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The Seiberg–Witten Floer spectrum is a stable homotopy refinement of the monopole Floer
homology of Kronheimer and Mrowka. The Seiberg–Witten Floer spectrum was defined by
Manolescu for closed, spinc 3-manifolds with b1 = 0 in an S1-equivariant stable homotopy
category and has been producing interesting topological applications. Lidman and
Manolescu showed that the S1-equivariant homology of the spectrum is isomorphic to the
monopole Floer homology.

For closed spinc 3-manifolds Y with b1(Y) > 0, there are analytic and homotopy-theoretic
difficulties in defining the Seiberg–Witten Floer spectrum. In this memoir, we address the
difficulties and construct the Seiberg–Witten Floer spectrum for Y , provided that the first
Chern class of the spinc structure is torsion and that the triple-cup product on H1(Y ;ℤ)
vanishes. We conjecture that its S1-equivariant homology is isomorphic to the monopole
Floer homology.

For a 4-dimensional spinc cobordism X between Y0 and Y1, we define the Bauer–Furuta map
on these new spectra of Y0 and Y1, which is conjecturally a refinement of the relative
Seiberg–Witten invariant of X. As an application, for a compact spin 4-manifold X with
boundary Y , we prove a 10

8 -type inequality for X which is written in terms of the intersection
form of X and an invariant κ(Y) of Y .

In addition, we compute the Seiberg–Witten Floer spectrum for some 3-manifolds.

https://ems.press

ISSN 2747-9080
ISBN 978-3-98547-087-7





Memoirs of the European Mathematical Society

Edited by

Anton Alekseev (Université de Genève) 
Hélène Esnault (Freie Universität Berlin) 
Gerard van der Geer (Universiteit van Amsterdam) 
Ari Laptev (Imperial College London) 
Laure Saint-Raymond (Institut des Hautes Études Scientifiques) 
Susanna Terracini (Università degli Studi di Torino)

The Memoirs of the European Mathematical Society publish outstanding research contributions in 
individual volumes, in all areas of mathematics and with a particular focus on works that are longer 
and more comprehensive than usual research articles.

The collection’s editorial board consists of the editors-in-chief of the Journal of the European 
Mathematical Society and the EMS Surveys in Mathematical Sciences, along with editors of book 
series of the publishing house of the EMS as well as other distinguished mathematicians. 

All submitted works go through a highly selective peer-review process.

Previously published in this series:

J.-M. Delort, N. Masmoudi, Long-Time Dispersive Estimates for Perturbations of a Kink Solution of 
One-Dimensional Cubic Wave Equations

G. Cotti, Cyclic Stratum of Frobenius Manifolds, Borel–Laplace (α, β)-Multitransforms, and Integral 
Representations of Solutions of Quantum Differential Equations

A. Kostenko, N. Nicolussi, Laplacians on Infinite Graphs
A. Carey, F. Gesztesy, G. Levitina, R. Nichols, F. Sukochev, D. Zanin, The Limiting Absorption Princi-

ple for Massless Dirac Operators, Properties of Spectral Shift Functions, and an Application to 
the Witten Index of Non-Fredholm Operators

J. Kigami, Conductive Homogeneity of Compact Metric Spaces and Construction of p-Energy
A. Buium, L. E. Miller, Purely Arithmetic PDEs Over a p-Adic Field: δ-Characters and δ-Modular Forms
M. Duerinckx, A. Gloria, On Einstein’s Effective Viscosity Formula
R. Willett, G. Yu, The Universal Coefficient Theorem for C*-Algebras with Finite Complexity
B. Janssens, K.-H. Neeb, Positive Energy Representations of Gauge Groups I. Localization
S.Dipierro, G. Giacomin, E. Valdinoci, The Lévy Flight Foraging Hypothesis in Bounded Regions
A. Naor, Extension, Separation and Isomorphic Reverse Isoperimetry
N. Lerner, Integrating the Wigner Distribution on Subsets of the Phase Space, a Survey
B. Adcock, S. Brugiapaglia, N. Dexter, S. Moraga, On Efficient Algorithms for Computing Near-

Best Polynomial Approximations to High-Dimensional, Hilbert-Valued Functions from Limited 
Samples

J. J. Carmona, K. Fedorovskiy, Carathéodory Sets in the Plane
D. Abramovich, Q. Chen, M. Gross, B. Siebert, Punctured Logarithmic Maps
T. Oh, M. Okamoto, L. Tolomeo, Stochastic Quantization of the Φ3 3-Model



Hirofumi Sasahira 
Matthew Stoffregen

Seiberg–Witten Floer Spectra 
for b1 > 0



Authors

Hirofumi Sasahira 
Faculty of Mathematics  
Kyushu University 
744, Motooka, Nishi-ku 
819-0395 Fukuoka, Japan

Email:   hsasahira@math.kyushu-u.ac.jp 

 

 
 

 
 
Matthew Stoffregen  
Department of Mathematics 
Michigan State University 
619 Red Cedar Road, C212 Wells Hall 
East Lansing, MI 48824, USA

Email:   stoffre1@msu.edu

 
Each volume of the Memoirs of the European Mathematical Society is available individually or  
as part of an annual subscription. It may be ordered from your bookseller, subscription agency,  
or directly from the  publisher via subscriptions@ems.press.

ISSN 2747-9080, eISSN 2747-9099 
ISBN 978-3-98547-087-7, eISBN 978-3-98547-587-2, DOI 10.4171/MEMS/17 
 

  The content of this volume is licensed under the CC BY 4.0 license, with the exception of the 
logo and branding of the European Mathematical Society and EMS Press, and where otherwise 
noted. 
 
Bibliographic information published by the Deutsche Nationalbibliothek 
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;  
detailed bibliographic data are available on the Internet at http://dnb.dnb.de. 
 
Published by EMS Press, an imprint of the

European Mathematical Society – EMS – Publishing House GmbH 
Institut für Mathematik 
Technische Universität Berlin 
Straße des 17. Juni 136 
10623 Berlin, Germany

https://ems.press 
 
© 2025 European Mathematical Society 
 
Typesetting: Alison Durham, Manchester, UK 
Printed in Germany 
♾ Printed on acid free paper



Abstract

The Seiberg–Witten Floer spectrum is a stable homotopy refinement of the monopole
Floer homology of Kronheimer and Mrowka. The Seiberg–Witten Floer spectrum
was defined by Manolescu for closed, spinc 3-manifolds with b1 D 0 in an S1-
equivariant stable homotopy category and has been producing interesting topological
applications. Lidman and Manolescu showed that the S1-equivariant homology of
the spectrum is isomorphic to the monopole Floer homology.

For closed spinc 3-manifolds Y with b1.Y / > 0, there are analytic and homotopy-
theoretic difficulties in defining the Seiberg–Witten Floer spectrum. In this memoir,
we address the difficulties and construct the Seiberg–Witten Floer spectrum for Y ,
provided that the first Chern class of the spinc structure is torsion and that the triple-
cup product on H 1.Y IZ/ vanishes. We conjecture that its S1-equivariant homology
is isomorphic to the monopole Floer homology.

For a 4-dimensional spinc cobordismX between Y0 and Y1, we define the Bauer–
Furuta map on these new spectra of Y0 and Y1, which is conjecturally a refinement
of the relative Seiberg–Witten invariant of X . As an application, for a compact spin
4-manifoldX with boundary Y , we prove a 10

8
-type inequality forX which is written

in terms of the intersection form of X and an invariant �.Y / of Y .
In addition, we compute the Seiberg–Witten Floer spectrum for some 3-mani-

folds.
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Chapter 1

Introduction

1.1 Background

The Seiberg–Witten equations [51] have been an important tool in the study of 4-
manifolds since their introduction. Soon after these equations appeared, Kronheimer–
Mrowka [28] extended their study to define the monopole Floer homology of 3-
manifolds, and established its relationship with the 4-manifold invariant; the resulting
theory has since had many applications in low-dimensional topology.

In both gauge theory and symplectic geometry, certain Floer homology theories
have since been shown to arise as the homology of well-defined Floer spectra as
envisioned by Cohen, Jones and Segal [11], and some invariants, obtained by count-
ing solutions of certain PDEs, are now either known or conjectured to come from the
degree of certain maps between spectra. One of the first examples of such a construc-
tion is the Bauer–Furuta invariant [8,21], which associates an element in stable homo-
topy � st.S0/ to certain 4-manifolds, refining the ordinary Seiberg–Witten invariant.
Building on the finite-dimensional approximation technique introduced by Furuta,
Manolescu [35] constructed an S1-equivariant stable homotopy type SWF.Y;s/ asso-
ciated to rational homology 3-spheres with spinc structure .Y; s/.

It is natural to want to extend Manolescu’s construction to 3-manifolds with
b1.Y / > 0. In the case b1.Y / D 1, Kronheimer–Manolescu [30] constructed a peri-
odic pro-spectrum for pairs .Y; s/. Later, together with T. Khandhawit and J. Lin,
the first author constructed the unfolded Seiberg–Witten Floer spectrum for arbitrary
closed, oriented .Y; s/ in [24, 25].

The unfolded spectrum comes in multiple flavors. For now, we consider only
the type-A unfolded invariant swfA.Y; s/, which depends on .Y; s/ as well as some
additional data we suppress. This invariant is a directed system in the S1-equivariant
stable homotopy category. In particular, it is not per se a spectrum, and tends to be
very large.

Khandhawit, Lin and the first author [25] showed that the unfolded invariant
allowed for gluing formulas, in a very general setting, for the calculation of the
Bauer–Furuta invariant of a 4-manifold cut along 3-manifolds with b1 > 0. In par-
ticular, this enables one to prove vanishing formulas for the Bauer–Furuta invariant
in many situations.

However, the invariant swfA.Y; s/ is not expected to recover the monopole Floer
homology, but is instead expected to recover a version of monopole Floer homology
with fully twisted coefficients.
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Here we construct a new Seiberg–Witten Floer spectrum SWF.Y;s/ for b1.Y / >
0, as follows.

Theorem 1.1.1. Let .Y; s/ be a closed, spinc 3-manifold which satisfies that the
first Chern class c1.s/ 2 H 2.Y IZ/ is torsion, and so that the triple-cup product
on H 1.Y IZ/ vanishes. Associated to a Floer framing P (see Section 3.5 for this
notation), there is a well-defined parameterized, S1-equivariant stable homotopy
type �WF .Y; s;P/, over the Picard torus Pic.Y / D H 1.Y IR/=H 1.Y IZ/, called
the Seiberg–Witten Floer stable homotopy type of .Y; s;P/. Moreover, there is a
well-defined (unparameterized) S1-equivariant connected simple system of spectra
SWFu.Y; s;P/, the Seiberg–Witten Floer spectrum.

If s is self-conjugate and P is a Pin.2/-equivariant Floer framing, then the equi-
variant, parameterized stable homotopy type �WF .Y; s;P/ naturally comes with
the structure of a parameterized Pin.2/-equivariant stable homotopy type, where
the Picard torus has a Pin.2/-action factoring through �0.Pin.2// by conjugation.
Similarly, SWFu.Y; s;P/ has an underlying (unparameterized) Pin.2/-equivariant
spectrum, SWFu;Pin.2/.Y; s;P/.

The homotopy type �WF .Y; s;P/, viewed without its parameterization, has the
homotopy type of a finite S1 (respectively Pin.2/)-CW complex. The Seiberg–Witten
Floer spectrum SWFu.Y;s;P/ (respectively SWFu;Pin.2/.Y;s;P/) has the homotopy
type of a finite S1 (respectively Pin.2/) CW-spectrum.

If b1.Y / D 0, �WF .Y;s;P/ agrees with the invariant SWF.Y;s/ in [35], in that

�WF .Y; s;P/ ' †nCSWF.Y; s/;

for some n 2 Q, depending only on P.

For the notion of the parameterized spaces that we use, ex-spaces, we refer to
Appendix A, as well as for the notion of a connected simple system. In particular, see
Definition A.1.9 for the notion of a parameterized equivariant stable homotopy type.

The collection of Floer framings of .Y; s/, should any exist, is an affine space
over K.Pic.Y // Š Z2

b1.Y /�1 . Moreover, there is an explicit relationship between the
Floer spectra constructed for different spectral sections; see Corollary 3.6.3.

In order to explain the context of Theorem 1.1.1, and its apparent difference from
the unfolded invariant, we review below the process of finite-dimensional approxi-
mation, introduced by Furuta, and used by Manolescu [35] in his construction of the
3-manifold invariant for rational homology 3-sphere input, as well as in [24, 25, 30].

1.2 Finite-dimensional approximation

There are two main approaches to refining the construction of Floer-theoretic invari-
ants from homology theories to generalized homology theories (and, in some
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instances, spectra). There is the approach by constructing framed flow categories (or
variations on this type of category) as envisioned originally by [11]. A very general
version of this has just been accomplished in [1] (while the present work was in its
final stages of preparation). There is also the method of finite-dimensional approxi-
mation, mentioned above, which we now summarize.

Manolescu’s construction of SWF.Y; s/ takes place inside the Coulomb gauge
slice of the Seiberg–Witten equations. All that matters for this introduction is that,
roughly speaking, the Coulomb slice is some Hilbert space on which the Seiberg–
Witten equations admit a particularly simple form, as a linear operator plus a compact
perturbation. For certain linear subspaces of the Coulomb slice (adapted to the linear
part of the Seiberg–Witten equations), Manolescu considers an approximation of the
formal L2-gradient flow of the Seiberg–Witten equations. The approximations tend
to stabilize as larger and larger finite-dimensional subspaces are chosen. Associated
to suitable flows on suitable topological spaces, there is a convenient invariant, the
Conley index, which is a well-defined homotopy type associated to the flow (along
with some extra data). The invariant SWF.Y; s/ is then taken as the Conley index of
these approximated flows.

The most pressing difficulty facing finite-dimensional approximation to other
equations of gauge theory or symplectic geometry is that the configuration space
in these other situations is usually not linear, so that it is not obvious which finite-
dimensional submanifolds one should consider “approximations” on.

For b1.Y / > 0 the gauge slice of the Seiberg–Witten equations is no longer linear,
but Kronheimer–Manolescu [30], and the authors of [24, 25], avoided the problem of
having a more general configuration space by considering the Seiberg–Witten equa-
tions on the universal cover (which is once again a Hilbert space) of a gauge slice to
the Seiberg–Witten equations, where finite-dimensional approximation is still possi-
ble, but where the usual compactness of the space of Seiberg–Witten trajectories is
lost. The loss of compactness leads to the resulting invariant swfA not being a single
spectrum, but rather a system of them.

The problem of performing finite-dimensional approximation in nonlinear situ-
ations has been open for some time (though see [27]). In this memoir our objective
is to resolve it in one (relatively simple) case, for the Seiberg–Witten equations. We
hope that this method may be useful in other situations where one would like to apply
finite-dimensional approximation for topologically complicated configuration spaces.

The main work of the present memoir is showing that there exist families of
submanifolds of the configuration space of the Seiberg–Witten equations (for b1.Y />
0) on which the Seiberg–Witten equations can be approximated very accurately. This
comes down to carefully controlling spectral sections of the Dirac operator, in the
sense of Melrose–Piazza [40], and in particular relies on some control of spectra
of Dirac operators. Once the submanifolds are constructed, there also remains the
problem of showing that the approximate Seiberg–Witten equations thereon are
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sufficiently accurate; for this we use a refined version of the original argument of
Manolescu which requires weaker assumptions than the original, but does not yield
the same strength of convergence as in Manolescu’s case.

A word is also in order about the hypotheses on the input in Theorem 1.1.1.
Cohen–Jones–Segal conjectured that Floer spectra should exist for many of the famil-
iar Floer homology theories – but only in the event that the polarization is trivial. The
hypotheses in the theorem are necessary for the vanishing of the polarization (indeed,
a Floer framing is the same thing as a trivialization of the polarization), as observed
in [30].

However, in spite of usually having a dependence on the Floer framing, we can
consider generalized homology theories applied to SWFu.Y;s;P/ that are insensitive
to the framing. In the following theorem, n.Y; s;P/ is a certain numerical invariant
of a Floer framing, introduced in Chapter 6, and MU and MUS1 denote, respec-
tively, complex cobordism and S1-equivariant complex cobordism. For the notion
of an equivariant complex orientation, see Section 3.6 (and for more detail, [12]).

Theorem 1.2.1. Let E be a (possibly S1-equivariant) complex-oriented (resp. S1-
equivariantly complex oriented) cohomology theory. Then

E��2n.Y;s;P/.SWFu.Y; s;P//

is (canonically) independent of P.

In particular, the complex-cobordism theories

FMU�.Y; s/ DeMU��2n.Y;s;g;P/.SWFu.Y; s;P//;

FMU�
S1
.Y; s/ DeMU��2n.Y;s;g;P/

S1
.SWFu.Y; s;P//;

are invariants of the pair .Y;s/, which we call the Floer (equivariant) complex cobor-
dism of .Y; s/.

As MU, MUS1 are the universal complex-oriented cohomology theories, in some
sense FMU�.Y;s/ and FMU�

S1
.Y;s/ might be interpreted as the universal monopole

Floer-type invariants that are independent of the framing.
More speculatively, we remark that the independence of FMU� on the framing

suggests that its definition could be extended to pairs .Y; s/ which do not admit a
Floer framing. We plan to pursue this in future work.

It would also be desirable to relate the (generalized) homology theories of the
Seiberg–Witten Floer spectrum SWFu.Y; s;P/ to the monopole-Floer homology of
Kronheimer–Mrowka. In particular, we conjecture the following.
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Conjecture 1.2.2. For .Y; s/ a pair as in Theorem 1.1.1,

HS1

��2n.Y;s;P/.SWFu.Y; s;P// Š HM�.Y; s/;

cHS1

��2n.Y;s;P/.SWFu.Y; s;P// ŠbHM�.Y; s/;

tHS1

��2n.Y;s;P/.SWFu.Y; s;P// Š HM.Y; s/;

H��2n.Y;s;P/.SWFu.Y; s;P// ŠeHM�.Y; s/:

Note that ordinary homology is (equivariantly) complex-orientable, and so the homol-
ogy theories on each left-hand side are independent of the choice of spectral section
(and we have been somewhat imprecise about the gradings on the right). Here, HS1 ,
cHS1 , tHS1 are, respectively, Borel, coBorel and Tate homology.

This conjecture has already been established by Lidman–Manolescu in the case
that Y is a rational-homology sphere [32].

We note that there is a natural generalization of Conjecture 1.2.2 to include the
case of local coefficient systems on monopole Floer homology HMı; this involves
using other parameterized cohomology theories (as in [39, Section 20.3]) applied
to �WF .Y; s;P/. There is also a further generalization of the conjecture to relate
the Pin.2/-equivariant cohomology of SWFu.Y; s;P/, for .Y; s/ admitting a Pin.2/-
equivariant Floer framing, to the equivariant monopole Floer homology defined by
Lin [34].

We remark that Theorem 1.1.1 should yield a well-defined connected simple sys-
tem SWF.Y; s;P/ of equivariant, parameterized spectra. Indeed, this would follow
if the parameterized Conley index of a dynamical system were known to be well
defined as a connected simple system (rather than as a homotopy type; the ordinary
Conley index is known [47] to be a connected simple system). We hope to return to
this point, and other improvements to naturality, in future work.

1.3 Four-manifolds

In this memoir we also define a Bauer–Furuta invariant associated to a spinc 4-
manifold with boundary.

Let .Y;s/ be a closed spinc 3-manifold and P be a Floer framing of .Y;s/. Recall
that, in the parameterized setting, we only define the ex-space �WF .Y; s;P/ up to
stable homotopy equivalence. To fix notation, define a map class of maps P ! Q

between two spaces P ,Q, themselves only well defined up to homotopy equivalence,
to mean just a homotopy class, up to the action of self-homotopy-equivalences on P
or Q.
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For an S1-equivariant virtual vector bundle V over a base B , let SVB denote the
corresponding sphere bundle overB . We then construct a Bauer–Furuta invariant BF

as follows.

Theorem 1.3.1. Let .X; t/ be a smooth, compact, spinc 4-manifold with boundary
.Y; s/, and fix a Floer framing P of .Y; s/. Then there is a well-defined (parameter-
ized, S1-equivariant, stable) map class

BF .X; t/WS
ind.DX ;P/
Pic.Y / ! �WF .Y; s;P/:

For the definition of the index ind.DX ;P/, see Chapter 5. There is also a ver-
sion of Theorem 1.3.1 at the spectrum level, which is more complicated to state; see
Corollary 5.2.7.

As a by-product of our proof of well-definedness of �WF .Y;s;P/, we also obtain
an invariant of families.

Theorem 1.3.2. Let F be a Floer-framed family of spinc 3-manifolds, with compact
base B and fibers denoted by Fb for b 2 B . Let Pic.F / denote the bundle over
B with fiber Pic.Fb/. There is a well-defined parameterized, S1-equivariant stable-
homotopy type �WF .F /, which is parameterized over Pic.F /.

A similar families invariant exists for the Bauer–Furuta invariant, but we omit its
discussion, as we do not have need of it in the present memoir.

As an application of our construction, we construct Frøyshov-type invariants
associated to the Seiberg–Witten Floer stable homotopy type. In particular, we define
a generalization of Manolescu’s �-invariant, from Pin.2/-equivariant K-theory of 3-
manifolds with b1.Y / D 0, to Y with b1.Y / > 0. We show the following theorem.

Theorem 1.3.3. Let .X; t/ be a compact, spin 4-manifold with boundary �Y0
`
Y1.

Assume that Y0 is a rational homology 3-sphere and the index indD for .Y1; tjY1/ is
zero in KQ1.Pic.Y1//. Here, KQ1 stands for the quaternionicK-theory. (See [19,33].)
Then we have

�
�.X/

8
C �.Y0; tjY0/ � 1 � b

C.X/C �.Y1; tjY1/:

See Remark 6.2.13 for the reason why we assume b1.Y0/ D 0 in this theorem.
We also define invariants associated to the S1-equivariant monopole Floer homol-

ogy, corresponding roughly to the generalized d -invariants introduced by Levine–
Ruberman [31] in Heegaard Floer homology.

We also calculate the Seiberg–Witten Floer homotopy-type invariant in some rel-
atively simple situations; see Chapter 4.
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1.4 Further directions

We do not prove any gluing theorems for the Bauer–Furuta invariant, or for its fami-
lies analog, and this is a natural point of departure, remaining within Seiberg–Witten
theory. In this direction, we expect the surgery exact triangles [28, Section 42] (and
variations) to hold for homology theories other than ordinary homology. For this, it
would be particularly desirable to obtain a description of the map on FMU� induced
by the Bauer–Furuta invariant, independent of choices like the Floer framing. It is also
natural to ask how the unfolded spectrum swfA.Y;s/ is related to the folded spectrum
�WF .Y; s/.

A technical problem that may make the invariant �WF .Y; s;P/ more wieldy is
to establish a natural topological description (on Y ) of the set of Floer framings. We
hope to address some of these points in the future.

Furthermore, we expect that it should be possible to consider more detailed
applications to the question of when a family of 3-manifolds extends to a family
of 4-manifolds with boundary. Compare with recent work by Konno–Taniguchi [26]
in the case that the boundary family of 3-manifolds is the trivial family of a rational
homology sphere.

Finally, given an extension of FMU�.Y; s/ to 3-manifolds that do not admit a
Floer framing, it seems likely that the excision argument of [29] should apply, in
which case we would expect there to exist generalizations of sutured monopole Floer
homology to various generalized homology theories.

1.5 Organization

This memoir is organized as follows. We first construct special families of spec-
tral sections to the Dirac operator in Chapter 2, and show that certain subsets of
the (approximate) Seiberg–Witten configuration space are isolating neighborhoods
in the sense of Conley index theory. In Chapter 3 we show that the resulting invari-
ant is well defined, as a consequence of this process we establish a Seiberg–Witten
Floer homotopy type for families. This consists of showing that all of the possible
choices for different approximations to the Seiberg–Witten equations are compatible.
In Chapter 4 we give various example calculations of �WF .Y;s;P/. In Chapter 5 we
construct a relative Bauer–Furuta invariant, and show that it is well defined. Finally,
in Chapter 6 we establish various Frøyshov-type inequalities that are a consequence
of the existence of the new relative Bauer–Furuta invariant.

There is one appendix, Appendix A, on homotopy-theoretic background, as well
as an afterword on potential further applications outside of Seiberg–Witten theory.





Chapter 2

Finite-dimensional approximation on 3-manifolds

2.1 Spectral sections

In order to define Seiberg–Witten Floer spectra, we will make use of spectral sections
of a family of Dirac operators introduced by Melrose–Piazza [40]. We will recall
definitions and basic things on spectral sections in this section.

Suppose that we have a closed, oriented .2n � 1/-manifold Y and that we have a
fiber bundle

Y ! B

with fiber Y . Here, B is a compact Hausdorff space. Also suppose that we are given
a finite-dimensional vector bundle

FY ! Y

with metric. We consider an infinite-dimensional vector bundle on B defined by

EY;1´
[
z2B

�.FY jYz /:

Let
DY WEY;1 ! EY;1

be a family of first-order elliptic, self-adjoint differential operators. That is, DY pre-
serves the fibers of EY;1 and for each z 2 B ,

DY;z WEY;1;z ! EY;1;z

is a first-order, elliptic, self-adjoint differential operator. Here, EY;1;z is the fiber of
EY;1 over z.

We assume that for each z 2 B , there is an open neighborhood U of z such that
we have a trivialization

FY jYU Š U � FY;z; (2.1.1)

where YU is the restriction of the bundle Y to U , and we can write

DY;w D DY;z C AY;w

forw 2U through the isomorphism EY;1;z Š EY;1;w induced by (2.1.1). Here,AY;w
is the operator acting on EY;1;w induced by a fiberwise linear bundle map FY jYw !
FY jYw which continuously depends on w.
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For k � 0, define the L2
k

-inner product on EY;1 by

h�1; �2ik D

Z
Yz

h�1; �2i C hjDY;zj
k�1; jDY;zj

k�2i d�:

Here, jDY;zj denotes the absolute value of DY;z defined as in [46, Chapter VIII, §9].
We write EY;k for the completions with respect to the L2

k
-norm. The operator DY

extends to a bounded operator

DY WEY;k ! EY;k�1:

For w 2 U , the algebraic operator AY;w extends to a bounded operator EY;k;w !

EY;k;w which continuously depends on w with respect to the operator norm, and
DY;w DDY;z CAY;w as operators EY;k;w! EY;k�1;w through the local trivialization
(2.1.1).

We now recall the definition of a spectral section from [40].

Definition 2.1.1 ([40]). A spectral section for DY W EY;k ! EY;k�1 over a compact
baseB is a family of self-adjoint projectionsP WEY;0!EY;0 so that there is a constant
C > 0 such that the following holds. Suppose that z 2 B , u 2 EY;1;z , DY;zu D �u
for some � 2 R. Then Pzu D u if � > C and Pzu D 0 if � < �C . Here, a family
is meant to be a continuous family in the L2-operator norm topology, parameterized
by B .

We note that the condition that P be continuous families in theL2-norm topology
is equivalent to P being continuous families in any L2

k
-norm topology with k > 0,

using the interaction of P with the spectrum of DY . Also note that since P is self-
adjoint, P is an orthogonal projection onto its image with respect to the L2-inner
product. In fact, for �1; �2 2 EY;1;z , we have

hP�1; .1 � P /�2i0 D h�1; P.1 � P /�2i0 D 0:

Here we have used the fact that P is self-adjoint and P 2 D P .
Melrose and Piazza proved the following about the existence of a spectral section.

Theorem 2.1.2 ([40, Proposition 1]). There exists a spectral section of DY if and
only if the index indDY is zero in K1.B/. Here, indDY is the index defined in [6].

Using a spectral section, we can define the Atiyah–Patodi–Singer index for a
family of differential operators on a manifold with boundary. Let X be a compact,
oriented 2n-manifold with boundary Y . Suppose that we have a fiber bundle

X ! B

with fiber X , such that the family obtained by taking the boundary of each fiber of X

is Y. Also suppose that we have finite-dimensional vector bundles

F 0X ; F
1
X ! X
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and that isomorphisms
F 0X jY Š F

1
X jY Š FY

are given. Define infinite-dimensional vector bundles over B by

E0X;1 D
[
z2B

�.F 0X jXz /; E1X;1 D
[
z2B

�.F 1X jXz /:

We consider a family of first-order elliptic differential operators

DX WE
0
X;1 ! E1X;1

such that

DX D
@

@t
CDY

near the boundary Y. Here, t is the coordinate of the first component of a neighbor-
hood of Y in X which is diffeomorphic to Œ0; 1� � Y. As before, we assume that for
z 2 B , there is an open neighborhood U of z and we can writeDX;w DDX;z CAX;w
forw 2U through local trivializations of F 0X , F 1X . Here,AX;w is an algebraic operator
induced by a linear bundle map F 0X jXw ! F 1X jXw depending on w continuously.

We define Hilbert bundles E0
X;k

, E1
X;k

over B for k � 0 using DX as before. Note
that indDY D 0 in K1.B/ because of the cobordism invariance of the index. Hence
there is a spectral section of DY .

Let .EY;k� 12 /
0
�1 be the subspace spanned by nonpositive eigenvectors ofDY and

p0 be the L2
k� 12

-orthogonal projection onto .EY;k� 12 /
0
�1. Let us consider the family

of operators with the APS boundary condition. That is, we consider the family of
operators

.DX ; p
0
ı r/WE0X;k ! E1X;k�1 ˚ .EY;k� 12

/0�1:

Here, r is the restriction to Y. Note that this family is not continuous because of the
spectral flow of DY . Hence we cannot use this family to define the index. A spectral
section enables us to avoid this issue. Since our sign convention is different from that
of [40], taking a spectral section of �DY rather than DY is more convenient for us.

Proposition 2.1.3. Fix k � 1. Let P be a spectral section of �DY . We also denote
by P the image of P in EY;0, which is a Hilbert subbundle. Let �P be the L2

k� 12
-

projection onto P \ EY;k� 12
. Then

.DX ; �P ı r/WE
0
X;k ! E1X;k�1 ˚ .P \ EY;k� 12

/

is a continuous family of Fredholm operators and we can define the index ind.DX ;P /
2 K.B/. The index ind.DX ; P / is independent of the choice of k.
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Let P be a spectral section of �DY . We write P for the image of P in EY;0 too.
Then we can take other spectral sections Q, R of �DY such that

Q � P � R:

See our construction of spectral sections in Section 2.4. Define a family of operators

D0Y ´ QDYQC .1 �R/DY .1 �R/ � .1 �Q/P CR.1 � P /:

We can see that D0Y is injective and that P is equal to the subspace spanned by
negative eigenvectors ofD0Y . Also we see that the operator ADD0Y �DY is a family
of smoothing operators acting on EY;k . In fact, the image of A is included in the
subspace spanned by finitely many eigenvectors of DY .

Take a smooth function f WX ! Œ0; 1� such that

f .x/ D

´
1 for x 2 Œ1

2
; 1� � Y;

0 for x 2 X n .Œ0; 1� � Y/:

Define D0X WE
0
X;k
! E1

X;k�1
by

D0X D DX C f A:

Then

D0X D
@

@t
CD0Y

near Y and there is no spectral flow of D0Y . Therefore, the family of operators D0X
with the APS boundary condition defines the index indD0X 2 K.B/, and

indD0X D ind.DX ; P /:

2.2 Connections on Hilbert bundles

Since we will consider a connection on a Hilbert bundle later, we give the definition
of a connection on a Hilbert bundle.

Let M be a connected, smooth n-manifold and H be a Hilbert space. We write
AutH and EndH for the group of bounded linear isomorphisms H ! H and the
ring of bounded operators H ! H respectively.

Take a coordinate chart .U; '/ of M . For a map

f WU ! H;

we define the partial derivative @f

@xi
.x/ at x 2 U by

@f

@xi
.x/ D lim

h!0

1

h

�
f ı '�1.'.x/C hei / � f .x/

�
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if the limit exists inH . Here, ei is the i th standard basis of Rn. For ˛D .˛1; : : : ;˛n/2
.Z�0/n, we define @˛f

@x˛
to be

�
@
@x1

�˛1
� � �
�
@
@xn

�˛n
f . We say that f is smooth if the

derivatives @
˛f
@x˛

exist and are continuous on U for all ˛ 2 .Z�0/n.
Let pW E ! M be a smooth Hilbert bundle on M with fiber H . By a smooth

Hilbert bundle we mean that for each small open set U in M , we have a local trivial-
ization

 WEjU ! U �H

such that if  0WEjU 0 ! U 0 �H is another local trivialization with U \ U 0 6D ;, we
can write

 0 ı  �1.x; v/ D .x; g.x/v/

for x 2 U \ U 0 and v 2 H , and g is a map U \ U 0 ! AutH which is smooth with
respect to the operator norm. We always assume that Hilbert bundles are smooth.

A section sWM ! E is said to be smooth if for each local trivialization  WEjU !
U �H , the map

 ı sjU WU ! U �H

is smooth. We denote by �.E/ the space of smooth sections of E .
A connection r on E is defined to be a map

rW�.E/! �.T �M ˝ E/

having the following properties:

(i) For any sections s1; s2 2 �.E/,

r.s1 C s2/ D rs1 Crs2:

(ii) For any section s 2 �.E/, vector fields X1; X2 2 �.TM/ and smooth func-
tions f1; f2 2 C1.M/,

rf1X1Cf2X2s D f1rX1s C f2rX2s:

(iii) For any section s 2 �.E/ and function f 2 C1.M/,

r.f s/ D df ˝ s C f rs:

We define a connection r on the dual Hilbert bundle E� by

.rX˛/.s/´ X.˛.s// � ˛.rXs/:

Here, s 2 �.E/, ˛ 2 �.E�/, X 2 �.TM/.
For connections r1, r2 on Hilbert bundles E1, E2 overM , we define connections

r1 ˚r2, r1 ˝r2 on E1 ˚ E2, E1 ˝ E2 by

.r1 ˚r2/.s1 ˚ s2/´ .r1s1/˚ .r2s2/;

.r1 ˝r2/.s1 ˝ s2/´ .r1s1/˝ s2 C s1 ˝ .r2s2/:
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Write �i .M IE/ for the space of i -forms on M with values in E:

�i .M IE/´ �.ƒiT �M ˝ E/:

For a connection r on E , we have the exterior derivative

dr W�
i .M IE/! �iC1.M IE/

defined by
dr.�s/ D .d�/s C � ^ .rs/;

dr.�1 C �2/ D dr�1 C dr�2:

Here, s 2 �.E/, � 2 �i .M/, �1; �2 2 �i .M IE/.
We will make an assumption on the smoothness of r. Take a local trivialization

 WEjU ! U �H . We can write

 rXs D X. s/C !.X/. s/ (2.2.1)

for s 2�.EjU / andX 2�.T U /. Here, for each x 2U andX 2 TxU , !.X/ is a linear
mapH !H . The assumption is that !.X/ is bounded and the map !WT U ! EndH
is smooth with respect to the operator norm. In particular, for a compact set K in U ,
the restriction !.X/jK is a Lipschitz continuous map K ! EndH .

Under the above assumption, for any smooth curve cW Œ�"; "�! U and e 2 Ec.0/,
where " > 0, we have a unique smooth section s of E along c which solves the
ordinary differential equation in the Hilbert space:

d

dt
 .s.t//C !

�dc
dt
.t/
�
. s.t// D 0; s.0/ D e:

We call s a parallel section of E along c or a horizontal lift of c. See [18] for the
existence and uniqueness of solutions to the equation.

Take x 2 U and let x1; : : : ; xn be local coordinates around x. For i D 1; : : : ; n,
let ci be a smooth curve Œ�"; "�! U such that

ci .0/ D x;
dci

dt
.0/ D

@

@xi
:

For e 2 Ex , we define the horizontal component .TeE/H of TeE to be the sub-
space spanned by ¹dsi . @@t /ºiD1;:::;n. Here, si is the parallel section of E along ci
with si .0/ D e. We can show that .TeE/H is independent of the choice of the local
coordinates x1; : : : ; xn. The connection r defines a decomposition

T E D .T E/H ˚ p
�E:

Note that we have a natural isomorphism

.T E/H Š p
�TM:



Notation and main statements 15

As usual, there is a unique 2-form Fr 2 �
2.M IEnd E/ such that

dr ı dr� D Fr ^ �

for � 2 �i .M IE/. We can write

 Fr D d! C ! ^ !

onU , where ! is the 1-form with values in EndH in (2.2.1). We call Fr the curvature
of r. We say that r is flat if Fr D 0.

We can associate a flat connection to a representation

�W�1.M/! Aut.H/

in the usual way. Let E be the Hilbert bundle on M defined by

E ´ zM �� H;

where zM is the universal cover of M . A smooth section sWM ! E corresponds to a
smooth map QsW zM ! H such that

Qs. � x/ D �./Qs.x/

for x 2 zM ,  2 �1.M/. Taking the exterior derivative, we have

d Qs. � x/ D �./ d Qs.x/

and hence d Qs descends to a section of T �M ˝ E , which we denote by rs. We can
show that the map

rW�.E/! �.T �M ˝ E/

is a flat connection on E .

2.3 Notation and main statements

Let Y be a connected, closed, oriented 3-manifold and take a Riemannian metric g
and spinc structure s with c1.s/ torsion on Y . We denote the spinor bundle over Y
by S. Fix a spinc connection A0 on Y with FA0 D 0. For a 1-form a 2 �1.Y /, we
write Da for the Dirac operator DA0Cia which acts on the space C1.S/ of smooth
sections of S. The family ¹Daºa2H1.Y / parameterized by the harmonic 1-forms on Y
induces an operator D acting on the vector bundle

E1 D H1.Y / �H1.Y IZ/ C
1.S/
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over the Picard torus Pic.Y / D H 1.Y IR/=H 1.Y IZ/. The action of H 1.Y IZ/ is
defined by

h.a; �/ D .a � h; uh�/

for h 2 H 1.Y IZ/, a 2 H1.Y /, � 2 C1.S/, where uh is the harmonic gauge trans-
formation Y ! U.1/ with �iu�1

h
duh D h in H1.Y /.

For k 2 R�0, define a Hilbert bundle on Pic.Y / by

Ek ´ H1.Y / �H1.Y IZ/ L
2
k.S/:

For k � 1, the operator D on E1 extends to a bounded operator

DWEk ! Ek�1:

We have a canonical flat connection r on Ek corresponding to the representation

�1.B/ D H
1.Y IZ/! Aut.L2k.S//;

h 7! uh;

where B D Pic.Y /, Aut.L2
k
.S// is the group of bounded linear automorphisms on

L2
k
.S/. See Section 2.2.
A smooth section sWB ! Ek can be considered to be a smooth map

QsWH1.Y /! L2k.S/

such that

Qs.a � h/ D uh Qs.a/

for h 2 im.H 1.Y IZ/ ! H1.Y //. The covariant derivative rs corresponds to the
usual exterior derivative d Qs of Qs.

Denote by h�; �ia;k the L2
k

-inner product with respect to Da:

h�1; �2ia;k D h�1; �2i0 C hjDaj
k�1; jDaj

k�2i0;

where h�; �i0 is the L2.Y /-inner product. Here we write jDaj for the absolute value
of the Dirac operator Da, defined using the spectral theorem (see e.g. [46, Chap-
ter VIII, §9]). Then the family ¹h�; �ia;kºa2H1.Y / of L2

k
-inner products induces a

fiberwise inner product h�; �ik on Ek . To see this, take sections s1; s2WB ! Ek and
h 2 im.H 1.Y IZ/!H1.Y //. Let Qs1; Qs2WH1.Y /! L2

k
.S/ be the maps correspond-

ing to s1, s2. Note that

Qsi .a � h/ D uh Qsi .a/; Da�h D uhDau
�1
h :



Notation and main statements 17

Therefore,

hQs1.a � h/; Qs2.a � h/ia�h;k

D hQs1.a � h/; Qs2.a � h/i0 C hjDa�hj
k
Qs1.a � h/; jDa�hj

k
Qs2.a � h/i0

D huh Qs1.a/; uh Qs2.a/i0 C h.uhjDaj
ku�1h /uh Qs1.a/; .uhjDaj

ku�1h /uh Qs2.a/i0

D huh Qs1.a/; uh Qs2.a/i0 C huhjDaj
k
Qs1.a/; uhjDaj

k
Qs2.a/i0

D hQs1.a/; Qs2.a/ia;k :

This implies that the family ¹h�; �ia;kºa2H1.Y / descends to a fiberwise inner product
h�; �ik on Ek . We write k � kk for the fiberwise norm on Ek induced by h�; �ik .

The flat connection r, with respect to k D 0, defines a decomposition

T E0 D p
�TB ˚ p�E0; (2.3.1)

where pW E0 ! B is the projection, p�TB is the horizontal component and p�E0
is the vertical component. See Section 2.2. Note that the flat connection r is not
compatible with the inner product h�; �ik on Ek for k > 0.

Put
Wk D B � L

2
k.im d�/;

where d�W i�2.Y /! i�1.Y / is the adjoint of the exterior derivative. We consider
Wk to be a trivial Hilbert bundle on B . The Seiberg–Witten equations on Y � R are
equations for  D .�; a; !/WR! L2

k
.S/ �H1.Y / � L2

k
.im d�/, written as

d�

dt
D �Da�.t/ � c1..t//;

da

dt
D �XH .�/;

d!

dt
D � � d! � c2..t//:

(2.3.2)

The terms XH .�/, c1..t//, c2..t// are defined by

q.�/ D ��1
�
� ˝ �� �

1

2
j�j2id

�
2 �1.Y /;

XH .�/ D q.�/H 2 H1.Y /;

c1..t// D
�
�.!.t// � i�.�.t//

�
�.t/;

c2..t// D �imd�
�
q.�.t//

�
;

(2.3.3)

where � is the Clifford multiplication which defines an isomorphism

T �Y ˝C ! sl.S/;
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q.�/H is the harmonic component of q.�/, �imd� is the L2-projection on Wk and
�.�/ is the function Y ! R satisfying

d�.�/ D i�imd .q.�//;

Z
Y

�.�/ vol D 0:

The equations (2.3.2) do not correspond to the Seiberg–Witten equations in Cou-
lomb gauge in Y � R (that is, solutions of the equations are not Seiberg–Witten
trajectories in Coulomb gauge). Instead, we use the pseudo-temporal gauge of [32,
Definition 5.2.1] (see also [35, Section 3]). The correspondence between solutions
of (2.3.2) and the Seiberg–Witten equations modulo gauge is given by [32, Proposi-
tion 5.4.2]. Note that Lidman–Manolescu work in the setting of b1 D 0; however, the
argument is local in the configuration space and passes over without change to the
b1 > 0 case. We will, however, call solutions of (2.3.2) Seiberg–Witten trajectories.

The equations descend to equations for  D .�; !/WR! Ek ˚Wk:�d�
dt
.t/
�
V
D �D�.t/ � c1..t//;�d�

dt
.t/
�
H
D �XH .�.t//;

d!

dt
.t/ D � � d!.t/ � c2..t//:

(2.3.4)

Here,
�
d�
dt

�
V

,
�
d�
dt

�
H

are the vertical component and horizontal component of d�
dt

respectively, and we have suppressed the subscript from D.
Assume that the family index of the family of Dirac operators D over Pic.Y /

vanishes, that is,
indD D 0 2 K1.B/:

Then we can choose a spectral section P0 of �D, and using P0, we can define a
self-adjoint (with respect to the L2) operator

AWC1.S/! C1.S/

such that the image of A is included in a subspace spanned by finitely many eigen-
vectors of D, and so that ker.D C A/ D 0. Put D0 D D C A. The L2-closure of
the subspace spanned by the negative eigenvectors of D0 is exactly the image of P0,
acting on L2 (see [40] and Section 2.1 for all of these assertions). In the future, for a
spectral section P , we will also often write P to refer to the image of P . We have a
decomposition

E1 D EC1 ˚ E�1;

where EC1 and E�1 are the subbundles of E spanned by positive eigenvectors and
negative eigenvectors of D0.
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For positive numbers kC, k� and s1; s2 2 C1.S/, we define an inner product
hs1; s2ia;kC;k� by

hs1; s2ia;kC;k� ´ hjD
0
aj
kCsC1 ; jD

0
aj
kCsC2 i0 C hjD

0
aj
k�s�1 ; jD

0
aj
k�s�2 i0; (2.3.5)

where sj D sCj C s
�
j and sCj 2 EC1, s�j 2 E�1. Note that we do not need the term

hs1; s2i0, since the kernel of D0a is zero. We call this inner product the L2
kC;k�

-inner
product.

As before, the family ¹h�; �ia;kC;k�ºa2H1.Y / induces a fiberwise inner product
on E1 and we denote by EkC;k� the completion of E1 with respect to the norm
k � kkC;k� .

On the space im d� \�1.Y /, we define an inner product h�; �ikC;k� by

h!1; !2ikC;k� D hj � d j
kC!C1 ; j � d j

kC!C2 i0 C hj � d j
k�!�1 ; j � d j

k�!�2 i0;

where !j D !Cj C !
�
j and !Cj is in the subspace spanned by positive eigenvectors

of the operator �d and !�j is in the negative one. We denote by WkC;k� the com-
pletion of the vector bundle B � im d� over B with respect to k � kkC;k� . We will
use the L2

k� 12 ;k
-norm in Chapter 5 to define the relative Bauer–Furuta invariant. See

Remark 5.1.4 for the reason why we use the L2
k� 12 ;k

-norm.

We recall the definition of finite-type trajectories (from e.g. [35, Definition 1]).

Definition 2.3.1. A Seiberg–Witten trajectory .t/ D .�.t/; a.t/; !.t// is finite-type
if CSD..t// and k�.t/kC0 are bounded functions of t , where CSD is the Chern–
Simons–Dirac functional.

The following is a direct consequence of a standard argument in Seiberg–Witten
theory; see e.g. [35, Proposition 1].

Proposition 2.3.2. For positive numbers kC; k� > 0, there is a positive constant
RkC;k� > 0 such that for any finite-type solution  WR ! E2 �W2 to (2.3.4), we
have

k.t/kkC;k� � RkC;k�

for all t 2 R.

Write E0.D/
b
b0

for the span of eigenvectors of D with eigenvalue in .b0; b�, as a
space over H1.Y / (note that it will not usually be a bundle). For a spectral section P
of D, we also write P for the image of the projection P . By Theorem 2.4.1 below,
we can take sequences of smooth spectral sections Pn, Qn, of �D, D, respectively,
such that

.E0.D//
�n;�
�1 � Pn � .E0.D//

�n;C
�1 ;

.E0.D//
1
�n;C
� Qn � .E0.D//

1
�n;�

;
(2.3.6)
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with
�n;� C 10 < �n;C < �n;C C 10 < �nC1;�;

�nC1;C < �n;� � 10 < �n;� < �n;C � 10;

�n;C � �n;� < ı;

�n;C � �n;� < ı:

(2.3.7)

Here, ı > 0 is a positive constant independent of n, and a smooth spectral section
means a spectral section which depends smoothly on the base space B .

We define a finite rank subbundle Fn in E1 by

Fn D Pn \Qn:

Define a connection rFn on Fn by

rFn D �Fnr;

where �Fn is the L2
kC;k�

-projection on Fn. The connection rFn defines a decompo-
sition

TFn D .TFn/H;rFn ˚ .TFn/V Š p
�TB ˚ p�Fn: (2.3.8)

A calculation shows that the horizontal component .T�Fn/H;rFn of TFn at � 2 Fn
is given by®

.v; .rv�Fn/�/ W v 2 TaB
¯
� .p�TB ˚ p�E0/� D T�E0: (2.3.9)

Here, a D p.�/ 2 B .
LetWn be the finite-dimensional subbundle of the Hilbert bundle Wk spanned by

the eigenvectors of the operator �d whose eigenvalues are in the interval .�n;�;�n;C�:

Wn D .Wk/
�n;C
�n;�

D B � L2k.im d�/
�n;C
�n;�

:

Fix a positive number R0 with R0 � 100RkC;k� and a smooth function

�WEkC;k� ˚WkC;k� ! Œ0; 1�

with compact support such that �.�; !/ D 1 if k.�; !/kkC;k� � R
0. We consider

the following equations for  D .�; !/WR ! Fn ˚ Wn, which we call the finite-
dimensional approximation of (2.3.4):�d�

dt
.t/
�
V
D ��

®
.rXH�Fn/�.t/C �Fn

�
D�.t/C c1..t//

�¯
;�d�

dt
.t/
�
H
D ��XH .�.t//;

d!

dt
.t/ D ��

®
�d!.t/C �Wnc2..t//

¯
:

(2.3.10)
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Here,
�
d�
dt

�
V
;
�
d�
dt

�
H

are the vertical component and the horizontal component with
respect to the fixed decomposition (2.3.1) rather than (2.3.8). It follows from (2.3.9)
that the right-hand side of (2.3.10) is a tangent vector on Fn ˚Wn. Hence, equations
(2.3.10) define a flow

'n D 'n;kC;k� W .Fn ˚Wn/ �R! Fn ˚Wn:

(This flow depends on kC, k� because �Fn does.)
We have decompositions

Fn D F
C
n ˚ F

�
n ; Wn D W

C
n ˚W

�
n ;

where FCn , W Cn are the positive eigenvalue components of D0, �d , and F �n , W �n are
the negative eigenvalue components. In the remainder of Chapter 2, we will prove the
following.

Theorem 2.3.3. Let kC, k� be half-integers (that is, kC; k� 2 1
2
Z) with kC; k� > 5

and with jkC � k�j � 1
2

. Fix a positive number R with RkC;k� < R <
1
10
R0, where

RkC;k� is the constant of Proposition 2.3.2. Then

.BkC.F
C
n IR/ �B Bk�.F

�
n IR// �B .BkC.W

C
n IR/ �B Bk�.W

�
n IR//

is an isolating neighborhood of the flow 'n;kC;k� for n� 0. Here, Bk˙.F
˙
n IR/ are

the disk bundle of F˙n of radius R in L2
k˙

and BkC.F
C
n IR/ �B Bk�.F

�
n IR/ is the

fiberwise product. Similarly for Bk˙.W
˙
n IR/.

The general strategy to prove Theorem 2.3.3 is as follows: once we have The-
orem 2.4.1 in hand, we must control the gradient term .rXH�Fn/�.t/ appearing in
the approximate Seiberg–Witten equations (2.3.10); a number of bounds for this are
obtained in Sections 2.5 and 2.6. The proof proper is in Section 2.7, where Theo-
rem 2.3.3 follows from establishing that, for sufficiently large approximations, the
linear term in the approximate Seiberg–Witten equations (2.3.10) tends to dominate
the other terms with respect to appropriate norms.

We also note that the total space Bn;R appearing in Theorem 2.3.3 is an ex-space
over B D Pic.Y / in the sense of Appendix A.1, with projection given by restricting
pWEk ! B to Bn;R, and with a section sB WPic.Y /! Bn;R given by the zero-section.

2.4 Construction of spectral sections

We will prove the following.

Theorem 2.4.1. Assume that indD D 0 in K1.B/. Take a sequence �n of positive
numbers �n � �nC1, where �n !1 as n!1. There is a sequence of spectral
sections Pn of �D with the following properties:
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(i) We have
E0.D/

�n
�1 � Pn � E0.D/

�nCı
�1 ;

where ı is a positive constant independent of n.

(ii) We can write
PnC1 D Pn ˚ hf

.n/
1 ; : : : ; f .n/rn

i;

where ¹f .n/1 ; : : : ; f
.n/
rn º is a frame of P?n (where P?n is the L2-orthogonal

complement of Pn inside of PnC1). In particular,

PnC1 Š Pn ˚Crn ;

where Crn is the trivial vector bundle over B .

Before we start proving Theorem 2.4.1, we will show the following.

Proposition 2.4.2. Take any nonnegative numbers k, l . Let Pn be a sequence of spec-
tral sections of �D having property (i) of Theorem 2.4.1. Let �nWEk ! Pn \ Ek be
the L2

k
-projection.

(1) The commutators
ŒD; �n�WE1 ! E1

extend to bounded operators

ŒD; �n�WEl ! El

and we have
kŒD; �n�WEl ! Elk < C;

where C is a positive constant independent of n. Moreover, for any l > 0,
" > 0 with 0 < " � l ,

sup
a2B

kŒDa; �n;a�WL
2
l .S/! L2l�".S/k ! 0

as n!1.

(2) The operator �nW E1 ! E1 extends to a bounded operator El ! El for
each nonnegative real number l . Moreover, there is a positive constant C
independent of n such that

k�nWEl ! Elk < C:

Proof. Take a 2 B and let ¹ej ºj be an orthonormal basis of L2.S/ with

Daej D �j ej ;

where �j 2 R.
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Let Pn;a be the fiber of Pn over a. Take � 2 E1 \ Pn;a. We can write

� D
X

�j��nCı

cj ej ;

where cj 2 C. Note thatX
�j��n

cj ej 2 E1 \ Pn;a;
X

�n<�j��nCı

cj ej 2 E1 \ Pn;a:

We have

ŒDa; �n;a�� D .Da�n;a � �n;aD/�

D

X
�j��nCı

�j cj ej � �n;a
X

�j��nCı

�j cj ej

D .1 � �n;a/
X

�n<�j��nCı

�j cj ej

D .1 � �n;a/

² X
�n<�j��nCı

.�j � �n/cj ej C �n
X

�n<�j��nCı

cj ej

³
D

X
�n<�j��nCı

.�j � �n/cj .1 � �n;a/ej : (2.4.1)

Since

�n D �
�n
�1 C �Pn\E.D/

�nCı
�n

;

for j with �n < �j � �n C ı, we have

.1 � �n;a/ej 2 E0.Da/
�nCı
�n

:

Hence we can write

.1 � �n;a/ej D
X

�n<�p��nCı

j̨pep (2.4.2)

for j with �n < �j � �n C ı. Here, j̨p 2 C. Since

k.1 � �n;a/WL
2
k ! L2kk D 1; kej kk D .1C j�j j

2k/
1
2 ;

we have

k.1 � �n;a/ej k
2
k D

X
�n<�p��nCı

j j̨pj
2.1C j�pj

2k/ � .1C j�j j
2k/:
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For j with �n < �j � �n C ı,X
�n<�p��nCı

j j̨pj
2
D

X
�n<�p��nCı

j j̨pj
2.1C j�pj

2k/
1

1C j�pj2k

�
C1

1C .�n C ı/2k

X
�n<�p��nCı

j j̨pj
2.1C j�pj

2k/

�
C1.1C j�j j

2k/

1C .�n C ı/2k

� C1; (2.4.3)

where C1 is a positive constant independent of j , n.
By (2.4.1), (2.4.2) and (2.4.3),

kŒDa; �n;a��k
2
l D

X
�n<�j��nCı

X
�n<�p��nCı

j�j � �nj
2.1C j�pj

2l/jcj j
2
j j̨pj

2

� ı2
X

�n<�j��nCı

X
�n<�p��nCı

.1C j�j j
2l/jcj j

2
j j̨pj

2
�
1C j�pj

2l

1C j�j j2l

� C2
X

�n<�j��nCı

.1C j�j j
2l/jcj j

2

� X
�n<�p��nCı

j j̨pj
2

�
� C3

X
�n<�j��nCı

.1C j�j j
2l/jcj j

2

� C3k�k
2
l :

Here, C2; C3 > 0 are positive constants independent of n, �, a. Also we have

kŒDa; �n;a��k
2
l�"

D

X
�n<�j��nCı

X
�n<�p��nCı

j�j � �nj
2.1C j�pj

2.l�"//jcj j
2
j j̨pj

2

� ı2
X

�n<�j��nCı

X
�n<�p��nCı

.1C j�j j
2.l�"//jcj j

2
j j̨pj

2
�
1C j�pj

2.l�"/

1C j�j j2.l�"/

� C4
X

�n<�j��nCı

.1C j�j j
2.l�"//jcj j

2

 X
�n<�p��nCı

j j̨pj
2

!
� C5

X
�n<�j��nCı

.1C j�j j
2.l�"//jcj j

2

� C6.�
�2l
n C ��2"n /k�k2l :

Here, C4, C5, C6 are positive constants independent of n, �, a.
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On the other hand, consider � 2 E1 \ P
?k
n;a , where P?kn;a is the L2

k
-orthogonal

complement of Pn;a \ L2k.S/ in L2
k
.S/. We can write

� D
X
�j>�n

cj ej :

Note that X
�j>�nCı

cj ej 2 E1 \ P
?k
n;a ;

X
�n<�j��nCı

cj ej 2 E1 \ P
?k
n;a :

We have

ŒDa; �n;a�� D �n;a
X

�n<�j��nCı

�j cj ej

D �n;a

� X
�n<�j��nCı

.�j � �n/cj ej C �n
X

�n<�j��nCı

cj ej

�
D

X
�n<�j��nCı

.�j � �n/cj�n;aej :

As before, using this equality, we can show that

kŒDa; �n;a��kl � C7k�kl ; kŒDa; �n;a��kl�" � C8�
�"
n k�kl

for some positive constants C7, C8 independent of n, �, a.
Therefore ŒDa; �n;a� extend to bounded maps L2

l
! L2

l
with

kŒDa; �n;a�WL
2
l ! L2l k � C9;

for some constant C9 independent of n, a. Also

sup
a2B

kŒDa; �n;a�WL
2
l .S/! L2l�".S/k ! 0

as n!1. We have proved (1).
We will prove (2). It is easy to see that if �n < �j � �n C ı, we have

�nej 2 .El/
�nCı
�n

:

So we can write
�nej D

X
�n<�p��nCı

j̨pep:

Because the operator norm of �nWL2k ! L2
k

is 1 and kej k2k D 1C j�j j
2k , we have

j�nj
2k

X
�n<�p��nCı

j j̨pj
2
�

X
�n<�p��nCı

j j̨pj
2.1C j�pj

2k/ � 1C j�j j
2k :
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Therefore, for j with �n < �j � �n C ı,X
�n<�p��nCı

j j̨pj
2
�
1C j�j j

2k

j�nj2k
� C9: (2.4.4)

Here, C9 > 0 is a constant independent of n, j . Take � 2 E1. We can write

� D
X
�j��n

cj ej C
X

�n<�j��nCı

cj ej C
X

�nCı<�j

cj ej :

Then

�n� D
X
�j��n

cj ej C
X

�n<�j��nCı

�n<�p��nCı

cj j̨pep:

Hence we obtain

k�n�k
2
l D

X
�j��n

jcj j
2.1C j�j j

2l/C
X

�n<�j��nCı

�n<�p��nCı

jcj j
2
j j̨pj

2.1C j�pj
2l/

� C10

� X
�j��n

jcj j
2.1C j�j j

2l/C .1C j�nj
2l/

X
�n<�j��nCı

�n<�p��nCı

jcj j
2
j j̨pj

2

�

� C11

� X
�j��n

jcj j
2.1C j�j j

2l/C .1C j�nj
2l/

X
�n<�j��nCı

jcj j
2

�
� C12k�nk

2
l ;

where we have used (2.4.4) and C10, C11, C12 are constant independent of n. There-
fore k�nWL2l ! L2

l
k � C12.

To prove Theorem 2.4.1, we need the following theorem and lemma.

Theorem 2.4.3 ([4, Theorem 1�]). Let W be a closed, spin manifold of odd dimen-
sion. Then there is C� > 0 such that each interval of length C� contains an eigen-
value of DA. Here, A is a connection on a complex vector bundle V over W and
DAWC

1.S˝ V /! C1.S˝ V / is the twisted Dirac operator.

Assume that indD D 0. By [40], we have a spectral section P0 of �D. By [40,
Lemma 8], using P0, we can construct a smoothing operator AW E0 ! E1 whose
image is included in the space spanned by finitely many eigenvectors of D such that
kerD0 D 0 and

E0.D
0/0�1 D P0;
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where D0 D D C A. Moreover, there is �0 � 0 such that A D 0 on E0.D/
��0
�1 and

E0.D/
1
�0

. From the construction of A in the proof of [40, Lemma 8], it is easy to see
that for �� 0 and �� 0,

E0.D/
�
�1 D E0.D

0/��1; E0.D/
1
� D E0.D

0/1� ; E0.D/
�

�
D E0.D

0/
�

�
:

Lemma 2.4.4. There is a constant ı > 0 such that for any � > 0 and a; a0 2 B ,

dim E0.D
0
a/
�
0 � dim E0.D

0
a0/
�Cı
0 :

Proof. Put

M D max
®
krvD

0
WL2.S/! L2.S/k W v 2 TB; kvk D 1

¯
:

Take a smooth path ¹atº`tD0 in B from a to a0 with k d
dt
atk D 1. Here, ` is the length

of the path. Since B is compact, we may assume that there is a constant C > 0

independent of a, a0 such that ` � C . Put

I D
®
t 2 Œ0; `� W 8s � t; dim E0.D

0
a/
�
0 � dim E0.D

0
as
/
�CsM
0

¯
:

Note that 0 2 I and that I is closed in Œ0; `� by the continuity of the eigenvalues of
D0as . It is sufficient to prove that sup I D `.

Put t0 D sup I and assume that t0 < `. Choose tC 2 .t0; `� with

tC � t0 � 1:

Let �1.t/; : : : ; �m.t/ be the eigenvalues of D0at with

0 < �1.t0/ � � � � � �m.t0/ � �C t0M

such that �j .t/ are continuous in t 2 Œt0; tC� and dim E.D0at0
/
�Ct0M
0 D m. Note that

t0 2 I since I is closed in Œ0; `� and that

dim E0.D
0
a/
�
0 � m

by the definition of I . Let �0 be the smallest eigenvalue ofD0at0 with �0 > �m.t0/. We
may assume that

M.tC � t0/� �0 � �m.t0/: (2.4.5)

By [22, Theorem 4.10, p. 291], we have

dist.�j .t/; †.D0at0 // �M.t � t0/

for t 2 Œt0; tC�. Here, †.D0at0 / is the set of eigenvalues of D0at0 . It follows from this
inequality and (2.4.5) that

0 < �j .t/ � �m.t0/CM.t � t0/ � �CMt
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for t 2 Œt0; tC� and j 2 ¹1; : : : ; mº. This implies that

dim E0.D
0
a/
�
0 � m � dim E0.D

0
at
/
�CtM
0

for t 2 Œt0; tC�. This is a contradiction and we obtain t0 D `.

Proof of Theorem 2.4.1. For some �� 0, to construct a spectral section P between
E.D/

�
�1 and E.D/

�Cı
�1 , it is sufficient to find a frame ¹f1; : : : ; frº in E0.D

0/
�Cı
0

such that
E0.D

0/
�
0 � span¹f1; : : : ; frº � E0.D

0/
�Cı
0 ; (2.4.6)

because the direct sum E0.D
0/0�1 ˚ span¹f1; : : : ; frº is a spectral section between

E0.D/
�
�1 and E0.D/

�Cı
�1 .

Put d D dimB . Fix an integerN withN � d . By Theorem 2.4.3, there is ı0 > 0
such that

dim.E0.D0a//
�Cı0
� � N (2.4.7)

for all a 2 B and � 2 R. By Lemma 2.4.4, we may assume that

dim E0.D
0
a0/
��ı0
0 � dim E0.D

0
a/
�
0 � dim E0.D

0
a0/
�Cı0
0 (2.4.8)

for all a; a0 2 B and � 2 R with � > ı0.
Fix a positive number ı with ı > 10ı0. Take� 2R with�� 0. For j 2 ¹0;1; : : : ;

dº, choose positive numbers

� < a�j < b
�
j < c

� < cC < aCj < bCj < �C ı

such that

b�jC1 < a
�
j ; bCj < aCjC1;

b�j < c
�
� 2ı0; cC C 2ı0 < a

C

j :

Take a CW complex structure of B such that for each j -dimensional cell e there are
real numbers ��.e/, �C.e/ such that ��.e/, �C.e/ are spectral gaps ofD0a for a 2 e
with

a�j < �
�.e/ < b�j ; aCj < �C.e/ < bCj :

Choose a 0-dimensional cell e0 (= 1 pt) and �0 2 .c�; cC/, and then put r ´
dim E0.D

0
e0
/
�0
0 .

Lemma 2.4.5. For any cell e and a 2 e, we have

dim E0.D
0
a/
��.e/
0 CN � r � dim E0.D

0
a/
�C.e/
0 �N:
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Proof. Because �0 C 2ı0 < �C.e/, by (2.4.7) and (2.4.8), we have

dim E0.D
0
a/
�C.e/
0 � dim E0.D

0
a/
�0C2ı0
0

D dim E0.D
0
a/
�0Cı0
0 C dim E0.D

0
a/
�0C2ı0
�0Cı0

� dim E0.D
0
e0
/
�0
0 CN

D r CN:

Hence
r � dim E0.D

0
a/
�C.e/
0 �N:

The proof of the inequality dim E0.D
0
a/
��.e/
0 CN � r is similar.

By Lemma 2.4.5, for each 0-dimensional cell e, we can take a frame (meaning a
linearly independent collection) ¹f1; : : : ; frº of E0.D

0
e/
�C.e/
0 such that

E0.D
0
e/
��.e/
0 � hf1; : : : ; fri � E0.D

0
e/
�C.e/
0 :

Assume that we have a frame ¹f1; : : : ; frº in E0.D
0/10 on the .j � 1/-dimen-

sional skeleton of B such that

E0.D
0
a/
��.e/
0 � hf1;a; : : : ; fr;ai � E0.D

0
a/
�C.e/
0

for each cell e with dim e � j � 1 and a 2 e.
Take a cell e0 of B with dim e0 D j . Note that E0.D

0/
�C.e0/
0 , E0.D

0/
��.e0/
0 are

vector bundles over e0. We denote by F the bundle[
a2e0

®
frames of rank r in E0.D

0
a/
�C.e0/
0

¯
over e0.

Note that �C.e/ � �C.e0/ for any cell e with dim e � j � 1. Hence the frame
¹f1; : : : ; frº defines a section of F on the boundary @e0.

We have a homeomorphism

Fa Š GL.mIC/=GL.m � r IC/;

where a 2 e0, Fa is the fiber of F over a andmD dimE0.D
0
a/
�C.e0/
0 . By Lemma 2.4.5,

m D dim E0.D
0
a/
�C.e0/
0 � r CN:

Because N � d , we have
m;m � r � d:
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By the homotopy exact sequence,

�i .GL.mIC/=GL.m � r IC// D 0

for i D 0; 1; : : : ; d . Therefore we can extend ¹f1; : : : ; frº to a frame in E0.D
0/
�C.e0/
0

over e0. We will denote the extended frame on e0 by the same notation ¹f1; : : : ; frº.
We will modify ¹f1; : : : ; frº on the interior Int e0 of e0 to get a frame ¹f 01 ; : : : ; f

0
r º

such that
E0.D

0/
��.e0/
0 � hf 01 ; : : : ; f

0
r i � E0.D

0/
�C.e0/
0

on e0. Since ��.e0/ � ��.e/, on @e0 we have

E0.D
0/
��.e0/
0 � E0.D

0/
��.e/
0 � span¹f1; : : : ; frº:

As mentioned before, E0.D
0/
��.e0/
0 and E0.D

0/
�C.e0/
0 are vector bundles over e0.

Let
pWE0.D

0/
�C.e0/
0

ˇ̌
e0
! E0.D

0/
��.e0/
0

ˇ̌
e0

be the orthogonal projection.

Lemma 2.4.6. We can perturb f1; : : : ; fr slightly on Int e0 such that

E0.D
0/
��.e0/
0 D p.hf1; : : : ; fri/

on e0. Here, Int e0 is the interior of e0.

Proof. We may suppose that

E0.D
0/
�C.e0/
0

ˇ̌
e0
D e0 � .Cn

˚Cn0/; E 00.D
0/
��.e0/
0

ˇ̌
e0
D e0 � .Cn

˚ ¹0º/:

For each a 2 e0, we can write

fj;a D gj;a ˚ g
0
j;a;

where
gj;a 2 Cn; g0j;a 2 Cn0 :

Note that
Cn
D p.hf1;a; : : : ; fr;ai/

if and only if the .n� r/-matrix .g1;a : : :gr;a/ is of rank n. LetM be the set of .n� r/-
complex matrices, which is naturally a smooth manifold of dimension 2nr . We denote
by Rl the set of .n � r/-matrices of rank l . Then Rl is a smooth submanifold of M
of codimension 2.n � l/.r � l/. If l � n � 1 we have

codimR.Rl �M/ D 2.n � l/.r � l/ � 2.r � nC 1/ � 2.N C 1/� d:
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Here we have used
n D dim E0.D

0
a/
��.e0/
0 � r �N:

See Lemma 2.4.5. So we can slightly perturb .g1 : : : gr/ on Int e0 such that for all
a 2 e0 and l 2 ¹0; 1; : : : ; n � 1º,

.g1;a : : : gr;a/ 62 Rl :

Hence the rank of .g1;a : : : gr;a/ is n. Therefore Cn D p.hf1;a; : : : ; fr;ai/ for all
a 2 e0. We can assume that the perturbation is small enough such that after the per-
turbation, f1; : : : ; fr is still linearly independent.

By this lemma, we may suppose that

E0.D
0/
��.e0/
0 D p.hf1; : : : ; fri/

on e0. For a 2 e0, define FaWCr ! E0.D
0
a/
�C.e0/
0 by

Fa.c1; : : : ; cr/ D c1f1;a C � � � C crfr;a:

We have
E0.D

0
a/
��.e0/
0 D im.p ı Fa/:

Put
K ´

[
a2e0

ker.p ı Fa/:

ThenK is a subbundle of the trivial bundle Cr on e0. We have the orthogonal decom-
position

Cr
D K ˚K?:

We define
F 0WCr

! E.D0/
�C.e0/
0

ˇ̌
e0

by
F 0 D F jK C p ı F jK? :

Then
E.D0/

��.e0/
0

ˇ̌
e0
� imF 0:

Lemma 2.4.7. The following statements hold:

(1) F D F 0 on @e0.

(2) The map F 0 is injective on e0.
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Proof. (1) Take a 2 @e0. It is sufficient to show that FajK? D F
0
ajK? . Recall that

E0.D
0
a/
��.e0/
0 � imFa:

Since imFajKa � .E0.D
0
a/
��.e0/
0 /? and dim E0.D

0
a/
��.e0/
0 D dimK?a , we have

im.FajK?/ D E0.D
0
a/
��.e0/
0 :

Therefore, for v 2 K?a , F 0v.v/ D pFa.v/ D Fa.v/.

(2) Suppose that
F 0.v; v0/ D 0

for v 2 K; v0 2 K?. Then
F.v/C pF.v0/ D 0:

So we have
pF.v/C p2F.v0/ D 0:

Since v 2 K D kerp ı F and p2 D p,

pF.v0/ D 0:

Because p ı F is an isomorphism on K?, we have

v0 D 0:

Hence
F.v/ D 0;

which implies that v D 0 because F is injective.

Put
f 01;a ´ F 0a.e1/; : : : ; f

0
r;a ´ F 0a.er/

for a 2 e0. Here, e1; : : : ; er is the standard basis of Cr . Then the frame ¹f 01 ; : : : ; f
0
r º

of E0.D
0/
�C.e0/
0 on e0, which is an extension of the frame on @e0, has the property

that
E.D0/

��.e0/
0 � hf 01 ; : : : ; f

0
r i � E.D0/

�C.e0/
0 :

We have obtained a frame f1; : : : ; fr satisfying (2.4.6). Putting

P D E0.D
0/0�1 ˚ hf1; : : : ; fri;

we obtain a spectral section with

E0.D/
�
�1 � P � E0.D/

�Cı
�1 ;

where ı > 0 is a constant independent of �.
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Take another positive number Q� with � � Q�. Doing this procedure one more
time, we get a frame ¹ Qf1; : : : ; Qfsº of P? \ E.D0/

Q�Cı
0 such that

E0.D/
Q�
�1 � P ˚ h

Qf1; : : : ; Qfsi � E0.D/
Q�Cı
�1 :

Repeating this, we get a sequence of spectral sections satisfying the conditions of
Theorem 2.4.1.

We will state a Pin.2/-equivariant version of Theorem 2.4.1. If s is a self-conju-
gate spinc structure of Y , we have an action of Pin.2/ on Ek . The action is induced
by the action of Pin.2/ on H1.Y / � L2

k
.S/, which is an extension of the S1-action,

defined by
j.a; �/ D .�a; j�/:

The Dirac operator D is Pin.2/-equivariant and we have the index

indD 2 KQ1.B/:

Here, KQ1.B/ is the quaternionic K-theory defined in [19], which is used in [33].

Theorem 2.4.8. If s is a self-conjugate spinc structure of Y and ind D D 0 in
KQ1.B/, then we have a sequence Pn of Pin.2/-equivariant spectral sections having
the properties of Theorem 2.4.1.

Proof. We will show an outline of the proof. Since indD D 0 in KQ1.B/, it fol-
lows from the arguments in [33, Section 1] that the family D of Dirac operators is
Pin.2/-equivariantly homotopic to a constant family. Hence we can apply the proof
of [40, Proposition 1] to show that there exists a Pin.2/-equivariant spectral section
P0 of �D.

Choose a CW complex structure of B such that for each cell e, .�1/ � e is also a
cell. Note that

�i .Sp.m/=Sp.m � r// D 0

for i D 1; : : : ; d , provided that m;m� r � d . Hence for �� 0, we can construct a
Pin.2/-equivariant frame f1; : : : ; fr of P?0 with

E0.D
0/
�
0 � hf1; : : : ; fri � E0.D

0/
�Cı
0

as in the proof of Theorem 2.4.1. Here, ı is the positive constant from the proof of
Theorem 2.4.1. Then

P0 ˚ hf1; : : : ; fri

is a Pin.2/-equivariant spectral section between E0.D/
�
�1 and E0.D/

�Cı
�1 . Repeating

this construction, we obtain the desired sequence Pn.



Finite-dimensional approximation on 3-manifolds 34

2.5 Derivative of projections

LetDWEk! Ek�1 be the original Dirac operator. Recall that we have a canonical flat
connection r on Ek . See Section 2.3. Note that for a 2 B , v 2 TaB D H1.Y /, we
have

rvD D
d

dt

ˇ̌̌
tD0
DaCtv D

d

dt

ˇ̌̌
tD0
.Da C t�.v// D �.v/:

Here, �.v/ is the Clifford multiplication. Since v is a harmonic (and hence smooth)
1-form, we have kvkk < 1 for any k � 0. Therefore rvD is a bounded operator
from L2

k
.S/ to L2

k
.S/ for each k � 0.

Take � 2 R. We write ���1 for the L2-projection on E0.D/
�
�1. Similarly, ��

�
is

the L2-projection on E0.D/
�

�
. We have the following proposition.

Proposition 2.5.1. Fix a 2 B . Let ¹eiº1iD�1 be an L2-orthonormal basis of L2.S/
such that

Daei D �iei :

Here, �i are the eigenvalues ofDa. Take �;� 2 R with � < �. Suppose that �, � are
not eigenvalues of Da. For v 2 TaB D H1.Y /,

h.rv�
�

�
/ei ; ej i0

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

h�.v/ei ; ej i0

�i � �j
if �i < � < �j < � or � < �j < � < �i ;

h�.v/ei ; ej i0

�j � �i
if �j < � < �i < � or � < �i < � < �j ;

0 otherwise;

(2.5.1)

and

h.rv�
�
�1/ei ; ej i0 D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

h�.v/ei ; ej i0

�i � �j
if �j < � < �i ;

h�.v/ei ; ej i0

�j � �i
if �i < � < �j ;

0 otherwise:

(2.5.2)

Here, �.v/ is the Clifford multiplication by v.

Proof. Since the connection r is induced by the trivial connection on H1.Y / �

C1.S/, to compute rv�
�

�
, rv�

�
�1, we can do computations over H1.Y / where

we have the canonical trivialization, and the covariant derivative is equal to the usual
exterior derivative.

Take a loop ��
�

in C defined by

�
�

�
D
®
x � i" W � � x � �

¯
[
®
�C iy W �" � y � "

¯
[
®
x C i" W � � x � �

¯
[
®
�C iy W �" � y � "

¯
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for some " > 0. We orient ��
�

counterclockwise. We will show that for � 2 C1.S/,

.�a/
�

�
� D

1

2�i

Z
�
�

�

.z �Da/
�1� dz:

See also [22, Chapter II, Section 4]. We can write

� D

1X
iD�1

ciei

for some ci 2 C with
1X

iD�1

jci j
2.1C j�i j

2k/ <1

for any k � 0. For z 2 C which is not an eigenvalue of Da, the operator z �Da is
invertible and

.z �Da/
�1� D

1X
iD�1

ci

z � �i
ei : (2.5.3)

Note that the sum in (2.5.3) converges uniformly on ��
�

in the L2
k

-norm for any k � 0
since ˇ̌̌ ci

z � �i

ˇ̌̌
� jci j .z 2 �

�

�
/

if ji j � 0. Hence, by the residue formula,

1

2�i

Z
�
�

�

.z �Da/
�1.�/ dz D

1X
iD�1

1

2�i

�Z
�
�

�

ci

z � �i
dz

�
ei

D

X
�<�i<�

ciei

D .�a/
�

�
�:

Here we have used the fact that we are allowed to take the term-by-term integration
because of the uniform convergence.

Take v 2 TaB D H1.Y /. Then, by the above formula for ��
�

, we have

.rv�
�

�
/ei D �

1

2�i

Z
�
�

�

.z �Da/
�1.rvD/.z �Da/

�1ei dz

D �
1

2�i

Z
�
�

�

.z �Da/
�1�.v/.z � �i /

�1ei dz

D �
1

2�i

Z
�
�

�

.z � �i /
�1.z �Da/

�1�.v/ei dz:
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Therefore

h.rv�
�

�
/ei ; ej i0 D �

1

2�i

Z
�
�

�

.z � �i /
�1
h�.v/ei ; .Nz �Da/

�1ej i0 dz

D �
1

2�i

Z
�
�

�

.z � �i /
�1
h�.v/ei ; .Nz � �j /

�1ej i0 dz

D �
h�.v/ei ; ej i0

2�i

Z
�
�

�

.z � �i /
�1.z � �j /

�1 dz:

From this, we obtain the formula (2.5.1) for h.rv�
�

�
/ei ; ej i0.

Note that since �.v/ defines a bounded operator L2 ! L2, we can see that the
operators .Ta/

�

�
, .Ta/

�
�1 defined by the right-hand side of (2.5.1) and (2.5.2) are

bounded from L2 to L2. Moreover, for each compact set K in H1.Y /, .Ta/
�

�
con-

verges to .Ta/
�
�1 on K uniformly as �! �1. We have

h.�aCtv/
�

�
.ei /; ej i0 � h.�a/

�

�
.ei /; ej i0 D

Z t

0

d

ds
h�aCsvei ; ej i0 ds

D

Z t

0

h.rv�aCsvei /; ej i0 ds

D

Z t

0

h.TaCsv/
�

�
.ei /; ej i0 ds:

Taking the limit as �! �1, we obtain

h.�aCtv/
�
�1.ei /; ej i0 � h.�a/

�
�1ei i0 D

Z t

0

h.TaCsv/
�
�1.ei /; ej i0 ds:

Therefore

h.rv�
�
�1/ei ; ej i0 D

d

dt

ˇ̌̌
tD0
h.�aCtv/

�
�1.ei /; ej i0 D h.Ta/

�
�1.ei /; ej i0:

We have obtained (2.5.2).

Corollary 2.5.2. Suppose that � is not an eigenvalue of Da. Then for each v 2 TB
and nonnegative k,

rv�
�
�1WL

2
k.S/! L2kC1.S/

is a bounded operator. Moreover, if j�j � 2, ˛ < k and if there is no eigenvalue of
Da in the interval Œ� � ��˛; �C ��˛�, for v 2 TaB with kvk � 1,

krv�
�
�1 W L

2
k.S/! L2k�˛.S/k � C:

Here, C > 0 is a constant independent of v, �. Similar statements hold for rv�
�

�
,

rv�
1
� .
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Proof. Let ei , �i be as in Proposition 2.5.1. Take v 2 TaB D H1.Y /. Put

�ij ´ h�.v/ei ; ej i0:

Take � D
P
i ciei 2 C

1.S/ with k�kk D 1. Since �.v/ is a bounded operator from
L2
k

to L2
k

we have

k�.v/�k2k D

X
i;j

ci�ij ej

2
k

D

X
j

ˇ̌̌̌X
i

ci�ij

ˇ̌̌̌2
.1C j�j j

2k/ � C1;

where C1 > 0 is a constant independent of �.
By Proposition 2.5.1, we have

k.rv�
�
�1/�k

2
kC1

D

 X
�i<�<�j

ci�ij

�j � �i
ej C

X
�j<�<�i

ci�ij

�i � �j
ej

2
kC1

D

X
�<�j

ˇ̌̌̌ X
�i<�

ci�ij

�j � �i

ˇ̌̌̌2
.1Cj�j j

2kC2/C
X
�j<�

ˇ̌̌̌ X
�<�i

ci�ij

�i � �j

ˇ̌̌̌2
.1Cj�j j

2kC2/:

Note that there is a constant C2 > 0 independent of i , j such that

1C j�j j
2kC2

j�j � �i j2
� C2.1C j�j j

2k/

for i , j with �i < � < �j or �j < � < �i . Hence

k.rv�
�
�1/�k

2
kC1 � C2

X
j

ˇ̌̌̌X
i

ci�ij

ˇ̌̌̌2
.1C j�j j

2k/ � C1C2:

Therefore rv�
�
�1 extends to a bounded operator L2

k
! L2

kC1
.

Next assume that there is no eigenvalue ofDa in the interval Œ����˛;�C��˛�.
Take v 2 TaB with kvk D 1. It is easy to see that if �i < � < �j or �j < � < �i we
have

1C j�j j
2k�2˛

j�i � �j j2
� C3.1C j�j j

2k/;

where C3 > 0 is independent of i , j . It follows from this and Proposition 2.5.1 that

krv�
�
�1WL

2
k ! L2k�˛k � C4;

where C4 > 0 is a constant independent of � and v.

Lemma 2.5.3. Fix positive numbers ˛, ˇ with ˛C 3 < ˇ and a 2H1.Y /. For � 2R
with j�j� 0, there exists�0 2 .�� j�j�˛;�C j�j�˛� such that there is no eigenvalue
of Da in the interval .�0 � j�j�ˇ ; �0 C j�j�ˇ �.
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Proof. Suppose that the statement is not true. Then there is a sequence �n with
j�nj ! 1 such that for any �0 2 .�n � j�nj�˛; �n C j�nj�˛� there is an eigenvalue
of Da in .�0 � j�nj�ˇ ; �0 C j�nj�ˇ �. Therefore, for each integer m with 1 � m �
j�nj

ˇ�˛ , there is an eigenvalue of Da in the interval .�n C .m � 1/j�nj�ˇ ; �n C
mj�nj

�ˇ �. This implies that

dim.E0.Da//
�nCj�nj

�˛

�n�j�nj�˛
� j�nj

ˇ�˛
� 1:

On the other hand, by the Weyl law,

dim.E.Da//
�nCj�nj

�˛

�n�j�nj�˛
� C j�nj

3:

We have obtained a contradiction.

Corollary 2.5.4. For � 2 R with j�j � 0, there is �0 2 Œ�; � C 1�, such that for
v 2 TB with kvk D 1,

krv�
�0

�1WL
2
k.S/! L2k�4.S/k � C:

Here, C > 0 is a constant independent of v, �. Similar statements hold for �1
�

, ��
�

.

Proof. This is a direct consequence of Corollary 2.5.2 and Lemma 2.5.3.

Proposition 2.5.5. Take a nonnegative real number m and a smooth spectral section
P of �D with

.E0.D//
��
�1 � P � .E0.D//

�C
�1:

Let �P be the L2-projection onto P . Then for each v 2 TB , rv�P is a bounded
operator from L2m.S/ to L2mC1.S/.

Proof. We can take an open covering ¹UiºNiD1 of B such that there are real numbers
�i , �i with �i < ��, �C < �i , which are not eigenvalues of Da for a 2 Ui . Also we
may assume that for each i , we have a trivialization

E0jUi Š Ui � L
2.S/

such that the flat connection r is equal to the exterior derivative d through this triv-
ialization. Also for each i , we have smooth L2-orthonormal frames fi;1; : : : ; fi;ri of
the normal bundle of .E0/

�i
�1jUi in P jUi . We can write

�P D �
�i
�1 C

riX
lD1

f �i;l ˝ fi;l

over Ui . We have

rv�P D rv�
�i
�1 C

riX
lD1

.rvf
�
i;l ˝ fi;l C f

�
i;l ˝rvfi;l/:
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By Corollary 2.5.2, rv�
�i
�1 is a bounded operator from L2m to L2mC1. Also we have

rvfi;l D rv.�
�i
�i
fi;l/ D .rv�

�i
�i
/fi;l C �

�i
�i
.rvfi;l/:

Since fi;l.b/ 2 C1.S/ for b 2 Ui , and rv�
�i
�i

is a bounded operator L2m ! L2mC1,
we have

rvfi;l.b/ 2 C
1.S/

for b 2 Ui . Also we have

jf �i;l.�/j D jhfi;l ; �i0j � k�k0

for � 2 C1.S/. Therefore

riX
lD1

f �i;l ˝rvfi;l WL
2
m ! L2mC1

is bounded.
Take � 2 C1.S/. We have

.rvf
�
i;l/.�/ D h�;rvfi;li0:

Note that rvfi;l.b/ 2 C1.S/ for b 2 Ui . Hence

k.rvf
�
i;l ˝ fi;l/.�/kmC1 D j.rvf

�
i;l/.�/ � fi;l jmC1 � Ck�k0:

Therefore
riX
lD1

rvf
�
i;l ˝ fi;l WL

2
m ! L2mC1

is bounded.

Corollary 2.5.6. Suppose that indD D 0 in K1.B/ and let P0 be a spectral section
of �D. Then there is a family of smoothing operators A acting on E0 such that the
kernel of D0 D D CA is trivial and

P0 D E0.D
0/0�1:

Moreover, for each positive number k and v 2 TB ,

rvD
0
WL2k.S/! L2k.S/

is bounded.
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Proof. The operator A is obtained as follows. (See the proof of [40, Lemma 8].) We
can take smooth spectral sections Q, R of D and a positive number s with

.E0/
�s
�1 � P0 � .E0/

s
�1; .E0/

�2s
�1 � Q � .E0/

�s
�1; .E0/

s
�1 � R � .E0/

2s
�1:

Put

D0 D �QD�Q � s�P0.1 � �Q/C .1 � �R/D.1 � �R/C s.1 � �P0/�R;

where �P0 , �Q, �R are the L2-projections. Then kerD0 D 0. The operator A is given
by

A D D0 �D:

The image of A is included in the subspace spanned by finitely many eigenvectors of
D. By Proposition 2.5.10, rv�P0 , rv�Q, rv�R are bounded operators from L2

k
.S/

to L2
kC1

.S/. Note that rvD is the Clifford multiplication of the harmonic 1-form v.
Hence rvD is a bounded operator L2

k
.S/! L2

k
.S/. Therefore rvD0 is a bounded

operator from L2
k

to L2
k

.

Proposition 2.5.7. The statements of Proposition 2.5.1, Corollary 2.5.2 and Corol-
lary 2.5.4 hold for the perturbed Dirac operator D0, replacing �.v/ with rvD0.

Proof. By Corollary 2.5.6, for any nonnegative number k,

rvD
0
WL2k.S/! L2k.S/

is bounded and we can do the same computations as those done for the original Dirac
operator D.

Lemma 2.5.8. For a positive integer k, a positive number l with l � k � 1 and
v 2 TaB , the expression

rvjD
0
j
k
WL2l ! L2l�kC1

is bounded.

Proof. Note that

jD0jk D .D0/k.1 � �P0/C .�1/
k.D0/k�P0 :

Here, �P0 is the L2-projection on P0. We have

rv.D
0/k D .rvD

0/.D0/k�1 CD0.rvD
0/.D0/k�2 C � � � C .D0/k�1rvD

0;

which implies that rv.D0/k is a bounded operator L2
l
! L2

l�kC1
by Corollary 2.5.6.

Also rv�P0 is a bounded operator L2
l
! L2

lC1
by Proposition 2.5.5.
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Remark 2.5.9. So far the authors have not been able to prove Lemma 2.5.8 in the
case when k is not an integer, though there is an explicit formula

jD0jk D
X
j

j�j j
k�j :

Here, �j is the projection onto the j th eigenspace which can be written as

�j D
1

2�i

Z
�j

.z �D/�1 dz:

Suppose that indD D 0 in K1.B/ and fix a spectral section P0 and recall the
definition of theL2

kC;k�
-inner product h�; �ikC;k� defined by using the perturbed Dirac

operatorD0 DDCA of Corollary 2.5.6. (See (2.3.5).) Let EkC;k� be the completion
of E1 with respect to h�; �ikC;k� .

We will prove a generalization of Proposition 2.5.5.

Proposition 2.5.10. Take nonnegative half-integers kC, k� and a smooth spectral
section P of �D with

.E0/
��
�1 � P � .E0/

�C
�1:

Let �P be the L2
kC;k�

-projection on P . Then for each nonnegative real number m,
v 2 TB , rv�P is a bounded operator from L2m.S/ to L2mC1.S/.

Proof. Let Ui , �i , �i be as in the proof of Proposition 2.5.5 and fi;1; : : : ; fi;ri are
smooth L2

kC;k�
-orthonormal frames of the normal bundle of .E0/

�i
�1jUi in P . We

can write

�P D �
�i
�1 C

riX
lD1

f �i;l ˝ fi;l

on Ui . Here,

f �i;l.�/ D h�P0�; jD
0
j
2k�fi;li0 C h.1 � �P0/�; jD

0
j
2kCfi;li0;

P0 is the fixed spectral section used to define the L2
kC;k�

-norm, and �P0 is the L2-
projection onto P0. We have

rv�P D rv�
�i
�1 C

riX
lD1

.rvf
�
i;l ˝ fi;l C f

�
i;l ˝rvfi;l/:

As stated in the proof of Proposition 2.5.5, rv��i and f �
i;l
˝ rvfi;l are bounded

operators from L2m to L2mC1.
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For � 2 C1.S/,

.rvf
�
i;l/.�/ D h.rv�P0/�; jD

0
j
2k�fi;Ci0 C h�P0�; .rvjD

0
j
2k�/fi;li0

C h�P0�; jD
0
j
2k�.rvfi;l/i0 � h.rv�P0/�; jD

0
j
2kCfi;Ii0

C h.1 � �P0/�; .rvjD
0
j
2kC/fi;li0

C h.1 � �P0/�; jD
0
j
2kC.rvfi;l/i0:

Note that 2k˙ are nonnegative integers. By Proposition 2.5.5 and Lemma 2.5.8,

k.rvf
�
i;l ˝ fi;l/.�/kmC1 D k.rvf

�
i;l/.�/ � fi;lkmC1 � Ck�k0:

Hence rvf �i;l ˝ fi;l are bounded operators from L2m to L2mC1.

Lemma 2.5.11. Let r be a connection on EkC;k� (which is not necessarily the flat
connection defined in Section 2.3). Let F be a subbundle in EkC;k� of finite rank and
�F WEkC;k� ! F be the L2

kC;k�
-projection. For a 2 B , �; 2 Fa and v 2 TaB , we

have

h.rv�F /�;  ikC;k� D 0:

Similarly, for �0;  0 2 F?a , we have

h.rv�F /�
0;  0ikC;k� D 0:

Proof. Since

�F �F D �F ;

we have

.rv�F /�F C �F .rv�F / D rv�F :

Hence

.rv�F /� C �F .rv�F /� D .rv�F /�:

Here we have used �F � D �. Therefore

�F .rv�F /� D 0;

which implies that

h.rv�F /�;  ikC;k� D 0:

The proof of the other equality is similar.
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2.6 Weighted Sobolev space

Assume that indD D 0 and fix a spectral section P0 of �D. LetD0 D D CA be the
perturbed Dirac operator as in Corollary 2.5.6.

From now on, for k > 0, we consider the norm defined by

k�kk D kjD
0
j
k�k0:

Note that this norm is equivalent to the original L2
k

-norm since kerD0 D 0. That is,
there is a constant C > 1 such that

C�1k.1C jDjk/�k0 � kjD
0
j
k�k0 � Ck.1C jDj

k/�k0:

Hence we can apply Corollary 2.5.2, Corollary 2.5.4, Proposition 2.5.7 to the Sobolev
norms with respect to D0.

Let Pn, Qn be spectral sections of �D, D with

.E0.D//
�n;�
�1 � Pn � .E0.D//

�n;C
�1 ;

.E0.D//
1
�n;C
� Qn � .E0.D//

1
�n;�

:

We may suppose that

�n;� C 10 < �n;C < �nC1;� � 10;

�nC1;C C 10 < �n;� < �n;C � 10;

�n;C � �n;� < ı; �n;C � �n;� < ı

for some positive number ı independent of n. See Theorem 2.4.1. By the definition
of D0 D D CA in the proof of Corollary 2.5.6, we have

E0.D/
�n;˙
�1 D E0.D

0/
�n;˙
�1 ;

E0.D/
1
�n;˙
D E0.D

0/1�n;˙

for n� 0. Fix half-integers kC; k� > 5. Put ` D min¹kC; k�º. Let �Pn , �Qn be the
L2
kC;k�

-projections on Pn, Qn. By Proposition 2.5.10, we can assume that for each
n, there is Cn > 0 such that for v 2 TB with kvk � 1,

krv�Pn WL
2
kC;k�

! L2`C1k � Cn; krv�Qn WL
2
kC;k�

! L2`C1k � Cn: (2.6.1)

Define a finite-dimensional subbundle Fn of E1 by

Fn D Pn \Qn � .E0/
�n;C
�n;�

:

We will next introduce weighted Sobolev spaces. Take positive numbers "n with

Cn"n �
1

n
; (2.6.2)
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where Cn are the constants from (2.6.1). Fix a smooth function

wWR! R

with

0 < w.x/ � 1 for all x 2 R;

w.x/ D "n if x 2 Œ�n;� � 3; �n;C C 3� [ Œ�n;� � 3; �n;C C 3� for some n:

Take a 2 H1.Y /. Let ¹ej ºj be an orthonormal basis of L2.S/ with

D0aej D �j ej ;

where �j are the eigenvalues of D0a.
For a positive number k and � D

P
j cj ej 2 C

1.S/, we define a weighted
Sobolev norm k�ka;k;w by

k�ka;k;w ´

�X
j

jcj j
2
j�j j

2kw.�j /
2

� 1
2

:

Denote by L2
a;k;w

.S/ the completion of C1.S/ with respect to k � ka;k;w . The family
¹k � ka;k;wºa2H1.Y / of norms induces a fiberwise norm k � kk;w on E1. We denote the
completion of E1 with respect to k � kk;w by Ek;w . Note that

k�kk;w � k�kk :

Proposition 2.6.1. Let kC, k� be half-integers with kC; k� > 5 and put ` D
min¹kC; k�º. Then

sup
v2B.TBI1/

krv�Pn WL
2
kC;k�

! L2`�5;wk ! 0:

A similar statement holds for �Qn .

Proof. For �; � 2 R, let ��
�

be the L2-projection to .E0.D0//
�

�
. Take a 2 B and

v 2 TaB with kvk � 1. By Corollary 2.5.4 and Proposition 2.5.7, for n� 0, we can
take

�n;� 2 Œ�n;� � 2; �n;� � 1�; �n;C 2 Œ�n;C C 1; �n;C C 2�

such that

krv�
�n;�
�1 WL

2
`�1 ! L2`�5k � C;

k.rv�
�n;C
�n;� /WL

2
`�1 ! L2`�5k � C;
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where C > 0 is a constant independent of n. Note that

�Pn D idE0 ı �Pn

D .�
�n;�
�1 C �

�n;C
�n;� C �

1
�n;C

/ ı �Pn

D �
�n;�
�1 C �

�n;C
�n;� ı �Pn :

Hence
rv�Pn D rv�

�n;�
�1 C .rv�

�n;C
�n;� /�Pn C �

�n;C
�n;� .rv�Pn/: (2.6.3)

For " > 0, take a positive number ˇ with ˇ > 1
"
. Then for any � 2 EkC;k� with

k�kkC;k� � 1, we have
k�1ˇ �k`�1 < ":

By Proposition 2.5.1 and Corollary 2.5.4, for n� 0 with ˇ < �n;�,

k.rv�
�n;�
�1 /�k`�5 D k.rv�

�n;�
�1 /.�ˇ�1� C �

1
ˇ �/k`�5

� C 0
� 1

jˇ � �n;�j
C "

�
: (2.6.4)

Here, C 0 > 0 is independent of n. Similarly,

k.rv�
�n;C
�n;� /�Pn�k`�5 � C

00
� 1

min¹jˇ � �n;Cj; jˇ � �n;�jº
C "

�
(2.6.5)

for n � 0, where C 00 > 0 is a constant independent of n. By the definition of the
weighted Sobolev norm k � k`;w and (2.6.2),

k�
�n;C
�n;� .rv�Pn/�k`;w � Cn"nk�kkC;k� �

1

n
: (2.6.6)

The statement follows from (2.6.3), (2.6.4), (2.6.5), (2.6.6).

Lemma 2.6.2. Let K be a compact set in H1.Y /. There is a norm k � kK;k;w on
C1.S/ such that for any a 2 K and � 2 C1.S/ we have

k�kK;k;w � k�ka;k;w :

Let L2
K;k;w

be the completion of C1.S/ with respect to k � kK;k;w . For l � k, the
natural map L2

l
! L2

K;k;w
is injective.

Proof. Take a compact set K in H1.Y / and fix a0 2 K. Choose a 2 K. Put

at D .1 � t /a0 C ta;

r D ka0 � ak;

ı´ max
®
krvD

0
WL2 ! L2k W t 2 Œ0; 1�; v 2 TatH

1.Y /; kvk D 1
¯
:
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Let QE0 be the trivial bundle H1.Y / � L2.S/ over H1.Y /, which is the pullback of
E0 by the projection H1.Y /! B . Also take a sequence ¹�lº1lD�1 of real numbers
with

�l C rı � �lC1:

We will prove that for each l , there is a constant cl.a/ > 0 such that for � 2
QE0.D

0
a0
/
�lC1
�l

, we have

cl.a/k�k0 � k.�a/
�lC1Crı

�l�rı
�k0: (2.6.7)

Fix an integer l . We consider the following set:

I D
®
t 2 Œ0; 1� W 8s 2 Œ0; 1�; s � t; 9c.s/ > 0; 8� 2 QE0.D

0
a0
/
�lC1
�l

;

c.s/k�k0 � k.�as /
�lC1Csrı

�l�srı
�k0

¯
:

Note that 0 2 I . To prove (2.6.7), it is sufficient to show that supI D 1. Put t0 D supI
and assume that t0 < 1.

Then take tC 2 .t0; 1� with jtC � t0j sufficiently small. For t 2 Œt0; tC�, let

�1.t/; : : : ; �m.t/

be the eigenvalues of D0at which are continuous in t such that

�l � t0rı < �1.t0/; �2.t0/; : : : ; �m.t0/ � �lC1 C t0rı;

dim QE0.D0at /
�lC1t0rı

�l�t0rı
D m:

Take real numbers ��, �C sufficiently close to �l � t0rı, �lC1 C t0rı, which are
not eigenvalues of D0at for t 2 Œt0; tC�, such that

QE0.D
0
at0
/
�C
��
D QE0.D

0
at0
/
�lC1Ct0rı

�l�t0rı
:

By [22, Theorem 4.10, p. 291], for t 2 Œt0; tC�,

�l � t rı < �1.t/; : : : ; �m.t/ � �lC1 C t rı

which implies that
QE0.D

0
at
/
�C
��
D QE0.D

0
at
/
�lC1Ctrı

�l�trı
:

So we have
k.�at /

�C
��
�k0 D k.�at /

�lC1Ctrı

�l�trı
�k0:

From the equality

d

dt
k.�at /

�C
��
�k20 D 2Reh.rv.�at /

�C
��
/�; �i0;
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for t 2 Œt0; tC� and � 2 QE0.D0at� /
�lC1Ct�rı

�l�t�rı
, we have

¹1 � 2M.t � t0/ºk�k0 � k.�at /
�C
��
�k0 D k.�at /

�lC1Ctrı

�l�trı
�k0;

where
M D max

®
krv.�t /

�C
��
WL2 ! L2k W t 2 Œt0; tC�

¯
and v D a � a0. Taking tC sufficiently close to t0, we have

2M jtC � t0j < 1:

This implies that
tC 2 I

and we get a contradiction. We have obtained (2.6.7).
Take a sufficiently small open neighborhood Ul;a of a in H1.Y /. Then for all

a0 2 Ul;a we have
1

2
cl.a/k�k0 � k.�a0/

�lC1CrıC1

�l�rı�1
�k0

for � 2 QE0.D0a0/
�lC1
�l

. Since K is compact, there exist al;1; : : : ; al;Nl 2 K such that

K � Ul;a1 [ � � � [ Ul;aNl
:

Take a small positive number " > 0 such that there are no eigenvalues ofD0a in Œ�"; "�
for a 2 K. Put

cl D min
®
cl.al;1/; : : : ; cl.al;Nl /

¯
;

w.l/´ min
®
jxjkw.x/ W x 62 Œ�"; "�; x 2 Œ�l�1; �lC2�

¯
:

For � 2 C1.S/, define

k�kK;k;w D

²X
l

� 1
10
clw.l/k.�a0/

�lC1
�l

�k0

�2³ 12
: (2.6.8)

Then
k�kK;k;w � k�ka;k;w

for all a 2 K and � 2 C1.S/. From definition (2.6.8) of k � kK;k;w , we have that the
natural map L2

l
! L2

K;k;w
is injective for l � k.

Proposition 2.6.3. Let W be a closed, oriented, smooth manifold and E be a vector
bundle onW . Let k be a positive number with k � 1, I be a compact interval in R and
k � k be any norm on C1.E/ such that k�k � k�kk�1 for all � 2 C1.E/. Assume
that the natural map L2

l
.E/! C1.E/ is injective for l � k � 1. Here, C1.E/ is
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the completion with respect to the norm k � k. We consider L2
l
.E/ to be a subspace of

C1.E/ through this map.
Suppose that we have a sequence nW I ! C1.E/ such that n are equicontin-

uous in k � k and uniformly bounded in L2
k

. Then after passing to a subsequence, n
converges uniformly in L2

k�1
to a continuous

 W I ! L2k�1.E/:

Proof. Let q1; q2; : : : ; be the rational numbers in I . Since n are uniformly bounded
in L2

k
, it follows from the Rellich lemma and the diagonal argument that there is a

subsequence n.i/ such that n.i/.qm/ converges inL2
k�1

(and hence in k � k) as i!1
for each m. Since n are equicontinuous in k � k, for any " > 0 and t 2 I , we can find
qm which is independent of i , with

kn.i/.t/ � n.i/.qm/k < ":

So we have, for any t ,

kn.i/.t/ � n.j /.t/k

� kn.i/.t/� n.i/.qm/k C kn.i/.qm/� n.j /.qm/k C kn.j /.qm/� n.j /.t/k

� kn.i/.qm/ � n.j /.qm/k C 2":

This implies that for each t 2 I , n.i/.t/ is a Cauchy sequence in k � k, and hence n.i/
has a pointwise limit  W I ! C1.E/, where C1.E/ is the completion with respect
to k � k.

Since n are equicontinuous in k � k, for any " > 0 there is ı > 0 such that for
t; t 0 2 I with jt � t 0j < ı we have kn.t/ � n.t 0/k < ". Taking the limit, we have
k.t/ � .t 0/k � ". We can choose finitely many rational numbers q1; : : : ; qN in I
such that for all t 2 I there is ql with l 2 ¹1; : : : ; N º such that jt � ql j < ı. If i0 is
large enough, for i > i0 we have kn.i/.qm/ � .qm/k < " for all m 2 ¹1; : : : ; N º.
Therefore, for i > i0,

kn.i/.t/ � .t/k � kn.i/.t/ � n.i/.ql/k C kn.i/.ql/ � .ql/k C k.ql/ � .t/k

< 3":

Hence n.i/ converges uniformly to  in k � k.
We first show that the limit  defined above in fact lies in L2

k� 12
. Indeed, for any

fixed t1 and any sequence ti ! t1 in I , we have that n.i/.ti / converges, in .k � 1
2
/-

norm, after extracting a subsequence, to some ı. However, as above, n.i/.ti / also
converges in k � k-norm to .t1/. Recall that L2

k� 12
is a subspace of C1.E/, so

ı 2 C1.E/, and we have

k.t1/ � ık � k.t1/ � n.i/.ti /k C kn.i/.ti / � ık

� k.t1/ � n.i/.ti /k C kn.i/.ti / � ıkk� 12
:
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It follows that ı D .t1/. This establishes that  is defined as a function I ! L2
k� 12

,

but not that it is continuous, nor that the ¹n.i/º converges pointwise in .k � 1
2
/-

norm. Note that, since kn.t/kk � C for a positive constant C independent of n, t by
assumption, we have k.t/kk� 12 � C for all t 2 I .

Assume that n.i/ does not converge uniformly in L2
k�1

. Then after passing to a
subsequence, there is "0 > 0 such that for any i we have ti 2 I with

kn.i/.ti / � .ti /kk�1 � "0:

After passing to a subsequence, ti converges to some t1 2 I . Then n.i/.ti / con-
verges to .t1/ in k � k. Since n.i/.ti / are uniformly bounded in L2

k
, by the Rellich

lemma, after passing to a subsequence n.i/.ti / converges to some ı in L2
k�1

; by the
argument to show that .t1/ 2 L2

k� 12
above, we see that ı D .t1/. Similarly, since

k.ti /kk� 12
�C for all i , after passing to a subsequence, .ti / converges to some ı0 in

L2
k�1

. Since .ti /! .t1/ in C1.E/, the previous argument gives that ı0 D .t1/.
Therefore, after passing to a subsequence,

kn.i/.ti / � .ti /kk�1 ! 0

as i!1. This is a contradiction. Thus n.i/ converges to  inL2
k�1

uniformly. Since
the convergence is uniform in L2

k�1
,  is continuous in L2

k�1
.

2.7 Proof of Theorem 2.3.3

Take half-integers kC, k� with kC; k� > 5 and with jkC � k�j � 1
2

. We put ` D
min¹kC; k�º and

An´ .BkC.F
C
n IR/ �B Bk�.F

�
n IR// �B .BkC.W

C
n IR/ �B Bk�.W

�
n IR//:

We want to prove that An are isolating neighborhoods for 'n;kC;k� D 'n for n large.
If this is not true, after passing to a subsequence,

invAn \ @An 6D ;

for all n. Then we can take

yn;0 D .�n;0; !n;0/ 2 invAn \ @An:

After passing to a subsequence, we may suppose that one of the following cases holds
for all n:

(i) �Cn;0 2 SkC.F
C
n IR/

(ii) ��n;0 2 Sk�.F
�
n IR/,
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(iii) !Cn;0 2 SkC.W
C
n IR/,

(iv) !�n;0 2 Sk�.W
�
n IR/.

Let n D .�n; !n/WR! Fn ˚Wn be the solution to (2.3.10) with n.0/ D yn;0:�d�n
dt

.t/
�
V
D �.rXH�Fn/�n.t/ � �Fn

�
D�n.t/C c1.n.t//

�
;�d�n

dt
.t/
�
H
D �XH .�n.t//;

d!n

dt
.t/ D � � d!n.t/ � �Wnc2.n.t//:

(2.7.1)

We have

k�Cn .t/kkC �R; k�
�
n .t/kk� �R; k!

C
n .t/kkC �R; k!

�
n .t/kk� �R (2.7.2)

for all t 2 R. By the Sobolev multiplication theorem,

kc1.n.t//k` � Ckn.t/k
2
` � CR

2;

kc2.n.t//k` � Ckn.t/k
2
` � CR

2;

kXH .�.t//k` � Ckn.t/k
2
` � CR

2:

Let� �H1.Y / be a fundamental domain of the action of H 1.Y IZ/ on H1.Y /,
which is a bounded set. By the path lifting property of the covering space H1.Y / �

L2
kC;k�

.S/! EkC;k� , we have a lift

Qn D . Q�n; !n/WR! H1.Y / � L2kC;k�.S/ � L
2
kC;k�

.im d�/

of n with
pH . Qn.0// 2 �: (2.7.3)

By (2.7.1), we have �d�n
dt

.t/
�
H

 � CR2: (2.7.4)

Fix T > 0. It follows from (2.7.3) and (2.7.4) that we can take a compact set KT of
H1.Y / such that for any n and t 2 Œ�T; T � we have

pH . Qn.t// 2 KT :

Note that d Q�n
dt

is uniformly bounded on Œ�T; T � in k � kKT ;`�5;w by (2.7.1),
Proposition 2.6.1 and Lemma 2.6.2, which implies that Q�n are equicontinuous in
L2
KT ;`�5;w

on Œ�T;T �. The !n are also equicontinuous inL2
`�1

. By Proposition 2.6.3,
after passing to a subsequence, QnjŒ�T;T � converges to a map

Q .T / D . Q�.T /; !.T //W Œ�T; T �! H1.Y / � L2`�1.S/ � L
2
`�1.im d�/
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uniformly in L2
`�1

. By the diagonal argument, we can show that there is a continuous
map

Q D . Q�; !/ W R! H1.Y / � L2`�1.S/ � L
2
`�1.im d�/

such that, after passing to a subsequence, Qn converges to Q uniformly in L2
`�1

on
each compact set in R.

Lemma 2.7.1. The limit Q is a solution to the Seiberg–Witten equations over Y �R.

Proof. Fix T > 0. For t 2 Œ�T; T �, we have

Q�n.t/ � Q�n.0/

D

Z t

0

d Q�n

ds
.s/ ds

D �

Z t

0

.rXH� zFn/
Q�n.s/C� zFn

�
D Q�n.t/C c1. Qn.t//

�
CXH .�n.s// ds: (2.7.5)

We have that pH . Qn.t// 2 KT for any n and t 2 Œ�T; T �. Note that we have no
estimate on .rXH�Fn/ Q�n in any L2j -norm and that we just have control on it in the
auxiliary space L2

KT ;`�5;w
. By Proposition 2.6.1 and Lemma 2.6.2,

.rXH� zFn/
Q�n.s/! 0

uniformly in L2
KT ;`�5;w

as n!1. Recall that Q�n, !n converge in L2
`�1

uniformly
on Œ�T; T �. It follows from Proposition 2.4.2 and the inequality

k�FnD
Q�n �D Q�k`�2 D k�FnD

Q�n �D Q�n CD Q�n �D Q�k`�2

� kŒ�Fn ;D�
Q�nk`�2 C kD Q�n �D Q�k`�2

that �FnD Q�n converges to D Q� uniformly in L2
`�2

on Œ�T; T �.
Taking the limit with n!1 in (2.7.5), we obtain

Q�.t/ � Q�.0/ D �

Z t

0

�
D Q.t/C c1. Q.t//

�
CXH . Q�.s// ds:

Hence, by the fundamental theorem of calculus,

d Q�

dt
.t/ D �

�
D Q�.t/C c1. Q.t//

�
�XH . Q�.t//:

A priori, the left-hand side d Q�
dt
.t/ only lives in the auxiliary space L2

KT ;`�5;w
. How-

ever, since L2
`�2

is a subspace of L2
KT ;`�2;w

and the right-hand side is in L2
`�2

,
d Q�
dt
.t/ is in L2

`�2
and both sides are equal to each other as elements of L2

`�2
.
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Similarly, we can show that

d!

dt
.t/ D � � d!.t/ � c2. Q.t//:

Therefore Q is a solution to the Seiberg–Witten equations (2.3.4) and the ordinary
theory of elliptic regularity shows that Q is in C1 as a section on any compact set in
Y � .�T; T /.

Composing Q WR! H1.Y / � L2
`�1
.S/ � L2

`�1
.im d�/ with the projection

H1.Y / � L2`�1.S/ � L
2
`�1.im d�/! E`�1 ˚W`�1;

we get a Seiberg–Witten trajectory

 WR! E`�1 ˚W`�1:

Since k.t/k`�1 � R for all t 2 R,  has finite energy. By Proposition 2.3.2,

k.t/kkC;k� � RkC;k� ; (2.7.6)

for all t 2 R.
Assume that case (i) holds for all n. We have

k�Cn .0/kkC D R:

Lemma 2.7.2. There is a constant C > 0 such that for all n,

k�Cn .0/kkCC 12
< C:

Proof. Note that
d

dt

ˇ̌̌
tD0
k�Cn .t/k

2
kC
D 0:

Let us consider the case when kC 2 1
2
Z n Z.

Let �C be the L2
kC;k�

-projection onto EC
kC;k�

. (That is, �C D 1 � �P0 .) Then
we have

1

2

d

dt

ˇ̌̌
tD0
k�Cn .t/k

2
kC
D
1

2

d

dt

ˇ̌̌
tD0
hjD0jkCC

1
2�C�n.t/; jD

0
j
kC�

1
2�C�n.t/i0

D h.rXH jD
0
j
kCC

1
2 /�Cn .0/; jD

0
j
kC�

1
2�Cn .0/i0

C hjD0jkCC
1
2�Cn .0/; .rXH jD

0
j
kC�

1
2 /�Cn .0/i0

C Reh.rXH�
C/�n.0/; �

C
n .0/ikC C Re

Dd�n
dt

.0/; �Cn .0/
E
kC
:
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Note that kC C 1
2

and kC � 1
2

are integers. By Lemma 2.5.8,ˇ̌
h.rXH jD

0
j
kCC

1
2 /�Cn .0/; jD

0
j
kC�

1
2�Cn .0/i0

ˇ̌
� Ck�Cn .0/k

2

kC�
1
2

� CR2;ˇ̌
hjD0jkCC

1
2�Cn .0/; .rXH jD

0
j
kC�

1
2 /�Cn .0/i0

ˇ̌
� Ck�Cn .0/kkCC 12

k�Cn .0/kkC� 12

� CRk�Cn .0/kkCC 12
:

By Proposition 2.5.10,ˇ̌
h.rXH�

C/�n.0/; �
C
n .0/ikC

ˇ̌
� k.rXH�

C/�n.0/kkCk�
C
n .0/kkC

� Ck�n.0/kkC�1k�
C
n .0/kkC

� Ck�n.0/k`k�
C
n .0/kkC

� CR2:

We haveDd�n
dt

.0/; �Cn .0/
E
kC

D �
˝
.rXH�Fn/�n.0/C �Fn

�
D0�n.0/ �A�n.0/C c1.n.0//

�
; �Cn .0/

˛
kC
:

By Lemma 2.5.11,

h.rXH�Fn/�n.0/; �
C
n .0/ikC D h.rXH�Fn/�n.0/; �

C
n .0/ikC;k� D 0:

We have

h�FnD
0�n.0/; �

C
n .0/ikC D hD

0�n.0/; �Fn�
C
n .0/ikC

D hD0�n.0/; �
C
n .0/ikC

D k�Cn .0/k
2

kCC
1
2

:

Since A is a smoothing operator,

jh�FnA�n.0/; �
C
n .0/ikC j � Ck�n.0/k0k�n.0/kkC � CR

2:

Since D0 is self-adjoint,

jh�Fnc1.n.0//; �
C
n .0/ikC j D jhc1.n.0//; �

C
n .0/ikC j

D jhjD0jkCc1.n.0//; jD
0
j
kC�Cn .0/i0j

D jhjD0jkC�
1
2 c1.n.0//; jD

0
j
kCC

1
2�Cn .0/i0j

� kc1.n.0//kkC� 12
k�Cn .0/kkCC 12

� Ckc1.n.0//k`k�
C
n .0/kkCC 12

.` D min¹kC; k�º/

� CR2k�Cn .0/kkCC 12
:
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Therefore

0 D
1

2

d

dt

ˇ̌̌
tD0
k�Cn .t/k

2
kC
� �k�Cn .0/k

2

kCC
1
2

C CR2k�Cn .0/kkCC 12
C CR2:

This inequality implies that the sequence k�Cn .0/kkCC 12 is bounded.
The proof in the case kC 2 Z is similar.

It follows from Lemma 2.7.2 and the Rellich lemma that after passing to a subse-
quence, �Cn .0/ converges to �C.0/ in L2

kC
strongly. By the assumption, k�Cn .0/kkC

D R for all n. Hence,

k.0/kkC;k� � k�
C.0/kkC;k� D R:

This contradicts (2.7.6).
Let us consider case (ii). In this case, we have

k��n .0/kk� D R:

Lemma 2.7.3. There is a constant C > 0 such that for all n,

k��n .0/kk�C 12
< C:

Proof. Note that
hD0�n.0/; �

�
n .0/ik� D �k�

�
n .0/k

2

k�C
1
2

:

As in the proof of Lemma 2.7.2, we can show that

0 D
d

dt

ˇ̌̌
tD0
k��n .t/k

2
k�
� k��n .0/k

2

k�C
1
2

� CR2k�Cn .0/kk�C 12
� CR2:

This implies that the sequence k��n .0/kk�C 12 is bounded.

By the Rellich lemma, ��n .0/ converges to ��.0/ in L2
k�

strongly. Hence

k.0/kkC;k� � k�
�.0/kk� D R:

We get a contradiction.
In the other cases (iii), (iv) where yn;0 is in the other components of @An, we

similarly have a contradiction.

Definition 2.7.4. For this definition we refer to some notions from parameterized
homotopy theory and parameterized Conley index theory; refer to Sections A.1
and A.2, respectively. For notation as in Theorem 2.3.3, let �WF Œn�.Y; s/ be the
parameterized Conley index of the flow 'n;kC;k� on the isolated invariant set An.
We call �WF Œn�.Y; s/ the pre-Seiberg–Witten Floer invariant of .Y; s/ (for short,
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the pre-SWF invariant of .Y; s/). The object �WF Œn�.Y; s/ is an (equivariant) topo-
logical space, depending on a number of choices (which are not all reflected in its
notation). First, �WF Œn�.Y; s/ depends on the choice of an index pair, but its (equiv-
ariant, parameterized) homotopy type is independent of the choice of index pair –
we will abuse notation and also write �WF Œn�.Y; s/ for its (equivariant, parameter-
ized) homotopy type. It also depends on a choice of metric on Y , as well as spectral
sections Pn, Qn and subspaces W ˙n , as in the preliminaries to Theorem 2.3.3.

The projection used in the parameterized Conley index is from the ex-space Bn;R
over Pic.Y /, as explained in the discussion after Theorem 2.3.3.

We write �WF u
Œn�.Y;s/ to refer to the Conley index with trivial parameterization.

By Lemma A.2.7, �Š�WF Œn�.Y; s/ D �WF u
Œn�.Y; s/, where �W B ! � is the map

collapsing the Picard torus to a point, and �Š is as defined in Appendix A.1.

If s is a self-conjugate spinc structure, the bundle L2
k
.S/ �H1.Y / � L2

k
.im d�/

admits a Pin.2/-action extending the S1-action on spinors, by

j.�; v; !/ D .j�;�v;�!/:

In the event that the spectral sections Pn, Qn are preserved by the Pin.2/-action,
then the approximate flow on Fn ˚ Wn will be Pin.2/-equivariant, and we define
�WF

Pin.2/
Œn�

.Y; s/ to be the Pin.2/-equivariant parameterized Conley index, so that its
underlying S1-space is �WF Œn�.Y;s/. We similarly define �WF

u;Pin.2/
Œn�

.Y; s/ (and we

will occasionally write �WF
u;S1

Œn�
.Y; s/ to distinguish what equivariance is meant).

See Theorem 2.4.8 for the existence of Pin.2/-equivariant spectral sections.





Chapter 3

Well-definedness

Here we show how changing the choices in the construction above affect the resulting
space output.

3.1 Variation of approximations

First, we consider the change due to passing between different approximations. For
this section, we fix a 3-manifold with spinc structure .Y; s/.

As before, let Pn, Qn be spectral sections of �D, D with

.E0.D//
�n;�
�1 � Pn � .E0.D//

�n;C
�1 ;

.E0.D//
1
�n;C
� Qn � .E0.D//

1
�n;�

:

We may assume that j�n;C ��n;�j and j�n;C � �n;�j are bounded. We call any such
sequence of spectral sections a good sequence of spectral sections.

Fix half-integers kC; k� > 5. Put ` D min¹kC; k�º.
Let Fn D Pn \Qn � .E0/

�n;C
�n;�

, as before. Fix H to be the quaternion represen-
tation of Pin.2/, and let B D Pic.Y / denote the Picard torus of Y . We write I.'; S/
for the (parameterized) Conley index of a flow ' and isolated invariant set S ; we will
usually suppress S from the notation, and Iu.'; S/ for the unparameterized version;
see Appendix A.2. Finally, a further bit of notation for the statement of the following
theorem. Let Th.E;Z/, for a vector bundle � WE!Z, denote the Thom construction
of � .

Theorem 3.1.1. Let �Pn W PnC1 ! Pn ˚ CkP;n and �Qn WQnC1 ! Qn ˚ CkQ;n be
vector-bundle isometries (with respect to the k˙-metric), where CkP;n and CkQ;n are
the trivial bundles over B of rank kP;n and kQ;n. Let �W;Cn WW CnC1!W Cn ˚RkW;C;n

and �W;�n WW �nC1 ! W �n ˚ RkW;�;n be another pair of isometries. Then there is an
S1-equivariant parameterized homotopy equivalence of Conley indices

��W I.'nC1/! †CkQ;n˚RkW;�;n
B I.'n/;

which is well defined up to homotopy for the induced map

�Š��W I
u.'nC1/! †CkQ;n˚RkW;�;n Iu.'n/:

Furthermore, if s is a self-conjugate spinc structure and instead �Pn WPnC1 ! Pn ˚

HkH;P;n and �Qn WQnC1!Qn˚HkH;Q;n , and the maps �W;˙ above are equivariant
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with respect to the C2-action onWnC1;Wn and zRkW;˙;n , then there is a well-defined,
up to equivariant homotopy, Pin.2/-equivariant homotopy equivalence

�Š��W I
u.'nC1/! †HkH;Q;n˚zRkW;�;n Iu.'n/;

and similarly for the parameterized version.
The restriction �� to the S1-fixed point set I.'nC1/S

1
is a fiber-preserving homo-

topy equivalence to †RkW;�;n
B In.'/

S1 .
More generally, without a selection of maps �ın as above, there is an S1-equi-

variant parameterized homotopy equivalence of Conley indices

��W I.'nC1/! †
QnC1=Qn
B †

W�
nC1

=W�n
B Iu.'n/;

so that the induced, unparameterized map

�Š��W I
u.'nC1/! Th.QnC1=Qn ˚W �nC1=W

�
n ; I

u.'n//

is well defined up to homotopy, as well as a similar statement for self-conjugate s.

Proof. By Lemma 3.1.2 below and invariance of the Conley index under deforma-
tions, there is a well-defined homotopy equivalence �1WIu.'nC1/!Iu.'

split
nC1/, where

'
split
nC1 is defined in Lemma 3.1.2 (and similarly for the parameterized version). Using

the invariance of the Conley index under homeomorphism, we have a well-defined
homotopy equivalence

�2W I.'
split
nC1/! I.'

split;�
nC1 /;

where '
split;�
nC1 is defined in Lemma 3.1.9. Finally, by Lemma 3.1.9, the well-

definedness of the Conley index (independent of a choice of index pair), and the
definition of the Conley index (using our choice of index pair from Lemma 3.1.9),
there is a well-defined homotopy equivalence

�3W I.'
split;�
nC1 /! †

QnC1=Qn
B †

W�
nC1

=W�n
B I.'n/:

In the case that we have fixed trivializations, as above, ofW �nC1=W
�
n andQ�nC1=Q

�
n ,

the target of �3 is identified with

†CkQ;n˚RkW;�;n
B I.'n/:

Since the flows used to define the homotopy equivalences preserve the fibers of
the S1-fixed point sets (that is, X.�/H D 0 if � D 0), we can see from the formulas
for the maps f , g, F�, G� in the proof of [43, Theorem 6.2] that the restrictions of
�1, �2, �3 to the S1-fixed point sets preserve the fibers.

The argument adapts immediately to the case in which there is a spin structure,
and the theorem follows.



Variation of approximations 59

Let †˙nC1 be the L2
kC;k�

-orthogonal complement to Pn in PnC1 (resp. Qn in

QnC1). Similarly, let †W;˙nC1 be the L2
kC;k�

-orthogonal complement to W ˙n in W ˙nC1.
Let †nC1 D †CnC1 ˚†

�
nC1 and †WnC1 D †

W;C
nC1 ˚†

W;�
nC1. Then FnC1 D Fn ˚†nC1

and WnC1 D Wn ˚ †
W
nC1. Write �†nC1 for the projection to †nC1 with respect

to the L2
kC;k�

-norm. We also write �†W
nC1

for the projection †WnC1 with respect to
the L2

kC;k�
-norm.

Let Xn be the approximate Seiberg–Witten vector field on Fn ˚Wn, for all n, as
defined in (2.3.10). Let R be large enough as in Theorem 2.3.3.

For a path .t/ in the total space of FnC1 ˚WnC1, we write .t/ D .�.1/.t/C
�.t//˚ .!.1/.t/C !.2/.t//, as an element in the fiber over b.t/ D p..t//, where
�.1/.t/ is an element of .Fn/b.t/, �.t/ 2 .†n/b.t/, !.1/.t/ 2 .Wn/b.t/ and !.2/.t/ 2
.†Wn /b.t/.

We then write .t/ D .�.1/.t/; �.t/; !.1/.t/; !.2/.t/; b.t// to describe  in terms
of these coordinates. We also write �nC1.t/ to refer to the path in the total space of
FnC1 determined by .�.1/nC1.t/; �nC1.t/; b.t//.

Lemma 3.1.2. Let X
split
n be the vector field on the total space of .Fn˚†n/˚ .Wn˚

†Wn / defined by (3.1.1), where

nC1.t/ D .�
.1/
nC1.t/; �nC1.t/; !

.1/
nC1.t/; !

.2/
nC1.t/; bnC1.t//

and OnC1.t/ is the path obtained by (fiberwise) projecting nC1.t/ to .Fn ˚

Wn/bnC1.t/:

d�
.1/
nC1

dt
.t/ D ��

®
.rXH�Fn/�

.1/
nC1.t/C �Fn

�
D�

.1/
nC1.t/C c1. OnC1.t//

�¯
;

d�nC1

dt
.t/ D ��

®
.rXH�†nC1/�nC1.t/C �†nC1.D�nC1.t//

¯
;

dbnC1

dt
.t/ D ��XH .�

.1/
nC1.t//;

d!
.1/
nC1

dt
.t/ D ��

®
�d!

.1/
nC1.t/C �Wnc2. OnC1.t//

¯
;

d!
.2/
nC1

dt
.t/ D �� � d!

.2/
nC1.t/:

(3.1.1)

Here, � is the cut-off function in (2.3.10). Then, for n sufficiently large, there is a con-
tinuous family of vector fields X�

nC1 on (the total space of) FnC1 ˚WnC1 between
XnC1 and X

split
nC1, with associated flows '�nC1, so that AnC1 is an isolating neighbor-

hood for all � , where

AnC1 D A
o
n �B BkC.†

C
nC1IR/ �B Bk�.†

�
nC1IR/

�B BkC.†
W;C
nC1 IR/ �B Bk�.†

W;�
nC1IR/;

where Aon is as An in the proof of Theorem 2.3.3.
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Proof. This is an immediate consequence of Lemmas 3.1.3, 3.1.7 and 3.1.8.

We construct the homotopy X�
nC1, with associated flow '�

nC1;kC;k�
, in stages.

Lemma 3.1.3. Let X�
nC1 for � 2 Œ0; 1� be defined by

d�
.1/
nC1

dt
.t/ D ��

®
.rXH�Fn/.�

.1/
nC1.t/C �nC1.t//

C .1 � �/�Fn
�
D�nC1.t/C c1.nC1.t//

�
C ��Fn

�
D.�

.1/
nC1/C c1. OnC1.t//

�¯
;

d�nC1

dt
.t/ D ��

®
.rXH�†nC1/.�

.1/
nC1 C �nC1.t//

C .1 � �/�†nC1
�
D.�

.1/
nC1.t/C �nC1.t//C c1.nC1.t//

�
C ��†nC1D�nC1.t/

¯
;

dbnC1

dt
.t/ D ��XH .�nC1.t//;

d!
.1/
nC1

dt
.t/ D ��

®
�d!

.1/
nC1.t/C ��Wnc2. OnC1.t//

C .1 � �/�Wnc2.nC1.t//
¯
;

d!
.2/
nC1

dt
.t/ D ��

®
�d!

.2/
nC1.t/C .1 � �/�†W

nC1
c2.nC1.t//

¯
:

Here, � is the cut-off function in (2.3.10). Then, for all n� 0, AnC1 is an isolating
neighborhood of '�

nC1;kC;k�
for all � 2 Œ0; 1�.

Proof. The lemma is a consequence of Lemmas 3.1.4, 3.1.5 and 3.1.6. Indeed, let

Aon D .BkC.F
C
n IR/ �B Bk�.F

�
n IR// �B .BkC.W

C
n IR/ �B Bk�.W

�
n IR//

be as in the proof of Theorem 2.3.3. Suppose that

invAnC1 6� intAnC1;

for some �n 2 Œ0; 1�, for all n. Then there is a sequence of finite-energy approximate
trajectories nC1.t/, for '�nC1

nC1;kC;k�
, so that nC1.0/ 2 @AnC1. There are four cases

as in the proof of Theorem 2.3.3; we only treat the case that

nC1.0/ 2 .SkC.F
C
nC1IR/ �B Bk�.F

�
nC1IR//

�B .Bk�.W
C
nC1IR/ �B Bk�.W

�
nC1IR//

for all n, the other cases being similar.
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As in the proof of Theorem 2.3.3, we have a lift

QnC1 D . Q�nC1; !nC1/WR! H1.Y / � L2kC;k�.S/ � L
2
kC;k�

.im d�/

with p. QnC1.0// 2 �.
By Lemma 3.1.5 and Proposition 2.6.3, the sequence Q has a subsequence con-

verging, uniformly in .` � 1/-norm to some continuous map

Q W I ! H1.Y / � L2kC�1;k��1.S/ � L
2
kC�1;k��1

.im d�/:

By Lemma 3.1.6, Q is a solution of the Seiberg–Witten equations. Finally, by
Lemma 3.1.4, we obtain that the sequence Q�Cn .0/ converged to Q�C.0/ uniformly in
L2
kC

-norm, which is a contradiction.

Lemma 3.1.4. Assume that we have a sequence of trajectories QnC1 as in the proof
of Lemma 3.1.2, with in particular

nC1.0/ 2 .SkC.F
C
nC1IR/ �B Bk�.F

�
nC1IR//

�B .Bk�.W
C
nC1IR/ �B Bk�.W

�
nC1IR//:

Then there is some R1 so that

k�CnC1.0/kkCC 12
< R1;

for all n.

Proof. We emphasize only what must be changed from the proof of Lemma 2.7.2.
We check the case where kC is an integer. We calculate

1

2

d

dt

ˇ̌̌
tD0
k�CnC1.t/k

2
kC

D Re
�
h.rXH .D

0/kC/�CnC1.0/; .D
0/kC�CnC1.0/i0

C h.rXH�
C/�nC1.0/; �

C
nC1.0/ikC

� h.rXH�FnC1/�nC1.0/; �
C
nC1.0/ikC

� h.1 � �/�FnD
0�nC1.0/; �

C
nC1.0/ikC

C h..1 � �/A � .1 � �/�FnC1/c1.nC1.0//; �
C
nC1.0/ikC

� �h�FnD.�
.1/
nC1.0//; �

C
nC1.0/ikC � h��Fnc1. OnC1.0//; �

C
nC1.0/ikC

� h�†nC1D�nC1.0/; �
C
nC1.0/ikC

� .1 � �/
˝
�†nC1D

�
�
.1/
nC1.0/C c1.nC1.0//

�
; �CnC1.0/

˛
kC

�
:
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Following the argument of Lemma 2.7.2, we obtain

1

2

d

dt

ˇ̌̌
tD0
k�CnC1.t/k

2
kC

� CR3k�CnC1.0/kkCC 12
� h�FnC1D

0�nC1.0/; �
C
nC1.0/ikC

C �
�
h�†nC1D�

.1/
nC1.0/; �

C
nC1.0/ikC C h�FnD�nC1.0/; �

C
nC1.0/ikC

�
:

But
h�FnC1D

0�nC1.t/; �
C
nC1.t/ikC D k�

C
nC1.t/k

2

kCC
1
2

:

Since ŒD0; �†nC1 � is uniformly bounded, we obtain

�h�†nC1D�
.1/
nC1; �

C
nC1ikC � CR

2

for some constant C independent of n.
A similar argument applies to h�FnD�nC1; �

C
nC1ikC . The lemma then follows as

did Lemma 2.7.2.

Lemma 3.1.5. The sequence . Q�n; !n/ is equicontinuous in L2
KT ;`�5;w

-norm.

Proof. This follows exactly as in the proof of Theorem 2.3.3.

By Proposition 2.6.3, any sequence which is equicontinuous in L2
KT ;`�5;w

-norm
and bounded in `-norm has a subsequence converging, uniformly in k � k`�1, to some
continuous map Q W I ! H1.Y / � L2

`�1
.S/ � L2

`�1
.im d�/.

Lemma 3.1.6. A limit Q for the sequence .�n; !n/ as above, is a solution of the
Seiberg–Witten equations over Y �R.

Proof. Take T 2 Z>0 and t 2 Œ�T; T �. We have

Q�nC1.t/ � Q�nC1.0/

D

Z t

0

d Q�nC1

ds
.s/ ds

D �

Z t

0

Z1 CZ2 CZ3 C � zFnC1

�
D. Q�

.1/
nC1.t/C �nC1.t//C c1. Qn.t//

�
CXH .�nC1.s// ds;

where
Z1 D .rXH .�nC1.t//�FnC1/

Q�nC1;

Z2 D ���†nC1D�
.1/
nC1 � ��FnD�nC1.t/;

Z3 D ��
�
�†nC1c1. Qn.t//C �Fnc1. Qn.t// � �Fnc1.

QOn.t//
�
:
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It suffices to show that the Zi terms approach 0 uniformly in L2
KT ;`�5;w

, and that

� zFnC1

�
D. Q�nC1/C c1. QnC1.t//

�
CXH .�nC1.t//

! D. Q�.t//C c1. Q.t//CXH .�.t//;

also in L2
KT ;`�5;w

. Indeed, if that is the case, then the limit of integrals on the right-
hand side is well defined, and

Q�.t/ � Q�.0/ D �

Z t

0

�
D Q� C c1. Q.t//CXH .�.s//

�
ds; (3.1.2)

giving the conclusion of the lemma.
Exactly as in the proof of Theorem 2.3.3, we obtain that Z1 converges to 0 uni-

formly in L2
KT ;`�5;w

.
To show that �FnD�nC1.t/! 0 inL2

KT ;`�5;w
, we use an elementary observation

about projection with respect to different norms. That is, if V is a finite-dimensional
vector space with norms k � k1 and k � k2, then for a subspace V 0 � V and projection
…1 to V 0 with respect to k � k1, then k…1xk2=kxk2 � �1�2 for x 2 V , where �2 D
supx2V �¹kxk2=kxk1º and �1 D supx2V ¹kxk1=kxk2º.

We say a collection of finite-dimensional vector spaces Vi with norms k � k1;i and
k � k2;i is controlled if �1;i�2;i is bounded above.

We claim that the orthogonal complement of Fn in .E�n;C
�n;�

/a, call it F?n , with
norms given by the restriction of L2

kC;k�
and L2

kC�1;k��1
(respectively), is con-

trolled. Indeed, F?n is a subspace of .E�n;C�n;� /a. On .E�n;C�n;� /a, by definition we have
�1�2 < �n;C=�n;�. By our condition on the growth of the �n;˙, we then have that
�1;n�2;n is bounded as a function of n.

We claim that �FnD�nC1.t/! 0 inL2
kC�2;k��2

. Indeed, �nC1.t/ converges to 0
weakly in L2

kC;k�
by definition and �nC1.t/ converges strongly to 0 in L2

kC�1;k��1
.

Then D�nC1.t/ converges to 0 in L2
kC�2;k��2

. Finally, �Fn is a bounded family of
operators in L2

kC�2;k��2
by the above argument, giving the claim. As a consequence,

we also have convergence in L2
KT ;`�5;w

.

To show that �†nC1D�
.1/
nC1 converges to 0, we note that by Proposition 2.4.2,

kŒD; �†nC1 �WL
2
j ! L2j k � C

for some constant C independent of n, for all half-integers j � kC. Moreover, we
have �†nC1�

.1/
nC1 D 0, and so we need only show that the sequence Œ�†nC1 ;D��

.1/
nC1

converges to zero. Given the bound on �D�.1/nC1 from the bound on the commuta-
tor ŒD; �†nC1 � above, and using the definition of the norms involved, we see that
�†nC1D�

.1/
nC1 ! 0 in L2

`�1
-norm.
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A very similar argument shows that �†nC1c1.n.t// ! 0 in L2
KT ;`�5;w

, and
also that �Fnc1.n.t// and �Fnc1. On.t// converge to c1..t// in L2

KT ;`�5;w
, so that

Z3 ! 0.
A similar argument also shows the convergence in (3.1.2), and the proof is com-

plete.

For � 2 Œ1; 2�, define a flow '�
nC1;kC;k�

on FnC1 ˚WnC1 by

d�
.1/
nC1

dt
.t/ D ��

®
.2 � �/.rXH .�nC1.t//�Fn/.�nC1.t//

C
�
�FnD�

.1/
nC1.t/C c1. OnC1.t//

�
C .� � 1/.rXH .�nC1.t//�Fn/�

.1/
nC1.t/

¯
;

d�nC1

dt
.t/ D ��

®
.2 � �/.rXH .�nC1.t//�†nC1/.�

.1/
nC1.t/C �nC1.t//

C .� � 1/.rXH .�nC1.t//�†nC1/�nC1.t/C �†nC1D�nC1.t/
¯
;

with the other terms unchanged. Inspection shows that the total space of FnC1 ˚
WnC1 is preserved by the flow.

Lemma 3.1.7. For n� 0, for all � 2 Œ1; 2�, AnC1 is an isolating neighborhood for
'�
nC1;kC;k�

.

Proof. We highlight only the difference in the argument compared to the proof of
Lemma 3.1.3. We have a sequence of trajectories

nC1.t/ D .�
.1/
nC1.t/; �nC1.t/; !nC1.t//

exactly as in that argument. We assume that

nC1.0/ 2 .SkC.F
C
nC1IR/ �B Bk�.F

�
nC1IR//

�B .Bk�.W
C
nC1IR/ �B Bk�.W

�
nC1IR//

for all n; the other cases are similar. The proofs of the analogs of Lemma 3.1.5 and
Lemma 3.1.6 are unchanged, and we obtain that a lift Qn of n to the universal cover-
ing converges in L2

KT ;`�5;w
-norm to a solution Q.t/ of the Seiberg–Witten equations.

We need only prove an analog of Lemma 3.1.4, that k�CnC1kkCC 12 is bounded inde-
pendent of � , n. Suppose this is false, that is, that

k�
.1/;C
nC1 .0/C �

C
nC1.0/kkCC 12

!1:
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Then we study (for the case kC 2 Z, the other case being similar)

1

2

d

dt

ˇ̌̌
tD0
k�

.1/;C
nC1 .t/C �

C
nC1.t/k

2
kC

D Re
�
h.rXH�

C/�
.1/
nC1.0/; �

.1/;C
nC1 .0/ikC

C h.rXH .D
0/kC/�

.1/;C
nC1 .0/; .D

0/kC�
.1/;C
nC1 .0/i0

� h�FnC1D
0�
.1/;C
nC1 .0/; �

.1/;C
nC1 .t/ikC

C h.A � �FnC1/c1. OnC1.0//; �
.1/;C
nC1 .0/ikC

� h.rXH�FnC1/�
.1/;C
nC1 .0/; �

.1/;C
nC1 .0/ikC

� .2 � �/h.rXH�Fn/�nC1.0/; �
.1/;C
nC1 .0/ikC

C h.rXH .D
0/kC/�nC1.0/; .D

0/kC�
.1/;C
nC1 .0/i0

C h.rXH�
C/�nC1.0/; �

C
nC1.0/ikC � h�†nC1D

0�nC1.0/; �
C
nC1.t/ikC

� h.rXH�†nC1/�nC1.0/; �
C
nC1.0/ikC

� .2 � �/h.rXH�†nC1/�
.1/;C
nC1 .0/; �

C
nC1.0/ikC

�
: (3.1.3)

All of these terms can be dealt with as in the proof of Lemma 3.1.4, with the
exception of

� .2 � �/Reh.rXH�Fn/�nC1.0/; �
.1/;C
nC1 .0/ikC

� .2 � �/Reh.rXH�†nC1/�
.1/
nC1.0/; �

C
nC1.0/ikC :

To bound this term, consider the expression h�.1/;CnC1 .t/; �
C
nC1.t/ikC as a function of t .

By definition, this is zero, but expanding its derivative gives

0 D Reh.rXH�
C/�

.1/
nC1.t/; �

C
nC1.t/ikC

C Reh.rXH .D
0/kC/�

.1/;C
nC1 .t/; .D

0/kC�CnC1.t/i0

C Reh�.1/;CnC1 .t/; .rXH�
C/�nC1.t/ikC

C Reh.D0/kC�.1/;CnC1 .t/; .rXH .D
0/kC/�CnC1.t/i0

C Reh.rXH�Fn/�
.1/
nC1.t/; �

C
nC1.t/ikC

C Reh�.1/;CnC1 .t/;rXH�†nC1�nC1.t/ikC : (3.1.4)

Recall that

�†nC1.rXH�Fn/�
.1/
nC1 D ��†nC1.rXH�†nC1/�

.1/
nC1;

�Fn.rXH�Fn/�nC1 D ��Fn.rXH�†nC1/�nC1:

Then (3.1.4), also using the estimates from the proof of Lemma 2.7.2, becomesˇ̌
h.rXH�Fn/�

.1/
nC1.t/; �

C
nC1.t/ikC C h�

.1/;C
nC1 .t/; .rXH�†nC1/�nC1.t/ikC

ˇ̌
� CR2:
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Then, using (3.1.3), we have

1

2

d

dt

ˇ̌̌
tD0
k�

.1/;C
nC1 .t/C �

C
nC1.t/k

2
kC
� CR3k�

.1/;C
nC1 .0/kkCC 12

� Reh�†nC1D
0�nC1.0/; �

C
nC1.0/ikC

� Reh�FnC1D
0�
.1/
nC1.0/; �

.1/;C
nC1 .t/ikC C C:

The argument from Lemma 2.7.2 gives

0 D
1

2

d

dt

ˇ̌̌
tD0
k�

.1/;C
nC1 .t/C �

C
nC1.t/k

2
kC

� CR3k�
.1/;C
nC1 .0/kkCC 12

� k�
.1/;C
nC1 .0/k

2

kC 12
� k�CnC1.0/k

2

kC 12
C C:

Thus, k�.1/;CnC1 .0/C �
C
nC1.0/kkC 12

is bounded. The proof of Lemma 3.1.7 then follows
exactly as Theorem 2.3.3.

Finally, for � 2 Œ2; 3�, set

d�
.1/
nC1.t/

dt
D ��

®
.3 � �/.rXH .�nC1.t//�FnC1/�

.1/
nC1.t/

C .� � 2/.rXH .�nC1.t//�FnC1/�
.1/
nC1.t/

C �Fn
�
D�

.1/
nC1.t/C c1. OnC1.t//

�
C .� � 2/.rXH .�nC1.t//�Fn/�

.1/
nC1.t/

¯
;

d�nC1

dt
.t/ D ��

®
.3 � �/.rXH .�nC1.t//�†nC1/�nC1.t/

C .� � 2/.r
XH .�

.1/
nC1

.t//
�†nC1/�nC1.t/

¯
;

db

dt
.t/ D ��

®
.3 � �/XH .�nC1.t//C .� � 2/XH .�

.1/
nC1.t//

¯
;

with the other terms unchanged. Note that it is clear that these equations preserve the
total space of FnC1 ˚WnC1.

Lemma 3.1.8. For n� 0, for all � 2 Œ2; 3�, AnC1 is an isolating neighborhood for
'�
nC1;kC;k�

.

Proof. This claim is a consequence of the arguments used in Lemma 3.1.3 and 3.1.7,
and there are no new difficulties.

Write B.QnC1=Qn; R/ for the R-disk bundle of QnC1=Qn over Pic.Y /, etc.
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Lemma 3.1.9. Say that .Aon; Ln/ is an index pair for Xn, for some Ln, of Xn on
Fn ˚Wn. Then . QAnC1; QLnC1/ is an index pair for X

split
nC1, where

QAnC1 D A
o
n �B .B.PnC1=Pn ˚W

C
nC1=W

C
n ; R//

�B .B.QnC1=Qn ˚W
�
nC1=W

�
n ; R//;

for some R sufficiently large, and

QLnC1 D L
o
n �B .B.PnC1=Pn ˚W

C
nC1=W

C
n ; R//

�B .@B.QnC1=Qn ˚W
�
nC1=W

�
n ; R//:

Proof. It follows from Lemma 3.1.2 that inv. QAn n QLn/ � int. QAn n QLn/.
We next check that QLn is positively invariant in QAn. Write

.�
.1/
nC1.t/; !

.1/
nC1.t/; �nC1.t//

in
.Fn ˚Wn/ �B .B.PnC1=Pn ˚W

C
nC1=W

C
n ; R//

�B .B.QnC1=Qn ˚W
�
nC1=W

�
n ; R//

for a trajectory of 'split
nC1;kC;k�

. The flow on the Fn �B Wn-factor is independent of
position on the .B.PnC1=Pn˚W CnC1=W

C
n ;R//�B .B.QnC1=Qn˚W

�
nC1=W

�
n ;R//

factor, and in particular, if .�.1/nC1.T0/;!
.1/
nC1.T0//2Ln, then .�.1/nC1.t/;!

.1/
nC1.t//2Ln

for all t � T0, by our assumption on Ln.
We must then show that if �nC1.T0/ 2 @B.QnC1=Qn ˚W �nC1=W

�
n ; R/, then

�nC1.t/ 2 @B.QnC1=Qn ˚W
�
nC1=W

�
n ; R1/;

or exits QAnC1, for all t � T0, if n is large enough. We regard the path .�.1/nC1.t/;
!
.1/
nC1.t// as fixed, and �nC1.t/ as a trajectory of a vector field on the boundary
@B.QnC1=Qn ˚W

�
nC1=W

�
n ; R1/.

Write �nC1.t/ D .b.t/; �
.1/;C
nC1 ; �

.1/;�
nC1 ; �

.2/;C
nC1 ; �

.2/;�
nC1 /, as a section of

Vn.R1/D .B.PnC1=Pn˚W
C
nC1=W

C
n ;R1//�B .B.QnC1=Qn˚W

�
nC1=W

�
n ;R1//:

We may, and do, assume without loss of generality that T0D 0. Then if .�.1/;�nC1 ; �
.2/;�
nC1 /

2 @B.QnC1=Qn ˚ W
�
nC1=W

�
n ; R/, either �.1/;�nC1 or �.2/;�nC1 has k�.i/;�nC1 kk� � R1=2.

Assume i D 1, the other case being similar.
Recall that .�.1/nC1.t/; !

.1/
nC1.t/; �nC1.t// is equivalent to a trajectory

nC1.t/ D .�
.1/
nC1.t/; �nC1.t/; !nC1.t//

of X
split
nC1 on FnC1 ˚WnC1.
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We consider

1

2

d

dt

ˇ̌̌
tD0
k�
.1/;�
nC1 .t/k

2
k�

D
1

2

d

dt

ˇ̌̌
tD0
k��nC1.t/k

2
k�

D h�.rXH�†nC1/�nC1.0/ � �†nC1D
0�nC1.0/; �

�
nC1.0/ik�

� hrXH .D
0/k��nC1.0/; .D

0/k���nC1i0 C h.rXH�
�/�nC1.0/; �

�
nC1.0/ik�

� CR2 � h�†nC1D
0�nC1.0/; �

�
nC1.0/ik�

D CR2 � k��nC1.0/k
2

k�C
1
2

:

Note that we have used that n can be taken sufficiently large that †nC1 is perpendic-
ular to the image of A.

Now, by definition of †nC1, we have

k��nC1.0/k
2

k�C
1
2

k��nC1.0/k
2
k�

!1

as n!1.
Thus, if k��nC1.0/kk� � R=2, we have that k�.1/;�nC1 .t/kk� is always increasing at

t D 0 (similarly, k�.1/;CnC1 .t/kkC is decreasing at t D 0).
This shows that QLnC1 is positively invariant in QAnC1. It follows similarly that

QLnC1 is an exit set.

3.2 Spinc structure for family of manifolds

Since we consider a family of spinc 3-manifolds to show that the Conley index for the
flow 'n is independent of the choice of Riemannian metric of Y in Section 3.3, we
will give the definition of spinc structure for a family of Riemannian manifolds.

Take an n-dimensional real, oriented vector space V and an inner product g on
V . We denote by Fr.V; g/ the space of orthonormal bases of .V; g/ compatible with
the orientation. Choose another inner product h on V . We define an isomorphism
between Fr.V; g/ and Fr.V; h/. For ¹eiºniD1 2 Fr.V; g/, put

hij D h.ei ; ej / 2 R:

Then the matrix H D .hij /i;jD1;:::;n is symmetric and positive definite. We have the
square root

p
H ofH defined as follows. SinceH is symmetric and positive definite,

we have the eigenspace decomposition

Rn D
rM
iD1

V�i ;
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where �i > 0 are the distinct eigenvalues of H , and V�i are the eigenspaces. Define
p
H to be the matrix corresponding to the linear map Rn!Rn defined by v 7!

p
�iv

for v 2 V�i . Define a basis f1; : : : ; fn of V by

.f1 : : : fn/ D .e1 : : : en/
p
H
�1
:

We can see that f1; : : : ; fn are an orthonormal basis with respect to h. So we get a
map

Fr.V; g/! Fr.V; h/: (3.2.1)

Take G 2 SO.n/ and put

.e01 : : : e
0
n/ D .e1 : : : en/G; H 0 D .h.e0i ; e

0
j //i;jD1;:::;n:

It is easy to see that

H 0 D G�1HG;
p
H 0 D G�1

p
HG:

This implies that the map (3.2.1) is an SO.n/-equivariant isomorphism.
For an oriented smooth Riemannian n-manifold .X; g/, let PX;g be the principal

SO.n/-bundle of oriented, orthonormal frames in TX . Recall that a spinc structure of
.X; g/ is a pair of a principal Spinc.n/ bundle QPX on X and a smooth map �W QPX !
PX;g such that the diagram

QPX PX;g

X

�

commutes, and for p 2 QPX and s 2 Spinc.n/ we have

�.p � s/ D �.p/ � �.s/:

Here, � WSpinc.n/! SO.n/ is the projection.
Take another Riemannian metric h on X . The SO.n/-equivariant isomorphism

(3.2.1) induces an isomorphism

PX;g Š PX;h (3.2.2)

of principal bundles. Hence a spinc structure . QPX ; �/ of .X; g/ naturally defines a
spinc structure of .X; h/.

A locally trivial family of spinc manifolds over a topological space L is a tuple
.E;G; QPE ; �/. The first component E stands for a locally trivial fiber bundle

X ! E ! L
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over L with fiber X . For each ` 2 L we have an open neighborhood U` of ` and a
trivialization

EjU` Š U` �E`:

Here,E` is the fiber ofE over `. The second componentG is a fiberwise Riemannian
metric of E. Let PE be the principal SO.n/-bundle on E whose fiber over ` is the
principal SO.n/-bundle of oriented, orthonormal frames in TE`. Note that the local
trivialization of E on U` and the isomorphism (3.2.2) induce an isomorphism

PE jU` Š U` � PE`

of principal bundles. The third component QPE is a principal Spinc.n/ bundle over E.
The fourth component � is a smooth map

QPE ! PE

such that the diagram
QPE PE

E

�

commutes and �.p; �s/ D �.p/ � �.s/ for p 2 QPE and s 2 Spinc.n/. Moreover, we
assume that QPE is locally trivial. That is, for each ` 2 L there is an isomorphism

QPE jU` Š U` � .
QPE jE`/

of principal bundles such that the following diagram commutes:

QPE jU` U` � . QPE jE`/

PE jU` U` � PE` :

Š

� idU`��

Š

3.3 Independence of metric

In this section we prove that the approximate Seiberg–Witten flow defined in (2.3.10)
varies continuously as we vary the 3-manifold.

To make this precise, let F be a locally trivial family of spinc metrized
3-manifolds with compact base space L, so that L is a CW complex. See Section 3.2
for the definition of a locally trivial family of spinc metrized manifolds. Note that
associated to F there is also a bundle over L, Pic.F /, whose fiber is the Picard-
bundle at ` 2 L.
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Suppose that we are given a sequence of continuously varying spectral sections
Pn;`,Qn;` for ` 2 L so that the Pn;`,Qn;` are good as at the beginning of Chapter 2,
with Fn;` D Pn;` \Qn;` as a fiber bundle over (the total space of) QL. Let 'n;`;kC;k�
be the flow defined by projection onto Fn;`. Here, unlike in the case of a single 3-
manifold, the flow preserves fibers of Fn;` over L (though the flow can of course
move over QL`, the fiber of QL! L).

There is one subtlety in that now the eigenvalues of �d may vary in the family F .
In particular, we will assume the existence of increasing spectral sections WP;n for
��d , and increasing spectral sectionsWQ;n for �d , satisfying the analogs of (2.3.6)–
(2.3.7), and setWn DWP;n \WQ;n. With this notation fixed, we defineW Cn andW �n
as before.

Theorem 3.3.1. Let F , with compact base L, be a family of spinc metrized 3-mani-
folds, with fiber Fb for b 2 L. Let kC, k� be half-integers with k˙ > 5 and with
jkC � k�j �

1
2

. Fix a positive number R with R > RkC;k� for some RkC;k� . Then

.BkC.F
C
n IR/ �B Bk�.F

�
n IR// �B .BkC.W

C
n IR/ �B Bk�.W

�
n IR//

is an isolating neighborhood of the flow 'n;`;kC;k� for n� 0. Here, Bk˙.F
˙
n IR/

are the disk bundle of F˙n of radius R in L2
k˙

and BkC.F
C
n IR/ �B Bk�.F

�
n IR/ is

the fiberwise product.

The proof of this theorem differs from the proof of Theorem 2.3.3 only in nota-
tion, so we will not write out the details.

In particular, we have the following corollary.

Corollary 3.3.2. Let .Y; s/ be a spinc manifold, with metrics g0, g1, and fix a family
of good spectral sections Pn;0,Qn;0 over .Y; g0/. Choose a family of metrics gt con-
necting g0 to g1. Then there exists a family of spectral sections Pn;t , Qn;t extending
Pn;0, Qn;0 and so that the flow 'n;0;kC;k� on Fn;0 extends to a continuously varying
flow 'n;t;kC;k� on Fn;t , so that

.BkC.F
C
n IR/ �B Bk�.F

�
n IR// �B .BkC.W

C
n IR/ �B Bk�.W

�
n IR//

is an isolating neighborhood of the flow 'n;t;kC;k� for n� 0 and all t 2 Œ0; 1�. In
particular, I.'n;0;kC;k�/ is canonically, up to homotopy equivalence, identified with
I.'n;1;kC;k�/.

Proof. The claim about the existence of the extended spectral sections follows from
the homotopy description of spectral sections and the fact that Œ0; 1� is contractible.
The claim on isolating neighborhoods is a consequence of Theorem 3.3.1. The well-
definedness of the Conley index follows from the continuity property of the Conley
index.
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3.4 Variation of Sobolev norms

Proposition 3.4.1. Let .k1C; k
1
�/ and .k2C; k

2
�/ be pairs of half-integers > 5, with

jkiC � k
i
�j �

1
2

for i D 1; 2. Fix R sufficiently large. Then there exists a family of
flows '�n for � 2 Œ0; 1� so that

.Bg�
C
.FCn IR/ �B Bg��.F

�
n IR// �B .Bg�C.W

C
n IR/ �B Bg��.W

�
n IR//

is a family of isolating neighborhoods, where g�
˙

is the interpolated metric (defined
below), and where '0n D 'n;k1

C
;k1�

and '1n D 'n;k2
C
;k2�

. In particular, there is a homo-
topy equivalence

I.'n;k1
C
;k1�
/! I.'n;k2

C
;k2�
/;

suppressing the spectral section choices from the notation. The restriction to the S1-
fixed point set is a fiber-preserving homotopy equivalence.

Proof. Define the interpolated metric g� by

g� .x; y/´ hx; yik�
˙
´ .1 � �/hx; yik1

C
;k1�
C �hx; yik2

C
;k2�
:

We abuse notation and also write g� for the restriction of g� to subbundles, including
F˙n and W ˙n .

The equation (2.7.1) defines a flow '�n, with �Fn , �Wn replaced appropriately.
Hypothesis (2.7.2) continues to hold, with the subscripts k˙ replaced with k�

˙
. Write

��Fn for projection with respect to g� .
As usual, we will assume for a contradiction that

y
�n
n;0 D .�

�n
n;0; !

�n
n;0/ 2 invAn \ @An:

Let us treat the case that

�
�n
n;0 2 Sg�C.F

C
n IR/ 2 invAn \ @An;

where Sg�
C
.V;R/, for V a vector bundle over B , is the R-sphere bundle.

Exactly as in the proof of Theorem 2.3.3, we can extract a sequence of approxi-
mate solutions Q �nn D . Q�

�n
n ;!

�n
n /, for t 2 Œ�T;T �, with T fixed. To see this, we need to

control d
Q��n
dt

in .KT ; ` � 5; w/-norm. This amounts to generalizing Proposition 2.6.1
to the following situation.

Proposition 3.4.2. Let kC, k� be half-integers, with k˙ > 5, and also set ` D
miniD1;2¹kiC; k

i
�º. Then

sup
v2B.TBI1/

krv�
�
Pn
WL2k� ! L2`�5;wk ! 0;

uniformly in � .
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This proposition holds because the natural modification of the estimate at the end
of Corollary 2.5.2 holds.

Then the sequence Q �nn .t/ converges to a map

Q W Œ�T; T �! H1.Y / � L2`�1.S/ � L
2
`�1.im d�/:

To verify that Q solves the Seiberg–Witten equations, we observe that

.rXH�
�n
Fn
/ Q�n.s/! 0

in L2
KT ;`�5;w

-norm, as follows from Proposition 3.4.2.
We have

k�
�n
Fn
D�n �D�nk`�2 D k�

�n
Fn
D�n �D�n CD�n �D�nk`�2

� kŒ�
�n
Fn
;D��nk`�2 C kD�n �D�k`�2:

The first term drops out, using the rule of a sequence of controlled vector spaces, and
we obtain that ��nFnD�n converges toD� uniformly inL2

`�2
on Œ�T;T �. By the proof

of Lemma 2.7.1, the limit Q is a solution of the Seiberg–Witten equations. The proof
from this point follows along the same lines as Theorem 2.3.3.

3.5 The Seiberg–Witten invariant

In this section we repackage the construction of �WF Œn�.Y; s/ to take account of the
choices made in the construction.

Definition 3.5.1. A 3-manifold spectral system (abbreviated as just a spectral system)
for a family F of metrized spinc 3-manifolds, with fiber .Y; s/, is a tuple

S D
�
P;Q;WP ;WQ; ¹�

P
n ºn; ¹�

Q
n º; ¹�

WP
n ºn; ¹�

WQ
n ºn

�
; (3.5.1)

where P D ¹Pnºn (for n � 0) is a sequence of good (increasing) spectral sections of
the Dirac operator �D; similarly, Q D ¹Qnºn is a sequence of good increasing spec-
tral sections of D parameterized by Pic.F /. The WP D ¹WP;nºn are good spectral
sections of the operator ��d ; similarly, WQ D ¹WQ;nºn are good spectral sections
of �d . We require WP;0 to be the sum of all negative eigenspaces of �d , as we may,
since the nullspace of �d , acting on the bundle L2

k
.im d�/, is trivial, and similarly

WQ;0 will be the sum of positive eigenspaces. The �n are exactly as in Theorem 3.1.1.

We have not established that there exist good sequences of spectral sections for
�d for all families F . However, they exist in many situations, as for example when
the family F is obtained as a mapping torus of a self-diffeomorphism preserving the
fiber metric. In this case, F is a family over S1 and the eigenvalues of �d are constant
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functions on S1. More generally, if there is a neighborhood U of b for each b 2 L
such that F has a local trivialization F jU Š U � Y preserving the fiber metric, then
the eigenvalues of �d are constants. So we have a good sequence of spectral sections
of �d .

Definition 3.5.2. The unparameterized Seiberg–Witten Floer spectrum

SWFu.F ;S; kC; k�/

of a family F as in Definition 3.5.1 associated to a spectral system S, and k˙ half-
integers with k˙ > 5 and jkC � k�j � 1=2, is the (partially defined) equivariant
spectrum, whose sequence of spaces is defined as follows.

Let S be a spectral system with components as named in (3.5.1). Let

Dn D .dim.Pn � P0/; dim.Qn �Q0/; dim.WP;n �WP;0/; dim.WQ;n �WQ;0//;

whose components we denoteD`
n for `D 1; : : : ; 4. Recall (cf. Appendix A.3) that we

must assign, for a certain collection of representations, a space to each representation,
together with structure maps. The spaces in the Seiberg–Witten Floer spectrum are
most naturally defined at those representations CD2n ˚ RD

4
n ; in order to define the

spectra at other levels, we extrapolate from the definitions at these levels; see also
Remark 3.5.13.

Let N0 be the set of nonnegative integers. For .i1; i2/ 2 N2
0 sufficiently large,

let A.i1; i2/ D .A.i1; i2/1; A.i1; i2/2/ denote the largest pair .D2
n; D

4
n/ among pairs

.D2
j ;D

4
j / for which .D2

j ;D
4
j / � .i1; i2/. We can write

A.i1; i2/ D .D
2
n.i1;i2/

;D4
n.i1;i2/

/

for some n.i1; i2/ 2 N0. Set SWFui1;i2.F ;S; kC; k�/ to be

†Ci1�A.i1;i2/1˚Ri2�A.i1;i2/2�WF u
Œn.i1;i2/�

.F ;S; kC; k�/:

Here, �WF u
Œn.i1;i2/�

.F ; S; kC; k�/ is the (unparameterized) Conley index with
respect to the flow 'n.i1;i2/;kC;k� . If .i1; i2/ is not sufficiently large, let SWFui1;i2.F ;
S; kC; k�/ be a point. Define the transition map

�.i;j /;.iC1;j /W†
CSWFui;j ! SWFuiC1;j ;

where i C 1 ¤ D2
n for any n, as the identity (with the C factor contributing to the

leftmost factor of †Ci1�A.i1;i2/1 ), and similarly for transitions in the real coordinate.
If i C 1 D D2

n for some n, we use the .�n/� as defined in Theorem 3.1.1. Note that
the .�n/� are only well defined up to homotopy; we choose representatives in the
homotopy class.
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In the event that the family has a self-conjugate spinc structure, and so that the
spectral section S is preserved by j , we use H instead of C above, as appropriate, so
that SWFu is indexed on the Pin.2/-universe described in Appendix A.1. To be more
specific, we write SWFu;Pin.2/.F ;S/ for the Pin.2/-spectrum invariant. In particular,
SWFu;Pin.2/

i;j , viewed as an S1-space, is identified with SWFu2i;j .

We will often suppress some arguments of SWFu from the notation where they
are clear from context.

At the point-set level, there is a choice of index pairs (at each level .i1; i2/)
involved in Definition 3.5.2. However, the space �WF u

Œn�.F ;S; kC; k�/ is well
defined up to canonical homotopy, since the Conley index forms a connected sim-
ple system, Theorem A.2.3.

Remark 3.5.3. We would be able to repeat Definition 3.5.2 in the parameterized
setting, replacing the spectrum SWFu with a parameterized spectrum SWF, except
that it is not known that the parameterized Conley index forms a connected simple
system in KG;B , the category considered in Appendix A.

The spaces SWFu.i1;i2/.F / for .i1; i2/ not a pair .D2
n; D

4
n/, for some n, seem

to have rather an awkward definition, because they do not naturally represent the
Conley index of some fixed flow. However, they may be viewed as the Conley indices
of a split flow on V �Pic.F / �WF Œn�.F /, for V D Ci1�D

2
n ˚Ri2�D

4
n a vector space

equipped with a linear (repelling) flow.
More generally, associated to a spectral system S, we define the virtual dimension

of the vector bundle Fn ˚Wn as

Dn D .dim.Pn � P0/; dim.Qn �Q0/; dim.W Cn /; dim.W �n //:

We write S.Ei/ for the vector bundle of virtual dimension Ei D .i1; i2; i3; i4/. If the
spectral section does not produce a vector bundle in that virtual dimension, we define

S.i1; i2; i3; i4/ D V ˚ Fn ˚Wn;

where Fn˚Wn is the largest vector bundle coming from S with virtual dimension at
most .i1; i2; i3; i4/, and where we define V to be the trivial S1 (or Pin.2/, as appropri-
ate) vector bundle with dimension .i1; i2; i3; i4/ �Dn. When we need to distinguish
between the contributions of Fn˚Wn and V to S.Ei/, we call Fn˚Wn the geometric
bundle, and V the virtual bundle.

We can treat S.i1; i2; i3; i4/ as a vector bundle with a split flow, as discussed
above; its unparameterized Conley index is (canonically, up to homotopy) homotopy
equivalent to �WF u

.i2;i4/
.F ;S/.

Let
V .Ei ; Ej / D Cj1�i1 ˚Cj2�i2 ˚Rj3�i3 ˚Rj4�i4 ;
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viewed as a vector bundle with linear flow, outward in the even factors, inward in the
odd factors. Note that for any Ej � Ei (that is, j1 � i1; : : : ; j4 � i4), there is a vector
bundle morphism

V .Ei ; Ej /˚S.Ei/! S. Ej /; (3.5.2)

as follows. Indeed, if A.Ei/ D A. Ej /, then (3.5.2) is defined by

V .Ei ; Ej /˚ .V .Dn; Ei/˚ Fn ˚Wn/ D .V .Ei ; Ej /˚ V .Dn; Ei//˚ Fn ˚Wn

! V .Dn; Ej /˚ Fn ˚Wn:

If Ej D DnC1 and Ei D Dn, the morphism (3.5.2) is just the structure map involved in
the definition of a spectral system. For more general Ej , Ei , the morphism (3.5.2) is the
composite coming from the sequence Ei ! Dn1 ! � � � ! Dnk D A.

Ej /! Ej , where
the rightmost factors of V .Ei ; Ej / are used first.

Similarly, we define P.i1/ D C
i1�D

1
A.i1/ ˚ PA.i1/, etc.

Definition 3.5.4. We call two spectral systems S1 and S2 for the same family F

equivalent if there exists a collection of bundle isomorphisms,

ˆP;i WP
1.i/! P 2.i/;

and similarly for Q, WP , WQ, for all i sufficiently large, satisfying the following
conditions. First, there exists some sufficiently large n, so that the ˆP;i (respectively
ˆQ;i etc.), as i becomes large, must preserve the subbundles P jn for j D 1; 2 (simi-
larly for Qj

n etc.). (Indeed, for Ei sufficiently large, P 1n (respectively Q1
n etc.) will be

contained in the geometric bundles of P 2.i/ (respectively Q2.i/ etc.).)
Second, the ˆi must be compatible with the structure maps of S1, S2 in that the

following square commutes (as well as its analogs):

V ˚ P 1.i/ V ˚ P 2.i/

P 1.j / P 2.j /:

id˚ˆP;i

� �

ˆP;j

We do not require the isomorphisms ˆi (etc.) to preserve all of the P jn as n varies.

Note that a morphism of spectral systems as in Definition 3.5.4 also induces maps

ˆEi WS1.Ei/! S2.Ei/

for Ei sufficiently large, which preserve the subbundles F 1n ˚W
1
n (which lie in S2.Ei/

for Ei sufficiently large naturally), for some fixed large n, for Ei sufficiently large. There
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is also a commutative square:

V ˚S1.Ei/ V ˚S2.Ei/

S1. Ej / S2. Ej /:

�

id˚ˆEi

�

ˆ Ej

Proposition 3.5.5. For F a family of spinc 3-manifolds, n sufficiently large and
ˆWS1 ! S2 an equivalence of spectral systems, there is a homotopy equivalence,
well defined up to homotopy,

ˆun;� W �WF u
Œn�.F ;S1/! �WF u

Œn�.F ;S2/:

In fact, there is a fiberwise-deforming homotopy equivalence,

ˆn;�W �WF Œn�.F ;S1/! �WF Œn�.F ;S2/;

so that ˆun;� D �Šˆn;�. Here, � is the map Pic.F /! � sending Pic.F / to a point,
and �Š is defined as in Appendix A. (Note thatˆn;� is not claimed to be well defined.)
Analogous statements hold for Pin.2/-equivariant spectral sections.

Proof. We consider the pullback of the flow '2 on S2.Ei/ by the morphism (for some
large Ei )

ˆEi WS1.Ei/! S2.Ei/;

defining a flow on S1.Ei/. Following the proof of Theorem 3.1.1, we see that there is
a well-defined, up to homotopy, deformation of ˆ�

Ei
'2 to '1. Deformation invariance

of the Conley index gives a fiberwise-deforming homotopy equivalence

I.'1/! I..ˆEi /
�'2/ Š I.'2/;

where the isomorphism is canonical (at the point-set level). Passing to the unparame-
terized Conley index, the morphism

Iu.'1/! Iu..ˆEi /
�'2/

is canonical (up to homotopy). This gives the proposition.

We write ŒS� for the equivalence class of a spectral system S.

Remark 3.5.6. As usual, if Conjecture A.2.4 holds, then ˆn;� appearing in Proposi-
tion 3.5.5, is well defined.
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Theorem 3.5.7. The equivariant parameterized stable homotopy type of

†C�D
2
n˚R�D

4
n

B �WF Œn�.F ; ŒS�/

is independent of the choices in its construction. That is, it is independent of

(1) the choice of kC, k�,

(2) the element n� 0,

(3) a choice of spectral system S representing the equivalence class ŒS�,

(4) the family of metrics on F .

Here, †C�D
2
n˚R�D

4
n

B stands for the desuspension by CD2n ˚ RD
4
n in the category

PSWS1;B . See Appendix A.1.
If the spinc structure is self-conjugate, a similar statement holds for

†H�D
2
n˚zR�D

4
n

B �WF Œn�.F ; ŒS�/:

Proof. Proposition 3.5.5 addresses changes in the spectral section. Proposition 3.4.1
addresses varying of k˙. The choice of n was handled in Theorem 3.1.1, and the
metric was addressed in Theorem 3.3.1.

Definition 3.5.8. The Seiberg–Witten Floer parameterized homotopy type

�WF .F ; ŒS�/

is defined as the class of

†C�D
2
n˚R�D

4
n

B �WF Œn�.F ; ŒS�/;

for any n.
When the spinc structure is self-conjugate, the Pin.2/-Seiberg–Witten Floer

parameterized homotopy type �WF Pin.2/.F ; ŒS�/ is defined as the class of

†H�D
2
n˚zR�D

4
n

B �WF Œn�.F ; ŒS�/:

Recall from Appendix A.3 that a weak morphism of spectra is a (collection of)
maps that is only defined in sufficiently high degrees (this is also the case for ordinary
morphisms in Adams’ [2] category of spectra).

Theorem 3.5.9. For F a family of spinc 3-manifolds, and ˆWS1 ! S2 an equiva-
lence of spectral systems, there is a weak morphism which is a homotopy equivalence
(see Appendix A.3), well defined up to homotopy:

ˆ�WSWFu.F ;S1/! SWFu.F ;S2/:
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That is, the collection of spectra

SWFu.F ; ŒS�/ D ¹SWFu.F ;S/ºS

forms a connected simple system in spectra, if F admits a spectral system.

Proof. First, independence of SWFu.F ; ŒS�/ from the choice of Sobolev norms was
handled in Proposition 3.4.1. Moreover, variation of metric, for a particular level
�WF u

Œn�.F ; ŒS�/, was handled in Theorem 3.3.1. We then need only show that an
equivalence of spectral systems induces a well-defined, up to homotopy, morphism

SWFu.F ;S1/! SWFu.F ;S2/:

For this, we use Proposition 3.5.5 to define the maps levelwise, and we need only
show that the following square homotopy commutes (the squares involving other vec-
tor bundles S.i1; i2; i3; i4/ are straightforward):

†Vn�WF u
Œn�.F ;S1/ †Vn�WF u

Œn�.F ;S2/

�WF u
ŒnC1�.F ;S1/ �WF u

ŒnC1�.F ;S2/:

id^ˆn;�

�n;� �n;�

ˆnC1;�

Here, Vn D CD2
nC1
�D2n ˚ RD

4
nC1
�D4n . This is a consequence of the two compos-

ites involved being Conley-index continuation maps associated to deformations of
the flow. Observe that the composite deformations are related to each other by a
deformation of deformations. By [47, Section 6.3], the square homotopy commutes
(the necessary adjustments of Salamon’s argument for equivariance are straightfor-
ward).

As usual, subject to Conjecture A.2.4, Theorem 3.5.9 would hold in the parame-
terized case.

Moreover, it is easy to determine when two spectral systems are equivalent, as
follows.

Lemma 3.5.10. The set of spectral systems for a family F of spinc 3-manifolds up to
equivalence, if nonempty, is affine equivalent to K.Pic.F // �K.Pic.F //, where the
difference of systems S1, S2 is sent to .ŒP 10 � P

2
0 �; ŒQ

1
0 �Q

2
0�/.

Proof. By its construction, an equivalence of spectral systems is determined by its
value .ˆP;i ; ˆQ;i ; ˆWP ;i ; ˆWQ;i / for any sufficiently large i . In the positive spectral
section part of the spinor coordinate, to construct an equivalence S1 ! S2 it is suf-
ficient (and necessary) to construct an isomorphism P 1.i/ � P 1n ! P 2.i/ � P 1n for
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some i large, relative to a fixed (large) n. By definition, P 1.i/ � P 1n is canonically
some number of copies of C, and so such an isomorphism exists if and only if

ŒP 2.i/ � P 1n � D ŒC
dim.P 1.i/�P 1n /�:

This condition is satisfied exactly when ŒP 10 � P
2
0 � D 0 2 K.Pic.F //, as needed.

The 1-form coordinate is handled similarly, but the bundles W ˙n there are always
trivial.

In particular, we note that there is a canonical choice, subject to a choice of Q0,
and up to adding trivial bundles, of a spectral section P0, by requiring P0 � Q0
trivializable. We call these normal spectral sections; the set of equivalence classes
of such is affine equivalent to K.Pic.Y //, as above.

Definition 3.5.11. An (S1-equivariant) Floer framing is an equivalence class of nor-
mal spectral sections. A Pin.2/-equivariant Floer framing is a (Pin.2/)-equivalence
class of normal spectral sections. Here, a Pin.2/-equivalence of (Pin.2/-equivariant)
spectral sections is a collection of isomorphisms as in Definition 3.5.4 that are Pin.2/-
equivariant.

There are various extensions of Lemma 3.5.10. Let us state a Pin.2/- equivariant
version of the lemma.

Lemma 3.5.12. The set of Pin.2/-spectral systems for a family F of spinc 3-mani-
folds up to equivalence, if nonempty, is affine equivalent to

KQ.Pic.F // � KQ.Pic.F //;

where the difference of systems S1, S2 is sent to .ŒP 10 � P
2
0 �; ŒQ

1
0 �Q

2
0�/. Here, KQ

is the quaternionic K-theory defined in [19, 33].

Remark 3.5.13. We can define the spectrum SWFui1;i2 in a little different way. Fix a
sufficiently large integer n and put

SWFui1;i2 D †
Ci1�D

2
n˚Ri2�D

4
n
�WF u

Œn�

for .i1; i2/ 2 N2
0 with i1; i2 � n. The transition maps

�.i1;i2/;.i1C1;i2/W†
CSWFui1;i2 ! SWFui1C1;i2 ;

�.i1;i2/;.i1;i2C1/W†
RSWFui1;i2 ! SWFui1;i2C1

are defined to be the identities. This spectrum is homotopy equivalent to the previous
one.

In the previous definition of SWFu, we introduced A.i1; i2/, which allows us to
avoid choosing a large integer n. This makes the definition of SWFu more natural.
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In the construction of �WF Œn�.F ;S/, we have a frame of the orthogonal com-
plement of Qn in QnC1. Using the frame, we have

�WF ŒnC1�.F ;S/ Š †
CkQ;n˚RkW;�;n
B �WF Œn�.F ;S/:

More generally, we can choose spectral sections Qn such that the orthogonal com-
plement of Qn in QnC1 does not necessarily have a frame. In this case, we have

�WF ŒnC1�.F ;S/ Š †
.QnC1=Qn/˚RkW;�;n

B �WF Œn�.F ;S/;

where QnC1=Qn may not be trivialized. See Theorem 3.1.1. We can still define the
Seiberg–Witten Floer stable homotopy type in a suitable stable homotopy category.
The category is defined by taking R, W to be finite-dimensional, virtual G-vector
bundles over B in Definition A.1.9, so that we can take desuspensions by nontrivial
vector bundles. The Seiberg–Witten Floer stable homotopy type is defined to be the
class of

†
�.Qn=Q0/˚R�D

4
n

B �WF Œn�.F ;S/

in the category, where n is a fixed large integer.

3.6 Elementary properties of �WF .Y; s/

Here we collect a few results about �WF .Y; s/ that follow almost directly from the
definitions. We work only for a single .Y; s/, but similar results hold in families.

Proposition 3.6.1. The total space of �WF u
Œn�.Y;s/ has the homotopy type of a finite

S1-CW complex; respectively, the total space of �WF
u;Pin.2/
Œn�

.Y; s/, when defined, is
a finite Pin.2/-CW complex. As a consequence, for G D S1 or Pin.2/, the Seiberg–
Witten Floer spectrum SWFu;G.Y; s;S/ is a finite G-CW spectrum.

Proof. For this, we need to consider perturbations of the Seiberg–Witten equations.
Recall the notion of cylinder functions from [28, Chapter 11]. As in [24, Definition
2.1], given a sequence of ¹Cj º1jD1 of positive real numbers and cylinder functions

¹ Ofj º
1
jD1, let P be the Banach space

P D

² 1X
jD1

�j Ofj W �j 2 R;
1X
jD1

Cj j�j j <1

³

with norm defined by k
P1
jD1 �j

Ofj k D
P1
jD1 j�j jCj . The elements of P are called

extended cylinder functions.
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For f an extended cylinder function, let grad f D q be the L2-gradient over
L2
k
.S/ �H1.Y / � L2

k
.im d�/ of f . We write .qV ; qH ; qW / for the vertical, hori-

zontal and 1-form components of q. Define the perturbed Seiberg–Witten equations
by the downward gradient flow of LC f , explicitly:

d�

dt
D �Da�.t/ � c1..t// � qV ;

da

dt
D �XH .�/ � qH ;

d!

dt
D � � d! � c2..t// � qW :

(3.6.1)

We may perform finite-dimensional approximation with the perturbed Seiberg–
Witten equations in place of (2.3.2) (with the same spectral sections as for the unper-
turbed equations). It is straightforward but tedious to check that the proof of The-
orem 2.3.3 holds also for (3.6.1), for k-extended cylinder functions f , where k �
max¹kC; k�º C 1

2
. The key points are [24, Proposition 2.2] and [32, Lemma 4.10].

Moreover, for a family of perturbations, the analog of Theorem 2.3.3 continues
to hold, by a similar argument. In particular, it is a consequence that �WF u

Œn�.Y;s/ is
well defined up to canonical equivariant homotopy, independent of perturbation.

Finally, the space of perturbations P attains transversality for the Seiberg–Witten
equations, in the sense that for a generic perturbation from P , there are finitely many
(all nondegenerate) stationary points for the perturbed formal gradient flow.

In particular, using the attractor–repeller sequence for the Conley index, together
with the fact that the Conley index for a single nondegenerate critical point is a sphere,
we observe that the Conley index Iu.'n;kC;k�/ for n large is a finiteG-CW complex.

Proposition 3.6.2. For .Y; s/ a spinc, oriented closed 3-manifold, and S a spectral
system, we have

�WF u.Y; s;S/_ ' �WF u.�Y; s;S_/;

where the spectral system S_ is obtained by reversing the roles of Pn and Qn in S.

Proof. This follows from the Spanier–Whitehead duality for the Conley index,
Theorem A.2.8.

Note that it would be desirable in Proposition 3.6.2 to have a similar result in the
parameterized setting; the analog of Theorem A.2.8 in the parameterized setting has
not been established, but would suffice.

Using the latter parts of Theorem 3.1.1, we have the following corollary.

Corollary 3.6.3. The homotopy type of �WF Œn�.Y; s;S/ is independent of the spec-
tral sections Pn for n large. That is, instead of �WF Œn�.Y; s;S/ depending on a
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choice in a set affine equivalent toK.Pic.Y //�K.Pic.Y //, �WF Œn�.Y;s;S/ is deter-
mined by a (relative) class in K.Pic.Y //.

Further,
�WF Œn�.Y; s;S1/ ' †

S1�S2
B �WF Œn�.Y; s;S2/;

where S1 � S2 is the bundle defined by Lemma 3.5.10, and where suspension is
defined as in Remark A.1.8.

We can now prove some of the results from the introduction.

Proof of Theorem 1.1.1. By [30], the vanishing of the triple-cup product onH 1.Y IZ/
implies that the family index of the Dirac operator on Y is trivial. Using this, fix a
Floer framing P. In that case, Theorems 3.5.7 and 3.5.9 imply that �WF .Y; s;P/

and SWF.Y; s;P/ are well defined.
Proposition 3.6.1 gives the claim about finite CW structures.
Finally, when b1.Y / D 0, the relationship with SWF.Y; s/ is immediate from

the definition of �WF .Y; s;P/, since the collection of linear subspaces used in the
construction of SWF.Y; s/ defines a spectral system as in Definition 3.5.1.

Proof of Theorem 1.3.2. The argument is completely parallel to the proof of Theo-
rem 1.1.1.

Finally, we address the claims in the introduction about complex oriented
cohomology theories. We start by reviewing the definition of an E-orientation of
a vector bundle, where E is a multiplicative cohomology theory (see [3] for a discus-
sion of orientability1). Indeed, let V ! X be a topological vector bundle of rank m.
Then an E-orientation is a class

u 2 zEm.Th.V //;

so that, for all x 2 X and ix W Sm ! V , the map associated to inclusion of a fiber
over x, i�xu is a unit in zEm.Sm/ D zE0.S0/ (the latter equality being the suspension
isomorphism of the cohomology theory E).

Recall that a cohomology theoryE is complex oriented if it is oriented on all com-
plex vector bundles. There is a universal such cohomology theory, complex cobor-
dism MU, in the sense that for any complex-oriented cohomology theory E, there is
a map of ring spectra MU ! E inducing the orientation on E.

The utility of a complex-oriented cohomology theory E for studying the stable
homotopy type �WF .Y; s;S1/ is as follows. By Theorem 3.1.1, we have, by chang-
ing the spectral system S1 to S2, that there is an (S1-equivariant) parameterized
equivalence

�WF .Y; s;S1/! †S1�S2�WF .Y; s;S2/: (3.6.2)

1nLab also has a nice discussion, which our presentation follows.
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In Chapter 6, after having considered the 4-dimensional invariant, we will intro-
duce a number n.Y;s; g;P0/ associated to a spectral section P0 of the Dirac operator
over Y , and a metric g on .Y;s/. By its construction, n.Y;s; g; P0/ D n.Y;s; g; ŒS�/
is an invariant of a spectral system up to equivalence ŒS�, and its main property is that
it changes appropriately to counteract the shift in (3.6.2). That is,

n.Y; s; g; ŒS1�/ � n.Y; s; g; ŒS2�/ D dimŒS1 �S2�;

as follows immediately from (6.2.1).
For E an S1-equivariant cohomology theory, let

FE�.Y; s;S1/ D zE
��2n.Y;s;g;S1/.�Š�WF .Y; s;S1//:

We call FE�.Y; s;S1/ the Floer E-cohomology of the tuple .Y; s;S1/.
More generally, we can also consider the notion of an equivariant complex ori-

entation. This is more complicated to state; we follow [12] for the definition of
equivariant complex orientability. That is, let A be an abelian compact Lie group, and
fix a complete complex A-universe U (see Appendix A). A multiplicative equivariant
cohomology theory E�A.�/ is called complex stable if there are suspension isomor-
phisms:

�V W zE
n
A.X/!

zEnCdimV
A ..V C/ ^X/

for all complex (finite-dimensional) A-representations V in U. The natural transitiv-
ity condition on the �V is required, and the map �V is required to be given by multipli-
cation by an element of zEdimV .V C/ (necessarily a generator). A complex orientation
of a complex stable theory EA is a cohomology class x."/ 2 E�A.CP.U;CP."///
that restricts to a generator of

E�A.CP.˛ ˚ "/;CP."// Š zE
�
A.S

˛�1/;

for all 1-dimensional representations ˛.
Building on the equivalence (3.6.2), we have the following claim.

Theorem 3.6.4. Let E be an equivariant complex-oriented (nonparameterized)
homology theory. Then, for any two spectral systems S1, S2, there is a canonical
isomorphism

zE�.�Š�WF .Y; s;S1//! zE�.�Š†
S2�S1�WF .Y; s;S2//:

In particular, FE�.Y;s;S1/ is independent of S1, and defines an invariant FE�.Y;s/.

Proof. The theorem is a consequence of the fact that, for an ex-space .X; r; s/ over a
base B , and a complex m-dimensional vector bundle V over B , with � as usual the
basepoint map B ! �,

�Š†
V
BX D Th.r�V /: (3.6.3)
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This equality is a direct exercise in the definitions. In fact, if .X; r; s/ is an S1-ex-
space, with base B on which S1 acts trivially, the equality also holds at the level of
S1-spaces, where V is an S1-equivariant vector bundle over B , inherited from its
complex structure (so that the pullback r�V is an S1-equivariant vector bundle over
the S1-space X ).

We have by (3.6.2),

zE�.�Š�WF .Y; s;S1// D zE
�.�Š†

S1�S2�WF .Y; s;S2//:

By (3.6.3),
zE�.�Š�WF .Y; s;S1// D zE

�
�
Th.r�.S1 �S2//

�
;

where r is the restriction map of the ex-space �WF .Y;s;S2/. However, the complex
orientation on E induces an isomorphism,

zE�
�
Th.r�.S1 �S2//

�
! zE��2 dim.S1�S2/.�WF .Y; s;S2//;

which is exactly what we needed (the last isomorphism above, in the equivariant case,
follows from the construction of Thom classes in [12, Theorem 6.3]).

The last claim of the theorem is then a consequence of the definition of FE�.

The most important equivariant complex orientable cohomology theory for us
will be equivariant complex cobordism MUG , defined by tom Dieck [50] for a com-
pact Lie groupG. It turns out, ifG is abelian, that MUG is the universalG-equivariant
complex oriented cohomology theory, in the sense that any equivariant complex ori-
ented cohomology theory EG accepts a unique ring map of ring spectra MUG ! EG
so that the orientation on EG is the image of the canonical orientation on MUG .
See [12].

We define FMU�.Y; s/ and FMU�
S1
.Y; s/ by

FMU�.Y; s/ DeMU��2n.Y;s;g;S/.�Š�WF .Y; s;S//;

FMU�
S1
.Y; s/ DeMU��2n.Y;s;g;S/

S1
.�Š�WF .Y; s;S//;

for some spectral sections S. By Theorem 3.6.4 and the complex orientation on MU
and MUS1 , these are well defined independent of a choice of S, and this proves
Theorem 1.2.1.

For a spin structure s, we have the Pin.2/-equivariant Seiberg–Witten Floer stable
homotopy type �WF Pin.2/.Y;s;S/. To define Pin.2/-equivariant cohomology theory
FMU�Pin.2/.Y; s/, we need to show that

eMU��2n.Y;s;S/Pin.2/ .�Š�WF Pin.2/.Y; s;S//

is independent of the choice of S, which requires an orientation on eMU�Pin.2/. But we

cannot apply the argument in [12] to eMU�Pin.2/ since Pin.2/ is not abelian. We do not

discuss orientations on eMU�Pin.2/ in this memoir.





Chapter 4

Computation

In this chapter we provide a sample of calculations of the Seiberg–Witten Floer homo-
topy type.

4.1 Seiberg–Witten Floer homotopy type in reducible case

We will need the following lemma.

Lemma 4.1.1. Let 'WM � R! M be a smooth flow on a smooth manifold M and
N be a compact submanifold (with corners) ofM with dimM D dimN . Assume that
the following conditions are satisfied:

(1) @N D LC [L�, where LC, L� are compact submanifolds (with corners) of
@N with LC \ L� D @LC D @L�.

(2) For x 2 int.LC/, there is " > 0 such that '.x; t/ 2 int.N / for t 2 .0; "/.

(3) For x 2 L�, there is " > 0 such that '.x; t/ 62 N for t 2 .0; "/.

Then N is an isolating neighborhood and .N; L�/ is an index pair of inv.N /. (See
[14] for a similar statement.)

Proof. By conditions (2) and (3), we have inv.N / � int.N /. It is easy to see that
L� is an exit set from the three conditions. Also, condition (3) implies that L� is
positively invariant in N .

Fix a spinc 3-manifold .Y; s/, along with a spectral system S, which we will
usually suppress from the notation. Let kC; k� > 5 be half-integers with jkC � k�j �
1
2

, k D min¹kC; k�º and

'n D 'n;kC;k� W .Fn ˚Wn/ �R! Fn ˚Wn

be the flow induced by the Seiberg–Witten equations.
Fix R� 0. Put

An.R/´ .BkC.F
C
n IR/ �B Bk�.F

�
n IR// �B .BkC.W

C
n IR/ �B Bk�.W

�
n IR//:

Let In ! B D Pic.Y / be the parameterized Conley index of inv.An.R/; 'n/.

Theorem 4.1.2. Assume that the following conditions are satisfied:

(1) ker.DWE1 ! E1/ D 0.
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(2) All solutions to the Seiberg–Witten equations (2.3.4) with finite energy are
reducible.

Let S be a spectral system such that P0 D E0.D/
0
�1. Then for all n� 0 we have

In Š S
F�n ˚W

�
n

B ;

as an S1-equivariant space, with the obvious projection to B . Hence the Seiberg–
Witten Floer parameterized homotopy type is given by

�WF .Y; s; ŒS�/ Š †C�D
2
n˚R�D

4
n

B In Š S
0
B

in PSWS1;B . Here, D2
n D rank Fn, D4

n D rankW �n and PSWS1;B is the category
defined in Definition A.1.9.

If the spinc structure is self-conjugate, the Pin.2/-Seiberg–Witten Floer parame-
terized homotopy type is given by

�WF Pin.2/.Y; s; ŒS�/ Š S0B

in PSWPin.2/;B .

To prove this, we need the following.

Proposition 4.1.3. Assume that all solutions to (2.3.4) with finite energy are redu-
cible. For any " > 0, there is n0 such that for n > n0 we have

inv.An.R// � An."/:

Proof. Put
ın´ max

®
k�CkkC W .�; !/ 2 inv.An.R//

¯
:

Let
n D .�n; !n/WR! An.R/

be approximate Seiberg–Witten trajectories with

k�Cn .0/kkC D ın:

Then we have
d

dt

ˇ̌̌
tD0
k�Cn .t/k

2
kC
D 0:

As we have seen before, after passing to a subsequence, n converges to a Seiberg–
Witten trajectory  with finite energy. By assumption,  is reducible and we can write
 D .0; !/. As in Lemma 2.7.2, we can show that there is a constant C > 0 such that
k�Cn .0/kkCC 12

< C for all n. By the Rellich lemma, �Cn .0/ converges to 0 in L2
k

.
Therefore ın ! 0.
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Similarly,

max
®
k��kk� W .�; !/ 2 inv.An.R//

¯
;

max
®
k!CkkC W .�; !/ 2 inv.An.R//

¯
;

max
®
k!�kk� W .�; !/ 2 inv.An.R//

¯
go to 0 as n! 0.

Proof of Theorem 4.1.2. Fix a small positive number " with "2 � " and choose n�
0. By the proposition,

inv.An.R// � An."/:

Put

Ln;�."/ D .BkC.F
C
n I "/ �B Sk�.F

�
n I "// �B .BkC.W

C
n I "/ �B Bk�.W

�
n I "//[

.BkC.F
C
n I "/ �B Bk�.F

�
n I "// �B .BkC.W

C
n I "/ �B Sk�.W

�
n I "//;

Ln;C."/ D .SkC.F
C
n I "/ �B Bk�.F

�
n I "// �B .BkC.W

C
n I "/ �B Bk�.W

�
n I "//[

.BkC.F
C
n I "/ �B Bk�.F

�
n I "// �B .SkC.W

C
n I "/ �B Bk�.W

�
n I "//:

Then we have

@An."/ D Ln;�."/ [ Ln;C."/;

Ln;�."/ \ Ln;C."/ D @Ln;�."/ D @Ln;C."/:

We will show that the pair .An."/; Ln;�."// is an index pair. It is enough to check
that An."/, Ln;�."/, Ln;C."/ satisfy conditions (2), (3) in Lemma 4.1.1. We consider
the case when kC 2 1

2
Z n Z.

Take an approximate Seiberg–Witten trajectory

 D .�; !/W .�ı; ı/! Fn ˚Wn

for a small positive number ı.
Assume that

k�C.0/kkC D ":

We have

1

2

d

dt

ˇ̌̌
tD0
k�C.t/kkC D

1

2

d

dt

ˇ̌̌
tD0
hjDjkCC

1
2�C�.t/; jDjkC�

1
2�C�.t/i0

D h.rXH jDj
kCC

1
2 /�C.0/; jDjkC�

1
2�C.0/i0

C hjDjkCC
1
2�C.0/; .rXH jDj

kC�
1
2 /�C.0/i0

C h.rXH�
C/�.0/; �C.0/ikC C

Dd�
dt
.0/; �C.0/

E
kC
:
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Note that

kXH .�/k D kq.�/Hk � C"
2:

Hence we have ˇ̌
h.rXH jDj

kCC
1
2 /�C.0/; jDjkC�

1
2�C.0/i0

ˇ̌
� C"4;ˇ̌

hjDjkCC
1
2�C.0/; .rXH jDj

kC�
1
2 /�C.0/i0

ˇ̌
� C"4;ˇ̌

h.rXH�
C/�.0/; �C.0/ikC

ˇ̌
� C"4;

by Proposition 2.5.5 and Lemma 2.5.8. Recall that �C D 1 � �P0 , where �P0 is the
L2-projection onto P0. We haveDd�

dt
.0/; �C.0/

E
kC
D �h.rXH�Fn/�.0/; �

C.0/ikC � h�FnD�.0/; �
C.0/ikC

� h�Fnc1..0//; �
C.0/ikC

and

h.rXH�Fn/�.0/; �
C.0/ikC D 0;

h�FnD�.0/; �
C.0/ikC D hD�.0/; �

C.0/ikC � C"
2;

jh�Fnc1..0//; �
C.0/ikC j � C"

3:

Here we have used Lemma 2.5.11 for the first equality. Therefore

d

dt

ˇ̌̌
tD0
k�C.t/k2kC � �C"

2
C C"3 < 0:

Assume that

k��.0/kk� D ":

A similar calculation shows that

d

dt

ˇ̌̌
tD0
k��.t/k2k� > 0:

Similarly, if k!C.0/kkC D " then d
dt

ˇ̌
tD0
k!C.t/k2

kC
< 0, and if k!�.0/kk� D "

then d
dt

ˇ̌
tD0
k!�.t/k2

k�
> 0. From these, it is easy to see that conditions (2), (3) in

Lemma 4.1.1 are satisfied and we can apply Lemma 4.1.1 to conclude that the pair
.An."/; Ln."// is an index pair.

Therefore we have

In D An."/ [pB Ln;�."/ Š S
F�n ˚W

�
n

B :
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4.2 Examples

Example 4.2.1. Suppose that Y has a positive scalar curvature metric. Then the con-
ditions of Theorem 4.1.2 are satisfied.

Example 4.2.2. Let Y be a nontrivial flat torus bundle over S1 which is not the
Hantzsche–Wendt manifold. Then Y has a flat metric and b1.Y / D 1. Take a torsion
spinc structure s of Y . All solutions to the unperturbed Seiberg–Witten equations on
Y are reducible solutions .A; 0/ with FA D 0. Also, all finite energy solutions to the
unperturbed Seiberg–Witten equations on Y �R are the reducible solutions .��YA;0/,
where A are the flat spinc connections on Y and �Y W Y � R! Y is the projection.
Hence condition (2) of Theorem 4.1.2 is satisfied.

By [28, Lemma 37.4.1], if s is not the torsion spinc structure corresponding to the
2-plane field tangent to the fibers, condition (1) of Theorem 4.1.2 is satisfied.

We consider the sphere bundle of a complex line bundle over a surface†. We will
make use of results from [42, 44] and [24, Section 8].

Let † be a closed, oriented surface of genus g and pWNd ! † be the complex
line bundle on † of degree d . We will consider the sphere bundle Y D S.Nd /. We
have

H 2.Y IZ/ Š Z2g ˚ .Z=dZ/:

The direct summand Z=dZ corresponds to the image

Pict .†/=ZŒNd �
p�

��! Pict .Y /
c1
�! H 2.Y IZ/;

where Pict .†/ is the set of isomorphism classes of topological complex line bundles
on †.

Fix a torsion spinc structure s. We consider a metric

gY;r D .r�/
˝2
˚ g†

on Y for r > 0. Here, i� 2 i�1.Y / is a constant-curvature connection 1-form of
S.Nd /. Following [42, 44], we take the connection r0 on T Y which is trivial in the
fiber direction and is equal to the pullback of the Levi-Civita connection on † on
ker �. For a 2 H1.Y /, let Dr;a be the Dirac operator induced by r0. We have

Dr;a D Da C ır ;

where ırD12rd . See [42, Section 5.1] and [44, Section 2.1]. The family ¹Dr;aºa2H1.Y /

induces an operator

Dr WE1 ! E1:
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We consider the perturbed Seiberg–Witten equations for  D .�; !/WR ! E1 �

im d�: �d�
dt
.t/
�
H
D �Dr�.t/ � c1..t//;�d�

dt
.t/
�
V
D �XH .�.t//;

d!

dt
.t/ D � � d!.t/ � c2..t//:

(4.2.1)

These equations are the gradient flow equation of the perturbed Chern–Simons–Dirac
functional

CSDr.�; !/ D CSD.�; !/C ırk�k2L2 :

The term ırk�k
2
L2

is a tame perturbation. See [28, p. 171]. We can apply Theorem
2.3.3 to the perturbed Seiberg–Witten equations (4.2.1).

The following is a direct consequence of [42, Corollary 5.17 and Theorem 5.19].
See also [44, Section 3.2] and [24, Proposition 8.1, Section 8.2].

Proposition 4.2.3. Let s0 be the spinc structure of Y with spinor bundle S D
p�K�1† ˚ C. Denote by Lq the flat complex line bundle on Y with c1 � q mod d
in TorH 2.Y IZ/. Put sq ´ s0 ˝ Lq . Assume that 0 < g < d . Then for q 2 ¹g;
g C 1; : : : ; d � 1º, all critical points of the functional CSDr associated with sq are
reducible and nondegenerate.

Note that this proposition implies that kerDr D 0 and hence we have a natural
spectral section P0 of Dr :

P0 D .E0.Dr//
0
�1:

The following proposition is proved in [24, proof of Theorem 7.5].

Proposition 4.2.4. Under the same assumption as Proposition 4.2.3, any gradient
trajectory of CSDr (that is, a solution to (4.2.1)) with finite energy is reducible.

We can apply the proof of Theorem 4.1.2 to the perturbed Seiberg–Witten equa-
tions (4.2.1) to show the following.

Theorem 4.2.5. Take q 2 ¹g; g C 1; : : : ; d � 1º. Let S be a spectral system with
P0 D E0.Dr/

0
�1. In the above notation, for r small, we have

In Š S
F�n ˚W

�
n

B :

Therefore we have
�WF .Y; sq; ŒS�/ Š S

0
B

in PSWS1;B . If s is self-conjugate,

�WF Pin.2/.Y; sq; ŒS�/ Š S
0
B

in PSWPin.2/;B .
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Dai and the authors [17] computed the Seiberg–Witten Floer stable homotopy
type for almost rational plumbed 3-manifolds which have b1 D 0. The computation is
based on surgery exact triangles in [48]. If we establish a surgery exact triangle for the
Seiberg–Witten Floer stable homotopy type �WF .Y; s;S/ defined in this memoir, it
would be possible to compute for more 3-manifolds with b1 > 0.





Chapter 5

Finite-dimensional approximation on 4-manifolds

5.1 Construction of the relative Bauer–Furuta invariant

Let .X; t/ be a compact spinc 4-manifold with boundary Y . Take a Riemannian metric
Og of X such that a neighborhood of Y in X is isometric to Y � .�1; 0�. We assume
that the restriction s of t to Y is a torsion spinc structure. Put

E˙X;k ´ H1.X/ �H1.X IZ/ L
2
k.�.S

˙//;

WX;k ´ BX � L
2
k.�

1
CC.X//:

Here, BX D Pic.X/ and S˙ are the spinor bundles on X and �1CC.X/ is the space
of 1-forms on X in double Coulomb gauge. See [23] for the double Coulomb gauge
condition. Note that E˙

X;k
, WX;k are Hilbert bundles over BX . We have the Dirac

operator
DX WE

C

X;k
! E�X;k�1

on X , and as before, we can define the fiberwise norm k � kk on E˙
X;k

for each non-
negative number k. Also we put

EY;k ´ H1.Y / �H1.Y IZ/ L
2
k.S/;

WY;k ´ BY � L
2
k.im d�/ � BY � L

2
k.�

1.Y //:

Here, PY D Pic.Y /.

Proposition 5.1.1. For k; l � 0, there are constants RX;k;RY;l > 0 such that for any
solution x 2 ECX;2 ˚WX;2 to the Seiberg–Witten equations on X and any Seiberg–
Witten trajectory  WR�0 ! EY;2 ˚WY;2 with finite energy and with

rY .x/ D .0/;

we have
kxkk � RX;k; k.t/kl � RY;l

for all t 2 R�0. Here, rY stands for the restriction to the boundary Y .

See [23, Section 4] for this proposition.

LetDY be the family of Dirac operators on Y parameterized by BY . Assume that
indDY D 0 in K1.BY /. Choose a spectral system S. As usual, put

Fn D Pn \Qn; Wn D WP;n \WQ;n:

Then Fn, Wn are subbundles of EY;0, WY;0 with finite rank.



Finite-dimensional approximation on 4-manifolds 96

From now on, we assume that k is a half-integer and k > 5 so that we can use the
results in Chapters 2 and 3. We consider the map

SWX;nWE
C

X;k
˚WX;k

!
�
E�X;k�1 � L

2
k�1.�

C.X//
�
� ..Pn ˚WP;n/ \ L

2

k� 12
/ (5.1.1)

defined by

SWX;n. O�; y!/ D .DX O� C �.y!/ O�; F
C

OA
� q. O�/; �PnrY

O�; �WP;nrY y!/:

Here, �Pn , �WP;n are the L2-projection, where we have also written Pn for the total
space of the spectral section Pn. We will take subbundles Un, U 0n of EC

X;k
, E�

X;k�1

with finite rank as follows. The operator

.DX ; �P0rY /WE
C

X;k
! E�X;k�1 ˚ r

�
Y .P0 \ L

2

k� 12
/

is Fredholm. (See [40], [28, Section 17.2] and Section 2.1.) Hence there is a fiberwise
linear operator

pWCm
! E�X;k�1 ˚ r

�
Y .P0 \ L

2

k� 12
/

such that

.DX ; �P0rY /C p W EC
X;k
˚Cm

! E�X;k�1 ˚ r
�
Y .P0 \ L

2

k� 12
/ (5.1.2)

is surjective. Here, Cm D BX �Cm is the trivial bundle over BX .

Lemma 5.1.2. For any n and any subbundle U 0 in E�
X;k�1

, U 0˚ r�YFn and the image
of

.DX ; �PnrY /C pWEC
X;k
˚Cm

! E�X;k�1 ˚ r
�
Y .Pn \ L

2

k� 12
/

are transverse in E�
X;k�1

˚ r�Y .Pn \ L
2

k� 12
/.

Proof. Take any element .x0; y/ from E�
X;k�1

˚ r�Y .Pn \ L
2

k� 12
/. There is .x; v/ 2

EC
X;k
˚Cm such that

..DX ; �P0rY /C p/.x; v/ D .x0; �P0.y//:

Note that
Pn \ .P0/

?
D FCn :

We can write

.DX ; �PnrY C p/.x; v/ D
�
.DX ; .�P0 C �FCn

/rY /C p
�
.x; v/ D .x0; �P0.y/C z/;
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where z D �
F
C
n
.rY x/ 2 F

C
n � Fn. Hence

.x0; y/ D .x0; �P0.y/C z/C .0; �FCn
.y/ � z/

2 im..DX ; �PnrY /C p/C Fn:

Take a sequence of finite-dimensional subbundles U 0n of E�
X;k�1

such that �U 0n !
idE�

X;k�1
strongly as n!1 and put

Un´ ..DX ; �PnrY /C p/�1.U 0n ˚ r
�
YFn/: (5.1.3)

By Lemma 5.1.2, Un are subbundles of EC
X;k
˚Cm. Note that

ŒUn� � ŒU
0
n ˚ r

�
YFn� � ŒC

m� D Œind.DX ; Pn/� 2 K.BX /:

Here, the right-hand side is the index bundle defined in [40, Section 6].
Choose finite-dimensional subbundles

V 0n D BX � V
0
n;0

of BX � L2k�1.�
C.X// with �V 0n ! idBX�L2k�1.�C.X// strongly as n!1 and put

Vn´ .dC; �WP;nrY /
�1.V 0n ˚Wn/ � WX;k :

We consider the maps

SWX;n;p ´ .DX ; d
C/C pC �U 0n˚V 0ncX WUn ˚ Vn ! U 0n ˚ V

0
n;fSWX;n;p ´ .SWX;n;p; �PnrY ; �WP;nrY ; idCm/W

Un ˚ Vn ! U 0n ˚ V
0
n ˚ r

�
Y .Fn ˚Wn/˚Cm;

(5.1.4)

where
cX . O�; y!/ D .�.y!/ O�; F

C

OA0
C q. O�//

for a fixed connection OA0 on X . Fix positive numbers R, R0 with 0� R0 � R. Put

An´ .Bk� 12
.FCn IR/ �BY Bk.F

�
n IR// �BY .Bk� 12

.W Cn IR/ �BY Bk.W
�
n IR//:

Here,Bk� 12 .F
C
n IR/ is the ball in FCn of radiusR with respect toL2

k� 12
, and similarly

forBk.F �n IR/;Bk� 12 .W
C
n IR/,Bk.W

�
n IR/. Note that we take different normsL2

k� 12

and L2
k

for FCn , W Cn and F �n , W �n . By Theorem 2.3.3, for n� 0, An is an isolating
neighborhood of the flow 'n;k� 12 ;k

, for suitable k. For " > 0, we define compact
subsets Kn;1."/, Kn;2."/ of An by

Kn;1."/´
®
y 2 An W 9. O�; v; y!/ 2 Bk.Un ˚ VnIR

0/; . O�; v/ 2 Un � EC
X;k
˚Cm;

y! 2 Vn; k.SWX;n;p; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚W
�n
�1
rY . O�; y!/

¯
;
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and

Kn;2."/´
®
y 2 An W 9. O�; v; y!/ 2 @Bk.Un ˚ VnIR

0/;

k.SWX;n;p; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚W
�n
�1
rY . O�; y!/

¯
[.@An \Kn;1."//:

Here,
k.SWX;n;p; idCm/. O�; v; y!/kk�1 D kSWX;n;p. O�; y!/kk�1 C kvk:

We will show that we can find a regular index pair containing .K1;n."/;K2;n."//. See
Appendix A.2 for the definition of a regular index pair.

Proposition 5.1.3. There is an "0 > 0 such that if 0 < " < "0, for n large, we can
find a regular index pair .Nn; Ln/ of inv.AnI'n;k� 12 ;k/ with

Kn;1."/ � Nn � An; Kn;2."/ � Ln:

Proof. We write 'n for 'n;k� 12 ;k . We denote by AŒ0;1/n the set®
y 2 An W 8t 2 Œ0;1/; 'n.y; t/ 2 An

¯
:

By [35, Theorem 4], it is sufficient to prove the following for n large and " small:

(i) if y 2 Kn;1."/ \ A
Œ0;1/
n then we have 'n.y; t/ 62 @An for all t 2 Œ0;1/,

(ii) Kn;2."/ \ A
Œ0;1/
n D ;.

Furthermore, any index pair as constructed by [35, Theorem 4] may be thickened to
give a regular index pair still satisfying the conditions of the proposition. See [47,
Remark 5.4].

Note that for y 2 Kn;1."/ we have

kyCkk� 12
< R (5.1.5)

for all n since the restriction L2
k
.X/! L2

k� 12
.Y / is bounded and R0 � R.

First, we will prove that (i) holds for n large and " small. Assume that this is not
true. Then there is a sequence "n ! 0 such that after passing to a subsequence, we
have yn 2 An, . O�n; vn; y!n/ 2 Bk.Un ˚ VnIR0/, tn 2 Œ0;1/ with

yn D �Pn˚WP;nrY .
O�n; y!n/;

kSWX;n;p. O�n; !n/k
2
k�1 C kvnk

2
� "2n;

'n.yn; Œ0;1// � An;

'n.yn; tn/ 2 @An:
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Note that vn ! 0. Let

n D .�n; !n/W Œ0;1/! Fn ˚Wn

be the approximate Seiberg–Witten trajectory defined by

n.t/ D 'n.yn; t /:

After passing to a subsequence, one of the following holds for all n:

(a) �Cn .tn/ 2 Sk� 12
.FCn IR/,

(b) ��n .tn/ 2 Sk.F
�
n IR/,

(c) !Cn .tn/ 2 Sk� 12
.W Cn IR/,

(d) !�n .tn/ 2 Sk.W
�
n IR/.

Note that in cases (a) and (c), we have tn > 0 because of (5.1.5).
As in the proof of Theorem 2.3.3, we can show that there is a Seiberg–Witten

trajectory
 D .�; !/W Œ0;1/! EY;k� 32 ;k�1

˚WY;k� 32 ;k�1

such that after passing to a subsequence, n converges to  uniformly in L2
k� 32

on
each compact set in Œ0;1/. Also, after passing to a subsequence, . O�n; y!n/ converges
to a solution . O�; y!/ to the Seiberg–Witten equations on X uniformly in L2

k�1
on each

compact set in the interior of X . We have

rY . O�; y!/ D .0/:

Assume that case (a) happens for all n. As mentioned, tn > 0. Hence we have

d

dt

ˇ̌̌
tDtn
k�Cn .t/k

2

k� 12
D 0:

As in Lemma 2.7.2, we can show that there is C > 0 such that k�Cn .tn/kk < C for
all n. After passing to a subsequence, tn ! t1 2 R�0 or tn !1. First assume that
tn ! t1. By the Rellich lemma, �Cn .tn/ converges in L2

k� 12
strongly. This implies

that
k�C.t1/kk� 12

D R;

which contradicts Proposition 5.1.1.
Next we consider the case tn !1. Let

n D .�n; !n/W Œ�tn;1/! Fn ˚Wn

be the approximate Seiberg–Witten trajectory defined by

n.t/´ 'n.yn; t C tn/:
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As before, we can show that there is a Seiberg–Witten trajectory

 WR! EY;k� 32 ;k�1
˚WY;k� 32 ;k�1

such that after passing to a subsequence, n converges to  uniformly in L2
k� 32

on
each compact set in R. As before we can show that the sequence k�Cn .0/kk is bounded
and hence �Cn .0/ converges to �C.0/ inL2

k� 12
strongly. Therefore k�C.0/kk� 12 DR,

which contradicts Proposition 2.3.2. Thus (a) cannot happen.
Let us consider the case when (b) holds for all n. We have

d

dt

ˇ̌̌
tDtn
k��n .t/k

2
k � 0:

As in the proof of Lemma 2.7.3,

0 �
d

dt

ˇ̌̌
tDtn
k��n .t/k

2
k

� �hD0��n .tn/; �
�
n .tn/ik � CR

2
k��n .tn/kkC 12

� CR2

D k��n .tn/k
2

kC 12
� CR2k��n .tn/kkC 12

� CR2:

This implies that the sequence k��n .tn/kkC 12 is bounded and there is a subsequence
such that ��n .tn/ converges in L2

k
strongly. We have a contradiction as before.

In the case when (c) or (d) holds for all n, we have a contradiction similarly. We
have proved that (i) holds for n large and " small.

Next we will prove that (ii) holds for n large and " small. If this is not true, there
is a sequence "n ! 0 such that after passing to a subsequence, one of the following
cases holds for all n:

(a) We have . O�n; vn; y!n/ 2 @Bk.Un ˚ VnIR0/, yn 2 A
Œ0;1/
n with

kSWX;n;p. O�n; y!n/kk�1 C kvnk � "n; yn D �Pn˚WP;nrY .
O�n; y!n/:

(b) We have . O�n; vn; y!n/ 2 Bk.Un ˚ VnIR0/, yn 2 @An \ A
Œ0;1/
n with

kSWX;n;p. O�n; y!n/kk�1 C kvnk � "n; yn D �Pn˚WP;nrY .
O�n; y!n/:

First we consider the case (a). Let

n D .�n; !n/W Œ0;1/! Fn ˚Wn

be the approximate Seiberg–Witten trajectory defined by

n.t/ D 'n.yn; t /:
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As before, there is a Seiberg–Witten trajectory

 D .�; !/W Œ0;1/! EY;k� 32 ;k�1
˚WY;k� 32 ;k�1

such that after passing to a subsequence, n converges to  uniformly in L2
k� 32

on

each compact set in Œ0;1/. Also, there is a solution . O�; y!/ to the Seiberg–Witten
equations onX such that after passing to a subsequence, . O�n; y!n/ converges to . O�; y!/
in L2

k�1
on each compact set in the interior of X . We have

rY . O�; y!/ D .�.0/; !.0//:

Since yn 2 An, we have

ky�n kk D k.�
�
n .0/; !

�
n .0//kk � R:

Hence, after passing to subsequence, .��n .0/; !
�
n .0// converges to .��.0/; !�.0// in

L2
k� 12

.Y / strongly. By the standard elliptic estimate, we have

k O�n � O�kL2
k
.X/

� C
�
k O�n � O�kL2.X/ C kDX . O�n � O�/kL2

k�1
.X/ C k�

�
n .0/ � �

�.0/kL2
k� 1

2

.Y /

�
:

From the condition that

kSWX;n;p. O�n; y!n/kk�1 C kvnk � "n;

we have

kDX . O�n � O�/kk�1 � C.kcX . O�n; y!n/ � cX . O�; y!/kk�1 C "n/:

Since cX . O�n; y!n/ converges to cX . O�; y!/ in L2
k�1

strongly, O�n converges to O� in L2
k

strongly.
Similarly, y!n converges to y! in L2

k
strongly. Hence,

k. O�; y!/kk D R
0:

This contradicts Proposition 5.1.1, so case (a) cannot happen.
Next we consider case (b). Let

yn D .�n; !n/:

After passing to a subsequence, ��n 2 Sk.F
�
n IR/ for all n, or !�n 2 Sk.W

�
n IR/ for

all n. Note that the cases �Cn 2 Sk� 12 .F
C
n IR/, !

C
n 2 Sk� 12

.W Cn IR/ do not happen
because of (5.1.5).
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We consider the case ��n 2 Sk.F
�
n IR/. Put

n.t/ D .�n.t/; !n.t// D 'n.yn; t /

for t � 0. As in the proof of Lemma 2.7.3,

0 �
d

dt

ˇ̌̌
tD0
k��n .t/k

2
k

� k��n k
2

kC 12
� CR2k��n kkC 12

� CR2:

Therefore the sequence k��n kkC 12 is bounded. By the Rellich lemma, ��n converges
to �� in L2

k
strongly and hence

k��kk D R;

which contradicts Proposition 5.1.1. Similarly, if !�n 2 Sk.W
�
n I R/ for all n, we

obtain a contradiction. We have proved that (ii) holds for n large and " small.

Remark 5.1.4. To get (5.1.5), we used the L2
k� 12

-norm on the positive component.
On the other hand, in the case (ii)-(a), we used the condition that k��n .0/kk is bounded
(rather than k��n .0/kk� 12 ) to have that ��n .0/ converges to ��.0/ in L2

k� 12
. This is

why we used the L2
k

-norm on the negative component to define Kn;1."/, Kn;2."/.
In the case where b1.Y / D 0, we can use the L2

k� 12
-norm on both of the positive

and negative component. See the proofs of [35, Proposition 6] and [23, Lemma 4.4].
In those proofs, to get the L2

k� 12
-convergence of ��n .0/, the following identity was

used:

eD��n .1/ � �
�
n .0/ D

Z 1

0

d

dt
.etD���n.t// dt: (5.1.6)

In the case where b1.Y / > 0, we have

d

dt
.etD���n.t// D e

tD.D CrXHD/�
��n.t/C e

tD.rXH�
�/�n.t/

� etD��¹.�nD CrXH�Fn/�n.t/C q.�n.t//º:

Since .rXH�Fn/�n.t/ does not converge in L2
k� 12

, we cannot deduce that ��n .0/
converges in L2

k� 12
from (5.1.6).

For n large and " small, let .Nn; Ln/ be a regular index pair of inv.'n; An/ with

K1;n."/ � Nn; K2;n."/ � Ln:
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Put

S
Un˚Vn
BX

´

[
a2BX

B..Un ˚ Vn/aIR/=S..Un ˚ Vn/aIR/;

S
U 0n˚V

0
n˚Cm

BX
´

[
a2BX

B..U 0n ˚ V
0
n ˚Cm/aI "/=S..U

0
n ˚ V

0
n ˚Cm/aI "/;

which are sphere bundles over BX , and let In be the Conley index:

In´ Nn [pBY jLn
BY :

Here, pBY WNn ! BY is the projection. We obtain a map

BF Œn�.X; t/WS
Un˚Vn
BX

! S
U 0n˚V

0
n˚Cm

BX
^BX r

�
Y In (5.1.7)

defined by

BF Œn�.X; t/.Œ O�; v; y!�/

D

´
ŒSWX;n;p. O�; v; y!/; v� ^ Œ�Pn˚WP;nrY .

O�; y!/� if (5.1.8) holds;

�a otherwise:

Here, a D pBX .
O�; y!/, �a denotes the base point of the sphere S .U

0
n˚V

0
n˚Cm/a and

we have the following condition:

kSWX;n;p. O�; v; y!/k
2
k�1 C kvk

2
� ";

�Pn˚WP;nrY .
O�; y!/ 2 Kn;1."/:

(5.1.8)

We refer to the map BFn.X; t/ as the (relative, nth) pre-Bauer–Furuta invariant of
.X; t/, to emphasize that it is not yet an invariant of the construction (rather, its stable
homotopy equivalence class will turn out to be an invariant).

An alternative version of this relative Bauer–Furuta invariant is obtained instead
by considering the map of BY spaces:

BF Œn�.X; t/WS
Un˚Vn
BX

! S
U 0n˚V

0
n˚Cm

BX
^BY Nn=BYLn;

where SUn˚VnBX
is a BY space using rY , and where Nn=BLn is the fiberwise quotient.

5.2 Well-definedness of the relative Bauer–Furuta invariant

We next consider how the construction of the relative Bauer–Furuta invariant in
(5.1.7) depends on the choices involved. This is very similar to Chapter 3, so we
will abbreviate many of the arguments.



Finite-dimensional approximation on 4-manifolds 104

First, we address the perturbation p.

Lemma 5.2.1. Let p1 be a perturbation for which (5.1.2) is surjective. Let q be a lin-
ear operator Cm2 ! E�

X;k�1
˚ r�Y .P0 \ L

2

k� 12
/. Let Un.p/, respectively Un.pC q/

be the bundles defined as in (5.1.3) with respect to the perturbations p, respectively
pCq. Let BF Œn�;p.X; t/, respectively BF Œn�;pCq.X; t/, be the maps defined in (5.1.7)
with respect to the perturbations p and pC q. Then there is the following commuta-
tive diagram:

†Cm2S
Un.p/˚Vn
BX

S
U 0n˚V

0
n˚Cm˚Cm2

BX
^BY In

S
Un.pCq/˚Vn
BX

S
U 0n˚V

0
n˚Cm˚Cm2

BX
^BY In:

†Cm2BF Œn�;p

BF Œn�;pCq

Moreover, a choice of mapLWCm2! EC
X;k
˚Cm so that ..DX ;�P0rY /C p/ ıLD q

determines the vertical arrows in the diagram.

Proof. Such a choice of L as at the end of the statement exists for any such p, q, by
surjectivity of (5.1.2). We show how to define maps as in the commutative diagram
in terms of such L. Of course, if q D 0, this is obvious, with L D 0.

More generally, we have the following commutative diagram:

EC
X;k
˚Cm ˚Cm2 E�

X;k�1
˚ r�Y .P0 \ L

2

k� 12
/

EC
X;k
˚Cm ˚Cm2 E�

X;k�1
˚ r�Y .P0 \ L

2

k� 12
/;

QL id (5.2.1)

where QL is the identity on EC
X;k
˚Cm, andL˚ idCm2 on Cm2 . The horizontal arrows

are .DX ; �P0rY /˚ p˚ 0 and .DX ; �P0rY /˚ p˚ q, respectively.
Comparing with the definition of the Seiberg–Witten map (5.1.1), we see that

there is a commutative diagram analogous to (5.2.1), but with the maps fSWX;n;p (and
similarly for q) from (5.1.4) along the horizontal arrows.

The definition of BF Œn�.X; t/ then gives the commutative diagram in the lemma
statement.

As in Chapter 3, the proof of well-definedness is related to the definition of a
families invariant. Let F be a family of (metrized, spinc) 4-manifolds with boundary,
over a base B , with fiber .X; t/, and let G be the boundary family (naturally over
the base B), where we write @.X; t/ D .Y; s/. See Section 3.2 for family of spinc

manifolds. Assume that we have fixed a sequence of good spectral sections Pn, Qn
on the boundary family.



Well-definedness of the relative Bauer–Furuta invariant 105

Assume also that we have fixed a sequence of good spectral sections WP;n, WQ;n
of �d of the boundary family, and assume WP;0 is the orthogonal complement
of WQ;0.

As at the beginning of the section, we now have bundles E˙
F ;k

and WF ;k , where
the fibers over b 2 B (with associated 4-manifold .X; t/) are

E˙F ;k;b ´ H1.Fb/ �H1.X IZ/ L
2
k.�.S

˙
b //;

WF ;k;b ´ Pic.Fb/ � L2k.�
1
CC.Fb//:

Furthermore, the space of sections L2
k�1

.�C.F // now defines a bundle over B as
well, with fiber L2

k�1
.�C.Fb//, the L2

k�1
-self-dual 2-forms on the fiber.

The 4-dimensional Seiberg–Witten equations (5.1.1) now define a fiberwise map:

SWF ;n W E
C

F ;k
˚WF ;k !

�
E�F ;k�1 ˚ L

2
k�1.�

C.F //
�
˚ r�G .Pn ˚WP;n/:

Define Un as in (5.1.3), and Vn similarly. Exactly as before, define An; note
that An is now a fiber bundle over the total space of the fibration Pic.F / ! B , a
fiber of this latter fibration is Pic.Fb/. Define subspaces (themselves spaces over the
total space of Pic.G /! B) Kn;1."/ and Kn;2."/ with fibers Kn;1;b."/ and Kn;2;b."/
according to

Kn;1;b."/´
®
y 2 An W 9. O�; v; y!/ 2 Bk.Un ˚ VnIR

0/; . O�; v/ 2 Un � EC
X;k
˚Cm;

y! 2 Vn; k.SWX;n;p;b; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚WP;nrGb .
O�; y!/

¯
and

Kn;2;b."/´
®
y 2 An W 9. O�; v; y!/ 2 @Bk.Un ˚ VnIR

0/;

k.SWX;n;p;b; idCm/. Ox; v; y!/kk�1 � ";

y D �Pn˚WP;nrGb .
O�; y!/

¯
[.@An \Kn;1;b."//:

The proof of Proposition 5.1.3 is only changed in this setting according to the
procedure in Chapter 3. In particular, the following proposition also relies on a fam-
ilies version of [35, Theorem 4]; the proof thereof is only notationally different from
that appearing in [35]. A families version of Proposition 5.1.1 is also used; its proof
is a modification of that in [23, Section 4]. We obtain the following proposition.

Proposition 5.2.2. There is an "0 > 0 such that if 0 < " < "0, for n large, we can
find a regular fiberwise index pair .Nn; Ln/ of inv.AnI'n;k;k� 12 / with

Kn;1."/ � Nn � An; Kn;2."/ � Ln:
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Put

S
Un˚Vn
Pic.F / ´

[
a2Pic.F /

B..Un ˚ Vn/aIR/=S..Un ˚ Vn/aIR/;

S
U 0n˚V

0
n˚Cm

Pic.F / ´

[
a2Pic.F /

B..U 0n ˚ V
0
n ˚Cm/aI "/=S..U

0
n ˚ V

0
n ˚Cm/aI "/:

Let
In.G / D Nn [pPic.G /jLn

Pic.G /;

where pPic.G / is the projection to Pic.G / of F �W .
We obtain a fiber-preserving map over Pic.G /:

BF Œn�.F /WS
Un˚Vn
Pic.G / ! S

U 0n˚V
0
n˚Cm

Pic.G / ^Pic.G / In.G /:

Here, SUn˚VnPic.G / and SU
0
n˚V

0
n˚Cm

Pic.G / are spaces over Pic.G / by pushing forward SUn˚VnPic.F /

and SU
0
n˚V

0
n˚Cm

Pic.F / along the restriction map Pic.F /! Pic.G / (see Appendix A.1).
In particular, we obtain that the homotopy class of the map BF Œn�.X; t/ in (5.1.7)

is independent of the metric on X used in its construction. To be more precise, we
have the following lemma.

Lemma 5.2.3. Let .X; t/ be a compact spinc 4-manifold with boundary (admitting a
Floer framing) .Y; s/. Let gt for t 2 Œ0; 1� be a path of metrics on X , along with a
path of perturbations pt with surjectivity in (5.1.2) for all t . There exist good spec-
tral sections Pn;t , Qn;t , WP;n;t , WQ;n;t on the boundary Y , say, forming a spectral
system S. Let In D �WF Œn�.Y; s;S/ denote the family Seiberg–Witten invariant of
the boundary. Let p denote the projection pWBY � I ! BY , where I D Œ0; 1�. Then
there exists a map

BF Œn�;I .X; t/WS
Un˚Vn
BX�I

! S
U 0n˚V

0
n˚Cm

BX�I
^BY �I p

�In:

The map BF Œn�;I .X; t/ is a map respecting the projection on each side to BY � I .
In particular, for a fixed trivialization of the families Un;t , Vn;t , U 0n;t , V

0
n;t and In

over IC, together with a path of perturbations pt , there is an (equivariant) homotopy
equivalence from BF Œn�;0;p0 and BF Œn�;1;p1 which is well defined up to (equivariant)
homotopy.

Proof. The existence of the spectral sections follows from Chapter 2. Otherwise the
lemma is a restatement of the definition of the families relative Bauer–Furuta invari-
ant. There is no issue in choosing a good spectral section for �d of the boundary
family in this situation, since on Œ0; 1�, each �d may be written as a (small) compact
perturbation of �gd , where g is some fixed metric.



Well-definedness of the relative Bauer–Furuta invariant 107

Further, the homotopy class of BF Œn�.X; t/ does not depend on the Sobolev norm
used in its construction. The proof of the following lemma is analogous to the work
in Section 3.4, and is left to the reader. We state the result for the unparameterized
case; the parameterized case is not substantially different.

Lemma 5.2.4. Let .X; t/ be a compact spinc 4-manifold with boundary (admitting
a Floer framing) .Y; s/. Let U 0n be a sequence of finite-dimensional subbundles of
E�
X;k

for k > 11=2, and V 0n D BX � V
0
n;0 be a sequence of finite-dimensional sub-

bundles of BX � L2k.�
C.X//, where V 0n;0 � L

2
k
.�C.X//, with �U 0n ! idE�

X;k
and

�V 0n ! idBX�L2k.�C.X// strongly. Let BF Œn�;kC1.X/ and BF Œn�;k.X/ be the pre-

Bauer–Furuta invariants defined with respect to theL2
kC1

andL2
k

-norms respectively.
Write I for the interval Œ0; 1�. Then there is a family of maps over the interval,

BF Œn�;I .X; t/WS
Un˚Vn
BX�I

! S
U 0n˚V

0
n˚Cm

BX�I
^BY �I �WF Œn�.Y /I ;

where �WF Œn�.Y /I is the parameterized Conley index coming from the I -family of
flows used in the proof of Proposition 3.4.1. In particular, for the given homotopy
equivalence in Proposition 3.4.1, the maps BF Œn�;k.X; t/ and BF Œn�;kC1.X; t/ are
homotopic by a homotopy well defined up to homotopy.

We next consider the effect of stabilization on BF Œn�. There are two separate
stabilizations: increasing U 0n, V 0n, or increasing Pn, Qn, W ˙n . Fix trivializations of
U 0nC1=U

0
nDCcn and V 0nC1=V

0
nDRdn . Recall the definition of a spectral system from

Definition 3.5.1. By construction, UnC1 is naturally identified with Un ˚ CkQnCcn

for kP;n, kQ;n as in Theorem 3.1.1, using the isomorphism �WPnC1 ! Pn ˚ CkP;n ,
and similarly for kQ;n. Analogously, VnC1 is identified with Vn ˚ RkW;�;nCdn . Let
'nC1;t denote the family of flows as in Theorem 3.1.1, with n chosen large enough.
Recall that there is an induced homotopy equivalence

†
CkQ;n˚RkW;�;n

BY
�WF Œn�.Y /! �WF ŒnC1�.Y /

as in Theorem 3.1.1.
Stabilization of the Bauer–Furuta invariant is as follows. Let c0n D cn C kQ;n and

d 0n D dn C kW;�;n.

Proposition 5.2.5. For appropriate choices of index pairs, there is a homotopy-
commuting square of parameterized spaces, defined by Conley index continuation
maps:

S
Cc
0
n˚Rd

0
n

BX
^BX S

Tn
BX

S
TnC1
BX

S
Cc
0
n˚Rd

0
n˚T 0n˚Cm

BX
�WF Œn�.Y / S

T 0
nC1
˚Cm

BX
^BY �WF ŒnC1�.Y /;

id^BXBF Œn� BF ŒnC1� (5.2.2)



Finite-dimensional approximation on 4-manifolds 108

TnDUn˚ Vn, T 0nDU
0
n˚ V

0
n. In particular, (5.2.2) is a homotopy-commuting square

of (unparameterized) connected simple systems.

Proof. The proof is similar to the proof of Theorem 3.1.1, and we will only roughly
sketch the details. Indeed, the bottom arrow of (5.2.2) is exactly the map defined in
that theorem.

Recall that we have fixed identifications UnC1=Un D CcnCkQ;n To obtain that
(5.2.2) homotopy-commutes, we deform fSWX;nC1;p D

fSWX;nC1;p;0 by a familyfSWX;nC1;p;t , by removing (linearly in t ) the nonlinear terms in SWX;n;p on the
UnC1=Un and VnC1=Vn-factors to a map fSWX;nC1;p;1 which is the sum of maps

H WUnC1=Un ˚ VnC1=Vn ! U 0nC1=U
0
n ˚ V

0
nC1=V

0
n ˚CkQ;n ˚RkW;�;n

and fSWX;n;pWUn ˚ Vn ! U 0n ˚ V
0
n ˚ r

�
Y .Fn ˚Wn/˚Cm:

Here, H is some linear isomorphism (from the linearization of SWX;n).
We define An as before, and require that An is an isolating neighborhood of the

flow 'nC1;t for all t 2 Œ0; 1�.
We then define

Kn;1."/´
®
.y; t/ 2 An � Œ0; 1� W 9. O�; v; y!/ 2 Bk.Un ˚ VnIR

0/;

k.SWX;n;p;t ; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚WP;nrY .
O�; y!/

¯
and

Kn;2."/´
®
.y; t/ 2 An � Œ0; 1� W 9. O�; v; y!/ 2 @Bk.Un ˚ VnIR

0/;

k.SWX;n;p;t ; idCm/. Ox; v; y!/kk�1 � ";

y D �Pn˚WP;nrY .
O�; y!/

¯
[
�
..@An/ � Œ0; 1�/ \Kn;1."/

�
:

One then establishes the analog of Proposition 5.1.3 for the family of flows 'nC1;t .
Writing I D Œ0; 1�, there results a map

BF ŒnC1�;I .X; t/WS
CcnCkQ;n˚RdnCkW;�;n

BX�I
^BY �I S

Un˚Vn
BX�I

! S
U 0
nC1
˚V 0

nC1
˚Cm

BX�I
^BY �I �WF ŒnC1�.Y /:

At t D 1 this is the composite from first going down in (5.2.2), while for t D 0, this
restricts to BF ŒnC1�. The homotopy commutativity of (5.2.2) follows.

The claim on the well-definedness of the maps in (5.2.2) follows from Theo-
rem A.2.3.
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Proposition 5.2.6. The map BF Œn� is independent of the choice of regular index pair
.Nn; Ln/ with Kn;1."/ � Nn; Kn;2."/ � Ln for n large and " small, up to isomor-
phisms in PSWS1;B .

Proof. We will follow the argument in [23, Appendix]. Take another regular index
pair .N 0n; L

0
n/ with K1;n."/ � N 0n, K2;n."/ � L0n for n large and " small. Let I 0n

denote the parameterized Conley index associated to .N 0n; L
0
n/.

First we consider the case when .Nn; Ln/ � .N 0n; L
0
n/. The map

�nW In ! I 0n

induced by the inclusion is an isomorphism in PSWS1;B by [43, Theorem 6.2] and
the following diagram is commutative:

S
U 0n˚V

0
n˚Cm

BX
^BY In

S
Un˚Vn
BX

S
U 0n˚V

0
n˚Cm

BX
^BY I

0
n:

id^�n

BF Œn�

BF 0Œn�

Next we consider the general case. As shown in [23, p. 1653], we have index pairs
. zNn; QLn/, .Nn;1; Ln;1/, .N 0n;1; L

0
n/ such that

.Nn; Ln/ � .Nn;1; Ln;1/; .N 0n; L
0
n/ � .N

0
n;1; L

0
n;1/;

.Kn;1."/;K2;n."// � . zNn; QLn/ � .Nn;1; Ln;1/ \ .N
0
n;1; L

0
n;1/:

We can assume that . zNn; QLn/, .Nn;1;Ln;1/, .N 0n;1;L
0
n;1/ are all regular by thickening

the exits slightly ([47, Remark 5.4]). The statement follows from the commutative
diagram

.Nn;1; Ln;1/ .N 0n;1; L
0
n;1/

. zNn; QLn/

.Nn; Ln/ .N 0n; L
0
n/:

Recall that we have defined the virtual bundle ind.DX ; P / following equation
(5.1.3). For a normal spectral system P whose nth section isPn, we write ind.DX ;P/,
since ind.DX ; Pn/ and ind.DX ; PnC1/ are canonically identified for all n. For V D
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V1 	 V2 a virtual vector bundle over a base B , we define an element SVB of the
stable-homotopy category PSWB (see Definition A.1.9) by .SV1B ;�V2/, where SV1B is
the sphere bundle associated to V1; the stable-homotopy type of this space does not
depend on a choice of universe.

For V a vector bundle overB , let ThVB denote the Thom space of V ; we will abuse
notation and also write ThVB for the suspension spectrum of ThVB . Write ker.DX ;P/
for the kernel of the map in (5.1.2), which depends on the perturbation p.

For topological spaces W , Z, a map class from W to Z will refer to a homo-
topy class W ! Z, up to self-homotopy-equivalence of W , Z. We can now prove
Theorem 1.3.1 from the introduction, which we restate as follows.

Corollary 5.2.7. Fix a Floer framing P on Y . There is a well-defined (parameterized,
equivariant, stable) map class

BF .X; t/WS
ind.DX ;P/
Pic.X/ ! �WF .Y;P/:

For a choice of perturbation p as in (5.1.2), there is a well-defined (equivariant,
unparameterized) weak map of spectra:

BFp.X; t/WThker.DX ;P/
Pic.X/ ! †CmSWFu.Y;P/:

Moreover, if p0 and p1 are related by a family pt of perturbations satisfying (5.1.2),
BFp0 is homotopic to BFp1 .

Proof. The class BFp is well defined by Proposition 5.2.5. Independence (as a map
class) from p follows from Lemma 5.2.1.

The unparameterized case follows from Proposition 5.2.5, and an argument for
families as before.

Analogous results hold for the Pin.2/-equivariant versions, mutatis mutandis.



Chapter 6

Frøyshov-type invariants

In this chapter we will generalize the Frøyshov-type invariants [20, 37] defined for
rational homology 3-spheres to 3-manifolds with b1 > 0, making use of the Seiberg–
Witten Floer stable homotopy type constructed in this memoir. As applications, we
will prove restrictions on the intersection forms of smooth 4-manifolds with bound-
ary.

It may be of interest to compare the material of this section with work of Levine–
Ruberman, where similar invariants are defined in the Heegaard Floer setting [31];
also see [9] for further work in the Heegaard Floer setting.

6.1 Equivariant cohomology

We will recall a basic fact about the S1-equivariant Borel cohomology. For a pointed
S1-CW complex W , we let zH�

S1
.W IR/ be the reduced S1-equivariant Borel coho-

mology:
zH�
S1
.W IR/ D zH�.W ^S1 ES1CIR/;

where ES1C is a union of ES1 and a disjoint base point. Note that zH�
S1
.S0IR/ is

isomorphic to RŒT � and that zH�
S1
.W IR/ is an RŒT �-module. We have the following

(see [16, Proposition 1.18.2] and [38, Proposition 2.2]).

Proposition 6.1.1. Let V be an S1-representation space and V be the vector bundle

V D .W � ES1/ �S1 V ! W �S1 ES1

over W �S1 ES1. The Thom isomorphism for V induces an RŒT �-module isomor-
phism

zH
�CdimR V

S1
.†VW IR/ Š zH�

S1
.W IR/:

6.2 Frøyshov-type invariant

Let B be a compact CW-complex and choose a base point b0 2 B . We view B as an
S1-CW-complex, with the trivial action of S1. The following definition is an S1-ex-
space version of [38, Definition 2.7].

Definition 6.2.1. Let U D .W; r; s/ be a well-pointed S1-ex-space over B such that
W is S1-homotopy equivalent to an S1-CW complex. We say that U is of SWF type
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at level t if there is an equivalence, as ex-spaces, from W S1 ! SRt
B , and so that the

S1-action on W nW S1 is free.

Note that in the situation above, W S1 inherits the structure of an ex-space, as a
subspace ofW , naturally. Spaces of SWF type are meant to be the class of spaces that
are produced by the Seiberg–Witten Floer homotopy-type construction. Indeed, note
that in the case that B is a point, spaces of SWF type over B are exactly spaces of
SWF type as in [38]. For us, B will always be a Picard torus.

Moreover, for U D �WF .Y / for some 3-manifold Y admitting a spectral sec-
tion (with torsion spinc structure and spectral section suppressed from the notation),
more is true, in that the fixed point set W S1 is actually fiber-preserving homotopy-
equivalent, relative to s.B/, to SRt

B , although for the definition of the Frøyshov invari-
ant, this is not strictly needed.

Definition 6.2.2. Let U D .W; r; s/ be a well-pointed S1-ex-space of SWF type at
level t over B . We denote by 	ƒ.U/ the submodule in zH�.BCIR/˝RŒŒT ��, viewed
as a module over the formal power series ring RŒŒT ��, generated by the image of the
homomorphism induced by the inclusion �WW S1 ,! W :

zH�Ct
S1

.W=s.B/IR/
��

�! zH�Ct
S1

.W S1=s.B/IR/ Š zH�Ct
S1

.SRt
^ BCIR/

D H�.BIR/˝RŒT � ,! H�.BIR/˝RŒŒT ��:

We obtain a more specific invariant by considering onlyH 0.BIR/, in the case that B
is connected; we impose this condition on B from now on. Let 	.U/ denote the ideal
in RŒŒT �� which is the image of

zH�Ct
S1

.W=s.B/IR/
��

�! zH�Ct
S1

.W S1=s.B/IR/

Š zH�Ct
S1

.SRt
^ BCIR/! zH�Ct

S1
.SRt
IR/ D RŒT � ,! RŒŒT ��

obtained using the inclusion of a fiber SRt ! SRt ^ BC.
Then there is a nonnegative integer h such that 	.U/ D .T h/. Here, .T h/ is the

ideal generated by T h. We denote this integer by h.U/.

The invariant h.U/ defined above is most similar to dbot as in [31], while 	ƒ.U/
is, roughly, in line with the collection of their “intermediate invariants”.

Remark 6.2.3. We also note that the cohomology group zH�
S1
.W=s.B/IR/ admits

an action by H�.B/ as follows. Using the projection map r WW ! B , we have an
algebra morphism r�WH�.BIR/ ! H�.W IR/. The Mayer–Vietoris sequence for
.B;W / splits because of the map sWB ! W , and we obtain

H�.W IR/ D H�.W=s.B/IR/˚H�.BIR/;
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and in fact this splitting is at the level ofH�.BIR/-modules, so that the cohomology
group H�.W=s.B/IR/ inherits an H�.BIR/-action. This is not strictly necessary
in the definition of invariants from 	ƒ.U/ above, but is indicative of the structure
of 	ƒ.U/.

From Proposition 6.1.1, we can see the following.

Lemma 6.2.4. Let UD .W; r; s/ be a well-pointed S1-ex-space of SWF type over B .
If V is a real vector space, we have

h.†VBU/ D h.U/:

If V is a complex vector space, we have

h.†VBU/ D h.U/C dimC V:

Proposition 6.2.5. Let U0 D .W0; r0; s0/, U1 D .W1; r1; s1/ be well-pointed S1-
ex-spaces of SWF type at level t over B0 and B1, and assume we are given a map
�WB0! B1. Let �ŠU0 denote the pushforward of U0, as an ex-space over B1. Assume
that there is a fiberwise-deforming S1-map

f W �ŠU0 ! U1

such that the restriction to

f S
1

W �ŠW
S1

0 ! W S1

1 ;

as a fiberwise-deforming morphism over B1, is homotopy equivalent to

id ^ �W .Rt /C � B0 [B0 B1 ! .Rt /C � B1:

Then
h.U0/ � h.U1/:

As a special case, if B0 is a point, the hypothesis is that the map f , restricted to
fixed point sets, f S

1
WW S1

0 ! W S1

1 =s.W1/, be homotopic to the inclusion of a fiber.

Proof of Proposition 6.2.5. We have the following diagram:

zH�Ct .W0=s.B0/IR/ zH�Ct .W1=s.B1/IR/

zH�Ct ..Rt /C �B0=s.B0/IR/ zH�Ct ..Rt /C �B1=s.B1/IR/

zH�Ct ..Rt /CIR/ D RŒT � zH�Ct ..Rt /CIR/ D RŒT �

RŒŒT ��:

f �

��

f �

Š
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From this diagram, we obtain

.T h.U0// � .T h.U1//;

which implies that h.U0/ � h.U1/.

Definition 6.2.6. For m; n 2 Z and S1-ex-space U of SWF type over B , we define

h.†Rm˚Cn

B U/ D h.U/C n:

Note that this definition is compatible with Lemma 6.2.4.

Definition 6.2.7. For m0; n0; m0; n1 2 Z and S1-ex-spaces U0, U1 of SWF type
over B , we say that †Rm0˚Cn0

B U0 and †Rm1˚Cn1
B U1 are locally equivalent if there

is N 2 Z�0 with N Cm0; N C n0; N Cm1; N C n1 � 0 and fiberwise-deforming
maps

f W†RNCm0˚CNCn0
B U0 ! †RNCm1˚CNCn1

B U1;

gW†RNCm1˚CNCn1
B U1 ! †RNCm0˚CNCn0

B U0

such that the restrictions

f S
1

W†RNCm0
B .U0/S

1

! †RNCm1
B .U1/S

1

;

gS
1

W†RNCm1
B .U1/S

1

! †RNCm0
B .U0/S

1

are homotopy equivalent to

IdWB � .Rt /! B � .Rt /C

as fiberwise-deforming morphisms over B .

It is easy to see that the local equivalence is an equivalence relation.

Corollary 6.2.8. If †Rm0˚Cn0
B U0 and †Rm1˚Cn1

B U1 are locally equivalent,

h.†Rm0˚Cn0
B U0/ D h.†Rm1˚Cn1

B U1/:

Proof. This is a direct consequence of Proposition 6.2.5.

Let Y be a closed 3-manifold, g be a Riemannian metric, s be a torsion spinc

structure on Y . Let BY be the Picard torus Pic.Y / of Y . Assume that indDY D 0 in
K1.BY /. We take a spectral system

S D .P;Q;WP ;WQ; ¹�
P
n ºn; ¹�

Q
n º; ¹�

WP
n ºn; ¹�

WQ
n ºn/
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for Y . See Definition 3.5.1. Put

Fn D Pn \Qn; Wn D WP;n \WQ;n

as before. Take half-integers kC, k� with kC; k� > 5 and with jkC � k�j � 1
2

. We
have the approximate Seiberg–Witten flow

'n D 'n;kC;k� W .Fn ˚Wn/ �R! Fn ˚Wn:

Put

An D .BkC.F
C
n IR/ �BY Bk�.F

�
n IR// �BY .BkC.W

C
n IR/ �BY Bk�.W

�
n IR//

for R� 0. Recall that An is an isolating neighborhood for n� 0 (Theorem 2.3.3).

Lemma 6.2.9. Let Un D .In; rn; sn/ be the S1-equivariant Conley index for the iso-
lated invariant set inv.An; 'n/ for n� 0. Then Un is of SWF type at level rankRW

�
n .

Proof. We first note that In is of the homotopy type of an S1-CW complex by Propo-
sition 3.6.1. The S1-fixed point set .In; rn; sn/S

1
is the Conley index for

inv.'njWn ; BkC.W
C
n IR/ �BY Bk�.W

�
n IR//:

Note that if � D 0, the quadratic terms c1./, c2./, XH .�/ are all zero. See (2.3.3).
Hence the restriction of the flow 'n to Wn is the flow induced by the linear
map ��d jWn . In particular, the flow 'njWn preserves each fiber of the trivial bun-
dle Wn D BY � L2k.im d�/

�n
�n

over BY . Hence there is an equivalence, as ex-spaces,

.In/
S1 Š S

W�n
B . (In fact, more is true: there is a fiber-preserving homotopy equiva-

lence .In/S
1
Š S

W�n
B .)

Let �WF .Y; s; ŒS�/ be the Seiberg–Witten Floer parameterized homotopy type
(Definition 3.5.8).

Recall that �Pn , �Qn , �WPn , �WQn are isomorphisms

PnC1
Š
�! Pn ˚CkP ;n;

QnC1
Š
�! Qn ˚CkQ;n;

W P
nC1

Š
�! W Cn ˚RkW;C;n ;

W
Q
nC1

Š
�! W �n ˚RkW;�;n :

These induce an S1-equivariant homotopy equivalence

I.'nC1/ Š †
CkQ;n˚RkW;�;n
B I.'n/
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for n� 0, whose restriction to the S1-fixed point set is a fiber-preserving homotopy
equivalence. See Theorem 3.1.1. This implies that the number

h.�WF .Y; s; ŒS�// D h.I.'n// �D
2
n

is independent of the choice of n� 0 by Lemma 6.2.4 and Corollary 6.2.8. Here,
D2
n D dim.Qn �Q0/.

Also, it follows from Proposition 3.4.1 that h.�WF .Y;s; ŒS�// is independent of
k˙. Hence h.�WF .Y; s; ŒS�// is well defined.

We will introduce another number. We can take a spinc 4-manifold .X; t/ with
boundary .Y; s/. Since c1.t/jY is torsion in H 2.Y IZ/, there is a positive integer m
such that

mc1.t/ 2 H
2.X; Y IZ/:

Put
c1.t/

2
´

1

m
h.mc1.t// [ c1.t/; ŒX�i 2 Q;

where h�; �i is the pairing

H 4.X; Y IZ/˝H4.X IZ/! Z:

We define

n.Y; g; s; P0/´ dim ind.DX ; P0/ �
c1.t/

2 � �.X/

8
2 Q

D
1

2
�D;P0 �

1

8
�Y;sign: (6.2.1)

Here, DX is the Dirac operator on X , ind.D; P0/ is the index defined in Proposi-
tion 2.1.3 and �D;P0 , �Y;sign are the �-invariants of the Dirac operator and signature
operator. We have used the index formula [5, 40]. See also [35, Section 6].

Definition 6.2.10. We define h.Y; s/ 2 Q by

h.Y; s/´ h.�WF .Y; s; ŒS�// � n.Y; g; s; P0/:

A priori, the expression in Definition 6.2.10 may depend on both the metric and
the spectral system. However, for two spectral systems S0, S1 with dim ind.DX ;P 00 /
D dim ind.DX ;P 10 /, we see that the h-invariants agree, since �WF .Y;s; ŒS0�/ differs
from �WF .Y; s; ŒS1�/ by suspension by a virtual complex vector bundle of formal
dimension zero. In order to see this, we first note that S1-equivariant Borel cohomol-
ogy is an S1-equivariant complex orientable cohomology theory by [12], so that for
an S1-equivariant complex vector bundle V over B and an S1-ex-space .X; r; s/ over
B , there is a canonical isomorphism

zH
�C2 rankC V

S1
.�Š†

V
BX/ Š

zH
�C2 rankC V

S1
.Th.r�V // Š zH�

S1
.X/:
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Here, �WB ! � and we have used (3.6.3). This implies that

h.†VBX/ D h.X/C 2 rankC V:

It follows in particular that

h.�WF .Y; s; ŒS0�// D h.�WF .Y; s; ŒS1�//:

Changes in the metric and changes in dim ind.DX ; P0/ are treated in a similar
way, so we only address the latter. Indeed, if we replace S0 with a spectral system
S1 so that the K-theory class is

ŒS1 �S0� D C 2 K.BY /;

then
h.�WF .Y; s; ŒS1�// D h.�WF .Y; s; ŒS0�// � 1;

but n.Y; g; s; P 10 / D n.Y; g; s; P
0
0 / � 1, as needed.

Finally, in the case that b1.Y /D 0, this agrees (by definition) with the ı-invariant
defined in [38].

In particular, it is natural to consider the parameterized equivariant homotopy type
of the formal desuspension:

†
�n.Y;g;s;P0/C
BY

�WF .Y; s; ŒS�/;

which one can think of as a desuspension so that the grading of a reducible element of
�WF .Y;s; ŒS�/ has been specified. We note that n.S1 � S2; g;s;P0/D 0, where g is
the product metric on S1 � S2, s is the torsion spinc structure and P0 is the standard
spectral section (since the Dirac operator has trivial kernel for each flat connection,
this is specified). That is, with our conventions, the grading of each reducible in

Pic.S1 � S2/ ' �WF .Y; s; ŒS�/

is zero. This differs from the convention in Heegaard–Floer homology, for which each
reducible should be �1

2
-graded, as in [45].

We will prove a generalization of [20, Theorem 4].

Theorem 6.2.11. Let Y0 be a rational homology 3-sphere and Y1 be a closed, ori-
ented 3-manifold such that the triple-cup product

ƒ3H 1.Y1IZ/! Z;

˛1 ^ ˛2 ^ ˛3 7! h˛1 [ ˛2 [ ˛3; ŒY1�i

is zero. Let .X; t/ be a compact, spinc negative semidefinite 4-manifold with boundary
�Y0

`
Y1 such that c1.t/j@X is torsion. Then we have

c1.t/
2 C b�2 .X/

8
C h.Y0; tjY0/ � h.Y1; tjY1/:
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Proof. Since the triple-cup product is zero, we have indDY1 D 0 in K1.BY1/ by the
index formula. (See [30, Proposition 6].) Note that the map BF Œn�.X; t/ constructed
in Chapter 5 is a fiber-preserving map. We consider the restriction of BF Œn�.X; t/ to
the fiber over a point Œ0� 2 BX . The restriction BF Œn�.X; t/ to the fiber and the duality
map

In.Y0/ ^ In.�Y0/! SFn.Y0/˚Wn.Y0/;

defined in [36, Section 2.5], induce an S1-map

fnW†
Rm0˚Cn0CaIn.Y0/! †Rm1˚Cn1 .In.Y1/=sn.BY1//

for n� 0, where

m0 �m1 D rankRWn.Y1/
�
� dimRWn.Y0/

�;

n0 � n1 D rankC Fn.Y1/
�
� dimC Fn.Y0/

�;

a D dim indDX;P0

D
c1.t/

2 C b�2 .X/

8
C n.Y1; gjY1 ; tjY1 ; P0/ � n.Y0; gjY0 ; tjY0/:

The restriction of fn to the S1-fixed point set †Rm0 .In.Y0//
S1 is induced by the

operator

D0 D .dC; �0�1r�Y0 ; �
0
�1rY1/W�

1
CC.X/! �C.X/˚ .W�Y0/

0
�1 ˚ .WY1/

0
�1:

The operator D0 is an isomorphism. Therefore the restriction

f S
1

n W †Rm0 .In.Y0//
S1
! †Rm1 .In.Y1//

S1

Œ0�

is a homotopy equivalence. Here, Œ0� 2 BY1 is the restriction of Œ0� 2 BX to Y and
.In.Y1//

S1

Œ0�
is the fiber over Œ0�.

By Lemma 6.2.4 and Proposition 6.2.5, we have

c1.t/
2 C b�2 .X/

8
C h.Y0; tjY0/ � h.Y1; tjY1/:

Remark 6.2.12. There is an apparent discrepancy with the statement of [31, Theorem
4.7]. We note that in the translation between these statements, we expect h.Y; s/ to
correspond to dbot.Y;s/

2
C

b1.Y /
4

, due to the difference in the grading conventions on
the reducible; with this observation, the statements are consistent.

Remark 6.2.13. In order to generalize Theorem 6.2.11 to the case b1.Y0/ > 0, we
need to establish the duality for the Seiberg–Witten Floer parameterized homotopy
types �WF .Y0; tjY0 ; ŒS�/ and �WF .�Y0; tjY0 ; ŒS

_
0 �/ to get the parameterized

Bauer–Furuta map

�WF .Y0; tjY0 ; ŒS0�/! �WF .Y1; tjY1 ; ŒS1�/:

We do not discuss it in this memoir. See Proposition 3.6.2.
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Corollary 6.2.14. Let Y be a closed, connected, oriented 3-manifold such that the
triple-cup product is zero. Let .X; t/ be a compact, negative semidefinite, spinc 4-
manifold with @X D Y such that c1.t/jY is torsion. Then we have

c1.t/
2 C b�2 .X/

8
� h.Y; tjY /:

Proof. Removing a small ball from X , we get a compact spinc 4-manifold X 0 with
boundary S3

`
Y . Applying Theorem 6.2.11 to X 0, we get the inequality.

Example 6.2.15. Let T 2 be a torus .R=Z/ � .R=Z/. Put

Y ´ R � T 2=.x; �1; �2/ � .x C 1;��1;��2/:

Then Y is a flat T 2 bundle over S1, which has a flat metric and b1.Y / D 1. We have

H 2.Y IZ/ Š H1.Y IZ/ Š Z˚ .Z=2Z/˚ .Z=2Z/:

There are four spinc structures s0; : : : ;s3. Let s0 be the spinc structure corresponding
to the 2-plane field tangent to the fibers. As stated in Example 4.2.2, for j D 1; 2; 3,
.Y; sj / satisfies the conditions of Theorem 4.1.2. We have

�WF .Y; s; ŒS�/ Š S0BY :

Here, S is a spectral system with P0 D E0.D/
0
�1. As stated in [24, p. 2112],

n.Y; sj ; g; P0/ D 0

for j D 1; 2; 3. Therefore we obtain

h.Y; sj / D h.�WF .Y; s; ŒS�// � n.Y; sj ; g; P0/ D 0:

Example 6.2.16. Let † be a closed, oriented surface with g.†/ > 0 and Y be the
sphere bundle of the complex line bundle over † of degree d . Suppose that 0 <
g < d , where g ´ g.†/. Let sq be the spinc structure in Proposition 4.2.3. For
q 2 ¹g; g C 1; : : : ; d � 1º, we have

�WF .Y; sq; ŒS�/ Š S
0
B

by Theorem 4.2.5. Here, S is a spectral system with P0 D E0.Dr/
0
�1. The value of

n.Y; gr ; sq; P0/ was computed in [24, Section 8.2] and we have

n.Y; gr ; sq; P0/ D �
d � 1

8
�
.g � 1 � q/.d C g � 1 � q/

2d
: (6.2.2)

(Note that the definition of n.Y; g; sq; P0/ of this memoir is �1 times that of [24].)
Hence

h.Y; sq; g/ D h.�WF .Y; sq; ŒS�// � n.Y; g; sq; P0/

D
d � 1

8
C
.g � 1 � q/.d C g � 1 � q/

2d
:
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6.3 K -theoretic Frøyshov invariant

In analogy to the previous section on the (homological) Frøyshov invariant, we now
generalize the invariant �.Y / constructed in [37]. For details on Pin.2/-equivariant
complex K-theory, we refer to [37].

Let zR be the nontrivial real representation of Pin.2/ D S1
`
jS1. Let B be a

compact, connected Pin.2/-CW complex with a Pin.2/-fixed marked (though we do
not consider B itself to be an object in the category of pointed spaces) point b0 2
BPin.2/, such that the S1-action on B is trivial and the action of j is an involution.

Definition 6.3.1. Let U D .W; r; s/ be a well-pointed Pin.2/-ex-space over B such
that W is Pin.2/-homotopy equivalent to a Pin.2/-CW complex. We say that U is of
SWF type at level t if there is an ex-space Pin.2/-homotopy equivalence from W S1

to S zR
t

B and if the Pin.2/-action on W nW S1 is free.

As before, in fact for us there is the stronger condition that there is a fiber-
preserving (equivariant) homotopy equivalence W S1 ! S

zRt
B .

Let R.Pin.2// be the representation ring of Pin.2/. That is,

R.Pin.2// Š ZŒz; w�=.w2 � 2w; zw � 2w/;

where
w D 1 � ŒzC�; z D 2 � ŒH�:

We will generalize [37, Definition3] to Pin.2/-ex-spaces.

Definition 6.3.2. Let U D .W; r; s/ be a well-pointed Pin.2/-ex-space of SWF type
at level 2t over B so thatW is Pin.2/-homotopy equivalent to a Pin.2/-CW complex.
We denote by 	ƒ.U/ the submodule inKZ=2.B/, viewed as a module overR.Pin.2//,
generated by the image of the homomorphism induced by the inclusion �WW S1 ,!W :

zKPin.2/.W=s.B//
��

�! zKPin.2/.W
S1=s.B// Š zKPin.2/.S

zCt
^ BC/

D KZ=2.B/:

We obtain a more specific invariant by considering only a single fiber. Let 	.U/
denote the ideal in R.Pin.2// which is the image of

zKPin.2/.W=s.B//
��

�! zKPin.2/.W
S1=s.B//

Š zKPin.2/.S
zCt
^ BC/! zKPin.2/.S

zCt
IR/ D R.Pin.2//

obtained using the inclusion of a fiber SRt ! SRt ^ BC, over the marked point
b0 2B

Pin.2/. In particular, the invariant k.U/ depends on a choice of the point b0 2B ,
which does not appear in the notation.
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We define k.U/ 2 Z�0 by

k.U/ D min
®
k 2 Z�0 W 9x 2 	.U/; wx D 2kw

¯
:

If 	.U/ is of the form .zk/ for some nonnegative integer k, we say that U is KPin.2/-
split.

Lemma 6.3.3.
k.†

zC
BU/ D k.U/; k.†H

B U/ D k.U/C 1:

Proof. Since

.†
zC
BW /=s.B/ D †

zCŒW=s.B/�;

.†H
BW /=s.B/ D †

HŒW=s.B/�;

we can apply [37, Lemma 3.4].

Proposition 6.3.4. Let U0 D .W0; r0; s0/, U1 D .W1; r1; s1/ be Pin.2/-ex-spaces of
SWF type at level 2t0, 2t1 over B0 and B1, and assume we are given an inclusion
�WB0!B1. Let �ŠU0 denote the pushforward of U0, as an ex-space overB1. Assume
that there is a fiberwise-deforming S1-map

f W �ŠU0 ! U1

such that the restriction to

f S
1

W �ŠW
S1

0 ! W S1

1 ;

as a fiberwise-deforming morphism over B1, is homotopy equivalent to

` [ �W ..zCt0/C � B0/ [B0 B1 ! .zCt1/C � B1;

where ` is the map on one-point compactifications induced by a map of representa-
tions zCt0 ! zCt1 , which is an inclusion if t0 � t1. Say that � sends the marked point
b0 2 B0 to b1 2 B1:

(1) If t0 � t1, we have

k.U0/C t0 � k.U1/C t1:

(2) If t0 < t1 and U0 is KPin.2/-split, we have

k.U0/C t0 C 1 � k.U1/C t1:
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Proof. We have the following commutative diagram:

zKPin.2/.W0=s0.B0// zKPin.2/.W1=s1.B1//

zKPin.2/...zC
t0/C � B0/ [B0 B1=s.B1//

zKPin.2/..zC
t1/C � B1=s.B1//

zKPin.2/..zC
t0/C/ zKPin.2/..zC

t1/C/

zKPin.2/.S
0/ zKPin.2/.S

0/:

��
0

��
1

f �

�� ��

.`[�/�

�wt0 �wt1

`�

id

Here we have used � to denote various inclusions. Note that f � in the first row is well
defined, because s0.B0/ � s0.B1/, using the definition of the pushforward �ŠU0 (this
does not require that � be an inclusion). In fact, more is true, in that �ŠW0=s0.B1/ is
exactly W0=s0.B0/.

We can apply the arguments in the proofs of [37, Lemmas 3.10 and 3.11] so that
the result follows.

Definition 6.3.5. Form;n 2 Z and Pin.2/-ex-space U of SWF type at even level, we
define

k.†
zR2m˚Hn

B U/ D k.U/C n:

Note that this definition is compatible with Lemma 6.3.3.

Definition 6.3.6. For m0; n0; m1; n1 2 Z and Pin.2/-ex-spaces U0, U1 of SWF type
at even level over B , we say that †zR

2m0˚Hn0
B U0 and †zR

2m1˚Hn1
B U1 are locally

equivalent if there are N 2 Z with N C m0; N C n0; N C m1; N C n1 � 0 and
Pin.2/-fiberwise deforming maps

f W†
zR2.NCm0/˚HNCn0
B U0 ! †

zR2.NCm1/˚HNCn1
B U1;

gW†
zR2.NCm1/˚HNCn1
B U1 ! †

zR2.NCm0/˚HNCn0
B U0;

such that the restrictions

f S
1

W†
zR2.NCm0/
B US

1

0 !†
zR2.NCm1/
B US

1

1 ; gS
1

W†
zR2.NCm1/
B US

1

1 !†
zR2.NCm0/
B US

1

0

are homotopy equivalent to

IdWB � .Rt /C ! B � .Rt /C

as Pin.2/-fiberwise-deforming morphisms.
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Corollary 6.3.7. If †zR
2m0˚Hn0

B U0 and †zR
2m1˚Hn1

B U1 are locally equivalent, we
have

k.†
zR2m0˚Hn0
B U0/ D k.†

zR2m1˚Hn1
B U1/:

Proof. This is a direct consequence of Proposition 6.3.4.

Let s be a spin structure (not just a self-conjugate spinc structure, although we will
also write s for the induced self-conjugate spinc structure) of Y . Then the Seiberg–
Witten equations (2.3.4) and the finite-dimensional approximations (2.3.10) have
Pin(2)-symmetry. Let BY be the Picard torus of Y , which is homeomorphic to the
torus zRb1.Y /=Zb1.Y /, where we have chosen coordinates so that 0 2 zRb1.Y / corre-
sponds to the selected spin structure on Y . We choose Œ0� 2BY as base point. Assume
that indDY D 0 in KQ1.BY /. By Theorem 2.4.8, we can choose a Pin.2/-spectral
system

S D .P;Q;WP ;WQ; ¹�
P
n ºn; ¹�

Q
n º; ¹�

WP
n ºn; ¹�

WQ
n ºn/

for Y . Put
Fn D Pn \Qn; Wn D WP;n \WQ;n:

We have the Pin.2/-equivariant Conley index .In; rn; sn/ for the isolated invariant set
inv.An; 'kC;k�;n/ for n� 0.

Lemma 6.3.8. The Pin.2/-equivariant Conley index .In; rn; sn/ is of SWF type at
level rankRW

�
n for n� 0.

Proof. The proof is similar to that of Lemma 6.2.9 and omitted.

Let �WF Pin.2/.Y; s; ŒS�/ be the Pin.2/-Seiberg–Witten Floer parameterized
homotopy type. As before, the local equivalence class of �WF Pin.2/.Y; s; ŒS�/ is
independent of k˙, n. See [49] for the study of the local equivalence class of the
Pin.2/-Seiberg–Witten Floer homotopy type in the case b1.Y / D 0. We may assume
that dimRW

�
n are even for all n. Then we have the well-defined number

k.�WF Pin.2/.Y; s; ŒS�// 2 Z:

Definition 6.3.9. Fix .Y; s/ as above. We define �.Y; s/ 2 Q [ ¹�1º by

�.Y; s/´ inf
g;S

2
�
k.�WF Pin.2/.Y; s; ŒS�// �

1

2
n.Y; g; s; P0/

�
:

We say that .Y;s/ is FloerKPin.2/-split if .In; rn; sn/ isKPin.2/-split for n large, where
.In; rn; sn/ realizes equality in the definition of �.Y; s/.

Note that this invariant indeed depends a priori on s as a spin structure, in what
we have chosen as the marked point in BY that is used in the definition of �.
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Unlike the case for homology, we have not shown that the invariant

k.�WF Pin.2/.Y; s; ŒS�//

is invariant under changes of spectral section that lie in fKQ.B/ (essentially since we
do not have access to a notion of Pin.2/-complex orientable cohomology theories).
We expect that the quantity appearing in the inf is, in fact, independent of ŒS�, how-
ever.

We do not know whether a self-conjugate spinc structure may have different �-
invariants associated to different underlying spin structures. The invariant �.Y;s/, for
Y a rational homology 3-sphere, agrees with Manolescu’s definition [37], by con-
struction.

Corollary 6.3.10. The reduction mod2 of the � invariant satisfies

�.Y; s/ D �.Y; s/ mod 2;

where �.Y; s/ is the Rokhlin invariant of .Y; s/.

Proof. Indeed, n.Y;g;s; P0/ mod 2 is the Rokhlin invariant of .Y;s/ by its construc-
tion. The corollary then follows from the definition of � and the fact that k is an
integer.

Corollary 6.3.10 indicates that �.Y;s/may depend on s, as a spin structure. Note
that if .Y; s/ admits a Pin.2/-equivariant spectral section, for a self-conjugate spinc

structure s, then �.Y;�/ is constant on all spin structures underlying s; by Lin’s
result [33], this condition, coupled with the triple-cup product vanishing, charac-
terizes 3-manifolds which admit a Pin.2/-equivariant spectral section. However, if
the Pin.2/-equivariant K-theory could be extended to 3-manifolds without a Pin.2/-
spectral section, so that Corollary 6.3.10 held, it would of course also imply that
�.Y; s/ depends on the spin structure and not just the spinc structure.

Using our invariant �.Y; s/, we can prove a 10
8

-type inequality for smooth 4-
manifolds with boundary, which generalizes the results of [21] and [37].

Theorem 6.3.11. Let .Y0;s0/ be a spin, rational homology 3-sphere and .Y1;s1/ be
a closed, spin 3-manifold such that the index indDY1 is zero in KQ1.BY1/.

(1) Let .X; t/ be a compact, smooth, spin, negative semidefinite 4-manifold with
boundary �.Y0; s0/

`
.Y1; s1/. Then we have

1

8
b�2 .X/C �.Y0; s0/ � �.Y1; s1/:

(2) Let .X; t/ be a compact, smooth, spin 4-manifold with boundary �.Y0;s0/
`

.Y1; s1/. Then we have

�
�.X/

8
C �.Y0; s0/ � 1 � b

C.X/C �.Y1; s1/:



K-theoretic Frøyshov invariant 125

Moreover, if Y0 is Floer KPin.2/-split and bC.X/ > 0, we have

�
�.X/

8
C �.Y0; s0/C 1 � b

C.X/C �.Y1; s1/:

Proof. Let Œ0� 2 BX D Pic.X/ be the element corresponding to the flat spin connec-
tion. Recall that BF Œn� is a fiber-preserving map. The restriction BF Œn�.X; t/ to the
fiber over Œ0� and the duality map

In.Y0/ ^ In.�Y0/! SFn.Y0/˚Wn.Y0/

defined in [36, Section 2.5], give a Pin.2/-map

fnW†
zRm0˚Hn0 In.Y0/! †

zRm1˚Hn1 .In.Y1/=sn.BY1//

such that

fn..†
zRm0˚Hn0 In.Y0//

S1/ � .†
zRm1˚Hn1 In.Y1/Œ0�/

S1 ;

fn..†
zRm0˚Hn0 In.Y0//

Pin.2// � .†
zRm1˚Hn1 In.Y1/Œ0�/

Pin.2/:

Here, Œ0� 2 Pic.Y1/ is the element corresponding to the flat spin connection, and

m0 �m1 D rankRWn.Y1/
�
� dimRWn.Y0/

�
� bC.X/;

n0 � n1 D rankH Fn.Y1/
�
� dimH Fn.Y0/

�

C
1

2
n.Y1; gjY1 ; tjY1 ; P0/ �

1

2
n.Y0; gjY0 ; tjY0/ �

�.X/

16
:

The restriction of fn to .†zR
m0˚Hn0 In.Y0//

S1 is induced by the operator

.dC; �0�1r�Y0 ; �
0
�1rY1/W�

1
CC.X/! �C.X/˚ .W�Y0/

0
�1 ˚ .WY1;Œ0�/

0
�1

and is a homotopy equivalence

.†
zRm0˚Hn0 In.Y0//

Pin.2/
! .†

zRm1˚Hn1 In.Y1/Œ0�/
Pin.2/
I

indeed, both of these are just S0 consisting of 0 and the base point. Moreover, if
bC.X/ D 0, the restriction of fn to .†zR

m0˚Hn0 In.Y0//
S1 is a Pin.2/-homotopy

equivalence
†
zRm0 In.Y0/

S1
! †

zRm1 In.Y1/
S1

Œ0� :

We may assume that m0, m1 are even and we can use Proposition 6.3.4 (1) to get the
first statement.

If bC.X/ is even, †zR
m0˚Hn0 In.Y0/ and †zR

m1˚Hn1 In.Y1/ are of SWF type at
even levels and we can apply Proposition 6.3.4 (1), (2) to fn to obtain the second state-
ment. If bC.X/ is odd, we take a connected sum X#S2 � S2, and then we can apply
Proposition 6.3.4. In this second part, we take advantage of the fact that �.Y;s/ mod 2
agrees with the Rokhlin invariant, as is used in [37, Proof of Theorem 1.4].
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Corollary 6.3.12. Let .X; t/ be a compact spin 4-manifold with boundary Y . Assume
that the index bundle indDY is zero in KQ1.BY /. Then we have

�
�.X/

8
� 1 � bC.X/C �.Y; tjY /:

Moreover, if bC.X/ > 0 we have

�
�.X/

8
C 1 � bC.X/C �.Y; tjY /:

Proof. Removing a small disk from X , we get a bordism X 0 with boundary S3
`
Y .

Since �.S3/ D 0 and S3 is Floer KPin.2/-split, applying Theorem 6.3.11 to X 0, we
obtain the inequalities.

Since the spin bordism group �spin
3 is zero, we obtain the following.

Corollary 6.3.13. �.Y; s/ > �1.

Example 6.3.14. Let s be a spin structure on S1 � S2. Since S1 � S2 has a posi-
tive scalar curvature metric g, the conditions of Theorem 4.1.2 are satisfied. Hence
�WF .Y; s;S/ Š S0BY . Here, S is a spectral system with P0 D E0.D/

0
�1. Also we

have n.S1 � S2; g; s; P0/ D 0, because there is an orientation-reversing diffeomor-
phism of S1 � S2. So we obtain

�.S1 � S2; s/ � 0:

Note that s extends to a spin structure t on S1 �D3. Applying Theorem 6.3.12 to
.S1 �D3/#.S2 � S2/, we get �.S1 � S2; s/ � 0. Hence

�.S1 � S2; s/ D 0:

If X is a compact, oriented, spin 4-manifold with boundary S1 � S2 and with
bC.X/ > 0, we have

�
�.X/

8
C 1 � bC.X/

by Corollary 6.3.12. This inequality can be also obtained from the 10
8

-inequality [21]
for the closed 4-manifold X [ .S1 �D3/ and the additivity of the signature.

Example 6.3.15. Let Y be the flat 3-manifold and s1, s2, s3 be the spinc structures
in Example 6.2.15. As in Example 6.2.15, for any underlying spin structure, we have

�.Y; sj / � 0

for j D 1; 2; 3.
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Example 6.3.16. Let pW Y ! † be the sphere bundle of the complex line bundle
Nd on a closed, oriented surface † of degree d . Assume that d is even and that
0 < g.†/ < d

2
C 1. Using a connection on Nd , we have an identification

TNd D p
�T†˚ p�Nd :

Let sWY ! p�Nd jY be the tautological section. Then we have

T Y D p�T†˚ iRs: (6.3.1)

Choose spin structures of † and Nd . This is equivalent to choosing complex line

bundles K
1
2

† , N
1
2

d
and isomorphisms K

1
2

† ˝ K
1
2

† Š K†, N
1
2

d
˝ N

1
2

d
Š Nd . Also we

consider the natural spin structure of the trivial bundle iRs. The spin structures of †,

iRs and (6.3.1) induce a spin structure s0 on Y . Note that p�.N
1
2

d
˝N

1
2

d
/Š p�Nd D

C and hence the structure group of p�N
1
2

d
is ¹˙1º. Put s´ s0 ˝ p�N

1
2

d
. Then s is

a spin structure of Y with spinor bundle S D p�..K
� 12
† ˚ K

1
2

†/ ˝ N
1
2

d
/. The spinc

structure induced by s is sg�1Cd2
of Proposition 4.2.3. Since g � g � 1C d

2
< d ,

we can apply Theorem 4.2.5 and we get

�WF Pin.2/.Y; s; ŒS�/ Š S0B :

Here, S is as in Theorem 4.2.5. Taking q to be g � 1C d
2

in (6.2.2), we have

n.Y; s; gr ; P0/ D
1

8
:

Thus we obtain
�.Y; s/ � �

1

8
:





Appendix A

The Conley index and parameterized stable homotopy

In this appendix we define the category in which the Seiberg–Witten stable homotopy
type lives, and variations thereon, as well as some background on the Conley index.
Let G be a compact Lie group for this section. In Section A.1 we define parame-
terized homotopy categories we will be interested in. In Section A.2 we give basic
definitions for the Conley index. In Section A.3 we give a definition of spectra suit-
able for the construction. The main point is Theorem A.2.1, which states that the
parameterized homotopy class of the (parameterized) Conley index is well defined as
a parameterized equivariant homotopy class in KG;Z .

A.1 The unstable parameterized homotopy category

This section is intended both to introduce some notation and to point out that the
notions introduced in [43] are compatible with parameterized, equivariant homo-
topy theory, as considered in [16, 39].1 In the first part, we follow the discussion of
Costenoble–Waner [16, Chapter II] and Mrozek–Reineck–Srzednicki [43, Section 3].
In particular, we will occasionally use the notation of model categories, but the reader
unfamiliar with this language may safely ignore these aspects. The main points are
Lemma A.1.4, which lets us translate properties from the language of [43] to that
of [39], and Proposition A.1.6, which is used in describing the change of the Con-
ley index of approximate Seiberg–Witten flows upon changing the finite-dimensional
approximation.

Definition A.1.1. Fix a compactly generated space Z with a continuous G-action. A
triple U D .U; r; s/ consisting of a G-space U and G-equivariant continuous maps
r WU !Z and sWZ!U such that r ı sD idZ is called an (equivariant) ex-space over
Z.2 Let KG;Z be the category of ex-spaces, where morphisms .U; r; s/! .U 0; r 0; s0/

are given by maps f WU ! U 0 so that r 0f D r and f s D s0.

In comparison to the ordinary homotopy category, passing to the parameterized
homotopy category results in many more maps (for a highbrow definition of the
parameterized homotopy category, refer to Remark A.1.3).

1Establishing that [43] and [16, 39] are compatible is, in fact, straightforward. However, at
the time that [43] appeared, the May–Sigurdsson parameterized homotopy category had not yet
appeared.

2In [43], ex-spaces are called fiberwise-deforming spaces.
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Definition A.1.2. A fiberwise-deforming map f WU! U0 is an equivariant contin-
uous map f W .U; s.Z// ! .U 0; s0.Z// so that r 0 ı f is (equivariantly) homotopic
to r , relative to s.Z/. We say that fiberwise-pointed spaces U and U0 are fiberwise-
deforming homotopy equivalent if there exist continuousG-equivariant maps f WU!
U0, gWU0 ! U so that

f ı s D s0; g ı s0 D s;

r 0 ı f ' r rel s.Z/; r ı g ' r 0 rel s0.Z/;

g ı f ' idU rel s.Z/; f ı g ' idU 0 rel s0.Z/:

We write ŒU� for the fiberwise homotopy type of U. We will call a fiberwise-deforming
map, along with the choice of a homotopy h between r 0 ı f and r , a lax map, follow-
ing [16].

We can also consider homotopies of fiberwise-deforming maps. A homotopy
of fiberwise-deforming maps will mean a collection of fiberwise-deforming maps
Ft WU! U0, so that F WU � I ! U 0 is continuous. Homotopy of lax maps is similar,
but requiring that the homotopy involved in the definition of a lax map is compatible,
as we will define below.

Remark A.1.3. There is a model structure (what May–Sigurdsson call the q-model
structure) on KG;Z given by declaring a map in KG;Z to be a weak equivalence,
fibration, or cofibration, if it is such after forgetting the base Z, but May–Sigurdsson
point out technical difficulties with this model structure. They define a variant, the
qf -model structure on KG;Z , whose weak equivalences are those of the q-model
structure, but with a smaller class of cofibrations. Let Ho KG;Z denote the homotopy
category of the qf -model structure; we call this the parameterized homotopy category
and write ŒX;Y �G;Z for the morphism sets of HoKG;Z – these turn out to be the same
as the lax maps X to Y up to homotopy, as in [16, Section 2.1].

Let ƒZ denote the set of Moore paths of Z:

ƒZ D
®
.�; `/ 2 ZŒ0;1� � Œ0;1/ W �.r/ D �.`/ for r � `

¯
:

Recall that Moore paths have a strictly associative composition:

.��/.t/ D

´
�.t/ if t � `�;

�.t � `�/ if t � `�:

Given r WX ! Z, the Moore path fibration LX D L.X; r/ is defined by

LX D X �Z ƒZ;

and there is an inherited projection map LrWLX ! Z by Lr..x; �// D �.1/, as well
as an inherited section map LsWZ ! LX given by Ls.b/ D .s.b/; b/, the path with
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length zero at s.b/. Finally, there is a natural inclusion �WX ! LX , which is a weak-
equivalence on total spaces, and hence a weak equivalence in the qf -model structure.

Note that a lax map X ! Y is equivalent to the data of a genuine map X ! LY

in KG;Z (using that Y and LY are weakly equivalent, and basic properties of model
categories). In particular, any lax map defines an element of ŒX; Y �G;Z , which may
or may not be represented by a map X ! Y in KG;Z . The following lemma is then
immediate from the definitions.

Lemma A.1.4. Fiberwise-deforming homotopy-equivalent spaces are weakly equiv-
alent in KG;Z .

A homotopy between lax maps f0WX ! Y and f1WX ! Y is a lax map X ^Z
Œ0; 1�C ! Y so that f jX^i D fi for i D 0; 1. By [16, Section 2.1] the homotopy
classes of lax maps are in agreement with ŒX; Y �G;Z .

We will encounter collections of fiberwise-deforming spaces related by suspen-
sions. We have the following definition.

Definition A.1.5 ([43, Section 3.10]). Let U D .U; r; s/ and U0 D .U 0; r 0; s0/ be ex-
spaces over Z, Z0, where U , Z are G-spaces and U 0, Z0 are G0-spaces, for G, G0

compact Lie groups. Define an equivalence relation �^ on U � U 0 by .u; u0/ �^
.v; v0/ if .u; u0/D .v; v0/ or uD v 2 s.Z/, r 0.u0/D r 0.v0/ or r.u/D r.v/, u0 D v0 2
s0.Z0/. Define the fiberwise smash product by

U ^ U 0´ U � U 0= �^ :

We call an ex-space U well pointed if the inclusion s.Z/! U is a cofibration in
the category of G-spaces. That is, we require that s.Z/ � U admits a G-equivariant
Strøm structure (for a definition see [43, Section 3]). We record the following result
from [43] (the proof in the equivariant case is identical to that for the nonequivariant
case).

Proposition A.1.6 ([43, Proposition 3.10]). Assume that U, U0, V, V0 are fiberwise
well-pointed spaces, with ŒU� D ŒU0� and ŒV� D ŒV0�. Then ŒU ^ V� D ŒU0 ^ V0�.

There is also a pushforward for ex-spaces defined in [39]. Fix an ex-object U
given by Z !s U !r Z and a map f WZ ! Y . Define fŠU D .fŠU; t; q/ by the
retract diagram

Z Y

U fŠU

Z Y;
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where the top square is a pushout, and the bottom is defined by the universal property
of pushouts, along with the requirement that q ı t D id.

Proposition A.1.7 ([39, Proposition 7.3.4]). Say that U and U0 are weakly equivalent
G-ex-spaces. Then fŠU ' fŠU0.

Note the simple example that for U a sectioned spherical fibration over Z, and
f WZ ! � the collapse, fŠU is the Thom complex.

ForW a real G-vector space and U 2KG;Z , we define†WUD U^W C, where
W C is considered as a parameterized space over a point (we consider U ^W C as a
G-fiberwise deforming space by pulling back along the diagonal map G ! G �G).
By Proposition A.1.7, this is well defined on the level of homotopy categories.

Remark A.1.8. For two ex-spaces U, U0, there is a fiberwise product U�Z U0, which
is naturally an ex-space (whose structure maps are inherited from the universal prop-
erties of pullbacks), and similarly we obtain a fiberwise smash product U ^Z U0.
That is, we have a functor ^Z WHo KG;Z � Ho KG;Z ! Ho KG;Z . By [39, Proposi-
tion 7.3.1], ^Z descends to homotopy categories. The main implication of this from
our perspective is that it is legitimate to suspend Conley indices by nontrivial sphere
bundles over the base Z.

Definition A.1.9. Fix B a finite G-CW complex. The G-equivariant parameterized
Spanier–Whitehead category PSWB is defined as follows. The objects are pairs
.U; R/, also denoted by †RBU, for U an element of KG;Z (with total space U a finite
G-CW complex) and R a virtual real finite-dimensional G-vector space (in a fixed
universe). Morphisms are given by

hom..U; R/; .U0; R0// D colimW Œ†
WCRU; †WCR

0

U0�G;B ;

where the colimit is over sufficiently large W . A stable homotopy equivalence in
PSWG;B will be a stable map that admits some representative which is a weak equiv-
alence. We write .U;R/'PSW .U0;R0/ to denote stable homotopy equivalence, omit-
ting the subscript if clear from the context. A parameterized G-equivariant stable
homotopy type is an equivalence class of objects in PSWG;B up to stable homotopy
equivalence.

In Definition A.1.9, the colimit may be taken over any sequence of representations
which is cofinal in the universe. In particular, in the case of S1 and Pin.2/-spaces, we
will fix the following definitions.

Let US1 DC˚1˚R˚1, where C is the standard representation of U.1/, and R
is the trivial representation. Let UPin.2/ D H˚1 ˚ zR˚1, where H is the quaternion
representation of Pin.2/ and zR is the sign representation. There is a full subcategory
CS1 of PSWS1;B obtained by considering only those spaces .U;R/ with R D C˚n˚
R˚m, with m; n 2 Z; we use the shorthand .U;�2n;�m/ to denote .U; R/ in CS1 .
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Note that every element of PSWS1;B on US1 is stable homotopy equivalent to an
element of CS1 . Similarly, we write CPin.2/ for the subcategory whose objects are
tuples .U; R/ in PSWPin.2/;B with

R D H˚n ˚ zR˚m:

We write .U;�4n;�m/ for the resulting element (so that the notation is consistent
with the forgetful functor from Pin.2/-spaces to S1-spaces).

We note that PSW�, the parameterized Spanier–Whitehead category over a point,
is exactly the ordinary Spanier–Whitehead category. The next lemma follows from
the definitions.

Lemma A.1.10. Let f W B ! �. There is an induced functor fŠW PSWB ! PSW�
defined by fŠ.U;R/D .fŠU;R/ so that .U;R/'PSWB .U0;R0/ implies fŠ.U;R/'PSW�
fŠ.U0; R0/.

We have the following corollary.

Corollary A.1.11. Let f W B ! �. Then stable-homotopy equivalence classes in
PSWB give well-defined stable-homotopy classes in PSW�.

Finally, we remark that May–Sigurdsson [39, Chapters 20–22] define many par-
ameterized homology theories, suitably generalizing the usual definition of a (usual)
homology theory, and giving convenient invariants from objects of PSW�.

A.2 The parameterized Conley index

In this subsection we review the parameterized Conley index from [43] (see also
Bartsch [7]); we note that we work in considerably less generality than they present.
We start by giving the basic definitions in Conley index theory, following [35, Sec-
tion 5]. Note that the authors of [43] work nonequivariantly; the proofs in the equiv-
ariant case are similar.

LetM be a finite-dimensional manifold and ' a flow onM ; for a subsetN �M ,
we define the following sets:

NC D
®
x 2 N W 8t > 0; 't .x/ 2 N

¯
;

N� D
®
x 2 N W 8t < 0; 't .x/ 2 N

¯
;

invN D NC \N�:

A compact subset S �M is called an isolated invariant set if there exists a com-
pact neighborhood S � N so that S D inv.N / � int.N /. Such a set N is called an
isolating neighborhood of S .

A pair .N; L/ of compact subsets L � N � M is an index pair for S if the
following hold:
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(1) inv.N n L/ D S � int.N n L/.

(2) L is an exit set for N , that is, for any x 2 N and t > 0 so that 't .x/ … N ,
there exists � 2 Œ0; t/ with '� .x/ 2 L.

(3) L is positively invariant in N . That is, for x 2 L and t > 0, if 'Œ0;t�.x/ � N ,
then 'Œ0;t�.x/ � L.

For an index pair P D .P1;P2/ of an isolated invariant set S , we define �P WP1!
Œ0;1� by

�P .x/ D

´
sup

®
t � 0 W 'Œ0;t�.x/ � P1 n P2

¯
if x 2 P1 n P2;

0 if x 2 P2:

We say that an index pair P is regular if �P is continuous.
For Z a Hausdorff space, !WM ! Z a continuous map, and a regular index pair

P D .P1;P2/, define the parameterized Conley index I!.P / as P1 [!jP2 Z, namely,

I!.P / D .Z � 0/ [ .P1 � 1/= � ;

where .x; 1/ � .!.x/; 0/ for all x 2 P2 � 1.
The space I!.P / is naturally an ex-space, with embedding sP WZ! I!.P / given

by z! Œz;0�, and projection rP WI!.P /!Z given by rP .Œx;1�/D!.x/, rP .Œz;0�/D
z. By construction, rP ı sP D idZ .

For Z D �, we sometimes write Iu.P / for I!.P /, to specify the “unparameter-
ized” Conley index.

Theorem A.2.1 ([43, Theorem 2.1]). If P and Q are two regular index pairs for an
isolated invariant set S , then .I!.P /; rP ; sP / and .I!.Q/; rQ; sQ/ have the same
equivariant homotopy type over Z, and are both fiberwise well pointed.

Proof. In [43] it is proved that the two indices have the same fiberwise-deforming
type; Lemma A.1.4 then implies the statement. The well-pointedness is [43, Proposi-
tion 6.1].

Definition A.2.2 ([13], [47, Definition 2.6]). A connected simple system is a collec-
tion I0 of pointed spaces along with a collection of Ih of homotopy classes of maps
among them, so that

(1) for each pair X;X 0 2 I0, there is a unique class Œf � 2 Ih from X ! X 0;

(2) for f; f 0 2 Ih with f WX ! X 0 and f 0WX 0 ! X 00, the composite f 0 ı f is
in Ih;

(3) for each X 2 I0, the morphism f WX ! X is Œid�.

Of course, the notion of a connected simple system has an obvious generalization
in any category with an associated homotopy category.
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Theorem A.2.3 ([47]). Fix notation as in Theorem A.2.1. The unparameterized Con-
ley indices Iu.P / D I!.P /=Z, ranging over regular index pairs for S , form a con-
nected simple system.

We conjecture that in fact the parameterized Conley indices also have this prop-
erty.

Conjecture A.2.4. Fix notation as in Theorem A.2.1. Then the parameterized Conley
indices .I!.P /; rP ; sP /, running over all regular index pairs for the isolated invariant
set S , form a connected simple system.

In Chapter 3 we encounter the parameterized Conley indices for product flows.
We have the following theorem.

Theorem A.2.5 ([43, Theorem 2.4]). Let S , S 0 be isolated invariant sets for ', '0.
Then

I!�!0.S � S
0; ' � '0/ ' I!.S; '/ ^ I!0.S

0; '0/:

Moreover, the usual deformation invariance of the Conley index continues for the
parameterized Conley index.

Theorem A.2.6 ([43, Theorem 2.5], [47, Corollary 6.8]). If N is an isolating neigh-
borhood with respect to flows '� continuously depending on � 2 Œ0; 1�, with a con-
tinuous family of isolated invariant sets S� inside of N , then the fiberwise-deforming
homotopy type of I!.S�; '�/ is independent of �.

In the case of the unparameterized Conley index, for each �1; �2 2 Œ0; 1�, there is
a well-defined, up to homotopy, map of connected simple systems:

F.�1; �2/W I
u.S�1 ; '�1/! Iu.S�2 ; '�2/:

Furthermore, for all �1; �2; �3 2 Œ0; 1�,

F.�2; �3/ ı F.�1; �2/ � F.�1; �3/;

F .�1; �1/ � id:

Lemma A.2.7. Fix a flow ' on a manifoldX , along with a map pWX!B , and write
� WB ! � as the map collapsing B to a point. Then the pushforward of the parame-
terized Conley index I.'/, namely �ŠI.'/, is the ordinary Conley index Iu.'/.

Proof. This is immediate from the definitions.

We also note the behavior under time reversal.

Theorem A.2.8 ([15, Theorem 3.5], [38, Proposition 3.8]). Let M be a stably paral-
lelized G-manifold for a compact Lie group G. For ' a flow on M , the (unparame-
terized) Conley index of an isolated invariant set S with respect to the time-reversed
flow �', denoted Iu.S;�'/, is equivariantly Spanier–Whitehead dual to Iu.S; '/.
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A.3 Spectra

For G a compact Lie group, we define a G-universe U to be a countably infinite-
dimensional orthogonal representation of G.

Definition A.3.1. Let U be a universe with a direct sum decomposition U DLn
iD1 V

1
i , for finite-dimensional G-representations Vi . A sequential G-spectrum X

on U is a collection X.V / of spaces, indexed on the subspaces of U of the form
V D

Ln
iD1 V

ki
i for some ki � 0, along with transition maps, whenever W � V ,

�V�W W†
V�WX.W /! X.V /;

where V �W is the orthogonal complement of W in V . For V D W , the transition
map is required to be the identity, and the maps � are required to be transitive in the
usual way. The space X.V / is sometimes referred to as the V th level of the spectrum.

If �V�W is a homotopy equivalence for V , W sufficiently large, we say that X is
a G-suspension spectrum.

We will only work with suspension spectra in this memoir.

A morphism of spectra X ! Y will be a collection of morphisms

�V WX.V /! Y.V /

compatible with the transition maps.
We will also consider a generalization of morphisms, as follows.

Definition A.3.2. A weak morphism of spectra �WX ! Y is a collection of mor-
phisms

�V WX.V /! Y.V /

for V sufficiently large, so that the diagram

†W�VX.V / †W�V Y.V /

X.W / Y.W /

†W�V �V

�W

homotopy commutes for W sufficiently large. Weak morphisms �0, �1 are said to be
homotopic if there exists a weak morphism �Œ0;1�WX ^ Œ0; 1�C ! Y restricting to �j
at X ^ ¹j º for j D 0; 1.

We will also need the notion of a connected simple system of spectra. Indeed,
instead of using the direct generalization for spaces, the Seiberg–Witten Floer spec-
trum, as currently defined, requires that we work with weak morphisms instead, as
follows.
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Definition A.3.3. A connected simple system of G-spectra is a collection I0 of G-
spectra, along with a collection Ih of weak homotopy classes of maps between them,
so that the analogs of (1)–(3) of Definition A.2.2 are satisfied.

Remark A.3.4. In Section 3.5 we could have used nonsequential G-spectra, but we
have no need for the added generality in the memoir, and it slightly complicates the
notation.

Remark A.3.5. If higher naturality is established for the Conley index, then it would
be possible to replace weak morphisms in the definition of SWF, and Definition A.3.3
could be replaced with ordinary morphisms of spectra.





Afterword: Finite-dimensional approximation
in other settings

Outside of Seiberg–Witten theory, we expect that the notion of parameterized finite-
dimensional approximation may be applicable in some cases in symplectic topology.
The methods of this memoir rely, roughly speaking, on a few special features of the
Seiberg–Witten equations, relative to other Floer-type problems:

(1) The configuration space is naturally a bundle over a compact, finite-dimen-
sional manifold.

(2) Bubbling phenomena do not occur.

(3) With respect to the bundle structure in (1), the Seiberg–Witten equations are
“close to linear” on the fibers.

(4) There is a relatively good understanding of the spectrum of the Dirac operator.

Perhaps the item most likely to elicit worry more generally is (1). However, we note
that it is classical that for any compact subset K of a Hilbert manifold, there is an
open sub-Hilbert-manifold B containing K which is diffeomorphic to the total space
of a Hilbert bundle over a compact finite-dimensional manifold.

Lemma 1. Let M be a separable Hilbert manifold and K � M a compact subset.
Then there exists some open U �K diffeomorphic to V �H , whereH is a separable
Hilbert space, and V is a finite-dimensional smooth manifold.

Proof. By compactness, choose a good open cover C 0 ofK, with finite subcover C D

¹Uiºi , which is once again good, with U D
S
i Ui . The nerve N.C/ is then homo-

topy equivalent to U . Moreover, N.C/ may be embedded in some finite-dimensional
Euclidean space and has a regular neighborhood which is a smooth manifold V , with
N.C/ ' V . By [10,41], separable infinite-dimensional homotopy-equivalent Hilbert
manifolds are diffeomorphic. Then V �H is diffeomorphic to U , as needed.

In particular, (1) holds locally around the moduli space (of gradient flows of the
Chern–Simons functional, symplectic action, etc.) in many situations of interest (there
is the technical point that a version of Lemma 1 which respected L2

k
-norms for mul-

tiple values of k would be more appropriate, but we have not attempted it). Although
it is not at all clear how to perform finite-dimensional approximation in the presence
of bubbling, nonetheless items (2) and (4) also hold in various geometric situations.
The problem then amounts to establishing appropriate versions of (3) in specific situ-
ations; this appears challenging except when the configuration space is very special.

We finally note that the finite-dimensional approximation process of this mem-
oir can also be applied locally. In particular, it can be applied in the neighborhood
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of a broken trajectory. Here, the base space is some smooth trajectory very close to
the broken trajectory, so that there is a neighborhood containing the broken trajec-
tory, and on which (1)–(4) hold. Finite-dimensional approximation then produces a
sequence of flows, whose finite-energy integral curves converge to solutions of the
Seiberg–Witten equations. Assuming nondegeneracy, one may be able to assemble
these locally constructed approximating submanifolds into the data of a flow cate-
gory as in [11]. The hoped-for result of this process would be replacing the need
to give a smooth structure to the corners for the moduli spaces of the Seiberg–Witten
equations themselves, with the problem of putting a smooth structure on the trajectory
spaces of a finite-dimensional approximation. The main obstruction to this approach
is likely the need to establish that the approximating submanifolds constructed this
way are suitably independent of the choices involved in their construction, which may
be difficult.
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The Seiberg–Witten Floer spectrum is a stable homotopy refinement of the monopole Floer
homology of Kronheimer and Mrowka. The Seiberg–Witten Floer spectrum was defined by
Manolescu for closed, spinc 3-manifolds with b1 = 0 in an S1-equivariant stable homotopy
category and has been producing interesting topological applications. Lidman and
Manolescu showed that the S1-equivariant homology of the spectrum is isomorphic to the
monopole Floer homology.

For closed spinc 3-manifolds Y with b1(Y) > 0, there are analytic and homotopy-theoretic
difficulties in defining the Seiberg–Witten Floer spectrum. In this memoir, we address the
difficulties and construct the Seiberg–Witten Floer spectrum for Y , provided that the first
Chern class of the spinc structure is torsion and that the triple-cup product on H1(Y ;ℤ)
vanishes. We conjecture that its S1-equivariant homology is isomorphic to the monopole
Floer homology.

For a 4-dimensional spinc cobordism X between Y0 and Y1, we define the Bauer–Furuta map
on these new spectra of Y0 and Y1, which is conjecturally a refinement of the relative
Seiberg–Witten invariant of X. As an application, for a compact spin 4-manifold X with
boundary Y , we prove a 10

8 -type inequality for X which is written in terms of the intersection
form of X and an invariant κ(Y) of Y .

In addition, we compute the Seiberg–Witten Floer spectrum for some 3-manifolds.
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