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Abstract

We introduce a variant of stable logarithmic maps, which we call punctured logarith-
mic maps. They allow an extension of logarithmic Gromov–Witten theory in which
marked points have a negative order of tangency with boundary divisors.

As a main application we develop a gluing formalism which reconstructs stable
logarithmic maps and their virtual cycles without expansions of the target, with trop-
ical geometry providing the underlying combinatorics.

Punctured Gromov–Witten invariants also play a pivotal role in the intrinsic con-
struction of mirror partners by the last two authors, conjecturally relating to symplec-
tic cohomology, and in the logarithmic gauged linear sigma model in work of Qile
Chen, Felix Janda and Yongbin Ruan.
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Chapter 1

Introduction

Logarithmic Gromov–Witten theory, developed by the authors in [2, 15, 30], has
proved a successful generalization of the notion of relative Gromov–Witten invari-
ants developed in [47–49]. Relative Gromov–Witten invariants are invariants of pairs
.X; D/ where X is a non-singular variety and D is a smooth divisor on X ; these
invariants count curves with imposed contact orders with D at marked points. Log-
arithmic Gromov–Witten theory allows D instead to be normal crossings, or more
generally, allows .X;D/ to be a toroidal crossings variety.

1.1 Scope and motivation

The purpose of the present work is to extend logarithmic Gromov–Witten theory to
admit negative contact orders. Working over a field k, an example for how negative
contact orders arise naturally is by restricting a normal crossings degeneration, such
as

� W A2 D Spec kŒz; w�! A1 D Spec kŒt �; �].t/ D zw;

to the irreducible component C D V.w/ of the central fiber ��1.0/. Viewing � as a
morphism of log spaces for the toric log structures on A2 and A1, denote by sz; sw ; st
the global sections of the log structure MA2 induced by z, w and �].t/, respec-
tively. The induced log structure MC DMA2 jC on C D Spec kŒz� is generated by
the restrictions of sz , sw , denoted by the same symbols. Note that the structure mor-
phism MC ! OC maps sz to z, which has a first order zero at the origin 0 2 A1 as
given by a marked point, while sw and st map to 0. The point is that viewed as a log
space over A1, the equation szsw D st implies that away from 0 2 A1, we have

sw D z
�1
� st :

Such sections do not exist on log smooth curves over the standard log point. The
power of z occurring in this equation reflects the negative contact order. Since z�1 is
defined on the punctured curve A1 n ¹0º, we call the resulting extension of log smooth
curves, stable logarithmic maps and logarithmic Gromov–Witten theory punctured
curves, punctured (logarithmic) maps and punctured Gromov–Witten theory.

Our motivation for studying punctured Gromov–Witten theory comes from three
sources. First, as illustrated in the example, negative contact orders arise naturally
when gluing a logarithmic stable map from its restrictions to closed subcurves, as
desired in degeneration situations [3]. Note that in transverse situations, as achieved
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by the expanded degeneration technique in [48], negative contact orders can be avoid-
ed by turning a punctured map over a standard log point into a stable logarithmic
map to an irreducible component of the target over the trivial log point; see [26,
Sections 6, 7] for details. This simplification is not possible when an irreducible com-
ponent of the curve maps into a deeper stratum. See [3, Section 5.2.4] for an example
where no decomposition of the target splits any of the nodes into a pair of marked
points with non-negative contact order. A treatment of gluing situations based on
punctured maps is contained in Chapter 5.

The second motivation comes from mirror constructions and their link to sym-
plectic cohomology, relating to the program on mirror symmetry of Gross and Siebert
via toric degenerations. It turns out that the algorithmic construction of mirrors via
wall structures in [29] admits a vast, intrinsic generalization by using punctured
invariants [33]. Punctured invariants are used in this context to define the structure
coefficients of the coordinate ring of the mirror degeneration, with the space of non-
negative contact orders representing generators. The structure coefficients require
punctured invariants with two positive and one negative contact order. The gluing
techniques developed in Chapter 5 are the crucial ingredient in proving associativity
of the resulting multiplicative structure. In [32], the gluing techniques for punctured
invariants are also crucial in constructing a consistent wall structure in the intrin-
sic mirror symmetry setup, thus linking the mirror constructions in [29, 33] via [28].
Further, building on [8, 32] gives an algorithmic method of calculating certain one-
pointed punctured invariants on blow-ups of toric varieties.

Another interesting related fact is the interpretation of punctured invariants as
structure coefficients in some versions of symplectic cohomology. Thus punctured
invariants provide an algebraic-geometric path to computing otherwise hard to com-
pute symplectic invariants. See [7, 23, 24, 63, 66] for some steps in this direction.

The third motivation is from work of the second author on the logarithmic gauged
linear sigma model. In the papers [17, 19], punctured maps are shown to be a key for
computing the invariants of the logarithmic gauged linear sigma model of [18].1 This
provides the geometric foundation for calculating higher genus invariants of quintic
3-folds [34, 35], and for proving [55, Conjecture A.1] on the cycle of holomorphic
differentials [16].

1In [19], punctured maps to a smooth boundary divisor with extra structure called R-maps,
are studied. The moduli of punctured maps provide different virtually birational models over
which effective formulas for computing higher genus Gromov–Witten invariants hold [17].
These crucial virtually birational models do not exist as moduli of rubber maps with expan-
sions [25, 48].
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1.2 Main features of punctured Gromov–Witten theory

Several aspects of the theory of punctured Gromov–Witten invariants appear to be
straightforward generalizations from ordinary logarithmic Gromov–Witten theory.
The formal similarity can, however, be quite misleading. In fact, finding the right
setup and point of view took a very long time, and was only made possible by devel-
oping the theory simultaneously with the mentioned applications.

One major difference is the more singular and more interesting nature of the base
space for moduli spaces of punctured maps. In ordinary Gromov–Witten theory, the
natural base space is the Artin stack M of nodal curves. While non-separated, M
is smooth, hence is locally pure dimensional. The relative obstruction theory of the
moduli space of stable maps over M thus produces a virtual fundamental cycle by
virtual pullback of the fundamental class ŒM�. The picture in logarithmic Gromov–
Witten theory is much the same, with M now replaced by the stack MD LogM of log
smooth curves of the given genus and numbers of marked points over fine saturated
(fs) log schemes. This stack is log smooth over the base field, hence is also locally
pure-dimensional.

For punctured invariants, the analogue of M is the stack MM of logarithmic curves
with punctures. One crucial feature of the deformation theory of punctured curves is
that MM is typically not pure-dimensional. In fact, the map MM!M forgetting the log
structure turns out to be only idealized logarithmically étale (Proposition 3.3). This
means that locally in the smooth topology MM!M is isomorphic to the composition
of a closed embedding defined by a monomial ideal followed by a toric morphism of
affine toric varieties with associated lattice homomorphism an isomorphism over Q.

The induced stratified structure of punctured maps turns out to be captured by
tropical geometry. The second main feature of punctured Gromov–Witten theory is
thus the central role of tropical geometry, exceeding by far its increasingly recognized
role in logarithmic Gromov–Witten theory. Working over a base space B , we first
factor the log smooth target X ! B over the relative Artin fan X ! B from [5,
Corollary 3.3.5], an algebraic stack glued from quotients of toric charts for X ! B

by the fiberwise acting torus, see [3, Section 2.2]. Working with X as a target amounts
to working with nodal curves and compatible families of tropical maps, thus making
the theory of such punctured maps a combinatorially enriched version of the theory
of stable curves. A better base space than MM to work with is then the algebraic stack
M.X=B/ of punctured maps to X=B . Indeed, the forgetful map

M.X=B/!M � B

is also idealized logarithmically étale (Theorem 3.25), but now with idealized struc-
ture easy to extract from the tropical geometry of the situation. In particular,
Remark 3.31 gives a complete characterization of the strata of M.X=B/ in terms of
types of tropical maps. Due to its fundamental nature for punctured Gromov–Witten
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theory, we emphasize the role of tropical geometry throughout, including adapted
presentations of material from [30] in Chapters 2, 3 and Appendix C.

A third feature of punctured Gromov–Witten theory developed here, but already
relevant to ordinary logarithmic Gromov–Witten theory, is the introduction of eval-
uation stacks for imposing point conditions compatible with the virtual formalism.
Since X !X is smooth in the ordinary sense, we can choose a lift to X of the image
of each marked point in X to arrive at an algebraic stack Mev.X=B/ smooth over
M.X=B/ and such that the relative obstruction theory over M.X=B/ arises from a
relative obstruction theory over Mev.X=B/. It is this evaluation stack Mev.X=B/

that one needs to work with to impose conditions on the evaluations at the marked
points rather than the product X �B � � � �B X in ordinary Gromov–Witten theory.
Evaluation stacks also play a crucial role in our gluing formalism, see Section 5.3.

1.3 Statements of main results

For simplicity of the presentation of the main results we now assume X ! B to
be a projective log smooth morphism of log schemes and B the standard log point
Spec.N ! k/ or B log smooth over the trivial log point Spec k, where k is a field of
characteristic 0. For more detailed statements we refer to the main body of the text.

Similar to logarithmic Gromov–Witten theory, as presented in [3, Section 2.5],
we introduce (decorated) types of punctured maps and of (families of) tropical maps.
Types restrict the combinatorics of punctured maps over geometric points as seen
by their tropicalizations, such as the dual intersection graph, the contact orders of
punctured and nodal points and the genera and the curve classes of its irreducible
components (Definition 2.24). An appropriate global version of contact orders devel-
oped in Section 2.4 leads to the notion of global decorated type � that can be used
to define moduli spaces of punctured maps marked by � (Definition 3.8). Theo-
rem 3.10, Corollary 3.19 and Theorem 3.25 establish the basic properties of these
moduli spaces, which can be summarized as follows.

Theorem A. Let � be a decorated global type. Then the stacks M.X=B; �/ and
M.X=B; �/ of �-decorated basic stable punctured maps (Definition 3.8) to X ! B

and toX ! B , respectively, are logarithmic algebraic stacks. Moreover, M.X=B;�/
is Deligne–Mumford and proper over B .2 If in addition X is simple [3, Defini-
tion 2.1], M.X=B;�/ is idealized smooth over B .

For the definition of punctured Gromov–Witten invariants we work over the eval-
uation stacks Mev.X=B; �/, which lift the evaluations at a set S of punctured and

2We prove properness under the technical assumption that the log structure on X is Zariski
and xMgp

X
is globally generated. The latter assumption has meanwhile been removed in [39].
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nodal points from X to X (Definition 5.14). We suppress S in the notation. The fol-
lowing theorem summarizes Propositions 4.2 and 4.5.

Theorem B. For � a decorated global type let � W C.X=B;�/!M.X=B;�/ and f W
C.X=B;�/!X be the universal curve and universal punctured map over the moduli
space M.X=B;�/ of �-marked basic punctured maps to X ! B . Let Mev.X=B;�/

be the corresponding evaluation stack for a subset S of punctured sections, and Z �
C.X=B; �/ the closed substack defined by the union of the images of these sections.
Then there is a canonical perfect relative obstruction theory

G ' .R��f
�‚X=B.�Z//

_
! LM.X=B;�/=Mev.X=B;�/

for the natural morphism " WM.X=B; �/!Mev.X=B; �/. Here ‚X=B denotes the
logarithmic tangent bundle of X over B .

A similar statement holds if S also contains nodal sections, see Proposition 4.5.
Virtual pullback [50] now provides punctured Gromov–Witten invariants, with the
basic correspondence the homomorphism

.ev � p/�"ŠG W A�.M
ev.X=B;�//! A�Cd.g;k;A;n/

�Y
L

ZL �Mg;k

�
on rational Chow groups defined in Definition 4.6. Here each ZL is an evaluation
stratum, the closed stratum of X that evaluation at a punctured section maps to by
the choice of decorated global type �, and Mg;k is the Deligne–Mumford stack of
k-marked stable curves of genus g. A formula for the relative virtual dimension
d.g; k; A; n/ is stated in (4.18).

The most challenging part of this paper was an efficient and practically useable
treatment of gluing. While the final results may look straightforward, they rely on
a number of careful choices and subtle points which became clear to us only after
a long series of futile attempts.3 Here we only summarize the results and refer to
Remark 5.22 for some further discussion.

The formal setup for gluing takes a decorated global type � and splits the graph
underlying � at a subset of edges, leading to a set ¹�1; : : : ; �rº of decorated global
types, with each split edge now producing a pair of legs in the graphs for the �i .
Our first result on gluing reduces all gluing questions to the unobstructed evaluation
stacks, as proved in Proposition 5.17 and Theorem 5.19.

3For some time our formalism only worked for gluing problems appearing in certain mirror
constructions. We emphasize that the final results below are general and practical, as demon-
strated in [71].
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Theorem C. There is a cartesian diagram

M.X=B;�/
ı //

"

��

Qr
iD1M.X=B;�i /

y"D
Q
i "i

��

Mev.X=B; �/
ıev
//
Qr
iD1 Mev.X=B; �i /

with horizontal arrows the splitting maps from Proposition 5.4, finite and repre-
sentable by Corollary 5.15, and the vertical arrows the canonical strict morphisms.4

Moreover, if y"Š and "Š denote Manolache’s virtual pullback defined using the two
given obstruction theories for the vertical arrows, then for ˛ 2 A�.Mev.X=B; �//,
we have the identity

y"Šıev
� .˛/ D ı�"

Š.˛/:

A numerical gluing formula follows from Theorem C for those Chow classes ˛ on
Mev.X=B;�/ such that ıev

� can be written as a sum of products, see Corollary 5.20.5

A straightforward consequence of Theorem C is a gluing formula for the degeneration
situation from [3], see Corollary 5.26.

Our second result on gluing provides a description of the splitting map ıev in terms
of an fs-fiber diagram, which apart from proving the properties stated in Theorem C,
provides a route to using Theorem C in explicit computations. For the following state-
ment the log stacks Mev.X=B; �/, Mev.X=B; �i / have to be replaced by closely
related log stacks zM0ev.X=B; �/ and zM0ev.X=B; �i /, which however have the same
underlying reduced stacks, hence have identical Chow theories (Proposition 5.7).6

These stacks come with logarithmic evaluation morphisms such as

evE W zM
0ev.X=B;�/!

Y
E2E

X;

where E is the set of nodal sections to split. The following is Corollary 5.15 to which
we refer for more details.

4There is an entirely equivalent formalism allowing for disconnected punctured curves and
disconnected types, in which case the products on the right form a single moduli stack corre-
sponding to a disconnected decorated global type �.

5Conversely, if there is no such decomposition, a numerical gluing formula cannot be
achieved within Chow theory—a phenomenon already present in the classical case of a smooth
gluing locus. A generally applicable gluing formula should therefore require working with a
homology theory with a Künneth decomposition. It is possible that the formalism of virtual
pullback in Borel–Moore homology developed in [40] may be useful.

6These stacks are closely related to Parker’s moduli of cut curves introduced in [57].
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Theorem D. The splitting morphism ıev W zM0ev.X=B; �/!
Q
i
zM0ev.X=B; �i / fits

into the cartesian diagram

zM0ev.X=B;�/
ıev
//

evE

��

Qr
iD1
zM0ev.X=B;�i /

evL

��Q
E2EX

� //
Q
E2EX �B X

of fs log stacks. Here � restricts to the diagonal morphism X ! X �B X on each
factor.

We emphasize that the diagram in Theorem D is typically not cartesian on the
level of underlying stacks due to the more subtle nature of fs fiber products. Theo-
rem D is nevertheless a powerful tool for explicit computations. For example, under
the assumption of toric gluing strata, Yixian Wu in [71] derives from Theorem D
an explicit decomposition of the term ıev

� ŒM
ev.X=B; �/� appearing in Theorem C in

terms of the strata in
Q
i M.X=B;�i /.

1.4 Organization of the paper

Chapter 2 contains the basic definitions and related concepts concerning punctured
curves and punctured maps, with Section 2.1 introducing pre-stable and stable punc-
tured maps, and Section 2.2 along with Appendix C the tropical language, including
the definition of types and the modified balancing condition. The subject of Sec-
tion 2.4 is the discussion of contact orders in a simplified version sufficient for most
applications, and the associated notion of global types. The more involved general
picture concerning contact orders is discussed in Appendix A. Section 2.3 presents
the concept of basicness for punctured maps, which while largely the same as for
logarithmic stable maps, emphasizes the tropical point of view, and hence might be
of some independent interest. Section 2.5 introduces the new phenomenon of punc-
turing log ideals that each family of punctured curves or punctured maps comes with.
Section 2.6 discusses the generalization to targets with monodromy.

Chapter 3 deals with the moduli theory of punctured maps, proving Theorem A
among other things. Section 3.1 introduces stacks of punctured curves, with the main
result the idealized smoothness statement in Proposition 3.3, followed in Section 3.2
by definitions of various stacks of punctured maps marked by types. Sections 3.3
and 3.4 establish properness of the moduli spaces to projective targets by adapting the
boundedness and stable reduction theorems from [30]. The topic of Section 3.5 is the
idealized smoothness of the spaces M.X=B; �/ and the induced stratified structure,
all characterized in terms of tropical geometry.
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Chapter 4 deals with obstruction theories, using the approach of [13]. Section 4.1
gives a careful treatment of functoriality as well as of compatibility of obstruction
theories for maps of pairs. Section 4.2 applies this discussion to construct the desired
relative obstruction theory for M.X=B; �/!Mev.X=B; �/, in particular proving
Theorem B. Another application of this discussion is to the virtual treatment of gluing,
presented in Section 5.3. The section ends with the definition of punctured Gromov–
Witten invariants in Section 4.3.

The last Chapter 5 contains our results on gluing. Section 5.1 introduces the split-
ting morphism, while Section 5.2 treats the converse operation of gluing, essentially
proving Theorem D, maybe the hardest single result in the paper with a very long
genesis. The virtual treatment of gluing, proving Theorem C, is the objective of Sec-
tion 5.3. The last Section 5.4 applies our results to the degeneration situation of [3].

1.5 Relation to other work

We end this introduction by discussing related work. First, our approach owes a great
deal to Brett Parker’s program of exploded manifolds, [56, 58–62]. We have often
found ourselves trying to translate Parker’s results in the category of exploded man-
ifolds into the category of log schemes. Indeed, some of the original versions of the
definition of punctured invariants, as well as the approach to gluing, arose after dis-
cussions with Parker.

A gluing formula for logarithmic Gromov–Witten invariants without expansions
in the case of a degeneration X0 with smooth singular locus is due to Kim, Lho and
Ruddat [44]. This case does not require punctured invariants or evaluation spaces, but
is otherwise close in spirit to the present treatment. A gluing formula in a special case
for certain rigid analytic Gromov–Witten invariants has been proved by Tony Yu [72].

After the earlier manuscript version of this paper was distributed, Mohammed
Tehrani [22], in developing a symplectic analogue of stable logarithmic maps, found
that punctures were naturally described in the theory. Even more recently, [21, 68]
defined negative contact order Gromov–Witten invariants by a limiting version of
orbifold Gromov–Witten invariants. However, as observed by Dhruv Ranganathan,
the invariants as currently defined cannot coincide with logarithmic invariants as they
do not satisfy the correct invariance properties under log étale modifications. Work
of Battistella, Nabijou and Ranganathan [11] takes this into account and shows how
genus zero logarithmic invariants can be recovered from the orbifold invariants after
sufficient blowing up. Their work [12] considers the case of negative contact orders in
the orbifold theory, and makes a somewhat more subtle comparison which involves
the puncturing ideal defined in Section 2.5. We send the reader to those papers for
more details.
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Besides the immediate applications of punctures already mentioned above, punc-
tures also have been used by Hülya Argüz in [7] to build a logarithmic analogue of
certain tropical objects in the Tate elliptic curve related to Floer theory.

Finally, we also mention recent work of Dhruv Ranganathan [65] taking a differ-
ent point of view on gluing in log Gromov–Witten theory using an approach closer in
spirit to the expanded degeneration picture of Jun Li.

1.6 Conventions

All schemes and stacks are defined over an algebraically closed field k of character-
istic 0. By a logarithmic algebraic stack, we mean an algebraic stack equipped with
a log structure. We follow the convention that if X is a log scheme or stack, then X
is the underlying scheme or stack. To unclutter notation, we nevertheless often write
OX instead of OX , and f � instead of f � for the pullback by the schematic mor-
phism underlying a log morphism f W X ! Y . Unless stated otherwise, MX denotes
the sheaf of monoids on X , and ˛X W MX ! OX the structure map. The affine log
scheme with a global chart defined by a homomorphismQ! R from a monoidQ to
a ring R is denoted Spec.Q! R/. We use the notations X �Z Y , X �f

Z Y , X �fs
Z Y

to distinguish the fiber products in the category of all log schemes, and in the fine or
the fine and saturated categories, respectively.

Throughout B denotes either a log point Spec.Q ! k/ with Q a toric monoid
with Q� D 0, or an fs log scheme log smooth over Spec k.7

A nodal curve over a scheme W is a proper flat morphism C ! W with all
geometric fibers reduced of dimension one and with at worst nodes as singularities.
A pre-stable curve is a nodal curve with all geometric fibers connected.

The category of rational polyhedral cones from [3, Section 2.1] is denoted Cones.
An object � of Cones comes with a lattice N� with � � .N� /R D N� ˝Z R, and we
denote by �Z D � \N� the submonoid of integral points of � . If P is a monoid, we
write P_ WDHom.P;N/, P � DHom.P;Z/, and P_R DHom.P;R�0/. We write P �

for the group of invertible elements of P . We write kŒP � for the monoid ring of P
with coefficients in the field k, with k-basis consisting of symbols zp for p 2 P .

7We only use these assumptions in the proof of Theorem 3.25 to assure that the reduced
logarithmic strata are defined by logarithmic ideals. This theorem is at the heart of everything
we do involving moduli spaces of punctured maps marked by a type.





Chapter 2

Punctured maps

2.1 Definitions

2.1.1 Puncturing

Definition 2.1. Let Y D .Y ;MY / be a fine and saturated logarithmic scheme with
a decomposition MY D M ˚O� P . A puncturing of Y along P � MY is a fine
sub-sheaf of monoids

MY ı �M ˚O� P gp

containing MY with a structure map ˛Y ı WMY ı ! OY such that

(1) The inclusion p[ WMY !MY ı is a morphism of logarithmic structures on Y .

(2) For any geometric point Nx of Y let s Nx 2MY ı; Nx be such that s Nx 62M Nx ˚O� P Nx .
Representing s Nx D .m Nx;p Nx/2M Nx ˚O� P

gp
Nx , we have ˛Y ı.s Nx/D ˛M.m Nx/D

0 in OY; Nx .

Denote by Y ı D .Y ;MY ı/. We will also call the induced morphism of logarith-
mic schemes p W Y ı ! Y a puncturing of Y along P , or call Y ı a puncturing of Y
along P . We refer to Figure 2.1 for illustration.

We say the puncturing is trivial if p is an isomorphism.

Remark 2.2. In all examples in this paper, P is a DF.1/ log structure, that is, there
is a surjective sheaf homomorphism N ! xP . In this case the condition ˛M.m Nx/D 0

is redundant. Indeed, for s Nx D .m Nx; p Nx/ 62M Nx ˚O� P , suppose ˛Y ı.s Nx/ D 0. Note
that the DF.1/ assumption implies that p�1

Nx 2 P Nx , so that ˛M.m Nx/ D ˛Y .m Nx; 1/ D

˛Y ı.s Nx � p
�1
Nx / D 0. More generally, the same argument works if P is valuative.

For more general puncturings, the second vanishing condition ˛M.m Nx/ D 0 in
Definition 2.1 (2) is not automatic, but is needed to obtain good behavior under base-
change (Proposition 2.8). Our log stacks zM0.X=B; �/ in Section 5.2.2 naturally carry
such a more general puncturing. While these more general log structures have no
further use in this paper, they may be of use elsewhere.

Note also that if P is aDF.1/ log structure and Ny is a geometric point of Y , then

xMY; Ny ˚N � xMY ı; Ny �
xMY; Ny ˚ Z; xMY ı; Ny \ .¹0º � Z<0/ D ;: (2.1)

We will see in Lemma 2.21 how such monoids can easily be encoded in the dual
tropical picture.

Remark 2.3. Puncturings Mı of M ˚O� P are not unique. In a widely distributed
early version of this manuscript as well as in [31], we found it instructive to work with
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P
:::

: : :

MW

: : :

Figure 2.1. A puncturing Y ı of a monoid MDMW . Note that the part with negative projection
in P gp (open circles) is not necessarily saturated.

a uniquely defined object MP we call here the final puncturing. It may be defined as
the direct limit

MP
WD lim
�!

Mı2ƒ

Mı;

over the collection ƒ of all puncturings of M ˚O� P . This exists in the category of
quasi-coherent, not necessarily coherent, logarithmic structures. It has the advantage
of being independent of any choice. Its disadvantage, apart from not being finitely
generated, is in that its behavior under base change is subtle.

We emphasize that

(1) all puncturings used in this paper, with the exception of the remark above, are
fine, and in particular they are finitely generated.

(2) On the other hand, the puncturings we use are rarely saturated, even though
the logarithmic structure they puncture are themselves saturated. The rea-
son is that base change of a saturated puncturing can lead to a non-saturated
puncturing. Imposing a saturation condition would therefore lead to a subtle
fiberwise saturation procedure. Instead, we find that the notion of pre-stability
of Definition 2.6 below suffices to control these logarithmic structures and
their moduli.

Remark 2.4. In the introduction, we motivated punctures as arising from restrictions
of log structures on log smooth curves to irreducible components. Indeed, this is one
way of producing punctures: see Proposition 5.2 for details. However, since we allow
fine rather than fine saturated log structures for the puncturing, it is clear that not all
the punctures we consider are of this form. See also Lemma 2.21 for a description of
the submonoids of xMY; Ny ˚ Z that can arise.
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It is worth making a historical remark here. When we began this project, we
first considered what we called “pre-nodal” log structures in which we allowed pre-
cisely those log structures coming via restriction from a log smooth curve. However,
we found the moduli space of pre-nodal log maps was very poorly behaved, almost
never Deligne–Mumford. The notion of punctured points along with the notion of
pre-stability of Definition 2.6 resolved these technical difficulties, and made gluing
possible.

2.1.2 Pre-stable punctured log structures

In case a puncturing is equipped with a morphism to another fine log structure there
is a canonical choice of puncturing. The following proposition follows immediately
from the definitions.

Proposition 2.5. LetX be a fine log scheme, and Y as in Definition 2.1, with a choice
of puncturing Y ı and a morphism f W Y ı ! X . Let zY ı denote the puncturing of Y
given by the subsheaf of MY ı generated by MY and f [.f �MX /. Then

(1) We have M zY ı is a sub-logarithmic structure of MY ı .

(2) There is a factorization

Y ı
f

//

  

X:

zY ı
Qf

>>

(3) Given Y ı1 ! Y ı2 ! Y with both Y ı1 , Y ı2 puncturings of Y , and compatible
morphisms fi W Y ıi ! X , then zY ı1 D zY

ı
2 .

Definition 2.6. A morphism f W Y ı ! X from a puncturing of a log scheme Y is
said to be pre-stable if the induced morphism Y ı ! zY ı in the above proposition is
the identity. In particular, one has f D Qf .

Proposition 2.5 yields the following criterion for pre-stability of a morphism from
a punctured log scheme, see Figure 2.2.

Corollary 2.7. A morphism f W Y ı ! X is pre-stable if and only if the induced
morphism of sheaves of monoids f � xMX ˚

xMY !
xMY ı is surjective.

2.1.3 Pull-backs of puncturings

Proposition 2.8. Let Z and Y be fs log schemes with log structures MZ and MY ,
and suppose given a morphism g W Z ! Y . Suppose also given an fs log structure



Punctured maps 14

P
:::

: : :

MW

: : :

Figure 2.2. A morphism of the previous puncturing Y ı which is not pre-stable, with f [MX

generated by .2;�1/. The submonoid generated by MY and f [MX , shown in solid dots, is a
different puncturing zY ı which is pre-stable.

PY on Y and an induced log structure PZ WD g
�PY on Z. Set

Z0 D
�
Z;MZ ˚O�

Z
PZ

�
; Y 0 D

�
Y ;MY ˚O�

Y
PY

�
:

Further, let Y ı be a puncturing of Y 0 along PY . Then there is a diagram

Zı
gı
//

��

Y ı

��

Z0
g0
//

��

Y 0

��

Z
g

// Y

with all squares Cartesian in the category of underlying schemes, the lower square
Cartesian in the category of fs log schemes, and the top square Cartesian in the
category of fine log schemes. Furthermore, Zı is a puncturing of Z0 along PZ , and
gı is pre-stable.

Proof. We define Zı to be the fiber product Z0 �f
Y 0 Y

ı in the fine log category. The
bottom square is Cartesian in all categories as PY is assumed saturated. Thus it is
sufficient to show (1) the upper square is Cartesian in the ordinary category, that is,
the underlying map of Zı ! Z0 is the identity and (2) Zı is a puncturing of Z0.

Note that the fiber product Z0 �Y 0 Y ı in the category of log schemes is defined
as .Z;M WDMZ0 ˚g�MY 0

g�MY ı/. This pushout need not, in general, be integral,
so we must integralize. Note there is a canonical isomorphism

Mgp
DM

gp
Z0 ˚g�M

gp
Y 0
g�M

gp
Y ı ŠM

gp
Z0
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given by .s1; s2/ 7! s1 � .g
0/[.s2/, where .g0/[ W g�Mgp

Y 0 ! M
gp
Z0 is induced by g0.

The integralization Mint of M is then the image of M in Mgp, which thus can be
described as the subsheaf of M

gp
Z0 generated by MZ0 and .g0/[.g�MY ı/. Note MZ0

and .g0/[.g�MY ı/ both lie in MZ ˚O�
Z

P
gp
Z , and hence we can replace Mgp with

this subsheaf of Mgp in describing Mint.
It is now sufficient to show that we can define a structure map ˛ W Mint ! OZ

compatible with the structure maps ˛Z0 WMZ0 ! OZ and ˛Y ı W g�MY ı ! OZ . If
s 2Mint is of the form s1 � .g

0/[.s2/ for s1 2MZ0 and s2 2 g�MY ı , then we define

˛.s/ D ˛Z0.s1/ � ˛Y ı.s2/:

We need to show this is well defined. If s2 2 g�MY 0 , then .g0/[.s2/ 2MZ0 , and thus
as g0 is a log morphism,

˛.s/ D ˛Z0.s1/ � ˛Y ı.s2/ D ˛Z0.s1/ � ˛Z0..g
0/[.s2// D ˛Z0.s/:

In particular, ˛.s/ only depends on s, and not on the particular representation of s as
a product, provided that s2 2 g�MY 0 .

On the other hand, if s2 2 .g�MY ı/ n .g
�MY 0/, then ˛Y ı.s2/ D 0 by definition

of a puncturing. So in this case ˛.s/ D 0. Hence to check that ˛ is well defined,
it is enough to show that if s D s1 � .g0/[.s2/ D s01 � .g

0/[.s02/ with s2 2 g�MY 0 but
s02 62 g

�MY 0 , then ˛Z0.s1/ � ˛Y ı.s2/D ˛Z0.s1 � .g0/[.s2//D 0. Writing si D .mi ;pi /,
s0iD.m

0
i ; p
0
i / using the descriptions MZ0DMZ˚O�

Z
PZ , g�MY ı�g

�MY˚O�
Z

P
gp
Z ,

we note that we must havem1g[.m2/Dm01g
[.m02/. As s02 62 g

�MY 0 , by Condition (2)
of Definition 2.1 we necessarily have ˛Y .m02/ D 0. Hence ˛Z.m01g

[.m02// D 0, so
˛Z.m1g

[.m2// D 0. We deduce that ˛Z0.s1.g0/[.s2// D 0, as desired. This shows ˛
is well defined.

Finally, it is clear from the above description that Zı is a puncturing. By Corol-
lary 2.7, the pre-stability of gı follows from the surjectivity of

g�1. xMY ı/˚ xMZ ! g�1. xMY ı/˚
f
g�1. xMY /

xMZ D
xMZı ;

where˚f denotes the fibered coproduct in the category of fine monoids.

Definition 2.9. In the situation of Proposition 2.8, we say that Zı is the pullback of
the puncturing Y ı.

Corollary 2.10. Consider the situation of Proposition 2.8, and suppose in addition
given a pre-stable morphism f W Y ı ! X . Then the composition f ı gı W Zı ! X

is also pre-stable.

Proof. This follows immediately from the definition of pre-stability and the construc-
tion of Zı in the proof of Proposition 2.8.
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2.1.4 Punctured curves

Throughout the paper, we will essentially only be interested in puncturing along
logarithmic structures from designated marked points of logarithmic curves. Let
� W C ! W be a logarithmic curve in the sense of [41].

(1) The underlying morphism � is a family of ordinary pre-stable curves with
pairwise disjoint sections p1; : : : ; pn of � disjoint from the critical locus
of � .

(2) � is a proper logarithmically smooth and integral morphism of fine and satu-
rated logarithmic schemes.

(3) IfU�C is the non-critical locus of � then xMC jUŠ�
� xMW ˚

Ln
iD1pi�NW .

Note that by (3), all marked points receive a non-trivial logarithmic structure. We
write ˛C WMC ! OC for the structure map of the logarithmic structure on C . We
call a geometric point of C special if it is either a marked or a nodal point.

Definition 2.11. A punctured curve over a fine and saturated logarithmic scheme W
is given by the following data:�

C ı
p
�! C

�
�! W;p D .p1; : : : ; pn/

�
(2.2)

where

(1) C ! W is a logarithmic curve in the sense of [41] with its collection of
pairwise disjoint sections p1; : : : ; pn of the underlying curve as above.

(2) C ı! C is a puncturing of C along P , where P is the divisorial logarithmic
structure on C induced by the divisor

Sn
iD1 pi .W /.

When there is no danger of confusion, we may call C ı ! W a punctured curve.
Sections in p are called punctured sections, or simply punctures. IfW D Spec � with
� a field, we also speak of a punctured point. We also say C ı is a puncturing of C
along the punctured sections p.

If locally around a punctured point pi the puncturing is trivial, we say that the
punctured point is a marked point. In this case, the theory will agree with the treatment
of marked points in [2, 15, 30].

Examples 2.12. (1) Let W D Spec k be the point with the trivial logarithmic struc-
ture, and C be a non-singular curve over W . Choose a closed point p 2 C and a
puncturing MCı of C at p. Then MCı D P , as MCı � P gp can have no sections s
with ˛Cı.s/ D 0. Thus, in this case the only puncturing C ı ! C is the trivial one.

(2) Let W D Spec.N ! k/ be the standard logarithmic point, and C be a non-
singular curve over W , so that MC D O�C ˚N, where N denotes the constant sheaf
on C with stalk N. Again choose a closed point p 2 C with defining ideal .x/.
Let MCı � �

�MW ˚O�
C

P gp be a puncturing. Let s be a local section of MCı
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P
:::

: : :

MW

: : :

P
:::

: : :

MW

: : :

Figure 2.3. The solid puncturing on the left extends to kŒ"�=."2/ but no further—the circled
elements are the ones allowed for k D 1. Its pullback (see below) via E2 D " is pictured on the
right—it is defined on kŒE�=.E4/ but does not extend further.

near p. Write s D ..'; n/; xm/ with ' 2 O�C;p , n 2 N. If m < 0, then Condition (2)
of Definition 2.1 implies that

˛��.MW /.'; n/ D 0;

so we must have n > 0. Thus we see that

xMCı;p �
®
.n;m/ 2 N ˚ Z j m � 0 if n D 0

¯
:

Conversely, any fine submonoid of the right-hand-side of the above inclusion which
contains N ˚N can be realized as the stalk of the ghost sheaf at p for a puncturing.
Note the monoid on the right-hand side is not finitely generated, and is the stalk of
the ghost sheaf of the final puncturing, see Remark 2.3.

(3) LetW DSpeckŒ"�=."kC1/, and letW be given by the chart N! kŒ"�=."kC1/,
1 7! ". Let C0 be a non-singular curve over Spec k with the trivial logarithmic struc-
ture, and let C D W � C0. Choose a section p W W ! C , with image locally defined
by an equation x D 0. Condition (2) of Definition 2.1 now implies that a section s of
a puncturing MCı near p takes the form ..';n/; xm/ where ' 2O�C;p , and 0� n� k
implies m � 0. In particular,

xMCı;p �
®
.n;m/ 2 N ˚ Z j m � 0 if n � k

¯
;

and any fine submonoid of the right-hand side containing N ˚N can be realized as
the stalk of the ghost sheaf at p of a puncturing. See Figure 2.3.

2.1.5 Pull-backs of punctured curves

Consider a punctured curve .C ı! C !W;p/ and a morphism of fine and saturated
logarithmic schemes h W T ! W . Denote by .CT ! T; pT / the pullback of the log
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curve C ! W via T ! W . By Proposition 2.8, we obtain a commutative diagram

C ıT
//

pT
��

C ı

p

��

CT //

�T

��

C

�

��

T
h // W

(2.3)

where the bottom square is cartesian in the fine and saturated category, and the square
on the top is cartesian in the fine category, and such that C ıT is a puncturing of the
curve CT along pT . See again Figure 2.3.

Definition 2.13. We call C ıT ! T the pullback of the punctured curve C ı ! W

along T ! W .

2.1.6 Punctured maps

We now fix a morphism of fine and saturated logarithmic schemes X ! B .

Definition 2.14. A punctured map to X ! B over a fine and saturated logarithmic
scheme W over B consists of a punctured curve .C ı! C ! W;p/ and a morphism
f fitting into a commutative diagram

C ı
f
//

�

��

X

��

W // B

Such a punctured map is denoted by .� W C ı ! W;p; f / or .C ı=W;p; f /.
The pullback of a punctured map .C ı=W; p; f / along a morphism of fine and

saturated logarithmic schemes T ! W is the punctured map .C ıT =T; pT ; fT / con-
sisting of the pullback C ıT ! T of the punctured curve C ! W and the pullback fT
of f .

Definition 2.15. A punctured map .C ı!W;p;f / is called pre-stable if f WC ı!X

is pre-stable in the sense of Definition 2.6.
A pre-stable punctured map is called stable if its underlying map, marked by the

punctured sections, is stable in the usual sense.

Proposition 2.16. Let .C ı=W;p; f / be a punctured map over W .

(1) The locus of points of W with pre-stable fibers forms an open sub-scheme
of W .
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(2) If f W C ı ! X is pre-stable, then the pullback fT W C ıT ! X along any
morphism of fine and saturated logarithmic schemes T ! W is also pre-
stable.

Proof. The map f W C ı ! X induces a morphism of fine logarithmic structures

f [ ˚ p[ W f �MX ˚O�
C

MC !MCı :

The pre-stability of f is equivalent to the condition that f [ ˚ p[ is surjective by
Corollary 2.7. Statement (1) can be proved by applying Lemma 2.17 to the neighbor-
hood of each puncture. Statement (2) follows immediately from Corollary 2.10.

Lemma 2.17. Let Y be a scheme, and  [ W M ! N be a morphism of fine log
structures on Y . Then the locus Y 0 � Y over which  [ is surjective forms an open
subscheme of Y .

Proof. We thank the anonymous referee for suggesting the following simplified proof.
Since both M and N are O�Y -torsors over xM and xN respectively, the surjectivity
of  [ is equivalent to the surjectivity of the induced morphism xM ! xN of ghost
sheaves. Since the statement is local on Y , we may assume that xN is globally gener-
ated.

Suppose y 2 Y is a geometric point over which xMy !
xNy is surjective. Then

each global section of xN lifts to a section of xM in an étale neighborhood of y. Since
�.Y ; xN / is finitely generated, there is a common étale neighborhood of y over which
all the global sections of xN lift to xM. This finishes the proof.

The most interesting aspect of punctured curves is the appearance of negative
contact orders, defined as follows.

Definition 2.18. The contact order of a punctured map .C ı=W; p; f / to X ! B

over a log point W D Spec.Q! �/ at p 2 p is the composition

up W xMX;f .p/

f [

��! xMC;p ! Q˚ Z
pr2
��! Z (2.4)

with the second map the canonical inclusion. We say that the contact order up is
negative if up. xMX;f .p// 6� N.

The difference with the case of logarithmic stable maps [30, Definition 1.8] is the
appearance of Z instead of N. The tropical interpretation of this condition will be
discussed in Section 2.2 below. Note that if .C ı=W; p; f / is pre-stable, the contact
order at p 2 p is negative if and only if p is not a marked point.

Example 2.19. Here is a simple example featuring a negative contact order. Let X
be a smooth surface, D � X a non-singular rational curve with self-intersection �1
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C

X

D :: :

: : :

MW

:::

Figure 2.4. The .�1/-curve and its monoid.

inducing the divisorial log structure X on X . Let C ! W be the punctured curve of
Example 2.12 (2), with C Š P1. Let f W C ! X be an isomorphism of C with D.
This can be enhanced to a punctured map C ı ! X as follows.

We first define Nf [ W f � xMX DN! xMCı �
xE DN ˚Zp by 1 7! .1;�1/, where

Zp denotes the sky-scraper sheaf at p with stalk Z. Note that the inverse image of
1 2 �.X; xMX / under the projection map MX !

xMX is the O�X -torsor contained in
MX corresponding to the line bundle OX .�D/, and thus 1 2 �.C; f � xMX / similarly
yields the O�C -torsor corresponding to OC .1/, using�D2 D 1. On the other hand, the
torsor contained in MCı corresponding to .1; 0/ is the torsor of OC , and the torsor
corresponding to .0;1/ is the torsor of the ideal OC .�p/. Hence .1;�1/2�.C; xMCı/

corresponds to OC .1/. Choosing an isomorphism of torsors then lifts the map Nf [ to
a map f [ W f �MX !MCı inducing a morphism f W C ı ! X (Figure 2.4).

Note this morphism does not lift to C 0 ! W 0 D Spec.kŒ"�=."2// as in Exam-
ple 2.12 (3), since we cannot even lift Nf [ at the level of ghost sheaves. Indeed, .1;�1/
is not a section of the ghost sheaf of .C 0/ı.

Remark 2.20 (Geometric implication of negative contact orders). Let f WC ı=W!X
be a punctured map with W D Spec.Q! k/. Suppose p 2 C is a punctured point
which is not a marked point, and let C 0 be the irreducible component containing p,
with generic point �. Then, intuitively, C 0 has negative order of tangency with certain
strata in X , and this forces C 0 to be contained in those strata.

Explicitly, let Pp D xMX;f .p/ and let up W Pp ! Z be as in Definition 2.2. Then
if ı 2 Pp with up.ı/ < 0, we must have pr1 ı Nfp.ı/ 6D 0, as there is no element of
xMCı;p � Q˚ Z of the form .0; n/ with n < 0. Thus if � W Pp ! xMX;f .�/ denotes

the generization map, we must have u�1p .Z<0/\ ��1.0/D ;. This restricts the strata
in which f .C 0/ can lie.

For example, if X D .X;D/ for a simple normal crossings divisor D with irre-
ducible components D1; : : : ; Dn, then Pp D

L
i Wf .p/2Di

N. The value up on the
generator of Pp corresponding to Di is the contact order with Di . Then f .C 0/ must
lie in the intersection of those Di that have negative contact order at p.

A critical aspect of this phenomenon is discussed in Section 2.5, see especially
Proposition 2.52 and Example 2.54.
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2.2 The tropical interpretation

We now introduce the tropical picture, which gives the underlying organizing lan-
guage for punctured Gromov–Witten theory. We assume familiarity with the discus-
sion in ordinary logarithmic Gromov–Witten theory as presented in [3, Section 2].
We review in Section 2.2.1 the notations and basic concepts briefly while discussing
the modifications needed for including non-trivial punctures.

2.2.1 Tropical punctured maps

In Appendix C we define tropicalization as a functor associating to a fine log algebraic
stack a generalized cone complex †.X/. There is one stratum of j†.X/j for each
logarithmic stratum of X , the latter defined as a maximal connected locally closed
subset Z � jX j with xMX jZ locally constant. For each logarithmic stratum Z we
choose, once and for all, a geometric point NxZ with image inZ. Then†.X/ is defined
as the diagram with only one cone

�Z D Hom
�
xMX; NxZ ;R�0

�
(2.5)

for each logarithmic stratum Z, along with all its faces, and arrows induced by all
sequences of generization morphisms and all face inclusions, including inverses of
those that are isomorphisms. Note that due to monodromy, †.X/ may contain non-
trivial arrows � ! � . The group

Aut†.X/.�/ D ¹� ! � arrow in †.X/º

is a subgroup of the permutation group of the set of rays of � , hence is always finite.
Note that the map

�Z=Aut†.X/.�Z/! j†.X/j

induced from �Z ! j†.X/j may still not be injective due to arrows from strata of
X whose closure intersect the closure of Z and that are not induced by monodromy
on Z. Accordingly, the image of � in j†.X/j may be a finite quotient even on its
interior.

By abuse of notation, †.X/ denotes both the distinguished presentation or the
equivalence class as a generalized cone complex. When writing � 2 †.X/ we refer
to the chosen presentation, so there is a unique logarithmic stratum Z � X with
� D �Z . For any geometric point Nx with image in Z we have the cone

� Nx D Hom
�
xMX; Nx;R�0

�
together with an isomorphism

�Z ! � Nx;
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but this isomorphism is only unique up to pre-composition with arrows �Z ! �Z in
†.X/. In other words, the isomorphism �Z ! � Nx is unique up to the action of the
monodromy group Aut†.X/.�Z/ of the logarithmic stratum Z.

For � 2 †.X/ we denote by

X� D
®
x 2 X j there exists an arrow � ! � Nx in †.X/

¯
� X (2.6)

the closed set of points x 2 X with � connected to � Nx D Hom. xMX; Nx;R�0/ by a
sequence of generizations and inverses of invertible generizations of the stalks of
xMX . We endowX� with the reduced induced scheme structure. In practice, say when
X is log smooth over a log point, X� is the closure of the logarithmic stratum given
by � 2 †.X/. For brevity, we refer to the X� as strata of X , but note that from the
point of view of stratified spaces, and differing from the use in Appendix C, these are
at best closures of strata. Note also that for � D ¹0º we obtain X¹0º D X assuming
†.X/ connected, even if there is no geometric point Nx of X with xMX; Nx D 0.

A stable logarithmic map .C=W;p; f / gives rise via functoriality of the tropical-
ization functor † to the diagram

†.C/
†.f /

//

†.�/

��

†.X/

��

†.W / // †.B/

(2.7)

We will almost exclusively consider such diagrams in whichW is covered by a single
chart and †.W / has a single maximal cone ! D .M_W; Nw/R for Nw some geometric
point ofW . Then it is shown in [3, Proposition 2.25] that†.�/ along with the genera
of the irreducible components of the geometric fiber C Nw is a (family of) abstract
tropical curves over !, also written .G; g; `/. Here G is the dual intersection graph of
C Nw with sets V.G/, E.G/, L.G/ of vertices, edges and legs, and the maps

g W V.G/! N; ` W E.G/! Hom.!Z;N/ n ¹0º;

record the genera of the irreducible components of C Nw and the lengths of edges as
functions on !, respectively, see [3, Definition 2.19]. If G arises from the tropical-
ization of a log curve over a geometric logarithmic point, we denote elements of
V.G/,E.G/,L.G/ both by their graph-theoretic notations as vertices v, edgesE, and
legs L, or the corresponding algebraic geometric notations as generic points �, nodes
q, and marked points p. By abuse of notation, we view homomorphisms !Z ! N
also as homomorphisms !!R�0 respecting the integral structure. Conversely, from
.G; g; `/, the cone complex

� D �.G; `/
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Figure 2.5. The length of a bounded leg varies piecewise linearly under linear variations of the
adjacent vertex. The figure shows the intersection of the situation with an affine hyperplane.

recovering †.C/ has one copy of ! for each v 2 V.G/, a cone

!E D
®
.s; �/ 2 ! �R�0 j � � `.E/.s/

¯
(2.8)

for each edge E 2 E.G/, and a copy of ! � R�0 for each leg. Note that legs have
infinite lengths for any parameter s 2 !R when viewing � as a family of metric
graphs.

The only change in the punctured setup is that a leg may now have finite length.
Indeed, ifL2L.G/ corresponds to a non-trivial puncture with puncturing submonoid
Qı � Q˚ Z, then .Qı/_R D !L with

!L D
®
.s; �/ 2 ! �R�0 j � � `.L/.s/

¯
(2.9)

defined in analogy with (2.8) by a length function `.L/ W ! ! R�0 with `.L/ ¤ 0.
Note, however, that `.L/ is now only piecewise linear as illustrated in Figure 2.5.
Here a continuous function ` W ! ! R�0 on ! 2 Cones is piecewise linear if there
exists a fan subdivision of ! such that ` is the restriction of a linear form on each
cone of the fan. For the following relation to monoids recall (2.1) from Remark 2.2.

Lemma 2.21. LetQ be a sharp toric monoid and!DQ_R. Assume further thatQı�
Q˚Z is a finitely generated submonoid withQ˚N ¨Qı,Qı \ .¹0º �Z<0/D ;.
Then there exists a nonzero, concave, piecewise linear function

` W ! ! R�0

with rational slopes such that

.Qı/_R D ¹.s; �/ 2 ! �R�0 j 0 � � � `.s/º: (2.10)

Each such ` W ! ! R�0 arises in this fashion, and two submonoids Qı1; Q
ı
2 �

Q ˚ Z with Qi ˚N ¨ Qıi , Q
ı
i \ .¹0º � Z<0/ D ;, i D 1; 2, lead to the same ` if

and only if .Qı1/
sat D .Qı2/

sat.
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Proof. Let .s; �/ 2 .Qı/_R. Then since Q˚N � Qı, necessarily s 2 ! D Q_R and
� � 0. Conversely, .s; 0/ 2 .Qı/_R for all s 2 !, and in fact,

! � ¹0º � .Qı/_R

is a facet. Since Qı ¤ Q ˚ N no ray of .Qı/_R is vertical, that is, agrees with
R�0 � .0; 1/. Thus the union of the maximal cells of @.Qı/_R neither contained in
! � ¹0º nor in @! �R form the graph of a piecewise linear function ` W ! ! R�0 as
in the statement of the lemma. Convexity of .Qı/_R implies that ` is concave. Finally,
` ¤ 0 for otherwise .0;�1/ 2 QıR, contradicting Qı \ .¹0º � Z<0/ D ;.

Conversely, given a nonzero, concave, piecewise linear ` W !!R�0 with rational
slopes, the cone � on the right-hand side of (2.10) contains ! � ¹0º as a facet. Hence

�_ � !_ �R D QR �R and QR �R�0 � �
_:

The case QR � R�0 D �_ does not occur since � ¤ ! � R�0 by finiteness of the
values of `. Moreover, `¤ 0 implies � is a full-dimensional cone, and hence .0;�1/ 62
�_, or �_ \ .¹0º � Z<0/ D ;. This shows that knowing ` retrieves the convex hull
of Qı in QR �R, hence the set of integral points of its saturation .Qı/sat.

Definition 2.22. (1) A (family of) punctured tropical curves over a cone ! 2 Cones
is a graph G together with two maps

g W V.G/! N; ` W E.G/ [ Lı.G/! Map.!;R�0/

for some subset Lı.G/ � L.G/, with `.E/ 2 Hom.!Z;N/ n ¹0º for E 2 E.G/ and
`.L/ W ! ! R�0 for L 2 Lı.G/ nonzero, concave, piecewise linear, with rational
slopes. We refer to elements of Lı.G/ as finite or punctured legs, all other legs as
infinite or marked.

(2) A (family of) punctured tropical maps over ! 2Cones is a map of generalized
cone complexes h W � ! †.X/ for � D �.G; `/ the cone complex defined by a
punctured tropical curve .G; g; `/ over !.

For readability and as in [3] throughout, we assume for the rest of this subsection
that †.X/ is simple [3, Definition 2.1]. This means that for each � 2 †.X/ the map
� ! j†.X/j is injective. We will treat the general case in Section 2.6. As in [3,
Proposition 2.26], it then follows readily from the definitions that the tropicalization
of a punctured map to X over a logarithmic point Spec.Q! �/ with � algebraically
closed is a punctured tropical map over Q_R.

Given a punctured tropical map, one extracts associated discrete data as in [3,
Remark 2.22]. These are an image cone map

� W V.G/ [E.G/ [ L.G/! †.X/ (2.11)
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Figure 2.6. A curve in the fiber of a one-parameter family of surfaces (a threefold) and its
tropicalization. There are two components, represented by vertices; one node represented by an
edge; one regular marked point represented by an infinite leg and one puncture represented by
a finite leg, which, by pre-stability, extends exactly as far as the cone allows.

associating to each object ofG the (distinguished representative of the) minimal cone
of†.X/ it maps to, and, referring again to the notation in Section 1.6, contact orders

uq D uE 2 N� .E/; up D uL 2 N� .L/ (2.12)

for edges E D Eq 2 E.G/ and for legs L D Lp 2 L.G/, respectively.
Contact orders are defined by the image of the tangent vector .0; 1/ in the tangent

space N! � Z of !E or !L under h. The contact order for an edge E depends, up
to sign, on a choice of orientation on E, which we suppress in the notation. For legs,
this definition is consistent with the definition of contact orders of punctured maps in
Definition 2.18.

Note that the contact order up 2 N� .Lp/ of a marked point p 2 C Nw lies in � .Lp/.
Conversely, a non-trivial puncture is forced by a legLDLp if for any parameter value
s 2!, the line segment h.¹sº � Œ0;`.L/.s/�/ inside the image cone � .L/2†.X/ does
not extend to a half-line.

There is a simple tropical interpretation of pre-stability saying that images of legs
extend as far as possible inside their image cones. See Figure 2.6 for an illustration.
We call such tropical punctured maps pre-stable.

Proposition 2.23. Let .C ı=W;p; f / be a pre-stable punctured map over a log point
W D Spec.Q! �/ and h D †.f / W �.G; `/! †.X/ its tropicalization. For each
finite leg L 2 Lı.G/, we write !L � ! �R�0 as in (2.9). Then for all s 2 !, we have

h.s; `.L/.s// D h.s; 0/C `.L/.s/ � uL 2 @� .L/;

while h.s; `.L/.s//C "uL 62 � .L/ for all " > 0.
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Proof. Let Np! C be the punctured point defined by L, and write ! DQ_R, � D P_R
for P D xMX;f . Np/. The map hL W !L ! � defined by h is dual to

Nf [f . Np/ W P !
xMC; Np D Q

ı
� Q˚ Z:

By pre-stability, Qı is generated by Q ˚N and by the image of Nf [
f . Np/

. Dually, we
obtain

!L D .Q
ı/_R D .! �R�0/ \ h

�1
L .�/:

Now !L is the convex hull of ! � ¹0º and of ¹.s; `.L/.s// 2 ! �R�0º, the graph of
`.L/ as a map ! ! R�0. This shows that no point .s; `.L/.s// maps to an interior
point of � , and the line segment in � connecting h.s; 0/ with h.s; `.L/.s// can not be
extended, as claimed.

Note that while !_L \ .N! �Z/� only computes the saturation ofQı, the tropical
picture also contains the map P !Q˚Z. In the pre-stable case,Qı is then the sub-
monoid generated by the image of this map and byQ˚N, so can be fully computed
tropically.

2.2.2 Types of punctured maps

As in [3, Definition 2.23] for stable logarithmic maps, we now capture the combina-
torics underlying punctured maps and their tropicalization by the notion of type.

Definition 2.24. (1) The type of a family of tropical punctured maps h W�D�.G;`/!
†.X/ over ! 2 Cones is the tuple

� D .G; g; � ;u/

consisting of the associated genus-decorated connected graph .G; g/, the image cone
map � from (2.11) and the collection u D ¹uq; upºp;q D ¹uE ; uLºE;L of contact
orders from (2.12). In particular, for x 2 E.G/ [ L.G/ we require ux 2 N� .x/. We
also sometimes write u.x/ instead of ux when referring to a contact order given by a
type rather than by a punctured map.

(2) The type of a punctured map .C=W; p; f / to X at a geometric point Nw of W
is the type of the associated tropical map � ! †.X/ over ! D . xM_W; Nw/R.

Thus the type records the combinatorial data associated to h W � ! †.X/, but
forgets the length function ` W E.G/ [ Lı.G/! Map.!;R�0/.

For a punctured map over a logarithmic point, one sometimes also wants to keep
the curve classes A.v/ D f

�
.ŒC .v/�/ for C.v/ � C the irreducible component of

C given by v 2 V.G/. Here A.v/ is a class of curves in singular homology of the
corresponding stratum X� .v/, or in some other appropriate monoid of curve classes,
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written HC2 .X� / for � 2 †.X/ in any case.1 We refer to [33, Basic setup 1.6] for
a listing of the properties of HC2 assumed throughout. Adding this information, one
arrives at the notion of decorated type

� D .�;A/ D .G; g; � ;u;A/: (2.13)

Finally, just as in logarithmic Gromov–Witten theory, generization of punctured
maps gives rise to contraction morphisms of graphs: Let .C ı=W;p;f / be a punctured
map toX and let Nw0! Nw be a specialization arrow of geometric points ofW . Denote
by h W � D �.G; `/! †.X/ and h0 W � 0 D �.G0; `0/! †.X/ the tropicalizations of
the strict restrictions of .C ı=W;p;f / to Nw, Nw0. Then as in [3, eq. (2.15)], generization
defines a contraction morphism of the associated decorated graphs

� W .G; g/! .G0; g0/;

given by contracting those edges E D Eq 2 E.G/ with corresponding node Nq! C Nw
not contained in the closure of the nodal locus of C Nw0 . By abuse of notation we write
� also for the maps

V.G/! V.G0/; L.G/! L.G0/; E.G/ nE�
bij
�! E.G0/

defining �. Here E� � E.G/ is the subset of contracted edges. Analogous to [3,
Definition 2.24] there is a corresponding natural notion of contraction morphism of
(decorated) types of tropical punctured maps

� D .G; g; � ;u/! � 0 D .G0; g0; � 0;u0/;
� D .G; g; � ;u;A/! �0 D .G0; g0; � 0;u0;A0/:

(2.14)

Under such contraction morphisms, legs never get contracted. Moreover, identify-
ing L.G/ D L.G0/, the contact order u.L/ 2 N� .L/ of a leg of G is the image
of u0.L/ 2 N� 0.L/ under the inclusion of lattices N� 0.L/ ! N� .L/ induced by the
face map � 0.L/! � .L/. An analogous statement applies to contact orders of non-
contracted edges.

Proposition 2.25. Let .C ı=W; p; f / be a stable punctured map to X over some
logarithmic schemeW and .� Nw ;A Nw/ with � Nw D .G Nw ;g Nw ;� Nw ;u Nw/ its decorated type
at the geometric point Nw ! W according to Definition 2.24 and (2.13).

Then if Nw0 ! Nw is a specialization arrow of geometric points of W , the map

.� Nw ;A Nw/! .� Nw0 ;A Nw0/

induced by generization is a contraction morphism.

1The notation allows defining HC
2
.X� / WD HC

2
.X/ for all � 2 †.X/, by interpreting

classes of curves in a stratum X� as classes of curves in X .
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Proof. The proof is essentially identical to [3, Lemma 2.30], noting that the proof
of [30, Lemma 1.11] also works for contact orders at punctures.

2.2.3 The balancing condition

The above discussion fits well with the tropical balancing condition at vertices of the
dual graph of C ı. In fact, the statement [30, Proposition 1.15] holds unchanged as
there is no balancing condition at the endpoint of a leg L 2 L.G/. As we will need
the balancing condition to prove boundedness, we review this statement here. We
note that the balancing conditions discussed here are heavily used in applications such
as [33], [27, Section 4] or [32], as balancing severely limits the possible combinatorial
types.

Suppose given a stable punctured map .C ı=W; p; f / with W D Spec.N ! �/

the standard log point over an algebraically closed field, and denote by .G; g; � ; u/
its type. Let g W zD ! C be the normalization of an irreducible component D with
generic point � of C . One then obtains, with xM D f � xMX , composed maps

�X� W �.
zD;g� xM/! Pic zD

deg
��! Z

�C� W �.
zD;g� xMCı/! Pic zD

deg
��! Z

with the first map on each line given by taking a section of the ghost sheaf to the
corresponding O�

zD
-torsor, the inverse image of this section in g�M or g�MCı . These

are compatible: the pullback of f [ to zD, ' W g�M ! g�MCı , induces x' W g� xM !
g� xMCı and a commutative diagram

�. zD;g� xM/
x'
//

�X�
((

�. zD;g� xMCı/

�C�
��

Z

The map �X� is given by f and M, so depends on the logarithmic geometry of
f W C ı ! X ; however if f contracts D, then �X� D 0. On the other hand, �C� is
determined completely by the geometry of D � C and g� xMCı as follows. We use
the notation in [30, Section 1.4]. For each point q 2 D over a node of C we have
xMCı; Nq D Seq , the submonoid of N2 generated by .0; eq/, .eq; 0/ and .1; 1/. The

generization map �q W xMCı; Nq !
xMCı;x� D N is given by projection to the second

coordinate: �q.a; b/ D b. In what follows, we use q always to denote points over
nodes and p to denote punctured points. We then have

�
�
zD;g� xMCı

�
�
®
.nq/q2 zD j nq 2Seqand �q.nq/D�q0.nq0/ for q;q0 2 zD

¯
˚

M
p2 zD

Z:



The tropical interpretation 29

This inclusion induces an equality at the level of groups. The equation �q.nq/ D
�q0.nq0/ allows us to write b D bq D �q.nq/ independent of q. We then obtain, with
proof identical to that of [30, Lemma 1.14].

Lemma 2.26. �C� ...aq; b/q2 zD; .np/p2 zD// D �
P
p2 zD np C

P
q2 zD

b�aq
eq

,

The equation �X� D �C� ı ' is a formula in ND WD �. zD; g� xMgp/�, which is
described in [30, eqs. (1.12), (1.13)] as follows. Let † � zD be the set of points x
in zD mapping to a special point of C . Thus † can be identified with the subset of
E.G/ [ L.G/ of edges or legs adjacent to the vertex v corresponding to �. For any
point x 2 zD, we write Px WD xMX;g.x/. Then

ND D lim
�!

x2 zD

P �x D
�M
x2†

P �x

�.
�

where for any a 2 P �� and any x; x0 2 †,

.0; : : : ; 0; �x;�.a/; 0; : : : ; 0/ � .0; : : : ; 0; �x0;�.a/; 0; : : : ; 0/:

Here �x;� W P �� ! P �x is the dual of generization, and the non-zero entries lie in the
position indexed by x and x0 respectively. Thus an element of ND is represented
by a choice of tangent vector nx 2 N� .x/ D P �x , one for each preimage x 2 zD of
a special point of C ; and two such choices are identified if they can be related by
repeatedly subtracting a tangent vector inN� .v/ D P �� from one of the nx and adding
it to another.

We then have, exactly as in [30, Proposition 1.15], the balancing condition:

Proposition 2.27. Suppose .C ı=W; p; f / is a stable punctured map to X=B with
W D Spec.N ! �/ a standard log point. Let D � C be an irreducible component
with generic point � and † � zD the preimage of the set of special points. If �X� 2
�. zD;g� xMgp/� is represented by .�x/x2†, then

.ux/x2† C .�x/x2† D 0

in ND D �. zD;g� xMgp/�.

Remark 2.28. With regard to the above interpretation of elements of ND in terms
of the type of .C ı=W; p; f /, Proposition 2.27 says the following. The degree data
of the O�C -torsors contained in g�M defines a tuple of tangent vectors �x 2 N� .x/,
one for each edge or leg x 2 E.G/[L.G/ adjacent to the vertex v corresponding to
�, well-defined up to trading elements of N� .v/ via the embedding N� .v/ ,! N� .x/
defined by the face morphism � .v/ ! � .x/. Then (1) �x C ux lies in the image
of P �� ! P �x , and (2) the traditional tropical balancing condition holds in P �� for
�x C ux , x running over the set of special points.
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Traditional tropical geometry arises for the case that X is a toric variety with its
toric log structure. Then M

gp
X is the sheaf of rational functions that are invertible on

the big torus. Monomial functions define trivial O�X -subtorsors of M
gp
X . Denoting by

N the cocharacter lattice of the torus, we thus have a canonical monomorphism

N � ! �
�
X;M

gp
X

�
! �

�
X; xM

gp
X

�
with composition with �X� identically zero. Composing the equation displayed in
Proposition 2.27 with the induced mapND!N then yields the traditional balancing
condition

P
x Nux D 0 for Nux the image of ux under the embedding N�.x/ ! N .

The following is an encapsulation of balancing which gives easy to use restric-
tions on curve classes realized by punctured maps with given contact orders. For the
statement we denote by L�s the torsor corresponding to s 2 �.X; xMgp

X /, that is, the
inverse image of s under the homomorphism M

gp
X !

xM
gp
X , and write Ls for the cor-

responding line bundle. Furthermore, the germ of s at f .pi / lies in P gp
pi D

xM
gp
X;f .pi /

and hence defines a homomorphism P �pi ! Z, which we write as h�; si.

Proposition 2.29. Suppose given a punctured map .C ı=W;p; f / for W a log point.
Let .G;g;� ;u/ be the type of this map, and letD � C be an irreducible component of
the domain, corresponding to v 2 V.G/. Let p1; : : : ; pn 2 p be the punctured points
of C ı contained inD, and let q1; : : : ; qm be the nodes of C contained inD but which
are not nodes of D. This gives rise to contact orders upi , uqj , noting that for the
contact orders of the nodes, we orient the corresponding edge away from v. Then we
have

deg
�
f �Ls

�ˇ̌
D
D �

nX
iD1

hupi ; si �

mX
iD1

huqi ; si:

Proof. First, by making a base-change, we can assume W is the standard log point.
Note f �Ls must be isomorphic to the line bundle L Nf [.s/ associated to the torsor
corresponding to Nf [.s/.

Now the total degree of L Nf [.s/ can be calculated using Lemma 2.26 and details

of the proof of [30, Proposition 1.15]. Let g W zD! C be the normalization ofD, and
let � be the generic point of D. Then

deg.f ı g/�Ls D degg�L Nf [.s/ D �
C
� .'.s//

D

X
q2 zD

1

eq
.hV�; si � hV�q ; si/ �

X
pi2 zD

hupi ; si;

in the notation of [30, Lemma 1.14, Proposition 1.15], and the last equality com-
ing from the proof of [30, Proposition 1.15]. Here V� W P� ! N is the map Nf [ W
xMX;f .�/!

xMC;� , and similarly V�q , where �q is the generic point of the other branch
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of C at the node q. By [30, eq. (1.9)], 1
eq
.V� � V�q / D �uq , where uq is the contact

order of the node q with corresponding edge oriented away from v. Note that self-
nodes of D appear twice in this sum, with opposite sign, and hence cancel. This then
yields the desired formula.

Corollary 2.30. Suppose given a punctured curve .C ı=W;p; f / withW a log point,
p D ¹p1; : : : ; pnº. Then we have

degf �Ls D �

nX
iD1

hupi ; si:

Proof. This is obtained from the previous proposition by summing over all irreduci-
ble components of C .

2.3 Basicness

A key concept in logarithmic moduli problems is the existence of basic or minimal
logarithmic structures. The existence of such distinguished logarithmic structures on
the base space of families is a necessary condition for a logarithmic moduli problem
to be represented by a logarithmic algebraic stack. A good notion of basicness should
be an open property, and hence is typically defined by a condition at geometric points.

The definition of basic stable logarithmic maps from [30, Section 1.5] is based on
universality of the associated family of tropical maps. The original definition in [30,
Definition 1.20] phrases this property in terms of the dual monoids and only indi-
cates the tropical interpretation in [30, Remark 1.18]. A proof of the equivalence of
the definitions in the present notation is given in [3, Proposition 2.28]. This equiva-
lence of descriptions really only reflects the anti-equivalence between the categories
of fs monoids and of rational polyhedral cones. In the following, we freely use this
equivalence of categories when referring to material from [30].

The definition of basicness in the punctured case is formally the same as for stable
logarithmic maps. Here we take the concrete, tropical view. For readability, we again
assume that X is simple, deferring the general discussion to Section 2.6.

Definition 2.31. A pre-stable punctured map .C=W; p; f / is basic at a geometric
point Nw of W if the associated family of tropical maps

h W � D �.G; `/! †.X/

over . xMW; Nw/
_
R is universal among tropical maps of the same type .G; g; � ; u/. This

means that each family of stable tropical maps of type .G; g; � ;u/ over some cone !
arises by pullback from h W � ! †.X/ via a unique map ! ! . xMW; Nw/

_
R in Cones.

Basicness without specifying Nw refers to basicness at all geometric points.
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The monoids xMW; Nw obtained from basic punctured maps also formally have the
same description as for stable logarithmic maps described in [30, Proposition 1.19]
and [3, Proposition 2.28]. We provide a full proof of this description emphasizing the
tropical perspective.

Proposition 2.32. Let .C ı=W ; p; f / be a basic, pre-stable punctured map over a
logarithmic point Spec.Q!�/with � an algebraically closed field, and let .G;g;� ;u/
be its type. For each generic point � 2 C with v D v� 2 V.G/ the associated vertex
write

P� D xMX;f .�/ D .� .v/Z/
_:

Then the map

Q_ !
°
..V�/�; .`q/q/ 2

Y
�

P_� �
Y
q

N j V� � V�0 D `q � u.q/
±

(2.15)

given by the duals of .�[�/
�1 ı Nf [� W P� !Q and of the classifiying map

Q
q N !Q

of the log smooth curve C=W , is an isomorphism. Here q runs over the set of nodes
of C and, in the equation, �, �0 are the generic points of the adjacent branches, with
the order chosen as in the definition of u.

Proof. Denote by ! 2 Cones the cone defined by the right-hand side of (2.15). We
first construct a tropical punctured map

h0 W � D �.G; `0/! †.X/

over ! as follows. Define

`0.E/ W !Z ! N; h0.v/ W !Z ! P_� (2.16)

forE DEq 2E.G/ and v D v� 2 V.G/ as the projections to the q-th factor in
Q
q N

and to P_� D � .v/Z, respectively. For an edge E D Eq with adjacent vertices v, v0

and associated cone !E from (2.8), the map h0 is defined by

.h0/E W !E ! .P_q /R D � .E/;

.s; �/ 7! h0.v/.s/C � � u.E/ D h0.v0/.s/C .`0.E/ � �/.�u.E//;

with the sign of u.E/ chosen according to the orientation of E. In this definition, we
view h0.v.s//, h0.v0.s// as elements of .P_q /R via the face inclusions P_� , P_�0 !
P_q . The equality holds by the relation in the definition of ! by the right-hand side of
equation (2.15). In particular, .h0/E restricts to h0.v/, h0.v0/ on its two faces defined
by v, v0.

Finally, for a leg L D Lp 2 L.G/ with adjacent vertex v 2 V.G/, the length
function `0.L/ and the map .h0/L defined on .!L/Z is uniquely determined by h0.v/
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and by the contact order u.L/ via pre-stability (Proposition 2.23). This finishes our
construction of a pre-stable tropical punctured map h0 over !.

Conversely, if h W � D �.G; `/ ! †.X/ is a tropical punctured map of type
.G; g; � ;u/ over some cone !0 2 Cones, the map

!0 ! !; s 7! .h.v�.s//; `.Eq//�;q;

with v� W !0! � the section of � ! !0 defined by v� 2 V.G0/, is readily seen to be
the unique morphism in Cones producing h by pullback from h0.

Definition 2.33. The fs monoidQ defined by (2.15) is called the basic monoid asso-
ciated to the type � D .G;g;� ;u/, while its dualQ_ 2Cones (orQ_R with the integral
structure understood) is called the associated basic cone.

Note that while the definition of the basic monoid makes sense for all types, the
length function `0.E/ constructed in (2.16) in the proof of Proposition 2.32 may be
zero for some edge E. In this case, the universal tropical domain �.G; `0/ in the
proof of Proposition 2.32 is not the domain of a tropical punctured map according
to Definition 2.22. The basic monoid is therefore only meaningful if there exists at
least one tropical punctured map of the given type.2 Observe also that just as marked
points do not enter the definition of basicness, there is no role for punctures in the
statement of Proposition 2.32.

Proposition 2.34. Let .C ı=W;p; f / be a pre-stable punctured map. Then

� WD
®
Nw 2 jW j j ¹ Nwº �W .C ı=W;p; f / is basic

¯
is an open subset of jW j.

Proof. This is identical to [30, Proposition 1.22].

Proposition 2.35. Any pre-stable punctured map to X ! B arises as the pullback
from a basic pre-stable punctured map to X ! B with the same underlying ordi-
nary pre-stable map. Both the basic pre-stable punctured map and the morphism are
unique up to a unique isomorphism.

Proof. The proof is almost identical to [30, Proposition 1.24]. Let .� W C !W;p; f /
be a pre-stable punctured map over B . For each geometric point Nw! W one obtains
a tropical punctured map

h Nw W � Nw ! †.X/

over ! Nw D . xMW; Nw/
_
R, of some type .G Nw ; g Nw ; � Nw ; u Nw/. By Proposition 2.25, gener-

ization Nw 2 cl. Nw0/ (i.e. existence of a specialization arrow Nw0! Nw as in Appendix C)

2The analogue of this statement in [30] is the condition GS. xM/ ¤ ;.
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leads to a contraction morphism (2.14)

.G Nw ; g Nw ; � Nw ;u Nw/! .G Nw0 ; g Nw0 ; � Nw0 ;u Nw0/:

This contraction morphism induces an embedding of � Nw0 as a subcomplex of � Nw
such that h Nw0 becomes the restriction of h Nw . These maps are compatible with the
classifying maps to the dual of the respective basic monoids in Proposition 2.32,
producing a cartesian diagram of pre-stable tropical punctured maps.

As in the proof of [30, Proposition 1.24], this situation produces monoid sheaves
xMbas
Cı , xM

bas
W on C and W , respectively, and a commutative diagram

f � xMX
// xMbas

Cı
// xMCı

�� xMbas
W

//

OO

�� xMW

OO

(2.17)

In case B has a non-trivial log structure, all morphisms are compatible with mor-
phisms from the pullback of xMB . Continuing as in [30, Proposition 1.24], we can
now define the desired basic log structures by fiber product:

Mbas
W DMW � xMW

xMbas
W ; Mbas

Cı DMCı � xMCı
xMbas
Cı :

Each of these defines a log structure with the structure map being the composition of
the projection to the first factor followed by the structure map for that log structure.
The pair of induced morphisms

�bas W C
ı
bas D .C ;M

bas
Cı/! Wbas D .W ;M

bas
W /; fbas W C

ı
bas ! X

have tropicalizations at any geometric point Nw of W given by the universal pre-
stable tropical punctured map to †.X/ over †.B/ of type .G Nw ; g Nw ; � Nw ; u Nw/. Thus
.C ıbas=Wbas; p; f / is a basic punctured map to X . By the construction by fiber prod-
ucts of monoid sheaves, it follows that fbas commutes with the morphisms to B ,
and that .C ı=W; p; f / is the pullback of .C ıbas=Wbas; p; f / by W ! Wbas. The con-
structed basic punctured map is also pre-stable since .C ı=W; p; f / is and by the
definition of Mbas

Cı as a fiber product. Finally, the universal property of the basic
monoid with regard to pre-stable tropical punctured maps in Proposition 2.32 implies
uniqueness.

Remark 2.36. Following [30], our construction of the basic pre-stable punctured
map in the proof of Proposition 2.35 argues pointwise and uses compatibility with
generizations to obtain the universal diagram of ghost sheaves. However, the exis-
tence of an étale sheaf with the stated stalks and generization maps is never checked,
notably in the proof of [30, Lemma 1.23]. We use this occasion to close this gap.
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The basic monoids and generization homomorphisms define a contravariant func-
tor

Pt.W /!Mon; Nw 7! Q Nw (2.18)

from the category of geometric points Pt.W / with specialization arrows, recalled at
the beginning of Appendix C, to the category of monoids. A specialization arrow
Nw ! Nw0 maps to an epimorphism of monoids Q Nw0 ! Q Nw given by localization at a

face and subsequently dividing out the subgroup of invertible elements. In any case,
from a functor as in (2.18) one can define an étale sheaf xMbas by associating to an
étale map h W U ! X the monoid

xMbas.U / D colim Nw!hQ Nw ;

together with the obvious restriction maps. Here the colimit is taken over all factor-
izations of Nw W Spec �. Nw/! X over h. The gap in [30] concerns the implicit claim
that for a geometric point Nw of X the natural map

Q Nw ! xMbas
Nw

is an isomorphism.
This claim is étale local in W . Hence we can assume that the given (non-basic)

log structure MW on W is a Zariski log structure with a global chart that is neat at
some geometric point Nw. We may also assume that the logarithmic stratum containing
Nw lies in the closure of all other strata, and that the restriction map

�.W; xMW /! xMW; Nw

is an isomorphism. By [52, Proposition II.2.1.2] we obtain a continuous map

g W jW j ! S D Spec xMW; Nw

from the topological space underlying W to the monoidal scheme of prime ideals of
xMW; Nw , a finite topological space, together with an isomorphism

g�1 xMS !
xMW :

Here xMS is the structure sheaf of Spec xMW; Nw , a sheaf of sharp monoids.3

Note that a finite topological space is an Alexandrov space. Thus a subset is closed
iff it is closed under specialization, and sheaves (of sets, say) are indeed given by
contravariant functors from the category of points to Sets, see e.g. [46, Section 2].

3We have reinterpreted the statement in [52] as a statement for Kato fans to avoid dealing
with invertible elements, which are irrelevant for our discussion.
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The universal property of basic monoids provides a monoid homomorphism

Q Nw ! xMW; Nw ;

hence a morphism of monoid spectra

k W S D Spec xMW; Nw ! Sbas D SpecQ Nw :

Compatibility of the basic monoids and their universal property with generization
now shows first that .k ı g/�1 xMSbas is a sheaf of monoids with stalks equal to the
basic monoids on W and having the expected generization homomorphisms, hence
defines xMbas

W , and second that the composition

xMbas
W D .k ı g/

�1 xMSbas ! g�1 xMS !
xMW

stalkwise restricts to the classifying homomorphisms for xMW .
A similar argument on C provides the remaining parts of Diagram (2.17).

Proposition 2.37. An automorphism ' W C ı=W ! C ı=W of a basic pre-stable
punctured map .C ı=W;p; f / with ' D idCı is trivial.

Proof. This is identical to [30, Proposition 1.25].

2.4 Global contact orders and global types

A fundamental ingredient in the definition of logarithmic Gromov–Witten invariants
is the global specification of contact orders at the marked points. The local behaviour
of contact orders in families of stable logarithmic maps is captured by the notion of
morphism of types (2.14), implying that generization leads to the possible propaga-
tion of contact orders via face inclusions in†.X/. The global definition can be subtle
in the presence of monodromy, as the following examples show.

Example 2.38. This example is modeled on the well-known toric construction of the
Tate curve. Let Y be the three-dimensional toric variety (not of finite type) defined by
the fan consisting of the collection of three-dimensional cones

†Œ3� D
®
R�0.n; 0; 1/CR�0.nC 1; 0; 1/CR�0.n; 1; 1/CR�0.nC 1; 1; 1/ j n 2Z

¯
and their faces. Projection onto the third coordinate yields a toric morphism Y !A1.
After a base-change

yY D Y �A1 Spec kŒŒt ��! Spec kŒŒt ��;

one may divide out yY by the action of Z defined as follows. This action is generated
by an automorphism of yY induced by an automorphism of Y defined over A1. This
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Flip

Figure 2.7. Tropicalization of a Zariski logarithmic scheme with contact order monodromy:
` D 2.

automorphism is given torically via the linear transformation Z3 ! Z3 given by the
matrix 0@1 0 `

0 �1 1

0 0 1

1A
where ` is a fixed positive integer. We then define X D yY =Z, with log structure
induced by the toric log structure on Y (Figure 2.7).

Then X ! Spec kŒŒt �� is a degeneration of the total space of a Gm-torsor over an
elliptic curve, the torsor corresponding to a 2-torsion element of the Picard group of
the elliptic curve. As long as ` � 2, X has a Zariski log structure. Further, †.X/ is a
cone over a Möbius strip composed of ` squares. If one takes u D .0; 1; 0/ 2 �gp for
any three-dimensional cone in†.X/, then propagating u via chains of face inclusions
identifies u with �u due to the twist in the Möbius strip.

Example 2.39. A variant of the previous example that we learnt from Jonathan Wise
also produces monodromy of infinite order.

Let � � R4 be the cone generated by the following column vectors:

v1 D .0; 0; 0; 1/
t ; v2 D .0; 1; 0; 1/

t ; v3 D .0; 0; 1; 1/
t ; v4 D .0; 1; 1; 1/

t ;

v5 D .1; 0; 1; 1/
t ; v6 D .1; 1; 1; 1/

t ; v7 D .2; 1; 0; 1/
t ; v8 D .2; 2; 0; 1/

t :

The linear transformation of R4 with matrix

A D

0BB@
1 0 �1 2

0 1 �1 1

0 0 1 0

0 0 0 1

1CCA
fulfills

Av1 D v7; Av2 D v8; Av3 D v5; Av4 D v6:
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Thus A�1 D �2 for the two facets

�1 D hv1; v2; v3; v4i; �2 D hv5; v6; v7; v8i

of � .
Now �

gp
1 \ �

gp
2 is the lattice spanned by

x D 2v3 � v1 D 2v6 � v8 D .0; 0; 2; 1/; y D v2 � v1 D v6 � v5 D .0; 1; 0; 0/:

The restriction of A to this sublattice is a shear transformation, hence is of infinite
order:

Ax D x � y; Ay D y:

It is not hard to define a log structure on the nodal cubic curve X with xM_X;q '
� \ Z4 at the node q, and the generization maps to the two branches of C at q dual
to the inclusions �1; �2 ,! � . Then X D .X;MX / has infinite monodromy.

By pulling back MX to a two-nodal curve of arithmetic genus 1, with the map
to X contracting a P1, produces an example with Zariski log structure and infinite
monodromy.

Note that the feature of infinite monodromy can not be seen from the underly-
ing topological space of the tropicalization †.X/. In fact, as a topological space, �
is the cone over a polyhedron „ � R3 that is the convex hull of two disjoint facets
with four vertices each, the intersections of �1, �2 with the affine hyperplane x4 D 1
for x1; : : : ; x4 the coordinates on R4. Thus j†.X/j is the cone over the cell com-
plex obtained from „ by identifying these two facets. But replacing v7, v8 with
.2; 0; 0; 1/t , .2; 1; 0; 1/t and adapting A accordingly produces an example with home-
omorphic j†.X/j and without monodromy.

In the presence of monodromy as in Examples 2.38 and 2.39, the naïve defi-
nition of global contact orders by a reduced subscheme Z � X and a section s 2
�.Z; . xMX jZ/

�/ not extending to any larger subscheme from [30, Definition 3.1]
does not work. We provide here an alternative treatment based on a notion of tangent
vectors for the generalized cell complex †.X/ that suffices for the definition of finite
type moduli spaces and of certain punctured Gromov–Witten invariants also in cases
with monodromy. Some applications such as gluing (Theorem 5.8) in rare cases may
require the more refined definition presented in Appendix A. For the sake of sim-
plicity of presentation, we merely indicate what has to be modified to treat such rare
cases.

2.4.1 Global contact orders

For � 2 †.X/ denote by †� .X/ the star of � , considered as the category †.X/
under � , i.e., the category with objects face embeddings � ! � 0 in †.X/ and arrows
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given by morphisms � 0 ! � 00 commuting with the given morphisms from � . Thus
the star †� .X/ is formed by all cones � Nx D Hom. xMX; Nx;R�0/ with Nx running over
the geometric points of X� . Associating to .� ! � 0/ 2 †� .X/ the free abelian group
N� 0 , viewed as a set, gives a diagram in the category of sets indexed by †� .X/.
This diagram can be viewed as the diagram of integral tangent vectors of †� .X/.
Taking the colimit in the category of sets provides a set of homomorphisms xMX; Nx !

Z for geometric points Nx of X� compatible with all generization homomorphisms.
Elements of this colimit therefore provide a way to specify compatible sets of contact
orders along the stratum X� independently of monodromy.

Definition 2.40. Let � 2 †.X/ and N� W †� .X/! Sets be the diagram in the cat-
egory of sets mapping � ! � 0 to N� 0 . A global contact order for � 2 †.X/, or for
the corresponding stratum X� � X , is an element Nu of

C� .X/ WD colimSetsN� D colimSets
�!� 0N� 0 ;

the set of contact orders for � . For � 0 2 †� .X/, or for a geometric point Nx of X� , we
denote by

��� 0 W N� 0 ! C� .X/; �� Nx W N� Nx ! C� .X/

the canonical maps.
A global contact order is a contact order for some � 2 †.X/. The set of global

contact orders is denoted C.X/ WD
`
�2†.X/ C� .X/.

We say a contact order Nu for � 2†.X/ has finite monodromy if for all .�! � 0/ 2

†� .X/ the set ��1�� 0. Nu/ � N� 0 is finite.
A global contact order Nu2C� .X/ is monodromy-free if for all .�! � 0/2†� .X/

there exists at most one u 2 N� 0 with Nu D ��� 0.u/.

To be explicit, we spell out the definition of �� Nx for Nx a geometric point of X� .
LetZ � X be the smallest logarithmic stratum containing the image of Nx. Then since
Z \X� ¤ ;, the definition of †.X/ provides an isomorphism

� Nx D Hom
�
xMX; Nx;R�0

� '
�! Hom

�
xMX; NxZ ;R�0

�
D �Z

together with a face map �! �Z , unique up to arrows �! � and �Z! �Z in†.X/.
Then �� Nx is defined by composing the induced isomorphism of lattices N� Nx ' N�Z
with ���Z . The definition of C� .X/ is designed to make all maps �� Nx independent of
choices. In particular, a contact order as in (2.4) and (2.12) has an associated global
contact order.

Note that if xMX has monodromy along X� , there is a non-trivial group G of
arrows � ! � in †.X/. In this case, the map ��� W N� ! C� .X/ factors over the
quotient N� ! N�=G of the induced linear action of G on N� . In particular, two
tangent vectors u;u0 2N� define the same global contact order NuD ��� .u/D ��� .u0/
if they are related by monodromy along X� .
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Given a punctured map .C ı=W;p; f / to X and s W W ! C a punctured or nodal
section, each geometric point Nw of W has an associated contact order us. Nw/ at s. Nw/,
giving the contact orders up , uq of (2.12) of the associated tropicalization:

us. Nw/ W xMX;f .s. Nw// ! Z:

Recall also that the contact order for a node, defined in [30, eq. (1.8)], depends on the
choice of an ordering of the two branches of C Nw through the node q, just as uE D uq
depends on the choice of orientation of the edge E. Now for any � 2 †.X/ with
im.f ı s/ � X� and any Nw ! W , we obtain the induced global contact order

u�s . Nw/ D ��f .s. Nw//.us. Nw// (2.19)

The following lemma shows that fixing global contact orders in families of punctured
maps is both an open and closed condition. In particular, prescribing global contact
orders for strata, formalized in the notion of marking below (Definition 3.4), works
well in moduli problems.

Lemma 2.41. Let .C ı=W; p; f / be a punctured map, s W W ! C a punctured or
nodal section, and � 2 †.X/ with im.f ı s/ � X� . Then the function Nw 7! u�s . Nw/

from (2.19), associating to a geometric point Nw of W the global contact order of
.C ı
Nw= Nw;p Nw ; f Nw/ for � , is locally constant.

Proof. The existence of neat charts for the punctured map f W C ı ! X [52, Theo-
rem III.1.2.7] shows that the composition

s�1f �1 xMX ! s�1 xMCı ! Z;

is a morphism of constructible sheaves of sets. See also [52, Theorem II.2.5.4]. This
composition defines the contact order as a function on W . Hence the subset of W
with f of a given contact order is a constructible set. It remains to show that con-
tact orders are compatible with generization. Consider a specialization Nw0 of Nw, with
f ı s. Nw0/D Nx0 a specialization of f ı s. Nw/D Nx. By Proposition 2.25 the face embed-
ding N� Nx ! N� Nx0 dual to generization, which is an arrow in N� , maps the contact
order u Nx 2 N� Nx to u Nx0 2 N� Nx0 . Hence �� Nx.u Nx/ D �� Nx0.u Nx0/, as needed.

Definition 2.42. Let .C ı=W;p; f / be a punctured map, and s WW ! C a punctured
or nodal section with im.f ı s/ � X� for some � 2 †.X/. Then .C ı=W; p; f / is
said to have global contact order Nu 2C� .X/ for � along s if for each geometric point
Nw of W the function in (2.19) fulfills u�s . Nw/ D Nu.

Remark 2.43. A previous version of this paper contained a notion of evaluation stra-
tum for a global contact order. This was meant as the analogue of the pullback via
X ! AX of the image of Z� ! AX in the notion of contact orders based on the
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Artin fan of X developed in Appendix A.2. We decided to remove this part for sev-
eral reasons.

First, the given treatment was ad hoc since unlike in the notion based on Artin
fans, there is no good functorial characterization of schematic evaluation strata based
on families of punctured curves. This lack of a universal property is due to possi-
ble obstructions to deformations of punctured maps not coming from obstructions to
deformations of the evaluation point.

Second, contact orders are naturally selected after fixing a reference stratum, see
Section 3.2 below. In the most important case of realizable types of punctured maps
(Definition 2.44 (2) below), the reference stratum already defines a reduced closed
subscheme of the evaluation stratum for the given contact order. Thus defining a non-
reduced evaluation stratum is pointless in this case. Indeed, so far there has not been
any use of non-reduced evaluation strata in practice, and notably not in the applica-
tions mentioned in the introduction.

Third, should there ever be a need to define a non-reduced evaluation stratum, it
can easily be defined via the theory of contact orders developed in Appendix A.

2.4.2 Global types

As emphasized throughout the paper, a central aspect of the theory of punctured maps
involves the underlying combinatorics in terms of tropical geometry. On the level of
moduli spaces, this aspect is captured by the notion of marking by tropical types.

For this purpose, we need a global version of the type of punctured maps (Def-
inition 2.24). Crucially we replace contact orders by the global contact orders from
Definition 2.40. For readability, we again restrict to the case of simpleX first. The dis-
cussion of the additional data needed for the general case is contained in Section 2.6.

Definition 2.44. (1) A global type (of a family of tropical punctured maps to †.X/)
is a tuple

� D .G; g; � ; Nu/

consisting of a genus-decorated connected graph .G; g/ and two maps

� W V.G/ [E.G/ [ L.G/! †.X/; Nu W E.G/ [ L.G/! C.X/

with Nu.x/ 2 C� .x/ for each x 2 E.G/ [ L.G/. A (type of) punctured maps has an
associated global type by replacing the contact orders by the associated global contact
orders. Morphisms of global types are defined analogously to morphisms of types of
tropical punctured maps in (2.14).

If the composition of Nu with the natural map C.X/! C.B/ equals 0, we say �
is a global type for X=B or relative B .
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(2) A global type � is realizable4 if there exists a tropical map to †.X/ with
associated global type � .

(3) A decorated global type � D .�;A/ of tropical punctured maps is obtained by
adding a curve class A as in (2.13).

(4) A class of tropical punctured maps for a connected X is a decorated global
type with a graph G with only one vertex v, no edges, and all strata � .x/ D ¹0º. We
write a class of tropical punctured maps as ˇ D .g; Nu; A/ with g 2 N, A 2 HC2 .X/
and Nu W L.G/! C¹0º.X/. The class of a decorated global type is the class of tropical
punctured maps obtained by contracting all edges and keeping the set of legs, but
with associated strata 0 2 †.X/ and each global contact order the image under the
canonical map

C� .L/.X/! C¹0º.X/:

For a class ˇ of a global type we write ˇ D .g; k; A/ with k D jL.G/j for the class
of the underlying ordinary stable map.

If X is disconnected, one takes one class of tropical punctured map for each
connected component of X .

We will often drop the adjective “tropical” and refer to a global type, decorated
global type, or class of punctured maps.

The following lemma will only be used in the proof of Proposition 3.24, which in
turn is only used in the dimension formulas of Proposition 3.30.

Lemma 2.45. Let .G;g;� ; Nu/ be a realizable global type, and assume all logarithmic
strata Z� � X for � 2 im.� / are monodromy-free. Then there is a unique type � D
.G; g; � ;u/ of punctured maps with associated global type .G; g; � ; Nu/.

Proof. Indeed, realizability implies in particular that for each x 2 E.G/[L.G/, the
contact order ux 2C� .x/.X/ lies in the image of the natural mapN� .x/!C� .x/.X/.
However, it follows immediately from the definition of C� .X/ that the map N� !
C� .X/ is injective for each � 2 †.X/.

A sufficient condition for the absence of monodromy in Lemma 2.45 is of course
that X is simple.

Remark 2.46 (Relation with types). There are two differences of the notion of global
type to the notion of type in Definition 2.24. First, contact orders are replaced by
global contact orders. Second, the requirement Nu.x/2C� .x/.X/ for x2E.G/[L.G/
does not imply ux 2 N� .x/. The lack of the latter condition for edges makes it impos-
sible to define a basic monoid just depending on a global type.

4The term signifies that the combinatorial data underlies a tropical object. It should not be
confused with realizability in tropical algebraic geometry, which signifies that a tropical object
is the tropicalization of an algebraic object.
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However, some useful discrete data remain. For simplicity we assume X is sim-
ple again, deferring the discussion of the general case to Section 2.6.4. Consider a
tropical punctured map � ! †.X/, with associated type � 0 D .G0; g0; � 0; u0/, basic
monoid Q� 0 as in (2.15), and dual monoid Q_� 0 underlying the corresponding moduli
of tropical maps. We have an associated global type x� 0 D .G0; g0; � 0; Nu0/ as in Def-
inition 2.44 (1) obtained by replacing the contact orders u0.x/ with their images in
C� .x/.X/.

Now fix a contraction morphism � W x� 0 ! � to a global type � D .G; g; � ; Nu/,
with set of contracted edges E� . We claim that there is a well-defined face Q_�� 0
of Q_� 0 , see (2.20), with dual localization (2.21), not requiring a morphism of types
lifting x� 0 ! � . Fix a point of Q_� 0 given as a tuple .Vv; `E /v2V.G/;E2E.G/. Then
.Vv; `E /v;E 2 Q

_
�� 0 if and only if

(1) the position Vv of any vertex v maps to the cell � .�.v// associated to �.v/ 2
V.G/ by � , and

(2) if E 2 V.G0/ is an edge contracted by � then `E D 0.

Here we replaced generic points � and nodal points q in (2.15) by vertices v 2 V.G0/
and edges E 2 E.G0/. It is critical that � .�.v// is a well-defined face of � .v/. This
is where we use the simplicity assumption. DefineQ�� 0 as the dual of this face, given
precisely as:

Q_�� 0 D
®
.Vv; `E / 2 Q

_
� 0 j 8v 2 V.G

0/ W Vv 2 � .�.v//

8E 2 E� W `E D 0
¯
:

(2.20)

We then obtain a localization morphism

��� 0 W Q� 0 ! Q�� 0 ; (2.21)

just as for basic monoids associated to types of tropical punctured maps [3, Defini-
tion 2.31 (3)]. The difference is that now both Q�� 0 and ��� 0 depend not only on the
morphism � W x� 0 ! � of global types, but also on the lift of x� 0 to a type � 0 of tropical
punctured maps.

2.5 Puncturing log-ideals

The punctured points which are not marked points impose extra important constraints
on the possible deformations of a punctured curve, hence of punctured stable maps,
captured by an ideal in the base monoid. This is a key new feature of the theory which
we now describe.

2.5.1 Review of idealized log schemes

We review here the notion of idealized log schemes from [52], as this notion is con-
siderably less common in the literature.
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Given a sheaf of monoids M on a scheme X , we use the term log-ideal for a
sheaf of monoid ideals K �M. The sheaf of monoid ideals K is said to be coher-
ent (see [52, Proposition II.2.6.1]) if locally on X , K is generated by a finite set of
sections.

An idealized log scheme is data .X;MX ; ˛X ;KX / where .X;MX ; ˛X / is an
ordinary log scheme, with ˛X WMX ! OX the structure map, and KX �MX a log-
ideal such that KX � ˛

�1
X .0/. A morphism of idealized log schemes f W .X;KX /!

.Y;KY / is a morphism f W X ! Y of log schemes such that

f [.f �1.KY // �KX :

See [52, Definition III.1.3.1].
If f W X ! Y is a morphism of log schemes and KY �MY is a log-ideal, we

adopt the notation of [52] by writing f �.KY / �MX as the log-ideal generated by
f [.f �1.KY //. We say a morphism f WX ! Y of idealized log schemes is idealized
strict [52, Definition III.1.3.2] if KX D f

�KY .
If W is a fine log scheme and K �MW is a log-ideal, then K is invariant under

the multiplicative action of O�W , and the quotient xK DK=O�W is a log-ideal in xMW .
As the stalks of xMW are finitely generated monoids, the stalks of xK are then finitely
generated ideals.

Lemma 2.47. Let .W;MW / be a fine log scheme and K �MW a log-ideal. Then
the following are equivalent:

(1) K is a coherent sheaf of ideals;

(2) for any geometric points Nx, Ny of W with Ny ! Nx a specialization arrow, the
stalk K Ny is generated by the image of the generization map K Nx !K Ny .

Proof. (1))(2): Suppose K is a coherent sheaf of ideals. Then given geometric
points as in the statement of the lemma, there is an open neighborhood U of Nx and a
finite set of sections S � �.U;MW / generating KjU . In particular, Ny lifts to a geo-
metric point of U and hence K Nx and K Ny are both generated by S . In particular, the
generization map K Nx !K Ny is surjective.

(2))(1): Suppose the generatedness statement always holds. Since MW is fine,
for any geometric point Nx of W , one may find an étale neighborhood U with a chart
� W Q !MW jU inducing an isomorphism Q ! xMW; Nx . Let K � Q be the inverse
image of xK Nx under this isomorphism, and let S � K be a finite generating set.
Then �.S/ provides a subset of �.U;MW /, necessarily generating an ideal sub-
sheaf K 0 of K . However, because of the assumed surjectivity, it follows immediately
that K 0 DK .

Many notions in log geometry have idealized versions. In particular, there are
notions of idealized log étale and idealized log smooth morphisms, defined using ide-
alized versions of formal lifting. We send the reader to [52, Section IV.3.1] for details.
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Morally, an idealized log smooth morphism is one modeled on a morphism between
torus invariant subschemes of toric varieties; alternatively it is a morphism X ! Y

such that there is a closed substack ZX=Y of a relative Artin fan AX=Y [5, Corol-
lary 3.3.5] defined by a monomial ideal such that the induced morphism X ! AX=Y
factors through a smooth morphism X ! ZX=Y . See Proposition B.2 for precise
statements as needed in this paper.

Proposition 2.48. If X ! B is log smooth, and B is log smooth over k or is a log
point, then every stratum X� of X is idealized log smooth over B , where � 2 †.X/.
Here we endow X� with its reduced induced subscheme structure, and with the log
structure induced by the closed embedding X� ,! X .

Proof. Since the statement is étale local in B , we may assume there exists a global
chart B ! AQ D Spec kŒQ�. Note also that by Proposition C.11, X� is irreducible,
hence is set-theoretically the closure of a geometric generic point x� of X� .

Define the log ideal K �MX� on X� by

K.U / WD
®
s 2MX� .U / j ˛X� .s/ D 0

¯
:

To check that .X� ;K/! .B; ;/ is idealized log smooth near a point x 2 X� , we
consider a chart for X ! B as in Proposition B.4, an étale neighborhood h W U ! X

of x fitting into a commutative diagram

U
g
//

$$

B �AQ AP

��

// AP

��

B // AQ;

with all horizontal arrows strict, g W U ! B �AQ AP smooth, P � D ¹0º, and a lift
Qx of x to U mapping to the closed (deepest) stratum of AP . Then we obtain an
isomorphism  W P ! xMX; Nx D .�

_
Nx /Z. Each specialization arrow x�! Nx defines a

face inclusion � ! � Nx , hence a closed reduced substack Z � AP with

h.g�1.B �AQ Z// � �� ;

where Z� is the logarithmic stratum of X with closure X� . Thus if Fi � P denotes
the dual faces of P defined by such specializations, then by the definitions of K and
X� ,

 
�
P n

[
i

Fi

�
D xK Nx � xMX; Nx : (2.22)

Note this gives an alternative, stalkwise definition of the log ideal K , using the rea-
soning in Remark 2.36.
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To show the claim on idealized smoothness, it thus remains to show that the
preimage in U of the closed reduced substacks of AP are reduced for then the sub-
scheme of U defined by P n

S
i Fi agrees with h�1.X� /.

Now a closed reduced substack Z � AP maps onto a closed reduced substack T

of AQ, which by our assumptions on B pulls back to a reduced subscheme S � B .
Therefore B �AQ Z D S �T Z is reduced since S ! T is smooth, and so is its
preimage in U .

2.5.2 Log-ideals of punctured curves

Let .� W C ı ! W; p/ be a punctured curve. For each of the punctures p W W ! C

consider the composition

vp W p
�MCı !

xMW ˚ Z! Z (2.23)

of fine monoid sheaves, with the first map induced by the canonical monoid inclusion
p� xMCı !

xMW ˚ Z and the second map the projection. Denote by 	p � p
�MCı

the sheaf of ideals generated by .vp/�1.Z<0/.

Definition 2.49. The puncturing log-ideal KW �MW of the punctured curve .� W
C ı ! W;p/ is the ideal sheaf[

p

.�[/�1.	p/ �MW ;

with p running over all punctures.

In the context of the definition we abuse notation when writing �[ for the com-
position

MW
�[

�! ��MCı ! ��p�p
�MCı D p

�MCı ;

where as usual p�MCı denotes the pullback log structure, while the right arrow
is induced by the adjunction unit morphism 1 ! p�p

�1 of the associated abelian
sheaves.

We sometimes also refer to the quotient xKW of KW by O�W as the puncturing
log-ideal, but will then write xKW �

xMW for clarity.
An illustration for the definition is contained in Figure 2.8.
This picture indicates an equivalent way to identify xKW . For the stalkwise char-

acterization we may do a strict base change to a geometric point of W and hence
assume W is a log point. For a marking p on a component of C ı with generic point
�, consider the generization map �p;� W xMCı;p !

xMCı;� '
xMW . Identify xMW as a

submonoid of xMCı;p via �[, making �p;� an idempotent homomorphism on xMCı;p

with image xMW . An element m 2 xMW is in xKW if and only if there is a marking p
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Figure 2.8. An idealized punctured point (ideal lightly shaded) and the resulting log ideal (the
horizontal shaded ray). If there are several punctures, one takes the ideal generated by these
horizontal regions.

and an element n2 .up/�1.Z<0/ such that �p;�.n/Dm, where up W xMCı;p!Z is the
contact order associated to the identity morphism. Indeed, if there is n 2 .up/�1.Z<0/
and n0 2 xMCı;p with �[.m/ D n C n0 then, writing n00 D n C �p�.n

0/ we have
m D �p�.n

00/; conversely, if m D �p�.n
00/ with up.n00/ D �b < 0 then, using the

notation of (2.23), we have �[.m/ D n00 C b � .0; 1/.

Lemma 2.50. The puncturing log-ideal KW of a punctured curve .� W C ı ! W; p/
is coherent.

Proof. We verify the characterization of Lemma 2.47. Let Nx; Ny!W with Nx 2 cl. Ny/.
Fix a generization map � Nx Ny W xK Nx ! xK Ny and let m Ny 2 xK Ny . We wish to construct
m Nx 2 xK Nx with � Nx Ny.m Nx/ D m Ny .

We refer to the following commutative diagram of generizations and contact
orders:

xMW; Nx D
xMCı;� Nx

� Nx NyD�� Nx� Ny
// xMCı;� Ny D

xMW; Ny

xMCı;p Nx

�p Nx� Nx

OO

�p Nxp Ny

//

up Nx

��

xMCı;p Ny

�p Ny� Ny

OO

up Ny

��

Z Z

Note that m Ny 2 xK Ny means that there is a puncture p Ny lying on a component with
generic point � Ny of C Ny and an element mp Ny 2 .up Ny /

�1.Z<0/ whose generization is
�p Ny� Ny .mp Ny / D m Ny .

Since MCı is coherent, there is an element mp Nx 2 xMCı; Nx such that

�p Nxp Ny .mp Nx / D mp Ny :
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Note that up Ny ı�p Nxp NyDup Nx , see Lemma 2.41. This impliesmp Nx2.up Nx /
�1.Z<0/.

Write m Nx WD �p Nx� Nx .mp Nx /. By definition m Nx 2 xK Nx .
We obtain thatm Ny D �p Ny� Ny ı �p Nxp Ny .mp Nx /D �� Nx� Ny�p Nx� Nx .mp Nx /D �� Nx� Ny .m Nx/D

� Nx Ny.m Nx/, as needed.

Puncturing log-ideals behave well under pull-backs.

Proposition 2.51. Let .� W C ı ! W; p/ be a punctured curve, .�T W C ıT ! T; pT /
its pullback via h W T ! W and KW , KT the respective puncturing log-ideals. Then
KT D h

�KW .

Proof. Denote by g W C ıT ! C ı the pullback of h to the curves. By coherence of KW

and KT it suffices to check that for each geometric point Nt! T , the image of xKW;h.Nt/

under Nh[
Nt

generates xKT;Nt . Denote by Nw D h.Nt /. For a puncture p of C ı consider the
commutative diagram

xMW; Nw
x�[ //

Nh[

��

xMCı;p. Nw/
//

Ng[

��

xMW; Nw ˚ Z //

��

Z

D

��
xMT;Nt

x�[
T // xMCı

T
;pT .Nt/

// xMT;Nt ˚ Z // Z

The two left squares are cocartesian in the category of fine monoids by the definition
of pullback of punctured curves. This shows first that Ng[. x	p; Nw/ generates x	pT ;Nt , and
in turn that Nh[..x�[/�1. x	p; Nw// generates .x�[T /

�1. x	pT ;Nt /. Taking the union over all
punctures finishes the proof.

Here comes the crucial vanishing property putting restrictions on deformations of
punctured curves.

Proposition 2.52. Let .C ı=W;p/ be a punctured curve and KW �MW its punctur-
ing log-ideal. Then it holds

˛W .KW / D 0:

Proof. Let 	p D v
�1
p .Z<0/ � p�MCı be the ideal sheaf defined after (2.23). Defi-

nition 2.1 (2) implies .p�˛Cı/.	p/ D 0. Pulling back via �[ WMW ! p�MCı thus
yields

˛W ..�
[/�1.	p// D .p

�˛Cı/.	p/ D 0:

The claimed vanishing follows by taking the union over the punctures p.

Proposition 2.52 demonstrates the announced statement that the base of a family
of punctured curves is naturally an idealized log scheme (or stack).

Corollary 2.53. For a punctured curve .C ı=W;p/with KW its puncturing log-ideal,
the triple .W;MW ;KW / is a coherent idealized log scheme.
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Example 2.54. Let .C ı=W;p/ be a punctured curve over the logarithmic pointW D
Spec.Q ! k/, with Q D N2, C a smooth and connected curve and with only one
punctured point p with

xMCı;p D .Q˚N/CN � .a; 0;�1/CN � .0; b;�1/ � Q˚ Z;

for some a; b 2 N n ¹0º. Then the puncturing log-ideal xKW is generated by .a; 0/,
.0; b/. This implies that if we view W as the strict closed subspace of A2 D
Spec kŒt1; t2� with its toric log structure, then the maximal subscheme of A2 to which
.C=W;p/ extends is given by the ideal .ta1 ; t

b
2 / � kŒt1; t2�.

2.5.3 Log-ideals of punctured maps

We define puncturing log-ideals only for pre-stable punctured maps.5

Definition 2.55. The puncturing log ideal KW of a pre-stable punctured map
.C ı=W;p; f / is the puncturing log-ideal of the punctured domain curve .C ı=W;p/,
as defined in Definition 2.49.

It is clear from the definition and Proposition 2.51 that puncturing log ideals of
punctured maps are stable under base change, and they also enjoy the vanishing prop-
erty ˛W .KW / D 0 from Proposition 2.52.

We finish this subsection by giving a tropical interpretation in the spirit of Propo-
sition 2.23 of the radical of the puncturing log-ideal KW of a pre-stable punctured
map, see Proposition 2.57. This interpretation is based on the following technical
result concerning monoid ideals.

Lemma 2.56. Suppose given a sharp toric monoidQ, and a collection of sharp toric
monoids Pp1 ; : : : ; Ppr along with monoid homomorphisms 'pi W Ppi ! Q˚ Z with
upi WD pr2 ı'pi . Let evi WD .pr1 ı'pi /

t W Q_R ! .Ppi /
_
R. Let the ideal I � Q be the

monoid ideal

I D

r[
iD1

˝
pr1 ı'pi .m/ j m 2 Ppi and upi .m/ < 0

˛
:

For � a face of the cone Q_R, let A� D Spec kŒ�? \Q� be the closed toric stratum
of Spec kŒQ� corresponding to � . Then there is a decomposition

Spec kŒQ�=
p
I D

[
�

A�

5If .C ı=W; p; f / has associated pre-stable map . zC ı=W; p; Qf / (Proposition 2.5), the ideal
KW of Definition 2.49 associated to C ı=W may strictly include the corresponding ideal asso-
ciated to zC ı=W .
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where the union is over all faces � ofQ_R such that if x 2 Int.�/, then evi .x/C "upi 2
.Ppi /

_
R for " > 0 sufficiently small and 1 � i � r .6

Proof. Let Ipi � Q be the monoid ideal

Ipi D
˝
pr1 ı'pi .m/ j m 2 Ppi satisfies upi .m/ < 0

˛
:

Of course V.I / D
T
i V.Ipi /. We first show that if � satisfies the given condition,

then A� � V.Ipi / for each i . The monomial ideal defining A� isQ n .�? \Q/, so it
is enough to show that �? \ Ipi D;. Choose an x 2 Int.�/. Let q 2 Ipi be a generator
of Ipi , that is, there exists an m 2 Ppi such that q D pr1.'pi .m// and upi .m/ < 0.
Since m 2 Ppi and evi .x/C "upi 2 .Ppi /

_
R for some " > 0, we have

0 � hevi .x/C "upi ; mi:

Thus hupi ; mi < 0 implies hevi .x/; mi > 0, or hx; pr1.'pi .m//i D hx; qi > 0, as
desired.

Conversely, suppose that A� � V.I / for some face � ofQ_R, but there exists an i
and some x 2 Int.�/ such that evi .x/C "upi 62 .Ppi /

_
R for any " > 0. Then there exists

anm 2 Ppi such that hevi .x/C "upi ;mi < 0 for all " > 0. Since hevi .x/;mi � 0, we
must have hevi .x/; mi D 0 and upi .m/ < 0. Thus q D pr1.'pi .m// lies in Ipi . We
have

hx; qi D hevi .x/;mi D 0;

so q 2 �?. In particular, zq does not vanish on A� , contradicting A� � V.I /.

Proposition 2.57. Let .C ı=W; p; f / be a punctured map to X over the logarithmic
point W D Spec.Q! �/,

h W � D �.G; `/! †.X/

the associated tropical curve over ! D Q_R, and .G; g; � ; u/ its type. Denote byp
xKW � Q the radical of the puncturing log-ideal of .C ı=W;p; f /.
Then a face Q0 � Q lies in Q n

p
xKW if and only if for any punctured leg L 2

L.G/ it holds7

`.L/..Q0/? \ !Z/ ¤ 0:

In other words, Q0 determines a face .Q0/? \ !Z of !Z, and each point of this face
corresponds to a tropical map. Thus we require that the length function `.L/ of each
punctured leg be non-vanishing on this face of !Z.

6See Example 2.58 below.
7Again, see Example 2.58 below.
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Proof. By pre-stability, xKW is generated by those q 2Q such that there exists a punc-
ture pi!C ofC ı andm2 xMX;f .pi / with Nf [.m/D .q;a/ and aD upi .m/< 0. Thus
xKW D I in Lemma 2.56 applied with Ppi D xMX;f .pi /. Using the characterization of

punctured legs in the pre-stable case in Proposition 2.23, the statement to be proved is
then a reformulation of the conclusion of Lemma 2.56 in terms of tropical maps.

Phrased more geometrically, the conclusion of Proposition 2.57 says that exactly
those faces of the basic cone of a tropical punctured map (Definition 2.33) can pos-
sibly arise from a generization of punctured maps if the puncturing legs remain of
positive length.

We end this section with an example highlighting the fact that the natural base
spaces in punctured Gromov–Witten theory are possibly reducible spaces due to the
puncturing ideals. See Theorem 3.25 and Remark 3.27 for the general picture under-
lying this phenomenon.

Example 2.58. Algebraic setup. Take B D Spec k, and consider X a smooth sur-
face with log structure coming from a smooth rational curve D � X with D2 D 2.
Consider a type of punctured maps of genus 0, underlying curve class ŒD�, and four
punctures, p1; : : : ; p4, with contact orders �1;�1; 2 and 2 respectively. Consider a
punctured curve f W C ı ! X where C D C1 [ C2 [ C3 has three irreducible com-
ponents and two nodes q1 D C1 \ C2, q2 D C1 \ C3. We assume p1; p3 2 C2,
p2; p42C3. Finally, f identifies C1 with D and contracts C2 and C3. Orienting
the node qi from C1 to Ci , it is not difficult to check such a curve exists with
uq1 D uq2 D 1 (Figure 2.9).

The tropical curve. The corresponding tropical curve � has three vertices, v1, v2, v3,
edges Eq1 , Eq2 , and legs Ep1 ; : : : ; Ep4 . The moduli space of tropical curves of this
type is R3�0, with coordinates �, `1, `2, where � gives the distance of the image of v1
from the origin of †.X/ D R�0, and `1, `2 give the lengths of the edges Eq1 , Eq2 .
In particular, the basic monoid for this punctured log curve is Q D N3, generated by
�, `1, `2.

The punctured ideal. In this case we may easily calculate the puncturing ideal (Defi-
nition 2.55). We have contributions from each of the two punctures. Using the defini-
tion, we note that at the puncture pi , i D 1 or 2, the map 'x� ı ��;pi W Ppi D N !Q

is dual to evi WQ_R! .Ppi /
_ D R�0 evaluating the tropical curve parametrized by a

point atQ_R at v2 or v3, see Lemma 2.56. Thus form 2Q_R, evi .m/D �.m/C `i .m/.
Dually 'x� ı ��;pi W P ! Q is given by 1 7! � C `i . As upi .1/ D �1, i D 1; 2,
we see the puncturing ideal K is generated by � C `1; � C `2. Writing kŒQ� D
kŒx; y; z�, with the three variables corresponding to �; `1; `2 respectively, we see
Spec kŒQ�=K D Spec kŒx; y; z�=.xy; xz/, which has two irreducible components of
differing dimension.
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Figure 2.9. The algebraic map and its tropical counterpart. Here � D 1, `1 D 2, and `2 D 1.

The participating and excluded cones. The decomposition
S
� A� of Lemma 2.56

translates to the statement that the cones excluded in this decomposition are the origin,
the `1-axis, and the `2-axis. Indeed, these are the cones where at least one puncture is
positioned with its tail at the origin, hence forced to have length 0, which is excluded
by Proposition 2.57.

The components of the algebraic moduli space. Note that deformation theory pro-
vides two deformation classes of the punctured map. The first smooths one or both
of the nodes, resulting in a punctured map with at least one pair p1, p3 or p2, p4
now being distinct points on the component of the domain mapping surjectively to
D. Since this component contains a negative contact order point, its image cannot be
deformed away from D by Remark 2.20.

The second deformation class keeps the domain of f fixed, but deforms the image
of C1 away from D, so that it meets D transversally in two points. The remaining
components C2 and C3 are then contracted to the points of intersection of f .C1/
with D. It is then no longer possible to smooth the nodes.

The data captured by the ideal. This local reducibility of moduli space happens
despite the obstruction group H 1.C; f �‚X / for deformations with fixed domain
(see Chapter 4) being zero. The point of the puncturing ideal is that it captures
these intrinsic singularities of the moduli space. These obstructions really come from
obstructions to deforming the punctured domain curve.

The general picture explaining this phenomenon is developed in Section 3.5. In
particular, Example 3.32 revisits the present example from the general perspective.
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2.6 Targets with monodromy

We now drop the assumption that X is simple and discuss what is needed to treat the
general case.

2.6.1 Tropicalization of punctured maps with non-simple targets

Let .C ı=W; p; f / be a punctured map over a logarithmic point W D Spec.Q! �/

with � algebraically closed. Then the inclusion of a nodal point q or punctured point
p into C ı is a geometric point of C that we denote by Nq and Np, respectively. For
a node q of C , the generic points �; �0 2 Spec OC; Nq of the two branches of C at Nq
provide two specialization arrows of geometric points (see Appendix C)

x�! Nq; x�0 ! Nq;

unique up to order and precomposition with an isomorphism in the category of geo-
metric points in Spec OC; Nq . The node q is a self-intersection point of C iff x�, x�0 have
the same image in C , that is, iff they are isomorphic as geometric points of C . In
any case, denoting by G the dual intersection graph of C ı, each specialization arrow
x�! Nx with x 2 E.G/ [ L.G/ gives rise to a face inclusion

Q_ D xM_C;x� !
xM_C; Nx : (2.24)

The equality on the left-hand side is the canonical isomorphism obtained since C ı is
a log smooth curve over Spec.Q! �/.

Applying f yields a specialization arrow f .x�/! f . Nx/ and a corresponding face
embedding

xM_X;f .x�/ !
xM_X;f . Nx/ (2.25)

Our tropicalization procedure for f W C ı ! W requires us to choose, for each x 2
V.G/ [E.G/ [ L.G/ with associated geometric point Nx of C , an isomorphism

Hom
�
xMX;f . Nx/;R�0

�
! � .x/ (2.26)

in †.X/. Composing these isomorphisms or their inverses with the arrow in (2.25)
defines an arrow

�x� W � .�/! � .x/

in †.X/. If †.X/ is simple there is only one arrow � .�/! � .x/ in †.X/. In the
general case, the �x� are part of the data defining the tropicalization, up to the simul-
taneous action of

G D
Y

x2V.G/[E.G/[L.G/

Aut†.X/.� .x// (2.27)
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on the choices of isomorphisms (2.26). Note that G may not act transitively on the
set of arrows � .�/! � .x/, and then the specialization morphism x�! Nx in C at a
node or marked point distinguishes a G-orbit of such arrows.

We emphasize that if x D q is a node there are two such arrows, regardless if q
is self-intersecting or not, one for each branch of C at q. Thus the proper labelling
would not be by pairs .�; q/ but by half-edges of the dual intersection graph G of
C ı. By abuse of notation we nevertheless denote these two half-edges by .q; �/ and
.q; �0/.

Given a node q with adjacent geometric generic point x�, we can compose f [
x� W

xMX;f .x�/ !
xMC;x� with the identification xMC;x� D Q and the isomorphisms (2.26),

and dualize to obtain the map of cones

V� W Q
_
! � .�/:

The defining equation [3, eq. (2.22)] of the contact order uq 2 � .q/ at q now takes
the form

�q�0 ı V�0 � �q� ı V� D `.Eq/ � uq; (2.28)

an equality in Hom.Q_; � .q//. Here �0 is the other geometric generic point of
Spec OC; Nq as above.

The pair .V�; V�0/, or equivalently .V�; `.Eq/; uq/, determines the tropicalization
of .C ı=W;p; f / at q. At a marked point p, the tropicalization is similarly defined by
V� and the contact order up .

Taken together, we obtain the following description of the tropicalization of
.C ı=W;p; f /.

Proposition 2.59. The tropicalization of a punctured map .C ı=W; p; f / to X with
W D Spec.Q! �/ an algebraically closed logarithmic point is given by the abstract
tropical curve .G; g; `/, i.e. the tropicalization of C ı=W , and the tuple

.V�; ux; �x�/�;x;

as discussed. Here � 2 V.G/, x 2 E.G/ [ L.G/, with � adjacent to x for �x� , and
the data is subject to (2.28). A self-intersecting node q produces two arrows �x� , as
commented on above. The tuple .V�; ux; �x�/�;x is unique up to the obvious action of
G from (2.27) on the set of tuples.

Conversely, a tropical punctured map over !2Cones consists of two maps �!!
and � ! †.X/ of generalized cone complexes. Lifting both maps locally near the
strata of j�j labeled by vertices, edges and legs to maps of cone complexes provides
a tuple .V�; ux; �x�/�;x that is again unique up to the action of G. Thus we have a
one-to-one correspondence between tropical punctured maps and G-orbits of tuples
.V�; ux; ��x/�;x . Note in particular that each individual contact order ux 2 � .x/,
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x 2 E.G/ [ L.G/, is only defined up to the action of Aut†.X/.� .x//, but more
information is retained when considering contact orders simultaneously and together
with the set of face inclusions �x� . Here is a simple example illustrating the effect of
monodromy on the procedure.

Example 2.60. This is a modification of the Whitney umbrella example in [4, Sec-
tion 5.4.1]. Let C be the nodal cubic with its log smooth structure over the standard
log point Spec.N ! k/. Define X as the quotient of .A1 n ¹0º/ � C by the Z=2-
action that swaps the two branches of C at the node and acts by multiplication by
�1 on A1 n ¹0º. We can view X as a non-trivial, log smooth fibration over .A1 n
¹0º/ � Spec.N ! k/ with all fibers Xs isomorphic to the nodal cubic C . Thus X
is irreducible with two logarithmic strata with closures X and X sing, respectively.
Denoting by x�0, x�1 geometric generic points for these strata, we have xMX;x�0 D N,
xMX;x�1 D N2. The tropicalization †.X/ has a presentation with two non-zero cones

�0 D R�0; �1 D R2�0;

and non-trivial arrows the two face inclusions �0 ! �1 and the automorphism �1 !

�1 swapping the two coordinates.
The inclusion C ! X of a closed fiber defines a stable log map with unique

generic point �, one node q, and no marked points. We have � .�/ D �0, � .q/ D �1,
and a unique arrow (2.26) in †.X/ for x D �, hence a unique map of cones V� W
Q_ D R�0 ! �0. There are, however, two choices of isomorphisms

Hom
�
xMX;f . Nq/;R�0

�
! � .q/ D �1:

Each such choice gives two arrows �q�; �q�0 W �0 ! �1 and a contact order uq . If one
choice gives

.V�; uq; �q�; �q�0/

for the tuple in Proposition 2.59, the other choice swaps �q� , �q�0 and replaces uq by
�uq . This is indeed the action of G D Z=2 on the set of tuples as stated in the same
proposition.

The relation to the Whitney umbrella Y D V.x2z � y2/ � A3 is as follows.
Endow Y with the restriction of the divisorial log structure on A3 defined by Y . We
view Y n V.z/ as a fibration over A1 n ¹0º by one-nodal rational curves via projection
to the z-coordinate. Then there is an étale map Y n V.z/! X of degree two of fiber
spaces over A1 n ¹0º that separates the branches of the fibers of X ! A1 n ¹0º.

2.6.2 Types of punctured maps with non-simple targets

One way to define the type of a punctured map in general is as an equivalence class of
tropicalizations which identifies two tropical punctured maps whenever they fit into
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one family. The action of the automorphism group G on a face map �x� in Proposi-
tion 2.59 is induced by propagation along appropriate families. Thus in the general
case, the type of a punctured map at a geometric point, or of a tropical punctured
map, in addition to .G;g;� ;u/ needs to specify these face maps �x� , at least up to the
overall action by G. This leads to the following modification of Definition 2.24.

Definition 2.61. (1) A framed type (of a family of tropical punctured maps) is a tuple
.G;g;� ;u/with u.x/2N� .x/ for all x 2E.G/[L.G/ as in Definition 2.24, together
with arrows8 in †.X/,

�xv W � .v/! � .x/;

for all x 2 E.G/ [ L.G/ and v 2 V.G/ an adjacent vertex.
(2) The type (of a family of tropical punctured maps) is an equivalence class of

framed types under the obvious action of G on the set of framed types, as obtained
from Proposition 2.59. The notation for a framed type is .G; g; � ; u; �/ with � D
.�xv/x;v .

The type of a punctured map .C ı=W; p; f / to X at a geometric point Nw of W is
the type of the associated tropical map � ! †.X/ over ! D . xM_W; Nw/R.

Note that G acts trivially on the domain data .G; g/, the strata map � and on
global contact orders. So for framed types the action is on the tuple .u.x/; �xv/ with
x running through E.G/ [ V.G/ and v through vertices adjacent to x. In particular,
since the group G acts also trivially on the space C� of global contact orders for
� 2 †.X/, the definition of global type in Definition 2.44 remains unchanged.

We skip the obvious decorated versions of the notions of types in the general case.
These just add the data of curve classes to vertices.

2.6.3 Contraction morphisms of types for non-simple targets

The definition of contraction morphism of types

� W � D .G; g; � ;u/! � 0 D .G0; g0; � 0;u0/

from [3, Definition 2.24] imposes the condition that � 0.�.x// is a face of � .x/ for
all x 2 V.G/ [ .E.G/ n E�/ [ L.G/. In the general case, this condition has to be
replaced by the choice of an arrow

� 0.�.x//! � .x/

in †.X/ as part of the data defining �. We obtain the following definition.

8In the case of a self-intersecting node x D q there are two such arrows, which as before
we do not distinguish by the notation.
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Definition 2.62. (1) Let � D .G; g; � ; u; �/, � 0 D .G0; g0; � 0; u0; �0/ be two framed
types. A contraction morphism of framed types � ! � 0 is a contraction morphism
� W .G; g/! .G0; g0/ of genus-decorated graphs together with arrows

�x W �
0.�.x//! � .x/

in †.X/ for all x 2 V.G/ [ .E.G/ n E�/ [ L.G/. We require that the �x are com-
patible with �, �0, that is, the diagrams

� 0.�.v//
�v //

�0
�.x/�.v/

��

� .v/

�xv

��

� 0.�.x//
�x // � .x/

(2.29)

commute, for all x 2 .E.G/ nE�/ [ L.G/ and all v 2 V.G/ an adjacent vertex.9

(2) An equivalence class for the obvious action of the group G from (2.27) acting
on the set of contraction morphisms with domain framed types with given .G; g; � /
defines the notion of contraction morphism of types.

There is again no change in the definition of contraction morphism of global types
compared to the case with simple X .

As in the discussion of types in the preceding Section 2.6.2, we have again skipped
spelling out the trivial generalization to the decorated versions.

Contraction morphisms arise from specializations in families of punctured maps,
as proved in the case of simple X in Proposition 2.25. Here is the version for the
general case.

Proposition 2.63. Let .C ı=W; p; f / be a stable punctured map to X over some
logarithmic scheme W , and let Nw0 ! Nw be a specialization arrow of geometric
points of W . Let .�; A/ with � D .G; g; � ; u; �/ be the decorated framed type of
.C=W; p; f / at the geometric point Nw of W according to Definition 2.61 (2) by a
choice of arrows (2.26). Let similarly .� 0;A0/ with � 0 D .G0; g0; � 0; u0/ be the deco-
rated framed type of .C ı=W;p; f / at Nw0, for the induced choice of arrows (2.26).

Then the map
.�;A/! .� 0;A0/

induced by generization is a contraction morphism.

Proof. The proof is again identical to the proof of [3, Lemma 2.30] save keeping
track of the choices of arrows in †.X/.

9Note that �0
�.x/�.v/

is uniquely determined by the diagram from �v , �xv , �x .
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2.6.4 The basic monoid and tropical moduli in general

The definition of basicness (Definition 2.31) makes sense in complete generality by
replacing “type” by “a framed type representing the type of .C ı=W; p; f / at the
geometric point Nw”. Indeed, given a framed type, the space of tropical curves of the
given framed type is a subspace of the set of tuples .V�; `q/ with entries taking values
in strongly convex rational polyhedral cones and subject to some integral equalities,
hence is parametrized by a strongly convex rational polyhedral cone itself. This cone
has been made explicit in Proposition 2.32 in the case of simpleX . Here is the restate-
ment of this proposition with reference to a framed type.

Proposition 2.64. Let .� W C ı=W;p; f / be a basic, pre-stable punctured map over a
logarithmic point Spec.Q! �/ with � an algebraically closed field. Denote byG the
dual intersection graph of C ı. For each x 2 V.G/ [ E.G/ [ L.G/ with associated
geometric point Nx of C ı and smallest stratum � .x/ 2 †.X/ containing f . Nx/ choose
an isomorphism

�x W xMX;f . Nx/ ! .� .x/Z/
_;

dual to an arrow in †.X/ as in (2.26). Denote by .G; g; � ; u; �/ the framed type
of .� W C ı=W; p; f / defined by this choice according to the discussion leading to
Proposition 2.59. Then the map

Q_ !
°
..V�/�; .`q/q/ 2

Y
�

� .�/Z �
Y
q

N j �q� ı V� � �q�0 ı V�0 D `q � u.q/
±

(2.30)
with V�-entry the dual of .�[�/

�1 ı Nf [
x� ı �

�1
� W � .�/

_
Z ! Q and `q-entries given by

the dual of the classifiying map
Q
q N ! Q of the log smooth curve C=W , is an

isomorphism. Here � and q run over the set of generic points and nodes of C , respec-
tively. The equation in the bracket holds in N� .q/ for all nodal points q with adjacent
generic points �, �0 ordered according to the orientation of Eq (with the usual ambi-
guity of notation concerning self-intersecting nodes).

Proof. The proof is identical to the proof of Proposition 2.32 once the refined tropi-
calization procedure of Section 2.6.1 is taken into account.

With this description of the basic monoid in the general case the proof of Propo-
sition 2.34, which proves that basicness is an open condition, generalizes without
problems.

The final point we want to discuss concerns the monoid quotient

��� 0 W Q� 0 ! Q�� 0 ; (2.31)

of basic monoids from (2.21) obtained from a framed type � 0 and contraction mor-
phism x� 0 ! � of the associated global type. The basic monoid Q� 0 depends only on
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the framed type, as spelled out in (2.30). But note that the group G from (2.27) gen-
erally acts non-trivially on the right-hand side of (2.30), so the basic monoid is not
intrinsic to the type.

Similarly, the description of Q�� 0 in (2.20) requires the knowledge of the image
of the arrows �v W � .�.v//! � 0.v/, hence works only for a contraction morphism
of framed types as follows. Let .C ı=W; p; f / be a basic punctured map and Nw a
geometric point of W . Then a choice of isomorphisms in (2.26), or equivalently of
� D .�x/ in Proposition 2.64, provides a framed type � 0 D .G0; g0; � 0; u0; �0/ and an
isomorphism of xM_W; Nw with the submonoid Q_� 0 �

Q
� �
0.�/_Z �

Q
q N on the right-

hand side of (2.30). Let � W x� 0 ! � be a contraction morphism of the global type x� 0

associated to � 0 to some other global type � D .G; g; � ; Nu/. Then each choice �� of
arrows

�v W � .�.v//! � 0.v/; v 2 V.G/

in †.X/ provides a face Q_�� 0.��/ � Q� 0 as in (2.20), hence a dual localization mor-
phism

��� 0.�; ��/ W xMW; Nw
'
�! Q� 0 ! Q�� 0.��/

as in (2.31). Thus this quotient of xMW; Nw depends on both the choices of � and ��.
Note that Q�� 0 ¤ 0 only if there exists a degeneration of tropical punctured maps of
framed type � compatible with the restriction on the images of vertices given by ��.

The schematic restriction to punctured maps of global type � is then locally
reflected in the monoid ideal

I�� 0 D
\
�

.��� 0.�; ��//
�1.Q�� 0.�/ n ¹0º/ � xMW; Nw : (2.32)

Note that unlike in the simple case, SpeckŒQ� 0 �=I�� 0 may now be a reducible scheme.
See Definition 3.4 (3) for the use of this ideal in a moduli context.





Chapter 3

The stack of punctured maps

Throughout this chapter we fix as the target a morphism X ! B locally of finite type
between separated, locally noetherian fs logarithmic schemes over k. We assume
further that X is connected and that X ! B fits into a commutative diagram

X //

��

AX

��

B // AB

with strict horizontal arrows, AB the Artin fan of B , and AX an Artin fan repre-
sentable over Log or over Log1. If X has a Zariski log structure and X ! B is log
smooth then [3, Proposition 2.8] shows that we can take the Artin fan of X for AX ,
which is representable over Log by definition. In general, [5, Corollary 3.3.5] pro-
vides the desired diagram with AX representable over Log1.1 We define

X D B �AB AX ;

which by abuse of notation we refer to as the relative Artin fan of X ! B .

3.1 Stacks of punctured curves

The purpose of this section is the introduction of stacks of punctured curves as do-
mains for punctured maps.

3.1.1 Stacks of marked pre-stable curves

For a genus-decorated graph .G;g/ recall from [3, Section 2.4] the logarithmic stacks
M.G; g/ of .G; g/-marked pre-stable curves over the ground field k with its basic
log structure as a nodal curve, and MB.G; g/ D LogM.G;g/�B of .G; g/-marked log
smooth curves over B with arbitrary fs log structures on the base. For a leg L 2 L.G/
denote by pL the associated marked section.

3.1.2 The nodal log-ideal on M.G; g/

Since the basic monoid of an r-nodal curve is Nr , each .G; g/-marked nodal curve
C ! W comes with a homomorphism Nr ! xMW with r D jE.G/j. The image of

1The representability assumption is used in the proof of Lemma 3.11.
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Nr n ¹0º generates a coherent sheaf of ideals x	 � xMW with preimage 	 �MW map-
ping to 0 under the structure homomorphism MW ! OW . Thus 	 endows M.G; g/
with the structure of an idealized log stack.

Definition 3.1. We refer to 	 and to any pullback of 	 to a stack over M.G; g/ such
as M.G; g/ (and MM.G; g/ below) as the nodal log-ideal.

The local structure of moduli spaces of nodal curves implies that M.G;g/with the
nodal log-ideal is idealized logarithmically smooth over the trivial log point Spec k.
If .C=W; p/ is a .G; g/-marked curve, the log ideal is generated at a geometric point
Nw of W by those standard basis vectors of xMW; Nw ' Nr mapping to the smoothing

parameters of the nodes labeled by E.G/.

3.1.3 Enter stacks of punctured curves

We now define a stack MMB.G;g/ of punctured curves by admitting arbitrary punctur-
ings at these marked sections.

Definition 3.2. Let .G; g/ be a genus-decorated graph. A .G; g/-marking of a punc-
tured curve .C ı=W;p/ is a .G;g/-marking of the underlying marked curve .C=W ;p/.
The stack MMB.G;g/ is the fibered category over .Sch=B/with objects .G;g/-marked
punctured curves .C ı=W; p/ over B . Morphisms are given by strict fiber diagrams
of punctured curves respecting the markings by .G; g/.

Note that the morphisms in MMB.G; g/ are pull-backs of punctured curves as de-
fined in Definition 2.13.

The maps associating to a .G; g/-marked punctured curve the underlying .G; g/-
marked nodal curve with its basic log structure defines a morphism of logarithmic
stacks

MMB.G; g/!M.G; g/: (3.1)

3.1.4 The stacks of punctured curves are algebraic

Proposition 3.3. (1) The stack MMB.G; g/ is a logarithmic algebraic stack.
(2) Endowing MMB.G; g/ with the idealized log structure defined by the union of

its puncturing log-ideal (Definition 2.49) and its nodal log-ideal (Definition 3.1) and
MB.G; g/ with its nodal log-ideal, the strict morphism

MMB.G; g/!MB.G; g/

forgetting the puncturing, is locally of finite type, quasi-separated, representable,
unramified, and idealized logarithmically étale.
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Proof. We argue by showing that the morphism MMB.G; g/ !MB.G; g/ is repre-
sentable by algebraic spaces, satisfying the adjectives spelled out in (2).2 This is
sufficient as MB.G; g/ is a logarithmic algebraic stack.

The stack MB.G;g/ is locally noetherian, so it has a covering tW˛!MB.G;g/
in the strict smooth topology, where W˛ are noetherian logarithmic schemes. Letting
W be one of these, define

MW D W �MB .G;g/
MMB.G; g/;

viewed as a category fibered in groupoids over W , or, equivalently, over the cate-
gory of strict morphisms T ! W . It suffices to prove that MW is an algebraic space
satisfying the conditions of (2).

We show this directly by exhibiting MW as a sheaf of sets, with representable diag-
onal, having an étale covering by a scheme, and satisfying the above conditions.

The morphismW !MB.G;g/ corresponds to a .G;g/-marked logarithmic curve
� WC !W . Spelled out, the formation of MW means that for any strict morphism T !

W , the objects in MW .T / are punctured curves .C ıT ! CT ! T; pT / with punctures
at the markings of CT . Here CT D C �W T ! T is the pullback of the logarithmic
curve C ! W . Pull-backs in MW are defined as pull-backs of punctured curves along
strict morphisms over W . The markings by .G; g/ are inherited from C=W and do
not play any further role.

First, we note that MW is a sheaf of sets over W . We have to show that any auto-
morphism of the log curve parametrized by W induces at most one automorphism
of any corresponding punctured curve above it. Indeed, an isomorphism of punc-
tured curves over the identity of a given logarithmic curve is a pullback diagram as
in Diagram (2.3), with h W T D W ! W and CT D C ! C the identity. Such an
isomorphism is an equality of the submonoids of M˚O� P gp in the notation of Def-
inition 2.1. In particular, such an isomorphism is unique when it exists.

Second, Isom functors are representable, in fact by open subschemes of the base
T . Indeed, the locus on CT where two logarithmic structures inside M

gp
CT

coincide is
open in CT (as can be deduced from Lemma 2.17), and its complement is a closed
subscheme of the markings ofCT , whose image in T is closed. The complement is the
desired open subscheme of T . In particular, MW ! MW �W MW is an open embedding;
once we prove MW is locally of finite type over W , we will know the diagonal MW !
MW �W MW is quasi-compact. This will prove the quasi-separatedness in (2).

Third, it now remains to construct an étale atlas by a scheme, and verify the
various adjectives in (2).

We note that the statements of the proposition are both local on W . Further
shrinking W , we may assume that the Artin fan AW equals AQ for an fs and sharp
monoid Q.

2A simple reduction to known stacks would be welcome.
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To prove both statements of the proposition, it suffices to proceed as follows: For
any object C ıT ! CT ! T in MW .T /,

(1) we will construct a locally of finite type, unramified, idealized logarithmically
étale, and strict morphism V ! W , for V some log scheme,

(2) show that T ! W factors through V ,

(3) construct a punctured curve C ıV ! CV ! V , and

(4) show that C ıT ! CT ! T is the pullback of C ıV ! CV ! V .

(5) Finally, we will show that the tautological morphism V ! MW defined by the
family C ıV ! CV ! V is étale.

In particular, we obtain an étale cover tV ! MW of the sheaf MW by ordinary schemes,
or equivalently, by strict étale morphisms of log schemes.

Since the statements above are étale local on T , we may assume the Artin fan
AT equals AQ0 for some fs sharp monoid Q0. Since the puncturing ideal KT of
.C ıT ! T;pT / is coherent, further shrinking T we may assume that there is a monoid
ideal K � Q0 such that the corresponding log ideal K on AQ0 pulls-back to KT .

The strict morphism T ! W induces a strict open embedding AQ0 ! AQ.
ReplacingW by its strict open subschemeW �AQ AQ0 , we may assume thatQDQ0.

Step 1. Construction of V !W . Fix any point t 2 T over the unique closed point of
AQ. Consider the monoid ideal K D xKT jt � Q. Let V ! AQ be the strict closed
embedding defined by the ideal K, and KV be the corresponding log ideal over V .
Then V ! AQ is finite type, strict, and idealized logarithmically étale. Thus the
projection V WD V �AQ W ! W with the log ideal KV WD KV jV is a finite type,
strict closed embedding and idealized logarithmically étale.

Step 2. T ! W factors through V . Recall that KT is the pullback of K . By Propo-
sition 2.52 applied to C ıT =T the image ˛T .KT / D .˛AQ.K//T is the zero ideal.
Hence the morphism T ! AQ factors through V . Consequently, T ! W factors
through V , as claimed.

For the point t as in Step 1, we denote its image in V by w.

Step 3. Construction of the punctured curves C ıV ! CV ! V . To construct the sheaf
of monoids xMCı

V
, first notice that the inclusion xMCV �

xMCı
V

is an isomorphism
away from the points of p. For each puncture pw 2 pw overw, we define xMCı

V
;pw WD

xMCı
T
;pt using the fiber over t . Let pT ; pV be the punctured sections corresponding

to pw of C T =T , C V =V respectively. Note that we have

xMCı
T
;pt

Š
�! �

�
T ; p�T

xMCı
T

�
; xMCT ;pt D

xMCV ;pw D Q˚N
Š
�! �

�
V ; p�V

xMCV

�
:

Define xMCı
V
� xM

gp
CV

as the subsheaf of fine monoids generated by the image of
xMCı

V
;pw �

xM
gp
CV ;pw

under this isomorphism.
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Consider MCı
V
WDM

gp
CV
� xM

gp
CV

xMCı
V

. Observe that MCV �MCı
V

. We define the

structure morphism ˛Cı
V
WMCı

V
!OCV as follows. First, we require ˛Cı

V
jMCV

D˛CV .
Second, for a local section ı of MCı

V
not contained in MCV , we define ˛Cı

V
.ı/ D 0.

This defines a monoid homomorphism. Indeed, using the decomposition MCı
V
�

M˚O�
Cv

P gp as in Definition 2.1, write ı D .ı0; ı00/ with ı0 the pullback of a section
of MV . It is sufficient to check that when ı …MCV we have ˛V .ı0/ D 0.

In the notation of Section 2.5.2 the assumption ı …MCV implies ı 2 	p . Hence
according to Definition 2.49 we have ı0 2KV . As V is defined by ˛V .KV / D 0, we
have ˛V .ı0/ D 0 as needed.

This defines a logarithmic structure MCı
V

over C V . The inclusion of logarithmic
structures MCV � MCı

V
is a puncturing, hence defines a punctured curve C ıV !

CV ! V .

Step 4. C ıT ! CT ! T is the pullback of C ıV ! CV ! V via i W T ! V . Denote
by j W C T ! C V the pullback of i . Since CT ! T is given by base change from
CV !V , it suffices to show that j �MCı

V
DMCı

T
as sub-sheaves of monoids in M

gp
CT

.
Away from the punctures, the equality clearly holds. Along each puncture p 2 pT , we
have the equality j � xMCı

V
;pw D

xMCı
T
;pt at pt by the construction in Step 3, which

extends along the marking p by generization. This proves the desired equality.

Step 5. Étale covering. Consider a strict, square-zero extension T ! T 0 over W
and a family of punctured curves C ıT 0 ! CT 0 ! T 0 such that CT 0 D C �W T 0, and
C ıT ! CT ! T is the pullback of C ıT 0 ! CT 0 ! T 0. Since the strict morphism
T 0!AQ again factors through AQ0 , we may continue to assumeQDQ0. Applying
Step 2 again, we see that T 0 ! W factors through V uniquely.

Denote by t 0 2 T 0 the image of t via T ! T 0. The family C ıV ! CV ! V is
constructed using the same geometric fiber over t . Applying Step 4 again, we see that
C ıT 0 ! CT 0 ! T 0 can be obtained via pulling back C ıV ! CV ! V .

This shows that V ! MW is formally étale, and we claim it is actually étale, in
other words, for any scheme T 00 and morphism T 00 ! MW , we need to show that
T 00 � MW V ! T 00 is locally of finite presentation. The question being local, we may
assume T 00 ! MW factors through some V 00 ! MW in our covering, and may as well
replace T 00 by V 00. In this case V � MW V 00 ! V �W V 00, the pullback of the diagonal
MW ! MW �W MW along V �W V 00 ! MW �W MW , is an open embedding. As V , V 00

and W are noetherian, the map V � MW V 00 ! V 00 is of finite presentation.

Moreover, since tV ! W is locally of finite presentation and tV ! MW is étale
and surjective, we have that MW ! W is locally of finite presentation, see [67, Sec-
tion 06Q1]. As indicated earlier, this implies that the diagonal is quasi-separated,
completing the proof.
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3.2 Stacks of punctured maps marked by tropical types

3.2.1 Weak markings and markings

In analogy with [3, Definition 2.31] we define the following notion.

Definition 3.4. Let � D .G; g; � ; Nu/ be a global type of punctured maps (Defini-
tion 2.44). A weak marking by � of a basic punctured map .C ı=W; p; f / to X is a
.G; g/-marking of the domain curve .C ı=W; p/ (Definition 3.2) with the following
properties:

(1) The restriction of f to the closed subschemeZ �C (a subcurve or punctured
or nodal section of C ) defined by x 2 V.G/[E.G/[L.G/ factors through
the closed stratum X� .x/ � X (Section 2.2.1).

(2) For each geometric point Nw of W with � Nw D .G Nw ; g Nw ; � Nw ; u Nw/ the associ-
ated type of .C ı=W; p; f / at Nw (Definition 2.24), the contraction morphism
.G Nw ; g Nw/! .G; g/ of decorated graphs given by the marking defines a con-
traction morphism of the associated global types

.G Nw ; g Nw ; � Nw ; Nu Nw/! � D .G; g; � ; Nu/: (3.2)

A weak marking of .C ı=W; p; f / by � is a marking if in addition the following
condition holds.

(3) For all geometric points Nw of W , the ideal in MW; Nw defined by the monoid
ideal I�� Nw� xMW; Nw in (2.32) maps to 0 under the structure morphism MW; Nw!

OW; Nw .

A marking of .C ı=W; p; f / by a decorated global type � D .�;A/ is defined anal-
ogously, with the associated types replaced by associated decorated types introduced
in (2.13).

In the definition, basicness is not necessary for (1) and (2), but is needed when
referring to (2.32) in (3).

Note that a marking of a punctured map by a global type � does not mean that � is
realizable. It just means that there is a contraction morphism x� 0 ! � from the global
type x� 0 associated to a realizable type � 0, the type of the given punctured map.

Remark 3.5. The difference between weak markings and markings is fairly subtle
and is related to saturation in the definition of the basic monoid. Recall first the con-
struction of the basic monoid from [30, Construction 1.16]. Let f W C=W ! X be
a punctured map defined over a log point. The basic monoid Q associated to this
log map was constructed as the saturation of a quotient of the monoid

Q
�2C P� �Q

q2C N. Here � runs over generic points of C and q runs over the nodes of C .
Denote byQfine this quotient before saturating, so thatQ is the saturation ofQfine, as
in [30, eq. (1.14)].
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Now suppose that f W C=W ! X is a weakly � -marked log map with W an
arbitrary fs log scheme, but suppose in addition that for every geometric point Nw of
W , C Nw ! X is of type � . Thus xMW is locally constant with stalk Q. The proof of
Lemma 3.21 below implies in particular that if s is any section of MW whose image
Ns in xMW has stalk lying in Qfine n ¹0º at each geometric point, then ˛W .s/ D 0.
However, the condition for being marked requires this vanishing even when Ns lies in
Q n ¹0º.

For an explicit example where Qfine is not saturated, see [30, Example 1.17 (3)].
There, Qfine is the submonoid of Z2 generated by .1;�6/, .0; 2/ and .0; 3/. In such
a situation, it is not difficult to construct an example of a weakly � -marked but not
� -marked curve, as follows.

Start with a basic � -marked log map f W C=W ! X with W a log point, and
assume thatQ 6DQfine. LetW fineD Spec.Qfine!k/. Since all nodal generators �E 2
Q already lie in Qfine by construction, we may find a sub-log structure MC fine �MC

so that C fine ! W fine is a log smooth curve (in the category of fine log schemes) and
f induces a morphism C fine! X . SaturatingW fine may yield a non-reduced scheme
W sat with reduction W . The composition

C sat
WD C fine

�W fine W sat
! C fine

! X

yields a stable log map in the category of fs log schemes which is weakly marked, but
not marked, by � .

In the cited example [30, Example 1.17 (3)],Q is the submonoid of Z2 generated
by .1;�6/ and .0; 1/, and one checks that

W sat
Š Spec kŒQ�=hz.1;�6/; z.0;2/i;

which is a scheme of length two.

Under the presence of monodromy, the following more refined version of marked
punctured maps using framed types rather than global types is sometimes more appro-
priate, notably in gluing. Note however that framed types work with contact orders
living on a single stratum X� . Hence this refined notion is inappropriate when study-
ing punctured maps with a contact order propagating into several X� not contained
in a single stratum.

Definition 3.6. Let � D .G; g; � ;u; �/ be a framed type of a family of tropical punc-
tured maps (Definition 2.24). A weak marking by � of a basic punctured map .C ı=W;
p; f / to X is a weak marking by the global type .G; g; � ; Nu/ associated to � , along
with, for each x 2 E.G/ [ L.G/ with associated nodal or punctured locus Zx � C ,
a homomorphism of sheaves of monoids

�.x/ W .f jZx /
�1 xMX ! � .x/_Z;
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whose stalkwise duals at all geometric points Nw ofW are arrows in†.X/, and which
lift the contraction morphism of global types (3.2) to a contraction morphism of
framed types (Definition 2.62). Here � .x/_Z is the constant sheaf with stalks the dual
of the set of integral points of � .x/.

A marking by a framed type is then defined by replacing I�� 0 in Definition 3.2 (3)
by ��1�� 0.Q�� 0 n ¹0º/, noting that�.x/makes it possible to defineQ�� 0 and ��� 0 unam-
biguously and consistently.

Remark 3.7. We expect that all results that we formulate for (weak) markings by
global types hold for (weak) markings by framed types. Since the framed notions
have only been included in a late revision of the paper, we nevertheless decided to
leave the full development of this modified theory to other occasions. We emphasize
that in most applications one is either interested in simple X from the outset or one
can reduce to this situation, and in this case the framed perspective does not provide
any additional information.

3.2.2 Enter stacks of punctured maps

We continue to assume that X ! B is a morphism of fs log algebraic schemes ful-
filling the assumptions stated at the beginning of Chapter 3.

Definition 3.8. Let � D .G; g; � ; Nu;A/ D .�;A/ be a decorated global type (Defini-
tion 2.44). Then

M.X=B;�/ and M.X=B; �/

are defined as the stacks over .Sch=B/ with objects basic stable punctured maps to
X over B (Definition 2.15) marked by � and by � , respectively (Definition 3.4).

Weakening stability to pre-stability, the analogous stacks to the relative Artin fan
X of X over B , as defined at the beginning of Chapter 3, are denoted3

M.X=B;�/ and M.X=B; �/:

The corresponding stacks with markings replaced by weak markings are denoted by
the same symbols adorned with primes:

M0.X=B;�/; M0.X=B; �/; M0.X=B;�/; M0.X=B; �/:

An important special case is that � is the class ˇ D .g; Nu; A/ of a punctured
map (Definition 2.44). Then G is the graph with only one vertex v of some genus
g, stratum � .v/ D 0 2 †.X/, and curve class A, no edges, and any number of legs.

3Stability being a concept for graphs decorated by genera and curve classes, there does exist
a stable version of M.X=B;�/. We omit this variant.
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Recalling from Section 2.2.1 that the stratum of X associated to the origin 0 2 †.X/
equals X , the resulting stacks

M0.X=B; ˇ/ DM.X=B; ˇ/; M0.X=B; ˇ/ DM.X=B; ˇ/ (3.3)

restrict only the total genus and total curve class, as well as the number of punctures
and their global contact orders.

Remark 3.9. We will see in Proposition 3.30 that for a realizable global type � the
moduli spaces M.X=B; �/ of � -marked punctured maps to X=B are reduced and
pure-dimensional, at least for simple X . For a general global type the reduction of
M.X=B;�/ is stratified by the images of the morphisms M.X=B;� 0/!M.X=B;�/

for realizable types � 0 dominating � , see Remark 3.31 below. Thus from the stratified
point of view, markings as in Definition 3.4 (3) are the correct notion. This feature
explains their appearance in [3, Definition 2.31].

However, the notion of weak marking, as in Definition 3.4 (1)–(2), appears nat-
urally in gluing situations. Notably the commutative square in Theorem 5.8 is only
cartesian with weak markings. For applications in Gromov–Witten theory, one works
with cycles in the moduli spaces of punctured maps appearing in this diagram and
the difference between markings and weak markings disappears, possibly up to com-
putable multiplicities. See for example [71] where this approach is taken.

3.2.3 The stacks are algebraic

Theorem 3.10. Let X ! B be a morphism of fs logarithmic schemes fulfilling the
assumptions stated at the beginning of Chapter 3, and let � D .G;g;� ; Nu;A/D .�;A/
be a decorated global type of punctured maps to X . Then the stacks

M.X=B;�/; M.X=B; �/; M.X=B;�/; M.X=B; �/

are logarithmic algebraic stacks locally of finite type over B . Moreover, M.X=B; �/
and M.X=B; �/ are Deligne–Mumford, and the forgetful morphisms to the stack
M.X=B/ of ordinary stable maps are representable.

Analogous results hold for the weakly marked versionsM0.X=B;�/, M0.X=B;�/,
M0.X=B;�/, M0.X=B; �/.

Proof. We first restrict to M0.X=B; �/ and then comment on the minor changes for
the other cases.

Step 1: An algebraic stack of prestable maps. Denote by

MC D MC.G; g/! MM D MM.G; g/

the universal curve over the logarithmic algebraic stack MM.G; g/ of .G; g/-marked
punctured curves from Definition 3.2 and Proposition 3.3. This morphism is proper,
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flat, integral, of finite type and has geometrically reduced fibers. Hence [70, Corol-
lary 1.1.1] applies to show that

Hom MM

�
MC; MM �f

B X
�

is representable by a logarithmic algebraic stack, locally of finite type.4

The rest of the proof is analogous to [3, Proposition 2.34].

Step 2: Carving out weakly marked basic stable maps. Condition (1) in Definition 3.4
of marking by � defines a closed substack of Hom MM

. MC; MM �f
B X/, while all the

remaining conditions in Definition 3.4 (2) are open, see Proposition 2.63. Note here
we are using that curve classes are locally constant in flat families. The condition on
a map being basic is open by Proposition 2.34; stability is open since it is open on the
underlying stable maps. Thus the morphism

M0.X=B;�/! Hom MM

�
MC; MM �f

B X
�

forgetting all parts of the marking except the .G; g/-marking of the domain curve
identifies the stack M0.X=B; �/ with an open substack of a strict closed substack of
Hom MM

. MC; MM �f
B X/.

Step 3: Verifying properties. By Proposition 2.37, logarithmic automorphisms of basic
stable maps acting trivially on underlying maps are trivial. Hence M0.X=B; �/ !

M.X=B/ is representable. Since M.X=B/ is a Deligne–Mumford stack, so is
M0.X=B;�/. Ignoring curve classes yields the statement for M0.X=B; �/.

Step 4: Weakly marked maps to X. The morphism X ! B from the relative Artin
fan is well behaved.

Lemma 3.11. The morphism X ! B is quasi-separated, locally of finite type, and
has affine stabilizers.

Proof. It suffices to verify these properties for the morphism AX ! AB . This is
shown in [6, Lemma 2.5.5] in caseX!B is logarithmically smooth, and we indicate
here why the argument applies here. Since the properties claimed are local in B (or
AB ), we may assume AB is an Artin cone A� . Since AX has a cover by étale maps
from Artin cones A�!� , we have that AX is locally of finite type.

Quasiseparation follows in the same way as in [6, Lemma 2.3.8 (ii)], applied to
AX!AX �AB AX instead of AX!AX �AX and using representability over Log1

instead of Log: one needs to show, for two charts A�1!� and A�2!� of AX , that
A�1!� �AX A�2!� is quasicompact. By [6, Lemma 2.3.8 (i)] and representability

4This last property is not explicitly stated in [70], but follows by inspection of the proof.
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it suffices to show that the stack A�1!� �Log1 A�2!� has finitely many points. The
argument of [6, Lemma 2.3.8 (ii)] then applies as stated.

The claim about stabilizers follows as in [6, Lemma 2.5.5].

It follows that [70, Corollary 1.1.2] still applies. The rest of the proof for the
stacks M0.X=B; �/ and M0.X=B; �/ is the same, except we can not conclude the
Deligne–Mumford property due to the absence of stability.

Step 5: Marked maps. Stacks of marked maps are closed substacks of stacks of
weakly marked maps, locally defined by the log-ideal I�� Nw in Definition 3.4 (3).5

Hence the result also holds for these cases.

3.3 Boundedness
For ordinary stable logarithmic maps, boundedness of M.X=B; ˇ/ is established
in [2, 30] for projective X ! B under the technical assumption that xMX is globally
generated. Reference [5] removed the technical assumption by showing that there is
a logarithmic blowing up Y ! X with xMY globally generated and then using bira-
tional invariance of the moduli spaces M.X=B; ˇ/ under this process. Since this
birational invariance seems to be rather more subtle in the punctured case, we content
ourselves with a statement assuming global generatedness, which suffices for most
practical applications. Throughout this and the next subsections we assume that the
log structure on X is Zariski as in [30], which we follow. We believe this assumption
could be removed by minor adaptations of the proof.

Theorem 3.12. Suppose the underlying family X ! B is projective, and the sheaf
xM

gp
X ˝Z Q is generated by its global sections.6 Then the projection M.X=B;ˇ/!B

is of finite type.

Proof. We split the proof into several steps. The theorem follows from Proposi-
tions 3.16 and 3.17 below.

Global generatedness of xMgp
X ˝Z Q can be easily read off from the cone complex

†.X/ as follows.

Proposition 3.13. The sheaf xMgp
X ˝Z Q is generated by global sections if and only

if there exists a continuous map

j†.X/j ! Rr

with restriction to each � 2 †.X/ an injective homomorphism of additive monoids.

5For a much more detailed discussion of this point, in terms of the idealized structure
defined by markings, see Section 3.5 below, and notably Theorem 3.25.

6Samuel Johnston in [39] has meanwhile removed the global generatedness assumptions
along the same line as [5].
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Proof. A map j†.X/j ! Rr which is injective when restricted to any � 2 †.X/ is
dual to a system of surjective homomorphisms

'� W R
r
! Hom.�;R/;

compatible with the dual of the face maps defining †.X/. But such a compatible
system .'� /�2†.X/ of surjections is equivalent to a linear map

Rr ! �
�
X; xM

gp
X ˝Z R

�
D �

�
X; xM

gp
X ˝Z Q

�
˝Q R

with composition to xMgp
X;x ˝Z R surjective for each x 2 X . The claim follows.

Remark 3.14. We remark that if xMgp
X ˝Z Q is generated by global sections, then all

global contact orders ofX are monodromy free, which we see as follows. The map of
Proposition 3.13 gives a well-defined map C� .X/!Zr �Rr . Indeed, if � 0 2†� .X/
and u 2 N� 0 , we may view u as an integral tangent vector (i.e., an element of N� 0) to
� 0 2 †.X/ and take its image under the map j†.X/j ! Rr . Since u is compatible
with inclusion of faces, this provides a point v of Zr �Rr only depending on ��� 0.u/
(see Definition 2.40 for notation). Since j†.X/j ! Rr is injective on cones, v arises,
for each � 0, as the image of at most one u 2 N� 0 . Hence all global contact orders are
monodromy free.

3.3.1 Boundedness of M.X=B;ˇ/

Definition 3.15. A class ˇ of a punctured map (Definition 2.44) is called combi-
natorially finite if the set of types (Definition 2.24) of stable punctured maps with
associated class ˇ is finite.

Proposition 3.16. Suppose ˇ is combinatorially finite. Then the forgetful map

M.X=B; ˇ/!M.X=B; ˇ/ (3.4)

is of finite type.

Proof. The strategy of the proof is similar to those in [30, Section 3.2] and [15,
Section 5.4] by showing that each stratum with constant combinatorial structure is
bounded. The proof is largely the same, with extra care needed only in the proof
of [30, Proposition 3.17].

By Theorem 3.10, M.X=B; ˇ/ ! B is locally of finite type, and hence so is
the morphism M.X=B; ˇ/ ! M.X=B; ˇ/. Thus it is sufficient to prove the latter
morphism is quasi-compact. We thus need to show thatW �M.X=B;ˇ/M.X=B;ˇ/ is
quasi-compact for any quasi-compact scheme W and morphism W !M.X=B; ˇ/.
Using [30, Lemma 3.14], it is enough to find a weak cover in the sense of [30,
Definition 3.13] of W ! M.X=B; ˇ/ by finitely many quasi-compact subsets. We
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may weakly cover W by a finite number of locally closed strata on which the cor-
responding ordinary stable map is combinatorially constant (in the sense of [30,
Definition 3.15]), and replace W with one of these locally closed strata. Thus we
may assume given f D .C=W ;p; f / a combinatorially constant ordinary stable map
over an integral, quasi-compact scheme W . Then W �M.X=B;ˇ/ M.X=B; ˇ/ classi-
fies punctured enhancements of the ordinary stable maps parametrized byW , and we
need to show this fiber product is quasi-compact.

As the combinatorial type of a log curve with constant dual intersection graph is
locally constant, we have a decomposition

W �M.X=B;ˇ/ M.X=B; ˇ/ D
a

u

M.X; f;u/

into disjoint open substacks according to the type u. As ˇ is assumed combinatorially
finite, this is a finite union. Hence it is sufficient to show that each M.X; f; u/ is
quasi-compact. As in the proof of [30, Proposition 3.17], it is sufficient to construct
a quasi-compact stack Z with a morphism Z ! M.X; f; u/ which is surjective on
geometric points.

To do so, set Q1 WD Nk , where k is the number of nodes of any fiber of C !
W . By Proposition 2.32 and the fact we have fixed the type u, the basic monoid Q
is constant on M.X; f; u/, and there is a canonical morphism Q1 ! Q. The latter
induces a morphism of Artin cones AQ_ ! AQ_

1
. We equip W with the canonical

log structure coming from the family of pre-stable curves C ! W , and consider
Z1 D AQ_ �A

Q_
1

W . Pulling back the universal family from W , we obtain a family

of log curves C1 ! Z1 and an ordinary stable map f W C 1 ! X=B . Observe that
there is a global chart Q ! xMZ1 . To check Z1 is quasi-compact we can, and do,
replace Z1 with its underlying reduced substack.

The type u prescribes, for each marked section p 2 p, an ideal sheaf

x	p � xMW ˚ Z � p� xMgp
C

generated by u�1p .Z<0/, which, we note, is constant along Z1. These ideals produce
an ideal xK �Q as in Definition 2.49 by taking into account all punctures in p. Denote
by K D xK � xMZ1

MZ1 the resulting log ideal, where the arrow on the left is given

by the composition xK ! Q! xMZ1 with the last arrow the global chart.
To obtain a family of punctured stable maps of type u over Z1 then requires

that ˛Z1.K/ D 0 by Proposition 2.52. Thus in particular if 0 2 xK , then there are no
punctured maps of type u and we can ignore such a u; otherwise, as Z1 is reduced
and xMZ1 is locally constant with stalk Q, necessarily ˛Z1.K/ D 0. Indeed, any
local section m of K maps to a nowhere zero section of xMZ1 , and hence ˛Z1.m/ is
nowhere invertible, thus zero, since Z1 is reduced.
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We now construct a punctured family of curves C ı1 ! Z1. First, the ghost sheaf
xMCı

1
is identical to xMC1 away from the punctures. Along each puncture p 2 p, we

take xMCı
1
;p �

xM
gp
C1;p

to be the smallest fine submonoid generated by xMC1;p and the
image of f �1 xMX !

xM
gp
C1;p

determined by the type u. As all the ghost sheaves and
morphisms between them are constant along Z1, this yields a well-defined sheaf of
monoids xMCı

1
, hence MCı

1
WD xMCı

1
� xM

gp
C1

M
gp
C1

over C 1.

We define the structure homomorphism ˛Cı
1
WMCı

1
! OC1 by ˛Cı

1
jMC1

D ˛C1
and ˛Cı

1
jM

Cı
1
nMC1

D 0. The same argument as in the proof of Proposition 3.3, Step 3,
shows that this defines a logarithmic structure MCı

1
, hence the desired punctured

curve C ı1 ! Z1.
The remainder of the proof is now identical to that of [30, Proposition 3.17].

3.3.2 Finiteness of the combinatorial data

In order to complete the proof that M.X=B; ˇ/ is finite type, it remains to bound the
combinatorial data.

Proposition 3.17. Suppose xMgp
X ˝Z Q is generated by its global sections. Then any

class of punctured map ˇ is combinatorially finite.

Proof. Arguing stratawise as in [30, Section 3.2], it is sufficient to show that for any
combinatorially constant family of ordinary stable maps .C=W ; p; f / in the sense
of [30, Definition 3.15], there are only finitely many combinatorial types of liftings
of such a family to a punctured log curve of type ˇ. Since types are constant along
a combinatorially constant family, we may further assume that W is the spectrum of
a field. Finiteness of the number of types of a logarithmic stable map with a given
underlying stable map over a field with fixed contact orders up is proved in [30,
Theorem 3.9].

One small difference in our setup concerns the definition of contact orders. In [30]
these were given by a sheaf homomorphism xMZ ! N, hence were fixed at f .p/ by
the underlying ordinary stable map and the contact orders up . In contrast, a global
contact order may give an infinite set of maps xMX;f .p/ ! Z. The argument is saved
under the assumption that xMgp

X ˝Z Q is generated by its global sections: The injectiv-
ity statement in Proposition 3.13 implies that there is at most one local representative
of up .

3.4 Valuative criterion

We now show stable reduction for basic stable punctured maps, which allows us to
conclude properness of the moduli spaces of such maps. Recall that for a given class
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ˇ D .g; Nu; A/ of stable punctured maps to X ! B , we have the class ˇ D .g; k; A/
for ordinary stable maps to X ! B by removing contact orders. We will show that

Theorem 3.18. Assume that the log structure onX is defined in the Zariski topology.
Then the tautological morphism removing all logarithmic structures

M.X=B; ˇ/!M.X=B; ˇ/

satisfies the valuative criterion for properness.

Proof. In what follows, we assume given R a discrete valuation ring over B with
maximal ideal m, residue field � D R=m, and fraction field K. Suppose we have a
commutative square of solid arrows of the underlying stacks:

SpecK //

��

M.X=B; ˇ/

��

SpecR //

88

M.X=B; ˇ/:

We want to show that there is a dashed arrow making the above diagram commutative,
which is unique up to a unique isomorphism.

The top arrow of the above diagram yields a stable punctured map

.�K W C
ı
K ! Spec.QK ! K/;pK ; fK/

over the logarithmic point Spec.QK ! K/. The bottom arrow of the above diagram
yields an ordinary stable map .C= SpecR; p; f / with its generic fiber given by the
underlying stable map of fK . To construct the dashed arrow, it suffices to extend the
stable punctured map fK across the closed point 02 SpecR with the given underlying
stable map f . The task is to then extend the logarithmic structures and morphisms
thereof. The proof is almost identical to that of [30, Theorem 4.1]. Since that proof is
quite long, we only note the salient differences.

Reference [30, Section 4.1] accomplishes this extension at the level of ghost
sheaves; in particular, [30, Proposition 4.3], which states that the type of the cen-
tral fiber is uniquely determined by the stable log map on the generic fiber, carries
through with up for a puncture p determined as for marked points. Indeed, if p is a
punctured point on C 0 in the closure of the punctured point pK on CK , then up must
be the composition

Pp ! PpK
upK
���! Z; (3.5)

where the first map is the generization map .f � xMX /p ! .f � xMX /pK . In particular,
the contact orders up and upK both have global contact order as specified in ˇ.
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By Proposition 2.32, the type of the central fiber then determines the extension
xMCı of xMCı

K
and a map Nf [ W f � xMX !

xMCı extending the corresponding map on
the generic fiber. Here xMCı is defined at punctures by pre-stability via Corollary 2.7.

Next, [30, Section 4.2]7 shows that the logarithmic structure on the base SpecR
is uniquely defined. In this argument, marked points play no role, and the argument
remains unchanged in the punctured case. In particular, this produces a unique choice
of logarithmic structure MR on SpecR, which in addition comes with a morphism
of logarithmic structures M0

R ! MR where M0
R is the basic logarithmic structure

(pulled back from the moduli space of pre-stable curves M with its basic logarithmic
structure, see [30, Appendix A]) associated to the family C ! SpecR. In particular,
one obtains a logarithmic structure .C ;M0C /D .SpecR;MR/�.SpecR;M0

R
/ .C ;M

0
C /,

where M0
C is the logarithmic structure pulled back from the basic logarithmic struc-

ture of the universal curve over M.X=B; ˇ/. The logarithmic structure M0C then has
logarithmic marked points along the punctures p, but there is a sub-logarithmic struc-
ture MC �M0C which only differs in that we remove the marked points, that is, we
make .C ;MC /! .SpecR;MR/ strict away from the nodes.

By Corollary 2.7, there is a natural inclusion xMCı � . xM
0
C /

gp. We form MCı WD

xMCı �. xM0
C
/gp .M

0
C /

gp and define a structure homomorphism ˛Cı WMCı ! OC by
˛Cı jMC 0

D ˛C 0 and ˛Cı.MCı nM0C / D 0, as in Proposition 3.3, Step 3. To show
that this is a homomorphism, it is enough to show that if s 2MCı;p nM0C;p , writing
s D .s1; s2/ as a stalk of MC ˚O�

C
P gp, then ˛C .s1/ D 0. But necessarily .Ns1; Ns2/ D

Nf [.m/C .Ns01; Ns
0
2/ for some m 2 Pp with up.m/ < 0 and .Ns01; Ns

0
2/ 2

xMC;p ˚N. Write
for points x;x0 2C with x in the closure of x0 the generization map �x0;x WPx!Px0 .
Then upK .�pK ;p.m// D up.m/ by (3.5). Thus upK .�pK ;p.m// < 0 and necessar-
ily ˛CK .s1jCK / D 0. But since C is reduced and CK is dense in C , this implies
˛C .s1/ D 0, as desired. Thus we have a punctured log scheme C ı.

We can now extend f [K W f
�
KMX ! MCı

K
to f [ W f �MX ! MCı as in [30,

Section 4.3].

Corollary 3.19. Let � D .G; g; � ; Nu;A/ be a decorated global type of punctured
maps (Definition 2.44) and assume X ! B is projective, the log structure on X is
Zariski, and xMgp

X ˝Z Q is globally generated.8 Then M.X=B; �/! B is proper. In
particular, M.X=B; ˇ/ is proper for any ˇ D .g; Nu; A/.

7We take the opportunity to correct an error, pointed out by the referee of the current paper,
in the first paragraph of [30, Section 4.2]. Two descriptions of a set U.�/ are given. The first
description, as the set of generizations of points in A, the set of non-special points in C 0, is
not correct (it is not necessarily an open set). Thus the reader should rely only on the second
description of the set U.�/.

8Again, the latter assumption has been removed by [39].
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Proof. Theorem 3.12 shows that M.X=B; ˇ/! B is of finite type. Properness for
� D ˇ now follows from the valuative criterion verified in Theorem 3.18.

For general �, the proof of [3, Proposition 2.34] generalizes to the present punc-
tured setup to exhibit M.X=B;�/ as a closed substack of the base change of the stack
M.X=B; ˇ/ by the finite map M.G; g/!M.

3.5 Idealized smoothness of M.X=B; �/ ! B

For simplicity of presentation, we restrict to X simple throughout this section. Thus
for any �; � 2 †.X/ there is at most one arrow � ! � in †.X/.

3.5.1 Marking log-ideals

Let � D .G; g; � ; Nu/ be a global type of punctured maps. Recall from the discus-
sion after Definition 3.1 that the moduli stack M.G; g/ of .G; g/-marked pre-stable
curves with its nodal log ideal sheaf is idealized logarithmically smooth over the
trivial log point Spec k. A similar result holds for our moduli spaces M.X=B; �/.
To introduce the idealized structure let .� W C ı ! W; p; f / be a � -marked basic
punctured map and let Nw of W be a geometric point. Let � Nw D .G Nw ; g Nw ; � Nw ; u Nw/
be the type of the punctured map over Nw, equipped with its marking contraction
morphism � W � Nw ! � (Definitions 2.24 and 3.4 (2)), with set of contracted edges
E� . For the sake of Definition 3.20 below, we introduce the following notation. For
x 2 V.G Nw/[L.G Nw/[ .E.G Nw/ nE�/ the face inclusion � .�.x//! � Nw.x/ is dual
to a localization map

�x W Px ! P�.x/

of stalks of xMX . We also have homomorphisms

'x W Px ! xMCı;x; ux W Px ! Z

defined by Nf [
Nw and by the contact order u Nw . For uniformity of notation we define

ux D 0 for x 2 V.G Nw/. Moreover, by Definition 2.18 of contact order, 'x.u�1x .0// �
xMCı;x is contained in the image of x�[x W xMW; Nw!

xMCı;x . For the following definition
recall also the homomorphism ��� Nw W Q� Nw ! Q�� Nw from (2.21).

Definition 3.20. The � -marking ideal x	�W of the � -marked basic punctured map .� W
C ! W;p; f / is the sheaf of ideals in xMW with stalk at the geometric point Nw of W
generated by the following subsets:

(i) (Target stratum generators) the preimage under x�[x of 'x.Px n ��1x .0// for
x 2 V.G Nw/ [ L.G Nw/ [ .E.G Nw/ nE�/;

(ii) (Nodal generators) the nodal generators �E 2 xMW; NwDQ� Nw forE2E.G Nw/n
E� ;

(iii) (Basic monoid generators) ��1�� Nw .Q�� Nw n ¹0º/.
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The collection of stalks x	�W; Nw � xMW; Nw in Definition 3.20 form a coherent ideal
x	�W �

xMW . Indeed, we obtain a sheaf by the method of Remark 2.36, and, as W
is fine and saturated, we may apply Lemma 2.47, noting that all generating sets are
compatible with generization. As usual, we also refer to the preimage 	W �MW of
x	W under MW !

xMW as the � -marking ideal. Without the generators specified in
(iii) we speak of the weak � -marking ideal.

3.5.2 The base of a punctured map is idealized by the marking log-ideal

The � -marking ideal defines an idealized log structure on base spaces of � -marked
punctured maps as follows.

Lemma 3.21. Let .C ı=W; p; f / be a � -marked basic punctured map. Then the � -
marking ideal 	W �MW maps to 0 under the structure homomorphism MW !OW .

Proof. It is enough to show that any lift s 2 MW; Nw of an element of one of the
generating sets satisfies ˛W .s/ D 0. This holds for elements described in (iii) of Def-
inition 3.20 by Definition 3.4 (3).

Similarly, Definition 3.4 (1) guarantees the required vanishing for elements de-
scribed in (i) of Definition 3.20. Indeed, consider first the case of x D v 2 V.G Nw/,
where we defined uv D 0. Then

u�1v .0/ n �
�1
v .0/ D Pv n �

�1
v .0/;

and ˛X .Pv n ��1v .0//� OX locally generates the ideal 	X� .�.v//
� OX of the stratum

X� .�.v// in X . Thus, the condition that the restriction of f to the closed subscheme
of C corresponding to �.v/ factors throughX� .�.v// implies the desired vanishing in
this case. A similar argument works for legs and edges.

Finally, the lift to MW; Nw of a nodal generator �E 2 xMW; Nw lies in the nodal log-
ideal (Definition 3.1) of the .G; g/-marked curve C=W , which maps to zero in OW
by Proposition 3.3 (2).

Remark 3.22. Omitting the last set (iii) of generators in Definition 3.20 leads to
the idealized structure for moduli spaces of weakly marked punctured maps (Defini-
tion 3.4).

As shown in Proposition 2.52, the base W is also idealized by the puncturing log
ideal K . It is therefore natural to combine the two.

Definition 3.23. We call the union 	� [K of the � -marking and the puncturing
log ideals the canonical idealized structure on our � -marked moduli spaces such as
M.X=B; �/.
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3.5.3 The realizable case

While the definition of the � -marking ideal may seem complicated, in fact in the
case we most frequently need it, namely the realizable case, the canonical idealized
structure has a simpler description: By Lemma 2.45 there is a unique lift to a type,
and the associated basic monoid already knows about marked strata, non-deforming
nodes and punctures.

Proposition 3.24. If � is a realizable global type, then x	�W; Nw C xKW; Nw with xKW the
puncturing log ideal (Definition 2.55) is given by the set (iii) in Definition 3.20.

Proof. Denote by � W Q� Nw ! Q�� Nw the localization homomorphism from (2.21) de-
fined by the � -marking of .C ı=W; p; f /. By Lemma 2.45 there is a unique type of
punctured map with associated global type � . Hence in particular Q�� Nw agrees with
the basic monoid for a tropical punctured map of this type and does not depend on Nw.
We write this basic monoid as Q� . Denote by R � Q� Nw the ideal ��1.Q� n ¹0º/.

We need to show that R contains the elements listed in (i) and (ii) of Defini-
tion 3.20 as well as generators of the puncturing log ideal stated in Definition 2.49.
Adopting the notation given in Definition 3.20, for v 2 V.G Nw/ we have a commuta-
tive diagram

Pv

�v

��

'v // Q� Nw

�

��

P�.v/ '�.v/
// Q�

The fact that � is realizable implies that'�.v/ is a local homomorphism, i.e.'�1
�.v/

.0/ D

¹0º. Indeed, dually, the map Q_� ! P_
�.v/

is given by evaluation of the tropical map
at the vertex v, and realizability implies the image of this map intersects the interior
of P_

�.v/
. This is equivalent to the local homomorphism statement. But this implies

that 'v.Pv n ��1v .0// � �
�1.Q� n ¹0º/ D R.

In the case of a leg L, we similarly have a diagram

PL

�L

��

'L // Q� Nw ˚ Z

�˚id
��

pr1 // Q� Nw

�

��

P�.L/ '�.L/
// Q� ˚ Z pr1

// Q�

Again, '�.L/ is necessarily local by realizability. Note that, with � WQ� Nw !Q� Nw ˚Z
given by m 7! .m; 0/,

��1
�
'L
�
PL n �

�1
L .0/

��
D ��1

�
'L
�
u�1L .0/ n ��1L .0/

��
D pr1 ı'L

�
u�1L .0/ n ��1L .0/

�
:
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Thus pr1 ı'L.u
�1
L .0/ n ��1L .0// � ��1.Q� n ¹0º/ D R, as desired. In fact we obtain

more from this. If instead p 2 PL with uL.p/ < 0, then pr1.'L.p// is a generator
of xKW; Nw , and �.pr1.'L.p/// is a generator of the puncturing ideal for the type � .
But as the type is realizable, this ideal does not contain 0. Thus pr1.'L.p// 2 R, so
xKW; Nw � R.

For an edge E 2 V.G/, the argument that �E .u�1E .0/ n �
�1
E .0// � R is similar

and we leave the details to the reader. Finally, for the corresponding nodal generator
�E 2 Q� Nw from Definition 3.20 (ii), observe that �.�E / is the edge length function
of the edge E. Again, since � is realizable, �.�E / 6D 0 and �E 2 R.

3.5.4 The stacks are idealized log smooth

Theorem 3.25. Assume that X is simple. Then the forgetful morphisms

M.X=B; �/!M.G; g/ � B

remembering only the domain curve as a family of marked curves over B , is idealized
logarithmically étale for the canonical idealized structures. An analogous result holds
for � replaced by a decorated global type �D .�;A/ of a punctured map, and for weak
markings.

Proof. Step 1. Lifting to the stack of punctured curves. We first note that the mor-
phism in question is in fact idealized. Indeed, the generators of the nodal log-ideal
(Definition 3.1) on M.G; g/ � B are pulled back to the nodal generator �E of Defi-
nition 3.20 (ii) for E 2 E.G/. The morphism then factors over the idealized logarith-
mically étale morphism

MMB.G; g/!MB.G; g/ D LogM.G;g/�B

from Proposition 3.3 (2). Moreover, by [53, Theorem 4.6 (iii)], the morphism

LogM.G;g/�B !M.G; g/ � B

is also logarithmically étale. It thus suffices to prove the statement with M.G; g/ �
B replaced by the stack MMB.G; g/ of .G; g/-marked punctured curves. Note that
the morphism M.X=B; �/! MMB.G; g/ is strict, but not in general idealized strict:
the nodal log-ideal of MMB.G; g/ from Definition 3.1 involves only the nodes of the
domain curves, whereas the � -marking ideal of M.X=B; �/ from Definition 3.20, in
particular part (i), also records target data.

Step 2. Lifting to the prestable map. According to the definition of idealized log
étale, it is sufficient to consider a diagram of solid arrows in the category of idealized
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log spaces

T0
g0 //

��

M.X=B; �/

��

T
g

//

66

MMB.G; g/

(3.6)

where T0 ,! T is an idealized strict closed embedding defined by a square-zero ideal.
Denote by KT0 and KT the log-ideals of T0 and T respectively. We wish to show
that there is a unique dashed arrow making the above diagram commutative.

Denote by fT0 W C
ı
T0
! X the punctured map over T0 corresponding to the mor-

phism g0, and by C ıT0 ,! C ıT the extension given by g. Write also �T0 W C
ı
T0
! T0,

�T W C
ı
T ! T . Thus the lifting problem (3.6) reduces to the following:

C ıT0

fT0 //

��

X

��

C ıT
//

fT

88

B

Since X! B is log étale, by the infinitesimal lifting property of log étale morphisms
in the category of idealized log schemes [52, p. 399], such fT exists and is unique.

It remains to check that fT is also a � -marked curve. Item (2) of Definition 3.4
is automatic as T0 and T have the same geometric points. As a preparation for estab-
lishing (1) and (3), we first check the vanishing of the � -marking ideal.

Step 3. The marking ideal vanishes. Fix a geometric point Nt of T0. Let I �0 �MT0;Nt

be the stalk of the log-ideal g�0	
�
M.X=B;�/

at Nt , and write xI �0 � xMT0;Nt
for its image. As

xMT0;Nt
D xMT;Nt , we also obtain an ideal I � �MT;Nt as the inverse image of xI �0 under

the map MT;Nt !
xMT;Nt . As g0 is idealized, necessarily I �0 �KT0;Nt

. Since T0! T is
idealized strict, we thus have I � �KT;Nt and hence ˛T .I � /D 0. This finishes Step 3.

Now let x 2 V.G/[E.G/[L.G/, and letZ � CT be the corresponding closed
subscheme. To verify condition (1) of Definition 3.4, we need to show that fT jZ
factors through X� .x/. Let Nw D g0.Nt /, with corresponding type of tropical curve
� Nw , equipped with a contraction morphism � W � Nw ! � . We now check the needed
factorization for each kind of x in the following steps.

Step 4. The marking lifts at a vertex. First consider the case that x is a vertex. In this
caseZ is a sub-curve ofC T , flat over T . LetU �Z be the open subset of non-special
points; it is then sufficient to show that f

T
jU factors through the closed substack

X� .x/. So let Nu be a geometric point of U lying over Nt , contained in an irreducible
component of ZNt indexed by a vertex v 2 V.G� Nw /. Note then that �.v/ D x. It is
enough to show that f ]T W OX;f

T
. Nu/ ! OCT ; Nu takes the stalk Jf

T
. Nu/ of the ideal J
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of X� .x/ in X to 0. Using the notation of Definition 3.20, we have xMX;f
T
. Nu/ D Pv

and a generization map �v W Pv ! P�.v/. If p 2 Pv , write sp 2MX;f
T
. Nu/ for a lift

of p. We next observe that since B is a log point or is log smooth over Spec k and
X is simple, the ideal Jf

T
. Nu/ is generated by the set ¹˛X.sp/ j p 2 Pv n �

�1
v .0/º.

Indeed, this is the idealized smoothness statement of the strata in Proposition 2.48,
applied on a smooth chart of X, together with the stalkwise characterization (2.22) of
the log ideal K in the proof of that proposition. Note that due to simplicity, the only
face map is �tv W � .x/! P_R in the present case, and hence xKf

T
. Nu/ D Pv n �

�1
v .0/.

Now by Definition 3.20 (i) and strictness of �T at Nu, for each p 2 Pv there exists
s0p 2 I

� �MT;Nt with f [T .sp/ D h � �
[
T .s
0
p/ for some h 2 O�CT ; Nu. Thus

f
]
T .˛X.sp// D ˛CT .f

[
T .sp// D ˛CT .h � �

[
T .s
0
p// D h � �

]
T .˛T .s

0
p// D 0:

This shows that f
T
jU factors through X� .x/.

Step 5. The marking lifts at a leg. Second consider the case that xDL2L.G/. In this
case Z is the image of a section of �T , with Z Š T . Let Nu be the unique geometric
point of Z over Nt . We now have a generization map �L W PL D xMX;f

T
. Nu/ ! P�.L/.

Following the same notation as in the previous paragraph, it is then sufficient to
show that for each p 2 PL n ��1L .0/, we have 0 D ˛CT .f

[
T .sp//jZ 2 OZ; Nu. As in

the previous paragraph, this is forced by the generators of the puncturing ideal in
Definition 3.20 (i) in case uL.p/ D 0. If uL.p/ > 0, then ˛CT .f

[
T .sp// contains a

positive power of the defining equation of Z as a subscheme of CT , and hence van-
ishes along Z. If uL.p/ < 0, then we achieve vanishing by Definition 2.1 (2). Thus
we obtain the desired vanishing.

Step 6. The marking lifts at an edge. The third case is x D E 2 E.G/. The argument
is similar to the second case, and we leave the details to the reader. This verifies that
fT satisfies condition (1) of � -marked curve.

Step 7. Base marking, decoration and weak marking. Finally, condition (3) holds.
Indeed, the generators in Definition 3.20 (iii) guarantee the desired vanishing.

This completes the proof for markings by � . The proof for � replaced by � is
identical. The weakly marked case is obtained by the same proof omitting (iii) in
Definition 3.20.

Remark 3.26. The proof in the weakly marked case uses simplicity only when argu-
ing that the ideal defining X� .x/ locally is generated by expressions ˛X.sp/, p 2
Pv n �

�1
v .0/ for the unique generization map �v W Pv ! P�.v/, Pv D xMf

T
. Nu/. In

general there is still always a log ideal K � xMf
T
. Nu/ with this property, as we saw in

the proof of Proposition 2.48. This larger log ideal can be accounted for by modify-
ing Definition 3.20 (i) accordingly. In the marked case, we also need to refine Q�� Nw
in Definition 3.20 (iii) to the version stated in (2.32) in Section 2.6.4.
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Thus we expect the statement of Theorem 3.25 to hold true in the non-simple case
with these adjustments. Details are left to the interested reader.

Remark 3.27 (Local structure of stacks of prestable maps). Theorem 3.25 gives the
following local description of M.X=B; �/. Let .C ı=W;p; f / be a basic stable punc-
tured map over a log point W D Spec.Q ! �/ over B marked by � . Denote by s
the number of edges of the graph G given by � D .G; g;� ; Nu/ and assume that C has
s C r nodes. Thus r nodes of C can be smoothed while keeping a marking by .G; g/.

The underlying object .C=W ; p/, viewed as a pre-stable curve with its basic log
structure, is a point Spec � !M.G; g/ � B .

By the deformation theory of nodal curves, there exists a strict smooth neighbor-
hood of this point étale locally isomorphic to

Ar � U � B: (3.7)

Here Ar is endowed with the idealized log structure obtained by restricting the toric
log structure of AsCr to an intersection of s coordinate hyperplanes, and corresponds
to deforming the r smoothable nodes; U is smooth with trivial log structure corre-
sponding to equisingular deformations of C ; and the étale local isomorphism is a
product of an étale local isomorphism of Ar � U with an open substack of M.G; g/
and idB .

Note that the image of .C ı=W;p/ in M.G;g/ is defined by the underlying marked
nodal curve .C=W ;p/ endowed with its basic log structure of marked nodal curves.

Consider the pointW !M.X=B; �/ corresponding to the object .C ı=W;p; f /.
Pulling back the neighborhood (3.7) along M.X=B; �/ ! M.G; g/ � B gives a
smooth neighborhood V of W !M.X=B; �/ equipped with a morphism � W V !

Ar � U � B . We may now apply Proposition B.4 to describe this neighborhood
explicitly étale locally, as follows. We use the notation AP and AP;I defined in (B.1),
for P a monoid and I � P a monoid ideal.

The log-ideal 	�
M.X=B;�/

[KM.X=B;�/ induces a monoid ideal I � Q, as con-
structed in Definition 3.20, with associated idealized Artin fan AQ;I . Let QB be the
stalk of xMB at the image point of the composition W !M.X=B; �/! B . We may
first replace B with an étale neighborhood of this image point and so assume given
a map QB ! xMB , or equivalently a strict morphism B ! AQB . Then by Proposi-
tion B.4, possibly after passing to an étale neighborhood of V , there is a diagram

V
�

%%

�

!!

 

))

V 0

��

// AQ;I

�
��

Ar � U � B // ANsCr ;J �AQB

(3.8)
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with the square Cartesian in the log, fine and fs categories,  and both horizon-
tal arrows strict and idealized strict, and � étale and strict. Further, � is induced
by the map on stalks of ghost sheaves NsCr ˚ QB ! Q given by the morphism
M.X=B; �/! M.G; g/ � B . Finally, J � NsCr is the ideal generated by the first
s generators of NsCr , so that the morphism Ar ! ANsCr ;J is strict and idealized
strict.

In conclusion, we see that V is étale locally isomorphic to

V 0 Š U �
�
.Ar � B/ �ANsCr ;J�AQB

AQ;I

�
: (3.9)

Thus the local models of M.X=B; �/ and their idealized structures are explicitly de-
scribed from the types of tropical punctured maps admitting a contraction morphism
to � .

3.5.5 Dimension formulas

Example 2.58 exhibits a case where M.X=B; �/ is not pure-dimensional. Before
revisiting this example, we give a useful condition which implies M.X=B;�/ is pure-
dimensional, of the expected dimension. The statement involves a refinement of the
notion of realizability of global types from Definition 2.44 (2) relative to B .

Definition 3.28. Let � be a global type of punctured map to X . We say that � is
realizable over B if there exists a geometric point Nw of M.X=B; �/ such that the
corresponding punctured map has global type � .

Proposition 3.29. Suppose the Artin fan AX of X is Zariski (Definition A.7). Then a
global type � D .G;g;� ; Nu/ is realizable overB if and only if the following conditions
hold:

(1) � is realizable, hence there is a universal family h W � D �.G; `/! †.X/

of type � , parametrized by !� WD Q_�;R, where Q� is the basic monoid for
tropical maps of type � .

(2) The universal family of tropical maps of type � is defined over †.B/, i.e.,
there is a map !� ! †.B/ making the diagram

�
h //

��

†.X/

��

!� // †.B/

commute.

(3) Let � 2 †.B/ be the minimal cone containing the image of !� . Then there
exists a point b 2 B� such that � D Hom. xMB;b;R�0/.
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Proof. That conditions (1)–(3) are necessary is clear. Conversely, suppose (1)–(3)
hold. Let C= Spec k be a pre-stable curve with dual intersection graph G. Pull-back
the basic log structure on C=Spec k by the canonical morphism N jE.G/j!Q� from
the nodal parameters to the basic monoid for � to define a log smooth curve C=W
over the log pointW D Spec.Q� ! k/. We may then construct a morphismW ! B

with image a point b 2 B� given by item (3) in the statement of the proposition. Note
we may take b to be a closed point, so that b D Spec k. At the logarithmic level, this
morphism can be taken so its induced tropicalization is the given map !� ! � .

Next apply the correspondence [3, Proposition 2.10] (it is here we need the hypoth-
esis that AX is Zariski) between morphisms from a logarithmic space to an Artin
fan and their tropicalizations to first construct a saturated puncturing zC ı ! C and
then a logarithmic map zC ı ! AX with tropicalization of type � . Prestabilizing then
leads to a basic pre-stable punctured map .C ı=W; p; f / to AX of type � . Note that
C ı is not necessarily saturated. On the other hand, we have a composed morphism
C ı ! W ! B , with W ! B constructed in the previous paragraph. The composi-
tions C ı ! AX ! AB and C ı ! B ! AB agree by item (2) of the proposition,
and hence we obtain a punctured map C ı ! X D AX �AB B defined over B with
the necessary properties.

Proposition 3.30. Let � D .G;g;� ; Nu/ be a global type (Definition 2.44) and assume
X is simple and B is either log smooth over Spec k or B D Spec k�, the standard log
point. Assume further � is realizable overB . Then M.X=B; �/ is non-empty, reduced
and pure-dimensional. If B is log smooth over Spec k, then

dim M.X=B; �/ D 3jgj � 3C jL.G/j � rkQgp
� C dimB;

while if B D Spec k�, then

dim M.X=B; �/ D 3jgj � 3C jL.G/j � rkQgp
� C 1:

Proof. By Proposition 3.24, as � is a realizable type, the � -marked ideal at a point Nw0

of M.X=B; �/ takes the form ��1�� Nw0 .Q� n ¹0º/. Thus, in the description of a smooth
neighborhood V of Nw0 as given in (3.8), AQ;I is reduced, and if B is log smooth over
Spec k, the bottom horizontal arrow is smooth, and hence V 0 is also reduced as the
square is Cartesian. This shows that M.X=B; �/ is reduced in this case.

If on the other handBDSpeck�, we may takeQBDN in (3.8). Since M.X=B;�/

is defined over B , the induced morphism of stalks of ghost sheaves N ! Q� is local
and hence N n ¹0º maps into Q� n ¹0º, and thus more generally N ! Q� Nw0 maps
N n ¹0º into ��1�� Nw0 .Q� n ¹0º/ by compatibility of these maps with generization. Hence
we may replace AQB with the closed substack AN;Nn¹0º in (3.8) without affecting
this diagram in any other way. In particular, the bottom horizontal arrow is now still
smooth. So V 0 is again reduced.
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Let Nw be a point as in Definition 3.28. We may now calculate dimensions by
looking at the description of (3.8) for a neighborhood of Nw in M.X=B; �/. Since the
corresponding curveC ı= Nw now has no smoothable nodes, we may take r D 0 and sD
jE.G/j in (3.8). Further, since I D Q� n ¹0º, necessarily dim AQ� ;I D � rankQgp

� .
Thus we may calculate, with the cases being for B log smooth and B D Spec k�

respectively,

dim M.X=B/ � dim M.G; g/ � B D dimV 0 � dimU � B

D

´
dim AQ� ;I � dim ANs ;J �AQB

dim AQ� ;I � dim ANs ;J �AN;Nn¹0º

D

´
� rankQgp

� � .�s/

� rankQgp
� � .�s � 1/

As dim M.G; g/D 3jgj � 3C jL.G/j � jE.G/j, and s D jE.G/j, we then obtain the
desired dimension formulas in the two cases.

Remark 3.31 (Stratified structure of M.X=B;�/). If � 0! � is a morphism of global
types (Definition 2.44), a marking by � 0 induces a marking by � by composition of
the marking morphism with � 0! � . The same arguments as for ordinary logarithmic
maps [3, Proposition 2.34] shows that the corresponding morphism of stacks

j�� 0 WM.X=B; � 0/!M.X=B; �/

is finite and unramified. If � 0 is realizable over B , then Proposition 3.30, under the
assumptions onB stated there, further shows that im.j�� 0/ defines a pure-dimensional
substack of M.X=B; �/. Conversely, if there is no � 00 which is realizable over B
mapping to � 0 then M.X; � 0/ D ;. Thus the images of j�� 0 for morphisms of global
types � 0 ! � with � 0 realizable over B define a stratification of M.X=B; �/ into
pure-dimensional strata.

In particular, the closure of a maximal stratum is the image of M.X=B; � 0/ for
� 0 a minimal global type realizable over B dominating � . Minimality here means that
the morphism � 0 ! � does not factor over any other global type realizable over B .

Note, however, that M.X=B; � 0/ is not in general irreducible even for realizable
� 0, due to saturation phenomena already present in ordinary stable logarithmic maps.
In the logarithmic enhancement question for transverse stable logarithmic maps of [3,
Theorem 4.13], this reducibility is reflected in various choices of roots of unity.

Example 3.32 (Example 2.58 revisited, see Figure 3.1). Let � be the global type with
G having just one vertex of genus 0, no edges, and four legs, all image cones equal
to 0 2 †.X/ D ¹0;R�0º and global contact orders �1;�1; 2; 2. This global type
is not realizable because there can be no positive length legs for the two punctures,
but there are several minimal realizable global types marked by � . Here are two of
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Ep4

Ep1

Ep2

Ep3

†.X/

v1

†.X/

Ep4

Ep3

�

Ep1

Ep2 v1

†.X/

v3

v2

Ep4

Ep1

v1

Ep2
Eq2 Eq1 Ep3

Figure 3.1. The top combinatorial map is not tropically realizable sinceEp1 ,Ep2 have nowhere
to stretch. The first realizable type has no nodes, with `1 D `2 D 0, but with v1 positioned at
� > 0. The second has v1 positioned at � D 0 but then `1; `2 > 0.

them. The first, �1, has the same .G; g/ as � , but all image cones are R�0. In the
notation of Example 2.58, the tropical punctured map realizing this type has � > 0 and
`1 D `2 D 0. The other minimal realizable type, �2, has G with three vertices v1, v2,
v3 with � .v1/ D ¹0º, � .v2/ D � .v3/ D R�0 and two edges, connecting v1 to v2 and
v3, respectively, and one positive and one negative leg attached to each of v2 and v3.
This global type is realizable by tropical punctured maps with � D 0 and `1; `2 > 0.
Note that by Proposition 3.30, dim M.X=B; �1/ D 0 but dim M.X=B; �2/ D �1,
showing non-pure-dimensionality of M.X=B; �/.

3.5.6 Comparing marked and weakly marked stacks

We end this section by showing that the marked and weakly marked moduli spaces
have the same reduction.

Proposition 3.33. Let � D .G; g; � ; u/ be a global type of punctured maps and
assume X is simple. Then the canonical morphism

M.X=B; �/!M0.X=B; �/

is a closed embedding defined by a nilpotent ideal. Analogous statements hold for
moduli spaces of punctured maps to X=B and for decorated global types.

Proof. By the idealized description in Theorem 3.25 of the moduli spaces in question,
the statement amounts to showing that the � -marked ideal from Definition 3.20 is
contained in the radical of the weakly � -marked ideal defined in Remark 3.22.
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Let .C=W; p; f / be a punctured map weakly marked by � and Nw of W a geo-
metric point. We adopt the notation from Definition 3.20 and in particular write
� W � Nw ! � for the contraction morphism given by the marking and

��� Nw W Q� Nw ! Q�� Nw

for the localization morphism of basic monoids. We have to show that for each
q 2 Q� Nw with ��� Nw .q/ ¤ 0 a multiple kq lies in the monoid ideal generated by
the elements listed in Definition 3.20 (i) and (ii). The description of the dual basic
monoids in Proposition 2.32 provides the following commutative diagram with hori-
zontal arrows surjective up to saturation, with as usual Pv denoting the monoid dual
to the cone � .v/: Y

v2V.G Nw/

Pv �
Y

E2E.G Nw/

N //

��

Q� Nw

��� Nw

��Y
v2V.G/

Pv �
Y

E2E.G/

N // Q�� Nw

The left vertical homomorphism is as follows:�
.pv/v2V.G Nw/; .`E /E2E.G Nw/

�
7!

�� X
�.v0/Dv

�v0.pv0/
�
v
; .`��1.E//E

�
:

As the top arrow is surjective up to saturation, there exists k � 0 such that kq 2
Q� Nw lifts to an element .pv; `E / in the left upper corner. Since ��� Nw .q/ ¤ 0, the
image of this lift in the lower left corner is non-zero. We conclude that there exists
(1) v 2 V.G Nw/ with �v.pv/ ¤ 0 or (2) E 2 E.G Nw/ n E� with `E ¤ 0. In the first
case kq lies in the ideal generated by 'v.Pv n ��1v .0//, part of Definition 3.20 (i),
while in the second case kq lies in the ideal generated by the nodal generator qE
from Definition 3.20 (ii).



Chapter 4

The perfect obstruction theory

Throughout this chapter, we fix a log smooth morphism X ! B of fs logarithmic
schemes fulfilling the assumptions stated at the beginning of Chapter 3 and n 2 N.
Crucial for the following discussion is the factorization of X ! B over the relative
Artin fan X ! B .

Denote by Mn.X=B/ (resp. Mn.X=B/) the stack of marked or weakly marked
punctured maps to X ! B (resp. X ! B), with n the number of punctured or nodal
sections, fixing and suppressing all other decorations in the notation. In Sections 4.1
and 4.2, we construct two perfect relative obstruction theories, in the sense of [13,
Definition 4.4], one for Mn.X=B/ !Mn.X=B/ and one for a related morphism
Mn.X=B/!Mev

n .X=B/; the latter space incorporates data of maps to X at a set of
special points on the domain curve, see (4.13). Working over Mev

n .X=B/ is crucial
for understanding gluing at a virtual level in Section 5.3.

We will avail ourselves of the dualizing complex of various Gorenstein mor-
phisms � . To avoid adjusting for shifts of dimension in the formulas, we denote by
!� the relative dualizing complex, usually denoted !�� , of a relatively Gorenstein
morphism � , that is, the complex with the invertible relative dualizing sheaf defined
in [36, Example III.9.7] (see also [20, p. 157]) shifted to the left by the relative dimen-
sion.

4.1 Obstruction theories for logarithmic maps from pairs

All cases of interest fit into the following general setup. For this subsection we do not
enforce the assumptions on B from the Conventions, Section 1.6.

4.1.1 Source family

Let S be a log stack over B and assume we are given a proper and representable
morphism of fine log stacks

Y ! S;

with underlying map of ordinary stacks Y ! S flat and relatively Gorenstein. The
fibers of this morphism serve as domains for a space of logarithmic maps.

In the application, Y is either the universal curve over S DMn.X=B/ or over
S DMev

n .X=B/, or a union of sections of the universal curve with induced log struc-
ture.
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4.1.2 Target family

As a target, we take a composition of morphisms of fine log stacks

V ! W ! B;

with V ! W log smooth. In applications this will be the sequence1 X ! X ! B .
We assume further given a B-morphism Y ! W defining a commutative square

Y //

��

W

��

S // BI

In our applications this is the universal family of maps to the Artin fan, either prestable
maps of curves or the corresponding maps of the union of sections, as the case may be.

4.1.3 Moduli of lifted maps

Let M be an open algebraic substack of the following algebraic stack over S . An
object over an affine S -scheme T , considered as a log scheme by pulling back the log
structure from S, consists of a commutative diagram

YT

##

//

��

V

��

T

$$

Y //

��

W

��

S // B

(4.1)

where the square formed by YT , T , S and Y is cartesian. Thus we are interested
in lifting the map Y ! W to V fiberwise relative to S . We endow M with the log
structure making the morphism M ! S strict. The pullback of Y to M defines the
universal domain � W YM ! M . We have the following 2-commutative diagram of
stacks

YM

$$

f
//

�

��

V

��

M

$$

Y //

��

W

��

S // B

(4.2)

1In this case, V !W is strict and we could indeed work with ordinary cotangent complexes
throughout, but for possible other applications we do not make this assumption.
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In the main application, with Y ! S the family of prestable curves,M is an open
substack of the stack of punctured maps of interest; thus our deformation theory fixes
both the domain of the punctured map to X and the map to the relative Artin fan X.
In the secondary application, with Y ! S the family of sections with logarithmic
structures, the stack M parametrizes liftings of the sections from X to X .

4.1.4 An obstruction theory

Functoriality of log cotangent complexes [54, Property 1.1 (iv)] yields the morphism

f ��V=W D Lf
�LV=W ! LYM =Y D �

�LM=S : (4.3)

The equality on the left holds by [54, Property 1.1 (iii)] since V ! W is log smooth,
while the equality on the right follows since

LM=S D LM=S and LYM =Y D LYM =Y

by strictness of M ! S [54, Property 1.1 (ii)] and then using compatibility of the
ordinary cotangent complexes with flat pullback by � .

Since Y ! S is relatively Gorenstein by assumption, so is YM ! M and we
have a natural isomorphism of exact functors � Š D ��˝ !� . Thus (4.3) is equivalent
to a morphism f ��V=W ˝ !� ! � ŠLM=S , which by adjunction is equivalent to a
morphism

ˆ W E! LM=S (4.4)

with
E D R��.f

��V=W ˝ !�/:

4.1.5 Functoriality

We will show in Proposition 4.2 that ˆ is a perfect obstruction theory for M over S .
A most transparent proof that ˆ is a perfect obstruction theory for M over S relies
on the fact that the construction of ˆ is functorial. For lack of reference we provide
a proof for this well-known property in the following lemma. If T !M is any map,
denote by

ˆT W ET ! LT=S

the morphism in (4.4) constructed from (4.1) instead of (4.2).

Lemma 4.1. The construction of ˆ in (4.4) is functorial in the following sense: Let
T !M be a morphism of stacks. Denoting T !M the associated strict morphism
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of log stacks, we obtain the commutative diagram

YT

fT

&&

Qh

//

�T

��

YM

$$

f
//

�

��

V

��

T
h // M

$$

Y //

��

W

��

S // B

with the two squares of domains (i.e., the left-most square and the parallelogram)
cartesian. Then we have a commutative square

Lh�E
Lh�ˆ //

ˇ

��

Lh�LM=S

��

ET
ˆT // LT=S ;

with left-hand vertical arrow a natural isomorphism and the right-hand vertical arrow
defined by functoriality of cotangent complexes.

Proof. Naturality of the base change map [67, Remark 07A7] applied to f ��V=W ˝
!�!LYM =Y ˝!� together with f ı QhD fT and Qh�!� D!�T [20, Theorem 3.6.1],
leads to the commutative square

Lh�E D Lh�R��.f ��V=W ˝ !�/ Lh�R��.LYM =Y ˝ !�/

ET D R�T �.f
�
T �V=W ˝ !�T / R�T �

�
L Qh�LYM =Y ˝ !�T

�
:

ˇ b (4.5)

Now LYM =Y ' ��LM=S , as remarked after (4.3), and hence the adjunction counit
R���

Š ! id applied in the construction of ˆ in (4.4) is given by the projection
formula followed by the trace morphism,

R��.�
�LM=S ˝ !�/

'
�! LM=S ˝R��.!�/

Tr!�
���! LM=S :

Thus the upper horizontal map of (4.5) composed with Lh� of this adjunction counit
isomorphism yields Lh�ˆ.

Similarly, extending the lower horizontal arrow by the map induced by functori-
ality of cotangent complexes,

L Qh�LYM =Y ! LYT =Y D �
�
TLT=S ;
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composed with the adjunction counit morphism

R�T �.�
�
TLT=S ˝ !�T /! LT=S

for �T retrieves the definition of ˆT .
Moreover, by compatibility of both the projection formula [67, Lemma 0B6B]

and the trace morphism [67, Lemma 0E6C] with base change, the following diagram
continuing (4.5) on the right is commutative:

Lh�R��.�
�LM=S ˝ !�/

' //

b

��

Lh�LM=S ˝ Lh
�R��!�

��

tr

&&

R�T �.�
�
TLh

�LM=S ˝ !�T /
' //

��

Lh�LM=S ˝R�T �!�T //

��

Lh�LM=S

��

R�T �.�
�
TLT=S ˝ !�T /

' // LT=S ˝R�T �!�T // LT=S :

The three left horizontal isomorphisms are defined by projection formulas, the diago-
nal and the two horizontal morphisms on the right induced by trace homomorphisms,
the two upper vertical arrows defined by base change, and the three lower vertical
arrows defined by functoriality of cotangent complexes. For the identification of the
upper left vertical arrow with the right vertical arrow labeled b in (4.5) note that

L Qh�LYM =Y ' L
Qh���LM=S ' �

�
TLh

�LM=S :

This establishes the claimed commutative diagram.
It remains to show that ˇ is a natural isomorphism. This follows from the general

base change statement [67, Lemma 0A1K] applied to � W YM ! M , with f ��V=W
for the object in DQCoh.OYM / and with !� as complex of �-flat quasi-coherent
sheaves.

Proposition 4.2 (ˆ is a perfect obstruction theory). The morphism ˆ W E! LM=S
constructed in (4.4) is an obstruction theory for M ! S in the sense of [13, Defini-
tion 4.4].

Proof. We check the obstruction-theoretic criterion [13, Theorem 4.5.3], applied in
the setting relative to S , similarly to ordinary logarithmic maps carried out in [30,
Proposition 5.1].

Assume given a morphism h W T !M , a square-zero extension T ! xT with ideal
sheaf J and a morphism xT !S , with log structures turning all three morphisms strict.
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This situation leads to the following commutative diagram:

YT

fT

&&Qh //

yy �T

��

YM
f

//

yy
�

��

V

zz
Y xT

//

��

Y

��

// W

��

T
h //

xx

M

yy
xT // S // B:

All sides of the cube on the left are cartesian, but not in general the bottom and top
faces.

The obstruction class !.h/ 2 Ext1.Lh�LM=S ;J/ for extending h to an S -mor-
phism xT !M is the composition

Lh�LM=S ! LT =xT ! ���1LT = xT D JŒ1�;

the first arrow defined by functoriality of cotangent complexes, see [38, Proposi-
tion 2.2.4] with X0 D T , X D xT , Y0 D Y DM and Z0 D Z D S . Because T ! xT
and M ! S are strict we can replace the ordinary cotangent complex with the log
cotangent complex in this construction [54, Property 1.1 (ii)].

Now ˆ�!.h/ is the composition of this morphism with Lh�ˆ W Lh�E !
Lh�LM=S . By functoriality of our obstruction theory (Lemma 4.1), this composition
also has the factorization

ET D R�T �.f
�
T �V=W ˝ !�T /

ˆT
��! LT=S ! ���1LT= xT D JŒ1�;

which by adjunction is equivalent to the composition

f �T �V=W ˝ !�T ! LYT =Y ˝ !�T ! ���1�
Š
TLT= xT D �

�
TJŒ1�˝ !�T :

Up to tensoring with !�T this is the obstruction class for extending fT W YT ! V

to Y xT , as a morphism over W . By our assumption on the objects of M , this exten-
sion exists if and only if T ! M extends to xT . This shows the part of the criterion
concerning the obstruction.

A similar argument shows that once !.h/ D 0, the space of extensions form a
torsor under Ext0.Lh�LM=S ;J/, showing the second part of the criterion.

4.1.6 The dualizing complex of the embedding of markings

After this recapitulation of obstruction theories for logarithmic maps with proper and
relatively Gorenstein domains, we are now in position to bring in point conditions.
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Abstractly we consider a composition of proper, representable morphisms of fine log
stacks

Z
�
�! Y ! S; (4.6)

with maps of algebraic stacks underlying Z ! S and Y ! S flat and relatively
Gorenstein as before. Note that while �may not be flat and hence cannot be considered
relatively Gorenstein following the usual convention, one can still define a relative
dualizing sheaf

!� D !Z=S ˝ �
�!_Y=S (4.7)

fulfilling relative duality, hence defining a right-adjoint functor �Š to R��. This works
as in the case of smooth morphisms discussed e.g. in [37, Section 3.4].

4.1.7 Obstruction for markings

We now have another algebraic stack N , an open substack of the stack over S with
objects given by diagrams as in (4.1) with Y replaced by Z. We assume the open
substack N is chosen large enough so that composition with � W Z ! Y defines a
morphism of stacks

" WM ! N: (4.8)

As in (4.4) we now obtain two obstruction theories, one for M ! S , the other for
N ! S ,

ˆ W E! LM=S ; ‰ W F ! LN=S : (4.9)

In our application, Y ! S is some universal curve andZ! Y a strict closed embed-
ding with morphism to S scheme-theoretically étale. In this case, ‰ is simply the
obstruction theory for a number of points in V=W , i.e., a trivial obstruction theory in
the sense that there are no obstructions. In particular, étale locally F can be taken as
the direct sum of the pullback of �V=W by scheme-theoretic maps from N to V .

Proposition 4.3 (Compatibility of obstruction theories). The two obstruction theo-
ries ˆ and ‰ in (4.9) fit into a commutative square

L"�F L"�LN=S

E LM=S ;

L"�‰

ˆ

with the right-hand vertical morphism given by functoriality of the cotangent com-
plex.
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Proof. Consider the following commutative diagram with the left four squares carte-
sian.

Z

�

��

ZN

��

oo

g

&&

p

��

ZM
z"

oo

�M

��

h //

pM

��

))

V

��

Y

��

YN

��

oo YMoo

�

��

//

f

55

W

��

S Noo M
"

oo // B

The left column is the given morphism (4.6) of domains, the lower horizontal row
contains the restriction morphism " from (4.8) and the morphisms to B and S , while
f W YM ! V and g W ZN ! V are the respective universal morphisms defined on the
universal domains YM !M and ZN ! N .

The obstruction theory ˆ in (4.9) was defined by applying R��.� ˝ !�/ to

f ��V=W ! LYM =Y D �
�LM=S

followed by the adjunction counitR��� Š! id, using � ŠD��˝!� . For‰ one anal-
ogously takesRp�.� ˝!p/ of g��V=W !LZN =Z Dp

�LN=S followed byRp�pŠ!
id. By functoriality of obstruction theories (Lemma 4.1), the pullback L"�‰ is simi-
larly obtained by RpM �.� ˝ !pM / of

h��V=W ! Lz"�LZN =Z D Lz"
�p�LN=S D p

�
ML"

�LN=S ; (4.10)

followed by RpM �p
Š
M ! id.

From h D f ı �M D g ı z" we can extend (4.10) to the commutative diagram

z"�g��V=W // Lz"�LZN =W

��

// Lz"�LZN =Z D p
�
ML"

�LN=S

��

h��V=W // LZM =W
//

��

LZM =Z D p
�
MLM=S

'
��

��Mf
��V=W // L��MLYM =W

// L��MLYM =Y D p
�
MLM=S

The last row in this diagram isL��M of the morphism f ��V=W ! ��LM=S that gives
rise to the obstruction theoryˆ forM . The essential part of this diagram is the square

h��V=W // p�ML"
�LN=S

��

��Mf
��V=W // p�MLM=S

(4.11)
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Next observe that !pM D �
�
M!� ˝ !�M , hD f ı �M , and �ŠM D �

�
M ˝ !�M show that

RpM �.h
��V=W ˝ !pM / D R��R�M ��

Š
M .f

��V=W ˝ !�/:

Thus RpM �.� ˝ !pM / applied to (4.11) yields the upper left square of the following
commutative diagram:

L"�F D RpM �.h
��V=W ˝ !pM /

// RpM �p
Š
ML"

�LN=S

a
��

// L"�LN=S

��

R��R�M ��
Š
M .f

��V=W ˝ !�/

��

b
// RpM �p

Š
MLM=S

��

// LM=S

��

E D R��.f ��V=W ˝ !�/ // R���
ŠLM=S // LM=S :

(4.12)
The upper right square is from functoriality of adjunction RpM �p

Š
M ! id applied

to the arrow marked a, the lower left one similarly from R�M ��
Š
M ! id applied to

the arrow marked b. The lower right square is from the natural isomorphism of the
adjunction counit RpM �p

Š
M ! id with the composition

R��R�M ��
Š
M�

Š
! R���

Š
! id;

see [36, Proposition VII.3.4 (b)], [20, Lemma 3.4.3].
The outer square of (4.12) provides the claimed commutative diagram.

4.2 Obstruction theories for punctured maps with point conditions

We are now in position to define obstruction theories for moduli spaces of punctured
maps with prescribed point conditions. Recall the log smooth morphism X ! B

and its factorization over the relative Artin fan X ! B from the beginning of this
chapter. We want to work relative to a stack S of stable punctured maps to X=B .
Adopting the notation used elsewhere in the paper, we now write M instead of S for
the algebraic stack of domains together with the tuple of points at which to impose
point conditions. For example, M could be M.X=B; �/ from Definition 3.8. Then
Y ! S DM is the universal curve,Z! Y the strict closed embedding of a union of
sections, one for each point condition to be imposed, assumed ordered, and we have
a universal diagram

Y X

M B:
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As our target we now take the composition

X ! X ! B:

Note that X! B is log étale and X !X is strict and log smooth. Hence X !X is
smooth as a morphism of stacks and we have a sequence of canonical isomorphisms

LX=B D �X=B D �X=X D �X=X D LX=X :

For easier reference later on we also write M instead of M for the algebraic stack of
punctured maps to X to be considered.

For the moduli space N of point conditions we take the space of factorizations
of the composition Z ! Y ! X via X ! X. Note that since X ! X is strict, it is
enough to provide the lift for X ! X, that is, ignoring the log structure. Thinking of
these factorizations as providing evaluation maps M! X at the marked points given
by the sections Z of Y ! S , we denote the stack of such factorizations by Mev. This
stack is algebraic by the fiber product description

Mev
DM �X�B ����BX .X �B � � � �B X/: (4.13)

Here the map M ! X �B � � � �B X is defined by composing the sections M !

M! Z with the composition Z ! Y ! X in the given order of the sections.
With this notation, the composition M ! N ! S considered in the proof of

Proposition 4.3 reads
M

"
�!Mev

!M: (4.14)

In Section 4.1 we recalled the construction of obstruction theories for M=M and for
Mev=M, which in the situation at hand are perfect of amplitude contained in Œ�1; 0�,
and showed their compatibility (Proposition 4.3). As in [50, Construction 3.13], this
situation provides perfect obstruction theories for M=Mev by completing the com-
patibility diagram in Proposition 4.3 to a morphism of distinguished triangles:

L"�F //

��

E //

��

G //

��

L"�F Œ1�

��

L"�LMev=M
// LM=M

// LM=Mev // L"�LMev=MŒ1�

(4.15)

Remark 4.4. Note that while the isomorphism class of G is unique, the dashed arrow
is not, so this recipe potentially provides several different obstruction theories for
M=Mev. On the other hand, any two dashed arrows differ by an element of the image
of

Hom.G;LM=M/! Hom.G;LM=Mev/:
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Thus the space of obstruction theories G ! LM=Mev constructed as dashed arrow
in (4.15) is parametrized by an affine space. This shows that the virtual classes con-
structed from any two such obstruction theories agree.2

For the sake of being explicit and for later use we now work out G. For simplicity
of notation write � W C !M for the pullback YM of the universal curve Y !M to
M, and, in disagreement with our usual conventions, write � W Z ! C for the strict
closed substack of special points rather than ZM. We assume that Z D Z0 q Z00

with Z0 disjoint from the critical locus of C ! M and Z00 the images of a set of
nodal sections, as reviewed in Definition 5.1 below. Denote by � W zC ! C the partial
normalization of zC along the nodal sections exhibiting C as the fibered sum

C D Z00 q zZ
00 zC

with zZ00 D ��1.Z00/! Z00 the two-fold unbranched cover induced by �. Write z� D
� ı � W zC !M, Qf D f ı � W zC !X and zZD ��1.Z/, with the log structures making
zC ! C and zZ ! zC strict.3

For simplicity of the following statement we now assume the two-fold covering
zZ00 ! Z00 is trivial, that is, that there is an isomorphism

zZ00 ' Z00 qZ00

over Z00. This is sufficient for all applications we can currently think of. The general
case can be treated by going over to an orientation covering or by twisting with an
orientation sheaf.

Proposition 4.5. For the tangent-obstruction bundle in (4.15) it holds

G ' R��.f
��X=B ˝ ��.!z�. zZ///

' Rz��. Qf
��X=B ˝ !z�. zZ//

' .Rz�� Qf
�‚X=B.� zZ//

_:

Moreover, G is perfect of amplitude Œ�1; 0�.

Proof. The second isomorphism follows by the projection formula, the third isomor-
phism by relative duality.

For the first isomorphism we first claim there exists the following exact sequence
of complexes, all concentrated in degree �1:

0! !� ! ��.!z�. zZ//! ��OZ Œ1�! 0: (4.16)

2We learnt this argument from Tom Graber.
3The log structures on zC and zZ are irrelevant for the following discussion and are merely

chosen for the sake of uncluttering the notation.
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On the complement of the nodal locus Z00, this sequence is defined by

0! !� ! !�.Z
0/! !� ˝OC ��OZ0.Z

0/! 0

by means of the canonical isomorphism

!� ˝OC ��OZ0.Z
0/ D ��

�
��!� ˝OZ0

!�
�
' ��OZ0 Œ1�

coming from the definition of !� D ��!_� ' OZ0.Z
0/ in (4.7). Explicitly, the homo-

morphism !�.Z
0/! ��OZ0 Œ1� takes the residue along Z0.

Near the nodal locus, (4.16) is defined by

0! !�
��

�! ��.!z�. zZ//! ��OZ00 Œ1�! 0:

To obtain this sequence, recall that étale locally !� D�C=MŒ1� with�C=M the sheaf
of relative logarithmic differentials for C=M, while !z� D � zC=MŒ1� with � zC=M the

sheaf of relative ordinary differentials for zC=M. In fiberwise coordinates z, w for the
two branches of C along Z00 on an étale neighborhood, �C=M is locally generated
by z�1dz D �w�1dw, hence pulls back to ordinary differentials with simple poles
along ��1.Z00/ � zZ. The map to OZ takes the difference of the residues of such
rational differential forms on zC along the two preimages of the nodal locus. Note that
this map depends on an order of the two branches along each connected component of
Z00, hence relies on the assumption zZ00DZ00qZ00. This establishes sequence (4.16).

Next note that !pM
' OZ since pM W Z ! M is étale. Using the projection

formula we can thus rewrite

L"�F D RpM�.h
��X=B ˝ !pM

/ D R�����
�f ��X=B D R��.f

��X=B ˝ ��OZ/:

Finally, apply R�� to (4.16) tensored with f ��X=B to produce the upper triangle
of (4.15) with the claimed middle term G D R��.f ��X=B ˝ ��.!z�. zZ///:

E G L"�F Œ1�

R��.f
��X=B ˝ !�/ // R��.f

��X=B ˝ ��.!z�. zZ/// // pM�.h
��X=B/Œ1�

(4.17)
Taking cohomologies, this diagram also shows the statement about the amplitude
of G.

4.3 Punctured Gromov–Witten invariants

Using properness of M.X=B; ˇ/ over B (Corollary 3.19) and the obstruction theory,
we can now define punctured Gromov–Witten invariants. To be explicit, we assume
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the ground field k to be a subfield of C and take H2.X/ to be singular homology
of the base change to C. Since M.X=B; ˇ/ is typically non-equidimensional due
to the puncturing ideal, the general definition demands a stratum-by-stratum treat-
ment. Sometimes one can show independence of certain choices, e.g. in the setting
of [33], but presently our understanding of the intersection theory of M.X=B/ and
in logarithmic geometry is too limited to make general statements. Some steps in this
direction have been taken in [10, 71].

Let X ! B be projective and log smooth, with Zariski logarithmic structure on
X . Let � D .G; g; � ; Nu;A/ be a decorated global type (Definition 2.44). Denote by
g the total genus and k D jL.G/j. We assume xMgp

X ˝Z Q to be generated by global
sections to apply Corollary 3.19, or otherwise M.X=B;�/! B to be proper. Denote
by ZL D X� .L/ � X the evaluation stratum for L 2 L.G/.

Considering for simplicity evaluations at all punctures rather than at a subset of
punctures, we then have an evaluation map

ev WM.X=B;�/!
Y

L2L.G/

ZL;

and, by Section 4.2 and notably (4.15), a perfect relative obstruction theory G for

" WM.X=B;�/!Mev.X=B;�/:

The relative virtual dimension is given by the Riemann–Roch formula applied to the
virtual bundle in Proposition 4.5 as

d.g; k; A; n/ D c1.‚X=B/ � AC n � .1 � g � k/: (4.18)

HereAD jAj and gD jgj are the total curve class and total genus of �, kD jL.G/j the
number of point conditions imposed and n D dimX � dimB the relative dimension
of X over B . Denote by "ŠG the associated virtual pullback from [50], an operational
Chow class for ".

Definition 4.6. The punctured Gromov–Witten correspondence defined by the global
decorated type � is the homomorphism

.ev � p/�"ŠG W A�.M
ev.X=B;�//! A�Cd.g;k;A;n/

�Y
L

ZL �Mg;k

�
of rational Chow groups.

Here
Q
L denotes the cartesian product of spaces over B . As usual, pairing with

cohomology classes in
Q
L ZL �Mg;k and taking degrees then produces Gromov–

Witten invariants. Note also that Proposition 3.30 defines pure-dimensional cycles in
Mev.X=B; �/ as the images of the fundamental classes of M.X=B; �0/ for �0 ! �

a contraction morphism from a realizable global type.





Chapter 5

Splitting and gluing

As discussed in the introduction, one crucial motivation for the introduction of the
notion of punctured maps is the desire to treat logarithmic Gromov–Witten invariants
by splitting the domain curves along nodal sections, in situations where such sections
occur uniformly in the moduli space.

After briefly formalizing this splitting operation, we present the second series of
main results of this paper, the reverse procedure of gluing a pair of punctured sections,
followed by its treatment in punctured Gromov–Witten theory. We end this chapter
with an application to the degeneration situation of [3].

Throughout this chapter, X ! B denotes a morphism of fs logarithmic schemes
fulfilling the assumptions stated at the beginning of Chapter 3.

5.1 Splitting punctured maps

We first discuss the operation of splitting of punctured curves along nodal sections.

Definition 5.1. A nodal section of a family of nodal curves � W C ! W is a section
s WW ! C of � that étale locally inW factors over the closed embedding defined by
the ideal .x; y/ in the domain of an étale map

Spec OW Œx; y�=.xy/! C :

The partial normalization of C=W along s is the map

� W zC ! C (5.1)

that étale locally is given by base change from the normalization of the plane nodal
curve Spec kŒx; y�=.xy/. We say s is of splitting type if the two-fold unbranched
cover ��1.im.s//! im.s/ is trivial.

A nodal section of a punctured curve .C ı=W;p/ or punctured map .C ı=W;p; f /
is a nodal section of the underlying curve C=W .

Note that a nodal section s of a nodal curve C=W with partial normalization
� W zC ! C and nodal locus Z D im.s/ exhibits C as the fibered sum

Z q��1.Z/ zC
'
�! C : (5.2)

A punctured curve can be split along a nodal section of splitting type.
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Proposition 5.2. Let � W zC ! C be the partial normalization of a punctured curve
.� W C ı ! W; p/ defined by the splitting at a nodal section s of splitting type. Let
p1; p2 W W ! zC be two sections of ��1.im.s//! im.s/ with disjoint images.

Then
. zC ı; Qp/ D

�
z� W . zC ; ��MCı/

�
�! C ı ! W; ¹ Op; p1; p2º

�
with Op WW ! zC the unique set of sections with pD � ı Op, is a (possibly disconnected)
punctured curve.

Proof. Since � W zC ı ! C ı is an isomorphism away from im.p1/ [ im.p2/, it suf-
fices to consider a neighborhood of a geometric point Np ! zC of one of im.pi /, say
i D 1. Denote by Nq D � ı Np the corresponding geometric point of C , thus a geomet-
ric point of the image of the nodal section. By the structure of log smooth curves,
MCı; Nq is generated by .��MW / Nq , sx and sy , where sx; sy 2MCı;q are induced by
the coordinates x; y in Definition 5.1. These are subject to the relation sxsy D s�
for some s� 2 .��MW / Nq . Hence .��MW / Nq and sy locally generate M

gp
Cı as a group,

with sx D s�s�1y . Pulling back to zC , along the branch x D 0, hence with y D 0 giving
im.p1/, we see that .��MCı/

gp is locally generated by .z��MW / Np and �[sy . Further,
�[sy is also a section of P , the divisorial log structure given by p1, and the image of
�[sy in xP generates xP as a monoid. Thus locally near Np,

z��MW ˚O�
zC

P � ��MCı � z�
�MW ˚O�

zC

P gp:

Further, any local section of ��MCı not contained in z��MW ˚O�
zC

P can be written

in the form saxs
b
y sW with a > 0, b � 0 and sW a local section of z��MW . Since

˛.sx/ D 0 when x D 0, we see that ˛ applied to any such element is zero. Thus
. zC ı=W; Qp/ is a punctured curve near Np.

For the application to moduli spaces of punctured maps we formalize the splitting
procedure as an operation on graphs, hence on (global) types of punctured maps.

Definition 5.3. LetG be a connected graph and E�E.G/ a subset of edges. Replac-
ing each E 2 E by a pair of legs LE , L0E leads to a graph yG with

V. yG/ D V.G/; E. yG/ D E.G/ n E; L. yG/ D L.G/ [ ¹LE ; L
0
E ºE2E:

We call the collection of connected subgraphs G1; : : : ; Gr of yG the graphs obtained
from G by splitting along E.

There is an obvious induced notion of splitting of a genus-decorated graph .G;g/,
of a (global) type � , or of a (global) decorated type � of a punctured map along a
subset of edges of the corresponding graphs.

Proposition 5.4. Let X ! B be a morphism of fs logarithmic schemes over k fulfill-
ing the assumptions stated at the beginning of Chapter 3. Let �1; : : : ; �r be obtained
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�1

E

� �2

Figure 5.1. Tropical splitting.

from splitting a global type � D .G; g;� ; Nu/ of a punctured map to X=B along a sub-
set of edges E � E.G/. Then the splitting morphism from Proposition 5.2 followed
by pre-stabilization (Proposition 2.5) defines morphisms of stacks

M.X=B; �/!
Y
i

M.X=B; �i /; M.X=B; �/!
Y
i

M.X=B; �i /;

with the products understood as fiber products over B .
Analogous results hold for decorated types and for moduli spaces of weakly

marked punctured maps.

Proof. The statement is immediate from Propositions 5.2 and 2.5.

Example 5.5. As an illustration of the splitting procedure consider the degeneration
of P1 � P1 to two copies of P2 constructed as follows. Take the polyhedral decom-
position P of R2 with two vertices at .0; 0/, .1; 1/ and four maximal cells given by
the dashed part of Figure 5.1. Embed R2 as affine hyperplane R2 � ¹1º in R3 and
take the closures of the cones over cells of P to define a fan † in R3 with support
j†j D R2 �R�0. The corresponding toric threefold X comes with a flat morphism

� W X ! A1

induced by the projection j†j !R�0 to the last coordinate. It is not hard to show that
��1.A1 n ¹0º/D .P1 �P1/� .A1 n ¹0º/, a trivial family, and ��1.0/D P2qP1 P2,
a gluing of two copies of P2 along a pair of toric divisors.

Figure 5.1 on the left shows the tropicalization of a family of curves of bide-
gree .1; 1/ giving a type � . The figure shows the intersection with the affine hyper-
plane R2 � ¹1º. Splitting along the edge E yields the two types �1, �2 whose general
members are depicted on the right. Note also that the leg in �2 obtained from splitting
� at E extends to the boundary of the cell, while this is not true for �1. This illustrates
the necessity of pre-stabilization in the splitting procedure.

The opposite process of shrinking legs to an edge of a tropical domain curve
appears in gluing, see Remark 5.12.
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5.2 Gluing punctured maps to X=B

5.2.1 Notation for splitting edges

In this section we work in categories of spaces over B or B . In particular, products
are to be understood as fiber products over B or B , as appropriate.

Let � D .G;g;� ; Nu/ be a global type of punctured tropical maps and �i D .Gi ;gi ;
� i ; Nui /, i D 1; : : : ; r , the global types obtained by splitting � at a subset E � E.G/
of edges (Definition 5.3). We choose an orientation on each edge E 2 E and refer to
the two legs obtained by splitting the edge E with vertices v, v0 by the corresponding
half-edges .E;v/, .E;v0/, withE oriented from v to v0.1 Denote by L�

S
i L.Gi / the

subset of all legs obtained from splitting edges, and by i.v/ 2 ¹1; : : : ; rº for v 2 V.G/
the index i with v 2 V.Gi /.

5.2.2 The stack zM0.X=B; �/ and its evaluation morphism

Evaluation at the nodal sections for E defines the morphism

evE WM
0.X=B; �/!

Y
E2E

X:

For eachE 2E denote by M0
E .X=B;�/ the image of the corresponding nodal section

sE W M
0.X=B; �/ ! C0ı.X=B; �/ with the restriction of the log structure on the

universal domain C0ı.X=B; �/. Denote further by zM0.X=B; �/ the fs fiber product

zM0.X=B; �/ DM0
E1
.X=B; �/ �fs

M0.X=B;�/ � � � �
fs
M0.X=B;�/ M0

Er
.X=B; �/; (5.3)

where E1; : : : ; Er 2 E.G/ are the edges in E.2 With this enlarged log structure,
the pullback zC0ı.X=B; �/! zM0.X=B; �/ of the universal domain has sections QsE ,
E 2 E, in the category of log stacks. Moreover, evE lifts to a logarithmic evaluation
morphism

evE W zM
0.X=B; �/!

Y
E2E

X; (5.4)

with E-component equal to

Qf ı QsE for Qf W zC0ı.X=B; �/! X

the universal punctured morphism.

1We use this notation as it is easy to parse, but note that .E; v/ is ambiguous if E is a loop.
It will always be clear from the context how to fix this ambiguity with a heavier notation.

2Note that we have suppressed the dependence of the stack on E from the notation.
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5.2.3 The stacks zM0.X=B; �i /, evaluation and splitting morphisms

Similarly, for each of the global types �i D .Gi ; gi ; � i ; Nui / obtained by splitting
and L 2 L.Gi /, denote by M0

L.X=B; �i / the image of the punctured section sL W
M0.X=B; �i / ! C0ı.X=B; �i / defined by L, again endowed with the pullback of
the log structure on C0ı.X=B; �i /. With L1; : : : ; Ls the legs of Gi obtained from
splitting, define the stack

zM0.X=B; �i / D
�
M0
L1
.X=B; �i / �

f
M0.X=B;�i /

� � � �
f
M0.X=B;�i /

M0
Ls
.X=B; �i /

�sat
;

where sat denotes saturation, bearing in mind that the log structures on the stacks
M0
Lj
.X=B; �i / are not saturated.

This stack differs from M0.X=B; �i / by adding the pullback of the log struc-
ture of each puncture obtained from splitting, so that the pullback zC0

ı
.X=B; �i /!

zM0.X=B; �i / of the universal curve now has punctured sections in the category of
log stacks. We define the evaluation morphism

evL W

rY
iD1

zM0.X=B; �i /!
Y
E2E

X �X; (5.5)

by taking as E-component the evaluation at the corresponding two sections sE;v ,
sE;v0 , observing the chosen orientation of E.

Lemma 5.6. The splitting morphism M.X=B; �/ !
Q
i M.X=B; �i / in Proposi-

tion 5.4 lifts to a morphism

zM.X=B; �/!

rY
iD1

zM.X=B; �i /: (5.6)

Analogous statements hold for weak markings and for the moduli spaces of stable
maps to X rather than X.

Proof. We only treat the case of marked moduli spaces of punctured maps to X, the
other cases being completely analogous.

It suffices to produce a morphism

ME .X=B; �/!ML.X=B; �i /

lifting M.X=B; �/ ! M.X=B; �i / whenever L D .E; v/ 2 L.Gi / is one of the
two legs obtained from splitting E. Indeed, this then provides a morphism of fibered
products, which lifts to the saturation by functoriality of saturation.

To construct this lifting let Cı !M WDM.X=B; �/ be the universal curve, and
zCı ! Cı the splitting of all nodes labeled by an element of E, strict as a morphism
of log stacks. The graph Gi given by �i selects a connected component zCıi � zC

ı,
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and the nodal section sE lifts to a punctured section Qsi W M ! zCıi . Let similarly
CıL!Mi WDM.X=B;�i / and sL WMi !CL the corresponding universal curve and
punctured section over Mi . Then ME .X=B;�/DM�zCı

i

zCıi since zCıi !Cı is strict,

and similarly ML.X=B; �i / D Mi �CıL
CıL. Now there is a canonical morphism

zCıi ! CıL lifting M.X=B; �/ ! M.X=B; �i /—the prestabilization morphism as
a punctured map. Pulling back we obtain the desired morphism ME .X=B; �/ !

ML.X=B; �i /.

We next show that enlarging the log structures for the punctures may change the
structure of the underlying stacks, but only by nilpotents in the structure sheaf.

For S � E.G/ [ L.G/ we unify the notation, denoting by zM0.X=B; �/ !

M0.X=B; �/ the corresponding fiber product over both nodal and punctured sections.
In this generality we have:

Proposition 5.7. Let � D .G; g; � ; Nu/ be a global type of punctured maps, S �
E.G/ [ L.G/ and zM0.X=B; �/ the corresponding stack of weakly � -marked punc-
tured maps to X=B with sections. Then the canonical map

zM0.X=B; �/!M0.X=B; �/

induces an isomorphism on the reductions of their underlying stacks. If moreover
S � E.G/, the canonical map is an isomorphism on underlying stacks.

Analogous results hold for the marked and decorated versions.

Proof. Going inductively, it suffices to treat the case that S has only one element. The
case S D ¹Eº is an edge leads to the problem of going over from a monoid Q to the
saturation of a monoid of the form Q ˚N N2 with 1 2 N mapping to .1; 1/ 2 N2.
Since the morphism N ! N2 is saturated and integral, Q ˚N N2 is saturated and
integral as well by [52, Propositions I.4.8.5, I.4.6.3]. In particular, the fs fiber product
in (5.3) agrees with the ordinary fiber product, and only changes the log structure.

For S D ¹Lº a leg, we need to take the saturation of the strict subspace given
by a punctured section. Let .C ı=W; p; f / be a punctured map to X=B with W D
Spec.Q! A/. Let W ! Spec kŒQı� be a chart for the log structure induced by the
punctured section corresponding to the leg L, with Qı � Q ˚ Z. Then necessarily
the induced map Qı ! A takes Qı n .Q˚ 0/ to zero.

The saturation of Spec.Qı!A/ equalsW 0D Spec.Q0!A0/withQ0 the satura-
tion ofQı andA0DA˝kŒQı� kŒQ0�. Necessarily, ifm2Q0 nQı thenm2Q˚Z<0,
and so its image zm 2 A0 is nilpotent (following the notation of Section 1.6). It is then
immediate that A ! A0red is surjective. This map factors through Ared ! A0red, so
the latter is surjective. Thus W 0red is a closed subscheme of Wred. On the other hand,
by [52, Proposition III.2.1.5] saturation is always a surjective morphism, and hence
W 0red ! Wred is an isomorphism.
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By Proposition 5.7 the Chow theories of the moduli stacks of punctured maps do
not change by enlarging the log structures. We can thus freely use the enlarged log
structures in discussing gluing.

We are now in position to state the central technical gluing result. It explains how
a � -marked punctured map is equivalent to giving a collection of �i -marked punctured
maps obeying a logarithmic matching condition.

Theorem 5.8. Let X ! B be a morphism of fs logarithmic schemes over k fulfilling
the assumptions stated at the beginning of Chapter 3, and assume X is simple. Let
�1; : : : ; �r be the global types of punctured maps (Definition 2.44) obtained by split-
ting a global type � D .G; g; � ; Nu/ along a subset of edges E. Then the commutative
diagram

zM0.X=B; �/
ıM //

evE

��

Qr
iD1
zM0.X=B; �i /

evL

��Q
E2E X

� //
Q
E2E X �X

with� the product of diagonal embeddings and the other arrows defined in (5.4), (5.5),
and (5.6), is cartesian in the category of fs log stacks. We remind the reader that
all products in this square are taken over B .

An analogous statement holds for � replaced by a decorated global type � D
.�;A/.

Remark 5.9. We note that it is important that we use the weakly marked moduli
spaces here. Indeed, there exist simple examples of (strongly) marked punctured
maps which may be glued to obtain a punctured map which is only weakly marked.
This arises as saturation issues in the above fiber product description may introduce
nilpotents. For an explicit example, see [26, Example 4.5]. We also note that this is
essentially the same saturation issue as in Remark 3.5, and the examples are closely
related.

The proof of the theorem, given further below, is based on the following gluing
result for punctures with a section.

Lemma 5.10. Let W be an fs log scheme and U ıi a puncturing along ¹0º � W
of strict open neighborhoods U1; U2 � A1 � W of ¹0º � W , i D 1; 2. Here A1 is
endowed with its toric log structure. Furthermore, let si W W ! U ıi be sections with
schematic image ¹0º �W of the composition U ıi ! Ui ! W of the puncturing map
and the projection.

Then there exists an enlarged puncturing yU ıi ! U ıi ! Ui through which the
sections si factor, and a unique log smooth curve � W U ! W with maps

�1 W yU
ı
1 ! U; �2 W yU

ı
2 ! U



Splitting and gluing 110

overW inducing an isomorphism of underlying schemes U 1q¹0º�W U 2 ' U , strict
away from ¹0º �W , and such that �1 ı Os1 D �2 ı Os2, with Osi the lifts of si .

Remark 5.11. The lifting of si to yU ıi is unique. The enlarged puncturing yU ıi is not
unique, but may be chosen uniquely if we require that yU ıi ! U ıi � U is prestable.
We obtain a pushout diagram up to unique punctured enlargement:

U ı1
yU ı1

oo

�1

��

W

s1
>>

Os1

66

s2
  

Os2

((

U

U ı2
yU ı2

oo

�2

??

Proof of Lemma 5.10. The statement is about the unique definition of the log struc-
ture on U near the nodal locus ¹0º �W � U . Since this is a local question we can
restrict attention to a neighborhood of a geometric point Nq D .0; Nw/ of ¹0º �W . By
the definition of puncturing, the linear coordinate of A1 defines elements �x 2MU ı

1
; Nq ,

�y 2MU ı
2
; Nq .

Now assume that U D .U ;MU /! W is a log smooth curve with the required
properties for some yU ıi . Since yU ıi , U ıi are both puncturings of Ui we may identify
xM

gp
yU ı
i

D xM
gp
U ı
i

D xM
gp
Ui

. Then

x�[i W
xM

gp
U; Nq !

xM
gp
yU ı
i
; Nq
D xM

gp
U ı
i
; Nq
D xM

gp
W; Nw ˚ Z

is an isomorphism with xMW; Nw ˚N �x�[i .
xMU; Nq/. Thus there exist z�x; z�y 2MU; Nq with

�x D �
[
1.z�x/; �y D �

[
2.z�y/:

An important property of log smooth structures at nodes is that logarithmic lifts of
given local coordinates at the two branches of the node become unique if one requires
their product to lie in �[.MW; Nw/ [51, Section 3.8]. With this condition imposed on
z�x , z�y , we now obtain a unique element �q 2MW; Nw with

z�x � z�y D �
[.�q/: (5.7)

Under the assumption of the existence of factorizations Os1, Os2 of the sections s1, s2,
we can compute �q from �x and �y as follows: With �1 ı Os1 D �2 ı Os2 we obtain

�q D .�1 ı Os1/
[.�[.�q// D .�1 ı Os1/

[.z�x/ � .�2 ı Os2/
[.z�y/ D s

[
1.�x/ � s

[
2.�y/:

Note also that MU; Nq is generated by .��MW / Nq and z�x , z�y , with single relation (5.7).
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Conversely, we can define the structure of a log smooth curve at Nq ! U with the
requested properties simply by defining

�q D s
[
1.�x/ � s

[
2.�y/; (5.8)

and
MU; Nq WD .�

�MW / Nq ˚N N2;

with the generator 1 2 N in the fibered sum mapping to �[.�q/ 2 .��MW /q and to
.1; 1/ 2 N2, respectively. The structure morphism

MU; Nq ! OU; Nq

is defined by the structure morphism of W on the first summand, and by mapping
.a; b/ 2 N2 to xayb when writing U � W �Z Spec ZŒx; y�=.xy/. Since the projec-
tion U ıi n .¹0º �W /! W is strict, this log structure near Nq patches uniquely to the
given log structure onU ıi n .¹0º �W / to define the desired log smooth curveU !W .

The morphisms �i W yU ıi ! U are then given by

.�[1/ Nq WMU; Nq !M
gp
U ı
1
; Nq
; .1; 0/ 7! �x; .0; 1/ 7! ��1x �[.�q/;

.�[2/ Nq WMU; Nq !M
gp
U ı
2
; Nq
; .1; 0/ 7! ��1y �[.�q/; .0; 1/ 7! �y :

(5.9)

These definitions are forced upon us by the structure homomorphisms on U ıi and by
the defining relation (5.8) for MU; Nq . If ��1x �[.�q/ 62MU ı

1
;q , we may have to enlarge

the puncturing of U ı1 for this map to define yU ı1 ! U , and similarly for yU ı2 ; if we
choose the enlargement to be generated by ��1x �[.�q/ it is uniquely defined. Note
that by (5.8), the image of �q under the structure morphism is xy D 0, and hence this
enlargement of puncturing is possible. Note also that s1 factors uniquely over this
extension of puncturing since by (5.8),

.s[1/
gp���1x �[.�q/

�
D s[2.�y/;

and similarly for s2. Finally, to check the equality �1 ı s1 D �2 ı s2 we compute

.s[1 ı �
[
1/.1; 0/ D s

[
1.�x/ D s

[
2.�y/

�1�q D s
[
2.�
�1
y �[.�q// D .s

[
2 ı �

[
2/.1; 0/;

and similarly for .1; 0/ replaced by .0; 1/. This shows the claimed properties for
U ! W and �1, �2. Uniqueness follows from the discussion at the beginning of the
proof.

Remark 5.12. It is worthwhile to understand the gluing construction of a pair of
punctured points to a node on the level of ghost sheaves and in terms of the dual
tropical picture. The relevant monoids are

Q D xMW; Nw ; Qi D xMU ı
i
; Nq � Q˚ Z;
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and their duals

! D Hom.Q;R�0/; �i D Hom.Qi ;R�0/ � ! �R�0:

We choose the embedding Qi � Q ˚ Z such that x�[ identifies Q with Q ˚ ¹0º,
while the puncturing log structure is generated by .0; 1/ 2 Q ˚ Z. The sections si
define left-inverses

Ns[i W Qi ! Q

to x�[. Now the point of the gluing construction is that there are exactly two automor-
phisms � of Qgp ˚ Z making the following diagram of monoids commutative:

Q
id //

x�[
��

Q

x�[
��

Q1

��

Q2

��

Qgp ˚ Z
�
//

Ns[
1
!!

Qgp ˚ Z

Ns[
2

}}

Qgp

Indeed, by commutativity of the square, �.m; 0/ D .m; 0/ for all m 2 Qgp. Define
�i D Ns

[
i .0; 1/, i D 1; 2, and �q by �.0; 1/ D .�q; d /. Then d D ˙1 since �.0; 1/

together with Qgp ˚ ¹0º generates Qgp ˚ Z. This sign determines the two possibili-
ties. Commutativity of the triangle now shows

�1 D Ns
[
1.0; 1/ D Ns

[
2.�q;˙1/ D �q ˙ �2:

The situation obtained by splitting a node into two punctures produces the negative
sign. With this choice we obtain an isomorphism of the submonoid Q12 � Qgp ˚ Z
generated by Q ˚N and ��1.Q ˚N/ with Q ˚N N2, with 1 2 N mapping to �q
and .1; 1/, respectively. The defining equation �q D �1 C �2 retrieves (5.8) in the
proof of Lemma 5.10 on the level of ghost sheaves. The change of puncturing of U ı1
becomes necessary if Q12 6� Q1, and similarly if �.Q12/ 6� Q2 for U ı2 . Figure 5.2
provides an illustration.

For the tropical interpretation, illustrated in Figure 5.3, we have two factorizations

!
†.si /
���! �i

†.�/
���! !;

of id! . Here the second map is the projection to the first component when writing
�i � ! �R�0. Thus †.si /.h/ D .h; `i .h// for some piecewise linear map

`i W ! ! R�0:
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Q1

Q12

ker Ns[1 ker Ns[1

��1.0; 1/

�q Q � ¹0º

��1.Q2/

Q12

�q
.0; 1/

�.Q12/

�q

ker Ns[2

.0; 1/

Q2

�

Q � ¹0º Q � ¹0º

Figure 5.2. The monoids Q1; Q2; Q12 � Q ˚ Z and their comparison under � W Q ˚ Z!
Q ˚ Z. The hatched area depicts Q12, the solid shading Q1, Q2 or ��1.Q2/. Note that
�.Q12/ D Q12 because both cones are spanned by Q � ¹0º, .0; 1/ and �q � .0; 1/. In the
sketched situation, the puncturing for U ı

2
has to be enlarged, the one for U ı

1
does not.

! � ¹0º

�1

†.s1/.!/

!E

¹0º �R�0 ¹0º �R

!E

†.s1/.!/

�t

! � ¹0º
�t .�2/

! � ¹0º

.�t /�1.!E/

†.s2/.!/

�2

¹0º �R�0

Figure 5.3. The dual tropical picture of Figure 5.2. The hatched area covers !E , the solid
shading �1, �2 and �t .�2/. The dashed line indicates the image of ! under †.s1/ or †.s2/.

Thinking of h as parametrizing a punctured tropical curve, `i .h/ specifies a point
on the puncturing interval or ray emanating from the unique vertex vi . The tropical
glued curve then produces the metric graph with two vertices v1, v2 by joining the two
intervals at the specified points, hence producing an edge E of length `1.h/C `2.h/.
The tropical glued curve over ! thus has edge function ` W ! ! R�0 simply defined
by

` D `1 C `2: (5.10)

The process of producing the glued cone !E � ! �R�0 over ! is dual to the state-
ment Q12 D .Q˚N/C ��1.Q˚N/:

!E D Hom.Q12;R�0/ D .! �R�0/ \ �
t .! �R�0/:

The change of puncturing is necessary if `.h/ is smaller than either of the length
functions obtained by tropicalizing the puncturing, or if either one of Q12 \ Q1,
�.Q12/ \Q2 is not saturated.
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We now turn to the proof of the gluing theorem for punctured maps to X=B .

Proof of Theorem 5.8. Write �i D .Gi ;gi ; �i ; Nui /. We check the universal property of
cartesian diagrams.

Step 1: An object of the fibered product. Consider an fs log scheme W with two
morphisms

W !
Y
E2E

X; W !

rY
iD1

zM0.X=B; �i / (5.11)

together with an isomorphism of the compositions to
Q
E X �X. Spelled out this

means that (1) for each i D 1; : : : ; r we have given a weakly �i -marked, pre-stable
punctured map

.�i W C
ı
i ! W;pi ; fi W C ıi ! X/

over W and for each leg .E; v/ 2 L.Gi / a section sE;v W W ! C ıi with image the
puncture labeled by the leg in Gi generated by E; and (2) the sections fullfill the
logarithmic matching property

fi.v/ ı sE;v D fi.v0/ ı sE;v0 ; (5.12)

for each edge E 2 E with adjacent vertices v, v0. Write pE;v for the strict closed
subspace of C ıi defined by .E; v/ 2 L.Gi /.

Step 2. The glued curve. Denote by C the family of nodal curves over W obtained
by gluing

`
i C i schematically along pairs of punctures. Let E 2 E be an edge with

vertices v, v0, and qE the nodal section of C ! W given by the image of the pair
of punctures pE;v , pE;v0 . Applying Lemma 5.10 étale locally near the image of qE
provides a local extension of the log structure defined by the C ıi away from qE to a
log smooth curve over W . Thus there is a punctured curve

.� W C ı ! W;p/

with underlying scheme C that replaces each pair of punctures pE;v , pE;v0 in
`
i C
ı
i ,

for an edge E 2 E with vertices v, v0, by a node qE . The lemma also provides a
morphism of punctured curves yC ıi ! C ıi with unique liftings OsE;v of each section
sE;v to yC ı

i.v/
, and morphisms

�i W yC
ı
i ! C ı

with �i.v/ ı OsE;v D �i.v0/ ı OsE;v0 , and yC ıi equal to C ıi possibly up to enlargement of
the puncturing. For each edge E 2 E we can thus define the nodal section

sE WD �i.v/ ı OsE;v D �i.v0/ ı OsE;v0 W W ! C ı:
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Step 3. Gluing the tropical map. Denote by . yC ıi ; Opi ; Ofi / with Ofi D fi ı . yC ıi ! C ıi /

the punctured stable map with the enlarged punctured structure. It follows from the
tropical description of the gluing construction in Remark 5.12 that the tropicalizations

†. Ofi / W †. yC
ı
i /! †.X/

of Ofi glue to a map of generalized cone complexes

†.C ı/! †.X/

which commutes with the map to †.B/. In fact, restricting to a geometric point Nw of
W and adopting the notation from Remark 5.12, at an edge E 2 E with vertices v1,
v2, the cone !E �! �R�0 of†.C ı

Nw/ is defined by the length function `E D `1C `2.
Denote further � D . xM_

X; Ny
/R for

Ny D fi.v1/.sE;v1. Nw// D fi.v2/.sE;v2. Nw//:

Assuming E oriented from v1 to v2, the contact orders obtained from splitting � at E
are related by

uE;v1 D uE D �uE;v2 2 �
gp
Z :

Now the map !E ! � 2 †.X/ can be defined by

!E 3 .h; �/ 7! V1.h/C � � uE;v1 D V2.h/C .`E .h/ � �/ � uE;v2 ; (5.13)

where V� W ! ! � is the map for the vertex v� given by †.fi.v�//, � D 1; 2. The
image of this map lies in � since the line segment ¹hº � Œ0; `1.h/� is contained in
�1 � ! � R�0 and V1.h/ C � � uE;v1 D †.fi.v1//.h; �/, and similarly for the line
segment ¹hº � Œ`1.h/; `.h/� and †.fi.v2//. The equality in (5.13) holds because

V1.h/C `1.h/ � uE;v1 D †.fi.v1/ ı sE;v1/.h/

D †.fi.v2/ ı sE;v2/.h/ D V2.h/C `2.h/ � uE;v2 :

Note this last argument uses the assumption that NuE is monodromy-free to assure that
uE;v1 D �uE;v2 . This finishes the construction of the map †.C ı/! †.X/.

Step 4. Gluing the punctured map. In view of [3, Proposition 2.10]3, we thus obtain a
morphism C ı!AX over AB . By the same token, the composition C ı!AX!AB

agrees with C ı ! B ! AB . We thus obtain an induced morphism

f W C ı ! X D B �AB AX ;

3While [3, Proposition 2.10] assumes a more restricted context, the proof only uses that the
Artin fan of the codomain is Zariski (Definition A.7). This is true here by simplicity of X and
our standing assumptions on B .
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commuting with the maps to B . By functoriality of this construction and the tropical
description of the gluing process, it holds f ı �i D Ofi for all i .

The data .C ı ! W; f; p/ and the collection of nodal sections sE now define the
desired morphism

W ! zM0.X=B; �/:

Indeed, splitting the domain C ı at the nodes for edges E 2 E and pre-stabilizing
obviously retrieves the collection of pre-stable maps .C ıi ! W;pi ; fi / with compat-
ible evaluation maps to X and sections sE;v that we started with. This finishes the
existence part in checking cartesianity.

Uniqueness follows from the uniqueness statement in Lemma 5.10.

5.2.4 Relative and absolute maps

We end this section by remarking that in many situations, working with all fiber prod-
ucts over B may be burdensome, as each product in the diagram of Theorem 5.8 is
over B . In the standard degeneration situation considered in Section 5.4 below, we
might be working over a standard log point b0, and saturation issues even over b0 can
complicate the fiber product. Thus the following is generally useful.

Proposition 5.13. Let B be an affine log scheme equipped with a global chart P !
MB inducing an isomorphism P Š �.B; xMB/. Let � be a global type of punc-
tured tropical map for X=B (Definition 2.44 (1)), with underlying graph connected.4

Then there are isomorphisms M.X=B; �/ ŠM.X= Spec k; �/ and M.X=B; �/ Š

M.X=Spec k; �/.

Proof. We show the first isomorphism, the second being similar. There is a canonical
forgetful morphism M.X=B; �/!M.X= Spec k; �/, and we need to show it is an
isomorphism. For this purpose, it is enough to demonstrate that given a punctured
map f W C ı=W ! X, there is a unique morphism h W W ! B which fits into a
commutative diagram

C ı

�

��

f
// X

g

��

W
h
// B

First, to define the underlying h W W ! B it is sufficient to define h#
W �.B;OB/!

�.W;OW /Š �.W;��OC /, the latter isomorphism from the fact that � is flat, proper
with connected and reduced fibers and [67, Lemma 0E0S]. We take this map to coin-
cide with .g ı f /# W �.B;OB/! �.C;OC /.

4Connectedness is generally assumed in this paper, although usually not necessary, but here
the result is not true without it.
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We next enhance h to a log morphism, first by describing the map at the level
of ghost sheaves, or equivalently, at the tropical level. Fix Nw a geometric point of
W , and let � 0 D .G0; g0; � 0; u0/ be the type of C Nw ! X, so that in particular there
is a contraction morphism � 0 ! � . Since � 0 and � have the same set of legs with
the same contact orders, the fact that � is defined over B implies that the composed
map†.g ı f / W †.C Nw/! †.B/D P_R contracts all legs. However, g ı f is a punc-
tured map with underlying schematic map constant, and thus by Proposition 2.27, the
restriction of †.g ı f / to any fiber of †.�/ is a balanced tropical map. Since all
legs are contracted, the image of this tropical map is compact. Hence, there must be
a hyperplane H in the vector space P �R containing the image of a vertex of this map
and with the entire image contained in a half-space bounded byH . By balancing, this
is impossible unless the tropical map is constant. Hence the desired diagram exists at
the tropical level. This shows that the map P D �.B; xMB/! �.C ı

Nw ;
xMCı
Nw
/ factors

uniquely over xMW; Nw . In particular, we obtain a map Nh[ W �.B; xMB/! �.W; xMW /.
Finally, there is a unique lifting of Nh[ to h[ W �.B;MB/! �.W;MW /. Indeed,

let s 2 �.B;MB/ be a section which maps to Ns 2 �.B; xMB/. Then because the
desired diagram exists at the level of ghost sheaves, . Nf [ ı Ng[/.Ns/ D x�[.Nt / for some
Nt 2 �.W; xMW /. Thus étale locally onW , we may choose a lift t 2MW of Nt , and write
.f [ ı g[/.s/ D  � �[.t/ for some  2 �.O�C /. However, again by properness of �
and connectivity and reducedness of the fibers of � ,  D �#. 0/ for some invertible
function  0 on W , and we may define h[.s/ D  0 � t . Because this choice of h[.s/
is determined uniquely by .g ı f /[, this local description patches to give a section
h[.s/ 2 �.W;MW /, making the diagram commute.

We have thus defined a functor M.X= Spec k; �/ !M.X=B; �/ at the level
of objects. By the uniqueness of the construction of the morphism W ! B given
f W C ı=W ! X above, a morphism in the category M.X= Spec k; �/ defines a
morphism in the category M.X=B; �/, hence completely defining the functor. This
defines the desired morphism M.X= Spec k; �/!M.X=B; �/ which is inverse to
the forgetful morphism M.X=B; �/!M.X=Spec k; �/.

We note that the two moduli problems, with isomorphic moduli spacesM.X=B;�/
and M.X=Spec k; �/, have different obstruction theories.

5.3 Evaluation stacks and gluing at the virtual level
While Theorem 5.8 transparently describes the process of gluing a collection of punc-
tured maps at pairs of punctures with matching contact orders, it lacks two crucial
properties needed for applications in punctured Gromov–Witten theory. First, since
the diagonal map � WX !X �X is not proper except in trivial cases and neither is
the splitting map ıM, it is impossible to push forward cycles via ıM for the purpose
of splitting computations according to the splitting of � along the chosen set of edges
E� E.G/. And second, the obvious commutative square lifting the splitting map ıM
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to a map M0.X=B; �/ !
Q
i M
0.X=B; �i / is far from being cartesian even on the

underlying stacks of (pre-) stable maps since it imposes matching at the nodes only
on X rather than on X . (We remind the reader that the products such as

Q
i are all

over the base log scheme B in this discussion.) Hence this approach has no hope to
be compatible with the virtual formalism.

Both problems are solved by enriching the stacks M.X=B; �/ and M.X=B; �i /

of punctured maps to the relative Artin stack X=B and their various cousins
M0.X=B; �/, zM0.X=B; �/ etc., by providing a lift of the underlying evaluations to
X . Note that such enriched stacks of maps to X have already been considered at the
beginning of Section 4.2 in the context of obstruction theories with imposed point
conditions.

For this discussion we mostly work with the stacks M.X=B; �/ of marked maps
(Definition 3.8), except in the analogue Corollary 5.15 of Theorem 5.8, which requires
stacks zM0.X=B;�/with weak markings and sections (Section 5.2.2). All other results
also hold in the weakly marked and decorated contexts.

We continue to assume thatX!B is a morphism of fs logarithmic schemes over
k fulfilling the assumptions stated at the beginning of Chapter 3.

Definition 5.14. Let � D .G; g; � ; Nu/ be a global type of punctured maps to X and
S � E.G/ [ L.G/ a subset of edges and legs. The evaluation stack of M.X=B; �/

with respect to S is the fiber product

Mev.X=B; �/ DM.X=B; �/ �Q
S2S X

Y
S2S

X

of
Q
S2SX !

Q
S2S X with the evaluation map

evS WM.X=B; �/!
Y
S2S

X; .C ı=W;p; f / 7! .f ı sS /S2S;

evaluating at the punctured and nodal sections sS W W ! C ı for S 2 S.
Analogous definitions apply in the weakly marked and decorated contexts as in

Definition 3.8, or for the stacks zM0.X=B; �/ of Section 5.2.2.

Note that Mev.X=B; �/ of course depends on the logarithmic scheme X , but we
suppress this in the notation as X always denotes its relative Artin fan. We also sup-
press S in the notation of the evaluation stacks and rather specify this subset whenever
not clear from the context.

As indicated in the definition, we endow Mev.X=B; �/ with the log structure
making the projection to M.X=B; �/ strict, to obtain the sequence of morphisms of
log stacks

M.X=B; �/
"
�!Mev.X=B; �/!M.X=B; �/

as in (4.14). Recall that the obstruction theory for this sequence of morphisms has
been worked out in Section 4.2. It was noted that, as the morphisms are strict, this
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coincides with the obstruction theory for the underlying stacks. We further saw that
the obstruction theory of M.X=B; �/ over M.X=B; �/ is the composition of an
obstruction theory for " with the trivial obstruction theory in pure degree 0 of the
smooth morphism Mev.X=B; �/ ! M.X=B; �/ of relative dimension .dimX �

dimB/ � jSj.
We now adopt the setup of Section 5.2 and split � at a subset E � E.G/ of edges

with E � S to obtain global types �i D .Gi ; gi ; � i ; Nui /. For the following corollary
of Theorem 5.8 for evaluation stacks, we write zMev.X=B; �/ for the evaluation stack
of zM.X=B; �/ with evaluations at all nodes specified by E, thus by Proposition 5.7
having the same underlying stack as Mev.X=B; �/, but with the enlarged log struc-
ture admitting a logarithmic evaluation map analogous to (5.4). Similarly, we obtain
evaluation stack analogues of the evaluation morphism for the �i (5.5), still denoted
evL, and the splitting morphism (5.6), now denoted ıev.

Corollary 5.15. In the situation of Theorem 5.8, the commutative diagram

zM0ev.X=B; �/
ıev
//

evE

��

Qr
iD1
zM0ev.X=B; �i /

evL

��Q
E2EX

� //
Q
E2EX �X

with arrows defined by the above adaptations to the evaluation stacks for S�E.G/[
L.G/ with E � S, is cartesian in the category of fs log stacks.

In particular, the splitting morphism ıev is finite and representable.

Proof. The stated commutative square is the front face of the commutative box

zM0ev.X=B; �/
ıev

//

evE

��

))

Qr
iD1
zM0ev.X=B; �i /

evL

��

ss

zM0.X=B; �/ //

��

Qr
iD1
zM0.X=B; �i /

��Q
E2E X //

Q
E2E X �XQ

E2E X
� //

44 Q
E2E X �X

kk

with back face the cartesian square from Theorem 5.8 and the sides cartesian squares
defining the evaluation stacks. Hence the stated diagram is cartesian.

The claimed properties of the splitting morphism ıev follow since an fs fiber prod-
uct is the saturation and integralization of the ordinary fiber product.

Remark 5.16. For systematic reasons we work in the category of log schemes overB
in this section, and thus all products in the statement of Corollary 5.15 are fiber prod-
ucts over B . For explicit computations this leads to fibered sums of lattices, which
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sometimes require an extra treatment of multiplicities due to saturation issues. This
additional step can be avoided by observing that the statement of Corollary 5.15 holds
unchanged when interpreting the products as absolute products rather than as prod-
ucts over B , but still with X the relative Artin fan of X=B .

This statement is not a formal consequence of general properties of fiber prod-
ucts, but is due to the connectedness of the graph G given by � , as in the argument
in the proof of Proposition 5.13. To explain this let

Q
B denote the relative fiber

product and
Q

the absolute one. To check the universal property of the commuta-
tive square in Corollary 5.15 with absolute products, let be given a morphism W !Q
i
zM0ev.X=B; �i /, i D 1; : : : ; r , such that the composition with evL factors over �.

For each leg L D .E; v/ 2 L.Gi / we obtain an evaluation map fi ı pL W W ! X,
and by composing with X ! B a map bL W W ! B . This map is independent of the
choice of L 2 L.Gi / since the i -th component of W !

Q
i
zM0ev.X=B; �i / defines

a punctured map over B , but a priori may vary with i . Now the factorization of evL
over � implies that if the i -th and j -th vertex of G are connnected by an edge then
the maps W ! B obtained for i and j coincide. Since G is connected we con-
clude that all these maps agree. Hence the mapW !

Q
i
zM0ev.X=B; �i / factors over

.
Q
B/i
zM0ev.X=B; �i /, and in turn the composition with evL factors over .

Q
B/EX .

We are then in position to apply Corollary 5.15 in the stated form to obtain the unique
lift to zM0ev.X=B; �/.

By the corollary, we obtain a proper push-forward homomorphism in Chow the-
ory for algebraic stacks, as defined by Kresch [45], for the evaluation stacks:

ıev
� W A�.M

ev.X=B; �//! A�

�Y
i

Mev.X=B; �i /
�
; ˛ 7! ı�.˛/: (5.14)

Note that we can work with markings or weak markings here because the correspond-
ing stacks have the same reductions (Proposition 3.33).

It remains to relate ıev with the splitting morphism for moduli spaces of punctured
maps to X rather than X and to show compatibility with the obstruction theory. Note
that these results use the unenhanced, basic log structures on the moduli stacks.

Proposition 5.17. Let X ! B be a morphism of fs logarithmic schemes over k ful-
filling the assumptions stated at the beginning of Chapter 3. Let �1; : : : ; �r be the
global types of punctured maps (Definition 2.44) obtained by splitting a global type
� D .G; g; � ; Nu/ along a subset of edges E. Then there is a cartesian diagram

M.X=B; �/
ı //

"

��

Qr
iD1M.X=B; �i /

y"D
Q
i "i

��

Mev.X=B; �/
ıev
//
Qr
iD1 Mev.X=B; �i /

(5.15)
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with horizontal arrows the splitting maps from Proposition 5.4, finite and repre-
sentable by Corollary 5.15, and the vertical arrows the canonical strict morphisms.
Here we assume the set of edges and legs S � E.G/[L.G/ used in the definition of
the evaluation stacks (Definition 5.14) contains the set E � E.G/ of splitting edges.

Analogous statements hold for decorated and for weakly marked versions of the
moduli stacks (Definition 3.8).

Proof. We argue by spelling out the definitions of the various stacks. Indeed, a pair
of morphisms from an fs log scheme W to

Qr
iD1M.X=B; �i / and to Mev.X=B; �/

together with an isomorphism of their images in
Qr
iD1 Mev.X=B; �i / is equivalent

to (1) an ordinary stable map .C=W ; p; f / to X marked by the genus-decorated
graph .G;g/ given by � , and (2) a punctured map .C ı=W;p; fX/ to X producing the
morphismW !

Qr
iD1Mev.X=B; �i / by splitting at the nodes labeled by E�E.G/.

Note that (1) is obtained by the schematic matching condition at the paired marked
points provided by the evaluation stacks. Since X ! X is strict, f and fX together
are the same as a log morphism f W C ı! X . Moreover, a marking by � is equivalent
to markings by �i of the punctured maps .C ıi =W; pi ; fi / obtained by splitting. The
correspondence is also easily seen to be functorial. Thus the fiber categories over W
of the cartesian product and of M.X=B; �/ are equivalent.

5.3.1 Notation for obstruction theories

To bring in the perfect obstruction theories discussed in Chapter 4, we now in addition
to �; �i ;E; S as in Proposition 5.17 assume X ! B to be log smooth. To analyze the
obstruction theories in (5.15), we introduce the following short-hand notation:5

Mgl WDM.X=B; �/; Mi WDM.X=B; �i /; Mspl WD

rY
iD1

Mi

Mgl WDM.X=B; �/; Mi WDM.X=B; �i /; Mspl WD

rY
iD1

Mi

Mev
gl WDMev.X=B; �/; Mev

i WDMev.X=B; �i /; Mev
spl WD

rY
iD1

Mev
i

(5.16)

Denote further by xC ıi !Mi and by C ı!Mgl the universal curves over Mi and Mgl,
respectively, by C ıi !Mspl the pullback of xC ıi under the projection from the product
Mspl!Mi , and write �spl WC

ı
splD

`
i C
ı
i !Mspl. We also have universal morphisms

f W C ı ! X , fspl W C
ı
spl ! X , and the subspaces of special points to be considered

5For the sake of being specific we work with the marked versions here. Analogous results
also hold for the weakly marked cases.
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� W Z! C ı, �spl W Zspl! C ıspl with projections p D � ı � and pspl D �spl ı �spl to Mgl

and Mspl, respectively. Here Z is the union of the images of the punctured and nodal
sections labeled by S�E.G/[L.G/, whileZspl is the union of punctured and nodal
sections given by Si � E.Gi / [ L.Gi /, i D 1; : : : ; r , obtained from S by splitting,
both endowed with the induced log structures making �, �spl strict.

5.3.2 The fundamental diagram

We consider the following commutative diagram:

zC ı

�
��

z�

��

//

Qf

$$
C ıspl D

`
i C
ı
i

�spl
��

fspl
// X

C ı

�
��

f

77

Mgl
ı //

"
��

Mspl D
Q
i Mi

y"D
Q
i "i

��

Mev
gl

ıev
//Mev

spl D
Q
i Mev

i :

(5.17)

The lower square is the cartesian square from Proposition 5.17 with strict vertical
arrows.

The strict map � W zC ı ! C ı is the map induced by splitting the nodal sections
of C ı ! Mgl given by E � S according to Proposition 5.4. The underlying mor-
phism � of ordinary stacks is therefore the corresponding partial normalization from
Definition 5.1.

The upper square thus identifies the pullback of C ıspl with the pre-stabilization of
zC ı (Definition 2.6). This part of the diagram is a pullback of nodal curves, cartesian
only in the category of stacks, because of the pre-stabilization.

The morphism Qf is as defined by the diagram. There is also the closed substack
zZ D ��1.Z/! zC ı of special points on zC ı with projection Qp W zZ !Mgl, endowed
with the log structure making zZ ! zC ı strict.

5.3.3 An obstruction theory for " and y"

The discussion in Section 4.2 provides obstruction theories G ! LMgl=M
ev
gl

for " W
Mgl !Mev

gl and Gspl ! LMspl=M
ev
spl

for y" WMspl !Mev
spl with

G D Rz��
�
Qf ��X=B ˝ !z�. zZ/

�
; Gspl D R�spl�

�
f �spl�X=B ˝ !�spl.Zspl/

�
: (5.18)
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Recall that this obstruction theory is obtained by taking the cone of a morphism of
perfect obstruction theories provided by Proposition 4.3:

Ly"�Fspl Espl

Ly"�LMev
spl=Mspl LMspl=Mspl

Ly"�‰ ˆ

5.3.4 A justice of obstructions6

We now have four deformation/obstruction situations with corresponding perfect ob-
struction theories. Given T !Mgl a morphism from an affine scheme and fT WC ıT !
X , hT W ZT ! X , QfT W zC ıT ! X , QhT W zZT ! X the respective base-changes to T of
the universal morphisms from the universal curve and universal sections, pulled back
to Mgl in the last two instances, these are as follows. All deformation situations are
relative Mgl, with the last two pulled back from a deformation situation relative Mspl.

(Mgl=Mgl) Deforming fT W C ıT ! X :

E D R��.f ��X=B ˝ !�/! LMgl=Mgl :

(Mev
gl=Mgl) Deforming hT W ZT ! X :

L"�F D p�.h��X=B/! L"�LMev
gl =Mgl :

(Mspl=Mspl) Deforming QfT W zC ıT ! X :

Lı�Espl D Rz��. Qf
��X=B ˝ !z�/! Lı�LMspl=Mspl :

(Mev
spl=Mspl) Deforming QhT W zZT ! X :

Lı�Ly"�Fspl D Qp�. Qh
��X=B/! Lı�Ly"�LMev

spl=Mspl :

Lemma 5.18. There is a morphism of distinguished triangles

Lı�Ly"�Fspl Lı�Espl G Lı�Ly"�FsplŒ1�

L"�F E G L"�F Œ1�

with G D Lı�Gspl D Rz��. Qf
��X=B ˝ !z�. zZ//.

6Our Babel of coauthors proposes this collective noun for a system of compatible obstruc-
tions.
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Proof. The lower row in the claimed diagram was produced in (4.17) in the proof
of Proposition 4.5 by applying R�� to (4.16) tensored with f ��X=B . We claim
that (4.16) appears as the lower row in the following commutative diagram with exact
rows:

0 // ��!z� //

��

��.!z�. zZ// // ��z��O zZ Œ1�
//

��

0

0 // !� // ��.!z�. zZ// // ��OZ Œ1� // 0:

(5.19)

Away from the nodal locus Z00 � Z the upper and lower rows are identical, and
this identification defines the diagram there. Étale locally near a node, the arrow
��.!z�. zZ//! ��OZ Œ1� takes the difference of the residues of a differential with at
most simple poles along the two components of zZ00 ' Z00 q Z00 defined by the two
branches at the node. This map factors as �� of the residue map

�W!z�. zZ
00/!z��O zZ00 Œ1�

and the Œ1�-twist of the difference map

��z��O zZ00 D ��OZ00 ˚ ��OZ00 ! ��OZ00 ; .a; b/ 7! a � b:

The kernel of ��� selects differentials without poles, that is, ��!z� . This extends the
construction of Diagram (5.19) over the nodal locus.

To produce the morphism of triangles in the statement it remains to show that
tensoring the upper row of (5.19) with f ��X=B and applying R�� leads to the upper
row of the claimed diagram. From Proposition 4.5 we already know that the middle
term leads to G:

G
(5.18)
D Rz��

�
Qf ��X=B ˝ !z�. zZ/

�
D R��

�
f ��X=B ˝ ��.!z�. zZ//

�
:

The other two terms are readily obtained by the projection formula for � using z� D
� ı �, Qf D f ı �, Qh D Qf ız�, Qp D z� ız�:

Lı�Espl D Rz��
�
Qf ��X=B ˝ !z�

�
D R��.f

��X=B ˝ ��!z�/

Lı�Ly"�Fspl D Qp�. Qh
��X=B/ D Rz��

�
Qf ��X=B ˝z��O zZ

�
D R��.f

��X=B ˝ ��z��O zZ/:

Theorem 5.19. Let X ! B be a log smooth morphism of fs logarithmic schemes
over k fulfilling the assumptions stated at the beginning of Chapter 3, and � , �i , E, S
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as in Proposition 5.17. Then with the notation of (5.16), we have

(1) The obstruction theory G ! LMgl=M
ev
gl

for

Mgl DMgl.X=B; �/!Mev
gl DMev.X=B; �/

coincides with the pullback of one of the obstruction theories Gspl !

LMspl=M
ev
spl

(Remark 4.4) for

Mspl D
Y
i

M.X=B; �i /!Mev
spl D

Y
i

Mev.X=B; �i /

described in Section 5.3.3.

(2) If y"Š and "Š denote Manolache’s virtual pullback defined using the two given
obstruction theories for the vertical arrows in diagram (5.15), then for ˛ 2
A�.M

ev.X=B; �//, we have the identity

y"Šıev
� .˛/ D ı�"

Š.˛/:

Proof. (1) The morphism between the obstruction theories in question appear as the
joint middle square in the following diagram of two adjacent cubes:

Lı�Espl //

��

''

G

%%

// Lı�Ly"�FsplŒ1�

��

**

Lı�LMspl=Mspl
//

��

Lı�LMspl=M
ev
spl

��

// Lı�Ly"�LMev
spl=Mspl Œ1�

��

E //

''

G

%%

// L"�F Œ1�

**

LMgl=Mgl
// LMgl=M

ev
gl

// L"�LMev
gl =Mgl Œ1�

The back face is the morphism of triangles from Lemma 5.18. The bottom face is
commutative by the construction of the obstruction theory with point conditions G!
LMgl=M

ev
gl

in (4.15) based on Proposition 4.3. Similarly, the top face is commutative as
the pullback by ı of the corresponding diagram for Gspl! LMspl=M

ev
spl

. The front face
of the diagram is the morphism of distinguished triangles of cotangent complexes
for the compositions Mgl !Mev

gl !Mgl and Mspl !Mev
spl !Mspl, and hence is

commutative as well.
For commutativity of the left face we argue in two steps. First apply functoriality

of obstruction theories, Lemma 4.1, to compare the pulled-back obstruction theory
.Mspl=Mspl/ for fspl with the obstruction theory for Qf , both relative Mspl, to obtain
the commutative square

Lı�Espl Lı�LMspl=Mspl

zE LMgl=Mgl :

(5.20)
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Here zEDRz��. Qf ��X=B˝!z�/ and we replaced the lower right-hand corner LMgl=Mspl

by LMgl=Mgl using functoriality of the cotangent complex. Note also that the proof of
Lemma 4.1 did not use the general assumption in Section 4.1 that M is an open sub-
stack of the stack of diagrams described in (4.1), so does apply to the non-universal
family over Mgl given by Qf .

We are then in the situation of Section 4.1.7 with Y ! S the universal curve over
Mgl, Z the partial normalization of this curve, and M D N D Mgl. Thus Proposi-
tion 4.3 provides the commutative square

zE LMgl=Mgl

E LMgl=Mgl :

(5.21)

Again, this result did not use universality of the family of maps over Mgl given by Qf .
Composing the two squares (5.20) and (5.21) proves commutativity of the left face of
our big diagram of adjacent cubes.

An analogous argument for the nodal locus Z and its pullback zZ � zC ı instead
of C ı and zC ı also shows commutativity of the right face.

Thus the whole diagram is commutative except possibly the middle, separating
square that describes the morphism of interest from the pullback of the obstruction
theory for .Mspl=M

ev
spl/ to .Mgl=M

ev
gl /.

However, chasing the diagram, we see that the two morphisms from G to the front
right corner L"�LMev

gl =Mgl Œ1�, one via the top dashed arrow, the other via the bottom
dashed arrow, agree. Their difference factors over a homomorphism

G ! LMgl=Mgl :

The set of such homomorphisms acts transitively on the set of dashed arrows on the
bottom face defining the obstruction theory for .Mgl=M

ev
gl / as discussed in Remark 4.4

Thus there is a choice of dashed bottom arrow making the separating middle square
of the diagram commutative, as claimed.

(2) This follows from the morphism ıev being finite and representable, hence
projective, and the push-pull formula of [50, Theorem 4.1 (iii)].

5.3.5 Gluing by the numbers

We now achieve a numerical gluing formula for Gromov–Witten invariants for classes
in Mev.X=B; �/ whose push-forward to

Q
Mev.X=B; �i / decomposes as a sum of

products of classes. This is for example the case for point classes in Mev.X=B; �/,
or if all gluing strata are toric [71].
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Corollary 5.20. In the situation of Theorem 5.19 let ˛2A�.M.X=B;�// and assume
that there exists ˛i;� 2 A�.M.X=B; �i //, i D 1; : : : ; r , � D 1; : : : ; m, with

ıev
� .˛/ D

mX
�D1

˛1;� � � � � � ˛r;�:

Then writing "i WM.X=B; �i /!Mev.X=B; �i / for the canonical map, the following
equality of associated virtual classes holds in A�.

Q
i M.X=B; �i //:

ı�"
Š.˛/ D

mX
�D1

"Š1.˛1;�/ � � � � � "
Š
r.˛r;�/:

Proof. The claimed formula follows readily from Theorem 5.19 (2) by observing that

y"Š.˛1;� � � � � � ˛r;�/ D "
Š
1.˛1;�/ � � � � � "

Š
r.˛r;�/:

5.3.6 Compatibility with contractions of types

We end this section by noting that the relative obstruction theories are also compatible
with contraction morphisms relating different global types (Definition 2.44 (1)).

Proposition 5.21. Let X ! B be as in Theorem 5.19 and assume � 0 ! � is a con-
traction morphism of global types. Then the commutative diagram

M.X=B; � 0/ //

"0

��

M.X=B; �/

"

��

M.X=B; � 0/ //M.X=B; �/

is cartesian, and the relative obstruction theory for " pulls back to the relative obstruc-
tion theory for "0. Taking curve classes into consideration, if � D .�;A/, the commu-
tative diagram `

�0D.� 0;A0/M.X=B;�
0/ //

"0

��

M.X=B;�/

"

��

M.X=B; � 0/ //M.X=B; �/

(5.22)

is cartesian, and the same statement on relative obstruction theories holds. Here, the
disjoint union is over all decorations �0 of � 0 such that the contraction morphism
� 0 ! � induces a contraction morphism �0 ! �.

Analogous results hold for weakly marked versions of the stacks (Definition 3.8),
and for evaluation stacks on the bottom (Definition 5.14).
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Proof. That the diagrams are Cartesian follows from the definition of markings and
decorated markings of punctured maps (Definition 3.8).

The statement about obstruction theories then follows from the functoriality state-
ment Lemma 4.1 and the construction in Section 4.2 of the relative obstruction theory
for M.X=B; �/!M.X=B; �/.

Remark 5.22. The formalism for gluing presented here was found after many futile
attempts leading to practically useless gluing procedures. With hindsight compatibil-
ity with the virtual formalism provides the strongest guiding principle that rules out
many alternative approaches. From this point of view one discovers the imperative
that one work with obstruction theories relative to a class of unobstructed base stacks
that induce the gluing.

A first attempt would work with moduli stacks M.X=B/ of punctured maps to the
relative Artin fan X!B . This approach does indeed work, but it is often problematic
for practical applications because the gluing map M.X=B; �/!

Q
i M.X=B; �i /

is neither representable nor proper, hence does not allow pushing forward of cycles.
The key insight is to use evaluation stacks to add just enough information to

get rid of the stacky nature of the gluing in M.X=B/, thus leading to a finite and
representable splitting map ıev. In addition, ıev fits into the expected gluing diagram
stated in Corollary 5.15 thus providing a practical path to explicit computations.

5.4 Gluing in the degeneration setup

We now apply our gluing theorems to the degeneration situation previously studied
in [3]. In this case B is a smooth affine curve over Spec k with log structure trivial
except at a marked point b0 2 B , and AX is assumed Zariski. Base change to b0
produces a log smooth space X0 over the standard log point Spec.N ! k/. Let ˇ D
.g; Nu;A/ be a class of punctured maps toX . Note that†.X0/D†.X/, so we can view
ˇ also as a class of punctured maps to X0. The fiber of the tropicalization †.X0/!
†.b0/D R�0 of the projection X0! b0 over 1 2 R�0 defines a polyhedral complex
�.X0/D�.X/. Restricting to this fiber turns our cone complexes into the polyhedral
complexes of traditional tropical geometry.

The main result of [3] gives the following decomposition of the virtual fundamen-
tal class of M.X0=b0;ˇ/ in terms of rigid tropical maps to�.X0/. We emphasize that
this result uses the marked rather than weakly marked versions of the moduli stacks.

Theorem 5.23. Let ˇ be a class of stable logarithmic maps to X0=b0. Then we have
the following equality of Chow classes on M.X0=b0; ˇ/:

ŒM.X0=b0; ˇ/�
virt
D

X
�D.�;A/

m�

jAut.�/j
j��ŒM.X0=b0;�/�

virt:
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The sum runs over representatives of isomorphism classes of realizable global types �
of punctured maps to X0 over b0 of total class .g; Nu;A/ and with basic monoidQ� '
N. The multiplicitym� is the index of the image of the homomorphism N!Q� given
by the map M.X0=b0; ˇ/! b0. The morphism j� WM.X0=b0; �/!M.X0=b0; ˇ/

is induced by the contraction morphism � ! ˇ. Finally, Aut.�/ denotes the group of
automorphisms of the decorated type �, i.e., automorphisms of the underlying graph
G preserving g, � , u and A.

5.4.1 Degenerate types

Theorem 5.25 below is an analogous result in the punctured case, which also provides
a stratified version in the case without punctures. Before stating this result we need
some preparations concerning types in degeneration situations. Since one works with
log spaces over b0 and †.b0/ D R�0, all tropical objects come with a map to R�0.
We denote all these maps by p in the following. Assuming X0 ! b0 is the fiber
over the unique marked point b0 ! B in a log smooth curve B over the trivial log
point, the tropicalization of a punctured map over the generic point � 2 B maps to
0 2 †.B/ D †.b0/ under p. Degenerations of families of punctured maps over � to
b0 then provide a contraction morphism of the associated types (Definition 2.44 (1)).
This motivates the following definition.

Definition 5.24. Let � D .G; g;� ;u/ be a realizable global type (Definition 2.44 (2))
of punctured maps to X0=b0 (Definition 3.28) and Q� the associated basic monoid.

(1) We call � generic if .Q_� /R and � .x/ for each x 2 V.G/ [ E.G/ [ L.G/
map to ¹0º � R�0 under p.

(2) A degeneration of a realizable global type � is a contraction morphism � 0! �

between realizable global types with p W Q_� 0 ! N non-constant. The codi-
mension of � 0 ! � is defined as rkQgp

� 0 � rkQgp
� . In the case of codimension

one we define the multiplicity m� 0 as the index of pgp.Q�� 0/ in Z. Finally,
Aut.� 0=�/ denotes the group of automorphisms of � 0 commuting with � 0! � .

Analogous notions are used in the decorated case (Definition 3.8).

5.4.2 Degenerate types decompose

Let now � D .G; g; � ; u;A/ be a generic realizable decorated global type for X=B .
By the assumption p.� .x// D 0 we can view � also as a decorated global type for
Xb=b for b ¤ b0. The analogue to the main results of [3] is:

Theorem 5.25. In the above situation, additionally assuming X is simple, the fol-
lowing holds.

(1) For any point jb W ¹bº ,! B , one has j Š
b
ŒM.X=B;�/�virt D ŒM.Xb=b;�/�

virt.
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(2) The following equation holds:

ŒM.X0=b0;�/�
virt
D

X
�0D.� 0;A0/

m� 0

jAut.�0=�/j
j�0�ŒM.X0=b0;�

0/�virt (5.23)

The sum runs over representatives of isomorphism classes of degenerations
�0 D .� 0;A0/! � of realizable global types of punctured maps to X=B of
codimension one, with m� 0 its multiplicity.

Proof. By Proposition 3.29, � can be viewed both as a type realizable over B and
as a type realizable over b 2 B for b 6D b0. Thus M.X=B; �/ is non-empty and
M.Xb=b;�/DM.X=B;�/�B b is non-empty for b2B n ¹b0º. By Proposition 3.30,
M.X=B;�/ is pure-dimensional. Further, by the same proposition, every irreducible
component of M.X=B;�/ contains a point whose corresponding punctured map has
tropical type �, as all other strata are of lower dimension. By genericity of the type �,
the stratum of M.X=B;�/ of points with type � maps to the open stratum of B . Thus
the restriction of M.X=B;�/!B to each irreducible component is dominant. There
are no embedded components by the local description in Remark 3.27. We conclude
that the structure map M.X=B;�/! B is flat.

(1) then follows immediately from general properties of virtual pull-backs.
For (2), as in the proof of [3, Theorem 3.11], we begin by showing the corre-

sponding decomposition as Chow classes

ŒM.X0=b0; �/� D
X
� 0!�

m� 0

jAut.� 0=�/j
�� 0�ŒM.X0=b0; �

0/�: (5.24)

Here � is the underlying global type of �, and � 0 ! � runs over all contraction
morphisms as in the statement of the theorem (without the decoration). Finally, �� 0 W
M.X0=b0; �

0/!M.X0=b0; �/ is the natural morphism. However, using the smooth
local description of M.X=B; �/ given in Remark 3.27 and the fact that jAut.� 0=�/j
is the degree of the finite map �� 0 onto its image, we easily obtain the result using
standard toric geometry. We leave the details to the reader.

We now make use of the diagram (5.22) for a given choice of contraction � 0! � ,
and we see by the push-pull result of [50, Theorem 4.1] that

"Š�� 0�ŒM.X0=b0; �
0/� D

X
�0D.� 0;A0/

j� 0�."
0/ŠŒM.X0=b0;�

0/�

D

X
�0D.� 0;A0/

j� 0�ŒM.X0=b0;�
0/�virt; (5.25)

where the sum is over all choices of decorations �0 of � 0 giving a contraction mor-
phism �0 ! � compatible with � 0 ! � . On the other hand, Aut.� 0=�/ acts on the set
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of all such decorations, with the orbit of a decoration �0 having stabilizer Aut.�0=�/.
Thus we may rewrite the last summation of (5.25) asX

�0D.� 0;A0/

j� 0�ŒM.X0=b0;�
0/�virt jAut.� 0=�/j
jAut.�0=�/j

;

where now the sum is over a set of representatives of isomorphism classes of type �0

with a contraction morphism �0 ! �. Combining this with the relation (5.24) then
gives the desired result.

5.4.3 Splitting and factoring decomposed degenerate types

As a corollary of Theorem 5.19 we now obtain a formula for the computation of each
summand ŒM.X0=b0; �0/�virt in (5.23) in terms of punctured Gromov–Witten theory
of the strata. For the statement note that if �v is a global type with only one vertex,
with associated stratum � 2 †.X/, then a �v-marked punctured map .C ı=W; p; f /
to X has a factorization

f W C ı
f�
��! X� ! X;

where the stratum X� is now endowed with the log structure making the embedding
X� ! X strict. The composition with this strict closed embedding in fact induces an
isomorphism

M.X0=b0; �v/
'
�!M.X�=b0; �v/:

Similarly, we obtain

M.X0=b0; �v/ 'M.X�=b0; �v/ and Mev.X0=b0; �v/ 'Mev.X�=b0; �v/:

Note also that X� ! X� is strict and smooth despite X� being only idealized log
smooth over b0 (see Proposition 2.48). Thus the obstruction theory developed in Sec-
tion 4.2 still applies with target X� ! X� ! b0 and yields the same result as with
X0 ! X0 ! b0. Theorem 5.19 applied to our degeneration situation can therefore
be stated as follows.

Corollary 5.26. Let .G;g;� ;u;A/ be a decorated type of punctured maps with basic
monoidQ� 'N and �D .G;g;� ; Nu;A/ the associated decorated global type. Denote
by �v , v 2 V.G/, the decorated global types obtained by splitting � at all edges, that
is, for E D E.G/. Then the diagram

M.X0=b0;�/
ı //

"

��

Q
v2V.G/M.X� .v/=b0;�v/

y"D
Q
v2V.G/ "v

��

Mev.X0=b0;�/
ıev
//
Q
v2V.G/ Mev.X� .v/=b0;�v/
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with horizontal arrows the splitting maps from Proposition 5.4 finite and represent-
able, is cartesian, and it holds

ı�ŒM.X0=b0;�/�
virt
D y"Šıev

� ŒM
ev.X0=b0;�/�:

As in Corollary 5.20, a numerical formula in terms of punctured Gromov–Witten
invariants of the strataX� ofX can be derived assuming ıev

� ŒM
ev.X0=b0;�/� decom-

poses into a sum of products. This is the case for example if all gluing strata X� .E/,
E 2 E.G/, are toric, as proved in [71] based on Corollary 5.15.



Appendix A

Contact orders

Here we give a somewhat more sophisticated universal view on contact orders. This
was the point of view we originally planned to give, but for most current applications,
the simpler approach exposited in Section 2.4 suffices. Nevertheless, that approach
obscures some of the subtleties of contact orders, and at times it may be worth having
this more precise point of view.

For a target X with fs log structure, consider the following étale sheaves over X :

xM_X D Hom. xMX ;N/ and xM�X D Hom. xMX ;Z/ Š Hom
�
xM

gp
X ;Z

�
:

Definition A.1. A family of contact orders ofX consists of a strict morphismZ!X

and a section u2�.Z; xM�Z/ satisfying the following condition. Let u WMZ!
xMZ

u
�!

Z be the composite homomorphism associated to u. Then the map ˛ W MZ ! OZ
sends u�1.Z n ¹0º/ to 0.

We call the ideal 	u �MZ generated by u�1.Z n ¹0º/ the contact log-ideal asso-
ciated to u, and denote by x	u the corresponding contact ideal in xMZ . These are
coherent sheaves of ideals.

The family of contact orders is said to be connected if Z is connected.

For simplicity, we will refer to u as the contact order when there is no confusion
about the strict morphism Z ! X . Given a family of contact orders u 2 �.Z; xM�Z/
of X , the pullback of u along a strict morphism Z0 ! Z defines a family of contact
orders u0 2 �.Z0; xM�Z0/.

Example A.2. To motivate this definition, consider a punctured map f W C ı ! X

over W , and a punctured section p 2 p. Take Z WD W , and give Z the log structure
given by pullback of MX via f ı p, so that Z ! X is strict. Let u be the following
composition

xMZ

Nf [

��! p� xMCı !
xMW ˚ Z! Z; (A.1)

where the middle arrow is the inclusion and the last arrow is the projection to the
second factor.

We claim that u defines a family of contact orders of X . Indeed, let ı 2MZ and
represent f [.ı/ D .eı ; �

up.ı//, where � is the element of MC corresponding to a
local defining equation of the section p.

If up.ı/ > 0 then

˛Z.ı/ D p
�˛C .f

[.ı// D p�˛C .eı/ � p
�˛C

�
�up.ı/

�
D 0

since p�˛C .�/ D 0.
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If up.ı/<0 then f [.ı/…MC and hence, by Definition 2.1 (2) we have ˛Z.ı/ D 0.

The goal now is to define a universal family of contact orders for the Artin fan
AX of X .

A.1 Family of contact orders of Artin cones

Let .Z ! X; u 2 �.Z; xM�Z// be a family of contact orders of X . For any strict
morphism X ! Y , u is naturally a family of contact orders of Y via the composition
Z!X!Y . Conversely, we can pull back a contact order on Y toX by base-change:
if we denote by ZX and ZY the sheaves over Sch of families of contact orders on X
and Y , respectively, and if we denote by ZX ! X the map forgetting the section u,
then ZX D ZY �Y X . Thus we may parameterize contact orders of the Artin fan AX
instead of X : pulling back such parametrization gives a parametrization of contact
orders on X . This is the approach taken here, which is achieved in Proposition A.8
and Definition A.9. We first study the local case.

Consider a toric monoid P with � D Hom.P;R�0/, N� D Hom.P;Z/ D P �.
This gives the toric variety A� D Spec.P

˛
�! kŒP �/, torus T� WD Spec.kŒP gp�/ and

Artin cone
A� D ŒA�=T� �: (A.2)

Choose an integral vector u 2 N� , which we view as u 2 Hom.P;Z/. Let Iu be the
ideal of P generated by u�1.Z n ¹0º/. This generates a T� -invariant ideal in kŒP �,
defining an invariant closed subscheme Zu;� � A� with quotient a closed substack
Zu;� �A� . We proceed to construct a family of contact orders parametrized by Zu;� .

For each face � � � (where � denotes an inclusion of faces) consider the prime
ideal K��� D P n �

?. It defines a toric stratum Z��� WD V.˛.K��� // � A� where
the duals of the stalks of xMZ��� are identified with the faces of � containing � . Note
that the torus T� acts on Z��� . Denote by Z��� WD ŒZ���=Spec.kŒP gp�/� � A� .

Lemma A.3. We have .Zu;� /red D
S
�gp3u Z��� � A� .

Proof. The ideal
p
Iu defines some union of strata and we identify those strata Z���

on which it vanishes. If u … �gp there is an element p 2 �? \ P such that u.p/ ¤ 0.
Therefore p 2 Iu but the monomial zp does not vanish at the generic point of Z��� .
Hence .Zu;� /red is contained in the given union of strata. Conversely, if u 2 �gp, and
if p 2 u�1.Z n ¹0º/, then p … �? \ P , hence zp vanishes along Z��� . Thus Z���
is contained in .Zu;� /red, proving the result.

Since xM�
.Zu;� /red

is the pullback of xM�
Zu;�

under the reduction .Zu;� /red! Zu;� ,
and reduction induces an isomorphism of étale sites, we have

�
�
Zu;� ; xM

�
Zu;�

�
D �

�
.Zu;� /red; xM

�
.Zu;� /red

�
:
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We define an element uu;� of this group by defining it on stalks in a manner compati-
ble with generization. For a point z in the dense stratum of Z��� , with F� D P \ �?,
we have xMZu;� ;z D .P C F

gp
� /=F

gp
� . Thus the condition u 2 �gp guarantees that

u W P ! Z descends to u W xMZu;� ;z ! Z. Being induced by the same element u,
this is compatible with generization. Note that the scheme Zu;� was defined in such
a way so that ˛Zu;� .	uu;� / D 0, so that Zu;� acquires the structure of an idealized
log stack.

Thus u defines a family of contact orders of A�

uu;� 2 �
�
Zu;� ; xM

�
Zu;�

�
: (A.3)

It is connected since the most degenerate stratum Z��� is contained in the closure of
Z��� for each face � .

Lemma A.4. For any connected family of contact orders u 2 �.Z; xM�Z/ of A� , there
exists a unique u 2 N� such that  W Z ! A� factors uniquely through Zu;� , and
uu;� pulls back to u.

Proof. The global chart P ! xMA� over A� pulls back to a global chart P ! xMZ

overZ. The composition P ! xMZ
u
�! Z defines an integral vector u 2N� . Consider

the sheaf of monoid ideals Ju �MA� generated by Iu. By definition, the contact log-
ideal 	u is generated by  �1Ju. Since ˛Z.	u/D 0 and since Ju defines Zu;� �A� ,
we have the factorization Z ! Zu;� of  , with u the pullback of uu;� .

We can now assemble all the Zu;� by defining

Z� D
a
u2N�

Zu;� ;

and write  � W Z� ! A� for the morphism which restricts to the closed embedding
Zu;� ,!A� on each connected component Zu;� of Z� . Then the uu;� yield a section
u� 2�.Z� ; xM�Z� /, giving the universal family, over Z� ; of contact orders of A� . This
follows immediately from Lemma A.4 by restricting to connected components.

Proposition A.5. Assume Z is locally connected. For any family of contact orders
u 2 �.Z; xM�Z/ of A� ,  W Z ! A� factors uniquely through Z� , and u� pulls back
to u.

Corollary A.6. If � is a face of � , viewing A� naturally as an open substack of A�

we then have Z� Š  
�1
� .A� /, and the section u� 2 �.Z� ; xM�Z� / pulls back to the

section u� 2 �.Z� ; xM�Z� /.

Proof. The statement is immediate from the universal property stated in Proposi-
tion A.5.
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A.2 Family of contact orders of Zariski Artin fans

We now consider the case of an Artin fan AX . Recall that AX has an étale cover by
Artin cones. It was constructed in [5, Proposition 3.1.1] as a colimit of Artin cones
A� , viewed as sheaves over Log.

Definition A.7. We say that the Artin fan AX is Zariski if it admits a Zariski cover
by Artin cones.

A sufficient condition for AX to be Zariski is that X is simple, because then AX
is the Artin fan associated to the ordinary cone complex †.X/ [14, Theorem 6.11].
Proposition C.11 shows that X is simple provided X has Zariski log structure and is
log smooth over a simpleB . The caseB a trivial log point has previously been treated
in [3, Lemma 2.6].

Fix a Zariski Artin fan AX . Let Z be the colimit of the Z� viewed as sheaves over
AX . Note that Z is obtained by gluing together the local model Z� for each Zariski
open A� � AX via the canonical identification given by Corollary A.6.1

The following proposition classifies contact orders on AX by globalizing Propo-
sition A.5.

Proposition A.8. There is a section uX 2 �.Z; xM
�
Z
/ making Z into a family of

contact orders for AX . This family of contact orders is universal in the sense that
for any family of contact orders u 2 �.Z; xM�Z/ of AX ,  W Z ! AX , there is a
unique factorization of  through Z! AX such that u is the pullback of uX .

Proof. If A� ! AX is a Zariski open set, then by the construction of Z,

Z �AX A� D Z� :

By Corollary A.6, the sections u� glue to give a section uX 2 �.Z; xM
�
Z
/, yielding a

family of contact orders in AX .
Consider a family of contact orders Z ! AX , u. To show the desired factoriza-

tion, it suffices to prove the existence and uniqueness locally on each Zariski open
subset A� ! AX , which follows from Proposition A.5.

Definition A.9. A connected contact order forX is a choice of connected component
of Z.

We end this discussion with a couple of properties of the space Z of contact
orders.

1It should be possible to carry this process out for more general Artin fans.
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Proposition A.10. Suppose that the Artin fan AX of X is Zariski. There is a one-
to-one correspondence between irreducible components of Z and pairs .u; �/ where
� 2 †.X/ is a minimal cone such that u 2 �gp.

Proof. Since Z� � Z is Zariski open, an irreducible component of Z is the closure
of an irreducible component of some Z� , so we may assume AX D A� . Then the
statement follows from the description of Zu;� in Lemma A.3.

Remark A.11. Note that if u 2 N� with u 2 � or �u 2 � , then Zu;� is irreducible
and reduced. In fact, topologically Zu;� is the closure of the stratum Z��� where
� � � is the minimal face containing u. Further, the ideal generated by u�1.Z n ¹0º/
is precisely P n F� , so that Zu;� is reduced. In the case that u 2 � , it is the contact
orders associated to ordinary marked points, as developed in [2, 15, 30].

For a simple non-reduced example let P D �_Z be the submonoid of N2 generated
by .e; 0/, .0; e/, .1; 1/ and u W P ! Z given by u.a; b/D a� b. Then Iu is generated
by .e; 0/, .0; e/, and kŒP �=Iu ' kŒt �=.te/ is non-reduced for e > 1.

Thus the situation for more general contact orders associated to punctures may be
more complex than that for marked points.

Example A.12. Even in the Zariski case, there may be monodromy which creates a
difference between the point of view taken on contact orders in this appendix and that
taken in Section 2.4. See Example 2.38 for a simple example with monodromy. There,
taking u D .0; 1; 0/ as a tangent vector to any of the top-dimensional cones of †.X/,
the corresponding connected contact order is a double cover of a one-dimensional
closed subscheme of X . Explicitly, X contains ` strata isomorphic to P1, forming a
cycle, i.e., a nodal elliptic curve. Then u induces a family of contact orders Z ! X

which is a double cover of this elliptic curve. This curve has 2` irreducible com-
ponents, in one-to-one correspondence with the set of pairs of the form .u; �/ and
.�u; �/ for � running over two-dimensional cones of †.X/ tangent to u.

Example 2.39 provides an X with AX Zariski where a similar monodromy pro-
duces connected contact orders with an infinite number of irreducible components. In
this case one sees connected components of moduli spaces of punctured maps with
an infinity of irreducible components.

By the discussion in Remark A.11 above, additional hypotheses are usually needed
to obtain good control of moduli spaces of punctured maps. Here is a simple criterion
that often suffices in practice.

Proposition A.13. Suppose xMgp
X ˝Z Q is generated by its global sections. Assume

further X quasi-compact, with locally connected logarithmic strata. Then every con-
nected component of contact orders of AX has finitely many irreducible components.
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Proof. Let V D �.X; xMgp
X ˝Z R/, so that the induced map j†.X/j ! V � is injective

on each � 2 †.X/ as in Proposition 3.13. Suppose u 2 �.Z; xM�
Z
/ is a connected

component of contact orders of AX . Denote the composition V ! xM
gp
Z
˝Z R

u
�! R

by v 2 V �. For each irreducible component of Z, its corresponding vector u as in
Proposition A.10 is then uniquely determined by v. By Proposition A.10 again Z has
finitely many irreducible components, as †.X/ has finitely many cones by quasi-
compactness.

A.3 Connection with the global contact orders of Section 2.4

We continue to work with a Zariski X . For simplicity in this discussion, let us also
assume thatX is log smooth over Spec k, so in particular associated to any � 2†.X/
is a closed stratum X� � X such that the dual cone of the stalk of xMX at the generic
point of X� is � .

In this case, AX is Zariski, and AX� , the Artin fan of X� , is also Zariski. Let
Z� ! AX� be the universal family of contact orders for AX� . Further, write X� for
the reduced closed stratum of AX� corresponding to � . In this situation, we have:

Proposition A.14. There is a one-to-one correspondence between C� .X/ and the set
of connected components of Z� �AX�

X� .

Proof. By the construction of the colimit of sets, C� .X/ is the quotient of the set`
��� 02†.X/ N� 0 by the equivalence relation � generated by the following set of

relations. Whenever given inclusions of faces � � � 0 � � 00 in †.X/, one obtains an
induced map �� 0� 00 W N� 0 ! N� 00 . Then for x 2 N� 0 , we have x � �� 0� 00.x/.

On the other hand, we may cover AX� with Zariski open sets A� 0 with � 0 running
over � 0 2 †.X/ with � � � 0. Note that by the construction of the universal contact
order of A� 0 , there is a one-to-one correspondence between N� 0 and the set of con-
nected components of Z� 0 D Z� �AX�

A� 0 , with u 2 N� 0 corresponding to Zu;� 0 .
Note the same is then true of the set of connected components of Z� 0 �AX�

X� , with
u 2 N� 0 corresponding to Zu;� 0 �AX�

X� .
Define another equivalence relation � on

`
��� 0 N� 0 as follows. Suppose u0 2

N� 0 , u00 2 N� 00 . Then u0 � u00 if Zu0;� 0 �AX�
X� and Zu00;� 00 �AX�

X� are open
substacks of the same connected component of Z� �AX�

X� . The statement follows
once we show that the two equivalence relations � and� are equal.

Note that A� 0 \A� 00 \X� may be covered with sets A� \X� with � 2 †.X/
running over those � with � � � � � 0 \ � 00. This makes it clear that � is also
generated by the following relations. Suppose given � � � 0 � � 00 with u0 2N� 0 , u00 2
N� 00 . Then because of the inclusion Z� 0 � Z� 00 of Corollary A.6, Z� 0;u0 �AX�

X�

and Z� 00;u00 �AX�
X� may be both viewed as open substacks of Z� �AX�

.X� �AX�
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A� 00/. If these two open substacks are not disjoint, then u0 � u00. However, it follows
from Proposition A.5 that this is the case precisely when �� 0� 00.u0/ D u00. Thus �
and � are the same equivalence relation, since they are generated by the same set of
relations.





Appendix B

Charts for morphisms of log stacks

We discuss here properties of charts of morphisms of algebraic log stacks, due to
a lack of a good reference. There are many standard results involving existence and
properties of charts for morphisms between fs log schemes étale locally, e.g., [52, Sec-
tion II.2], as well as local descriptions of log smooth or étale morphisms, e.g., [52,
Section IV.3.3]. However, to apply these results to morphisms of log stacks, one
would need to pass to smooth neighborhoods, which destroys any discussion of the
more delicate condition of being log étale. Thus it is far more convenient to think of
charts as being given by maps to toric stacks rather than toric varieties. The results of
this appendix are used in Section 3.5 to describe local models for our moduli spaces
of punctured maps to Artin fans, but are also used extensively elsewhere, e.g., in [33].

Here we fix a ground field k of characteristic 0, as usual, and all schemes and
stacks are defined over Spec k. We define, given P a fine monoid and K � P a
monoid ideal,

AP WD ŒSpec kŒP �=Spec kŒP gp��; AP;K D Œ.Spec kŒP �=K/=Spec kŒP gp��: (B.1)

Here both stacks carry a canonical log structure coming from P , and the second stack
carries a canonical idealized log structure induced by the monoid ideal K, see [52,
Section III.1.3].

Remark B.1. If P is a fine monoid, define xP D P=P �. Then AP Š A xP .

Proposition B.2. Let f W X ! Y be a morphism of (idealized) fs log stacks over
Spec k, with coherent sheaves of ideals KX and KY in the idealized case. Let Nx be
a geometric point of X , Ny D f . Nx/, P D xMX; Nx , Q D xMY; Ny , (K D xKX; Nx , J D xKY; Ny

in the idealized case). Then in the two cases, there are strict étale neighborhoods X 0

and Y 0 of Nx and Ny respectively and commutative diagrams

X 0

��

// AP

��

Y 0 // AQ

X 0

��

// AP;K

��

Y 0 // AQ;J

with horizontal arrows (idealized) strict. If further Y is already equipped with a strict
morphism Y ! AQ, we may take Y D Y 0.

Proof. If Y is equipped with a strict morphism Y !AQ, we take Y D Y 0. Otherwise,
there is a tautological morphism Y !Logk. By [53, Corollary 5.25], Logk has a strict
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étale cover by stacks of the form AQ for various monoids Q. Thus we may choose
a strict étale morphism AQ ! Logk whose image contains the image of Ny, and take
Y 0 to be the étale neighborhood Y �Logk

AQ of Ny. If the image of Ny in AQ is not the
deepest stratum of AQ, we may replace AQ with a Zariski open subset of the form
AQ0 where Q0 is a localization of Q along some face and such that Ny maps to the
deepest stratum of AQ0 . By Remark B.1, AQ0 Š AQ0=.Q0/� , so we may assume that
Q D xMY; Ny .

Let X 00 D X �Y Y 0 be the corresponding étale neighborhood of Nx. Similarly, we
have a tautological strict morphism X 00 ! LogY 0 . Now LogY 0 can be covered by
strict étale morphisms of the form AP �AQ Y

0 ! LogY 0 for various P such that
the projection to AP is strict, again by [53, Corollary 5.25]. Here we range over fs
monoids P and morphisms � W Q ! P . Take X 0 D X 00 �LogY 0 .AP �AQ Y

0/ for
a suitable choice of P and � W Q ! P so that X 0 is an étale neighborhood of Nx.
The projection of this stack to AP then yields the desired strict morphism X 0 ! AP

making the diagram commutative. As before, we can pass to a Zariski open substack
of AP to be able to assume that P D xMX; Nx .

In the idealized case, the morphisms X 0 ! AP , Y 0 ! AQ factor through AP;K

and AQ;J respectively, and the factored morphisms are idealized strict.

Lemma B.3. Let � W Q ! P be a morphism of fs monoids, J � Q, K � P with
�.J / � K. Then the induced morphism � W AP;K ! AQ;J is idealized log étale.

Proof. The morphism � is clearly locally of finite presentation, so we need only verify
the formal lifting criterion. Suppose given a diagram

T0
g0 //

i

��

AP;K

��

�

��

// AP

�

��

T
g
//

g0

;;

AQ;J
// AQ

Here i is a strict and idealized strict closed immersion with ideal sheaf having square
zero, and the right-hand horizontal arrows are strict, but not idealized strict, closed
immersions, with the right-hand square commutative. We wish to show there is a
unique g0 making the diagram commute.

By [53, Corollary 5.23], AP ! AQ is log étale. Thus forgetting the idealized
structure on T , we obtain a unique morphism h W T ! AP in the above diagram
making everything commute. Let KT0 , KT be the coherent sheaves of monoid ideals
for T0 and T respectively giving the idealized structure. Note KT0 is the pullback of
a sheaf of ideals xKT0 �

xMT0 under the projection MT0 !
xMT0 , and similarly for T .

By strictness, xKT0 D
xKT . Since Ng[0.K/ � xKT0 , as g0 is an idealized morphism, we

have by commutativity that Nh[.K/� xKT . Hence ˛T vanishes on any lift to MT of an
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element Nh[.k/ for k 2 K. It then follows that h factors through the closed immersion
AP;K ! AP , and this factorization yields the unique lifting g0.

Proposition B.4. With the hypotheses of Proposition B.2, suppose in addition that f
is log smooth (resp. log étale, idealized log smooth, idealized log étale). Then in the
non-idealized case, the induced morphism X 0 ! Y 0 �AQ AP is smooth (resp. étale)
and in the idealized case, the induced morphism X 0 ! Y 0 �AQ;J AP;K is smooth
(resp. étale).

Proof. In the non-idealized case, [53, Theorem 4.6], shows thatX! Y is log smooth
(étale) if and only if the tautological morphism X ! LogY is smooth (étale). It
follows immediately by base-change from the construction of the proof of Propo-
sition B.2 that, if f is log smooth (étale), the morphism X 00 ! Y 0 is log smooth
(étale) and hence X 00 ! LogY 0 is smooth (étale). Thus by another base-change, we
see that the projection X 0 ! Y 0 �AQ AP is smooth (étale).

The idealized case requires a little bit more work because the analogous statement
for idealized log smooth (étale) morphisms does not seem to appear in the literature.
First, by [53, Lemma 4.8], X 00 ! LogY 0 is locally of finite presentation, as X ! Y

is locally of finite presentation, being idealized log étale, and thus X 0! Y 0 �AQ AP

is locally of finite presentation. However, as in the proof of Proposition B.2, X 0 !
Y 0 �AQ AP factors through the closed immersion Y 0 �AQ;J AP;K ,! Y 0 �AQ AP ,
and thus X 0! Y 0 �AQ;J AP;K is also locally of finite presentation. So we just need
to show the formal lifting criterion, i.e., given a diagram

T 0
g
0 //

i

��

X 0

f 0

��

T
g
//

88

Y 0 �AQ;J AP;K

(B.2)

where i is a closed immersion with ideal of square zero, there is, étale locally on
T 0, a dotted line as indicated, unique in the étale case. Give T0 and T the idealized
log structure making all arrows in the above square strict and idealized strict. Via
composition of g with the projection to Y 0, we obtain a diagram

T0
g0 //

i

��

X 0

��

T
g00

//

g0

<<

Y 0

Formal idealized log smoothness (idealized log étaleness) then implies, étale locally,
a (unique) lift g0. It is then sufficient to show that f 0 ı g0 coincides with g in (B.2).
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However, by Lemma B.3, the projection Y 0 �AQ;J AP;K ! Y 0 is idealized log étale,
and hence by uniqueness in the formal lifting criterion for idealized log étale mor-
phisms, f 0 ı g0 D g.



Appendix C

Functorial tropicalization and the category of points

Various definitions of tropicalization in logarithmic geometry are available in the liter-
ature [1,3,14,30,42,69]. The purpose of this appendix is to spell out the construction
of tropicalization as a functor from the category of fine log algebraic stacks to the
category of generalized cone complexes generalizing [69, Proposition 6.3] to cases
with monodromy, and closer in spirit to [30, Appendix B]. This refines the discussion
in [3, Section 2.1].

We adopt the definition from [43, Section II.1], [64, Section 2], [1, Section 2.2] of
a generalized cone complex† as a topological space j†j together with a presentation
given by a homeomorphism with the colimit in the category of topological spaces
of a diagram in Cones with all arrows face morphisms. Here we use the topology
induced by embedding a cone � into its vector space N� ˝Z R. For any cone � in a
presentation we always include all face embeddings � ! � in the diagram. The strata
of j†j are the images of the interiors of cones from the presentation. We consider
generalized cone complexes up to equivalence generated by adding more cones to a
presentation. A morphism of cone complexes †! †0 is given by a continuous map
j†j ! j†0j that locally lifts to a morphism of diagrams of presentations. Unlike the
cited references, we do not impose any finiteness conditions since we want to admit
situations with infinitely many strata.

C.1 Tropicalization of fine log schemes

We begin by recalling the definition of the category of geometric points Pt.X/ of a
scheme X with arrows defined by specialization, following [9, Section VIII.7], see
also [67, Section 0GJ2]. An object in Pt.X/ is a morphism Nx W Spec � ! X with
� D �. Nx/ an algebraically closed field. Given Nx we have the associated local scheme
X. Nx/ D Spec OX; Nx . A specialization arrow Nx ! Ny is an X -morphism Spec �. Nx/!
X. Ny/ or, equivalently by [9, Section VIII.7, Proposition 7.4], an X -morphism
X. Nx/! X. Ny/.

Composition with a morphism f W X ! Y defines a functor

f� W Pt.X/! Pt.Y /

compatible with composition, so Pt is a functor from the category of schemes to the
category of categories Cat.
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For each étale sheaf of sets F on X , a specialization arrow Nx ! Ny in Pt.X/
induces a generization map1

F Ny ! F Nx : (C.1)

This assignment is compatible with morphisms of sheaves. Thus if Sh.Xét/ denotes
the étale topos of X , we obtain a functor

Stalks W Sh.Xét/! Func.Pt.X/op;Sets/ (C.2)

associating to an étale sheaf its functor of stalks, a diagram in Sets indexed by Pt.X/op.
We emphasize that the generization homomorphism (C.1) does not only depend on
Nx, Ny, but on the choice of specialization arrow Nx ! Ny.

Example C.1. Let C be the nodal cubic. If x� denotes a geometric generic point and
Nx a geometric point over the node, there are two different C -morphisms

Spec �.x�/! X. Nx/

that reflect the specialization along the two branches of C at Nx. This statement can
most easily be seen by going over to the usual two-fold étale cover � W zC ! C , and
observing that each of the two lifts QNx 2 Pt. zC/ of Nx has generization homomorphisms
to both lifts of x�.

Charts for the log structure define a locally finite stratification of X with a stra-
tum a maximal connected locally closed subsetZ � jX j with xMX jZ locally constant.
Denote by Strata.X/ the set of strata of X . For each Z 2 Strata.X/ choose a geomet-
ric point Nx D NxZ of Z and define

�Z D Hom
�
xMX; Nx;R�0

�
2 Cones: (C.3)

Different choices of Nx lead to isomorphic �Z , but the isomorphism is only unique
up to the monodromy action of the étale fundamental group �1.Z; Nx/ of the stratum
on xMX; Nx . More precisely, since the automorphism group of a fine monoid is finite,
arguing with [67, Lemma 0DV5] shows the following. There exists a finite connected
étale Galois cover

f W zZ ! Z

with f �1 xMX a constant sheaf. Lifting Nx to zZ yields an isomorphism

�
�
zZ; f �1 xMX

� '
�! xMX; Nx (C.4)

1We prefer “generization map” over the common “specialization map” in this context since
the map goes from the stalk at the more special point to the stalk at the more generic point.
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by restriction. Now by definition, �1.Z; Nx/ acts on f , and the induced action on
�. zZ;f �1 xMX / by pullback corresponds to the action of �1.Z; Nx/ on xMX; Nx via (C.4).
The minimal choice of f with f �1 xMX a constant sheaf has connected zZ and is a
Galois cover. Moreover, in the minimal case, the action of �1.Z; Nx/ on xMX; Nx factors
over a faithful action of the Galois group Aut. zZ=Z/.

For each stratum Z with chosen geometric point Nx D NxZ denote by

GZ � Aut. xMX; Nx/ (C.5)

the image of the monodromy action of �1.Z; Nx/ on xMX; Nx . By the previous discussion,
GZ ' Aut. zZ=Z/ for any minimal connected Galois cover f W zZ! Z with f �1 xMX

a constant sheaf.
Now if W 2 Strata.X/ is another stratum, and Nw is a geometric point of W \

cl.Z/, there exists a geometric point x� ofZ and a specialization arrow � W x�! Nw [67,
Section 0BUP], hence a generization homomorphism xMX; Nw !

xMX;x� . Since xMX is
locally constant on the strata there are also isomorphisms

xMX; Nw
'
�! xM NxW ;

xMX;x�
'
�! xM NxZ ; (C.6)

for NxZ , NxW the chosen reference points for the two strata. These isomorphisms are
unique up to composing with elements of GW and GZ , respectively. We call any
morphism

� W �Z ! �W (C.7)

obtained by applying Hom.�;R�0/ to any of the compositions

xM NxW

'
�! xMX; Nw

�
�! xMX;x�

'
�! xM NxZ

a specialization morphism or specialization arrow. Note that � also depends on the
choice of Nw, and hence the actions of GZ and GW on the set of specialization arrows
may not be transitive. For Z D W the set of specialization arrows equals GZ D GW .

If f W X ! Y is a morphism of fine log schemes, Z 2 Strata.X/ and f . NxZ/ a
geometric point of Z0 2 Strata.Y /, then Nf [ W f �1 xMY !

xMX together with a choice
of isomorphism xMY;f . NxZ/ '

xMY; NxZ0
in (C.6) defines a morphism

' W �Z ! �Z0 (C.8)

in Cones by the composition

Hom
�
xMX; NxZ ;R�0

�
! Hom

�
xMY;f . NxZ/;R�0

� '
�! Hom

�
xMY; NxZ0

;R�0
�
:

Note such ' are not in general face morphisms. The set of all such arrows is com-
patible with specialization in the sense that if � W �Z ! �W is a specialization mor-
phism (C.7) inX then there exists a specialization morphism �0 W �Z0 ! �W 0 in Y and
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morphisms ' W �Z ! �Z0 ,  W �W ! �W 0 as in (C.8) making the following diagram
commute:

�Z
� //

'

��

�W

 

��
�Z0

�0 // �W 0 :

(C.9)

We are then in position to define the tropicalization of X as a generalized cone
complex.

Definition C.2. LetX D .X;MX / be a fine log scheme. The tropicalization†.X/ of
X is the generalized cone complex defined by the diagram in Cones with one object
�Z from (C.3) for each stratum Z � X and face morphisms �Z ! �W the set of
specialization morphisms from (C.7).

A morphism f W X ! Y of fine log schemes induces the morphism

†.f / W †.X/! †.Y /

defined by all arrows ' W �Z ! �Z0 as in (C.8).

Note that diagrams of specialization arrows as in (C.9) show that the map of
topological spaces j†.X/j ! j†.Y /j is well defined and continuous, and that it lifts
locally to a morphism of presentations. Thus †.f / indeed is a morphism of general-
ized cone complexes.

We need to check that our definition of tropicalization does not depend on the
choices of a geometric point NxZ for each stratum Z of X .

Lemma C.3. The definition of tropicalization in Definition C.2 is independent of
choices.

Proof. Let Z be a logarithmic stratum of X and Nx0Z another choice of geometric
point. Since xMX jZ is locally constant there exists an isomorphism

' W �Z D Hom
�
xMX; NxZ ;R�0

� '
�! � 0Z D Hom

�
xMX; Nx0

Z
;R�0

�
that is unique up to the action of �1.Z/ on �Z . Replacing �Z by � 0Z and all arrows
involving �Z by composition with ' or '�1 as appropriate, gives an alternative
presentation of j†.X/j as a colimit of a diagram in Cones. By construction, both
diagrams are locally isomorphic, and hence they lead to the same generalized cone
complex. This argument is local to each geometric point, thus also applies to any two
different sets of choices of geometric points.

We finally check functoriality of this notion of tropicalization.

Proposition C.4. If f W X ! Y and g W Y ! Z are morphisms of fine log schemes
then †.g ı f / D †.g/ ı†.f /.



Tropicalization of fine log algebraic stacks 149

Proof. Given a specialization morphism � W Z ! W of strata of X there exist two
commutative diagrams of the form (C.9) with horizontal arrows specialization mor-
phisms �0 W Z0 ! W 0 and �00 W Z00 ! W 00 of strata in Y and Z, respectively. The two
small commutative squares now define the local liftings of †.f / and †.g/ to pre-
sentations, while their composition defines the lifting of †.g ı f /. The result is now
obvious.

Remark C.5. A canonical and obviously functorial definition of †.X/ runs as fol-
lows. The composition of the functor Stalks in (C.2) with Hom.�;R�0/ defines a
diagram

Pt.X/op
! Cones (C.10)

with all morphisms face inclusions. The reasoning in the proof of Lemma C.3 shows
that the associated generalized cone complex is canonically isomorphic to†.X/. We
preferred to base our definition on the more explicit treatment with one cone for each
stratum.

Remark C.6. One might think that a slightly refined definition could also give a
functorial notion of tropicalization as a diagram of cones associated to strata. This
is, however, not the case. The problem appears already with locally constant sheaves
in the étale topology, which can not be described by groupoids of sets obtained from
the associated representations of the étale fundamental group. The étale fundamental
group of a scheme X depends on the choice of a geometric point and is otherwise
only defined up to non-unique isomorphism. Thus a functorial definition would have
to involve at least a skeleton of Pt.X/, and hence completely loses the combinatorial
flavor of tropicalization.

C.2 Tropicalization of fine log algebraic stacks

Now let X be a fine log algebraic stack, with MX and xMX sheaves in the lisse-étale
topology. To define the tropicalization †.X/ let

h W U ! X

be a strict smooth surjection from a log scheme. ThenU �X U is a scheme that comes
with two projections to U . Tropicalizing defines a double arrow of generalized cone
complexes

†.U �X U/� †.U /: (C.11)

For a geometric point Nx of U �X U , composition with the two projections defines
two geometric points Nx1, Nx2 of U . Since both projections U �X U ! U are strict,
we have two isomorphisms

xMU; Nxi !
xMU�XU; Nx; i D 1; 2: (C.12)
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These isomorphisms induce an equivalence relation on Strata.U /, and provide iso-
morphisms between stalks of xMU at pairs of geometric points in equivalent strata.
The quotient Strata.U /= � can easily be seen to be independent of the choice of
smooth cover U ! X , and in fact defines the set Strata.X/ of strata of the log alge-
braic stack X .

To define the tropicalization †.X/, we add Hom.�;R�0/ of the isomorphisms
in (C.12) to the set of arrows in the diagram defining †.U /.

Definition C.7. The tropicalization†.X/ of the fine log algebraic stackX is the gen-
eralized cone complex defined by the diagram of†.U / with the added isomorphisms
induced by the tropicalization of (C.12).

Restricting the diagram defining †.X/ to one cone for each stratum of X gives
an alternative presentation with index category Strata.X/.

We need to check independence of our definition of †.X/ from choices.

Lemma C.8. The definition of †.X/ is independent of the choice of strict smooth
cover U ! X .

Proof. It suffices to consider the composition of U ! X with a strict smooth sur-
jection V ! U . We obtain the following commutative diagram of strict smooth
surjections of log schemes:

V �X V //

�� ��

U �X U

�� ��

V // U

(C.13)

Now all arrows are surjective on geometric points. Since smooth maps are open, all
arrows are also surjective on the set of generizations. Thus each cone and arrow of
†.V / maps isomorphically to a cone or arrow of †.U /, and each cone or arrow of
†.U / arises as an image. Moreover, if two cones �1, �2 in †.U / belong to the same
stratum in X , that is, are isomorphic images of a cone � in †.U �X U/ appearing
from a geometric point in U �X U , then lifting this geometric point to V �X V pro-
vides a cone z� in †.V �X V / mapping to cones z�1; z�2 in †.V /. The tropicalization
of (C.13) now shows that the diagram of cones

z�1

��

z� //

��

oo z�2

��
�1 � //oo �2

commutes up to composing the lower horizontal arrows with isomorphisms in†.U /.
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Taken together we see that the diagram defining †.X/ from V ! X just adds a
number of isomorphic cones to the diagram defining †.X/ from U ! X . Thus the
corresponding generalized cone complexes are equivalent.

The proof of functoriality of this notion of tropicalization now follows by local
lifting to a presentation as in Proposition C.4. We omit the details.

Proposition C.9. If f W X ! Y and g W Y ! Z are morphisms of fine log algebraic
stacks then †.g ı f / D †.g/ ı†.f /.

C.3 Tropicalization in the log smooth case

We end this section with some facts on logarithmic strata and tropicalization in the
Zariski log smooth case.

Lemma C.10. Let f WX!B be a log smooth morphism of fine log schemes. Assume
that B is locally noetherian with geometrically unibranch logarithmic strata. Then
the logarithmic strata of X are irreducible and geometrically unibranch.

Proof. First note that X is locally noetherian since B is locally noetherian and f
is locally of finite presentation by the definition of log smoothness. Thus a locally
irreducible connected subset of jX j is irreducible. It thus suffices to show the stronger
statement that each logarithmic stratum Z of X is geometrically unibranch.

Let z 2 jZj and ZB � B the logarithmic stratum containing f .z/. Being geo-
metrically unibranch is a local property that is stable under étale morphisms. By [52,
Theorem IV.3.3.1] we may thus replace X and B by étale neighborhoods of z and
f .z/ to obtain a commutative diagram

X
g
//

f
$$

B �AQ AP
k //

��

AP

A�

��

B
h // AQ

with AP D Spec ZŒP �, AQ D Spec ZŒQ�, A� the morphism induced by a homomor-
phism � W Q! P of fine monoids, all horizontal arrrows strict, the square cartesian,
g étale, and h a neat chart at z. ThusZB D .h�1.O//red, whereO � AQ is the closed
torus orbit defined by the monoid ideal Q n ¹0º.

Since k ı g is strict, the composition Z ! B �AQ AP ! AP factors over the
inclusion of a logarithmic stratumZP�AP . Now toric morphisms respect the decom-
position into logarithmic strata. Thus A� .ZP / is contained in a logarithmic stratum
of AQ. But h.f .z// 2 A� .ZP /, so this latter stratum is the closed stratum O � AQ.
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This shows that g.Z/ is contained in

ZB �AQ AP D ZB �AQ ZP D ZB �O ZP D ZB �Z ZP :

Since ZB �Z ZP has constant ghost sheaf xM it follows that Z D g�1.ZB �Z ZP /,
and hence Z is étale over ZB �Z ZP . Here we are using that the preimage of a
reduced subscheme under an étale morphism remains reduced [67, Proposition 0250].
Finally, ZB �Z ZP is geometrically unibranch by the assumption on the strata of B .
This shows that Z is geometrically unibranch at z.

Proposition C.11. Let f WX!B be a log smooth morphism of fine log schemes with
B locally noetherian and with geometrically unibranch logarithmic strata. Assume
that B is simple, that is, †.B/ is a cone complex rather than a generalized cone
complex, and that the log structure of X is defined in the Zariski topology. Then X
is simple as well, and the logarithmic strata of X are irreducible and geometrically
unibranch.

Proof. Lemma C.10 shows the statement on the log strata of X . Thus each loga-
rithmic stratum Z has a unique generic point �Z . It is then obvious that there is an
arrow �Z ! �W if and only if �W 2 cl.�Z/. Moreover, since MX is a sheaf on the
Zariski site, �Z ! �W must then be the dual of the generization homomorphism
MX;�W !MX;�Z . Thus there is at most one such arrow, and hence †.X/ is a cone
complex.
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