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Abstract

We introduce a two parameter family of Dirac operators on quantum SU.2/ and ana-
lyse their properties from the point of view of non-commutative metric geometry. It is
shown that these Dirac operators give rise to compact quantum metric structures, and
that the corresponding two parameter family of compact quantum metric spaces var-
ies continuously in Rieffel’s quantum Gromov–Hausdorff distance. This continuity
result includes the classical case where we recover the round 3-sphere up to a global
scaling factor on the metric. Our main technical tool is a quantum SU.2/ analogue
of the Berezin transform, together with its associated fuzzy approximations, the ana-
lysis of which also leads to a systematic way of approximating Lipschitz operators by
means of polynomial expressions in the generators.
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5.1 The Podleś sphere revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Spectral projections and twisted derivations . . . . . . . . . . . . . . . . . . 65
5.3 Spectral bands as compact quantum metric spaces . . . . . . . . . . . . . . 68
5.4 Schur multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Projecting onto the spectral bands . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Quantum SU.2/ as a compact quantum metric space . . . . . . . . . . . . 78

6 The quantum Berezin transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Definition of the Berezin transform . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 The image of the Berezin transform . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Estimates on the Berezin transform . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents viii

6.4 Approximation in the quantum Gromov–Hausdorff distance . . . . . . . 99

7 Continuity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1 Continuity of the fuzzy approximations . . . . . . . . . . . . . . . . . . . . . 103
7.2 Uniformity of the fuzzy approximation . . . . . . . . . . . . . . . . . . . . . 105
7.3 Continuity of quantum SU.2/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Chapter 1

Introduction

Over the past century, the theory of operator algebras has given rise to an abundance
of non-commutative analogues of classical mathematical theories, many of which
have grown into successful independent research areas with exciting applications
in theoretical physics. Prominent examples of this phenomenon include the theory
of quantum groups [43, 79], non-commutative geometry à la Connes [14, 16–18],
and Rieffel’s theory of quantum metric spaces [68, 70], which constitute far-reaching
non-commutative generalisations of classical topological groups, Riemannian (spin)
manifolds and compact metric spaces, respectively. Despite a continuous effort, it
has proven very challenging to reconcile the theory of non-commutative geometry
with the theory of quantum groups [19, 57], and even for the most fundamental q-
deformation, Woronowicz’ SUq.2/, it is not clear how one should modify Connes’
axioms to obtain a non-commutative geometry which adequately reflects the under-
lying q-geometry. Numerous candidates for Dirac operators on SUq.2/ have been
proposed [9, 13, 21, 38, 41, 42, 62], each having their advantages and disadvantages,
but it seems unclear which (if any) of these provide SUq.2/ with the right kind of
non-commutative geometry. At the time of writing, it is not even known if any of
these Dirac operators give rise to a compact quantum metric structure, so also the
connection between the metric geometry and the differential geometry on SUq.2/ is
open1.

The first aim of the present memoir is to remedy the latter problem by introducing
a family of Dirac operators on SUq.2/ and showing that these give rise to compact
quantum metric structures. More precisely, we investigate a new 2-parameter family
of Dirac operatorsDt;q , indexed over .0; 1�� .0; 1�, which connect some of the exist-
ing constructions in that Dq;q agrees with the Dirac operator suggested in [38] and
D1;q is closely related to the one studied in [41]. It is important to stress thatDt;q does
not have bounded commutators with the coordinate algebra O.SUq.2// in general,
and we therefore cannot obtain a genuine spectral triple. It does, however, decom-
pose naturally into a “horizontal” part DH

q and “vertical” part DV
t , each of which

admits bounded twisted commutators (though for different twists) with elements from
O.SUq.2//. The appearance of such twists seems inevitable when non-commutative

1Note that one may construct a Dirac operator from a length function on the dual 2SUq.2/

whose iterated commutators do give rise to a compact quantum metric space [8, Proposition 4.3
and Theorem 7.4], but this construction seems to be less related to the spin geometry of SUq.2/.
Indeed, for q D 1 the resulting Dirac operator is very different from the classical Dirac operator
since the K-homology class of the Dirac operator coming from a length function is trivial.
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geometry is applied in the context of q-deformed spaces [19], and even though our
constructions do not fit exactly with Connes’ original axioms for a spectral triple,
many of the properties of classical spectral triples admit suitable analogues in our
twisted setting, as witnessed by the following result:

Theorem A (See Lemmas 3.6.4, 4.1.1, 4.3.1, 4.5.2, 4.6.1, Proposition 4.5.4 and Sec-
tion 4.4). The Dirac operators Dt;q D D

V
t CD

H
q are selfadjoint and the following

hold:

(1) There exists a one-parameter family .�r/r2.0;1/ of algebra automorphisms
of O.SUq.2// such that the twisted commutators

DV
t �t .x/ � �

�1
t .x/DV

t and DH
q �q.x/ � �

�1
q .x/DH

q ;

extend to bounded operators @Vt .x/ and @Hq .x/ for all x 2O.SUq.2//. More-
over, there exists a one-parameter family of unbounded, strictly positive oper-
ators .�r/r2.0;1/ satisfying that �r.x/ D ��1r x�r for all r 2 .0;1/ and all
x 2 O.SUq.2//.

(2) The Dirac operatorsDt;q are SUq.2/-equivariant, in the sense that acting on
.L2.SUq.2// y̋L2.SUq.2///˚2; the selfadjoint unbounded operators 1 y̋DV

t

and 1 y̋DH
q commute withW ˚W whereW 2B.L2.SUq.2// y̋L2.SUq.2///

denotes the multiplicative unitary for SUq.2/.

(3) There exists an antilinear unitary I with I 2 D �1 such that Dt;q satisfies
the first order condition Œ@Vt .x/; IyI � D 0 D Œ@Hq .x/; IyI � for all x; y 2
O.SUq.2//. Moreover, I commutes with Dt;q up to modular operators in
the sense that the relations

DV
t �
�1
t � I D I �D

V
t �
�1
t and DH

q �
�1
q � I D I �D

H
q �
�1
q

hold on the dense subspace O.SUq.2//˚2 � L2.SUq.2//˚2.

(4) When t D q D 1, the unbounded selfadjoint operator D1;1 satisfies that 2 �
D1;1C 1DDS3 , whereDS3 is the classical Dirac operator on SU.2/Š S3.

As already mentioned, one of the main goals of the memoir is to investigate the
metric geometry governed by the Dirac operators Dt;q , by connecting our construc-
tion to Rieffel’s theory of compact quantum metric spaces [68,70]. The data defining
a compact quantum metric space consists of a unital C �-algebra A (or, more gen-
erally, an operator system) endowed with a densely defined seminorm L, and the
central requirement is that the Monge–Kantorovič extended2 metric dL on the state

2The adjective extended here means that dL is a priory allowed to take the value infinity.
Note, however, that by compactness this cannot be the case if dL metrises the weak� topology.
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space �.A/, defined as

dL.�; �/ WD sup¹j�.a/ � �.a/j j L.a/ 6 1º; (1.1)

metrises the weak� topology. The motivating example of course comes from taking a
classical compact metric space .M; d/ and associating to it the seminorm

LLip.f / WD sup
²
jf .x/ � f .y/j

d.x; y/

ˇ̌̌̌
x; y 2M;x ¤ y

³
defined on the Lipschitz functions Lip.M/. Rieffel’s definition is also very much
inspired by constructions appearing in non-commutative geometry; see [15]. Indeed,
one can associate a natural seminorm LD to a unital spectral triple .A; H; D/ by
setting

LD.a/ WD
ŒD; a�; (1.2)

whenever the element a belongs to a specified dense unital �-subalgebra A � A

of “differentiable” operators. Note, however, that this construction does not always
yield a compact quantum metric space, and even in the cases where this happens, the
argument is often far from trivial; see, e.g., [2, 63, 69].

Having the Dirac operatorsDt;q at our disposal we obtain a family of seminorms
Lt;qWO.SUq.2//! Œ0;1/ by setting

Lt;q.x/ WD
@Vt .x/C @Hq .x/

and we may ask whether they yield compact quantum metric structures on C.SUq.2//.
Since the seminorm Lt;q comes from two unbounded selfadjoint operators via a twis-
ted commutator construction we may enlarge the domain considerably and replace
the coordinate algebra O.SUq.2// with a much larger algebra of Lipschitz elements
Lipt .SUq.2//. We are considering the resulting seminorm Lmax

t;q W Lipt .SUq.2// !
Œ0;1/ as the “maximal” seminorm associated with our spectral data whereas Lt;q
is regarded as the corresponding “minimal” seminorm. In analogy with the classical
case, there is a wide gap between the Hopf algebra O.SUq.2// of polynomial expres-
sions in the generators and the Lipschitz algebra Lipt .SUq.2//, in so far that the
intersection of the domain of the closures of the twisted derivations @Vt and @Hq on
the coordinate algebra does not agree with the Lipschitz algebra Lipt .SUq.2//; see
for example [25, Theorem 3.1]. One may compare the gap between the minimal and
maximal seminorms to the gap between the unital C �-algebra C.SUq.2// and its
weak closure, the von Neumann algebra L1.SUq.2//. We are in this text presenting
a thorough treatment of the maximal seminorms Lmax

t;q and this is partly the reason for
the appearance of a number of analytic challenges.

Theorem B (see Theorem 5.6.1). The pair .C.SUq.2//;Lmax
t;q / is a compact quantum

metric space for all t; q 2 .0; 1�.
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Enlarging the domain of a seminorm increases the difficulty of proving that it
defines a compact quantum metric structure, so Theorem B immediately implies the
corresponding statement for the minimal seminorm Lt;q .

Corollary C (see Corollary 5.6.2). The pair .C.SUq.2//;Lt;q/ is a compact quantum
metric space for all t; q 2 .0; 1�.

To prove Theorem B, we develop a set of new general tools which are likely to
have applications elsewhere, and we therefore briefly outline the main ideas involved.
The central ingredient is the Podleś sphere C.S2q / [66], which arises as the fixed point
algebra of a certain circle action onC.SUq.2// (providing a quantised analogue of the
Hopf fibration). In contrast to SUq.2/, the non-commutative metric geometry of S2q
is reasonably well understood. The work of Da̧browski and Sitarz [22] provides the
Podleś sphere with a unital spectral triple, and it was furthermore proven in [2] that
C.S2q / becomes a compact quantum metric space when equipped with the corres-
ponding seminorm from (1.2). The circle action defining the Podleś sphere also gives
rise to an increasing sequence of finitely generated projective modules which suit-
ably exhaust C.SUq.2//. These finitely generated projective modules are direct sums
of spectral subspaces for the circle action and are referred to as spectral bands. The
first step in proving Theorem B is to lift the compact quantum metric structure from
C.S2q / to the spectral bands and we develop the general theory to achieve this in Sec-
tion 2.3. The second step is then to lift the compact quantum metric structure from
the spectral bands all the way up to C.SUq.2//. Perhaps a bit surprisingly, the main
aid here comes from the theory of Schur multipliers, and we unfold this aspect in
Section 5.4.

One of the main virtues of Rieffel’s theory of compact quantum metric spaces, is
that it allows for a natural generalisation of the classical Gromov–Hausdorff distance
between compact metric spaces [23, 26], naturally dubbed the quantum Gromov–
Hausdorff distance [70]. This concept has been further developed by, among others,
Kerr [39], Li [52–54] and Latrémolière [46–49], and by now exists in several differ-
ent versions which take into account more structure than Rieffel’s original definition.
The existence of such a distance function allows one to study the class of compact
quantum metric spaces from a more analytical point of view, and opens the pos-
sibility to investigate a wealth of natural continuity questions. Over the past two
decades, many positive answers have been obtained, and examples include Rieffel’s
fundamental result that the 2-sphere can be approximated by the fuzzy spheres (mat-
rix algebras) [71], as well as the more recent proof [3] that the Podleś spheres S2q
vary continuously in the deformation parameter q 2 .0; 1�; for many more examples
see [1, 35, 44, 50, 54, 70].

In light of Theorem B, the next natural question to ask is whether one obtains
quantum Gromov–Hausdorff continuity in the deformation parameters t and q, and
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through a series of approximation arguments we are able to answer this in the affirm-
ative:

Theorem D (See Theorem 7.3.1). The quantum metric spaces .C.SUq.2//; Lmax
t;q /

vary continuously in the deformation parameter .t; q/ 2 .0; 1�� .0; 1� with respect to
the quantum Gromov–Hausdorff distance.

We single out the following special case of Theorem D, which was the original
motivation for the study undertaken in the present memoir. Denoting by dS3 the usual
round metric on SU.2/ Š S3 � R4 and by LLipWLip.SU.2//! Œ0;1/ the Lipschitz
constant seminorm on C.SU.2// associated with the rescaled metric 2 � dS3 , combin-
ing Theorems D and A yields the following:

Corollary E (see Corollary 7.3.2). The quantum metric spaces .C.SUq.2//; Lmax
t;q /

converge in quantum Gromov–Hausdorff distance to .C.SU.2//;LLip/ as .t; q/ tends
to .1; 1/.

The rescaling of the metric on S3 may at first sight seem strange, but it is exactly
this factor of 2 which makes the Hopf fibration S3 ! S2 a Riemannian submersion
when the 2-sphere is endowed with its round metric arising from the natural embed-
ding into R3.

The road to Theorem D is quite long, but involves a number of constructions
which are of independent interest. As in the case of the Podleś sphere [3], the key to
such a continuity result is to construct an SUq.2/ version of the Berezin transform.
By means of the Berezin transform we obtain finite dimensional compact quantum
metric spaces FuzzN .BKq / � O.SUq.2// indexed by N;K 2 N0. We think of these
compact quantum metric spaces as fuzzy spectral bands. These fuzzy spectral bands
are O.SUq.2//-coinvariant and it is possible to describe them explicitly in terms of
the usual generators for SUq.2/. In Chapter 6 we construct our Berezin transform and
prove that the fuzzy spectral bands approximate SUq.2/:

Theorem F (see Corollary 6.4.4). The quantum metric spaces .FuzzN .BKq /; Lt;q/
converge in quantum Gromov–Hausdorff distance to .C.SUq.2//;Lmax

t;q / as N andK
tend to infinity.

This theorem should be viewed as an SUq.2/-analogue of Rieffel’s original result
[71], showing that the 2-sphere can be approximated in quantum Gromov–Hausdorff
distance by the fuzzy 2-spheres (matrix algebras). The concrete techniques used in
the construction of the Berezin transform and the fuzzy spectral bands build on the
corresponding constructions for the Podleś sphere developed in [3]. An interesting
consequence of the above fuzzy approximation is that the maximal and minimal
seminorm actually give rise to the same compact quantum metric structure on SUq.2/.
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Theorem G (see Corollary 6.4.2). The quantum Gromov–Hausdorff distance between
.C.SUq.2//;Lmax

t;q / and .C.SUq.2//;Lt;q/ is zero. Moreover, the Monge–Kantorovič
metrics dmax

t;q and dt;q on �.C.SUq.2///, induced by the two seminorms via the for-
mula (1.1), agree.

In particular, the continuity results in Theorem D and Corollary E, which pertain to
the maximal seminorm Lmax

t;q automatically hold true for the minimal seminorm Lt;q:

Corollary H. The quantum metric spaces .C.SUq.2//; Lt;q/ vary continuously in
the deformation parameters .t;q/2.0;1��.0;1�with respect to the quantum Gromov–
Hausdorff distance. In particular, .C.SUq.2//; Lt;q/ converges to .C.SU.2//; LLip/

as .t; q/ tends to .1; 1/.

The rest of the memoir is structured as follows: Chapter 2 contains the necessary
background on compact quantum metric spaces as well as the new tools needed for the
present memoir. Chapter 3 contains a detailed introduction to SUq.2/. In Chapter 4 we
introduce our family of Dirac operators and prove Theorem A. Chapter 5 is devoted
to proving Theorem B and in Chapter 6 we construct the Berezin transform and prove
Theorems F and G. The final Chapter 7 pieces everything together into a proof of the
main continuity result, Theorem D.

1.1 Notation and standing assumptions

Unless otherwise stated, we shall always apply the notation k � k for the unique C �-
norm on a C �-algebra A or, more generally, for its restriction to a complete operator
system X � A. Since the Greek letter epsilon is the standard symbol both for the
counit in a quantum group and an arbitrarily small positive number, we will use the
symbol � for the former and the symbol " for the latter. As for tensor products, the
symbols ˝, ˝min and y̋ will denote algebraic, minimal C �-algebraic, and Hilbert
space tensor products, respectively. The theory of unbounded operators plays a central
role in the memoir, and if T is an unbounded closable operator in a Hilbert space we
will denote its closure by xT . Lastly, we will use the abbreviations WOT and SOT for
the weak- and strong operator topology, respectively, and ucp for unital completely
positive.

1.2 Note added in proof

Since the writing of the present memoir, the research on quantum metrics on q-defor-
mations has progressed further. In [60], it was proven that the D’Andrea–Dąbrowski
spectral triples provide all quantum projective spaces CP `q with compact quantum
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metric structures (the case ` D 1 corresponding to the Podleś sphere), and in [34]
the higher-dimensional Vaksman–Soibelman spheres were treated, thus providing a
generalisation of Theorem B. The work [34] also features an updated treatment of
finitely generated projective modules in the context of quantum metric spaces.





Chapter 2

Compact quantum metric spaces

In this chapter, we present the relevant preliminaries on compact quantum metric
spaces. For our purposes, the theory of (concrete) operator systems provides the most
convenient framework for studying compact quantum metric spaces, and we are thus
in line with the recent developments in [20, 77], as well as the C �-algebra based
approaches in [52, 53, 68].

The theory discussed here is also closely related to Rieffel’s original theory of
order unit compact quantum metric spaces [70], via the passage from an operator
system to its selfadjoint part (the real subspace of selfadjoint elements). The selfad-
joint part of an operator system is indeed an order unit space and the two state spaces
can be identified via restriction.

2.1 Definitions and basic properties

Throughout this section, X will be a complete operator system; i.e., X will be a
norm-closed subspace of a specified unital C �-algebra AX such that X is invariant
under the adjoint operation and contains the unit from AX . A state on X is a positive
linear functional �WX ! C which sends the unit 1X in X to the unit 1 in C. A state
on X automatically has norm 1 [64], and the state space �.X/ therefore becomes a
compact Hausdorff space for the weak� topology. Although X is not an algebra, any
selfadjoint x 2 X may still be written as a difference of positive elements from X as

x D
1

2
.kxk � 1X C x/ �

1

2
.kxk � 1X � x/;

and from this it follows that any positive map ˆWX ! Y into another operator sys-
tem Y satisfiesˆ.x�/Dˆ.x/�. Lastly, we note the slight subtlety thatˆ need not be
a contraction, but that it is bounded with kˆk 6 2kˆ.1X /k; see [64, Proposition 2.1].
If, however, ˆ is completely positive then kˆk D kˆkcb D kˆ.1X /k. Note also, that
if ˆ is unital and positive and x is selfadjoint then �kxk � 1X 6 x 6 kxk � 1X so that
kˆ.x/k 6 kxk. As a final observation, we note that if ˆWX ! Y is instead assumed
to be unital and contractive, then ˆ is automatically positive; see, e.g., [64, Pro-
position 2.11]. We will apply these observations without further mentioning in the
sections to follow.

The complete operator system X gives rise to a complete order unit space Xsa WD

¹x 2 X j x D x�º, where the order and the unit are inherited from the surrounding
unital C �-algebra AX . The order unit space Xsa also has an associated state space
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�.Xsa/ and we record that the restriction of states yields an affine homeomorphism
�.X/ ! �.Xsa/. For an arbitrary element x 2 X we let Re.x/ and Im.x/ in Xsa

denote the real and the imaginary part of x. We are interested in metrics on the state
space �.X/ and in particular those metrics which metrise the weak� topology. As
realised by Rieffel, these may be constructed from certain seminorms on the operator
system X and we now recall the key notions in this connection.

Definition 2.1.1. A seminorm LWX ! Œ0;1� is called a Lipschitz seminorm when
the following hold:

(1) L is densely defined, meaning that the domain Dom.L/WD¹x2X WL.x/<1º
is a norm-dense subspace of X ;

(2) the kernel of L contains the scalars C WD C � 1X , thus L.1X / D 0;

(3) L is invariant under the adjoint operation, i.e., L.x�/ D L.x/ for all x 2 X .

It is common to require that the kernel of a Lipschitz seminorm agrees with the
scalars C D C � 1X , but we find it convenient to work with the above more flexible
notion.

Definition 2.1.2. Let LWX ! Œ0;1� be a Lipschitz seminorm on the complete oper-
ator system X . The Monge–Kantorovič metric dLW�.X/� �.X/! Œ0;1� is defined
by

dL.�; �/ WD sup
®
j�.x/ � �.x/j

ˇ̌
L.x/ 6 1

¯
; for �; � 2 �.X/:

We remark that the Monge–Kantorovič metric dL is not, strictly speaking, a met-
ric since it can, a priori, take the value infinity. In fact, it can be proved that if
ker.L/ contains non-scalar elements, then there exist states �0 and �0 on X such
that dL.�0; �0/ D1; see for example [35, Lemma 2.2]. This possibility is excluded
when .X;L/ is a compact quantum metric space in the following sense:

Definition 2.1.3. Let LWX ! Œ0;1� be a Lipschitz seminorm. We say that .X;L/ is
a compact quantum metric space when the Monge–Kantorovič metric dL metrises the
weak� topology on the state space �.X/. In this case, L is referred to as a Lip-norm.

Definition 2.1.4. For a compact quantum metric space .X;L/, the diameter is defined
as

diam.X;L/ WD diam.�.X/; dL/ WD sup¹dL.�; �/ j �; � 2 �.X/º:

For any norm or seminorm jjj � jjj on X , x 2 X and r > 0 we denote the corres-
ponding open and closed balls as follows:

Bjjj�jjjr .x/ WD ¹y 2 X j jjjx � yjjj < rº and xBjjj�jjjr .x/ WD ¹y 2 X j jjjx � yjjj 6 rº:

The following convenient characterisation of compact quantum metric spaces can be
found in [67, Theorem 1.8]; here we let Œ � �WX ! X=C denote the quotient map and
k � kX=C denote the quotient norm on X=C.
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Theorem 2.1.5 (Rieffel). Let LWX ! Œ0;1� be a Lipschitz seminorm. It holds that
.X; L/ is a compact quantum metric space if and only if the subset ŒxBL1 .0/� � X=C
is totally bounded with respect to the quotient norm k � kX=C on X=C.

Remark 2.1.6. We recall that a subset of a metric space is said to be totally bounded
if it can be covered by a finite number of "-balls for any " > 0. Moreover, if the
ambient metric space is complete (as it is the case for X=C), then a subset is totally
bounded if and only if it has compact closure. We moreover notice that if .X;L/ is a
compact quantum metric space, then the intersection xBk�k1 .0/\ xB

L
1 is totally bounded

as a subset of X . This follows by applying the isomorphism of Banach spaces X !
X=C ˚C given by x 7! .Œx�; �.x//, where �WX ! C is a fixed state.

Let us now explain the relationship between the above operator system approach
to compact quantum metric spaces and Rieffel’s approach developed in the context
of order unit spaces. Consider a norm-dense real subspace V � Xsa satisfying that
1X 2 V and let L0W V ! Œ0;1/ be a seminorm with L0.1X / D 0. We call such a
seminorm L0 for an order unit Lipschitz seminorm. This data also gives rise to a
Monge–Kantorovič metric on the state space �.X/ by putting

dL0.�; �/ WD sup
®
j�.x/ � �.x/j

ˇ̌
x 2 V; L0.x/ 6 1

¯
:

Definition 2.1.7 (Rieffel). The pair .V;L0/ is an order unit compact quantum metric
space when the Monge–Kantorovič metric dL0 metrises the weak� topology on the
state space �.X/.

We now wish to relate the two concepts of compact quantum metric spaces given
in Definitions 2.1.3 and 2.1.7.

To every Lipschitz seminorm LWX ! Œ0;1� on the operator system X we asso-
ciate an order unit Lipschitz seminorm LsaWDom.L/sa ! Œ0;1/ by restricting L to
the selfadjoint part of the domain Dom.L/sa WD Xsa \Dom.L/. Conversely, to every
order unit Lipschitz seminorm L0W V ! Œ0;1/, we associate a Lipschitz seminorm
L0osWX ! Œ0;1� by defining

L0os.x/ WD sup
�2Œ0;2��

L0
�
cos.�/Re.x/C sin.�/ Im.x/

�
for Re.x/; Im.x/ 2 Dom.L0/ and L0os.x/ WD 1, otherwise. We record the formula
.L0os/sa D L

0. The relationship between the two notions of compact quantum metric
spaces can now be made precise.

Proposition 2.1.8. If LWX ! Œ0;1� is a Lipschitz seminorm, then we have the iden-
tity dL D dLsa for the associated Monge–Kantorovič metrics on �.X/. Hence, if
.X; L/ is a compact quantum metric space, then .Dom.L/sa; Lsa/ is an order unit
compact quantum metric space.



Compact quantum metric spaces 12

Conversely, if L0WV ! Œ0;1/ is an order unit Lipschitz seminorm, then we have
the identity dL0 D dL0

os
. Hence if .V; L0/ is an order unit compact quantum metric

space, then .X;L0os/ is a compact quantum metric space.

Proof. Let LWX ! Œ0;1� be a Lipschitz seminorm. It clearly holds that dLsa 6 dL.
Let now �;� 2 �.X/ and consider an element � 2X withL.�/6 1. Choose a � 2 S1

such that � � .�.�/� �.�// 2R. SinceL.Re.� � �//6L.�/, we obtain that Re.� � �/ 2
Dom.L/sa and Lsa.Re.� � �// 6 1. We may thus estimate as follows:

j�.�/ � �.�/j D j�.� � �/ � �.� � �/j D j�.Re.� � �// � �.Re.� � �//j 6 dLsa.�; �/:

This shows that dL 6 dLsa and we may conclude that dL D dLsa . Conversely, suppose
that L0W V ! Œ0;1/ is an order unit Lipschitz seminorm. Recall that .L0os/sa D L

0

and hence dL0 D dL0
os

by the first part of the proposition.

The following result provides a technical condition for verifying when a pair
.X;L/ is a compact quantum metric space. The essence of the result is that if .X;L/
can be suitably approximated by compact quantum metric spaces, then .X; L/ must
also be a compact quantum metric space; see Corollary 2.1.10 for the precise state-
ment. In the present text we shall apply this theorem to provide quantum SU.2/ with
the structure of a compact quantum metric space.

Theorem 2.1.9. Let LWX ! Œ0;1� be a Lipschitz seminorm. Suppose that for every
" > 0 there exist an operator system X" equipped with a seminorm L"WX" ! Œ0;1�

and linear maps ˆ"WX ! X" and ‰"WX" ! X such that

(1) The kernel of L" is closed in operator norm and the subset�
xBL"

1 .0/
�
� X"= ker.L"/

is totally bounded with respect to the quotient operator norm onX"=ker.L"/;

(2) We have the inclusion ‰".ker.L"// � C;

(3) ˆ" is bounded for the seminorms and ‰" is bounded for the operator norms;

(4) The inequality k‰"ˆ".x/ � xk 6 " � L.x/ holds for all x 2 X .

Then .X;L/ is a compact quantum metric space.

Before embarking on the proof, it is worth emphasising that the maps ˆ" and ‰"
are not required to be unital, and indeed this additional flexibility will be of import-
ance when applying the criterion to prove Theorem 2.3.3 below.

Proof. By Theorem 2.1.5, it suffices to show that the subset ŒxBL1 .0/��X=C is totally
bounded. Let " > 0 be given. Put "0 WD "=2 and choose a constant C > 0 such that
L"0.ˆ"0.x// 6 C �L.x/ and k‰"0.y/k 6 C � kyk for all x 2 X and all y 2 X"0 . Since
C � ker.L/ the first inequality implies thatˆ"0.C/� ker.L"0/ and we therefore have
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well-defined linear maps Œˆ"0 �WX=C ! X"0= ker.L"0/, Œ‰"0 �WX"0= ker.L"0/! X=C
at the level of quotient spaces. We record that Œˆ"0 �ŒxBL1 .0/�� ŒxB

L"0
C .0/�. Using that the

subset ŒxBL"0

C .0/��X"0=ker.L"0/ is totally bounded, we may put ı WD "0=C D "=.2C /
and choose finitely many elements y1; y2; : : : ; yn 2 X"0 such that

Œˆ"0 �
�
xBL1 .0/

�
�

n[
jD1

Bk�kX"0= ker.L"0 /
ı

�
Œyj �

�
:

We now claim that ŒxBL1 .0/��
Sn
jD1Bk�kX=C

" .Œ‰"0.yj /�/. Indeed, for every x 2 xBL1 .0/
we may choose j0 2 ¹1; 2; : : : ; nº such that kŒˆ"0.x/�� Œyj0

�kX"0= ker.L"0 /
< ı. Recall-

ing that C � ı D "0 D "=2 we then obtain the following inequalities:Œx� � Œ‰"0.yj0
/�

X=C

6
Œx �‰"0ˆ"0.x/�X=C C Œ‰"0ˆ"0.x/ �‰"0.yj0

/�

X=C

6 "0 � L.x/C C �
Œˆ"0.x/ � yj0

�

X"0= ker.L"0 /

< "0 C C � ı D ":

This shows that Œx� 2 B
k�kX=C
" .Œ‰"0.yj0

/�/ and the theorem is therefore proved.

It is useful to spell out the following particular case of the above theorem.

Corollary 2.1.10. Let LWX ! Œ0;1� be a Lipschitz seminorm. Suppose that for
every " > 0 there exist a compact quantum metric space .X"; L"/ and unital linear
maps ˆ"WX ! X" and ‰"WX" ! X such that

(1) ˆ" is bounded for the Lipschitz seminorms and ‰" is bounded for the oper-
ator norms;

(2) The inequality k‰"ˆ".x/ � xk 6 " � L.x/ holds for all x 2 X .

Then .X;L/ is a compact quantum metric space.

2.2 Quantum Gromov–Hausdorff distance

We now review the notion of quantum Gromov–Hausdorff distance between two
compact quantum metric spaces .X;L/ and .Y;K/. We are in this text applying Rief-
fel’s original notion of quantum Gromov–Hausdorff distance as introduced in [70],
although we are paraphrasing the main definitions in order to deal with operator sys-
tems instead of order unit spaces. We would, however, like to emphasise the large
body of work due to Latrémolière regarding quantised distance concepts in a C �-
algebraic context; see [44–47]. It could, in particular, be interesting to investigate
whether our main continuity result for quantum SU.2/ (Theorem D) remains valid
for Latrémolière’s notion of quantum Gromov–Hausdorff propinquity as well.
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Definition 2.2.1. A Lipschitz seminorm M WX ˚ Y ! Œ0;1� is said to be admiss-
ible when the pair .X ˚ Y; M/ is a compact quantum metric space, Dom.M/ D

Dom.L/˚ Dom.K/ and the quotient seminorms induced by Msa via the coordinate
projections

Dom.M/sa ! Dom.L/sa and Dom.M/sa ! Dom.K/sa

agree with Lsa and Ksa, respectively.

Whenever M WX ˚ Y ! Œ0;1� is an admissible Lipschitz seminorm it follows
that the coordinate projections X ˚ Y ! X and X ˚ Y ! Y induce isometries
�.X/!�.X˚Y/ and �.Y /!�.X˚Y/where the state spaces involved are equipped
with the Monge–Kantorovič metrics coming from the relevant Lip-norms. In par-
ticular, we may measure the Hausdorff distance between the state spaces �.X/ and
�.Y /with respect to the Monge–Kantorovič metric dM on the state space �.X ˚ Y /.
Denoting this quantity by

distdM

H .�.X/; �.Y // 2 Œ0;1/

the quantum Gromov–Hausdorff distance between .X; L/ and .Y; K/ is defined as
the infimum over all these Hausdorff distances:

distQ..X;L/I .Y;K// WD inf
®
distdM

H .�.X/;�.Y //
ˇ̌
M WX ˚ Y ! Œ0;1� admissible

¯
:

In the following lemma, we apply the notation

distQ
�
.Dom.L/sa; Lsa/I .Dom.K/sa; Ksa/

�
for the quantum Gromov–Hausdorff distance between the order unit compact quantum
metric spaces .Dom.L/sa; Lsa/, .Dom.K/sa; Ksa/. This notion of order unit quantum
Gromov–Hausdorff distance was introduced by Rieffel in [70], and is defined via the
obvious order unit space analogue of admissible seminorms; see [70, Definition 4.2].

Lemma 2.2.2. We have the identity

distQ..X;L/I .Y;K// D distQ
�
.Dom.L/sa; Lsa/I .Dom.K/sa; Ksa/

�
:

Proof. Suppose thatM WX ˚ Y ! Œ0;1� is admissible. By Proposition 2.1.8 we then
know that .Dom.L/sa ˚ Dom.K/sa; Msa/ is an order unit compact quantum metric
space. It moreover follows immediately from Definition 2.2.1 that Msa is admiss-
ible in the order unit sense of Rieffel; see [70, Section 4]. Conversely, suppose that
M 0WDom.L/sa ˚Dom.K/sa ! Œ0;1/ is admissible in the order unit sense. By Pro-
position 2.1.8, we then know that .X ˚ Y;M 0

os/ is a compact quantum metric space.
We record that Dom.M 0

os/DDom.L/˚Dom.K/ and since .M 0
os/saDM

0 we obtain
that M 0

os is admissible in the sense of Definition 2.2.1. The claimed identity between
quantum Gromov–Hausdorff distances now follows from Proposition 2.1.8.
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Since the quantum Gromov–Hausdorff distance distQ..X; L/I .Y; K// is nothing
but Rieffel’s original definition from [70] applied to the associated order unit com-
pact quantum metric spaces, all the main results from [70] may be imported verbatim.
For the readers’ convenience, we summarise the key features of distQ in the theorem
below. However, before doing so we need to clarify the slightly subtle notion of iso-
metry in the setting of compact quantum metric spaces. Fix a compact quantum metric
space .X; L/ and consider the associated order unit compact quantum metric space
.A; LA/ where A WD Dom.L/sa and LA WD LjA. We let .Ac ; LcA/ denote the closed
compact quantum metric space associated to .A; LA/; for more details on this con-
struction see [70, Section 6] and [68, Section 4]. If .Y;K/ is another compact quantum
metric space with associated order unit compact quantum metric space .B;KB/, then
an isometry between X and Y is an order unit isomorphism 'WAc ! Bc satisfying
that LcB ı ' D L

c
A. The state spaces of .Ac ; LcA/ and .X; L/ are naturally identified,

and by [70, Corollary 6.4] one has that the isometries from .X; L/ to .Y; K/ are in
bijective correspondence with the affine isometric isomorphisms from .�.Y /; dK/ to
.�.X/; dL/.

Theorem 2.2.3 (Rieffel). The following hold:

(1) The quantum Gromov–Hausdorff distance is symmetric and satisfies the tri-
angle inequality.

(2) The quantum Gromov–Hausdorff distance between two compact quantum
metric spaces is zero if and only if there exists an isometry between them.

(3) The set of isometry classes of compact quantum metric spaces is complete for
the metric induced by distQ.

The following result provides a convenient way to estimate the distance between
two compact quantum metric spaces:

Proposition 2.2.4. Let .X; L/ and .X 0; L0/ be compact quantum metric spaces and
suppose thatˆWX ! X 0 and‰WX 0! X are two unital positive maps satisfying that

(1) there exist C;C 0 > 0 such that

L0.ˆ.x// 6 C � L.x/ and L.‰.y// 6 C 0 � L0.y/

for all x 2 X and y 2 X 0;

(2) there exist "; "0 > 0 such that

k‰ˆ.x/ � xk 6 " � L.x/ and kˆ‰.y/ � yk 6 "0 � L0.y/

for all x 2 X and y 2 X 0.
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Then the quantum Gromov–Hausdorff distance distQ..X; L/I .X 0; L0// is dominated
by

max
®
diam.X;L/ � j1 � 1=C j C "=C; diam.X 0; L0/ � j1 � 1=C 0j C "0=C 0

¯
:

Proof. To ease the notation, we put

r WD max
®
diam.X;L/ � j1 � 1=C j C "=C; diam.X 0; L0/ � j1 � 1=C 0j C "0=C 0

¯
;

and define a Lipschitz seminorm KWX ˚X 0 ! Œ0;1� by

K.x; y/ WD max
²
L.x/; L0.y/;

1

r
ky �ˆ.x/k;

1

r
kx �‰.y/k

³
:

Since both .X; L/ and .X 0; L0/ are compact quantum metric spaces, we get that K
turns X ˚ X 0 into a compact quantum metric space. Indeed, fix a state � 2 �.X/

and put � WD � ı ‰. The fact that the image of xBK1 .0/ becomes totally bounded in
.X ˚X 0/=C then follows since the map

.X ˚X 0/=C 3 Œ.x; y/� 7! .�.x/ � �.y/; Œx�; Œy�/ 2 C ˚X=C ˚X 0=C

is an isomorphism of Banach spaces. We now show that K is admissible. Clearly,
Dom.K/D Dom.L/˚Dom.L0/. Let thus x 2 Dom.L/sa be given and let �WX !C
be a state. Put z D x � �.x/1X and define the element y WD 1

C
ˆ.z/C �.x/1X 0 2

Dom.L0/sa. We then obtain the estimates:

• L0.y/ 6 1
C
L0.ˆ.z// 6 L.x/;

• 1
r
ky �ˆ.x/k D 1

r
k
1
C
ˆ.z/ �ˆ.z/k 6 j1�1=C j

r
kzk

6 j1�1=C j�diam.X;L/
r

� L.x/ 6 L.x/;

• 1
r
kx �‰.y/k 6 1

r
kz � 1

C
‰ˆ.z/k 6 kzk � j1�1=C j

r
C

1
r
�
1
C
� kz �‰ˆ.z/k

6 j1�1=C j�diam.X;L/
r

� L.x/C 1
r
�
"
C
� L.x/ 6 L.x/.

This shows that K.x; y/ 6 L.x/. Similarly, we obtain that

K

�
1

C 0
‰.x0 � �.x0/1X 0/C �.x

0/1X ; x
0

�
6 L0.x0/

whenever �W X 0 ! C is a state and x0 2 Dom.L0/sa. We conclude that K is an
admissible seminorm. Finally, given � 2 �.X/ it holds that � WD � ı ‰ 2 �.X 0/

and dK.�; �/ 6 r . By symmetry, we obtain from this that

distQ
�
.X;L/I .X 0; L0/

�
6 distdK

H

�
�.X/; �.X 0/

�
6 r

and this ends the proof of the present proposition.

We spell out the following useful consequence of the above proposition.
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Corollary 2.2.5. Let .X;L/ be a compact quantum metric space and let Y � X be a
sub-operator system such that Dom.L/ \ Y is norm-dense in Y . Suppose there exist
a constant D > 0 and an " > 0 as well as a unital positive map ˆWX ! Y such that
L.ˆ.x// 6 .1CD/ �L.x/ and kx �ˆ.x/k 6 " �L.x/ for all x 2 X . Then .Y;L/ is
a compact quantum metric space and we have the estimate

distQ
�
.X;L/I .Y; L/

�
6 diam.X;L/ �

D

1CD
C ":

In particular, if ˆ is a Lip-norm contraction then distQ..X;L/I .Y; L// 6 ".

Proof. That .Y;L/ is a compact quantum metric space follows from Rieffel’s criterion
in Theorem 2.1.5. We apply Proposition 2.2.4 to the unital positive map ˆWX ! Y

and the inclusion �WY ! X . We then obtain that

distQ
�
.X;L/I .Y; L/

�
6 max

®
diam.X;L/ �

ˇ̌
1 � 1=.1CD/

ˇ̌
C "=.1CD/; "

¯
6 diam.X;L/ �

D

1CD
C ":

Remark 2.2.6. Under the assumptions in Corollary 2.2.5, if Z is an intermediate
operator system (i.e., Y � Z � X ) such that Dom.L/\Z is dense inZ, then .Z;L/
is a compact quantum metric space as well, and the same estimate on the quantum
Gromov–Hausdorff distance holds with .Z; L/ instead of .Y; L/. Indeed, one may
simply enlarge the codomain of ˆ from Y to Z and remark that the assumptions in
Corollary 2.2.5 are still satisfied.

Corollary 2.2.7. Under the assumptions of Corollary 2.2.5 we have the estimate

dL.�; �/ 6
D

1CD
� diam.X;L/C 2"C dL.�jY ; �jY /

for all �; � 2 �.X/.

Here the quantity dL.�jY ; �jY / is to be understood as the Monge–Kantorovič
metric on �.Y / arising from the restriction of L, which indeed provides Y with a
quantum metric structure by Corollary 2.2.5.

Proof. Let �; � 2 �.X/. By Proposition 2.1.8 it suffices to show that

j�.x/ � �.x/j 6
D

1CD
� diam.X;L/C 2"C dL.�jY ; �jY /

for all x 2 Xsa with L.x/ 6 1. Let x 2 Xsa with L.x/ 6 1 be given. By [68, Proposi-
tion 2.2] it holds that inf�2R kx � � � 1Xk6 diam.X;L/=2. Sinceˆ is unital and pos-
itive (and x is selfadjoint), we then have that inf�2R kˆ.x�� � 1X /k6diam.X;L/=2.
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We moreover notice that the estimate 1
1CD

ˆ.x � � � 1X / 2 Y and that the estim-
ate 1

1CD
L.ˆ.x � � � 1X // 6 1 is satisfied for all � 2 R. For every � 2 R we put

x� WD x � � � 1X and compute as follows:

j�.x/ � �.x/jD inf
�2R

ˇ̌
�.x�/ � �.x�/

ˇ̌
6 inf
�2R

�ˇ̌̌̌
�.x�/�

1

1CD
�.ˆ.x�//

ˇ̌̌̌
C

1

1CD

ˇ̌
�.ˆ.x�// � �.ˆ.x�//

ˇ̌
C

ˇ̌̌̌
1

1CD
�.ˆ.x�// � �.x�/

ˇ̌̌̌�
62 � kx �ˆ.x/k C 2 � inf

�2R

 D

1CD
ˆ.x�/

C dL.�jY ; �jY /
62"C

D

1CD
diam.X;L/C dL.�jY ; �jY /:

The first step in proving that C.SUq.2// is a compact quantum metric space, is
to utilise that this is known to be the case for the C �-subalgebra C.S2q / (see [2]),
and then bootstrap to certain finitely generated projective modules over C.S2q /. We
therefore need to develop a bit of general theory to ensure that our finitely generated
projective modules do indeed become compact quantum metric spaces, and we carry
out this part of the program in the following section.

2.3 Finitely generated projective modules

Let A be a unital C �-algebra, let B � A be a unital C �-subalgebra and suppose
that EWA! B is a conditional expectation. Remark that E is automatically unital
and completely positive and the operator norm of E is therefore equal to one. We
moreover consider a complete operator system X � A such that B � X and suppose
in addition that the multiplication in A induces a right B-module structure on X .
On top of this data we fix a Lipschitz seminorm LWA! Œ0;1�, and suppose that
the domain of L is a unital �-subalgebra of A. Our aim is now to impose conditions
which ensure that .X; L/ is a compact quantum metric space. On the algebraic side
we make the following:

Assumption 2.3.1. Let n 2 N0 and assume that there exist elements vj 2 A and
wj 2 X for j D 0; 1; : : : ; n with v0 D w0 D 1A such that

nX
jD0

wj �E.vj � x/ D x for all x 2 X:

Assume, moreover, that E.vj / D 0 for all j 2 ¹1; 2; : : : ; nº.
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We define the B-linear maps

ˆWX !

nM
jD0

B by ˆ.x/ D

nX
jD0

ej �E.vj � x/ and

‰W

nM
jD0

B ! X by ‰

 
nX

jD0

ej � bj

!
D

nX
jD0

wj � bj ;

where e0; : : : ; en denotes the standard basis in the free module
Ln
jD0 B . It then

follows from Assumption 2.3.1 that .‰ ıˆ/.x/ D x for all x 2 X . In particular, we
obtain that X is finitely generated projective as a right B-module. Since E.vj / D 0
for all j 2 ¹1; 2; : : : ; nº we moreover get that

ˆ.b/ D

nX
jD0

ej �E.vj � b/ D

nX
jD0

ej �E.vj / � b D e0 � b (2.1)

for all b 2 B � X .

Assumption 2.3.2. We impose the following extra conditions on our data:

(1) The conditional expectation EWA! B is bounded for the seminorm
LWA! Œ0;1�;

(2) The restriction LWB ! Œ0;1� gives B the structure of a compact quantum
metric space;

(3) There exists a constant C0 > 0 such that kx � E.x/k 6 C0 � L.x/ for all
x 2 X ;

(4) The elements vj and wj belong to Dom.L/ for all j D 0; 1; : : : ; n;

(5) For each v 2Dom.L/ the left-multiplication operatorm.v/WX \ ker.E/!A

is bounded with respect to the seminorm L.

A few remarks are in place. First of all, since LW A ! Œ0;1� is a Lipschitz
seminorm it follows from Assumption 2.3.2 (1) that Dom.L/\B � B is norm-dense
and hence that the restriction LWB ! Œ0;1� is a Lipschitz seminorm. Next, since
‰ W

Ln
jD0 B ! X is surjective and Dom.L/ is an algebra, we obtain from Assump-

tion 2.3.2 (4) that X \ Dom.L/ � X is norm-dense and hence that the restriction
LWX ! Œ0;1� is also a Lipschitz seminorm. As the following theorem shows, this
restriction is actually a Lip-norm.

Theorem 2.3.3. Under Assumptions 2.3.1 and 2.3.2, the restriction LWX ! Œ0;1�

provides X with the structure of a compact quantum metric space.
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Proof. We first record that the direct sum

Y WD

nM
jD0

B Š C
�
¹0; 1; 2; : : : ; nº; B

�
becomes a unital C �-algebra when equipped with the supremum norm. We are going
to apply Theorem 2.1.9 with ˆ" D ˆWX ! Y and ‰" D ‰W Y ! X for all " > 0.
Indeed, condition .4/ in Theorem 2.1.9 is satisfied since .‰ ıˆ/.x/D x for all x 2X .
Let us define the seminorm KWY ! Œ0;1� by

K

 
nX

jD0

ej � bj

!
WD max

®
L.b0/; L.b1/; : : : ; L.bn/; kb1k; : : : ; kbnk

¯
:

Assumption 2.3.2 (2) then implies that the kernel ofK is given by the closed subspace
ker.K/ D C � e0 � Y . Moreover, Theorem 2.1.5 and Remark 2.1.6 together with
Assumption 2.3.2 (2) shows that the subset ŒxBK1 .0/� � Y= ker.K/ is contained in�

BL1 .0/
�
�
�
BL1 .0/ \ Bk�k1 .0/

�
� � � � �

�
BL1 .0/ \ Bk�k1 .0/

�
� B=C ˚ B˚n

and therefore totally bounded with respect to the quotient operator norm. We have
thus verified condition (1) in Theorem 2.1.9. Condition (2) in Theorem 2.1.9 follows
immediately since ‰.e0/D w0 and w0 D 1A D 1X . It is moreover clear that ‰WY !
X is bounded for the operator norms. In order to establish the remaining condition (3)
in Theorem 2.1.9 we therefore only need to show that ˆWX ! Y is bounded for the
seminorms involved. By Assumption 2.3.2 (1) we may choose a constant C1 > 0 such
that L.E.x// 6 C1 � L.x/ for all x 2 A. Moreover, by Assumption 2.3.2 (5) we may
choose constants Dj > 0 for j D 1; 2; : : : ; n such that

L.vj � x/ 6 Dj � L.x/ for all x 2 ker.E/ \X:

Using that ˆ.E.x// D e0 �E.x/ (see (2.1)) and that v0 D 1, we then obtain that

K.ˆ.x// 6 K
�
ˆ.x �E.x//

�
CK.ˆ.E.x///

D K

 
nX

jD1

ej �E
�
vj � .x �E.x//

�!
C L.E.x//

6 K

 
nX

jD1

ej �E
�
vj � .x �E.x//

�!
C C1 � L.x/

for all x 2X . Moreover, for each j 2 ¹1;2; : : : ; nº and x 2X we obtain the inequalityE�vj � .x �E.x//� 6 kvj k � kx �E.x/k 6 kvj k � C0 � L.x/
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together with the inequality

L
�
E
�
vj � .x �E.x//

��
6 C1 � L

�
vj � .x �E.x//

�
6 C1 �Dj � L.x �E.x//

6 C1 �Dj � .1C C1/ � L.x/:

This shows that ˆWX ! Y is indeed bounded for the seminorms involved and we
have proved the theorem.





Chapter 3

Preliminaries on quantum SU.2/

The main object of study in the present text is the unital C �-algebra C.SUq.2//,
known as quantum SU.2/, introduced by Woronowicz in [78]. There are numer-
ous good sources describing this object, and in addition to the original texts by
Woronowicz we refer the reader to the monographs [40, 75] for general background
information. Let q 2 .0; 1�. Aligning our notation with the papers [2–4, 22, 25], we
define the C �-algebraic version of quantum SU.2/ as the universal unital C �-algebra
C.SUq.2// with two generators a and b subject to the relations

ba D qab b�a D qab� bb� D b�b

1 D a�aC q2bb� aa� C bb� D 1:

These relations are best justified by noting that they are equivalent to the requirement
that

u WD

�
a� �qb

b� a

�
2M2

�
C.SUq.2//

�
is a unitary matrix, in the following referred to as the fundamental unitary. Inside the
unital C �-algebra C.SUq.2// we have the coordinate algebra O.SUq.2// defined as
the unital �-subalgebra generated by a and b. The set ¹�klm j k 2 Z; l;m 2 N0º with
elements given by

�klm WD

´
akbl.b�/m k; l;m > 0

bl.b�/m.a�/�k k < 0; l;m > 0
(3.1)

constitutes a linear basis for O.SUq.2//; see [75, Proposition 6.2.5]. The coordinate
algebra O.SUq.2// is in fact a Hopf �-algebra and the coproduct �, the antipode
S and the counit � are best described in terms of the fundamental unitary by means
of the formulae �.u/ D u ˝ u, S.u/ D u� and �.u/ D

�
1 0
0 1

�
. The coproduct �

extends to a unital �-homomorphism�WC.SUq.2//! C.SUq.2//˝min C.SUq.2//,
which turns C.SUq.2// into a C �-algebraic compact quantum group in the sense of
Woronowicz; see [79]. For general C �-algebraic compact quantum groups, it is not
true that one can find a bounded counit, but since C.SUq.2// is known to be coamen-
able, the counit �WO.SUq.2//!C actually does extend to a unital �-homomorphism
�WC.SUq.2//! C; see [7].
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3.1 The quantum enveloping algebra

We are also interested in the quantum enveloping algebra Uq.su.2//. For q 2 .0; 1/,
this is defined (see [40, Chapter 4]) as the universal unital C-algebra with generators
e, f , k, k�1 subject to the relations

kk�1 D 1D k�1k; ek D qke; kf D qf k and fe � ef D
k2 � k�2

q � q�1
: (3.2)

The quantum enveloping algebra becomes a unital �-algebra for the adjoint operation
determined by the formulae k�D k and e�D f . For qD 1, the (quantum) enveloping
algebra is defined as the universal unital algebra with generators e, f , h satisfying the
relations

Œh; e� D �2e; Œh; f � D 2f and Œf; e� D h;

with involution given by h�D h and e�D f ; i.e., it agrees with the enveloping algebra
of the Lie algebra su.2/ as one would expect. Note that we have chosen to follow the
notation from [22], and that the quantum enveloping algebra just defined is the one
denoted Ŭq.sl2/ in [40]. The quantum enveloping algebra Uq.su.2// is also a Hopf
�-algebra. For q ¤ 1, the comultiplication, antipode and counit are determined by the
formulae

�.e/ D e ˝ k C k�1 ˝ e S.e/ D �q�1e �.e/ D 0

�.f / D f ˝ k C k�1 ˝ f S.f / D �qf �.f / D 0

�.k/ D k ˝ k S.k/ D k�1 �.k/ D 1

and for q D 1 by

�.e/ D e ˝ 1C 1˝ e S.e/ D �e �.e/ D 0

�.f / D f ˝ 1C 1˝ f S.f / D �f �.f / D 0

�.h/ D h˝ 1C 1˝ h S.h/ D �h �.h/ D 0:

In order to unify our notation, it is convenient to put k D 1 in the case where q D 1.
The coordinate algebra O.SUq.2// and the quantum enveloping algebra Uq.su.2//

are related to one another by means of a non-degenerate dual pairing of Hopf �-
algebras [40, Chapter 4, Theorem 21]. For q ¤ 1, this pairing can be described as
follows:

hk; ui D

 
q�

1
2 0

0 q
1
2

!
; he; ui D

�
0 1

0 0

�
and hf; ui D

�
0 0

1 0

�
; (3.3)

and for q D 1 the same formulae apply together with the additional identity

hh; ui D

�
�1 0

0 1

�
:
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The dual pairing yields a left action and a right action of Uq.su.2// on O.SUq.2//.
These actions play a central role in the present text and for � 2 Uq.su.2// they are
defined by the linear endomorphisms

@� WD .1˝ h�; �i/� and ı� WD .h�; �i ˝ 1/�

of O.SUq.2//. Thus, @� denotes the left action associated to � whereas ı� denotes the
corresponding right action. Pairing the generators of O.SUq.2// and Uq.su.2// one
obtains the following explicit formulae for the endomorphisms coming from e and f
(we are here only listing the non-zero values):

@e.a/ D b
� @f .a

�/ D �qb ıe.a
�/ D b� ıf .a/ D �qb

@e.b/ D �q
�1a� @f .b

�/ D a ıe.b/ D �q
�1a ıf .b

�/ D a�:
(3.4)

The endomorphisms coming from e and f in Uq.su.2// are related to one another
via the adjoint operation, meaning that

@e.x
�/ D �q�1@f .x/

� and ıe.x
�/ D �q�1ıf .x/

� (3.5)

for all x 2 O.SUq.2//. We furthermore record that @k and ık are algebra auto-
morphisms of O.SUq.2//. The relationship between these automorphisms and the
adjoint operation is given by @k.x�/ D @�1k .x/

� and ık.x�/ D ı�1k .x/� for all x 2
O.SUq.2//. The relevant formulae on generators are listed here:

@k.a/ D q
1
2 a @k.b/ D q

1
2 b ık.a/ D q

1
2 a ık.b

�/ D q
1
2 b�: (3.6)

All these formulae may be derived directly from the defining relations for O.SUq.2//
and Uq.su.2// and the definition of a dual pairing of Hopf �-algebras [40, Chapter 1,
Definition 5 & (41)]. In the same way one sees that both @e and @f are twisted deriv-
ations, in the sense that

@e.xy/ D @e.x/@k.y/C @k�1.x/@e.y/

@f .xy/ D @f .x/@k.y/C @k�1.x/@f .y/
(3.7)

for all x; y 2 O.SUq.2//.
We shall encounter such twisted derivations numerous times in the sections to

follow and we therefore formalise this notion in the following short section.

3.2 Twisted derivations

Definition 3.2.1. Let A and B be C �-algebras and let � and � WA! B be algebra
homomorphisms defined on a dense �-subalgebra A � A. We say that a linear map
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d WA! B is a twisted derivation when d.x � y/ D d.x/ � �.y/C �.x/ � d.y/ for all
x;y 2A. A twisted derivation is called a twisted �-derivation when d.x�/D�d.x/�

and �.x�/� D �.x/ for all x 2 A.

We remark that a twisted derivation d WA ! B is the same thing as a deriva-
tion d WA! B when B is given the bimodule structure determined by the algebra
homomorphisms � and � WA! B .

3.2.0.1 q-numbers. We are going to need two versions of q-numbers. For q 2 .0; 1�
and n 2 N we define the quantity

hniq WD 1C q
2
C � � � C q2.n�1/: (3.8)

Furthermore, the classical q-number makes sense for every a 2 R and is defined by

Œa�q WD

´
qa�q�a

q�q�1 q 2 .0; 1/

a q D 1:

Whenever no confusion can arise, we omit the subscript q from the notation.

3.3 Corepresentation theory

The (co-)representation theory of SUq.2/ is well understood, and turns out to be equi-
valent with that of SU.2/; see [78, Section 5]. We may therefore choose a complete
set of irreducible corepresentation unitaries un 2MnC1.O.SUq.2///, n 2 N0, where
the matrix entries unij are labelled by indices i; j 2 ¹0; 1; : : : ; nº. For q ¤ 1, we fix
this choice of irreducible corepresentation unitaries such that

hk; unij i D ıij � q
j�n

2

he; unij i D ıi;j�1 � q
1�n

2

p
hn � j C 1iqhj iq

hf; unij i D ıi;jC1 � q
1�n

2

p
hn � j iqhj C 1iq;

(3.9)

and for q D 1 we fix the same formulae together with the additional identity

hh; unij i D ıij � .2j � n/:

We record that the fundamental unitary u agrees with the irreducible corepresenta-
tion unitary u1 and that u0 D 1. We shall often refer to the entries unij 2 O.SUq.2//
as the matrix coefficients and we apply the convention that unij WD 0 whenever one
of the parameters n; i; j is outside of its natural range; i.e., when n < 0 or .i; j / …
¹0; : : : ; nº2. The adjoint operation can be described at the level of the matrix coeffi-
cients via the formula

.unij /
�
D .�q/j�iunn�i;n�j I (3.10)
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see for instance [21, Section 2]. For more details on the corepresentation theory for
quantum SU.2/, we refer the reader to [40, Chapter 3, Theorem 13 & Chapter 4, Pro-
positions 16 and 19]. Using the q-Clebsch–Gordan coefficients (see [21, Section 3]
and [40, Chapter 3.4]) one may explicitly describe the products between the generat-
ors and the matrix coefficients:

a� � unij D q
iCj

p
hn � i C 1ihn � j C 1i

hnC 1i
� unC1ij C

p
hiihj i

hnC 1i
� un�1i�1;j�1

b� � unij D q
j

p
hi C 1ihn � j C 1i

hnC 1i
� unC1iC1;j � q

iC1

p
hn � iihj i

hnC 1i
� un�1i;j�1

a � unij D

p
hi C 1ihj C 1i

hnC 1i
� unC1iC1;jC1 C q

iCjC2

p
hn � iihn � j i

hnC 1i
� un�1ij

b � unij D �q
i�1

p
hj C 1ihn � i C 1i

hnC 1i
� unC1i;jC1 C q

j

p
hn � j ihii

hnC 1i
� un�1i�1;j :

(3.11)
In particular, it holds that un00 D .a

�/n for all n 2 N0, a fact that will be used several
times throughout the memoir.

3.4 The Haar state

Quantum SU.2/ comes equipped with its Haar state hWC.SUq.2//! C which can
be expressed on the matrix coefficients by the simple relations

h.1/ D 1 and h.unij / D 0

for all n 2 N and i; j 2 ¹0; 1; : : : ; nº; see e.g. [40, Chapter 4, (50)]. On the elements
�klm of the linear basis (3.1), the Haar state vanishes if k ¤ 0, and for k D 0 it
furthermore vanishes when l ¤ m. Finally, when k D 0 and l D m it holds that

h.bmb�m/ D
1

hmC 1iq
I (3.12)

see e.g. [75, Theorem 6.2.17]. As the name suggests, the Haar state is bi-invariant
with respect to the comultiplication in the sense that

.h˝ 1/�.x/ D .1˝ h/�.x/ D h.x/ � 1 for all x 2 C.SUq.2//:

For q ¤ 1, the Haar state is not a trace, but it is a twisted trace with respect to the
algebra automorphism � WD ık�2 ı @k�2 , in the sense that

h.xy/ D h.�.y/x/ for all x; y 2 O.SUq.2//I (3.13)
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see [40, Chapter 4, Proposition 15]. Using the formulae in (3.9), one sees that the
modular automorphism � is given by the following formula on the matrix coefficients:

�.unij / D q
2.n�i�j /

� unij : (3.14)

The algebra automorphisms ık�1 ı @k�1 and ık ı @k will be denoted �
1
2 and ��

1
2 ,

respectively.
The Haar state is faithful and we denote the corresponding GNS Hilbert space

by L2.SUq.2// and the natural embedding C.SUq.2// � L2.SUq.2// by ƒ. Fur-
thermore, we denote the associated injective �-homomorphism by �WC.SUq.2//!
B.L2.SUq.2/// and the notation L1.SUq.2// refers to the enveloping von Neumann
algebra so that L1.SUq.2// agrees with the double commutant �.C.SUq.2///00 �
B.L2.SUq.2///. Lastly, the diagonal representation of C.SUq.2// on two copies of
L2.SUq.2// plays a prominent role in the sections to follow and will be denoted by
� W C.SUq.2// ! B.L2.SUq.2//˚2/. Whenever convenient, we apply the notation
Hq WDL

2.SUq.2//. The matrix unitsunij constitute an orthogonal basis inL2.SUq.2//
and the 2-norms of unij and .unij /

� are given by

hunij ; u
n
ij i D h

�
.unij /

�unij
�
D

q2.n�i/

hnC 1iq˝
.unij /

�; .unij /
�
˛
D h

�
unij .u

n
ij /
�
�
D

q2j

hnC 1iq
I

(3.15)

whenever n 2 N0 and i; j 2 ¹0; : : : ; nº; see [40, Chapter 4, Theorem 17].

3.5 Circle actions

The unital C �-algebra C.SUq.2// carries two distinguished circle actions

�L and �RWS
1
� C.SUq.2//! C.SUq.2//

referred to as the left circle action and the right circle action, respectively. These two
circle actions are given on the matrix coefficients by the formulae

�L.z; u
n
ij / D z

2j�nunij and �R.z; u
n
ij / D z

2i�nunij (3.16)

for all z 2 S1, n 2 N0 and i; j 2 ¹0; 1; : : : ; nº; see for example [41, Section 2.2]. The
spectral subspaces for the left circle action play a special role in the present text and
they are denoted by

Amq WD
®
x 2 C.SUq.2//

ˇ̌
�L.z; x/ D z

m
� x for all z 2 S1

¯
; m 2 Z:
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For each m 2 Z we define the algebraic spectral subspace Am
q WD A

m
q \O.SUq.2//.

Note that the Podleś sphere (see [66]) agrees with the fixed point algebra so that
C.S2q / D A

0
q , and the coordinate algebra O.S2q / agrees with the algebraic fixed point

algebra A0
q . The algebraic spectral subspaces are left comodules over O.SUq.2// in

the sense that the coproduct restricts to a coaction �WAm
q ! O.SUq.2//˝Am

q for
each m 2 Z. The spectral subspace Amq comes with an associated spectral projection
…L
mWC.SUq.2//! Amq defined by the norm-convergent Riemann integral

…L
m.x/ D

1

2�

Z 2�

0

�L.e
ir ; x/ � e�irmdr: (3.17)

Note that…L
m is a contraction and that…L

m.O.SUq.2///�Am
q . We apply the notation

Hm
q � Hq for the Hilbert space closure of ƒ.Am

q / � Hq . For each M 2 N0, we
introduce the spectral band

BMq WD

MX
mD�M

Amq : (3.18)

The spectral band also exists in an algebraic version, namely BM
q WD

PM
mD�M Am

q .
We note that BMq agrees with the norm-closure of the algebraic spectral band, where
the non-trivial inclusion follows by using the spectral projections.

3.6 Analytic elements

For each s 2 .0; 1�, we define the closed strip

Is WD

²
z 2 C

ˇ̌̌̌
Im.z/ 2

�
log.s/
2

;�
log.s/
2

�³
� C: (3.19)

Definition 3.6.1. Let s 2 .0; 1�. We say that an element x 2 C.SUq.2// is analytic of
order� log.s/=2when the continuous map R!C.SUq.2// given by r 7! �L.e

ir ; x/

extends to a continuous map Is ! C.SUq.2// which is analytic on the interior I ıs �
Is . If so, we denote this (unique) continuous extension by z 7! �L.e

iz; x/.

Let x;y 2 C.SUq.2// be analytic of order� log.s/=2. Applying the basic proper-
ties of operator valued analytic maps we obtain that x � y and x� are analytic of order
� log.s/=2 and that we have the relations

�L.e
iz; x � y/ D �L.e

iz; x/ � �L.e
iz; y/ and �L.e

iz; x�/ D �L.e
i � Nz; x/� (3.20)

for all z 2 Is . The set of elements that are analytic of order� log.s/=2 thus constitutes
a unital �-subalgebra.



Preliminaries on quantum SU.2/ 30

Lemma 3.6.2. Let s 2 .0; 1� and let x be an analytic element of order � log.s/=2. If
T WC.SUq.2//! C.SUq.2// is a bounded operator which is equivariant with respect
to the circle action �L, then T .x/ is analytic of order � log.s/=2 and it holds that
T .�L.e

iz; x// D �L.e
iz; T .x// for all z 2 Is .

Proof. Since T is bounded, the map Is 3 z 7! T .�L.e
iz; x// 2 C.SUq.2// is con-

tinuous and analytic on the interior I ıs . Moreover, for r 2R we have T .�L.eir ; x//D
�L.e

ir ;T x/, so it follows that T .x/ is analytic of order� log.s/=2 and, by the identity
theorem for analytic functions, that T .�L.eiz; x//D �L.eiz; T .x// for all z 2 Is .

Lemma 3.6.3. Letm 2 Z and x 2 Amq . It holds that x is analytic of order � log.s/=2
for all s 2 .0; 1� and that the associated extension is given by

�L.e
iz; x/ D eiz�m � x for all z 2 C:

Proof. This follows since �L.eit ; x/ D eit �m � x and since z 7! eiz�m is analytic.

It follows from Lemma 3.6.3 that every x 2 O.SUq.2// is analytic of order
� log.s/=2 for all s 2 .0; 1� and that we have an algebra automorphism

�L.e
iz; �/WO.SUq.2//! O.SUq.2//

for all z 2 C. Moreover, it holds that �L.eiz; �L.eiw ; x// D �L.e
i.zCw/; x/ for all

z; w 2 C and x 2 O.SUq.2//. As a consequence Lemma 3.6.3 we also obtain that

�L.q
1
2 ; x/ D @k.x/ for all x 2 O.SUq.2//:

For each s 2 .0;1/, we also introduce the unbounded operator �s;0WO.SUq.2//˚2!
L2.SUq.2//˚2 given by the formula

�s;0

�
�

�

�
WD

 
s

1�n
2 0

0 s
�1�m

2

!�
�

�

�
(3.21)

for all � 2 An
q and � 2 Am

q . Since �s;0 admits an orthonormal basis of eigenvectors
with strictly positive eigenvalues, we obtain that �s;0 is closable and that the closure
is a positive unbounded operator with dense image. We denote this closure by

�sWDom.�s/! L2.SUq.2//˚2:

The inverse of �s is again a positive unbounded operator with dense image and we
have the following identities regarding images and domains:

Dom.��1s / D Im.�s/ and Im.��1s / D Dom.�s/:
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The inverse ��1s agrees with the closure of the unbounded operator

�s�1;0WO.SUq.2//˚2 ! L2.SUq.2//˚2

and we therefore have the identity ��1s D �s�1 .

Lemma 3.6.4. Let s 2 .0; 1�. If x 2 C.SUq.2// is analytic of order � log.s/=2, then
it holds that x.Dom.�s// � Dom.�s/ and x.Im.�s// � Im.�s/ and we have the
relations

�sx�
�1
s .�/ D �L.s

� 1
2 ; x/.�/ and ��1s x�s.�/ D �L.s

1
2 ; x/.�/

for all � 2 Im.�s/ and � 2 Dom.�s/.

Proof. Suppose that x 2 C.SUq.2// is analytic of order � log.s/=2. We focus on
showing that x.Dom.�s// � Dom.�s/ and that �sx��1s .�/ D �L.s

� 1
2 ; x/.�/ for all

� 2 Dom.�s/, since the remaining identities follow by similar arguments. We apply
the notation E WD O.SUq.2//˚2 for the defining core for �s . It then suffices to show
that

h�s�; x�
�1
s �i D

˝
�; �L.s

� 1
2 ; x/�

˛
(3.22)

for all �; � 2 E . Let thus �; � 2 E be given. For each r 2 R we consider the unit-
ary operator � irs WL

2.SUq.2//˚2 ! L2.SUq.2//˚2. It can then be verified that these
unitary operators implement the left circle action in the sense that the identity

� irs x�
�ir
s D �L

�
e�ir log.s/=2; x

�
(3.23)

holds for all r 2 R. Indeed, when x belongs to a spectral subspace the above identity
follows from Lemma 3.6.3 and therefore holds in general by density and continuity.

Let us define the closed strip I WD ¹z 2 C j Im.z/ 2 Œ�1; 1�º together with the
continuous functions f; gW I ! C given by the formulae

f .z/ WD h� i � Nzs �; x� i �zs �i and g.z/ WD
˝
�; �L.e

i �z log.s/=2; x/�
˛

for all z 2 C. Notice that the first of these functions makes sense since �; � 2 E

and the second makes sense because x is analytic of order � log.s/=2. Both of these
functions are then holomorphic on the interior of the strip I ı and they agree on the
real line R � I by an application of (3.23). This implies that f .z/ D g.z/ for all
z 2 I and we obtain the identity in (3.22) by evaluating at z D i .

For each t2.0;1�, we apply the notation Anat .SUq.2// for the unital �-subalgebra
of C.SUq.2// consisting of elements x 2 C.SUq.2// which are analytic of order
max¹� log.q/=2;� log.t/=2º. We equip Anat .SUq.2// with the norm k � kt;q defined
by

kxkt;q WD max
®�L.t 1

2 ; x/
C �L.q 1

2 ; x/
; �L.t� 1

2 ; x/
C �L.q� 1

2 ; x/
¯
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and record that Anat .SUq.2// is then a unital Banach �-algebra. For more details,
see for instance [11, Example 1.5]. We end this section by a small lemma providing
an estimate on the norm k � kt;q on a fixed spectral band.

Lemma 3.6.5. Let M 2 N0 and x 2 BMq . It holds that x 2 Anat .SUq.2// and we
have the estimate

kxkt;q 6
MX

mD�M

.t
m
2 C q

m
2 / � kxk for all t 2 .0; 1�:

Proof. This follows from Lemma 3.6.3. Indeed, for every s 2 .0;1�we have the estim-
ate: �L.s˙ 1

2 ; x/
 D  MX

mD�M

s˙
m
2 …L

m.x/

 6
MX

mD�M

s˙
m
2 kxk:

3.7 The continuous field

It is possible to consider the unital C �-algebras C.SUq.2// for different values of
q 2 .0; 1� as fibres in a continuous field of C �-algebras, as was shown by Blanchard
in [10]. For the sake of clarity, we will, for a moment, adorn the elements in SUq.2/
with an additional q, thus writing aq and bq for the generators. Let us fix ı 2 .0;1/. We
obtain from [10, Théorème 3.3 & Proposition 7.1] that there exists a unital continuous
field of C �-algebras C.SU�.2// over Œı; 1� whose fibre at q agrees with C.SUq.2//.
Concretely, the continuous field C.SU�.2// is defined as the universal C �-algebra
generated by three elements a�, b� and f subject to the relations

– f commutes with a� and b�;

– f is selfadjoint and the spectrum of f agrees with the interval Œı; 1�;

– u� D
� a�� �f b�
b�� a�

�
is a unitary element in M2.C.SU�.2///.

For each q 2 Œı; 1�, the evaluation homomorphism evqW C.SU�.2// ! C.SUq.2//
is defined by sending the generators a� and b� to the corresponding generators aq
and bq inC.SUq.2// and by sending f to the scalar q. In what follows, we will tacitly
identify C �.f / with C.Œı; 1�/. We denote by O.SU�.2// the unital �-subalgebra gen-
erated by C �.f /, a� and b�. Note that it follows from the discussion in the beginning
of Chapter 3 that the elements

�klm� WD

´
ak�b

l
�.b
�
� /
m k; l;m > 0

bl�.b
�
� /
m.a�� /

�k k < 0; l;m > 0
(3.24)

constitute a basis for O.SU�.2// when considered as a C.Œı; 1�/-module. Let k 2 Z
and l;m 2 N0. As a consequence of the twisted Leibniz rule from (3.7) there exists a
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unique element @e�.�
klm
� / 2 O.SU�.2// such that

evq
�
@e�.�

klm
� /

�
D @e

�
evq.�klm� /

�
for all q 2 Œı; 1�:

We may thus define @e� WO.SU�.2//! O.SU�.2//, by mapping each basis element
�klm� to @e�.�

klm
� / and extending by C.Œı; 1�/-linearity. By construction, it holds that

evq
�
@e�.x�/

�
D @e

�
evq.x�/

�
for all x� 2 O.SU�.2// and q 2 Œı; 1�:

In a similar fashion, we define a C.Œı; 1�/-linear map @f� WO.SU�.2//! O.SU�.2//
satisfying that

evq
�
@f�.x�/

�
D @f

�
evq.x�/

�
for all x� 2 O.SU�.2// and q 2 Œı; 1�:





Chapter 4

Spectral geometry on quantum SU.2/

In this chapter we provide a detailed treatment of the non-commutative geometry of
quantum SU.2/. As alluded to in the introduction, it has turned out remarkably diffi-
cult to properly unify the theory of quantum groups with Connes’ non-commutative
geometry, and the general consensus seems to be that one needs to relax Connes’
axioms by allowing for certain twists; see [19]. There are by now a number of can-
didates for Dirac operators on SUq.2/ with various advantages and disadvantages [8,
9, 13, 21, 38, 41, 42, 62], and here we wish to give a detailed analysis of the Dirac
operators proposed in [38,41] from the quantum metric point of view. In order to treat
both Dirac operators simultaneously, it will be an advantage to allow for an additional
parameter t which, for fixed q, interpolates between the Dirac operator from [38] and
that from [41] on SUq.2/. We emphasise that for t ¤ q we do not work with a single
Dirac operator but rather with a pair of Dirac operators, aligning with the termino-
logy from classical fiber bundles, we refer to them as the vertical and horizontal Dirac
operator, respectively. The vertical and horizontal Dirac operators are in fact incom-
patible in the sense that their interactions with the coordinate algebra require the use
of two different twists.

4.1 The horizontal and vertical Dirac operators

Let us fix two parameters t; q 2 .0; 1�. We define two unbounded operators DH
q

and DV
t WO.SUq.2//˚2 ! L2.SUq.2//˚2. The first of these unbounded operators

is referred to as the horizontal Dirac operator and is given by the matrix

DH
q WD

 
0 �q�

1
2 @f k�1

�q
1
2 @ek�1 0

!
: (4.1)

We remark that DH
q is independent of the parameter t 2 .0;1�. The second unbounded

operator is referred to as the vertical Dirac operator and given by the assignment

DV
t

�
�

�

�
WD

 
t
�nC1

2

�
n�1
2

�
t

0

0 �t
�m�1

2

�
mC1
2

�
t

!
�

�
�

�

�
(4.2)

for all � 2 An
q and � 2 Am

q . A direct computation verifies that both DV
t and DH

q are
symmetric and for both operators there exists a family of orthogonal finite dimen-
sional invariant subspaces which span a dense subspace in L2.SUq.2//˚2; it may
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even be deduced from (3.9) that we can obtain a joint invariant family of finite dimen-
sional subspaces, by setting

V nij WD

´ 
� � unij
� � uni;j�1

! ˇ̌̌̌
ˇ�;� 2 C

µ
� O.SUq.2//˚2; n 2 N0; i; j 2 ¹0; : : : ; nº:

It therefore follows that DH
q , DV

t and DV
t CDH

q are essentially selfadjoint, and we
denote the selfadjoint closures of the horizontal and vertical Dirac operators by DH

q

andDV
t , respectively. Moreover, we have the following convenient description of the

closure of DV
t CDH

q WO.SUq.2//˚2 ! L2.SUq.2//˚2:

Lemma 4.1.1. The unbounded operator DV
t CDH

q is essentially selfadjoint. More-
over, it holds that Dom.DV

t CDH
q / D Dom.DV

t / \ Dom.DH
q / and DV

t CDH
q D

DV
t CD

H
q .

Proof. We already argued that DV
t CDH

q is essentially selfadjoint. Let n; m 2 Z.
Using that @e.An

q/�An�2
q and @f .Am

q /�AmC2
q , we obtain for � 2An

q and � 2Am
q

that

DH
q DV

t

�
�

�

�
D DH

q

 
t�

n�1
2

�
n�1
2

�
t
�

�t�
mC1

2

�
mC1
2

�
t
�

!
D

 
q�

1
2 t�

mC1
2

�
mC1
2

�
t
@f k�1�

�q
1
2 t�

.n�1/
2

�
n�1
2

�
t
@ek�1�

!

D �

 
t�

.mC2/�1
2

�
.mC2/�1

2

�
t

0

0 �t�
.n�2/C1

2

�
.n�2/C1

2

�
t

! 
�q�

1
2 @f k�1�

�q
1
2 @ek�1�

!

D �DV
t DH

q

�
�

�

�
:

Hence, DV
t and DH

q anti-commute on the core O.SUq.2//˚2 and from [51, Pro-
position 2.3] it therefore follows that DV

t and DH
q weakly anti-commute in the sense

of [51, Definition 2.1]. An application of [51, Theorem 2.6] thus gives thatDV
t CD

H
q

is selfadjoint on Dom.DV
t / \ Dom.DH

q /; see also [36, 58]. Hence DV
t CDH

q �

DV
t C D

H
q and since both operators are selfadjoint the opposite inclusion follows

trivially.

4.2 The origin of the Dirac operators

We now describe the precise relationship between the Dirac operators constructed
above and those introduced in [38, 41]. Setting t D q, a direct computation verifies
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that

Dq WD DV
q CDH

q D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0@ 1�q@
k�2

q�q�1 �q�
1
2 @f k�1

�q
1
2 @ek�1

q�1@
k�2�1

q�q�1

1A for q 2 .0; 1/ 
1
2
.@h � 1/ �@f

�@e �
1
2
.@h C 1/

!
for q D 1:

Comparing with the Dirac operator DKS
q introduced in [38] we then have the identity

Dq D

�
0 1

�1 0

�
DKS
q

�
0 �1

1 0

�
:

In [41], Krähmer, Rennie and Senior proposed another candidate for a Dirac oper-
ator, DKRS

q , which they apply to construct a non-trivial twisted Hochschild 3-cocycle;
see [41, Theorem 3.5]. This provides one way of formalising the intuition that SUq.2/
ought to have dimension 3 as a non-commutative manifold, avoiding the typical
dimension drop phenomenon. In our notation, their Dirac operator is given by

DKRS
q WD DV

1 C

 
0 q�

1
2 @kf

q
1
2 @ke 0

!
„ ƒ‚ …

DWDH
KRS

:

The relationship between our horizontal Dirac operator and the horizontal Dirac oper-
ator introduced by Krähmer, Rennie and Senior is governed by the unbounded strictly
positive operator �q;0 via the relation

�q;0D
H
KRS�q;0 D �DH

q : (4.3)

The vertical and horizontal Dirac operatorsDV
1 andDH

q are also compatible with the
unbounded Kasparov product in a way which we will now explain; see [37,58,59]. It
is however important to realise that the triple�

C.SUq.2//; L2.SUq.2//˚2;DV
1 CD

H
q

�
is not a spectral triple unless q D 1, so that we are formally beyond the scope of the
current state of the art in unbounded KK-theory. We let D0

q denote the Dirac oper-
ator associated with the Da̧browski–Sitarz spectral triple .C.S2q /; H

1
q ˚H

�1
q ; D0

q/;
see [22]. We are going to discuss this even spectral triple in more details in Sec-
tion 5.1, but record for the moment thatD0

q agrees with the closure of the unbounded
symmetric operator

D0
q WD

�
0 �@f
�@e 0

�
WA1

q ˚A�1q ! H 1
q ˚H

�1
q :
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The grading operator onH 1
q ˚H

�1
q is denoted by  WD

�
1 0
0 �1

�
, and the derivation on

O.S2q / coming fromD0
q by taking commutators is denoted by @0WO.S2q /! B.H 1

q ˚

H�1q /.
Let E denote the Hilbert C �-module obtained by completing O.SUq.2// with

respect to the C.S2q /-valued inner product given by hx; yi WD …L
0 .x
�y/. We may

turn E into a C �-correspondence from C.SUq.2// to C.S2q / where the left action of
the unital C �-algebra C.SUq.2// is induced by the product structure in O.SUq.2//.
The C �-correspondence E can moreover be equipped with the unbounded selfad-
joint and regular operator N WDom.N /! E defined on the core O.SUq.2// � E by
putting N.x/ D n � x whenever x 2 An

q . The pair .C.SUq.2//; E;N / is then an odd
unbounded Kasparov module from C.SUq.2// to C.S2q /; see [12] for more details.

Following the scheme of unbounded KK-theory, we should in principle be able
to form the unbounded Kasparov product of the odd unbounded Kasparov module
.C.SUq.2//;E;N / and the even spectral triple .C.S2q /;H

1
q ˚H

�1
q ;D0

q/. The result
of this operation is in general not a spectral triple on C.SUq.2//, but we still invest-
igate the involved unbounded operators on the Hilbert space E y̋ C.S2

q /
.H 1

q ˚H
�1
q /,

which arises as the interior tensor product between the C �-correspondence E and the
C �-correspondence H 1

q ˚H
�1
q . The interior tensor product E y̋ C.S2

q /
.H 1

q ˚H
�1
q /

is isomorphic to L2.SUq.2//˚2 and the isomorphism is induced by the product struc-
ture in O.SUq.2//. The unbounded selfadjoint and regular operatorN WDom.N /!E

gives rise to the unbounded selfadjoint and regular operator N y̋  WDom.N y̋ 1/!
E y̋ C.S2

q /
.H 1

q ˚H
�1
q / which is given by N ˝  on the core

Dom.N /˝C.S2
q /
.H 1

q ˚H
�1
q / � E y̋

C.S2
q /

.H 1
q ˚H

�1
q /:

Under the isomorphism between E y̋ C.Sq2 /.H
1
q ˚H

�1
q / and L2.SUq.2//˚2 it can

be verified that N y̋  agrees with DV
1 . This explains the relationship between the

vertical Dirac operator DV
1 and the expected formula from unbounded KK-theory.

In order to explain the relationship between the horizontal Dirac operator and
constructions appearing in unbounded KK-theory, we define the Graßmann connec-
tion

rWO.SUq.2//! E y̋

C.S2
q /

B.H 1
q ˚H

�1
q /

by putting r.x/ WD
Pn
iD0.u

n
i0/
� ˝ @0.uni0 � x/ whenever x belongs to the algebraic

spectral subspace An
q � O.SUq.2//. Combining this Graßmann connection with the

Dirac operator from the Da̧browski–Sitarz spectral triple we obtain the linear map

1˝r D0
q WO.SUq.2// ˝

O.S2
q /

.A1
q ˚A�1q /! E y̋

C.S2
q /

.H 1
q ˚H

�1
q /

given by .1 ˝r D0
q /.x ˝ y/ WD r.x/.y/ C x ˝D0

q .y/, where the domain agrees
with the balanced tensor product O.SUq.2//˝O.S2

q /
.A1

q ˚A�1q /. It can then be veri-
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fied that 1 ˝r D0
q induces an unbounded symmetric operator on the Hilbert space

E y̋ C.Sq2 /.H
1
q ˚ H

�1
q /. Moreover, this unbounded symmetric operator is unitar-

ily equivalent to DKRS
H WO.SUq.2//˚2 ! L2.SUq.2//˚2. The dampening procedure

applied in (4.3) in order to pass from the horizontal Dirac operator DKRS
H to the hori-

zontal Dirac operator DH
q appears in many places and is systematically investigated

in [32, 33] from the point of view of unbounded KK-theory. We record however that
the modular operators applied in [32,33] are all assumed to be bounded (even though
inverses are allowed to be unbounded).

4.3 Bounded twisted commutators

Recall that � W C.SUq.2// ! B.L2.SUq.2//˚2/ denotes the injective �-homomor-
phism obtained by letting the GNS representation � act diagonally. We now wish
to describe the interaction between the coordinate algebra O.SUq.2// and the hori-
zontal and vertical Dirac operators. To this end, it is convenient to introduce the linear
maps @1 and @2WO.SUq.2//! O.SUq.2// given by the formulae

@1 WD q
1
2 @e; @2 WD q�

1
2 @f ; (4.4)

as well as the linear map @3t WO.SUq.2//! O.SUq.2// given by

@3t .x/ WD Œn=2�t � x for all x 2 An
q : (4.5)

The following lemma shows that suitably twisted commutators with the hori-
zontal and vertical Dirac do indeed give rise to bounded operators, which may be
explicitly described via the maps just introduced. Note that for t D q the twist is the
same and in this case the lemma below becomes the statement from [38, Lemma 3.2];
cf. Section 4.2.

Lemma 4.3.1. For each x 2 O.SUq.2//, it holds that the twisted commutators

DH
q � �L.q

1
2 ; x/ � �L.q

� 1
2 ; x/ �DH

q WO.SUq.2//˚2 ! L2.SUq.2//˚2 and

DV
t � �L.t

1
2 ; x/ � �L.t

� 1
2 ; x/ �DV

t W O.SUq.2//˚2 ! L2.SUq.2//˚2

extend to bounded operators on L2.SUq.2//˚2 given, respectively, by

@Hq .x/ WD

�
0 �@2.x/

�@1.x/ 0

�
and @Vt .x/ WD

�
@3t .x/ 0

0 �@3t .x/

�
:

Proof. Note first that �L.s˙
1
2 ;�/ preserves O.SUq.2// for all s 2 .0; 1� by Lem-

ma 3.6.3, so that the compositions in the lemma are indeed well defined. By linearity,
it suffices to fix an n 2 Z and prove the statements for x 2 An

q . It then holds that
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�L.q
˙ 1

2 ; x/ D q˙
n
2 x D @k˙1.x/. Using the twisted Leibniz rule from (3.7), the first

formula may now be verified by a direct computation. For the second equality, one
computes the twisted commutator on an arbitrary vector in Ak

q ˚Am
q , and again a

direct computation yields the desired formula.

In classical Riemannian spin geometry, it is well known (see e.g. [16, Chapter 6,
Lemma 1]) that a continuous function has bounded commutator with the Dirac oper-
ator exactly if the function in question is Lipschitz with respect to the Riemannian
metric. Our next aim is to provide a suitable counterpart for the algebra of Lipschitz
functions in the q-deformed setting. We recall that both of the parameters t and q in
.0; 1� are currently fixed.

Definition 4.3.2. Let x 2 C.SUq.2//. We say that x is horizontally Lipschitz when

(1) x is analytic of order � log.q/=2;

(2) the bounded operator �L.q
1
2 ; x/ preserves the domain of DH

q ;

(3) the twisted commutator

DH
q � �L.q

1
2 ; x/ � �L.q

� 1
2 ; x/ �DH

q WDom.DH
q /! L2.SUq.2//˚2

extends to a bounded operator @Hq .x/ on L2.SUq.2//˚2. The set of horizont-
ally Lipschitz elements is denoted LipH .SUq.2//.

We say that x is vertically Lipschitz when

(1) x is analytic of order � log.t/=2;

(2) the bounded operator �L.t
1
2 ; x/ preserves the domain of DV

t ;

(3) the twisted commutator

DV
t � �L.t

1
2 ; x/ � �L.t

� 1
2 ; x/ �DV

t WDom.DV
t /! L2.SUq.2//˚2

extends to a bounded operator @Vt .x/ on L2.SUq.2//˚2. The set of vertically
Lipschitz elements is denoted LipVt .SUq.2//

We apply the notation Lipt .SUq.2// for the subset of C.SUq.2// consisting of ele-
ments which are both horizontally and vertically Lipschitz.

A few remarks are in place. The subset Lipt .SUq.2// � C.SUq.2// is in fact a
unital �-subalgebra which we refer to as the Lipschitz algebra. Moreover, we obtain
from Lemma 4.3.1 that O.SUq.2// � Lipt .SUq.2// and hence that Lipt .SUq.2// is
norm-dense in C.SUq.2//. The basic algebraic properties of the linear maps

@Hq and @Vt WLipt .SUq.2//! B
�
L2.SUq.2//˚2

�
can be summarised as follows.
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Lemma 4.3.3. The linear maps @Hq ; @
V
t WLipt .SUq.2//!B.L2.SUq.2//˚2/ are twis-

ted �-derivations, in the sense that the formulae

@Hq .x
�/ D �@Hq .x/

�; @Hq .x � y/ D @
H
q .x/�L.q

1
2 ; y/C �L.q

� 1
2 ; x/@Hq .y/ and

@Vt .x
�/ D �@Vt .x/

�; @Vt .x � y/ D @
V
t .x/�L.t

1
2 ; y/C �L.t

� 1
2 ; x/@Vt .y/

hold for all x; y 2 Lipt .SUq.2//.

Proof. The twisted Leibniz rules are verified through a direct computation, and the
�-compatibility follows from the selfadjointness of the involved unbounded operators
and the formula �L.s

1
2 ; x/� D �L.s

� 1
2 ; x�/, which can be derived from (3.20).

We are interested in the linear map

@t;q WD @
V
t C @

H
q WLipt .SUq.2//! B

�
L2.SUq.2//˚2

�
:

It is important to clarify that @t;q is not a twisted derivation unless t D q. It does
however hold that @t;q.x�/ D �@t;q.x/� for all x 2 Lipt .SUq.2//. Later on, in Pro-
position 5.2.4, we shall moreover see that @t;q is closable for the norm topology.

Let us denote the standard matrix units in M2.C/ by eij , i; j 2 ¹0; 1º, and intro-
duce the twisted derivations @1; @2; @3t WLipt .SUq.2//! B.L2.SUq.2/// by putting

@1.x/ WD �e11 � @t;q.x/ � e00

@2.x/ WD �e00 � @t;q.x/ � e11

@3t .x/ WD e00 � @t;q.x/ � e00

for all x 2 Lipt .SUq.2//. By Lemma 4.3.1, this notation is compatible with the nota-
tion introduced in (4.4) and (4.5). The adjective twisted above is here to be understood
in the sense of Definition 3.2.1 where the twists are given by �.q

1
2 ; �/ and �.q�

1
2 ; �/

for @1 and @2, and by �.t
1
2 ; �/ and �.t�

1
2 ; �/ for @3t .

Remark 4.3.4. Let x 2 Lipt .SUq.2// be given. A direct computation shows that˝
�0; e00@

H
q .x/e00 � �

˛
D
˝
�0; e11@

H
q .x/e11 � �

˛
D 0

for all �; �0 2 O.SUq.2//˚2. We thereby obtain @Hq .x/ D
�

0 �@2.x/
�@1.x/ 0

�
. Similarly,

one sees that @Vt .x/ D
� @3

t .x/ 0

0 @4
t .x/

�
for some twisted derivation @4t WLipt .SUq.2//!

B.L2.SUq.2///. As a consequence, the following inequality holds:

max
®
k@Vt .x/k; k@

H
q .x/k

¯
6 k@t;q.x/k: (4.6)

In analogy with the algebraic case described in Lemma 4.3.1, we shall later show (see
Remark 5.3.3) that @4t .x/ D �@

3
t .x/, implying that

@t;q.x/ D

�
@3t .x/ �@2.x/

�@1.x/ �@3t .x/

�
for all x 2 Lipt .SUq.2//:
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Definition 4.3.5. We define two seminorms, Lt;q and Lmax
t;q , on C.SUq.2// by setting

Lt;q.x/ WD

8<: k@t;q.x/k for x 2 O.SUq.2//

1 for x 2 C.SUq.2// nO.SUq.2//

Lmax
t;q .x/ WD

8<: k@t;q.x/k for x 2 Lipt .SUq.2//

1 for x 2 C.SUq.2// n Lipt .SUq.2//

The (extended) metrics on �.SUq.2// induced by the two seminorms Lt;q and Lmax
t;q

through the formula (1.1) will be denoted dt;q and dmax
t;q , respectively.

Remark 4.3.6. It follows from Lemmas 4.3.1 and 4.3.3 that Lmax
t;q and Lt;q are both

Lipschitz seminorms in the sense of Definition 2.1.1.

In Latrémolière’s approach to the quantised Gromov–Hausdorff distance [46,47],
a central role is played by an axiom demanding that the seminorm in question satisfies
a certain Leibniz inequality [47, (1.1)]. Since @t;q is not a derivation, we only get a
twisted version of the Leibniz inequality, where the operator norm appearing in [47,
(1.1)] is replaced by the norm k � kt;q introduced in Section 3.6.

Lemma 4.3.7. Let x; y 2 Lipt .SUq.2//. Then we have the estimate

Lmax
t;q .x � y/ 6 kxkt;q � Lmax

t;q .y/C L
max
t;q .x/ � kykt;q:

Proof. Let x; y 2 Lipt .SUq.2//. We first notice that the following inequalities hold:@Hq .x � y/ 6
@Hq .x/ � �L.q 1

2 ; y/
C �L.q� 1

2 ; x/
 � @Hq .y/

6 Lmax
t;q .x/ �

�L.q 1
2 ; y/

C �L.q� 1
2 ; x/

 � Lmax
t;q .y/:

Since a similar computation shows that@Vt .x � y/ 6 Lmax
t;q .x/ �

�L.t 1
2 ; y/

C �L.t� 1
2 ; x/

 � Lmax
t;q .y/;

we obtain the result of the present lemma.

One of the main results of the present memoir is Theorem B, which shows that
Lmax
t;q turns C.SUq.2// into a compact quantum metric space. Knowing this, it then

follows (cf. Theorem 2.1.5) thatLt;q also has this property. The proof of Theorem B is
contained in Chapter 5 below, but before proceeding to this, we will need to carry out
a rather detailed analysis of the spectral geometry on SUq.2/ arising from the hori-
zontal and vertical Dirac operators introduced above. We first show how one recovers
the classical spin geometry on SU.2/ when t D q D 1.
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4.4 Comparison with the classical Dirac operator

In this section, we analyse the classical case where both of the parameters t and q
are equal to one. Consider therefore the compact Lie group SU.2/ of special unitary
2 � 2-matrices. The unital C �-algebra of continuous functions on SU.2/ agrees with
C.SU1.2// and the fundamental representation U W SU.2/! U.C2/ identifies with
the fundamental unitary u2M2.C.SU1.2///. We equip SU.2/with the Haar measure
� and record that the corresponding state on C.SU.2// agrees with the Haar state
hWC.SU1.2//! C. In particular, the Hilbert space of (equivalence classes) of square
integrable functions L2.SU.2// coincides with L2.SU1.2//. We are now going to
explain how the classical Dirac operator on SU.2/ identifies with the sum of the
vertical and horizontal Dirac operators, DV

1 and DH
1 , from (4.2) and (4.1) up to

rescaling and addition of a constant.
The Lie algebra of SU.2/ is denoted by su.2/ and is explicitly given by the space

of skew-hermitian .2 � 2/-matrices of trace zero. We equip the Lie algebra su.2/

with the inner product defined by

hX; Y i WD TR.X�Y / for all X; Y 2 su.2/;

where TRWM2.C/! C denotes the normalised trace satisfying that TR.1/ D 1. We
single out the orthonormal basis for su.2/ consisting of the matrices

X1 WD

�
0 �1

1 0

�
X2 WD

�
0 i

i 0

�
X3 WD

�
i 0

0 �i

�
:

The elements in su.2/ can be identified with left-invariant vector fields on SU.2/.
Indeed, for each element X 2 su.2/ one obtains a derivation X W C1.SU.2// !
C1.SU.2// by the formula

X.f /.g/ WD
d

dt

�
f .g � etX /

�ˇ̌
tD0

for all f 2 C1.SU.2//; g 2 SU.2/: (4.7)

In this way, the inner product on the Lie algebra su.2/ yields a Riemannian metric
on SU.2/ and therefore in particular a metric on SU.2/. Upon identifying SU.2/ with
the 3-sphere S3 via the map �

z1 �z2
z2 z1

�
7! .z1; z2/

it can be verified that the corresponding metric on S3 agrees with the classical round
metric. This means that S3 sits inside R4 as a sphere of radius one, or more precisely
that the standard inclusion S3 ! R4 becomes a Riemannian immersion.

The spinor bundle for SU.2/ is the trivial complex hermitian vector bundle of
rank 2. The fundamental representation of the Lie algebra su.2/ on C2 induces a
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representation of the Clifford algebra associated to su.2/ on C2. The classical Dirac
operator DS3 WC1.SU.2//˚2! L2.SU.2//˚2 on SU.2/ is then given by the expres-
sion

DS3.�/ WD

3X
iD1

Xi �Xi .�/ D

�
iX3.�/ �X1.�/C iX2.�/

X1.�/C iX2.�/ �iX3.�/

�
I

see for example [24, Section 3.5]. Notice that we are here considering DS3 as an
unbounded operator on the Hilbert space of L2-sections of the spinor bundle. We
denote the closure of DS3 by DS3 and record that DS3 is a selfadjoint unbounded
operator.

At the level of the coordinate algebra O.SU1.2//, which we tacitly identify with
a unital �-subalgebra of C1.SU.2//, we now single out the correspondence between
the derivations associated toX1;X2;X3 2 su.2/ and the derivations @e , @f , @h defined
in Chapter 3. Using the formula (4.7) on may verify the relations

@e D �
1

2
.X1 C iX2/ @f D

1

2
.X1 � iX2/ @h D iX3;

directly on the generators a, b, a�, b�, and since all maps are derivations the same
relations hold on all of O.SU1.2//. We may thus rewrite the unbounded operator
DV
1 CDH

1 WO.SU1.2//˚2 ! L2.SU1.2//˚2 as follows:

DV
1 CDH

1 D
1

2
�

�
iX3 �X1 C iX2

X1 C iX2 �iX3

�
�
1

2
:

At the level of unbounded operators on L2.SU.2//˚2 we therefore obtain that 2 �
.DV

1 CDH
1 /C 1�DS3 . Since both of the unbounded operators 2 � .DV

1 CDH
1 /C 1

and DS3 are essentially selfadjoint we conclude that their closures agree, resulting in
the identity

2 �DV
1 CDH

1 C 1 D DS3 :

We moreover recall from Lemma 4.1.1 that DV
1 CDH

1 D DV
1 C D

H
1 . Lastly, we

spell out some consequences of the above identity of Dirac operators from the point of
view of quantum metric spaces. Let us denote the classical round metric by dS3 WS3 �

S3 ! Œ0;1/ and the corresponding Lipschitz algebra by Lip.S3/. The Lipschitz
constant associated to a Lipschitz function f W S3 ! C is denoted by LLip.f /. For
each point p 2 S3 we apply the notation evpW C.SU1.2// ! C for the pure state
given by evaluation in the point p. We are here suppressing the �-isomorphisms
C.SU1.2// Š C.SU.2// Š C.S3/.

Theorem 4.4.1. The pair .C.SU1.2//; Lmax
1;1 / is a compact quantum metric space.

The Lipschitz algebra Lip1.SU1.2// identifies with the Lipschitz algebra Lip.S3/
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and for every f 2 Lip.S3/ it holds that

Lmax
1;1 .f / D

1

2
LLip.f /:

In particular, for every pair of points p0; p1 2 S3 we obtain the formula

2 � dS3.p0; p1/ D d
max
1;1 .evp0

; evp1
/;

where the metric on the right-hand side denotes the Monge–Kantorovič metric asso-
ciated with the Lip-norm Lmax

1;1 .

Proof. A continuous function f W S3 ! C has bounded commutator with DS3 D

2 � .DV
1 CD

H
1 /C 1 if and only if f is Lipschitz with respect to dS3 [16, Chapter 6,

Lemma 1], and by the paragraph following [16, Chapter 6, Lemma 1] one has that
kŒDS3 ; f �k equals the Lipschitz constantLLip.f /. Since t D q D 1, all twists appear-
ing in the definition of the Lipschitz algebra Lip1.SU1.2// are trivial. Using that
DS3 D 2 � .DV

1 CD
H
1 /C 1 and, in particular, that the domain ofDS3 is the intersec-

tion of the domains ofDV
1 andDH

1 , it can then be verified that a continuous function
f W S3 ! C has bounded commutator with DS3 if and only if f is both vertically
and horizontally Lipschitz (meaning that f has bounded commutators with DV

1 and
with DH

1 ). The Lipschitz algebra Lip1.SU1.2// therefore agrees with the Lipschitz
algebra Lip.S3/ and the formulaLmax

1;1 .f /D
1
2
LLip.f / now follows. The comparison

formula for the two metrics dS3 and dmax
1;1 is now a consequence of [16, Chapter 6,

Formula 1]; see also [15, Proposition 1].

4.5 The real structure

In Connes’ non-commutative geometry, one encounters the notion of a real struc-
ture for a spectral triple .A;H;D/; see [17]. A real structure captures the dimension
(modulo 8) of the non-commutative spin manifold in question and is encoded by an
antilinear unitary J WH ! H (subject to a couple of conditions). Even though we
are working on the borderline of non-commutative geometry we shall nevertheless
show that one may define an analogue of a real structure in our setting. As one would
expect, this real structure gives SUq.2/ real dimension 3; see Remark 4.5.6 below for
more details.

Let us fix the parameters t; q 2 .0; 1�. Define the antilinear map JWO.SUq.2//!
O.SUq.2// by setting J.x/ D .@kık/.x

�/. Using that the modular automorphism �

is given by ık�2@k�2 WO.SUq.2//! O.SUq.2// a direct computation shows that J

extends to an antilinear unitary J on L2.SUq.2//. In fact, J is the modular conjuga-
tion arising when applying Tomita–Takesaki theory (see e.g. [74, Chapter VI]) to the
left Hilbert algebra O.SUq.2// equipped with the inner product hx; yi WD h.x�y/.
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In particular, it therefore holds that JL1.SUq.2//J D L1.SUq.2//0; see [74, Chap-
ter VI, Theorem 1.19].

We now define the antilinear map

	 WD

�
0 J

�J 0

�
WO.SUq.2//˚2 ! O.SUq.2//˚2

together with the associated antilinear unitary operator

I WD

�
0 J

�J 0

�
WL2.SUq.2//˚2 ! L2.SUq.2//˚2:

We record that I 2D�1. This is the map that will be our substitute for a real structure,
and our next aim is therefore to prove a version of the first order condition, which in
our setting amounts to a relation of the form Œ@t;q.x/; IyI �D 0; see Proposition 4.5.4.
To achieve this, the unbounded operator �s;0 defined in (3.21) turns out to be essen-
tial, and we analyse its interaction with 	, DV

t and DH
q in the following series of

lemmas.

Lemma 4.5.1. The horizontal Dirac operator DH
q commutes with �q;0 and the ver-

tical Dirac operator DV
t commutes with �s;0 for all s 2 .0; 1�.

Proof. Let n; m 2 Z. By linearity, it suffices prove the two commutation relations
on vectors of the form

�
�
�

�
2 An

q ˚Am
q . Since �q;0 preserves the algebraic spectral

subspaces and @e.An
q/ � An�2

q and @f .Am
q / � AmC2

q we obtain that:

DH
q �q;0

�
�

�

�
D

 
�q�

1
2 q
�1�m

2 @f k�1.�/

�q
1
2 q

1�n
2 @ek�1.�/

!

D

0@q 1�.mC2/
2 0

0 q
�1�.n�2/

2

1ADH
q

�
�

�

�

D �q;0D
H
q

�
�

�

�
;

thus proving the first commutation relation. Since both DV
t and �s;0 are diagonal on

An
q ˚Am

q they clearly commute here.

Lemma 4.5.2. It holds that 	 � ��1s;0 D �s;0 � 	 for all s 2 .0; 1�. Moreover, we have
the commutation relations

.DH
q �
�1
q;0/ � 	 D 	 � .DH

q �
�1
q;0/ and .DV

t �
�1
t;0 / � 	 D 	 � .DV

t �
�1
t;0 /:
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Proof. By linearity, it suffices to check the three commutation relations on subspaces
of the form An

q ˚ Am
q for arbitrary n; m 2 Z. The first commutation relation 	 �

��1s;0 D �s;0 � 	 follows on An
q ˚Am

q by noting that J.Ak
q/ D A�kq for all k 2 Z.

For the second commutation relation, we first remark that @f J.�/ D �J@e.�/ for all
vectors � 2O.SUq.2//. Indeed, using the defining relations for Uq.su.2// from (3.2)
and the �-relations from (3.5) we may compute as follows:

@f J.�/ D @f @kık.�
�/ D @kık@f .�

�/ � q�1 D �@kık@e.�/
�
D �J@e.�/:

Similarly, one sees that @eJ D �J@f , and the second commutation relation then
follows by noting that

DH
q �
�1
q;0 D

 
0 �q�

1
2 @f k�1

�q
1
2 @ek�1 0

! 
q�

1
2 @k 0

0 q
1
2 @k

!
D

�
0 �@f
�@e 0

�
:

To prove the last commutation relation, observe that the restriction of the unboun-
ded operator DV

t �
�1
t;0 to the subspace An

q ˚Am
q is represented by

�
Œn�1

2 �t 0
0 �ŒmC1

2 �t

�
.

Using one more time that J.Ak
q/ D A�kq for all k 2 Z, we now obtain the identity

.DV
t �
�1
t;0 / � 	 D 	 � .DV

t �
�1
t;0 / on An

q ˚Am
q from a direct computation.

Lemma 4.5.3. For each y 2 O.SUq.2// we have the identities

ŒDH
q ;	y	� D �q;0 � 	@

H
q .y/	 � �q;0 D 	@Hq .@k.y//	 � �

2
q;0

ŒDV
t ;	y	� D �t;0 � 	@

V
t .y/	 � �t;0 D 	@Vt .�L.t

1
2 ; y//	 � �2t;0

on the subspace O.SUq.2//˚2 � L2.SUq.2//˚2.

Proof. Using Lemmas 3.6.4, 4.5.1 and 4.5.2, we may compute as follows:

DH
q � 	y	 D DH

q �
�1
q;0 � �q;0	y	

D DH
q �
�1
q;0 � 	�L.q

1
2 ; y/	 � �q;0

D �q;0 � 	DH
q �L.q

1
2 ; y/	 � �q;0

D �q;0 � 	@
H
q .y/	 � �q;0 C �q;0 � 	�L.q

� 1
2 ; y/DH

q 	 � �q;0

D �q;0 � 	@
H
q .y/	 � �q;0 C 	y	 �DH

q :

This proves the first identity regarding the commutator with the horizontal Dirac
operator. The second one follows by a similar computation, using the same series
of lemmas as above:

�q;0	@
H
q .y/	�q;0 D 	��1q;0

�
DH
q �
�1
q;0y�q;0 � �q;0y�

�1
q;0D

H
q

�
	�q;0

D 	
�
DH
q �
�2
q;0y�

2
q;0 � yDH

q

�
��1q;0	�q;0

D 	@Hq .@k.y//	�
2
q;0:
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The remaining identities regarding the commutator with the vertical Dirac operator
are proven by completely analogous computations.

With the above lemmas at our disposal, we may now state and prove the analogue
of the first order condition.

Proposition 4.5.4. For each y 2 L1.SUq.2// and x 2 Lipt .SUq.2// we have the
identities

ŒIyI; @Hq .x/� D 0 D ŒIyI; @
V
t .x/�:

Proof. Since the von Neumann algebra L1.SUq.2// agrees with the closure of the
coordinate algebra O.SUq.2// � B.L2.SUq.2/// with respect to the strong operator
topology, it suffices to treat the case where y 2 O.SUq.2//. Let thus y 2 O.SUq.2//
be given. We will just focus on proving that IyI commutes with @Vt .x/ since the
proof of the analogous result for @Hq .x/ follows the same pattern. From Lemmas 3.6.4
and 4.5.3 we obtain the identities

IyI � �L.t
� 1

2 ; x/DV
t

D �L.t
� 1

2 ; x/	y	 �DV
t

D �L.t
� 1

2 ; x/DV
t � 	y	 � �L.t

� 1
2 ; x/�t;0 � 	@

V
t .y/	 � �t;0

D �L.t
� 1

2 ; x/DV
t � 	y	 � �t � I@

V
t .y/Ix � �t;0 (4.8)

of unbounded operators defined on the dense subspace O.SUq.2//˚2 in the Hilbert
space L2.SUq.2//˚2.

Similarly, using Lemmas 3.6.4 and 4.5.3 one more time, we obtain that˝
IyI �DV

t �L.t
1
2 ; x/�; �

˛
D
˝
�L.t

1
2 ; x/�;DV

t � 	y
�	�

˛
D
˝
�L.t

1
2 ; x/�;	y�	 �DV

t �
˛
C
˝
�L.t

1
2 ; x/�; �t;0 � 	@

V
t .y

�/	 � �t;0�
˛

D
˝
DV
t �L.t

1
2 ; x/ � IyI�; �

˛
�
˝
�t � I@

V
t .y/Ix � �t;0�; �

˛
(4.9)

for all �; � 2 O.SUq.2//˚2. Combining the identities in (4.8) and (4.9) we see that

IyI � @Vt .x/.�/ D IyI �D
V
t �L.t

1
2 ; x/.�/ � IyI � �L.t

� 1
2 ; x/DV

t .�/

D DV
t �L.t

1
2 ; x/ � IyI.�/ � �t � I@

V
t .y/Ix � �t;0.�/

� �L.t
� 1

2 ; x/DV
t � 	y	.�/C �t � I@

V
t .y/Ix � �t;0.�/

D @Vt .x/ � IyI.�/

for all � 2 O.SUq.2//˚2. This proves the proposition.
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Corollary 4.5.5. The twisted �-derivations

@Vt and @Hq WLipt .SUq.2//! B
�
L2.SUq.2//˚2

�
both take values in M2.L

1.SUq.2///.

Proof. Since J is the modular conjugation for the left Hilbert algebra O.SUq.2//
with inner product coming from the Haar state, it holds that

L1.SUq.2//0 D JL1.SUq.2//J

as an identity between operator algebras in B.L2.SUq.2///; see [74, Chapter VI,
Theorem 1.19]. For x 2 Lipt .SUq.2//, it therefore suffices to show that each entry in
@Hq .x/; @

V
t .x/ 2 B.L2.SUq.2//˚2/ DM2.B.L2.SUq.2//// belongs to the commut-

ant .JL1.SUq.2//J /0. For y 2 L1.SUq.2// it holds that

IyI D �

�
JyJ 0

0 JyJ

�
;

and hence it suffices to show that ŒIyI; @Vt .x/� D ŒIyI; @Hq .x/� D 0, but this was
already proven in Proposition 4.5.4.

Remark 4.5.6. In the classical setting of non-commutative geometry, a real 3-dimen-
sional structure for an odd spectral triple .A;H;D/ with coordinate algebra A � A

is given by an antilinear unitary J WH ! H . This data is then supposed to satisfy
the conditions J 2 D �1, DJ D JD and for all a; b 2 A one has Œa; J bJ � D 0 and
ŒŒD; a�; J bJ � D 0; see [17].

In our setting, the antilinear unitary I 2B.L2.SUq.2//˚2/ provides the substitute
for a real structure. Lemma 4.5.2 may thus be viewed as a twisted analogue of the
relationDJ D JD, while Proposition 4.5.4 is the analogue of the first order condition
ŒŒD; a�; J bJ � D 0. The relation Œa; IbI � D 0 also holds by Tomita–Takesaki theory
as already remarked in the beginning of the present section.

4.6 The equivariance condition

We are now going to investigate the equivariance properties of the spectral geo-
metric data governed by our pair of Dirac operators. In some of the literature on
Dirac operators on q-deformed spaces (see e.g. [21, 22]) the equivariance is to be
understood in the sense that the Dirac operator in question commutes with the right
action of Uq.su.2//; i.e. with the diagonal action of operators of the form ı� with
� 2 Uq.su.2// on the core O.SUq.2//˚2 � L2.SUq.2//˚2. Since DH

q is construc-
ted explicitly using the left action it clearly commutes with ı� , and since ı� preserves
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the spectral subspaces it also follows easily that DV
t commutes with ı� . Thus, this

type of equivariance is basically built into the construction ofDt;q . In this section we
shall show another kind of equivariance, in that we will show that our spectral data
is compatible with the coproduct on the C �-algebraic quantum group C.SUq.2//.
More precisely, we will show in Lemma 4.6.1 below that the vertical and horizontal
Dirac operators both commute with the multiplicative unitary for SUq.2/, which
seems to be an equivariance condition which is more closely related with the SU.2/-
equivariance of the classical Dirac operator on S3; see Remark 4.6.2 for more details.
Throughout the section, we are still keeping the two parameters t and q in .0; 1� fixed
unless explicitly stated otherwise.

Let us consider the Hilbert space tensor product L2.SUq.2// y̋L2.SUq.2// and
introduce the unitary operator

W WL2.SUq.2// y̋L2.SUq.2//! L2.SUq.2// y̋L2.SUq.2//

given by the formulaW.x˝ y/ WD�.y/ � .x˝ 1/ for all elements x;y 2O.SUq.2//.
We record thatW.O.SUq.2//˝O.SUq.2///D O.SUq.2//˝O.SUq.2// and hence
thatW �.O.SUq.2//˝O.SUq.2///DO.SUq.2//˝O.SUq.2// as well. The unitary
operatorW implements the coproduct�WC.SUq.2//! C.SUq.2//˝min C.SUq.2//
in the sense that

�.z/ D W.1˝ z/W � for all z 2 C.SUq.2//:

The operatorW is referred to as the multiplicative unitary for quantum SU.2/; see [6]
for more details on these matters. For each x 2 Lipt .SUq.2// we may use the multi-
plicative unitary to make sense of the expressions �.@Hq .x// and �.@Vt .x//. Indeed,
since @Hq .x/ and @Vt .x/ are bounded operators on L2.SUq.2//˚2 we may apply the
following definitions:

�.@Hq .x// WD .W ˚W /.1˝ @
H
q .x//.W ˚W /

� and

�.@Vt .x// WD .W ˚W /.1˝ @
V
t .x//.W ˚W /

�;

where both of the right-hand sides are bounded operators on the Hilbert space tensor
product L2.SUq.2// y̋L2.SUq.2//˚2. We would like to commute the coproduct past
the twisted �-derivations @Hq and @Vt obtaining formulae of the form

.1˝ @Hq /�.x/ D �.@
H
q .x// and .1˝ @Vt /�.x/ D �.@

V
t .x//:

In order to make sense of the left-hand sides of these expressions we first investigate
the unbounded selfadjoint operators 1 y̋DH

q and 1 y̋DV
t , defined, respectively, as the

closures of the unbounded symmetric operators

1˝DH
q WO.SUq.2//˝O.SUq.2//˚2 ! L2.SUq.2// y̋L2.SUq.2//˚2;

1˝DV
t WO.SUq.2//˝O.SUq.2//˚2 ! L2.SUq.2// y̋L2.SUq.2//˚2:
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Lemma 4.6.1. The unitary operatorW ˚W preserves the subspaces Dom.1 y̋DH
q /

and Dom.1 y̋DV / � L2.SUq.2// y̋L2.SUq.2//˚2. Moreover, it holds that

Œ1 y̋DH
q ; W ˚W �.�/ D 0 for all � 2 Dom.1 y̋DH

q / and

Œ1 y̋DV
t ; W ˚W �.�/ D 0 for all � 2 Dom.1 y̋DV

t /:
(4.10)

Proof. We first remark that the direct sum W ˚ W preserves the common core
O.SUq.2//˝O.SUq.2//˚2 for the two selfadjoint unbounded operators 1 y̋DH

q and
1 y̋DV

t . Using standard results on commutators with selfadjoint unbounded operat-
ors, it therefore suffices to verify the identities in (4.10) for elements of the form
� D � D x ˝ y with x 2 O.SUq.2// and y D

�
y1
y2

�
2 O.SUq.2//˚2. Using the coas-

sociativity of �, one sees that �@�.w/ D .1˝ @�/�.w/ for all � 2 Uq.su.2// and
w 2 O.SUq.2//. It therefore follows that

.1˝DH
q /.W ˚W /.�/

D �

 
0 1˝ q�

1
2 @f k�1

1˝ q
1
2 @ek�1 0

!�
�.y1/ � .x ˝ 1/

�.y2/ � .x ˝ 1/

�
D �

 
q�

1
2�.@f k�1.y2// � .x ˝ 1/

q
1
2�.@ek�1.y1// � .x ˝ 1/

!
D .W ˚W /.1˝DH

q /.�/:

This proves the relevant identity in the case of the horizontal Dirac operator. To treat
the commutator with the vertical Dirac operator, we simply record that W preserves
the subspace O.SUq.2//˝An

q for all values of n 2Z. The commutation relation now
follows since DV

t acts as a diagonal scalar matrix on An
q ˚Am

q for all n;m 2 Z.

Remark 4.6.2. In the situation where t D q D 1, Lemma 4.6.1 together with the
formulae �g� D .evg�1 ˝ 1/�.�/D .evg�1 ˝ 1/.W ˚W /.1˝ �/ for the left trans-
lation operator �g WO.SU.2//! O.SU.2// implies that �g ıD1;1 D D1;1 ı �g as
operators on O.SU.2//˚2. Lemma 4.6.1 thus recovers the SU.2/-equivariance of the
classical Dirac operator in this case (cf. Section 4.4).

Next, we wish to introduce the analogue of the Lipschitz algebra Lipt .SUq.2//
for the minimal tensor product C.SUq.2// ˝min C.SUq.2//, but in this case asso-
ciated with the unbounded selfadjoint operators 1 y̋DH

q and 1 y̋DV
t instead of the

unbounded selfadjoint operators DH
q and DV

t . For this to make sense, we let the
minimal tensor product of C �-algebras C.SUq.2//˝min C.SUq.2// act on

L2.SUq.2// y̋L2.SUq.2//˚2

via the representation �˝ � , which we will from now on often suppress. Note that in
this representation, the coproduct is implemented by W ˚W in the sense that

.�˝�/.�.x//D .W ˚W /.1˝�.x//.W ˚W /� for all x 2C.SUq.2//: (4.11)
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We start out by expanding our notion of analytic elements. To this end, we record that
the left circle action �LW S1 � C.SUq.2//! C.SUq.2// induces a left circle action
1˝ �L on the minimal tensor product C.SUq.2//˝min C.SUq.2// given on simple
tensors by

.1˝ �L/.z; x ˝ y/ WD x ˝ �L.z; y/ for all z 2 S1; x; y 2 C.SUq.2//:

We recall that the closed strip Is � C was introduced in (3.19) for all values of
s 2 .0; 1�.

Definition 4.6.3. Let s 2 .0;1�. An element x 2C.SUq.2//˝min C.SUq.2// is called
analytic of order � log.s/=2 when the continuous map

R! C.SUq.2//˝min C.SUq.2//

given by r 7! .1˝ �L/.e
ir ; x/ extends to a continuous function

Is ! C.SUq.2//˝min C.SUq.2//

which is analytic on the interior I ıs � Is . We denote this (unique) continuous exten-
sion by z 7! .1˝ �L/.e

iz; x/.

We record that the �-algebra structure on the minimal tensor product

C.SUq.2//˝min C.SUq.2//

induces a �-algebra structure on the subset of elements which are analytic of order
� log.s/=2.

Lemma 4.6.4. Let s 2 .0; 1�. If x 2 C.SUq.2// is analytic of order � log.s/=2 in the
sense of Definition 3.6.1, then �.x/ is analytic of order � log.s/=2 in the sense of
Definition 4.6.3. Moreover, we have the formula

.1˝ �L/.e
iz; �.x// D �.�L.e

iz; x// for all z 2 Is:

Proof. We first notice that .1˝�L/.eir ;�.x//D�.�L.eir ; x// for all x2C.SUq.2//
and r 2R. To verify this identity, it suffices to use the formula in (3.16) for the matrix
coefficients and then extend to all of C.SUq.2// by continuity and linearity. Suppose
next that x 2 C.SUq.2// is analytic of order � log.s/=2. The map r 7!�.�L.e

ir ; x//

then extends continuously to Is and the extension is analytic on I ıs . It follows that
�.x/ is analytic of order � log.s/=2 as well. The desired formula for all z 2 Is is
then a consequence of the identity theorem in complex analysis.

We now have the data needed in order to formally introduce the Lipschitz algeb-
ras associated to the unbounded selfadjoint operators 1 y̋DH

q and 1 y̋DV
t . Let x 2

C.SUq.2//˝min C.SUq.2//. We say that x is horizontally Lipschitz when

(1) x is analytic of order � log.q/=2 (with respect to 1˝ �L);
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(2) the bounded operator .1˝ �L/.q
1
2 ; x/ preserves the domain of 1 y̋DH

q ;

(3) the twisted commutator

.1 y̋DH
q / � .1˝ �L/.q

1
2 ; x/ � .1˝ �L/.q

� 1
2 ; x/ � .1 y̋DH

q /

extends to a bounded operator, denoted .1 ˝ @Hq /.x/, on the Hilbert space
L2.SUq.2// y̋L2.SUq.2//˚2.

We say that x is vertically Lipschitz when

(1) x is analytic of order � log.t/=2 (with respect to 1˝ �L);

(2) the bounded operator .1˝ �L/.t
1
2 ; x/ preserves the domain of 1 y̋DV

t ;

(3) the twisted commutator

.1 y̋DV
t / � .1˝ �L/.t

1
2 ; x/ � .1˝ �L/.t

� 1
2 ; x/ � .1 y̋DV

t /

extends to a bounded operator, denoted .1 ˝ @Vt /.x/, on the Hilbert space
L2.SUq.2// y̋L2.SUq.2//˚2.

The Lipschitz algebra Lipt .SUq.2/ � SUq.2//, then consists of the elements in
C.SUq.2//˝min C.SUq.2//which are both horizontally and vertically Lipschitz. We
record that the Lipschitz algebra Lipt .SUq.2/ � SUq.2// is a norm-dense �-subalg-
ebra of the minimal tensor product C.SUq.2//˝min C.SUq.2//.

Lemma 4.6.5. For x 2 Lipt .SUq.2// it holds that �.x/ 2 Lipt .SUq.2/ � SUq.2//
and we have the formulae .1˝@Hq /�.x/D�.@

H
q .x// and .1˝@Vt /�.x/D�.@

V
t .x//.

Proof. Let x 2 Lipt .SUq.2// be given. We focus on showing that �.x/ is horizont-
ally Lipschitz and that .1˝ @Hq /�.x/D �.@

H
q .x//, since the same argument applies

to the vertical case as well. First note that �.x/ is analytic of order � log.q/=2 by
Lemma 4.6.4. Let � 2 O.SUq.2// ˝ O.SUq.2//˚2 be an element in the core for
1 y̋DH

q , and recall that .W � ˚W �/.�/ 2 O.SUq.2//˝ O.SUq.2//˚2. Using Lem-
mas 4.6.1, 4.6.4 and (4.11) we then see that

.1˝ �L/
�
q

1
2 ; �.x/

�
.�/ D �

�
�L.q

1
2 ; x/

�
.�/

D .W ˚W /
�
1˝ �L.q

1
2 ; x/

�
.W � ˚W �/.�/ 2 Dom.1 y̋DH

q /:

Using this, another application of Lemmas 4.6.1, 4.6.4 and (4.11) shows that the
twisted commutator may be computed on � as follows:

.1 y̋DH
q /.1˝ �L/

�
q

1
2 ; �.x/

�
.�/ � .1˝ �L/

�
q�

1
2 ; �.x/

�
.1 y̋DH

q /.�/

D .W ˚W /
�
1˝DH

q �L.q
1
2 ; x/ � 1˝ �L.q

� 1
2 ; x/DH

q

�
.W � ˚W �/.�/

D .W ˚W /
�
1˝ @Hq .x/

�
.W � ˚W �/.�/ D �

�
@Hq .x/

�
.�/:
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The result of the lemma now follows since �.@Hq .x// is a bounded operator and
since O.SUq.2// ˝ O.SUq.2//˚2 is a core for the selfadjoint unbounded operator
1 y̋DH

q .

For �; � 2 L2.SUq.2// we let ��;� WC.SUq.2//! C denote the bounded linear
functional ��;� .x/ WD h�; �.x/�i. Let us moreover introduce the two bounded operat-
ors T� and T� WL2.SUq.2//˚2!L2.SUq.2// y̋L2.SUq.2//˚2 given by the formulae
T�.�/ WD � ˝ � and T� .�/ WD � ˝ �. We define the bounded operator

��;� ˝ 1WB
�
L2.SUq.2// y̋L2.SUq.2//˚2

�
! B

�
L2.SUq.2//˚2

�
given by .��;� ˝ 1/.z/ WD T �� zT� , and record that we have the estimate k��;� ˝ 1k 6
k�k � k�k on the operator norm.

The last result of the present section shows how the Lipschitz seminorm and the
coproduct interact with the slice maps just introduced. This result will be essential in
our analysis of the Berezin transform; see Proposition 6.3.6.

Proposition 4.6.6. For each �; � 2 L2.SUq.2// and z 2 Lipt .SUq.2/ � SUq.2// it
holds that .��;� ˝ 1/.z/ 2 Lipt .SUq.2// and we have the identities

@Hq
�
.��;� ˝ 1/.z/

�
D .��;� ˝ 1/.1˝ @

H
q /.z/ and

@Vt
�
.��;� ˝ 1/.z/

�
D .��;� ˝ 1/.1˝ @

V
t /.z/:

In particular, we have the estimate

Lmax
t;q

�
.��;� ˝ 1/.�.x//

�
6 k�kk�k � Lmax

t;q .x/

for all x 2 Lipt .SUq.2//.

Proof. Let �; � 2 L2.SUq.2// and z 2 Lipt .SUq.2/ � SUq.2// be given. We focus
on showing that .��;� ˝ 1/.z/ is vertically Lipschitz and that @Vt ..��;� ˝ 1/.z// D
.��;� ˝ 1/.1 ˝ @

V
t /.z/. The analogous claim regarding the horizontal Dirac oper-

ator follows by a similar argument. Notice first that we have the inclusion T�DV
t �

.1 y̋DV
t /T� of unbounded operators on L2.SUq.2//˚2. Since the same inclusion

holds with T� instead of T� we also obtain the inclusion T �
�
.1 y̋DV

t / � D
V
t T
�
�

by
applying the adjoint operation. Secondly, since .��;� ˝ 1/.y1 ˝ y2/ D ��;� .y1/y2
for y1; y2 2 C.SUq.2// it follows that

�L.e
ir ; .��;� ˝ 1/.y1 ˝ y2// D .��;� ˝ 1/.1˝ �L/.e

ir ; y1 ˝ y2/ for all r 2 R;

and hence the same formula holds globally on C.SUq.2//˝min C.SUq.2// by linear-
ity and density. We thereby obtain that x WD .��;� ˝ 1/.z/ 2 C.SUq.2// is analytic
of order � log.t/=2 (in the sense of Definition 3.6.1) and that we have the identity

�L.e
iw ; x/ D .��;� ˝ 1/.1˝ �L/.e

iw ; z/ for all w 2 It :
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It follows from the above observations that the bounded operator

�L.t
1
2 ; x/ D .��;� ˝ 1/.1˝ �L/.t

1
2 ; z/ D T �� .1˝ �L/.t

1
2 ; z/T�

preserves the domain of DV
t . Moreover, we may compute as follows for any vector

� 2 Dom.DV
t /:

DV
t � �L.t

1
2 ; x/.�/ D DV

t � T
�
� .1˝ �L/.t

1
2 ; z/T� .�/

D T �� .1 y̋D
V
t / � .1˝ �L/.t

1
2 ; z/T� .�/

D T �� .1˝ @
V
t /.z/T� .�/C T

�
� .1˝ �L/.t

� 1
2 ; z/ � .1 y̋DV

t /T� .�/

D .��;� ˝ 1/.1˝ @
V
t /.z/.�/C �L.t

� 1
2 ; x/ �DV

t .�/:

This ends the proof of the first part of the lemma. The second part of the lemma
(regarding the estimate relating to the seminorm Lmax

t;q ) now follows immediately by
an application of Lemma 4.6.5.

4.7 Conjugating the Dirac element with the fundamental unitary

The main technical tool for proving quantum Gromov–Hausdorff continuity for the
Podleś spheres S2q [3, Theorem A] is a trivialisation of the “spinor bundle” A1

q˚A�1q ,
implemented by the fundamental corepresentation unitary uWDu12M2.O.SUq.2///.
Note that this trivialisation is not compatible with the Z=2Z-grading on the spinor
bundle. As in Section 4.2, we let @0WO.S2q /! B.H 1

q ˚H
�1
q / denote the derivation

arising by taking the commutator with the Da̧browski–Sitarz Dirac operator; see [22].
In the work [3] we analysed the linear map ı0 WD u@0u�, a key feature of which is that
it gives rise to the same seminorm as @0 after composition with the operator norm.
Moreover, we saw in [3, Proposition 3.12] that ı0 can be described by means of the
right action of the quantum enveloping algebra Uq.su.2// on the coordinate algebra
O.SUq.2//.

To obtain quantum Gromov–Hausdorff continuity also at the level of quantum
SU.2/, it is therefore relevant to analyse the analogue of ı0 in this context as well,
and we carry out the relevant details in this section. For the analysis below to work of
out we need the vertical and horizontal derivations to obey the same twisted Leibniz
rule. We thus focus exclusively on the special case where the two parameters t and
q 2 .0; 1� agree, and consider the twisted �-derivation (see Definition 3.2.1)

@ WD @q;q D

�
@3q �@2

�@1 �@3q

�
WO.SUq.2//!M2

�
O.SUq.2//

�
;

where the twists are given by @k and @k�1 so that @.xy/D @.x/@k.y/C @k�1.x/@.y/

for all x; y 2 O.SUq.2//.



Spectral geometry on quantum SU.2/ 56

Note that the twisted �-derivation @3q can be described by the formula

@3 WD @3q D

´
@k�@k�1

q�q�1 for q ¤ 1
1
2
@h for q D 1;

so that @ is defined entirely in terms of the left action of Uq.su.2// on the coordin-
ate algebra O.SUq.2//. The main point is to show that when @ is conjugated with
the fundamental corepresentation unitary we obtain a twisted �-derivation which can
be expressed in terms of the right action of the quantum enveloping algebra. Recall
that for � 2 Uq.su.2//, the right action of � is defined by the linear endomorph-
ism ı�WO.SUq.2//! O.SUq.2// given by the formula ı� WD .h�; �i ˝ 1/�, and in
this way we obtain three twisted derivations ı1; ı2; ı3WO.SUq.2//! O.SUq.2// by
setting

ı1 WD q
1
2 ıe ı2 WD q�

1
2 ıf and ı3 WD

´
ık�ık�1

q�q�1 for q ¤ 1
1
2
ıh for q D 1;

which are all twisted by the automorphisms ık and ık�1 so that ıi .xy/Dıi .x/ık.y/C
ık�1.x/ıi .y/ for all x; y 2 O.SUq.2// and i 2 ¹1; 2; 3º. We now assemble this data
into a single twisted �-derivation

ı WD

�
ı3 �ı2

�ı1 �ı3

�
WO.SUq.2//!M2

�
O.SUq.2//

�
;

where the twists are again given by ık and ık�1 . Recalling that u D u1 denotes the
fundamental corepresentation unitary, the main result of this section is the identity

u@.x/u� D ı.x/ for all x 2 O.SUq.2//; (4.12)

which will play crucial role in our further analysis. The strategy for proving (4.12)
will be to first show that u@.�/u� satisfies the same twisted Leibniz rule as ı, thus
reducing the proof to verifying (4.12) on the generators of O.SUq.2//. To this end,
we will need the algebra automorphism ��

1
2 WD ık ı @k WO.SUq.2//! O.SUq.2//.

Notice that it follows from the defining commutation relations in O.SUq.2// that

bx D ��
1
2 .x/b and b�x D ��

1
2 .x/b� for all x 2 O.SUq.2//: (4.13)

Before we proceed we will introduce some relevant notation: if �; � WO.SUq.2//!
O.SUq.2// are algebra automorphisms, we shall write

Œy; x�� � WD y�.x/ � �.x/y

for the twisted commutator between two elements x; y 2 O.SUq.2//.
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Lemma 4.7.1. We have the identities

Œa�; x�ık @k
D .1 � q2/b@1.x/ and Œa; x�ık @k

D .1 � q2/q�1b�@2.x/

Œb�; x�ık @k
D b�.@k � @k�1/.x/ and Œb; x�ık @k

D b.@k � @k�1/.x/

for all x 2 O.SUq.2//.

Proof. A direct computation reveals that the operation x 7! Œa�; x�
ık @k

satisfies the
following twisted Leibniz rule:

Œa�; xy�ık @k
D Œa�; x�ık @k

� @k.y/C ık.x/ � Œa�; y�ık @k
for all x; y 2 O.SUq.2//:

It moreover follows from (4.13) that the operation x 7! b@1.x/ satisfies the same
twisted Leibniz rule so that

b@1.xy/ D b@1.x/@k.y/C ık.x/b@
1.y/ for all x; y 2 O.SUq.2//:

In order to prove the first identity of the lemma, it thus suffices to check that

a�@k.x/ � ık.x/a
�
D .1 � q2/b@1.x/

for x 2 ¹a; a�; b; b�º. In these four cases, one may verify the relevant identity by a
straightforward computation. The second identity of the lemma can be proved by a
similar argument. The two last identities (those involving twisted commutators with b
and b�) follow immediately from (4.13).

Lemma 4.7.2. We have the identities

Œu; x�ık @k
D .q2 � 1/

�
0 b

q�1b� 0

�
@.x/ and

Œu�; x�@
k�1 ı

k�1
D .q2 � 1/@.x/

�
0 q�1b

b� 0

�
for all x 2 O.SUq.2//.

Proof. The relevant identities are trivially satisfied for q D 1, so we focus on the
case where q ¤ 1 and let x 2 O.SUq.2// be given. Applying the definition of the
fundamental corepresentation unitary u together with Lemma 4.7.1 we obtain that

Œu; x�ık @k
D

 
Œa�; x�

ık @k
�q � Œb; x�

ık @k

Œb�; x�
ık @k

Œa; x�
ık @k

!
D

�
.1 � q2/b@1.x/ �qb.@k � @k�1/.x/

b�.@k � @k�1/.x/ .1 � q2/q�1b�@2.x/

�
D .q2 � 1/

�
0 b

q�1b� 0

�
@.x/:
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This proves the first identity of the lemma. The remaining identity then follows from
the first via the following computation:

.q2 � 1/@.x/

�
0 q�1b

b� 0

�
D .1 � q2/

��
0 b

q�1b� 0

�
@.x�/

��
D .ık.x

�/u � u@k.x
�//�

D u�ık�1.x/ � @k�1.x/u� D Œu�; x�@
k�1 ı

k�1
:

We are now ready to show that the operation x 7! u@.x/u� is a twisted derivation.

Proposition 4.7.3. It holds that

u@.xy/u� D u@.x/u�ık.y/C ık�1.x/u@.y/u�

for all x; y 2 O.SUq.2//.

Proof. Let x; y 2 O.SUq.2// be given. We compute that

u@.xy/u� D u@.x/@k.y/u
�
C u@k�1.x/@.y/u�

D u@.x/u�u@k.y/u
�
C u@k�1.x/u�u@.y/u�

D u@.x/u�ık.y/C ık�1.x/u@.y/u�

C u@.x/u� � Œu; y�ık @k
u� � u � Œu�; x�@

k�1 ı
k�1

u@.y/u�:

Notice now that�
0 q�1b

b� 0

�
u D

�
q�1bb� ab

q�1a�b� �qb�b

�
D u�

�
0 b

q�1b� 0

�
:

Thus, applying Lemma 4.7.2 we obtain that

u@.x/u� � Œu; y�ık @k
u� D .q2 � 1/u@.x/u�

�
0 b

q�1b� 0

�
@.y/u�

D .q2 � 1/u@.x/

�
0 q�1b

b� 0

�
u@.y/u�

D u � Œu�; x�@
k�1 ı

k�1
� u@.y/u�:

This proves the proposition.

We are now ready to verify that u conjugates @ into ı.

Proposition 4.7.4. It holds that u@.x/u� D ı.x/ for all x 2 O.SUq.2//.
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Proof. Using Proposition 4.7.3 we see that the operations x 7! u@.x/u� and x 7!
ı.x/ satisfy the same twisted Leibniz rule. Since they also behave in the same way
with respect to the adjoint operation, it therefore suffices to verify the required identity
on the generators a; b 2 O.SUq.2//. To treat the case q D 1 and q < 1 on the same
footing, we define

� WD Œ1=2�q D
1

q1=2 C q�1=2
;

so that @3.a/ D �a and @3.b/ D �b. The two relations may now be proven by a
straightforward computation, indeed:

u@.a/u�D

�
a� �qb

b� a

� 
� � a 0

�q
1
2 b� �� � a

!�
a b

�qb� a�

�
D

 
� � a�a2Cq

3
2 bb�a�q2� � bab� � � a�abCq

3
2 bb�bCq� � baa�

� � b�a2�q
1
2 ab�aCq� � a2b� � � b�ab�q

1
2 ab�b�� � a2a�

!

D

 
� � a q

1
2 b

0 �� � a

!
D ı.a/; and

u@.b/u�D

�
a� �qb

b� a

� 
� � b 0

q�
1
2 a� �� � b

!�
a b

�qb� a�

�
D

 
� � a�ba�q

1
2 ba�a�q2� � b2b� � � a�b2�q

1
2 ba�bCq� � b2a�

� � b�baCq�
1
2 aa�aCq� � abb� � � b�b2Cq�

1
2 aa�b�� � aba�

!

D

 
�� � b 0

q�
1
2 a � � b

!
D ı.b/:

We now have the tools needed to properly investigate the quantum metric space
structure on SUq.2/, and we proceed to do so in the following chapter.





Chapter 5

Quantum metrics on quantum SU.2/

We now return to the general setting, and consider again two parameters t; q 2 .0; 1�
which will be fixed throughout this section. The aim of this section is to show that
.C.SUq.2//;Lmax

t;q / is a compact quantum metric space. The proof consists of several
steps and we therefore first explain the general strategy. For each M 2 N0, we recall
from Section 3.5 that the algebraic spectralM -band is defined as the subspace BM

q WDPM
mD�M Am

q � O.SUq.2// and that the spectral M -band BMq agrees with the norm
closure of BM

q with respect to the C �-norm on C.SUq.2//. The Lipschitz seminorm

Lmax
t;q WC.SUq.2//! Œ0;1�

restricts to a Lipschitz seminorm Lmax
t;q W B

M
q ! Œ0;1� with domain given by the

intersection BMq \ Lipt .SUq.2//. We start by proving that the pair .BMq ; L
max
t;q / is

a compact quantum metric space for all M 2 N0. Knowing this, the next step is to
construct a Lip-norm contraction C.SUq.2//! BMq for each M 2 N0. This sets the
stage for an application of Corollary 2.1.10, from which we will finally deduce that
.C.SUq.2//; Lmax

t;q / is a compact quantum metric space; see Theorem 5.6.1 below
for details. In the following section we first treat the case where M D 0, which
plays a special role, since this provides the connection with the Podleś sphere, whose
quantum metric structure was investigated in [2]; see also [3, 4].

5.1 The Podleś sphere revisited

Notice first of all that the spectral 0-band B0q agrees with the Podleś sphere C.S2q /.
For each m 2 Z, we recall from Section 3.5 that Hm

q � L
2.SUq.2// denotes the

Hilbert space completion of the algebraic spectral subspace Am
q with respect to the

inner product coming from the Haar state hWC.SUq.2//!C. The GNS Hilbert space
L2.SUq.2// is then isomorphic to the Hilbert space direct sum

L2.SUq.2// Š
1M

mD�1

Hm
q :

The horizontal Dirac operator DH
q WO.SUq.2//˚2 ! L2.SUq.2//˚2 restricts to the

unbounded operator

D0
q D

�
0 �@f
�@e 0

�
WA1

q ˚A�1q ! H 1
q ˚H

�1
q
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and we denote the closure byD0
q WDom.D0

q/!H 1
q ˚H

�1
q . The vertical Dirac oper-

ator DV
t WO.SUq.2//˚2 ! L2.SUq.2//˚2 restricts to the trivial operator zero on the

direct sum A1
q ˚A�1q , and the diagonal representation

� WC.SUq.2//! B.L2.SUq.2//˚2/

restricts to a representation

�0WC.S2q /! B
�
H 1
q ˚H

�1
q

�
:

We equip the Hilbert space H 1
q ˚H

�1
q with the Z=2Z-grading operator  D

�
1 0
0 �1

�
and record that the triple .C.S2q /;H

1
q ˚H

�1
q ;D0

q/ agrees with the Da̧browski–Sitarz
spectral triple (up to conjugation with the grading operator  ); see [22,61]. We remark
that we are now within the standard realm of non-commutative geometry, in so far
that .C.S2q /;H

1
q ˚H

�1
q ;D0

q/ is a genuine (even) spectral triple on C.S2q /. This is in
contrast to the situation for C.SUq.2//, where we are just relying on the spectral data
given by the horizontal and vertical Dirac operators. The Da̧browski–Sitarz spectral
triple therefore has its own Lipschitz algebra Lip.S2q / defined as®

x 2 C.S2q /
ˇ̌
�0.x/.Dom.D0

q// � Dom.D0
q/ and ŒD0

q ; �
0.x/� is bounded

¯
:

For each x 2 Lip.S2q / we apply the notation @0.x/ WD ŒD0
q ; �

0.x/�. The main result
in [2] is that the Lipschitz seminorm L0;max

q WC.S2q /! Œ0;1� defined by

L0;max
q .x/ WD

´@0.x/ x 2 Lip.S2q /

1 x 2 C.S2q / n Lip.S2q /

turns C.S2q / into a compact quantum metric space. We shall now prove that the two
settings are compatible, in the sense that the restriction of Lmax

t;q to C.S2q / agrees
with L0;max

q .
Recall that �

1
2 denotes the algebra automorphism @k�1 ı ık�1 WO.SUq.2// !

O.SUq.2//while JWO.SUq.2//!O.SUq.2// denotes the antilinear antihomomorph-
ism x 7!.ık@k/.x

�/which extends to the antilinear unitary operatorJ onL2.SUq.2//;
see Section 4.5 for more details.

Lemma 5.1.1. For each x; y 2 O.SUq.2// it holds that J�
1
2 .y/�Jƒ.x/ D ƒ.xy/.

Proof. This follows from a straightforward computation, using that ık.x/�Dık�1.x�/

and @k.x�/ D @k�1.x/� for all x 2 O.SUq.2//.

Proposition 5.1.2. The inclusion C.S2q / � C.SUq.2// in an isometry with respect to
the seminormsL0;max

q WC.S2q /! Œ0;1� andLmax
t;q WC.SUq.2//! Œ0;1�. In particular,

it holds that Lip.S2q / � Lipt .SUq.2//.
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Proof. By restricting the Haar state, we obtain a GNS representation �0WC.S2q /!
B.H 0

q /, and we denote by L1.S2q / � B.H 0
q / the enveloping von Neumann algebra

�0.C.S2q //
00. By standard von Neumann algebraic techniques, the inclusion C.S2q / �

C.SUq.2// extends to a normal inclusion �WL1.S2q /! L1.SUq.2// with the prop-
erty that �.x/ � � D x � � for � 2 L2.S2q / � L

2.SUq.2//.
Let x 2 Lip.S2q / be given. We recall from [4, Lemma 3.7] that the operator

ı0.x/ WD u@0.x/u� belongs to M2.L
1.S2q // and we may thus define the element

�.@0.x// WD u��.ı0.x//u 2M2.L
1.SUq.2///:

It clearly holds that k�.@0.x//k D k@0.x/k. Moreover, we remark that whenever � 2
H 1
q ˚H

�1
q � L

2.SUq.2//˚ L2.SUq.2// it holds that u � � 2 H 0
q ˚H

0
q and hence

that

�.@0.x//IyI� D IyI �.@0.x//� D IyI@0.x/� for all y 2 L1.SUq.2//: (5.1)

Let now � 2 O.SUq.2//˚2. We aim to show that x � � 2 Dom.DH
q /\Dom.DV

t / and
that we have the identities

ŒDH
q ; x�� D �.@

0.x//� and ŒDV
t ; x�� D 0: (5.2)

This suffices to prove the present theorem: indeed, since x 2 Lip.S2q / both twists
involved in the definitions of @Vt .x/ and @Hq .x/ are trivial. Moreover, if one proves the
relations in (5.2) for � in the core O.SUq.2//˚2, an approximation argument shows
that x.Dom.DH

q // � Dom.DH
q /, x.Dom.DV

t // � Dom.DV
t / and that the relations

in (5.2) hold on the two domains.
Let us start out by proving the claims relating to the vertical Dirac operator.

Without loss of generality, we may assume that � 2 An
q ˚Am

q for some n; m 2 Z.
Since x 2 C.S2q /, it follows that x� 2 Hn

q ˚H
m
q . But Hn

q ˚H
m
q � Dom.DV

t / and
the relevant commutator ŒDV

t ; x�� is trivial since the restriction of DV
t to Hn

q ˚H
m
q

is given by multiplication with the diagonal matrix 
t
�nC1

2

�
n�1
2

�
t

0

0 �t
�m�1

2

�
mC1
2

�
t

!
:

Next we focus on the claims relating to the horizontal Dirac operator. Let first � 2
Dom.D0

q/ and z 2 O.SUq.2// be given. We begin by showing that

IzI� 2 Dom.DH
q / and ŒDH

q ; IzI �� D I@
H
q .@k.z//I�: (5.3)

Since A1
q ˚A�1q is a core for Dom.D0

q/ we may, without loss of generality, assume
that � 2A1

q ˚A�1q . We then remark that IzI�D 	z	� 2 O.SUq.2//˚O.SUq.2//
and that Lemma 4.5.3 therefore implies that

ŒDH
q ; IzI �� D 	@Hq .@k.z//	�

2
q;0�:
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The desired formula for the commutator ŒDH
q ; IzI �� then follows by noting that

�q;0 restricts to the identity operator on A1
q ˚A�1q . To proceed, we denote the two

columns in u� by v1 2 A1
q ˚A�1q and v2 2 A1

q ˚A�1q , thus

v1 D

�
a

�qb�

�
and v2 D

�
b

a�

�
:

For our fixed element � 2 O.SUq.2//˚2, we therefore choose y1; y2 2 O.SUq.2// �
L2.SUq.2//˚2 such that

� D u�u� D v1 � y1 C v2 � y2 D �I�
1
2 .y1/

�I � v1 � I�
1
2 .y2/

�I � v2;

where the last equality follows from Lemma 5.1.1 (suppressing the embedding ƒ
for notational convenience). To ease the notation, put z1 WD ��

1
2 .y1/

� and z2 WD
��

1
2 .y2/

�. We then have that

� D Iz1I � v1 C Iz2I � v2 and x� D Iz1I � xv1 C Iz2I � xv2:

Since v1 and v2 belong to A1
q ˚A�1q �Dom.D0

q/ and x 2 Lip.S2q /we know that xv1
and xv2 2 Dom.D0

q/. We thus obtain from (5.3) that x� 2 Dom.DH
q / and moreover

that

DH
q x� D Iz1I �D

H
q xv1 C Iz2I �D

H
q xv2 C I@

H
q .@k.z1//Ixv1

C I@Hq .@k.z2//Ixv2

D Iz1I � @
0.x/v1 C Iz2I � @

0.x/v2 C Iz1IxD
H
q v1 C Iz2IxD

H
q v2

C xI@Hq .@k.z1//Iv1 C xI@
H
q .@k.z2//Iv2

D Iz1I � @
0.x/v1 C Iz2I � @

0.x/v2 C xD
H
q Iz1Iv1 C xD

H
q Iz2Iv2

D �.@0.x//� C xDH
q �;

where the last equality follows from (5.1). This ends the proof of the present propos-
ition.

Corollary 5.1.3. We have the identity .B0q ; L
max
t;q / D .C.S

2
q /; L

0;max
q /. In particular,

it holds that .B0q ; L
max
t;q / is a compact quantum metric space.

Proof. It suffices to establish the identity .B0q ; L
max
t;q / D .C.S2q /; L

0;max
q / since [2,

Theorem 8.3] already shows that .C.S2q /;L
0;max
q / is a compact quantum metric space.

We have B0q D C.S
2
q / and, by Proposition 5.1.2, Lip.S2q /� B

0
q \ Lipt .SUq.2// with

L0;max
q .x/ D Lmax

t;q .x/ for all x 2 Lip.S2q /. We therefore only need to show that B0q \
Lipt .SUq.2//�Lip.S2q /. Denote by �WH 1

q ˚H
�1
q !L2.SUq.2//˚L2.SUq.2// the

inclusion of Hilbert spaces. It can then be verified that ��DH
q � D0

q �
� and from this

inclusion it follows that ��DH
q �D

0
q �
�. Similarly, we have the inclusion �D0

q �D
H
q �

of unbounded operators.



Spectral projections and twisted derivations 65

The above inclusions can now be applied to see that

�0.x/� D ���.x/�� 2 Dom.D0
q/

for each x in B0q \ Lipt .SUq.2// and each � in Dom.D0
q/. Moreover, it holds that

D0
q�

0.x/� DD0
q �
��.x/�� D ��@Hq .x/�� C �

��.x/�D0
q� D �

�@Hq .x/�� C �
0.x/D0

q�:

This shows that x 2 Lip.S2q / and the corollary is proved.

Remark 5.1.4. The algebraic counterpart to Proposition 5.1.2 is basically a triviality.
Indeed, for x 2O.S2q /we have that @t;q.x/D

�
0 �q�1=2@f .x/

�q1=2@e.x/ 0

�
D @0.x/, and

it moreover holds that 
0 �q�

1
2 @f .x/

�q
1
2 @e.x/ 0

!�  
0 �q�

1
2 @f .x/

�q
1
2 @e.x/ 0

!
D @0.x/�@0.x/ 2M2.O.S

2
q //:

We thereby obtain that

Lt;q.x/
2
D k@t;q.x/

�@t;q.x/kC.SUq.2// D k@
0.x/�@0.x/kC.S2

q /
D L0q.x/

2;

where L0q denotes the variation of L0;max
q whose domain is O.S2q /.

5.2 Spectral projections and twisted derivations

Let � W S1 � C.SUq.2//! C.SUq.2// be a strongly continuous action of the circle
on quantum SU.2/. In this section we are investigating the relationship between the
spectral projections coming from � and the twisted �-derivations

@Hq and @Vt WLipt .SUq.2//! B
�
L2.SUq.2//˚2

�
introduced in Chapter 4. As a first consequence of these efforts, we shall establish,
in Proposition 5.2.4 below, that the sum of twisted �-derivations @t;q D @Hq C @

V
t is

closable.
We suppose that there exists a 2�-periodic, strongly continuous one-parameter

unitary group .Ur/r2R acting on the Hilbert space L2.SUq.2//˚2 such that

(1) Ur�.x/U�r D �.�.eir ; x// for all r 2 R and x 2 C.SUq.2//, where � is the
diagonal unital �-homomorphism introduced in Section 3.4.

(2) ŒDH
q ; Ur � D 0 D ŒD

V
t ; Ur � for all r 2 R;

(3) �.z; �L.w; x// D �L.w; �.z; x// for all z; w 2 S1, x 2 C.SUq.2//.
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Since the map r 7! Ur is strongly continuous, we obtain that the map r 7! UrT U�r
is weakly continuous for every T 2 B.L2.SUq.2//˚2/. For each n 2Z we may there-
fore define the n-th spectral projection…�

nWB.L
2.SUq.2//˚2/!B.L2.SUq.2//˚2/,

implicitly, by the formula

h�;…�
n.T /�i D

1

2�

Z 2�

0

h�; UrT U�r�ie
�irndr; �; � 2 L2.SUq.2//˚2: (5.4)

We remark that the spectral projections separate points; i.e. that for an operator T in
B.L2.SUq.2//˚2/, it holds that T D 0 if and only if …�

n.T / D 0 for all n 2 Z. It
follows from our conditions that the spectral projection

…�
nWB.L

2.SUq.2//˚2/! B.L2.SUq.2//˚2/

induces a spectral projection …�
nWC.SUq.2//! C.SUq.2// satisfying that

…�
n.�.x// D �.…

�
n.x// for all x 2 C.SUq.2//:

The spectral projection on C.SUq.2// is given by the norm-convergent Riemann
integral

…�
n.x/ D

1

2�

Z 2�

0

�.eir ; x/ � e�irndr: (5.5)

Lemma 5.2.1. For each n 2 Z and x 2 Lipt .SUq.2//, it holds that

…�
n.x/ 2 Lipt .SUq.2//

and we have the identities

…�
n.@

H
q .x// D @

H
q .…

�
n.x// and …�

n.@
V
t .x// D @

V
t .…

�
n.x//: (5.6)

In particular, it holds that the spectral projection …�
nWC.SUq.2//! C.SUq.2// is a

contraction for our Lipschitz seminorm, meaning that

Lmax
t;q

�
…�
n.x/

�
6 Lmax

t;q .x/ for all x 2 C.SUq.2//:

Proof. Let n 2 Z. The fact that …�
n becomes a contraction for the seminorm Lmax

t;q

is going to follow from the identities in (5.6) together with the fact that the spectral
projection …�

n is a norm-contraction. Let x 2 Lipt .SUq.2// be given. We focus on
showing that …�

n.x/ is horizontally Lipschitz and that the identity …�
n.@

H
q .x// D

@Hq .…
�
n.x// is satisfied. The vertical case follows by a similar argument.

We first record that the assumption (3) on � implies that

�L.e
ir ;…�

n.x// D …
�
n.�L.e

ir ; x// for all r 2 R:
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Hence, Lemma 3.6.2 shows that …�
n.x/ is analytic of order � log.q/=2 and that the

identities

…�
n

�
�L.q

1
2 ; x/

�
D �L

�
q

1
2 ;…�

n.x/
�

and …�
n

�
�L.q

� 1
2 ; x/

�
D �L

�
q�

1
2 ;…�

n.x/
�

are satisfied. Let now �; � 2 Dom.DH
q / be given. We may then compute as follows:˝

DH
q �; �L

�
q

1
2 ;…�

n.x/
�
�
˛

D
1

2�

Z 2�

0

˝
DH
q �; Ur�L.q

1
2 ; x/U�r�

˛
� e�irn dr

D
1

2�

Z 2�

0

˝
�; UrD

H
q �L.q

1
2 ; x/U�r�

˛
� e�irn dr

D
1

2�

Z 2�

0

˝
�; Ur@

H
q .x/U�r�

˛
� e�irn dr

C
1

2�

Z 2�

0

˝
�; Ur�L.q

� 1
2 ; x/U�rD

H
q �
˛
� e�irn dr

D
˝
�;…�

n

�
@Hq .x/

�
�
˛
C
˝
�; �L

�
q�

1
2 ;…�

n.x/
�
DH
q �
˛
:

This shows that �L.q
1
2 ;…�

n.x//� 2 Dom..DH
q /
�/ D Dom.DH

q /, and moreover that
…�
n.x/ is horizontally Lipschitz with @Hq .…

�
n.x// D …

�
n.@

H
q .x//.

Our prime example, where the above lemma applies, is given by the 2�-periodic
strongly continuous one-parameter unitary group .ULr /r2R defined by

ULr

�
�

�

�
D

�
eir.k�1/ � �

eir.mC1/ � �

�
� 2 H k

q ; � 2 H
m
q ; (5.7)

This unitary group induces the left circle action on C.SUq.2// in the sense that

ULr �.x/U
L
�r D �

�
�L.e

ir ; x/
�

for all r 2 R and x 2 C.SUq.2//: (5.8)

For each n2Z we denote the corresponding spectral projection by…L
n . The following

lemma now verifies that the last assumption (2) is indeed satisfied.

Lemma 5.2.2. It holds that ŒDH
q ; U

L
r � D 0 D ŒD

V
t ; U

L
r � for all r 2 R.

Proof. Recall that O.SUq.2//˚2 is a core for both of the unbounded selfadjoint oper-
ators DH

q and DV
t . Moreover, we know that O.SUq.2// agrees with the algebraic

linear span of the algebraic spectral subspaces Ak
q , k 2 Z. It therefore suffices to

prove the relevant commutator identities on vectors of the form
�
�
�

�
with � 2 An

q and
� 2 Am

q for some n; m 2 Z. The vanishing result for the commutator with the ver-
tical Dirac operator DV

t is then clearly satisfied, so we focus on the horizontal Dirac
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operator DH
q . In this case, the vanishing result follows since

DH
q

�
�

�

�
D �

 
q�

1
2 @f k�1.�/

q
1
2 @ek�1.�/

!
2 AmC2

q ˚An�2
q :

The assumptions in Lemma 5.2.1 are therefore met, and it yields the following:

Corollary 5.2.3. Let x 2 Lipt .SUq.2//, n 2 Z. It holds that…L
n .x/ 2 Lipt .SUq.2//

and we have the identities

@Vt .…
L
n .x// D …

L
n .@

V
t .x// and @Hq .…

L
n .x// D …

L
n .@

H
q .x//:

In particular, it holds that Lmax
t;q .…

L
n .x// 6 Lmax

t;q .x/.

Proposition 5.2.4. The sum of twisted �-derivations

@t;q D @
H
q C @

V
t WLipt .SUq.2//! B

�
L2.SUq.2//˚2

�
is closable.

Proof. We first record that (4.6) yields that

max
®
k@Hq .x/k; k@

V
t .x/k

¯
6 k@t;q.x/k 6 k@Hq .x/k C k@

V
t .x/k

for all x 2 Lipt .SUq.2//.
To see that @t;q is closable it thus suffices to show that @Hq and @Vt are both clos-

able. We focus on showing that @Hq is closable since the proof is almost the same
for @Vt . For m 2 Z, we first remark that the restriction @Hq W Lipt .SUq.2// \ Amq !
B.L2.SUq.2//˚2/ is closable: indeed, for each x 2 Lipt .SUq.2// \ Amq and each
� 2 Dom.DH

q / we obtain from Lemma 3.6.3 that

@Hq .x/� D D
H
q �L.q

1
2 ; x/� � �L.q

� 1
2 ; x/DH

q � D q
m
2 DH

q x� � q
�m

2 xDH
q �:

The fact that the relevant restriction is closable then follows from the selfadjoint-
ness of DH

q . An application of Corollary 5.2.3 now shows that @Hq WLipt .SUq.2//!
B.L2.SUq.2//˚2/ is closable. Indeed, as already remarked, for a bounded operator
y 2 B.L2.SUq.2//˚2/ it holds that y D 0 if and only if…L

n .y/D 0 for all n 2 Z.

5.3 Spectral bands as compact quantum metric spaces

We fix again our two parameters t; q 2 .0; 1� together with an M 2 N0. We are now
going to establish that the spectral bandBMq D

PM
mD�M A

m
q becomes a quantum met-

ric space when equipped with the Lipschitz seminormLmax
t;q WB

M
q ! Œ0;1� introduced
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in Definition 4.3.5. To this end, we utilise the general theory about finitely generated
projective modules developed in Section 2.3. We emphasise that the domain of the
restriction Lmax

t;q WB
M
q ! Œ0;1� is substantially larger than the algebraic spectral band

BM
q . We start out by stating (and reproving) a well-known result regarding the spec-

tral subspaces .Amq /m2Z (see e.g. [30, Proposition 3.5]). Recall that…L
mWC.SUq.2//!

C.SUq.2// denotes the spectral projection defined in (5.5) associated with the circle
action �L.

Lemma 5.3.1. For any x 2 C.SUq.2// and any m 2 Z it holds that

…L
m.x/ D

8<:
Pm
iD0.u

m
i0/
� �…L

0 .u
m
i0 � x/ m > 0Pjmj

iD0

�
u
jmj

i jmj

��
�…L

0

�
u
jmj

i jmj
� x
�
m < 0

In particular, we obtain that Amq is finitely generated and projective as a right module
over A0q D C.S

2
q /.

Proof. By continuity and density, it suffices to check the identity for x 2 O.SUq.2//
and by linearity we may furthermore assume that x 2 Ak

q for some k 2 Z. If m > 0,
then umi0 2 A�mq (cf. (3.16)) and hence umi0x 2 Ak�m

q . Hence both sides are zero if
m¤ k and formD k the identity follows from the fact that um is a unitary matrix. The
final statement about projectivity now follows, since the identity just proven shows
that the map Amq ! .A0q/

˚.mC1/ given by x 7! u�0 � x provides an embedding of
Amq as a direct summand in a finitely generated free module. The case m < 0 follows
analogously.

To show that .BMq ; L
max
t;q / is a compact quantum metric space, we wish to apply

Theorem 2.3.3, and we therefore need to compare the Lipschitz seminorm Lmax
t;q with

the operator norm on quantum SU.2/ (see Assumption 2.3.2). This comparison takes
place in the next two lemmas.

Lemma 5.3.2. For every m 2 Z, it holds that Amq � LipVt .SUq.2// and

@Vt .x/ D

�
Œm=2�tx 0

0 �Œm=2�tx

�
for all x 2 Amq :

Proof. Let m 2 Z and x 2 Amq be given. We then know from Lemma 3.6.3 that x is
analytic of order � log.t/=2. Let now n; k 2 Z and y 2 An

q ˚Ak
q be given. We then

have that

�L.t
1
2 ; x/ � y D t

m
2 x � y 2 AmCnq ˚ AmCkq � Dom.DV

t /:

Using the relation Œr C s�t � t�r Œs�t D t sŒr�t , which is valid for all r; s 2 R, a direct
computation shows that�

DV
t �L.t

1
2 ; x/ � �L.t

� 1
2 ; x/DV

t

�
y D

�
Œm=2�t � x 0

0 �Œm=2�t � x

�
� y:
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This proves that the twisted commutator

DV
t �L.t

1
2 ; x/ � �L.t

� 1
2 ; x/DV

t

is well defined on the core O.SUq.2//˚2 for the vertical Dirac operator and that it
extends to the bounded operator Œm=2�t

�
x 0
0 �x

�
. From this it follows immediately that

�L.t
1
2 ; x/ preserves Dom.DV

t / and that @Vt .x/ D
�
Œm=2�tx 0

0 �Œm=2�tx

�
as desired.

Remark 5.3.3. As an aside, we remark that it is now easy to verify that the algebraic
formula for @Vt obtained in Lemma 4.3.1 actually extends to the whole Lipschitz
algebra, in the sense that

@Vt .x/ D

�
@3t .x/ 0

0 �@3t .x/

�
for all x 2 Lipt .SUq.2//: (5.9)

By Remark 4.3.4, we already know that the off-diagonal elements in @Vt .x/ are zero
and that the upper left-hand entry is @3t .x/. Conjugating @Vt .x/ with the unitary
S WD

�
0 1
1 0

�
interchanges the diagonal entries, so it suffices to show that S@Vt .x/S D

�@Vt .x/. A direct computation shows that the unitaries .ULr /r2R defined in (5.7) sat-
isfies

SULr D
�
e2ir 0

0 e�2ir

�
ULr S for all r 2 R

and since @Vt .x/ is diagonal it commutes with the unitary
�
e2ir 0
0 e�2ir

�
. Using this, it

is not difficult to see that

…L
n .S@

V
t .x/S/ D S…

L
n .@

V
t .x//S for all n 2 Z:

By Lemma 5.3.2 we know that (5.9) is valid whenever x belongs to a spectral sub-
space, and since …L

n commutes with @Vt (see Corollary 5.2.3) we therefore obtain
that

…L
n .S@

V
t .x/S/ D S…

L
n .@

V
t .x//S D S@

V
t .…

L
n x/S D �@

V
t .…

L
n x/ D �…

L
n .@

V
t .x//:

Since the spectral projections separate points, it follows that S@Vt .x/S D�@
V
t .x/ and

hence that (5.9) holds.

Lemma 5.3.4. For each m 2 Z, it holds that jŒm=2�t j � k…L
m.x/k 6 Lmax

t;q .x/ for all
x 2 Lipt .SUq.2//.

Proof. The result follows from Corollary 5.2.3 and Lemma 5.3.2 via the estimate

jŒm=2�t j � k…
L
m.x/k D k@

V
t .…

L
m.x//k 6 Lmax

t;q .…
L
m.x// 6 Lmax

t;q .x/:

Lastly, in order to apply Theorem 2.3.3, we need to verify that Assumption 2.3.2 (5)
is satisfied, which is the contents of the following lemma.
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Lemma 5.3.5. Let v 2 Lipt .SUq.2// and let M 2 N0. Then the left-multiplication
operator

m.v/WBMq \ ker.…L
0 /! C.SUq.2//

is bounded with respect to the seminorm Lmax
t;q .

Proof. We first remark that Lemma 5.3.4 shows that there exists a constant DM > 0

such that kxk 6 DM � L
max
t;q .x/ for all x 2 BMq \ ker.…L

0 /. Next, it follows from
Lemmas 3.6.5 and 4.3.7 that

Lmax
t;q .v � x/ 6 kvkt;q � Lmax

t;q .x/C L
max
t;q .v/ � kxkt;q

6

 
kvkt;q C

MX
mD�M

.tm=2 C qm=2/DM

!
� Lmax

t;q .x/

for all x 2 BMq \ ker.…L
0 /. This proves the present lemma.

We are now in position to state and prove the main result of this section, which
shows that the spectral bands are compact quantum metric spaces. Notice that it
follows from Lemma 5.3.1 that the spectral bands are finitely generated projective
modules. In fact, with a little extra effort it can be proved that they are free (but this
does not help to ease the argumentation).

Theorem 5.3.6. Let M 2 N0. The spectral band BMq � C.SUq.2//, the conditional
expectation…L

0 WC.SUq.2//!C.S2q / and the Lipschitz seminormLmax
t;q WC.SUq.2//!

Œ0;1� satisfy Assumptions 2.3.1 and 2.3.2. In particular, it holds that the restriction
Lmax
t;q WB

M
q ! Œ0;1� provides BMq with the structure of a compact quantum metric

space.

Proof. It follows from Lemma 5.3.1 that BMq satisfies Assumption 2.3.1: indeed we
may apply the elements in C.SUq.2//, defined, for eachm 2 ¹�M;�M C 1; : : : ;M º
and each i 2 ¹0; 1; : : : ; jmjº, by

vim WD

´
umi;0 m > 0

u�mi;�m m < 0
and wim WD v

�
im:

Notice in this respect that 1D v00 D w00 and that…L
0 .vim/D 0D…

L
0 .wim/ as soon

as .i; m/ ¤ .0; 0/ (cf. (3.16)). To see that conditions (1)–(5) in Assumption 2.3.2
are satisfied, notice that (1) follows from Corollary 5.2.3, while (2) follows from
Corollary 5.1.3. Condition (3) is a consequence of Lemma 5.3.4 and condition (4) is
trivially satisfied since vim; wim 2 O.SUq.2// for all m 2 ¹�M;�M C 1; : : : ; M º
and i 2 ¹0; 1; : : : ; jmjº. Condition (5) is exactly the contents of Lemma 5.3.5 and
Theorem 2.3.3 therefore shows that .BMq ; L

max
t;q / is a compact quantum metric space.
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Knowing that the spectral bands are compact quantum metric spaces, our next
main goal will be to show that the same is true for quantum SU.2/. We wish to do
so by an application of Corollary 2.1.10, but verifying that the assumptions there are
indeed fulfilled turns out to be a slightly delicate matter. One of our objectives will
be to construct an “anti-derivative” of the twisted �-derivation @Vt WLipt .SUq.2//!
B.L2.SUq.2//˚2/. To this end we need the theory of Schur multipliers, and we gather
all the results needed within this context in the following section.

5.4 Schur multipliers

Let k � k2W `2.Z/! Œ0;1/ denote the usual Hilbert space norm on the Hilbert space
of `2-sequences indexed by Z. The standard basis vectors in `2.Z/ are denoted by ei ,
i 2 Z. We recall the following essential result due to Grothendieck:

Proposition 5.4.1 (Grothendieck). Let H and K be Hilbert spaces and assume that
they are Z-graded asH D

L1
iD�1Hi andK D

L1
iD�1Ki such that each bounded

operator T 2 B.H;K/ is represented by a matrix .Tij /i;j2Z. Let 'WZ � Z! C be
given and assume that there exist a.i/; b.i/ 2 `2.Z/ for every i 2 Z such that

(1) c.a/ WD supi2Z ka.i/k2 <1 and c.b/ WD supi2Z kb.i/k2 <1;

(2) '.i; j / D ha.i/; b.j /i for all i; j 2 Z.

Then for every T 2 B.H; K/ the matrix .'.i; j /Tij /i;j2Z also defines a bounded
operator from H to K and the map M.'/WB.H;K/! B.H;K/, which associates
to T the bounded operator with matrix .'.i; j /Tij /i;j , is completely bounded with
cb-norm at most c.a/c.b/.

Under the hypotheses of the theorem above, the map ' is called a Schur multi-
plier. For a more elaborate treatment of the theory of Schur multipliers the reader
is referred to [65], but for the readers’ convenience we sketch the proof of Proposi-
tion 5.4.1 here.

Proof. Defining aWH ! `2.Z/ y̋H D
L
i2Z `

2.Z/ y̋Hi by a..�i /i / WD .a.i/˝ �i /i
and bWK! `2.Z/ y̋K by b..�i /i / WD .b.i/˝ �i /i , one sees that a and b are bounded
with kak6 c.a/ and kbk6 c.b/. Moreover, one verifies that M.'/.T /D b�.1˝ T /a

and hence we get kM.'/k 6 c.a/c.b/. The same argument works over matrices, so
we indeed obtain that kM.'/kcb 6 c.a/c.b/.

For each t; q 2 .0; 1�, we wish to construct an anti-derivative of

@Vt WLipt .SUq.2//! B
�
L2.SUq.2//˚2

�
;
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which will be given in terms of a Schur multiplier 't WZ � Z! C defined by the
formula

't .i; j / WD

´
1

Œ.i�j /=2�t
i ¤ j

0 i D j:
(5.10)

In order to show that 't WZ � Z! C is indeed a Schur multiplier we start out by
recording a well-known lemma on q-numbers (including the proof for lack of a good
reference):

Lemma 5.4.2. It holds that Œn=2�q > n

q1=2Cq�1=2 for all q 2 .0; 1� and n 2 N.

Proof. Let n 2 N be given. The inequality clearly holds for q D 1, so assume that
q 2 .0;1/. We first notice that Œn�q > n. Indeed, for nD 2k even this inequality follows
since

Œ2k�q � 2k D .q
�2kC1

C q2k�1 � 2/C .q�2kC3 C q2k�3 � 2/

C � � � C .q�1 C q � 2/ > 0

and for n D 2k C 1 odd we obtain the inequality since

Œ2k C 1�q � .2k C 1/

D .q�2k C q2k � 2/C .q�2kC2 C q2k�2 � 2/C � � � C .q�2 C q2 � 2/

> 0:

We then obtain that

Œn=2�q D
qn=2 � q�n=2

.q1=2 � q�1=2/.q1=2 C q�1=2/
D

Œn�q1=2

q1=2 C q�1=2
>

n

q1=2 C q�1=2
:

Lemma 5.4.3. Let t 2 .0; 1�. The function 't WZ � Z! C is a Schur multiplier and
we have the estimate

kM.'t /kcb 6
� � .t1=2 C t�1=2/

p
3

on the cb-norm of the associated completely bounded operator.

Proof. In order to apply Proposition 5.4.1, we define the sequences

a.i/ WD

1X
kD�1

't .i; k/ � ek and b.i/ WD ei

for all i 2 Z and note that 't .i; j / D ha.i/; b.j /i. For each i 2 Z, we then apply
Lemma 5.4.2 to obtain the estimate

ka.i/k22 D ka.0/k
2
2 D 2

1X
kD1

1

Œk=2�2t
6 2

1X
kD1

.t1=2 C t�1=2/2

k2
D
�2.t1=2 C t�1=2/2

3
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on the Hilbert space norm. Since we moreover have that kb.i/k22 D 1 for all i 2 Z,
the relevant estimate on the cb-norm now follows from Proposition 5.4.1:

kM.'t /kcb 6 sup
i2Z
ka.i/k2 6

� � .t1=2 C t�1=2/
p
3

:

We shall also need a systematic method for approximating elements inC.SUq.2//
by elements in the spectral bands BMq , M 2 N0. This approximation will also take
place by means of Schur multipliers. For each M 2 N0, we define the function
M WZ � Z! C by the formula

M .i; j / WD

´
MC1�ji�j j

MC1
ji � j j 6 M

0 ji � j j > M:
(5.11)

Lemma 5.4.4. For eachM 2N0, the function M WZ�Z! C is a Schur multiplier
and we have the estimate

kM.M /kcb 6 1

on the cb-norm of the associated completely bounded operator.

Proof. We are going to apply Proposition 5.4.1. Let M 2 N0 be given, and define,
for each i 2 Z, the sequences

a.i/ D b.i/ WD
1

p
M C 1

�

iCMX
kDi

ek :

We record that ka.i/k22 D 1 D kb.i/k
2
2. Let now i; j 2 Z be given, and assume first

that i 6 j . We then compute that

ha.i/; b.j /i D
1

M C 1
�

*
iCMX
kDi

ek;

jCMX
lDj

el

+
D

´
1

MC1

PiCM
kDj 1 j 6 i CM

0 j > i CM

D

´
MCi�jC1
MC1

j � i 6 M

0 j � i > M
D M .i; j /:

For j6i we get from the above identities that ha.i/;b.j /iDha.j /;b.i/iDM .j; i/D
M .i; j /. The proof is therefore complete.

For each number ı 2 .0; 1/ we define the null-sequence of positive real numbers
.".ı;M//1MD0 by putting

".ı;M/ WD 2
1
2 � .ı

1
2 C ı�

1
2 / �

 
M

.M C 1/2
C

1X
kDMC1

1

k2

! 1
2

for all M 2 N0:

(5.12)
In particular, we record that ".ı; 0/ D � �.ı1=2Cı�1=2/

p
3

.
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Lemma 5.4.5. Let ı 2 .0; 1/. It holds thatM.'t /.1 �M.M //


cb 6 ".ı;M/

for all M 2 N0 and all t 2 Œı; 1�.

Proof. Let M 2 N0 and t 2 Œı; 1� be given. We are going to apply Proposition 5.4.1
to the function �t;M WZ � Z! C given by the formula

�t;M .i; j / WD 't .i; j / �
�
1 � M .i; j /

�
D

8̂̂<̂
:̂

ji�j j
.MC1/�Œ.i�j /=2�t

0 < ji � j j 6 M

0 ji � j j D 0
1

Œ.i�j /=2�t
ji � j j > M:

For each i; j 2 Z we define the sequences

a.i/ WD

1X
kD�1

�t;M .i; k/ � ek and b.j / D ej :

Applying Lemma 5.4.2, we may estimate the Hilbert space norm of a.i/ as follows:

ka.i/k22 D ka.0/k
2
2 D

1X
kD�1

j�t;M .0; k/j
2

D 2 �

1X
kDMC1

1

Œk=2�2t
C

2

.M C 1/2
�

MX
kD1

k2

Œk=2�2t

6 2
�
t

1
2 C t�

1
2

�2
�

 
1X

kDMC1

1

k2

!
C

2M

.M C 1/2
�
�
t

1
2 C t�

1
2

�2
6 2

�
ı

1
2 C ı�

1
2

�2
�

 
M

.M C 1/2
C

1X
kDMC1

1

k2

!
D ".ı;M/2:

This shows that �t;M is a Schur multiplier satisfying the estimate kM.�t;M /kcb 6
".ı;M/ on the cb-norm of the associated completely bounded operator. The result of
the present lemma now follows by noting that M.�t;M / DM.'t / � .1 �M.M // by
construction.

We end this subsection by re-introducing spectral projections in the context of
Schur multipliers. For each n 2 Z we define the Schur multiplier

ınWZ � Z! C ın.i; j / WD ın;i�j : (5.13)

The associated operator M.ın/ is then completely contractive and can be interpreted
in terms of spectral projections. To explain this, suppose that H D

L1
mD�1Hm is a
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Z-graded Hilbert space and define the unitary operator Vr WH ! H by

Vr

 
1X

mD�1

em � �m

!
WD

1X
mD�1

em � e
irm�m

for every r 2R. This yields a 2�-periodic strongly continuous one-parameter unitary
group .Vr/r2R and it holds that

h�;M.ın/.T /�i D
1

2�

Z 2�

0

h�; VrT V�r�ie
�irndr

for all T 2 B.H/ and �; � 2H . Thus, M.ın/ is the n-th spectral projection associated
with our 2�-periodic strongly continuous unitary group .Vr/r2R; cf. (5.4).

5.5 Projecting onto the spectral bands

Throughout this section we again fix the parameters t; q 2 .0; 1�. We are going to
apply the theory of Schur multipliers to the Z-grading

L2.SUq.2//˚2 D
1M

mD�1

�
HmC1
q ˚Hm�1

q

�
: (5.14)

This Z-grading is simply the spectral subspace decomposition associated with the
circle action on L2.SUq.2//˚2 induced by the 2�-periodic strongly continuous one-
parameter unitary group .ULr /r2R introduced in (5.7). For M 2 N0 and n 2 Z, we
consider the Schur multipliers M ; ınWZ � Z! C introduced in (5.11) and (5.13)
and apply the following notation for the completely bounded operators they induce:

ELM WDM.M /; …L
n WDM.ın/WB

�
L2.SUq.2//˚2

�
! B

�
L2.SUq.2//˚2

�
:

This notation is compatible with our already existing notation for spectral projections
by the remarks at the end of Section 5.4. We emphasise that both…L

n and ELM induce
operators on C.SUq.2// via the relations

…L
n .�.x// D �.…

L
n .x// and ELM .�.x// D �.E

L
M .x//

for all x 2 C.SUq.2//. Notice in this respect that

ELM D

MX
mD�M

M C 1 � jmj

M C 1
…L
m:

The aim of this subsection is to prove that ELM is an Lmax
t;q -contraction onto the

spectral M -band BMq and that ELM approximates the identity map on the Lmax
t;q -unit
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ball better and better as M grows, thus setting the stage for an application of Corol-
lary 2.1.10.

We are also interested in the completely bounded operatorZ V

t

WB.L2.SUq.2//˚2/! B.L2.SUq.2//˚2/

defined by the formula Z V

t

T WDM.'t /. � T /; (5.15)

where we recall that  WD
�
1 0
0 �1

�
2 B.L2.SUq.2//˚2/ and that 't WZ � Z! C was

introduced in (5.10). Remark that the Schur multiplier M.'t / is also defined relative
to the spectral subspace decomposition given in (5.14). We record that M.'t / induces
a bounded operator on C.SUq.2//: indeed, for each m 2 Z and x 2 Amq we have the
formula

M.'t /.x/ D

´
1

Œm=2�t
� x m ¤ 0

0 m D 0
;

from which it follows that M.'t / preserves O.SUq.2// and hence also C.SUq.2//
by boundedness. We start out by proving that

R V
t

serves as an anti-derivative with
respect to @Vt providing a non-commutative analogue of the fundamental theorem of
calculus.

Proposition 5.5.1. It holds thatZ V

t

@Vt .x/ D .1 �…
L
0 /.x/ for all x 2 Lipt

�
SUq.2/

�
:

Proof. Let x 2 Lipt .SUq.2// be given. First note that if x 2 Lipt .SUq.2// \ Amq for
some m 2 Z, then the statement follows from Lemma 5.3.2: indeed, in this case we
have thatZ V

t

@Vt .x/ D

Z V

t

�
Œm=2�tx 0

0 �Œm=2�tx

�
D Œm=2�t �M.'t /.x/ D .1 �…

L
0 /.x/:

To prove the general statement, it suffices to show that

…L
n

�Z V

t

@Vt .x/

�
D …L

n .1 �…
L
0 /.x/ for all n 2 Z:

Let thus n 2Z be given. Since both…L
n and M.'t / are Schur multipliers with respect

to the same Z-grading onL2.SUq.2//˚2, they commute. Moreover, we notice that the
grading operator  preserves the spectral subspaceHmC1

q ˚Hm�1
q �L2.SUq.2//˚2

for all m 2 Z and hence it holds that left multiplication with  commutes with …L
n .



Quantum metrics on quantum SU.2/ 78

The relevant identity therefore becomes a consequence of Corollary 5.2.3 through the
following computation:

…L
n

�Z V

t

@Vt .x/

�
D

Z V

t

@Vt .…
L
n x/ D .1 �…

L
0 /…

L
n .x/ D …

L
n .1 �…

L
0 /.x/:

The next step is to prove that ELM is a contraction for Lmax
t;q , thus verifying part of

the hypotheses in Corollary 2.1.10.

Lemma 5.5.2. Let M 2 N0 and x 2 Lipt .SUq.2//. It holds that ELM .x/ 2 B
M
q \

Lipt .SUq.2// and Lmax
t;q .E

L
M .x// 6 Lmax

t;q .x/.

Proof. We start out by recalling that ELM D
PM
mD�M

MC1�jmj
MC1

…L
m. It therefore fol-

lows from Lemma 5.4.4 and Corollary 5.2.3 that ELM .x/ 2 Lipt .SUq.2// \ BMq and
that

Lmax
t;q .E

L
M .x// D k@t;q.E

L
M .x//k D kE

L
M .@t;q.x//k 6 k@t;q.x/k D Lmax

t;q .x/:

We now show that the sequence of Lmax
t;q -contractions .ELM /

1
MD0 approximates

the identity map on the Lmax
t;q -unit ball, thus verifying the last hypothesis in Corol-

lary 2.1.10. In fact, this approximation can be obtained uniformly in the deformation
parameters t;q 2 .0;1�. For each ı 2 .0;1/we recall the definition of the null-sequence
of positive real numbers .".ı;M//1MD0 from (5.12).

Proposition 5.5.3. Let ı 2 .0; 1/. It holds that

kx �ELM .x/k 6 ".ı;M/ � Lmax
t;q .x/

for all M 2 N0, .t; q/ 2 Œı; 1� � .0; 1� and x 2 Lipt .SUq.2//.

Proof. We apply Proposition 5.5.1 in combination with Lemma 5.4.5 to obtain that

k.1 �ELM /.x/k D k.1 �E
L
M /.1 �…

L
0 /.x/k D

.1 �ELM / Z V

t

@Vt .x/


6
.1 �M.M //M.'t /

 � k � @Vt .x/k 6 ".ı;M/ � Lmax
t;q .x/

for all M 2 N0, t 2 Œı; 1� and x 2 Lipt .SUq.2//.

5.6 Quantum SU.2/ as a compact quantum metric space

We are now ready to show that quantum SU.2/ becomes a compact quantum metric
space when equipped with the Lipschitz seminorm Lmax

t;q WC.SUq.2//! Œ0;1�.

Theorem 5.6.1. The pair .C.SUq.2//;Lmax
t;q / is a compact quantum metric space for

all t; q 2 .0; 1�.
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Proof. For each M 2 N0 we know from Theorem 5.3.6 that the spectral band BMq
becomes a compact quantum metric space when equipped with the restricted Lipschitz
seminorm Lmax

t;q WB
M
q ! Œ0;1�. We may then apply Corollary 2.1.10 using the com-

pact quantum metric spaces .BMq ; L
max
t;q /, together with the unital linear maps ELM W

C.SUq.2//! BMq and the inclusions �M WBMq ! C.SUq.2//. That the assumptions
in Corollary 2.1.10 are indeed met by this data follows from Lemma 5.5.2 and Pro-
position 5.5.3.

Corollary 5.6.2. The pair .C.SUq.2//;Lt;q/ is a compact quantum metric space for
all t; q 2 .0; 1�

Proof. Since the Lt;q-unit ball is contained in the Lmax
t;q -unit ball this follows from

Theorems 5.6.1 and 2.1.5.

We can also show that the spectral bands converge towards quantum SU.2/ in the
quantum Gromov–Hausdorff distance. In fact, as the following theorem shows, the
convergence can even be obtained in a uniform manner with respect to the deform-
ation parameters t; q 2 .0; 1�. For each ı 2 .0; 1/ we recall the definition of the
null-sequence of positive real numbers .".ı;M//1MD0 from (5.12).

Theorem 5.6.3. Let ı 2 .0; 1/. It holds that

distQ
�
.C.SUq.2//; Lmax

t;q /I .B
M
q ; L

max
t;q /

�
6 ".ı;M/

for all M 2 N0 and .t; q/ 2 Œı; 1� � .0; 1�. Moreover, for all �; � 2 �.C.SUq.2/// it
holds that

dmax
t;q .�; �/ 6 2 � ".ı;M/C dmax

t;q

�
�jBM

q
; �jBM

q

�
for all M 2 N0, all .t; q/ 2 Œı; 1� � .0; 1�.

Proof. By Lemma 5.5.2 and Proposition 5.5.3, the unital positive operator

ELM WC.SUq.2//! BMq

satisfies the assumptions in Corollary 2.2.5 with D D 0 and " D ".ı;M/. The first
statement therefore follows from Corollary 2.2.5 and the second from Corollary 2.2.7.

We may also provide an estimate on the diameter (see Definition 2.1.4) of quantum
SU.2/ in terms of the diameter of the Podleś sphere.

Proposition 5.6.4. For all t; q 2 .0; 1� it holds that

diam
�
C.SUq.2//; Lmax

t;q

�
6
2� � .t1=2 C t�1=2/

p
3

C diam
�
C.S2q /; L

0;max
q

�
:
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Proof. By [70, Proposition 5.5] we have that

diam
�
C.SUq.2//; Lmax

t;q

�
D 2 � distQ

�
.C.SUq.2//; Lmax

t;q /I .C; 0/
�
:

Using the triangle inequality for the quantum Gromov–Hausdorff distance we then
obtain that

diam
�
C.SUq.2//; Lmax

t;q

�
6 2 � distQ

�
.C.SUq.2//; Lmax

t;q /I .C.S
2
q /; L

0;max
q /

�
C diam

�
C.S2q /; L

0;max
q

�
:

The result of the proposition now follows from Corollary 5.1.3 and Theorem 5.6.3 in
the case where M D 0.

Remark 5.6.5. In [3, Theorem 4.18] we proved that the family of Podleś spheres
..C.S2q /; L

0;max
q //q2.0;1� varies continuously in the quantum Gromov–Hausdorff dis-

tance, and thus, in particular, that the function

.0; 1� 3 q 7! diam
�
C.S2q /; L

0;max
q

�
D 2 � distQ..C.S2q /; L

0;max
q /I .C; 0//

is continuous. An application of Proposition 5.6.4 therefore shows that the function
.t; q/ 7! diam.C.SUq.2//; Lmax

t;q / is bounded on compact subsets of .0; 1� � .0; 1�.



Chapter 6

The quantum Berezin transform

We now introduce the second key ingredient in the analysis of the quantum met-
ric structure of SUq.2/, namely an analogue of the classical Berezin transform (see
e.g. [73] and references therein) in this context. The Berezin transform was already
essential in Rieffel’s seminal results in [71], where he proves that the 2-sphere can
be approximated by matrices. The Berezin transform also played a pivotal role in the
analysis of the quantum metric structure on the Podleś spheres S2q , q 2 .0; 1�, in [3,4].
In the present context it will serve to firstly establish the fact that the maximal and
minimal Lip-norm, Lmax

t;q and Lt;q introduced in Definition 4.3.5, actually give rise to
the same quantum metric structure (see Corollary 6.4.2 below). Secondly, the Berezin
transform provides us with finite dimensional quantum metric spaces which we will
show approximate quantum SU.2/ in a suitably uniform manner. This, in turn, will
be the key to our main continuity result, Theorem D.

6.1 Definition of the Berezin transform

Throughout this section, we fix the deformation parameter q 2 .0; 1�. The other para-
meter t 2 .0; 1� is irrelevant in this section, since we are currently only concerned
with the C �-algebras and not the Lip-norms. For each N;M 2 N0 we then define the
element

�MN WD
1

p
M C 1

NCMX
rDN

ar �
p
hr C 1iq 2 O.SUq.2//; (6.1)

and consider the state �MN W C.SUq.2// ! C given by �MN .x/ WD h..�MN /
�x�MN /.

That �MN is indeed a state follows from the formulae in (3.15) since un00 D .a�/n

for all n 2 N0. In order to analyse these states in more detail, it is convenient to
first introduce a new circle action. Consider again the left and right circle actions �L
and �R on C.SUq.2// defined on generators by

�L.z;a/ WD za; �L.z;b/ WD zb and �R.z;a/ WD za; �R.z;b/D z
�1b: (6.2)

A direct computation shows that

�.z; x/ WD �R
�
z; ��1L .z; x/

�
z 2 S1; x 2 C.SUq.2//

defines a strongly continuous circle action onC.SUq.2//which preserves O.SUq.2//,
and we let …�

m, m 2 Z, denote the spectral projections associated with � (cf. Sec-
tion 5.2). The circle action � is relevant in connection with the states �MN and � since,
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as we will see below, these only detect its fixed point algebra. We first determine the
fixed point algebra in terms of the standard linear basis of O.SUq.2//.

Lemma 6.1.1. The fixed point algebra of the circle action � on C.SUq.2// agrees
with the norm closure of the linear span

spanC

®
.b�b/m.a�/k; ak.b�b/m

ˇ̌
k;m 2 N0

¯
:

Proof. Since � fixes a, a� and b�b, it is clear that the span in the statement of the
lemma is contained in the fixed point algebra. For the opposite inclusion, one may use
the standard linear basis (3.1) together with the spectral projection…�

0 WC.SUq.2//!
C.SUq.2//. Indeed, it holds that

…�
0 .�

klm/ D

´
�klm for m D l

0 for m ¤ l

Lemma 6.1.2. Let N;M 2 N0. We have that � D � ı…�
0 and �MN D �

M
N ı…

�
0 .

Proof. This follows immediately since �.�.z;x//D �.x/ and �MN .�.z;x//D �
M
N .x/

for all z 2 S1 and x 2 C.SUq.2//. In the case of � it suffices to check the relevant
identity on the generators a and b and in the case of �MN the relevant identity follows
since �.z; �MN / D �

M
N and h.�.z; x// D h.x/.

Lemma 6.1.3. We have the convergence result limN;M!1 �
M
N D � with respect to

the weak� topology on �.C.SUq.2///.

Proof. By Lemmas 6.1.1 and 6.1.2, we only need to treat elements of the form

.b�b/m.a�/k and ak.b�b/m; for k;m 2 N0:

Since states preserve the involution and

.b�b/m.a�/k D q�2km.a�/k.b�b/m

it is enough to check the claim on elements of the form .a�/k.b�b/m. But since

spanC

®
.b�b/m

ˇ̌
m 2 N0

¯
D spanC

®
.a�/nan

ˇ̌
n 2 N0

¯
;

we may, equivalently, verify the convergence on elements of the form .a�/kCnan. Let
now k; n 2 N0 be given. We are left with the task of showing that

lim
N;M!1

�MN
�
.a�/kCnan

�
D �

�
.a�/kCnan

�
D 1:
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Let us recall the inner product formulae from (3.15) as well as the fact that .a�/m D
um00 for all m 2 N0. For each N;M 2 N0 with M > k we may thus compute as
follows:

�MN
�
.a�/kCnan

�
D

1

M C 1

NCMX
i;jDN

hi C 1i1=2q hj C 1i
1=2
q h

�
.a�/iCkCnanCj

�
D

1

M C 1

NCM�kX
iDN

hi C 1i1=2q hi C k C 1i
1=2
q h

�
.a�/iCkCnaiCkCn

�
D

1

M C 1

NCM�kX
iDN

hi C 1i
1=2
q hi C k C 1i

1=2
q

hi C k C nC 1iq
:

Let now " > 0 be given. Since lims!1
hsiq
hlCsiq

D 1 for all l 2 N0 we may choose
N0 2 N0 such that ˇ̌̌̌

hi C 1i
1=2
q hk C i C 1i

1=2
q

hnC k C i C 1iq
� 1

ˇ̌̌̌
< "=2

for all i > N0. Furthermore, we may choose M0 > k such that k
MC1

< "=2 for all
M > M0. For all M > M0 and N > N0 we then estimate that

ˇ̌
�MN

�
.a�/kCnan

�
� 1

ˇ̌
6

1

M C 1

NCM�kX
iDN

ˇ̌̌̌
hi C 1i

1=2
q hi C k C 1i

1=2
q

hi C k C nC 1iq
� 1

ˇ̌̌̌
C

ˇ̌̌̌
M � k C 1

M C 1
� 1

ˇ̌̌̌
< "=2C "=2 D ":

This proves the proposition.

We are now ready to introduce the analogue of the Berezin transform in our q-
deformed setting:

Definition 6.1.4. The quantum Berezin transform in degree N;M 2 N0 is the com-
pletely positive unital map ˇMN WC.SUq.2//! C.SUq.2// given by

ˇMN .x/ WD
�
1˝ �MN

�
�.x/:

Remark 6.1.5. In [3], a quantum Berezin transform was introduced for the stand-
ard Podleś sphere S2q in a manner very similar to the one above; see also [31] for an
alternative and much more general construction of a Berezin transform on quantum
homogeneous spaces. In [3], the states defining the Berezin transform were denoted
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hN , N 2 N0, and given by hN .x/ WD hN C 1iqh..a�/NxaN / for all x 2 C.S2q / �
C.SUq.2//. We therefore have that hN D �0N jC.S2

q /
. In particular, the restriction of

ˇ0N toC.S2q / agrees with the Berezin transform ˇN introduced in [3]. When qD 1, we
recovered the usual Berezin transform on the classical 2-sphere; see [3, Section 3.2]
for details on this. Note also that a Berezin transform for quantum homogeneous
spaces was introduced in [72] in the setting of Kac-type quantum groups. Since
SUq.2/ is only of Kac-type when q D 1 the constructions in [72] unfortunately do
not apply directly in our context. However, as we shall see below, the more ad hoc
definition above shares a number of properties with the construction in [72].

6.2 The image of the Berezin transform

In connection with our investigation of the quantum Gromov–Hausdorff continuity of
the family .C.SUq.2//; Lmax

t;q /t;q2.0;1�, a detailed understanding of the image of the
Berezin transform ˇMN turns out to be imperative. In this section we therefore describe
this image explicitly in terms of polynomial expressions in the generators a; b; a�; b�

for O.SUq.2//.
For each r; s 2 N0, we introduce the linear functional 'r;sW C.SUq.2// ! C

given by
'r;s.x/ WD h

�
.a�/sxar

�
:

These linear functionals are then related to our states �MN (see (6.1)) by the formula

�MN D
1

M C 1

NCMX
r;sDN

p
hr C 1iqhs C 1iq � 'r;s; N;M 2 N0: (6.3)

We now wish to determine the image of the Berezin transform ˇMN . To this end we
first analyse the linear functionals 'r;s in more details.

Lemma 6.2.1. Let n; r; s 2 N0 and 0 6 i; j 6 n. It holds that 'r;s.unij / > 0 and that

'r;s.u
n
ij / ¤ 0,

�
n � 2j D r � s and i D j and j 6 s

�
:

Proof. First note that by (3.14) we have the identities

'r;s.u
n
ij / D h

�
.a�/sunija

r
�
D h

�
�.ar/ � .a�/sunij

�
D q�2rh

�
ar.a�/sunij

�
:

Applying the formulae (3.11) we obtain that

ar � unij D

rX
kD0

�n;i;j .k/ � u
nC2k�r
iCk;jCk

and

.a�/s � unij D

min¹i;j;sºX
kD0

�n;i;j .k/ � u
n�2kCs
i�k;j�k

;

(6.4)
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where all the coefficients appearing are strictly positive. Now note that h.um
kl
/ D 0

for all m > 0 and h.u000/ D 1. We see from the formulae in (6.4) that if the matrix
coefficient u000 appears in the double sum expressing ar.a�/s � unij , then there are
terms of the form um00 in the sum expressing .a�/s � unij . This in turn implies that
s > j and i D j . We thus arrive at the following expressions:

h
�
ar.a�/s � unij

�
D

´
�n�2jCs;0;0.0/ � �n;j;j .j / � h

�
u
n�2jCs�r
00

�
i D j; j 6 s

0 elsewhere

D

´
�r;0;0.0/ � �n;j;j .j / i D j; j 6 s; n D r � s C 2j

0 elsewhere:

This proves the lemma.

Lemma 6.2.2. Let N;M 2 N0 and m 2 Z with jmj > M . It holds that ˇMN .x/ D 0
for all x 2 Amq .

Proof. Since ˇMN preserves the involution and Amq D .A
�m
q /� we may suppose that

m < �M . Furthermore, we may assume that x D u2j�mij for some j 2 N0 and i 2
¹0; 1; : : : ; 2j �mº since Am

q is spanned by such matrix coefficients by (3.16). It then
follows from Lemma 6.2.1 that

ˇMN .x/ D

2j�mX
kD0

u
2j�m

ik
� �MN

�
u
2j�m

kj

�
D u

2j�m
ij � �MN

�
u
2j�m
jj

�
D 0:

Indeed, for all r; s 2 ¹N; : : : ;N CM ºwe have 2j �m� 2j D�m>M > r � s.

Lemma 6.2.3. Let N;M 2 N0 and let m 2 ¹0; : : : ;M º. Let moreover j 2 N0 and
i 2 ¹0; 1; : : : ; 2j Cmº. It holds that

ˇMN
�
u
2jCm
ij

�
¤ 0, j 2 ¹0; : : : ; N CM �mº:

In this case �MN .u
2jCm
jj / > 0 and we have the formula

ˇMN
�
u
2jCm
ij

�
D u

2jCm
ij � �MN

�
u
2jCm
jj

�
:

Similarly, we have that

ˇMN
�
u
2jCm
i;jCm

�
¤ 0, j 2 ¹0; : : : ; N CM �mº:

In this case �MN .u
2jCm
jCm;jCm/ > 0 and we have the formula

ˇMN
�
u
2jCm
i;jCm

�
D u

2jCm
i;jCm � �

M
N

�
u
2jCm
jCm;jCm

�
:
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Proof. Let k 2 ¹0; : : : ; 2j Cmº be given. Using Lemma 6.2.1 together with (6.3) we
obtain that �MN .u

2jCm

kj
/¤ 0 if and only if kD j and there exist r;s 2 ¹N;: : : ;N CM º

with r � s D m and j 6 s. Since we have assumed thatM > m > 0 we then see that
�MN .u

2jCm

kj
/¤ 0 if and only if kD j and j 2 ¹0;1; : : : ;N CM �mº. In this case, we

moreover have that �MN .u
2jCm

kj
/ > 0. The first claim of the lemma (regarding u2jCmij )

therefore follows since

ˇMN
�
u
2jCm
ij

�
D

2jCmX
kD0

u
2jCm

ik
� �MN

�
u
2jCm

kj

�
D u

2jCm
ij � �MN

�
u
2jCm
jj

�
:

The remaining claim is now a consequence of the positivity of the linear maps ˇMN W
C.SUq.2//! C.SUq.2// and �MN WC.SUq.2//! C. Indeed, we know from (3.10)
that .u2jCmi;j /� D .�q/j�iu

2jCm
2jCm�i;jCm.

Lemma 6.2.4. Let N;M 2 N0 and let m 2 ¹0; 1; : : : ;M º. It holds that

ˇMN .A
�m
q / D spanC

®
u
2jCm
ij

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j Cm

¯
and

ˇMN .A
m
q / D spanC

®
u
2jCm
i;jCm

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j Cm

¯
:

The vector space dimensions are given by

dimC

�
ˇMN .A

�m
q /

�
D .N CM C 1/.N CM C 1 �m/ D dimC

�
ˇMN .A

m
q /
�
:

In particular, we have that ˇMN .A
k
q/ � Ak

q for all k 2 ¹�M;�M C 1; : : : ;M º.

Proof. We first remark that the algebraic spectral subspace A�mq is spanned by matrix
coefficients of the form u

2jCm
ij with j 2 N0 and i 2 ¹0; 1; : : : ; 2j C mº by (3.16).

Similarly, since Am
q D .A

�m
q /� it follows from (3.10) that Am

q is spanned by matrix
coefficients of the form u

2jCm
i;jCm with j 2N0 and i 2 ¹0;1; : : : ;2j Cmº. The first claim

regarding the images is then a consequence of Lemma 6.2.3. The relevant formula
for the dimension of the subspaces ˇMN .A

�m
q / and ˇMN .A

m
q / now follows from the

computation

dimC

�
ˇMN .A

m
q /
�
D dimC

�
ˇMN .A

�m
q /

�
D

NCM�mX
jD0

.2j CmC 1/

D .N CM �mC 1/.N CM C 1/:

The images of the spectral bands under the Berezin transforms will serve as our
finite dimensional (also known as “fuzzy”) approximations, analogous to the fuzzy
spheres from [55, 71] and their q-deformed counterparts in [3]. It will, however, also
be convenient to have a description available in terms of the generators of SUq.2/
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and we therefore opt to use this as the formal definition. To this end, recall from [3,
Definition 3.5] that the quantum fuzzy sphere in degree N 2 N0 is defined as

FuzzN .S2q /

WD spanC

®
.bb�/i .ab�/j ; .bb�/i .ba�/j

ˇ̌
i; j 2 N0; i C j 6 N

¯
� O.S2q /:

(6.5)

We now make the following definition:

Definition 6.2.5. Let N;m 2 N0. We define the fuzzy spectral subspaces as the finite
dimensional vector spaces

FuzzN .Amq / WD
mX
kD0

akbm�k � FuzzN .S2q / � Am
q and

FuzzN .A�mq / WD

mX
kD0

.a�/k.b�/m�k � FuzzN .S2q / � A�mq :

Moreover, for K 2 N0 we define the fuzzy spectral K-bands as

FuzzN .BKq / WD
KX

mD�K

FuzzN .Amq / � BK
q :

Note that since FuzzN .S2q / increases withN 2N0, the same is true for FuzzN .Amq /
for all m 2 Z. As mentioned above, the spaces just defined are intimately related to
the quantum Berezin transform as the following result shows:

Proposition 6.2.6. Let N;M;K 2 N0. It holds that ˇMN .A
m
q / D FuzzNCM�jmj.Amq /

for allm2¹�M;: : : ;M º. In particular ˇMN .B
K
q /�FuzzNCM .BKq /wheneverM >K

and FuzzN .BKq / is an operator system (without any constraints on N;K 2 N0).

Proof. Let m 2 Z with jmj 6 M be given. We focus on the case where m 2 N0

since the case where m < 0 follows from similar arguments. We begin by recalling
from [3, Lemmas 3.4 and 3.7] that

FuzzNCM�m.S2q / D spanC

®
u
2j
ij

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j

¯
: (6.6)

Similarly, we recall from Lemma 6.2.4 that

ˇMN .A
m
q / D spanC

®
u
2jCm
i;jCm

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j Cm

¯
:

FormD 0, the identity FuzzNCM�m.Amq /Dˇ
M
N .A

m
q / therefore follows immediately.

We may thus suppose that m > 0. Let us start out by proving the inclusion

FuzzNCM�m.Amq / � ˇ
M
N .A

m
q /: (6.7)
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For each l; i; j 2 N0 with i 6 2j C l it follows from (3.11) that

a � u
2jCl

i;jCl
2 spanC

°
u
2jC.lC1/

iC1;jC.lC1/
; u

2.j�1/C.lC1/

i;j�1C.lC1/

±
and

b � u
2jCl

i;jCl
2 spanC

°
u
2jC.lC1/

i;jC.lC1/
; u

2.j�1/C.lC1/

i�1;j�1C.lC1/

±
:

Hence, for all k 2 ¹0; : : : ;mº, j 2 ¹0; : : : ;N CM �mº and i 2 ¹0; : : : ; 2j º it holds
that

akbm�ku
2j
ij 2 spanC

°
u
2jCm
i;jCm

ˇ̌̌
0 6 j 6N CM �m; 0 6 i 6 2j Cm

±
D ˇMN .A

m
q /:

By definition of FuzzNCM�m.Amq /, the inclusion in (6.7) therefore follows. In order
to show that FuzzNCM�m.Amq / D ˇ

M
N .A

m
q /, it now suffices to establish that

dimC

�
FuzzNCM�m.Amq /

�
> dimC

�
ˇMN .A

m
q /
�
:

Rewriting the definition of the quantum fuzzy sphere from (6.5) slightly we obtain

FuzzNCM�m.S2q /

D spanC

®
aj bi .b�/iCj ; .a�/j biCj .b�/i

ˇ̌
i; j 2 N0; i C j 6 N CM �m

¯
:

(6.8)

From the two extremes, k D 0 and k D m, in Definition 6.2.5 we obtain that

M1 WD
®
amCj bi .b�/iCj ; .a�/j bmCiCj .b�/i

ˇ̌
i; j 2 N0; i C j 6 N CM �m

¯
� FuzzNCM�m.Amq /:

Similarly, fixing j D 0 in (6.8) and letting k vary in ¹1; : : : ; m � 1º we obtain that

M2 WD
®
akbm�kCi .b�/i

ˇ̌
1 6 k 6 m � 1; 0 6 i 6 N CM �m

¯
� FuzzNCM�m.Amq /:

Sincem > 1, we see from (3.1) that the setM1 [M2 consists of linearly independent
vectors and its cardinality is given by

.m � 1/ � .N CM �mC 1/C 2 �

 
NCM�mC1X

iD1

i

!
D .N CM �mC 1/ � .N CM C 1/;

which is exactly dimC.ˇ
M
N .A

m
q // by Lemma 6.2.4. This completes the proof of the

first part of the lemma.
The last two statements of the lemma follow from the first part. Firstly, forM >K

we have that

ˇMN .B
K
q /D

KX
mD�K

FuzzNCM�jmj.Amq /�
KX

mD�K

FuzzNCM .Amq /D FuzzNCM .BKq /:
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Secondly, for arbitrary N; K 2 N0, FuzzN .BKq / is an operator system since the
Berezin transforms are �-preserving:

FuzzN .Amq /
�
D ˇ

jmj
N .Amq /

�
D ˇ

jmj
N .A�mq / D FuzzN .A�mq /:

Corollary 6.2.7. Letm2Z andN;K 2N0. It holds that dimC.FuzzN .Amq //D .N C
jmj C 1/.N C 1/. In particular, both dimC.FuzzN .Amq // and dimC.FuzzN .BKq // are
independent of q 2 .0; 1�.

Proof. The first identity follows from Lemma 6.2.4 since FuzzN .Amq / D ˇ
jmj
N .Amq /

by Proposition 6.2.6. Since FuzzN .Amq / � Am
q one has that

dimC.FuzzN .BKq // D
KX

mD�K

dimC.FuzzN .Amq //;

and dimC.FuzzN .BKq // is therefore also independent of q 2 .0; 1�.

Inspecting the proof of Proposition 6.2.6, we obtain an explicit linear basis for the
fuzzy spectral subspaces:

Corollary 6.2.8. For eachN 2N andm2Z the fuzzy spectral subspace FuzzN .Amq /
admits a linear basis consisting of a subset of the standard linear basis (3.1) for
O.SUq.2// which is independent of the value of q. Concretely the basis can be chosen
as follows:

• For m > 0 it is given by®
ajCmbi .b�/iCj ; .a�/j biCjCm.b�/i

ˇ̌
i; j 2 N0; 0 6 i C j 6 N

¯
[
®
akbiCm�k.b�/i

ˇ̌
k 2 ¹1; : : : ; m � 1º; i 2 ¹0; : : : ; N º

¯
:

• For m D 0 it is given by®
aj bi .b�/iCj ; .a�/j biCj .b�/i

ˇ̌
j 2 ¹1; : : : ; N º; i 2 ¹0; : : : ; N � j º

¯
[
®
bi .b�/i

ˇ̌
i 2 ¹0; : : : ; N º

¯
:

• For m < 0 it is given by®
.a�/j�mbiCj .b�/i ; aj bi .b�/iCj�m

ˇ̌
i; j 2 N0; 0 6 i C j 6 N

¯
[
®
.a�/kbi .b�/i�m�k.b�/i

ˇ̌
k 2 ¹1; : : : ;�m � 1º; i 2 ¹0; : : : ; N º

¯
:

The fuzzy approximations of the 2-sphere originated in physics [29, 55, 56] and
have the feature of carrying an action of SU.2/. In the q-deformed setting fuzzy
approximations of the Podleś sphere have also been studied in the mathematical phys-
ics literature; see [5,27,28]. In some sense these ideas can be traced back to the work
of Podleś [66].
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Similarly to the quantum fuzzy spheres, our fuzzy spectral band also carries a
coaction of quantum SU.2/:

Proposition 6.2.9. For each N;K 2 N0, the operator system

FuzzN .BKq / � O.SUq.2//

is O.SUq.2//-coinvariant.

Proof. For every x 2 FuzzN .BKq / we need to show that

�.x/ 2 O.SUq.2//˝ FuzzN .BKq /:

Let m 2 ¹�K;�K C 1; : : : ; Kº. We shall in fact see that

�.x/ 2 O.SUq.2//˝ FuzzN .Amq /

whenever x 2 FuzzN .Amq /. Indeed, since FuzzN .Amq / D ˇ
jmj
N .Amq / by Proposition

6.2.6, the relevant inclusion follows from Lemma 6.2.4 together with the formula for
the coproduct on matrix coefficients.

Remark that for q D 1, the comultiplication on O.SU.2// is dual to the group
multiplication. Letting � denote the left regular action of SU.2/ on O.SU.2// and
evg WO.SU.2//! C denote the evaluation at a point g 2 SU.2/, we have the formula
�g�1f D .evg ˝ 1/�.f / for all f 2 O.SU.2//. Thus, in this case the coinvariance
in Proposition 6.2.9 does indeed correspond to invariance of FuzzN .BK1 / under the
left regular action of SU.2/.

In the section to follow, we need to apply the Berezin transform, which is at
the moment only defined on C.SUq.2//, to elements in the von Neumann algebra
L1.SUq.2//. Since � extends to a normal �-homomorphism at the von Neumann
algebraic level and each �MN is normal (being a vector state in the GNS repres-
entation), the slice map formula .1 ˝ �MN /�.x/ also makes sense at the level of
L1.SUq.2//. We could therefore simply extend the Berezin transform ˇMN to
L1.SUq.2// using the same formula. However, it will be important to view this
extension as a composition of a finite-dimensional projection and the original Berezin
transform and we therefore take this point of view as our point of departure.

For each finite dimensional subspace F � O.SUq.2// we let PF WL2.SUq.2//!
L2.SUq.2// denote the orthogonal projection with image ƒ.F / � L2.SUq.2//. We
then define the linear map ˆF WB.L2.SUq.2///! O.SUq.2// by the formula

ƒ.ˆF .T // WD PF .T �ƒ.1// for all T 2 B.L2.SUq.2///: (6.9)

We record that Im.ˆF / D F and that ˆF is WOT-norm continuous, where we recall
that WOT refers to the weak operator topology on B.L2.SUq.2///. Notice, moreover,
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that ˆF0
ˆF1
D ˆF1

ˆF0
D ˆF0

when F0; F1 � O.SUq.2// are finite dimensional
subspaces with F0 � F1. For each N;M 2 N0, we have that ˇMN .B

M
q / � BM

q �

O.SUq.2// is a finite-dimensional subspace and we apply the notation

ˆMN WD ˆˇM
N
.BM

q /WB
�
L2.SUq.2//

�
! O.SUq.2//

for the associated linear map. Recalling from Proposition 6.2.6 that

ˇMN .B
M
q / � FuzzNCM .BMq /;

we now define the extended Berezin transform žMN WL
1.SUq.2//! FuzzNCM .BMq /

by setting
žM
N .x/ WD ˇ

M
N .ˆ

M
N .x// for all x 2 L1.SUq.2//: (6.10)

Lemma 6.2.10. Let N;M 2 N0. The extended Berezin transform žMN is ucp (unital
completely positive) and satisfies that žMN .x/ D ˇ

M
N .x/ for all x 2 C.SUq.2//.

Proof. We will start by showing that the extended Berezin transform does indeed
extend the Berezin transform. By norm-density and linearity, it suffices to verify that
ˇMN .ˆ

M
N .u

n
ij // D ˇ

M
N .u

n
ij / for all n 2 N0 and i; j 2 ¹0; : : : ; nº. If unij is not one of

the matrix coefficients spanning ˇMN .B
M
q /D

PM
mD�Mˇ

M
N .A

m
q / then we obtain from

Lemmas 6.2.2, 6.2.3 and 6.2.4 that both sides of the claimed identity are equal to zero
(recall here that the different matrix coefficients are orthogonal to one another when
embedded in L2.SUq.2//). Conversely, if unij 2 ˇ

M
N .B

M
q /, it holds that ˆMN .u

n
ij / D

unij , and the relevant identity therefore holds trivially.
We now focus on showing that žMN is completely positive. We first note that this

is indeed the case for the Berezin transform ˇMN , being defined as the composition
of the unital �-homomorphism � with the slice map induced by the state �MN . Let
x 2 L1.SUq.2//˝Md .C/ be given. Then there exists a net .x˛/˛ in C.SUq.2//˝
Md .C/ converging in the strong operator topology to x. The net .x�˛x˛/˛ therefore
converges in the weak operator topology to x�x and sinceˆMN is WOT-norm continu-
ous we obtain the net ..ˇMN ˝ 1d /.x

�
˛x˛//˛ converges in norm to . žMN ˝ 1d /.x

�x/.
Since each .ˇMN ˝ 1d /.x

�
˛x˛/ is positive and the positive cone is norm closed we may

conclude that . žMN ˝ 1d /.x
�x/ is positive. This proves that the extended Berezin

transform is completely positive.

6.3 Estimates on the Berezin transform

Our next aim is to analyse the interplay between the Berezin transforms and the twis-
ted derivations defining the Lip-norms Lmax

t;q . At the algebraic level, i.e. with Lt;q
instead of Lmax

t;q , this analysis is slightly less complicated (see the remarks preceding
Proposition 6.3.4), but at the analytic level things are more subtle. In the first series of
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lemmas below, we show how one may, nevertheless, reduce certain questions to the
algebraic setting by means of the projections ˆF introduced in (6.9).

Throughout this section, we fix the two parameters t and q in .0; 1� unless expli-
citly stated otherwise.

Lemma 6.3.1. Let �; � 2 O.SUq.2//˚2. Then there exists a finite-dimensional sub-
space F0 � O.SUq.2// such that˝

�; @Hq .x/�
˛
D
˝
�; @Hq .ˆF .x//�

˛
and

˝
�; @Vt .x/�

˛
D
˝
�; @Vt .ˆF .x//�

˛
whenever F � O.SUq.2// is a finite-dimensional subspace with F0 � F and x 2
Lipt .SUq.2//.

Proof. First consider y; z 2 O.SUq.2// and let F � O.SUq.2// be any finite dimen-
sional subspace containing the vector y � �.z/� 2 O.SUq.2//. Using that the Haar
state is a twisted trace (see (3.13)), we then have that

hy; x � zi D hy � �.z/�; xi D hy � �.z/�; ˆF .x/i D hy;ˆF .x/ � zi (6.11)

for all x 2 C.SUq.2//.
Let us now focus on the case of the horizontal Dirac operator. The argument is

similar for the vertical Dirac operator. Let x 2Lipt .SUq.2// and �;�2O.SUq.2//˚2.
By definition of @Hq .x/ and by Lemma 3.6.4 we have that˝

�; @Hq .x/�
˛
D
˝
�;DH

q �L.q
1
2 ; x/�

˛
�
˝
�; �L.q

� 1
2 ; x/DH

q �
˛

D hDH
q �; �

�1
q x�q�i � h�; �qx�

�1
q DH

q �i

D h��1q DH
q �; x�q�i � h�q�; x�

�1
q DH

q �i:

Since the unbounded operators�q ,��1q DH
q both preserve the subspace O.SUq.2//˚2

we obtain the result of the lemma by applying the observation from (6.11) and running
the last computation backwards.

Lemma 6.3.2. Let n; i; j 2 N0 satisfy that i; j 6 n. It holds that unij 2 ˇ
M
N .B

M
q /

for all N;M 2 N0 with N CM > n and M > j2j � nj. In particular, for any finite
dimensional subspace F � O.SUq.2// we may choose a K0 2 N0 such that F �
ˇK0 .B

K
q / for all K > K0.

Proof. Let N;M 2 N0 with N CM > n and M > j2j � nj be given. Put m WD
j2j � nj so that M > m. Suppose first that m D n � 2j . We then have that unij D
u
2jCm
ij and it follows from Lemma 6.2.4 that unij 2 ˇ

M
N .A

�m
q / � ˇMN .B

M
q /, since

j 6 2j D n �m 6 N CM �m. Suppose next that m D 2j � n. Put k WD j �m
and notice that k > 0 since k D n� j . We then have that unij D u

2j�m
ij D u2kCm

i;kCm
and

it again follows from Lemma 6.2.4 that unij 2 ˇ
M
N .A

m
q / since k D j �m 6 n�m 6

N CM �m.
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We define the linear map ıWLipq.SUq.2//!M2.L
1.SUq.2/// by putting

ı.x/ WD u � @q;q.x/ � u
� for all x 2 Lipq.SUq.2//:

Note that ı does indeed take values in the von Neumann algebra M2.L
1.SUq.2///

since @q;q D @Vq C @
H
q takes values here by Corollary 4.5.5. We moreover remark that

ı extends the twisted �-derivation

ı D

�
ı3 �ı2

�ı1 �ı3

�
WO.SUq.2//!M2

�
O.SUq.2//

�
as can be seen by an application of Proposition 4.7.4.

Lemma 6.3.3. For each N;M 2 N0 there exists a K0 2 N0 such that

(1) ˆMN ı.x/ D ˆ
M
N ı.ˆ

K
0 .x// for all x 2 Lipq.SUq.2// and K > K0.

(2) ˆMN @
V
t .x/ D ˆ

M
N @

V
t .ˆ

K
0 .x// for all x 2 Lipt .SUq.2// and K > K0.

Proof. We will only carry out the argumentation for ı since the remaining case fol-
lows by a similar but slightly easier argument.

Consider the finite dimensional subspace ˇMN .B
M
q / � O.SUq.2// and let d 2 N

denote its dimension. Let us choose a subset ¹�k j k D 1; 2; : : : ; dº � ˇMN .B
M
q /

so that ¹ƒ.�k/ j k D 1; 2; : : : ; dº constitutes an orthonormal basis for the subspace
ƒ.ˇMN .B

M
q // � L

2.SUq.2//. The map ˆMN is then given by the expression

ˆMN .T / D

dX
kD1

�k
˝
ƒ.�k/; Tƒ.1/

˛
T 2 B

�
L2.SUq.2//

�
:

For every vector � 2 L2.SUq.2// we apply the notation

�0 WD

�
�

0

�
and �1 WD

�
0

�

�
2 L2.SUq.2//˚2;

and let eij 2M2.C/ denote the standard matrix units for i; j 2 ¹0; 1º. The linear map
ˆMN can then be described at the level of 2 � 2-matrices by the expression

ˆMN .T / D

1X
i;jD0

dX
kD1

eij � �k
˝
ƒ.�ik/; Tƒ.1/

j
˛

for all T 2M2

�
B.L2.SUq.2///

�
:

In particular, we have that

ˆMN .ı.x// D

1X
i;jD0

dX
kD1

eij � �k
˝
ƒ.�ik/; ı.x/ƒ.1/

j
˛

D

1X
i;jD0

dX
kD1

eij � �k
˝
u�ƒ.�ik/; @q;q.x/u

�ƒ.1/j
˛
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for all x 2 Lipq.SUq.2//. It therefore follows from Lemma 6.3.1 that we may choose
a finite-dimensional subspace F0 � O.SUq.2// such that

ˆMN .ı.x// D ˆ
M
N

�
ı.ˆF .x//

�
for all finite dimensional subspaces F � O.SUq.2// with F0 � F and all x 2
Lipq.SUq.2//. The result of the present lemma is now a consequence of Lemma 6.3.2.

Let N;M 2 N0 be given. Recall that the Berezin transform ˇMN WC.SUq.2//!
C.SUq.2// is defined by slicing the coproduct � on the right tensor-leg with a state,
while endomorphisms of the form ı� with � 2 Uq.su.2// are defined by slicing the
coproduct on the left tensor-leg. An application of the coassociativity of � therefore
shows that ˇMN .ı�.x// D ı�.ˇ

M
N .x// for all x 2 O.SUq.2// and � 2 Uq.su.2//. In

particular, we obtain that

ˇMN .ı.x// D ı.ˇ
M
N .x// for all x 2 O.SUq.2//: (6.12)

Furthermore, for each element x belonging to an algebraic spectral subspace Am
q for

some m 2 Z, we get from Lemmas 4.3.1, 6.2.2 and 6.2.4 that

ˇMN
�
@Vt .x/

�
D

�
Œm=2�tˇ

M
N .x/ 0

0 �Œm=2�tˇ
M
N .x/

�
D @Vt .ˇ

M
N .x// for all t 2 .0;1�:

We may thus conclude that

ˇMN .@
V
t .x// D @

V
t .ˇ

M
N .x// for all x 2 O.SUq.2//:

As a consequence of the analysis carried out above, we shall now see that these iden-
tities remain valid also at the level of the Lipschitz algebra. Recall, in this connection,
that žMN denotes the extension of ˇMN to L1.SUq.2// introduced in (6.10).

Proposition 6.3.4. For M;N 2 N0, the following identities are valid:

(1) ı.ˇMN .x// D ž
M
N ı.x/ for all x 2 Lipq.SUq.2//;

(2) @Vt .ˇ
M
N .x// D

žM
N @

V
t .x/ for all x 2 Lipt .SUq.2//.

Proof. We focus on proving the identity regarding the map ı. A similar argument-
ation applies to the twisted �-derivation @Vt . Let x 2 Lipq.SUq.2// be given. By
Lemmas 6.3.2 and 6.3.3, we may choose a K 2 N0 such that ˇMN .B

M
q / � ˇ

K
0 .B

K
q /

and such that
ˆMN ı.x/ D ˆ

M
N ı
�
ˆK0 .x/

�
:

We now remark that ˆK0 .x/ 2 O.SUq.2// and that ˆMN ˆ
K
0 D ˆ

M
N .

Applying these facts together with (6.12) and Lemma 6.2.10 we obtain the desired
result:

žM
N ı.x/Dˇ

M
N ˆ

M
N ı.x/Dˇ

M
N ˆ

M
N ı
�
ˆK0 .x/

�
Dı

�
ˇMN ˆ

M
N ˆ

K
0 .x/

�
Dı

�
ˇMN .x/

�
:
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In the special situation where t D q we have the identity u � @q;q � u� D ı and,
as we saw above, the map ı commutes with the Berezin transform. As the following
result shows, this has the effect that the Berezin transform becomes a contraction for
the associated Lip-norm Lmax

q;q . There is no reason to expect this to be the case when
t ¤ q, but Proposition 6.3.10 below provides an estimate on how far away the Berezin
transform is from being a contraction for the Lip-norm Lmax

t;q .

Corollary 6.3.5. Let N;M 2 N0. The Berezin transform

ˇMN WLipq.SUq.2//! O.SUq.2//

is a Lip-norm contraction for Lmax
q;q ; i.e. we have the inequality

Lmax
q;q

�
ˇMN .x/

�
6 Lmax

q;q .x/

for all x 2 Lipq.SUq.2//.

Proof. Let x 2 Lipq.SUq.2//. By Corollary 4.5.5, we have that

ı.x/ D u � @q;q.x/ � u
�
2M2

�
L1.SUq.2//

�
and by Lemma 6.2.10 the map žMN WL

1.SUq.2//! C.SUq.2// is ucp, and hence
a complete contraction. Using this together with Proposition 6.3.4, we obtain the
relevant inequality:

Lmax
q;q

�
ˇMN .x/

�
D
ı.ˇMN .x// D  žMN .ı.x// 6 kı.x/k D Lmax

q;q .x/:

We now return to the general setting, and will prove that the Berezin transform
suitably approximates the identity operator on the Lip-unit ball. Most of the results
below will be needed in two versions: one version for all of quantum SU.2/ and one
version which is fine tuned to hold on the spectral bands. ForK 2N0, we will also use
dt;q and dmax

t;q to denote the metrics on the state space �.BKq / arising from the restric-
tion of the seminorms Lt;q and Lmax

t;q to the spectral band BKq having domains BK
q

and BKq \ Lipt .SUq.2//, respectively. Hence, for �; � 2 �.C.SUq.2/// we specify
that

dmax
t;q .�; �/ WD sup

®
j�.x/ � �.x/j

ˇ̌
x 2 C.SUq.2//; Lmax

t;q .x/ 6 1
¯

dmax
t;q .�jBK

q
; �jBK

q
/ WD sup

®
j�.x/ � �.x/j

ˇ̌
x 2 BKq ; L

max
t;q .x/ 6 1

¯
;

and similarly for dt;q . Note that by Lemma 5.3.2 it holds that the domain of the
restricted seminorm Lmax

t;q jBK
q

is independent of t , in that we have

Lipt .SUq.2// \ BKq D LipH .SUq.2// \ BKq ; (6.13)

where LipH .SUq.2// is the algebra of horizontally Lipschitz elements introduced in
Definition 4.3.2.
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Proposition 6.3.6. Let N;M;K 2 N0. It holds that

kˇMN .x/ � xk 6 dmax
t;q

�
�MN ; �

�
� Lmax

t;q .x/ for all x 2 C.SUq.2// and

kˇMN .x/ � xk 6 dmax
t;q

�
�MN jBK

q
; �jBK

q

�
� Lmax

t;q .x/ for all x 2 BKq :

Proof. When proving the two statements we may focus on the case where x belongs
to Lipt .SUq.2// or Lipt .SUq.2// \ BKq since the seminorms on the right-hand side
otherwise take the value infinity. Notice first that for every y 2 C.SUq.2// it holds
that

kyk D sup
®
j��;�.y/j

ˇ̌
�; � 2 L2.SUq.2//; k�k; k�k D 1

¯
; (6.14)

where we recall that ��;� denotes the linear functional x 7! h�; �.x/�i. Let now
x 2 Lipt .SUq.2// be given and let �; � 2 L2.SUq.2// be unit vectors. Using the
identity (6.14), it suffices to show thatˇ̌

��;�.ˇ
M
N .x/ � x/

ˇ̌
6 dmax

t;q .�
M
N ; �/ � L

max
t;q .x/:

This inequality follows from Proposition 4.6.6 and the Fubini Theorem for slice maps
[76] via the estimates:ˇ̌

��;�.ˇ
M
N .x/ � x/

ˇ̌
D
ˇ̌
.�MN � �/.��;� ˝ 1/�.x/

ˇ̌
6 dmax

t;q .�
M
N ; �/ � L

max
t;q

�
.��;� ˝ 1/�.x/

�
6 dmax

t;q .�
M
N ; �/ � L

max
t;q .x/:

This proves the first part of the statement.
If x 2 BKq then �.x/ 2 C.SUq.2//˝min B

K
q since each of the algebraic spectral

subspaces is a left comodule for O.SUq.2//. In the last computation in the proof
above we therefore have .��;� ˝ 1/�.x/ 2 BKq , and hence the rest of the argument
carries over to prove the remaining inequality.

As indicated above, we now wish to estimate how far the Berezin transform is
from being a contraction for the Lip-norm Lmax

t;q . In general, there is no hope to com-
mute the Berezin transform directly past the operation u � @t;q � u� as we could when
t D q. However, as Proposition 6.3.6 shows, the Berezin transform approximates the
identity operator well on the Lip-unit ball, and this makes it possible to obtain strong
estimates nevertheless. The analytic norm k � kt;q introduced in Section 3.6 will be
used as a tool in the analysis below, and we first provide an estimate on its values on
the entries of the fundamental unitary u 2M2.O.SUq.2///. We denote these entries
by uij , i; j D 0; 1.

Lemma 6.3.7. For every i; j 2 ¹0; 1º, it holds that

kuij kt;q D ku
�
ij kt;q 6 q�

1
2 C t�

1
2 and

Lmax
t;q .uij / D L

max
t;q .u

�
ij / 6 Œ1=2�t C q

� 1
2 :
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Proof. Let i; j 2 ¹0;1º be given. Using that �L.s
1
2 ;uij /D s

j� 1
2uij for all s 2 .0;1/,

the result of the lemma follows from the estimate

ku�ij kt;q D kuij kt;q 6 max
®
qj�

1
2 C tj�

1
2 ; q�jC

1
2 C t�jC

1
2

¯
6 q�

1
2 C t�

1
2

together with the estimates

Lmax
t;q .u

�
ij / D L

max
t;q .uij / D

@Vt .uij /C @Hq .uij /
6 k@3t .uij /k Cmax

®
q

1
2 k@e.uij /k; q

�1=2
k@f .uij /k

¯
6 Œ1=2�t C q

� 1
2 ;

where the last inequality follows from (3.3).

In the following lemma we recall that…L
0 WC.SUq.2//!C.S2q / denotes the spec-

tral projection onto the Podleś sphere; see (3.17).

Lemma 6.3.8. Let x 2 ker.…L
0 /. We have the estimate

kxk 6
� � .t1=2 C t�1=2/

p
3

� Lmax
t;q .x/:

Proof. Without loss of generality, we may assume that x 2 ker.…L
0 /\ Lipt .SUq.2//

since the right-hand side of the desired inequality is equal to infinity otherwise. By
Proposition 5.5.1 we then get that x D

R V
t
@Vt .x/. It thus follows from Lemma 5.4.3

and the definition of
R V
t

from (5.15) that

kxk 6 k
Z V

t

k � k@Vt .x/k 6
� � .t1=2 C t�1=2/

p
3

� Lmax
t;q .x/:

With the above auxiliary results at our disposal, we may now start estimating
the error arising when commuting the Berezin transform past conjugation with the
fundamental unitary. This will be relevant when estimating the Lmax

t;q -operator norm
of the Berezin transform. An important point of the following lemma is that we are
able to control the error term by means of a continuous function in t and q. For the
statement, we recall that  WD

�
1 0
0 �1

�
.

Lemma 6.3.9. Let K 2 N0. There exists a continuous, positive function gK W .0; 1� �
.0; 1�! .0;1/ such thatˇMN .uxu�/ � uˇMN .x/u� 6 gK.t; q/ � d

max
t;q

�
�MN jBK

q
; �jBK

q

�
� Lmax

t;q .x/

for all N;M 2 N0, all t; q 2 .0; 1� and all x 2 BKq \ ker.…L
0 /.

Proof. Without loss of generality we may focus on the case where x2Lipt .SUq.2//\
BKq \ ker.…L

0 /, since the right-hand side is otherwise equal to infinity. An application
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of Proposition 6.3.6 shows that the following inequalities hold for allN;M 2N0 and
all t; q 2 .0; 1�; notice in this respect that uijxu�kj 2 B

K
q for all i; j; k 2 ¹0; 1º:ˇMN .uxu�/ � uˇMN .x/u�

6
1X

i;j;kD0

ˇMN .uijxu�kj / � uijˇMN .x/u�kj
6

1X
i;j;kD0

ˇMN .uijxu�kj / � uijxu�kjC 1X
i;j;kD0

uij .x � ˇMN .x//u�kj
6 dmax

t;q

�
�MN jBK

q
; �jBK

q

�
�

1X
i;j;kD0

�
Lmax
t;q .uijxu

�
kj /C L

max
t;q .x/

�
:

Applying Lemmas 4.3.7 and 6.3.7 we estimate that

Lmax
t;q .uijxu

�
kj / 6 Lmax

t;q .uij / � kxkt;q � kukj kt;q C kuij kt;q � L
max
t;q .x/ � kukj kt;q

C kuij kt;q � kxkt;q � L
max
t;q .ukj /

6 2
�
Œ1=2�t C q

� 1
2

�
.q�

1
2Ct�

1
2 / � kxkt;qC.q

� 1
2Ct�

1
2 /2 � Lmax

t;q .x/:

The result of the lemma is now a consequence of Lemmas 3.6.5 and 6.3.8: indeed,
we have that

kxkt;q 6
KX

mD�K

.t
m
2 C q

m
2 / � kxk

6
KX

mD�K

.t
m
2 C q

m
2 / �

� � .t1=2 C t�1=2/
p
3

� Lmax
t;q .x/:

Proposition 6.3.10. Let K 2 N0. Then, there exists a continuous positive function
hK W .0; 1� � .0; 1�! .0;1/ satisfying that

(1) hK.q; q/ D 0 for all q 2 .0; 1� and;

(2) the following estimate holds

Lmax
t;q

�
ˇMN .x/

�
6
�
1C hK.t; q/ � d

max
t;q

�
�MN jBK

q
; �jBK

q

��
� Lmax

t;q .x/

for all N;M 2 N0, all t; q 2 .0; 1� and all x 2 Lipt .SUq.2// \ BKq .

Proof. We start out by choosing the continuous positive function gK W .0;1�� .0;1�!
.0;1/ according to Lemma 6.3.9. We then define the continuous positive function
hK W .0; 1� � .0; 1�! .0;1/ by putting

hK.t; q/ WD 2 �

KX
mD1

ˇ̌
Œm=2�t � Œm=2�q

ˇ̌
� gK.t; q/

and note that hK.q; q/ D 0 for all q 2 .0; 1� as desired.



Approximation in the quantum Gromov–Hausdorff distance 99

LetN;M 2N0 and t; q 2 .0; 1� be given. Let moreover x 2 Lipt .SUq.2// \ BKq ,
and remark that by (6.13), x 2 Lipq.SUq.2// \ BKq as well. We define the element
yD @3t .x/� @

3
q.x/ and notice that y 2BKq \ ker.…L

0 / by Lemma 5.3.2. We moreover
emphasise the identities

@t;q.x/ � @q;q.x/ D @
V
t .x/ � @

V
q .x/ D y; where  D

�
1 0
0 �1

�
:

Using Propositions 4.7.4 and 6.3.4 we now compute as follows:

u � @t;q
�
ˇMN .x/

�
� u�

D u � .@Vt � @
V
q /
�
ˇMN .x/

�
� u� C ı

�
ˇMN .x/

�
D u � ˇMN

�
.@Vt � @

V
q /.x/

�
� u� C žMN

�
ı.x/

�
D u � ˇMN .y/ � u

�
� ˇMN .uyu

�/C ˇMN
�
u � .@t;q � @q;q/.x/ � u

�
�
C ž

M
N

�
ı.x/

�
D u � ˇMN .y/ � u

�
� ˇMN .uyu

�/C žMN
�
u � @t;q.x/ � u

�
�
:

Combining the above computation with Lemma 6.3.9, recalling that žMN is a complete
contraction by Lemma 6.2.10, we obtain that

Lmax
t;q

�
ˇMN .x/

�
6
u � ˇMN .y/ � u� � ˇMN .uyu�/C Lmax

t;q .x/

6 gK.t; q/ � d
max
t;q

�
�MN jBK

q
; �jBK

q

�
� Lmax

t;q .y/C L
max
t;q .x/:

The result of the present proposition follows from the equality yD
PK
mD�K.Œm=2�t �

Œm=2�q/ �…
L
m.x/ so that

Lmax
t;q .y/ 6

KX
mD�K

ˇ̌
Œm=2�t � Œm=2�q

ˇ̌
� Lmax

t;q .…
L
m.x//

6 2

KX
mD1

ˇ̌
Œm=2�t � Œm=2�q

ˇ̌
� Lmax

t;q .x/;

where the last inequality follows from Corollary 5.2.3.

6.4 Approximation in the quantum Gromov–Hausdorff distance

As a result of the analysis carried out in this section, we shall see that the quantum
Gromov–Hausdorff distance between the two compact quantum metric spaces
.C.SUq.2//;Lmax

t;q / and .C.SUq.2//;Lt;q/ is in fact equal to zero; cf. Corollary 6.4.2
below. When considering the quantum Gromov–Hausdorff convergence questions in
Chapter 7, this result will allow us to work exclusively at the algebraic level, which
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will simplify matters significantly. We start out with a technical estimate, from which
a number of our main results will follow.

Proposition 6.4.1. Let ı 2 .0; 1/. For every " > 0 there exists a K0 2 N0 and a
constant C > 0 such that

distQ
�
.ˇMN .B

K0
q /; Lt;q/I .C.SUq.2//; Lmax

t;q /
�

6 dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C "

for allN;M 2N0 and all t; q 2 Œı; 1�. Moreover, ifX � C.SUq.2// is a sub-operator
system such that Dom.Lmax

t;q / \ X is norm-dense in X and ˇMN .B
K0
q / � X , then it

holds that

distQ
�
.X;Lmax

t;q /I .C.SUq.2//; Lmax
t;q /

�
6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C "

for all t; q 2 Œı; 1�.

Proof. Let " > 0 be given and choose K0 2 N0 such that ".ı; K0/ 6 "; see (5.12)
for the definition of ".ı; K/ for K 2 N0. For every N;M 2 N0 we remark that the
seminormsLt;q andLmax

t;q agree on the sub-operator system ˇMN .B
K0
q /� C.SUq.2//.

This is a consequence of Lemmas 6.2.2 and 6.2.4. By Proposition 6.3.10, we may
choose a constant C0 > 0 such that

Lmax
t;q

�
ˇMN .x/

�
6
�
1C C0 � d

max
t;q

�
�MN jBK0

q

; �j
B

K0
q

��
� Lmax

t;q .x/ (6.15)

for all N;M 2 N0, all t; q 2 Œı; 1� and all x 2 Lipt .SUq.2// \ B
K0
q . Combining

Proposition 5.6.4 with Remark 5.6.5 we may choose the constant C > 0 such that

C0 � diam
�
C.SUq.2//; Lmax

t;q

�
C 1 6 C for all t; q 2 Œı; 1�:

Let now N;M 2 N0 and t; q 2 Œı; 1� be given. Define the unital map ˆ WD ˇMN ı

ELK0
WC.SUq.2//! ˇMN .B

K0
q / and note that ˆ is positive since ELK0

DM.K0
/ is a

unital contraction (Lemma 5.4.4) and ˇMN is positive by construction. We then obtain
from Propositions 5.5.3, 6.3.6 and Lemma 5.5.2 that

kx �ˆ.x/k 6 kx �ELK0
.x/k C kELK0

.x/ � ˇMN .E
L
K0
.x//k

6 ".ı;K0/ � L
max
t;q .x/C d

max
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� Lmax

t;q .E
L
K0
.x//

6
�
"C dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

��
� Lmax

t;q .x/

for all x 2 Lipt .SUq.2//. Another application of Lemma 5.5.2 together with (6.15)
moreover shows that

Lmax
t;q .ˆ.x// 6

�
1C C0 � d

max
t;q

�
�MN jBK0

q

; �j
B

K0
q

��
� Lmax

t;q .x/

for all x 2 Lipt .SUq.2//.
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Using Corollary 2.2.5 we then see that

distQ
��
ˇMN .B

K0
q /; Lt;q

�
I
�
C.SUq.2//; Lmax

t;q

��
6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
�
�
C0 � diam

�
C.SUq.2//; Lmax

t;q

�
C 1

�
C "

6 dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C ":

This proves the first part of the present proposition. The second part of our proposition
now follows from Remark 2.2.6.

Corollary 6.4.2. Let t; q 2 .0; 1�. The metrics dt;q and dmax
t;q agree on the state space

�.C.SUq.2///. In particular, it holds that

distQ
�
.C.SUq.2//; Lt;q/I .C.SUq.2//; Lmax

t;q /
�
D 0:

Proof. Let �; � 2 �.C.SUq.2///. We trivially have that dt;q.�; �/ 6 dmax
t;q .�; �/, so

we need to prove the opposite inequality.
For every K;N;M 2 N0 we recall that the seminorms Lt;q and Lmax

t;q agree on
the sub-operator system ˇMN .B

K
q / � C.SUq.2// (see Lemmas 6.2.2 and 6.2.4). We

thereby obtain that the two metrics dt;q and dmax
t;q agree on the state space �.ˇMN .B

K
q //.

Let " > 0 be given. Combining the proof of Proposition 6.4.1 with Corollary 2.2.7
we may choose a K0 2 N0 and a constant C > 0 such that

dmax
t;q .�; �/ 6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C "=2C dt;q.�; �/

for all N;M 2 N0. Next, by Theorem 5.6.1, dmax
t;q metrises the weak� topology on

�.C.SUq.2/// and by Lemma 6.1.3 it follows that limN;M!1 d
max
t;q .�

M
N ; �/ D 0. We

may thus choose N;M 2 N0 such that

C � dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
6 C � dmax

t;q .�
M
N ; �/ 6 "=2:

Combining these two estimates we obtain that

dmax
t;q .�; �/ 6 "C dt;q.�; �/:

Since " > 0 was arbitrary we have proved that dmax
t;q .�; �/ D dt;q.�; �/.

The fact that the quantum Gromov–Hausdorff distance between .C.SUq.2//;Lmax
t;q /

and .C.SUq.2//;Lt;q/ is equal to zero now follows from [70, Corollary 6.4] (see also
the discussion near Theorem 2.2.3).

We also record a corollary which is an analogue to Corollary 6.4.2 for the spectral
bands. Since the proof is similar but easier than the proof of Corollary 6.4.2 we are
leaving it out.
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Corollary 6.4.3. Let K 2 N0 and let t; q 2 .0; 1�. The metrics dt;q and dmax
t;q agree

on the state space �.BKq /. In particular, it holds that

distQ
�
.BKq ; L

max
t;q jBK

q
/I .BKq ; Lt;qjBK

q
/
�
D 0:

Lastly, we single out the following consequence of Proposition 6.4.1, which shows
that our fuzzy approximations do indeed approximate quantum SU.2/ in the quantum
Gromov–Hausdorff distance.

Corollary 6.4.4. Let t; q 2 .0; 1�. It holds that

lim
N;K!1

distQ
��

FuzzN .BKq /; Lt;q
�
I
�
C.SUq.2//; Lmax

t;q

��
D 0:

Proof. Let " > 0 be given. By Proposition 6.4.1, there exist aK0 2N0 and a constant
C > 0 such that

distQ
��
ˇMN .B

K0
q /; Lt;q

�
I
�
C.SUq.2//; Lmax

t;q

��
6 C � dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
C "=2

for allN;M 2N0. By Theorem 5.6.1 and Lemma 6.1.3 we may chooseN0;M0 2N0

with M0 > K0 such that

C � dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
6 C � dmax

t;q .�
M
N ; �/ < "=2 for all N > N0 and M >M0:

For N > N0 CM0 and K > K0 we obtain from Proposition 6.2.6 that

ˇ
M0

N0
.BK0
q / � FuzzN0CM0

.BK0
q / � FuzzN .BK0

q / � FuzzN .BKq /;

and the last part of Proposition 6.4.1 therefore shows that

distQ
��

FuzzN .BKq /; Lt;q
�
I
�
C.SUq.2//; Lmax

t;q

��
< ";

for all N > N0 CM0 and all K > K0.

Remark 6.4.5. The case where t D q D 1 is of particular interest since C.SU1.2//D
C.SU.2// and the Lip-norm Lmax

1;1 computes the Lipschitz constant arising from twice
the round metric dS3 on SU.2/ŠS3�R4; see Section 4.4 for details. Corollary 6.4.4
therefore provides a finite-dimensional approximation of C.S3/ by subspaces invari-
ant under the SU.2/-action (see Proposition 6.2.9). This yields an S3-analogue of
Rieffel’s original result [71, Theorem 3.2] for the 2-sphere.



Chapter 7

Continuity results

In this chapter we embark on our final goal of the memoir, which is to prove that
the family of compact quantum metric spaces .C.SUq.2//; Lt;q/t;q2.0;1� varies con-
tinuously in the quantum Gromov–Hausdorff distance; see Theorem D. The result
in Corollary 6.4.2 shows that we may choose to work exclusively with the Lip-
normLt;q , meaning that the domain equals the coordinate algebra O.SUq.2//. Indeed,
the corresponding continuity result for the Lip-norm Lmax

t;q with domain equal to the
Lipschitz algebra Lipt .SUq.2// follows automatically. In effect, this allows us to cir-
cumvent a lot of analysis and work at a purely (Hopf-)algebraic level. We begin by
providing a rough outline of the mains steps in the proof of continuity at a point
.t0; q0/ 2 .0; 1� � .0; 1�:

(1) We fine tune the result in Corollary 6.4.4 by showing that locally around
.t0;q0/ the fuzzy approximations approach quantum SU.2/ in a uniform man-
ner.

(2) Utilising the finite dimensionality of the fuzzy approximation we show that
these vary continuously.

(3) Piecing together these approximation results, we arrive at the main continuity
statement in Theorem 7.3.1 below.

7.1 Continuity of the fuzzy approximations

We begin by addressing point (2) in the above list.

Proposition 7.1.1. LetK;N 2N0. The 2-parameter family of compact quantum met-
ric spaces .FuzzN .BKq /; Lt;q/t;q2.0;1� varies continuously in the quantum Gromov–
Hausdorff distance.

Proof. Fix a ı 2 .0; 1/. We aim to apply [70, Theorem 11.2], and must therefore
provide a fixed finite dimensional real vector space V with a distinguished vector e, a
continuous family .k � kt;q/t;q2Œı;1� of norms and a continuous family .Mt;q/t;q2Œı;1�
of seminorms such that .V; e; k � kt;q;Mt;q/ is an order unit compact quantum metric
space isomorphic to�

FuzzN .BKq /sa; 1; k � k; Lt;q
�

for all t; q 2 Œı; 1�:

We are going to apply the unital continuous field of C �-algebras over Œı; 1� with
total space C.SU�.2// and with fibre C.SUq.2// for every q 2 Œı; 1� which was
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introduced in Section 3.7. For each q 2 Œı; 1�, we recall that evqW C.SU�.2// !
C.SUq.2// denotes the unital �-homomorphism which evaluates at the point q.

We recall that O.SU�.2// � C.SU�.2// denotes the smallest unital �-subalgebra
containing C.Œı; 1�/ and the generators a� and b�. Notice also that O.SU�.2// is a
free C.Œı; 1�/-module with basis given by the elements

�klm� WD

´
ak�b

l
�.b
�
� /
m k > 0

bl�.b
�
� /
m.a�� /

�k k < 0;

for k 2 Z and l; m 2 N0.
For each q 2 Œı; 1� we obtain a linear basis for the coordinate algebra O.SUq.2//

by applying the evaluation map to the linearly independent subset ¹�klm� j .k; l;m/ 2

Z �N0 �N0º � C.SU�.2//. In particular, we obtain that

evqW spanC

®
�klm�

ˇ̌
.k; l;m/ 2 Z �N0 �N0

¯
! O.SUq.2//

is an isomorphism of vector spaces over C. By an application of Corollary 6.2.8, we
may choose a finite subset J � Z �N0 �N0 satisfying that

evq
�
spanC

®
�klm�

ˇ̌
.k; l;m/ 2 J

¯�
D FuzzN .BKq /

for all q 2 Œı; 1�. We apply the notation

W WD spanC

®
�klm�

ˇ̌
.k; l;m/ 2 J

¯
� C.SU�.2//

and record thatW becomes a finite-dimensional operator system (indeed, it holds that
�� 2 W whenever � 2 W and clearly 1 2 W as well). We put V WD Wsa and record
that the isomorphism

evqWW ! FuzzN .BKq /

induces an isomorphism of real vector spaces evqW V ! FuzzN .BKq /sa for all q 2
Œı; 1�. For each t; q 2 Œı; 1� we equip V with the unique order unit space structure
such that evqW V ! FuzzN .BKq /sa becomes an isomorphism of order unit spaces.
We emphasise that this order unit space structure does not depend on the parameter
t 2 Œı; 1�. Moreover, we may introduce the seminorm

Mt;qWV ! Œ0;1/ Mt;q.x�/ WD Lt;q
�
evq.x�/

�
:

In this fashion, we get that .V;Mt;q/ becomes an order unit compact quantum metric
space which is isometrically isomorphic to the order unit compact quantum metric
space .FuzzN .BKq /sa; Lt;q/. We remark that the different order unit space structures
on V yields a family of norms .k � kt;q/t;q2Œı;1� on V . This family becomes con-
tinuous since we are dealing with a continuous field of C �-algebras with total space
C.SU�.2//. Indeed, for each t; q 2 Œı; 1� we record that kx�kt;q D kevq.x�/k. We
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therefore only need to show that the family of seminorms .Mt;q/t;q2Œı;1� is continu-
ous as well.

It then follows from the discussion in Section 3.7 that we have twoC.Œı;1�/-linear
maps

@1� and @2�WO.SU�.2//! O.SU�.2//

satisfying that evq ı @1� D @
1 ı evq and evq ı @2� D @

2 ı evq . Moreover, for each t 2
.0; 1� we may define the C.Œı; 1�/-linear map

@3t;�WO.SU�.2//! O.SU�.2// @3t;�.�
klm
� / WD

�
.k C l �m/=2

�
t
� �klm� :

By construction we obtain evq ı @3t;� D @
3
t ı evq . Moreover, for each x� 2O.SU�.2//,

we note that the map .0; 1�! C.SU�.2// defined by t 7! @3t;�.x�/ is continuous with
respect to the C �-norm on C.SU�.2//. For each t 2 .0; 1�, we may thus consider the
C.Œı; 1�/-linear map

@t;�WO.SU�.2//!M2

�
C.SU�.2//

�
@t;� WD

�
@3t;� �@2�
�@1� �@

3
t;�

�
:

We notice that M2.C.SU�.2/// is again the total space of a continuous field of C �-
algebras over Œı; 1�, this time with fibres M2.C.SUq.2/// for q 2 Œı; 1�. For each
t; q 2 Œı; 1� we moreover have that

Mt;q.x�/ D
@t;q.evq.x�//

 D evq
�
@t;�.x�/

�
for every x� 2 V . From these observations we obtain that .Mt;q/t;q2Œı;1� is a continu-
ous family of seminorms on V .

The assumptions in [70, Theorem 11.2] are thereby fulfilled, and since ı 2 .0; 1/
was arbitrary this implies the claimed continuity result.

In the following subsection we address point (1) in the road map provided in the
beginning of this chapter. This is the main technical step in the proof of Theorem D.
The uniform fuzzy approximation which we are going to establish builds on a com-
bination of the approximation results described in Chapter 6 and the continuity results
obtained earlier for the Podleś sphere in [3, 25].

7.2 Uniformity of the fuzzy approximation

The core result of this section provides a uniform estimate on the Monge–Kantorovič
distance between the states �MN , N;M 2 N0, and the counit �. This estimate takes
place on a fixed spectral band and the main part of the upper bound is given in terms
of the Monge–Kantorovič distance between states on the Podleś sphere. One of the
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relevant states is the restriction of the counit while the remaining states on S2q are all
of the following form:

hj WC.S
2
q /! C hj .x/ WD hj C 1iq � h

�
.a�/jxaj

�
j 2 N0: (7.1)

We emphasise that the state hj is the restriction of the state �0j (see (6.1)) to the
Podleś sphere C.S2q /� C.SUq.2//. We are interested in the algebraic versions of the
Monge–Kantorovič metrics on quantum SU.2/ and the Podleś sphere defined by

dt;q.�; �/ WD sup
®
j�.x/ � �.x/j

ˇ̌
x 2 O.SUq.2//; Lt;q.x/ 6 1

¯
for �; � 2 �.C.SUq.2///

and

d0q .�; �/ WD sup
®
j�.x/ � �.x/j

ˇ̌
x 2 O.S2q /; L

0
q.x/ 6 1

¯
for �; � 2 �.C.S2q //:

We recall from Proposition 5.1.2 that the seminorm L0qWO.S
2
q /! Œ0;1/ agrees

with the restriction of the seminorm Lt;qWO.SUq.2// ! Œ0;1/ to O.S2q / for all
values of t 2 .0; 1�.

Lemma 7.2.1. Let m 2 Z and t; q 2 .0; 1�. For every x 2 Am
q it holds that

L0q
�
.a�/mx

�
6 .t

1
2 C t�

1
2 C 1/Lt;q.x/ for m > 0 and

L0q
�
xa�m

�
6 .t

1
2 C t�

1
2 C 1/Lt;q.x/ for m 6 0:

Proof. We focus on the case wherem > 0 since the remaining case follows by taking
adjoints. Suppose thus that m > 0 and let x 2 Am

q . We know that .a�/mx 2 A0
q

and an application of Proposition 5.1.2 shows that L0q..a
�/mx/ D Lt;q..a

�/mx/. In
particular, we immediately obtain the relevant inequality for m D 0. We may thus
assume that m > 0. Since .a�/m D um00, it follows from (3.9) that

@e..a
�/m/ D 0 and @f ..a

�/m/ D um01 �
p
q1�mhmiq:

As a consequence of these identities, we get the estimate@Hq ..a�/m/ D q� 1
2 @f ..a

�/m/
 6
p

q�m � hmiq 6
p
m � q�

m
2 :

We moreover notice that Lemmas 5.3.4 and 5.4.2 imply the inequalities

kxk 6
1

Œm=2�t
� Lt;q.x/ 6

t1=2 C t�1=2

m
� Lt;q.x/: (7.2)

Since Lt;q..a�/mx/ D L0q..a
�/mx/ D k@Hq ..a

�/mx/k, the result of the lemma now
follows from Lemma 4.3.3 together with Lemma 3.6.3 and the estimate in (4.6):

Lt;q
�
.a�/mx

�
6
@Hq ..a�/m/ � qm=2kxk C qm=2.a�/m � @Hq .x/

6
t1=2Ct�1=2
p
m

� Lt;q.x/CLt;q.x/ 6 .t
1
2Ct�

1
2C1/ � Lt;q.x/:



Uniformity of the fuzzy approximation 107

Recall from Section 6.2 the linear functionals 'r;sWC.SUq.2//! C, r; s 2 N0,
given by

'r;s.x/ D h
�
.a�/sxar

�
:

As noted in (6.3), for each N;M 2 N0, the state �MN appearing in the definition of
the Berezin transform ˇMN WC.SUq.2//! C.SUq.2// is then given by

�MN D
1

M C 1

NCMX
s;rDN

p
hr C 1iqhs C 1iq � 'r;s: (7.3)

We first describe the linear functionals 'r;s in terms of the states hj on the Podleś
sphere introduced in (7.1).

Lemma 7.2.2. Let r; s 2 N0. For every x 2 C.SUq.2// it holds that

'r;s.x/ D

´
1

hrC1iq
� hr

�
.a�/s�r �…L

s�r.x/
�
s > r

1
hsC1iq

� hs
�
…L
s�r.x/ � a

r�s
�

r > s:

Proof. By continuity and linearity, we may assume that x 2 Amq for some m 2 Z.
Since the Haar state hWC.SUq.2//! C vanishes on all but the zeroth spectral sub-
space and .a�/sxar 2 AmCr�sq we then have that 'r;s.x/ ¤ 0 if and only if m C
r � s D 0. Since …L

s�r.x/ also vanishes for m C r � s ¤ 0, we may assume that
m D s � r . For m > 0 we have that

'r;s.x/ D h
�
.a�/sxar

�
D h

�
.a�/r.a�/mxar

�
D

1

hr C 1iq
hr
�
.a�/mx

�
:

Likewise, for m 6 0 we get that

'r;s.x/ D h
�
.a�/sxar

�
D h

�
.a�/sxa�mas

�
D

1

hs C 1iq
hs.xa

�m/:

This proves the present lemma.

Inspired by Lemma 7.2.2, for each m 2 N0, we now define the bounded operator
PmWC.SUq.2//! C.S2q / by the formula

Pm.x/ WD

´
.a�/m…L

m.x/C…
L
�m.x/a

m m > 0

…L
0 .x/ m D 0:

Indeed, for every s; r 2 N0 with r < s we get from Lemma 7.2.2 that

's;r.x/C 'r;s.x/D
1

hr C 1iq
� hr

�
Ps�r.x/

�
and 'r;r.x/D

1

hr C 1iq
� hr.P0.x//;

(7.4)
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for all x 2 C.SUq.2//. Note also that Pm.x�/D Pm.x/� since…m.x
�/D…�m.x/

�

for all x 2 C.SUq.2// and m 2 N0. For each N;M 2 N0 we may then express the
state �MN WC.SUq.2//! C in terms of the bounded operators Pm, m 2 N0, and the
states hr WC.S2q /! C, r 2 N0:

Lemma 7.2.3. Let N;M 2 N0. For every x 2 C.SUq.2//, it holds that

�MN .x/ D
1

M C 1

NCMX
rDN

NCM�rX
mD0

s
hmC r C 1iq

hr C 1iq
� hr

�
Pm.x/

�
:

Proof. Using (7.3) and (7.4), we obtain the desired result from the computation

.M C 1/ � �MN D

NCMX
rDN

hr C 1iq � 'r;r

C

NCMX
rDN

NCMX
sDrC1

p
hr C 1iqhs C 1iq � .'s;r C 'r;s/

D

NCMX
rDN

NCMX
sDr

s
hs C 1iq

hr C 1iq
� .hr ı Ps�r/:

In order to estimate the distance between the counit � and the state �MN for dif-
ferent values of N;M 2 N0 we introduce the linear functional  MN WC.SUq.2//! C
defined by

 MN .x/ D
1

M C 1

NCMX
rDN

NCM�rX
mD0

s
hmC r C 1iq

hr C 1iq
� �
�
Pm.x/

�
for all x 2 C.SUq.2//. The next two lemmas serve as preparation for Proposition
7.2.6, where we provide a uniform upper bound on the Monge–Kantorovič distance
between the states � and �MN on a fixed spectral band.

Lemma 7.2.4. Let n 2 Z. It holds thatˇ̌
 MN .x/ � �.x/

ˇ̌
6
�

1

N C 1
C

1

M C 1

�
� .t

1
2 C t�

1
2 / � Lt;q.x/ (7.5)

for all t; q 2 .0; 1�, all x 2 An
q and all N;M 2 N0 with M > jnj.

Proof. Since  MN and � respect the adjoint operation and Lt;q is �-invariant, it suf-
fices to treat the case n > 0. For n D 0, the estimate in (7.5) clearly holds since the
left-hand side of the inequality is equal to zero. Suppose therefore that n > 0, and let
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q 2 .0; 1� be given. For each r 2 N0 we start out by remarking thatˇ̌̌̌p
hnC r C 1iqp
hr C 1iq

� 1

ˇ̌̌̌
6
hnC r C 1iq

hr C 1iq
� 1 D q2.rC1/

hniq

hr C 1iq

6 n � q2
1Pr

iD0 q
�2i

6
n

r C 1
: (7.6)

Fix now N;M 2 N0 with M > n. From the above inequalities we obtain thatˇ̌̌̌
ˇ1 � 1

M C 1

NCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

ˇ̌̌̌
ˇ

6
ˇ̌̌̌
1 �

M C 1 � n

M C 1

ˇ̌̌̌
C

1

M C 1

NCM�nX
rDN

ˇ̌̌̌p
hnC r C 1iqp
hr C 1iq

� 1

ˇ̌̌̌
6

n

M C 1
C

n

N C 1
:

Let furthermore x 2 An
q be given. Since �.a�/ D 1 D �.a/ (and since � is a unital

�-homomorphism) we know that

�.Pm.x// D ın;m � �.x/ for all m 2 N0:

From this identity, we then get that

 MN .x/ D
1

M C 1

NCMX
rDN

NCM�rX
mD0

p
hmC r C 1iqp
hr C 1iq

� �.Pm.x//

D
1

M C 1

NCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

� �.x/:

Combining the above estimates we get

ˇ̌
 MN .x/ � �.x/

ˇ̌
D

ˇ̌̌̌
ˇ
 
1 �

1

M C 1

NCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

!
�.x/

ˇ̌̌̌
ˇ

6
�

n

M C 1
C

n

N C 1

�
j�.x/j:

Let finally t 2 .0; 1� be given. The result of the lemma then follows from the above
computations together with the estimate

j�.x/j 6 kxk 6
1

Œn=2�t
Lt;q.x/ 6

t1=2 C t�1=2

n
Lt;q.x/;

see Lemmas 5.3.4 and 5.4.2.
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Lemma 7.2.5. Let n 2 Z. The following inequality holdsˇ̌
�MN .x/ �  

M
N .x/

ˇ̌
6
�
1C

jnj

N C 1

� 1
2

� .t
1
2 C t�

1
2 C 1/ � sup

N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
� Lt;q.x/

for all t; q 2 .0; 1�, all x 2 An
q and all N;M 2 N0 with M > jnj.

Proof. Let t; q 2 .0; 1�, x 2 An
q and N;M 2 N0 with M > jnj be given. Since  MN

and �MN preserve the adjoint operation and Lt;q is �-invariant we may, without loss
of generality, assume that n > 0. As in (7.6) we have that

hnC r C 1iq

hr C 1iq
6 1C

n

r C 1
for all r 2 N0:

Remark moreover that Pm.x/D ın;m � .a�/nx for allm 2N0. An application of these
observations together with Lemma 7.2.3 yield the following inequalities:

ˇ̌
�MN .x/ �  

M
N .x/

ˇ̌
D

1

M C 1

ˇ̌̌̌
ˇNCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

�
�
hr.Pn.x// � �.Pn.x//

�ˇ̌̌̌ˇ
6

1

M C 1

NCM�nX
rDN

�
1C

n

r C 1

� 1
2

d0q
�
hr ; �jC.S2

q /

�
� L0q.Pn.x//

6
�
1C

n

N C 1

� 1
2

� sup
N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
� L0q.Pn.x//:

The result of the present lemma now follows by noting that Lemma 7.2.1 entails the
inequality L0q.Pn.x// 6 .t

1
2 C t�

1
2 C 1/ � Lt;q.x/.

Proposition 7.2.6. Let K 2 N0 and ı 2 .0; 1/. There exist a constant C > 0 and a
positive null sequence ."N;M /1N;MD0 such that

dt;q
�
�MN jBK

q
; �jBK

q

�
6 C � sup

N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
C "N;M

for all .t; q/ 2 Œı; 1� � .0; 1� and all N;M 2 N0 with M > K.

Proof. We define the constant C > 0 by putting

C WD .2K C 1/ � .1CK/
1
2 � .ı

1
2 C ı�

1
2 C 1/;

and the null sequence ."N;M /1N;MD0 by putting

"N;M WD .2K C 1/ �

�
1

N C 1
C

1

M C 1

�
� .ı

1
2 C ı�

1
2 /
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for all N;M 2 N0.
Let now .t; q/ 2 Œı; 1� � .0; 1� be given and let x 2 BK

q satisfy that Lt;q.x/ 6 1.
For every N;M 2 N0 with M > K, an application of Lemmas 7.2.4 and 7.2.5 then
shows thatˇ̌

�MN .x/ � �.x/
ˇ̌

6
ˇ̌
�MN .x/ �  

M
N .x/

ˇ̌
C
ˇ̌
 MN .x/ � �.x/

ˇ̌
6

KX
nD�K

ˇ̌
�MN .…

L
n .x// �  

M
N .…

L
n .x//

ˇ̌
C

KX
nD�K

ˇ̌
 MN .…

L
n .x// � �.…

L
n .x//

ˇ̌
6 .2K C 1/

�
1C

K

N C 1

� 1
2

.t
1
2 C t�

1
2 C 1/

� sup
N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
� Lt;q.…

L
n .x//

C .2K C 1/ �

�
1

N C 1
C

1

M C 1

�
� .t

1
2 C t�

1
2 / � Lt;q.…

L
n .x//

6 C � sup
N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
C "N;M ;

where the last estimate follows from Corollary 5.2.3. This proves the present propos-
ition.

The next proposition follows by an application of the estimate from Proposi-
tion 7.2.6 together with the core technical result from [3].

Proposition 7.2.7. Let ı 2 .0; 1/, q0 2 .0; 1� andK 2N0. For every " > 0 there exist
an open interval I containing q0 and N0;M0 2 N0 with M0 > K such that

dt;q
�
�
M0

N0
jBK

q
; �jBK

q

�
< "

for all q 2 I \ Œı; 1� and all t 2 Œı; 1�.

Proof. By [3, Lemma 4.11], for every r 2 N0, we may choose a continuous function
Hr W Œı; 1�! Œ0;1/ such that

d0q
�
hr ; �jC.S2

q /

�
6 Hr.q/ for all q 2 Œı; 1�:

Moreover, by [3, Lemma 4.12] we may arrange that limr!1Hr.q0/ D 0.
Let us choose the constant C > 0 and the positive null sequence ."N;M /1N;MD0

according to Proposition 7.2.6 with ı 2 .0; 1/ andK 2N0 as given in the statement of
the present proposition. Let now " > 0 be given. ChooseN0 >K such that "N;M < "

2

for all N;M > N0 and Hr.q0/ < "
4C

for all r > N0. Since the function Hr is con-
tinuous for all r 2 N0, we may choose our open interval I containing q0 such thatˇ̌
Hr.q0/ �Hr.q/

ˇ̌
<

"

4C
for all q 2 I \ Œı; 1� and all r 2 ¹N0; N0 C 1; : : : ; 2N0º:
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We now put M0 WD N0 and it then follows from Proposition 7.2.6 that

dt;q
�
�
M0

N0
jBK

q
; �jBK

q

�
6 C � sup

N06r62N0

Hr.q/C "N0;N0
< "

for all q 2 I \ Œı; 1� and all t 2 Œı; 1�.

7.3 Continuity of quantum SU.2/

We are now ready to assemble all the information gathered in the previous sections to
obtain a proof of our main continuity result, Theorem D from the introduction.

Theorem 7.3.1. The 2-parameter family of compact quantum metric spaces�
C.SUq.2//; Lt;q

�
.t;q/2.0;1��.0;1�

varies continuously in the quantum Gromov–Hausdorff distance.

As noted earlier, since

distQ
�
.C.SUq.2//; Lt;q/; .C.SUq.2//; Lmax

t;q /
�
D 0

by Corollary 6.4.2, the above theorem also holds true for Lmax
t;q instead of Lt;q .

Proof. Let .t0; q0/ 2 .0; 1� � .0; 1� and " > 0 be given and put ı WD min¹q0=2; t0=2º.
By Proposition 6.2.6, ˇMN .B

K
q /� FuzzNCM .BKq / for allN;M;K 2N0 withM >K.

Applying Proposition 6.4.1, we may chooseK0 2 N0 and a constant C > 0 such that

distQ
�
.FuzzNCM .BK0

q /; Lt;q/I .C.SUq.2//; Lmax
t;q /

�
6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C

"

6

for all N;M 2 N0 with M > K0 and all t; q 2 Œı; 1�. By Corollary 6.4.3 and Pro-
position 7.2.7, there exist N0;M0 2 N0 with M0 > K0 and an open interval I with
q0 2 I such that

dmax
t;q

�
�
M0

N0
j
B

K0
q

; �j
B

K0
q

�
D dt;q

�
�
M0

N0
j
B

K0
q

; �j
B

K0
q

�
<

"

6C

for all q 2 I \ Œı; 1� and all t 2 Œı; 1�. Hence

distQ
�
.FuzzN0CM0

.BK0
q /; Lt;q/I .C.SUq.2//; Lmax

t;q /
�
<
"

3

for all q 2 I \ Œı; 1� and all t 2 Œı; 1�. Note, at this point, that V WD Œı; 1� � .I \

Œı; 1�/ � .0; 1� � .0; 1� is a neighbourhood of the point .t0; q0/. By Proposition 7.1.1,
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the compact quantum metric spaces .FuzzN0CM0
.BK0
q /; Lt;q/t;q2.0;1� vary continu-

ously in the quantum Gromov–Hausdorff distance, so we may choose a neighbour-
hood U of .t0; q0/ 2 .0; 1� � .0; 1� such that

distQ
�
.FuzzN0CM0

.BK0
q /; Lt;q/I .FuzzN0CM0

.BK0
q0
/; Lt0;q0

/
�
<
"

3

for all .t; q/ 2 U . An application of the triangle inequality for the quantum Gromov–
Hausdorff distance [70, Theorem 4.3], now yields the estimate

distQ
�
.C.SUq.2//; Lmax

t;q /I .C.SUq0
.2//; Lmax

t0;q0
/
�
< "

for all .t; q/ 2 U \ V , thus completing the proof.

As a last remark we single out the following special case of the above theorem: As
the deformation parameter q tends to 1, the quantum metric spaces SUq.2/ converge
towards SU.2/ equipped with its classical round metric rescaled with a factor 2. To
make this statement precise, recall from Section 4.4, that we denote by dS3 the usual
round metric on SU.2/Š S3. We then have the Lip-norm LLip which to any continu-
ous function f WSU.2/!C assigns the Lipschitz constant with respect to the rescaled
metric 2 � dS3 . Comparing with Theorem 4.4.1, the special case of Theorem 7.3.1 then
reads as follows:

Corollary 7.3.2. As .t; q/ 2 .0; 1� � .0; 1� tends to .1; 1/, the quantum metric spaces
.C.SUq.2//;Lt;q/ converge to .C.SU.2//;LLip/ in quantum Gromov–Hausdorff dis-
tance.
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[66] P. Podleś, Quantum spheres. Lett. Math. Phys. 14 (1987), no. 3, 193–202

[67] M. A. Rieffel, Metrics on states from actions of compact groups. Doc. Math. 3 (1998),
215–229

[68] M. A. Rieffel, Metrics on state spaces. Doc. Math. 4 (1999), 559–600

[69] M. A. Rieffel, Group C�-algebras as compact quantum metric spaces. Doc. Math. 7
(2002), 605–651

[70] M. A. Rieffel, Gromov–Hausdorff distance for quantum metric spaces. Mem. Amer. Math.
Soc. 168 (2004), no. 796, 1–65

[71] M. A. Rieffel, Matrix algebras converge to the sphere for quantum Gromov–Hausdorff
distance. Mem. Amer. Math. Soc. 168 (2004), no. 796, 67–91

[72] J. Sain, Berezin quantization from ergodic actions of compact quantum groups, and
quantum Gromov–Hausdorff distance. Ph.D. thesis, University of California, Berkeley,
2009

[73] M. Schlichenmaier, Berezin–Toeplitz quantization and Berezin transform. In Long time
behaviour of classical and quantum systems (Bologna, 1999), pp. 271–287, Ser. Concr.
Appl. Math. 1, World Scientific, River Edge, NJ, 2001

[74] M. Takesaki, Theory of operator algebras. II. Encyclopaedia Math. Sci. 125, Springer,
Berlin, 2003

[75] T. Timmermann, An invitation to quantum groups and duality. EMS Textbk. Math.,
European Mathematical Society (EMS), Zürich, 2008

https://doi.org/10.1063/1.533331
https://doi.org/10.1515/crelle-2012-0076
https://doi.org/10.1515/crelle-2012-0076
https://doi.org/10.1016/j.jfa.2016.08.004
https://doi.org/10.1016/j.jfa.2016.08.004
https://doi.org/10.1016/j.jfa.2024.110466
https://doi.org/10.1007/s00220-004-1154-z
https://doi.org/10.1515/CRELLE.2010.026
https://doi.org/10.4153/CJM-2005-040-0
https://doi.org/10.4153/CJM-2005-040-0
https://doi.org/10.1017/CBO9780511546631
https://doi.org/10.1007/b55674
https://doi.org/10.1007/BF00416848
https://doi.org/10.4171/DM/41
https://doi.org/10.4171/DM/68
https://doi.org/10.4171/DM/133
https://doi.org/10.1090/memo/0796
https://doi.org/10.1090/memo/0796
https://doi.org/10.1090/memo/0796
https://doi.org/10.1142/9789812794598_0015
https://doi.org/10.1007/978-3-662-10451-4
https://doi.org/10.4171/043


References 119

[76] J. Tomiyama, Applications of Fubini type theorem to the tensor products of C�-algebras.
Tohoku Math. J. (2) 19 (1967), 213–226

[77] W. D. van Suijlekom, Gromov–Hausdorff convergence of state spaces for spectral trunca-
tions. J. Geom. Phys. 162 (2021), article no. 104075

[78] S. L. Woronowicz, Twisted SU.2/ group. An example of a noncommutative differential
calculus. Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117–181

[79] S. L. Woronowicz, Compact quantum groups. In Symétries quantiques (Les Houches,
1995), pp. 845–884, North-Holland, Amsterdam, 1998

https://doi.org/10.2748/tmj/1178243318
https://doi.org/10.1016/j.geomphys.2020.104075
https://doi.org/10.1016/j.geomphys.2020.104075
https://doi.org/10.2977/prims/1195176848
https://doi.org/10.2977/prims/1195176848


Jens Kaad
David Kyed
The Quantum Metric Structure
of Quantum SU(2)

MEMOIRS OF THE EUROPEAN MATHEMATICAL SOC IETY

MEMS Vol. 18 / 2025

Kaad,Kyed
The

Q
uantum

M
etric

Structure
of

Q
uantum

SU(2)
M
EM

S
V
ol.18

/2025

MEMOIRS OF THE EUROPEAN MATHEMATICAL SOC IETY

Jens Kaad, David Kyed
The Quantum Metric Structure of Quantum SU(2)

We introduce a two parameter family of Dirac operators on quantum SU(2) and analyse
their properties from the point of view of non-commutative metric geometry. It is shown
that these Dirac operators give rise to compact quantum metric structures, and that the
corresponding two parameter family of compact quantum metric spaces varies continuously
in Rieffel’s quantum Gromov–Hausdorff distance. This continuity result includes the classical
case where we recover the round 3-sphere up to a global scaling factor on the metric. Our
main technical tool is a quantum SU(2) analogue of the Berezin transform, together with its
associated fuzzy approximations, the analysis of which also leads to a systematic way of
approximating Lipschitz operators by means of polynomial expressions in the generators.

https://ems.press

ISSN 2747-9080
ISBN 978-3-98547-091-4


	Front cover
	Front matter
	Abstract
	Contents
	Main matter
	1 Introduction
	1.1 Notation and standing assumptions
	1.2 Note added in proof

	2 Compact quantum metric spaces
	2.1 Definitions and basic properties
	2.2 Quantum Gromov–Hausdorff distance
	2.3 Finitely generated projective modules

	3 Preliminaries on quantum SU(2)
	3.1 The quantum enveloping algebra
	3.2 Twisted derivations
	3.3 Corepresentation theory
	3.4 The Haar state
	3.5 Circle actions
	3.6 Analytic elements
	3.7 The continuous field

	4 Spectral geometry on quantum SU(2)
	4.1 The horizontal and vertical Dirac operators
	4.2 The origin of the Dirac operators
	4.3 Bounded twisted commutators
	4.4 Comparison with the classical Dirac operator
	4.5 The real structure
	4.6 The equivariance condition
	4.7 Conjugating the Dirac element with the fundamental unitary

	5 Quantum metrics on quantum SU(2)
	5.1 The Podleś sphere revisited
	5.2 Spectral projections and twisted derivations
	5.3 Spectral bands as compact quantum metric spaces
	5.4 Schur multipliers
	5.5 Projecting onto the spectral bands
	5.6 Quantum SU(2) as a compact quantum metric space

	6 The quantum Berezin transform
	6.1 Definition of the Berezin transform
	6.2 The image of the Berezin transform
	6.3 Estimates on the Berezin transform
	6.4 Approximation in the quantum Gromov–Hausdorff distance

	7 Continuity results
	7.1 Continuity of the fuzzy approximations
	7.2 Uniformity of the fuzzy approximation
	7.3 Continuity of quantum SU(2)

	References

	Back cover



