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This work is devoted to the class of sets in the complex plane which nowadays are known as
Carathéodory sets, more precisely speaking, as Carathéodory domains and Carathéodory
compact sets. These sets naturally arose many times in various research areas in Real,
Complex and Functional Analysis and in the Theory of Partial Differential Equations. For
instance, the concept of a Carathéodory set plays a significant role in such topical themes as
approximation in the complex plane, the theory of conformal mappings, boundary value
problems for elliptic partial differential equations, etc. The first appearance of Carathéodory
domains in the mathematical literature (of course, without the special name at that moment)
was at the beginning of the 20th century, when C. Carathéodory published his famous series
of papers about boundary behavior of conformal mappings. The next breakthrough result
which was obtained with the essential help of this concept is the Walsh–Lebesgue criterion
for uniform approximation of functions by harmonic polynomials on plane compacta (1929).
Up to now the studies of Carathéodory domains and Carathéodory compact sets remains a
topical field of contemporary analysis and a number of important results were recently
obtained in this direction. Among them one ought to mention the results about polyanalytic
polynomial approximation, where the class of Carathéodory compact sets was one of the
crucial tools, and the results about boundary behavior of conformal mappings from the unit
disk onto Carathéodory domains. Our aim in the present paper is to give a survey on known
results related with Carathéodory sets and to present several new results concerning the
matter. Starting with the classical works of Carathéodory, Farrell, Walsh, and passing
through the history of Complex Analysis of the 20th century, we come to recently obtained
results, and to our contribution to the theory.
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Abstract

This work is devoted to the class of sets in the complex plane which nowadays are
known as Carathéodory sets, more precisely speaking, as Carathéodory domains and
Carathéodory compact sets. These sets naturally arose many times in various research
areas in Real, Complex and Functional Analysis and in the Theory of Partial Differ-
ential Equations. For instance, the concept of a Carathéodory set plays a significant
role in such topical themes as approximation in the complex plane, the theory of con-
formal mappings, boundary value problems for elliptic partial differential equations,
etc. The first appearance of Carathéodory domains in the mathematical literature (of
course, without the special name at that moment) was at the beginning of the 20th
century, when C. Carathéodory published his famous series of papers about boundary
behavior of conformal mappings. The next breakthrough result which was obtained
with the essential help of this concept is the Walsh–Lebesgue criterion for uniform
approximation of functions by harmonic polynomials on plane compacta (1929). Up
to now the studies of Carathéodory domains and Carathéodory compact sets remains a
topical field of contemporary analysis and a number of important results were recently
obtained in this direction. Among them one ought to mention the results about poly-
analytic polynomial approximation, where the class of Carathéodory compact sets
was one of the crucial tools, and the results about boundary behavior of conformal
mappings from the unit disk onto Carathéodory domains. Our aim in the present
memoir is to give a survey on known results related with Carathéodory sets and to
present several new results concerning the matter. Starting with the classical works of
Carathéodory, Farrell, Walsh, and passing through the history of Complex Analysis
of the 20th century, we come to recently obtained results, and to our contribution to
the theory.
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Preface

In this work we are dealing with the class of sets in the complex plane that nowadays
are called Carathéodory sets. We recall that a bounded domain in the complex plane
is called a Carathéodory domain, if its boundary coincides with the boundary of the
unbounded connected component of the complement to its closure. A compact set
is called a Carathéodory compact set, if its boundary coincides with the boundary
of its polynomial convex hull, that is the union of this compact set and all bounded
connected components of its complement.

Our aim is to give a survey on results related with the class of Carathéodory sets,
as well as to establish some new properties of these sets. The concept of Carathéodory
set turned out to be closely related to many other topics in Complex Analysis. Among
them it is worth emphasizing certain topics in planar topology, conformal mappings,
theory of Hardy and Bergman spaces, orthogonal polynomials, pointwise approxima-
tion by polynomials in the complex variable, uniform approximation by holomorphic
and harmonic functions, Szegő’s theorem and so on. Then, to make the memoir more
self-contained, we have included some concepts and results from these related areas.
Many of them are certainly known to the specialist in the corresponding areas but
not to readers working in other areas of analysis. We have tried to write this survey
in such a way that it will be accessible to a wide mathematical audience. Of course
we targeted mostly on complex analysts, but we hope that mathematicians working
in different areas will find in our survey some interesting topics.

An overlapping between the theory of Carathéodory sets with different branches
of real and complex analysis makes it difficult to fix a solid, consistent and reasonable
system of notation. Thus, the notation that comes from the theory of conformal maps
is different from the corresponding notation coming from the theory of spaces of
analytic functions (Hardy spaces, Bergman spaces, etc.), or from the theory of ortho-
gonal polynomials. Even in the research papers in one topic the notation is changing.
Through the survey we have tried to use our own unified system of notation which
seems to us adequate to the topic under consideration. However, occasionally we have
used the same notation as the original sources, in order to help the reader to compare
both expositions.

In this survey we have included all results that we know, where the notion of Cara-
théodory set has some relation, perhaps a very small one. In order to be self-contained
we have included complete proofs or their sketched versions for the majority of res-
ults, even if they are regarded as classical and well-known. If a result is included in the
text without proof (neither completed nor sketched), we not only give a corresponding
reference, but also explain the principal ideas underlying its proof. Moreover, a num-
ber of specific references are given in order that the interested reader can delve into



Preface 2

the study of each of the topics covered. Also we have included several new results,
and in such a case the corresponding proofs are provided with all necessary details.
Occasionally we have included new variations of background results with the aim of
contributing to a better understanding of the theory. Moreover, we have paid attention
to constructing, to mentioning or to referring to various examples, so that the geomet-
ric behavior of sets under consideration becomes more clear. In this subject there are
still many open questions, and we will mention some of them.

We have tried to follow the historical order of exposition in each section, and we
have included some historical notes. This can be useful to understand the theory, to
compare chronologically the different lines of research and to realize that occasion-
ally someone has made contributions to the theory without knowing previous results
closely related to theirs. We believe that a survey of this type will be useful as a first
step to clarify and unify the world of Carathéodory sets.

Let us present a brief overview of the history of the investigations of Carathéo-
dory sets. As far as we know, the first Carathéodory sets to be introduced were the
Carathéodory domains. At [20, page 136] in 1912 the first nontrivial example of such
domains was presented. Later domains of this kind were used at the end of the 1920s
in the work [132] by J. Walsh on approximation of functions by harmonic polyno-
mials. However, the special name for this class of domains was not assigned at that
time, the name “Carathéodory domains” for this class was given much later. Then,
Walsh encouraged his student O. J. Farrell to continue the line of research related
to harmonic approximation and properties of conformal maps of planar domains,
and Farrell in the 1930s proved several new results about Carathéodory domains
(see [44–46] and the corresponding discussion in what follows).

It seems that Farrell’s works and results were forgotten for thirty years in the occi-
dental school until the moment of publication of [112] about the pointwise conver-
gence of polynomials in a complex variable. However, it seems, that some ideas about
Carathéodory sets were presented in the Russian school of complex analysis during
the 1930s and 1940s. A remarkable contribution was made by A. I. Markushevich
in his thesis [84], where he considered polynomial approximations in the space of
square integrable holomorphic functions in Carathéodory domains. Let us note that
Markushevich at that time also did not use the special name for such domains. Per-
haps the first (as far as we know) occurrence of the term “Carathéodory domain” in
the mathematical literature was in 1939 in the paper [71] by M. V. Keldysh, which
also studied polynomial approximation in spaces of square integrable holomorphic
functions on compact sets in the complex plane.

With a great deal of certainty, one can assume that the origins of this name are
related to the fundamental works [20–22] by C. Carathéodory on conformal maps,
which were published in 1912 and 1913 and in which domains such as a cornucopia
(see the domain G1 in Figure 2 below) appeared for the first time in mathematical
literature. We will discuss this picture in the chapter on the properties of the conformal
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maps of Carathéodory domains. It will become clear that the term “Carathéodory
domain” is fairly appropriate and adequate.

One ought to make here the following remark. Taking into account the historical
circumstances and given the contribution of the aforementioned mathematicians it
would be more fair to use the name “Walsh–Farrell–Carathéodory domains” for the
class of such domains. But nowadays it makes no sense to adopt this term, because
the current terminology is already fixed in the literature. However, it is interesting to
have this in mind. In this connection it is worth noticing that neither Farrell in his
later paper [48], nor Walsh in his book [134] used any special name for this class of
domains.

Later on the class of Carathéodory domains, already with its specific name, may
be found, for instance, in the following papers [64, 112, 122, 123] and books [34, 85].
The book [34] is the unique source that we are aware of, where a Carathéodory
domain is not assumed to be bounded. The reader interested in the topics on holo-
morphic and harmonic approximation on unbounded sets may refer, for example,
to [5] and [57]. The concept of a K-set defined in [5] may seem interesting concern-
ing our context.

Several topics, where the concept of a Carathéodory domain plays a crucial role
were intensively developed in the 1960s–1980s. Let us mention, for instance, the
studies of generators for algebras of functions. As was shown in the work [120] by
D. Sarason, and in several subsequent papers, the concept of a Carathéodory domain
turned out to be closely related to such topics.

Besides, in the 1950s–1960s, the concept of a Carathéodory compact set was
introduced and substantially used in a series of works about approximation of func-
tions by rational functions and polynomials in a complex variable. The first occur-
rence of the term “Carathéodory compact set” itself was, as far as we know, in the
work [123] by S. O. Sinanyan who obtained several results about approximation by
holomorphic and harmonic polynomials on Carathéodory compact sets in the Lp-
norm, 1 6 p <C1. These results of Sinanjan generalize the previous results by Far-
rell and Markushevich about similar approximation on Carathéodory domains. How-
ever, the concept of a Carathéodory compact set was used previously by E. Bishop
(see [13–15]) in his studies of measures orthogonal to algebras of polynomials on
such compact sets; he called such compact sets “balanced compact sets”. For some
unclear reasons these important papers of Bishop have been rarely mentioned there-
after, so the name of balanced sets (in both cases of open and compact sets) has been
only occasionally used in what follows. Moreover, certain of Bishop’s results were
rediscovered later by different authors (highly likely completely independently) in
similar or slightly different settings.

For the reader’s convenience, and mostly for didactic purposes, we will include in
the exposition some general results from complex analysis, approximation theory and
planar topology. We will use the special symbol ‘ (and write, for instance, Theorem‘)
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to highlight the results of the following three kinds: new results about Carathéodory
sets which are obtained here for the first time, recent results by the authors con-
cerning the matter, and results which may be regarded as valuable modifications or
refinements of certain known results about Carathéodory sets.

This survey was written during several visits of the second author to the Departa-
ment de Matemàtiques de la Universitat Autònoma de Barcelona. He is very grateful
to the people in this department for the hospitality and excellent scientific atmosphere
therein.

The authors are very grateful to the anonymous referee for many valuable sug-
gestions and useful remarks that significantly improved the presentation.

Barcelona–Moscow



Basic notation and definitions

In what follows we will use the standard notation C, R, Z and N, for sets of complex,
real, integer and positive integer numbers, respectively. Moreover, let N0 D N [ ¹0º.

For two points z1; z2 2 C we denote by Œz1; z2� the straight line segment from
z1 to z2. Furthermore, we denote by D.a; r/ the open disc with center at some point
a 2 C and radius r > 0 so thatD.a; r/D ¹z W jz � aj < rº. We also put D WDD.0; 1/
and T WD ¹z W jzj D 1º so that D and T are the open unit disk and the unit circle in
C, respectively.

We will denote by j the function such that j.z/D z without paying attention to its
domain of definition that will be always clear from the context upon every appearance
of the function j.

Let Area.E/ stand for the area of a measurable set E � C, while the integral of a
measurable function f over a measurable set E against the planar Lebesgue measure
will be denoted by

R
E
f .z/ dA.z/.

Let us also denote by mT the normalized Lebesgue measure on T , so that for
� D ei# one has dmT .�/D

1
2�
d# . Accordingly, for a rectifiable curve  in C defined

on a closed interval I one writes dzj (or dz if there are no doubts what  one deals
with) for the measure on � WD .I / which acts (as a functional in the space of
continuous complex valued functions on  ) by the formula f 7!

R

f .z/ dz.

We will use the usual abbreviations a.a. and a.e. for the sentences “almost all” and
“almost everywhere”. In all cases when the corresponding measure is not mentioned
explicitly, it will be completely clear from the context.

For a set E � C we will denote by xE, @E, Int.E/ D Eı, and E{ D C n E the
closure, the boundary, the interior, and the complement of E, respectively (all these
topological entities are considered with respect to the topology of C). As usual, a
domain will mean a connected open set.

Let C1 stand for the standard one-point compactification of C. The boundary of
a set E in the topology of C1 will be denoted by @1E.

If E is a subset of C, we say that E separates the plane if the set C n E is
not connected. In what follows the word component will always mean connected
component.

Let us recall, that a Jordan curve � (in the literature it is called sometimes a
simple closed curve) is a homeomorphic image of the unit circle T . By virtue of the
classical Jordan curve theorem (see, for instance, [19, page 102]) the set � { is not
connected. It consists of two components. The bounded component of the set � {

is called a domain bounded by � and it will be denoted by D.� /. The unbounded
component of � { will be denoted by �1.� /. It also follows from the Jordan curve
theorem that � D @D.� / D @�1.� /.
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By an arc, we will mean a homeomorphic image of Œ0; 1�.
For a function (or a measure) f and for a set E we will denote by f jE the

restriction of f to E. For a set of functions F we will put F jE D ¹f jE W f 2 F º.
In what follows we will denote by .an/ a sequence (of objects an of any nature),

and the index n will run over N0 or N. The convergence of any sequence .an/ will
be always considered as n!1.

Also we need to introduce several sets and spaces of functions which will be used
in what follows. We will denote by P the set of polynomials in a complex variable,
and by R the set of all complex rational functions defined on C1. The set of all poles
of a given function g 2 R will be denoted by ¹gº1.

For a closed setX �C let C.X/ be the space of all bounded and continuous com-
plex functions on X . This space is a Banach space with respect to the standard uni-
form norm k � kX , which is defined for f 2 C.X/ as follows: kf kX D supz2X jf .z/j.
The space of all real-valued functions from C.X/ will be denoted by C.X;R/.

Let .gn/ be some sequence of functions defined on a compact set X � C. Occa-
sionally (in some bulky sentences) we will write gn� g onX in order to say that this
sequence converges uniformly on X to g, but more often we will write such a fact in
a more traditional way, i.e., in the form “gn ! g uniformly on X”. Let now .gn/ be
a sequence of functions defined on an open set U . We will say that gn converges to
some function g locally uniformly in U , if for each compact subset K � U we have
gn ! g uniformly on K. This fact will be denoted as “gn ! g locally uniformly in
U ”, or, in the short form, as “gn� g locally in U ”.

For an open set � let H.�/ and H1.�/ be the spaces of all holomorphic and
bounded holomorphic functions in �, respectively. For a function f 2 H1.�/ we
put kf k1;� D kf k� WD supz2� jf .z/j. In what follows the space H1.D/ will be
simply denoted by H1, and the norm k � k1;D will be denoted by k � k1. For a
compact set K let H.K/ be the space of restrictions to K of functions in H.G/,
where G is some open set that contains K.

Furthermore, the symbol Har.�/ will denote the space of all harmonic func-
tions in �. In different contexts we will consider real or complex valued harmonic
functions, and in all cases when it will not be clear which class of functions we are
dealing with we will use the more accurate notation Har.�;R/ and Har.�;C/ for
the respective classes of harmonic functions.



Chapter 1

Definitions and topological properties of Carathéodory
sets

In this chapter, we define the classes of Carathéodory sets which we are dealing with,
and explore topological properties of such sets.

1.1 Definitions and first examples

Take a compact set K � C. The open set C n K has at most a countable number
of bounded open connected components �j D �j .K/, j 2 I , where I D I.K/ is
some set of indices, and one component �1.K/ which is unbounded. The domain
�1.K/ is called the outer domain of K. It will be convenient to put �01.K/ WD
�1.K/ [ ¹1º.

The set @ext K WD @�1.K/ is traditionally called the external boundary of K.
The set

@intK WD @K

��
@�1.K/ [

[
j2I

@�j

�
is called the inner boundary of K. Thus,

@K D @intK [ @extK [
[
j2I

@�j .K/:

Accordingly, for an open set U � C we set

U1 WD �1. xU/; U 01 WD �1.
xU/ [ ¹1º: (1.1)

One of the most significant entities for our further considerations will be the concept
of the polynomial convex hull of a set. Let us recall that for a bounded set E � C its
polynomial convex hull, denoted by yE or E^, is defined as follows:

yE D
°
z 2 C W jp.z/j 6 sup

w2E

jp.w/j; p 2 P
±
:

A bounded set E is called polynomially convex if E D yE.
Observe that always E � yE D . yE/^ and the set yE is closed. Moreover, it can be

easily verified that
. xE/^ D yE

for any bounded set E � C. This equality will be frequently and implicitly used in
what follows.
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G1

G2

Figure 1. G1 is a Carathédory domain, while G2 is not.

If K is a compact subset of C then the maximum modulus principle for holo-
morphic functions and the classical Runge approximation theorem yield

yK D K [
[

j2I.K/

�j .K/;

and @ yK D @extK. Thus, yK is the union of K and all bounded components of C nK.
In what follows we will be dealing with several kinds of Carathéodory sets,

namely, with Carathéodory open sets (in particular, with Carathéodory domains), and
Carathéodory compact sets. Despite the fact, that the principal ideas underlying these
concepts are the same, it is convenient to define them separately.

Definition 1.1. A set G � C is called a Carathéodory open set if it satisfies the
following conditions:

(1) G is nonempty, open and bounded;

(2) @G D @ext.@G/.

A connected open Carathéodory set G is called a Carathéodory domain.

Since G1 D �1.@G/, condition (2) in Definition 1.1 also means that @G D
@G1.

A very simple example of a Carathéodory domain is provided by any Jordan
domain, that is a domain of the formD.� / for an arbitrary Jordan curve � . It follows
directly from Definition 1.1 that the domainsD DD n Œ0; 1/,D2 DD n xD.1

2
; 1
2
/, and

D3 D D n Œ�1
2
; 1
2
� are not Carathéodory domains. In the picture in Figure 1 one can

see two more complicated examples.
Notice, that for a Carathéodory domain G the set C n xG may be disconnected.

The “outer cornucopia”, which is a ribbon which winds around xD and accumulates to
T , see the domain G1 at Figure 2 below, gives an example of such behavior. Observe
that the domain G2 in Figure 2 is not a Carathéodory domain. This domain will be
useful for certain further considerations.
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G1

G2

Figure 2. A cornucopia G1 and an “inner snake” domain G2.

In fact, the set C n xG (for a Carathéodory domain G) can be even infinitely con-
nected as shown by the infinite cornucopia given in Figure 3.

Definition 1.2. A nonempty compact setK �C is said to be a Carathéodory compact
set, if @K D @ yK.

1.2 Properties of connectivity

We will explore in this section certain properties of connectivity of Carathéodory
sets. These properties are not only of interest in their own right in the general context
of the theory of Carathéodory sets, but they will be used repeatedly (but sometimes
implicitly) in what follows.

We recall that an open set U is simply connected if and only if the set C1 n U is
connected. The following result is easy to prove.

Proposition 1.3. LetK be a Carathéodory compact set, and letU be a Carathéodory
open set. Then, the following hold.

(a) IfKı D ;, then any compact subset Y � K is also a Carathéodory compact
set;

(b) If a compact set Y is the union of some components of K, then Y is a Cara-
théodory compact set;

(c) If � is the union of some components of U , then � is a Carathédoroy open
set.

For a bounded open set U let us introduce the concept of its Carathéodory hull,
which is yet another variety of the concept of a Carathéodory set.

Definition 1.4. Let U ¤ ; be a bounded open set. The set U � WD Int. yU/ is called the
Carathéodory hull of U .
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Figure 3. An infinite cornucopia.

For example, in Figure 3 the set G� is the union of the cornucopia domain G
itself (the domain shown in blue in this picture) and all disks, where this cornucopia
accumulates. For the inner snake at the right-hand side in Figure 2, the set G�2 is the
small open disc, where the cornucopia is included.

Proposition‘ 1.5. For Carathéodory open sets, the following holds.

(1) Every Carathéodory open set U is simply connected.

(2) IfG is a Carathéodory domain, thenG is a component ofG�. Conversely, for
any bounded open set B , each component of B� is a Carathéodory domain.

Proof. Take a Carathéodory open set U and assume that it is not simply connected.
Then, there exists a component V of U which is not simply connected. In such a case
the set C1 n V is not connected. Then, there exist two closed sets X; Y � C1 n V
such that

X \ Y D ;; X ¤ ;; Y ¤ ;; C1 n V D X [ Y: (1.2)

Assume that1 2 Y , then X is a compact subset of C. Then,

�1. xV / � C1 n xU � X [ Y:

Since �1. xV / is a connected set, then (1.2) yields

�1. xV / � Y ) @�1. xV / � Y: (1.3)
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It holds, moreover, that @X � @V . Indeed, for any w0 2 @X and ı > 0 with ı <
dist.X; Y /, one has

D.w0; ı/\X ¤ ;; ; ¤ D.w0; ı/\X
{
D D.w0; ı/\ .Y [ V / D D.w0; ı/\ V:

So, w0 2 @V . Since V is a Carathéodory domain, the properties (1.2) and (1.3) imply

; ¤ @X � @U \ @X D @�1. xV / � Y \X D ;;

which gives a contradiction. Thus, any Carathéodory open set U is simply connected
as it is claimed.

Let now K D yG. Since G � Int. yK/, let V be the component of Int. yK/ such that
G � V . It needs to be shown that G D V . Assume that there is a point z1 2 V n G.
Let z0 2 G and take a polygonal line L � V such that z0; z1 2 L (it is possible since
V is a domain). Then, there exists a point w such that

w 2 @G \ L � @G \ V � @ yG \ Int. yG/ D ;;

which is a contradiction.

Proposition‘ 1.6. The following properties are satisfied.

(1) If U is a Carathéodory open set, then U D Int. xU/.

(2) If G is a simply connected domain such that the set xG does not separate the
plane, then G is a Carathéodory domains if and only if G D Int. xG/.

Proof. It is clear that U � Int. xU/. Assume that there exists a point z 2 Int. xU/ n U .
Then, for some ı > 0, it holds that D.z; ı/ � xU , and hence z 2 @U D @�1. xU/. So,
; ¤ D.z; ı/ \ .C n xU/ � xU \ .C n xU/ D ;, which is a contradiction. Thus, (1) is
proved.

We are going now to prove the second part of the proposition. Since xG does not
separate the plane, one has that �1. xG/ D C n xG. Then,

@�1. xG/ D @.C n xG/ D @ xG D
xxG n Int. xG/ D xG nG D @G;

and the proof is completed.

Note that if K is a Carathéodory compact set, then K may be different from
Int.K/.

The domain G2 at Figure 2 is an “inner snake” which is not a Carathéodory
domain. It gives an example showing that the converse assertion to the part (1) of
Proposition 1.6 is not true, and also that the hypothesis in the part (2) of this Propos-
ition that G does not separate the plane is essential.

The concept of a Carathéodory domain is not topologically invariant. For example
one can consider the domain f .G2/, where G2 is presented in the picture in Figure 2
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and f .z/ D 1=.z � a/ with a being the center of the center of the disk in which
G2 accumulates. In order for the Carathéodory property for a given domain to be
preserved by a homeomorphism of G, some additional assumptions on this homeo-
morphism are required. The next result generalizes [39, Theorem 2], where the hypo-
theses that the set xG does not separate the plane is additionally assumed.

Theorem‘ 1.7. Let G be a Carathéodory domain. Assume that f W yG ! C is a con-
tinuous injection. Then, f .G/ is a Carathéodory domain. If xG does not separate the
plane then f .G/ also does not separate the plane.

Proof. For a subset A � yG the continuity of f and compactness of f . xA/ imply that
f . xA/ D f .A/. Let now Y WD f . xG/ D f .G/.

In view of the theorem on the invariance of open sets (see, for instance [94, page
122] or [78, page 475]) the function f maps open sets in C to open sets in C, in
particular the set f .G/ is a domain.

Assume now that G is such that yG ¤ xG. Then, for any bounded component B of
C n xG its image f .B/ coincides with some bounded component � of C n Y .

Let us prove this claim. Take such B . Then, the set f .B/ is a domain and f .B/\
Y D f .B \ xG/ D ; since f is injective. So, f .B/ has to be included into some
component of C n Y . Assume that f .B/ � �1.Y /. In this case, one can take a
point a 2 B and find some infinite polygonal line L � �1.Y / joining f .a/ with
1. Clearly L \ f .B/ ¤ ; and L \ f .B/{ ¤ ;, since f .B/ is a bounded set. Then,
there exists a point b 2 L\ @f .B/ � �1.Y /\ Y D ;, which gives a contradiction.
Therefore, there is a bounded component � of C n Y such that f .B/ � �. Thus,
f . xB/ � x�.

Now, let us assume, that f .B/ ¤ �. In such a case one can take a point a0 2
� n f .B/ and a point b0 2 f .B/. If � � � is a polygonal line joining a0 with b0,
one has ; ¤ � \ @f .B/ � � \ Y D ;, which, again, is a contradiction. Therefore,
f .B/ D � and, hence, f . xB/ D x�, as it was claimed.

Going further, let � be a bounded component of the set C n Y . Then, @� � @Y .
Put F WD f �1.@�/ so that F is a compact subset of @G. Thus, yF � yG and f . yF /D x�
by the previous arguments.

Now, we have to prove that

f .G/ D Int.f .G//: (1.4)

By part (1) of Proposition 1.6 we obtain

f .G/ D f .Int. xG// � f . xG/ D f .G/:

But f .Int. xG// is an open set, so f .G/ � Int.f .G//. In order to verify the opposite
inclusion it suffices to observe that

f �1.Int.f .G/// D f �1.Int.f . xG/// � Int.f �1.f . xG/// D Int. xG/ D G:
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Thereafter, using (1.4) we have

@f .G/ D f .G/ n Int.f .G// D f .G/ n f .G/ D @f .G/: (1.5)

Assume now that f .G/ is not a Carathéodory domain. Using (1.5) again, one has

@f .G/ D @f .G/ D @int Y [ @ext Y [
[
@�j .Y / ¤ @ext Y;

where ¹�j D �j .Y /º is the collection (nonempty in the case under consideration) of
components of the set C n Y .

Therefore, for every bounded component B of the set C n xG there exists a point
z … @extB but z 2 @intB [

S
@�j . This implies that there exists a point z1 2 @�j for

some index j such that z1 … @extB . Put now M WD @B and K WD @�j , so that K is a
component ofM . By Zoretti’s theorem [136, page 109] there exists a Jordan curve �
that encloses @�j and such thatM \ � D ; while d.�;K/ < " for some sufficiently
small ". Then, � � f .G/, f �1.�j / D Gj and �1 D f �1.� / is a Jordan curve on
G such that �1 encloses @Gj . But it is a contradiction because �1 separates points of
�1. xG/, which are in the bounded component of C n �1, from1.

If yG D xG then, by the theorem of invariance by homeomorphisms on C1 [78,
page 550], the set C n Y is also connected. In this case, the proof may be completed
using Proposition 1.6 (part (2)) and (1.4).

Proposition‘ 1.8. Let K be a compact subset of C. Then, K is a Carathéodory com-
pact set if and only if

Int. yK/ D Int.K/ [
[
Gj ;

where ¹Gj º is the collection of all bounded components of the set C nK.

Proof. In the case that K D yK (that is for compact sets which do not separate the
plane) there is nothing to prove. Assume that K is a now a general Carathéodory
compact set. Since Int.K/ [

S
Gj � yK, then

Int.K/ [
[
Gj � Int. yK/:

Letw 2 Int. yK/ and take " > 0 such thatD.w;"/\�1.K/D;. Then,D.w;"/\
@K D ;. This means that D.w; "/ � K or D.w; "/ � K{ n�1.K/ D

S
Gj . Then,

w 2 Int.K/ or w 2 Gk for some index k.
Conversely, assume that Int. yK/ D Int.K/ [

S
Gj , then

@ yK D yK \
�

Int.K/[
[
Gj

�
{
D yK \

�[
Gj

�
{
\ Int.K/{

D K \ Int.K/{
D @K:

Therefore, K is a Carathéodory compact set and the proof is completed.

Ending this section let us provide yet other clear relations among Carathéodory
sets.
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Proposition‘ 1.9. The following statements hold.

(1) IfK is a Carathéodory compact set withKı ¤ ;, thenKı is a Carathéodory
open set.

(2) If U is a Carathéodory open set, then xU is a Carathéodory compact set.

1.3 Accessible boundary points

In this section we recall the concept of an accessible boundary point and present
certain properties of accessible points on boundaries of Carathéodory domains.

Definition 1.10. Let U be an open set in C, and let a; b 2 @U .

(1) An arc E beginning at some pointw 2U , ending at a, and such that E n ¹aº �

U is called an end-cut of U (or in U ).

(2) An arc C beginning at a, ending at b, and such that C n ¹a; bº � U is called
a cross-cut of U (or in U ).

The following fact may be found in [94, page 145].

Theorem 1.11. Let G be a domain in C.

(1) IfG is simply connected and if C is a cross-cut inG, thenG n C D G1 [G2,
where G1 and G2 are disjoint simply connected domains.

(2) If for each cross-cut C inG the setG nC is not connected, thenG is a simply
connected domain.

The next definition is a small refinement of the definition given in [136, page
111].

Definition 1.12. (1) Let X be a subset of C. A point a 2 @X is said to be accessible
from X , if there exists some end-cut E of X ending at a.

(2) LetG be a simply connected domain in C. A point z 2 @G is accessible from,
at least, two sides of G, if there exists a cross-cut C in G with endpoints a; b 2 @G,
such that z … ¹a; bº, z 2 @G1, z 2 @G2, where G n C D G1 [G2, and the point z is
accessible both from G1 and from G2.

For a simply connected domain G in C we put

@aG WD
®
z 2 @G W z is accessible from G

¯
:

It is natural to call the set @aG the accessible part of the boundary of G. The set @aG
is always dense in @G. This follows from the fact, easy to prove, that the set of points
which are accessible by segments (as end-cuts) is dense. In [89] it was proved the
important fact that @aG is a Borel set for every domain G.
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Definition 1.13. Let M be a connected set and w 2 M . The point w is called a cut
point of M if the set M n ¹wº is not connected. The point w is called an end point
of M , if there exists a sequence .Un/ of (circular) neighborhoods of w such that
diam.Un/! 0, as n!1, and the set @Un \M consists of a single point for each n.

Proposition‘ 1.14. If G is a Carathéodory domain, then @G does not have points
which are accessible from both sides of G. Moreover, @G has neither cut points nor
end points.

Proof. Assume that a point z is an accessible point from both sides of G and let C

be a cross-cut of G with endpoints a and b such that z ¤ a, z ¤ b, satisfying all
requirements of Definition 1.12. For s D 1; 2, let Es be two end-cuts in Gs starting
at some points zs 2 Gs and ending at the point z. Since G is a domain, let L � G
be a polygonal line joining the points z1 and z2 such that L \ Es � ¹z1; z2º for each
s D 1; 2. Then, � WD E1 [ E2 [L is a Jordan curve that separates a and b. If�1 and
�2 are the components of C n � we may assume that a 2 �1, b 2 �2. Since G is a
Carathéodory domain then �s \�1. xG/ ¤ ; for each s. So,

; ¤ � \�1. xG/ � .G [ ¹zº/ \ .C n xG/ D ;;

which gives the desired result.
Assume now that w 2 @G is a cut point. Then, @G DM1 [ ¹wº [M2 withM1 \

M2 DM2 \M1 D ;. By the separation theorem (see [136, page 108]) applied to the
sets A D M1 and B D M2 there exists a Jordan curve � � G [ ¹wº that separates
M1 and M2. After that the proof may be completed as it was for accessible points.

Finally, if w 2 @G is an end point then, by its definition, w is the limit of some
sequence .�n/ of points which are cut points of @G. However, this sequence cannot
exist, therefore such a point w does not exist.

The next result was obtained in [26] but here we prove it in a more simple manner.

Proposition‘ 1.15. Let G be a Carathéodory domain and let B be a bounded com-
ponent of C n xG. Then, the set @aG \ @B consists of at most one point.

Proof. Assume the opposite, which means, that there exists a cross-cut C � B [

¹�1; �2º, �1¤ �2, �1; �2 2 @aG \ @B . LetG1 andG2 be two simply connected domains
such that G n C D G1 [ G2. Then, take a line R, orthogonal to the segment Œ�1; �2�
and passing through the middle point of this segment. Denote by R˙, respectively,
two rays of R starting at the middle point of Œ�1; �2�. Then, take the last point �3 2
R \ @B in the direction of the ray RC, and the last point �4 2 R \ @B in the direction
of the ray R�. All points �j , j D 1; 2; 3; 4 are different. Put C0 D C , C1 D xG, then
C0 \C1 D ¹�1; �2º is not connected, then, by the second theorem of Janiszewski (see
[78, page 506]), the continuum C0 [ C1 separates the plane. So, C n .C0 [ C1/ D
U1 [ U2, where U1 and U2 are two open sets, with Gj � Uj for j D 1; 2. In each of
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two small discs D.�k; ı/, for k D 3; 4, there exists a point zj 2 �1. xG/ \ Uj ¤ ;
for j D 1; 2. These facts together with �1. xG/ D .�1. xG/\ U1/[ .�1. xG/\ U2/
give a contradiction.

Example 2 in [26] shows a Carathéodory domainG such that the set @aG \ @B is
a singleton. A more informative example is given in Example 2.20 in Chapter 2, see
Figure 6 below.

We mention here that the authors of [26] were unaware at that moment of the
result proved in [38, page 172]. The aforementioned result says, in the notations of
Proposition 1.15, that @aG \ @aB is either empty or consists of a single point. The
difference of considering @aB in place of @B allows the author of [38] to argue more
directly. But this difference is essential, because of Example 2.20. Let us also refer
Proposition 2.19, where additional information is presented concerning the matter.

Corollary‘ 1.16. If G is a Carathéodory domain such that @G D @aG, then the set
C n xG is connected.

Corollary‘ 1.17. IfW1 andW2 are two different components of a Carathéodory open
set U , then @aW1 \ @aW2 consists of at most one point.

We end this section with the next result, which will be used several times in what
follows.

Proposition‘ 1.18. For every Carathéodory compact set X there exists a Carathéo-
dory continuum Y such that X � Y and Xı D Y ı.

Proof. In order to prove this assertion we consider for each integer k > 1 the family
Dk of the dyadic squares of the generation k, i.e.,

Dk D

²
Q D

�
j1

2k
;
j1 C 1

2k

�
�

�
j2

2k
;
j2 C 1

2k

�
W j1; j2 2 Z

³
:

Define the subfamily Dk.X/ consisting of all squares Q 2 Dk such that X \ xQ ¤
;, put Fk WD

S
Q2Dk.X/

Q and suppose Fk;1; : : : ; Fk;rk to be the closures of the
polynomial hulls of the components of Fk . In such a case one has that X � F ı1;1 [
� � � [ F ı1;r1 . For each k and j D 1; : : : ; rk we choose a point zk;j 2 @Fk;j . Set F �

k
WDSrk

jD1Fk;j . Denote by IkC1;j the set of indexes sD 1; : : : ; rk such that FkC1;s �Fk;j
and set F �

kC1;j
WD
S
s2IkC1;j

FkC1;s .
In what follows by a tree we mean a connected polygonal line T such that C n T

is connected.
Let us construct a sequence of trees .Tk/ with Tk�1 � Tk by induction. Take a

point z … X and choose a tree T1 such that T1 connects z with all points z1;j , j D
1; : : : ; r1 and such that the set C n .F �1 [ T1/ is connected. Suppose now that the trees
T1; : : : ; Tk are already constructed. Let us show how to construct the tree TkC1. Since
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Fk;j for j D 1; : : : ; rk contains a finite number of ¹FkC1;sº (where s D 1; : : : ; rkC1),
we can choose a new tree Tk;kC1;j that connects zk;j with all zkC1;s for s 2 IkC1;j
such that the domain Gk WD C n .Tk [ Yk/, where Yk D

Srk
jD1.F

�
kC1;j

[ Tk;kC1;j /

is simply connected. Now, we put TkC1 D Tk [ .
Srk
jD1 Tk;kC1;j /.

Finally, we take T D
S1
kD1 Tk and let Y DX [ T . Then, Y is a compact set such

thatXı D Y ı. Since allGk are simply connected domains and C n Y D
S
kGk , then

Y is connected and finally, Y is a Carathéodory compact set because of the fact that
@Y D @X [ T .





Chapter 2

Carathéodory sets and conformal maps

2.1 Some background on conformal maps

Let B and G be domains in C. One says that a function f maps B conformally
onto G (respectively, into G) if f is holomorphic and injective in B , and f .B/ D
G (respectively, f .B/ � G). The Riemann mapping theorem is the starting point
of all studies of conformal maps. Let us recall some historical remarks concerning
the Riemann theorem since they are important for better understanding the role of
Carathéodory’s ideas and results. B. Riemann enunciated his outstanding theorem
on conformal maps in his dissertation in 1851. The Riemann theorem says that, if
G is a simply connected domain such that G ¤ C and G ¤ ;, then there exists a
conformal map f from D onto G. If a 2 G and # 2 Œ0; 2�/ are fixed, then there
exists a unique conformal map f satisfying the normalization conditions f .0/ D a
and arg f 0.0/ D # . If # D 0, the corresponding f is called the Riemann mapping
function (with respect to a). Notice, that the proof given by Riemann contained a
gap which was eliminated later on by D. Hilbert and other authors. The standard
modern proof was developed by R. Riesz and L. Fejér and was published by T. Radó
in 1923. It may be found, for instance, in [33, Chapter vii] and in [61, page 30].
Montel’s theory of normal families of holomorphic functions plays a crucial role in
this proof. Also we refer to [19, page 298], where one can find a constructive proof
of the Riemann mapping theorem made by P. Koebe and C. Carathéodory.

If f is the Riemann map from D ontoG and gD f �1, the numberRD 1=g0.a/ is
called the conformal radius ofG we respect to a. The function g0 WD g=g0.a/ defined
on G maps G conformally onto D.0; R/ and satisfies the normalization conditions
g0.a/ D 0 and g00.a/ D 1. Sometimes this function is more easily handled than the
Riemann map. For instance, the function g0 possesses several minimality properties,
one of which is given by the following proposition.

Proposition 2.1. Let G ¤ C be a simply connected domain and let a 2 G. Then, the
function g0 defined above is the unique solution to the extremal problemZ

G

jg00j
2 dA D inf

²Z
G

jh0j2 dA W h 2 H.G/; h.a/ D 0; h0.a/ D 1

³
D �R2:

The details of the proof may be found in [61, page 55]. It is appropriate to recall
that the standard area formula (see, e.g., [43, page 96]) yields that for any measurable
set E � G, for each function h 2H.G/ (not necessarily univalent) and for every real
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nonnegative measurable function F defined on h.E/ it holdsZ
h.E/

F.z/ n.h; z/ dA.z/ D

Z
E

F.h.w// jh0.w/j2 dA.w/; (2.1)

where n.h;a/ stands for the number of points of h�1.¹aº/, for each a 2C. The above
formula also holds for complex measurable functions F , provided that one of its two
entries is well defined.

One of the central questions in the theory of conformal maps which is of high
importance for our considerations is the study of the behavior of a conformal map
f WD ! G near a point � 2 @D. In a general sense this behavior is given by the
concept of a prime end. We denote by diam# the diameter of sets in the spherical
metric in C1 (see [104, page 1]).

Definition 2.2. Let G be a simply connected domain. We call a sequence of cross-
cuts .Cn/ a null-chain of G if

(i) xCn \ xCnC1 D ; for each n D 0; 1; 2; : : : I

(ii) Cn separates C0 and CnC1 for each n D 1; 2; 3; : : : I

(iii) diam#.Cn/! 0 as n!1.

If @G is bounded one can replace diam# with the Euclidean diameter.

Let us recall the notion of equivalence of null-chains. We say that two null-chains
.Cn/ and .C 0n/ are equivalent if, for every large number m, there exists a number n
such that C 0m separates Cn from C0, and Cm separates C 0n from C 00. The equivalence
classes of null-chains with respect to this relation are called the prime ends of G. Let
us denote the set of all prime ends of G by Pr.G/. It is possible to define a topology
on the set Pr.G/ such that G [ Pr.G/ become compact. The next result is one of
the keystones in the conformal mapping theory, it is known as Carathéodory prime
ends theorem.

Theorem 2.3. Let f maps D conformally onto a bounded simply connected domain
G. There exists a homeomorphism

Of W xD ! G [Pr.G/

which extends f (that is f .z/D Of .z/ for z 2 D) and for any � 2 T and for any null-
chain .Cn/ representing the prime end Of .�/ the sequence f �1.Cn/, for sufficiently
large n, forms a null-chain in D separating 0 from �.

In the simplest case that G D D, the set Pr.D/ is homeomorphic to T . Going
further we need to recall some notation whose detailed account may be found in
[104, Section 2.5] and [32, Chapter 9]. The impression of the prime end Of .�/ (which
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also is the cluster set of f at the point �) is the set

I. Of .�// D I.f; �/ D C.f; �/ D
\
r>0

f .D.�; r/ \D/;

while the set of principal points of Of .�/ is the set

…. Of .�// D ….f; �/ D CŒ0;�/.f; �/ D
\

0<r<1

f .Œr�; �//:

The global cluster set of f is defined as

C.f / D
\
n>2

f .¹z 2 D W jzj > .n � 1/=nº/:

In terms of these sets the prime ends of f are classified as follows:

First kind: ….f; �/ is a singleton and ….f; �/ D I.f; �/;
Second kind: ….f; �/ is a singleton, but ….f; �/ ¤ I.f; �/;

Third kind: ….f; �/ is not a singleton and ….f; �/ D I.f; �/;
Fourth kind: ….f; �/ is not a singleton, but ….f; �/ ¤ I.f; �/.

In the case that @G is a Jordan curve we have the following result, which is often
called Carathéodory–Osgood–Taylor theorem (in several textbooks this theorem is
also called Carathéodory extension theorem for Jordan domains).

Theorem 2.4. Let f map D conformally onto a bounded domain G. The following
conditions are equivalent:

(i) f has a continuous injective extension to a mapping from xD onto xG;

(ii) @G is a Jordan curve;

(iii) @G is locally connected and has no cut points.

We refer the reader, depending on his expertise, to [19, page 309], [77, Chapter II],
or [104, Chapter 2], where several proofs of this theorem with different levels of
details may be found. The question when f has a continuous extension to xD, perhaps
without injectivity, was also solved by Carathéodory. The next result is referred as
Carathéodory continuity theorem.

Theorem 2.5. Let f map D conformally onto a bounded domain G in the complex
plane. Then, the following four conditions are equivalent:

(i) f has a continuous extension to a mapping from xD onto xG;

(ii) there exists a continuous map  on T such that  .T / D @G;

(iii) the set @G is locally connected;

(iv) the set C nG is locally connected.
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The implication (iii))(ii) in Theorem 2.5 is a special case of the Hahn–Mazur-
kiewicz theorem (see [94, page 59]). The implication (ii))(iii) is a general fact on
continuous images of locally connected compacta. A complete proof of the other
equivalences may be found, for instance, in [104] or in [94].

The next question which is natural to pose for an arbitrary conformal map f is the
question whether the boundary values f exist on the boundary of the domain, where
f is defined except, may be, some “relatively small” set. This question may be solved
in different manners, depending on the tools used. We will need the following result
concerning the matter. Let us recall the definition of Hardy spaces in D. For p > 0
the space Hp D Hp.D/ consists of all functions f 2 H.D/ such that Mp.f / <1,
where

Mp.f / D sup
r!1

Z
T
jf .r�/jp dmT .�/:

For all p > q > 0 the inclusions H1 � Hp � H q � N hold, where N D N.D/
is the Nevanlinna class in D. We recall that any function f 2 N.D/ has the form
f D f1=f2, where f1; f2 2 H1.D/.

Given a point � 2 T and ˇ with 0 < ˇ < �=2, then the Stolz angle S� .ˇ/ is the
set ®

z 2 D W jarg.1 � x�z/j < ˇ; jz � �j < 2 cosˇ
¯
:

Let now h be a function from D to C1. One says that h has angular limit (or, in other
words, boundary value) at the point � 2 T , if for each ˇ 2 .0; �=2/ the limit

lim
S�.ˇ/3z!�

h.z/

exists and is independent on ˇ. This common value is denoted by h.�/.

Theorem 2.6. The following statements hold.

(1) Let h 2 N.D/. Then, the angular limit h.�/ ¤1 exists for mT -a.a. � 2 T .

(2) If f maps D conformally into C, then f 2Hp for every p < 1=2, and there-
fore f .�/ ¤1 exists for a.a. � 2 T .

(3) Moreover, if f maps D conformally into C, then the boundary values f .�/
exist for all � 2 T , except a set of logarithmic capacity zero.

We are not providing any special reference for these results, the interested reader
can follow, for instance, [104, Theorems 1.7, 8.2, 9.19, and Corollary 2.17], as well
as the explanation given in [105, Chapter ii, Sections 1 and 2]. In fact, one important
ingredient here is the classical Fatou’s theorem that says that any function f 2 H1

has a.e. on T finite angular limits.

Definition 2.7. For a function f 2 H1 let F.f / be the set of all points � 2 T for
which the boundary value f .�/ exists. This set is called a Fatou set of f .
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Carathéodory in [20] considered sequences .Gn/ of simply connected domains
and studied when the sequence of the corresponding Riemann maps converges in
some sense. We ought to recall some results from this subject.

Definition 2.8. Let .Gn/ be a sequence of domains (not necessarily simply connec-
ted) and assume that there exists a 2

T1
nD1Gn. One says that Gn converges to a set

G in the sense of the kernel convergence with respect to a, and G is the kernel of this
sequence, if one of the two following conditions holds.

(1) If there exists � > 0 such that D.a; �/ � Gn for all sufficiently large n, then
G must be a domain, a 2 G, G ¤ C, and the following two conditions must
be satisfied:

(1a) if w 2 G then there exists " > 0 such that D.w; "/ � Gn for large n,

(1b) if w 2 @G, then w D limwn for some sequence of points .wn/ such that
wn 2 @Gn for each n.

(2) If the previous condition (1) is not satisfied then G D ¹aº.

This convergence is well defined, but it clearly depends on the choice of the given
point a. In the case that Gn converges to G with respect to a in the sense of kernel
convergence we will write Gn ! G with respect to a. If it is clear from the context
what a we are dealing with we will simply write Gn ! G.

The notion of kernel convergence has several surprising properties, for instance
it underlies several deep results about convergence of sequences of conformal maps.
The following Carathéodory kernel convergence theorem shows the relations between
concepts of kernel convergence and locally uniform convergence of the corresponding
conformal maps in the case of simply connected domains.

Theorem 2.9. Let .Gn/ be a sequence of simply connected domains, Gn ¤ C, and
let a be a point such that a 2 Gn for each n. Let fn be a conformal map from D onto
Gn such that fn.0/ D a, f 0n.0/ > 0. Then,

fn� f locally in D if and only if Gn ! G with respect to a; (2.2)

where f and G are defined as follows: if G D ¹aº then f is the constant function, so
that f .z/ D a for all z; while in the case that G ¤ ¹aº, so that the domain G must
be simply connected and G ¤ C, the function f is the conformal map from D onto
G with the normalization f .0/ D a and f 0.0/ > 0.

Moreover, in the case that G is a simply connected domain and Gn ! G with
respect to a, it holds that f �1n � f �1 locally in G.

In the proof of this theorem several important tools of the theory of conformal
maps are used, let us notice, for instance Hurwitz’s and Montel’s theorems, Koebe’s
distortion theorem, etc. The proof of Carathéodory kernel convergence theorem may
be found in many sources, see for example [61, page 54] or [104, page 14].
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Let now .Gn/ be a sequence of domains which converges to a Jordan domain G
in the sense of kernel convergence with respect to some point a. In this case, Walsh
(see [129,130] as well as [134, pages 32–34]) was able to obtain a more strong result.
Notice that this theorem is of high importance, but nowadays it seems to be almost
forgotten and did not appear in the mathematical literature during many decades.

Theorem 2.10. Let G be a Jordan domain, a 2 G and let .Gn/ be a sequence of
simply connected domains satisfying xG � Gn such that GnC1 � Gn for all n and
Gn! G with respect to a. Let  n be the conformal map from Gn onto G normalized
by the conditions  n.a/ D a and  0n.a/ > 0. Then,  n.z/� z on xG.

It is not clear, whether it is possible to extend this theorem for more wide class of
domains. The next question looks quite reasonable.

Question I. Will the statement of Theorem 2.10 hold in the case that G is a Carathé-
odory domain with accessible boundary, that is @G D @aG?

2.2 Carathéodory domains and conformal maps

The reason that Carathéodory paid attention to the domains which nowadays are
called by his name is shown in the next result. As far as we know, the paper [20]
contains the first occurrence of the cornucopia (see, for instance, the domain G1 in
Figure 2), in the mathematical literature.

Theorem 2.11. Let G ¤ ; be a bounded simply connected domain. Then, G is a
Carathéodory domain if and only if there exists a sequence .�n/ of Jordan curves
such that

�n � �1. xG/; D.�nC1/ � D.�n/

for each n, and D.�n/! G as n!1 with respect to any fixed point a 2 G. This
equivalence does not depend on the choice of a.

If G is a Carathéodory domain, let gn be the conformal map from D.�n/ onto
D with the normalization gn.a/ D 0 and g0n.a/ > 0, and let g be the conformal map
from G onto D with the same normalization. Then, gn� g locally in G as n!1.
In fact,

xG � W WD

1\
nD1

D.�n/; (2.3)

but it can happen that xG ¤ W .

Proof. Let us take a nonempty bounded simply connected domain G satisfying all
conditions of the theorem. In order to prove that G is a Carathéodory domain, let
us take an arbitrary point w 2 @G. By condition (1b) of Definition 2.8 there exist a
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sequence of points .wn/ such that wn 2 @D.�n/ D �n � �1. xG/, and wn ! w as
n!1. Also there exists another sequence .w0n/ such that w0n 2 G � C n G1. xG/
and w0n ! w as n!1. So, w 2 @�1. xG/. Since G is simply connected, then G is
a Carathéodory domain by definition.

Assume now that G is a Carathéodory domain. The domain G01 D �1. xG/ [

¹1º is simply connected in C1. So, one can take a conformal map h from D ontoG01
with the normalization h.0/D1. Let us now define �n WD h.¹t W jt j D n=.nC 1/º/.
Then, each �n is a Jordan curve such that xG �D.�nC1/ �D.�n/. Since .D.�n// is
a decreasing sequence of domains it converges to the component of

T1
nD1D.�n/ that

contains a, which is G. The remaining conclusions follow from Theorem 2.9.

Let now G be a Carathéodory domain, and let f be some conformal map from D
ontoG. Take a point w 2 @G. According to [104, Proposition 2.14] one has w 2 @aG
if and only if there exists a curve  W Œ0; 1�! xD having the properties .s/ 2 D for
s 2 Œ0; 1/ and .1/ D t for some t 2 @D, such that lims!1� f ..s// D w. Moreover,
it follows that t 2 F.f / and f .t/ D w.

Proposition‘ 2.12. Let G be a Carathéodory domain, and w 2 @aG. Then, there
exists a unique point t 2 F.f / such that f .t/ D w.

Proof. The existence of two points t and t 0 ¤ t such that '.t/ D '.t 0/ D w would
imply that the point w is accessible from both sides of G. But Proposition 1.14 says
that the boundary of the (Carathéodory domain) G does not have points which are
accessible points from both sides of G.

Corollary‘ 2.13. Let G be a Carathéodory domain. Then, @G is locally connected
if and only if @G is a Jordan curve. In particular, if @G is rectifiable then @G is a
Jordan curve.

Proof. Assume that @G is locally connected and take a conformal map f from D
onto G. By Theorem 2.5, f has a continuous extension to xD. Let f1W @D ! @G be
the restriction of such extension. By Proposition 2.12, f1 is injective, and since it is
defined in a compact set, then f1 is a homeomorphism from @D onto @G, so that @G
is a Jordan curve. The second assertion is a consequence of the general fact that a
continuum with finite length is locally connected.

A Carathéodory domain may have prime ends of all four kinds, as it can be seen
at Figure 4, where the domain G1 gives the desired example.

The class of non-degenerate continua E possessing the property that there exists
a bounded univalent function f in D and a point � 2 T such that C.f; �/ D E, was
studied and characterized in details, see for instance, [30, Proposition 5]. Next result
establishes some restriction to the size of C.f; �/ when f is the Riemann map onto
some Carathéodory domain.
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C

G2

Figure 4. The Carathéodory domain G1 has prime ends of all four kinds.

Proposition‘ 2.14. The following properties are satisfied.

(1) If G is a Carathéodory domain and f is a conformal map from D onto G,
then the set C.f; �/ is a Carathéodory continuum for each point � 2 @D.

(2) Conversely, if K is a Carathéodory continuum, then there exists a Carathéo-
dory domainG and a conformal map f WD!G such that f has a continuous
extension to xD n ¹1º and C.f; 1/ D ….f; 1/ D @K.

Proof. (1) Fix a point � 2 @D and let z 2K WD C.f; �/. SinceK � @G D @G1, then
there exists a sequence .zn/ such that zn 2 G1 for all n, and z D limn!1 zn. Each
point zn can be joined to1 by an infinite polygonal line L such that L � C n G �
C nK, so zn 2 �1.K/. Therefore, @K D K � @�1.K/ � K.

(2) Let K be such that @�1.K/ D @K, then �0 D �1.K/ [ ¹1º is a simply
connected domain in C1. Let hWD ! �0 be a conformal map such that h.0/ D 1.
Going further let us take an open ribbon S �D which spirals to T and such that 0… xS .
Let  WD ! S be a conformal map such that C. ; 1/ D …. ; 1/ D T . Then, G D
h ı  .D/ is the desired domain. In fact, it is clear that f D h ı  has a continuous
extension to xD n ¹1º. Moreover, take w 2 @a�0 � @K, and let E be an end-cut ending
at w. Then, h�1.E/ is an end-cut that ends at some point of @G. Then, h�1.E/ cuts
infinitely many points of S and of D n S . Then, w 2 @G1 \ @G. This situation holds
for each point of a dense set, then @K � @G1 \ @G. Thus,

@G1 D .@G \�
0/ [ @K � @G [ @K;

which means that G is a Carathéodory domain.
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Let us recall that a continuum K is said to be indecomposable if it cannot be
written in the form K D M [ N , where M and N are proper subcontinua of K
(for more information about this notion see [78, Chapter V]) and [68, Section 3.8].
A Carathéodory continuum can be indecomposable. One of the simplest example
of such continua is the Knaster buckethandle, see [78, Example 1, page 204]. Let us
denote this continuum byKb . Applying Proposition 2.14 we can see that there exists a
Carathédory domainG and a conformal map f WD!G such that f has a continuous
extension to xD n ¹1º and ….f; 1/ D C.f; 1/ D Kb is an indecomposable continuum.
A related example is given in [29, Proposition 4] but therein the set ….f; 1/ is a
singleton, C.f; 1/ D @G and @G is an indecomposable continuum however G is not
Carathéodory domain. Thus, to obtain a more involved example it is necessary to have
some free space between G and �1. xG/. This can be done using the construction of
the Lakes of Wada, see [68, Section 3.8]. We need to make some modification of this
construction for further considerations.

Example 2.15. Consider the compact set

X0 D

²
z W �2 6 Re z 6 4; jImzj 6

3

2

³��
D
�
� 1;

1

2

�
[D

�
1;
1

2

�
[D

�
3;
1

2

��
:

To preserve the poetic flavor of the original example, we will imagine that X0 is
an island in the ocean and the small discs are three lakes, the first one having blue
water, the second one green, while the third one red. Let us dig a system of canals
in X0 following the next procedure. For k 2 N define the system of time moments
tk D .k � 1/=k, and the sequence of distances dk D 1=k, so that tk ! 1 and dk ! 0

as k !1. Let V1 be the canal (considering as an open set) that brings water from
the ocean to every point of the land within distance d1 of every point of X0, and let
X1 D X0 n V1. At the time moment t2 let V2 be the canal that brings water from the
blue lake to every dry point within distance d2 of every point of X1. The first steps
of this construction is illustrated by Figure 5. For time moments t3 and t4 let us do
the same, but using water from the green lake and from the red lake, respectively.
Thereafter let us repeat this cycle of construction of canals infinitely many times until
we arrive to the time t D 1. It is possible to make this construction in such a way
that the entrances to the canals in the blue lake are two sequence of open intervals
on @D.�1; 1

2
/ which are mutually disjoint and accumulate only at the points �1

2
and

�
3
2

. Then, take Wblue, a simply connected domain formed by the blue lake together
all canals with blue water, and put X WD @Wblue.

Let us accent some properties of the domain Wblue constructed in Example 2.15.
Denote byWgreen the union of the green lake with all of the canals starting therein and
by Wred the respective union for the corresponding red lake, then Wgreen and Wred are
simply connected bounded components of the set C nWblue. The construction of the
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�
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2 �
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2

Figure 5. The first steps of the construction of the compact set X D @Wblue.

canals from the ocean implies that

@Wblue D @Wgreen D @Wred D @�1.Wblue/;

which yields that Wblue is a Carathéodory domain. Furthermore, @Wblue is a indecom-
posable continuum. If f is a conformal map from D ontoWblue, then f is continuous
on xD except two points, says �1 and �2, where C.f; �1/D C.f; �2/D X D @Wgreen D

@Wred, while C.f; �/ � X for all � 2 T .
By a suitable modification of the construction given in Example 2.15 it is possible

to obtain a Carathéodory domain G D f .D/, for a conformal mapping f such that
the (closed) set T .f / D ¹� 2 T W C.f; �/ D @Gº is infinite. By a certain theorem
by Rutt (see more details in [29]) in the case that the set T .f / is not empty, the set
@G is an indecomposable continuum, or the union of two indecomposable continua.
Moreover, if @G is indecomposable, then T .f /¤ ;. We do not know how big the set
T .f /may be for a Carathéodory domain in a general situation. We do not even know
the answer to the following question.

Question II. Whether there exists a Carathéodory domain for which the set of prime
ends of the first kind would be empty (so that the respective conformal map f cannot
be continuously extended to any point of T )?

The usual example of a domain of such kind (see, for example, [32, page 184]) is
clearly not a Carathéodory domain.

Examples of this kind should not surprise the reader, since they are quite natural
in a certain sense. To see this we need to use some results from plane topology.

Definition 2.16. One says that a set E � C possesses the non-separation property if
for each closed subset F � E, such that F ¤ E, the set E{ [ F is connected, that is
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the set E n F does not separate the plane. Otherwise, one says that E possesses the
separation property.

Every Jordan curve possesses the non-separation property, but is it possible to
assert the converse? This question was an open problem for some time at the begin-
ning of the XX century. Its solution allows us to state the following result related with
Carathéodory domain, which needs to be compared with [39, Proposition 10].

Theorem‘ 2.17. Let K be a Carathéodory compact set. Then, one of the two follow-
ing mutually exclusive conditions is fulfilled:

(1) K possesses the separation property;

(2) K D @G for each component G of C nK.

Moreover, if C n K contains only two components, then K is a Jordan curve,
while in the case that C n K contains at least three components, the set K is an
indecomposable continuum or the union of two indecomposable continua.

Proof. If Kı ¤ ;, then the condition (1) holds for such K. Therefore, let us consider
the compact setsK possessing the non-separation property and having empty interior.
If the set C nK has only one component, then K D @�1.K/. Assume now that the
set C nK has a bounded component. Then, @G � K. If K ¤ @G, then @G separates
the plane, and hence K D @G.

To show that the conditions (1) and (2) are exclusive let us assume that the com-
pact setK satisfy (2) and let F be some closed subset ofK, different ofK. Then, the
set

K{
[ F D

[
G

G [ F;

where G runs over all components of the set C nK, is connected because G � G [
F � xG and both setsG and xG are connected. So,K does not satisfy the condition (1).

Assume now that K{ D G [�1.K/, where G is simply connected domain. If
the set @G DK is not locally connected then there exists a sequence .Fn/ of mutually
disjoint closed sets with Fn �K, and a closed set F �K, F ¤K, such that Fn! F

in the Hausdorff metric. Then,

K n F D K and K{
[ F D .G [ F / [�1.K/

with .G [ F / \�1.K/ D ;. Then, K possesses the separation property, which is
impossible. Therefore, @G is locally connected, which yields, according to Corol-
lary 2.13, that @K is a simple closed curve.

In the case that there exist three components of the set C nK, or more, than its
common boundary is K and we need to refer the theorem stated in [78, page 590] in
order to finish the proof.
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Let E � D be an end-cut ending at some point � 2 T , and let f 2 C.D/. The
cluster set CE.f; �/ of f following E is defined as follows:

CE.f; �/ D

1\
nD1

f

�²
z 2 E W jz � �j <

1

n

³�
:

This set does not depend on the choice of the initial point of E , so we can always
assume that the initial point of E is the origin. It is easy to prove, and it is well-known
(see, for instance, [32, Theorems 4.6 and 4.7]) that C.f; �/ D CE.f; �/ for some E .
Moreover, by definition ….f; �/ D CŒ0;��.f; �/.

The following result was communicated to us by Ch. Pommerenke.

Proposition‘ 2.18. Let G be a Carathéodory domain, and let f be a conformal
map from D onto G. Assume that there exist two points, say �1 and �2, in T such that
�1 ¤ �2 and for each j D 1; 2 there is an end-cut Ej in D ending at �j and possessing
the property

CE1.f; �1/ [ CE2.f; �2/ � E;

for some continuumE � @G. Then, for one of the open arcs� of T n ¹�1; �2º one has

I.f; �/ � E (2.4)

for each point � 2 � .

Proof. We may assume that E1 \ E2 D ¹0º. Take F D f .E1/[ f .E2/[E. Then, F
is a continuum that separates the plane. Let V be the bounded component of F { such
that f .E1/[ f .E2/� xV . Let U �D be the domain whose boundary is E1 [ E2 [ x� ,
where � is one the arc of T n ¹�1; �2º chosen in such a way that f .U / � V .

Let us now assume that (2.4) is false. Take a point �0 2� and a sequence .zn/ such
that zn 2 U and zn! �0 as n!1 such that the sequence .f .zn// converges as n!
1 to some point w 2 . xV nE/\ @G. So, there exists a closed discD.w; r/� V such
thatD.w; r/\F D;. Then, take a point ˛ … xG \D.w; r/. SinceG is Carathéodory,
there exists an infinite polygonal line L � C n xG that starts at ˛ and goes to1. But
therefore

L � V [ .C n xV /; L \ V ¤ ;; L \ .C n xG/ ¤ ;:

which gives a contradiction since L is connected.

In the case that I.f; �1/ \ I.f; �2/ ¤ ; we can take as a candidate for E in the
previous proposition the continuum I.f; �1/[ I.f; �2/. For example, for the domains
G1 andG2 in Figure 4 one can take asE the segments ŒA;B� and ŒC;D�, respectively.

Under the assumptions of Proposition 1.15 it is possible to say more about the
cluster set in the special point.
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Proposition‘ 2.19. Let G be a Carathéodory domain, and f be a conformal map
from D onto G. Assume that B is a bounded component of C n xG such that @aG \
@B D ¹wº. Let � 2 T be such that f .�/ D w. Then, @B � I.f; �/.

Proof. For simplicity let us assume that � D 1, so that f has the radial limit w at 1.
For r 2 .0; 1/ let `.r/ stands for the length of the set f .¹z 2 D W jz � 1j D rº/. One
of key points in the theory of conformal maps is the fact thatZ 1

0

`.r/2

r
dr < C1;

see [104, Proposition 2.2]. Then, there exists a sequences of cross-cuts Cn D f .¹z 2

D W jz � 1j D rnº/ such that `.rn/ ! 0 as n ! 1. Each cross-cut Cn joins some
point ˛n 2 @G with another point ˇn 2 @G, cuts the image f .Œ0; 1�/ in one point,
and, finally, Cn tends to ¹wº. For each n take "n such that�

D.˛n; "n/ [D.ˇn; "n/
�
\ @B D ;;

and "n ! 0 as n!1. Going further we cover @B by a finite sequence of closed
discs of radius "n in such a way that centers of these disks belong to G1. We can
joint the centers of the constructed disks by polygonal lines in order to obtain a new
polygonal line Ln � G1 such that Ln \D.˛n; "n/ ¤ ; and Ln \D.ˇn; "n/ ¤ ;,
and the compact set Ln [D.˛n; "n/ [D.ˇn; "n/ [ Cn separates the plane into two
components. Denote byWn the corresponding bounded component. This process can
be done in such a way, that, moreover,WnC1 �Wn. Then, f .¹z 2D W jz � 1j< rnº/�
Wn. Taking into account the fact @B � C.f /, we conclude that

@B � f .¹z 2 D W jz � 1j < rnº/

for each rn. So, @B � I.f; 1/.

In general, in the above proposition the set I.f; �/ is much bigger than @B .
The next example is new, but it is based on ideas of [26, Example 2]. This example

shows that in the framework of hypotheses of Proposition 2.19 it can happen that
@aG \ @B D ¹wº, but @aG \ @aB D ;, and B has different impressions of inaccess-
ible points from B .

Example 2.20. Take Q D ¹z W 0 6 Im z < �; 0 < Re z < 2º and let I1; I2; : : : be a
sequence of intervals

In D Œian; ibn�; a1 D 2; an < bn < anC1 < �; lim
n!1

an D �:

Let J1; J2; : : : be a sequence of intervals

Jn D Œia
0
n; ib

0
n�; b01 D 1; a0n < b

0
n; b0nC1 < a

0
n; lim

n!1
a0n D 0:
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Let, for each n > 1,

An D ¹z W Im z 2 In; 0 6 Re z 6 1º; zn D
1

nC 2
C i

anC1 C bn

2
;

Bn D ¹z W �1 < Re z < 0; Im z 2 .ia0n; ib
0
n/º; z0n D �

n

nC 1
C i

a0n C b
0
n

2
;

zQ D

�
¹z 2 Q W Im z > Re zº

� 1[
nD1

An

�
[

1[
nD1

Bn;

F D @ zQ n ..0; 2C 2i� [ Œ2C 2i; 2C �i� [ .1C �i; 2C �i�/:

Let now L1; L2; : : : be a sequence of mutually disjoint closed intervals over the seg-
ment ²

z W 0 < Re z <
3

2
; Im z D Re z

³
such that Ln ! 0.

Let S1 � zQ be narrow enough closed ribbon starting at L1, entering in B1 until
the point z01 2 S1, continuing thereafter and finishing at z1, always without crossing
the line ¹z W Im z D a2º. Assume that S1; S2; : : : ; Sn are already constructed. Then,
SnC1 � zQ is a narrow enough closed ribbon starting on LnC1 with the following
properties:

(i) z0nC1 2 SnC1;

(ii) SnC1 is always in the left-hand side of Sn. In particular, SnC1 \ Sj D ; for
each j 6 n;

(iii) SnC1 ends at the point z0nC1 without crossing the line ¹z W Im z D anC2º.

(iv) dH .@SnC1; F / < min¹1=n; dH .@Sn; F /º, where dH is the Hausdorff dis-
tance.

This process can be continued indefinitely. Then, take

WC D Int

 
1[
nD1

Sn [ ¹z 2 Q W Re z > Im zº

!
:

Define, finally,G D exp.WC [W� [ .0; 2//, whereW� denotes the reflection ofWC
over the real axes. Now, the pointwD 1 is an accessible point fromG and C n xG DB
is a bounded component from which Œb; a/ and .c; 1� are inaccessible from B .

In Figure 6 the third step of the construction of WC was shown.
Figure 7 shows the domain G and the component B , this picture can help the

reader to get a better understanding of the constructed domain.

Let now g map a given domain G conformally onto D. The question whether
g has a continuous extension to xG, or not, is also very interesting and important,
however it usually not included in textbooks and courses on conformal maps.
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Figure 6. The third step of the construction of WC.

Definition 2.21. LetG be a simply connected domain, and let f be a conformal map
from D onto G. A point w 2 @G is said to be simple in the sense of Carathéodory if
the set ¹� 2 T W w 2 C.f; �/º is a singleton.

The concept of a simple point in the sense of Carathéodory is independent of
the choice of f . For the domain G1, see Figure 4, all points in the arc ŒA; B/ are
not simple in the sense of Carathéodory, while all other points in @G1 are simple
in this sense. To avoid confusion with other uses of the term “simple point” (see,
for example, [115, Chapter 14]), we decide to use the term “simple in the sense of
Carathéodory”.

The next result was obtained in [44], it gives the criterion for continuity of g.
However, this characterization is not completely topological. A proof can be found
in [85].

Proposition 2.22. Let G be a bounded simply connected domain and let g map G
conformally onto D. A continuous extension QgW xG ! xD of g exists if and only if each
point w 2 @G is a simple point in the sense of Carathéodory.

In other words, the existence of a continuous extension of g is equivalent to the
statement that distinct prime ends have disjoint impressions. Figure 1 can help to
better understanding the previous result since there exists a continuous extension of
g for G1, but not for G2.
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b a D �1 c 1
B G

Figure 7. Inaccessible points from the bounded component B .

Proof. For the proof of necessity let us assume that some point w 2 @G is not simple.
Then, w 2 C.f; �1/ \ C.f; �2/, where f D g�1 and �1 and �2 ¤ �1 are two points
in T . One can find two sequences, say .zn/ and .z0n/, such that zn ! �1, z0n ! �2,
while f .zn/! w and f .z0n/! w. In this case, the continuity of Qg would imply that
Qg.w/ D lim zn D �1 and Qg.w/ D lim z0n D �2 which is a contradiction.

The proof of sufficiency. Let us define Qg.w/D �, where � 2 T is the unique point
such that w 2 C.f; �/ in the case that w 2 @G, while Qg.w/ D g.w/ for w 2 G. The
continuity property of Qg is not difficult, but some arguments from the theory of cluster
sets are needed for the proof.

Furthermore, in [44] Farrell proved the following result, which is related to the
theorem about kernel convergence.

Theorem 2.23. LetG be a Carathéodory domain such that each point in @G is simple
in the sense of Carathéodory. Let z0 2 G and let .Gn/ be a sequence of bounded
simply connected domains, such that

xG � GnC1 � Gn;

for n > 1, and Gn ! G with respect to z0. For n > 1, let gn be the conformal map
from Gn to D such that gn.z0/ D 0 and g0n.z0/ > 0. Denote by Qg the extension of the
conformal map from G onto D to xG with Qg.z0/ D 0 and Qg0.z0/ > 0.

Then, gn� Qg on xG.

Assume now thatG is a Carathéodory domain, z0 2G and let f be the conformal
map from D onto G with the normalization f .0/ D z0 and f 0.0/ > 0. Furthermore,
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let f �1WG! D be the corresponding inverse map. The next result is a refinement of
[26, Theorem 1].

Theorem‘ 2.24. Let G be a Carathéodory domain and let .Jn/ be a sequence of
Jordan curves such that D.Jn/! G with respect to some point z0 2 G and xG �
D.Jn/,D.Jn/�D.Jn�1/ for each n > 1. Let fnW xD!D.Jn/ be the extension of the
respective conformal map with the normalization fn.0/D z0 and f 0n.0/ > 0 inherited
from f . Then, the following hold.

(1) If E is an end-cut in G, then f �1n converges uniformly on E to f �1, in par-
ticular, f �1n .z/! f �1.z/ for each point z 2 @aG;

(2) If W is a bounded component of C n xG, then jf �1n j ! 1 uniformly on xW .
However, in general it is not true that f �1n converges to some constant on xW .

Since the proof of this theorem is essentially the same as the respective proof
in [26], we present here only its sketch which highlights the keynote steps.

Sketch of the proof of Theorem 2.24. Without loss of generality we may also assume
that E starts at the point z0. Let now b0 2 @aG be the end point of E . Put % WD f �1.E/
so that % is an arc in D [ ¹�0º, where �0 D f �1.b0/, passing from 0 to �0.

For each m 2 N we consider a point bm 2 Jm which is a nearest point to b0. For
eachm > 1 we put Em WD E [ Œb0; bm� and %m WD f �1m .Em/. Let �m D f �1m .bm/ and
note, that each %m D f �1m .E/ [ f �1m .Œb0; bm�/ is the union of two consecutive arcs
in D [ ¹�mº. It is clear, that the sequence .%m/ accumulates to some subset ƒ of xD.
It means that ƒ is the set of all points w 2 xD such that there exists a sequence .wmj /
of points such that wmj 2 %mj and wmj ! w as j !1.

The set ƒ possesses some special properties. Namely, one has

(i) ƒ is a continuum;

(ii) ƒ � % [ T ;

(iii) % � ƒ;

(iv) The set ƒ \ T is connected.

Therefore, ƒ D %[  , where  is some closed subarc of T . In order to prove the
first assertion we need to show that ƒ D % or, in other words, that  D ¹�0º.

Let w0m be a nearest point of the set %m to t0 and let %0m be the subcontinuum
f �1m .E 0m/, where E 0m is the segment Œfm.w0m/; bm� in the case when fm.w0m/ … E , or
the set E 00m [ Œb0; bm� otherwise, where E 00m is the subarc of E that joints the points
fm.w

0
m/ and b0.

We have that fm.w0m/ ! b0 as m ! 1 and therefore diam.fm.%0m// ! 0 as
m!1.

Notice that %0m is either an arc or the union of two consecutive arcs. Then, apply-
ing [103, Theorem 9.2] to %0m, or to each of the arcs that form %0m, we conclude,
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that diam.%0m/! 0 as m!1, which means, that �m ! �0 as m!1 and hence,
 D ¹�0º.

We are going to prove the assertion of the part (2). Assume that jf �1n j does not
converge uniformly to 1 on xW . Then, there exist a sequence .zk/ in W and a sub-
sequence .f �1nk / such that jf �1nk .zk/j 6 r < 1 for all k. Let wk WD f �1nk .zk/. Taking a
subsequence of .wk/ if it is necessary we may assume that wk ! w0, jw0j 6 r < 1.
Since fnk converge uniformly on the compact set

S1
kD0¹wkº to f we have

f .w0/ D lim
k!1

fnk .wk/ 2
xW :

But f .w0/ 2 G and xW \G D ;, so that we arrive to a contradiction.
For the last assertion we must consider Example 2.15, where Wgreen [ Wred �

D.Jn/. Then, the sequence .f �1n / has two accumulation points, say �1 and �2 with the
notation in the aforementioned example. To prove this some arguments are needed.
However, we omit them, because we believe that this help will be enough for the
reader.

Corollary‘ 2.25. LetG be a Carathédory domain. Then, f and g can be extended to
Borel measurable functions (denoted also by f and g) on D [ F.f / and G [ @aG,
respectively, and such that

g.f .�// D � for all � 2 F.f /;

f .g.�// D � for all � 2 @aG:

The domain G2 in Figure 4, which is not a Jordan domain, has the property
@aG2 D @G2. For such domains one has the following corollary.

Corollary‘ 2.26. Let G be a Carathéodory domain such that @aG D @G, and let f
be some conformal map from D onto G. Then, f �1 can be extended to xG and this
extension belongs to the first Baire class on xG.

Notice, that this corollary generalizes the Carathéodory extension theorem to the
case that the domain under consideration is a Carathéodory domain with accessible
boundary. It is clear, that this class of domain is substantially wider than the class of
Jordan domain.



Chapter 3

Uniform and pointwise approximation on Carathéodory
sets

3.1 Uniform approximation by polynomials

Problems on approximation of analytic functions by polynomials and rational func-
tions were always of special importance during the development of contemporary
analysis, but they have attracted special attention after the classical results about
approximation in the complex domain obtained by Weierstrass and Runge at the end
of 19th century. Let us recall, that Weierstrass proved that any continuous function
defined on Œ0; 1� may be uniformly approximated on this segment by a sequence of
polynomials. The Runge’s theorem is as follows.

Theorem 3.1. Let K � C be a compact set, and let E � C1 n K be a set which
contains, at least, one point of each component of C1 n K. If f 2 H.K/, then for
every "> 0 there exists a rational functionR with poles onE such that kf �RkK<".

This theorem was published in 1885, [116], the same year as the aforesaid result
by Weierstrass. There are several proofs of Runge’s theorem, see, for instance, [118,
pages 171–177] for the proof which is close to the original one. See also [115, Chapter
13] for the proof using certain functional analysis methods, and [33, Chapter VIII] for
a more direct and elementary proof.

The following properties follow directly from Runge’s theorem. Let� be an open
set in C, letE be a set which contains one point of each component of C1 n�. Then,
for every function f 2H.�/ one can find a sequence .Rn/ of rational functions with
poles lying only in E, such that Rn � f locally in �. In the special case when the
set C1 n� is connected (note that this means that � is a simply connected set, but
not necessarily a connected one), one can take E D ¹1º and a sequence .Kn/ of
compact subsets of � such that

S1
nD1Kn D �, and thus obtain a sequence .Pn/ of

polynomials such that Pn � f locally in �. Let us observe that the set C1 n �
may have uncountably many components: for instance one can consider� D C nK,
where K � Œ0; 1� is the linear 1=3-Cantor set.

Note that the condition that the set C1 n� is connected cannot be relaxed in the
latter statement. Namely, one has the following theorem.

Theorem 3.2. Let U �C be an open set, and assume that for every f 2H.U / there
exists a sequence .Pn/ of polynomials such that Pn � f locally in U . Then, the set
C1 n U is connected.
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Indeed, assume that the set C1 n U is not connected, then C1 n U D K [ Y ,
where K is a compact subset of C, Y is closed set,1 2 Y , and K \ Y D ;. By the
separation theorem, see [136, page 108], there exists a Jordan curve J � U such that
K � D.J /. Let a 2 K, then the function h.z/ D 1=.z � a/ cannot be approximated
by a sequence of polynomials uniformly on J . Indeed, let C D sup¹jz � aj W z 2 J º
and � D 1=.2C /. If there exists P 2 P such that kh � P kJ < �, then the inequality

j1 � p.z/.z � a/j < �jz � aj 6
1

2

holds for all z 2 J . Therefore, by the maximum modulus principle, this inequality
also holds for z D a, but this is a contradiction.

For further considerations we need to introduce several algebras of functions. Let
K � C be a compact set. Denote by P.K/ the algebra of all functions which can be
approximated uniformly on K by polynomials, so that P.K/ is the closure in C.K/
of the subspace P jK . Next, let R.K/ be the algebra consisting of all functions which
can be approximated uniformly on K by rational functions with poles lying outside
K. Furthermore, we put A.K/ D C.K/ \H.Kı/. It is clear that

P.K/ � R.K/ � A.K/ � C.K/: (3.1)

All aforesaid algebras A.�/, R.�/ and P.�/ may be defined in the same way for any
closed subset of C1.

It can be readily verified that P.xD/DA.xD/ andR.T /D C.T /. Furthermore, the
equality P.K/ D C.K/ implies that the set C n K is connected, while the Runge’s
theorem says that P.K/ D R.K/ whenever the set C nK is connected.

The question on for which compact sets K the approximation property P.K/ D
A.K/ is satisfied is quite natural. The investigation of this question was started in the
1920s by J. L. Walsh, who dealt with two important cases when K is the closure of
a generic Jordan domain, and when K is a closed arc. In [129–131] Walsh proved
several results, and his most general statement in this topic is as follows (for proofs
and further details see [134, Chapter II]).

Theorem 3.3. Let Y � C1 be a closed set such that @Y is a finite union of Jordan
curves or closed arcs, no two of which have more than finitely many common points.
Then, A.Y / D R.Y /. More precisely, let E � C1 n Y be a set that contains at least
one point of each component of C1 n Y . Then, for every f 2 A.Y / there exists a
sequence .Fn/ of rational functions with poles lying outside E such that Fn� f on
Y .

Let us comment how this result was proved in a particular case. If Y D xG for
some Jordan domain G, the proof runs as follows. Take a function f 2 A.Y / and
a sequence .Gn/ of Jordan domains such that Gn ! G. Let  n be conformal map
fromGn ontoG as it was considered in Theorem 2.10. Then, each function f ı n is
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holomorphic in some neighborhood of Y (each function in its own one). Next, given
an arbitrary " > 0 Runge’s theorem implies that there exists a polynomial Pn such
that jf . n.z// � Pn.z/j < "=2 for all z 2 Y . Finally, the fact that  n.z/� z on Y
and the uniform continuity of f on Y yield that jf . n.z//� f .z/j < "=2 for z 2 Y .

The topological conditions imposed in Theorem 3.3 turned out to be not essential,
since the following result was established in 1931 by F. Hartogs and A. Rosenthal,
see [62]. If K � C is a compact set such that Area.K/ D 0, then R.K/ D C.K/.
What about compact sets X with empty interior for which R.X/ ¤ C.X/? Let us
recall that the first example of such kind was constructed by A. Roth [110, page
97]. It was a compact set of the form X D xD n

S
n>1Dn, where each Dn b D is

some appropriately chosen open disk. The principal idea underlying Roth’s example
construction turned out to be crucial for a number of further constructions of examples
of the failure of approximation. Let us note the construction of this kind given in
[56, page 26]. In view of the shape of this compact set X , all such examples are
called nowadays a “Swiss cheeses” or “Champagne bubbles”.

Later on Walsh encouraged his student O. J. Farrell to study the problem of poly-
nomial approximation to a function f holomorphic in a domainG but not necessarily
continuous in xG (but assuming only that f is bounded in G) and gave him some
ideas how to proceed in this case. Farrell in [44] considered the problem on uniform
approximation by polynomials of a conformal map from G onto the unit disk. As far
as we know this is the second paper in the mathematical literature, where the notion
of Carathéodory domain is important.

Theorem 3.4 (Farrell). Let G be a bounded simply connected domain in C, and let
g map G conformally onto D. Then, g has a continuous extension Qg to xG and Qg may
be approximated by polynomials uniformly on xG if and only if G is a Carathéodory
domain and all points in @G are simple in the sense of Carathéodory.

Proof. Assume that the desired Qg exists and that it can be approximated by polynomi-
als uniformly on xG. Then, Qg is continuous and Proposition 2.22 implies that all points
in @G are simple. Moreover, j Qg.w/j D 1 for each w 2 @�1. xG/, then jg.w/j < 1 for
w 2 yG \ xG. So, @G D @�1. xG/.

Conversely, fix a point z0 2 G, take a sequence .Gn/ of Jordan domains conver-
ging toG with respect to z0 (see Theorem 2.11) and the corresponding sequence .gn/
of conformal maps from Gn onto D. Since all point in @G are simple, then g has a
continuous extension Qg to xG, and in view of Theorem 2.23 for a given " > 0 there
exists such n that j Qg.z/� gn.z/j< " for all z 2 xG. Since gn 2H.Gn/, it follows from
Runge’s approximation theorem that there exists Pn 2 P such that kPn � gnk xG < ".
Then, k Qg � Pnk xG < 2" as desired.

Furthermore, [44, Theorem IV] may be stated as follows.
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0 1

G

Figure 8. A counterexample to the opposite inclusion in (3.2).

Theorem 3.5. LetG be a Carathéodory domain such that all points in @G are simple
in the sense of Carathéodory, and let f be some conformal map from D ontoG. Then,

P. xG/ � ¹h 2 A. xG/ W h is constant on I. Of .�// for each � 2 Tº: (3.2)

Proof. Denote by B the set in the right-hand side of (3.2) and take h 2 B . Put F D
h ı f . Then, F has a continuous extension zF to xD because h is constant in each set
C.f; �/, � 2 T . Then, zF 2 A.xD/. Given " > 0 let P 2 P be such that k zF �P kxD < ".
Let g D f �1, and let Qg be the continuous extension of g to xG. Put z D Qg.w/ for
w 2 xG. Then,

jh.w/ � P. Qg.w//j D j zF .z/ � P.z/j < "

for each w 2 xG. Since Qg 2 P. xG/, then P ı Qg 2 P. xG/. So, h 2 P. xG/.

The opposite inclusion in (3.2) is not true in the general case. To construct a direct
example, let us consider a sequence

1 > a1 > b1 > a2 > b2 > � � � an > bn > anC1 > � � � > 0

such that an ! 0, and define the domain G, see Figure 8, in such a way that

xG D xD

� 1[
nD1

²
z D reit W

1

n
< r 6 1; t 2 .bn; an/

³
:

It is clear that the constructed domain G is a Carathéodory domain. The function
h.z/ D

p
1 � z, defined on xG, belongs to P. xG/, but it is not constant in Œ0; 1� which

is the impression of some prime end.

Remark‘ 3.6. The set of the right-hand side of (3.2) seems to be very small in the
case that f is not continuous on xD. It looks quite plausible that this set is equal to the
set of functions F ı f �1, where F 2 A.xD/.
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The following two theorems obtained by Lavrentiev [79] and Keldysh [72], re-
spectively, turned out to be important milestones on the way of studying the problem
of polynomial approximation on compact sets in the complex plane. In what follows
they will be called Lavrentiev’s theorem and Keldysh’s theorem, respectively.

Theorem 3.7. Let K � C be a compact set. Then, P.K/ D C.K/ if and only if
Kı D ; and C nK is connected.

Theorem 3.8. Let G � C be a bounded domain. Then, P. xG/ D A. xG/ if and only if
the set C n xG is connected.

Finally, the problem on characterization of such compact sets K � C for which
it holds P.K/ D A.K/ was completely solved by S. N. Mergelyan in 1952, see [90].
The following theorem summarize several Mergelyan’s statements, it will be called
Mergelyan’s theorem in what follows.

Theorem 3.9. Let K � C be a compact set.

(1) P.K/ D A.K/ if and only if the set C nK is connected.

(2) If C nK has finitely many components, then A.K/ D R.K/.

(3) Assume that there exists a decreasing sequence .ın/ with ın ! 0 such that
for each point b 2 @K there exist an arc n � D.b; ın/ \K{ and a number
rn > 0 such that diam.n/ > rn. Let f 2 A.K/ and let !.f; �/ denotes its
modulus of continuity. If

lim inf
n!1

!.f; ın/

�
ın

rn

�2
D 0; (3.3)

then for every " > 0 there exist F 2 R with ¹F º1 � K{ such that

kf � F kK < ":

Notice that the part (3) of Mergelyan’s theorem yields that R.K/ D A.K/ when-
ever all components of C nK have diameter bigger than some given number ı > 0.

Several proofs of Mergelyan’s theorem may be found in the literature, see, for
instance, [115, Chapter 20], [55, Chapter III], [32, Section 8.6], and [134, Appendix
I]. Moreover, in [24] one can find the dual proof of this theorem, due to L. Carleson,
see also [125, Chapter V].

Observe that using the ideas underlying the proof of Runge’s theorem the state-
ment of the part (3) of Theorem 3.9 may be improved in such a way that all poles of F
can be chosen to belong to some prescribed set containing a point of each component
of C1 nK.

Theorem 3.10. Let K be a Carathèodory compact set, then R.K/ D A.K/.
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Proof. For each ı > 0 let a 2 @K D @�1.K/. Then, take a0 2 �1.K/ such that
ja � a0j < ı=2. Then, a0 can be joined to1 by some infinite polygonal line L. The
part of L that contains a0 and ends in the first point, where L exists D.a; ı/ is an arc
with diameter bigger than ı=2. So, for each sequence .ın/ in conditions of part (3)
in Theorem 3.9 one can take rn D ı=2 and hence (3.3) holds for each function f 2
A.K/. Then, R.K/ D A.K/.

Corollary 3.11. Let U be a Carathéodory open set, then R.@U / D C.@U /.

The problem on characterization of those compact sets K for which it holds
R.K/ D A.K/ was solved in 1967 by A. G. Vitushkin in terms of the analytic capa-
city of the setsD.a; r/ nK andD.a; r/ nKı. We are not going to enter this topic, and
we refer to [128] and [56, Chapter VIII] for the corresponding explanation. But one
ought to pay attention to the following thing. For proving his result Vitushkin have
proposed and elaborate the special approach to approximation, which is based on
localization of singularities of the function being approximate, and further approxim-
ation of each localized functions. Using this approach one can obtain another proof of
Theorem 3.10 without using Mergelyan’s theorem. An example of the proof of such
kind (in a different situation of approximation by polyanalytic rational functions) may
be found in [28, Proposition 2.5]. In view of this it would be interesting to obtain the
proof of Theorem 3.10 that avoids both the application of Mergelyan’s theorem and
Vitushkin’s localization technique, at least in the case thatK D xG for a Carathéodory
domain G.

3.2 Uniform harmonic approximation

An investigation of the problem on approximation of continuous functions by har-
monic ones was started by Walsh in the 1920s. For an open set U let Har.U / D
Har.U;R/ be the set of all real harmonic functions on U . Next, for a compact set
K � C we denote by Har.K/ the set of functions ujK , where u 2 Har.V / for some
(depending on u) open set V containing K, and by Har.K/ the closure of Har.K/ in
C.K/. Then, Har.K/ � C.K/ \ Har.Kı/. By definition, a harmonic polynomial is
ReP , where P 2 P. For example the real polynomial x3 � 3xy2 C x2 C 2xy � y2

is harmonic, since it is a real part of z3 C .1 � i/z2. Here, and in the sequel a real
polynomial means a polynomial in two real variables x and y with real coefficients.
A good reference for study of harmonic functions from the point of view of complex
analysis is the book [107].

Let us also recall that a domain G � C is called n-connected, if the set C1 n
G has n components. A domain G is called finitely connected, if it is n-connected
for some integer n > 1. Notice also that if G is a domain in C, while K is some



Uniform harmonic approximation 43

component of the set C1 n G and K does not contain 1, then K needs to be a
compact subset of C.

A bit of background about Dirichlet problem and harmonic measure

Let us recall some facts about harmonic functions, harmonic measure and the Dirich-
let problem that we will use in what follows. Let U be a non-empty bounded open set
of C and f W@U ! R[ ¹˙1º be an arbitrary function. Following the traditional ter-
minology we will call such f a boundary function. Let us denote by xUf the set of all
functions h which are superharmonic or identically equal to C1 in each component
ofU with lim infy!x h.y/> f .x/ for all x 2 @U , and which are bounded from below
on U . Furthermore, let xHf be the function defined as follows: xHf D inf¹h W h 2 xUf º.
One says that xHf is the upper solution of the generalized Dirichlet problems in U for
the boundary function f . Next, similarly, one can define the set Uf as the set of
all functions h which are subharmonic or identically equals �1 in each component
of U with lim supy!x h.y/ 6 f .x/ for all x 2 @U , and bounded from above on U .
Using this set we define the function Hf WD sup¹h W h 2 Uf º. Such function Hf is
called the lower solution of the generalized Dirichlet problem in U with the boundary
function f . These definitions, as well as proofs of almost all results mention here in
connection with Dirichlet problem may be found in [67, Chapter 8]. If xHf D Hf

and if both these functions are harmonic on U , then f is called a resolutive bound-
ary function, while the function Hf D xHf D Hf is called the solution of Dirichlet
problem with boundary function f (or, shortly, Dirichlet solution for f ). The corres-
ponding method to obtain a harmonic function from a boundary function f is called
the Perron–Wiener–Brelot method.

Wiener’s theorem says that any function f 2 C.@U / is a resolutive boundary
function. Having this in mind we have the following statement, see [67, Lemma 8.12].

Lemma 3.12. For z 2 U and f 2 C.@U / letLz.f /DHf .z/. Then,Lz is a positive
linear functional on the space C.@U / and there exists a unique Borel probability
measure �z on @U such that for all z 2 U and f 2 C.@U / it holds

Hf .z/ D Lz.f / D

Z
f d�z :

Moreover, we have (see [67, Theorem 8.14]).

Lemma 3.13. If W is a component of U , then the class of Borel subsets of @U of
�z-measure zero is independent of z 2 W .

Now, for z 2U we define the set Fz of all sets having the form .E nN/[ .N nE/

withE � @U andN � B , whereN and B are Borel sets such that �z.B/D 0. Then,
F WD

T
z2@U Fz is a � -algebra containing all Borel subsets of @U , and the measure

�z can be uniquely extended to F .
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Definition 3.14. The measure �z defined above is called the harmonic measure on
@U relative to U and z, and it will be denoted in what follows by !.z; �; U /.

Using Lemma 3.13 and the standard Radon–Nikodym theorem one can see that
for every component W of U the measures !.z1; �; U / and !.z2; �; U / are mutually
absolutely continuous for any points z1; z2 2 W . Moreover, the Radon–Nikodym
derivative h WD d!.z1; �; U /=d!.z2; �; U / satisfies

!.z1; �; U / D h � !.z2; �; U /; and C�1 6 jh.z/j 6 C for a.a. z 2 @W; (3.4)

whereC > 0 is some constant depending on z1, z2,W andU . Furthermore, !.z; �;U /
has no atoms for each z 2 U .

A keynote property of the harmonic measure is the following result.

Theorem 3.15. Let U be a non-empty bounded open set. A boundary function f is
resolutive if and only if it is !.z; �; U /-integrable for some z 2 U . If f is resolutive,
then for all z 2 U it holds

Hf .z/ D

Z
@U

f .�/ d!.z; �; U /:

To study the behavior of Hf .z/ when z ! � 2 @U we need the notion of regular
point. Recall that a point � 2 @U is said to be a regular point, if limz!� Hf .z/D f .�/

for every function f 2 C.@U /. A bounded set U is said to be regular (or Dirichlet)
open set, if every point of @U is a regular one.

There are several sufficient conditions to conclude that a given point is regular,
for example if there is a (half-opened) segment Œa; �/�C nU with � 2 @U . However,
the more useful condition is the following one given by A. Lebesgue.

Theorem 3.16. Let � 2 @U be such a boundary point that there exists a continuum L

(consisting of more than one point) such that L n ¹�º � C n U . Then, � is a regular
point. In particular, if U is a simply connected set, then it is a Dirichlet open set.

The proof of this theorem may be found in [33, Chapter X].
It follows from this theorem that any nonempty bounded open set U � C such

that no component of @U reduces to a singleton is a Dirichlet set. For such open set
U and for a function f 2 C.@U / let us define

Of .z/ D

´
f .z/ if z 2 @U;

Hf .z/ if z 2 U:
(3.5)

Then, Of 2 C. xU/ \ Har.U /. Moreover, for every z 2 U it holds

Of .z/ D

Z
@U

f .�/ d!.z; �; U /: (3.6)

In fact, we have the following corollary.
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Corollary‘ 3.17. Let U be a Carathéodory open set. Then, all points in @U are reg-
ular. So, U is a Dirichlet open set. Moreover, if B is a bounded connected component
of C n U , then !.z; @B;U / D 0 for every z 2 U .

Uniform approximation by harmonic functions

Let us start with one suitable generalization of the fact, that the open connected set U
is simply connected if and only if for every function h 2H.U / there exists a sequence
.Pn/ of polynomials such that Pn� h locally in U . We have

Theorem 3.18. Let G be a finitely connected domain, let Ej , j D 1; : : : ; N , N > 1,
are all bounded components of C nG, and let aj 2 Ej for each j D 1; : : : ;N . Then,
any function u 2 Har.G/ can be uniquely expressed in G in the form

u.z/ D Re h.z/C
NX
jD1

cj log jz � aj j; z 2 G; (3.7)

where h 2 H.G/ and c1; c2; : : : ; cN are real numbers.
Furthermore, let K � C be a compact set, and let G1; G2; : : : be all bounded

components of the set C n K (if exist). Let aj 2 Gj for each j . Then, the set of
functions of the form (3.7), where h runs over R.K/ and cj 2 R, is dense in Har.K/.
In particular, if C n K is connected, then the harmonic polynomials are dense in
Har.K/.

The first part of this theorem is a very classical result, it is known by the name of
Logarithmic Conjugation theorem. However, it is not clear what is the most relevant
reference to it prior to the paper [6], where one can find the history, the direct proof,
and several consequences of this result. It seems that the first occurrence of the afore-
mentioned result in the mathematical literature was in [132], but the assumption that
the domain under consideration has analytic boundary was made therein.

The result of the second part of Theorem 3.18 is not a difficult fact, its detailed
proof may be found in [18, Section 3.4]. Note, that this result can be proved using
duality arguments as follows. Take a real valued measure � onK which is orthogonal
to the functions Re h, h 2 R.K/, and log jz � aj j for all indices j . One can check
that for the logarithmic potential of �

{�.w/ D

Z
log jz � wj d�.z/;

which is defined a.e. in C, one has {�.w/D 0 for each w … K. This fact together with
the formula Z

g d� D
1

2�

Z
�g {�dA;
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which is valid for all compactly supported functions g of class C 2, implies that � is
orthogonal to Har.K/ (the symbol � stands, as usual, for the Laplace operator).

We are going now to proceed with the Walsh–Lebesgue theorem, which is one
of the most famous and most important results about approximation of functions by
harmonic polynomials. The name of Walsh–Lebesgue theorem is associated in the
literature to several related results. In order to be more clear we present here three
such results. The first one was proved in [132]. Later on L. Carleson in [24] made a
new proof because he says that the original proof is not complete. Walsh repeatedly
said in [132, 133] that his proofs are based on Lebesgue’s important work [80]. This
explains the reason why the name “Walsh–Lebesgue theorem” was subsequently
adopted for the next Theorems 3.19, 3.21, 3.22, and 3.23.

Theorem 3.19 (Walsh–Lebesgue theorem; the first of such name). Let K � C be a
compact set with connected complement. Then, for every function u 2 C.@K;R/ there
exists a sequence .Pn/ of harmonic polynomials such that Pn� u on @K.

Scheme of the proof. Let .Kn/ be a sequence of compact sets, each of which has
a boundary consisting of a finite number of C 1-smooth Jordan curves, such that
KnC1 � K

ı
n and

K D

1\
nD1

Kn:

Each continuous function on @K can be approximated uniformly on @K by C 1-
smooth functions. Then, one can assume that u 2 C 1.C/. In each domainKın take un
to be the solution of the Dirichlet problem with boundary data uj@Kn . Each set Kın is
simply connected, then each function un is the real part of some holomorphic func-
tion fn. Each of these functions fn can be approximated by polynomials in view of
Runge’s theorem. The real part of these polynomials are harmonic polynomials, and
they converge uniformly on @K to un. It remains to show that un � u on @K. This
fact is a keynote point of the proof, and it is a consequence of the following lemma
due to A. Lebesgue.

Lemma 3.20. LetK �C be a compact set, and let .Kn/ be such sequence of compact
sets that @Kn consists of a finite number of smooth closed curves, KnC1 � Kın, andT1
nD1 Kn D K. Let u 2 C 1.C/, and let un be the harmonic extension of uj@Kn to

Kın. If each z 2 @K satisfies the conditionZ
S

dr

r
D C1; (3.8)

where
S D

®
r 2 .0;C1/ W @D.z; r/ \K{

¤ ;
¯
;

then un� u on @K.
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The detailed proof of this lemma may be found in [56, pages 35–36]. The condi-
tion (3.8) is called Lebesgue’s condition.

Another proof of Theorem 3.19 was given in [24, pages 168–171]. This proof
follows the pattern of the proof of the part (2) of Theorem 3.18.

Theorem 3.21 (Walsh–Lebesgue theorem; the second of such name). Let K � C be
a compact set such that the set BK of all bounded components of C nK is not empty.
Let E be a set that contains one point for each G 2 BK . Suppose that

(a) the set BK is finite, and u 2 C.@K;R/, or

(b) each component of K is finitely connected, and u 2 C.K;R/ \ Har.Kı/.

Then, u can be approximated uniformly onK by functions of the form (3.7) with such
h 2 R that all poles of h are inside E, the points aj 2 E and cj 2 R

Scheme of the proof. The proof of item (a) is given in [18, page 191] using the theory
of representing measure for R.K/. For item (b) we follow the outline proposed by
Walsh. Take a closed disc xD with K � xD and a continuous function u0 defined on
xD that extends u. Then, there exists a real polynomial P that differs from u0 by

less than a given " > 0. The next step is to construct a decreasing sequence .Sj / of
closed sets, each of which is bounded by a finite number of non-intersecting Jordan
polygonal lines (with wedges parallel to coordinate axis), such that K D

T1
jD1 Sj .

Let now hj be the solution for the Dirichlet problem on Int.Sj / with the boundary
function P j@Sj . Then, hj � P on @K. Then, take k 2 N such that the difference
between hk and P is less than " on @K. But hk can be uniformly approximated on
K by a function of such kind that were considered in Theorem 3.18 (for the points
of E). It remains to modify this approximating function in such a way to settle its
singularities to the given points in E. Then, the approximation is obtained on @K, but
since u 2 C.K/ \ Har.Kı/, the approximation also holds on K.

Next result is stated in [133, page 518] and it is the oldest result were the notion
of Carathéodory set plays a role. It can be proved using Theorem 3.19.

Theorem 3.22 (Walsh). Let G � C be a bounded simply connected domain, and let
K be a compact set in C. Then, the following statements hold.

(a) Each function u 2 C. xG;R/ \ Har.Int. xG// can be uniformly approximated
on xG by harmonic polynomials if and only if G is a Carathéodory domain.

(b) Each function g 2 C.K;R/ can be uniformly approximated on K by har-
monic polynomials if and only if K is a Carathéodory compact set and
Kı D ;.

Proof. Let us prove the statement of part (a). For proving the statement of part (b)
see the next theorem.
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Assume that G is a Carathéodory domain, then Int. xG/D G, and so, u 2 Har.G/.
Put K D yG. If the set C n xG is connected then applying Theorem 3.19 we obtain a
sequence .un/ of harmonic polynomials such that un� u on @K D @G D @ xG. Since
u and all un are harmonic functions, the maximum modulus principle for subhar-
monic functions (see, for instance, [67, Theorem 7.10]) yields that this convergence
is uniform on xG.

Suppose now that the set C n xG is not connected. By Proposition 1.5, part (a),
each bounded component G1 of the set C n xG is simply connected and @G1 � @G.
Then, we can solve, for each G1, the Dirichlet problem with boundary values uj@G1 .
Therefore, one can define a function QuWK ! R as u.z/ for z 2 xG and Qu.z/ D
.uj@G1/

^.z/ given by (3.5). The key point is thatKı D G [
S
j Gj . So, Qu 2 C.K/\

Har.Kı/. Since C n K is connected and @G D @K, then there exists the sequence
.un/ of harmonic polynomials that converges uniformly on K to u, then in particular
on xG.

Let now there existsw 2 @G such thatw … @G1. Take r > 0 such thatD.w; 2r/\
@G1 D ;. Let �WC ! R be a continuous function such that � � 1 on D.w; r/ and
Supp.�/ � D.w; 2r/. Consider as before the solution y� of the Dirichlet problem in
G with boundary function �j@G . If there exists such a sequence .un/ that un� � on
xG then un � 0 on @G1. Then, un � 0 on G{

1. In particular, un.w/! �.w/ D 1,
which gives a contradiction.

As a consequence, of the previous result we have the next theorem, which was not
explicitly stated in [133]. Occasionally it is also referred as Walsh–Lebesgue theorem
(see, for instance, [99, Section 1]) and nowadays it is this statement that is perceived
by experts in the theory of approximation by analytical functions as the most complete
and general form of the Walsh–Lebesgue theorem.

Theorem 3.23 (Walsh–Lebesgue theorem; the third of such name). Let K � C be
a compact set. Then, each function from the space C.K/ \ Har.Kı/ can be approx-
imated uniformly on K by harmonic polynomials if and only if K is a Carathéodory
compact set.

Proof. Let K be a Carathéodory compact set. The keynote ingredient here is Propos-
ition 1.8, because one has Int. yK/ D Int.K/ [

S
j Gj and @Gj � @K D @�1.K/.

If g 2 C.K/ \ Har.Kı/, then we define the function Og on yK in such a way that
Og.z/D g.z/ if z 2K, while Og.z/ is the solution of the Dirichlet problem with bound-
ary function gj@Gj for z 2 Gj . Then, Og 2 Ah. yK/ then the proof is finished as before,
applying Theorem 3.19.

Going further assume that @K ¤ @ yK. Then, take a disk D.a; r/ � Int. yK/ with
a 2 @K. Next, taking b 2D.a; r/ nK, let us consider the function g 2C.K/ such that
g.z/ D log jz � bj for each z 2 K. Then, there exists a sequence .qn/ of harmonic
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polynomials such that kg � qnkK ! 0 as n!1. Then, by the maximus modulus
principle

kqn � qmk yK D kqn � qmk@K ! 0

as n;m!1. Then, .qn/ is a Cauchy sequence on yK, then it converges uniformly on
yK to the function g1 2 C. yK/ \ Har.Int. yK//. But g1.z/ D log jz � bj if z 2 D.a; r/

which is a contradiction.

Corollary 3.24. Let K be a Carathéodory compact set. If f 2 C.K/, then there
exists a unique u 2 C. yK/ \ Har.Int. yK// such that u.z/ D f .z/ for each z 2 K.

We must mention here that in [133] the condition in the part (b) of Theorem 3.21
stated by Walsh is different. He stated that “The compact K contains no region of
infinite connectivity not included in a larger region of finite connectivity belonging
to K. Then, in particular if K has no interior points, an arbitrary function f .x; y/
continuous on K can be so approximated”. But the result with this formulation is not
true, as one can see using the Deny’s criterion for uniform approximation by functions
harmonic in a neighborhood of K, see [36].

Ending our discussion on Walsh–Lebesgue theorem, let us mention the papers
[95–97], where several interesting generalizations of this theorem were obtained in
the situation when one deals with an approximation on boundaries @X of compact
sets X in C with connected complement by functions of the form P. 1/CQ. 2/,
where P and Q are polynomials in the complex variable, and  1 and  2 are two
homeomorphisms of C to C.

3.3 Pointwise polynomial approximation

Let us revert to the topic of approximation of functions by polynomials in the com-
plex variable. We have seen in Theorem 3.2 that the locally uniform convergence of
sequences of polynomials for each holomorphic function in a given open set implies
certain topological restrictions on this set. But what can happen if we only suppose
the pointwise convergence instead of the locally uniform one? Of course, the answer
will depend on certain additional assumptions (such as, for instance, a boundedness of
the corresponding sequence of approximating polynomials). In the most general case,
when we did not demand anything else, the answer to this question was obtained by
Montel: For any open set U � C each function f 2 H.U / can be approximated
by some sequence .Pn/ of complex polynomials in such a way that Pn.z/! f .z/

for every z 2 U . The proof of this fact may be obtained as follows. Let us take first
some sequence .Yn/ of compact sets such that C n Yn is a connected set, Yn � U ,
and U D lim infn!1 Yn. A possible way to construct such sequence may be found
in [85, Chaper IV, Section 2.3]. Next, Runge’s theorem yields that for each n there



Uniform and pointwise approximation on Carathéodory sets 50

exists a polynomial Pn such that kpn � f kYn < 1=n. Thus, the sequence .Pn/ is as
demanded. Notice that in such general setting we cannot conclude that .Pn/ tends to
f locally uniformly in U .

The most deep and important case of the aforesaid question arises when we
assume that the function under approximation is bounded, and demand to approx-
imate it by bounded sequence of polynomials. In this situation the picture changes
completely. It became clear after works [45,46] by O. J. Farrell in 1934–1935, where
he proved the next Theorem 3.25. It is necessary to read simultaneously both papers
to obtain the proof. However, these important papers are rarely mentioned in forth-
coming works in the topic under consideration, so it causes errors in the attribution
of who and what actually proved, see, for instance, [106,112]. Farrell also mentioned
that certain ideas of Carleman (see [23]) were of utility to prove both Theorems 3.25
and 4.1 below.

Theorem 3.25 (Farrell). Let G ¤ ; be a simply connected domain in C. The follow-
ing conditions are equivalent.

(a) For every function f 2 H1.G/ there exist a sequence of polynomials .Pn/
such that Pn.z/! f .z/ for each z 2 G, and lim supn!1 kPnkG 6 kf kG .

(b) G is a Carathéodory domain.

Proof. Let G be a simply connected domain and put T D @G1. Consider Q to be
such component of C n T that G � Q. Let f be some fixed conformal map from G

onto D. If the approximation properties stated in the part (a) holds, then there exists
a sequence .Pn/ of polynomials such that Pn.z/! f .z/ and jPn.z/j 6 2 for each
z 2G and for each n 2N large enough. Then, jPm.z/j6 2 for all z 2 xG and for some
m 2N, andPm¤ 0, so thatG needs to be bounded. Since @Q� xG, Montel’s theorem
(on the characterization of compact subsets of H.G/) shows that there exist a partial
subsequence .Pnk / and a holomorphic function f0WQ!C such thatPnk .z/! f0.z/

for each z 2 Q. Therefore, f0 D f in G, so that f0 is non-constant. Moreover, since
Q � yG, then

jf0.z/j D lim sup jPnk .z/j 6 lim sup kPnkkQ 6 lim sup kPnkk yG 6 1;

for each z 2Q. If we assume thatG is not a Carathéodory domain, then @G n T ¤ ;.
Then, there exist b 2 @G n T which is an accessible point from G by some end-cut E

and there exists " > 0 such that D.b; "/ � Q. Then,

jf0.b/j D lim
E3z!b

jf0.z/j D lim
z!b
jf .z/j D 1;

but this is a contradiction since jf0j cannot achieve at the point b its maximum mod-
ulus over Q. Thus, the implication (a))(b) is proved.
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We are going now to prove the inverse implication. Take a function f 2H1.G/.
Fix z0 2 G. Let us take, as usual, the sequence of Jordan curves .Jn/ such that
D.Jn/ ! G with respect to z0 (in the sense of kernel convergence). Let K D yG.
Since D.Jn/ is a Jordan domain then K � D.Jn/ for all n > 1. Let us take the con-
formal maps 'n from D.Jn/ onto D and the conformal map ' from D onto G such
that 'n.z0/ D 0 and '0n.z0/ > 0, while '.0/ D z0 and '0.0/ > 0. Put gn D ' ı 'n.
Then, the function f ı gn is holomorphic on D.Jn/, that is in an open neighborhood
ofK. Applying Runge’s theorem, one can find a sequence of polynomials .Pn/, such
that

kf ı gn � PnkK <
1

n
: (3.9)

From (3.9) it follows that kPnkK 6 1
n
C kf kK D

1
n
C kf kG , which gives the con-

clusion of the theorem.
Notice that gn � z in G. If Y � G is a compact set then, for big enough n, one

has
jf .gn.z// � f .z/j <

1

n
; z 2 Y: (3.10)

From (3.9) and (3.10) we obtain that .Pn/ converges uniformly on compact subsets
of G to f . This implies the pointwise convergence in G.

Paying more attention into the proofs given above and doing a bit more, the fol-
lowing result can be obtained.

Corollary‘ 3.26. Let G be a simply connected domain in C.

(a) Let f map G conformally onto D. Assume that there exists a sequence of
polynomials .Pn/ such that

sup
n2N
kPnkG 6 C and lim

n!1
Pn.z/ D f .z/; z 2 G; (3.11)

for some constant C . Then, G is a Carathéodory domain.

(b) Conversely, if G is a Carathéodory domain, then each function h 2 H1.G/
can be approximate by a sequence of polynomials .Pn/ satisfying (3.11).
In particular, if f is a conformal map from G onto D, one can take the
corresponding sequence in such a way that C D 1 in (3.11).

Proof. Let us start with the part (a). We will use all notations introduced in the proof
of the implication .a/) .b/ in Theorem 3.25. So, we take the partial sequence .Pnk /
and the function f0 such that Pnk � f0 on Q. Assume that @G n T ¤ ;, then for
each accessible point w 2 @G n T we know that jf0.w/j D 1. By continuity this is
true for all w 2 @G n T . Then, take b1 2 @G n T such that f 00.b1/ ¤ 0. Therefore, is
it to possible to find " > 0 and a small closed disk W such that

W � D.b1; "/ \G � D.b1; "/ \G � Q
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and f0 is a holomorphic homeomorphism from W onto its image, so that 1 C " <
jf0.z/j for all z 2 W . Since the sequence .Pnk / converges uniformly on W , then

1C
"

2
6 jPnk .z/j; z 2 W; k > k0:

Taking limits when k !1 the previous estimate yields that there exist many points
z, where jf .z/j > 1C "=2, which is a contradiction.

It remains to prove last assertion in the part (b). Let f be the conformal map from
G onto D. Since f ı gn D 'n is holomorphic inD.Jn/, then k'nk yG 6 cn < 1. Then,
take the corresponding polynomial Pn in such a way that

k'n � Pnk yG < 1 � cn;

for every N > 1. Thus, kPnk yG 6 1.

This result for C D 1 is covered by the original proof in [45, 46], and it is [106,
Theorem 2]. The author of the paper [106] and, highly likely, its referee were unaware
that the respective result already has been proved 60 years prior to the publication of
that paper.

Similar arguments can be used to prove the following result.

Proposition‘ 3.27. Let G be a simply connected domain in C. Assume that there is
a subset E � @G such that xE D @G and for each point a 2 E the function f .z/ D
p
z � a can be boundedly approximated on G by a sequence of polynomials. Then,

G is a Carathéodory domain.

In [47] Farrell gave the estimate of the norm kf � pnkG in terms of one special
metrical concept. For a given domain G and a function f 2 H1.G/ let

D.f; @G/ D sup
z2@G

diamC.f; z/;

where C.f; z/ is the cluster set of f at the point z.

Theorem 3.28. Let G be a Jordan domain and f 2 H1.G/. Then, there exists a
sequence .Pn/ of polynomials such that Pn� f in G and

lim sup
n!1

kf � PnkG 6 D.f; @G/: (3.12)

Sketch of the proof. Fix z0 2 G and let .Gn/ be the usual sequence of simply con-
nected domains such that Gn ! G with respect to z0. Take the conformal map
 nWGn ! G such that  .z0/ D z0 and  0.z0/ > 0. For the function fn defined
by the formula fn.z/D f . n.z// one can find an appropriate polynomial Pn in such
a way that

jPn.z/ � fn.z/j 6
1

n
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for all z 2 xG. Since  n� z on xG in view of Theorem 2.10, we have Pn� f locally
in G.

The estimate (3.12) is obtained as a consequence of the following fact. If w0 2
@G, if .zn/ is any sequence tending to w0, and if .Pkn/ is a suitable subsequence of
.Pn/, then

lim sup
n!1

jf .zn/ � Pkn.zn/j 6 diamC.f;w0/:

The omitted details may be found in [47].

Question III. Whether it is true, that if G is a Carathéodory domain such that C n xG
is connected and f 2H1.G/, then there exists a sequence .Pn/ of polynomials such
that Pn� f in G and

lim sup
n!1

kf � PnkG 6 D.f; @G/:

It seems that the answer is affirmative, but the proof given in the case of Jordan
domains cannot be adapted directly.

Continuing the analysis of Farrell’s results let us observe that the Carathéodory
hull U � of an open set U can be defined as follows:

U � D Int
®
z0 W jp.z0/j 6 sup

z2U

jp.z/j; for each p 2 P
¯
:

As far as we know, the first occurrence of a related notion to Carthéodory hull
(without the corresponding name) was in Theorem D in Farrell’s work [46]. In this
paper it was considered the component of the Carathéodory hull of a given domain
that contains this domain itself. The concept of a Carathéodory hull of a set has
appeared with this name in [120]. In [31] the set U � was called the outer envel-
ope of U . In [111, 112] this concept also appeared without name. Perhaps the name
of “extended Carathéodory–Farrell hull” of U will be more honest and appropriated
because ifG is a Carathéodory domain, thenG is only a component of a (sometimes)
bigger open set G�. However, in order to avoid a new name creation, the name of a
Carathéodory hull is enough good and has been adopted to denote this set. Let us also
note that the notation U � for the Carathéodory hull of U coincides with the notation
of [98], although in that paper it is not given a special name for this object.

The following properties are interesting and easy to prove (recall Proposition 1.5,
see also [112]).

Lemma 3.29. Let G be a bounded open set in C. Then, the following hold.

(i) G� D C n�1. xG/, C n yG D �1. xG/, and @G� D @�1. xG/.

(ii) G� is a Carathéodory open set and .G�/� D G�.

(iii) The set G� is simply connected.
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The next lemma clarifies the usefulness of the concept given in Definition 1.4.

Lemma 3.30. Let G be a bounded open set, let f 2 H.G/, and let .Pn/ be such
sequence of polynomials that

sup
n2N
kPnkG 6 C and Pn.z/! f .z/; for all z 2 G (3.13)

for some constant C . Then, the following hold.

(a) Pn� f locally in G as n!1.

(b) There exists a function f � 2H.G�/ such that f �jG D f , that is f � extends
f to G�.

Proof. (a) Take a partial sequence .Pnk / of the sequence .Pn/. By Montel’s theorem
there exists a new partial sequence .Pn0

k
/ of this subsequence .Pnk / such that Pn0

k
�

g locally in G for some function g 2 H.G/. But g.z/ D f .z/ in each component of
G, then g D f onG, and so, Pn0

k
� f onG. Since it is true for all partial sequences

of .Pn/, the proof is completed.
(b) Let us observe that (3.13) together with the maximum modulus principle

implies that kPnk yG D kPnk xG 6 C for all n. Then, there exists a partial sequence
.Pnk / such that Pnk � f � locally in G� for some function f � holomorphic on G�.
SinceG �G�, then f � is an extension of f . Notice, that such extension in not unique
in a general case.

The final result by Farrell can be stated as follows.

Theorem 3.31. Let G � C be a domain, and let f 2 H1.G/. The following condi-
tions are equivalent.

(a) There exist a sequence of polynomials .Pn/ such that (3.13) is satisfied.

(b) The function f is the restriction of some function belonging to H1.G�/.

Near thirty years after publication of the above results, L. Rubel and A. Shields
in [111, 112] obtained their generalization for a general bounded open sets. The fol-
lowing result is called nowadays Farrell–Rubel–Shields theorem.

Theorem 3.32. Let U ¤ ; be a bounded open subset of C, and f 2 H1.U /. The
following conditions are equivalent.

(a) There exists a sequence of .Pn/, Pn 2 P, such that supn kPnkU 6 kf kU and
Pn.z/! f .z/ for all z 2 U .

(b) There exists such function f � 2 H1.U �/ that f D f �jU .

The case that the set U is connected corresponds to the original Farrell’s proof.
There are two key points that distinguish the Rubel and Shields results from Farrell’s
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ideas. The first one is the following thing. If U is an open set, then U � is a Carathé-
odory open set, and hence each function f 2 H1.U �/ can be bounded pointwise
approximated by polynomials in U �, but not only in U . The sequences of polyno-
mials constructed in Farrell’s proof cannot give directly the convergence in U �. The
second key point is related with the following observation. If U has infinitely many
components Gj , then each f jGj can be approximated by a sequence of polynomials
.Pj;n/. However, each of such sequence depends on j and it is not clear how to deal
with all sequences. Rubel and Shields gave a clever idea how to avoid simultaneous
work with several components of U .

Nowadays a proof of Theorem 3.32 using many important tools from the theory
of uniform algebras consist in proving an abstract version of such theorem. From this
abstract version the following result may be obtained which also gives Theorem 3.32
(the details of these proofs may be found in [56, pages 152–154]).

Theorem 3.33. LetK be a finitely connected compact set in C, and let f 2H1.Kı/.
Then, there is a sequence .fn/, fn 2 R.K/, such that supn kfnkK 6 kf k1 and
fn.z/! f .z/ for all z 2 Kı.

Now, we will describe the pattern of the proof of Rubel–Shields theorem. We
need to introduce yet one auxiliary construction.

Definition 3.34. Let U be a Carathéodory open set and let B be a component of
U . The cluster K.B/ is defined as the union of all components Q of U for which
Q � EB , where EB is the component of xU that contains B .

In order to illustrate this definition let us consider the outer snake (or cornucopia)
Q1 twisting around D with Q1 � D.0; 3=2/ and another outer snake Q2 with Q2 �
D.3; 1/; for example of the model for such Q1 and Q2 see G1 on Figure 2. Take
U D D [Q1 [Q2. Then, K.D/ DK.Q1/ D D [Q1 and K.Q2/ D Q2.

The next result corresponds to Theorem 2.11 in the case of general Carathéodory
open sets. It may be found in [112].

Theorem 3.35. Suppose U be an open set.

(a) Let U be a Carathéodory open set. For each component B of U take a point
wB 2 B . Then, there exists a sequence .Un/ of bounded simply connected
open sets possessing the following properties:

(i) xU � Un � xUn � Un�1, n > 2;

(ii) If B is any component of U and if Bn is the component of Un contain-
ing B , then xB � Bn � xBn � Bn�1, n > 2, and Bn ! B with respect
to wB .

(b) If U is an open set such that there exists some sequence of open sets .Un/
satisfying the properties .i/ and .ii/, then U is a Carathéodory open set.
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Notice, that in the frameworks of conditions of this theorem one has K.B/ � Bn
for every n 2 N.

The following lemma is one of key ingredients of the proof of Theorem 3.32.

Lemma 3.36. Let E be a finite subset of U and let B be a component of U . Assume
that f D 1 in all the other components ofU and kf kU 6 1. Then, for each given "> 0
there exists a polynomial P such that jP.z/j6 1 for each z 2U and jf .z/�P.z/j<
" for each z 2 E.

Sketched proof of Theorem 3.32. We need to prove that if U is a Carathéodory open
set and f 2 H1.U / with kf kU 6 1, then there exists a sequence of polynomials,
uniformly bounded by 1 in U , and converging to f at each point of U . Let us assume
that Lemma 3.36 is already proved.

Denote by C1;C2; : : : some enumeration of all components ofU , take a countable
dense set ¹z1; z2; : : : º � U and put En D ¹z1; z2; : : : ; znº. Define the functions gk ,
k 2 N, in such a way that gk.z/ D f .z/ for z 2 Ck and gk D 1 in U n Ck . Take
(and fix) some " > 0 and n 2 N. By Lemma 3.36 for every k 2 N there exists a
polynomial Pk such that kPkkU 6 1 and jgk.z/ � Pk.z/j < "=n for each z 2 En.
Let now fn D g1g2 � � � gn so that fn D f on C1 [ C2 [ � � � [ Cn, while fn D 1 on
each Ck with k > n. For the polynomial zPn D P1P2 � � �Pn we have k zPnk 6 1 in U
and

fn � zPn D

nX
jD1

P1 � � �Pj�1 � .gj � Pj / � gjC1 � � �gn;

which gives
jfn.z/ � zPn.z/j < " for each z 2 En:

Then, by Montel’s theorem, each partial subsequence of . zPn/ converges to a function
h such that f D h on E, so zPn� f in U .

It remains now to prove Lemma 3.36. To do this it is sufficient (in view of Runge’s
theorem) to verify the next statement.

Lemma 3.37. LetE a finite subset of U and let B be a component of U . Assume that
f D 1 in all other components of U and kf kU 6 1. Then, for any " > 0 there exists
a simply connected domain Q with xU � Q, and a holomorphic function g in Q with
kgkQ 6 1 such that jf � gj 6 " on E.

Let B be the component mentioned in Lemma 3.36. According to Theorem 3.35
one can take .Un/, .Bn/, .'n/ and ', where 'n is the conformal map from Bn onto D
normalized at some pointwB 2B as 'n.wB/D 0, and ' is the conformal map fromB

onto D normalized by the same way. Passing to an appropriate subsequence of .'n/,
we obtain that 'n�  in K.B/, where  D ' in B . Let now ¹Qj º be the collection
of all components that formed K.B/. It holds that  D �j with j�j j D 1 in Qj for
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all indices j . Since E is finite, it meets only finite number of components of K.B/,
says for definiteness,Q1; : : : ;Qn. Put E 0 D '.E \B/ � D, so that E 0 is a finite set.
Consider the function F D f ı '�1 such that kF kD 6 1. Using [112, Lemma 3.13]
one can find a new function F1 which is close to F on E 0, while it is close to 1 near
the points �1; : : : ; �n. Finally, for sufficiently large n the function g defined in such
a way that g D F1 ı 'n in Bn and g D 1 in Un n Bn is the desired approximant for
f in Lemma 3.37. All omitted technical details may be found in [112, Lemmas 3.11,
3.12, and 3.13].

Example 3.38. Let G be the outer cornucopia, and U D G� D G [ D. Then, there
exists a sequence .Pn/ of polynomials, uniformly bounded by 1 such that Pn.z/! 0

if z 2 G and Pn.z/! 1 if z 2 D.

The next statement is an application of Rubel–Shields theorem. But we encourage
the interested reader to find a proof using only Farrell’s ideas, as well as the another
one basing only on Runge’s theorem.

Corollary 3.39. Let G be a Carathéodory domain and let f 2 H1.G/. Then, there
exists a sequence of polynomials .Pn/ such that Pn � f locally in G and for each
bounded component B of C n xG one has P 0n.z/! 0 for each z 2 B .

We end this section mentioning several interesting and important concepts related
with the topic on bounded pointwise approximation. The first one is the concept of a
Farrell set, which was introduced by Rubel and studied, for example, in [126]. Later
on, O’Farrell and Perez–Gonzalez defined Farrell pairs for general open sets and
the notion of a Farrell–Rubel–Shields set. Notice that the family of Farrell–Rubel–
Shields sets includes the family of Carathéodory domains. The paper [98] gives a
comprehensive theorem on pointwise bounded-on-a-subset approximation for Far-
rell–Rubel–Shields sets.

3.4 Uniform algebras on Carathéodory sets

We start this section by mentioning some connections between the Walsh–Lebesgue
theorem and the theory of uniform algebras. We recall some notions of that theory,
whose exhaustive exposition may be found in [18, 56, 69, 125].

A uniform algebra A on a compact Hausdorff space X is a uniformly closed
(with respect to the norm kf k D sup¹jf .x/j W x 2 Xº) subalgebra of C.X/ which
contains constants and separates points ofX . A setE �X is called a boundary for A

if for each f 2 A there exists y 2 E such that jf .y/j D kf k. The minimum closed
boundary of A (which always exists) is called the Shilov boundary of A. A subset
F � X is called a peak set for A if there exists a function f 2 A such that kf k D 1
and F D f �1.1/. A point x 2 X is a peak point of A if ¹xº is a peak set.
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If A is a uniform algebra on a compact space X , the maximal ideal space of
A can be identified with the space of non-zero complex-valued homomorphism of
A, which will be denoted by MA. If 	 2 MA, then 	 is continuous and k‰k D
1 D 	.1/. Moreover, there exists a probability measure � on X such that 	.f / DR
X
f d� for each f 2 A. This measure is call a representing measure for 	 . The set

of such measures is convex and weak-star compact but, in general, is not a singleton.
The Choquet boundary of A is the set of all those x 2 X for which the evaluation
functional �x.f / D f .x/ has a unique representing measure, of course it is needed
to be the unit point mass ıx supported at the point x. Moreover, if X is a metrizable
space, the Choquet boundary of A is also the set of all peak points of A. It can be
proved that it is a boundary for A and its closure coincides with the Shilov boundary.

Recall that A is called a Dirichlet algebra on X , if Re A is dense in C.X;R/,
while A is called a logmodular algebra on X , if®

logjf j W f is an invertible element of A
¯

is dense in C.X;R/.
Let K be a compact subset of C. We are going to discuss here several results

related to [39]. For better understanding of the matter we emphasize the following
facts.

(1) Let g 2 P.K/. Then, there exists a sequence of polynomials that converges
uniformly to g. By the maximum modules theorem this sequence also con-
verges uniformly on yK to an extension Og 2 P. yK/ of g which has the same
norm. The isometry g 7! Og allow us to identifyP.K/withP. yK/ or even with
P.@K/. These identifications will be used in what follows without explicit
reference.

(2) Returning to the algebras appearing in (3.1) let us note that the maximal ideal
spaces for all of them are identified withK. Moreover, the Shilov boundaries
for P.K/, R.K/, A.K/ and C.K/ are @ yK, @K, @K and K, respectively. For
P.K/ and C.K/ the Choquet boundaries coincide with their Shilov bound-
aries, but for R.K/ and A.K/ the Choquet boundaries are more involved
(see [56, page 205]).
For better understanding the next Proposition, we prove that the Choquet
boundary of P.K/ is @ yK. First note that if x is a peak point of P.K/, then
x 2 @ yK. Let x 2 @ yK and let � be a representing measure of �x . Since �
is real, then Re g.x/ D

R
Re g d� for each g 2 P.K/. Because P.K/ is a

Dirichlet algebra, then r.x/ D
R
yK
r.y/ d�.y/ for each continuous function

r 2 CR.@ yK/. It means that � is also a representing measure of �x for the
algebra CR.@ yK/, so � D ıx .
If A is a Dirichlet algebra on X , then A is also a logmodular algebra on X ,
and X is the Shilov boundary of A.
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Theorem 3.23 tell us that P.K/ is a Dirichlet algebra on @ yK.

In view of the aforesaid, all ingredients are readily available to obtain the follow-
ing statement which is worth comparing with [39, Theorem 4].

Proposition 3.40. Let K be a compact set in C, and let � D @K. The following
conditions are equivalent.

(a) K is a Carathéodory compact set.

(b) The Choquet boundary of P.K/ is � .

(c) The Shilov boundary of P.K/ is � .

(d) P.K/ is a Dirichlet algebra on � .

(e) P.K/ is a logmodular algebra on � .

(f) Each point of � is a peak point for P.K/.

Now, we are interested in the question about maximal subalgebras. We recall
the concept of maximality in the theory of uniform algebras. Let K be a compact
subset of C. A closed subalgebra A of the algebra C.K/ is called maximal if for each
closed subalgebra B of C.K/ such that A�B it holds either B DA or B D C.K/.
In [56, page 38] it is assumed that A ¤ C.K/, but seems more appropriate not to use
this convention.

The question on maximality of the algebra P.K/, where K is a compact subset
of C, was initiated by J. Wermer, who proved that A.xD/ is maximal, considering as a
uniform algebra on its Shilov boundary, T , or with more generality for every closed
subalgebra of C.T / that contains an injective function. This result is known as Wer-
mer’s maximality theorem, see the first proof of it in [135]. Later on E. Bishop [15]
(see Theorem 6 of the cited work) established the following result.

Theorem 3.41. Let K be a compact subset of C such that both sets Kı and C nK
are connected. Then, P.@K/ is maximal on C.@K/.

Proof. We follow the proof which was done by Bishop that used ideas due to Hoff-
man. Other proof may be found in [125] (see Theorem 25.12 in this book). Let B be
some closed subalgebra of C.@K/ such that P.@K/ � B and put G D Kı. Then, we
need to prove that B D C.@K/ or B D P.@K/. We know that every function from
P.@K/ can be extended to some function belonging to A.K/. Then, for every point
a 2 G the mapping 'aWP.@K/! C defined by 'a.h/ D h.a/, is a homomorphism
of the algebra P.@K/. Now, we distinguish two cases.

Case 1. Assume that 'a can be extended to the algebra B for any a 2 G. Then,
j'a.h/j 6 khk@K for all h 2 B. Therefore, 'a can be extended to a bounded linear
functional (with norm equals 1) on the spaceC.@K/. It means that there exists a meas-
ure �a (with k�akD1) on @K such that

R
h.z/�a.z/D'a.h/ for every h2B. Since
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�a.@K/ D 'a.1/ D 1, and since k�ak D 1, we have that �a is a positive measure
(see [18, page 80]). Therefore, for each polynomial P we have

ReP.a/ D Re'a.P / D Re
Z
Pd�a D

Z
ReP d�a: (3.14)

Let us denote by Of the harmonic complex extension of f given by Corollary 3.24 of
f toK. Take h 2B and consider Oh 2 C.K/\Har.Kı/. By Theorem 3.23 and (3.14)
one has Oh.a/ D

R
Ohd�a D

R
h d�a D 'a.h/ and, moreover, since 'a is a multiplic-

ative functional, bzh.a/ D a Oh.a/. Thus, Oh and z Oh are harmonic in G. Hence,

0 D @x@.bzh/ D @x@.z Oh/ D @.zx@ Oh/ D x@ OhC z@x@ Oh D x@ Oh:
InG, which yields that Oh is holomorphic inG. Since C nK is connected, we conclude
from Mergelyan’s theorem that Oh 2 P.K/.

Case 2. Assume that there exists a point a 2 G such that the homomorphism 'a
cannot be extended to B. Consider in such a case the principal ideal in B

J D ¹h 2 B W h.z/ D h1.z/.z � a/; z 2 @K; h1 2 Bº:

Assume that J ¤ B, then there exists a maximal ideal M such that J �M. Then,
there exists such homomorphism˚ WB!C that ker˚ DM. Then,˚.j/D a (where,
as before, j.z/ D z) and therefore ˚.P / D P.a/ for each P 2 P.@K/. It means that
˚ is an extension of 'a which contradicts our assumption in Case 2. Thus, J D B

and 1 2 J. It means that 1=.j � a/ 2 B. In view of Mergelyan’s theorem C.@K/ is
the algebra generated by j and 1=.j � a/. Then, B D C.@K/.

In fact, the property that P.K/ is a maximal subalgebra of C.K/ imposes quite
rigid topological restrictions on the compact setK. We prove now the converse state-
ment for Wermer’s maximality theorem, which was essentially obtained in [27].

Theorem‘ 3.42. Let K be a compact subset of C. If P.K/ is a maximal subalgebra
of C.K/, then K is a Carathéodory compact set without interior. If, moreover, K D
@�, where � is a nonempty bounded open set in C, then neither x� nor � does not
separate the plane and both sets @� and � are connected.

Proof. If P.K/ D C.K/ then Kı D ; and K D yK. Then, @K D @ yK.
Assume therefore that P.K/ ¤ C.K/. In such a case the set C n @ yK has a

bounded component. If Kı D ; this is a consequence of Lavrentiev’s theorem. If
Kı ¤ ; we can choose a bounded component of Kı. So, one has

P.@ yK/ ¤ C.@ yK/: (3.15)

By (3.15) there exists a measure � on @ yK such that � ? P.@ yK/ and � ¤ 0

(the symbol ? expresses the fact of orthogonality of � to the corresponding set of
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functions). Let us now assume that @K n @ yK ¤ ; or Kı ¤ ; and let us take a 2
@K n @ yK or a 2 Kı. Then, there exists a function f 2 C.K/ such that f .a/ D 1 and
f j
@ yK
D 0.

Let now B be the closure of the set of functions having the form
Pm
jD0 qjf

j ,
where q0; : : : ; qm are polynomials and m 2 N. Since f … P.K/, then B ¤ P.K/.
Moreover, since f j

@ yK
D 0, thenZ

K

 
mX
jD0

qjf
j

!
d� D

Z
@ yK

q0 d�C

mX
jD1

Z
@ yK

qjf
j d� D 0:

Thus, B ¤ C.K/, and so, P.K/ is not maximal. Thus, @K D @ yK and Kı D ;.
Let now K D @�, where � ¤ ; is a bounded open set.
Assume that x� separates the plane. Let G be a bounded component of the set

C n x� and �1 be some component of �. Take z1 2 �1 and z2 2 G. Consider the
closed subalgebra B which is generated by P.K/ and by the function g1.z/ D
1=.z � z1/, z 2 K. Clearly g1 … P.K/. Taking into account that @G � K, and g1j xG
is holomorphic in xG, an application of the Maximum modulus principle gives that the
function h.z/ D 1=.z � z2/, z 2 K, does not belong to B. Therefore, P.K/ is not
maximal, which gives a contradiction. Thus, x� does not separate the plane.

Let us assume that� separates the plane. In such a case C n�DF1 [F1, where
F1 is a closed set such that x�1 � F1 and F1 is a nonempty compact set such that
F1 \ F1 D ;. Since F1 \ @� is not empty, take a point z 2 F1 \ @�. Since @�
is a Carathéodory compact set then z 2 @.@�/ D @� D @.c@�/. Thus, there exists a
sequence of points ¹znº such that zn … c@� and zn ! z as n!1. Since zn 2 �1,
then z 2 x�1 \F1D;. Thus, a contradiction arises and therefore� does not separate
the plane.

Going further let us assume that the set @� is not connected. Then, @�DF1[F2,
where F1 and F2 are compacts sets and F1 \F2 D;. Then,�\cFj ¤; for j D 1;2,
because if � \cF1 D ;, then C n� has a bounded component and � will separate
the plane. Then, we consider the closed subalgebra

B D ¹f 2 C.@�/ W f jF1 2 P.F1/º:

If we take the function f .z/ D 1=.z � a/, where a 2 � \cF2, we can see that B ¤

P.F1 [ F2/. Clearly, B ¤ C.@�/, it may be readily verified by considering g.z/ D
1=.z � b/, b 2 � \cF1. Thus, P.@�/ would be not maximal. Therefore, the set @�
is connected. The fact that the set� is connected may be proved by a similar way.

Corollary‘ 3.43. If�¤; is a bounded open set, then P.@�/ is maximal subalgebra
of C.@�/ if and only if � is a Carathéodory domain which does not separate the
plane.
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Notice that a slightly weaker version of Corollary 3.43 (in the case when � is a
priory assumed to be a simply connected domain) was obtained in [39].

Remark 3.44. In the proof of Theorem 3.42 it was shown that if� is a Carathéodory
domain, and if x� does not separate the plane, then� itself does not separate the plane
either. In the general case the properties “� does not separate the plane” and “x� does
not separate the plane” are independent because all four possible situations can occur.
The same can be said concerning connectivity properties of @� and �.

3.5 Orthogonal measures on Carathéodory sets

Many results in approximation theory were obtained in the frameworks of so-called
dual approach, which is based on studies of linear functionals orthogonal to cer-
tain spaces of functions. In the case of uniform approximation on compact sets in
C any linear functional on the space C.X/ has the form f 7!

R
f d�, where � is

some complex-valued Borel measure with support on X . So that it is interesting and
important to study properties of measures on X which are orthogonal to spaces of
polynomials or rational functions, or to some other spaces of functions. One import-
ant and deep theorem in this theory which we will need in what follows is the F. and
M. Riesz theorem (for the proof see, for instance, [115, Chapter 17] or [77, Chapter
II]). For the reader’s convenience we state it in such a way which makes evident the
starting point of the research made by E. Bishop in his three papers that we will
discuss in this section.

Theorem 3.45 (F. and M. Riesz). Let � be a complex measure on T which is ortho-
gonal to all polynomials, that is

R
T P.�/ d�.�/ D 0 for every P 2 P. Then, the

following hold.

(a) The measure � is absolutely continuous with respect to the measuremT , that
is there exists a Borel measurable function u such that

�.E/ D

Z
E

u.�/ dmT .�/ D
1

2�i

Z
E

x� u.�/ d�

for every Borel set E � T .

(b) Let the function f be defined in D by the formula

f .z/ D
1

2�i

Z
d�.�/

� � z
;

and let fr.�/ D f .r�/ for r > 0 and � 2 T . Then, fr ! u as r ! 1 in
L1.T /.

(c) For a.a. points � on T , one has that f .z/! u.�/ when z 2 D tends to �
non-tangentially.
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The aim of Bishop’s research was to obtain a generalization of the F. and M. Riesz
theorem for measures living on boundaries of general compact sets. The first problem
arising in this connection is that if @K is not a rectifiable set, then it is not clear what
is the absolute continuity property (with respect to what measure?) that needs to be
used. In [13–15] E. Bishop has provided a fruitful investigation of the structure of
measures orthogonal to rational functions on Carathéodory compacts sets. He used
many tools in conformal mappings, in the theory of Hardy spaces, in measure theory.
One key point he introduced is the concept of an analytic differential g.z/ dz that
represents some complex measure �. Let us briefly recall this concept. An analytic
differential in a domain � � C is a differential form g.z/ dz, where g 2 H.�/.
One says that the analytic differential g.z/ dz represents the measure � on @� if the
sequence of measures ¹g.z/ dzj�j º converges in the weak-star topology of the space
of measures on x� to �, where ¹�j º is some sequence of rectifiable contours such
that D.�j / � D.�jC1/ � � and D.�j / " � as j !1. Observe, that the analytic
differential g.z/ dz in � is defined even in the case when @� is not a rectifiable
set. This concept is not used nowadays and it has been only occasionally used in the
mathematical literature.

To present the Bishop’s results we need to recall some definitions and fix some
notation. We will use notation from Section 3.2 concerning harmonic measure. Let
nowG be a simply connected domain in C and let f be some conformal map from D
onto G. Assume for a moment, that @G is locally connected. Then, by Theorem 2.5,
f has a continuous extension to xD onto xG. Moreover,

!.w;E;G/ D !.f �1.w/; f �1.E/;D/; (3.16)

for every point w 2 G and every Borel set E � @G. The equality (3.16) is called
the invariance principle of the harmonic measure under conformal mapping. It can
be readily proved by comparing both harmonic functions by its values on @G. The
right-hand side of (3.16) can be readily calculated since

!.a; F;D/ D

Z
F

1 � jaj2

jeit � aj2
dt

2�
; F � T ; a 2 D;

and, moreover, this quantity may be represented in geometric terms. In the case that
@G is not locally connected we have the following result.

Theorem 3.46. Let G � C be a simply connected domain, and let f be a conformal
map from D ontoG. Then, !.z; @aG;G/D 1 for every z 2 G. Moreover, if E � @aG
is a Borel set, then (3.16) holds. In particular, if f .0/ D z0 2 G, then

!.z0; E;G/ D !.0; f
�1.E/;D/ D mT .f

�1.E//: (3.17)

For a proof of this theorem see [104, Section 6.2] and [59, page 206].
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In the case of Carathéodory open sets the following useful property of a harmonic
measure is satisfied.

Proposition 3.47. Let U be a Carathéodory open set, and let W1 and W2 be two
different components of U . Then, the measures !.a; �; U / and !.b; �; U / are mutually
singular for all points a 2 W1 and b 2 W2.

Proof. We know that it is enough to prove the desired assertion for two fixed points
a and b belonging to the different components of U . Take a 2 W1. We have that W1
is a Carathéodory domain, the measure !.a; �; U / is concentrated in @aW1, andW2 is
a component of C nW1. So, we can apply Proposition 1.15 to obtain the result.

Notice that the result stated in Proposition 3.47 is clearly not true in the case,
where the open set U is not assumed to be a Carathéodory open set. To better under-
stand this curious behavior, the reader can remind the open set U D D [ Q1 [
Q2 defined just after Definition 3.34. Another, slightly different, proof of Proposi-
tion 3.47 was given in [15, Lemma 10].

Let now G be a Carathéodory domain, let f be a conformal map from D onto
G such that f .0/ D z0 2 G, and let g D f �1 be the respective inverse mapping. In
what follows we will (often implicitly) use all results about boundary behavior of f
and g obtained in Chapter 2 (in particular, Theorem 2.24 and Corollary 2.25).

Take a function h 2L1.T / and consider the measure hd� on T . Define the meas-
ure f .hd�/ on @G by the formula

f .hd�/.E/ WD

Z
g.E\@aG/

h.�/ d� D

Z
.1E ı f /.�/h.�/ d�

for every Borel set E � @G (where 1E stands of the characteristic function of E), or,
equivalently,Z

 df .hd�/ D

Z
F.f /

 .f .�//h.�/ d� D

Z
T
 .f .�//h.�/ d� (3.18)

for every function  2 C. xG/. Note that (3.17) implies thatZ
@G

 .z/ d!.z0; z; G/ D

Z
T
. ı f /.�/ dmT .�/ D

1

2�

Z 2�

0

. ı f /.ei#/ d#

in our situation.
We define the complex harmonic measure relative to G and z0 as !c.z0; �; G/ D

f .d�/. Then,
!c.z0; �; G/ D 2�ig !.z0; �; G/: (3.19)

Moreover, if h 2 L1.T / then

f .hd�/ D .h ı f �1/ !c.z0; �; G/ D .h0 ı f
�1/ !.z0; �; G/; (3.20)
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where
h0.z/ WD 2�izh.z/:

In view of (3.19), the properties that some measure � on @G is absolutely continuous
with respect to !c.z0; �; G/ and !.z0; �; G/ are equivalent. For simplicity in what
follows we will denote the complex measure !c.z0; �; G/ just by ! assuming that the
point z0 is clear from the context and fixed.

The following results are essentially (but only implicitly) stated in the [13–15]. A
proof of Theorem 3.48 below based on studies of analytic differentials representing
measures can be extracted from the aforementioned papers of Bishop. We consider
that it is interesting and in certain sense important to present a direct proof of this
theorem which is free from the concept of analytic differentials. It was done in [26],
but here we made some modifications. In [15] it was not mentioned that �G D �j@G
(in the second part of Theorem 3.48). This fact was proved in [26]. For an open set U
we denote by C.U / the collection of all components of U .

Theorem‘ 3.48. LetG be a Carathéodory domain, whileX be a Carathéodory com-
pact set in C.

(1) Let � be a measure on @G such that � ? R. xG/. Then, there exists a function
h 2 H 1 such that

� D .h ı g/!: (3.21)

(2) Let Xı ¤ ;, and let � be a measure on @X such that � ? R.X/. Then,

� D
X

G2C.Xı/

�G ; (3.22)

where
�G D �j@G ; �G ? R. xG/;

and the series in (3.22) converges in the space of measures on @X .

(3) Let � be a measure on @X such that � ? R.X/. Then, � D 0 on X nXı and
� ? R.Xı/.

We recall that the Cauchy transform of a measure � is the function

y�.z/ D
1

2�i

Z
d�.w/

w � z

which is well defined forA-a.a. z 2C. It is well known, that y� is holomorphic outside
of Supp.�/ and x@y� D i

2
� in the sense of distributions.

We also recall that for a given class F of continuous functions and for a given
measure � the expression � ? F means that � is orthogonal to F , i.e.,

R
f d� D 0

for each f 2 F .
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Sketched proof of Theorem 3.48. Let us denote by Gj , where j 2 J and J � N0 is
some finite or countable set of indexes, each element of the set C.Xı/. We know
that every Gj , j 2 J , is a Carathéodory domain. In the case of the part (1), one has
J D ¹0º and G0 D G.

For each j 2 J let fj be some conformal mapping from D onto Gj , such that
f 0j .0/ > 0, let  j D f �1j be the inverse mapping and let hj WD .y� ı fj / f 0j .

The proof will consist of several steps.

Step 1. hj 2 H 1 for every j 2 J .

Proof. Take and fix j 2 J . In view of Proposition 1.18 there exists a connected Cara-
théodory compact set Y such thatX � Y andXı D Y ı. Choose some sequence .�m/
of rectifiable contours such that Y � D.�m/ � D.�m�1/ and D.�m/ converges to
Y as m!1. Notice that for any point zj 2 Gj the kernel of the sequence .D.�m//
with respect to zj is exactly Gj .

Let z0 D fj .0/. Let gm be the conformal mapping from D.�m/ onto D such
that gm.z0/ D 0, g0m.z0/ > 0. By Carathéodory kernel theorem the sequence .gm/
converges to  j D f �1j locally uniformly in Gj . Take a point w 2 D and set zm D
g�1m .w/. Then, the function8<: a.z/ D

1
gm.z/�gm.zm/

�
1

g0m.zm/.z�zm/
for z ¤ zm;

a.zm/ D �
g00m.zm/

2g0m.zm/
2

can be uniformly on X approximated by rational functions with poles lying outside
X . Then, since � ? R.X/, we have

1

2�i

Z
d�.z/

gm.z/ � gm.zm/
D
y�.zm/

g0m.zm/
:

We define the measures �m supported on D by the formula �m.E/D �.g�1m .E \D//
for each Borel subsets E of C. Taking into account the previous formula and the fact
that gm.zm/ D w, we have

1

2�i

Z
d�m.�/

� � w
D y�.g�1m .w//.g�1m /0.w/: (3.23)

Moreover, �m is orthogonal to polynomials and k�mk 6 k�k.
Take now a weak-star limit point � of the sequence .�m/. Then, Supp.�/ � T

and � is orthogonal to polynomials. Thus, one can find a function tj 2 H 1 with the
property � D tjd�jT . Passing to the limit in (3.23) we obtain

hj .w/ D y�.fj .w//f
0
j .w/ D y�.w/ D

1

2�i

Z
T

tj .�/ d�

� � w
D tj .w/

for all w 2 D, so that hj 2 H 1.
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For each j 2 J we define the measures !j WD fj .d�jT / and�j WD fj .hjd�jT /D
.hj ı  j / !j .

Step 2. One has

(i) y�j .z/ D y�.z/ for all z 2 Gj ;

(ii) y�j .z/ D 0 for all z … xGj , (that means that �j ? R. xGj /).

Proof. Take z … @ xGj . Then,

y�j .z/ D
1

2�i

Z
@Gj

hj . j .�// d!j .�/

� � z
D

1

2�i

Z
T

hj .�/ d�

fj .�/ � z
D 0;

because the function w 7! hj .w/=.fj .w/ � z/ belongs to H1.
If z 2 Gj let us take wj D f �1j .z/ 2 D. Then, the function8̂<̂

:
q.w/ D

w�wj
fj .w/�fj .wj /

; for w ¤ wj ;

q.wj / D
1

f 0
j
.wj /

belongs to H1. Therefore,

1

2�i

Z
T

hj .�/ d�

fj .�/ � fj .wj /
D

1

2�i

Z
T

hj .�/ q.�/ d�

� � wj
D hj .wj / q.wj /:

It gives, that for z 2 Gj one has

y�j .z/ D
hj .wj /

f 0j .wj /
D y�.fj .wj // D y�.z/;

which ends the proof.

We are ready now to prove the first assertion of the theorem. Recall, that G D G0
and X D xG in this case. It follows from Step 2, that y�.z/ D y�0.z/ for all z … G,
consequently � � �0 ? R.@G/. Since @G is a Carathéodory compact, in view of
Theorem 3.10 we have R.@G/ D C.@G/ and hence � D �0. For each finite subset
I � J put WI WD

S
j2I Gj . The following assertion is the direct consequence of

[15, Lemma 7].

Step 3. There exists a sequence .rk/ of functions from R.X/ such that krkkX 6 1,
rk � 1 locally in WI and rk � 0 locally in Xı nWI .

Let denote by �I ? R.X/ a weak-star limit in the space of measures on X of the
sequence of measures .rk�/.

Step 4. One has

(i) y�I .z/ D y�.z/ for all z 2 WI ;

(ii) y�I .z/ D 0 for all z 2 Xı nWI .
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Proof. Denote also by .rk�/ the partial sequence that converges in the weak-star
topology to �I . If z … @X , then

y�I .z/D lim
k!1

�
1

2�i

Z
.rk.�/ � rk.z// d�.�/

� � z
C
rk.z/

2�i

Z
d�.�/

� � z

�
Dy�.z/ lim

k!1
rk.z/;

gives the desired assertion.

It follows from Steps 2 and 4, that

y�I .z/ D
X
j2I

y�j .z/; z … @X:

Since R.@X/ D C.@X/, we conclude that

�I D
X
j2I

�j : (3.24)

Taking into account (3.24), Proposition 3.47 and the fact that �j � !j we con-
clude, that �j ? �k for j; k 2 J , j ¤ k. Hence, we haveX

j2I

k�j k D
X
j2I

�j

 D k�Ik 6 k�k;
which means that

P
j2J k�j k <1. Let � D

P
j2J �j . It is clear, that � ? R.X/.

For each j 2 J we have y�.z/D y�j .z/ for all z 2Gj and applying the result of Step 2
we conclude that y�.z/ D y�.z/ on X . Then, � D �.

Take now k 2 J . Since �j ? �k for j 2 J n ¹kº, then for every Borel setE � @X
we have

�j@Gk .E/ D �.E \ @Gk/ D
X
j2J

�j .E \ @Gk/ D �k.E \ @Gk/ D �k.E/:

The remaining part (item (3)) follows from (3.22) if Xı ¤ ;, and from The-
orem 3.10 otherwise.

Thus, the proof is finished.

Moreover, it is possible to find out in [15] certain additional facts concerning the
objects that were introduced in the proof of Theorem 3.48. We present only two of
them. In fact, one has X

j2J

Z
fj .�T/

jy�.�/j d� 6 Ck�k;

for each � 2 .0; 1/, and X
j2J

khj k1 6 Ck�k;

where C > 0 is some absolute constant.
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Remark 3.49. The part (2) of Theorem 3.48 remind us the Decomposition theorem
for orthogonal measures, see [56, Theorem 7.11, Chapter II], see also [60]. We have
not made the connection between both results, probably it can give another proof of
Bishop result. Also it is curious to observe that Bishop’s papers were not mentioned
in Gamelin’s book.

We have seen in Bishop’s Theorem 3.48 that ifG is a Carathéodory domain and �
is a measure on @G such that �?R. xG/, then �� !.a; �;G/ for every point a 2G. It
turns out, that some converse result is also true. More precisely we have the following
result, which must be compared with [38, Theorem 1].

Proposition‘ 3.50. Let � be a non-empty bounded domain in C, and let a 2 �.

(a) If � is a Carathéodory domain, and the set C n x� is not connected, then
there exist � 2 P.x�/? such that � is not absolutely continuous with respect
to !.a; �; �/.

(b) Assume that every measure which is orthogonal to P.x�/ is absolutely con-
tinuous with respect to !.a; �; �/. Then, � is a Carathéodory domain and
the set C n x� is connected.

Proof. (a) Assume that C n x� has a bounded component �1. Then, �1 is a Carathé-
odory domain and its complement is connected. This fact together with the part (1)
of Theorem 3.48 yields that every measure of the form .h ı �/ !, where h 2 H 1, �
is some conformal map from �1 onto D and ! is the complex harmonic measure on
@�1 with respect some point b 2�1, is supported in @�1 � @�, it is orthogonal to P

and it is not absolutely continuous with respect to !.a; �;�/, since !.a; @�1;�/D 0.
(b) Let�0DC n x�1, i.e.,�0 is the interior of the complement of the unbounded

component of the set C n x�. If � is not a Carathéodory domain then there exists
z0 2 �0 \ @�. Consider now the measure

�0 WD !.z0; �; �0/ � ız0 :

Then, for every P 2 P, one hasZ
P.�/ d�0.�/ D

Z
@�0

P.�/ d!.z0; �;�0/ � P.z0/ D 0;

because P is a harmonic function on x�0. Then, � ? P.x�/ and it is not absolutely
continuous with respect to !.z0; �; �/. When we know that � is a Carathéodory
domain, we apply the result of part (a) in order to complete the proof.

Remark 3.51. The class of Carathéodory domains � for which x� does not separate
the plane is (in view of Proposition 3.50) the largest class of domains for which the
well-known F. and M. Riesz theorem may be extended from the unit disk preserving
its formulation.



Uniform and pointwise approximation on Carathéodory sets 70

At the end of this section we present one refinement of Rudin’s converse of the
maximum modulus principle, where the concept of a Carathéodory set and The-
orem 3.48 plays a crucial role.

Let us briefly recall the story of the aforementioned result. Let � be a bounded
domain in C, and let f 2 C.x�/\H.�/. The classical maximum modulus principle
states that for any z 2 � the inequality jf .z/j 6 kf k@� is satisfied. Moreover, if
this inequality turns into equality at least at one point z 2 �, then the function f is
constant. The question on whether it is possible to invert this principle arises quite
naturally. In other words this is the question on whether it follows from the condition
jf .z/j 6 kf k@� (or from its certain weaker versions; see below) that the function
f 2 C.x�/ is holomorphic in �. One of the best known results of this kind is the
following theorem due to W. Rudin (see [115, Theorem 12.13]). As before, j stands
for the function j.z/ D z.

Theorem 3.52. Let F be a subspace of the space C.xD/. Assume that F satisfies the
following three conditions: .i/ 1 2 F ; .ii/ for every function f 2 F it holds jf 2 F ;
and .iii/ the inequality

jf .z/j 6 kf kT (3.25)

is satisfied for every f 2 F and z 2 D. Then, each function of F is holomorphic in
D.

Let xF be the closure of F in C.xD/. Since the conditions (i) and (ii) of The-
orem 3.52 imply that P � F , then A.xD/ D P.xD/ � xF � A.xD/. So that, if a given
closed subspace X � C.xD/ satisfies all conditions of Theorem 3.52, then X D

A.xD/ D P.xD/.
Rudin’s theorem was a starting point for a number of further studies in the line

of inversion of the maximum modulus principle. These studies were mainly related
with consideration of certain weaker versions of the inequality (3.25) instead of the
original one. Let us mention in this occasion the work by J. Anderson, J. Cima,
N. Levenberg, and T. Ransford [4]. In this paper the inequality jf .z/j 6 Czkf kT ,
where Cz is some positive number (which may depend on the point z 2 D), is con-
sidered in place of the inequality (3.25), and meromorphic functions in D are included
into consideration. The result in question is formulated as follows.

Theorem 3.53 (Anderson, Cima, Levenberg, Ransford). Let U be an open subset of
D and let g 2 C.U [T /. Assume that for any point z 2 U there exists a constant Cz
such that the inequality

jf1.z/C g.z/f2.z/j 6 Czkf1 C gf2kT

is satisfied for all functions f1; f2 2 A.xD/. Then, there exist two functions u;v 2H1

such that g D u=v in U and for a.a. points � 2 T the equality of angular boundary
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values g.�/D u.�/=v.�/ holds. In particular, the function g is holomorphic in U and
extends meromorphically to D.

It is also interesting to extend Rudin’s theorem to domains which are different
from the unit disk. However, this question is unstudied as yet. In [39] A. Dovgoshei
considered it for the first time for Carathéodory domains G which do not separate the
plane. He proved the following statement.

Theorem 3.54 (Dovgoshei). LetG be a Carathéodory domain with the boundary � ,
and let A be a closed subalgebra of the algebra C. xG/ such that 1 2 A and kf k xG D
kf k� for any function f 2 A. The following two conditions are equivalent:

(a) if there exists a function g 2A such that g is injective on xG and holomorphic
in G, then A D P. xG/;

(b) the set xG does not separate the plane.

Notice that in this theorem one considers subspaces of the space C. xG/ possessing
certain additional (with respect to Rudin’s theorem) conditions. Thus, as distinct from
Rudin’s theorem, we are dealing in that case with a closed subalgebra A � C. xG/,
but not with a subspace F � C. xG/. Moreover, in Theorem 3.54 the condition of
closedness of A with respect to multiplication by j is replaced with the condition
that A contains some univalent function. In fact, it was proved in [39] that for a
Carathéodory domain G for which xG does not separate the plane, the condition that
a closed subalgebra A � C. xG/ contains some univalent function, yields that j 2 A.
This result may be obtained as the consequence of Theorem 1.7 (more precisely, as
the consequence of the weaker version of this theorem obtained in [39]). Let us also
notice that the result of Theorem 3.54 in the case when G is a Jordan domain was
previously obtained by Rudin in [113]. It is worth to observe that the assumptions
which are imposed to A in Theorem 3.54 can be weakened and formulated as in
Rudin’s theorem. Indeed, the following result holds, see [51, Theorem 1].

Theorem‘ 3.55. Let G be a Carathéodory domain.

(a) Let G be such that xG does not separate the plane. If a subspace F of the
space C. xG/ satisfies the following three conditions: .i/ 1 2 F ; .ii/ for every
function f 2 F it holds jf 2 F ; and .iii/ the inequality jf .z/j 6 kf k@G is
satisfied for all f 2 F and z 2 G; then each function in F is holomorphic
in G.

(b) A closed subspace X � C.x�/ satisfying the conditions .i/–.iii/ from the first
part of the theorem (where F is replaced by X) coincides with P. xG/ if and
only if xG does not separate the plane.

The proof of the direct statement in Theorem 3.55 is essentially based on the
usage of Wermer’s maximality theorem for Carathéodory domains that do not separate
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the plane. As it was shown previously in Theorem 3.42, the condition that xG does not
separate the plane cannot be dropped whenever we want to preserve the maximality
theorem statement.

Since the notion of a Carathéodory domain has appeared in the same topics in
complex analysis and theory of uniform algebras with theorems by Rudin, Wermer
and Anderson–Cima–Levenberg–Ransford, it is quite natural to consider Carathéo-
dory domains in the respective context. In fact, we have the following result, see
[51, Theorem 2].

Theorem‘ 3.56. Let G be a Carathéodory domain with the boundary � , and let U
be an open subset of G. Let g 2 C.U [ � /. Assume that for any z 2 U there exists a
constant Cz such that the inequality

jf1.z/C g.z/f2.z/j 6 Czkf1 C gf2k� (3.26)

is satisfied for any function f1; f2 2 A. xG/. Then, there exist two functions u; v 2
H1.G/ such that the equality

g.z/ D
u.z/

v.z/
(3.27)

holds everywhere in U and a.e. on � in the sense of conformal mappings. The latter
means that for a.a. points � 2 T the following equality of angular boundary values
holds g.f .�//D u.f .�//=v.f .�//, where f is some conformal map from the disk D
onto G. In particular, the function g is holomorphic in U and extends meromorphic-
ally to G.

In the case, when M � G is some finite set and U D G nM , Theorem 3.56
gives the description of meromorphic functions in G with poles in M . In particular,
if the set M is empty, then the respective description of holomorphic functions in G
originates from this theorem.

Observe that in the case whenG is a Jordan domain with rectifiable boundary, the
equality (3.27) may be realized directly as the equality of angular boundary values
a.e. on @G.

Corollary 3.57. LetG be a Carathéodory domain for which xG does not separate the
plane. Assume that a function g 2 C. xG/ is such that for any functions f1; f2 2 A. xG/
and for any point z 2 G the inequality

jf1.z/C g.z/f2.z/j 6 kf1 C gf2k� (3.28)

is satisfied. Then, the function g is holomorphic in G.

Notice, that the assertion of Rudin’s theorem may be derived from this corollary,
see [51, Section 3] for the details.
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3.6 Approximation by polyanalytic functions

The topic on approximation of functions by polyanalytic polynomials and polyana-
lytic rational functions is the subject of active studying in contemporary complex
analysis and approximation theory. The concept of a Carathéodory set appears in this
topic very naturally. In this section let X be a compact set in the complex plane, and
let n > 1 be an integer. We define

Pn D PCNz PC � � � C Nzn�1 P;

Rn D RCNzRC � � � C Nzn�1R :

The spaces Pn and Rn are modules of dimension n over P and R, respectively,
generated by the powers of the function Nz. For a given integer d > 1 we will also
consider modules Pn;d and Rn;d generated by powers of Nzd instead of powers of Nz.
For instance,

P2;d D PCNzd P; R2;d D RCNzd R; : : : :

Let us recall, that a function f is said to be polyanalytic of order n (or, for the
sake of brevity, n-analytic) in an open set U � C, if it is of the form

f .z/ D f0.z/C Nzf1.z/C � � � C Nz
n�1fn�1.z/;

where f0; : : : ; fn�1 2 H.U /. The functions f0; : : : ; fn�1 are usually called holo-
morphic components of f . As usual, n-analytic functions whose holomorphic com-
ponents are polynomials and rational functions will be called polyanalytic polynomi-
als and polyanalytic rational functions, respectively. In fact, a polyanalytic rational
function is not, in the general case, a quotient of two polyanalytic polynomials. It
can be readily verified that the set of all n-analytic function on an open set U coin-
cides with the set of all functions f 2 C.U / each of which is satisfies in U (in the
sense of distributions) the (elliptic) partial differential equation x@nf D 0. One ought
to notice right now, that elements of modules generated by Nzd for every d > 1 no
longer belong to the kernel of some elliptic differential operator with constant coef-
ficients, but (under suitable additional assumptions) they belong to the kernel of the
elliptic operator f 7! x@. Nz1�dx@f /.

Furthermore, for a closed set E � C we will denote by Rn;d;E the set of all
functions g 2Rn;d such that all poles of all holomorphic components of g lies outside
E. Finally, we put Rn;E D Rn;1;E and define the space

An.X I Nz
d / D C.X/ \ .H.Xı/C NzdH.Xı/C � � � C Nzd.n�1/H.Xı//;

and let An.X/D An.X I Nz/, so that An.X/ is the set of all functions which is continu-
ous on X and n-analytic on its interior.
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LetK be an arbitrary compact set in C containingX . It can be shown, that the uni-
form closures on X of the spaces Pn;d jX and Rn;d;K jX are contained in An.X I Nzd /.

Thus, the problem on to describe such compact setsX for which the set Pn;d jX is
dense in An.X I Nzd / is of interest. We refer the reader to the recent survey paper [88],
where the history of this problem and its state-of-the-art are established in details.
Here, we only state two results, which highlight the role of Carathéodory sets in this
topic. Before doing this let us present the following result which may be directly
derived from the main results of [25] using the Runge’s pole–shifting method.

Theorem 3.58. Assume X to be such that the set C n X is connected. Then, the
following hold.

(1) For any integer n > 1 the space Pn jX is dense in An.X/.

(2) For any integer d > 2 the space P2;d jXD.PCNzd P/jX is dense inA2.X I Nzd /.

For formulation of next results we need the concept of a d -Nevanlinna domain.
This is the special analytic characteristic of bounded simply connected domains in the
complex plane which was originally introduced in the case d D 1 in [49] and [28],
and later in [8] for d > 1. It will be clear from what follows, that this concept turned
out to be crucial for the aforementioned problem.

Definition 3.59. Let d 2 N. A bounded simply connected domain G � C is called
a d -Nevanlinna domain if there exists two functions u; v 2 H1.G/ such that the
equality

Nzd D
u.z/

v.z/

holds almost everywhere on @G in the sense of conformal mappings. The latter

means, that the equality of boundary values f .�/
d
D .u ı f /.�/=.v ı f /.�/ holds

for almost all points � 2 T , where f is some conformal mapping from D onto G.

The class of 1-Nevanlinna domains is just the class of Nevanlinna domains. Notice
that properties of Nevanlinna domain and d -Nevanlinna domains has been studied in
detail during the two last decades (see, for instance, [8–12, 50, 86, 87]).

Let us mentioned several simple examples. In fact, D is a d -Nevanlinna domain
for all d > 1. At the same time, any domain bounded by an ellipse which is not a
circle is not a d -Nevanlinna for any d > 1. Take any fixed d > 1. For a real a > 1 let
ga be the single valued branch of the function d

p
a � z defined on C n Œa;C1/ and

such that ga.0/ > 0. Then, the domain ga.D/ is a d -Nevanlinna, but not a Nevanlinna
domain. At the first glance it seems that the concept of a Nevanlinna domain gives
a slight refinement of the concept of a Schwarz function of an analytic arc (see, for
instance, [35]), but it turns out that there exists Nevanlinna domains with not analytic,
not smooth, not rectifiable boundaries and, moreover, Nevanlinna domains G such
that the Hausdorff dimension of the set @aG could take any value in Œ1; 2�.
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In the following statement we combine the results of [28, Theorem 2.2], [16,
Theorem 4], and [26, Theorem 4]. Let C0X be the set of all connected components of
the set Int. yX/ that are not contained in X , that is

C0X D ¹� 2 C.Int. yX// W � 6� Xº:

Theorem‘ 3.60. The following statements hold.

(1) Let X be a compact set in C such that the set C0X is not empty. Then, the
subspace Pn jX is dense in An.X/ if and only if for every � 2 C0X the space
Rn;x� jX\x� is dense in An.X \ x�/.

(2) Let G be a bounded simply connected domain in C. If G is a Nevanlinna
domain, then Rn; xG j@G is not dense in C.@G/ for any integer n > 0.

(3) Let G be a Carathéodory domain in C. The subspace Rn; xG j@G is dense in
C.@G/ if and only if G is not a Nevanlinna domain.

The same results hold in problem of approximating functions by elements of the
space P2;d D PC NzdP. In fact, we have (see [8, Theorems 1, 2, and Propositions 2,
3]).

Theorem‘ 3.61. The following statements hold.

(1) Let X be a compact set in C such that the set C0X is not empty. Then, the
subspace P2;d jX is dense in A2.X I Nzd / if and only if for every � 2 C0X the
space R2;d;x� jX\x� is dense in A2.X \ x�I Nzd /.

(2) Let G be a bounded simply connected domain in C. If G is a d -Nevanlinna
domain, then the space R2;d; xG j@G is not dense in C.@G/.

(3) Let G be a Carathéodory domain in C. The subspace R2;d; xG j@G is dense in
C.@G/ if and only if G is not a d -Nevanlinna domain.

Notice that this result is established for modules of dimension 2 only. The general
case remains open.

Remarks and hints concerning the proofs of Theorems 3.60 and 3.61. The first state-
ments in Theorems 3.60 and 3.61 are proved using the following scheme consisting
of two steps (see [16] and [8], respectively): at the first step it was proved that any
measure on X which is orthogonal to Pn (respectively, to P2;d ) is also orthogonal to
Rn;X (respectively, to R2;d;X ). The respective construction was essentially elaborated
in [28] in the proof of Theorem 2.2 of this paper. At the second step, using the spe-
cial refinement of the Vitushkin’s localization technique, it was proved that the space
Rn;X jX is dense in An.X/ (respectively, the space R2;d;X jX is dense in A2.X I Nzd /).
The condition that Rn;x� jX\x� is dense in An.X \ x�/ (and the respective condition
in the second case) allow us to construct the desired approximants.
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In order to prove the second statements in both Theorems 3.60 and 3.61 it is suffi-
cient to show, that if G is a d -Nevanlinna domain, then the function . Nzd � Nad /=.z �
a/, a 2G, cannot be approximated uniformly on @G by rational functions of the class
R2;d; xG . The detailed exposition of this proof is in the proof of Theorem 4 in [26] and
of the proof of Proposition 2 in [8].

Let us present the schematic exposition of the proof of the third statements of the-
orems under consideration, because in the respective constructions show the reasons
why the Carathéodory domain and Nevanlinna domain concepts are important and
crucial for the aforementioned topic.

Let f be a conformal mapping from D onto G. We recall, that Corollary 2.25
states that the functions f and f �1 can be extended to mutually inverse Borel meas-
urable functions on D [ F.f / and G [ @aG, respectively. Let ! D f .d�/ the com-
plex harmonic measure with respect to f .0/, see (3.19). If the space R2;d; xG is not
dense in C.@G/, then there exists a non-zero measure � on @G such that � ? R1; xG
and Nzd� ? R1; xG . In view of (3.21) there exists two functions h1; h2 2 H 1 such that
� D .h1 ı f

�1/ ! and Nzd� D .h2 ı f
�1/ !. Therefore, for almost all � 2 T one

has f .�/dh1.�/ D h2.�/. Going further, replacing the quotient h2=h1 by f2=f1 with
f1; f2 2H

1 and defining the functions u and v inG as follows: u.z/D f2.f �1.z//,
v.z/ D f1.f

�1.z// one obtains that Nzd D u.z/=v.z/ almost everywhere on @G in
the sense of conformal mappings, as it is demanded.

Finally, let X be a Carathéodory compact set. In such a case the set C0X is exactly
the set of all bounded connected components of the set C n X . Thus, the following
statement is a direct corollary of Theorems 3.60 and 3.61:

Corollary‘ 3.62. Let X � C be a Carathéodoty compact set.

(1) The space Pn jX is dense in An.X/ if and only if each bounded connected
component of the set C nX is not a Nevanlinna domain.

(2) The space P2;d jX is dense in A2.X I Nzd / if and only if each bounded connec-
ted component of the set C nX is not a d -Nevanlinna domain.



Chapter 4

Approximation in Lp-norms on Carathéodory sets

In this chapter we consider the topic on approximation of functions on Carathéodory
sets by rational functions or polynomials in Lp-norms for 0 < p < C1.

For a bounded measurable set E � C let us denote by Lp.E/ the space of all
measurable functions f WE ! C such that

kf kp;E D kf kLp.E/ D

�Z
E

jf .z/jp dA.z/

� 1
p

< C1;

while by Ap.E/ we denote the space consisting of those functions in Lp.E/ that are
holomorphic in the interior ofE. In the case thatE is a domain, the spacesAp.E/ are
usually called Bergman spaces. For p > 1 they are Banach spaces, but for p 2 .0; 1/
the quantity kf kp;E is only a quasi-norm. The history and the state-of-the-art of the
theory of Bergman spaces may be found in the books [41] and [66].

4.1 Approximation in Bergman spaces

Our first goal in this section is to prove and discuss the following result, which is due
to O. J. Farrell [45, 46] and A. I. Markushevich [84], see also [85, Chapter v].

Theorem 4.1 (Farrell). Let G be a Carathéodory domain and let 0 < p < C1. For
every function f 2 Ap.G/ there exist a sequence .pn/ of polynomials such that

lim
n!1

Z
G

jf .z/ � pn.z/j
p dA.z/ D 0:

In order to find the original proof of this theorem given by Farrell, it is con-
venient to pass thought both his papers [45] and [46]. The case that p D 2 was
considered independently by Markushevich, however, there are some evidences that
he has proved the corresponding result in the general case too. Markushevich’s proof
given in his later book [85, Chapter v] uses some tools which are very useful in the
case of Hilbert spaces.

Before proving Theorem 4.1 let us make some historical remarks concerning the
matter. Let G be a bounded domain in the complex plane. As far as we know the
first results on approximation of functions in the class Ap.G/, for a given domain
G � C and a number p 2 .0;1/, by polynomials were obtained in the beginning
of the 1920s by T. Carleman [23]. He considered the case of Jordan domain starlike
with respect to the origin. Since his result is completely covered by Theorem 4.1, we
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are not going to comment it or on the technique used in Carleman’s proof. It is worth
mentioning here, that in the case when G D D, p > 1, and f 2 Ap.D/, then one can
take the sequence of Taylor polynomials of f (with the center at the origin) as the
desired approximating sequence in Theorem 4.1. Notice also, that in the general case,
if f 2 Ap.D/ with p 2 .0; 1�, the sequence of the Taylor polynomials of f does not
converge to f . The details of these constructions may be found in [41, page 31]. Let
us notice however, that the proof in the case 0 < p <1 and G D D does show that
f� converges to f as �! 1, where f�.z/ D f .�z/.

Proof of Theorem 4.1. Let the sequence .Jn/ of Jordan curves such that D.Jn/ con-
verges to G (in the sense of kernel convergence), the sequence .'n/ of conformal
maps from D.Jn/ onto D, and the conformal mapping ' from D onto G be as in the
proof of Theorem 3.25. Let gn, n 2N, be the function gn D ' ı 'n defined onD.Jn/.
Then, gn.z/! z and g0n.z/! 1 locally uniformly in G. Consider the function

fn D .f ı gn/ .g
0
n/
2=p

defined in D.Jn/, where the branch of g0n
2=p is taken in such a way that is positive at

the point z0 D '.0/. Let
Cp D max¹2p�1; 1º;

so that jaC bjp 6 Cp.jajp C jbjp/ for every point a; b 2 C. Fix now " > 0 and take
K � G to be the closure of some Jordan domain such that

Cp

Z
GnK1

jf .z/jp dA.z/ < "=3; (4.1)

where K � K1 � G, and K1 also is the closure of some Jordan domain. Choosing
K1 in such a way that G n gn.K1/ � G nK for all n > n0 with some n0 2 N, one
has Z

G

jf � fnj
p dA 6

Z
K1

jf � fnj
p dAC

Z
GnK1

jf � fnj
p dA

6
Z
K1

jf � fnj
p dAC Cp

Z
GnK1

jf jp dAC Cp

Z
GnK1

jfnj
p dA:

(4.2)

The last integral in (4.2) can be estimated using (4.1) and (2.1) as follows:Z
GnK1

jfnj
p dA D

Z
GnK1

jf .gn.z//j
p
jg0n.z/j

2 dA.z/ D

Z
gn.GnK1/

jf jp dA

6
Z
Gngn.K1/

jf jp dA 6
Z
GnK

jf jp dA 6
"

3Cp
:

(4.3)

For n> n1 with some n1 2N. Since f .z/� f .gn.z//g0n.z/! 0 uniformly on z 2K1
we have Z

K1

jf � fnj
p dA.z/ <

"

3
; (4.4)
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for n > n2 with some n2 2 N. Using (4.4), (4.3), and (4.2) we obtainZ
G

jf .z/ � fn.z/j
p dA.z/ < "; n > n3: (4.5)

For n > n3 D max¹n0; n1; n2º.
Each function fn is holomorphic in D.Jn/ which is an open simply connected

neighborhood of yG. Then, applying again the Runge’s theorem, we conclude that
there exists a polynomial Pn such thatZ

yG

jfn.z/ � Pn.z/j
p dA.z/ < ";

for n > n3. Using this together with (4.5) we obtainZ
G

jf � Pnj
p dA 6 2Cp";

for n > n3, which completes the proof.

Let us observe that Theorem 3.25 can be regarded as the limiting case of The-
orem 4.1 when p D C1.

It would be interesting to compare Theorems 3.25 and 4.1 with each other, as well
as with Runge’s theorem, at least in some simple cases. For instance, let us take pD 1
and put G D D. In this case, the polynomials nzn, n 2 N, converge to zero locally
uniformly in D, but they do not converge on Lp.D/ for any p > 0. On the other hand
the polynomials zn converge to zero locally uniformly in D and also converges in
Lp.D/ for each p > 0. They do not, however, satisfy the estimate of Theorem 3.25.
The polynomials zn=n converge to zero locally uniformly in D and they satisfy the
estimate of Theorem 3.25. Finally, the polynomials pnznk

n
with p > 0 and k 2 N,

converge in Lp.D/ when p 6 k and diverge when p > k.
Since the convergence of some sequence of holomorphic functions defined on a

given open set U in Lp.U /-norm (for some p > 0) implies the locally uniform con-
vergence of this sequence in U , one can additionally conclude in Theorem 4.1 that
the sequence .Pn/ converges locally uniformly in G to f . The possibility of poly-
nomial approximation in such theorem in the case when the set C n xG has bounded
components looks a bit surprising. For example, if we suppose G to be the left-hand-
side domain in Figure 2 (the cornucopia), then the function 1=z can be approximated
in Ap.G/ by a sequence of polynomials but, of course, it cannot be approximated by
polynomials locally uniformly inG. Notice also, that in a given Carathéodory domain
G there may exist a compact set K � xG such that yK is not contained in xG and the
Lp.G/-convergence of some sequence of polynomials does not imply the uniform
convergence of this sequence on yK. It is worth comparing this observation with the
next proposition.
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Proposition‘ 4.2. Let U be an open set in C andK � U be a compact set. Let p > 0
and f 2 Ap.U /. Assume that there exists a sequence .Pn/ of polynomials such that

lim
n!1

Z
U

jf � Pnj
p dA D 0: (4.6)

Then, f has an analytic extension to U [ yK. Denoting again this extension by f one
has

lim
n!1

Z
U[ yK

jf � Pnj
p dA D 0:

Proof. It is enough to consider the case yK nU ¤;. Take such r>0 that dist.K;@U />
2r . We need the following statement asserting that functions in a Bergman space
cannot grow too rapidly near the boundary (see [41, Theorem 1]).

Lemma 4.3. Let p > 0. For each function f 2 Ap.U / and for each compact set
K � U , we have

kf kK 6
kf kp;U

�1=p dist.K; @U /2=p
: (4.7)

In particular, if a sequence of functions .fn/, fn 2 Ap.U /, converges to f in Ap.U /,
then fn� f locally in U .

Consider the compact set

K1 D K [
[
z2K

D.z; r/ � U

and apply (4.7) to K1. Then, one has

kf � PnkK1 D sup
z2K1

jf .z/ � Pn.z/j 6 cr
Z
U

jf � Pnj
p dA; (4.8)

for some constant cr depending on U , K, and p.
Then, (4.8) and (4.6) imply that .Pn/ is a Cauchy sequence on K1. By the max-

imum modulus principle the sequence .Pn/ must converge uniformly to some holo-
morphic function g on Int.cK1/. Since yK � Int.cK1/ then .Pn/ converges uniformly
on yK, so it converges in the space Lp. yK/. By (4.8) it follows that g.z/ D f .z/ on
K, and the usage of the inequalityZ

U[ yK

jf � Pnj
p dA 6

Z
U

jf � Pnj
p dAC

Z
yK

jg � Pnj
p dA

finishes the proof.

We mention three simple examples showing the situation with polynomial ap-
proximation in Lp-norm in the case of non-Carathéodory domains.
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Example 4.4. We mention three simple examples showing the situation with poly-
nomial approximation in Lp-norm in the case of non-Carathéodory domains.

(i) TakeG1DD n .�1;0� and g.z/D 1=z, z 2G1. Then, g 2Ap.G1/ for each
p, 0<p <2, but g cannot be approximated in theLp-norm by polynomials
for any p 2 .0; 2/.

(ii) Let g.z/ D log z, z 2 G1 (where log stands for the principal branch of the
log-function). Then, g cannot be approximated in the Lp-norm by polyno-
mials for any p > 0.

(iii) Take G2 D D n .D.0; 1=2/ [ Œ0; 1// and g.z/ D 1=z, z 2 G2. Then, g
cannot be approximated in the Lp-norm by polynomials for any p > 0.

The verification of all these statements may be done using (4.7).

The construction given in the first of the aforesaid examples may be refined and
generalize by the following way.

Proposition‘ 4.5. Let G be a Carathéodory domain and let E be some end-cut of G
such that Area.E/ D 0, and let GE be the corresponding slitted domain G n E . Then,
the set of polynomials is not dense in Ap.GE/ for any p > 0.

Proof. Take a conformal map g from GE to the unit disk. Then, g 2 Ap.GE/ for
each p > 0. Assume that there exists a sequence of polynomials .Pn/ that converges
in Ap.GE/ to the function g. Therefore, .Pn/ is a Cauchy sequence in Ap.G/. So, it
needs to converge uniformly on compact subsets of G to a function Qg 2H.G/ which
coincides with g on G n E . But this is impossible since in each cut point a 2 E , the
function g cannot be extended continuously to a neighborhood of a.

In view of this proposition one can ask whether the condition that a given domain
G is a Carathéodory domain, is necessary in order to have polynomial approximation
in Ap.G/. The answer to this question is negative, as it may be observed from several
constructions of so-called moon-shaped domains.

Recall, that a domain M � C is called a moon-shaped domain, if it has the form
M DD.J1/ nD.J2/, where J1;2 are two Jordan curves such that J1 \ J2 D ¹�º and
J2 � D.J1/ [ ¹�º. In what follows it would be appropriate to say that the domain
M is determined by the curves J1 D J1.M/ and J2 D J2.M/. It will be also useful
to write D1 D D1.M/ D D.J1/ and D2 D D2.M/ D D.J2/ in the situation under
consideration.

The simplest example of a moon-shaped domain is the domain

Mr WD D nD.r; 1 � r/; (4.9)

for 0 < r < 1, see the left-hand side domain on Figure 9. In this situation J1 D T ,
while J2 D ¹z W jz � r j D 1 � rº.
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Mr

0 r

M�

Figure 9. Two moon-shaped domains: Mr and M�.

In the following two propositions we collect several results about moon-shaped
domains, which are closely related with the topic on Lp-polynomial approximation
being discussed.

Proposition‘ 4.6. LetM be a moon-shaped domain, let p 2 .0;1/ and s D 2=.pC
2/. The set of polynomials is dense in Ap.M/ if and only if there exists b 2 D2.M/

such that both functions '.z/D .z � b/s and  .z/D .z � b/�s can be approximated
by polynomials in Ap.M/.

Sketch of the proof. The necessity of the stated condition is clear. For proving its suf-
ficiency, let us note that the function ' maps conformally the given domain M onto
some domainW D '.M/. Since s < 1 thenW is a Jordan domain. Putw D '.z/, z 2
M , then zD '�1.w/D bCw1Cp=2. Take f 2Ap.M/ and put f1.w/D f .'�1.w//.
Since '.z/p.'0.z//2 D s2 for every z 2M , one hasZ
W

jwf1.w/j
p dA.w/ D

Z
M

j'.z/jpjf .z/jpj'0.z/j2 dA.z/ D s2
Z
M

jf .z/jp dA.z/:

Then,wf1 2Ap.W /. Take any " > 0. Since the set of polynomials is dense inAp.W /
(becauseW is a Jordan domain), there exists a polynomial P.w/D

Pn
kD0 akw

k such
thatZ

W

jwf1.w/ � P.w/j
p dA.w/ D s2

Z
M

ˇ̌̌̌
f � a0 �

nX
kD1

ak'
k�1

ˇ̌̌̌p
dA < ":

Thus, the possibility of approximation of both function ' and  by polynomials in
Ap.M/ implies the possibility of approximation in the desired sense of any function
f 2 Ap.M/.

Note that in the case p D 2 it can be shown that is it sufficient to approximate
just  in order to have the conclusion in Proposition 4.6. This will be used in proving
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part (3) of the next proposition. At the same time the mentioned arguments cannot
be used in the case p ¤ 2. In view of this reason it is not clear how to modify the
construction of the domain M� to obtain a corresponding example that covers the
case p ¤ 2 in part (3) of Proposition 4.7.

Proposition 4.7. The following approximation properties hold.

(1) Let M be a moon-shaped domain, while � be the common point of J1.M/

and J2.M/. If there exist a rectifiable Jordan curve � in M [ ¹�º such that
� 2 � , and a number ˛ > 0 such thatZ

�

dist�˛.z; @M/ jdzj < C1;

then the set of polynomials is not dense in Ap.M/ for every p > 0.

(2) The set of polynomials is not dense in Ap.Mr/ for any p > 0 and for any
r 2 .0; 1/.

(3) There exists a moon-shaped domain M� such that the set of polynomials is
dense in A2.M�/.

Sketch of the proof. Part (1) The proof of this statement can be obtained following
the pattern of the verification of Example 4.4, which is based on usage of (4.7); the
case p D 2 may be found in [91, page 116].

Part (2) Using the notation of the previous part, let us take

� .t/ D
r

2
C

�
1 �

r

2

�
eit ; t 2 Œ0; 2��; r 2 .0; 1/;

It can be verified that this curve satisfies the conditions of the previous statement for
every ˛ < 1

2
.

Part (3) Denote by arg the branch of the argument function defined on C n ¹0º
such that argz 2 .��;�� for z ¤ 0. Let us construct a sequence .˛n/with 0 < ˛n < 1,
a sequence of polynomials .Pn/, and three sequences of sets .Dn/, �n and �n as
follows. Let ˛0 D 1=4 and

D1 D ¹z 2 D W jz � ˛0j > 1 � ˛0; jargzj > �=2º:

According to Runge’s theorem there exists a polynomial P1 such that

kz�1=2 � P1k2;D1 < 1=
p
2:

Next there exists a sufficiently small ˛1 2 .0; 1/ and the domain

�1 D ¹z 2 D W jz � ˛1j > 1 � ˛1; jargzj < �=2º

such that
kz�1=2 � P1k2;�1 < 1=

p
2:
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Finally, let˝1 WD ¹z 2D W jz � ˛1j> 1� ˛1; jargzj> �=4º. Assume, that all desired
objects are already constructed for n D 1; : : : ; N � 1, N > 2. Put DN D DN�1 [
˝N�1. There exists a polynomial PN such that

kz�1=2 � PN k2;DN < 2�N=2;

and a (sufficiently small) number ˛N 2 .0; 1/ such that

kz�1=2 � PN k2;�N < 2�N=2;

for the domain �N D ¹z 2 D W jz � ˛N j > 1 � ˛N ; jargzj < �=2N º. Defining

˝N D
®
z 2 D W jz � ˛N j > 1 � ˛N ; jargzj > 1=2NC1

¯
we finish the construction. Now, we are able to define the domain M� as

S1
nDDn.

Since M� � Dn [�n for every integer n > 0 one has

kz�1=2 � Pnk2;M� < 2
.1�n/=2:

Then,  .z/ D z�1=2 belongs to A2.M�/, so the proof of (3) is completed.

It is also worth mentioning here yet another example given in [71] (see also [91]).
Taking ˛ > 4 and � 2 .0; 1/ let

�˛;� WD
®
z D x C iy 2 C W y2 D .�C x/.1 � x/˛

¯
:

The moon-shaped domainM determined by J1DT and J2D�˛;� is homeomorphic
to the domain M� defined in the proof of the part (3) of Proposition 4.7. But it was
proved in [71] that the set of polynomials is not dense in A2.M/. So, the question
on Lp-approximation by polynomials depends on certain metric properties of the
domain under consideration.

At the end of this section we present yet another two proofs of Theorem 4.1 in
the Hilbert space setting, namely, in the case that p D 2. We do it in order to high-
light certain special properties of Carathéodory domains and their conformal maps on
which these proofs are based. The first proof was given by A. I. Markushevich [83],
and it is based on the following lemma.

Lemma 4.8. Let G be a Carathéodory domain and z0 2 G. Take a sequence .Gn/ of
Jordan domains such that Gn ! G with respect to z0, and let gn be the conformal
map from Gn onto D normalized by the conditions gn.z0/ D 0 and g0n.z0/ > 0 for
every n 2 N. Moreover, let g be the conformal map from G onto D with the same
normalization, so that gn� g locally in G. Then,

lim
n!1

gkng
0
n D g

kg0 in A2.G/; for k 2 N0: (4.10)
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Proof. Taking k > 1, one has

jgkng
0
n � g

kg0j2 6
�
jgkn.g

0
n � g

0/j C j.gkn � g
k/g0j

�2
6 2jgnj2kjg0n � g

0
j
2
C 2jg0j2jgkn � g

k
j
2

6 2jg0n � g
0
j
2
C 2k2jg0j2jgn � gj

2:

We have used here that jgn.z/j < 1 and jg.z/j < 1 for each z 2 G. In fact, these
inequalities also hold for kD0. Since g0n.z/! g0.z/ for each z2G and

R
G
jg0nj

2dADR
G
jg0j2 dA D � we have that

R
G
jg0n � g

0j2 dA! 0. In order to verify this one can
use, for instance, the following fact on convergence which may be found in [115, page
76].

Lemma 4.9. Let � be a positive measure on some set E, let p 2 .0;1/, and let
f 2 Lp.E; �/, fn 2 Lp.E; �/, n > 1, and, finally let fn.x/ ! f .x/ for �-a.a.
x 2 E and kfnkp ! kf kp as n!1. Then, kf � fnkp ! 0 as n!1.

Thus,
R
G
jgn � gj

2 jg0j2 dA! 0, which is a consequence of Lebesgue domin-
ated convergence theorem, since jg0j2 2 L1.G; dA/, and jgn � gj 6 2 and jgn.z/ �
g.z/j ! 0 as n!1 for each z.

Sketched proof of Theorem 4.1 in the case p D 2. Take a function h 2 A2.G/. Using
the conformal map gWG ! D let us “move” the function h to the unit disc. Namely
we consider the function ' in D defined as follows:

'.w/ D .h ı g�1/.w/.g�1/0.w/; jwj < 1:

Since Z
D
j'.w/j2 dA.w/ D

Z
G

jh.z/j2 dA.z/;

then ' 2 A2.D/. Take the Taylor expansion for ' at the origin '.w/ D
P1
kD0 akw

k .
Then, as it was mentioned above, the Taylor polynomials of ' converges in A2.D/ to
'. Hence,Z

D

ˇ̌̌̌
ˇ'.w/ � NX

kD0

akw
k

ˇ̌̌̌
ˇ
2

dA.w/ D

Z
G

ˇ̌̌̌
ˇh.z/ � NX

kD0

akg.z/
kg0.z/

ˇ̌̌̌
ˇ
2

dA.z/! 0:

Fixed N and using Lemma 4.8 each sum
PN
kD0 akg

kg0 can be approximated in the
space A2.G/ by a function

hn D

NX
kD0

akg
k
ng
0
n

for some value of n. Since the function gn is defined on Gn and xG � Gn, one can use
Runge’s theorem to obtain a polynomial Pn which approximates the function hn in
A2.G/.
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The next result is similar to Lemma 4.8. It was proved in [91]. We present here
slightly different proof of this result working in the framework of more direct approach
related with properties of Carathéodory domains.

Lemma 4.10. Let G be a Carathéodory domain, let z0 2 G, and let .Gn/ be some
sequence of Jordan domains such thatGn!G with respect to z0 2G. Let  nWGn!
G be the conformal map normalized by conditions  n.z0/ D z0 and  0n.z0/ > 0,
n 2 N, and let h be some function of class A2.G/. Then, .h ı  n/ 0n converges to h
in A2.G/ as n!1.

Proof. Using the notations of Lemma 4.8 one can note that  n D g�1 ı gn for each
n > 1. Then,  n.z/! z for every z 2 G, so that h. n.z// 0n.z/! h.z/ as n!1
for every z 2 G. Moreover, making the change of variables w D  n.z/ we haveZ

G

jh. n.z// 
0
n.z/j

2 dA.z/ D

Z
 n.G/

jh.w/j2 dA.w/!

Z
G

jh.w/j2 dA.w/

as n!1. At that point we can finish the proof applying Lemma 4.9, as it was done
in the proof of Lemma 4.8.

The second alternative proof of Theorem 4.1 will be presented in Section 4.2,
where we will deal with certain aspects of the subject under consideration related
with the Hilbert space structure of A2.G/.

Approximation on Carathéodory compact sets

The next contribution to the theory of Lp-polynomial approximation on Carathéo-
dory sets was made by S. O. Sinanjan in [123]. He proved the two following theorems,
and the first one is a generalization of Theorem 4.1 for the case that 1 6 p <1.

Theorem 4.11 (Sinanjan). If K � C is a Carathéodory compact set, then the set of
polynomials is dense in Ap.K/ for every 1 6 p <1.

Scheme of the proof. The proof follows more or less directly the pattern of the ori-
ginal proof of Mergelyan’s theorem. Without loss of generality it may be assumed,
that K is a continuum. Let R > 0 be such that K � D.0; R=2/. Take a function
f 2 Ap.K/ and define it also for all points z … K by setting f .z/ D 0. Take and fix
an arbitrary ı > 0. Set

fı.z/ D

Z
C
f .�/Kı.j� � zj/ dA.�/;

where

Kı.r/ D

´
3
�ı2

�
1 � r

ı

�
; if 0 6 r 6 ı

0; if r > ı:
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The function fı possesses the following important properties:

(1) kfıkp 6 3kf kp;

(2) kfı � f kp 6 3!p.f; ı/, where !p.f; ı/ is the Lp-modulus of continuity of
f ;

(3) !p.fı ; r/ 6 3!p.f; r/;
(4) for any function  2 C.C/ with  .z/ D 0 for z 2 C nD.0; 2R=3/ it holds

kx@ ıkp 6 6
!p. ; ı/

ı
I

(5) fı D f in U D ¹z W dist.z;K{/ > ıº, while fı D 0 in U \K{.

In contrast to the original Mergelyan proof in the case under consideration one
needs to consider yet another convolution of the approximable function with the ker-
nel Kı defined above.

f �ı .z/ D

Z
C
fı.�/Kı.j� � zj/ dA.�/:

It follows from the aforesaid properties of the function fı that

kf � f �ı kp 6 kf � fıkp C kfı � f
�
ı kp 6 12!p.f; ı/:

Thus, it is enough to find a polynomial Q such that kf �
ı
�Qkp 6 A1!p.f; ı/ for

some absolute constant A1 > 0.
Take a conformal map from �1.K/

� D �1.K/ [ ¹1º to D. Then, the pre-
images of the circles jwj D 1 � 1=.nC 1/ under this transformation are denoted by
�n, they are analytic curves. Moreover, letDn DD.�n/. Now, the standard Cauchy–
Green formula (see, for instance, [18, page 151]) gives

f �ı .z/ D
1

2�i

Z
�n

f �
ı
.t/

t � z
dt �

1

�

Z
Dn

x@f �
ı
.�/

� � z
dA.�/; z 2 Dn: (4.11)

Next one can choose a sufficiently large integer n in such a way that the following
two conditions are fulfilled:

(a) dist.z; �n/ < ı=2 for each z 2 @K;

(b) the following inequality holdsZ
K

�
1

2�

Z
Dnn yK

ˇ̌̌̌
x@f �
ı
.�/

� � z

ˇ̌̌̌
dA.�/

�p
dA.z/ < !p.f; ı/

p: (4.12)

Now, take Y D ¹z 2 yK W dist.z; @K/ < 2ıº. At that point we need to recall the
main [90, Lemma 2.2] (see also [115, Lemma 20.2]). The set Y can be covered by
finitely many open discs D.aj ; 2ı/; 1 6 j 6 m with centers aj 2 �1.K/. Since
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K is a Carathéodory compact set, then there exists a continuum (actually an arc)
Lj �D.aj ;2ı/\�1.K/ such that diamLj is comparable with ı. Using furthermore
the conformal maps gj , j D 1; : : : ;m, from C1 nLj to D such that gj .1/ D 0 and
taking suitable linear combinations of gj and g2j , one can find, for each point � 2 Y ,
a holomorphic (even rational) function R� defined on the open set

� WD C1

�[
j

Lj � C1n yK;

that R� satisfies the following properties:

jR� .z/j 6
A1

ı
; for z 2 �; (4.13)ˇ̌̌̌

1

� � z
�R� .z/

ˇ̌̌̌
6

A1ı
2

j� � zj3
; for z 2 �; j� � zj > c1ı; (4.14)

where A1 and c1 are positive constants.
In view of (4.11) we define

Qı.z/ D �

Z
Y

x@f �ı .�/R� .z/ dA.�/;

'.z/ D
1

2�i

Z
�n

f �
ı
.t/

t � z
dt CQı.z/;

where Qı is holomorphic in a neighborhood of yK. Notice, that in order to prove the
theorem it is sufficient to show that Qı is close to the function

'ı.z/ D �
1

�

Z
Y

x@f �
ı
.�/

� � z
dA.�/;

namely, that
kQı � 'ıkp 6 A2!p.f; ı/ (4.15)

for some constant A2 > 0. Indeed, since ' is holomorphic in a neighborhood of yK,
Runge’s theorem allow us to pick a polynomial P such that k' � P kp 6 !p.f; ı/.
Therefore,

kf � P kp 6 kf � f �ı kp C kf
�
ı � 'kp C k' � P kp 6 A3!p.f; ı/;

for some positive constant A3 because of (4.11), (4.12), (4.15), and the fact that
f �
ı
.z/ D 0 for z … Y .
Thus, it remains to verify the estimate (4.15). In view of (4.13) and (4.14) we

have

kQı � 'ıkp 6 kF1kp C kF2kp C kF3kp 6 A1.c1 C 1/kF2kp C kF4kp; (4.16)
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where

F1.z/ D

Z
Y1.z/

jx@f �ı .�/j jR� .z/j dA.�/;

F2.z/ D

Z
Y1.z/

ˇ̌̌̌
x@f �
ı
.�/

� � z

ˇ̌̌̌
dA.�/;

F3.z/ D

Z
Y2.z/

jx@f �ı .�/j

ˇ̌̌̌
R� .z/ �

1

� � z

ˇ̌̌̌
dA.�/;

F4.z/ D

Z
Y2.z/

jx@f �
ı
.�/j

j� � zj3
dA.�/;

and Y1.z/ D ¹� 2 Y W j� � zj < c1ıº, Y2.z/ D ¹� 2 Y W j� � zj > c1ıº. The desired
estimates of F2.z/ and F4.z/ was obtained in [123] as a result of using Hölder’s
inequality. Finally, the estimate (4.15) follows from (4.16), which finishes the proof.
We skip here some details which can be found in [123].

Corollary 4.12. Let U be a Carathéodory open set, and let 1 6 p 6 C1. Then, for
each f 2 Ap. xU/ there exists a sequence of polynomials .Pn/ such that Pn ! f in
Ap. xU/ as n!1.

This result is a consequence of Sininjan’s theorem and the fact that K D xU is
a Carathéodory compact set in the case under consideration. Even in the case that
U is a domain this result cannot be obtained as a consequence of Theorem 4.1. The
difference can happen if @U has positive area.

In [123] the following conjecture was made: for p 2 .1; 2/ and for every compact
set K, the set of functions holomorphic in a neighborhood of K is dense in Ap.K/.
V. P. Havin in [63] solved this problem by proving the fact that Rp.K/ D Ap.K/ for
each compact set K and p 2 .1; 2/. Here, Rp.K/ stands for Lp-closure of rational
functions with poles lying outside K. The problem when Rp.K/ D Ap.K/ for p 2
Œ2;C1/ has a long history, and finally this problem was solved in terms of certain
capacity conditions (or, in other words, in terms of .1; q/-stability), see, for instance,
[65]. Since these results do not concern the class of Carathéodory sets, we will not
continue this line of exposition.

Let us also say a few words about the case of harmonic polynomials. If E is a
measurable set in C, let us denote by Aphar.E/ the set of all harmonic in Eı functions
of the class Lp.E;R/ The first result that the authors are aware of in connection
with Lp-approximation by harmonic polynomials were obtained by A. L. Šaginjan
in [117]. He proved that every bounded harmonic function on a given domain G
belongs to Aphar.G/ if G satisfies either of the following two conditions:

(i) G is a Carathéodory domain;

(ii) G is a moon-shaped domain and the real harmonic polynomials are dense
in Ap.G/.
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The next contribution was made by Sinanjan in [123, pages 99–101]. The respect-
ive result states as follows.

Theorem 4.13. LetK be a Carathéodory compact set. Then, the set of real harmonic
polynomials is dense in the space Aphar.K/ for every p > 1.

Question IV. Whether the results stated in Theorems 4.11 and 4.13 hold true also
for p 2 .0; 1/?

4.2 Some studies related with Hilbert space structure of A2.G/

If G ¤ ;, then A2.G/ is a separable Hilbert space with respect to the standard inner
product hf; gi in L2.G/, so that

hf; gi D

Z
G

f Ng dA:

We will use in this section all standard results from the Hilbert space theory without
any special introduction and giving no references.

First of all let us give the second alternative proof of Theorem 4.1 in the case that
p D 2 using some Hilbert space technique. In order to do that we need to show that
the system of functions ¹1; z; z2; : : : º is complete in A2.G/. The proof presented is
due to A. L. Shaginyan, see [91].

Yet another proof of Theorem 4.1 for p D 2. Take a function h 2 A2.G/ and assume
that hh; zmi D 0 for each m > 0. Then, it is enough to show that h D 0.

Given a big enough number R > 0, for w with jwj > R we haveZ
G

h.z/

z � w
dA.z/ D �

1X
nD0

1

wnC1

Z
G

h.z/ zn dA.z/ D �

1X
nD0

hzn; hi

wnC1
D 0:

Then, Z
G

h.z/

z � w
dA.z/ D 0 (4.17)

for every point w 2 G1, since G1 is a connected set.
Going further, take a sequence .�n/ of rectifiable Jordan curves such that the

domains Gn WD D.�n/ converges to G with respect to some fixed point z0 2 G (in
the sense of kernel convergence). Then, take as usual the sequence . n/, nWGn!G,
of conformal maps normalized by conditions  n.z0/D z0 and  0n.z0/ > 0. Multiply-
ing (4.17) by h. n.w// 0n.w/, integrating over �n and applying Fubini’s theorem
and Cauchy integral formula we obtainZ

G

h.z/ h. n.z//  
0
n.z/ dA.z/ D 0 (4.18)
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for all n > 1. By Lemma 4.10 we know that .h ı  n/ 0n ! h as n!1 in A2.G/.
Then, Nh.h ı  n/ 0n ! Nhh as n!1 in A1.G/. By (4.18) one has

R
G
jhj2 dA D 0,

which yields h D 0.

The next result is standard but it shows the special role that Carathéodory domains
play in the theory.

Proposition 4.14. Let G be a bounded domain in C. Then, the following hold.

(1) In the space A2.G/ there exists an orthonormal sequence of polynomials
.Pn/ such that degPn D n for all n > 0.

(2) This sequence .Pn/ is uniquely determined whenever one demands that the
coefficient of Pn at zn is positive.

(3) If G is a Carathéodory domain, then this sequence .Pn/ is an orthonormal
basis.

Proof. The construction of the desired system .Pn/ is nothing else, then the stand-
ard Gram–Schmidt orthogonalisation process applied to the sequence of functions
¹1; z; z2; : : : º in the space A2.G/. So, we need to verify the part (3) only.

Let G be a Carathéodory domain. We need to prove that the orthonormal system
.Pn/ such that degPn D n, n> 0, is a basis inA2.G/. Take a function h 2A2.G/ and
assume that hh; Pni D 0 for every n > 0. Since any polynomial Q of degree m may
be represented as a linear combination of P0; P1; : : : ; Pm, then hh;Qi D 0, but since
h can be approximated by a sequence of polynomials, then hh; hi D 0, and hence
h D 0. Thus, .Pn/ is complete and hence it is an orthonormal basis for A2.G/.

Going further let us observe that the space A2.G/ has a reproducing kernel for
every nonempty domain G. Recall, that the reproducing kernel for A2.G/, which is
usually called the Bergman kernel forG, is a functionKWC2!C such thatK.�;w/ 2
A2.G/ for every w 2 G and h.w/ D hh;K.�; w/i for every h 2 A2.G/ and w 2 G.
It is well-known, that if .vn/ is some orthonormal basis in A2.G/, then K.z; w/ DP1
nD0 vn.w/vn.z/.

Let now G be a Carathéodory domain. According to Proposition 4.14 there exists
the orthonormal basis .Pn/ in A2.G/ consisting of polynomials (with degPn D n).
In this case, we have

K.z;w/ D

1X
nD0

Pn.w/Pn.z/: (4.19)

Using this representation of reproducing kernel we are able to obtain the explicit
expression for the conformal radius of G and for the corresponding conformal map
from G onto D.0;R/.

Take a point a 2 G, let R be the conformal radius of G with respect to a, and
let g0 be the conformal map from G onto D.0; R/ with the standard normalization
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g0.a/ D 0 and g00.a/ D 1. It follows from Proposition 2.1 that

inf
²Z

G

jh0.z/j2 dA.z/ W h 2A2.G/; h.a/D 1

³
D

Z
G

jg00.z/j
2 dA.z/D �R2: (4.20)

Let us define the functions

Km.z; w/ D

mX
nD0

Pn.w/Pn.z/; m 2 N0: (4.21)

Then, using (4.20) for some appropriate h and making a bit of computations, we haveZ
G

ˇ̌̌̌
Km.z; a/

Km.a; a/

ˇ̌̌̌2
dA.z/ D

1Pm
nD0 jPn.a/j

2
> �R2:

It gives

Ma WD

1X
nD0

jPn.a/j
2 6

1

�R2
:

Now, since g00 2 A
2.G/ we have, in particular, g00.z/D

P1
nD0 cnPn.z/ for all z 2 G,

where cn D hg00; Pni. Therefore,

�R2 6
Z
G

ˇ̌̌̌
K.z; a/

Ma

ˇ̌̌̌2
dA.z/ D

1

Ma

6
1X
nD0

jcnj
2
D

Z
G

jg00j
2 dA.z/ D �R2:

Therefore, Ma D 1=.�R
2/ and K.z; a/ D Mag

0
0.z/ for all z 2 G. So that we have

proved the following result.

Proposition 4.15. Let G be a Carathéodory domain, let a 2 G, let R be the con-
formal radius of G with respect to a, and let g0 be the conformal map from G onto
D.0;R/ with the standard normalization g0.a/ D 0 and g00.a/ D 1. Then,

R D
1

p
�Ma

; where Ma D

1X
kD0

jPk.a/j
2
I

K.z; a/ DMag
0
0.z/ for all z 2 GI

g.z/ D
1

Ma

1X
kD0

Pk.a/

Z z

a

Pk.�/ d� for all z 2 G:

The representation of K.z; w/ in terms of conformal mapping (and vice-versa)
given in this proposition may be adapted in a clear way for conformal mappings
normalized by other ways. Thus, if g is the conformal map from G onto D such that
g.a/ D 0 and g0.a/ > 0, then

g0.z/ D

r
�

K.a; a/
K.z; a/; K.z; a/ D

g0.a/

�
g0.z/: (4.22)
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In the case of a general conformal mapping g from G onto D (without special nor-
malization) one has

K.z; a/ D
g0.z/g0.a/

�.1 � g.a/g.z//2
: (4.23)

In the simplest case thatG DD.0;R/ for someR > 0 the corresponding function
K.�; �/ and basis .Pn/ in A2.G/ may be easily computed:

Pn.z/ D

p
nC 1

p
�RnC1

zn; n > 0 and K.z;w/ D
R2

�.R2 � z Nw/2
:

Remark 4.16. Going further we need to make the following observation.

(1) Let G1 and G2 be two simply connected domains, and let  WG2 ! G1 be a
conformal map. Then, the map f 7! .f ı  / . 0/2=p provides an isometry
of Ap.G1/ onto Ap.G2/ for each p, 0 < p < C1.

(2) For instance, if ¹vn W n 2Nº is some orthonormal system in A2.G1/, then the
system ¹.vn ı  / 0Wn 2 Nº is an orthonormal system in A2.G2/.

(3) Let G be a simply connected domain, and let g be a conformal map from G

onto D such thatg.a/D0 andg0.a/>0 for some a2G. Since .
p
.nC1/=�zn/

is the orthonormal basis in A2.D/, then the system of functions

!n.z/ D

r
nC 1

�
g.z/n g0.z/; n 2 N0

forms an orthonormal system in A2.G/.

Example 4.17. In order to obtain yet another example of the orthonormal basis .Pn/
in A2.G/ for certain special domain G, let us consider the Cassini’s oval ¹z W jz � 1j �
jz C 1j < ˛º with ˛ 2 .0; 1�. Let G D O˛ be the component of this Cassini’s oval
lying in the right half-plane. The function gWO˛ ! D defined by g.z/ D .z2 � 1/=˛
gives the conformal map such that g.1/ D 0 and g0.1/ > 0. Then, according to the
statement of the part (3) of Remark 4.16, an orthogonal basis in A2.O˛/ is formed
from the polynomials

Pn.z/ D
2
p
nC 1

˛nC1
p
�
z.z2 � 1/n; n > 0:

The Bergman kernel for O˛ may be also expresses explicitly:

K.z;w/ D
4˛2 Nwz

�.˛2 � . Nw2 � 1/.z2 � 1//2
:

Let us now briefly describe the concept of a Bieberbach polynomials and their
relations with Carathéodory domains. Let G be a domain in C and let a 2 G. For
each n > 2, let

Pn.a/ D ¹P 2 P W degP D n; P.a/ D 0; P 0.a/ D 1º:
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Definition 4.18. A polynomial �n 2 Pn.a/ solving the following extremal problemZ
G

j� 0n.z/j
2 dA.z/ D inf

²Z
G

jP 0.z/j2 dA.z/ W P 2 Pn.a/

³
(4.24)

is called the nth Bieberbach polynomial (with respect to G and a).

The solution �n of the extremal problem (4.24) always exists, because it is the
primitive of a polynomial which is the orthogonal projection of 0 onto P0n.a/D ¹P

0 W

P 2 Pn.a/º in A2.G/.
It turned out that in the case of Carathéodory domains the Bieberbach polynomi-

als possess certain interesting and important properties, as it is shown in the following
statement. For a given domain G � C let us recall that .Pn/ is the orthonormal basis
in A2.G/ consisting of polynomials with degPn D n and that the functionKn.z;w/,
n 2 N0 is defined by (4.21).

Proposition 4.19. Let G be a Carathéodory domain, a 2 G and let g0 map G con-
formally onto D.0; R/, where R is the conformal radius of G with respect to a (so
that g0.a/ D 0 and g00.a/ D 1). Then,

�n.z/ D �n.zIG; a/ D

n�1X
jD0

Pj .a/

Kn�1.a; a/

Z z

a

Pj .�/ d�:

Moreover, � 0n ! g00 in A2.G/, and hence �n� g0 locally in G.

The proof of this proposition may be found in several sources, for example in [61,
Chapter iii, Section 1].

If G is a bounded domain in C such that the space A2.G/ admits an orthonormal
basis consisting of polynomials, one can prove the existence of Bieberbach polyno-
mials for such a domain. So, Carathéodory domain is one of the most suitable class
of domains when the aforementioned condition is always fulfilled.

Let us make one more remark about the conditions of Proposition 4.19. Let G be
a Carathéodory domain and let E be some end-cut of G such that Area.E/ D 0. Take
G1DG n E . Then, the conditions determining the Bieberbach polynomials forG and
for G1 are the same (the corresponding extremal problem “does not see” E), but it is
clear that conformal maps from G onto D and from G1 onto D differ significantly.
So, certain condition that prevent “cuts” in domains under consideration is needed if
we want to have results similar to Proposition 4.19, where the condition that G is a
Carathéodory domain guaranties that G has no “cuts”.

Let us give two examples showing how the Bieberbach polynomials look like.

(1) Let G D D and a 2 D, and let bn D
Pn�1
kD0.k C 1/jaj

2k for n 2 N, then

�n.zID; a/ D
z � a

bn
C

1

bn

n�1X
kD1

Nak
�
zkC1 � akC1

�
:
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(2) Furthermore, the Bieberbach polynomials may be explicitly computed if the
domain under consideration is D.�˛;ˇ /, where �˛;ˇ is the ellipse with semi-
axes ˛ and ˇ for some ˛ > ˇ > 0 having foci at the point ˙1 (so that ˛2 �
ˇ2 D 1).
Let Tn and Un, n > 1 stand for the Tchebyshev polynomials of the first and
second kind, respectively. We recall, that Tn.z/D cos.narccosz/ if jRezj<1,
and Un.z/ D .nC 1/�1T 0nC1.z/ D .1 � z

2/�1=2 sin..nC 1/ arccos z/.
It holds that the Bergman kernel for the domain D.�˛;ˇ / is

K.z; a/ D
4

�

1X
nD0

T 0nC1.z/Un.a/

�nC1 � ��.nC1/
; � D .˛ C ˇ/2;

while the respective Bierberbach polynomials have the form

�n.zID.�˛;ˇ /; a/ D
1

Kn�1.a; a/

n�1X
jD0

.TjC1.z/ � TjC1.a//Uj .a/

�jC1 � ��.jC1/
:

Moreover, if g mapsD.�˛;ˇ / conformally onto D with g.0/D 0 and g0.0/ >
0, then

g.cosw/ D
�

2
p
d

1X
nD0

.�1/n cos..2nC 1/w/
�2nC1 � ��.2nC1/

;

where w belongs to the rectangle ¹w W 0 < Rew < �; jImwj < cº such that
cosh c D ˛, while

d D

1X
nD0

2nC 1

�2nC1 � ��.2nC1/
:

The proof of these statements uses the fact that the system .cnUn/, where

cn D
4�

nC 1

�
�nC1 � ��.nC1/

�
forms a basis in the space A2.D.�˛;ˇ //, see [93, page 258].

According to Farrell’s theorem (see Theorem 3.4) in order to have uniform con-
vergence of the sequence .�n/ on xG, it is necessary that G is a Carathéodory domain
and all prime ends of G are simple. A natural question arises now: Are these condi-
tions sufficient to have uniform approximation of the corresponding conformal map-
ping by Bieberbach polynomials? The answer to this question is negative. In [71] a
starlike Jordan domain G was constructed whose boundary is analytic except at one
point such that the corresponding sequence of Bierberbach polynomials diverges on
some dense subset of @G. We refer the reader who is interested in more information
about Bierberbach polynomials, to the book [127].
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One moment problem in A2.G/ and in A1.G/

Observe that Proposition 4.14 yields immediately the following proposition.

Corollary 4.20. Let G be a Carathéodory domain. Let h 2 A2.G/ be such thatZ
G

h.z/ Nzm dA.z/ D 0; for each m D 0; 1; 2; : : : : (4.25)

Then, h D 0 in G.

Indeed, let .Pn/ be the orthogonal basis in A2.G/ given by Proposition 4.14.
Thus, (4.25) implies the property hh; Pmi D 0 for each m 2 N0. Then, h D 0 in
A2.G/.

It is natural to consider the following question.

Question V. Let G be a Carathéodory domain and let h 2 A1.G/. Is it true that the
condition (4.25) implies that h D 0 in G?

We are able to give a partial answer to this question by proving the follow-
ing statement. The proof presented below is based on some results about pointwise
approximation and it is quite short and simple. A different proof without using these
tools may be found in [124, page 261].

Theorem 4.21. LetG be a Carathéodory domain and let ' be a conformal map from
G onto D such that k'0kG 6 C for some constant C > 0. If the function h 2 A1.G/
is such that (4.25) is fulfilled, then h D 0 in G.

In order to prove this theorem we need the following lemma.

Lemma 4.22. Let G be a simply connected domain and assume that there exists
a 2 G such that the Bergman kernel K.�; a/ is bounded. Then, for all b 2 G the
function K.�; b/ is also bounded. Moreover, if h 2 A1.G/ then

h.a/ D

Z
G

h.z/K.z; a/ dA.z/; a 2 G:

Proof. Let ga be the conformal map fromG ontoD.0;Ra/with ga.a/D0, g0a.a/D1
(so thatRa is the conformal radius ofG with respect to a). Taking into account (4.22)
and the hypothesis that K.�; a/ is bounded, we obtain jg0a.z/j D �R2ajK.z; a/j 6
C for each z 2 G. Here, and in the sequel in this proof C; C 0; : : : stand for some
positive constants which may differ in different formulae. Take an arbitrary b 2 G
and consider the analogous conformal map gb constructed with respect to b. Then,
gb ı g

�1
a maps D.0;Ra/ onto D.0;Rb/, therefore this function is the restriction of a

Möbius transformation, and hence,

j.gb ı g
�1
a /0.w/j 6 C
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for each w 2 D.0;Ra/. Then, for every w 2 D.0;Ra/ and z D g�1a .w/ we have (in
view of (4.22)) that

jK.z; b/j D
1

�R2
b

jg0b.z/j 6 C jg
0
a.z/j 6 C

0:

So that K.�; b/ is bounded.
Let now h 2 A1.G/. Put g WD ga and R WD Ra and define G.r/ WD ¹z 2 G W

jg.z/j < rº for 0 < r < R. Now, using (4.22) once again we obtain

�R2
Z
G

K.z; a/ h.z/ dA.z/

D lim
r!R

Z
G.r/

g0.z/ h.z/ dA.z/

D lim
r!R

Z
D.0;r/

g0.g�1.w// h.g�1.w//j.g�1/0.w/j2 dA.w/

D lim
r!R

Z
D.0;r/

h.g�1.w//

g0.g�1.w//
dA.w/ D �R2h.a/;

where we have used (2.1) and, further, the mean area value property in D.0; r/.

Proof‘ of Theorem 4.21. Put z1 D '�1.0/. In view of (4.22) we have

jK.z; z1/j 6
1

�
j'0.z/'0.z1/j 6 C1;

where C1 D C 2=� . By virtue of Lemma 4.22 just proved, K.�; w/ is bounded for all
w 2 G. Fix a 2 G and take the conformal map g from G onto D.0; R/ such that
g.a/ D 0, g0.a/ D 1. By Lemmas 4.22 and (4.22), one has

h.a/ D

Z
G

h.z/K.z; a/ dA.z/ D
1

�R2

Z
G

h.z/g0.z/ dA.z/:

Since g0 is bounded (because K.z; a/ is also bounded), Theorem 3.25 tells us that
there exists a sequence of polynomials .Pn/ such that Pn.z/! g0.z/ and jpn.z/j 6
C 0 for each z 2 G and for some positive constant C 0. Then,

h.a/ D

Z
G

h.z/ g0.z/ dA.z/ D lim
n!1

Z
G

h.z/ pn.z/ dA.z/ D 0:

Because this holds for each a 2 G we have h D 0.

One estimate for polynomials forming orthogonal basis in A2.G/

The main aim of the subsection is to prove the following result.
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Theorem 4.23. Let G be a Carathéodory domain, and let .Pn/ be the orthogonal
basis consisting of polynomials such that each Pn has degree n and its coefficient at
zn is positive. Then, for each h 2 H.C/ there exists a sequence .an/ such that

h.z/ D

1X
nD0

anPn.z/;

where the series converges locally uniformly in G. Moreover, for every � > 1 there
exists C > 0 such that

jPn.z/j 6 C�n; n D 0; 1; 2; : : : ; z 2 xG:

Before proving this theorem we need to recall one construction related with the
certain lemma due to Bernstein. Let K be a continuum and let �01.K/ D �1.K/ [
¹1º. Then, there exists a unique conformal map ˚ from �01.K/ onto C1 n xD such
that ˚.1/ D1 and ˚ 0.1/ > 0. For a given number � > 1 let us define the set

L� D ¹z 2 �1.G/ W j˚.z/j D �º:

Lemma 4.24 (Bernstein). Let K be a continuum and let F WG1.K/! C be holo-
morphic function having a pole of order n > 1 at infinity. Assume that

lim
�!1C

sup
z2L�

jF.z/j DM < C1:

Then, for every � > 1 it holds that jF.z/j 6M�n for each z 2 L�.

Proof. Put f .w/ D F.˚�1.w//=.˚�1.w//n for jwj > 1. Then, f is bounded in
C1 n D and lim supjwj!1C jf .w/j D lim�!1C supz2L� jF.z/j D M . Finally, the
maximum modulus theorem implies that jF.˚�1.w//j6M j˚�1.w/jn for each jwjD
� as desired.

Proof of Theorem 4.23. Let zn D
Pn
kD0 b

n
k
Pk for each n, and let .a0n/ be the Taylor

coefficients of h. Then, ak D
P
n>k a

0
nb
n
k

. Let us prove the growth estimate for Pn.
Let g be some fixed conformal map from G onto D. Put G.r/ WD g�1.D.0; r// for
0< r < 1. For r 2 .0;1/ take some conformal map˚r fromG

.r/
1 [ ¹1º onto C1 n xD,

and take some conformal map ˚ from G1 [ ¹1º onto C1 n xD. Take an arbitrary
� > 1 and define Lr;� WD ¹z W j˚r.z/j D �º and L� D ¹z W j˚.z/j D �º. Furthermore,
let Gr;� WDD.Lr;�/ and G� WDD.L�/. Then, xG � Gr;� for some r sufficiently close
to 1. Note that from (4.19) we have jPn.z/j2 6 K.z; z/ and (4.23) implies that

lim
�!1

sup
z2Lr;�

jPn.z/j 6 sup
z2G.r/

jg0.z/j
p
�.1 � jg.z/j2/

D Cr < C1:

Therefore, one can apply Lemma 4.24 to K D G.r/ in order to obtain that jPn.z/j 6
Cr�

n for each z 2 Gr;� and for each n > 0. Since xG � Gr;�, the proof is finished.
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4.3 Topics on weighted Bergman spaces

Let U be an open set, and let wWU ! Œ0;1/ be a measurable function (a weight).
For p, 1 6 p < C1, the weighted space Ap.U;w/ is defined as follows:

Ap.U;w/ D
²
f 2 H.U / W kf kp;w D

�Z
U

jf .z/jp w.z/ dA.z/
�1=p

< C1

³
:

In order that the space Ap.U;w/ to be complete with respect to the norm k � kp;w one
needs to assume that w satisfies the condition that for each compact set K � U there
exists a constant cK > 0 such that

cK jf .a/j
p 6

Z
U

jf .z/jp w.z/ dA.z/ for each a 2 K and f 2 Ap.U;w/: (4.26)

This inequality may be regarded as an analogue of the estimate (4.7). It yields, in
particular, that the convergence in Ap.U;w/ implies the locally uniform convergence
in U . This fact shows that the space Ap.U;w/ is a Banach space for all p under
consideration, while for p D 2 it is also a Hilbert space with respect to the inner
product hf; gi D

R
U
f Ngw dA.

One important family of weights is the family ¹w D jhj W h 2 A1.U / and h 6� 0º.
In this case, (4.26) holds, and its proof is analogous to the proof of (4.7).

In the case, where pD 2 it is convenient to consider the weighted Bergman spaces
A2.U;w/ with respect to the weight w D jhj2, where h 2 A2.U / and h 6� 0. Such
weights are called an analytic weights.

Denote by P p.U; w/ the closure of the set P jU in Ap.U; w/. The following
question arises in a natural way: to describe U , p and w such that

P p.U;w/ D Ap.U;w/: (4.27)

Note that for w D 1, Theorem 4.1 gives a sufficient condition for (4.27), which is
thatU needs to be a Carathéodory domain. But the problem just stated is very far from
completely solved. In this section we are going to present some results concerning the
matter which have certain connections with Carathéodory sets.

The equality (4.27) implies some restrictions on w and to U .

Proposition 4.25. The following statements hold.

(a) Let wD jhj2 with h2A2.U /. If h has zeros inU , thenP 2.U;w/¤A2.U;w/.
(b) If U is not simply connected, then (4.27) does not hold for any p > 1 and for

any weight w.

From now on we will assume that the open set U is simply connected, while
wWU ! .0;C1/. Let now G be a Carathéodory domain and E be some end-cut in
G with Area.E/D 0. Then, in view of Proposition 4.5, we have P 2.�/¤ A2.�/ for
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� D G n E . Thus, the hypothesis that G is a Carathéodory domain plays some role
in the theory. However, for a w ¤ 1 the situation is more complicated, as it may be
seen from the following example.

Example 4.26. Take t 2 .0; 1/ and consider the function

ht .z/ D exp
�
z C 1

z � 1

�t
for z 2 D:

If 0 < t < 1 then P p.D; jht j/ D Ap.D; jht j/ and P p.D; jh1j/ ¤ Ap.D; jh1j/ for
each p with 1 6 p < C1.

The proof of the fact that P 2.D; jh1j/ ¤ A2.D; jh1j/ is given in [73], where it
was proved that the function

f .z/ D exp..1C z/=.2.1 � z///

does not belong to P 2.D; jh1j/. This proof may be also extended to all values of p
under consideration. The first assertion follows from one result of Hedberg, that we
will see in Example 4.37.

Let us discuss the case p D 2 and w D jhj2, h 2 A2.U /, in more detail. In this
case, the map f 2 A2.U; jhj2/ 7! f h 2 A2.U / is an isometry between the respective
Hilbert spaces. This fact allow us to use the general Hilbert space tools for study
the approximation problem under consideration. In particular, the equality (4.27)
can be verified using the construction of orthogonal basis, or Bessel’s inequality, or
Parseval’s formulae in A2.G/ or in A2.U;w/. The following lemma shows how con-
formal maps may be used in the theory.

Lemma 4.27 (Keldysh). Let G be a simply connected domain, let f maps D con-
formally onto G, and let w be defined on G. Put g D f �1. If P 2.D; w ı f / D
A2.D;w ı f / and if gm g0 2P 2.G;w/ for eachm 2N0, then P 2.G;w/DA2.G;w/.

Outline of the proof. Let F 2 A2.G;w/. Using (2.1) we haveZ
G

jF.z/j2 w.z/ dA.z/ D
Z

D
jF.f .v//j2 w.f .v//jf 0.v/j2 dA.v/ < C1;

so .F ı f /f 0 2 A2.D;w ı f /. Then, given " > 0 one can find a polynomial Q such
that Z

D
jF.f .v//f 0.v/ �Q.v/j2 w.f .v// dA.v/ D

D

Z
G

jF.z/ �Q.g.z//g0.z/j2 w.z/ dA.z/ < ":

Since .Q ı g/g0 is a sum of functions of the type gmg0 2 P 2.G;w/, m 2 N0, we
conclude that F 2 P 2.G;w/.
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Going further and working with space A2.U; jhj2/, let us consider the sequence
. k/, k.z/D h.z/zk , k2N0. Then, the Gram–Schmidt procedure inA2.U / applied
to this sequence gives a new sequence .'k/, 'k.z/D h.z/qk.z/, qk 2 P, degqk D k,
and we can assume that the coefficient at zk of qk is positive. In [124, Section 3.1.8]
one can find all details of this procedure. But for general simply connected open set
U the sequence .'k/ is not a basis for A2.U /. Let us formulate the criterion in order
that the equality (4.27) holds for U D D and p D 2.

Theorem 4.28. Let h 2 A2.D/ and let h have no zeros in D. The equality

P 2.D; jhj2/ D A2.D; jhj2/

holds if and only if one of the following conditions is fulfilled:

(1) There exists a sequence .un/, un 2 P, such that limn!1

R
D j1� hunj

2 dAD

0.

(2) The sequence .'n/, 'n D hqn, defined above is a basis for A2.D/.

(3) It holds that
P1
kD0 jh.0/j

2jqk.0/j
2 D 1=� .

A few remarks about the proof of Theorem 4.28. Assume that the weight function h
is such that P 2.D; jhj2/ D A2.D; jhj2/. Since 1=h 2 A2.D; jhj2/ then there is a
sequence of polynomials .un/ such thatZ

D

ˇ̌̌̌
1

h
� un

ˇ̌̌̌2
jhj2 dA D

Z
D
j1 � hunj

2 dA! 0:

Since hqn, n 2N0, form an orthonormal system in A2.D/, then qn form an orthonor-
mal system in A2.D; jhj2/. Moreover, the construction of qn implies that the closed
linear span of .qn/ inA2.D; jhj2/ coincides with the closure of P in this space. There-
fore, .qn/ is a basis for A2.D; jhj2/ and hence .'n/ is a basis for A2.D/. If .hqk/ is a
basis for A2.D/, then the Parseval’s equality for f D 1 gives � D

P1
nD1 jh1; hqkij

2.
The fact that h1; hqki D �h.0/qk.0/ implies (3).

Let us check the sufficiency of the conditions stated. Assume that .'n/, 'nD hqn,
is a basis for A2.D/. Take g 2 A2.D; jhj2/ and observe that gh is the sum of its
Fourier series

P
cnhqn in A2.D/. Since the partial sums of this series converges to

gh in A2.D/, then the partial sums
Pm
nD1 cnqn converges to g in A2.D; jhj2/. Thus,

g 2 P 2.D; jhj2/.
Assume now that (1) is satisfied. If limn!1

R
D j1� h.z/un.z/j

2 dA.z/D 0, then

lim
n!1

Z
D
jzm � h.z/zmun.z/j

2 dA.z/ D 0:

So, each polynomial is the limit in A2.D/ of functions hp, where p 2 P. Since
A2.D/ D P 2.D/ then the set of hp, p 2 P, are dense in A2.D/. It means that .hqn/
is a basis for A2.D/.
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If (3) holds, then the conclusion follows from the fact that if Bessel’s inequality
becomes the equality for a certain orthonormal system, then this system is a basis.

For a general simply connected domain we have the following sufficient condi-
tion.

Theorem 4.29. Let G be a simply connected domain, and let h and g be as before.
Assume that gmg0 2 P 2.G/ for each m 2 N0. Then, P 2.G; jhj2/ D A2.G; jhj2/ if
and only if there exists a sequence .un/, un 2 P, such that

lim
n!1

Z
G

j1 � hunj
2 dA D 0: (4.28)

In view of (2.1) we have
R
G
jgm.z/g0.z/j2 dA.z/ D

R
D jz

mj dA.z/ < C1, so
that gmg0 2 A2.G/. Therefore, gmg0 2 P 2.G/ by Theorem 4.1. Then, Theorem 4.29
implies the following consequence.

Theorem 4.30. Let G be a Carathéodory domain and let h be as before. Then, the
equality P 2.G; jhj2/ D A2.G; jhj2/ holds if and only if there exists a sequence of
polynomials .un/ such that (4.28) is satisfied.

Sketch of the proof. The proof of Theorem 4.29 is based on the following observation
which is also a consequence of (2.1).

Let G1 and G2 be two simply connected domains, let f be some conformal map
from G1 onto G2, and let g D f �1. Take h 2 A2.G2/. Then, the spaces A2.G2; jhj2/
and A2.G1; jh ı f j2/ are isometric by means of the map F ! .F ı f /f 0. Its inverse
is R1 ! .R1 ı g/g

0.
The fact that gmg0 2 P 2.G/ means that given " > 0 there exists q 2 P such that

kgmg0 � qk2;G < ". In view of (2.1) one hasZ
G

jgmg0 � qj2 dA D

Z
D
jzm � q.f .z//f 0.z/j2 dA.z/:

That means that the closed subspace generated in L2.D/ by ¹.q ı f /f W q 2 Pº is
the same as the one generated by P. The fact that P 2.G; jhj2/ D A2.G; jhj2/ is equi-
valent (in view of the isometry described above) to the fact that P 21 .D; jh ı f j

2/ D

A2.D; jh ı f j2/, where P 21 .D; jh ı f j
2/ is the closure of the set ¹.q ı f /f 0 W q 2 Pº

which is dense. Then, one can find a basis in P 21 .D; jh ı f j
2/ and after that the proof

may be finished using ideas from the proof of Theorem 4.28.

Let us now present two examples of situation when the condition (4.28) is fulfilled
for a general Carathéodory domain G.

Example 4.31. Let G be a Carathéodory domain, and let ˛1; ˛2; : : : be real numbers
such that ˛k > �1, k 2 N, among which there is only a finite number of negative
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ones, and
P1
kD1 ˛k < C1. Take a sequence of points .zk/, zk … G, in such a way

that ˛k needs to be integer if zk 2 @aG. Finally, fix a point a 2 G. Then, the function

ˆ.z/ D

1X
kD1

˛k log
�
1 �

z � a

zk � a

�
; z 2 G;

where the branch of logarithm is defined on G and equal to zero at a, is well defined,
and the weight

h.z/ D C

1Y
kD1

�
1 �

z � a

zk � a

�˛k
is such that (4.28) is satisfied, and, therefore, the equality A2.G; jhj2/ D P 2.G; jhj2/
holds.

The proof of the fact that this function h satisfies (4.28) is rather involved. All
details may be found in [124, Section 3.2.3]. The starting step of this proof is to
show that h 2 A2.G/ which is not difficult. Later on it is needed to consider three
consecutive cases. The first one is related with the simplest possible function ˆ.z/D
˛ log.1 � .z � a/=.z1 � a// constructed by one point z1. This case is analyzed with
the help of the special analogue of Mergleyan’s key lemma. The second case is related
with the finite set of points ¹z1; : : : ; znº. The important ingredient of the proof in the
general case is the fact that the product of two functions h1 and h2 satisfying (4.28)
is again the function satisfying this property.

Example‘ 4.32. Let G be a Carathéodory domain. If h 2 H.G�/, and h.z/ ¤ 0 for
each z 2G, then the property (4.28) holds for h, and henceA2.G; jhj2/DP 2.G; jhj2/.

It turns out that for general weights w, the assumption that G is a Carathéodory
domain is not necessary in order to have (4.27) because the following result holds.

Proposition 4.33. Let G ¤ ; be a simply connected domain in C. Then, there exists
a weight w such that P 2.G;w/ D A2.G;w/.

Outline of the proof. Let g be (as before) a conformal mapping from G onto D, and
take an increasing sequence .�n/ of positive real numbers. Define Gn D ¹z 2 G W
jg.z/j < �nº. For each k the function gkg0 is holomorphic in Gn, so there exist poly-
nomials Qn;k such that Z

Gn

jgkg0 �Qn;kj
2 dA <

1

2n
:

Also it is possible to find ˛k > 0 such that

˛k

Z
GnGn

jgkg0 �Qn;kj
2 dA <

1

2n
:
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Then, the function hmay be defined onGnC1 nGn as h.z/Dmin¹1;˛1; ˛2; : : : ; ˛nº,
the details of the proof may be found in [73].

Now, we will mention some general results for 1 6 q < C1 that were proved
in [64]. Let G be a Carathéodory domain, let wWG ! .0;C1/ be continuous func-
tions such that w 2 L1.G; dA/. Define

M.w; z; r/ D
1

r2

Z
jwj6r

w.z C �/ dA.�/; z 2 G; r > 0;

where w.z C �/ D 0 if z C � … G.

Theorem 4.34. Let G, w, M be as before, and let g 2 Aq.G;w/.
(1) Let q > 1. If supr>0

R
G
jg.z/jqM.w; z; r/dA.z/ <C1, then g 2 P q.G;w/.

(2) Let q D 1. If
R
G
jg.z/j supr>0M.w; z; r/ dA.z/ < C1, then g 2 P 1.G;w/.

One of the crucial ingredient of the proof of this theorem is the fundamental Mer-
gelyan’s lemma. The proof is obtained as an appropriate combination of this lemma,
duality arguments and standard Lp-estimates.

The next result gives yet another generalization of Theorem 4.1.

Corollary 4.35. Let G and w be as before, let 1 6 p < C1, and assume that w 2
Ls.G/ for some s, 1 < s 6 C1. If v 2 Ap.G;w/ \ Lpt .G/, where 1=s C 1=t D 1,
then v 2 P p.G;w/.

Notice that Theorem 4.34 give a sufficient approximation condition for indi-
vidual functions. For the special classes of weights it is also possible to find sufficient
approximation conditions for classes of functions.

Theorem 4.36. LetG be a Carathéodory domain, and let wD jhj, where h 2 A1.G/
and jh.z/j > 0 for all z 2 G.

(1) If there exist " > 0 such that

sup
r>0

Z
G

jh.z/j�"M.jhj; z; r/ dA.z/ < C1;

then P q.G; jhj/ D Aq.G; jhj/ for all q 2 .1;C1/.

(2) If there exist " > 0 such thatZ
G

jh.z/j�" sup
r>0

M.jhj; z; r/ dA.z/ < C1;

then P 1.G; jhj/ D A1.G; jhj/.

Let us also present some class of weights w D jhj constructed in [64] such that
Aq.G; jhj/ D P q.G; jhj/ for all q 2 Œ1;1/ for a given general Carathéodory domain
G.
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Example 4.37. Let G be a Carathéodory domain, q 2 Œ1;1/, and let v 2 H.G/ be
such that Re v > 0 in G. Put h.z/ D e�v.z/ and assume that there exist two positive
constants, says c1 and c2, such that jImvj 6 c1 Re v C c2 in G. Then, P q.G; jhj/ D
Aq.G; jhj/.

In order to prove that P q.G; jhj/ D Aq.G; jhj/ we need firstly to show that v 2
P q.G; jhj/. Notice, that the function v1 D .v � 1/=.v C 1/ is bounded by 1 in G.
Then, vm1 2 P

q.G; jhj/ for all m 2 N. It gives that

v D
1C v1

1 � v1
D 1C 2

1X
nD1

vn1 2 P
q.G; jhj/:

By induction one can prove that vn 2 P q.G; jhj/. Now, for each z 2 G, we have

NX
nD0

tnv.z/n

nŠ
! etv.z/ D

1

jh.z/jt
:

This convergence holds in Lq.G; jhj/ for each t such that 0 6 t 6 th D .qc1 C q/�1,
it can be proved using Lebesgue’s dominated convergence theorem. Thus, jhj�th 2
P q.G; jhj/. Some more argument is needed to conclude the desired approximation
result from Theorem 4.36 with " D 1=.c1 C 1/.

4.4 Topics on Hardy spaces

We start by recalling some basic facts about Hardy spaces in general domains in the
complex plane. An appropriate reference for the next statements is [54]. During this
section p will denote a number belonging to .0;1/ (we will mention below only the
special restrictions on p, if needed). Let G � C be a bounded domain. By definition
Hp.G/ is the space consisting of all functions f 2 H.G/ for which there exists a
positive harmonic function u in G such that jf .z/jp 6 u.z/ for each z 2 G. Such
function u is called a harmonic majorant of jf jp in G. If f 2 Hp.G/, then there
exists a unique least harmonic majorant uf such that jf jp 6 uf in G. Then, we put
kf kHp.G/ D .uf .z0//

1=p , where z0 2 G is some fixed point. In the case that p > 1
this quantity is a norm in Hp.G/ and the resulting topology is independent on the
choice of z0.

Lemma 4.38. Let K be a compact subset of G. Then, there exist a constant C D
C.K; p/ such that for every f 2 Hp.G/ and z 2 K one has kf kK 6 Ckf kHp.G/.

Using this lemma it may be readily obtained that Hp.G/ is a Banach space for
p > 1. Also it is well-known that Hp.G/ is conformally invariant, that is if ' is
a conformal map from some domain G1 onto another domain G2, then Hp.G1/ D

¹g ı ' W g 2 Hp.G2/º and both these spaces are isometric.
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Lemma 4.39. Let f 2H.G/. Then, f 2Hp.G/ if and only if for each C 1-exhaustion
.�n/ of G there exists a constant C such that for some point a 2 G one hasZ

@�n

jf jp.�/ d!.a; �;�n/ 6 C:

In the case when G D D the spaces Hp.D/ are the classical Hardy spaces in the
unit disk, and they are denoted usually by Hp .

Lemma 4.40. If f 2 Hp then there exists a sequence of polynomials .Pn/ which
converges to f in norm in Hp .

The principal part of the proof of this lemma is to prove the fact that fr ! f in
Hp as r ! 1, where fr.z/ D f .rz/, see, for instance, [77, page 71]. After that it
remains to observe that the Taylor series of fr converges uniformly on xD, and hence
the Taylor polynomials of f give the desired approximation.

Let us also recall, that the Hardy spaces Hp.T / on the unit circle are the spaces
consisting of all functions h 2 Lp.T / such that

R
T h.�/

x�n dmT .�/ D 0 for every
integer n < 0. According to Fatou’s theorem, every function f 2 Hp has a.e. on
T angular boundary values, which determine a function in the class Hp.T /. The
mapping which maps a function f 2 Hp to its boundary function is an isometric
isomorphism between the spacesHp andHp.T /. When pD1, this mapping is also
a weak-star homeomorphism. In what follows, functions in Hp and their boundary
functions will be denoted by the same symbols.

Weak-star generators inH1

The space H1 is isometric to H1.T /, while this space is a subset of L1.T / which
is isometric to the dual space ofL1.T /. Then, we can consider the weak-star topology
in L1.T /, with a basis of neighborhoods of zero formed by sets²

f 2 L1.T / W

ˇ̌̌̌Z 2�

0

f .eit /gj .e
it / dt

ˇ̌̌̌
< rj ; j D 1; : : : ; n

³
for all possible choice of numbers r1; : : : ; rn > 0 and functions g1; g2; : : : ; gn 2
L1.T /. The weak-star topology in H1 is that induced by the isometry. For some
mote detailed explanation of weak topologies see, for instance, [114, Chapter 3].
Notice also, that the aforesaid week topologies are not metrizable in the general case.
Then, the sequences are not enough to manage with this topology. For sequences in
H1 the convergence in the weak-star topology can be easily characterized.

Lemma 4.41. The following statements hold.

(a) Let fn 2 H1. Then, the sequence .fn/ converges in the weak-star topology
to f if and only if this sequence is uniformly bounded in D and fn.z/! f .z/

for each z 2 D.
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(b) Let f˛ 2 H1 be a net. Then, if .f˛/ converges in the weak-star topology
to some f , then sup˛;z2D jf˛.z/j is finite and f˛.z/! f .z/ for each point
z 2 D.

This is a well-known result. The proof of the part (a) may be found in [120]. The
proof of the part (b) is similar.

The next definition was given by D. Sarason in [119].

Definition 4.42. Let ' 2 H1. Then, the following hold.

(a) ' is a weak-star generator if the set ¹P ı ' W P 2 Pº is weak-star dense in
H1.

(b) ' is a (weak-star) sequential generator if every function in H1 is the weak-
star limit of a sequence of polynomials in '.

It is clear that a sequential generator is a weak-star generator, but the converse
is very far to being true, as it will be shown later. The main reason to introduce
the concept of a weak-star generator was because of its relations with the theory of
invariant subspaces for certain multiplication operators. Let us recall, that for a given
function ' 2 H1 the operator S' WL2.T /! L2.T / acts as follows: S' W h 7! 'h,
while the Toeplitz operator T' WH 2 ! H 2 is defined as follows: T' W h 7! PC.'h/,
where PC stands for the orthogonal projection from L2.T / to H 2. In the special
case when ' D j the operator Sz is called the bilateral shift, while the operator Tz is
called the unilateral shift. The study of shift-invariant subspaces in H 2 was initiated
by Beurling, Helson–Lowdenslager and Halmos. The following simple fact whose
proof may be found in [69, page 106] shows the specific role of the unilateral shift in
the topic under consideration.

Lemma 4.43. Let E a closed subspaces of H 2. Then, E is Tz-invariant if and only
if it is T'-invariant for all ' 2 H1.

The descriptions of shift-invariant (closed) subspaces ofH 2 and L2.T / are well-
known; they are given by the following nowadays become classical results whose
proofs may be found in [69, Chapter 7].

Theorem 4.44 (Beurling). Let E be a non-empty closed subspace of H 2. Then, E is
Tz-invariant if and only if E D K� D �H 2, where � is an inner function.

We recall, that a function� 2H1 is said to be inner, if j�.�/j D 1 for a.a. � 2T .

Theorem 4.45. Let W be a closed Sz-invariant subspace of L2.T /.

(a) If zW DW , thenW D ¹f 2L2.T / W f jB D 0º, where B � T is some Borel
set.

(b) If zW ¤ W , then W D FH 2, where F is a measurable function on T of
modulus 1.
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For non closed subspaces the situation is fairly different. Let us mention in this
connection the next result obtained in [119].

Proposition 4.46. Let ' 2 H1. Then, the following are equivalent.

(a) ' is a weak-star generator of H1.
(b) The operator S' has the same invariant subspaces as Sz .
(c) The operator T' has the same invariant subspaces as Tz .

Two simple necessary conditions for a function ' to be a weak-star generator of
H1 were obtained in [119].

Proposition 4.47. Let ' 2H1 be a weak-star generator ofH1. Then, the following
hold.

(i) ' in univalent on D.
(ii) There exists a set I � T such that mT .I / D 0 and 'jTnI is injective.

If some function ' satisfies the second condition of this proposition we will call
it univalent almost everywhere on T .

Sketch of the proof of Proposition 4.47. Let ' be a weak-star generator of H1 and
assume that '.a/ D '.b/ for some a; b 2 D with a ¤ b. Then, there exist a fam-
ily ¹P˛º of polynomials such that the net P˛.'/ converging to z in the weak-star
topology. Fix a 2 D. Then, the point evaluation functional f 7! f .a/, defined for
each f 2 H1, is weak-star continuous because f .a/ is obtained via the standard
Poisson formula and the Poisson kernel belongs to L1.T /. This continuity implies
a D limP˛.'.a// D limP˛.'.b// D b, which gives a contradiction.

Because the evaluation at an arbitrary point eit is not defined for f 2 H1 in
the general case, the proof of the second condition needs to be different from the
previous one. Let E be the closed span of the elements ¹1; '; '2; : : : º in L2.T /. So
that S'E � E. If ' is a weak-star generator then, by Proposition 4.46, the space E is
also Sz-invariant, and hence z 2E. Then, there exists a sequence .Pn/ of polynomials
that converges to z in L2.T /. So, there is a partial subsequence (that will be denoted
by the same symbol) such that

Pn.'.e
it //! eit for a.e eit 2 T : (4.29)

If we assume that for each measurable set M � T of positive measure there exist
two points eit 2 M and eis 2 M with eit ¤ eis and '.eit / D '.eis/ we arrive to a
contradiction with (4.29). So, the second property also holds.

If ' a weak-star generator of H1, then G D '.D/ is a simply connected domain
and @G cannot have a lot of cut points. For example, the set of all cut points of
@G should have harmonic measure zero with respect to '.0/. It implies that each
conformal map from D onto D n Œ0; 1/ is not a weak-star generator. The statement of
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the part (ii) of Proposition 4.47 was improved in [108] in the way shown in the next
theorem.

Theorem 4.48. The following statements hold.

(a) If ' is a weak star generator of H1 then the boundary function defined on
F.'/ is one to one.

(b) There exists a bounded univalent function ' in D such that F.'/D T and '
is injective on xD, but it is not a weak-star generator of H1.

The proof of the part (a) is a bit technically involved since it uses classical results
about conformal maps together with certain tools from ordinal number theory. To
verify the statement (b) it is enough to take the conformal map from D onto the
domain G2 in Figure 1, but some work is needed in order to show that it is not a
weak-star generator.

Following Sarason let us pay attention to the sequential generators ofH1 because
it admits certain characterizations in topological terms.

Proposition 4.49. Let ' be a conformal map from D onto a simply connected domain
G � C. Then, ' is a sequential generator of H1 if and only if G has the following
property: for every h 2 H1.G/, there is a sequence of polynomials which is uni-
formly bounded on G and converges to f at every point of G.

Proof. Assume that ' is a sequential generator and let h 2 H1.G/. Then, h ı ' 2
H1 and let .Pn/ be such sequence of polynomials that Pn.'.z// ! h.'.z// for
every z 2 D, and pn ı ' is uniformly bounded on D. Then, Pn.w/! h.w/ for every
w 2 G and Pn is uniformly bounded in G. For the converse it enough to consider
g ı '�1 for g 2 H1.

Corollary 4.50. A conformal map onto a Jordan domain is always a weak-star gen-
erator. A conformal map onto a moon-shaped domain is never a weak-star generator.

Now, combining Proposition 4.49 with Theorem 3.31 we arrive at the following
result (see [120, Proposition 2]).

Proposition 4.51. Let G be a bounded simply connected domain and let ' a con-
formal map from D onto G. Then, ' is a sequential generator of H1 if and only
if G is a component of the set G� (the latter property exactly means that G is a
Carathéodory domain).

We will denote by zG the component of G� that contains G. With the same nota-
tions as in Proposition 4.49 the following result holds.

Proposition 4.52. Let h2H1. Then, h is the weak star limit of a sequence of polyno-
mials on ' if and only if h ı '�1 is the restriction of a function belonging toH1. zG/.
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Sarason in [120] has obtained a characterization of weak generators, adapting the
statement of Farrell’s theorem to a certain more general setting. This is a reason to
give here a simple overview of his results. Also we believe that the notion of order
of a simply connected domain introduced by Sarason may be regarded as a further
generalization of the concept of a Carathéodory domain.

Take ' 2H1. Denote byM 0 the set of polynomials in ', that isM 0 D ¹P ı ' W

' 2 Pº. Furthermore, let M 1 denote the set of all weak-star limits of sequences of
functions inM 0. If ˛ is a countable ordinal we defineM ˛ inductively to be the linear
manifold of H1 consisting of all functions which are weak-star limits of sequences
of functions on

S
ˇ<˛M

ˇ . By a property of weak topologies, see [7, pages 124, 213],
there exists a least countable ordinal ˛0 such that M ˛0 D M ˇ if ˇ > ˛0. Moreover,
M ˛0 is the weak closure of M 0. We say that ' is a generator of H1 of order ˛0 if
M ˛0 D H1.

In order to understand the definition of the order of a simply connected domain
we need the following definition.

Definition 4.53. Let G be a bounded domain in C, and let � be a simply connected
domain such that G � �. The relative hull of G in � (or, for brevity, �-hull) is the
set

Int
°
w 2 � W jf .w/j 6 sup

z2G

jf .z/j for every f 2 H1.�/
±
:

One crucial step in Sarason’s papers is to show that if G � D, then the D-hull of
G is G�. Also a geometric description of the �-hull of G is given by the next result.

Proposition 4.54. Let � and G be as before and let Y be the closure in � of the
�-hull of G. Then, � n Y consists of those points of � that can be separated from G

by a cross cut of �. Moreover, the �-hull of G is the interior of Y .

With these tools the following generalization of Farrell’s result is readily fol-
lowed.

Theorem 4.55. Let� be a domain and letG be a bounded simply connected domain
such that G � �. Denote by G� the component of the �-hull of G that contains G.
Let f 2 H1.G/. Then, a sequence of bounded holomorphic functions in � which is
uniformly bounded in G and converges to f at the every point of G exists if and only
if f is the restriction of some function f1 2 H1.G�/.

Let G be a simply connected domain. For every countable ordinal ˛ let us define
inductively a domain G˛ containing G as follows. For ˛ D 1 we put G1 as the com-
ponent ofG� that containsG. If ˛ has an immediate predecessor we defineG˛ as the
component of theG˛�1-hull ofG that containsG. If ˛ has no immediate predecessor
we defineG˛ to be the component of the interior of

T
ˇ<˛G

ˇ that containsG. Then,
G˛ is simply connected and, moreover, there exists a least countable ordinal  such
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that G D GC1. So, G D G! for ! >  . This  is called the order of G. For better
understanding this notion the reader can see that both domains in Figure 3 have order
1. Next result generalizes Proposition 4.52.

Proposition 4.56. M ˛ D ¹h 2 H1 W h ı '�1 D F jG for some F 2 H1.G˛/º.

Corollary 4.57. Now, the characterization of generators ofH1 obtained by Sarason
can be stated in the following form.

(1) If ' is a generator ofH1 of order  then the domain G D '.D/ has order 
andG DG. Conversely, if a given domainG has order  andG DG, then
every conformal mapping ' from D onto G is a generator ofH1 of order  .

(2) The function ' 2H1 fails to be a generator ofH1 if and only if there exists
a domain � which properly contains G and is such that kf k� D kf kG for
every f 2 H1.�/.

(3) If ' is a generator of H1, then G D Int. xG/.

We refer to [120, Figures 1 and 2] to see domains which are the images of D under
mapping by weak-star generators of order 2 and 3, respectively. The orders of these
domains can be computed by using Proposition 4.54. In [121] the author was able to
construct domains of arbitrary order using the fact that every countable well-ordered
set can be realized as a subset of R. We do not know whether it is possible to obtain
some other type of characterization of weak-star generators avoiding, in particular,
the usage of ordinals.

Finally, let us notice that the concept of domains of order 2 is underlying the result
of [112, Theorem 4.1], so this theorem was the precursor of Sarason’s studies.

Density of polynomials inH p.G/

Let 'WD ! D be a non-constant holomorphic function. The composition operator
C' WH.D/! H.D/ is defined by the setting C'.f / D f ı '. If '.0/ D 0 then the
Littlewood subordination theorem (see, for example, [42, Theorem 1.7]) implies

kf ı 'kHp 6 kf kHp

for each p 2 .0;1/. If '.0/ ¤ 0 then kf ı 'kHp 6 Mkf kHp , where M is some
constant depending only on j'.0/j. Thus, C' WHp ! Hp is a bounded operator for
each p, 1 6 p 61. A lot of efforts were applied for studying of such operators. In
particular, in [31] the problem when C'.Hp/ is dense in Hp were considered.

We have the following clear facts.

Lemma 4.58. If C'.Hp/ is dense in Hp for some 0 < p <1, then ' is univalent
in D.
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Proof. Indeed, if '.z/ D '.w/ for some z ¤ w in D, then f .'.z// D f .'.w// for
each f 2Hp . So, the function j does not belong to the closure of C'.Hp/ inHp .

Lemma 4.59. Let ' maps conformally D onto some domain G � D, while 0 < p <
1. Then, C'.Hp/ is dense in Hp if and only if the set of polynomials is dense in
Hp.G/.

Proof. If f 2 Hp.G/, then f ı ' 2 Hp . Therefore, if C'.Hp/ is dense in Hp ,
then Lemma 4.40 yields that there exists a sequence .Pn/ of polynomials such that
Pn ı ' ! f ı ' in Hp , which imply that Pn ! f in Hp . The converse is clear.

The following theorem was proved in [31].

Theorem 4.60 (Caughran). Let p be such that 1 6 p 61. If G is a Carathéodory
domain, then the set of polynomials is dense in Hp.G/. Conversely, if polynomials
are dense inHp.G/ and ' 2 C.xD/, where ' is some conformal map from D onto G,
then G is a Jordan domain.

The Caughran’s original proof, was made for p D 2 and it used the ideas of
proving the sufficiency in Theorem 3.25. J. Caughran has mentioned that the given
proof is valid, if interpreted properly, for Hp with 1 6 p <1. The following result
is an immediate corollary of Caughran’s theorem.

Corollary 4.61. If ' maps D conformally onto a Carathéodory domain, k'kH1 6 1,
then C'.Hp/ is dense in Hp for each 1 6 p <1.

Later on in [109] the next generalization of the results under consideration was
obtained.

Theorem 4.62 (Roan). Let ' a weak star generator of H1, then the set of polyno-
mials is dense in Hp.G/, where G D '.D/ and 0 < p <1.

Proof. Assume that ' is a weak-star generator of H1. Denote by M the subspace
¹P ı ' W P 2 Pº, by M 1 the subspace of all functions in H1 which are weak-star
limits of sequences of functions inM . Let h 2M 1, then there exists a sequence .Pn/
of polynomials which are uniformly bounded and Pn.'.z//! h.z/ for each z 2 D.
We need the following lemma which corresponds to Lemma 4.41 for Hp .

Lemma 4.63. Let 0 < p <1, and let .fn/ be a bounded sequence in Hp . Assume
that fn.z/! f .z/ for each z 2 D. Then, fn ! f in the weak topology in Hp .

Notice that for p > 1 the proof of this lemma is essentially the same as it was done
in [120, Lemma 1]. For the case 0 < p < 1, it follows from [40], where it was proved
that the point evaluation belongs to .Hp/� and the principle of uniform boundedness
and the closed graph theorem remain valid for Hp .
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By the lemma just mentioned we know that Pn ı ' ! h weakly in Hp . So,
h 2 CloswIHp .M/, the weak closure of M in Hp . Then, M 1 � CloswIHp .M/. One
has

CloswIHp .M/ D ClosHp .M/; (4.30)

where the right-hand side of (4.30) is the closure ofM in the original topology ofHp .
Equality (4.30) follows from [114, Theorem 3.12] in the case when 1 6 p <1. In
the case p < 1, (4.30) follows from [40, Lemma 8]. Then, M 1 � ClosHp .M/. Now,
inductively M � � ClosHp .M/ for every countable ordinal number � . Since ' is a
weak-star generator of H1 there exists a countable ordinal � such that M � D H1.
Then, H1 D ClosHp .M/, and hence M is dense in Hp . But the density of M in
Hp exactly means the density of polynomials in Hp.G/.

The proof of above theorem is quite simple. The crucial reason why this theorem
implies Theorem 4.60 is the fact, given by Proposition 4.51, that a Carathéodory
domain is the image of some sequential generator of H1.

In view of the Lemma 4.59, Theorem 4.62 can be reformulated as follows.

Theorem 4.64 (Roan). Let 0 < p <1, and let ' be a weak-star generator of H1

such that '.D/ � D. Then, the range of C' is dense in Hp .

We end this section by mentioning some results obtained in [17] and related with
Bergman spaces.

Theorem 4.65 (Bourdon). Let ' be a weak-star generator ofH1 and letG D '.D/.
Then, the polynomials are dense in A2.G/.

Because there are many weak-star generators of H1 which map D onto non-
Carathéodory domains, this result is more general (for p D 2) than Theorem 4.1.

The proof of Theorem 4.65 use a theorem of Hedberg that says that if G is a
simply connected domain of finite area, then H1.G/ is dense in A2.G/ and certain
properties of cyclic vectors of multiplication operators acting in A2.G/ and H 2.G/,
see [17] for the detailed explanation. Then, one has yet another proof of Theorem 4.60
for p D 2.

A key idea of work [17] is to relate the approximation by polynomials in H 2.G/

with the approximation also by polynomials in some weighted Bergman spaces.

Proposition 4.66. Let ' map D conformably onto G. Then, the polynomials are
dense in A2.G; .1 � j'�1.w/j2/ dA/ if and only if the polynomials in ' are dense
in H 2.

Sketched proof. If f 2 H 2 and f .z/ D
P1
nD0

Of .n/zn, then

kf k2
H2
D

1X
nD0

j Of .n/j2:
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But this norm is equivalent to

kf k2 D jf .0/j2 C

Z
D
jf 0.w/j2 .1 � jwj2/ dA.w/;

as it can directly verified by the considering of the corresponding Taylor expansion.
From now on, one can proceed as follows. If the polynomials are dense in A2.G; .1�
'�1.w// dA/, then the set ¹.P ı '/'0 W P 2 Pº is dense in A2.D; .1� jzj2/ dA/, but
this implies (via the integration) that the set ¹P ı ' W P 2 Pº is dense inH 2.D/. The
converse may be verified by differentiation.

Corollary 4.67. Let ' map D conformally onto G.

(1) The density of polynomials inA2.G/ or inA2.D; .1�j'�1.w/j2/dA/ implies
the density of polynomials in H 2.G/.

(2) If polynomials are dense in A2.G/ or in A2.D; .1 � j'�1.w/j2/ dA/, then '
is univalent almost everywhere on T .

Note that the part (1) of Corollary 4.67 says that Theorem 4.1 for p D 2 together
with Proposition 4.66 give a direct proof of Theorem 4.60 in the case p D 2. Note
also that the part (2) of Corollary 4.67 is the analogue for Aa.G/ of Proposition 4.47.
Also it seems that Bourdon’s techniques are only appropriate for H 2.G/ and not for
p ¤ 2.

Let us mention the paper [37], where another proof of Theorem 4.62 was given.
It seems the author was unaware of Roan’s, Caughran’s and Bourdon’s papers.

4.5 Approximation by polynomials on boundaries of domains

Let A be an uniform algebra on some compact Hausdorff space X , let � 2 MA and
assume that there exist a unique representative positive measure � for � (recall that
this assumption is needed here, because, in general, such measure is not unique). Put
M D ker� and denote byMC.X/ the set of finite positive Borel measures on X . Let
us recall the following result.

Theorem 4.68 (Szegö, Kolmogorov, Krein). Let � 2MC.X/, and suppose that �D
w � � C � is the Lebesgue decomposition of � with respect to � , wherew D d�=d� 2
L1.�/ is the Radon–Nikodym derivative of � and � is singular with respect to � . Let
0 < q < C1. Then,

inf
f 2M

Z
j1 � f jq d� D inf

f 2M

Z
j1 � f jqw d� D exp

Z
logw d�:

Szegö has proved this theorem when A D A.xD/, M D ¹P 2 P W P.0/ D 0º,
�� dt , q D 2 and �.f / D f .0/, f 2 A. Later Kolmogorov and Krein showed that
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the infimum depends only on the absolutely continuous part of �. A complete proof
in the caseA.xD/, 16 q <C1 andM D ¹P 2 P W P.0/D 0º is given in [77, Chapter
vii]. The proof of the general version may be found in [56, Chapter v] or in [18, page
236]. Observe that, by Jensen inequality, one has

exp
Z

logw d� 6
Z
w d� < C1:

So, always,

�1 6
Z

logw d� 6 Const :

Now, we will use the notation and result from Sections 3.2 and 3.4. Let G be a
Carathéodory domain with the boundary � , then P.� / is a Dirichlet algebra, and for
each point a 2 G� (the Carathéodory hull of G) the measure !.a; �; G/ is the unique
representative measure on the Shilov boundary � of the element of the spectrum of
P.�/ defined byP 7!P.a/. In this context, given� 2MC.� /, Theorem 4.68 can be
applied, and this is the most general setting (in some sense) that the previous theorem
can be applied. For example, if G D D we have the following.

Corollary 4.69. Let be�2MC.T / and let 0< q <C1. The set ¹P 2P WP.0/D 0º
is dense in Lq.�/ if and only ifZ

T
log.

d�

dt
/ dt D �1:

Proof. First note that

inf
p2P

Z ˇ̌̌̌
1

z
� p

ˇ̌̌̌q
d� D inf

P WP.0/D0

Z
T
j1 � P jq d� D 0;

where the equality to zero is obtained applying Theorem 4.68. Then, z and 1=z are
limits in Lq.�/ of polynomials. But each f 2 C.T / can be uniform approximated
by a sequence of polynomials in z and Nz and C.T / is dense in Lq.�/ for each 0 <
q < C1.

Abdullaev and Dovgoshei in [3] have provided an interesting study of the question
on how to generalize Corollary 4.69 for other domains. It turns out that the notion of
Carathéodory domains plays a central role in this question. Before discussing their
results let us fix yet more notation. Let z0; z1; z2; : : : be a collection of points such
that it contains only one point from each component ofG�. Moreover, we assume that
z0 2 G0 D G and denote by Gj , j > 1, the other bounded components of C n xG (if
they exist). Let !j D !.zj ; �; G/, for each j > 0. We know that each !j is supported
on @Gj . Given � 2 MC.� / let us denote by P q.�/ the closure in Lq.�/ of the set
of polynomials, and by P q.�; z0/ the closure in Lq.�/ of the set of polynomials that
vanishes at z0. With this notation we can state the result.
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Theorem 4.70. Assume that G is a bounded simply connected domain, z0 2 G, and
0 < q < C1. Then, the following assertions hold.

(1) Let G be a Carathéodory domain. Then,

¹� 2MC.� / W P q.�; z0/ D P
q.�/º

D

²
� 2MC.� / W

Z
�

log
�
d�

d!0

�
d!0 D �1

³
:

(4.31)

(2) Conversely, if the sets defined on (1) are equal, then G is a Carathédodory
domain.

(3) Let G be a Carathéodory domain. Then,

¹� 2MC.� / W Lq.�/ D P q.�/º

D

²
� 2MC.� / W

Z
log
�
d�

d!j

�
d!j D �1 for all j

³
:

(4) In order to have that G is a Carathéodory domain that does not separate the
plane it is necessary and sufficient that

¹� 2MC.� / W Lq.�/ D P q.�/º D ¹� 2MC.� / W Lq.�/ D P q.�; z0/º

D

²
� 2MC.� / W

Z
�

log
�
d�

d!0

�
d!0 D �1

³
:

Sketch of the proof. (1) AlwaysP q.�;z0/�P q.�/. Theorem 4.68 may be applied in
our case to give that

R
log.d�=d!0/ d!0 D�1 if and only if there exists a sequence

of polynomials .Pn/ such that Pn ! 1 in Lq.�/. Then, if h 2 P then hPn ! h in
Lq.�/.

(2) Assume thatG is not a Carathéodory domain. Then, we need to find a measure
that shows that both sets in (4.31) are different. Let � be the component of G� that
contains z0 and let take z! D !.z0; �; �/. Then, � � G and z! is a positive measure
on � but it is supported on @�. Since G is not a Carathéodory domain, we know
that L WD � n @� ¤ ;, and even more, !0.L/ > 0. Since z! vanishes on L, one
has d z!

d!0
.z/ D 0 for almost all points z in L. Then,

R
log.d z!=!0/ d!0 D �1, so

z! belongs to the set in the right-hand side of (4.31). Because � is a Carathéodory
domain, we can apply the result just proved in (1). Since

R
log.d z!=d z!/d z! D 0, we

know that P q.@�; z0/ ¤ P q.@�/. So, P q.�; z0/ ¤ P q.� /.
(3) Let � 2 MC.� /. If Lq.� / D P q.� / then, for each zj , j > 0, one has

Lq.�j@Gj / D P q.�j@Gj /. Since each Gj is a Carathéodory domain, the result of
part (1) may be used to obtain that

R
@Gj

log d�
d!j

d!j D �1 for each j . Assume nowZ
@Gj

log
d�

d!j
d!j D �1 (4.32)
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for all j > 0. The important fact now is the assumptions in (4.32) do not depend on
the point selected in each component. In other words, if !0j D !.bj ; �; G/ for other
points bj 2 Gj , j > 0, then, by (3.4) and (4.32) remains true if we replace !j with
!0j . By Corollary 3.11 one hasR.� /DC.� /. We know that C.� / is dense inLq.� /
for each 0 < q <C1. Then, it is enough to prove that for each fixed b 2 G� nG the
function z ! .z � b/�1 can be approximated in Lq.d�/ by polynomials. Applying
Theorem 4.68 to P.� / and to M D ¹P W P.b/ D 0º we obtain inf¹

R
j1� P jq d� D

0 W P 2 P; P.b/ D 0º D 0. If P.b/ D 0 then P.z/ D .z � b/P1.z/ and hence one
has ˇ̌̌̌

1

z � b
� P1.z/

ˇ̌̌̌
� j1 � .z � b/P1.z/j

for each z 2 � and P1 2 P. Then,

inf
²Z ˇ̌̌̌

1

z � b
� P1

ˇ̌̌̌q
d� D 0 W P1 2 P

³
D 0:

So, 1=.z � b/ 2 P q.�/.

This is a consequence of (1) and (3). In particular, if the set C n xG has some bounded
componentGj , then the assumption that

R
@Gj

log d�
d!j

d!j D�1 cannot be dropped.

The next result gives a sufficient condition for approximation.

Corollary 4.71. Let G be a Carathéodory domain such that xG does not separate the
plane, and let 0 < p < C1. Assume that � 2 MC.@G/ is such that Supp� ¤ @G.
Then, P q.�/ D Lq.�/.

Theorem 2 in [3] gives yet other characterization of Carathéodory domains, how-
ever it is a bit technical in a nature and hence we do not state it here, but only
mentioned for the interested reader.





Chapter 5

Miscellaneous results about Carathéodory sets

In this chapter we briefly mention some results, where the concept of a Carathéodory
sets plays a certain role, but which cannot be placed appropriately into any of the
above chapters and sections.

Approximation by polynomials of controlled degree

In this section we present one result which is formally related with Carathéodory sets
(at least the corresponding assumption was made in it formulation), but actually it is
independent on this concept.

Let K be a continuum and let ˚ be the conformal map from �01.K/ onto ¹w 2
C1 W jzj > �º with the normalization ˚.1/ D 1 and ˚ 0.1/ D 1, where � > 0 is
determined uniquely by this normalization of ˚ . Recall that the Taylor series of ˚ at
1 has the form

˚.z/ D z C a0 C
a1

z
C � � � ; jzj > R1

for some R1 > 0. Then, for each n > 1, one has

˚n.z/ D zn C a
.n/
n�1z

n�1
C � � � C a

.n/
0 C

a
.n/
�1

z
C � � � ; jzj > R1:

The polynomial
˚n.z/ D z

n
C a

.n/
n�1z

n�1
C � � � C a

.n/
0

is called the n-Faber polynomial with respect to K. For each r > 1 let

Cr D ˚
�1.¹z W jzj D rº/:

The question on studies of approximation of functions by polynomials of degree
at most n was posed already in the thesis of S. N. Bernstein. Here, we mention two
results.

Theorem 5.1 (Bernstein theorem). Let K be a continuum and let f 2 C.K/. Then,
for every " > 0 and 0 < q < 1 there exists a sequence of polynomials .Pn/ such that
degPn 6 n and

jf .z/ � Pn.z/j 6 C."/.q C "/n; n D 0; 1; 2; : : : ; z 2 K;

if and only if f has an analytic extension Qf to D.C�=q/. In the case that there exists
such extension, the sequence .Pn/ converges to Qf locally uniformly in D.C�=q/.
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Now, we will use the following notation. Let 1 6 p 6 1. If f 2 Ap.G/ then
define

E
p
n;G.f / D inf¹kf � P kp;G W P 2 P; degP 6 nº:

Theorem 5.2 (Bernstéin–Walsh theorem). Let K � C be a compact set such that
C nK is connected. If f 2 H.K/, then

lim sup
n!1

E1n;K.f /
1=n 6 � < 1;

where � D 0 ifK has logarithmic capacity zero, while � is a positive number (related
with the Green function of C nK) if capacity of K is positive.

Note that previous result is a quantitative version of Runge’s theorem. A proof
can found in [107, page 170]. Let us revert to Theorem 5.1. A proof can be seen
in [85]. In the case that f has the continuous extension, the key point is to show that

f .z/ D

1X
nD0

an˚n.z/

uniformly on K and one can take Pm D
Pm
nD0 an˚n. In the proof the following

estimate is obtained

jf .z/ � Pn.z/j 6
3

2
xM.f; r/

.r 0=r/nC1

1 � .r 0=r/
; (5.1)

for each z 2 K, where r > r 0 > � and xM.f; r/ D sup¹jf .z/j W z 2 Crº.
In a sequence of papers, see the references in [70], the following problem was

studied: whether the condition lim.Epn;G.f //
1=n D 0 does imply that f is an entire

function. In [70] two results of such kind were obtained under the assumption that the
domain G under consideration is a Carathéodory domain. However, it seems that this
assumption is not relevant to the problem under consideration and it is not needed in
the first of the aforementioned results. Let us reformulate and proof the corresponding
statement.

Theorem‘ 5.3. Let 1 6 p 61.

(a) Let f 2 H.C/. Then, for each bounded domain G it holds

lim
n!1

E
p
n;G.f /

1=n
D 0:

(b) Let U be an open set in C and let f 2 H.U /. If there exists an open disc D
with xD � U , such that

lim
n!1

E
p
n;D.f /

1=n
D 0;

then there exists F 2 H.C/ such that F jU D f .
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Sketch of the proof. PutK WD yG, take the corresponding˚ for suchK (see the begin-
ning of this subsection), and put r 0 D 2�. If Pn is a polynomial which satisfies (5.1),
then

E
p
n;G.f / 6 kf � Pn�1kp;K 6

p
p

Area.K/ kf � PnkK :

Using now the estimate (5.1) we obtain

E
p
n;G.f / 6 Const xM.f; r/

.�=r/nC1

1 � .�=r/

whenever r > r 0 D 2�. Then, lim supn!1 E
p
n;G.f /

1=n 6 �=r and letting r !1,
the conclusion follows.

Let us prove the statement (b). LetDDD.z0;R/. We know f .z/D
P1
nD0an.z�

z0/
n uniformly on xD. Assume that Pn�1 is a polynomial of degree at most n� 1, then

�R2nC2

nC 1
an D

Z
D

f .z/ .Nz � z0/
n dA.z/ D

Z
D

.f .z/ � Pn�1.z// .Nz � z0/
n dA.z/;

which in ones turn gives that

�R2nC2

nC 1
janj 6 Rnkf � pn�1k1;D 6 .�R2/

1
qRnkf � Pn�1kp;D;

where q is the conjugate exponent for p if p > 1. Then,

janj
1=n 6 C.nC 1/1=nEpD;n�1.f /

1=n
! 0

by the initial assumptions. So, f 2 H.C/.
In the case of p D1 the theorem is essentially due to Winiarski, [137].

Dualities between A�1.G/ and A1.C1 nG/

The problem of characterization of the dual of the Fréchet space H.G/ for an open
set G is a classical problem studied in several papers in the 1950s. It comes that there
is an isomorphism from H.G/� onto H0.C1 n G/. This is called the Main duality
theorem. We recommend to the interested reader to look at the proof of this result and
some related topics in [81, Chapter 8]. With this background he will understand per-
fectly the germinal ideas on this short section on dualities between spaces of analytic
functions.

Let B be a bounded domain in C. Consider the space A�1.B/ consisting of all
holomorphic functions in B with polynomial growth near @B , so that

A�1.B/ D

1[
kD0

¹f 2 H.B/ W kf k.k/ D sup
z2B

jf .z/j dist.z; @B/k <1º;
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and the space A1.C1 n B/ consisting of all C1-functions defined on C1 n B van-
ishing at 1 and holomorphic in the interior of C1 n B . We are going to mention
the recent result of the paper [2], where it was show that the Cauchy transformation
of functionals establish a mutual duality between these introduced spaces in the case
when B is a Carathéodory domain. Let us recall, that the Cauchy transformation of
functionals is the mapping

L 7! L

�
1

a � j

�
;

where a 2 B is some point and j stands for the identity function j.z/ D z.
Let us denote by S� the dual space of a locally convex topological space S

endowed with the strong topology. The aforementioned result of [2] is as follows
(see Theorems 4.3 and 4.5 in this paper).

Theorem 5.4. The following statements hold.

(1) Let G be a Carathéodory domain. Then, the Cauchy transformation of func-
tionals is an isomorphism from A�1.G/� onto A1.C1 nG/.

(2) Let B be a bounded domain in C with rectifiable boundary possessing the
property B D Int. xB/, then the Cauchy transformation of measures is an iso-
morphism from A1.C1 n B/� onto A�1.B/.

Let us give an outline of the proof of Theorem 5.4, part .1/. In order to prove the the-
orem it is enough (in view of [2, Proposition 4.1]) to verify that the system of Cauchy
kernels ¹ 1

z�a
W a 2C1 nGº is complete in A�1.G/. In order to prove this complete-

ness property we need to prove first that the set of all polynomials is dense in A�1.
This fact is the consequence of Hedberg’s theorem (see Theorem 4.34 above) applied
for the weights wD dist.�; @�/k , k 2 N0. The final step is to approximate each poly-
nomial by respective Cauchy kernels in the topology of the space A�1.G/.

As it was mentioned above (see Propositions 1.5 and 1.6) any Carathéodory
domain G is simply connected and possesses the property G D Int. xG/. Moreover,
the latter condition is equivalent to the Carathéodory one whenever G is a bounded
simply connected domain whose closure does not separate the plane.

As a corollary of Theorem 5.4 in [2] (see Corollary 4.6 of the paper cited) it was
stated the following result: If G is a Carathéodory domain with rectifiable boundary,
then the Cauchy transformation of measures establishes a mutual duality between the
spaces A�1.G/ and A1.C1 nG/.

In this connection it is worth to recall Corollary 2.13 which says that any Carathé-
odory domain with rectifiable boundary is a Jordan domain. Thus, the mutual duality
between the spaces A�1.G/ and A1.C1 n G/ is actually established only for the
class of Jordan domains.

The same remark holds for the result of [2, Theorem 5.7] which we do not state
explicitly because it goes too far from our main line of considerations.
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Analytic balayage of measures supported in Carathéodory domains

Let us briefly discuss one topic concerning the structure of measures that are ortho-
gonal to rational functions, in which the concept of a Carathéodory domain plays a
certain role.

Let G be a Jordan domain with rectifiable boundary, and let � be a measure with
Supp.�/ � G. Then, by [28, Lemma 4.1], the measure �C y�d�j@G is orthogonal to
P (as before, the symbol y� denotes the Cauchy transform of �). In view of the term
y� d�j@G it is not clear how to extend this observation to a wider class of domains.
The following result was proved in [26, Proposition 3].

Proposition‘ 5.5. Let G be a Carathéodory domain in C, let f be a conformal map
from D onto G, and ! be the corresponding complex harmonic measure on @G.

(1) Let � be a measure with Supp.�/ � G. Then, the measure

�� D �C .y� ı f �1/ !; where � D f �1.�/;

is orthogonal to A. xG/.

(2) LetK �G be a compact set, and � be a measure onK [ @G with � ?R. xG/.
Then, there exists a function h 2 H 1 such that � D .� jK/� C .h ı f �1/ !.

Proof. We start with the proof of the first assertion. Put E WD Supp.�/. Since y� is
holomorphic outside E, then y� d� is a well-defined measure on T and � D f .y� d�/
is a measure on @G. Take a function g 2 A. xG/, so that g ı f 2 H1. Using Fubini
and Cauchy theorems and the definition of y� we haveZ

g d�� D

Z
g d�C

Z
g d�D

Z
g d�C

Z
T
g.f .�// y�.�/ d�

D

Z
gd�C

Z
E

�
1

2�i

Z
T

g.f .�//d�

w � �

�
d�.w/D

Z
gd� �

Z
E

g.f .w//d�.w/D0:

In order to prove the second assertion we need to observe that � � .� jK/� is a
measure on @G orthogonal to R. xG/. It remains to apply (3.21).

The representation of orthogonal measures obtained in this proposition has an
interesting connection with the notion of an analytic balayage of measures, which
was introduced by D. Khavinson [74], and which turned out to be a useful tool in
approximations by analytic functions.

Definition 5.6. Let X be a compact set in C, and let � be a measure such that
Supp.�/ � Xı. The measure � on @X is called an analytic balayage of � if � �
� ? R.X/, and for any measure z� on @X such that � � z� ? R.X/, the inequality
kz�k > k�k holds.
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In all cases considered below, the analytic balayage of a given measure is uniquely
determined. Having this remark in mind, we will denote the analytic balayage of �
by ˛.�/ D ˛.�; @X/.

The presented definition of an analytic balayage of measures was given in [74,
Definition 2] for finitely connected compact sets with piecewise analytic boundaries,
but it also makes sense for general compact sets. For measures � supported on X
(but not only on Xı), the analytic balayage was defined in another way by means
of a special implicit construction, namely, a weak-star limit of analytic balayages of
the initial measure to (piecewise analytic) boundaries of certain finitely connected
compact sets approaching X (see [74, Definition 3]).

Let us see what an analytic balayage looks like in a simple case. Let G be a
Jordan domain with piecewise analytic boundary � , and let � be a measure such that
Supp.�/ � G. As was shown in [74, Proposition 2]

˛.�/ D g� dzj� � y�dzj� ; (5.2)

where g� 2 R. xG/ is such that

ky� � g�kL1.� / D inf ky� � gkL1.� /;

the infimum being taken over all functions g 2 R. xG/, and the Lebesgue space L1.� /
is considered with respect to the measure jdzj on � . The fact that the analytic balay-
age of � is uniquely determined in this case is the consequence of [74, Proposition 3].
The formula (5.2) highlights the role of the term y�dzj� which have appeared also in
the part (1) of Proposition 5.5.

Since the explicit expression for analytic balayage is known only for finitely con-
nected compact sets with piecewise analytic boundaries, it would be interesting to find
such formulae for a wider class of compact sets. The class of Carathéodory compact
sets fits this problem most naturally. This is mainly due to the structural properties of
orthogonal measures stated in Proposition 5.5 which hold for the class of Carathéo-
dory domains but not for any other known wider class of domains in C.

The next result which was obtained in [52], see also [1], gives the desired expres-
sion for analytic balayage in the case of Carathéodory domains. We recall, thatH 1 D

H 1.D/ and the space L1 D L1.T / is considered with respect to the measure mT .

Theorem‘ 5.7. LetG be a Carathéodory domain and� be a measure with Supp.�/�
G. Then, ˛.�; @G/ is concentrated on @aG and has the form

˛.�; @G/ D .h� ı f �1/ ! � .y� ı f �1/ !;

where f is a conformal map from D ontoG, the measure � is defined as �D f �1.�/,
and the function h� 2 H 1 is the solution of the extremal problem

ky� � h�kL1 D inf
h2H1

ky� � hkL1 : (5.3)
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It follows from this theorem that the analytic balayage of � in the case under
consideration is uniquely determined (notice that the extremal problem (5.3) has a
unique solution, see [58, Chapter iv, Section 1.2]).

Sketch of the proof of Theorem 5.7. By part (1) of Proposition 5.5 one has

�� D �C .y� ı f �1/ ! ? R. xG/:

Let now z� be an arbitrary measure on @G such that � � z� ? R. xG/. Then,

z� C .y� ı f �1/ ! D z� C .�� � �/ D �� � .� � z�/ ? R. xG/:

Since z� C .y� ı f �1/ ! is a measure on @G, there exists some function h 2 H 1 such
that

z� C .y� ı f �1/ ! D .h ı f �1/ !;

and hence
z� D .h ı f �1/ ! � .y� ı f �1/ !:

It remains to observe that the measure � D ˛.�; @G/ is the measure among z� that has
the minimum norm.

The formula for analytic balayage given in Theorem 5.7, has a simpler form in
the case when the solution h� of the extremal problem (5.3) is zero. Let us describe
the measures for which it is the case. The following result was proved in [1].

Proposition 5.8. Let G be a Carathéodory domain in C, and let f , � and � be as
in Theorem 5.7. Then, ˛.�; @G/ D �.y� ı f �1/ ! if and only if � is a finite sum of
point-mass measures, one of which is supported at the point f .0/.

In order to verify this result we need to use the concept of badly approximable
functions in L1. The function ' 2 L1 is called badly approximable, if only the func-
tion g� � 0 solves the extremal problem

k' � g�kL1 D inf
g2H1

k' � gkL1 :

It follows from [58, Theorem 1.2, Chapter iv] that the solution of this extremal
problem is unique. The class of badly approximable functions admits the following
description.

Proposition 5.9. A function ' 2 L1 is badly approximable if and only if it has the
form ' D x�˚ , where � is an inner function (i.e., � 2 H1 and j�.�/j D 1 for a.a.
� 2 T ), �.0/ D 0, and ˚ 2 L1 is such that ˚ > 0.

This result may be found in [75, Theorem 1], where it was obtained in a slightly
different terms, and the proof provided was lengthly and technically involved. A new
readable proof of this fact was given in [1].
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Outline of the proof of Proposition 5.8. Let K be a compact subset of D, and let ' 2
H.C1 nK/. It follows from Proposition 5.9 that ' is badly approximable if and only
if ' D c xB on T , where c is a positive constant, and B is a finite Blaschke product
with B.0/ D 0.

This fact yields that the solution h� of the extremal problem (5.3) is zero if and
only if the function y� coincides on T with the conjugation of some finite Blaschke
product vanishing at 0. It means that � (and hence �) is a finite sum of point-mass
measures, one of which is supported at the origin (at the point f .0/, respectively).

Harmonic reflection over boundaries of Carathéodory domains

Recently, interest has intensified in the problems on reflection of harmonic functions
over boundaries of domains in the plane and in space and in the problems on preser-
vation of the smoothness properties of functions under such reflection. It is known
several different approaches to define the harmonic reflection. Many of them are
based on constructions of point-to-point reflection related with different variations
of the symmetry principle for harmonic functions. At the same time in [53, 100–102]
the construction was studied that was based on usage of the Dirichlet problems for
harmonic functions in a given domain and in its complement. This construction is
closely connected with the notion of a Carathéodory domain. In the rest of this sec-
tion let k 2 N and k > 1.

Definition 5.10. A nonempty bounded domain G � Rk is called a simple Carathéo-
dory domain if it possesses the following properties:

(1) the set � D Rk n xG is a domain;

(2) @G D @�;

(3) if k > 3 then both domains G and � are regular with respect to the classical
Dirichlet problem for harmonic functions.

In fact, a simple Carathéodory domain in R2 is a Carathéodory domain, whose
closure does not separate the plane. Notice that the third property in Definition 5.10 is
assumed only for N > 3, since any Carathéodory domain in R2 is simply connected
(see Proposition 1.5), and hence it is regular with respect to the Dirichlet problem for
harmonic functions (see, e.g., Section 3.2).

Recall that for m 2 .0; 1� and for a closed set X � Rk (containing at least two
points) the Lipschitz–Hölder space of order m is defined as follows:

Lipm.X/ D
²
h 2 C.X/ W khk0X;m WD sup

jh.x/ � h.y/j

jx � yjm
< C1

³
;

where sup is taken over all couples of points x; y 2 X with x ¤ y . The norm of a
function h 2 Lipm.X/ is defined as follows: khkX;m WD max¹khk0X;m; khkXº.
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Furthermore, for m 2 .0; 1/ we put

Cm.X/ D

²
h 2 Lipm.X/ W lim

ı!0
sup

0<jx�yj<ı

jh.x/ � h.y/j

jx � yjm
D 0

³
:

Notice that using the Whitney extension theorem and a regularization operator, it can
be readily verified that for compact sets X � Rk the space Cm.X/ for m 2 .0; 1/
coincides with the closure in Lipm.X/ of the subspace C1.Rk/jX .

Denote by CR.X/ the space of all real-valued continuous functions on a given
closed set X � Rk . Put

CH .X/ WD CR.X/ \ Har.Int.X//

if X contains no punctured neighborhood of1, or, otherwise,

CH .X/ WD ¹h 2 CR.X/ \ Har.Int.X// W h.x/ D Ojxj!1.jxj2�k/º:

Take a simple Carathéodory domain G � Rk , and let � D Rk n xG, so that � is
a domain and @� D @G.

Let us define two operators, related with the Dirichlet problem for harmonic func-
tions in G and in �. The first one is the Poisson operator PG which maps a given
function ' 2 CR.@G/ to the function f 2 CH . xG/ such that f j@G D '. The Poission
operator P� is defined by the same way. The second one is the harmonic reflection
operator RG that acting from the space CH . xG/ to the space CH .x�/ and that maps a
given function f 2 CH . xG/ to the function g 2 CH .x�/ such that gj@� D f j@G .

Let us consider the question what conditions on G are necessary and sufficient in
order that the operatorsPG orRG preserve smoothness properties of functions, when
smoothness is understood in the sense of Lipm-spaces for 0 < m 6 1 and Cm-spaces
for 0 < m < 1. This question is interesting both in its own, and in connection with
problems on Cm-extension and Cm-approximation for harmonic and subharmonic
functions.

Let nowm andm0 be such that 0 < m0 6m 6 1. One says that the operatorPG is
.m;m0/-continuous, if it is continuous as an operator from the space Lipm.@G/ to the
space Lipm

0

. xG/ \ Har.G/. Respectively, one says that the operator RG is .m; m0/-
continuous, if it is continuous as an operator from Lipm. xG/\Har.G/ to Lipm

0

.x�/\

CH .x�/.
Similarly, for m and m0 such that 0 < m0 6 m < 1, the operator PG is called

C.m;m0/-continuous, if it is continuous operator fromCm.@G/ toCm
0

. xG/\Har.G/,
while the operatorRG is called C.m;m0/-continuous if it is continuous operator from
Cm. xG/ \ Har.G/ to Cm

0

.x�/ \ CH .x�/.
Finally, one says that P� is .m;m0/-continuous, if it is continuous operator from

Lipm.@�/ to Lipm
0

.x�/ \ CH .x�/. Respectively, P� is C.m;m0/-continuous, if it is
continuous from Cm.@�/ to Cm

0

.x�/ \ CH .x�/.
The next proposition combines the results obtained in [100] and [53].
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Theorem 5.11. The following holds.

(1) For any Jordan Lyapunov–Dini domain G in Rk the operator RD is .1; 1/-
continuous; but there exist Jordan domains G with C 1-smooth boundaries
for which it is not the case.

(2) For every simple Carathéodory domain D � Rk both operators PD and P�
are not .1; 1/-continuous.

We are not going here to give a precise definitions of a Jordan Lyapunov–Dini
domain, but we mention that it is a Jordan domain with C 1-smooth boundary, whose
boundary satisfies additional Dini-type continuity condition on inner normal vector.

Theorem 5.11 shows that the problem on .m; m0/-continuity for operators PG
and RG are independent in the general case. At the same time, in many instances the
problems on .m; m0/- and C.m; m0/-continuity of the operator RG can be reduced
to the corresponding problems for the operator P�. Notice that the domain � is
unbounded, and assume, without loss of generality, that the initial domainG contains
the origin. Using the classical Kelvin transform we can further reduce the problems on
.m;m0/- and C.m;m0/-continuity of the operator P� to the corresponding problems
for the operator PB.�/, where B.�/ D ¹x 2 Rk W x=jxj2 2 �º. Let us recall that the
Kelvin transform maps a given function h.x/ to the function jxj2�kh.x=jxj2/; this
mapping is an isomorphism of the spaces Qm.B.�// \ Har.B.�// and Qm.x�/ \

CH .x�/, where Qm.�/ stands for both Lipm.�/ and Cm.�/.
Theorem 2 in [53] gives the following criterion for Lipm-continuity of the Poisson

operator.

Theorem 5.12. Let G, with diam.G/ 6 1, be a simple Carathéodory domain in Rk ,
and let 0 < m0 6 m 6 1. The following conditions are equivalent:

(a) the operator PG is .m;m0/-continuous;
(b) there exists A > 0 such that for each point b 2 @D and for '.x/ D jx � bjm

one has
PG.'/ 2 Lipm

0

. xG/ and kPG.'/k xD;m0 6 AI

(c) there exists A > 0 such that for every point a 2 G and for each point a0 2
@G with the condition ı D ja � a0j D dist.a; @G/ the following estimate is
satisfied:

NX
nD1

.nı/m!.a; En; G/ 6 Aım
0

;

where we set

E0 D ¹x 2 @G W jx � a
0
j 6 ıº;

En D ¹x 2 @G W nı < jx � a
0
j 6 .nC 1/ıº; n > 1;

and, where N is the maximal integer such that EN ¤ ;.
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Using this theorem one can show that for every simple Carathéodory domain
G in Rk there exists a number mG 2 Œ0; 1� possessing the following properties: the
operator PG is .m; m/-continuous for all m 2 .0; mG/, but it is not the case for all
m 2 .mG ; 1�. Moreover, the operator PG is .m;m0/-continuous for all .m;m0/ such
that 0 < m0 < mG and m0 6 m 6 1.

Theorem 1 in [102] says that a similar picture holds in the case of Cm-continuity
of the operator PG .

Theorem 5.13. Let G be a simple Carathéodory domain in Rk , and let mG be the
number defined in the previous statement. The operator PG is C.m;m/-continuous
for allm 2 .0;mG/, but it is not the case for allm 2 .mG ; 1/. Moreover, the operator
PG is C.m;m0/-continuous for all .m;m0/ such that 0 < m0 < mG andm0 6 m < 1.

It follows from [53, Corollaries 3, 8, and 9] that for any simple Carathéodory
domain G � R2 we havemD 2 Œ1=2; 1�, while in the case that k > 3 the numbermD
may take any value from the segment Œ0; 1� in the general case. Let us now clarify
what the numbers mG and m� are equal to in the case when G and � satisfy certain
special geometrical conditions.

Given � 2 .0; 1/ and r > 0 let us define (closed spherical) truncated cone (closed
sector in the two-dimensional case) K.�; r/ in Rk as follows:

K.�; r/ D ¹x 2 Rk W 0 < jxj 6 r; �x 6 ��º [ ¹0º;

where
�x D arccos.x1=jxj/

stands for the angle between the vector x D .x1; : : : ; xk/ and the direction of the axes
Ox1.

One says that a simple Carathéodory domain G � Rk satisfies the external trun-
cated cone condition with parameters .˛; r/, where ˛ 2 .0; 1� and r > 0, if for every
point a 2 @G there exists a truncated coneKa congruent toK.˛=2; r/ with the vertex
a, and such thatKa \G D ;. The internal truncated cone condition is defined by the
same way.

For further considerations we need one auxiliary construction, see [82, Section
1] and [92, Section 2]. For every k > 2 and � > 0 there exists a unique function
gk;� 2 C

2.Œ0; �// such that

g00k;�.t/C .k � 2/ cot.t/g0k;�.t/C �.�C k � 2/gk;�.t/ D 0; t 2 .0; �/;

with gk;�.0/ D 1 and g0
k;�
.0/ D 0. Moreover, the function gk;� has its first (with

respect to the increasing order) positive zero �k.�/ in the interval .0; �/; the func-
tion �k.�/W .0;C1/! .0;�/ is continuous and strictly decreasing; the corresponding
inverse function �k.�/W .0; �/! .0;C1/ is also continuous and injective.
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Both functions �k.�/ and �k.�/may be found in an explicit form for kD 2;4. Thus,
in the case k D 2 the corresponding equation for the function gk;� has a very simple
form g00

2;�
C �2g2;� D 0, so that g2;�.t/ D cos.�t/, �2.�/ D �=.2�/ and �2.�/ D

�=.2�/. For k D 4 it can be shown, that �4.�/D �=.�C 1/ and �4.�/D �1C �=� ,
respectively.

For ˛ 2 .0; 1� we can define the numbermk;˛ WD �k.� � ˛�=2/ so that, in partic-
ular, m2;˛ D 1=.2 � ˛/. It was shown in [53] that for a simple Carathéodory domain
G � Rk satisfying the external truncated cone condition with parameters .˛; r/ for
some ˛ 2 .0; 1/ and r > 0, it holds mG > mk;˛ .

In several cases when a given simple Carathéodory domain G satisfies certain
additional conditions stated in terms of external (or internal) truncated cone condi-
tions (with some ˛), we have that mG D mk;˛ (or, respectively, m� D mk;˛). In the
latter case the operatorRG is .m;m0/-continuous for 0 < m0 <m� withm0 6m6 1,
and it is not the case for allm;m0 such thatm� <m0 6m6 1. Moreover, the operator
RG in this case is C.m;m0/-continuous for all m and m0 such that 0 < m0 < m� and
m0 6 m < 1, but it is not the case for all m and m0 with m� < m0 6 m < 1. These
results and related discussions may be found in [53, Section 3] and [102, Section 2].

Carathéodory domains and invariant subspace problem

We end this chapter and the whole survey by stating one result showing the applica-
tion of Carathéodory domains to the invariant subspace problem. The respective result
was recently obtained in [76]. It states as follows.

Theorem 5.14. Let T be a bounded linear operator on a separable infinite-dimen-
sional Hilbert space H with the spectrum �.T /. Assume that

(i) T is such that kP.T /k 6 kP k�.T / for every P 2 P, and

(ii) 1�.T / is the closure of a Carathéodory domain such that for every � 2 @aG
there exists a rectifiable arc � � @G containing �.

Then, T has a nontrivial invariant subspace H0 (so that TH0 � H0).

As the corollary of this theorem, in [76] the existence of nontrivial invariant sub-
space for a certain subclass of hyponormal operators was proved.
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This work is devoted to the class of sets in the complex plane which nowadays are known as
Carathéodory sets, more precisely speaking, as Carathéodory domains and Carathéodory
compact sets. These sets naturally arose many times in various research areas in Real,
Complex and Functional Analysis and in the Theory of Partial Differential Equations. For
instance, the concept of a Carathéodory set plays a significant role in such topical themes as
approximation in the complex plane, the theory of conformal mappings, boundary value
problems for elliptic partial differential equations, etc. The first appearance of Carathéodory
domains in the mathematical literature (of course, without the special name at that moment)
was at the beginning of the 20th century, when C. Carathéodory published his famous series
of papers about boundary behavior of conformal mappings. The next breakthrough result
which was obtained with the essential help of this concept is the Walsh–Lebesgue criterion
for uniform approximation of functions by harmonic polynomials on plane compacta (1929).
Up to now the studies of Carathéodory domains and Carathéodory compact sets remains a
topical field of contemporary analysis and a number of important results were recently
obtained in this direction. Among them one ought to mention the results about polyanalytic
polynomial approximation, where the class of Carathéodory compact sets was one of the
crucial tools, and the results about boundary behavior of conformal mappings from the unit
disk onto Carathéodory domains. Our aim in the present paper is to give a survey on known
results related with Carathéodory sets and to present several new results concerning the
matter. Starting with the classical works of Carathéodory, Farrell, Walsh, and passing
through the history of Complex Analysis of the 20th century, we come to recently obtained
results, and to our contribution to the theory.
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