., algebraic or exponential in m) have typically not been
derived for these schemes in previous works. Another key limitation of past work is
that such methods are not algorithms per se. Indeed, they consider exact minimiz-
ers of nonlinear optimization problems, which cannot be computed exactly in finitely
many arithmetic operations.

1.4 Problem and main contributions

Least-squares and compressed sensing techniques are commonly applied to compute
polynomial approximations to parametric and stochastic DEs. However, as explained
above, there is a key gap between theory and practice. The theory of the best s-term
approximation asserts the existence of polynomial approximations that attain specific
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algebraic or exponential rates of convergence for arbitrary holomorphic functions.
Yet, it is currently unknown whether similar rates in terms of the number of samples
m can be obtained via an algorithm that computes a polynomial approximation from
the samples (1.1) in finitely many arithmetic operations. The purpose of this work is
to close this gap.

We now describe the problem considered in this work. Let U D Œ�1; 1�d , where
d 2 N or d D 1, and V be an arbitrary separable Hilbert space. Let % be either the
uniform or Chebyshev (arcsine) measure and consider the associated tensor-product
Legendre or Chebyshev polynomials. Now let f W U ! V be the unknown target
function that we seek to approximate, draw m sample points y1; : : : ;ym i.i.d. from %

and let
di D f .yi /C ni ; i D 1; : : : ; m; (1.2)

be m noisy samples of f . Then, informally stated, the problem we study in this
work is the following: devise algorithms that take (1.2) as input and compute the
coefficients of a polynomial approximation Of to f with guarantees on both the com-
putational complexity and the error f � Of . Note that the formal problem statement
involves several technicalities (in particular, the definition of an algorithm), so we
defer it to Section 3.2.

Our main contributions are on the existence of such algorithms (see Tables 4.2
and 4.3 and Algorithms 2 and 5). Let k�kL2%.UIV/ be the Lebesgue–Bochner norm.
Then, in all cases, we establish an error bound of the form

kf � Of kL2%.UIV/ . Eapp CEsamp CEdisc CEalg; (1.3)

with probability at least 1 � � with respect to the (Monte Carlo) draw of the sample
points yi . This bound provides a complete accounting for the main sources of error
in the problem.

• Eapp is a polynomial approximation error term. Depending on the specific setup,
it decays algebraically (Theorems 3.4–3.9) or exponentially (Theorems 3.10–
3.12) with respect to m (up to several log terms). For instance, in the infinite-
dimensional setting (Theorems 3.7–3.9), this term is given by

Eapp D C �
� m

c0L

�1=2�1=p
; L D log.m/ � .log3.m/C log.��1//; (1.4)

where c0 � 1 is a universal constant, C is a constant depending on (the region
of holomorphy of) f only, p 2 .0; 1/ is a parameter determined by the region of
holomorphy of f and 0 < � < 1 is the failure probability of (1.3). It is completely
equivalent to the corresponding algebraic decay rate (Theorem 2.5) for the best
s-term approximation error, except with s replaced by m=.c0L/.
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• Esamp is the sampling error. It is equal to

Esamp D

vuut 1

m

mX
iD1

knik
2
V ;

i.e., the norm of the error in the samples (1.2). The presence of this term means
that the algorithms are robust to errors in the samples.

• Edisc is the physical discretization error. This term accounts for the fact that an
algorithm cannot work with (i.e., take as input, or perform computations in) V

when it is an infinite-dimensional Hilbert space. The algorithms (see Tables 4.2
and 4.3 and Algorithms 2 and 5) therefore work in a finite-dimensional discretiza-
tion space Vh �V . This is a standard step in parametric DEs, where discretization
is often performed via techniques such as the Finite Element Method (FEM). In
this case, Vh is a finite element space. The term Edisc quantifies the effect of this
error. It is given by

Edisc D kf �Ph.f /kL1.UIV/;

where Ph WV!Vh is the orthogonal projection onto V . In other words, the effect
of working in Vh instead of V is determined by the error of the (pointwise) best
approximation Ph.f / to f from Vh. If V has finite dimension, we may set

Vh D V ;

which implies that Edisc D 0 in this case.

• Ealg is the algorithmic error. It depends on the number of iterations t performed
by the algorithm that computes the coefficients of the polynomial approxima-
tion Of . We construct one type of algorithm (see Table 4.2 and Algorithm 2)
where this term is O.1=t/ as t ! 1. This decay is relatively slow, especially
in the regime where Eapp is exponentially small in m. However, we also present
an efficient algorithm (Table 4.3 and Algorithm 5) for which this term decays
exponentially fast in t (specifically, O.e�t / as t !1), subject to an additional
theoretical constraint. This constraint is seemingly an artefact of the proof. Our
numerical experiments suggest it is unnecessary in practice.

We also determine the computational cost of the algorithms in all cases. Here, we
draw two main conclusions.

• In the infinite-dimensional case (Theorems 3.8–3.9), the computational cost is
subexponential in m. Specifically, after t iterations of the algorithm, it is

O
�
t �m1C.˛C1/ log.4m/= log.2/�; m!1;

where ˛ D 1 (Legendre) or ˛ D log.3/= log.4/ � 0:79 (Chebyshev).
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• In the finite-dimensional, exponential setting (Theorems 3.11–3.12), the compu-
tational cost is algebraic in m for fixed d : namely,

O
�
t �m˛C2.log.m//.d�1/.˛C1/

�
; m!1;

for the same values of ˛.

Note that these computational cost estimates also depend polynomially on the dimen-
sion of the discretization space Vh.

1.5 Discussion and further contributions

This work bridges a gap between the best s-term polynomial approximation theory
and algorithms for computing such approximations from sample values. In particular,
it asserts algebraic and exponential rates with respect to the number of samples m
that are highly similar to those of the best approximation. In other words, polynomial
approximations of holomorphic functions can be achieved in a sample efficient man-
ner. Furthermore, they can be computed in supexponential or algebraic computational
cost.

Our main results assume holomorphy of the underlying function in order to attain
these rates. However, they require no a priori knowledge of the region of holomor-
phy. As discussed, if such information is available, then least-squares methods can be
used more straightforwardly to compute an approximation. The holomorphy assump-
tion is made in order to have concrete algebraic and exponential rates. However, our
algorithms exist independently of this smoothness assumption. It would be possible
to also provide rates for other classes of functions, e.g., those possessing finite orders
of (mixed) smoothness. We use holomorphy as our assumption due to its strong con-
nections with the theory of parametric DEs.

Our algorithms and analysis are based on compressed sensing theory and involve
computing approximate minimizers of certain weighted `1-minimization problems.
Here we make several additional contributions.

(i) We provide precise error rates for polynomial approximation via com-
pressed sensing. As noted, most prior work on compressed sensing involves
quantifying the sample complexity to obtain a certain (weighted) best ap-
proximation error. We impose the holomorphy assumption to obtain spe-
cific algebraic and exponential rates.

(ii) Prior works consider polynomial approximations formed by exact minimiz-
ers of nonlinear optimization problems. We introduce novel, efficient algo-
rithms to compute approximate minimizers in finite computational time
(see also below).
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(iii) While these algorithms are motivated by the desire to have full theoreti-
cal guarantees, they are also completely practical. We present a series of
numerical experiments demonstrating their practical efficacy. In fact, our
experiments show that these algorithms work even better than our theoreti-
cal results suggest.

(iv) Most prior works on compressed sensing (with the exception of [52]) focus
on scalar-valued functions, e.g., quantities of interest of parametric DEs.
We develop algorithms that work in the Hilbert-valued setting, and, cru-
cially, provide error bounds that take into account physical discretization
error (see above).

More precisely, we first formulate the approximation problem as the recovery of a
finite, Hilbert-valued vector (i.e., an element of VN ) via a so-called weighted, Square-
Root LASSO (SR-LASSO) optimization problem. The use of the SR-LASSO, as
opposed to the classical LASSO or various constrained formulations, is crucial to this
work. It is noise-blind. Hence, it allows us to devise algorithms that do not require any
a priori (and generally unavailable) estimates on the measurement error ni in (1.2) or
the truncation error with respect to the finite polynomial space in which the approxi-
mation is constructed.

To develop algorithms, we employ two key ideas. First, we use a powerful, gen-
eral-purpose first-order optimization method for solving nonsmooth, convex opti-
mization problems. Second, we use the technique of restarts to drastically accelerate
its convergence. For the former, we employ the primal-dual iteration (also known as
the Chambolle–Pock algorithm) [30,31]. We present error bounds for this method for
solving the Hilbert-valued, weighted SR-LASSO, which decay like O.1=t/, where t
is the iteration number. Next, we use a novel restarting procedure, recently introduced
in [47, 48], to obtain faster, exponential decay of the form O.e�t /.

To the best of our knowledge, this is the first time either the primal-dual iter-
ation or a restarting scheme has been applied to the problem of sparse polynomial
approximation. Many existing works use blackbox solvers such as SPGL1 [143,144].
See [52] for a forward-backwards splitting technique in combination with Bregman
iterations and fixed-point continuation and [142] for an approach based on Douglas–
Rachford splitting. Besides its amenability to theoretical analysis, the primal-dual
scheme is also particularly attractive because of its insensitivity to parameter choices
and the possibility of performing acceleration via restarts.

As noted, polynomial-based methods have become popular tools for the practi-
cal approximation high-dimensional, holomorphic functions arising in problems in
computational science and engineering. However, they are by no means the only
method. Other popular techniques include Gaussian processes (also known as krig-
ing) [128, 131], radial basis methods [84, 128], reduced-order methods [78, 118] and,
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recently, methods based on deep neural networks and deep learning [5, 6, 11, 49, 59,
60, 76, 92, 114, 115, 125]. Our goal in this work is to develop algorithms for con-
structing polynomial approximations that achieve the same rates as the theoretical
benchmark provided by the best s-term polynomial approximation. An important
consideration that we do not address in this work is tractability and the informa-
tion complexity [111, 113] of these classes of functions and, in particular, whether
polynomial-based methods constitute optimal algorithms. This question has been
studied in the infinite-dimensional case in recent work [12]. Here, it is shown that the
rate m1=2�1=p is a lower bound for the (adaptive) m-width for such classes, i.e., no
combination of m (adaptive) linear samples and a (potentially nonlinear) reconstruc-
tion map can achieve an approximation error decaying faster than this rate. Notice that
this rate is the same, up to constants and logarithmic factors, as (1.4). Unfortunately,
this does not imply our algorithms are near optimal for this problem – and, moreover,
that standard information, i.e., pointwise samples, constitutes near-optimal informa-
tion – because our theoretical results in the infinite-dimensional case are nonuniform.
See Remark 3.13 for further discussion on this point, and Chapter 11 for further com-
ments on tractability.

1.6 Related work

The systematic study of best s-term polynomial approximation of high- or infinite-
dimensional holomorphic functions began around 2010 with the works of [25,42,43,
75, 139]. For reviews, see [41] and [8, Chapter 3]. Note that many of these works
assume the function is a solution of a parametric PDE, and therefore first demon-
strate that such a function is holomorphic. However, other works avoid this step and
use specific properties of the DE to obtain refined estimates. See, e.g., [19, 20] for
results of this type. Other recent works such as [8,27] also study the problem without
assuming the function is a solution of a parametric PDE.

The study of least-squares method for constructing such approximations from
sample points began in the early 2010s [34,40,100,105]. There has since been signif-
icant research on this topic. Many subsequent works have pursued extensions, such as
enhanced sampling strategies [65,104,107,126,135,155,156], near-optimal sampling
strategies [9,44,71], optimal sampling strategies [21,54,56,85,93,137], methods for
general domains [14, 55, 103], optimal and adaptive methods [46, 101, 102] and mul-
tilevel strategies [70]. See [45, 67, 69] and [8, Chapter 5] for reviews.

Compressed sensing was introduced in the context of image and signal processing
by modeling image and signals as sparse vectors [13,29,57,61]. Its use in polynomial
approximation started early in the last decade with the works of [26,58,99,120,149].
This has also led to substantial research. See [51, 52, 58, 99, 119, 151] and refer-
ences therein for applications to parametric PDEs. Various extensions include refined
sampling strategies [17, 53, 68, 72, 83, 94, 134], iterative methods and basis selection
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techniques [16, 74, 142, 152, 152–154], nonconvex optimization methods [64, 140,
148, 150], sublinear-time algorithms [38, 39], gradient-enhaced minimization tech-
niques [15, 66, 82, 117, 130, 133], methods for dealing with corrupted samples [3, 7,
80, 127] and multilevel and multifidelity strategies [28, 109]. For additional informa-
tion and reviews, see [73, 86, 97, 98, 108] and [8, Chapter 7].

Our work combines and extends several key elements of this literature. First,
weighted `1-minimization, which was developed in [1–4, 37, 116, 121, 151] and [8,
Chapter 6–7]. Second, the notions of lower and anchored sets (see Section 2.7). These
have been extensively studied in the best s-term polynomial approximation literature.
Compressed sensing techniques aiming to exploit such structures were first consid-
ered in [2, 3, 37] and [8, Chapter 7]. Third, the extension of classical compressed
sensing theory from vectors in RN (or CN ) to Hilbert-valued vectors in VN . This
was first developed in [52]. In order to prove our main results, we also extend this
work to the weighted setting.

See [30, 31, 31] for more on the primal-dual iteration and [122–124] for the gen-
eral notion of restarts in continuous optimization. Note that there are also various non-
optimization based techniques in the compressed sensing literature (see, e.g., [61]),
including iterative thresholding and greedy methods. The latter are closely related to
the adaptive least-squares methods discussed earlier [8, Section 6.2.5]. However, such
techniques currently do not possess theoretical guarantees in the weighted setting.

There have been several previous attempts to connect compressed sensing theory
for analyzing the sample complexity of polynomial approximations via (weighted)
`1-minimization and best s-term polynomial approximation theory. In [119], the au-
thors consider approximating scalar quantities of interest of solutions to affine para-
metric operator equations in Banach spaces. Assuming a certain weighted summabil-
ity criterion, they first show holomorphy of the parametric solution map and then use
a weighted `1-minimization procedure in combination with Chebyshev polynomials
to derive algebraic rates of convergence, similar to (1.4). Our work is more general,
since its starting point is a holomorphic function, not a solution of a parametric opera-
tor equation. We also consider Hilbert-valued functions, i.e., the whole solution map,
not a scalar quantity of interest of it. Moreover, the work of [119] is based on exact
minimizers of certain constrained, weighted `1-minimization problems, whereas we
construct full algorithms. Recently, at the same time as writing this work, some sim-
ilar results were presented in the book [8] written by two of the authors. However,
these only consider the scalar-valued case and do not address algorithms, which is
the main focus of this work.

1.7 Outline

The remainder of this work proceeds as follows. We commence in Chapter 2 by
introducing preliminaries, including key notation and best s-term polynomial
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approximation theory. Next, in Chapter 3 we first formally define the problem and
then state our main results on the existence of algorithms. In Chapter 4 we derive
these algorithms. Then in Chapter 5 we present numerical experiments demonstrat-
ing their practical performance. Chapters 6–10 are devoted to the proofs of the main
results. See Chapter 6 for a detailed overview of these chapters. Finally, in Chapter 11
we present our conclusions.



Chapter 2

Preliminaries

In this chapter, we introduce key preliminary material needed later. After some initial
notation, we define the domains (the symmetric hypercubes), probability measures
(the uniform and Chebyshev measures, respectively) and the Lebesgue–Bochner
spaces. We next formalize our main smoothness assumption: namely, holomorphy
in suitable (unions of) Bernstein polyellipses. We then introduce orthogonal poly-
nomial expansions and best s-term polynomials approximations, before discussing
sequence spaces and best s-term approximations of sequences. Finally, we conclude
by reviewing algebraic and exponential rates of convergence for best s-term polyno-
mial approximations, before a short discussion on lower and anchored sets.

2.1 Notation

We first introduce some notation. For d 2 N, we write Œd � D ¹1; : : : ; dº. We also
extend this to allow for d D1, in which case Œd � D N is the set of positive integers.
For d 2 N [ ¹1º, we write ej , j 2 Œd �, for the standard basis vectors, i.e., ej D
.ıjk/k2Œd�. Also for d 2 N [ ¹1º, we write Rd or Cd for the vector space of real
or complex vectors of length d . Note that when d D 1, Rd and Cd are the vector
spaces RN and CN of real- or complex-valued sequences indexed over N.

For 1 � p � 1, we write k�kp for the usual vector `p-norm and for the induced
matrix `p-norm. When 0 < p < 1, we use the same notation to denote the `p-
quasinorm. For 1 � p; q <1 we define the matrix `p;q-norm of an m � n matrix
G D .Gij /

m;n
i;jD1 as kGkqp;q WD

Pn
jD1.

Pm
iD1 jGij j

p/q=p , and similarly when p D1
or q D1.

Throughout this work, we consider sets of multi-indices. Let d 2 N. Then we
define the multi-index set F as the set of nonnegative multi-indices, i.e.,

F WD Nd
0 D

®
� D .�k/

d
kD1 W �k 2 N0

¯
; d <1: (2.1)

When d D 1, we consider multi-indices in NN
0 with at most finitely many nonzero

terms, i.e., we define

F WD
®
� D .�k/

1
kD1 2 NN

0 W j¹k W �k ¤ 0ºj <1
¯
; d D1: (2.2)

In either finite or infinite dimensions, we write 0 and 1 for the multi-indices consisting
of all zeros and all ones, respectively. Finally, the inequality � � � is understood
componentwise for any multi-indices � and �.
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2.2 Domains and function spaces

Let % D %.1/ be a probability measure on Œ�1; 1�. In this work, we focus on two main
examples, the uniform and Chebyshev (arcsine) measures. These are defined by

d%.y/ D 2�1 dy; and d%.y/ D
1

�
p
1 � y2

dy; y 2 U; (2.3)

respectively. See Chapter 11 for a short discussion on other domains and measures.
In finite dimensions, we let U D Œ�1; 1�d be the symmetric d -dimensional hyper-
cube and write y D .y1; : : : ; yd / 2 U for the variable in this domain. We define a
probability measure on U as the product measure

% D %.d/ WD %.1/ � � � � � %.1/:

In particular, the d -dimensional uniform and Chebyshev measures are given by

d%.y/ D 2�d dy and d%.y/ D
dY
kD1

1

�
q
1 � y2

k

dy; 8y 2 U;

respectively. In infinite dimensions, we consider the domain U D Œ�1; 1�N and write
y D .y1; y2; : : :/ 2 U for the variable in this domain. The Kolmogorov extension
theorem (see, e.g., [136, Section 2.4]) guarantees the existence of a tensor-product
probability measure on U, which we denote as

% D %.1/ D
Y
k2N

%.1/:

In either finite or infinite dimensions, for 1 � p � 1 we write Lp% .U/ for the corre-
sponding weighted Lebesgue spaces of complex scalar-valued functions over U and
k�kLp% .U/

for their norms.
Throughout, we let V be a separable Hilbert space over C (it presents few diffi-

culties to consider a complex field instead of the real field). We write h�; �iV and k�kV
for its inner product and norm. We define the weighted (Lebesgue-)Bochner space
L
p
% .UIV/ as the space consisting of (equivalence classes of) strongly %-measurable

functions f W U! V for which kf kLp% .UIV/ <1, where

kf kLp% .UIV/ WD

´ �R
U
kf .y/k

p

V
d%.y/

�1=p
1 � p <1;

ess supy2U kf .y/kV p D1:

Note that Lp% .U/ is a special case of Lp% .UIV/ corresponding to V D .C; j�j/.
When V is infinite dimensional, we usually cannot work directly with it. Hence,

we consider a finite-dimensional discretization

Vh � V : (2.4)
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Here h > 0 denotes a discretization parameter, e.g., the mesh size in the case of a
finite element discretization (as is common in parametric DEs). In the context of
finite elements, assuming (2.4) corresponds to considering so-called conforming dis-
cretizations. We let ¹'kºKkD1 be a (not necessarily orthonormal) basis of Vh, where
K D K.h/ D dim.Vh/. We write Ph W V ! Vh for the orthogonal projection onto
Vh and, for f 2 L2%.UIV/, we let Phf 2 L

2
%.UIVh/ be the function defined almost

everywhere as
.Phf /.y/ D Ph.f .y//; y 2 U: (2.5)

2.3 Holomorphy

Here we recall the definitions of holomorphy and holomorphic extension for Hilbert-
valued functions. We note that equivalent definitions are possible (see, e.g., [77,
Chapter 2]) and that the definition employed in this work is based on the notion of
the Gateaux partial derivative. For other details on differentiability of Hilbert-valued
functions we refer to [22, Chapter 17], and the references therein. Note the follow-
ing definitions apply in both the finite- (d 2 N) and infinite- (d D 1) dimensional
settings, where we recall that Œd � D N and Cd D CN when d D1.

Definition 2.1 (Holomorphy; finite- or infinite-dimensional case). Let d 2N [ ¹1º,
O � Cd be an open set and V be a separable Hilbert space. A function f W O ! V

is holomorphic in O if it is holomorphic with respect to each variable in O. That is to
say, for any z 2 O and any j 2 Œd �, the following limit exists in V :

lim
h2C
h!0

f .z C hej / � f .z/

h
2 V :

Let f W U ! V and U � O � Cd be an open set. If there is a function Qf W
O ! V that is holomorphic in O and for which Qf jU D f , then we say that f has a
holomorphic extension to O, or simply, that f is holomorphic in O. In this case, we
also define kf kL1.OIV/ WD k Qf kL1.OIV/ or, when V DC, simply kf kL1.O/. If O is
a closed set, then we say that f is holomorphic in O if it has a holomorphic extension
to some open neighborhood of O.

We are interested in approximating Hilbert-valued functions f WU! V that are
holomorphic in suitable complex regions containing U – specifically, regions defined
by Bernstein (poly)ellipses. When d D 1 the Bernstein ellipse of parameter � > 1 is
given by

E� D

²
1

2
.z C z�1/ W z 2 C; 1 � jzj � �

³
� C:

This is an ellipse with ˙1 as its foci and major and minor semi-axis lengths
1
2
.� ˙ ��1/. For d 2 N [ ¹1º, given � D .�j /

d
jD1 2 Rd with � > 1, we define
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the Bernstein polyellipse as the Cartesian product

E.�/ D E.�1/ � E.�2/ � � � � � Cd :

We denote the class of Hilbert-valued functions that are holomorphic in E.�/ with
norm at most one as

B.�/ D
®
f W U! V ; f holomorphic in E.�/; kf kL1.E.�/IV/ � 1

¯
: (2.6)

In infinite dimensions, we also consider a class of functions that are holomorphic in
a certain union of Bernstein polyellipses. Let 0 < p < 1, " > 0 and b D .bj /j2N 2

`p.N/. We define

R.b; "/ D
[´

E.�/ W � � 1;
1X
jD1

�
�j C �

�1
j

2
� 1

�
bj � "

µ
:

In analogy with B.�/, we write

B.b; "/ D
®
f W U! V ; f holomorphic in R.b; "/; kf kL1.R.b;"/IV/ � 1

¯
(2.7)

for the corresponding space of functions that are holomorphic in R.b; "/ with norm
at most one.

2.4 Orthogonal polynomials, polynomial expansions and best s-term
polynomial approximation

Under mild assumptions on %.1/ (see, e.g., [106, Section 2.1] or [132, Section 2.2]),
there exists a unique orthonormal polynomial basis ¹‰�º�2N0 of L2%.Œ�1; 1�/, where

‰� D‰
.1/
� is a polynomial of degree �. For the measures (2.3), these are the Legendre

and Chebyshev polynomials, respectively. Given the corresponding tensor-product
measure % on U D Œ�1; 1�d , we construct an orthonormal basis

¹‰�º�2F � L
2
%.U/

of L2%.U/ via tensorization

‰�.y/ D
Y
k2Œd�

‰�k .yk/; y 2 U; � 2 F :

Note that ‰.1/0 D 1 since %.1/ is a probability measure. Therefore, since � 2 F has
only finitely many nonzero entries, in infinite dimensions this equivalent to

‰�.y/ D
Y

kW�k¤0

‰�k .yk/;

which is a product of finitely many terms.
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Let f 2 L2%.UIV/. Then it has the convergent expansion (in L2%.UIV/) given by

f D
X
�2F

c�‰�; c� WD

Z
U

f .y/‰�.y/ d%.y/ 2 V ; (2.8)

where the coefficients c� are elements of V . Now let S � F be a finite index set and

PS IV D
°X
�2S

c�‰� W c� 2 V
±
� L2%.UIV/: (2.9)

Then the L2.UIV/-norm best s-term polynomial approximation fs of f is defined
as

fs 2 argmin
®
kf � gkL2%.UIV/ W g 2 PS;V ; S � F ; jS j D s

¯
: (2.10)

Note that fs has the explicit expression

fs D
X
�2S�

c�‰�;

where S� � F , jS�j D s, is a set of consisting of the multi-indices of the largest s
values of the coefficient norms .kc�kV /�2Nd

0
. By Parseval’s identity, the error of this

approximation satisfies

kf � fskL2%.UIV/ D

sX
�…S�

kc�k
2
V : (2.11)

2.5 Sequence spaces and best s-term approximation of sequences

The expression (2.11) motivates studying s-term approximation of sequences of poly-
nomial coefficients. To do this, we now introduce some further notation.

Let ƒ � F denote a (possibly infinite) multi-index set. We write v D .v�/�2ƒ
for a sequence with V -valued entries v� 2 V . For 1 � p � 1, we define the space
`p.ƒIV/ as the set of those sequences v D .v�/�2ƒ for which kvkpIV <1, where

kvkpIV WD

´ �P
�2ƒ kv�k

p

V

�1=p
1 � p <1;

sup�2ƒ kv�kV p D1:

Note that `2.ƒIV/ is a Hilbert space with inner product

hu; vi2IV D
X
�2ƒ

hu�; v�iV :

On occasion, we will consider complex, scalar-valued sequences. In this case, V D

.C; j�j/ in the various definitions above. For ease of notation, we simply write `p.ƒ/,
k�kp , h�; �i2 and so forth in this case.
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Definition 2.2 (Sparsity). Letƒ� F and c D .c�/�2ƒ be a V -valued sequence. The
support of c is the set

supp.c/ D ¹� 2 ƒ W kc�kV ¤ 0º:

A sequence is s-sparse for some s 2 N0 satisfying s � jƒj if it has at most s nonzero
entries, i.e.,

jsupp.c/j � s:

Definition 2.3 (Best s-term approximation error). Let ƒ � F , 0 < p � 1, c 2
`p.ƒIV/ and s 2 N0 with s � jƒj. The `p-norm best s-term approximation error
of c is

�s.c/pIV D min
®
kc � zkpIV W z 2 `

p.ƒIV/; jsupp.z/j � s
¯
:

Let c D .c�/�2F be the coefficients of some function f 2 L2%.UIV/, as defined
in (2.8). Then, when p D 2, we have the following:

�s.c/2IV D kf � fskL2%.UIV/;

where fs is its best s-term polynomial approximation (2.10). Therefore, we can study
the error of fs by studying the quantity �s.c/2IV . For notational purposes, we denote
this quantity in terms of the coefficients c. However, on some occasions, this term is
expressed as �s.f /2IV instead.

2.6 Rates of best s-term polynomial approximation

As noted, best s-term polynomial approximation of holomorphic functions is a well-
studied subject, especially in the context of solutions of parametric DEs. See, e.g.,
[23–25, 27, 36, 42, 43, 75, 115, 139, 141] and, in particular, [41] and [8, Chapter 3]. In
this section, we recap two standard types of error decay rates for this approximation,
those of algebraic and exponential type, respectively. Note that these results are for
Chebyshev and Legendre polynomial approximations – the main focus of the work.
The latter type of decay rate holds in finite dimensions, while the former holds in
both finite and infinite dimensions. In this work, these error decay rates serve as the
optimal benchmark against which to compare the approximations computed from
sample values.

The following two results are standard, and have appeared in various different
guises in the aforementioned works.

Theorem 2.4 (Algebraic rates of convergence; finite-dimensional case). Let 0 < p �
1 and f 2 B.�/ for some � > 1. Let c D .c�/�2Nd

0
be as in (2.8). Then, for every

s � 1 there are sets S1; S2 � F , jS1j; jS2j � s, such that

kf � fS1kL2%.UIV/ � C � s
1=2�1=p; kf � fS2kL1.UIV/ � C � s

1�1=p; (2.12)
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where fSi D
P
�2Si

c�‰� for i D 1; 2 and C D C.d;p;�/ > 0 depends on d , p and
� only.

Theorem 2.5 (Algebraic rates of convergence; infinite-dimensional case). Let 0 <
p < 1, " > 0, b D .bj /j2N 2 `

p.N/ and f 2 B.b; "/, where B.b; "/ is as in (2.7).
Then, for every s � 1 there are sets S1; S2 � F , jS1j; jS2j � s, such that

kf � fS1kL2%.UIV/ � C � s
1=2�1=p; kf � fS2kL1.UIV/ � C � s

1�1=p; (2.13)

where fSi D
P
�2Si

c�‰� for i D 1; 2 and C D C.b; "; p/ > 0 depends on b, " and
p only.

Observe that the curse of dimensionality is not avoided in the constant C.d;p;�/
in (2.12), but it is avoided in the rate. Conversely, (2.13) holds in infinite dimensions.

We next state a result on exponential convergence in finite dimensions. Such rates
have been established in various different works (see, e.g., [23,24,41,115,141]). The
following result is a minor modification of [8, Theorem 3.25], in which we allow
arbitrary s � 1 at the expense of a constant C in the error bound.

Theorem 2.6 (Exponential rates of convergence; finite-dimensional case). Let f 2
B.�/ for some � > 1 and c D .c�/�2Nd

0
be as in (2.8). Then, for every s � 1 there is

a set S � F , jS j � s, such that

kf � fSkL2%.UIV/ � kf � fSkL1.UIV/ � C � exp
�
�
s1=d

�
; (2.14)

for all

0 < 
 < .d C 1/�1

 
dŠ

dY
jD1

ln.�j /

!1=d
; (2.15)

where fS D
P
�2S c�‰� and C D C.d; 
; p; �/ > 0 is a constant depending on d ,


 , p and � only.

In Appendix A we show how these three theorems can be obtained as immediate
consequences of several more general results.

Remark 2.7. It is possible to improve the rate (2.14) by removing the .d C 1/�1

factor in (2.15) [141]. The difficulty in doing this is that such rates are not necessarily
attained in lower sets (this is, however, true if � is sufficiently large – see [8, Lemma
7.20]). As we discuss next, lower sets are a crucial ingredient in our analysis. Fortu-
nately, the rates described in Theorem 2.6 can always be attained in lower sets.

2.7 Lower and anchored sets

Our objective in this work is to construct a polynomial approximation that attains
error bounds that are similar to those of the best s-term approximation fs , for any
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holomorphic function f . Hence, ideally, we would have access to the multi-index
set S corresponding to the largest s coefficients of f (measured in the V -norm).
As discussed, this is not possible in general, since the only information we have
about f is its values at a finite number of sample points. Another problem is that
such coefficients could occur at arbitrarily large multi-indices, thus necessitating a
search over infinitely many multi-indices. Fortunately, it is well known that near-best
s-term polynomial approximations can be constructed using sets of multi-indices with
additional structure. These are lower sets (used in the finite-dimensional case) and
anchored sets (used in the infinite-dimensional case). Classical references for lower
and anchored sets include [50, 90, 96, 138]. More recently, these structures have been
used extensively in the construction of interpolation, least-squares and compressed
sensing schemes for polynomial approximation with desirable sample complexity
bounds (see, e.g., [8] and references therein).

Definition 2.8. A set ƒ � F is lower if the following holds for every �;� 2 F :

.� 2 ƒ and � � �/) � 2 ƒ:

A set ƒ � F is anchored if it is lower and if the following holds for every j 2 N:

ej 2 ƒ) ¹e1; e2; : : : ; ej º � ƒ:

Lower sets are typically used in finite-dimensional settings, with anchored sets
being employed in infinite dimensions. They are key concepts that we exploit in this
work. To underscore their usefulness, we remark in passing that the rates articulated
in not just Theorem 2.6, but also Theorems 2.4 and 2.5, can all be attained using s-
term approximations in lower or anchored sets, subject to some modifications. See
Appendix A.



Chapter 3

Problem statement and main results

In this chapter, we first formally define the problem we aim to solve before stating our
main results. This work concerns algorithms for computing approximation of Hilbert-
valued functions from finitely many sample values. We define this concept formally
in a moment. For now, though, we consider that an algorithm must take a finite input
and produce a finite output. Hence, in order to discuss algorithms, we first need to
define what these finite inputs and outputs are in our setting.

3.1 Samples

Let f 2 L2%.UIV/ be the function we seek to approximate. Throughout this work,
we consider m sample points y1; : : : ; ym 2 U drawn randomly and independently
according to the probability measure %. Corresponding to each sample point, we con-
sider the noisy sample values

di D f .yi /C ni 2 Vh; i D 1; : : : ; m;

where n D .ni /miD1 2 Vm is an error term, referred to as the sampling error. Observe
that the samples values di are assumed to be elements of the finite-dimensional space
Vh. This is a natural assumption to make. Indeed, in the context of parametric DEs,
the value f .y/ (the solution of the DE with parameter value y) is typically computed
via a (finite element) discretization of the DE, thus yielding an element of Vh, which
is the corresponding discrete (finite element) space.

As a result of the assumption di 2 Vh, the error term ni encompasses the error
involved in approximating f .yi / 2 V by an element of Vh, e.g., the (finite element)
discretization error in the context of a parametric DE. Note that we do not specify
precisely how such an approximation is performed, nor how large an error this results
in. In other words, we consider the computation that evaluates f at yi as a black box.
A particular case of interest is when the di are the orthogonal projections of the exact
sample values f .yi /, i.e.,

di D Ph.f .yi //; i D 1; : : : ; m:

However, we do not assume this in what follows, since in practice the numerical
procedure that yields the di may not involve computing the projection Ph. Our goal
is to develop algorithms for which the error scales linearly in knk2IV , the norm of the
noise, thus accounting for any black box mechanism for computing the samples.



20 Problem statement and main results

Recall that we consider a basis ¹'kºKkD1 for Vh. We assume that the computation
that evaluates f .yi / produces the coefficients of the sample values di in this basis
(i.e., the finite element coefficients in the aforementioned example). Therefore, we
now write the sample values as

di D f .yi /C ni D

KX
iD1

dik'k; i D 1; : : : ; m; (3.1)

and consider the values dik 2 C as the data we obtain by sampling f .

3.2 Problem statement

We now formally define the input and output of the algorithm. The input of the
algorithm is the collection of sample points .yi /miD1 and the array of mK values
.di;k/

m;K
i;kD1

2 Cm�K defined by (3.1). We next define the output. To this end, we
first fix a multi-index set ƒ � F of size jƒj D N for some N � 1. This set defines
a polynomial space PƒIVh , as in (2.9), within which we shall construct the result-
ing polynomial approximation. Hence, we consider an approximation of the form
Of 2 PƒIVh given by

Of W y 7!

NX
jD1

 
KX
kD1

Ocjk'k

!
‰�j .y/; (3.2)

where Ocj;k 2 C for j 2 ŒN �, k 2 ŒK� and �1; : : : ; �N is some indexing of the multi-
indices in ƒ. In this way, we define formally the output of the algorithm as the array
of coefficients . Ocjk/

N;K
j;kD1

2 CN�K .
Finally, in order to define an algorithm we need one additional ingredient. Let

G D .h'j ; 'kiV /
K
j;kD1 2 CK�K (3.3)

denote the Gram matrix of the basis ¹'kºKkD1 � Vh. Note that G is self adjoint
and positive definite. However, G is only equal to the identity when ¹'kºKkD1 is
orthonormal. In what follows, we assume that it is possible to perform matrix-vector
multiplications with G . In other words, we have access to the function

TG W C
K
! CK ; x 7! Gx:

We also write F.G / for the maximum number of arithmetic operations and compar-
isons required to evaluate TG .x/ for arbitrary x. Note that F.G / � K2 in general.
However, this may be smaller when G is structured. For instance, in the case of a
finite element discretization, this computation can often be performed in O.K/ oper-
ations.
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Definition 3.1 (Algorithm for polynomial approximation of Hilbert-valued functions).
Letƒ� F of size jƒj DN be given, along with an indexing �1; : : : ;�N of the multi-
indices inƒ. An algorithm for polynomial approximation of Hilbert-valued functions
from sample values is a mapping

A W Um
�Cm�K

! CN�K ;
�
.yi /

m
iD1; .di;k/

m;K
i;kD1

�
7! . Ocjk/

N;K
j;kD1

;

for which the evaluation of A..yi /; .di;k// involves only finitely many arithmetic
operations (including square roots), comparisons and evaluations of the matrix-vector
multiplication function TG . If .dik/ is as in (3.1) for some f 2 L2%.UIV/, then the
resulting approximation Of of f is given by (3.2), where . Ocjk/ D A..yi /; .di;k//.
The computational cost of an algorithm A is the maximum number of arithmetic
operations and comparisons (including those used in the evaluation of TG ) used to
compute the output from any input.

Remark 3.2. As formulated above, it is up to the user to choose a suitable multi-
index set ƒ. Fortunately, as we see in our main results below, this multi-index set is
given simply and explicitly in terms of m and another parameter � (a failure prob-
ability). In particular, no ‘oracle’ knowledge of the function being approximated is
required. Thus, one can also make the stronger assertion in what follows in which
the algorithm takes the same input, but outputs both the desired index set ƒ and the
polynomial coefficients. For ease of presentation, we shall not do this.

Remark 3.3. When d D 1 each sample point yi is an infinite sequence of real
numbers. It is implicit in Definition 3.1 that the algorithm only accesses finitely many
entries of this sequence. This does not cause any problems. As noted, the polyno-
mial approximation is obtained in the index set ƒ, which is a finite subset of F .
Hence, the multi-indices in ƒ are nonzero only in their first n entries, for some finite
n. Therefore, it is only necessary to access the first n entries of each sequence yi .
More concretely, in our main results below, the polynomial approximation in infinite
dimensions is obtained in a multi-index set ƒ D ƒHCI

n in which only the first n terms
can be nonzero, where n is an integer given explicitly in terms of m and �.

3.3 Main results

We now present the main results of this work. We reiterate at this stage that these
results are formulated for Chebyshev and Legendre polynomials. See Chapter 11 for
some further discussion on other polynomial systems.

As noted above, these results employ specific choices of the index set ƒ in
order to obtain the desired approximation rates. Specifically, in finite dimensions, we
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consider the hyperbolic cross index set

ƒ D ƒHC
n;d D

´
� D .�k/

d
kD1 2 Nd

0 W

dY
kD1

.�k C 1/ � n

µ
� Nd

0 : (3.4)

We term n the order of the hyperbolic cross. Note that it is common to consider (3.4)
as the hyperbolic cross of order n� 1. We use n here as it is slightly more convenient
for this work. When defined this way, ƒHC

n;d
is in fact the union of all lower sets (see

Definition 2.8) in d dimensions of size at most n (see, e.g., [8, Proposition 2.5]).
Thus, this set is a natural choice for polynomial approximation.

In infinite dimensions, we define the following index set

ƒ D ƒHCI
n D

´
� D .�k/

1
kD1 2 F W

nY
jD1

.�k C 1/ � n; �k D 0; k > n

µ
� F :

Similarly, the union of all anchored sets (Definition 2.8) of size at most n in infinite
dimensions is a subset of ƒHCI

n (see, e.g., [8, Proposition 2.18]). Note that ƒHCI
n is

isomorphic to ƒHC
n;n under the restriction map

� D .�k/
1
kD1 2 F 7! .�k/

n
kD1 2 Nd

0 :

For convenience, we now also define

N D ‚.n; d/ D

´
jƒHC
n;d
j d <1;

jƒHCI
n j D jƒ

HC
n;nj d D1;

(3.5)

as the cardinality of the index set employed. In general, the exact behaviour of‚.n;d/
is unknown. However, it admits a variety of different bounds. These are summarized
as follows for d <1:

N D jƒHC
n;d j � min

²
2n34d ; en2Clog.d/= log.2/;

n.log.n/C d log.2//d�1

.d � 1/Š

³
: (3.6)

The bounds are based on [32, 89]. See also [8, Lemmas B.3–B.5].
Finally, we also define

˛ D

´
1 Legendre;

log.3/= log.4/ Chebyshev;
(3.7)

and, given m � 3 and � 2 .0; 1/, L D L.m; d; �/ as

LD

´
log.m/ � .log.m/ �min¹log.m/Cd; log.ed/ � log.m/ºClog.��1// d <1;

log.m/ � .log3.m/C log.��1// dD1:

(3.8)
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3.3.1 Algebraic rates of convergence, finite dimensions

Theorem 3.4 (Existence of a mapping; algebraic case, finite dimensions). Let d 2N,
¹‰�º�2Nd

0
� L2%.U/ be either the orthonormal Chebyshev or Legendre basis and

¹'kº
K
kD1

be a basis for Vh. Then for every m � 3, 0 < � < 1 and K � 1, there is a
mapping

M W Um
�Cm�K

! CN�K ;

where N D ‚.n; d/ is as in (3.5) with n D dm=Le and L D L.m; d; �/ as in (3.8),
with the following property. Let f 2 B.�/ for arbitrary � > 1, draw y1; : : : ; ym
randomly and independently according to % and let .dik/

m;K
i;kD1

2Cm�K be as in (3.1)
for arbitrary noise terms n D .ni /

m
iD1 2 V . Let . Ocjk/ D M..yi /; .dik// and define

the approximation Of as in (3.2) based on the index setƒDƒHC
n;d

. Then the following
holds with probability at least 1 � �. The error satisfies

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

r
m

L
� �; (3.9)

for any 0 < p � 1, where

� WD C �
� m

c0L

�1=2�1=p
C
knk2IV
p
m
C kf �Ph.f /kL1.UIV/; (3.10)

c0; c1; c2 � 1 are universal constants and C D C.d; p; �/ depends on d , p and �
only.

We now make several remarks about this result. The same remarks apply (with
obvious modifications) to all subsequent results as well. First, notice how the index set
ƒ in which the approximation is constructed is given completely explicitly in terms
of m, d and �. Thus, as claimed in Remark 3.2, no ‘oracle’ information about the
function being approximated is required. Indeed, notice that the mapping described in
this theorem is universal in the sense that its applies equally to any function f 2B.�/

and any � > 1.
A key aspect of this theorem is the factor �, defined in (3.10), which determines

the error bounds (3.9). As claimed in Section 1.4, this incorporates three main key
errors arising in the approximation process.

(i) The approximation error. This is the algebraically decaying term in �:
namely, Eapp D C � .m=.c0L//

1=2�1=p . It is completely equivalent to the
best s-term approximation error bound in Theorem 2.4, except with s re-
placed by m=.c0L/.

(ii) The sampling error. This is the term Esamp D knk2IV=
p
m, where n D

.ni /
m
iD1 is as in (3.1). In other words, the effect of any errors in comput-

ing the sample values f .yi / enters linearly in the overall error bound.
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(iii) The physical discretization error. This is the term

Edisc D kf �Ph.f /kL1.UIV/:

It describes the effect of working in the finite-dimensional subspace Vh,
instead of the full space V . Critically, it depends on the orthogonal projec-
tion (best approximation) Ph.f / of f from Vh.

Notice that (i) also describes the sample complexity of the scheme. Indeed, Theo-
rem 3.4 asserts that there is a polynomial approximation that can be obtained from m

samples that attains the best s-term rate s1=2�1=p , where s D m=.c0L/ scales like m
up to the polylogarithmic factor L.

Theorem 3.4 asserts the existence of a mapping that takes samples values as its
input and produces the coefficients of a polynomial approximation attaining a desired
error bound as its output. The mapping, as we see later, arises as a minimizer of a
certain weighted `1-minimization problem. Thus, it is not an algorithm in the sense
of Definition 3.1. In the next two theorems we assert the existence of algorithms that
attain the same error, plus additional algorithmic error terms.

Theorem 3.5 (Existence of an algorithm; algebraic case, finite dimensions). Con-
sider the setup of Theorem 3.4. Then, for every t � 1, there exists an algorithm

At W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds, except with (3.9)
replaced by

kf � Of kL2%.UIV/ � c1 �

�
� C

1

t

�
;

kf � Of kL1.UIV/ � c2 �

r
m

L
�

�
� C

1

t

�
;

where c1; c2 � 1 are as in (3.9) and � is as in (3.10). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/ � dCt �.m �‚.n; d/ �KC.‚.n; d/Cm/�.F.G /CK//�.‚.n; d//
˛�;

(3.11)
where n D dm=Le is as in Theorem 3.4, ‚.n; d/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

The key element of this theorem is that the same error bound as in Theorem 3.4
is attained, up to an additional term. In particular, we have the three sources of errors
(i)–(iii), plus the following:

(iv) The algorithmic error. This is the error Ealg D 1=t committed by the algo-
rithm At in approximately computing the output of the mapping M in Theo-
rem 3.4. It is given in terms of the parameter t , which also enters linearly into
the computational cost estimate (3.11).
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Unfortunately, the 1=t decay rate of the algorithmic error is slow. Hence, it may be
computationally expensive to compute an approximation to within a desired error
bound. Fortunately, as we now explain, it is possible to improve it to e�t subject to an
additional technical assumption.

Theorem 3.6 (Existence of an efficient algorithm; algebraic case, finite dimensions).
Consider the setup of Theorem 3.4. Then for every t � 1 and �0 > 0 there exists an
algorithm

At;� 0 W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds whenever �0 � �,
except with (3.9) replaced by

kf � Of kL2%.UIV/ � c1 � .� C �
0
C e�t /;

kf � Of kL1.UIV/ � c2 �

r
m

L
� .� C �0 C e�t /;

(3.12)

where c1; c2 � 1 are as in (3.9) and � is as in (3.10). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/�dCt � .m �‚.n; d/�KC.‚.n; d/Cm/�.F.G /CK//�.‚.n; d//
˛�;

where n D dm=Le is as in Theorem 3.4, ‚.n; d/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

We refer to this as an “efficient” algorithm, since the parameter t enters linearly in
the computational cost but the algorithmic error scales like e�t . The main limitation
of this result is that the algorithm parameter �0 needs to be an upper bound for the
true error bound � in order for (3.12) to hold. This is a technical assumption for the
proof, and does not appear necessary in practice. We demonstrate this phenomenon
through numerical experiment in Chapter 5.

3.3.2 Algebraic rates of convergence, infinite dimensions

We now consider algebraic rates of convergence in the infinite-dimensional setting.
The next three results should be compared against the corresponding best s-term
approximation result, Theorem 2.5.

Theorem 3.7 (Existence of a mapping; algebraic case, infinite dimensions). Let
d D1, ¹‰�º�2Nd

0
�L2%.U/ be either the orthonormal Chebyshev or Legendre basis

and ¹'kºKkD1 be a basis for Vh. Then for every m � 3, 0 < � < 1 and K � 1, there is
a mapping

M W Um
�Cm�K

! CN�K ;
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where N D ‚.n; d/ is as in (3.5) with n D dm=Le, where L D L.m; d; �/ is as
in (3.8), with the following property. Let " > 0, 0 < p < 1 and b 2 `p.N/, b > 0,
be monotonically nonincreasing. Let f 2 B.b; "/, draw y1; : : : ; ym randomly and
independently according to % and let .dik/

m;K
i;kD1

2 Cm�K be as in (3.1) for arbitrary
noise terms n D .ni /miD1 2 V . Let . Ocjk/ DM..yi /; .dik// and define the approxima-
tion Of as in (3.2) based on the index set ƒ D ƒHCI

n . Then the following holds with
probability at least 1 � �. The error satisfies

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

r
m

L
� �; (3.13)

where

� WD C �
� m

c0L

�1=2�1=p
C
knk2IV
p
m
C kf �Ph.f /kL1.UIV/; (3.14)

c0; c1; c2 � 1 are universal constants and C D C.b; ";p/ depends on b, " and p only.

Theorem 3.8 (Existence of an algorithm; algebraic case, infinite dimensions). Con-
sider the setup of Theorem 3.7. Then, for every t � 1, there exists an algorithm

At W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds, except with (3.13)
replaced by

kf � Of kL2%.UIV/ � c1 �

�
� C

1

t

�
;

kf � Of kL1.UIV/ � c2 �

r
m

L
�

�
� C

1

t

�
;

where c1; c2 � 1 are as in (3.13) and � is as in (3.14). The computational cost of the
algorithm is bounded by

c3 �Œm�‚.n;1/�nCt �.m�‚.n;1/�KC.‚.n;1/Cm/�.F.G /CK//�.‚.n;1//
˛�;

where n D dm=Le is as in Theorem 3.7, ‚.n;1/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

In finite dimensions, the computational cost estimate (3.11) is somewhat difficult
to interpret, since its behaviour depends on the relative sizes ofm and d . Fortunately,
in infinite dimensions we can give a more informative assessment. Suppose, for sim-
plicity, that K is fixed (for example, K D 1 in the case of a scalar-valued function
approximation problem). Then the computational cost is bounded by

c �m �‚.n;1/ � nC cK � t �m �‚.n;1/
˛C1;
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where c > 0 is a universal constant cK > 0 is a constant depending on K only.
Recall from (3.5) that ‚.n;1/ D jƒHCI

n j D jƒ
HC
n;nj. Now, when d D n and n is suf-

ficiently large, the minimum in (3.6) is attained by the second term en2Clog.n/= log.2/.
Substituting this into the above expression and recalling that n D dm=Le, where
L D L.m;1; �/, we deduce that the computational cost is bounded by

cK � t �m � g.m/
.˛C1/ log.4g.m//= log.2/; g.m/ WD

�
m

log.m/ � .log3.m/C log.��1//

�
:

Since m � 3 by assumption, we have log.m/ � 1 and therefore g.m/ � m. Hence,
this admits the slightly looser upper bound

cK � t �m
1C.˛C1/ log.4m/= log.2/:

We deduce that the computational cost (for fixed K and t ) is subexponential in m.
Further, if we choose t D m1=p�1=2 in accordance with the algebraically decaying
term in (3.14), then we conclude the following: it is possible to approximate a holo-
morphic function of infinitely many variables with error decaying algebraically fast
inm via an algorithm whose computational cost is subexponential inm. Whether this
can be reduced to an algebraic cost is an open problem.

Theorem 3.9 (Existence of an efficient algorithm; algebraic case, infinite dimen-
sions). Consider the setup of Theorem 3.7. Then, for every t � 1 and �0 > 0 there
exists an algorithm

At;� 0 W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds whenever �0 � �,
except with (3.13) replaced by

kf � Of kL2%.UIV/ � c1 � .� C �
0
C e�t /;

kf � Of kL1.UIV/ � c2 �

r
m

L
� .� C �0 C e�t /;

where c1; c2 � 1 are as in (3.13) and � � �0 is as in (3.14). The computational cost
of the algorithm is bounded by

c3 �Œm�‚.n;1/�nCt �.m�‚.n;1/�KC.‚.n;1/Cm/�.F.G /CK//�.‚.n;1//
˛�;

where n D dm=Le is as in Theorem 3.7, ‚.n;1/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

3.3.3 Exponential rates of convergence, finite dimensions

Finally, we consider exponential rates of convergence in finite dimensions. The fol-
lowing results should be compared against Theorem 2.6.
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Theorem 3.10 (Existence of a mapping; exponential case, finite dimensions). Let
d 2 N, ¹‰�º�2Nd

0
� L2%.U/ be either the orthonormal Chebyshev or Legendre basis

and ¹'kºKkD1 be a basis for Vh. Then for every m � 3, 0 < � < 1 and K � 1, there is
a mapping

M W Um
�Cm�K

! CN�K ;

where N D ‚.n; d/ is as in (3.5) with

n D

´
d
p
m=Le Legendre;

dm=.2dL/e Chebyshev;
(3.15)

and L as in (3.8), with the following property. Draw y1; : : : ;ym randomly and inde-
pendently according to %. Then, with probability at least 1 � �, the following holds.
Let f 2 B.�/ for arbitrary � > 1, .dik/

m;K
i;kD1

2 Cm�K be as in (3.1) for arbitrary

noise terms n D .ni /
m
iD1 2 V , . Ocjk/

N;K
j;kD1

D M..yi /
m
iD1; .dik/

m;k
i;kD1

/ and define the

approximation Of as in (3.2) based on the index set ƒ D ƒHC
n;d

. Then the error satis-
fies

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

r
m

L
� �; (3.16)

for any

0 < 
 < .d C 1/�1

 
dŠ

dY
jD1

log.�j /

!1=d
;

where

� WD C �

8̂<̂
:

exp
�
�


2

�
m
c0L

� 1
d

�
Chebyshev

exp
�
�

�
m
c0L

� 1
2d

�
Legendre

C
knk2IV
p
m
C kf �Ph.f /kL1.UIV/;

(3.17)
c0; c1; c2 � 1 are universal constants and C D C.d; 
; �/ depends on d , 
 and �
only.

Theorem 3.11 (Existence of an algorithm; exponential case, finite dimensions). Con-
sider the setup of Theorem 3.10. Then, for every t � 1, there exists an algorithm

At W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds, except with (3.16)
replaced by

kf � Of kL2%.UIV/ � c1 �

�
� C

1

t

�
;

kf � Of kL1.UIV/ � c2 �

r
m

L
�

�
� C

1

t

�
;
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where c1; c2 � 1 are as in (3.16) and � is as in (3.17). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/�nCt �.m �‚.n; d/�KC.‚.n; d/Cm/�.F.G /CK//�.‚.n; d//
˛�;

where n is as in (3.15),‚.n;d/ is as in (3.5), ˛ is as in (3.7) and c3 > 0 is a universal
constant.

Theorem 3.12 (Existence of an efficient algorithm; exponential case, finite dimen-
sions). Consider the setup of Theorem 3.10. Suppose that there is a known upper
bound �0 � �, where � is as in (3.17). Then, for every t � 1 and �0 > 0 there exists an
algorithm

At;� 0 W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 for which the same property holds whenever �0 � �,
except with (3.16) replaced by

kf � Of kL2%.UIV/ � c1 � .� C �
0
C e�t /;

kf � Of kL1.UIV/ � c2 �

r
m

L
.� C �0 C e�t /;

where c1; c2 � 1 are as in (3.16) and � is as in (3.17). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/ � nCt �.m �‚.n; d/ �KC.‚.n; d/Cm/�.F.G /CK// � .‚.n; d//
˛�;

where n is as in (3.15),‚.n;d/ is as in (3.5), ˛ is as in (3.7) and c3 > 0 is a universal
constant.

As before, suppose thatK is fixed and, since we consider exponential rates, that d
is also fixed. Then, using the third estimate in (3.6), we deduce that the computational
cost of this algorithm is bounded by

cK;d �
�
m � n2 � .log.n//d�1 C t �m �

�
n � .log.n//d�1

�˛C1�
:

Using the crude bound n � m, we obtain the bound

cK;d �
�
t �m˛C2.log.m//.d�1/.˛C1/

�
:

Thus, for fixed t , the computational cost is polynomial inm asm!1. In particular,
with the efficient algorithm of Theorem 3.12 (subject to the caveat that an upper
bound for the error is known) we deduce the following: in fixed dimension d , it is
possible to approximate a holomorphic function with error decaying exponentially
fast inm via an algorithm whose computational cost is polynomial inm. Whether the
polynomial growth rate described above is sharp is an open problem.
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Remark 3.13. There is a subtle difference between the algebraic and exponential
results. The former are nonuniform in the sense that a single draw of the sample points
y1; : : : ; ym is sufficient for recovery of a fixed function f with high probability up
to the specified error bound. The latter are uniform, since a single draw of the sample
points y1; : : : ; ym is sufficient for recovery of any function with high probability
up to the specified error bound. The reason for this difference stems from bounding
a discrete error term (8.10), which is a random variable depending on f and the
sample points. In the algebraic case, in order to obtain the desired algebraic exponent
1=2 � 1=p we bound this term with high probability for each fixed f . See Step 4 of
the proof of Theorem 8.2. This renders the ensuing result nonuniform. Conversely, in
the exponential case (where the appearance of small algebraic factors is not a concern,
since they can be absorbed into the exponentially decaying term) we bound this term
with probability one for any f . See Step 4 of the proof of Theorem 8.4. Note that
one could also derive uniform guarantees in the algebraic case by considering a fixed
value of p and letting M and A depend on p, or by considering a restricted range
0 < p � p� < 1. Both strategies involve a larger value of n, with its size depending
on p or p�. See [8, Section 7.6.2] for further discussion.



Chapter 4

Construction of the algorithms

In this chapter, we describe the construction of the algorithms asserted in our main
results. These are based on techniques from compressed sensing [8, 13, 61] on the
premise that the polynomial coefficients of a holomorphic function are approximately
sparse. There are several main differences between standard compressed sensing and
what we develop below. First, following [2,7,8,37,119,121], we work in a weighted
setting in order to promote sparsity in lower or anchored sets (recall Section 2.7). Sec-
ond, following [52], we work with Hilbert-valued vectors, whose entries take values
in the Hilbert space V . Finally, so as to avoid unrealistic assumptions on the func-
tions being approximated, we use consider noise-blind decoders, as in [3]. See also
Remark 4.1.

4.1 Recovery via Hilbert-valued, weighted `1-minimization

We first require some additional notation. GivenN 2N we let VN be the vector space
of Hilbert-valued vectors of length N , i.e., v D .vi /NiD1 where vi 2 V , i D 1; : : : ;N .
Next, given ƒ � F and a vector of positive weights w D .w�/�2ƒ, where w > 0,
we define the weighted `pw.ƒIV/ space, 0 < p � 2, as the set of V -valued sequences
v D .v�/�2ƒ for which

kvkp;wIV WD
�X
�2ƒ

w2�p� kv�k
p

V

�1=p
<1:

Notice that `2w.ƒIV/ coincides with the unweighted space `2.ƒIV/.
Now, let ƒ � F be a finite multi-index set of size jƒj D N and consider the

ordering ƒ D ¹�1; : : : ; �N º. Note that we will, in practice, choose either ƒ D ƒHC
n;d

when d <1 or ƒ D ƒHCI
n when d D 1, where the order n is as described in the

corresponding theorem (Theorems 3.4–3.12). With this in mind, given f 2L2%.UIV/,
define

fƒ D
X
�2ƒ

c�‰� (4.1)

as the truncated expansion of f based on the index set ƒ and

cƒ D .c�j /
N
jD1 2 VN (4.2)

as the finite vector of coefficients of f with indices inƒ. As explained in Section 3.2,
our objective is, in effect, to approximate these coefficients.
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We do this as follows. Given y1; : : : ;ym 2U, we define the normalized measure-
ment matrix

A D

�
‰�j .yi /
p
m

�m;N
i;jD1

2 Cm�N (4.3)

and the normalized measurement and error vectors

b D
1
p
m
.f .yi /C ni /

m
iD1 2 Vm

h ; e D
1
p
m
.ni /

m
iD1 2 Vm: (4.4)

Notice that any m � N matrix A D .aij /
m;N
i;jD1 extends to a bounded linear operator

VN ! Vm (or VN
h
! Vm

h
) in the obvious way, i.e.,

x D .xi /
N
iD1 2 VN

7! Ax D

 
NX
jD1

aijxj

!m
iD1

2 Vm:

For ease of notation, we make no distinction between the matrix A 2 Cm�N and the
linear operator A 2 B.VN ;Vm/ (or A 2 B.VN

h
;Vm

h
/) in what follows. Using this,

we obtain

Acƒ D
1
p
m
.fƒ.yi //

m
iD1 D

1
p
m
.f .yi //

m
iD1 �

1
p
m
.f .yi / � fƒ.yi //

m
iD1;

and therefore
Acƒ C e C e

0
D b; (4.5)

where
e0 D

1
p
m
.f .yi / � fƒ.yi //

m
iD1:

We have now formulated the recovery of cƒ as the solution of a noisy linear sys-
tem (4.5), where the noise term e C e0 encompasses both the noise e D .ni /miD1=

p
m

in the sample values and the error e0 due to the truncation (4.1) of the infinite expan-
sion (2.8) via the index set ƒ.

Due to the discussion in Sections 2.5–2.7, we expect the coefficients cƒ to not
only be approximately sparse, but also well approximated by a subset of s coeffi-
cients whose indices define a lower or anchored set. In classical compressed sensing,
one exploits sparse structure via minimizing an `1-norm. To exploit sparse and lower
structure, we follow ideas of [2,7,8,37] and use a weighted `1-norm penalty. Specif-
ically, we now compute an approximate solution via the Hilbert-valued, weighted
Square-Root LASSO (SR-LASSO) optimization problem

min
z2VN

h

G .z/; G .z/ WD �kzk1;wIV C kAz � bk2IV : (4.6)

Here � > 0 is a tuning hyperparameter.
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Remark 4.1. As an alternative to solve this Hilbert-valued compressed sensing prob-
lem, we could use a formulation based on a constrained basis pursuit or unconstrained
LASSO problem. However, we consider the SR-LASSO problem (4.6) instead. While
other approaches are arguably more common, based on [3] the SR-LASSO has the
desirable property that the optimal values of its hyperparameter � is independent of
the noise term (in this case e C e0). This is not the case for other formulations, whose
hyperparameters need to be chosen in terms of the (unknown) magnitude of the noise
in order to ensure good theoretical and practical performance (see, e.g., [13, Chapter
6]). This is particularly problematic in the setting of function approximation, where
such terms are function dependent (for instance, the term e0 depends on the expansion
tail f � fƒ) and therefore generally unknown. See [3] and [8, Section 6.6] for further
discussion.

Notice that (4.6) is solved over VN
h

not VN , since the latter would not be numer-
ically solvable in general. As we see below, it can be reformulated an optimization
problem over CN�K , where K D dim.Vh/. However, since the true coefficients of
f are elements of V and not Vh, this discretization inevitably results in an additional
error, which must also be accounted for in the analysis. This leads precisely to the
physical discretization error (term (iii) in Section 3.3.1).

Finally, we now also specify the weights. Following [2,7,37] (see also [8, Remark
2.14]), a good choice of weights (for promoting lower or anchored structure) is given
by the so-called intrinsic weights

w D u D .u�/�2ƒ; u� D k‰�kL1.U/; � 2 ƒ: (4.7)

In particular, for Chebyshev and Legendre polynomials these are given explicitly by

u� D k‰�kL1.U/ D

´Qd
jD1

p
2�j C 1; Legendre;

2k�k0=2; Chebyshev;

where k�k0 WD jsupp.�/j. Typically, we index these weights over the multi-indices
� 2 ƒ. However, we will, for convenience, often write wi instead of w�i in what
follows, where, as above, ¹�1; : : : ; �N º is an ordering of ƒ.

4.2 Reformulation as a matrix recovery problem and the mappings in
Theorems 3.4, 3.7 and 3.10

We now describe the mappings whose existence is asserted in Theorems 3.4, 3.7
and 3.10. These maps all arise via exact solutions of weighted SR-LASSO optimiza-
tion problems. However, since (4.6) yields a vector in VN

h
and the mappings should

yield outputs in CN�K , we first need to reformulate (4.6) using the basis ¹'iºKiD1
for Vh.
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Notice first that any vector of coefficients c D .c�i /
N
iD1 2 VN

h
is equivalent to a

matrix of coefficients
C D .cik/

N;K
i;kD1

2 CN�K ;

via the relation

c�i D

KX
kD1

cik'k; i 2 ŒN �:

Next, observe that if g D
PK
kD1 dk'k 2 Vh then

kgkV D kdkG D
p
d�Gd ;

where d D .dk/KkD1 2 CK and G 2 CK�K is the Gram matrix for ¹'kºKkD1, given
by (3.3). Since G is positive definite, it has a unique positive definite square root
matrix G1=2. Hence, we may write

kgkV D kG
1=2dk2:

We now use some additional notation. Given 1 � p � 1 and 1 � q � 2, we define
the weighted `p;qw -norm of a matrix C D .cik/

N;K
i;kD1

2 CN�K as

kC kp;q;w D

 
NX
iD1

w
2�p
i

 
KX
kD1

jcikj
q

!p=q!1=p
:

Note that this is precisely the weighted `pw-norm of the vector of .kcikq/
N
iD1, where

ci D .cik/
K
kD1
2 CK is the i th row of C . Further, if p D q D 2, then this is just the

unweighted `2;2-norm of a matrix (which is simply its Frobenius norm). In this case,
we typically write k�k2;2.

Now let z 2 VN
h

be arbitrary, Z 2 CN�K be the corresponding matrix and zi 2
CK be the i th row of Z . Then

kzk1;wIV D

NX
iD1

wikz�i kV D

NX
iD1

wikG
1=2zik2 D kZG

1=2
k2;1;w:

Similarly, letA D .aij /
m;N
i;jD1 2Cm�N and bD .bi /miD1 2 Vm

h
be as in (4.3) and (4.4),

respectively, and let B 2 Cm�K be the matrix corresponding to b. Then

kAz � bk
2
2IV D

mX
iD1






 NX
jD1

aij z�i � bi







2

V

D k.AZ �B/G1=2
k
2

2;2:

Therefore, we now consider the minimization problem

min
Z2CN�K

®
�kZk2;1;w C k.AZ �B/G

1=2
k2;2

¯
: (4.8)
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• Let m, � and n be as given in the particular theorem and set ƒ D ƒHC
n;d

(Theorems 3.4 and 3.10) or ƒ D ƒHCI
n (Theorem 3.7).

• Set � D .4
p
m=L/�1, where L D L.m; d; �/ is as in (3.8).

• Let D D .dik/
m;K
i;kD1

2 Cm�K and Y D .yi /miD1 be an input, as in (3.1),
and set B D 1p

m
D.

• Let G , A and w be as in (3.3), (4.3) and (4.7), respectively.

• Define the output yC DM.Y ;D/ as the minimizer of (4.8) with smallest
`2;2-norm.

Table 4.1. The mappings M W Um �Cm�K ! CN�K used in Theorems 3.4, 3.7 and 3.10.

This is equivalent to (4.6) in the following sense. A vector Oc D . Oc�i /
N
iD1 2 VN

h
is a

minimizer of (4.6) if and only if the matrix yC D . Ocik/
N;K
i;kD1

2 CN�K with entries
defined by the relation

Oc�i D

KX
kD1

Ocik'k; i 2 ŒN �;

is a minimizer of (4.8).
With this in hand, we are now ready to define the mappings used in Theorems 3.4,

3.7 and 3.10. These are described in Table 4.1. Note that these are indeed well-defined
mappings, since the minimizer of (4.8) with smallest `2;2-norm is unique (this follows
from the facts that (4.8) is a convex problem, therefore its set of minimizers is a
convex set, and the function Z 7! kZk22;2 is strongly convex). This particular choice
is arbitrary, and is made solely so as to have a well-defined mapping. It is of no
consequence whatsoever in our analysis, since the various error bounds we prove
later hold for any minimizer of (4.8).

4.3 The primal-dual iteration

To derive the algorithms described in the other main theorems, we need methods for
approximately solving the optimization problems (4.6) and (4.8). We use the primal-
dual iteration [30] (also known as the Chambolle–Pock algorithm) to this end. We
first briefly describe the primal-dual iteration in the general case (see [30, 31, 31],
as well as [13, Section 7.5] for more detailed treatments), before specializing to the
weighted SR-LASSO problem in the next section.

Let .X; h�; �iX/ and .Y; h�; �iY/ be (complex) Hilbert spaces, g W X ! R [ ¹1º,
h W Y ! R [ ¹1º be proper, lower semicontinuous and convex functions and
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A 2 B.X;Y/ be a bounded linear operator satisfying

dom.h/ \ A.dom.g// ¤ ;:

The primal-dual iteration is a general method for solving the convex optimization
problem

min
x2X
¹g.x/C h.A.x//º: (4.9)

Under this setting the (Fenchel–Rockafeller) dual problem is

min
�2Y
¹g�.A��/C h�.��/º;

where g� and h� are the convex conjugate functions of g and h, respectively. Recall
that, for a function f W X ! R [ ¹1º, its convex conjugate is defined by

f �.z/ D sup
x2X

.Rehx; ziV � f .x//; z 2 X: (4.10)

The Lagrangian of (4.9) is defined by

L.x; �/ D g.x/C RehA.x/; �iY � h�.�/; x 2 dom.g/; � 2 dom.h�/; (4.11)

and L.x; �/D1 if x 62 dom.g/ or L.x; �/D�1 if � 62 dom.h�/. This in turn leads
to the saddle-point formulation of the problem

min
x2X

max
�2Y

L.x; �/:

The primal-dual iteration seeks a solution . Ox; y�/ of the saddle-point problem by solv-
ing the following fixed-point equation

Ox D prox�g. Ox � �A
�.y�//;

y� D prox�h�.y� C �A. Ox//;

where �; � > 0 are stepsize parameters and prox is the proximal operator, which is
defined by

proxf .z/ D arg min
x2X

²
f .x/C

1

2
kx � zk2X

³
; z 2 dom.f /:

To be precise, given initial values .x.0/; �.0// 2 X � Y the primal-dual iteration
defines a sequence ¹.x.n/; �.n//º1nD1 � X � Y as follows:

x.nC1/ D prox�g
�
x.n/ � �A�

�
�.n/

��
;

�.nC1/ D prox�h�
�
�.n/ C �A

�
2x.nC1/ � x.n/

��
:

(4.12)
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4.4 The primal-dual iteration for the weighted SR-LASSO problem

We now apply this scheme to (4.6) and (4.8). We first describe an algorithm to approx-
imately solve the Hilbert-valued problem (4.6), before using the equivalence between
elements of VN

h
and CN�K to obtain an algorithm for approximately solving (4.8).

Consider (4.6). We define X D .VN
h
; h�; �i2IV /, Y D .Vm

h
; h�; �i2IV / and g W X !

R [ ¹1º, h W Y ! R [ ¹1º as the proper, lower semicontinuous and convex func-
tions

g.x/ D �kxk1;wIV ; h.y/ D ky � bk2IV ; x 2 VN
h ; y 2 Vm

h :

We first find the proximal maps of g and h�. Using (4.10), we see that

h�.�/ D sup
v2Vm

h

.Rehv; �iV � kv � bk2IV /

D Rehb; �iV C sup
v2Vm

h

.Rehv; �iV � kvk2IV /;

for all � 2 Vm
h

. From [22, Examples 13.3 and 13.4] it follows that

.k�kV /
�
D ıB ; B WD ¹� 2 Vm

h W k�k2IV � 1º;

where ıB is the indicator function of the set B , taking value ıB.�/ D 0 when � 2 B
andC1 otherwise. Hence,

h�.�/ D Rehb; �iV C ıB.�/: (4.13)

Using this, we obtain

prox�h�.�/ D arg min
z2Vm

h

²
�ıB.z/C � Rehb; ziV C

1

2
kz � �k

2
2IV

³
D arg min

zWkzk2IV�1

²
1

2
kz � .� � �b/k22IV

³
D projB.� � �b/;

where projB is the projection onto B , which is given explicitly by

projB.�/ D min
²
1;

1

k�k2IV

³
�:

On the other hand, applying the definition of the proximal operator to the function �g
with parameter � > 0, we deduce that

.prox�g.x//i D prox�wi�k�kV .xi /; i D 1; : : : ; N; where x D .xi /NiD1 2 VN
h :



38 Construction of the algorithms

Algorithm 1: primal-dual-wSRLASSO – the primal-dual iteration for the
weighted SR-LASSO problem (4.6)

inputs : measurement matrix A 2 Cm�N , measurements b 2 VN
h

, positive
weights w D .wi /NiD1, parameter � > 0, stepsizes �; � > 0,
maximum number of iterations T � 1, initial values c.0/ 2 VN

h
,

�.0/ 2 Vm
h

output : Nc D primal-dual-wSRLASSO.A;b;w; �; �; �; T; c.0/; �.0//, an
approximate minimizer of (4.6)

initialize: Nc.0/ D 0 2 VN
h

1 for n D 0; 1; : : : ; T � 1 do
2 p D .pi /

N
jD1 D c

.n/ � �A��.n/

3 c.nC1/ D
�

max¹kpikV � ��wi ; 0º
pi
kpikV

�N
iD1

4 q D �.n/ C �A.2c.nC1/ � c.n// � �b

5 �.nC1/ D min
°
1; 1
kqk2IV

±
q

6 Nc.nC1/ D n
nC1
Nc.n/ C 1

nC1
c.nC1/

7 end
8 Nc D Nc.T /

Moreover, a simple adaptation of [22, Example 14.5] with the k�kV -norm gives

prox�k�kV .x/ D max¹kxkV � �; 0º
x

kxkV
; 8x 2 Vh n ¹0º:

Hence,

prox�g.x/ D
�

max¹kxikV � ��wi ; 0º
xi

kxikV

�N
iD1

; x D .xi /
N
iD1 2 VN

h n ¹0º:

With this in hand, we are now ready to define the primal-dual iteration for (4.6). As
we see later, the analysis of convergence for the primal-dual iteration is given in terms
of the ergodic sequence

Nc.n/ D
1

n

nX
iD1

c.i/; n D 1; 2; : : : ;

where c.i/ 2 VN
h

is the primal variable obtained at the i th step of the iteration. Hence,
we now include the computation of these sequences in the primal-dual iteration for
the weighted SR-LASSO problem (4.6), and take this as the output. The resulting
procedure is described in Algorithm 1.



The primal-dual iteration for the weighted SR-LASSO problem 39

Algorithm 2: primal-dual-wSRLASSO-C – the primal-dual iteration for
the weighted SR-LASSO problem (4.8)

inputs : measurement matrix A 2 Cm�N , measurements B 2 Cm�K ,
positive weights w D .wi /NiD1, Gram matrix G 2 CK�K ,
parameter � > 0, stepsizes �; � > 0, maximum number of
iterations T � 1, initial values C .0/ 2 CN�K , „.0/ 2 Cm�K

output : C D
primal-dual-wSRLASSO-C.A;b;w;G ; �; �; �; T;C .0/;„.0//,
an approximate minimizer of (4.8)

initialize: C .0/ D 0 2 CN�K

1 for n D 0; 1; : : : ; T � 1 do
2 P D .pik/

N;K
j;kD1

D C .n/ � �A�„.n/

3 for i D 1; : : : ; N do
4 pi D .pik/

K
kD1

5
�
c
.nC1/

ik

�K
kD1
D max¹kG1=2pik2 � ��wi ; 0º

pi
kG1=2pik2

6 end
7 C .nC1/ D

�
c
.nC1/

ik

�N;K
i;kD1

8 Q D „.n/ C �A.2C .nC1/ � C .n// � �B

9 „.nC1/ D min
²
1; 1

kQG1=2k2;2

³
Q

10 C .nC1/ D n
nC1

C .n/ C 1
nC1

C .nC1/

11 end
12 C D C .T /

Having done this, we next adapt Algorithm 1 in the way mentioned previously to
obtain an algorithm for (4.8). This is given in Algorithm 2.

Remark 4.2. Note that even though the square-root matrix G1=2 is used in Algo-
rithm 2, this matrix does not need to be computed. Indeed,

kG1=2dk2 D
p
d�Gd ; d 2 CK ;

and for a matrix C 2 CN�K , we have

kCG1=2
k2;2 D

vuut NX
iD1

kG1=2cik
2
2 D

vuut NX
iD1

c�i Gci ;

where ci 2 CK is the i th row of C . In particular, computing kG1=2dk involves
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at most c.F.G / C K/ arithmetic operations, and computing kCG1=2k2;2 involves
cm.F.G /CK/ arithmetic operations, for some universal constant c > 0.

To conclude this section, we now state and prove a lemma on the computational
cost of Algorithm 2. This will be used later when proving the main theorems.

Lemma 4.3 (Computational cost of Algorithm 2). The computational cost of Algo-
rithm 2 is bounded by

c � .m �N �K C .mCN/ � .F.G /CK// � T;

where c > 0 is a universal constant.

Proof. We proceed line-by-line. Line 2 involves a matrix-matrix multiplication and
matrix subtraction, for a total of at most

c �m �N �K (line 2)

arithmetic operations for some universal constant c. Now consider lines 3–5. By the
previous remark, we may calculate kG1=2pik2 D

p
p�i Gpi using one multiplication

with the matrix G , one inner product of vectors of length K and one square root
(recall from Definition 3.1 that we count square roots as arithmetic operations). This
involves at most c � .F.G /CK/ arithmetic operations. Hence, the cost of line 5 is at
most

c � .F.G /CK/ (line 5);

for a possibly different universal constant c. Therefore, the total cost of lines 3–5 is

c � .F.G /CK/ �N (lines 3–5):

Line 7 involves no arithmetic operations and line 8 involves at most

c �m �N �K (line 8)

operations. Consider line 9. Because of the previous remark, the computation of the
term kQG1=2k2;2 can be performed in at most c �m � .F.G /CK/ operations (since
Q is of size m �K). Hence, line 9 involves at most

c �m � .F.G /CK/ (line 9)

operations. Finally, line 10 involves at most

c �N �K (line 10)

operations. After simplifying, we deduce that lines 2–10 involve at most

c � .m �N �K C .K C F.G // � .N Cm// (lines 2–10)

operations. The result follows by multiplying this by the number of iterations T .
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Algorithm 3: construct-A – constructing the measurement matrix (4.3)

inputs : sample points y1; : : : ;ym 2 Ud , finite index set
ƒ D ¹�1; : : : ; �N º � F

output : A D construct-A..yi /miD1; ƒ/ 2 Cm�N , the measurement
matrix (4.3)

initialize: C .0/ D 0 2 CN�K

1 k D max¹j W .�i /j ¤ 0; i D 1; : : : ; N; j D 1; : : : ; dº
2 n D max¹.�i /j W i D 1; : : : ; N; j D 1; : : : ; nº
3 for i D 1; : : : ; m do
4 Set z D .zj /kjD1 D ..yi /j /

k
jD1

5 bij D ‰j .zi /, i D 1; : : : ; k, j D 0; : : : ; n,
6 for j D 1; : : : ; N do
7 aij D

Qn
lD1 bl;.�j /l

8 end
9 end

10 A D 1p
m
.aij /

m;N
i;jD1

4.5 The algorithms in Theorems 3.5, 3.8 and 3.11

We are now almost ready to specify the algorithms used in Theorems 3.5, 3.8 and
3.11. Notice that Algorithms 1 and 2 require the measurement matrix A as an input.
Hence, we first describe the computation of this matrix for Chebyshev and Legendre
polynomials. This is summarized in Algorithm 3. Notice that line 5 of this algorithm
involves evaluating the first k one-dimensional Chebyshev or Legendre polynomials.
This can be done efficiently via the three-term recurrence relation, as explained in the
proof of the following result.

Lemma 4.4 (Computational cost of Algorithm 3). The computational cost of Algo-
rithm 3 is bounded by

c �m � .nCN/ � k;

where c > 0 is a universal constant and k and n are as in lines 1 and 2 of the algo-
rithm.

Proof. Consider line 5 of the algorithm. Evaluation of the first k C 1 Chebyshev
or Legendre polynomials can be done via the three-term recurrence relation. In the
Chebyshev case, this is given by

‰0.z/ D 1; ‰1.z/ D
p
2z; ‰jC1.z/ D 2z‰j .z/ � cj‰j�1.z/; j D 1; : : : ; k;
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• Let m, �, n and t be as given in the particular theorem and set:

– ƒ D ƒHC
n;d

(Theorems 3.4 and 3.10) or ƒ D ƒHCI
n (Theorem 3.7),

– � D .4
p
m=L/�1, where L D L.m; d; �/ is as in (3.8),

– � D � D .‚.n; d//�˛ , where‚.n; d/ and ˛ are as in (3.5) and (3.7),
respectively,

– T D d2.‚.n; d//˛te.

• Let D D .dik/
m;K
i;kD1

2 Cm�K and Y D .yi /miD1 be an input, as in (3.1),
and set B D 1p

m
D.

• Compute A D construct-A.Y ; ƒ/.

• Let G and w be as in (3.3) and (4.7), respectively.

• Define the output C D A.D/, where

A.D/ D primal-dual-wSRLASSO-C
�
A;B;w;G ; �; �; �; T; 0; 0

�
Table 4.2. The algorithms A W Um �Cm�K ! CN�K used in Theorems 3.5, 3.8 and 3.11.

where cj D 1 if j � 1 and 1=
p
2 otherwise, and in the Legendre case, it is given by

‰0.z/D1; ‰1.z/ D
p
3z;

‰jC1.z/D

p
j C 3=2

j C 1

�
2j C 1p
j C 1=2

z‰j .z/�
jp

j � 1=2
‰j�1.z/

�
; j D2; : : : ; k;

(recall that these polynomials are normalized with respect to their respective proba-
bility measures). Hence, the computational cost for line 5 is bounded by c � n � k. The
computational cost for lines 6–8 is precisely N � .k � 1/. Hence, the computational
cost for forming each row of A is bounded by c � .n � k C N � k/. The result now
follows.

With this in hand, we are now ready to specify the algorithms used in Theo-
rems 3.5, 3.8 and 3.11. These are given in Table 4.2.

4.6 An efficient restarting procedure for the primal-dual iteration and
the algorithms used in Theorems 3.6, 3.9 and 3.12

While the primal-dual iteration converges under very general conditions, it typically
does so very slowly, with the error in the objective function decreasing like O.1=n/,
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Algorithm 4: primal-dual-rst-wSRLASSO – the restarted primal-dual
iteration for the weighted SR-LASSO problem (4.6)

inputs : measurement matrix A 2 Cm�N , measurements b 2 VN
h

, positive
weights w D .wi /NiD1, parameter � > 0, stepsizes �; � > 0,
number of primal-dual iterations T � 1, number of restarts R � 1,
tolerance �0 > 0, scale parameter 0 < r < 1, constant s > 0, initial
values c.0/ D 0 2 VN

h
�.0/ D 0 2 Vm

h
.

output : Qc D primal-dual-rst-wSRLASSO.A;b;w; �; �; �; T;R; �0; r; s/,
an approximate minimizer of (4.6)

initialize: Nc.0/ D 0 2 VN
h

, "0 D kbk2IV
1 for l D 0; : : : ; R � 1 do
2 "lC1 D r."l C �

0/

3 al D s"lC1
4 Qc.lC1/ D al � primal-dual-wSRLASSO.A;b=al ;w; �; �; �; T; Qc.l/=al ; 0/
5 end
6 Qc D Qc.R/

where n is the iteration number. To obtain exponential convergence (down to some
controlled tolerance) we employ a restarting procedure. This is based on recent work
of [47, 48].

Restarting is a general concept in optimization, where the output of an algorithm
after a fixed number of steps is then fed into the algorithm as input, after suitably scal-
ing the parameters of the algorithm [122–124]. In the case of the primal-dual iteration
for the weighted SR-LASSO problem, this procedure involves three hyperparameters:
a tolerance �0 > 0 and scale parameters 0 < r < 1 and s > 0. After applying one step
of the primal-dual iteration (Algorithms 1 or 2) yielding an output c.1/, it then scales
this vector and the right-hand side vector b by an exponentially decaying factor al
(defined in terms of �0, r and s), before feeding in these values into the primal-dual
iteration as input.

We explain the motivations behind the specific form of the restart procedure for
the primal-dual iteration later in Section 9.2. For now, we simply state the resulting
procedures in the case of the weighted SR-LASSO problems (4.6) and (4.8). These
are given in Algorithms 4 and 5, respectively. With these in hand, we can also give
the algorithms used in Theorems 3.6, 3.9 and 3.12. See Table 4.3.

Note that these algorithms involve a number c?, which is a universal constant. It is
possible to provide a precise numerical value of this constant by carefully tracking the
constants in several of the proof steps. Since doing so is not especially illuminative,
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Algorithm 5: primal-dual-rst-wSRLASSO-C – the restarted primal-dual
iteration for the weighted SR-LASSO problem (4.8)

inputs : measurement matrix A 2 Cm�N , measurements B 2 CN�K ,
positive weights w D .wi /NiD1, Gram matrix G 2 CK�K ,
parameter � > 0, stepsizes �; � > 0, number of primal-dual
iterations T � 1, number of restarts R � 1, tolerance �0 > 0, scale
parameter 0 < r < 1, constant s > 0, initial values
C .0/ D 0 2 CN�K , „.0/ D 0 2 Cm�K

output : zC D
primal-dual-rst-wSRLASSO-C.A;b;w;G ; �; �; �; T;R; �0; r; s/,
an approximate minimizer of (4.8)

initialize: zC .0/ D 0 2 CN�K , "0 D kBG1=2k2I2

1 for l D 0; : : : ; R � 1 do
2 "lC1 D r."l C �/

3 al D s"lC1

4 zC .lC1/ D

al � primal-dual-wSRLASSO-C.A;B=al ;w;G ; �; �; �; T; zC .l/=al ; 0/
5 end
6 zC D zC .R/

we forgo this additional effort. Instead, we now give a little more detail on this con-
stant.

Remark 4.5. From (10.10) we see that

c? D 3296
p
c0;

where c0 is the universal constant that arises in (3.10). As shown in the proof of Theo-
rem 8.2, the constant c0 needs to be chosen sufficiently large so that the measurement
matrixA satisfies the so-called weighted RIP. In particular, it is related to the univer-
sal constant c > 0 defined in Lemma 8.1. See, in particular, (8.2). A numerical value
for this constant can indeed be found using results shown in [37]. With this in hand,
one can then keep track of the constant c0 in the proof of Theorem 8.2 to find its
numerical value. This discussion also highlights why tracking the value of c? is not
particularly illuminative. Indeed, it is well known that universal constants appearing
in RIP estimates in compressed sensing are generally very pessimistic [8, 13, 61].
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• Let m, �, n, t and �0 be as given in the particular theorem and set:

– ƒ D ƒHC
n;d

(Theorems 3.6 and 3.12) or ƒ D ƒHCI
n (Theorem 3.9),

– � D .4
p
m=L/�1, where L D L.m; d; �/ is as in (3.8),

– � D � D .‚.n; d//�˛ , where‚.n; d/ and ˛ are as in (3.5) and (3.7),
respectively,

– T D d.‚.n; d//˛c?e, where c? is a universal constant,

– R D t

– r D e�1

– s D .‚.n;d//˛T
2

• Let D D .dik/
m;K
i;kD1

2 Cm�K and Y D .yi /miD1 be an input, as in (3.1),
and set B D 1p

m
D.

• Compute A D construct-A.Y ; ƒ/.

• Let G , A and w be as in (4.3), (3.3) and (4.7), respectively.

• Define the output zC D A.D/, where

A.D/Dprimal-dual-rst-wSRLASSO-C.A;B;w;G;�; �;�;T;R;�; r; c/

Table 4.3. The algorithms A W Um �Cm�K ! CN�K used in Theorems 3.6, 3.9 and 3.12.





Chapter 5

Numerical experiments

In this chapter, we present a number of numerical experiments to examine the practi-
cal performance of the previously developed algorithms.

5.1 Experimental setup

We first describe the experimental setup.

5.1.1 Hyperparameter values

The algorithms used in the main theorems (see Tables 4.2 and 4.3) are designed to
ensure the desired error bounds. In our numerical experiments, we deviate from these
values in a number of minor ways. However, our hyperparameter choices are still
closely based on theory. We now discuss the precise hyperparameter choices used in
the experiments. These choices are also summarized in Table 5.1.

First, we take the parameter � to be � D .
p
25m/�1. This differs somewhat

from the value � D .4
p
m=L/�1 used in the theoretical algorithms. The rationale

behind doing this is that L is, in practice, a polylogarithmic factor that arises from
the compressed sensing theory. It is well known that logarithmic factors appearing
in compressed sensing theory are generally quite pessimistic [8, 13, 61]. Therefore,
we avoid using L. The choice � D .5

p
m/�1 was obtained in [8, Appendix A] after

manual tuning.
As shown later, the primal-dual iteration converges subject to the condition

kAk
2
2 � .��/

�1. See Lemma 9.2. Since the error bound (9.2) scales linearly in ��1

and ��1, a standard choice for these parameters is

� D � D 1=kAk2: (5.1)

In Tables 4.2 and 4.3 we choose

� D � D .‚.n; d//�˛;

since the latter is an upper bound for kAk2, i.e., kAk2 � .‚.n; d//
˛ . See (10.9).

This bound is arguably quite crude. The reason for using it in our main theorems is to
avoid having to compute kAk2, since this generally cannot be done in finitely many
arithmetic operations. However, in our numerical experiments we simply use (5.1)
instead, as it is simpler and kAk2 can be efficiently approximated in practice.
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Parameter Value Notes
� .

p
25m/�1 Based on [8, Appendix A]

� kAk
�1
2 Based on Lemma 9.2

� kAk
�1
2 Based on Lemma 9.2

r e�1 Based on Theorem 9.4

T
l
2kAk2
r

m
Based on Theorem 9.4, assuming C D 1

s T
2kAk2

Based on Theorem 9.4

Table 5.1. Hyperparameter values used in the numerical experiments. The first three parameters
are used in both the unrestarted and restarted primal-dual iterations. The final three parameters
are used in the restarted scheme only.

For the restarting scheme, we also have the scale parameter 0 < r < 1, the con-
stant s > 0 and the number of inner iterations T . These parameters are inferred from
Theorem 9.4. This result shows that the error in the restarted primal dual iteration
after l restarts is bounded by

r lkbk2IV C
r

1 � r
�0; (5.2)

provided

T D

�
2C

r
p
��

�
; al D

1

2
�"lC1T; l D 0; 2; : : : :

Here, as discussed in Theorem 9.4, C > 0 is a numerical constant that arises from
the compressed sensing theory. This and the choice (5.1) leads immediately to the
following value for s:

s D
T

2kAk2
:

Unfortunately, the constant C is difficult to determine exactly (it is closely related
to the constant c? discussed in Remark 4.5). In our experiments, we simply pick the
value C D 1. This immediately yields

T D

�
2kAk2
r

�
:

Finally, to determine a value of r we consider the error bound (5.2). This argument is
based on [48]. After l restarts, the total number of iterations t D T l . Substituting the
value of T , we see that

r l D exp.log.r/t=T / D exp
�

log.r/
�
2kAk2
r

��1
t

�
: (5.3)



Experimental setup 49

Ignoring the ceiling function, it therefore makes sense to choose 0 < r < 1 to mini-
mize the function r 7! r log.r/. This attains its minimum value of �e�1 at r D e�1,
which is the value we now use.

5.1.2 Test functions

We consider four test functions. The first two are scalar-valued functions, given by

f1.y/ D exp

 
�
1

2d

dX
kD1

yk

!
; 8y 2 U; with d D 2; (5.4)

and

f2.y/ D exp

 
�
2

d

dX
kD1

.yk � wk/
2

!
; 8y 2 U;

with wk D
.�1/k

k C 1
; 8k 2 Œd � and d D 16:

(5.5)

These are standard test functions (see, e.g., [8, Appendix A.1]). The first function
varies very little with respect to y . Hence, it is expected to be very well approximated
by a sparse polynomial approximation. The second has more variation in y , therefore
we expect a larger approximation error.

We also consider two Hilbert-valued functions. These both arise as solutions of
the parametric elliptic diffusion equation

�r � .a.x;y/ru.x;y// D g.x/; 8x 2 D; y 2 U;

u.x;y/ D 0; 8x 2 @D; y 2 U;

which is a standard problem in the parametric PDE literature. We take the physical
domain D as

D D .0; 1/2:

For simplicity, we also choose
g.x/ D 10

to be constant. In this case, the solution map

U! V ; y 7! u.�;y/; V D H 1
0 .D/;

is a Hilbert-valued function with codomain being the Sobolev space H 1
0 .D/. We

consider two different setups, leading to smooth and less smooth Hilbert-valued func-
tions, which we denote as f3 and f4, respectively. The first is a simple two-dimen-
sional problem with lognormal diffusion coefficient:

f3 W d D 2; a.x;y/ D 5C exp.x1y1 C x2y2/: (5.6)
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For the second, we consider the diffusion coefficient from [5, equation (24)], modified
from an earlier example from [110, equation (5.2)], with 30-dimensional parametric
dependence and one-dimensional (layered) spatial dependence given by

f4 W dD30; a.x;y/ D exp

 
1C y1

�p
�ˇ

2

�1=2
C

dX
iD2

�i #i .x/ yi

!
;

�i WD.
p
�ˇ/1=2 exp

 
�.b i

2
c�ˇ/2

8

!
; #i .x/ WD

8<:sin
��
i
2

˘
�x1= p̌

�
i even;

cos
��
i
2

˘
�x1= p̌

�
i odd;

ˇcD1=8; p̌ D max¹1; 2ˇcº; ˇ D ˇc= p̌: (5.7)

5.1.3 Error metrics and finite element discretization

In our experiments, we consider the relative L2%.U/-norm error

kf � Of kL2%.U/

kf kL2%.U/
; (5.8)

for the scalar-valued functions f1 and f2 and the relative L2%.UIH
1
0 .D//-norm error

kf � Of kL2%.UIH10 .D//

kf kL2%.UIH10 .D//
; (5.9)

for the Hilbert-valued functions f3 and f4. To (approximately) compute this error we
use a high-order isotropic Smolyak sparse grid quadrature rule based on Clenshaw–
Curtis points. This rule is generated using the TASMANIAN software package [129].
We set the level of the quadrature rule in each experiment as large as possible within
the constraints of computational time and memory.

We now describe the discretization Vh for the Hilbert-valued functions f3 and
f4. This is obtained via the finite element method as implemented by Dolfin [95], and
accessed through the python FEniCS project [18]. We generate a regular triangulation
Th ofD composed of triangles T of equal diameter hT D h. We consider a conform-
ing discretization, which results in a finite-dimensional subspace Vh � V DH 1

0 .D/,
where Vh is the space spanned by the usual Lagrange finite elements ¹'iºKiD1 of order
k D 1. We rely on the Dolfin UnitSquareMesh method to generate a mesh with
33 nodes per side, corresponding to a finite element triangulation with K D 1089

nodes, 2048 elements and meshsize h D
p
2=32. See [5, 52] for further implementa-

tion details.
Explicit forms of the Hilbert-valued functions f3 and f4 are not available. There-

fore, computing the relative error requires first computing a reference solution. This is



Numerical results 1: The optimization error 51

re
la

tiv
e
L
2 %
.
U
/

er
ro

r
102

100

10�2

10�4

10�6

10�8

iterations
0 200 400 600 800 1000

er
go

di
c

se
qu

en
ce

re
la

tiv
e
L
2 %
.
U
/

er
ro

r

102

100

10�2

10�4

10�6

10�8

iterations
0 200 400 600 800 1000

Figure 5.1. Approximation error versus iteration number for the function f1 from (5.4). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 250 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 2 and n D 184, which gives

a basis of cardinality N D jƒj D 997. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 11 consisting of M D 7169 points.

usually done by using a finite element discretization with meshsize an order of mag-
nitude smaller than that used to compute the various approximations. However, our
main focus in these experiments is on the polynomial approximation and algorithmic
errors Eapp and Ealg. Since our theoretical results assert that the approximations are
robust to physical discretization error, we do not perform this additional (and costly)
computational step. Instead, we compute reference solutions using the same finite
element discretization as that used to construct the various approximations. In other
words, there is no physical discretization error present in these experiments.

5.2 Numerical results 1: The optimization error

Our first experiments, Figures 5.1–5.4, compare the behaviour of the unrestarted
primal-dual iteration to the restarted primal-dual iteration with several different values
of the tolerance parameter �0. In all cases, we observe a consistent improvement from
the restarted scheme. This is particularly noticeable for the functions f1 and f3, since
the underlying approximation error � is smaller in these cases. Recall that these func-
tions are well approximated by polynomials. As predicted by our theoretical results,
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Figure 5.2. Approximation error versus iteration number for the function f2 from (5.5). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 2000 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 16 and n D 16, which gives

a basis of cardinality N D jƒj D 8277. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 5 consisting of M D 51137 points.

re
la

tiv
e
L
2 %
.
U
I
H
1 0
.
D
/
/

er
ro

r

102

100

10�2

10�4

10�6

10�8

iterations
0 200 400 600 800 1000

er
go

di
c

se
qu

en
ce

re
la

tiv
e
L
2 %
.
U
I
H
1 0
.
D
/
/

er
ro

r

102

100

10�2

10�4

10�6

10�8

iterations
0 200 400 600 800 1000

Figure 5.3. Approximation error versus iteration number for the function f3 from (5.6). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 250 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 2 and n D 184, which gives

a basis of cardinality N D jƒj D 997. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 9 consisting of M D 1537 points.
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Figure 5.4. Approximation error versus iteration number for the function f4 from (5.7). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 1000 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 30 and n D 10, which gives

a basis of cardinality N D jƒj D 7841. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 3 consisting of M D 1861 points.

the error for the restarted scheme decays exponentially fast with respect to the num-
ber of iterations to this limiting accuracy. For example, in the case of f1 the restarted
scheme (with sufficiently small �0) achieves a relative error of less than 10�6 using
only 500 iterations. However, the unrestarted scheme only achieves an error of around
10�3 after 1000 iterations.

An important takeaway from these experiments is the insensitivity of the algo-
rithm to the parameter �0. Our theoretical results only show exponential convergence
(with respect to iteration number) when �0 � �, where � is a certain upper bound for
the error. This appears unnecessary in practice. For instance, in Figures 5.2 and 5.4
we expect the underlying error � to be roughly 10�2 in magnitude, since this is the
limiting error achieved by the unrestarted scheme. Yet setting �0 D 10�10 has no
noticeable effect on the performance of the restarted scheme. Moreover, for �0 2
¹10�4; 10�6; 10�8; 10�10º the results are nearly identical in both Figures 5.2 and 5.4,
and hence the plot lines are overlaid in the case of the restarted scheme.

Another noticeable feature of these experiments is the close agreement between
the theorized rate of exponential decay of the restarted scheme, which is given by the
right-hand side of (5.3) and what is observed in practice. Since the value r D e�1 is
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Figure 5.5. (left) Approximation error and (right) average run time versus number of samples
m for the function f1 from (5.4). This figure shows the relative L2 errors of the polynomial
approximations obtained from the ergodic sequence Nc.n/. These approximations are constructed
using the Legendre polynomial basis and various sets of m sample points drawn randomly and
independently from the uniform measure for each trial. The index setƒ D ƒHC

n;d
, where d D 2

and n D 184, which gives a basis of cardinality N D jƒj D 997. We use the restarted primal
dual iteration “PDR” with �0 D 10�8, and display the average error over 50 trials measured in
the sample mean in blue and the corrected sample standard deviation after a log transformation
in shaded blue, see [8, Appendix A.1.3] for more details. The quadrature rule used to compute
the relative error is a sparse grid rule of level 11 consisting of M D 7169 points.

used in these experiments, in Figures 5.1–5.4 we also plot the function

exp.�ct/; c WD d2ekAk2e
�1 (5.10)

versus the iteration number t . This theoretical curve exactly predicts the observed rate
of exponential decay of the restarted schemes.

Finally, in all four figures we also show the error of the (restarted) primal-dual
iterates, as well as the ergodic sequences. Despite the theoretical results only hold-
ing for the latter, we see similar error decay for the iterates. In fact, the iterates give
slightly better performance in the case of the unrestarted scheme. As expected, the
ergodic sequence reduces the variation in the error for the restarted scheme. More-
over, plotting the ergodic sequence we can see more clearly the benefit of using
restarts over not restarting.

5.3 Numerical results 2: Approximation error and run time

In the second set of experiments, our aim is to study the approximation error ver-
sus the number of samples m. Having compared different solvers in the previous
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Figure 5.6. (left) Approximation error and (right) average run time versus number of samples
m for the function f2 from (5.5). This figure shows the relative L2 errors of the polynomial
approximations obtained from the ergodic sequence Nc.n/. These approximations are constructed
using the Legendre polynomial basis and various sets of m sample points drawn randomly and
independently from the uniform measure for each trial. The index setƒDƒHC

n;d
, where d D 16

and n D 16, which gives a basis of cardinality N D jƒj D 8277. We use the restarted primal
dual iteration “PDR” with �0 D 10�4, and display the average error over 50 trials measured in
the sample mean in blue and the corrected sample standard deviation after a log transformation
in shaded blue, see [8, Appendix A.1.3] for more details. The quadrature rule used to compute
the relative error is a sparse grid rule of level 5 consisting of M D 51137 points.

experiments, we now limit our attention to the restarted primal-dual iteration. The
only modification we make is to introduce a stopping criterion for the number of
restarts. Specifically, given a tolerance �0, we halt the iteration if the difference be-
tween two consecutive iterates is less than 5 � �0. Specifically, if

k Qc.l/ � Qc.l�1/k2 � 5 � �
0;

in the scalar-valued case or

k Qc.l/ � Qc.l�1/k2IV � 5 � �
0;

in the Hilbert-valued case, where Qc.l/ is the output of the restarted primal-dual iter-
ation after l restarts, then we halt and take Qc.l/ as the polynomial coefficients of the
resulting approximation.

In the following experiments, we perform multiple trials for each value of m. For
each trial, we generate a set of sample Monte Carlo points y1; : : : ;ym, then compute
the relative error (5.8) or (5.9) of the approximation using a sparse grid quadrature as
before. Having done this, we then compute the sample mean and (corrected) sample
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Figure 5.7. Approximation error versus number of samples m for the function f3 from (5.6).
This figure shows the relative L2 errors of the polynomial approximations obtained from the
ergodic sequence Nc.n/. These approximations are constructed using the Legendre polynomial
basis and various sets ofm sample points drawn randomly and independently from the uniform
measure for each trial. The index set ƒ D ƒHC

n;d
, where d D 2 and n D 184, which gives a

basis of cardinality N D jƒj D 997. We compare the restarted primal dual iteration “PDR”
with �0 D 10�8 with the average performance over 50 trials measured in the sample mean in
blue and the corrected sample standard deviation after a log transformation in shaded blue,
see [8, Appendix A.1.3] for more details. The quadrature rule used to compute the relative error
is a sparse grid rule of level 11 consisting of M D 7169 points.

standard deviation after a log transformation. See [8, Appendix A.1.3] for further
discussion and rationale behind this computation.

The results for the four functions f1, f2, f3, f4 are shown in Figures 5.5–5.8.
Figure 5.5 shows the average approximation error and run times for f1. As discussed,
this function is expected to be well approximated by polynomials. In accordance,
the error decreases rapidly, achieving roughly 10�7 relative L2 error when m � 200.
This is in broad agreement with the exponential decay rate of the error shown in our
main theorems. In Figure 5.6 we consider the more challenging, higher-dimensional
function f2, plotting the average approximation error and run time. Here, as expected,
the error decreases significantly more slowly. Both figures exhibit a linear scaling of
the run time with the number of samplesm. This is consistent with our analysis, since



Numerical results 2: Approximation error and run time 57

er
go

di
c

se
qu

en
ce

av
er

ag
e

re
la

tiv
e
L
2 %
.U
I
H
1 0
.D
//

er
ro

r

100

10�1

10�2

m samples
200 400 600 800 1000

Figure 5.8. Approximation error versus number of samples m for the function f4 from (5.7).
This figure shows the relative L2 errors of the polynomial approximations obtained from the
ergodic sequence Nc.n/. These approximations are constructed using the Legendre polynomial
basis and various sets ofm sample points drawn randomly and independently from the uniform
measure for each trial. The index set ƒ D ƒHC

n;d
, where d D 30 and n D 10, which gives a

basis of cardinality N D jƒj D 7841. We compare the restarted primal dual iteration “PDR”
with �0 D 10�4 with the average performance over 50 trials measured in the sample mean in
blue and the corrected sample standard deviation after a log transformation in shaded blue,
see [8, Appendix A.1.3] for more details. The quadrature rule used to compute the relative error
is a sparse grid rule of level 3 consisting of M D 1861 points.

each algorithm iteration involves dense matrix-vector multiplications with an m �N
matrix. Also, comparing Figures 5.5 and 5.6 when m D 250, we notice the run time
is roughly 16 times larger for the latter. This is also in agreement with our analysis.
Indeed,N � 1000 in Figure 5.5 whileN � 8000 in Figure 5.6. However, the number
of inner iterations T D d2kAk2=re is roughly twice as large in Figure 5.6, where
kAk2 � 13 whenm D 250, as it is in Figure 5.5, where kAk2 � 7. The combination
of these two factors accounts for the roughly 16-fold increase in run time.

Figure 5.7 displays the performance of the restarted scheme on the Hilbert-valued
function f3. Here we also observe rapid decrease in the error with respect to increas-
ing number of samplesm, with relative L2 error approximately 10�6 whenm� 200.
Finally, Figure 5.8 shows the results for the less smooth high-dimensional Hilbert-
valued function f4. For this function, we expect slower decrease in the error with
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respect to m, which is reflected in this set of results. Nonetheless, despite its high
dimensionality (d D 30) we still achieve two digits of relative accuracy using only
m � 1000 samples.



Chapter 6

Overview of the proofs

The rest of this work is devoted to proving the main results. Since these involve a
number of technical steps, we now give a brief overview of how these proofs proceed.

We commence in Chapter 7 by developing compressed sensing theory for Hilbert-
valued vectors. We introduced the so-called weighted robust Null Space Property
(rNSP) over V , and then show in Lemma 7.4 that it implies certain error bounds for
inexact minimizers of the Hilbert-valued, weighted SR-LASSO problem. Next, we
introduced the weighted Restricted Isometry Property (RIP) and then in Lemma 7.6
we show that this property over C implies the weighted rNSP over V .

In Chapter 8 we focus on the polynomial approximation problem. We first give
a sufficient condition in terms of m for the measurement matrix (4.3) to satisfy the
weighted RIP with high probability (Lemma 8.1). Next, we state and prove three gen-
eral results (Theorems 8.2–8.4) that give error bounds for polynomial approximations
obtained as inexact minimizers of the Hilbert-valued, weighted SR-LASSO problem.
These results are split into the three cases considered in our main results, i.e., the alge-
braic and finite-dimensional case, the algebraic and infinite-dimensional case, and the
exponential case. The error bounds in these results split into terms corresponding to
the polynomial approximation error, the physical discretization error, the sampling
error, and the error in the objective function at the inexact minimizer.

With this in mind, in Chapter 9, we first present error bounds for inexact minimiz-
ers obtained by finitely many iterations of the primal-dual iteration. See Lemma 9.2.
Having done this, we then have the ingredients needed to derive the restarting scheme.
We derive this scheme and present an error bound for it in Theorem 9.4.

We conclude with in Chapter 10 with the final arguments. We use the three key
theorems (Theorems 8.2–8.4) and then proceed to estimate each of the aforemen-
tioned error terms. For the polynomial approximation error we appeal to several
results that are given in Appendix A. For the error in the objective function we use
the results shown in Chapter 9. After straightforwardly bounding the other two error
terms, we finally obtain the main results.





Chapter 7

Hilbert-valued compressed sensing

In this chapter, we develop Hilbert-valued compressed sensing theory. Here, rather
than the classical setting of a vector in CN , one seeks to recover a Hilbert-valued
vector in VN . This was considered in [52] in the for the classical sparsity model
with `1-minimization. We now consider the more general weighted sparsity model
and weighted `1-minimization. This model was first developed in [121] in the scalar-
valued case. See also [2, 37] and [8, Chapter 6]. Note that in this chapter, we shall
write V rather than Vh, as is done in (4.6). Since V is arbitrary, all the results shown
below will also apply in the case of Vh.

7.1 Weighted sparsity and weighted best approximation

Letƒ � F andwD .w�/�2ƒ > 0 be positive weights. Given a set S �ƒ, we define
its weighted cardinality as

jS jw WD
X
i2S

w2i :

The following two definitions extend Definitions 2.2 and 2.3 to the weighted setting.

Definition 7.1 (Weighted sparsity). Let ƒ � F . A V -valued sequence c D .c�/�2ƒ
is weighted .k;w/-sparse for some k � 0 and weights w D .w�/�2ƒ > 0 if

jsupp.c/jw � k;

where supp.z/ D ¹� W kz�kV ¤ 0º is the support of z. The set of such vectors is
denoted by †k;w.

Definition 7.2 (Weighted best .k;w/-term approximation error). Let ƒ � F , 0 <
p � 2, w > 0, c 2 `pw.ƒIV/ and k � 0. The `pw-norm weighted best .k;w/-term
approximation error of c is

�k.c/p;wIV D min
®
kc � zkp;wIV W z 2 †k;w

¯
:

Notice that this is equivalent to

�k.c/p;wIV D inf
®
kc � cSkp;wIV W S � ƒ; jS jw � k

¯
: (7.1)

Here and elsewhere, for a sequence c D .c�/�2ƒ and a set S � ƒ, we define cS as
the sequence with �th entry equal to c� if � 2 S and zero otherwise.
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7.2 The weighted robust null space property

For the rest of this chapter, we consider the index set ƒ D ¹1; : : : ; N º for some
N 2 N. Our analysis of the weighted SR-LASSO problem is presented in terms of
the so-called weighted robust null space property. Let w > 0 and k > 0. A bounded
linear operatorA 2B.VN ;Vm/ has the weighted robust Null Space Property (rNSP)
over V of order .k;w/ with constants 0 < � < 1 and 
 > 0 if

kxSk2IV �
�kxSck1;wIV
p
k

C 
kAxk2IV ; 8x 2 VN ;

for any S � ŒN � with jS jw � k.
Importantly, the weighted rNSP implies distance bounds in the `1w- and `2-norms.

The following lemma is standard in the scalar case (see, e.g., [8, Lemma 6.24]). We
omit the proof of its extension to the Hilbert-valued case, since it follows almost
exactly the same arguments.

Lemma 7.3 (Weighted rNSP implies `1w and `2 distance bounds). Suppose that A 2
B.VN ;Vm/ has the weighted rNSP over V of order .k;w/ with constants 0 < � < 1
and 
 > 0. Let x; z 2 VN . Then

kz � xk1;wIV � C1.2�k.x/1;wIV C kzk1;wIV � kxk1;wIV /

C C2
p
kkA.z � x/k2IV ;

kz � xk2IV �
C 01
p
k
.2�k.x/1;wIV C kzk1;wIV � kxk1;wIV /

C C 02kA.z � x/k2IV ;

where the constants are given by

C1 D
.1C �/

.1 � �/
; C2 D

2


.1 � �/
; C 01 D

�
.1C �/2

1 � �

�
and C 02 D

�
.3C �/


1 � �

�
:

Lemma 7.3 can be used to show distance bounds for exact minimizers of the
Hilbert-valued weighted SR-LASSO problem

min
z2VN

G .z/; G .z/ WD �kzk1;wIV C kAz � bk2IV : (7.2)

Fortunately, it also implies bounds for approximate minimizers, such as those ob-
tained by a finite number of steps of the primal-dual iteration.

Lemma 7.4 (Weighted rNSP implies error bounds for inexact minimizers). Suppose
that A 2 B.VN ;Vm/ has the weighted rNSP over V of order .k;w/ with constants
0 < � < 1 and 
 > 0. Let x 2 VN , b 2 Vm and e D Ax � b 2 Vm, and consider
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the problem (7.2) with parameter

0 < � �
.1C �/2

.3C �/

k�1=2: (7.3)

Then, for any Qx 2 VN ,

k Qx � xk1;wIV � C1

�
2�k.x/1;wIV C

G . Qx/ � G .x/

�

�
C

�
C1

�
C C2

p
k

�
kek2IV ;

k Qx � xk2IV �
C 01
p
k

�
2�k.x/1;wIV C

G . Qx/ � G .x/

�

�
C

�
C 01
p
k�
C C 02

�
kek2IV ;

where C1, C2, C 01 and C 02 are as in Lemma 7.3.

Proof. First notice that C 01=C
0
2 � C1=C2 since 0 < � < 1, where C1, C2, C 01 and C 02

are as in Lemma 7.3. Hence the condition on � implies that

� � min¹C1=C2; C 01=C
0
2ºk
�1=2;

Using this lemma and this bound, we deduce that

k Qx � xk1;wIV � 2C1�k.x/1;wIV C
C1

�

�
�k Qxk1;wIV C



A Qx � b


2IV
� �kxk1;wIV

�
C C2

p
Kkek2IV :

The definition of G in (7.2) gives

k Qx � xk1;wIV � 2C1�k.x/1;wIV C
C1

�
.G . Qx/ � G .x/C kek2IV /C C2

p
kkek2IV ;

which is the first result. The second follows in an analogous manner.

7.3 The weighted rNSP and weighted restricted isometry property

In the next chapter, we give explicit conditions in terms of m under which the mea-
surement matrices (4.3) satisfy the weighted rNSP over V . It is well known that
showing the (weighted) rNSP directly can be difficult. In the classical, scalar setting,
this is overcome by showing that the (weighted) rNSP is implied by the so-called
(weighted) restricted isometry property. Hence, in this section, we first introduced
this property and describe its relation to the (weighted) rNSP.

Let w > 0 and k > 0. A bounded linear operator A 2 B.VN ; Vm/ has the
weighted Restricted Isometry Property (RIP) over V of order .k;w/ if there exists
a constant 0 < ı < 1 such that

.1 � ı/kzk22IV � kAzk
2
2IV � .1C ı/kzk

2
2IV ; 8z 2 †k;w � VN :
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The smallest constant such that this property holds is called the .k;w/th weighted
Restricted Isometry Constant (wRIC) of A, and is denoted as ık;w.

It is first convenient to show an equivalence between the scalar weighted RIP over
C and the Hilbert-valued weighted RIP over V .

Lemma 7.5 (Weighted RIP over C is equivalent to the weighted RIP over V ). Let
w> 0, k > 0 andA D .aij /

m;N
i;jD1 2Cm�N be a matrix. ThenA satisfies the weighted

RIP over C of order .k;w/ with constant 0 < ı < 1 if and only if the corresponding
bounded linear operator A 2 B.VN ;Vm/ defined by

x D .xi /
N
iD1 2 VN

7! Ax WD

 
NX
iD1

aijxj

!m
iD1

2 Vm;

satisfies the weighted RIP over V of order .k;w/ with the same constant ı.

Proof. We follow similar arguments to [52, Remark 3.5]. First, we rewrite the equiv-
alence as follows:

.1 � ı/kxk22IV � kAxk
2
2IV � .1C ı/kxk

2
2IV ; 8x 2 VN ; jsupp.x/jw � k; (7.4)

if and only if

.1 � ı/kxk22 � kAxk
2
2 � .1C ı/kxk

2
2; 8x 2 CN ; jsupp.x/jw � k: (7.5)

Suppose that (7.5) holds. Let x D .xj /
N
iD1 2 VN be .k;w/-sparse and ¹�iºi be an

orthonormal basis of V . Then, for each i 2 ŒN �, xi 2 V can be uniquely represented
as

xi D
X
j

˛ij�j ; ˛ij 2 C:

Let xj D .˛ij /NiD1 2CN . Then supp.xj /� supp.x/ and therefore xj is .k;w/-sparse.
Hence (7.5) gives

.1 � ı/kxj k
2
2 � kAxj k

2
2 � .1C ı/kxj k

2
2: (7.6)

Now observe thatX
j

kxj k
2
2 D

NX
iD1

X
j

j˛ij j
2
D

NX
iD1

kxik
2
V D kxk

2
2IV

and X
j



Axj

22 DX
j

mX
iD1

ˇ̌̌̌
ˇ NX
kD1

aik˛kj

ˇ̌̌̌
ˇ
2

D

mX
iD1






 NX
kD1

aikxk







2

V

D kAxk
2
2IV :

Summing (7.6) over j , we deduce that (7.4) holds.
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Conversely, suppose that (7.4) holds and let zD.zi /NiD12CN with jsupp.z/jw�k.
Define x D .zi�i / 2 VN and notice that kxk2IV D kzk2 and kAxk2IV D kAzk2.
Since supp.x/ D supp.z/ and jsupp.z/jw � k, we now apply (7.4) to deduce that
.1 � ı/kzk22 � kAzk

2
2 � .1C ı/kzk

2
2. We conclude that (7.5) holds.

The following result shows that the weighted RIP is a sufficient condition for
the weighted rNSP. This result is well known in the scalar-valued case (see, e.g., [8,
Theorem 6.26]). Since its extension to the Hilbert-valued case is straightforward, we
omit the proof.

Lemma 7.6 (Weighted RIP implies the weighted rNSP). Let w > 0, k > 0 and sup-
pose that A 2 Cm�N has the weighted RIP over V of order .2k;w/ with constant
ı2k;w < .2

p
2 � 1/=7. Then A has the weighted rNSP of order .k;w/ over V with

constants � D 2
p
2ı2k;w=.1 � ı2k;w/ and 
 D

p
1C ı2k;w=.1 � ı2k;w/.





Chapter 8

Error bounds for polynomial approximation via the
Hilbert-valued, weighted SR-LASSO

Having developed the necessary tools for Hilbert-valued compressed sensing, we now
specialize to the case introduced in Section 4.1 of polynomial approximation via the
Hilbert-valued, weighted SR-LASSO problem (4.6). Our main results in this chapter,
Theorems 8.2–8.4, yield error bounds for (inexact) minimizers of this problem in
terms of the best polynomial approximation error, the Hilbert space discretization
error and the noise.

8.1 The weighted RIP for the polynomial approximation problem

In order to obtain these results, we first need to assert conditions on m under which
the relevant measurement matrix satisfies the weighted RIP. As in Section 4.1, we let
¹‰�º�2F � L

2
%.U/ be either the tensor Chebyshev or Legendre polynomial basis,

ƒ D

´
ƒHC
n;d

d <1;

ƒHCI
n d D1;

(8.1)

be the hyperbolic cross index set and draw y1; : : : ;ym independently and identically
from the measure %. Then we define the measurement matrix A exactly as in (4.3).

Lemma 8.1 (Weighted RIP for orthogonal polynomials). Let ¹‰�º�2Nd
0

be the or-

thonormal tensor Legendre or Chebyshev polynomial basis ofL2%.U/,ƒ be as in (8.1)
for some n � 1 and y1; : : : ; ym be drawn independently and identically from the
measure %. Let 0 < � < 1, k > 0, u be the intrinsic weights (4.7), L0 D L0.k; n; d; �/
be given by

L0 D

´
log.2k/�.log.2k/�min¹log.n/Cd; log.ed/�log.2n/ºClog.��1// d <1;

log.2k/ � .log.2k/ � log2.2n/C log.��1// d D1;

and suppose that
m � c � k � L0.k; n; d; �/; (8.2)

where c > 0 is a universal constant. Then, with probability at least 1 � �, the matrix
A defined in (4.3) satisfies the weighted RIP of order .k;u/ with constant ık;u � 1=4.

Proof. The proof uses ideas that are now standard. The matrix A is a specific type
of measurement matrix associated to the bounded orthonormal system ¹‰�º�2ƒ (see,
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e.g., [8, Section 6.4.3] or [61, Chapter 12]). Such a matrix satisfies the weighted RIP
of order k > 0 with constant ık;u � ı whenever

m � c � k � ı�2 � log
�
2k

ı2

�
�

�
1

ı4
log
�
2k

ı2

�
� log.2N /C

1

ı
log.��1/

�
; (8.3)

where c > 0 is a universal constant. See, e.g., [8, Theorem 6.27 and equation (6.36)]
(this result is based on [37]). To obtain the result, we set ı D 1=4. Hence, (8.3) is
implied by

m � c � k � log.2k/ � Œlog.2k/ � log.2N /C log.��1/�;

for a potentially different universal constant c. Next, we use (3.6) (and recall that
jƒHCI
n j D jƒ

HC
n;nj) to estimate

log.2N / � c

´
min¹d C log.n/; log.2d/ � log.2n/º d <1;

log2.2n/ d D1;

for a potentially different universal constant. The result now follows after substituting
this into the previous expression.

Note that the choice of 1=4 in this lemma is arbitrary. Any value less than

.2
p
2 � 1/=7 � 0:261

(see Lemma 7.6) will suffice.

8.2 Bounds for polynomial approximations obtained as inexact
minimizers

We now present the main results of this chapter. These three results provide error
bounds for polynomial approximations that are obtained as (inexact) minimizers to
the weighted SR-LASSO problem (4.6). Each theorem corresponds to one of the three
scenarios in our main results in Section 3.3. Hence, we label them accordingly as
algebraic and finite-dimensional, algebraic and infinite-dimensional, and exponential.
In order to state these results, we now define some additional notation. Given f 2
L2%.UIV/ and ƒ � F , where F is as in (2.1)–(2.2), we let

Eƒ;2.f / D kf � fƒkL2%.UIV/; Eƒ;1.f / D kf � fƒkL1.UIV/;

where fƒ is as in (4.1), and, given a subspace Vh � L
2
%.UIV/, we let

Eh;1.f / D kf �Ph.f /kL1.UIV/;

where Ph.f / is as in (2.5).
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Theorem 8.2 (Error bounds for inexact minimizers, algebraic and finite-dimensional
case). Let d 2 N, m � 3, 0 < � < 1, ¹‰�º�2Nd

0
� L2%.U/ be either the orthonor-

mal Chebyshev or Legendre basis, Vh � L
2
%.U/ be a subspace of L2%.U/ and ƒ D

ƒHC
n;d

be the hyperbolic cross index set with n D dm=Le where L D L.m; d; �/

is as in (3.8). Let f 2 L2%.UI V/, draw y1; : : : ; ym randomly and independently
according to % and suppose that A, b and e are as in (4.3) and (4.4). Consider the
Hilbert-valued, weighted SR-LASSO problem (4.6) with weights w D u as in (4.7)
and � D .4

p
m=L/�1. Then there exists universal constants c0; c1; c2 � 1 such that

the following holds with probability at least 1 � �. Any Qc D . Qc�/�2ƒ 2 CN satisfies

kf � Qf kL2%.UIV/ � c1 � �; kf �
Qf kL1.UIV/ � c2 �

p
k � �; Qf WD

X
�2ƒ

Qc�‰�;

where

�D
�k.cƒ/1;uIV
p
k

C
Eƒ;1.f /
p
k
CEƒ;2.f /CEh;1.f /CG . Qc/�G .Ph.cƒ//C

knk2IV
p
m

;

cƒ is as in (4.2), Ph.cƒ/ D .Ph.c�//�2ƒ, k D m=.c0L/ for L D L.m; d; �/ as
in (3.8), and n is as in (4.4).

Proof. We divide the proof into several steps.

Step 1: Splitting the error into separate terms. Consider the L2%.UIV/-norm error
first. By the triangle inequality and the fact that Ph is a projection, we have

kf � Qf kL2%.UIV/

� kf �Ph.f /kL2%.UIV/CkPh.f / �Ph.fƒ/kL2%.UIV/CkPh.fƒ/ �
Qf kL2%.UIV/

� kf �Ph.f /kL1.UIV/ C kf � fƒkL2%.UIV/ C kPh.fƒ/ �
Qf kL2%.UIV/

D Eh;1.f /CEƒ;2.f /C kPh.fƒ/ � Qf kL2%.UIV/:

Then, by orthonormality, we have

kf � Qf kL2%.UIV/ � Eh;1.f /CEƒ;2.f /C kPh.cƒ/ � Qck2IV :

Similarly, for the L1.UIV/-norm error, we have

kf � Qf kL1.UIV/

�kf �Ph.f /kL1.UIV/CkPh.f /�Ph.fƒ/kL1.UIV/CkPh.fƒ/�
Qf kL1.UIV/

�kf �Ph.f /kL1.UIV/ C kf � fƒkL1.UIV/ C kPh.fƒ/ �
Qf kL1.UIV/

DEh;1.f /CEƒ;1.f /C kPh.fƒ/ � Qf kL1.UIV/:
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Using the definition (4.7) of the weights u, we deduce that

kf � Qf kL1.UIV/ � Eh;1.f /CEƒ;1.f /C kPh.cƒ/ � Qck1;uIV :

Therefore, the rest of the proof is devoted to showing the following bounds:

kPh.cƒ/ � Qck2IV � c1 � �; kPh.cƒ/ � Qck1;uIV � c2 �
p
k � �: (8.4)

We do this in the next two steps by first asserting thatA has the weighted rNSP (Step
2) and then by applying the error bounds of Lemma 7.4 (Steps 3 and 4).

Step 2: Asserting the weighted rNSP. We now show that A has the weighted rNSP
over Vh of order .k;u/ with probability at least 1� �=2. This is based on Lemma 8.1.
First observe that

L D L.m; d; �/ � log2.3/ �min¹log.3/C 1; log.3/ � log.e/º � 1;

sincem � 3. This implies thatm �m=L �m=.c0L/D k since c0 � 1 as well. Since
n D dm=Le � m=LC 1 � 2m, we get

log.4k/ � .log.4k/ �min¹log.n/C d; log.ed/ � log.2n/º C log.2=�//

� log.4m/ � .log.4m/ �min¹log.2m/C d; log.ed/ � log.4m/º C log.2=�//

� c0L.m; d; �/=2

for a suitably large choice of c0. Hence

m D c0kL.m; d; �/ � 2c0kL
0.2k; d; �=2/;

where L0 is defined as in Lemma 8.1, and therefore (again assuming a suitably large
choice of c0) (8.2) holds with k replaced by 2k. We deduce that A satisfies the
weighted RIP over C of order .2k;u/ with constant ı2k;u � 1=4, with probability at
least 1 � �=2. Then, we deduce from Lemmas 7.5 and 7.6 that A has (with the same
probability) the weighted rNSP over Vh of order .k; u/ with constants � D 2

p
2=3

and 
 D 2
p
5=3.

Step 3: Bounding Ph.cƒ/ � Qc using the weighted rNSP. We use Lemma 7.4. First,
consider the value of �. Since c0 � 1we havem=L�m=.c0L/D k. Hence, recalling
the values for � and 
 obtained in the previous step, we have

1

4
p
c0

1
p
k
D

1

4
p
m=L

D � �
1

4
p
k
<
.1C �/2

.3C �/


1
p
k
: (8.5)

Therefore, (7.3) holds. We now apply this lemma with V D Vh, x D Ph.cƒ/, Qx D Qc
and e D APh.cƒ/ � b. Notice first that the best .k; u/-approximation error (7.1)
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satisfies

�k.Ph.cƒ//1;uIV D inf
° X
�2ƒnS

u�


Ph.c�/




V
W S � ƒ; jS ju � k

±
� �k.cƒ/1;uIV ; (8.6)

since Ph is a projection. Hence, applying Lemma 7.4 and using the lower bound
in (8.5), we get

k Qc�Ph.cƒ/k2IV �c1

�
�k.cƒ/1;wIV
p
k

CG . Qc/�G .Ph.cƒ//C


APh.cƒ/�b




2IV

�
;

k Qc �Ph.cƒ/k1;uIV �c2
�
�k.cƒ/1;wIV C

p
k.G . Qc/ � G .Ph.cƒ///

C
p
k


APh.cƒ/ � b




2IV

�
; (8.7)

with probability at least 1� �=2. Therefore, to show (8.4) and therefore complete the
proof, it suffices to show that the following holds with probability at least 1 � �=2:

kAPh.cƒ/ � bk2IV �
p
2

�
Eƒ;1.f /
p
k

CEƒ;2.f /

�
CEh;1.f /C

knk2IV
p
m

: (8.8)

The overall result then follows by the union bound.

Step 4: Showing that (8.8) holds. Observe that
p
mk.APh.cƒ/ � b/ikV

� kPh.fƒ/.yi / � f .yi /kV C


ni

V

� kPh.fƒ/.yi / �Ph.f /.yi /kV C kf .yi / �Ph.f /.yi /kV C


ni

V

� kf .yi / � fƒ.yi /kV CEh;1.f /C knikV :

Therefore,

kAPh.cƒ/ � bkV I2 � Eƒ;disc.f /CEh;1.f /C
knk2IV
p
m

; (8.9)

where

Eƒ;disc.f / D

vuut 1

m

mX
iD1

kf .yi / � fƒ.yi /k
2
V : (8.10)

For this final step, we follow near-identical arguments to those found in [8, Lemma
7.11]. This shows that

Eƒ;disc.f / �
p
2

�
Eƒ;1.f /
p
k

CEƒ;2.f /

�
;

with probability at least 1 � �=2, provided m � 2k log.2=�/. However, this follows
due to the assumptions onm and the arguments given in Step 2. Thus we obtain (8.8)
and the proof is complete.
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Theorem 8.3 (Error bounds for inexact minimizers, algebraic and infinite-dimen-
sional case). Let d D 1, m � 3, 0 < � < 1, ¹‰�º�2F � L

2
%.U/ be either the or-

thonormal Chebyshev or Legendre basis, Vh � L
2
%.U/ be a subspace of L2%.U/ and

ƒ D ƒHCI
n be the hyperbolic cross index set with n D dm=Le where L D L.m; d; �/

is as in (3.8). Let f 2 L2%.UI V/, draw y1; : : : ; ym randomly and independently
according to % and suppose that A, b and e are as in (4.3) and (4.4). Consider the
Hilbert-valued, weighted SR-LASSO problem (4.6) with weights w D u as in (4.7)
and � D .4

p
m=L/�1. Then there exists universal constants c0; c1; c2 � 1 such that

the following holds with probability at least 1 � �. Any Qc D . Qc�/�2ƒ 2 CN satisfies

kf � Qf kL2%.UIV/ � c1 � �; kf �
Qf kL1.UIV/ � c2 �

p
k � �; Qf WD

X
�2ƒ

Qc�‰�;

where

�D
�k.cƒ/1;uIV
p
k

C
Eƒ;1.f /
p
k
CEƒ;2.f /CEh;1.f /CG . Qc/�G .Ph.cƒ//C

knk2IV
p
m

;

cƒ is as in (4.2), Ph.cƒ/ D .Ph.c�//�2ƒ, k D m=.c0L/ for L D L.m; d; �/ as
in (3.8), and n is as in (4.4).

Proof. The proof has the same structure as that of the previous theorem. Steps 1, 3
and 4 are identical. The only differences occur in Step 2. We now describe these
changes. Once more we observe that L D L.m;1; �/ � 1 since m � 3. Hence,
m �m=L �m=.c0L/D k since c0 � 1. We also have nD dm=Le � 2m. Therefore,

log.4k/ � .log.4k/ � log2.2n/C log.2=�// � log.4m/ � .log3.4m/C log.2=�//

� c0L.m;1; �/=2

for a suitably large choice of c0. We deduce that

m D c0kL.m;1; �/ � 2c0kL
0.2k;1; �=2/;

where L0 is as in Lemma 8.1. An application of this lemma now shows thatA has the
weighted RIP of order .2k;u/ with constant ı2k;u � 1=4, as required.

Theorem 8.4 (Error bounds for inexact minimizers, exponential case). Let d 2 N,
m � 3, 0 < � < 1, ¹‰�º�2Nd

0
� L2%.U/ be either the orthonormal Chebyshev or Leg-

endre basis, Vh � L
2
%.U/ be a subspace of L2%.U/ and ƒ D ƒHC

n;d
be the hyperbolic

cross index set with n as in (3.15). Draw y1; : : : ; ym randomly and independently
according to %. Then, with probability at least 1 � �, the following holds. Let f 2
L2%.UI V/ and suppose that A, b and e are as in (4.3) and (4.4). Consider the
Hilbert-valued, weighted SR-LASSO problem (4.6) with weights w D u as in (4.7)
and � D .4

p
m=L/�1. Then there exists universal constants c0; c1; c2 � 1 such that
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any Qc D . Qc�/�2ƒ 2 CN satisfies

kf � Qf kL2%.UIV/ � c1 � �; kf �
Qf kL1.UIV/ � c2 �

p
k � �; Qf WD

X
�2ƒ

Qc�‰�;

where

� D
�k.cƒ/1;uIV
p
k

CEƒ;1.f /CEh;1.f /C G . Qc/ � G .Ph.cƒ//C
knk2IV
p
m

;

cƒ is as in (4.2), Ph.cƒ/ D .Ph.c�//�2ƒ, k D m=.c0L/ for L D L.m; d; �/ as
in (3.8), and n is as in (4.4).

Proof. The proof has the same structure as that of Theorem 8.2. Step 1 is identical,
and reduces the proof to showing that (8.4) holds. We now describe the modifications
needed in Steps 2–4.

Step 2: Asserting the weighted rNSP. We now show that A has the weighted rNSP
over Vh of order .k; u/ with probability at least 1 � �. This step is essentially the
same, except for the choice of n and the probability 1 � � instead of 1 � �=2.

Step 3: Bounding Ph.cƒ/ � Qc using the weighted rNSP. Since � and k are the same
as in Theorem 8.2, the bound (8.5) also holds in this case. We then follow the same
arguments, leading to (8.7) holding with probability at least 1 � �. Finally, rather
than (8.8), we ask for the slightly modified bound

kAPh.cƒ/ � bk2IV � Eƒ;1.f /CEh;1.f /C
knk2IV
p
m

; (8.11)

to hold with probability one.

Step 4: Showing (8.11) holds. By the same argument, we see that (8.9) holds. Instead
of the probabilistic bound for Eƒ;disc.f /, we now simply bound it as

Eƒ;disc.f / � kf � fƒkL1.UIV/ D Eƒ;1.f /:

This immediately implies (8.11).
Finally, we observe that we can simplify the previous estimates in this case using

the bound Eƒ;2.f / � Eƒ;1.f /.





Chapter 9

Error bounds and the restarting scheme for the
primal-dual iteration

Theorems 8.2–8.4 reduce the problem of proving the main results (Theorems 3.4–
3.12) to two tasks. The first involves bounding the error in the objective function, i.e.,
the term

G . Qc/ � G .Ph.cƒ//;

where Qc is either an exact minimizer or an approximate minimizer obtained via the
primal dual iteration. The second involves the various approximation error terms
depending on f and its polynomial coefficients.

In this chapter, we address the first task. We first provide an error bound for
the (unrestarted) primal-dual iteration when applied to Hilbert-valued weighted SR-
LASSO problem (7.2), and then use this to derive the specific restart scheme.

9.1 Error bounds for the primal-dual iteration

We now return to the general setting of the primal-dual iteration, where it is applied to
the problem (4.9) and takes the form (4.12). The following result from [31, Theorem
5.1] establishes an important error bound for the Lagrangian difference.

Theorem 9.1. Let �; � > 0, initial points .x.0/; �.0// 2 X � Y and a bounded linear
operator A 2 B.X;Y/, be such that kAk2

B.X;Y/
� .��/�1. Consider the sequence

¹.x.n/; �.n//º1nD1 generated by the primal-dual iteration (4.12). Then, for any .x; �/ 2
X � Y,

L. Nx.n/; �/ �L.x; x�.n// �
��1kx � x.0/k

2

2IV C �
�1k� � �.0/k

2

2IV

n
; (9.1)

where

Nx.n/ D
1

n

nX
kD1

x.k/ and x�.n/ D
1

n

nX
kD1

�.k/;

are the ergodic sequences and L is the Lagrangian (4.11).

The following lemma shows a decay rate of 1=n on the objective function in the
case of the primal-dual iteration when applied to the problem (7.2). It is an extension
of [13, Lemma 8.6] to the weighted and Hilbert-valued setting.
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Lemma 9.2. LetA 2B.VN ;Vm/ and �;� > 0 be such that kAk2
B.VN ;Vm/

�.��/�1.

Consider the sequence ¹.x.n/; �.n//º1nD1 generated by the primal-dual iteration in
(4.12) applied to (7.2) with x.0/ 2 VN and �.0/ D 0 2 Vm. Then, for any x 2 VN ,

G . Nx.n// � G .x/ �
��1kx � x0k

2
2IV C �

�1

n
; Nx.n/ D

1

n

nX
kD1

x.k/: (9.2)

Proof. Using (4.11) and (4.13), the left-hand side of (9.1) is given by

Tn.x; �/ WD
�
�k Nx.n/k1;wIV C RehA Nx.n/ � b; �i2IV C ıB.�/

�
�
�
�kxk1;wIV C RehAx � b; x�.n/i2IV C ıB.x�.n//

�
;

where B is the unit ball in Vm. Observe that the term �.n/ produced by this iteration
satisfies k�.n/k2IV � 1. This follows from the observation shown in Section 4.4 that
the proximal mapping

prox�h�.�/ D projB.� � �b/

involves the projection onto the unit ballB . Hence, the ergodic sequence x�.n/ satisfies
kx�.n/k2IV � 1 as well. Suppose now that Ax.n/ � b ¤ 0 and set

� D
Ax.n/ � b

kAx.n/ � bk2IV
:

Then ıB.�/ D ıB.x�.n// D 1 and therefore

Tn.x; �/D
�
�k Nx.n/k1;wIVCkA Nx

.n/
�bk2IV

�
�
�
�kxk1;wIVCRehAx � b; x�.n/i2IV

�
�
�
�k Nx.n/k1;wIV C kA Nx

.n/
� bk2IV

�
�
�
�kxk1;wIV C kAx � bk2IV

�
:

Clearly, the same bound also holds in the caseAx.n/ � bD 0 where � is an arbitrary
unit vector. Hence Theorem 9.1 and the fact that

k� � �0k2IV D k�k2IV D 1

gives the result.

9.2 The restarting scheme

For convenience, we now introduce new and slightly modify some existing notation.
First, we redefine the objective function G of the Hilbert-valued weighted SR-LASSO
problem (7.2) to make the dependence on the term b explicit: namely, we set

G .x;b/ D �kxk1;wIV C kAx � bk2IV ; x 2 VN ; b 2 Vm:
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We then let

E.z;x;b/ D G .z;b/ � G .x;b/; x; z 2 VN ; b 2 Vm:

Now consider the ergodic sequence Nx.n/ produced by n iterations of the primal-dual
iteration (4.12) applied to (7.2) with parameters �; � > 0, x0 2 VN and �0 D 0 2 Vm.
For reasons that will become clear in a moment, we now make the dependence on the
vector b in (7.2), the number of iterations Nx.n/ and the initial vector x0 explicit, by
defining

P .x0;b; n/ D Nx
.n/:

With this in hand, we conclude this discussion by noting the following two scaling
properties:

G .ax;b/ D aG .x;b=a/; E.az;x;b/ D aE.z;x=a;b=a/: (9.3)

These hold for any a > 0 and for any x; z 2 VN and b 2 Vm.

Lemma 9.3. Suppose that A 2 B.VN ;Vm/ has the weighted rNSP over V of order
.k;w/ with constants 0 < � < 1 and 
 > 0. Consider the Hilbert-valued weighted
SR-LASSO problem (7.2) with parameter � D c=

p
k, where

0 < c �
.1C �/2

.3C �/

:

Let E and P be as defined above, �; � satisfy kAk2B.VN ;Vm/ � .��/
�1 and x;x0 2

VN , b 2 Vm, a > 0. Then

E.aP .x0=a;b=a; n/;x;b/ �
C 2

a� n
.E.x0;x;b/C �/

2
C

a

�n
;

where
C D 2max¹C 01=c; C

0
2º; (9.4)

C 01, C 02 are as in Lemma 7.3 and

� D �.x;b/ D
�k.x/1;wIV
p
k

C kAx � bk2IV : (9.5)

Proof. The scaling property (9.3) and Lemma 9.2 give

E.aP .x0=a;b=a; n/;x;b/ D aE.P .x0=a;b=a; n/;x=a;b=a/

� a

�
��1kx=a � x0=ak

2
2IV C �

�1

n

�
D
kx � x0k

2
2IV

a� n
C

a

�n
:
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Now consider the term kx � x0k2IV . Since A has the weighted rNSP and � satis-
fies (7.3), we may use Lemma 7.4 to get

kx�x0k2IV �
C 01
p
k

�
2�k.x/1;wIVC

G .x0;b/�G .x;b/

�

�
C

�
C 01
p
k�
CC 02

�
kAx�bk2IV

D
C 01
p
k�

E.x0;x;b/C 2C
0
1

�k.x/1;wIV
p
k

C

�
C 01
p
k�
C C 02

�
kAx � bk2IV

�2max¹C 01=c; C
0
2º.E.x0;x;b/C �/:

Substituting this into the previous expression now gives the result.

This lemma gives the rationale behind the restarted scheme. It says the error in the
objective function of the scaled output aP .x0=a;b=a; n/ of the primal-dual iteration
with initial value x0 can be bounded in terms of the error in the objective function
at the initial value, plus terms depending on the scaling parameter a, the number of
iterations n and the compressed sensing error term � . By choosing these parameters
suitably and iterating this procedure, we obtain the restarting scheme. We summarize
this in the following theorem.

Theorem 9.4 (Restarting scheme). Suppose that A 2 B.VN ;Vm/ has the weighted
rNSP over V of order .k;w/ with constants 0 < � < 1 and 
 > 0. Consider the
Hilbert-valued weighted SR-LASSO problem (7.2) with parameter � D c=

p
k, where

0 < c � .1C�/2

.3C�/

. Let x 2 VN , b 2 Vm, �0 � � , where � is as in (9.5), 0 < r < 1 and

define the sequence

"0 D kbk2IV ; "kC1 D r."k C �
0/; k D 0; 1; 2; : : : :

Let E and P be as defined above, � , � satisfy kAk2B.VN ;Vm/ � .��/
�1 and set

n D

�
2C

r
p
��

�
; ak D

1

2
�"kC1n; k D 0; 1; 2; : : : ;

where C is as in (9.4). Then the iteration Qx.0/; Qx.1/; Qx.2/; : : : ; defined by

Qx.0/ D 0; Qx.kC1/ D akP . Qx.k/=ak;b=ak; n/; k D 0; 1; 2; : : : ;

satisfies

E.x?k ;x;b/ � "k � r
k
kbk2IV C

r

1 � r
�0; k D 0; 1; 2; : : : :

Proof. We use induction on k. Suppose first that k D 0. Then, by definition,

E. Qx.k/;x;b/ D E.0;x;b/ � G .0;b/ D kbk2IV D "0:
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Now suppose that the result holds for k. The previous lemma gives

E. Qx.kC1/;x;b/ D E.akP . Qx.k/=ak;b=ak; n/;x;b/

�
C 2

ak� n
.E. Qx.k/;x;b/C �/2 C

ak

�n

�
C 2

ak� n
."k C �/

2
C
ak

�n
:

We now substitute the values of n and ak to obtain

E. Qx.kC1/;x;b/D
2C 2."k C �/

r�� n2
C
1

2
r."k C �/�

1

2
r."k C �/C

1

2
r."k C �/D "kC1:

This completes the proof.

This theorem states that the restarted primal-dual iteration Qx.0/; Qx.1/; Qx.2/; : : :
yields an objective function error E. Qx.k/; x; b/ that converges exponentially fast in
the number of restarts k. Further, each (inner) primal-dual iteration involves a number
of steps n that depends on the parametersC , r , � and � . In other words, n is a constant
independent of k. Hence, the restarted scheme converges exponentially fast in the
total number of primal-dual iterations as well.

As discussed in Section 5.1.1, it is typical to use this theorem to optimize the
choice of r . Recall that this leads to the explicit choice r D e�1. We use this value in
our algorithms – see Table 4.3.





Chapter 10

Final arguments

We are now ready to prove the main results, Theorems 3.4–3.12. In several of these
proofs, we require the following definition. Let s 2 N and set

k.s/ D max¹jS ju W S � Nd
0 ; jS j � s; S lowerº; (10.1)

where u are the intrinsic weights (4.7) (recall the definition of a lower set from Defi-
nition 2.8). It can be shown that

k.s/ D s2; (Legendre); k.s/ � min
®
2d s; slog.3/= log.2/¯; (Chebyshev): (10.2)

See, e.g., [8, equation (7.42), Propositions 5.13 and 5.17]. We will use this property
several times in what follows.

10.1 Algebraic rates of convergence, finite dimensions

Proof of Theorem 3.4. The mapping was described in Table 4.1. As shown therein,
we can write the corresponding approximation as Of D

P
�2ƒ Oc�‰� , where Oc D

. Oc�/�2ƒ is a minimizer of (4.6). Next, due to the various assumptions made, we may
apply Theorem 8.2. Setting Qf D Of and Qc D Oc, we deduce that

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

p
k � �; (10.3)

where (after writing out the term Eh;1.f / explicitly)

� D
�k.cƒ/1;uIV
p
k

C
Eƒ;1.f /
p
k

CEƒ;2.f /C kf �Ph.f /kL1.UIV/

C G . Oc/ � G .Ph.cƒ//C
knk2IV
p
m

; (10.4)

and k D m=.c0L/ with c0 � 1 a universal constant. We now bound each term sepa-
rately.

Step 1. The terms �k.cƒ/1;uIV=
p
k, Eƒ;1.f /=

p
k and Eƒ;2.f /. The term

�k.cƒ/1;uIV=
p
k

is estimated via (ii) of Theorem A.1 with q D 1. This gives

�k.cƒ/1;uIV
p
k

� C.d; p;�/ � k1=2�1=p D C.d; p;�/ �
� m

c0L

�1=2�1=p
: (10.5)
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We estimate the term Eƒ;2.f / by first recalling that ƒ D ƒHC
n;d

is the union of all
lower sets (see Definition 2.8) of size at most n D dm=Le (see Section 3.2). Hence,
using (i) of Theorem A.1 with s D n and q D 2, we get

Eƒ;2.f / D kc � cƒk2IV � kc � cSk2IV � C.d; p;�/ � n
1=2�1=p

� C.d; p;�/ �
� m

c0L

�1=2�1=p
: (10.6)

Here, in the last step we recall that n D dm=Le and c0 � 1.
It remains to consider Eƒ;1.f /=

p
k. Due to the choice of weights, we have

Eƒ;1.f /� kc � cƒk1;uIV . We now apply (i) of Theorem A.1 once more, with s D n
and q D 1, to get

Eƒ;1.f / � kc � cSk1;uIV � C.d; p;�/ � n
1�1=p:

Since n D dm=Le � m=.c0L/ D k, we obtain

Eƒ;1.f /
p
k

� C.d; p;�/ �
� m

c0L

�1=2�1=p
: (10.7)

Step 2. The term G . Oc/ � G .Ph.cƒ//. Since Oc is a minimizer of (4.6) and Ph.cƒ/ 2

VN
h

is feasible for (4.6), this term satisfies

G . Oc/ � G .Ph.cƒ// � 0: (10.8)

Step 3. Conclusion. We now substitute the bounds (10.5)–(10.8) into (10.4). Since
k � m=L, we deduce that � � �, where � is given by (3.10). This completes the
proof.

Proof of Theorem 3.5. The argument is similar to that of the previous theorem. Recall
from Section 4.5 that, in this case the approximation Of D

P
�2ƒ Qc�‰� , where Oc D

Nc.T / is the ergodic sequence obtained after T steps of the primal-dual iteration applied
to (4.6). Hence, the only difference is the estimation of G . Oc/� G .Ph.cƒ// in Step 2.

We now do this using Lemma 9.2. In order to apply this lemma we first need to
estimate kAkB.VN

h
;Vm
h
/. Let x D .x�/�2ƒ 2 VN

h
and define p.y/ D

P
�2ƒ x�‰� .

Then

kAxk2IV D

vuut 1

m

mX
iD1

kp.yi /k
2
V � sup

y2U

kp.y/kV �
X
�2ƒ

kx�kVu� � kxk2IV

p
jƒju:

Now the set ƒ is lower and of cardinality jƒj D ‚.n; d/. Hence, by (10.2) with
s D N , we have jƒju � .‚.n; d//2˛ , where ˛ is as in (3.7). Since x was arbitrary,
we get

kAk2IV � .‚.n; d//
˛: (10.9)
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Since the primal-dual iteration in Section 4.5 is used with � D � D .‚.n; d//�˛ , we
have that

kAk
2
2IV � .��/

�1:

Hence, we may apply Lemma 9.2. Since the iteration is also initialized with the zero
vector and run for a total of T D d2.‚.n; d//˛te iterations (see Section 4.5 once
more), this gives

G . Oc/ � G .Ph.cƒ// � .‚.n; d//
˛
kPh.cƒ/k

2
2IV C 1

T
:

Observe that

kPh.cƒ/k2IV � kcƒk2IV � kckcIV D kf kL2%.UIV/ � 1:

Here, in the last step, we use the fact that f 2 B.�/, and therefore

kf kL2%.UIV/ � kf kL1.UIV/ � 1:

Using this and the value of T , we deduce that

G . Oc/ � G .Ph.cƒ// �
1

t
:

Substituting this into (10.4) and combining with the other estimates (10.5)–(10.7)
derived in Step 2 of the proof of Theorem 3.4 now gives the desired error bound.

It remains to estimate the computational cost. We do this via Lemmas 4.3 and 4.4.
First observe that the value k in Lemma 4.4 is equal to k D d in this case, since the
index set ƒ D ƒHC

n;d
is a d -dimensional hyperbolic cross index set. Similarly, the

value n in Lemma 4.4 is bounded by the order n of this hyperbolic cross. As ƒ is a
lower set, we also have n � N . Hence, the computational cost for forming the matrix
A is bounded by c �m � N � d . We now use Lemma 4.3 to bound the computational
cost of the algorithm. Finally, we recall that N D ‚.n; d/ and T D d2.‚.n; d//˛te
in this case.

Proof of Theorem 3.6. As in the previous proof, we only need to estimate the term
G . Oc/ � G .Ph.cƒ//. Recall from Table 4.3 that in this case Oc D Qc.R/ is the output
of the restarted primal-dual iteration with R restarts. Our goal is to use Theorem 9.4
applied to the problem (4.6) with weights w D u as in (4.7), � D .4

p
m=L/�1 and

x D Ph.cƒ/.
We first show that the conditions of this theorem hold. Recall from Step 2 of the

proof of Theorem 8.2 that the matrix A has the weighted rNSP of order .k; u/ over
Vh with constants � D 2

p
2=3 and 
 D 2

p
5=3. In particular,

.1C �/2

.3C �/

� 0:64:
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We now use (8.5) to see that

� D
1

4
p
c0

1
p
k
�
.1C �/2

.3C �/


1
p
k
;

for a sufficiently large choice of c0.
Next, with this choice of x, we see that

�.x;b/ D
�k.Ph.cƒ//1;uIV

p
k

C kAPh.cƒ/ � bk2IV :

Using (8.6) and (8.8), we get

�.x;b/ �
�k.cƒ/1;wIV
p
k

C
p
2

�
Eƒ;1.f /
p
k

CEƒ;2.f /

�
CEh;1.f /C

knk2IV
p
m

;

with probability at least 1 � �. Using (10.5)–(10.7), we deduce that

�.x;b/ � �;

with probability at least 1 � �, where � is as in (3.10). Hence, �.x;b/ � �0.
Next, recall from Table 4.3 that � D � D .‚.n; d//�˛ in this case. Due to (10.9),

we see that kAk2IV � .��/
�1 as well.

Now consider the constant C defined in (9.4). The values for � and 
 give that
C 01 � C

0
2 � 103. Since � D c=

p
k with c D 1=.4

p
c0/, we see that

4C � 812=c D 3296
p
c0 WD c

?: (10.10)

Therefore, recalling that r D 1=2 and � D � D .‚.n; d//�˛ , we see that�
2C

r
p
��

�
D d.‚.n; d//˛c?e D T;

where T is as specified in Table 4.3, and

1

2
r�."k C �

0/T D
.‚.n; d//˛T

4
"kC1 D s"kC1 D ak;

where s and ak are as specified in Table 4.3 and Algorithm 4, respectively.
With this in hand, we are now finally in a position to apply Theorem 9.4. We

deduce that

G . Oc/ � G .Ph.cƒ// D E. Qc.R/;Ph.cƒ/;b/ � "k D e�Rkbk2IV C �
0:

To complete the proof of the error bound (3.12), we simply note that kbk2IV �
kf kL1.UIV/ � 1, since f 2 B.�/.

It remains to estimate the computational cost. As before, the computational cost
for forming the matrix A is bounded by c � m � N � d . Next, by construction, we
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observe that the algorithm consists of R D t primal-dual iterations, each involving
T D d.‚.n; d//˛c?e steps. Therefore, by Lemma 4.3 the computational cost for the
algorithm is

c � .m �N �K C .mCN/ � .F.G /CK// � d.‚.n; d//˛c?e � t:

Since N D ‚.n; d/ and c? is a universal constant, the result follows.

10.2 Algebraic rates of convergence, infinite dimensions

Proof of Theorem 3.7. The proof is similar to that of Theorem 3.4, except that it uses
Theorem 8.3 in place of Theorem 8.2. In particular, we see that (10.3) also holds in
this case with � as in (10.4) and k D m=.c0L/.

Step 2 is identical. The only differences occur in Step 1. We now describe the
changes needed in this case. First consider the term �k.cƒ/1;uIV=

p
k. To bound this,

we use (ii) of Theorem A.3 with q D 1 > p. This gives

�k.cƒ/1;uIV
p
k

� C.b; "; p/ � k1=2�1=p D C.b; "; p/ �
� m

c0L

�1=2�1=p
:

To estimate Eƒ;2.f /, recall that ƒ D ƒHCI
n contains all anchored sets (see Defini-

tion 2.8) of size at most n D dm=Le (see Section 3.2). Hence, using (iii) of Theo-
rem A.3 with s D n and q D 2 > p, we get

Eƒ;2.f / D kc � cƒk2IV � kc � cSk2IV � C.b; "; p/ � n
1=2�1=p

� C.b; "; p/ �
� m

c0L

�1=2�1=p
:

Finally, for Eƒ;1.f /, we use (iii) of Theorem A.3 once more (with q D 1 > p) to
get

Eƒ;1.f /
p
k

�
kc � cSk1;uIV

p
k

� C.b; "; p/ � k1=2�1=p

D C.b; "; p/ �
� m

c0L

�1=2�1=p
:

Having done this, we also observe that G . Oc/ � G .Ph.cƒ// � 0 in this case, since Oc
is once more an exact minimizer. Using this and the previously derived bounds, we
conclude that � � �, where � is as in (3.14). This gives the result.

Proof of Theorem 3.8. The argument is similar to that of Theorem 3.5. Here Oc D Nc.T /

is the ergodic sequence obtained after T steps of the primal-dual iteration applied
to (4.6) as well.
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We recall that the set ƒ is lower and of cardinality jƒj D ‚.n; d/ with d D 1.
Hence, by (10.2) with s D N , we have jƒju � .‚.n; d//2˛ , where ˛ is as in (3.7).
Using this, we get

kAk2IV � .‚.n; d//
˛;

as before. Since the primal-dual iteration in Table 4.3 is used with

� D � D .‚.n; d//�˛;

we have that kAk22IV � .��/
�1. Hence, following the same steps we deduce that

G . Oc/ � G .Ph.cƒ// �
1

t
:

Substituting this into (10.4) and combining with the other estimates (10.5)–(10.7)
derived in Step 2 of the proof of Theorem 3.4 now gives the desired error bound.

The computational cost estimate is similar to the that in the proof of Theorem 3.5.
In this case, observe that the value k in Lemma 4.4 is equal to n. Hence, the compu-
tational cost of formingA is bounded by c �m �N � n in this case. The computational
cost for the algorithm is given by Lemma 4.3. To complete the estimate, we substitute
the values N D ‚.n; d/ and T D d2.‚.n; d//˛te, as before.

Proof of Theorem 3.9. The proof is similar to that of Theorem 3.6 and involves esti-
mating the term G . Oc/ � G .Ph.cƒ//. Using the same steps, we deduce that

�.x;b/ � �;

with probability at least 1 � �=2, where � is as in (3.14). Hence, �.x;b/ � �0.
Next, recall from Table 4.3 that � D � D .‚.n; d//�˛ with d D 1 in this case.

Due to (10.9), we see that kAk2IV � .��/
�1 holds. We now apply Theorem 9.4 to

obtain

G . Oc/ � G .Ph.cƒ// D E. Qc.R/;Ph.cƒ/;b/ � "R D e�Rkbk2IV C �
0:

To complete the proof of the error bound (3.12), we simply note that kbk2IV �
kf kL1.UIV/ � 1, since f 2 B.b; "/.

The computational cost estimate is as in the previous proof.

10.3 Exponential rates of convergence, finite dimensions

Proof of Theorem 3.10. The proof has the same structure to that of Theorem 3.4, the
only differences being the use of Theorem 8.4 instead of Theorem 8.2 and the esti-
mation of the various terms in Step 1. Suppose first thatm � c02dC2L and define the
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following:

s D

´
d
p
m=.4c0L/e Legendre;

dm=.4c02
dL/e Chebyshev:

Observe that

s �

´p
m=.c0L/ Legendre;

m=.c02
dL/ Chebyshev;

and therefore the quantity k.s/ defined in (10.1) satisfies

k.s/ �
m

c0L
D k:

Now consider the term �k.cƒ/1;uIV=
p
k. Using this and (iii) of Theorem A.1 with

p D 1 we have

�k.cƒ/1;uIV
p
k

�
�k.s/.c/1;uIV
p
k

�
C.d; 
;�/ � exp.�
s1=d /

p
k

:

Note that this is possible since any lower set S of size at most s satisfies jS ju � k.s/
by definition.

Now consider Eƒ;1.f /. Recall that ƒ D ƒHC
n;d

, where n is as in (3.15). Clearly
n � s, since c0 � 1. Henceƒ contains all lower sets of size at most s. We deduce that

Eƒ;1.f / � kc � cSk1;uIV ;

for any lower set of size s. We now use (iii) of Theorem A.1 with p D 1 once more,
to get

Eƒ;1.f / � C.d; 
;�/ � exp.�
s1=d /:

We now combine this with the previous bound to deduce that the quantity � in Theo-
rem 8.4 satisfies

� � C.d; 
;�/ � exp.�
s1=d /CEh;1.f /C
knk2IV
p
m

;

(here, we also recall that the term G . Oc/ � G .Ph.cƒ// � 0, as in the proof of Theo-
rem 3.4). Using the value of s and recalling that m � c02dC2L, we deduce that

� � C.d; 
;�/ �

8̂<̂
:

exp
�
�


2

�
m

4c0L

� 1
d

�
Chebyshev

exp
�
�

�
m

4c0L

� 1
2d

�
Legendre

C
knk2IV
p
m

C kf �Ph.f /kL1.UIV/;

for m � c02dC2L. However, this bound also clearly holds for all m � 1, up to a
change in the constant C.d; 
; �/. After relabeling the universal constant 4c0 as c0,
we deduce that � � �, where � is as in (3.17). This concludes the proof.
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Proof of Theorem 3.11. The argument is the same as the proof of Theorem 3.5. The
difference relies on the fact that now � has the following bound

� � C.d; 
;�/ �

8̂<̂
:

exp
�
�


2

�
m

4c0L

� 1
d

�
Chebyshev

exp
�
�

�
m

4c0L

� 1
2d

�
Legendre

C
knk2IV
p
m

C kf �Ph.f /kL1.UIV/ C G . Oc/ � G .Ph.cƒ//:

To estimate the final term, we argue exactly as in the proof of Theorem 3.5. The
computational cost estimate is likewise identical.

Proof of Theorem 3.12. The proof is similar to that of Theorem 3.6, except we use
Theorem 8.4 instead. Recall from Step 2 of the proof of Theorem 8.4 that the matrix
A has the weighted rNSP of order .k; u/ over Vh with constants � D 2

p
2=3 and


 D 2
p
5=3 with probability 1 � �. In particular,

.1C �/2

.3C �/

� 0:64:

We now use (8.5) to see that

� D
1

4
p
c0

1
p
k
�
.1C �/2

.3C �/


1
p
k
;

for a sufficiently large choice of c0, as before.
Next, with the choice x D Ph.cƒ/ as before, we see that

�.x;b/ D
�k.Ph.cƒ//1;uIV

p
k

C kAPh.cƒ/ � bk2IV :

Using (8.11), we get

�.x;b/ �
�k.cƒ/1;wIV
p
k

CEƒ;1.f /CEh;1.f /C
knk2IV
p
m

;

with probability 1 � �. It now follows from the proof of Theorem 3.10 that

�.x;b/ � �;

with probability at least 1 � �, where � is as in (3.17). Hence, �.x;b/ � �0.
The rest of the proof follows the same steps as the proof of Theorem 3.6.
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Conclusions

Sparse polynomial approximation is a useful tool in parametric model problems,
including surrogate model construction in UQ. The theory of best s-term approxi-
mation supports the use of polynomial-based methods, and techniques such as least
squares and compressed sensing are known to have desirable sample complexity
bounds for obtaining polynomial approximations. In this work, we have closed a key
gap between these two areas of research, by showing the existence of algorithms that
achieve the algebraic and exponential rates of the best s-term approximation with
respect to the number of samples m. Thus, sparse polynomial approximation can be
practically realized in a provably sample-efficient manner. As our numerical exper-
iments confirm, our algorithms are practical, and actually perform better than the
theory suggests.

There are a number of avenues for further research. First, this work has focused on
Chebyshev and Legendre polynomials on the hypercube Œ�1; 1�d . It is plausible that
it can be extended to general ultraspherical or Jacobi polynomials. A more significant
challenge involves Hermite or Laguerre polynomials on Rd or Œ0;1/d , respectively.
This is an interesting problem for future research.

It is notable that the algorithms developed in this work do not generally compute
m-term polynomial approximations. Indeed, (inexact) minimizers of the SR-LASSO
problem will generally be nonsparse vectors of length N D ‚.n; d/. It is interest-
ing to investigate whether one can develop algorithms that achieve the same error
bounds while computingm-term polynomial approximations. In classical compressed
sensing, one can typically compute sparse solutions by using a greedy or iterative pro-
cedure (see, e.g., [61]). Unfortunately, it is not clear how to extend these procedures to
the weighted case with theoretical guarantees. Nonetheless, certain weighted greedy
methods appear to work well in practice for sparse polynomial approximation [4].

Another motivation for considering different algorithms is to see if the computa-
tional cost estimates can be reduced. While this is often not the main computational
bottleneck in parametric model problems (generally, computing the samples is the
most computationally intensive step), it is still an important issue. We have shown
that the computational cost is at worst subexponential in m in infinite dimensions,
and algebraic in m (for fixed d ) in finite dimensions. Whether these are optimal is an
interesting open problem. Here, ideas from sublinear-time algorithms [38,39] may be
particularly useful.

In the case of the exponential rates, it is notable that the best s-term approximation
error is exponentially small in 
 � s1=d (see Theorem 2.6), whereas the exponents in
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Section 3.3.3 are .
=2/ � .m=.c0L//1=d (Chebyshev) and 
 � .m=.c0L//1=.2d/ (Leg-
endre). The reason for this can be traced to the sample complexity estimate for
computing a sparse (and lower) polynomial approximations via compressed sensing
with Monte Carlo sampling, i.e., m � c0 � 2d � s � L (Chebyshev) or m � c0 � s2 � L
(Legendre). To see why this is the case, combine Lemma 8.1 with (10.2). In the setting
of least squares, in which the desired polynomial subspace is known, it is possible
to change the sampling measure to obtain sample complexity bounds that are log-
linear in s and therefore near optimal. See, e.g., [9, 44, 71]. More recently, several
works [21, 54, 56, 85, 93, 137] have also introduced sampling schemes that achieve
linear sample complexity in s – i.e., optimal up to a constant. Unfortunately, it is
unknown whether linear or log-linear sample complexity possible in the compressed
sensing setting, where the target subspace is unknown. See [10] for further discussion
on this issue.

Finally, as previously noted in Section 1.5, this work focuses on polynomial
approximation, and not on fundamental issues pertaining to tractability and the infor-
mation complexity of the classes of multivariate holomorphic functions considered.
For some related work in this direction, see [81, 112, 147] and references therein.
A question of particular interest is whether pointwise samples (i.e., standard infor-
mation), and more specifically, i.i.d. pointwise samples (i.e., random information)
constitutes optimal or near-optimal information for these classes of functions. These
questions have recently been considered in a broader context in [79,88]. See also [87]
for the case of functions in Sobolev spaces. As we observed in Section 1.5, in a recent
work [12] we derived lower bounds for the (adaptive) m-widths for classes of .b; "/-
holomorphic functions in infinite dimensions. Showing that the algorithms (or small
modifications thereof) developed in this work also attain (nearly) matching upper
bounds – and, consequently, that i.i.d. pointwise samples constitute (near) optimal
information – is an interesting problem for future work.



Appendix A

Best polynomial approximation rates for holomorphic
functions

In this appendix, we recap a series of standard best approximation error bounds for
polynomial approximation of holomorphic functions. These are used in Chapter 10
to estimate the various error terms appearing in Theorems 8.2–8.4.

A.1 The finite-dimensional case

We first consider the finite-dimensional case, where U D Œ�1; 1�d for d < 1 and
f W U! V is a Hilbert-valued function (in fact, the following results also apply in
the more general setting of Banach-valued functions; however, we shall not consider
this explicitly). We now summarize the various approximation error bounds in the
following theorem. This result combines various well-known results in the literature.
It is essentially the same as [8, Theorem 3.25]. However, we have made a number of
minor edits to fit the notation and setup of this work (see Remark A.2 below).

Theorem A.1 (Best s-term decay rates; finite dimensions). Let d 2 N, f 2 B.�/

for some � > 1, where B.�/ is as in (2.6), and c D .c�/�2Nd
0

be its Chebyshev or
Legendre coefficients. Then the following best s-term decay rates hold:

(i) for any 0 < p � q � 2 and s 2 N, there exists a lower set S � Nd
0 of size

jS j � s such that

�s.c/qIV � kc � cSkqIV � kc � cSkq;uIV � C � s
1=q�1=p;

where �s.c/qIV is as in Definition 2.3 (with ƒ D Nd
0 ), u is as in (4.7) and

C D C.d; p;�/ > 0 depends on d , p and � only;

(ii) for any 0 < p � q � 2 and k > 0,

�k.c/q;uIV � C � k
1=q�1=p;

where �k.c/q;uIV is as in Definition 7.2, u is as in (4.7) and

C D C.d; p;�/ > 0

depends on d , p and � only;

(iii) for any 0 < p � 2,

0 < 
 < .d C 1/�1

 
dŠ

dY
jD1

log.�j /

!1=d
;
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and s 2 N, there exists a lower set S � Nd
0 of size jS j � s such that

�s.c/pIV � kc � cSkpIV � kc � cSkp;uIV � C � exp.�
s1=d /;

where �s.c/pIV is as in Definition 2.3 (with ƒ D Nd
0 ), u is as in (4.7) and

C D C.d; 
; p;�/ > 0 depends on d , 
 , p and � only.

Remark A.2. There are several differences between Theorem A.1 and [8, Theorem
3.25]. A minor difference is that we do not specify the various constants C appearing
in the result. Another difference is in the presentation of (iii). Here we allow arbitrary
s � 1 (instead of s � Ns) at the expense of a larger (and unspecified) constant C . The
main difference, however, is the additional term kc � cSkq;uIV appearing in (i). This

can be shown as follows. First, one defines the sequence Nc D .u
2=q�1
� c�/�2Nd

0
so

that kc � cSkq;uIV D kNc � NcSkqIV and then uses Stechkin’s inequality in lower sets
(see, e.g., [8, Lemma 3.9]) to show that k Nc � NcSkqIV � s

1=q�1=pk Nckp;M IV , where
k�kp;M IV is the norm on the majorant `p space `pM .N

d
0 IV/ (see, e.g., [8, Definition

3.8]). Finally, it can be shown that k Nckp;M IV � C.d;p;�/ using standard arguments.
See, e.g., [8, Lemma 7.19] (this lemma only considers the scalar-valued case; however
the extension to the Hilbert-valued case is straightforward).

Note that Theorem A.1 immediately implies Theorems 2.4 and 2.6. For the for-
mer, we note that

kf � fS1kL2%.UIV/ D kc � cS1k2IV and kf � fS2kL1.UIV/ � kc � cS2k1;uIV :

We then apply (i) with q D 2 or q D 1. For the latter, we use (iii) with p D 1.

A.2 The infinite-dimensional case

We now consider the infinite-dimensional case, where d D1 and U D Œ�1; 1�N .

Theorem A.3 (Best s-term decay rates; infinite-dimensional case). Let d D 1,
0 < p < 1, " > 0, b 2 `p.N/ with b > 0 and f 2 B.b; "/, where B.b; "/ is as
in (2.7). Let c D .c�/�2F be the Chebyshev or Legendre coefficients of f . Then the
following best s-term decay rates hold:

(i) For any p � q < 1 and s 2 N, there exists a lower set S � F of size
jS j � s such that

�s.c/qIV � kc � cSkqIV � kc � cSkq;uIV � C � s
1=q�1=p;

where �s.c/qIV is as in Definition 2.3 (with ƒ D F ), u is as in (4.7) and
C D C.b; "; p/ > 0 depends on b, " and p only.
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(ii) For any p � q � 2 and k > 0,

�k.c/q;uIV � C � k
1=q�1=p;

where �k.c/q;uIV is as in Definition 7.2, u is as in (4.7) and C D .b; ";p/ >
0 depends on b, " and p only.

(iii) Suppose that b is monotonically nonincreasing. Then, for any p � q <1
and s 2 N, there exists an anchored set S � F of size jS j � s such that

�s.c/qIV � kc � cSkqIV � kc � cSkq;uIV � C � s
1=q�1=p;

where �s.c/qIV is as in Definition 2.3 (with ƒ D F ), u is as in (4.7) and
C D .b; "; p/ > 0 depends on b, " and p only.

Remark A.4. This theorem is based on [8, Theorems 3.29 and 3.33]. Besides the
term kc � cSkq;uIV , parts (i) and (iii) can be found in [8, Theorem 3.29] and [8, The-
orem 3.33], respectively. As in the finite-dimensional case (see Remark A.2), the
main difference is the assertion of the bound on kc � cSkq;uIV . This can be estab-
lished through similar arguments, using either the majorant `p space `pM .F IV/ or
the anchored `p space `pA.F IV/ (see, e.g., [8, Definition 3.31]) and then Stechkin’s
inequality in lower or anchored sets (see, e.g., [8, Lemma 3.32]). See also [8, Lemma
7.23] (this lemma only considers the scalar-valued case; however the extension to the
Hilbert-valued case is straightforward).

Note that neither [8, Theorem 3.29] nor [8, Theorem 3.33] asserts part (ii) of
Theorem A.3. This can be shown via the weighted Stechkin’s inequality (see, e.g., [8,
Lemma 3.12]), which gives the bound �k.c/q;uIV � kckp;uIV � k

1=q�1=p , and then by
showing that kckp;uIV � C.b; "; p/. This latter fact can be obtained by the straight-
forward extension of [8, Lemma 7.23] to the Hilbert-valued setting.

Note that Theorem A.3 implies Theorem 2.5. This follows from (i) by setting
either q D 2 or q D 1.
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Hilbert-Valued Functions from Limited Samples

Sparse polynomial approximation is an important tool for approximating high-dimensional
functions from limited samples – a task commonly arising in computational science and
engineering. Yet, it lacks a complete theory. There is a well-developed theory of best s-term
polynomial approximation, which asserts exponential or algebraic rates of convergence for
holomorphic functions. There are also increasingly mature methods such as (weighted)
ℓ1-minimization for practically computing such approximations. However, whether these
methods achieve the rates of the best s-term approximation is not fully understood.
Moreover, these methods are not algorithms per se, since they involve exact minimizers of
nonlinear optimization problems. This paper closes these gaps by affirmatively answering the
following question: are there robust, efficient algorithms for computing sparse polynomial
approximations to finite- or infinite-dimensional, holomorphic and Hilbert-valued functions
from limited samples that achieve the same rates as the best s-term approximation? We do
so by introducing algorithms with exponential or algebraic convergence rates that are also
robust to sampling, algorithmic and physical discretization errors. Our results involve several
developments of existing techniques, including a new restarted primal-dual iteration for
solving weighted ℓ1-minimization problems in Hilbert spaces. Our theory is supplemented by
numerical experiments demonstrating the efficacy of these algorithms.
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