
Prologue

The story of the black hole begins with Schwarzschild’s discovery [Sc] of the Schwarz-
schild solution in 1916, soon after Einstein’s foundation of the general theory of relativ-
ity [Ei1] and his final formulation of the field equations of gravitation [Ei2], the Einstein
equations, in 1915. The Schwarzschild solution is a solution of the vacuum Einstein equa-
tions which is spherically symmetric and depends on a positive parameter M , the mass.
With r such that the area of the spheres, which are the orbits of the rotation group, is 4πr2,
the solution in the coordinate system in which it was originally discovered had a singular-
ity at r = 2M . For this reason only the part which corresponds to r > 2M was originally
thought to make sense. This part is static and represents the gravitational field outside a
static, spherically symmetric body with surface area corresponding to some r0 > 2M .

However, the understanding of Schwarzschild’s solution gradually changed. First,
in 1923 Birkoff [Bir] proved a theorem which shows that the Schwarzschild solution
is the only spherically symmetric solution of the vacuum Einstein equations. One does
not therefore need to assume that the solution is static. Thus, Schwarzschild’s solution
represents the gravitational field outside any spherically symmetric body, evolving in any
manner whatever, for example undergoing gravitational collapse.

Eddington [Ed], in1924, made a coordinate change which transformed the Schwarz-
schild metric into a form which is not singular at r = 2M , however he failed to take
proper notice of this. Only in 1933, with Lemaı̂tre’s work [L], was it realized that the
singularity at r = 2M is not a true singularity but rather a failure of the original coor-
dinate system. Eddington’s transformation was rediscovered by Finkelstein [Fi] in 1958,
who realized that the hypersurface r = 2M is an event horizon, the boundary of the re-
gion of spacetime which is causally connected to infinity, and recognized the dynamic
nature of the region r < 2M . Now, Schwarzschild’s solution is symmetric under time
reversal, and one part of it, the one containing the future event horizon, the boundary
of the region of spacetime which can send signals to infinity, is covered by one type of
Eddington-Finkelstein coordinates, while the other part, the one containing the past event
horizon, the boundary of the region of spacetime which can receive signals from infinity,
is covered by the other type of Eddington-Finkelstein coordinates. Actually, only the first
part is physically relevant, because only future event horizons can form dynamically, in
gravitational collapse. Systems of coordinates that cover the complete analytic extension
of the Schwarzschild solution had been provided earlier (in 1950) by Synge [Sy], and a
single most convenient system that covers the complete analytic extension was discovered
independently by Kruskal [Kr] and Szekeres [Sz] in 1960.
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Meanwhile in 1939, Oppenheimer and Snyder had studied the gravitational col-
lapse of a pressure-free fluid ball of uniform density, a uniform density “ball of dust”.
Even though this is a highly idealized model problem, their work was very significant,
being the first work on relativistic gravitational collapse. As mentioned above, the space-
time geometry in the vacuum region outside the ball is given by the Schwarzschild metric.
Oppenheimer and Snyder analyzed the causal structure of the solution. They considered
in particular an observer on the surface of the dust ball sending signals to a faraway
stationary observer at regularly spaced intervals as judged by his own clock. They discov-
ered that the spacing between the arrival times of these signals to the faraway observer
becomes progressively longer, tending to infinity as the radius r0 corresponding to the
surface of the ball approaches 2M . This effect has since been called the infinite redshift
effect. The observer on the surface of the dust ball may keep sending signals after r0 has
become less than 2M , but these signals proceed to ever smaller values of r until, within
a finite affine parameter interval, they reach a true singularity at r = 0. The observer on
the surface of the ball reaches this singular state himself within a finite time interval as
judged by his own clock. The concept of a future event horizon, and hence of a region
of spacetime bounded by this horizon from which no signals can be sent which reach
arbitrarily large distances, was thus already implicit in the Oppenheimer-Snyder work.

The 1964 work of Penrose [P1] introduced the concept of null infinity, which made
possible the precise general definition of a future event horizon as the boundary of the
causal past of future null infinity. A turning point was reached in 1965 with the intro-
duction by Penrose of the concept of a closed trapped surface and his proof of the first
singularity theorem, or, more precisely, incompleteness theorem [P2]. Penrose defined
a trapped surface as being a spacelike surface in spacetime, such that an infinitesimal
virtual displacement of the surface along either family of future-directed null geodesic
normals to the surface leads to a pointwise decrease of the area element. On the basis of
this concept, Penrose proved the following theorem:

A spacetime (M, g) cannot be future null geodesically complete if:

1. Ric(N, N) ≥ 0 for all null vectors N.

2. There is a non-compact Cauchy hypersurface H in M.

and:

3. There is a closed trapped surface S in M.

Here Ric is the Ricci curvature of g and condition 1 is always satisfied by virtue
of the Einstein equations and the physical positivity condition on the energy-momentum-
stress tensor of matter.

Once the notions of null infinity and of a closed trapped surface were introduced,
it did not take long to show that a spacetime with a complete future null infinity which
contains a closed trapped surface must contain a future event horizon, the interior of
which contains the trapped surface (see [H-E], Proposition 9.2.1). For the ideas and meth-
ods which go into Penrose’s theorem the reader may consult, besides the monograph by
Hawking and Ellis just mentioned, the article by Penrose in [P3] as well as his mono-
graph [P4]. Further singularity theorems, which also cover cosmological situations, were
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subsequently established by Hawking and Penrose (see [H-E]), but it is the original sin-
gularity theorem quoted above which is of interest in the present context, as it concerns
gravitational collapse. We should also mention that the term black hole for the interior of
the future event horizon was introduced by Wheeler in 1967 (see [Wh]).

Now, the 1952 work of Choquet-Bruhat [Cho1] (see also [Cho2] and [Cho3]) had
shown that any initial data set (H, g, k), where H is a 3-dimensional manifold, g is a
Riemannian metric on H and k is a symmetric 2-covariant tensorfield on H , such that the
pair (g, k) satisfies the so-called “constraint equations”, has a future development (M, g),
namely a 4-dimensional manifold M endowed with a Lorentzian metric g satisfying the
vacuum Einstein equations, such that H is the past boundary of M , g and k are the first
and second fundamental forms of H relative to (M, g), and for each p ∈ M each past-
directed causal curve initiating at p terminates at a point of H . The constraint equations
are the contracted Codazzi and twice contracted Gauss equations of the embedding of
H in M . The subsequent 1969 work of Choquet-Bruhat and Geroch [C-G] then showed
that each such an initial data set has a unique maximal future development M∗, namely a
future development, in the above sense, which extends every other future development of
the same initial data set. Geroch [Ge] subsequently showed that for any future develop-
ment (M, g), M is diffeomorphic to [0,∞) × H . Moreover, the above theorems extend
to the case where instead of vacuum we have suitable matter, such as a perfect fluid, or an
electromagnetic field. In the light of the theorem of Choquet-Bruhat and Geroch, condi-
tion 2 in Penrose’s theorem may be replaced by the statement that (M, g) is the maximal
future development of initial data on a complete non-compact spacelike hypersurface.

In 1990 Rendall [R] solved in a very satisfactory manner the local characteristic
initial value problem for the vacuum Einstein equations (earlier work had been done by
Choquet-Bruhat [Cho4] and by Müller with Hagen and Seifert [M-S]). In this case we
have, in the role of H , either two null hypersurfaces C and C intersecting in a spacelike
surface S, S being the past boundary of both C and C , or a future null geodesic cone
Co of a point o. The initial data on C and C are the conformal intrinsic geometry of
these null hypersurfaces, together with the full intrinsic geometry of S, the initial rate of
change of the area element of S under displacement along C and C , and a certain 1-form
on S (the torsion). The initial data on Co are the conformal intrinsic geometry of Co and
certain regularity conditions at o. In contrast to the case where the initial data are given
on a spacelike hypersurface, there are no constraints, and the initial data can be freely
specified. The theorem of Rendall then shows that any such characteristic initial data has
a future development (M, g), bounded in the past by a neighborhood of S in C

⋃
C and of

o in Co respectively. The theorem of Choquet-Bruhat and Geroch, which applies to future
developments, then shows that there is a unique maximal future development (M∗, g)
corresponding to the given characteristic initial data.

Now the proof of the theorem of Penrose is by showing that if M were complete,
the boundary ∂ J+(S) of the causal future J+(S) of the closed trapped surface S would be
compact. The integral curves of any timelike vectorfield on M would define a continuous
mapping of ∂ J+(S) into H , M being a development of H , and this mapping would have
to be a homeomorphism onto its image, ∂ J+(S) being compact. This leads to a contra-
diction with the assumption that H is non-compact. We see that the proof makes no use
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of the strictly spacelike nature of H other than through the assumption that M is a future
development of H . We may therefore replace H by a complete future null geodesic cone
and restate the theorem as follows. Here vacuum or suitable matter is assumed. We do not
state the first condition of Penrose’s because as we already mentioned, it is automatically
satisfied by virtue of the physical positivity condition that the energy-momentum-stress
tensor of matter satisfies.

Let us be given regular characteristic initial data on a complete null geodesic cone Co

of a point o. Let (M∗, g) be the maximal future development of the data on Co. Sup-
pose that M∗ contains a closed trapped surface. Then (M∗, g) is future null geodesically
incomplete.

An important remark at this point is that it is not a priori obvious that closed trapped
surfaces are evolutionary. That is, it is not obvious whether closed trapped surfaces can
form in evolution starting from initial conditions in which no such surfaces are present.
What is more important, the physically interesting problem is the problem where the
initial conditions are of arbitrarily low compactness, that is, arbitrarily far from already
containing closed trapped surfaces, and we are asked to follow the long-time evolution
and show that, under suitable circumstances, closed trapped surfaces eventually form.
Only an analysis of the dynamics of gravitational collapse can achieve this aim.

Returning to our review of the historical development of the black hole concept, a
very significant development took place in 1963, shortly before the work of Penrose. This
was the discovery by Kerr [Ke] of a two-parameter family of axially symmetric solutions
of the vacuum Einstein equations, with an event horizon, the exterior of which is a regular
asymptotically flat region. The two parameters are the mass M , which is positive, and
the angular momentum L about the axis of symmetry, which is subject to the restriction
|L| ≤ M2. Kerr’s solution reduces in the special case of vanishing angular momentum to
Schwarzschild’s solution. The Kerr solution possesses an additional Killing field, besides
the generator of rotations about the axis, however this additional Killing field, in contrast
to the case of the Schwarzschild solution, is timelike not on the entire exterior of the
horizon, but only in the exterior of a non-spacelike hypersurface containing the horizon.
So only in this exterior region is the solution stationary in a strict sense. At every point
of the region between the two hypersurfaces, called the ergosphere, the additional Killing
field is spacelike, but the plane which is the linear span of the two vectors at this point is
timelike. On the horizon itself the plane becomes null and tangent to the horizon, and the
null line generating this null plane defines the angular velocity of the horizon, a constant
associated to the horizon. Kerr’s solution is symmetric under time reversal if also the sign
of the angular momentum is reversed, hence it possesses, besides the future event horizon,
also an unphysical past event horizon, just like the Schwarzschild solution.

The fascinating properties of the Kerr solution were revealed in the decade fol-
lowing its discovery. In particular, Boyer and Lindquist [B-L] introduced a more con-
venient coordinate system and obtained the maximal analytic extension. One of these
fascinating properties which concerns us here is that the hypersurfaces of constant Boyer-
Lindquist coordinate t are complete asymptotically flat maximal spacelike hypersurfaces,
their maximal future development contains closed trapped surfaces and, in accordance
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with Penrose’s theorem, is incomplete. Nevertheless the future boundary of the maximal
development is nowhere singular, the solution extending as an analytic solution across
this boundary. This future boundary is a regular null hypersurface, a Cauchy horizon, il-
lustrating the fact that incompleteness of the maximal future development does not imply
a singular future boundary.

Returning again to the question of whether closed trapped surfaces are evolution-
ary, one may at first hand say that the question was already settled in the affirmative by
the Oppenheimer-Snyder analysis. This is because hyperbolic systems of partial differen-
tial equations, such as the Einstein-Euler equations describing a perfect fluid in general
relativity, possess the property of continuous dependence of the solution on the initial
conditions. This holds at a given non-singular solution, for a given finite time interval.
Thus, since the initial condition of a homogeneous dust ball leads to a trapped sphere
within a finite time interval, initial conditions which are sufficiently close to this special
initial condition will also lead to the formation of closed trapped surfaces within the same
time interval, the condition for a closed spacelike surface to be trapped being an open
condition. However, as we remarked above, the case that one is really interested in is
that for which the initial homogeneous dust ball is of low compactness, far from already
containing trapped spheres, and it is only by contracting for a sufficiently long time that
a trapped sphere eventually forms. In this case the closeness condition of the continuous
dependence theorem may require the initial conditions to be so unreasonably close to
those of a homogeneous dust ball that the result is devoid of physical significance.

With the above remarks in mind the author turned to the study of the gravitational
collapse of an inhomogeneous dust ball [Chr1]. In this case, the initial state is still spher-
ically symmetric, but the density is a function of the distance from the center of the ball.
The corresponding spherically symmetric solution had already been obtained in closed
form by Tolman in 1934 [T], in comoving coordinates, but its causal structure had not
been investigated. This required integrating the equations for the radial null geodesics.
A very different picture from the one found by Oppenheimer and Snyder emerged from
this study. The initial density being assumed a decreasing function of the distance from
the center, so that the central density is higher than the mean density, it was found that as
long as the collapse proceeds from an initial state of low compactness, the central density
becomes infinite before a black hole has a chance to form, thus invalidating the neglect of
pressure and casting doubt on the predictions of the model from this point on, in particular
on the prediction that a black hole eventually forms.

At this point the author turned to the spherically symmetric scalar field model
[Chr2]. This is the next simplest material model after the dust model. The energy-mo-
mentum-stress tensor of matter is in this case that corresponding to a scalar field φ:

Tµν = ∂µφ∂νφ + 1

2
σgµν, σ = −(g−1)µν∂µφ∂νφ. (1)

The integrability condition for Einstein’s equations, namely that Tµν is divergence-free,
is then equivalent to the wave equation for φ relative to the metric g. The problem had
been given to the author by his teacher, John Archibald Wheeler, in 1968 (see [Chr3]), as
a model problem through which insight into the dynamics of gravitational collapse would
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be gained. In the case of the dust model, there is no force opposing the gravitational
attraction , so there is no alternative to collapse. This is not the case for the scalar field
model and indeed in [Chr2] it was shown that, if the initial data are suitably small, we
obtain a complete regular solution dispersing to infinity in the infinite future. So, for the
scalar field model there is a threshold for gravitational collapse. In this paper and the
papers on the scalar field that followed, the initial data were given on a complete future
null geodesic cone Co extending to infinity. The initial data on Co consist of the function
α0 = ∂(rφ)/∂s|Co

, s being the affine parameter along the generators of Co.

The next paper [Chr4] on the scalar field problem addressed the general case, when
the initial data were no longer restricted by a smallness condition. The aim of this work
was to prove the existence of a solution with a complete domain of outer communications,
that is, a development possessing a complete future null infinity, the domain of outer com-
munications being defined as the causal past of future null infinity. This was tantamount to
proving the weak cosmic censorship conjecture of Penrose [P5] (called “asymptotic future
predictability” in [H-E]) in the context of the spherically symmetric scalar field model.
The aim was not reached in this paper. What was established instead was the existence,
for all regular asymptotically flat initial data, of a generalized solution corresponding to a
complete domain of outer communications. A generalized solution had enough regularity
to permit the study of the asymptotic behavior in the domain of outer communications in
the next paper, however no uniqueness could be claimed for these generalized solutions,
so the conjecture of Penrose was left open.

In [Chr5] it was shown that when the final Bondi mass, that is, the infimum of the
Bondi mass at future null infinity, is different from zero, a black hole forms of mass equal
to the final Bondi mass, surrounded by vacuum. The rate of growth of the redshift of light
seen by faraway observers was determined and the asymptotic wave behavior at future
null infinity and along the event horizon was analyzed. However, the question of whether
there exist initial conditions which lead to a non-zero final Bondi mass was not addressed
in this paper.

The next paper [Chr6] was a turning point in the study of the spherically symmetric
scalar field problem. Because of the fact that it has provided a stepping stone for the
present monograph, I quote its main theorem. Here Co denotes the initial future null
geodesic cone.

Consider on Co an annular region bounded by two spheres S1,0 and S2,0 with S2,0
in the exterior of S1,0. Let δ0 and η0 be the dimensionless size and the dimensionless mass
content of the region, defined by

δ0 = r2,0

r1,0
− 1, η0 = 2(m2,0 − m1,0)

r2,0
,

r1,0, r2,0 and m1,0,m2,0 being the area radii and mass contents of S1,0, S2,0 respectively.
Let C1 and C2 be incoming null hypersurfaces through S1,0 and S2,0 and consider the
spheres S1 and S2 at which C1 and C2 intersect future null geodesic cones C with vertices
on the central timelike geodesic �0. There are positive constants c0 and c1 such that, if
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δ0 ≤ c0 and

η0 > c1δ0 log

(
1

δ0

)

,

then S2 becomes trapped before S1 reduces to a point on �0. There is a future null
geodesic cone C∗ with vertex on �0 such that S∗

2 is a maximal sphere in C∗ while r∗
1 > 0.

It was further shown that the region of trapped spheres, the trapped region, termi-
nates at a strictly spacelike singular boundary, and contains spheres whose mass content
is bounded from below by a positive constant depending only on r1,0, r2,0, a fact which
implies that the final Bondi mass is positive, thus connecting with the previous work.

An important remark concerning the proof of the above theorem needs to be made
here. The proof does not consider at all the region interior to the incoming null hypersur-
face C1. However, the implicit assumption is made that no singularities form on �0 up to
the vertex of C∗. If a smallness condition is imposed on the restriction of the initial data to
the interior of S1,0, the argument of [Chr2] shows that this assumption indeed holds. Also,
by virtue of the way in which the theorem was later applied in [Chr9], the assumption in
question was a priori known to hold.

Since the spherical dust model had been disqualified by [Chr1] as establishing the
dynamical formation of trapped spheres, the work [Chr6] was the first to establish the dy-
namical formation of closed trapped spheres in gravitational collapse, although, of course,
severely limited by the restriction to spherical symmetry and by the fact that it concerned
an idealized matter model.

Solutions with initial data of bounded variation were considered in [Chr7] and a
sharp sufficient condition on the initial data was found for the avoidance of singularities,
namely that the total variation be sufficiently small, greatly improving the result of [Chr2].
Moreover, a sharp extension criterion for solutions was established, namely that if the
ratio of the mass content to the radius of spheres tends to zero as we approach a point on
�0 from its causal past, then the solution extends as a regular solution to include a full
neighborhood of the point. The structure of solutions of bounded variation was studied
and it was shown that at each point of �0 the solutions are locally scale invariant. Finally,
the behavior of the solutions at the singular boundary was analyzed.

In [Chr8] the author constructed examples of solutions corresponding to regular
asymptotically flat initial data which develop singularities that are not preceded by a
trapped region but have future null geodesic cones expanding to infinity. It was thus es-
tablished for the first time that naked singularities do, in fact, occur in the gravitational
collapse of a scalar field. Also, other examples were constructed which contain singu-
lar future null geodesic cones that have collapsed to lines and again are not preceded by
trapped regions.

The work on the spherically symmetric scalar field model culminated in [Chr9].
Taking the space of initial data to be the space A of absolutely continuous functions on
the non-negative real line, the theorem proved in [Chr9] was the following.

Let us denote byR the subset ofA consisting of those initial data which lead to a complete
maximal future development, and by S its complement in A. Let also G ⊂ S be the
subset consisting of those initial data which lead to a maximal development possessing a
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complete future null infinity and a strictly spacelike singular future boundary. Then E =
S \ G has the following property. For each initial data α0 ∈ E there is a function f ∈ A,
depending on α0, such that the line Lα0 = {α0 + c f : c ∈ 	} in A is contained in G,
except for α0 itself. Moreover, the lines Lα0,1 , Lα0,2 corresponding to distinct α0,1, α0,2 ∈
E do not intersect.

The exceptional set E being, according to this theorem, of codimension at least 1, the
theorem established, within the spherically symmetric scalar field model, the validity not
only of the weak cosmic censorship conjecture of Penrose, but also of his strong cosmic
censorship conjecture, formulated in [P6]. This states, roughly speaking, that generic
asymptotically flat initial data have a maximal development which is either complete or
terminates in a totally singular future boundary. The general notion of causal boundary of
a spacetime manifold was defined in [G-K-P]. The relationship between the two cosmic
censorship conjectures is discussed in [Chr10]. In the case of the spherically symmetric
scalar field model, there is no system of local coordinates in which the metric extends as
a Lorentzian metric through any point of the singular future boundary.

The proof of the above theorem is along the following lines. It is first shown that if
�0 is complete, the maximal future development is also complete. Thus one can assume
that �0 has a singular end point e. We then consider Ce, the boundary of the causal
past of e. This intersects the initial future null geodesic cone Co in a sphere S0,e. Given
then any sphere S0,1 exterior to S0,e on Co, but as close as we wish to S0,e, we consider
the incoming null hypersurface C1 through S0,1. Allowing a suitable modification of the
initial data as in the statement of the theorem, with f a function vanishing in the interior
of S0,e on Co, it is then shown that there exists a point p0 on �0, earlier than e, such that
the annular region on the future null geodesic cone Cp0 , with vertex at p0, bounded by the
intersections with Ce and C1 satisfies the hypotheses of the theorem of [Chr6]. It is in this
part of the proof that the singular nature of the point e is used. Application of the theorem
of [Chr6] then shows that if we consider future null geodesic cones Cp with vertices p on
the segment of �0 between p0 and e, and the corresponding intersections with Ce and C1,
then for some p∗ in this segment earlier than e, Cp∗

⋂
C1 is a maximal sphere in Cp∗ ,

and the part of C1 to the future of this sphere lies in a trapped region. We see therefore
the essential role played by the formation of trapped spheres theorem of [Chr6] in the
proof of the cosmic censorship conjectures in [Chr9] in the framework of the spherically
symmetric scalar field model.

A model, closely related to the scalar field model but with surprising new features,
was studied by Dafermos in [D1], [D2]. In this model we have in addition to the scalar
field an electromagnetic field. The two fields are only indirectly coupled, through their in-
teraction with the gravitational field, the energy-momentum-stress tensor of matter being
the sum of (1) with the Maxwell energy-momentum-stress tensor for the electromagnetic
field. By the imposition of spherical symmetry, the electromagnetic field is simply the
Coulomb field corresponding to a constant charge Q. This is non-vanishing by virtue of
the fact that the topology of the manifold is 	2 × S2, like the manifold of the Schwarz-
schild solution, so there are spheres which are not homologous to zero. Dafermos showed
that in this case part of the boundary of the maximal development is a Cauchy horizon,
through which the metric can be continued in a C0 manner, but at which, generically,
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the mass function blows up. As a consequence, generically, there is no local coordinate
system in any neighborhood of any point on the Cauchy horizon in which the connec-
tion coefficients (Christoffel symbols) are square-integrable. This means that the solution
ceases to make sense even as a weak solution of the Einstein-Maxwell-scalar field equa-
tions if we attempt to include the boundary. The work of Dafermos illustrates how much
care is needed in formulating the strong cosmic censorship conjecture. In particular, the
formulation given in [Chr10] according to which C0 extensions through the boundary of
the maximal development are generically excluded, turned out to be incorrect. Only if
the condition is added that there be no extension as a solution, even in a weak sense, to
include any part of the boundary, is the counterexample avoided.

Before the work on the scalar field model was completed, the author introduced
and studied a model which was designed to capture some of the features of actual stellar
gravitational collapse, while capitalizing to a maximum extent on the knowledge gained
in the study of the dust and scalar field models. This was the two-phase model, introduced
in [Chr11] and studied further in [Chr12] and [Chr13]. Let us recall here that a perfect
fluid model is in general defined by specifying a function e(n, s), the energy per particle
as a function of n, the number of particles per unit volume, and s, the entropy per particle.
This is called the equation of state. Then the mass-energy density ρ, the pressure p and
the temperature θ are given by:

ρ = ne, p = n2 ∂e

∂n
, θ = ∂e

∂s
. (2)

The mechanics of a perfect fluid are governed by the differential conservation laws

∇νTµν = 0, ∇µ Iµ = 0 (3)

where Tµν is the energy-momentum-stress tensor

Tµν = ρuµuν + p((g−1)µν + uµuν), (4)

uµ being the fluid velocity, and
Iµ = nuµ (5)

is the particle current. In the case of the two-phase model, p is a function of ρ alone. For
such fluids, called barotropic, p and ρ are functions of the single variable

µ = nm(s) (6)

where m(s) is a positive increasing function of s. In the two-phase model, if ρ is less than
a critical value, which by proper choice of units we may set equal to 1, the matter is as
soft as possible, the sound speed being equal to 0, while if ρ is greater than 1, the matter
is as hard as possible, the sound speed being equal to 1, that is, to the speed of light in
vacuum. Let us recall here that the sound speed η is in general given by

η2 =
(

dp

dρ

)

s
. (7)
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The pressure in the two-phase model is then given by

p =
{

0 : if ρ ≤ 1
ρ − 1 : if ρ > 1

. (8)

The condition of spherical symmetry being imposed, the flow is irrotational. The soft
phase of the two-phase model coincides with the dust model while the hard phase co-
incides with the scalar field model with the restriction that −(g−1)µν∂νφ be a future-
directed timelike vectorfield. With

σ = −(g−1)µν∂µφ∂νφ, (9)

the density of mass-energy ρ and the fluid velocity uµ are given by

ρ = 1

2
(σ + 1), uµ = − (g

−1)µν∂νφ√
σ

. (10)

The energy-momentum-stress tensor in the hard phase is

Tµν = ∂µφ∂νφ + 1

2
(σ − 1)gµν, (11)

so it differs from the standard one for a scalar field (1) by the term −(1/2)gµν, the diver-
gence-free condition on Tµν being again equivalent to the wave equation for φ in the
metric g.

Each of the two phases is by itself incomplete, the soft phase being limited by the
condition ρ ≤ 1 and the hard phase being limited by the condition σ ≥ 1. The soft
phase turns in contraction into the hard phase, while the hard phase turns upon expansion
into the soft phase. Only the two phases taken together constitute a complete model. The
hypersurface which forms the interface between the two phases has both spacelike and
timelike components. Across a spacelike component, the thermodynamic variables n, s
or ρ, p and the fluid velocity uµ are continuous, the final values of one phase providing
the initial values for the next phase. However, across a timelike component the thermo-
dynamic variables and the fluid velocity suffer discontinuities, determined by the integral
form of the conservation laws. These are of an irreversible character, each point of a time-
like component which is crossed by a flow line being a point of increase of the entropy.
A timelike component of the phase boundary is therefore a shock, and the development
of these shocks is a free-boundary problem, which was studied in [Chr12] and [Chr13].
With initial condition an inhomogeneous dust ball at zero entropy, these papers showed
that the core of the ball turns continuously into the hard phase, however at a certain sphere
a shock forms which propagates outwards, absorbing the exterior part of the original dust
ball. Behind this shock we have the hard phase at positive entropy, but the analysis was
not carried further to investigate under what initial conditions a black hole will eventu-
ally form. We should also mention here that the two-phase model admits a one-parameter
family of static solutions, balls of the hard phase, surrounded by vacuum.

The goal of the effort in the field of relativistic gravitational collapse is the study
of the formation of black holes and singularities for general asymptotically flat initial
conditions, that is, when no symmetry conditions are imposed.
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In this connection, an interesting theorem was established by Schoen and Yau
[S-Y1], as an outgrowth of their proof of the general case of the positive mass theorem
[S-Y2] (their earlier work [S-Y1] covered the case of a maximal spacelike hypersurface
of vanishing linear momentum; a different proof of the general theorem was subsequently
given by Witten [Wi]). In [S-Y1] it is shown that if the energy density minus the mag-
nitude of the momentum density of matter on a spacelike hypersurface is everywhere
bounded from below by a positive constant b in a region which is large enough in a
suitable sense that roughly corresponds to linear dimensions of at least b−1/2, then the
spacelike hypersurface must contain a closed trapped surface diffeomorphic to S2. Al-
though this work does not address the problem of evolution, the constraint equations
alone entering the proof, it is nevertheless relevant for the problem of evolution, in so
far as it reduces the problem of the dynamical formation of a closed trapped surface to
the problem of showing that, under suitable circumstances, the required material energy
concentration eventually occurs.

As far as the problem of evolution itself, let us first discuss the case where the
material model is a perfect fluid. Then, as we have seen in the spherically symmetric case,
before closed trapped surfaces form, shock waves already form. Now, the general problem
of shock formation in a relativistic fluid, in the physical case of three spatial dimensions,
has recently been studied by the author in the monograph [Chr14]. This work is in the
framework of special relativity. We should remark here that the only previous result in
relation to shock formation in fluids in three spatial dimensions was the result of Sideris
[Si] which considers the non-relativistic problem of a classical ideal gas with adiabatic
index γ > 1. Moreover, in that work it is only shown that the solutions cannot remain C1

for all time, no information being given as to the nature of the breakdown.
However, more detailed results on breakdown for certain quasilinear wave equations

in more than one spatial dimension had in the meantime been obtained by Alinhac [A1,
A2]. The theorems proved in the monograph [Chr14] give a detailed picture of shock
formation. In particular a detailed description is given of the geometry of the boundary
of the maximal development of the initial data and of the behavior of the solution at this
boundary. The notion of maximal development in this context is not that relative to the
background Minkowski metric gµν , but rather the one relative to the acoustical metric

hµν = gµν + (1 − η2)uµuν, uµ = gµνu
ν, (12)

a Lorentzian metric, the null cones of which are the sound cones. It is not appropriate
to give here a complete summary of the results of [Chr14]. Instead, the following short
discussion should suffice to give the reader a feeling for the present status of shock wave
theory in the physical case of three spatial dimensions. In [Chr14] it is shown that the
boundary of the maximal development in the above “acoustical” sense consists of a reg-
ular part and a singular part. Each component of the regular part C is an incoming char-
acteristic (relative to h) hypersurface which has a singular past boundary. The singular
part of the boundary is the locus of points where the density of foliations by outgoing
characteristic (relative to h) hypersurfaces blows up. It is the union ∂−B

⋃
B , where each

component of ∂−B is a smooth embedded surface in Minkowski spacetime, the tangent
plane to which at each point is contained in the exterior of the sound cone at that point. On
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the other hand, each component of B is a smooth embedded hypersurface in Minkowski
spacetime, the tangent hyperplane to which at each point is contained in the exterior of the
sound cone at that point, with the exception of a single generator of the sound cone, which
lies on the hyperplane itself. The past boundary of a component of B is the correspond-
ing component of ∂− B . The latter is at the same time the past boundary of a component
of C . This is the surface where a shock begins to form. Now the maximal development
in the acoustical sense, or “maximal classical solution”, is the physical solution of the
problem up to C

⋃
∂−B , but not up to B . In the last part of [Chr14] the problem of the

physical continuation of the solution is set up as the shock development problem. This is
a free-boundary problem associated to each component of ∂−B . In this problem one is
required to construct a hypersurface of discontinuity K , the shock, lying in the past of the
corresponding component of B but having the same past boundary as the latter, namely
the given component of ∂−B , the tangent hyperplanes to K and B coinciding along ∂− B .
Moreover, one is required to construct a solution of the differential conservation laws in
the domain in Minkowski spacetime bounded in the past by C

⋃
K , agreeing with the

maximal classical solution on C
⋃
∂− B , while having jumps across K relative to the data

induced on K by the maximal classical solution, these jumps satisfying the jump condi-
tions which follow from the integral form of the conservation laws. Finally, K is required
to be spacelike relative to the acoustical metric induced by the maximal classical solution,
which holds in the past of K , and timelike relative to the new solution, which holds in
the future of K . The maximal classical solution thus provides the boundary conditions on
C
⋃
∂− B , as well as a barrier at B .
The shock development problem is only set up, not solved, in [Chr14]. The author

plans to address this problem in the near future. One final result of [Chr14] needs to be
mentioned here however. In the context of [Chr14], the solution is irrotational up to K .
At the end of that monograph a formula is derived for the jump in vorticity across K of
a solution of the shock development problem. This formula shows that while the flow is
irrotational ahead of the shock, it acquires vorticity immediately behind.

This brings us to another problem. This is the problem of the long-time behavior of
the vorticity along the fluid flow lines. By reason of the result just quoted, this problem
must also be solved to achieve an understanding of the dynamics, even when the initial
conditions are restricted to be irrotational. Now, even in the non-relativistic case, and even
in the case that the compressibility of the fluid is neglected, this is a very difficult problem.
Indeed, the problem, in the context of the incompressible Euler equations, of whether or
not the vorticity blows up in finite time along some flow lines, is one of the great unsolved
problems of mathematics (see [Co]).

In conclusion, it is clear that the above basic fluid mechanical problems must be
solved first, before any attempt is made to address the problem of the general non-
spherical gravitational collapse of a perfect fluid in general relativity.

However, once the restriction to spherical symmetry is removed, the dynamical de-
grees of freedom of the gravitational field itself come into play, and the thought strikes one
that we may not need matter at all to form black holes. Even in vacuum, closed trapped
surfaces could perhaps be formed by the focusing of sufficiently strong incoming gravi-
tational waves. It is in fact this problem which John Wheeler related to the author back in
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1968: the formation of black holes in pure general relativity, by the focusing of incoming
gravitational waves. And it is this problem the complete solution of which is found in
the present monograph. Because of the absence of spherically symmetric solutions of the
vacuum Einstein equations other than the Schwarzschild solution, the problem in ques-
tion was far out of reach at that time, and for this reason John Wheeler advised the author
to consider instead the spherically symmetric scalar field problem as a model problem,
by solving which, insights would be gained that would prepare us to attack the original
problem. Indeed there is some analogy between scalar waves and gravitational waves, but
whereas a scalar field is a fiction introduced only for pedagogical reasons, gravitational
waves are a fundamental aspect of physical reality. We should remember here the remarks
of Einstein in regard to the two sides of his equations. The right-hand side, which involves
the energy-momentum-stress tensor of matter, he called “wood”, while the left-hand side,
the Ricci curvature, he called “marble”, recalling, perhaps, the simplicity of an ancient
Greek temple.

We shall now state the simplest version of the theorem on the formation of closed
trapped surfaces in pure general relativity which this monograph establishes. This is the
limiting version, where we have an asymptotic characteristic initial value problem with
initial data at past null infinity. Denoting by u the “advanced time”, it is assumed that
the initial data are trivial for u ≤ 0. Our methods allow us to replace this assumption by
a suitable falloff condition in |u| for u ≤ 0, thereby extending the theorem. This would
introduce no new difficulties of principle, but would require more technical work, which
would have considerably lengthened the monograph, obscuring the main new ideas.

Let k, l be positive constants, k > 1, l < 1. Let us be given smooth asymptotic initial data
at past null infinity which is trivial for advanced time u ≤ 0. Suppose that the incoming
energy per unit solid angle in each direction in the advanced time interval [0, δ] is not
less than k/8π . Then if δ is suitably small, the maximal development of the data contains
a closed trapped surface S which is diffeomorphic to S2 and has area

Area(S) ≥ 4πl2.

The form of the smallness assumption on δ is specified in the precise form of the
theorem, stated in Chapter 17. We remark that, by virtue of the scale invariance of the
vacuum Einstein equations, the theorem holds with k, l, and δ, replaced by ak, al, and
aδ, respectively, for any positive constant a.

The above theorem is obtained through a theorem in which the initial data is given
on a complete future null geodesic cone Co. The generators of the cone are parametrized
by an affine parameter s measured from the vertex o and defined so that the corresponding
null geodesic vectorfield has projection T at o along a fixed unit future-directed timelike
vector T at o. It is assumed that the initial data are trivial for s ≤ r0, for some r0 > 1.
The boundary of this trivial region is then a round sphere of radius r0. The advanced time
u is then defined along Co by

u = s − r0. (13)

The formation of the closed trapped surfaces theorem is similar in this case, the only
difference being that the “incoming energy per unit solid angle in each direction in the
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advanced time interval [0, δ]”, a notion defined only at past null infinity, is replaced by
the integral

r2
0

8π

∫ δ

0
edu (14)

on the affine parameter segment [r0, r0 + δ] of each generator of Co. The function e is an
invariant of the conformal intrinsic geometry of Co, given by

e = 1

2
|χ̂ |2g/, (15)

where g/ is the induced metric on the sections of Co corresponding to constant values of
the affine parameter, and χ̂ is the shear of these sections, the trace-free part of their 2nd
fundamental form relative to Co. The theorem for a cone Co is established for any r0 > 1
and the smallness condition on δ is independent of r0. The domain of dependence, in the
maximal development, of the trivial region in Co is a domain in Minkowski spacetime
bounded in the past by the trivial part of Co and in the future by Ce, the past null geodesic
cone of a point e at arc length 2r0 along the timelike geodesic �0 from o with tangent vec-
tor T at o. Considering then the corresponding complete timelike geodesic in Minkowski
spacetime, fixing the origin on this geodesic to be the point e, the limiting form of the
theorem is obtained by letting r0 → ∞, keeping the origin fixed, so that o tends to the
infinite past along the timelike geodesic.

The theorem on the formation of closed trapped surfaces in this monograph may
be compared to the corresponding theorem in [Chr6] for the spherically symmetric scalar
field problem quoted above. In sharp contrast to that theorem however, here almost all
the work goes into establishing an existence theorem for a development of the initial
data which extends far enough into the future so that trapped spheres have eventually a
chance to form within this development. This theorem is first stated as Theorem 12.1 in
the way in which it is actually proved, and then restated as Theorem 16.1, in the way in
which it can most readily be applied, after the proof is completed. So all chapters of this
monograph, with the exception of the last (and shortest) chapter, are devoted to the proof
of the existence theorem. On the other hand, there is a wealth of information in Theorem
16.1, which gives us full knowledge of the geometry of spacetime when closed trapped
surfaces begin to form. The theorems established in this monograph thus constitute the
first foray into the long-time dynamics of general relativity in the large, that is, when
the initial data are no longer confined to a suitably small neighborhood of Minkowskian
data. However, the existence theorem which we establish does not cover the whole of the
maximal development, and for this reason the question regarding the nature of the future
boundary of the maximal development is left unanswered.

We shall now give a brief discussion of the mathematical methods employed in
this monograph, for, as is generally acknowledged, the methods in a mathematical work
are often more important than the results. This monograph relies on three methods, two
of which stem from the author’s work with Klainerman [C-K] on the stability of the
Minkowski spacetime, and the third method is new. We shall first summarize the first two
methods.
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The work [C-K] which established the global nonlinear stability of the Minkow-
ski spacetime of special relativity within the framework of general relativity, was a work
within pure general relativity, concerned, like the present one, with the “marble side”
of Einstein’s equations, the “wood” side having been set equal to zero. Both of the main
mathematical methods employed were new at the time when the work was composed. The
first method was peculiar to Einstein’s equations, while the second had wider application,
and could, in principle, be extended to all Euler-Lagrange systems of partial differential
equations of hyperbolic type.

The first method was a way of looking at Einstein’s equations which allowed esti-
mates for the spacetime curvature to be obtained. A full exposition of this method is given
in Chapter 12, which is also self-contained, except for Propositions 12.1, 12.5 and 12.6,
which are quoted directly from [C-K]. Only the barest outline of the chief features will
be given here. The method applies also in the presence of matter, to obtain the required
estimates for the spacetime curvature. Its present form is dependent on the 4-dimensional
nature of the spacetime manifold, although a generalization to higher dimensions can
be found.

Instead of considering the Einstein equations themselves, we considered the Bianchi
identities in the form which they assume by virtue of the Einstein equations. We then in-
troduced the general concept of a Weyl field W on a 4-dimensional Lorentzian manifold
(M, g) to be a 4-covariant tensorfield with the algebraic properties of the Weyl or con-
formal curvature tensor. Given a Weyl field W one can define a left dual ∗W as well
as a right dual W∗, but as a consequence of the algebraic properties of a Weyl field, the
two duals coincide. Moreover, ∗W = W∗ is also a Weyl field. A Weyl field is subject
to equations which are analogues of Maxwell’s equations for the electromagnetic field.
These are linear equations, in general inhomogeneous, which we call Bianchi equations.
They are of the form

∇αWαβγ δ = Jβγ δ, (16)

the right-hand side J , or more generally any 3-covariant tensorfield with the algebraic
properties of the right-hand side, we call a Weyl current. These equations seem at first
sight to be analogues of only half of Maxwell’s equations, but it turns out that they are
equivalent to the equations

∇[αWβγ ]δε = εµαβγ J ∗µ
δε, J ∗

βγ δ = 1

2
J µν
β εµνγ δ (17)

which are analogues of the other half of Maxwell’s equations. Here ε is the volume 4-form
of (M, g). The fundamental Weyl field is the Riemann curvature tensor of (M, g), (M, g)
being a solution of the vacuum Einstein equations, and in this case the corresponding
Weyl current vanishes, the Bianchi equations reducing to the Bianchi identities.

Given a vectorfield Y and a Weyl field W or Weyl current J there is a “variation”
of W and J with respect to Y , a modified Lie derivative L̃Y W , L̃Y J , which is also a
Weyl field or Weyl current respectively. The modified Lie derivative commutes with du-
ality. The Bianchi equations have certain conformal covariance properties which imply
the following. If J is the Weyl current associated to the Weyl field W according to the
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Bianchi equations, then the Weyl current associated to L̃Y W is the sum of L̃Y J and a
bilinear expression which is on one hand linear in (Y )π̃ and its first covariant derivative
and on the other hand also linear in W and its first covariant derivative (see Proposition
12.1). Here we denote by (Y )π̃ the deformation tensor of Y , namely the trace-free part of
the Lie derivative of the metric g with respect to Y . This measures the rate of change of
the conformal geometry of (M, g) under the flow generated by Y . From the fundamental
Weyl field, the Riemann curvature tensor of (M, g), and a set of vector fields Y1, . . . ,Yn

which we call commutation fields, derived Weyl fields of up to any given order m are
generated by the repeated application of the operators L̃Yi : i = 1, . . . , n. A basic re-
quirement on the set of commutation fields is that it spans the tangent space to M at each
point. The Weyl currents associated to these derived Weyl fields are then determined by
the deformation tensors of the commutation fields.

Given a Weyl field W there is a 4-covariant tensorfield Q(W ) associated to W ,
which is symmetric and trace-free in any pair of indices. It is a quadratic expression in
W , analogous to the Maxwell energy-momentum-stress tensor for the electromagnetic
field. We call Q(W ) the Bel-Robinson tensor associated to W , because it was discov-
ered by Bel and Robinson [Be] in the case of the fundamental Weyl field, the Riemann
curvature tensor of a solution of the vacuum Einstein equations. The Bel-Robinson ten-
sor has a remarkable positivity property: Q(W )(X1, X2, X3, X4) is non-negative for any
tetrad X1, X2, X3, X4 of future-directed non-spacelike vectors at a point. Moreover, the
divergence of Q(W ) is a bilinear expression which is linear in W and in the associated
Weyl current J (see Proposition 12.6). Given a Weyl field W and a triplet of future di-
rected non-spacelike vectorfields X1, X2, X3, which we call multiplier fields, we define
the energy-momentum density vectorfield P(W ; X1, X2, X3) associated to W and to the
triplet X1, X2, X3 by:

P(W ; X1, X2, X3)
α = −Q(W )αβγ δXβ1 Xγ2 X δ3. (18)

Then the divergence of P(W ; X1, X2, X3) is the sum of −(divQ(W ))(X1, X2, X3) and
a bilinear expression which is linear in Q(W ) and in the deformation tensors of X1,
X2, X3. The divergence theorem in spacetime, applied to a domain which is a develop-
ment of part of the initial hypersurface, then expresses the integral of the 3-form dual to
P(W ; X1, X2, X3) on the future boundary of this domain, in terms of the integral of the
same 3-form on the past boundary of the domain, namely on a part of the initial hypersur-
face, and the spacetime integral of the divergence. The boundaries being achronal (that
is, no pair of points on each boundary can be joined by a timelike curve) the integrals are
integrals of non-negative functions, by virtue of the positivity property of Q(W ). For the
set of Weyl fields of order up to m which are derived from the fundamental Weyl field,
the Riemann curvature tensor of (M, g), the divergences are determined by the deforma-
tion tensors of the commutation fields and their derivatives up to order m, and from the
deformation tensors of the multiplier fields. And the integrals on the future boundary give
control of all the derivatives of the curvature up to order m. This is how estimates for the
spacetime curvature are obtained, once a suitable set of multiplier fields and a suitable set
of commutation fields have been provided.
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This is precisely where the second method comes in. This method constructs the re-
quired sets of vectorfields by using the geometry of the two-parameter foliation of space-
time by the level sets of two functions. These two functions, in the first realization of this
method in [C-K], where the time function t , the level sets of which are maximal space-
like hypersurfaces Ht of vanishing total momentum, and the optical function u, which we
may think of as “retarded time”, the level sets of which are outgoing null hypersurfaces
Cu . These are chosen so that density of the foliation of each Ht by the traces of the Cu ,
that is, by the surfaces of intersection St,u = Ht

⋂
Cu , which are diffeomorphic to S2,

tends to 1 as t → ∞. In other words, the St,u on each Ht become evenly spaced in the
limit t → ∞. It was already clear at the time of composition of the work [C-K] that the
two functions did not enter the problem on equal footing. The optical function u played
a much more important role. This is due to the fact that the problem involved outgoing
waves reaching future null infinity, and it is the outgoing family of null hypersurfaces Cu

which follows these waves. The role of the family of maximal spacelike hypersurfaces
Ht was to obtain a suitable family of sections of each Cu , the family St,u corresponding
to a given u, to provide the future boundary, or part of the future boundary, of domains
where the divergence theorem is applied, and also to serve as a means by which, in the
proof of the existence theorem, the method of continuity can be applied. The geometric
entities describing the two-parameter foliation of spacetime by the St,u are estimated in
terms of the spacetime curvature. This yields estimates for the deformation tensors of
the multiplier fields and the commutation fields in terms of the spacetime curvature, thus
connecting with the first method.

Another realization of this method is found in [Chr14]. There in the role of the
time function we have the Minkowskian time coordinate t which vanishes on the initial
hyperplane. The level sets of this function are then a family Ht of parallel spacelike
hyperplanes in Minkowski spacetime. In the role of the optical function we have the
acoustical function u, the level sets Cu of which are outgoing characteristic hypersurfaces
relative to the acoustical metric h. In this case however, these are defined by their traces
S0,u on the initial hyperplane H0, which are diffeomorphic to S2. The density of the
foliation of each Ht by the traces of the Cu , that is, by the surfaces of intersection St,u =
Ht
⋂

Cu , in fact blows up in finite time t∗(u, ϑ) for (u, ϑ) in an open subset of 	 × S2,
ϑ ∈ S2 labelling the generators of each Cu , and this defines the singular boundary B ,
whose past boundary ∂−B is the surface, not necessarily connected, from which shocks
begin to form. The relative roles of the two functions are even clearer in this work, because
the blowup of the density of foliations by outgoing characteristic hypersurfaces is what
characterizes shock formation.

Returning to general relativity, a variant of the method is obtained if we place in the
role of the time function t another optical function u, which we may think of as “advanced
time”, the level sets of which are incoming null hypersurfaces. This approach had its
origin in the author’s effort to understand the so-called “memory effect” of gravitational
waves [Chr15]. This effect is a manifestation of the nonlinear nature of the asymptotic
gravitational laws at future null infinity. Now future null infinity is an ideal incoming null
hypersurface at infinity, so the analysis required consideration of a family of incoming
null hypersurfaces, the interiors of the traces of which on the initial spacelike hypersurface
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H0 give an exhaustion of H0. A two-parameter family of surfaces diffeomorphic to S2,
the “wave fronts”, was then obtained, namely the intersections of this incoming family
with the outgoing family of null hypersurfaces. A set of notes [Chr16] was then written
up where the basic structure equations of such a “double null” foliation were derived,
including the propagation equations for the mass aspect functions (see below).

A double null foliation was subsequently employed by Klainerman and Nicolò in
[K-N] (where the aforementioned notes are gratefully acknowledged) to provide a simpler
variant of the exterior part of the proof of the stability of Minkowski spacetime, namely
that part which considers the domain of dependence of the exterior of a compact set in the
initial asymptotically flat spacelike hypersurface. The developments stemming from the
original work [C-K] include the work of Zipser [Z], which extended the original theorem
to the Einstein-Maxwell equations, and most recently the work of Bieri [Bie], which
extended the theorem in vacuum by requiring a smallness condition only up to the 1st
derivatives of the Ricci curvature of g0, the induced metric on H0, and up to the 2nd
derivatives of k0, the 2nd fundamental form of H0, instead of up to the 2nd and up to the
3rd derivatives respectively, as in the original theorem; moreover the respective weights
depend on the distance from an origin on (H0, g0), which are reduced by one power of
this distance, relative to the weights assumed in [C-K].

In the present work, the roles of the two optical functions are reversed, because
we are considering incoming rather than outgoing waves, and it is the incoming null
hypersurfaces Cu , the level sets of u, which follow these waves. However, in the present
work, taking the other function to be the conjugate optical function u is not merely a
matter of convenience, but it is essential for what we wish to achieve. This is because the
Cu , the level sets of u, are here, like the initial hypersurface Co itself, future null geodesic
cones with vertices on the timelike geodesic �0, and the trapped spheres which eventually
form are sections Su,u = Cu

⋂
Cu of “late” Cu , everywhere along which those Cu have

negative expansion.
We now come to the new method. This method is a method of treating the focusing

of incoming waves, and like the second method it is of wider application. A suitable name
for this method is short pulse method. Its point of departure resembles that of the short
wavelength or geometric optics approximation, in so far as it depends on the presence
of a small length, but thereafter the two approaches diverge. The short pulse method is a
method which, in the context of Euler-Lagrange systems of partial differential equations
of hyperbolic type, allows us to establish an existence theorem for a development of the
initial data which is large enough so that interesting things have a chance to occur within
this development, if a nonlinear system is involved. One may ask at this point: what does
it mean for a length to be small in the context of the vacuum Einstein equations? For, the
equations are scale invariant. Here small means by comparison to the area radius of the
trapped sphere to be formed.

With initial data on a complete future null geodesic cone Co, as explained above,
which are trivial for s ≤ r0, we consider the restriction of the initial data to s ≤ r0 + δ.
In terms of the advanced time u, we restrict attention to the interval [0, δ], the data being
trivial for u ≤ 0. The retarded time u is set equal to u0 = −r0 at o and therefore on
Co, which is then also denoted Cu0 . Also, u − u0 is defined along �0 to be one-half the
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arc length from o. This determines u everywhere. The development whose existence we
want to establish is that bounded in the future by the spacelike hypersurface H−1 where
u + u = −1 and by the incoming null hypersurface Cδ . We denote this development by
M−1. We define L and L to be the future-directed null vectorfields, the integral curves of
which are the generators of the Cu and Cu , parametrized by u and u respectively, so that

Lu = Lu = 0, Lu = Lu = 1. (19)

The flow�τ generated by L defines a diffeomorphism of Su,u onto Su+τ,u , while the flow
�τ generated by L defines a diffeomorphism of Su,u onto Su,u+τ . The positive function
� defined by

g(L, L) = −2�2 (20)

may be thought of as the inverse density of the double null foliation. We denote by L̂ and
L̂ the corresponding normalized future-directed null vectorfields

L̂ = �−1 L, L̂ = �−1 L, so that g(L̂, L̂) = −2. (21)

The first step is the analysis of the equations along the initial hypersurface Cu0 .
This analysis is performed in Chapter 2, and it is particularly clear and simple because
of the fact that Cu0 is a null hypersurface, so we are dealing with the characteristic initial
value problem and there is a way of formulating the problem in terms of free data which
are not subject to any constraints. The full set of data, which includes all the curvature
components and their transversal derivatives, up to any given order along Cu0 , is then
determined by integrating ordinary differential equations along the generators of Cu0 . As
we shall see in Chapter 2, the free data may be described as a 2-covariant symmetric
positive definite tensor density m, of weight −1 and unit determinant, on S2, depending
on u. This is of the form:

m = expψ (22)

where ψ is a 2-dimensional symmetric trace-free matrix-valued “function” on S2, de-
pending on u ∈ [0, δ], and transforming under change of charts on S2 in such a way as to
make m a 2-covariant tensor density of weight −1. The transformation rule is particularly
simple if stereographic charts on S2 are used. Then there is a function O defined on the
intersection of the domains of the north and south polar stereographic charts on S2, with
values in the 2-dimensional symmetric orthogonal matrices of determinant −1 such that
in going from the north polar chart to the south polar chart or vice-versa,ψ �→ ÕψO and
m �→ ÕmO. The crucial ansatz of the short pulse method is the following. We consider
an arbitrary smooth 2-dimensional symmetric trace-free matrix-valued “function” ψ0 on
S2, depending on s ∈ [0, 1], which extends smoothly by 0 to s ≤ 0, and we set

ψ(u, ϑ) = δ1/2

|u0|ψ0

(u

δ
, ϑ
)
, (u, ϑ) ∈ [0, δ] × S2. (23)

The analysis of the equations along Cu0 then gives, for the components of the spacetime
curvature along Cu0 :

sup
Cu0

|α| ≤ O2(δ
−3/2|u0|−1),
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sup
Cu0

|β| ≤ O2(δ
−1/2|u0|−2),

sup
Cu0

|ρ|, sup
Cu0

|σ | ≤ O3(|u0|−3),

sup
Cu0

|β| ≤ O4(δ|u0|−4),

sup
Cu0

|α| ≤ O5(δ
3/2|u0|−5). (24)

Here α, α are the trace-free symmetric 2-covariant tensorfields on each Su,u defined by

α(X,Y ) = R(X, L̂,Y, L̂), α(X, L̂,Y, L̂) = R(X, L̂,Y, L̂) (25)

for any pair of vectors X,Y tangent to Su,u at a point; β, β are the 1-forms on each Su,u

defined by

β(X) = 1

2
R(X, L̂, L̂, L̂), β(X) = 1

2
R(X, L̂, L̂, L̂), (26)

and ρ, σ are the functions on each Su,u defined by

ρ = 1

4
R(L̂, L̂, L̂, L̂),

1

2
R(X,Y, L̂, L̂) = σε/(X,Y ) (27)

for any pair of vectors X,Y tangent to Su,u at a point, ε/ being the area form of Su,u . The
symbol Ok(δ

p|u0|r ) means the product of δ p|u0|r with a non-negative non-decreasing
continuous function of the Ck norm of ψ0 on [0, 1] × S2. The pointwise magnitudes
of tensors on Su,u are with respect to the induced metric g/, which is positive definite,
the surfaces being spacelike. The precise estimates are given in Chapter 2. We should
emphasize here that the role of the ansatz (23) is to obtain estimates of the form (24), that
is with the same dependence on δ and |u0|, and analogous estimates for the L4 norms on
the Su,u0 , u ∈ [0, δ], of the 1st derivatives of the curvature components, and for the L2

norms on Cu0 of the 2nd derivatives of the curvature components (with the exception of
the 2nd transversal derivative of α). If the quantities

supCu0

(
δ3/2|u0||α|

)
,

supCu0

(
δ1/2|u0|2|β|) ,

supCu0

(|u0|3|ρ|
)
, supCu0

(|u0|3|σ |) ,
supCu0

(
δ−1|u0|4|β|

)
,

supCu0

(
δ−3/2|u0|9/2|α|

)
, (28)

and analogous quantities for the 1st and 2nd derivatives, are assumed to have bounds
which are independent of |u0| or δ, the ansatz (23) can be dispensed with, and indeed
the chapters following Chapter 2 make no reference to it, until, at the end of Chapter 16,
the existence theorem is restated, after it has been proven, as Theorem 16.1. However the
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ansatz (23) is the simplest way to ensure that the required bounds hold, and there is no loss
of generality involved, ψ0 being an arbitrary “function” on [0, 1] × S2 with values in the
2-dimensional symmetric trace-free matrices. Note here that, since |u0| > 1, what is re-
quired of the last of (28) is weaker than what is provided by the last of (24). A last remark
before we proceed to the main point is that the last three of the estimates (24) require
more than two derivatives of ψ0, so there is an apparent loss of derivatives from what
would be expected of curvature components. This loss of derivatives is intrinsic to the
characteristic initial value problem and occurs even for the wave equation in Minkowski
spacetime (see [M]). It is due to the fact that one expresses the full data, which includes
transversal derivatives of any order, in terms of the free data. No such loss of derivatives
is present in our spacetime estimates, which are sharp, and depend only on the L2 norm
of up to the 2nd derivatives of the curvature components on the initial hypersurface (with
the exception of the 2nd transversal derivative of α), precisely as in [C-K]. Nevertheless
the initial data are assumed to be C∞ in this work, and the solutions which we construct
are also C∞.

To come to the main point, the reader should focus on the dependence on δ of
the right-hand sides of (24). This displays what we may call the short pulse hierarchy.
And this hierarchy is nonlinear. For, if only the linearized form of the equations was
considered, a different hierarchy would be obtained: the exponents of δ in the first two of
(24) would be the same, but the exponents of δ in the last three of (24) would instead be
1/2, 3/2, 5/2, respectively.

A question that immediately comes up when one ponders the ansatz (24), is why is
the “amplitude” of the pulse proportional to the square root of the “length” of the pulse?
(the factor |u0|−1 is the standard decay factor in three spatial dimensions, the square root
of the area of the wave fronts). Where does this relationship come from? Obviously, there
is no such relationship in a linear theory. The answer is that it comes from our desire
to form trapped surfaces in the development M−1. If a problem involving the focusing
of incoming waves in a different context was the problem under study, for example the
formation of electromagnetic shocks by the focusing of incoming electromagnetic waves
in a nonlinear medium, the relationship between length and amplitude would be dictated
by the desire to form such shocks within our development.

Another remark concerning different applications of the short pulse method, in par-
ticular applications to problems of shock formation, is that it is more natural in these
problems to use, in the role of the retarded time u, the time function t whose level sets
are parallel spacelike hyperplanes of the background Minkowski metric, as in [Chr14].
However the analysis of the equations along an outgoing characteristic hypersurface is
indispensable as a crucial step of the short pulse method, because, once the correct rela-
tionship between length and amplitude has been guessed, it is this analysis which yields
the short pulse hierarchy.

The short pulse hierarchy is the key to the existence theorem as well as to the trapped
surface formation theorem. We must still outline however in what way we establish that
the short pulse hierarchy is preserved in evolution. This is of course the main step of the
short pulse method. What we do is to reconsider the first two methods previously outlined
in the light of the short pulse hierarchy.
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Let us revisit the first method. We take as multiplier fields the vectorfields L and K ,
where

K = u2L. (29)

In this monograph, as already mentioned above, we take the initial data to be trivial for
u ≤ 0 and as a consequence the spacetime region corresponding to u ≤ 0 is a domain in
Minkowski spacetime. We may thus confine attention to the nontrivial region u ≥ 0. We
denote by M ′−1 this non-trivial region in M−1. To extend the theorem to the case where
the data is non-trivial for u ≤ 0 but satisfy a suitable falloff condition in |u|, in the region
u ≤ 0 we replace L as a multiplier field by

L + L = 2T (30)

and redefine K to be
K = u2 L + u2L . (31)

Since, in any case, a smallness condition can be imposed on the part of the data cor-
responding to u ≤ 0, we already know from the work on the stability of Minkowski
spacetime that in the associated domain of dependence, that is, in the spacetime region
u ≤ 0, the solution will satisfy a corresponding smallness condition. In particular the said
smallness condition will be satisfied along C0, and this suffices for us to proceed with our
estimates in the region u ≥ 0 with the multiplier fields L and K , with K as in (29). So all
the difficulty lies in the region M ′−1 where the pulse travels.

For each of the Weyl fields to be specified below, we define the energy-momentum
density vectorfields

(n)
P (W ) : n = 0, 1, 2, 3 (32)

where

(0)
P (W ) = P(W ; L, L, L),
(1)
P (W ) = P(W ; K , L, L),
(2)
P (W ) = P(W ; K , K , L),
(3)
P (W ) = P(W ; K , K , K ). (33)

As commutation fields we take L, S, defined by

S = uL + uL, (34)

and the three rotation fields Oi : i = 1, 2, 3. The latter are defined according to the sec-
ond method as follows. In the Minkowskian region we introduce rectangular coordinates
xµ : µ = 0, 1, 2, 3, taking the x0 axis to be the timelike geodesic�0. In the Minkowskian
region, in particular on the sphere S0,u0 , the Oi are the generators of rotations about the
xi : i = 1, 2, 3 spatial coordinate axes. The Oi are then first defined on Cu0 by conju-
gation with the flow of L and then in spacetime by conjugation with the flow of L . The
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Weyl fields which we consider are, besides the fundamental Weyl field R, the Riemann
curvature tensor, the following derived Weyl fields:

1st-order: L̃L R, L̃Oi R : i = 1, 2, 3, L̃S R.

2nd-order: L̃L L̃L R, L̃Oi L̃L R : i = 1, 2, 3, L̃O j L̃Oi R : i, j = 1, 2, 3,

L̃Oi L̃S R : i = 1, 2, 3, L̃SL̃S R. (35)

We assign to each Weyl field the index l according to the number of L̃L operators in the
definition of W in terms of R. We then define total 2nd-order energy-momentum densities

(n)
P 2 : n = 0, 1, 2, 3 (36)

as the sum of δ2l
(n)
P (W ) over all the above Weyl fields in the case n = 3, all the

above Weyl fields except those whose definition involves the operator L̃S in the cases

n = 0, 1, 2. We then define the total 2nd-order energies
(n)
E 2 (u) as the integrals on the Cu

and the total 2nd-order fluxes
(n)
F 2 (u) as the integrals on the Cu , of the 3-forms dual to the

(n)
P 2. Of the fluxes, only

(3)
F 2 (u) plays a role in the problem. Finally, with the exponents

qn : n = 0, 1, 2, 3 defined by

q0 = 1, q1 = 0, q2 = −1

2
, q3 = −3

2
, (37)

according to the short pulse hierarchy, we define the quantities

(n)
E 2= sup

u

(

δ2qn
(n)
E 2 (u)

)

: n = 0, 1, 2, 3,
(3)
F 2= sup

u

(

δ2q3
(3)
F 2 (u)

)

. (38)

The objective then is to obtain bounds for these quantities in terms of the initial data.
This requires properly estimating the deformation tensor of K , as well as the defor-

mation tensors of L, S and the Oi : i = 1, 2, 3 and their derivatives of up to 2nd-order. In
doing this, the short pulse method meshes with the second method previously described.
This is the content of Chapters 3–9 and shall be very briefly described in the outline of
the contents of each chapter which follows.

The estimates of the error integrals, namely the integrals of the absolute values of

the divergences of the
(n)
P 2, which is the content of Chapters 13–15, then yield inequalities

for the quantities (38). These inequalities contain, besides the initial data terms

(n)
D= δ2qn

(n)
E 2 (u0) : n = 0, 1, 2, 3, (39)

terms of O(δ p) for some p > 0, which are innocuous, as they can be made less than or
equal to 1 by subjecting δ to a suitable smallness condition, but they also contain terms
which are nonlinear in the quantities (38). From such a nonlinear system of inequalities,
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no bounds can in general be deduced, because here, in contrast with [C-K], the initial
data quantities are allowed to be arbitrarily large. However a miracle occurs: our system
of inequalities is reductive. That is, the inequalities, taken in proper sequence, reduce to
a sequence of sublinear inequalities, thus allowing us to obtain the bounds we sought.

We remark that although the first two methods on which the present work is based
stem from the work [C-K], it is only in the present work, in conjunction with the new
method, that the full power of the original methods is revealed.

In applying the short pulse method to problems in other areas of the field of partial
differential equations of hyperbolic type, an analogue of the first method is needed. This
is supplied in the context of Euler-Lagrange systems, that is, systems of partial differ-
ential equations derivable from an action principle, by the structures studied in [Chr17].
The analogue of the concept of a Weyl field is the general concept of variation, or vari-
ation through solutions. The analogue of the Bel-Robinson tensor is the canonical stress
associated to such variations. In the area of continuum mechanics or the electrodynamics
of continuous media, the fundamental variation is that with respect to a subgroup of the
Poincaré group of the underlying Minkowski spacetime, while the higher-order variations
are generated by the commutation fields, as in general relativity (see [Chr14]). A partic-
ularly interesting problem that may be approached on the basis of the methods which we
have discussed, in conjunction with ideas from [Chr14], is the formation of electromag-
netic shocks by the focusing of incoming electromagnetic waves in isotropic nonlinear
media, that is, media with a nonlinear relationship between the electromagnetic field and
the electromagnetic displacement. In this problem, unlike the problem of shock formation
by outgoing compression waves in fluid mechanics, there is a threshold for shock forma-
tion, as there is a threshold for closed trapped sphere formation in the present monograph.

We shall now give a brief outline of the contents of the different chapters of this
monograph and of their logical connections. The basic geometric construction, the struc-
ture equations of the double null foliation called the “optical structure equations”, and
the Bianchi identities, are presented in the introductory Chapter 1. The Einstein equations
are contained in the optical structure equations. The basic geometric entities associated to
the double null foliation are the inverse density function �, the metric g/ induced on the
surfaces Su,u and its Gauss curvature K , the second fundamental forms χ and χ of Su,u

relative to Cu and Cu respectively, the torsion forms η and η of Su,u relative to Cu and
Cu respectively, and the functions ω and ω, the derivatives of log� with respect to L and
L respectively. The torsion forms are given by

η = ζ + d/ log�, η = −ζ + d/ log�, (40)

where ζ may be called the torsion. It is the obstruction to integrability of the distribution
of planes orthogonal to the tangent planes to the Su,u . In (40) d/ denotes the differential
of the restriction of a function to any given Su,u . The optical entities χ, χ, η, η, ω, ω are
called connection coefficients in the succeeding chapters, to emphasize their differential
order, intermediate between the metric entities � and g/, and the curvature entities K
and the spacetime curvature components. “Canonical coordinates” are defined in the last
section of Chapter 1 and play a basic role in this monograph.
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The subject of Chapter 2 is the characteristic initial data and the derivation of the
estimates for the full data in terms of the free data. This is where the ansatz (23) is intro-
duced and the short pulse hierarchy first appears. Thus Chapter 2 is fundamental to the
whole work.

Chapters 3–7 form a unity. The subject of these chapters is the derivation of esti-
mates for the connection coefficients in terms of certain quantities defined by the space-
time curvature. These chapters are in logical sequence, which extends to Chapters 8 and
9, however the place of the whole sequence of Chapters 3–9 in the logic of the proof of
the existence theorem, Theorem 12.1, is after Chapters 10 and 11. This is because the
assumptions on which Chapters 3–9 rely, namely the boundedness of the quantities de-
fined by the spacetime curvature, is established, in the course of the proof of Theorem
12.1, through the comparison lemmas, Lemmas 12.5 and 12.6, which make use of the
results of Chapters 10 and 11. Thus, Chapter 10 represents a new beginning. The chapters
following Chapter 12 are again in logical sequence.

Chapters 3–7 are divided by Chapter 5 into the two pairs of chapters, on one hand
Chapters 3 and 4, and on the other hand Chapters 6 and 7, each of these two pairs form-
ing a tighter unity. The first pair considers only the propagation equations among the
optical structure equations. These are ordinary differential equations for the connection
coefficients along the generators of the Cu and the Cu . The second pair considers cou-
pled systems, ordinary differential equations along the generators of the Cu or the Cu
coupled to elliptic systems on their Su,u sections. This allows us to obtain estimates for
the connection coefficients which are of one order higher than those obtained through the
propagation equations, and are optimal from the point of view of differentiability. There
is however a loss of a factor of δ1/2 in behavior with respect to δ, in comparison to the
estimates obtained through the propagation equations, in the case of the entities η, η and
ω. What is crucial is that there is no such loss in the case of the entities χ , χ , and ω, but
the proof of this fact again uses the former estimates.

In Chapter 3 the basic L∞ estimates for the connection coefficients are obtained.
The last section of Chapter 3 explains the nature of smallness conditions on δ throughout
the monograph. Chapter 4 derives L4 on the surfaces Su,u for the 1st derivatives of the
connection coefficients.

Chapter 5 is concerned with the isoperimetric and Sobolev inequalities on the sur-
faces Su,u , and with L p elliptic theory on these surfaces for 2 < p <∞. The main part of
the chapter is concerned with the proof of the uniformization theorem for a 2-dimensional
Riemannian manifold (S, g/) with S diffeomorphic to S2, when only an L2 bound on the
Gauss curvature K is assumed. The reason why this is required is that although the Gauss
equation gives us L∞ control on K , the estimate is not suitable for our purposes because
it involves the loss of a factor of δ1/2 in behavior with respect to δ. Thus one can only rely
on the estimate obtained by integrating a propagation equation, which although optimal
from the point of view of behavior with respect to δ, only gives us L2 control on K .

The L p elliptic theory on the Su,u is applied in Chapter 6, in the case p = 4, to the
elliptic systems mentioned above, to obtain L4 estimates for the 2nd derivatives of the
connection coefficients on the surfaces Su,u . What makes possible the gain of one degree
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of differentiability by considering systems of ordinary differential equations along the
generators of the Cu or the Cu coupled to elliptic systems on the Su,u sections, is the fact
that the principal terms in the propagation equations for certain optical entities vanish, by
virtue of the Einstein equations. In the case of the coupled system pertaining to χ and χ ,
these entities are simply the traces trχ and trχ , and the Codazzi equations constitute the
elliptic systems for the trace-free parts χ̂ and χ̂ respectively. In the case of the coupled
systems pertaining to η and η, the entities are found at one order of differentiation higher.
They are the mass aspect functions µ and µ, called by this name because of the fact,
shown in [Chr15], that with r being the area radius of the Su,u , the limits of the functions
r3µ/8π and r3µ/8π at past and future null infinity respectively, represent mass-energy
per unit solid angle in a given direction and at a given advanced or retarded time re-
spectively. The elliptic systems are Hodge systems, constituted by one of the structure
equations and by the definition of µ and µ in terms of η and η respectively. Moreover, the
two sets of coupled systems, that for η on the Cu and that for η on the Cu , are themselves
coupled. (The propagation equations for η and η studied in Chapters 3 and 4 are similarly
coupled.) In the case of the coupled systems pertaining to ω and ω, the entities which
satisfy propagation equations in which the principal terms vanish are found at one order
of differentiation still higher. They are the functions ω/ and ω/ and the elliptic equations
are simply the definitions of these functions in terms of ω and ω respectively.

In the case of the χ system we have, besides what has already been described, also
a coupling with the propagation equation for the Gauss curvature K , through the elliptic
theory of Chapter 5 applied to the Codazzi elliptic system for χ̂ .

Chapter 7 applies L2 elliptic theory on the Su,u to the same coupled systems to
obtain L2 estimates on the Cu for the third derivatives of the connection coefficients, the
top order needed to obtain a closed system of inequalities in the proof of the existence
theorem.

One general remark concerning the contents of Chapters 3–7 is that, although some
of the general structure was already encountered in the work on the stability of Minkowski
spacetime, the estimates and their derivation are here quite different, and for two reasons.
One is the obvious reason that some of the geometric properties are here very different,
in view of the fact that we are no longer confined to a suitably small neighborhood of
Minkowski spacetime and closed trapped surfaces eventually form. The second is the
fact, in connection with the short pulse method, that behavior with respect to δ is here
all-important.

In Chapter 8 the multiplier fields and the commutation fields are defined and L∞
estimates for their deformation tensors are obtained. In Chapter 9, L4 estimates on the
Su,u for the 1st derivatives of these deformation tensors and L2 estimates on the Cu for
their 2nd derivatives are obtained.

In Chapters 3–9 the symbol O(δ p |u|r ) denotes the product of δ p|u|r with a non-
negative, non-decreasing continuous function of certain initial data and spacetime curva-
ture quantities q1, . . . , qn . The set of quantities {q1, . . . , qn} is gradually enlarged as we
proceed through the sequence of chapters. The set of quantities is replaced in the seventh
section of Chapter 12 by a set which includes only initial data quantities, and it is in this
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new sense that the symbol O(δ p |u|r ) is meant throughout the proof of Theorem 12.1,
which occupies the four succeeding chapters.

As we mention above, Chapter 10 represents a new beginning. The point is the
following. Chapters 3–7 derive estimates for the connection coefficients in terms of quan-
tities involving the L∞ norms on the Su,u of the curvature components, the L4 norms on
the Su,u of the 1st derivatives of the curvature components, and the L2 norms on the Cu

of the 2nd derivatives of the curvature components (with the exception of those involving
α and the 2nd transversal derivatives of β). The first two are to be estimated in terms
of the last through Sobolev inequalities on the Cu (except for the quantities involving α,
which are estimated in terms of the L2 norm on the Cu of up to the 2nd derivatives of that
component through a Sobolev inequality on the Cu), but in establishing these Sobolev
inequalities one cannot rely on the results of the preceding chapters, otherwise the rea-
soning would be circular. So, the Sobolev inequalities on the Cu and the Cu are instead
established on the basis of certain bootstrap assumptions. The sharp form of the Sobolev
inequality on the Cu given by Proposition 10.1 fits perfectly with the short pulse method
and is essential to its success.

The subject of Chapter 11 is the coercivity properties of the operators L/ Oi : i =
1, 2, 3, the Lie derivatives of covariant tensorfields on the Su,u with respect to the rotation
fields Oi : 1 = 1, 2, 3. These inequalities show that, for m = 1, 2 we can bound the sum
of the squares of the L2 norms on Su,u of up to the mth intrinsic to Su,u covariant deriva-
tives of these tensorfields in terms of the sum of the squares of the L2 norms on the Su,u

of their Lie derivatives of up to mth order with respect to the set of rotation fields. This is
important because only these rotational Lie derivatives of the curvature components (and
the Lie derivatives of the curvature components with respect to L and L), not their co-
variant derivatives intrinsic to the Su,u , are directly controlled by the energies and fluxes.
To establish the coercivity inequalities, additional bootstrap assumptions are introduced.

Chapter 12 is the central chapter of the monograph. This chapter lays out the first
method and defines the energies and fluxes according to the short pulse method as dis-
cussed above. These definitions are followed by the comparison lemmas, Lemmas 12.5
and 12.6 which show that the quantity Q′

2, which bounds all the curvature quantities that
enter the estimates for the connection coefficients and the deformation tensors of Chapters
3–9, is itself bounded in terms of the quantity

P2 = max{(0)E 2,
(1)
E 2,

(2)
E 2,

(3)
E 2;

(3)
F 2}. (41)

To establish the comparison lemmas, additional bootstrap assumptions are introduced.
The last section of Chapter 12 gives the statement of Theorem 12.1 in the way it is actually
proved, and then gives an outline of the first and most important part of the continuity
argument, that which concludes with the derivation of the reductive system of inequalities

for the quantities
(0)
E 2,

(1)
E 2,

(2)
E 2,

(3)
E 2 and

(3)
F 2 in the first section of Chapter 16.

Chapters 13–15 deal with the error estimates, namely the estimates for the error
integrals, the spacetime integrals of the absolute values of the divergences of the energy-

momentum density vectorfields
(n)
P 2. There are two kinds of error integrals: the error inte-
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grals arising from the deformation tensors of the multiplier fields and those arising from
the Weyl currents generated by the commutation fields. The first are treated in Chapter 13
and the second in Chapters 14 and 15. Because of the delicacy of the final estimates, all
the error terms are treated in a systematic fashion. All error integrals are estimated using
Lemma 13.1. The concepts of integrability index and excess index are introduced. The
integrability index s being negative allows us to apply Lemma 13.1. The excess index e
then gives the exponent of δ contributed by the error term under consideration to the final

system of inequalities for the quantities
(0)
E 2,

(1)
E 2,

(2)
E 2,

(3)
E 2 and

(3)
F 2. All error terms turn

out to have a negative integrability index and a non-negative excess index. The terms with
a positive excess index contribute the innocuous terms O(δe) mentioned above. To the
terms with zero excess index are associated borderline error integrals . These contribute
the nonlinear terms to the final system of inequalities mentioned above.

Chapter 16 completes the proof of the existence theorem. The reductive system of

inequalities for the quantities
(0)
E 2,

(1)
E 2,

(2)
E 2,

(3)
E 2 and

(3)
F 2 is obtained in the first section of

Chapter 16, and the required bounds for these quantities are deduced. The second section
of Chapter 16 deduces the higher-order bounds for the spacetime curvature components
and the connection coefficients. The higher-order estimates are of linear nature and are
needed to show that the solution extends as a smooth solution. Only the roughest bounds
are needed. The continuity argument is completed in the third section of Chapter 16. In
this section the work of Choquet-Bruhat ([Cho1], [Cho2], [Cho3]) and that of Rendall
[R] are used to obtain a smooth local extension of the solution in “harmonic” (also called
“wave”) coordinates . This is followed by an argument showing that, in a suitably small
extension contained in the extension just mentioned, canonical null coordinates can be
set up and the coordinate transformation from harmonic coordinates to canonical null
coordinates is a smooth transformation with a smooth inverse, hence the metric extends
smoothly also in canonical null coordinates. The proof of the existence theorem is then
concluded. In the last section, the existence theorem is restated in the way in which it can
most readily be applied.

The last chapter, Chapter 17, establishes the theorem on the formation of closed
trapped surfaces, achieving the aim of this monograph.

The present monograph is of course a work in mathematics. However, by virtue of
the fact that Einstein’s theory is a physical theory, describing a fundamental aspect of na-
ture, this work is also of physical significance. For those mathematicians who, by reading
the present monograph, become interested in the physical basis of general relativity, we
recommend the excellent book [M-T-W] where not only is the physical basis of the theory
explained, but also a wealth of information is given which illustrates how the theory is
applied to describe natural phenomena.

As this work was being completed the author learned that his old teacher, John
Wheeler, passed away. This monograph testifies to John Wheeler’s enduring legacy in the
scientific community.


