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This note has some essential errata and a list of small corrections. Thanks
to Malcolm Schreiber and Fabian Ziltener for meticulous reading!

Proof of theorem 2.2 :
The necessity of the condition |’ v [ = 0 for the existence of a solution of the

Neumann problem follows as in the case p = 2: If u € W*+2P(M) solves
(NP) then by lemma N it also solves (wNP), which (tested with ¢ = 1) yields
S f=0.

In order to prove the sufficiency of that condition let f € WP (M) be given
such that [, f = 0. Choose a sequence f; € C*°(M) that converges to f in the
WkP_norm. Then also fM ﬁ converges to fM f =0 since M has finite volume.
Thus

fi = fi - van /M fi eCc=(M)

is a sequence of functions with vanishing mean value that still converges to f
in the W*P-norm. Then the L2-theorems 1.5 and 1.3 provide solutions u; €
C*>®(M) of the Neumann problem (NP) with f replaced by f;. We can choose
the u; to have vanishing mean value such that theorem 2.3 provides

lui — wjllwerze < COllAu; — Aujllwrr = Cllfi — fillwer T

Thus these u; converge to some u € W*+2P(M). The limit solves Au = f
due to the continuity of A : W*+2P (M) — WkP(M) and theorem B.10 implies
that u also meets the Neumann boundary condition. Uniqueness follows from
corollary 1.9. O

Proof of theorem 2.1 :

Testing (WNP) with ¢ = 1 we see that [,, f = 0 holds automatically. So from
the already established theorem 2.2 we obtain a solution @ € W¥*+2P (M) of the
Neumann problem (NP) for the given f € W»?(M).



Theorem 3.1 :

Let f € WFP(M) and g € W§+17P(M). Then there exists a solution u €
Wk+22 (M) of (3.1) if and only if (3.2) holds. This solution is unique up to an
additive constant.

Proof of theorem 3.1 :

The remark just before the theorem shows the necessity of (3.2) for the existence
of a solution of (3.1).

For the sufficiency let functions f € W*P(M) and g € Wakﬂ’p(M) be given
that satisfy (3.2). Choose some G € WKtLP(M) with G|sys = g then by
theorem 3.4 there exists v € WHt2P(M) that solves the boundary condition
% = Glom = g. Now we have by assumption

/M(f_AU) - /Mf+/8M% - /Mf+/0Mg -0

Thus theorem 2.2 asserts the existence of a solution & € W*+2P(M) of the
Neumann problem (NP) with f replaced by f — Av. The solution of the inho-
mogeneous problem (3.1) is then given by u = @ +v € W**+2P(M). Uniqueness
follows from corollary 1.9. ]

Theorem 3.1, its proof, theorem 5.3, and proof of theorem 5.5:
One should replace W(f’p by Wg’p )

Proof of lemma 5.6: To see (i) choose coordinates near a point in N C M
such that v = % and %, ey a% are orthonormal tangential directions.

For (iv) let F' = («a, ), then calculate in local geodesic coordinates

ﬁxFZ ZXjaj(aiﬁi)
4,7
= Z(Xjajoci + ozj&Xj)ﬁi + Z ozi(Xjajﬂi + ﬁj&Xj)
i, ,J
— Z()éj (&XJ + 8JXZ)6Z
%]

= <‘CXa7 6>+<a7 ‘CX6>_<LYa(‘CXg)7ﬂ>'

Here we used the formulae £xa = X78;q;+a;0; X7 and (Lxg)q; = 0 X7 +0; X"
for the Lie derivatives in local geodesic coordinates, and (Y,)? = «; for the
vector field Y, that is dual to a. O

Proposition 7.6:
Then there exists a subsequence (;);en and a sequence of gauge transfor-
mations u’ € G2P(P) such that

loc

lim sup Hui*AVi wen(y) < P Vke N lel.



Proof of proposition 7.6 :
Hence for every ¢ € I and k € N

h?iii‘p H“i*Aw Wer(Mg) = ?grk) Hw(k’“jd)*Aw’jHW@’P(Mk)

IN

o [k, ) A sy < o

Proof of theorem 7.5 :
Now proposition 7.6 with I = {1} provides a subsequence (v;);cn and a
sequence of gauge transformations u* € G;2¥(P) such that

< 00 Vk € N.

: 1k AV4
lim sup [[u' A" [y 0,
11— 00

In the induction for the local slice theorem 8.1 the estimates on A1 — Ag
are weaker than (8.13) and have to be established separately. The change of
constants unfortunately affects the entire proof.

Proof of theorem 8.1 :

Fix a connection A € ALP (P) and a constant ¢p > 0 and consider a connection
A € AYP(P) that satisfies (8.1) for some § > 0. Again the idea of the proof
is to use Newtons iteration method to solve the boundary value problem for w.
One defines connections A; and gauge transformations u; = exp(&1) ... exp(&;)
such that ujA = A; and A; converges to a connection A, that is in relative
Coulomb gauge with respect to A. Then one proves that in fact A, = u*A for
some gauge transformation wu.

In the case of varying metrics in remark 8.2 one chooses the W1 *-neighbour-
hood of the given metric g as in lemma 8.5 (iii). Moreover, choose this neigh-
bourhood, that is € > 0, sufficiently small such that (8.6) holds with a uniform
constant for all metrics g’ that satisfy ||g — ¢’||wr. < . Then all constants in
the following will be independent of the metric g’ that is used in the boundary
value problem. The constants in Sobolev inequalities are also independent of
g’ since they are defined with respect to g. That way the local slice theorem is
proven with uniform constants for all metrics in the W1:°-neighbourhood of g.

So we construct the sequences of gauge transformations exp(¢;) € G2P(P)
and connections A; € AVP(P) by the following Newton iteration: Ay := A and
A1 = exp(&)* A;, where & € W2P(M, gp) is provided by lemma 8.5 (ii). It

is the solution of .
did & = d5(A - Ai),
{ *d z&ilom = (A = Ay)lou,
with
I€illw=r < Co(Id5(Ai = A)llp + | % (Ai = Dlonrllyrr),
I€illwra < CillAi — Al (8.11)



We claim that for sufficiently small 6 > 0 there exist constants Cy, Cy, Cy such
that this sequence satisfies for all i € N

1% (Ai = A)llp + | % (4 = Aloarlyyar < 27°CrllA = Allg, (8.12)
Ai — Ai_1llwrr < 27°Cx||A— A, ifi>2. (8.13)
Let C5 be the constant from (8.6) and let C be the constant from lemma 8.6 (ii)
for cg = C1C3¢q. The constants C; and C will be determined from ¢q, Cy, Cs, C3,
and some Sobolev constants. The induction step for (8.12) and (8.13) will re-
quire a sufficiently small choice of § > 0, depending on C; and Cp. This is the
same procedure as for theorem 8.3 — we first fix C; and Cy and then determine
a suitable § > 0, just that we do not give the more complicated formulae here.

Before starting the induction we note some estimates for A; — Ag. We choose
0 <1, then lemma 8.6 and (8.11), (8.6) provide a constant Cy > 1 such that

141 = Aollg < Co(1 + |4 = Allg)[|€ollwra < C1C(1+8)||A = Ally < Col| A = A,

|41 = Aollwrr < Ca(1+ | A = Allwrs) [ollwr
< CLCo(1+ co) (145 (A = Allp + [+ (A — Aloallyy.»)
< C1C5C5(1 + 2¢0)[|A — Allyre < CollA — Allwrs.

Now assume that (8.13) holds for all i = 2,..., 5 with some j > 2, then we have

j
145 = Allwro < [[ 4o = Allwrr + A1 = Aollwrr + Y [14i = Aicallwrr
=2

< (1+Co)|[A—Allwrn + (1,279 CulA— Al
< 2Co||A = Allwr» + C[|[A = Al
< 2Cheog + Crd < 3Cheg. (8.14)

Here we choose 6 < coCngl. Moreover, (8.13) implies that with a Sobolev
constant C' and for Cy > 2C~1C,

i
145 = Allg < |40 = Allg + |41 = Aollg + Y CllAi = Airllwrr

=2
< (1+Co)| A~ Allg + (X, 27))CCrllA - Al
< (2C) + CCyp)||A - A||, < 20Cyé. (8.15)

Note that both (8.14) and (8.15) also hold for j = 0 and j = 1. That can be
used as start of the induction. Then for the induction step suppose that (8.12)
and (8.13) are true for all ¢ < j (so also (8.14) and (8.15) hold). In case j =1
this means that we can only use (8.12), (8.14), and (8.15); in case j = 0 we
will only use (8.14) and (8.15). Then we have to prove (8.12) and (8.13) for



i = j + 1. Firstly, (8.11) provides the bound for lemma 8.6 (ii) that allows to
use the estimates with the constant Cy fixed above : In case j =0

€ollw=» < Cr([1d% (Ao — A)llp + || * (Ao — A)IaMIIW;w)
< C1Cs)|A — Allwre
< C1Cs¢c9 =: c2,

and for the case j > 1 use (8.12) and choose ¢ < 20;10300 such that

1€ llw=r < CL (I (A5 = A)llp + 1% (A5 = Alonrllyy.0)
<2700 A- A,
<iCiCi5 < e

Now since d}fl =dj (d ;& +4;) and «Aloy = #(d 41&5 + Aj)|om we can rewrite

d5(Aje — A) = 4% (exp(§)" 45 — Aj —da, &) +d5[4; — A &), (8.16)
(Ajp1 — A)onr = #(exp(&5)"Aj — A — da, &) lons + [+(45 — A)|on, &

The first terms in both right hand side expressions are estimated by lemma 8.6 (ii)
and with the help of (8.6), (8.11), and (8.14) :

[ (exp(&;)" A5 — A;j = da, &) |, + [« (exp(&;)"A; = Aj = da; &) lont |10
< Csllexp(&)"4j — Aj — da, &y
< CoC3(1+ (145 = Allwro) € llwr.al|5 ]l
< CFC2C3(1+3Coco) || Aj — Allg (145 (A5 = A)llp + 1| * (A5 = Aloarlyy2.0)
Now consider the upper second term in (8.16). Firstly, from the local formula
(A.9) for d% and the Jacobi identity one obtains
d514; — A, &) = [d5(4; — A), 4] — (A — A, d &)

As in the proof of lemma 8.6 let L = & — ¢, then the Sobolev inequality for

W?2P — WL holds. Thus from (8.11) and with a finite constant C' arising from
several Sobolev constants one obtains

5147 = A &I, < N5 (A; = Dllpléilloe + 145 = Allglld 4 11-
< C(I&llwrall g (A5 = A)llp + 145 = AllgI&jlw=)
< CC||A; = Allg (145 (A5 = Dllyp + 1| * (A7 = Alonr [y 20)

For the lower second term in (8.16) use (8.11) and lemma B.3 with r = p and
s = ¢ to obtain a constant C such that

1645 = Dlonr, &lllyar < Cllx (45 = Dlonllywr 18w
< CC1 * (45 = A)lonr w145 = Allg.



Now we have considered all terms in (8.16) and found a finite constant Cy4
depending on ¢y, Cy, C1, Cs, C3, and some Sobolev constants C' such that

I (Ajr = Allp + 1+ (Agr = Alonsllyyz
< Cull A — Allg(145(45 = llp + 11 % (45 = Aloarlly10)
< Cy-20Cys - 279C|A - A,
<27UICy||A- 4],
In the above estimates we used (8.12) for ¢ = j and (8.15), and we made the
possibly even smaller choice § < (4C4CCp)~t. Since we used (8.12) this only
holds for j > 1; in case j = 0 one has to use (8.6) and (8.1) to estimate
1% (Ar = A)llp + 11 * (A1 = Alonr 10
< Cull Ao — Allg (145 (Ao — A)llp + | * (Ao — A)lontllyy.»)
< C3C4l|A = Al||A = Allwrr
< coCsCul|A = Allg.
In both cases, this proves the induction step for (8.12); where in the step for

j = 0 the constant C7 is fixed as C; = 2¢¢C3Cy.
Furthermore, (8.13) is shown in case i = j + 1 > 2 with the help of

lemma 8.6 (ii), (8.14), (8.11), and again (8.12) for ¢ = j > 1:

14j1 = Ajllwre < Co(1+ |45 = Allwn) 1]l wer
< C1C2(1+3Coco) (175 (A5 = Allp + |+ (A7 — A)lonlly1)
< 279C1CLCo(1 + 3Chco)||A — A,
This proves the induction step for (8.13) with Cy = $C;C1Ca(1 + 3Cocp). So
we have proved (8.12) and (8.13) by induction.

Now (8.13) shows that the A; form a W!P-Cauchy sequence. Indeed, for all
k>j>1

k k
1Ak = Allwis < 3 A= Ailws < Y 27Ch|A- A, < 2795,
i=j+1 i=j+1

Since AYP(P) is a Banach space this implies that the A; converge in the W1»-
norm to some Ao, € AYP(P). By continuity this limit connection also satisfies
(8.14) and (8.15), hence one obtains a constant Coe = 2Cy + CCp (where C' is
the Sobolev constant for the embedding WP «— L) such that

Ao — Allwro < CegllA — Allwio,



From (8.12) one sees that

45 (A — A) = lim d5(4; - A) =0,

11— 00

*(Aoo—fl)}aM: lim *(4; — A) 0.

17— 00

|8M:

So it remains to show that A, = u*A for some u € G>P(P). For that purpose
consider the sequence u; = exp(£1) ... exp(¢;). By lemma A.5 it lies in G2P(P),
and it satisfies ufA = A,;. Now lemma A.8 applies since A; converges in the
WhtP.norm and A is uniformly W1'P-bounded anyway. Thus there exists a
subsequence of the u; that converges in the C’-norm to some u € G2P(P). For
the same subsequence (again labelled by 4) u; 'du; converges to u~'du in the
L?-norm. Now u*A = A since this is the unique L?P-limit of the sequence

u;lAui—i—u;ldui = u;A = A,

Thus u is the required gauge transformation that puts A in relative Coulomb
gauge. m|

Proof of theorem 8.3 :

It remains to show that A = u*A for some u € G1"(P). For that purpose
consider the sequence u; = exp(£1) . ..exp(&;). By lemma A.5 it lies in G17(P),
and it moreover satisfies ufA = A;. Now lemma A.8 applies (with k¥ = 1 and
p = r) since the A; converge in the L"-norm and A is uniformly L"-bounded any-
way. Thus there exists a subsequence of the u; that converges in the C%-norm to
some u € G1"(P). For the same subsequence (again labelled by i) u; 'du; con-
verges to u~'du in the weak L"-topology. Now we obtain u*A = A, since this

is the unique weak L"-limit of the sequence u;lAui + u;ldui = ulA = A,
Thus w is the required gauge transformation that puts A in relative Coulomb
gauge with respect to A. a

Proposition 9.8 and Lemma 9.9 : Let p > 3. ...

Proof of theorem 10.3 :
So proposition 7.6 with I = N provides a subsequence (v;);eny and a
sequence of gauge transformations u’ € gf P(P) such that
lim sup ||u1 * Avi
1—00

_AHWM(M;C) <oo  Vk,leN.

Lemma A.8: ...
(i) There exists a subsequence of the u” that converges in the C°-topology to
some u*® € GFP(P) and for all trivializations (u%)~'du?, — (u®) ™ dus®
in the weak W*=1P_topology.



Corollary B.9 : Let U be a compact Riemannian n-manifold and let G be a
compact Lie group. Let £ € N and 1 < p < oo be such that kp > n. Then
for every sequence (u;)iey in G*P(U) with a uniform bound on ||u; *du; [|yx-1.»
there exists a subsequence that converges in the C%-topology to a gauge trans-
formation v € G*P(U). Moreover, u; 'du; converges to u~'du in the weak
Wk=1P_topology.

Proof:
... Thus u = ®~'ov is well defined, lies in G¥P(M, G), and is the C%-limit of the
u;. At the same time, v~ 'du is the weak W+~ 1LP-limit of the u; 'du;.

. (note that d® is a bijection between TG and T(®(G))). a



various small corrections

p.17
We denote by (u, ¢) the pairing of a distribution v € D(M) with ¢ € C>(M).
p.34
In fact, theorem 2.3’ is only used in chapter 5.
p-39
ILxullwerzs < C(IALxUulwer + | Lxullwess)
p-41
c:=(Vol M)~ {u,1)
[ull qwrr e < - < Clfllwres (aryy- + C(Vol M)~ (u, 1)
p-66
V is given by connection potentials A, € L"(Uy, T*U, ® End V).
p-69
For the Sobolev embedding one checks that 1 — % > —2"—p due to p > 3.
p-78 within the boundary value problems
d*a € WF2(M)
aglom =0

p-84 the estimates are meant for

[ o]
p-88

If X is perpendicular to the boundary, then the estimate holds for all ¢ €
Cg°(M); if X is tangential, then it holds for ¢ € Co°(M).
p-96
the Sobolev inequality for WP s L2
p-97
1Eally < C (Ao + 1 4il00)
p.101
the perturbation S also is a linear operator from W2P(B, g) to Z
we can use a property (A.6) of the norm on g
p.105
Now W?%%(M,G) can be defined as the closure of C>(M,G) with respect to
the W% -norm on C>(M,R™).
p-109
(@t) " baplly = ga(uths) ' bap(ushs)gs" = 9agapds' = Pas
p.120
This provides a subsequence (j11,)ien C (Vj+3,i)ien and gauge transforma-
tions w(.] + 17Mj+17i) € g27p(P|Mj+3)

p-128

da2' (A =A%) n=...==dan'(A2 =AY n — [, (x[AA=A], )
(da(w*A—-A)) = —(d, (A=v*A) =...

p-129

Newton iteration analogous to [CGMS, Thm.B.1]

p.132



77t+

a(t) =t dAf+Z o adf (dag)
p-133

VA(eXp(§ A—A—dA§)|

> G (BIV 4] - [dag] + [€] - [V 4d ag])

<
k=1
C_ ~
< S (IVAEP + |V 460 - 1A= Al €] + [€] - [V5E] + €] - [V 414 = A,€]))
p.144 in (9.3)
*FA|3M:O
p.146

Note that the assumptions on p in case k = 1 of both the above proposition and
2

corollary ensure p > =

. then we can get to W2™ (and thus to W?2? if we started with p < n)

p.148

Wk s WWF=LP (in case q # p this is due to % = % — % < % + %)
.. with (k,p) replaced by (kK —1,¢) and for s =p and p <r < o0
p.152

Then corollary 9.6 (i) with M’ = M} and M" = Mt

p.156

Indeed, d 4~ converges in the LP -norm to d 43 since ¢ > p*, and Fa» converges
in the weak LP-topology to Fa.

p.167

In the local trivialization a gauge transformation u € G(P) is represented by
U = Pooti : Uy — G

p.174

[Fallwr-1a < | Fsllwe-ra + C (lallwra + [allfye,) -

Here |d ;0| < 2|V ;0|

p-175

In a trivialization over U C M ... with s € C>®(U,G) and & € WFP(U, g).
p-176

Thus in ufA; = (u;)"tdu; + (u;) "t A;u; one immediately obtains the Wk=1r-
convergence of the first term and the LP-convergence of the second term.
p-177

Indeed, for the first this is due to the Sobolev embedding WP «— W*=12P and
¢ <k —1 (using the convergence criterion in lemma B.7 (iv)).

p-180

Note the following subtlety of the definition of W*?(M, E):

If M is a compact manifold with boundary, then sections in W*? (M, E) can
be nonzero over M. Sections in WP (M \ OM, E) however will be the limit
of smooth sections with support in M \ M. For k = 0 the completions are the
same, but for £ > 1 any section in W*P(M \ OM, E) necessarily extends to zero
over OM.

10



p.181

Here V; C R" is a compact coordinate chart of M and R™ is isomorphic to the
fibres of E.

p-186

note that k& —m > k—@(k— mﬁk) sincem < M <k

p.188

Let u = s - exp(€§) with s € C>®°(M,G) and £ € WFP(M, g)

... for some constant C¢ [|[E(§)oLy €]l < CellLyE|lp-

p-189

... for some constant C¢ [|de E(LzE)oLyE|lp < CellLzE2p | Ly E]|2p-
This proves that u~'du has finite W P-norm.

Since G is compact E(u) is bounded in the operator norm

p.196

Finally, if k£ # | and both derivatives are included one checks

o5t2m

e Ly :'”<2.23+2 2!<2n+1!'
x“’axlaxkamh...axis = (s+2)! < n

L1 LTy

Before one has s < n or s <n+ 1 respectively, hence
... the criterion (C.1) is met with A = 2"+1n! .
p-199

pt S < P
/R,L\BK 27T

The second term is estimated as follows:

...SIIfIIS/R LAy <
" K

p.208
WATHP(M) = {Glon | G € WFHLP(M)}

p.212
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