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Abstract

We extend the theory of almost coherent modules that was introduced in Almost ring
theory by Gabber and Ramero (2003). Then we globalize it by developing a new the-
ory of almost coherent sheaves on schemes and on a class of “nice” formal schemes.
‘We show that these sheaves satisfy many properties similar to usual coherent sheaves,
i.e., the almost proper mapping theorem, the formal GAGA, etc. We also construct an
almost version of the Grothendieck twisted image functor f' and verify its proper-
ties. Lastly, we study sheaves of p-adic nearby cycles on admissible formal models
of rigid-analytic varieties and show that these sheaves provide examples of almost
coherent sheaves. This gives a new proof of the finiteness result for étale cohomology
of proper rigid-analytic varieties obtained before in Scholze’s work p-adic Hodge
theory for rigid-analytic varieties (2013).
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Chapter 1

Introduction

1.1 Motivation

The purpose of this work is two-fold. The first goal is to develop a sufficiently rich
theory of almost coherent sheaves on schemes and a class of formal schemes. The
second goal is to provide the reader with one interesting source of examples of almost
coherent sheaves. Namely, we show that the complex of p-adic nearby cycles Rv« (&)
has quasi-coherent, almost coherent cohomology sheaves for any admissible formal
Oc¢-scheme X and (9;<> / p-vector bundle & (see Definition 6.5.1).

Before we discuss the content of each chapter in detail, we explain the motivation
behind the work done in this memoir.

The first source of motivation comes from the work of P. Scholze on the finiteness
of Fp-cohomology groups of proper rigid-analytic varieties over p-adic fields (see
[59]). The second source of motivation (clearly related to the first one) is the desire to
set up a robust enough theory of almost coherent sheaves that is crucially used in our
proof of Poincaré duality for F,-local systems on smooth and proper rigid-analytic
varieties over p-adic fields in [71].

We start with the work of P. Scholze. In [59], he showed that there is an almost
isomorphism

H'(X,F,) ® Oc/p ~* H'(X, 0% /p)

for any proper rigid-analytic variety X over a p-adic algebraically closed field C.
This almost isomorphism allows us to reduce studying certain properties of H? (X, Fp)
for a p-adic proper rigid-analytic space X to studying almost properties of the coho-
mology groups H' (X, (9;&( /Pp), or the full complex RI"(X, (9;?él / p). For instance,
Scholze shows that H' (X, F),) are finite groups by deducing it from almost coherence
of H (X, (D}él/p) over Oc/p.

Scholze’s argument does not involve any choice of an admissible formal model
for X and is performed entirely on the generic fiber via an elaborate study of can-
cellations in certain spectral sequences. A different natural approach to studying
RIT'(X, (9}ét / p) is to rewrite this complex as

RI(X, (93(:/1)) ~ RI' (%o, RI*OL/P)

for a choice of an admissible formal @ ¢-model X and the natural morphism of ringed
sites

t: (Xét, (9&:{/}7) — (-%O,Zary (9%())



Introduction 2

with X the mod- p fiber of X. Then we can separately study the complex Rt ((9)2[ /p)
and the functor RI" (¥, —). In order to make this strategy work, we develop the notion
of almost coherent sheaves on X and X and show its various properties similar to the
properties of coherent sheaves. This occupies Chapters 2—5. While Chapters 6 and 7
are devoted to showing that the complex Rz ((93(:1 / p) has almost coherent cohomol-
ogy groups, and to generalizing these finiteness results to all @/ p-vector bundles.
Combining that with the almost proper mapping theorem (Theorem 1.2.9), we reprove
[59, Lemma 5.8 and Theorem 5.1] in a slightly greater generality (allowing arbitrary
Zariski-constructible coefficients as opposed to local systems).

Theorem 1.1.1 (Lemma 7.3.4, Lemma 7.3.7, and Lemma 6.7.10). Let C be an alge-
braically closed p-adic non-archimedean field, let X be a proper rigid-analytic vari-
ety over C, and let ¥ be a Zariski-constructible sheaf of F,-modules (see Defini-
tion 7.1.7). Then

() H(X, ¥ ®F, (9;?6I /p) is an almost finitely generated Oc/p-module fori > 0;

(2) the natural morphism
H' (X, %) ®x, Oc/p - H (X.F &r, OF /p)
is an almost isomorphism fori > 0;
3) H(X, 7 ®F, @;él/p) is almost zero fori > 2dim X.
Theorem 1.1.2 (Lemma 7.3.6)." In the notation of Theorem 1.1.1, we have

(1) H (X, F) is a finite group fori > 0;
(2) H(X,F) ~0fori > 2dimX.

Now we discuss the role of this memoir in our proof of Poincaré duality in [71].
We start with the precise formulation of this result.

Theorem 1.1.3 ([71]). Let C be an algebraically closed p-adic non-archimedean
field, let X be a rigid-analytic variety over C of pure dimension d, and let L be an
F,-local system on X¢. Then there is a canonical trace map

tx:H?*?(X,F,(d)) — F,
such that the induced pairing
H (X, L) ® H247 (X, LY(d)) — H* (X.F,(d)) = F,

is perfect.

'Theorem 1.1.2 can also be easily deduced from the results of [7].
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The essential idea of the proof (at least for L. = Ep) is to use Theorem 1.1.1 to
reduce Poincaré duality to almost duality for the complex RI'(X, (9;?6t / p). We study
this complex via the isomorphism

RT(X,0% /p) ~ RT (X0, Rtz 0% /p).

Roughly, we separately show almost duality for the “nearby cycles functor” R¢,, and
then establish an almost version of Grothendieck duality for the O¢/ p-scheme X,.
Even to formulate these things precisely, one needs a good theory of almost (coherent)
sheaves that globalizes the theory of almost (coherent) modules. For this theory to
be useful, we have to establish that almost coherent sheaves share many properties
similar to classical coherent sheaves and the “nearby cycles” Rt ((9;}ét / p) are almost
coherent.

The main goal of Chapters 2-5 is to develop this general theory of almost (coher-
ent) sheaves. In Chapter 6, we study O%/p, O, and @-vector bundles in different
topologies. Chapter 7 is devoted to verifying that “nearby cycles” are almost coher-
ent. That being said, we now discuss the content and main results of each section in
more detail.

1.2 Foundations of almost mathematics (Chapters 2-5)

Section 2.1 defines the category of almost modules and studies its main properties.
This section is very motivated by [26]. However, it seems that some results that
we need later in the memoir are not present in [26], so we give an (almost) self-
contained introduction to almost commutative algebra. We define the category of
almost modules (see the discussion after Corollary 2.1.4), the almost tensor product
functor — ® ra — (see Proposition 2.2.1 (1)), the almost Hom functor alHomga (—, —)
(see Proposition 2.2.1 (3)), and the notion of almost finitely generated (see Defi-
nitions 2.5.1), almost finitely presented (see Definition 2.5.2), and almost coherent
modules (see Definition 2.6.1). We show that almost coherent modules satisfy many
natural properties similar to the properties of classical coherent modules. We summa-
rize some of them in the following theorem:

Theorem 1.2.1 (Lemma 2.6.8, Propositions 2.6.18, 2.6.19, 2.6.20, Theorem 2.10.3,
and Lemma 2.10.5). Let R be a ring with an ideal w such that Wt := m Q g m is
R-flat and m? = m.

(1) Almost coherent R®-modules form a weak Serre subcategory of Mod%.

(2) Let R be an almost coherent ring (i.e., free rank-1 R-module is almost coher-
ent), and M¢, N two objects in D,_; (R)*. Then M“ ®f§a N®eD,,(R)“.
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(3) Let R be an almost coherent ring, and M? € D, (R)?, N¢ € Datoh(R)“.
Then

RalHomgs (M*, N%) € D, (R)“.

(4) Let R be an almost coherent ring, M® € D, (R)%, N* € DT(R)?, and P*
an almost flat R*-module. Then the natural map RHompga (M?, N%) Q@ Ra
P% — RHompga (M?, N* Q ga P?) is an almost isomorphism.

(5) Descent of almost modules along an almost faithfully flat morphism R — S
is always effective.

(6) Let R — S be an almost faithfully flat map, and let M¢ be an R*-module.
Suppose that M* Q@ ra S¢ is almost finitely generated (resp. almost finitely
presented, resp. almost coherent) S®-module. Then so is M 2.

If R is [ -adically adhesive for some finitely generated ideal / (in the sense of Def-
inition 2.12.1), we can show that almost finitely generated R-modules satisfy a (weak)
version of the Artin—Rees lemma, and behave nicely with respect to the completion
functor. These results will be crucial for globalizing the theory of almost coherent
modules on formal schemes.

Lemma 1.2.2 (Lemma 2.12.6 and Lemma 2.12.7). Let R be an I -adically adhesive
ring with an ideal m such that I C m, m?2 =m, and m Qp m is R-flat (see Set-
up 2.12.3). Let M be an almost finitely generated R-module. Then the following hold:

(1) Forany R-submodule N C M, the induced topology on N coincides with the
I -adic topology.

(2) The natural morphism M ® g R—> Misan isomorphism. In particular, if R
is I-adically complete, then any almost finitely generated R-module is also
I -adically complete.

If R is a (topologically) finitely generated algebra over a perfectoid valuation
ring K T (see Definition B.2), we can say even more. In this case, it turns out that R
is almost noetherian (see Definition 2.7.1), so the theory simplifies significantly.
Another useful result is that it suffices to check that a derived complete complex
is almost coherent after taking the derived quotient by a pseudo-uniformizer . This
is very handy in practice because it reduces many (subtle) integral questions to the
torsion case, where there are no topological subtleties.

Theorem 1.2.3 (Theorem 2.11.5, Theorem 2.11.9, Theorem 2.13.2). Let KT be a
perfectoid valuation ring with a pseudo-uniformizer @ as in Lemma B.9, and let R
be a KT -algebra. Then the following hold:

(1) R is almost noetherian if R is (topologically) finite type over K.
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(2) Suppose R is a topologically finite type K -algebra and M is a derived w -
adically complete object in D(R) such that [M/w] € Dz[]i(’ﬁ](R/w). Then
M e DEA(R).

acoh

We discuss the extension of almost mathematics to ringed sites in Chapter 3. The
main goal is to generalize all constructions from almost mathematics to a general
ringed site. We define the notion of almost Ox -modules on a ringed site (X, Ox) (see
Definition 3.1.9) and of @%-modules (see Definition 3.1.10), and show that they are
equivalent:

Theorem 1.2.4 (Theorem 3.1.20). Let R be as in Theorem 1.2.1 and (X, Ox) a
ringed R-site. Then the functor

(=)*:Modg, — Modpg
is an equivalence of categories.

We define the functors — ® —, Homgg (=, ), alHomgg (—,—), Hom 0% (=, ),
alHom g (—, —), f, f * too on the category of O%-modules. We refer to Section 3.2
for an extensive discussion of these functors. Then we study the derived category of
O%-modules and derived analogues of the functors mentioned above. This is done in
Sections 3.4 and 3.5.

We develop the theory of almost finitely presented and almost (quasi-)coherent
sheaves on schemes and on a class of formal schemes in Section 4.1. The main goal
is to show that these sheaves behave similarly to classical coherent sheaves in many
aspects.

Roughly, we define almost finitely presented @5 -modules as modules that, for
any finitely generated sub-ideal mo C m1, can be locally approximated by finitely
presented Ox-modules up to modules annihilated by my (see Definition 4.1.4 for a
precise definition). Sections 4.1-4.4 are mostly concerned with local properties of
these sheaves. We summarize some of the main results below:

Theorem 1.2.5 (Corollary 4.1.12, Theorem 4.4.6, Lemmas 4.4.8,4.4.7,4.4.9,4.4.10).
Let R be a ring with an ideal wm such that i ;== m @ g m is R-flat and m? = m.
(1) For any R-scheme X, almost coherent O%-modules form a weak Serre sub-
category of Modg, .
(2) The functor
(=):Dx(R)? — Dyqe,«(Spec R)*

is a t-exact equivalence of triangulated categories for x € {“” acoh}. Its
quasi-inverse is given by RI'(Spec R, —). In particular, an almost quasi-
coherent ngec gr-module ¥ is almost coherent if and only if ¥“(Spec R)
is an almost coherent R%-module.
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(3) The natural morphism M*¢ ®§u N¢ — M4 ®(L,)SapecR N is an isomorphism
forany M*, N* € D(R)“.

(4) Let f:Spec B — Spec A be an R-morphism of affine schemes. Then Lf *(W)
is functorially isomorphic IOW for any M? € D(A)%.

(5) Let f: X — Y be a quasi-compact and quasi-separated morphism of R-
schemes. Suppose that Y is quasi-compact. Then R fy carries Dy (X)* to
D;‘qc(Y)“ forany x € {“ 7, —, +,b}.

(6) Suppose that R is almost coherent. Then the natural maps
RalHomga (M?, N%) — RalHom 01 (M* N7,

RHomgza (M%, N%) — RHom o1 (M* N

are almost isomorphisms for M® € D, (R)?, N® € DT (R)“.

We also show that, for a quasi-compact and quasi-separated scheme X, any al-
most finitely presented O%-module admits a global approximation by finitely pre-
sented Oy -modules. This result is crucial for establishing global properties of almost
finitely presented @5 -modules, and it will be systematically used in Chapter 5.

Theorem 1.2.6 (Corollary 4.3.5). Let X be a quasi-compact and quasi-separated
R-scheme, and let ¥ be an almost quasi-coherent Ox-module. Then ¥ is almost
finitely presented (resp. almost finitely generated) if and only if for any finitely gen-
erated ideal my C m there is a morphism f:§ — F such that my(Ker f) = 0,
mo(Coker /) = 0, and § is a quasi-coherent finitely presented (resp. finitely gener-
ated) Ox -module.

We now discuss the content of Sections 4.5-4.9. The main goal of these sections
is to show an analogue of Theorem 1.2.5 for a class of formal schemes. To achieve
this, we restrict our attention to the class of topologically finitely presented schemes
over a topologically universally adhesive ring R (see Set-up 4.5.1). This, in particular,
includes admissible formal schemes over a mixed characteristic, p-adically complete
rank-1 valuation ring Q¢ with algebraically closed fraction field C.

One of the main difficulties in developing a good theory of almost coherent O%-
modules on a formal scheme X is that there is no good abelian theory of “quasi-
coherent” on X. The theory of quasi-coherent sheaves is an important tool used in
developing the theory of almost coherent sheaves on schemes that does not have an
immediate counterpart in the world of formal schemes.

We overcome this issue in two different ways: we use the notion of adically
quasi-coherent x-modules introduced in [25] (see Definition 4.5.2) and the notion
of derived quasi-coherent @x-modules introduced in [49] (see Definition 4.8.1). The
first notion has the advantage that every adically quasi-coherent @x-module is an
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actual @g-module. However, these modules do not form a weak Serre subcategory
inside Modg,, so they are not always very useful in practice. The latter definition
has the advantage that derived quasi-coherent @x-modules form a triangulated sub-
category inside D(¥); it is quite convenient for certain purposes. However, derived
quasi-coherent @x-modules are merely objects of D(X) and not actual Ox-modules
in the classical sense. Therefore, we usually use adically quasi-coherent @x-modules
when needed except for Section 4.8, where the notion of derived quasi-coherent Q-
modules seems to be more useful for our purposes. In particular, it allows us to define
the functor
(_)LA: Dacoh (A)a g ])acoh(spf A)a

for any topologically finitely presented R-algebra A in a way that “extends” the clas-
sical functor (—)2: Mod¥*" — Modp,, (see Definition 4.8.7 and Lemma 4.8.13).

Theorem 1.2.7 (Lemma 4.5.23, Corollary 4.8.16, Lemmas 4.9.4,4.9.3,4.9.7). Let R
be a ring with a finitely generated ideal I such that R is I-adically complete, I-
adically topologically universally adhesive, I-torsion free with an ideal w such that
I cm m? =mand W :=m ®pg m is R-flat.

(1) For any topologically finitely presented formal R-scheme X, almost coherent
O%-modules form a weak Serre subcategory of Modg "

(2) The functor
RT(Spf R, —): Dacon(Spf R)* — Dacon(R)*

is a t-exact equivalence of triangulated categories.

(3) The natural morphism (M* ®1Lza N@LA 5 (maLA ®é§’pm (NHLA is an
isomorphism for any M%, N% € D,con(R)“.

(4) Let 1:Spf B — Spf A be a morphism of topologically finitely presented
affine formal R-schemes. Then L *((M a)LA) is functorially isomorphic to
(M?® ®%, BHEA for any M@ € Dyeon(A)®.

(5) The natural morphisms

)LA

(RalHomga (M?, N))"" — RalHom gg (M*EA (NHER),

(RHomga (M“, N*))** - RHom o1, o (MHEE, (N)E2)

are almost isomorphisms for M® € D (R)*, N € D (R)“.

acoh
Similarly to the case of schemes, almost coherent sheaves on formal schemes
satisfy the global approximation property:

Theorem 1.2.8 (Theorem 4.7.6). Let R be as in Theorem 1.2.7, let X be a finitely
presented formal R-scheme, and let ¥ be an almost finitely generated (resp. almost
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finitely presented) O x-module. Then, for any finitely generated ideal my C m, there is
an adically quasi-coherent, finitely generated (resp. finitely presented) O x-module §
together with a map ¢:§ — F such that mg(Coker ¢) = 0 and mo(Ker ¢p) = 0.

We discuss the global properties of almost coherent sheaves in Chapter 5. Namely,
we generalize certain cohomological properties of classical coherent sheaves to the
case of almost coherent sheaves. We start with the almost version of the proper map-
ping theorem:

Theorem 1.2.9 (Theorem 5.1.3). Let R be a universally coherent’ ring with an
ideal wt such that Wt := m ®g m is R-flat and m? = m. Let furthermore f: X — Y

be a proper morphism of finitely presented R-schemes with quasi-compact Y. Then
R fi carries D} (X) to DY, (Y)* for x € {* 7, —, 4, b}.

The essential idea of the proof is to reduce Theorem 1.2.9 to the classical proper
mapping theorem over a universally coherent base [25, Theorem 1.8.1.3]. The key
input to make this reduction work is Theorem 1.2.6.

We also prove a version of the almost proper mapping theorem for a morphism of
formal schemes:

Theorem 1.2.10 (Theorem 5.1.6). Let %)) be a topologically finitely presented formal
R-scheme for R as in Set-up 4.5.1 and let §: X — %)) be a proper, topologically finitely
presented morphism. Then Rf carries D}, | (X)? to D}, () for x e {* 7, —, +,b}.

aco!

Then we characterize quasi-coherent, almost coherent complexes on finitely pre-
sented, separated schemes over a universally coherent base ring R. This is an almost
analogue of [68, Tag OCSI]. We follow the same proof strategy but adjust it in certain
places to make it work in the almost setting. This result is important for us as it will
later play a crucial role in the proof of the formal GAGA theorem for almost coherent
sheaves.

Theorem 1.2.11 (Theorem 5.2.3). Let R be a universally coherent ring with an
ideal m such that M = m ® g m is R-flar and m?2 =m. Let X be a separated,
finitely presented R-scheme, and let ¥ € D (X)) be an object such that

RHomy (P, ¥) € D,_,(R)
forany P € Perf(X). Then ¥ € D;C,acoh(X).

Theorem 1.2.12 (Corollary 5.3.3). Let R be as in Theorem 1.2.10, and let X be a
finitely presented R-scheme. Then the functor

LC*I D:coh(X)a g D:coh('%)a
induces an equivalence of categories for x € {“ 7, +,—, b}.

% Any finitely presented R-algebra A is coherent.


https://stacks.math.columbia.edu/tag/0CSI
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We note that the standard proof of the classical formal GAGA theorem via pro-
jective methods has no chance to work in the almost coherent situation (due to the
lack of “finiteness” for almost coherent sheaves). Instead, we “explicitly” construct a
pseudo-inverse to Lc* in the derived world by adapting an argument from the paper
of J. Hall [31].

The last thing we discuss in Chapter 5 is the almost version of the Grothendieck
duality. This is a crucial technical tool in our proof of Poincaré duality in [71]. So we
develop some foundations of the f' functor in the almost world in this memoir. We
summarize the main properties of this functor below:

Theorem 1.2.13 (Theorem 5.5.8). Let R be as in Theorem 1.2.9, and FPSg be the
category of finitely presented, separated R-schemes. Then there is a well-defined
pseudo-functor (—)' from FPSg into the 2-category of categories such that

() (X)! =D,

aqc (X)a;

(2) for a smooth morphism f:X — Y of pure relative dimension d, there is a
natural isomorphism f' ~ Lf*(—)®(L951( Q;’é/Y [d];

(3) for a proper morphism f: X — Y, the pseudo-functor f "is right adjoint to
Rf.:D' (X)? - D' (Y)e

acoh acoh

1.3 O*/p, 07, and @-vector bundles (Chapter 6)

The main goal of Chapter 6 is to study the categories of @/ p-vector bundles in the
étale, quasi-proétale, and v-topologies. We also show that 9t/ p-vector bundles can
be trivialized by some particular étale covers. These results will play a crucial role in
Chapter 7. Also, as an application of our results, we give a new proof of the theorem of
Kedlaya—Liu saying that, for a perfectoid space X, the categories of ()-vector bundles
in the analytic and v-topologies are equivalent.

We formulate the results of this section more precisely below:

Theorem 1.3.1 (Corollary 6.6.9). Let X be a strongly sheafy adic space (see Defini-
tion C.4.1) over Spa (Qp, Zp). Then

(1) the categories Vect(X; (9)21/1”)’ Vect(X(g; (D;q%/p), and Vect(X2; (9;(’<> /p)
are equivalent;
(2) these equivalences preserve cohomology groups;

(3) for any O;Q/p-vector bundle & and a point x € X, there exist an open
affinoid subspace x € U, C X and a finite étale surjective morphism U, —
Ux such that &g is a free vector bundle.
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Theorem 1.3.1 (1), (2) is essentially due to B. Heuer (see [35, Section 2] for a
similar result in a slightly different level of generality). However, Theorem 1.3.1 (3)
does not seem to follow from [35] and is crucial for our arguments in Chapter 7.

We also prove a version of Theorem 1.3.1 for (9 ™ -vector bundles:

Theorem 1.3.2 (Theorem 6.8.4, Corollary 6.8.3). Let X be a perfectoid space over
Spa (Qp,Zp). Then

(1) the categories Vect(Xg ; (93(:1), Vect(X;; ; (9;;5 ), and Vect(X? ; (9;0) are

equivalent;
(2) these equivalences preserve cohomology groups;

(3) for any O;Q—vector bundle & and a point x € X, there exist an open affinoid
subspace x € Uy C X and a finite étale surjective morphism U, — U, such
that 8| g is a free vector bundle.

We also refer to Theorem 6.8.4 for a slightly more precise statement. As an appli-
cation of our methods, we can also deduce the following theorem of Kedlaya—Liu:

Theorem 1.3.3 ([42, Theorem 3.5.8], [63, Lemma 17.1.8], [35, Theorem 4.27], The-
orem 6.8.13). Let X be a perfectoid space over Spa (Qp, Zp).

(1) The categories Vect(Xan, Ox), Vect(Xe; Ox,), Vect(Xcﬁ,; (QX(%), as well as
Vect(XY; Ox<) are equivalent. Furthermore, if X = Spa (R, RT) is an affi-
noid perfectoid, all these categories are equivalent to the category of finite

projective R-modules.

(2) These equivalences preserve cohomology groups.

We note that the proof of Theorem 1.3.3 is quite different from the proofs of
[42, Theorem 3.5.8] and [63, Lemma 17.1.8]. However, it is quite similar to the proof
of [35, Theorem 4.27] (with appropriate simplifications). We also note that [35, The-
orem 4.27] proves a stronger result that applies to G-torsors for any rigid group G.
We also show that any (9-vector bundle in the v-topology admits an @ -lattice after
a very explicit étale cover:

Theorem 1.3.4 (Corollary 6.8.14). Let X denote a strongly sheafy adic space over
Spa (Qp. Zy), and let & be an Oy« -vector bundle. Then, for each x € X, there are
an open subspace x € U, C X, a finite étale surjective morphism Uy — Uy, and an
(9%‘)§> -vector bundle & such that 8;[%] ~ &g,

1.4 p-adic nearby cycles sheaves (Chapter 7)

The main goal of Chapter 7 is to give the main non-trivial example of almost coherent
sheaves: the p-adic nearby cycles sheaves.
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We fix a p-adic perfectoid field K and a rigid-analytic variety X over K with an
admissible formal @g-model X.
The rigid-analytic variety X comes with a morphism of ringed sites

V. (Xl?, (9;0) - (‘%Zan (9.%)

and a morphism
Vi (Xl?’ Q;O/p) g (-%O,Zar’ (9.%0)7

where X is the mod-p fiber of X, X l? is the v-site of the associated diamond (see
Section 6.1), and (9;;<> is its integral “untilted” structure sheaf (see Definition 6.3.1).

The main goal of Chapter 7 is to show that the nearby cycles functor Rv, sends
some class of (9;('<> / p-sheaves to complexes of almost coherent O%,-modules. More
precisely, we show that, for any (9;0/ p-vector bundle &, the complex Rv.& has
quasi-coherent and almost coherent cohomology sheaves. We also give a bound on
its almost cohomological dimension.

Theorem 1.4.1 (Theorem 7.1.2). Let X be an admissible formal Og-scheme with
adic generic fiber X of dimension d and mod-p fiber Xy, and let & be an (9;0/])—
vector bundle. Then

(1) Ru,.& e DY (¥0) and (Rv5 €)% € D22 (x)a;

qc,acoh acoh

(2) if X = Spf A is affine, then the natural map

Hi(Xf,é’) — Riv*(g)

is an isomorphism for every i > 0;

(3) the formation of R' v« (&) commutes with étale base change, i.e., for any étale
morphism 1:%Y) — X with adic generic fiber f:Y — X, the natural morphism

fo(R'vg,«(€)) = Ry «(Elyo)

is an isomorphism for anyi > 0;
(4) if X has an open affine covering X = | J;c;U; such that & |, ) is small
(see Definition 7.1.1), then
(Rv,.8)* € D% (%)

acoh

(5) there is an admissible blow-up X' — X such that X' has an open affine cov-
ering X' = | J; ;Ui such that &\, ) is small.
In particular, there is a cofinal family of admissible formal models {X; }icr of
X such that
(Rvg: .€)* € DL:0)(] )2,

acoh

foreachi € 1.
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Remark 1.4.2. We note that Theorem 1.4.1 implies that the nearby cycles complex
Rv..& is quasi-coherent on the nose (as opposed to being almost quasi-coherent). This
is quite unexpected to the author since all previous results on the cohomology groups
of @F / p were only available in the almost category.

Remark 1.4.3. We do not know if an admissible blow-up X" — X in the formulation
of Theorem 1.4.1 is really necessary or just an artifact of the proof. More importantly,
we do not know if, for every (9;;<> / p-vector bundle &, there is an admissible formal
model X such that the “nearby cycles” sheaf Rvg ,.& lies in pl%4] (X0)4.

acoh

The proof of Theorem 1.4.1 crucially uses Theorem 1.3.1, and especially Theo-
rem 1.3.1 (3).

Another family of sheaves for which we can establish a good behavior of “nearby
cycles” is given by sheaves of the form ¥ ® (9)’;<> / p for a Zariski-constructible étale
sheaf of F,-modules (see Definition 7.1.7). Namely, in this case, we can get a better
cohomological bound and show that nearby cycles almost commute with proper base
change, as this happens in algebraic geometry.

Theorem 1.4.4 (Theorem 7.1.9 and Lemma 7.3.8). Let X be an admissible formal
Ok -scheme with adic generic fiber X of dimension d and mod-p fiber X¢, and let
¥ e DY (X F,). Then

(1) there is an isomorphism Rt,.(¥ ® (Q;él/p) ~ Ru(F ® @;Q/p);

) Rux(F® 0,/ p) €D, 1 (Xo) and Rvu(F ® 05,/ p)® € DA (%)%

qc,aco acoh

(3) if X = Spf A is affine, then the natural map

H"(X,?,\’F®(9;<>/p) —>R"v*(37®(9;<>/p)

is an isomorphism for every i > 0;

(4) the formation of R\v4(F @ (9;('“<> / p) commutes with étale base change, i.e.,
for any étale morphism 1:%) — X with adic generic fiber f:Y — X, the
natural morphism

(R vea(F © 0f0/p)) > Ry o(/~'F © 07 /p)

is an isomorphism for any i > 0;

(5) if 1: X — %)) is a proper morphism of admissible formal Og-schemes with
adic generic fiber f: X — Y, then the natural morphism

Ruy.(RfF ® O3/ p) — Rio(Ruz«(F ® 01, /p))

is an almost isomorphism.

We also show an integral version of Theorem 1.4.1:
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Theorem 1.4.5 (Theorem 7.1.11). Let X be an admissible formal Og-scheme with
adic generic fiber X of dimension d, and let & be an O;Q-vector bundle. Then

(1) Ru.€ € DY (%) and (Rv,€)* € D24 (x)a.

qc,acol acoh

(2) if X = Spf A is affine, then the natural map
H (X2, 8)% — Riva(€)

is an isomorphism for every i > 0;

(3) the formation of R*v«(&) commutes with étale base change, i.e., for any étale
morphism §:%) — X with adic generic fiber f:Y — X, the natural morphism

F*(R'vz,+(6)) — Rivy . (Elyo)

is an isomorphism for any i > 0;
(4) if X has an open affine covering X = | J;c;U; such that €|, o is small
(see Definition 7.1.10), then
(Rv*g)a c D[O,d](‘%)a;

acoh

(5) there is an admissible blow-up X' — X such that X' has an open affine cov-
ering X' = | J; ;Ui such that |, ) is small.
In particular, there is a cofinal family of admissible formal models {X; };c1 of
X such that
(Rvg, ,.6)* € DIl (&)”,

acoh

foreachi € 1.

Theorem 1.4.5 has an interesting consequence saying that v-cohomology groups
of any (9;;0 -vector bundle are almost coherent and almost vanish in degrees larger
than 2dim X . This (together with Theorem 1.1.1) indicates that there should probably
be stronger (almost) finiteness results for some bigger class (9;<> -modules.

Theorem 1.4.6 (Theorem 7.3.3). Let K be a p-adic perfectoid field, let X be a proper
rigid-analytic K-variety of dimension d, and let be & an O;Q-vector bundle (resp.
(9;;<> / p-vector bundle). Then

RT(x?.6) e D224 (@ )2,

acoh

We now explain the main steps of our proofs of Theorems 1.4.1 and 1.4.5 for
& = (9;0/ pand & = (9;("<> respectively:

Proof sketch. (1) We first show that the sheaves R"v*(@;(r<> / p) are quasi-coherent.
The main key input is that the cohomology groups of (9;;<> / p-vector bundles vanish
on strictly totally disconnected spaces (see Definition 6.2.5), and that each affinoid
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rigid-analytic variety admits a v-covering such that all terms of its Cech nerve are
strictly totally disconnected.

(2) The same ideas can be used to show that the formation of Riv, ((9;0/ P)
commutes with étale base change.

(3) We show next that the O%,-modules R"v*(@;‘t<> / p) are almost coherent for
smooth X. This is done in three steps: first, we find an admissible blow-up X’ — %
such that X" has an open affine covering X" = [ J;¢; U; such that each U; = Spf 4;
admits a finite rig-étale morphism to Ad . then we show that the cohomology groups
Hi (ufK’v, (9;;<> / p) are almost coherent over A;/pA;, and after that we conclude
almost coherence of R' v, (G;Q/p).

The first step is the combination of [15, Proposition 3.7] and Theorem D.4. The
first result allows us to choose an admissible blow-up X’ — X with an open affine cov-
ering X' = |, ¢; Wi such that each U; admits a rig-étale morphism U; — A%K. Then
Theorem D.4 guarantees that we can change these morphisms so that they become
finite and rig-étale.

The second step follows the strategy presented in [59]. We construct an explicit
affinoid perfectoid cover of U; that is a Z,(1)?-torsor. So we can reduce studying
Hi (HSK’U, (9;<> / p) to studying cohomology groups of Zp(l)d that can be explicitly
understood via the Koszul complex.

The last step is the consequence of the almost proper mapping theorem in Theo-
rem 1.2.9 and the already obtained results.

(4) The next step is to show that Ri v, ((9;?<> / p) is almost coherent for a gen-
eral X. This is done by choosing a proper hypercovering by smooth spaces X, and
then using a version of cohomological v-descent to conclude almost coherence of the
p-adic nearby cycles sheaves. As an important technical tool, we use the theory of
diamonds developed in [61].

(5) Next we show that Ry, ((9;;0/ p) is almost concentrated in degrees [0, d].
This claim is quite subtle. The key input is the version of the purity theorem [10,
Theorem 10.11] that implies that any finite (but not necessarily étale) adic space over
an affinoid perfectoid space has a diamond that is isomorphic to a diamond of an
affinoid perfectoid space. This allows us to reduce the question of cohomological
bounds of R, ((9;;<> / p)a to the question about the cohomological dimension of the
pro-finite group Zp(l)d. This can be explicitly understood via the Koszul complex
again.

(6) Finally, we show Theorem 1.4.5 by reducing it to Theorem 1.4.1. The key
input is Theorem 1.2.3 that allows us to check finiteness mod- p. |
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1.5 Notation

A non-archimedean field K is always assumed to be complete. A non-archimedean
field K is called p-adic if its ring of power-bounded elements O = K° is a ring of
mixed characteristic (0, p).

We follow [68, Tag 02MN] for the definition of a (weak) Serre subcategory of an
abelian category .

For an ringed R-site (X, Ox), an element of the derived category ¥ € D(X),
and an element w € R, we denote by [¥ /@] the cone of the multiplication by @ -
morphism, i.e.,

[F /] := cone(F = F).

Namely, we say that a non-empty full subcategory € of an abelian category 4 is
a Serre subcategory if, for any exact sequence A — B — C with A, C € €, we have
B € €. We say that € is a weak Serre subcategory if, for any exact sequence

A0—>A1—>A2—>A3—)A4

with Ag, A1, A3, A4 € €, we have A, € €. Look at [68, Tag 02MP] and [68, Tag 0754]
for an alternative way to describe (weak) Serre subcategories.

If € is a Serre subcategory of an abelian category +, we define the quotient
category as a pair (4/€, F) of an abelian category +/€ and an exact functor

F:A—> A/C

such that, for any exact functor G: 4 — B to an abelian category 8 with € C Ker G,
there is a factorization G = H o F for a unique exact functor H: A/€ — B. The
quotient category always exists by [68, Tag 02MS].

If B is a full triangulated subcategory of a triangulated category &, we define the
Verdier quotient as a pair (D /B, F) of a triangulated category £ /8B and an exact
functor

F:9—->D/8

such that, for any exact functor G: D — D’ to a pre-triangulated category D’ with
B C KerG, there is a factorization G = H o F for a unique exact functor H: D/ 8B —
D’. The Verdier quotient always exists by [68, Tag 05RJ].

We say that a diagram of categories

=

&

I\
> ~
O ®

s

is (2, 1)-commutative if a:k o h = g o f is a natural isomorphism of functors.


https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/0754
https://stacks.math.columbia.edu/tag/02MS
https://stacks.math.columbia.edu/tag/05RJ
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For an abelian group M and commuting endomorphisms fi, ..., f;, we define
the Koszul complex

KM; fi,....fn) =M > M ®@zZ" - M @7 N*(Z") — -+ —> M @z N"(Z")
viewed as a chain complex in cohomological degrees 0, . . ., n. The differential

d*:M @, \FZ" ~ P MM ANTNE) > P M

1<ij<-<ip<n 1<j1<+<Jjk4+1=n

from M in spot i} < -+ < iy to M in spot j; < -+ < jg4+1 is nonzero only if
{i1, ... ik} C{Jj1s---, jk+1}, in which case it is given by (—1)"~! f;,., where m €
{l,...,k + 1} is the unique integer such that j,, & {i1,...,ix}.

If M is an R-module and f; are elements of R, the complex K(M; f1,..., fn)
is a complex of R-modules and can be identified with

M —M®grR" > M®gA>(R") > --- > M ®g A"(R").



Chapter 2

Almost commutative algebra

This chapter is devoted to the study of almost coherent modules. We recall some basic
definitions of almost mathematics in Section 2.1. Then we discuss the main proper-
ties of almost finitely generated and almost finitely presented modules in Section 2.5.
These two sections closely follow the discussion of almost mathematics in [26]. Sec-
tion 2.6 is dedicated to almost coherent modules and almost coherent rings. We show
that almost coherent modules form a weak Serre subcategory of R-modules, and they
coincide with almost finitely presented ones in the case of almost coherent rings.
We discuss base change results in Section 2.8. Finally, we develop some topological
aspects of almost finitely generated modules over “topologically universally adhesive
rings” in Section 2.12.

2.1 The category of almost modules

‘We begin this section by recalling basic definitions of almost mathematics from [26].
We fix a “base” ring R with an ideal m such that m? = m and it = m ®g m is flat.
We always do almost mathematics with respect to m.
Lemma 2.1.1. Let M be an R-module. Then the following are equivalent:

(1) The module M is the zero module.

(2) The module mi @ g M is the zero module.

(3) The module @ @ g M is the zero module.

(4) The module M is annihilated by ¢ for every € € .

Proof. Note that the multiplication map m ® g m — m is surjective as m? = m. This
implies that we have surjections

M RM > mQQRp M — mM.

This shows that (3) implies (2), and (2) implies (1). It is clear that (2) implies (3), and
(1) is equivalent to (4). So the only thing we are left to show is that (1) implies (2).

Suppose that mM =~ 0. Pick an arbitrary basic elementa ® m € m @ g M with
a € m, m € M. Since m? = m, there is a finite number of elements Vi eoos Vies
X1,...,Xr € m such that

k
a = inyi.

i=1
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Then we have an equality

k k
a®m=2xiyi®m=2xi®yim=0. [

i=1 i=1

Definition 2.1.2. An R-module M is almost zero, if any of the equivalent conditions
of Lemma 2.1.1 is satisfied for M.

Lemma 2.1.3. Under the same assumption as above, the “multiplication” morphism
m Qg M — M is an isomorphism.

Proof. We consider a short exact sequence
0—>m—>R— R/mi — 0.
Note that (R/m) ® g m = m/m? = 0, so we get a short exact sequence
0— Torf(R/m,m) —m—m— 0.

Since Torfz (R/m, m) is almost zero, Lemma 2.1.1 says that after applying the
functor — @ g  we get an isomorphism

Mprm~m Qg .

Since mi is R-flat, we also see that m ® g M injects into fii. Moreover, it maps iso-
morphically onto its image m = 1t as m? = wm. Taken together, it shows that

m@prm >~ .
It is straightforward to see that the constructed isomorphism is the “multiplication”

map. ]

We denote by X g the category of almost zero R-modules considered as a full
subcategory of Modg.

Corollary 2.1.4. The category g is a Serre subcategory of ModRg."

Proof. This follows directly from criterion (3) from Lemma 2.1.1, flatness of m and
[68, Tag 02MP]. [

This corollary allows us to define the quotient category’ Mod% := Modg/X g
that we call as the category of almost R-modules. Note that the localization functor

(—)*:Modg — Mod%

'We refer to [68, Tag 02MN] for the discussion of (weak) Serre categories.
2We refer to [68, Tag 02MS] for the discussion of quotient categories.


https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MS
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is an exact and essentially surjective functor. We refer to elements of Mod% as almost
R-modules or R*-modules. We will usually denote them by M ¢ to distinguish almost
R-modules from R-modules.

To simplify the exposition, we will use the notation Mod% and Modga inter-
changeably.

Definition 2.1.5. A morphism f : M — N is an almost isomorphism (resp. almost
injection, resp. almost surjection) if the corresponding morphism f¢ : M4 — N%is
an isomorphism (resp. injection, resp. surjection) in Mod%.

Remark 2.1.6. For any R-module M, the natural morphism 7:1m Qg M — M is
an almost isomorphism. Indeed, it suffices to show that

m ®r Kerm ~ 0 and mt ® g Coker 7 ~ 0.
Using R-flatness of fii, we can reduce the question to showing that the map
MAIRAMOIRMORM > Qr M

is an isomorphism. This follows from Lemma 2.1.3.

Definition 2.1.7. Two R-modules M and N are called almost isomorphic if M?¢ is
isomorphic to N in Mod%.

Lemma 2.1.8. Let f: M — N be a morphism of R-modules, then the following hold:

(1) The morphism f is an almost injection (resp. almost surjection, resp. almost
isomorphism) if and only if Ker( f) (resp. Coker( f), resp. both Ker( f) and
Coker( f)) is an almost zero module.

(2) We have a functorial bijection Hompg (tt @ g M, N) ~ Homyoq, (M4, N9).

(3) Modules M and N are almost isomorphic (not necessarily via the mor-
phism f)ifand only if i Qg M ~ W Qg N.

Proof. (1) just follows from definition of the quotient category. (2) is discussed in
detail in [26, page 12 (2.2.4)].

Next we show that (3) follows from (1) and (2). Remark 2.1.6 implies that M
and N are almost isomorphic if T @ g M ~ 11 Qg N.

Suppose that there is an almost isomorphism ¢: M ¢ — N¢. It has a representative
f:m ®r M — N by (2). Now (1) together with the R-flatness of it implies that
MR M Qr M Qr M — M Qg N is an isomorphism. Lemma 2.1.3 ensures
that It ® g M ~ 1, so W @g [ gives an isomorphism

MR f MR M — m Qg N. m
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We now define the functor of almost sections
(—)«:Mod% — Modg
via the formula
(M%), = Homygeqe, (R%, M%) = Homg (11, M)

for any R%-module M“ with an R-module representative M. The construction is
clearly functorial in M, so it defines the functor (—)«: Mod% — Modg.

The functor of almost sections will be the right adjoint to the almostification func-
tor (—)?. Before we discuss why this is the case, we need to define the unit and counit
transformations.

We start with the unit of the adjunction. For any R-module M, there is a functorial
morphism

M «: M — Homg(i, M) = M}

that can easily be seen to be an almost isomorphism.
This allows us to define a functorial morphism

ena x: (N$)* — N¢

for any R*-module N¢. Namely, the map ny,«: N — NZ is an almost isomorphism,
so we can invert it in the almost category and define

enaqw = (%07 (NH* — N,
Now we define another functor
(—)1:Mod% — Modg
that will be a left adjoint to the almostification functor (—)?. Namely, we put
(M%), = (M%), Qr T <« M ®pg @

for any R?-module M“ with an R-module representative M. This construction is
clearly functorial in M ¢, so it does define a functor. Similarly to the discussion above,
for any R-module M, we define the transformation

ey (M) =mM Q@M —> M

as the map induced by the natural morphism @t — R. Clearly, €3,y is an almost
isomorphism for any M . Therefore, this actually allows us to define the morphism

nna: N — (Mg N)* >~ (Nf)?

as nna, = (&% !)_1. We summarize the main properties of these functors in the fol-
lowing lemma:
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Lemma 2.1.9. Let R and w be as above. Then the following hold:
(1) The functor (—)« is the right adjoint to (—)%. In particular, it is left exact.

(2) The unit of the adjunction is equal to Ny «, the counit of the adjunction is
equal to ea . In particular, both are isomorphisms.

(3) The functor (<) is the left adjoint to the localization functor (—)%.
(4) The functor (—);:Mod% — Modg is exact.

(5) The unit of the adjunction is equal to nya 1, the counit of the adjunction is
equal to epg,). In particular;, both are almost isomorphisms.

Proof. This is explained in [26, Proposition 2.2.13 and Proposition 2.2.21]. |

Corollary 2.1.10. Let R and m be as above. Then (—)*: Modg — Mod% commutes
with limits and colimits. In particular, Mod% is complete and cocomplete, and filtered
colimits and (arbitrary) products are exact in Mod%.

Proof. The first claim follows from the fact that (—)¢ admits left and right adjoints.
The second claim follows the first claim, exactness of (—)¢, and analogous exactness
properties in Modg. u

The last thing we need to address in this section is how almost mathematics
interacts with base change. We want to be able to talk about preservation of vari-
ous properties of modules under a base change along a map R — S. The issue here
is to define the corresponding ideal g as in the definition of almost mathematics. It
turns out that the most naive ideal mg := mS does define an ideal of almost mathe-
matics in S, but this is not entirely formal and crucially uses our choice of definition
for an ideal of almost mathematics.

More precisely, if one starts with a flat ideal m C R, then the ideal mg C S is
not necessarily flat. However, we show that flatness of it implies flatness of mg. For
this reason, it is essential to not impose the stronger condition on m to be R-flat in
the foundations of almost mathematics.

Lemma 2.1.11. Let f: R — S be a ring homomorphism, and let mgs be the ideal
mS C S. Then we have the equality m% = mg and the S-module Mg :=mgs s Mg
is S-flat.

Proof. The equality mé = mg follows from the analogous assumption on m and
the construction of mg. Regarding the flatness issue, we claim that mg ® g mg ~
(m®r S) ®s (m ®g S). That would certainly imply the desired flatness statement.
To prove this claim, we look at the following short exact sequence:

0—>m—>R—>R/m —0.
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We apply — ®g S to get a short exact sequence
0— Torf(R/m, S)>m®r S > mS — 0.

We observe that TorR (R /m, S) is almost zero, so both Tor®(R/m, §) ® s mS and
Torf (R/m,S) ®s (m ®g S) are zero modules due to Lemma 2.1.1. So we use the
functors — @ (m ®r ) and — ® g WS to obtain isomorphisms

(m ®rS) ®s (Mg S) ~mS Qg (M g S) = (mS) ®s (mS).
Thus we get the desired equality. ]

Lemma 2.1.12. Let f: R — S be a ring homomorphism, and let F:Modg — Modg
be an R-linear functor (resp. let F': Mod(l)g — Modg be an R-linear functor). Then F
sends almost zero R-modules to almost zero S-modules.

Proof. Suppose that M is an almost zero R-module, so eM = 0 for any & € . Then
eF (M) = 0 because F is R-linear, so F(M) is almost zero by Lemma 2.1.1. [

Corollary 2.1.13. Let f: R — S be a ring homomorphism, and let F: Modr —
Modg be a left or right exact R-linear functor (resp. let F: Mod%3 — Modg be a left
or right exact R-linear functor). Then F preserves almost isomorphisms.

Proof. We only show the case of a left exact functor F: Modg — Modg, all other
cases are analogous to this one. We choose any almost isomorphism f: M’ — M"”
and wish to show that F(f) is an almost isomorphism. For this, we consider the
following exact sequences:

0>K—>M - M —0,
0>M-—>M'"— Q—0.

We know that K and Q are almost zero by our assumption on f. Now, the above
short exact sequences induce the following exact sequences:

0— F(K)— F(M') - F(M) — R'F(K),
0— F(M)— F(M") — F(Q).

Lemma 2.1.12 guarantees that F(K), R'F(K), and F(Q) are almost zero S-modules.
Therefore, the morphisms F(M') — F(M) and F(M) — F(M") are both almost
isomorphisms. In particular, the composition F(M’) — F(M") is an almost isomor-
phism as well. |
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2.2 Basic functors on categories of almost modules

The category of almost modules admits certain natural functors induced from the
category of R-modules. It has two versions of the Hom-functor and the tensor product
functor. We summarize the properties of these functors in the following proposition:

Proposition 2.2.1. Let R, m be as above.

(1) We define the tensor product functor — ® ga — Mod% x Mod% — Mod% as
(M, N%) — (M ®g N")*.
Then there is a natural transformation of functors

Mod g x Mod ~®r- s Modg

0
(—)¢ X(_)al / l(_)a

Mod% x Mod% > Mod%

_®R“_

that makes the diagram (2, 1)-commutative. In particular, there is a functorial
isomorphism (M Qg N)? >~ M% Q@pra N for any M, N € Modpg.

(2) There is a functorial isomorphism
Hompga (M?, N%) ~ Homg (it @ M, N),

for any M, N € Modg. In particular, there is a canonical structure of an
R-module on the group Hompga (M %, N%); thus it defines the functor

Hompga (—, —):Mod}, x Modga — Modg.

(3) We define the functor alHompga (—, —): Mod(l)fa x Modra — Modga of al-
most homomorphisms as

(M?,N%) — Hompga (M, N%)%.
Then there is a natural transformation of functors

Hompg (—,—)

Mod} x Modg > Mod g
(—)”x(—)“l / l(—)“
Mod 3, x Modga s Mod ga

that makes the diagram (2, 1)-commutative. In particular, it yields an isomor-
phism alHompga (M %, N%) =% Homg (M, N )¢ for any M, N € Modg.
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Proof. (1). We define
pmN: (M ®g N ) — (M ®g N)*
to be the morphism induced by
M ~m®RrM — Mand N ~m®r N — N.

It is clear that pps v is functorial in both variables, so it defines a natural transforma-
tion of functors p. We also need to check that pps, v is an isomorphism for any M
and N. This follows from the following two observations: pps,y is an isomorphism if
and only if pps, vy ®g T is an isomorphism; and py, vy ® g T is easily seen to be an
isomorphism as W ® g W — W is an isomorphism.

(2) is just a reformulation of Lemma 2.1.8 (2).

In order to show (3), we need to define a functorial morphism

pm.n:Hompg(M, N)* — alHompga (M¢, N?).
We start by using the functorial identification from (2):
alHompga (M %, N%) =* Homg (1t @ M, N)“.

Namely, we define pps, v as the morphism Homg (M, N)* — Homg(mi ® M, N)*
induced by the map mt ® M — M. This is clearly functorial in both variables, so it
defines the natural transformation p.

We also need to check that pps,y is an isomorphism for any M and N. This boils
down to the fact that Homg(—, N) sends almost isomorphisms to almost isomor-
phisms. This, in turn, follows from Corollary 2.1.13. [

Remark 2.2.2. It is straightforward to check that whenever N¢ has a structure of
an S%-module for some R-algebra S, then the R4-modules alHompga (M ¢, N¢) and
M*?% ®ga N have functorial-in-M ¢ structures of S?-modules. This implies that
the functors — ® g« N¢, alHompga (—, N¢) naturally land in Mod, i.e., they define
functors

— ®ga N?:Mod% — Mod$ and alHompga (—, N*): Modz”” — Mod$.
Similarly, Homga (—, N¢) defines a functor Mod% — Mods.

The functor of almost homomorphisms is quite important, as it turns out to be the
inner Hom functor, i.e., it is right adjoint to the tensor product.

Lemma 2.2.3. Let f: R — S be a ring homomorphism, and let M? be an R*-module
and N%, K be S*-modules. Then there is a functorial S-linear isomorphism

Homga (M Qga N%, K%) ~ Hompga (M*?, alHomga (N, K%)).
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Proof. This is a consequence of the usual ®-Hom-adjunction, Proposition 2.2.1, and
the fact that mi®? ~ f1. Indeed, we have the following sequence of functorial isomor-
phisms:

Homga (M Qpga N, K*) >~ Homg (it @ g M ®g N, K)
~ Homgs((M @ g M) ®g (m ®r N), K)
~ Homg (1 ® g M, Homg (Wt g N, K))
~ Hompga (M, alHomga (N?, K)).

The first isomomorphism follows from Proposition 2.2.1 (1), (2), the second isomor-
phism follows from the observation m®? ~ f, the third isomorphism is just the
classical ®-Hom-adjunction, and the last isomorphism is a consequence of Proposi-
tion 2.2.1 (2), (3). [ ]

Corollary 2.2.4. (1) Let N be an R*-module, then the functor — @ pa N¢ is left
adjoint to the functor alHompga (N¢, —).

(2) Let R — S be a ring homomorphism. Then the functor — @ ga S*:Mod% —
ModS is left adjoint to the forgetful functor.

Proof. Part (1) follows from Lemma 2.2.3 by taking S to be equal to R. Part (2)
follows from Lemma 2.2.3 by taking N¢ to be equal to S¢. ]

Definition 2.2.5. The following types of R%-modules will be used throughout the
memoir:

* An R%-module M* is flat if the functor M* ® g« — Mod%, — Mod% is exact.

* An R%module M? is faithfully flat if it is flat and N¢ Q@ ga M* ~ 0 if and only
if N4 ~ 0.

e An R-module M is almost flat (resp. almost faithfully flat) if an R*-module M ¢
is flat (resp. faithfully flat)

e An R%-module 1 is injective if the functor Hompga (—, 1%): Mod‘;"’p — Modpr
is exact.

* An R?-module P? is almost projective if the functor alHompga (P%,—):Mod% —
Mod$% is exact.

Lemma 2.2.6. The functor (—)*: Modgr — Mod% sends flat (resp. faithfully flat,
resp. injective, resp. projective) R-modules to flat (resp. faithfully flat, resp. injective,
resp. almost projective) R*-modules.

Proof. The case of flat modules is clear from Proposition 2.2.1 (1). Now suppose that
M is a faithfully flat R-module. Recall that M ® g —: Modr — Modpg is an exact
and faithful functor. Therefore, if M ® g N is almost zero, it implies that so is N.
Thus Proposition 2.2.1 (1) ensures that M ¢ is almost faithfully flat.
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The case of injective modules follows from the fact that (—)¢ admits an exact left
adjoint functor (—);. The case of projective modules is clear from the definition. m

Lemma 2.2.7. The functor (—);: Mod% — Modg sends flat R*-modules to flat R-
modules.

Proof. This follows from the formula M @ g N ~ (M? ®ga N¢), for any R“-
module M4 and an R-module N. ]

Warning 2.2.8. If M“ is a faithfully flat R*-module, the R-module M," may not be
faithfully flat. For instance, R“ is a faithfully flat R%-module, but R{ = i is not a
faithfully flat R-module. For example, Tt ® g R/m >~ 0.

Corollary 2.2.9. Any bounded above complex C** € Comp™ (R?) admits a resolu-
tion P*% — C*% by a bounded above complex of almost projective modules.

Proof. We consider the complex C !"a € Comp™ (R); it admits a resolution by a com-
plex of free modules p: P* — C,”“. Now we apply (—)“ to this morphism to obtain
the maps
Po,a p_) (C!o,a)a <i C.,Ll'

The map ¢ is an isomorphism in Comp(R?%) by Lemma 2.1.9, and p? is a quasi-
isomorphism by construction. Thus, ! o p%: P*% — C*“ is a quasi-isomorphism
in Comp(R“). We conclude by noting that each term of P*¢ is almost projective by
Lemma 2.2.6. ]

2.3 Derived category of almost modules

We define the derived category of almost modules in two different ways and show
that these definitions coincide. Later we define certain derived functors on the derived
category of almost modules. We pay some extra attention to showing that the functors
in this section are well defined on unbounded derived categories.

Definition 2.3.1. We define the derived category of almost R-modules as D(R?) =
D(Mod%}).

We define the bounded version of the derived category of almost R-modules
D*(R?) for x € {+, —, b} as the full subcategory consisting of bounded below (resp.
bounded above, resp. bounded) complexes.

Definition 2.3.2. We define the almost derived category of R-modules as the Verdier
quotient D(R)“ := D(Modg)/Ds , (ModRg).
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We recall that X is the Serre subcategory of Modg that consists of almost zero
modules, and Dy, (Modg) is the full triangulated category of elements in D(Modg)
with almost zero cohomology modules.

We note that the functor (—)*: Modg — Mod% is exact and additive. Thus, it can
be derived to the functor (—)*:D(R) — D(R?). Similarly, the functor (—);: Mod% —
Modp, is additive and exact, so it can be derived to the functor (—);: D(R%) — D(R).
The standard argument shows that (—), is a left adjoint functor to the functor (—)¢
since this already happens on the level of abelian categories. Now we also want
to derive the functor (—)s: Mod% — Modg. In order to do this on the level of
unbounded derived categories, we need to show that D(R?) has enough K-injective
objects.

Definition 2.3.3. A complex of R?-modules 7 is K-injective if
Homg ga)(C**, 1*%) =0

for any acyclic complex C *“ of R%-modules.

Remark 2.3.4. We remind the reader that K(R“) stands for the homotopy category
of R%-modules.

Lemma 2.3.5. The functor (—)*: Comp(R) — Comp(R?) sends K-injective R-
complexes to K -injective R%-complexes.

Proof. We note that (—)“ admits an exact left adjoint (—); thus [68, Tag 08BJ] ensures
that (—)“ preserves K-injective complexes. [

Corollary 2.3.6. Every object M*¢ € Comp(R?) is quasi-isomorphic to a K -injec-
tive complex.

Proof. We know that the complex M ® € Comp(R) is quasi-isomorphic to a K-injec-
tive complex /° by [68, Tag 090Y] (or [68, Tag 079P]). Now we use Lemma 2.3.5 to
say that /*“ is a K-injective complex that is quasi-isomorphic to M *4. |

As the first application of Corollary 2.3.6, we define the functor (—)«: D(R?) —
D(R) as the derived functor of (—)«: Mod% — Modg. This functor exists by [68,
Tag 070K].

Lemma 2.3.7. (1) The functors
(-
D(R) £—s D(R?)
=)

are adjoint. Moreover, the unit (resp. counit) morphism

(M%), — M (resp. N — (N)?)


https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/090Y
https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/070K

Almost commutative algebra 28

is an almost isomorphism (resp. isomorphism) for any M€ D(R), Ne D(R?).
In particular, the functor (—)¢ is essentially surjective.

(2) The functors

D(R) & D(R%)

)%

are adjoint. Moreover, the unit (resp. counit) morphism
M — (M%), (resp. (Nx)* — N)
is an almost isomorphism (resp. isomorphism) for any M€ D(R), N D(R?).

Proof. We start the proof by showing (1). First, we note that the functors (—), and
(—)? are adjoint by the discussion above. Now we show that the cone of the counit
map is always in Dy, (R). As both functors (—)* and (—); are exact on the level
of abelian categories, it suffices to show the claim for M € Mod‘,’e. But then the
statement follows from Lemma 2.1.9 (5). The same argument shows that the unit
map N — (NVy)? is an isomorphism for any N € D(R%).

Now we go to (2). We define the functor (—).:D(R%) — D(R) as the right derived
functor of the left exact additive functor (—)«: Mod% — Modg. This functor exists
by [68, Tag 070K] and Corollary 2.3.6. The functor (—), is right adjoint to (—)¢ by
[68, Tag ODVC].

We check that the natural map M — (M%), is an almost isomorphism for any
M € D(R). We choose some K-injective resolution M 5 71°. Then Lemma 2.3.5
guarantees that M ¢ — [°*¢ is a K-injective resolution of the complex M “. The map
M — (M%), has a representative

1° = (I*9),.

This map is an almost isomorphism of complexes by Lemma 2.1.9 (2). Thus, the map
M — (M%), is an almost isomorphism. A similar argument shows that the counit
map (Nx)? — N is an (almost) isomorphism for any N € D(R?). ]

Theorem 2.3.8. The functor (—)%:D(R) — D(R?) induces an equivalence of trian-
gulated categories (—)%:D(R)* — D(R%).

Proof. We recall that the Verdier quotient is constructed as the localization of D(R)
along the morphisms f: C — C’ such that cone(f) € Dx,(R). For instance, this is
the definition of Verdier quotient in [68, Tag O5RI]. Now we see that a morphism
f%C% — C' is invertible in D(R?) if and only if cone(f) € Dx.(R), by the
definition of X g and the exactness of (—)%. Moreover, (—)¢ admits a right adjoint
such that (—)? o (=), — id is an isomorphism of functors. Thus, we can apply [27,
Proposition 1.3] to say that the induced functor (—)%: D(R)¢ — D(R?) must be an
equivalence. |


https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/0DVC
https://stacks.math.columbia.edu/tag/05RI
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Remark 2.3.9. Theorem 2.3.8 shows that the two notions of the derived category
of almost modules are the same. In what follows, we do not distinguish D(R?) and
D(R)? anymore.

2.4 Basic functors on derived categories of almost modules

Now we can “derive” certain functors constructed in the previous section. We start
by defining the derived versions of different Hom functors, after that we move to the
case of the derived tensor product functor.

Definition 2.4.1. We define the derived Hom functor
RHompga (—, —): D(R*)? x D(R?) — D(R)

asitis done in [68, Tag 0A5SW], using the fact that Comp(R“) has enough K-injective
complexes.
We define Ext modules via the following formula:

Extpa (M, N?) := H' (RHomga (M*, N*)) € Modg,
for M*, N* € Mod%.

Explicitly, for any M%, N4 € D(R?), the complex RHompga (M4, N%) is con-
structed as follows: We choose a representative C** — M? and a K-injective res-
olution N4 — I*“. Then we set RHomga (M %, N%) = Hom$%,(C*“, I*¢). This
construction is independent of the choices and is functional in both variables. We
refer to [68, Tag 0ASW] for the details.

Remark 2.4.2. We see that [68, Tag 0A64] implies a functorial isomorphism
H' (RHompga (M*, N%)) ~ Hompgya (M“, N°[i]).

Lemma 2.4.3.

(1) There are functorial isomorphisms
HomD(R)a (Ma s Na) ~ HomD(R) (M!a s N)

and
RHompga(M?, N*) >~ RHomg(My, N)
forany M, N € D(R).

(2) For any chosen M® € Mod$%, the functor RHomga (M2, —):D(R)* — D(R)
is isomorphic to the (right) derived functor of Hompga (M4, —).


https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A64
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Proof. The first claim easily follows from the fact that (—)¢ is a right adjoint to the
exact functor (—);. We leave the details to the reader.
The second claim follows from [68, Tag 070K] and Corollary 2.3.6. |

Definition 2.4.4. We define the derived functor of almost homomorphisms
RalHompga (—, —): D(R%)? x D(R%) — D(R?)

as
RalHompa (M“, N¢) := RHompga (M“, N*)* = RHomg (M}, N)*.

We define the almost Ext modules as R*-modules defined by
alExthe (M, N*) := H' (RalHomga (M?, N%))
for M*, N? € Mod%.

Definition 2.4.5. For K*%, L*% € Comp(R?), we define the complex of almost
homomorphisms alHom'%. (K¢, L*%) as follows:

alHom'za (K*¢, L*%) = l_[ alHompga (K~9%, LP%)
n=p+q

with the differentials
d(f) =dpea o f - (—l)nf odge.a.

Lemma 2.4.6. Let P*? be a bounded above complex of R*-modules with almost pro-
Jjective cohomology modules and let M ** — N *% be an almost quasi-isomorphism
of bounded below complexes of R*-modules. Then the natural morphism

alHom%. (P*%, M*%) — alHom%. (P *%, N*%)
is an almost quasi-isomorphism.

Proof. We note that as in the case of the usual Hom-complexes, there are convergent®
spectral sequences

E}/ = H/ (alHom}a (P74, M*%)) = H'*/ (alHom®a (P*, M *%))

E’il’j =H/ (alHom%a (P, N*Y) = Hit/ (alHompa (P*%, N*%)).

Moreover, there is a natural morphism of spectral sequences E;” — E’}/. Thus, it
suffices to show that the associated map on the first page is an almost isomorphism

3Here we use that P*-¢ is bounded above, M *-¢ and N *-¢ are bounded below.


https://stacks.math.columbia.edu/tag/070K
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at each entry. For this, we use the fact that alHomga (P 5%, —) is exact to rewrite the
first page of this spectral sequence as

E}/ = alHomga (P, H/ (M*))
and the same for E/ ’1] . So the question boils down to showing that the natural mor-
phisms

alHompga (P4, H/ (M *)) — alHomga (P~ H/ (N *?))

are almost isomorphisms. But this is clear as M*% — N*“ is an almost quasi-
isomorphism. u

Lemma 2.4.7. Let Pl' i Pz. ** be an almost quasi-isomorphism of bounded above
complexes with almost projective cohomology modules and let M ** be a bounded
below complex of R*-modules. Then the natural morphism

alHom%. (P, M **) — alHom¥ya (P, M*%)
is an almost quasi-isomorphism.

Proof. We choose some injective resolution M *¢ — [*¢ of the bounded below com-
plex M *¢. Then we have a commutative diagram

alHom¥yq (P, M*%) —— alHomY%a (P, M *%)

| |

alHom¥ya (P, 1*%) —— alHom¥a (P, M *%).

The bottom horizontal arrow is an almost quasi-isomorphism by the standard cat-
egorical argument with injective resolutions. The vertical maps are almost quasi-

isomorphism by Lemma 2.4.6. |
Proposition 2.4.8. (1) There is a natural transformation of functors
D(R)* x D(R) ——kED__, p(R)
(—)“x(—)“l / l(—)“
D(R%)*® x D(R%) s D(R?)

that makes the diagram (2, 1)-commutative. In particular,
RalHompga (M %, N%) =* RHomg(M, N)*

forany M, N € D(R).
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(2) For any chosen M“ € Mod%, the functor RalHompga (M, —): D(R?) —
D(R?) is isomorphic to the (right) derived functor of alHompga (M4, —).

(3) For any chosen N% € Mod%, the functor RalHompga (—, N%): D™ (R%)*P —
D(R?) is isomorphic to the (right) derived functor of alHompga (—, N¢).

Proof. In order to show Part (1), we construct functorial morphisms
om.n:RHomg (M, N)* — RalHomga (M%, N?),
for any M, N € D(R). We recall that there is a functorial identification
RalHompga (M %, N*) =% RHomg(M/', N)* = RHomg(m ®g M, N)“.
So we define
om.N:RHomg (M, N)* — RHomg(t g M, N)*

as the morphism induced by the canonical map i @ g M — M. This is clearly func-
torial, so it defines the stated natural transformation of functors. The only thing we
are left to show is that pps v is an almost isomorphism for any M, N € D(R).

We recall that RHomg (M, N) is isomorphic to Hom%(C*, I*®) for any choice of
a K-injective resolution of N—7* and any resolution M —C*. Since i ® g C*is a
resolution of ™ ® g M due to the R-flatness of @, we reduce the question to showing
that the natural map

o:Hom%(C*, I*) - Homy (i g C*, I°®)

is an almost quasi-isomorphism of complexes. For this, it suffices to show that « is
an isomorphism of complexes. Now note that the degree-n part of « is the map

1_[ Homg(C™4,1%7) — l_[ Hompg (i @ g C79,17).
p+q=n p+q=n

Since (infinite) products are exact in Mod%, and any (infinite) product of almost
zero modules is almost zero, it is enough that we show that each particular map
Hompg(C™4,17) — Hompg (1t ® g C~¢, I?) is an almost isomorphism. This follows
from Proposition 2.2.1 (3).

Part (2) is similar to Part (2) of Lemma 2.4.3.

Part (3) is also similar to Part (2) of Lemma 2.4.3, but there are some subtleties
due to the fact that Mod% does not have enough projective objects. We fix this issue
by using [68, Tag 06XN] instead of [68, Tag 070K]. We apply it to the subset & of
bounded above complexes with almost projective terms. This result is indeed appli-
cable in our situation due to Corollary 2.2.9 and Lemma 2.4.7. |

Now we deal with the case of the derived tensor product functor.
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Definition 2.4.9. We say that a complex K*¢ of R*-modules is almost K-flat if the
naive tensor product complex C*“ ® %, K*¢ is acyclic for any acyclic complex C *¢
of R%-modules.

Lemma 2.4.10. The functor (—)%: Comp(R) — Comp(R?) sends K-flat R-comp-
lexes to almost K-flat R*-complexes.

Proof. Suppose that C*¢ is an acyclic complex of R*-modules and K* is a K-flat
complex. Then we see that

C* @%a K* = (C* ®% K*)*
= (MRrRC* R K*)* = (M ®rC*%) Q% K*)*.
The latter complex is acyclic as it ® C* is acyclic and K* is K-flat. |

Corollary 2.4.11. Every object M *¢ € Comp(R?) is quasi-isomorphic to an almost
K-flat complex.

Proof. We know that the complex M*® € Comp(R) is quasi-isomorphic to a K-flat
complex K* by [68, Tag 06Y4]. Now we use Lemma 2.4.10 to say that K*¢ is an
almost K-flat complex that is quasi-isomorphic to M *-¢. u

Definition 2.4.12. We define the derived tensor product functor
— ®%. —:D(R)* x D(R)* — D(R)*
by the rule (M %, N%) — (M, ®1Le Ny)? for any M%, N¢ € D(R)“.

Proposition 2.4.13. (1) There is a natural transformation of functors
—®L—
D(R) x D(R) R > D(R)

0
(- x(_)al / l(_)a

D(R)* x D(R)* s D(R)

_®I;?“
that makes the diagram (2, 1)-commutative. In particular, there is a functorial
isomorphism (M ®1Le N)* ~ M* ®1Lea N? forany M, N € D(R).

(2) For any chosen M € Mod%, the functor M ®IL2a —:D(R)* — D(R)% is
isomorphic to the (left) derived functor of M* Q@ pa —.

Proof. The proof of Part (1) is similar to that of Proposition 2.2.1 (1). We leave the
details to the reader.

The proof of Part (2) is similar to that of Proposition 2.4.8 (2). The claim follows
by applying [68, Tag 06XN] with & being the subset of almost K-flat complexes.
This result is indeed applicable in our situation due to Corollary 2.4.11 and the almost
version of [68, Tag 064L]. n
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Lemma 2.4.14. Let M*, N, K¢ € D(R)?, then we have a functorial isomorphism
RHompga (M® @k, N%, K%) ~ RHomga (M*, RalHomga (N¢, K%)).

In particular, the functors RalHompga(N¢, —):D(R)* ——= D(R)*: — ®ﬁa N4
are adjoint.

Proof. The claim follows from the following sequence of canonical identifications:

RHompga (M® @k, N%, K%)

~ RHomg (i @ g M) % (it ®& N), K) Lemma 2.4.3 (1)
~ RHompg (1 ® g M, RHompg (11 ®g N, K)) [68, Tag 0ASW]
~ RHompga (M %, RHompg (1t ®g N, K)%) Lemma 2.4.3 (1)
~ RHompga (M %, RalHomga (N?, K%)). Definition 2.4.4 [

Definition 2.4.15. Let f: R — S be a ring homomorphism. We define the base

change functor
— ®%. S“D(R)* - D(S)°

by the rule M4 — (M, (X)IL2 $)¢ for any M* € D(R)4.
Proposition 2.4.16. (1) There is a natural transformation of functors

L
-®ks

D(R) > D(S)

(—)al / l(—)“

D(R)* s D(S)*

_®%u SH

that makes the diagram (2, 1)-commutative. In particular, there is a functorial
isomorphism (M ®5§ S)t ~ M ®§3a S@ for any M € D(R).

(2) The functor — ®@%, S¢:D(R)* — D(S)? is isomorphic to the (left) derived
functor of — (X)IL?,z S4.

Proof. The proof is identical to Proposition 2.4.13. |

Lemma 2.4.17. Let R — S be a ring homomorphism, let M* € D(R)%, and let
N? € D(S)?. Then we have a functorial isomorphism

RHomga (M* ®%, §¢ N%) ~ RHomga (M4, N9).
In particular, the functors Forget: D(S)¢ <—= D(R)*: — ®k%, S are adjoint.

Proof. The proof is similar to that of Lemma 2.4.14. |


https://stacks.math.columbia.edu/tag/0A5W
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2.5 Almost finitely generated and almost finitely presented modules

In this section, we discuss the notions of almost finitely generated and almost finitely
presented modules. Our discussion closely follows [26]. The main difference is that
we avoid any use of “uniform structures” in our treatment; we think that it simplifies
the exposition. We recall that we fixed some “base” ring R with an ideal m such
that m? = m and @ = m ® g m is flat, and we always do almost mathematics with
respect to this ideal.

Definition 2.5.1. An R-module M is called almost finitely generated, if for any € € m
there are an integer n, and an R-homomorphism

R”SLM

such that Coker( f') is killed by &.

Definition 2.5.2. An R-module M is called almost finitely presented, if for any
e, 8 € m there are integers n, s, m s and a complex

R™Mes £, pnes i) M

such that Coker( 1) is killed by & and §(Ker f) C Im g.

Remark 2.5.3. Clearly, any almost finitely presented R-module is almost finitely
generated.

Remark 2.5.4. A typical example of an almost finitely presented module that is
not finitely generated is M = P,,>; Oc/ pY/"O¢ for an algebraically closed non-
archimedean field C of mixed characteristic (0, p).

The next few lemmas discuss basic properties of almost finitely generated and
almost finitely presented modules. For example, it is not entirely obvious that these
notions transfer across almost isomorphisms. We show that this is actually the case,
so these notions descend to Mod%. We also show that almost finitely generated and
almost finitely presented modules have many good properties that are similar to those
of usual finitely generated and finitely presented modules.

Our first main goal is to get alternative criteria for a module to be almost finitely
generated (resp. almost finitely presented) and show that this notion descends to the
category of almost modules.

Lemma 2.5.5. Let M be an R-module, then M is almost finitely generated if and

only if for any finitely generated ideal wiy C m there is a morphism R* — M such
that wmg(Coker f) = 0.
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Proof. The “if” part is clear, so we only need to deal with the “only if” part. We
choose a set of generators (o, ..., &,) for an ideal my. By assumption, we have
R-morphisms

fi:R" — M

such that g; (Coker f;) = 0 for all i. Then the sum of these morphisms

f ::éﬁ:Rani - M

i=1

defines a map such that g (Coker f) = 0. Since 1 was an arbitrary morphism, this
finishes the proof. u

Lemma 2.5.6. Let M be an almost finitely presented R-module, and let ¢: R" — M
be an R-homomorphism such that wq(Coker ¢) = 0 for some ideal vy C m. Then
for every finitely generated ideal wiy C mym there is morphism : R™ — M such
that

R L RS M

is a three-term complex and w(Ker ¢) C Im(y).

Proof. Since M is almost finitely presented, for any two elements 1, £, € m1, we can

find a complex

A LI

such that &1 (Coker /) = 0 and &, (Ker /) C Im g. Now we choose an element § € m;
and wish to define morphisms

a:R™ — R"and §: R" — R™
suchthatp oo = §f and f o B = &;1¢.

R %, s pm Ty

ﬂllna /

To achieve this goal, we define @ and 8 in the following way: we fix a basis
€1,...,em, of R™! abasise],..., e, of R”, and then put & and B to be the unique
R-linear morphisms such that

ale;) = y; € R*  for some y; such that ¢(y;) = §f(e;),

ﬂ(e]’») = xj € R™! for some x; such that f(x;) = 6190(3})-

Itis clear that g o = §f and f o B = €1¢ as it holds on the basis elements.
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We define the morphism ¥: R" & R™2 — R” by the rule
Y(x,y) =aof(x)—(e18)x +aog(y).
Now we show that
@ oy = 0ande g8 Kerg C Im .
We start by showing that ¢ oy = 0: it suffices to prove that
(xog)(y) € Kerg for y € R™2, and (« o B)(x) — (¢16)x € Kerg for x € R".

We note that we have an equality

(poaog)(y)=35(fog)(y)=380=0,
so (o g)(y) € Ker(¢). We also have an equality

(po(aop—e18)(x) = (poaop)(x)—e1dp(x)
= 8(f o p)(x) —&1d¢p(x)
= Je1p(x) — 18p(x)
=0.

This shows that (@ o B)(x) — (¢16)x € Ker(p) as well.

We show that (e1628) Ker ¢ C Im(¥): we observe that for any x € Ker ¢ we have
B(x) CKer f as f o f = e1¢. This implies that e, 8(x) € Im g since &, Ker f C Img.
Thus, there is y € R™2 such that g(y) = e28(x), so (@ o g)(y) = e2c 0 B(x). This
shows that

Y(—e2x,y) = —e2(c 0 f)(x) + £1820x + (a2 0 g)(y)
= —&3(x 0 B)(x) + €1628x + e2(x 0 B)(x) = e1620x.

We conclude that e16,8x € Im(y) for any x € Ker(p).

Finally, we recall that iy is a finitely generated ideal, and that mip C m;m =
m;m? C m;. This means that we can find a finite set /, and a finite set of elements
€i.1,€i,2 € m,d; € my such that my is contained in the ideal J := (&;,1€;,28i)ier (the
ideal generated by all products €; 1&;28;). The previous discussion implies that for
eachi € I, we have a map v; : R¥ — R" such that

poy; =0 and (g,16i208;)(Kerp) C Imy;.
By passing to the homomorphism

v =P vi: RZ* — R,

iel
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we get a map ¥ such that ¢ o ¢y = 0 and mo(Ker¢) C Im(y). Therefore, y does the
job. |

Lemma 2.5.7. Let M be an R-module. Then the following conditions are equivalent:
(1) The R-module M is almost finitely presented.

(2) For any finitely generated ideal vy C m there exist a finitely presented R-
module N and a homomorphism f: N — M such that mo(Ker f) = 0 and
mo(Coker ) = 0.

(3) For any finitely generated ideal iy C m there exist integers n,m and a three-

term complex

& rn Ly

such that mg(Coker f) = 0 and mo(Ker f) C Img.

Proof. 1t is clear that (3) implies both (1) and (2).

We show that (1) implies (3). Since M is an almost finitely generated R-module,
Lemma 2.5.5 guarantees that, for any finitely generated ideal m’ C m, there exists a
morphism R"LM such that m’(Coker ) = 0.

We know that g C m = m?; this easily implies that there is a finitely generated
ideal m; C m such that my C mym C my. So, using m’ = nty, we can find a homo-
morphism R"% M such that i (Coker ) = 0. Lemma 2.5.6 claims that we can also
find a homomorphism y: R — R" such that

MY rn S m

is a three-term complex and mg(Ker¢) C Im . As g C my and wi; (Coker p) = 0,
we get that mig(Coker ¢) = 0 as well. This finishes the proof since nty was an arbitrary
finitely generated sub-ideal of m.

Now we show that (2) implies (3). We pick an arbitrary finitely generated ideal
mg C m, and we try to find a three-term complex

rm S pn Ly

such that mg(Coker f) = 0 and mo(Ker /) C Im(g). To achieve this, we use the
assumption in (2) to find a morphism 4: N — M such that N is a finitely presented
R-module, my(Coker #) = 0, and mo(Ker ) = 0. Since N is finitely presented, we
can find a short exact sequence

7
R & R LN o,
It is straightforward to see that a three-term complex

:=ho f’
R 5 gn LTy
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satisfies the condition that mg(Coker f) = 0 and mo(Ker ) C Im(g). ]

Lemma 2.5.8. Let M be an R-module, and suppose that for any finitely gener-
ated ideal my C m there exists a morphism f: N — M such that mo(Ker f) =0,
mo(Coker f) =0, and N is almost finitely generated (resp. almost finitely presented).
Then M is also almost finitely generated (resp. almost finitely presented).

Proof. We give a proof only in the almost finitely presented case; the other case is
easier. We pick an arbitrary finitely generated ideal iy C m and another finitely
generated ideal m; C m such that my C m% Then we use the assumption to get a
morphism

f:N—>M

such that w; (Ker /) = 0, iy (Coker f) = 0 and N is an almost finitely presented
R-module. Lemma 2.5.7 guarantees that there is a three-term complex

Rm R & N

such that m; (Coker g) = 0 and mi; (Ker g) C Im /. Then we can consider a three-term

complex

Rl opr 5008y

it is easily seen that m?(Coker f’) = 0 and m?(Ker /') C Im(h). Since mo C m?,
we conclude that mo(Coker f/) = 0 and mg(Ker /) C Im(h). This shows that M is
almost finitely presented. |

Lemma 2.5.9. Let M be an R-module and let {N;};c; be a filtered diagram of
R-modules. Then

(1) the natural morphism
)/1?,,: colim; Homg (M, N;) — Homg (M, colimy N;)

is almost injective for an almost finitely generated M ;

(2) the natural morphism
)/1?,,: colim; Homg (M, N;) — Hompg (M, colim; N;)
is an almost isomorphism and
Var: colim Exty (M, N;) — Extg (M, colim N;)
is almost injective for an almost finitely presented M .

Proof. We give a proof for an almost finitely presented M ; the case of an almost
finitely generated M is similar.
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Step 1: The case of a finitely presented M. In this case, )/1?4 is an isomorphism and V}b
is injective due to [68, Tag 064T] and [68, Tag 0GEW].

Step 2: General case. We fix a finitely generated ideal mo C m. Since mo C m = m*,
there is a finitely generated ideal nt; such that mo C m‘l‘. So we use Lemma 2.5.7 (2)
to find a finitely presented module M’ and a morphism f: M’ — M such that Ker( f")
and Coker( /) are annihilated by n1;. We denote the image of f by M” and consider
the short exact sequences

0>K—->M —->M"—-0,
0O->M'"—-M—>Q—0

with K and Q being annihilated by m;. Applying the functors colim; Hompg(—, N;)
and Hompg(—, colim; ;) and considering the associated long exact sequences, we
see that

b;: colim; Exth (M, N;) — colimy Extiy(M’, N;)

and
ci: Exthy (M, colimy N;) — Exti(M’, colimy N;)

have kernels and cokernels annihilated by m% for any i > 0. Now we consider a
commutative diagram

. yi .
colimy Extiz (M, N;) M > Extls (M, colim; N;)
b,jT Tci
colimy ExtiR(M, N;) " b ExtiR(M, colim;y Nj)
M

By Step 1, we know that Vziw is an isomorphism for i = 0 and injective for i = 1.
Moreover, we know that b; and ¢; have kernels and cokernels annihilated by m%
Then it is easy to see that Coker(yy), Ker(yy ), and Ker(y;,) are annihilated by
m‘l‘. In particular, they are annihilated by my C m‘l‘. Since 1 was arbitrary finitely
generated sub-ideal mg C m, we conclude that yJ, is an almost isomorphism and y;,
is almost injective. |

Lemma 2.5.10. Let M be an R-module.
(1) If, for any filtered diagram of R-modules {N;}iey, the natural morphism

colim; Homg (M, N;) — Hompg (M, colimy N;)

is almost injective, then M is almost finitely generated.


https://stacks.math.columbia.edu/tag/064T
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(2) If, for any filtered system of R-modules {N;}, the natural morphism
colim; Homg (M, N;) — Hompg (M, colimy N;)
is an almost isomorphism, then M is almost finitely presented.

Proof. (1) Note that M =~ colim; M; is a filtered colimit of its finitely generated
submodules. Therefore, we see that

colim; Homg (M, M/ M;) ~* Homg(M, colim; (M/M;)) ~ 0.

Consider an element ¢« of colimy Homg (M, M/ M;) that has a representative the quo-
tient morphism M — M/M,; (for some choice of i € I). Then, for every ¢ € m,
ea = 0 in colim; Homg (M, M/ M;). Explicitly, this means that there is j > i such
that eM C M;. Now we choose a surjection R"/ — M to see that the composition
f:R"Y — M gives a map with e(Coker f) = 0. Now note that this property is pre-
served by replacing j with any j’ > j. Therefore, for any mg = (¢1,.. ., &,), We can
find a finitely generated submodule M; C M such that mig M C M;. Therefore, M is
almost finitely generated.

(2) Fix any finitely generated sub-ideal mgy = (¢1,...,&,) C m. We use [68,
Tag OOHA] to write M ~ colimpy M) as a filtered colimit of finitely presented R-
modules. By assumption, the natural morphism

colimpy Homg (M, M) — Hompg(M, colimy M) = Homg(M, M)

is an almost isomorphism. In particular, €;idys is in the image of this map for every
i = 1,...,n. This means that, for every ¢;, there are an element A; € A and a mor-
phism g;: M — M}, such that

fa; 0 g = eiidpy,

where f3,: M, — M is the natural morphism to the colimit. Note that the existence
of such a g; is preserved by replacing A; with any A} > A;. Therefore, using that
{M,} is a filtered diagram, we can find an index A with maps

gi:M — M),
such that f) o g; = g;idps. We consider the morphism
Fi = gio fi —eidy, : My — M.
We note that Im(F;) C Ker( f}) because

frogio fo— faeiidy, =€ f —ei fo = 0.


https://stacks.math.columbia.edu/tag/00HA
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We also have ¢; Ker(f}) C Im(F;) because F;|ker(r;) = €:id. Therefore, ) ; Im(F;)
is a finite R-module such that

mo(Ker f3) C ZIm(Fi) C Ker(f3).

Therefore, f: M’ := M, /(3_, Im(F;)) — M is a morphism such that its source M’
is finitely presented, 1o (Ker f) = 0, and mo(Coker f) = 0. Since my C m was an
arbitrary finitely generated sub-ideal, we see that M is almost finitely presented. m
Corollary 2.5.11. Let M be an R-module. Then

(1) M is almost finitely generated if and only if the natural morphism

colimy alHomg(M“, N{) — alHomg(M“, colim; N{*)

is injective in Mod%, for every filtered diagram {N*};c1 of R*-modules;
(2) M is almost finitely presented if and only if the natural morphism

colimy alHomg(M“, N{*) — alHomg(M“, colim; N{*)

is an isomorphism in Mod%, for every filtered diagram {N{};cr of R°-
modules.

Proof. 1t formally follows from Lemma 2.5.9, Lemma 2.5.10, Proposition 2.2.1 (3),
and Corollary 2.1.10. ]

Corollary 2.5.12. Let M and N be two almost isomorphic R-modules (see Defini-
tion2.1.7). Then M is almost finitely generated (resp. almost finitely presented) if and
only ifsois N.

Proof. Corollary 2.5.11 implies that M is almost finitely generated (resp. almost
finitely presented) if and only if M is. Since M|" >~ N\*, we get the desired result. m

Corollary 2.5.13. Let R — S be an almost isomorphism of rings. Then the forgetful
functor Mods. — Modya is an equivalence for x € {* 7, aft, afp}.

[T3L

Proof. Corollary 2.5.11 ensures that it suffices to prove the claim for * = as the
property of being almost finitely generated (resp. almost finitely presented) depends
only on the category Mod g« and not on the ring R itself.

Corollary 2.2.4 (2) guarantees that the forgetful functor admits a right adjoint
— ®pga S%: Mod‘,’2 — Mod‘;. Therefore, it suffices to show that the natural morphisms

M > M4 Q Ra S

and
N% Qpa S — N4
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are isomorphisms for any M € Mod% and N € ModS. This is obvious from the fact
that R — S is an isomorphism of R?-modules. ]

Definition 2.5.14. We say that an R*-module M“ € Mod% is almost finitely gen-
erated (resp. almost finitely presented) if its representative M € Modpg is almost
finitely generated (resp. almost finitely presented). This definition does not depend
on the choice of a representative due to Corollary 2.5.12.

We now want to establish certain good properties of almost finitely presented
modules in short exact sequences. This will be crucial later in developing a good
theory of almost coherent modules.

Lemma 2.5.15. Let0 — M’ 5 M 1) M" — 0 be an exact sequence of R-modules.
(1) If M is almost finitely generated, then so is M".
(2) If M’ and M" are almost finitely generated (resp. finitely presented), then so
is M.
(3) If M is almost finitely generated and M" is almost finitely presented, then M’
is almost finitely generated.

(4) If M is almost finitely presented and M’ is almost finitely generated, then M
is almost finitely presented.

Proof. This can be easily deduced from Lemma 2.5.9 and Lemma 2.5.10 via the five
lemma (or diagram chase). We only note that the Ext! part of Lemma 2.5.9 (2) is
crucial to make the argument work. |

Corollary 2.5.16. Let 0 — M’ % me 1) M"? — 0 be an exact sequence of R?-
modules. Then all conclusions of Lemma 2.5.15 still hold.

Proof. We use Lemma 2.1.9 (4), (5) to see that the sequence
1ay ! ay W 1a
0—> (M™) — (M) — (M™), —0

is exact and almost isomorphic to the original sequence. Moreover, Corollary 2.5.12
says that each of those modules Ny is almost finitely generated (resp. almost finitely
presented) if and only if so is the corresponding N¢. Thus, the problem is reduced to
Lemma 2.5.15. ]

Lemma 2.5.17. Let M, N% be two almost finitely generated (resp. almost finitely
presented) R*-modules, then sois M* @ ra N¢. Similarly, M @ N is almost finitely
generated (resp. almost finitely presented) for any almost finitely generated (resp.
almost finitely presented) R-modules M and N.
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Proof. We show the claim only in the case of almost finitely presented modules; the
case of almost finitely generated modules is significantly easier. Moreover, we use
Proposition 2.2.1 (1) to reduce the question to showing that the tensor product of two
almost finitely presented R-modules is almost finitely presented.

Step 1: The case of finitely presented modules. 1f both M and N are finitely pre-
sented, then this is a standard fact proven in [17, IT Section 3.6, Proposition 6].

Step 2: The case of M being finitely presented. Now we deal with the case of a
finitely presented R-module M and an almost finitely presented R-module N. We
fix a finitely generated ideal mo C m and a finitely generated ideal m; such that
mgy C m% Now we use Lemma 2.5.7 (2) to find a finitely presented module N’ and
a morphism f: N’ — N such that Ker( /) and Coker( f) are annihilated by mg. We
denote the image of f by N and consider the short exact sequences

0>K — N - N'—>0,
0—>N'"—-N -0 —0,

with K and Q being annihilated by mg. After applying the functor M ® g —, we get
the following exact sequences:

MR RK —>M@rN — M Qr N —0,
TorR(M, Q) > M @g N" - M @g N - M Qg Q — 0.

We note that M Q¢ K, Torf (M, Q),and M ® g Q are annihilated by ntg. Now it is
straightforward to conclude that the map

MRrf MN — M®N

has kernel and cokernel annihilated by m; C m(z,. Moreover, M ® N’ is a finitely
presented module by Step 1. Since mt; was an arbitrary finitely generated subideal
of m, we conclude that M ® N is almost finitely presented due to Lemma 2.5.7 (2).

Step 3: The general case. Repeat the argument of Step 2 once again using Step 2 in
place of Step 1 at the end, and Lemma 2.5.8 in place of Lemma 2.5.7 (2). |

Lemma 2.5.18. Let M be an almost finitely presented R-module, let N be any R-
module, and let P be an almost flat R-module. Then the corresponding natural map
Homg(M,N) g P — Homg(M, N ®g P) is an almost isomorphism.

Similarly, Homga (M4, N?) @ ga P* — Hompga (M4, N* Q ga P?%) is an almost
isomorphism for any almost finitely presented R*-module M?, any R*-module N¢,
and an almost flat R*-module P?.

Proof. Proposition 2.2.1 (1) and (3) ensure that it suffices to prove the claim for the
case of honest R-modules M, N, and P.
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Step 1: The case of a finitely presented module M. We choose a presentation of M :
R" - R™ - M — 0.
Then we use that P is almost flat to get a morphism of almost exact sequences:

0 — Homgr(M,N) ® g P — Homg(R™,N) ® g P — Homg(R",N) Qg P

l | l

0 — Homgr(M,N ®r P) — Homg(R™,N ® g P) — Homg(R", N ®r P).

Clearly, the second and third vertical arrows are (almost) isomorphisms, so the first
vertical arrow is an almost isomorphism as well.

Step 2: The general case. The case of an almost finitely presented module M fol-
lows from the finitely presented case by approximating M by finitely presented R-
modules. This is similar to the strategy used in Lemma 2.5.17; we leave the details to
the reader. ]

The last ingredient we will need is the interaction between properties of an R-
module M and its “reduction” M/I for some finitely generated ideal / C . For
example, we know that for an ideal / C rad(R) and a finite module M, Nakayama’s
lemma states that M /I = 0 if and only if M = 0. Another feature is that an /-adically
complete module M is R-finite if and only if M/I is R/I-finite. It turns out that both
facts have their “almost” analogues.

Lemma 2.5.19. Let I C m Nrad(R) be a finitely generated ideal. If M is an almost
finitely generated R-module such that M/IM ~ 0. Then M >~ 0. If M/IM =2 0,
then M =4 0.

Proof. We use the definition of an almost finitely generated module to find a finite
submodule N containing I M . If M /I M is isomorphic to the zero module, then inclu-
sion IM C N C M implies that N = M. Thus M is actually finitely generated, now
we use the usual Nakayama’s lemma to finish the proof.

If M/IM is merely almost isomorphic to the zero module, then we see that the
inclusion /M C M is an almost isomorphism. In particular, mtM is almost isomor-
phic to 1M . Using that m? = m, we obtain an equality

mM = m’M = m(IM) = [(mM).

Thus we can apply the argument from above to conclude that tu M = 0. This finishes
the proof as mM =% M. [
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Lemma 2.5.20. Let R be I-adically complete for some finitely generated I C m.
Then an I -adically complete R-module M is almost finitely generated if and only if
M/IM is almost finitely generated.

Proof. [26, Lemma 5.3.18] [

2.6 Almost coherent modules and almost coherent rings

This section is devoted to the study of almost coherent modules which are “almost”
analogues of classical coherent modules. We show that these modules form a weak
Serre subcategory in Mod . Then we study the special case of almost coherent mod-
ules over an almost coherent ring. In this case, we show that almost coherent modules
are equivalent to almost finitely presented modules.

We recall that we fixed some “base” ring R with an ideal m such that m? = m
and M = m Qg m is flat, and we always do almost mathematics with respect to this
ideal.

Definition 2.6.1. An (almost) R-module M is almost coherent if it is almost finitely
generated and every almost finitely generated almost submodule N¢ C M ¢ is almost
finitely presented.

Remark 2.6.2. An almost submodule f: N¢ — M?* does not necessarily give rise
to a submodule N’ C M for some (N')? >~ N“. The most we can say is that there is
an injection fy: (N%)y — (M%), whose almostification is equal to the morphism f
(this follows from Lemma 2.1.8 (2)).

Lemma 2.6.3. Let R — S be an almost isomorphism of rings. Then the forgetful
functor Mod%s" — Modsa" is an equivalence.

Proof. This follows directly from Corollary 2.5.13 and Definition 2.6.1. ]

Lemma 2.6.4. Let M? be an almost R-module with a representative M € Modg.
Then the following are equivalent:

(1) The almost module M*® is almost coherent.

(2) The R-module (M%), is almost finitely generated, and any almost finitely
generated R-submodule of (M), is almost finitely presented.

(3) The R-module (M%), is almost finitely generated, and any almost finitely
generated R-submodule of (M%), is almost finitely presented.

Proof. First of all, we note that Corollary 2.5.12 guarantees that M is almost finitely
generated if and only if so is (M%).. Second, Lemma 2.1.9 implies that the functor
(—)« is left exact. Therefore, any almost submodule N4 C M“ gives rise to an actual
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submodule (N%)4 C (M%), that is almost isomorphic to N. In reverse, any submod-
ule N C (M%), gives rise to an almost submodule of M“. Hence, we see that all
almost finitely generated almost submodules of M¢ are almost finitely presented if
and only if all actual almost finitely generated submodules of M, are almost finitely
presented (here we again use Corollary 2.5.12). This shows the equivalence of (1)
and (2). The same argument shows that (1) is equivalent to (3). ]

Note that it is not that clear whether a coherent R-module is almost coherent. The
issue is that in the definition of almost coherent modules we need to be able to handle
all almost finitely generated almost submodules and not only finitely generated ones.
The lemma below is a useful tool to deal with such problems; in particular, it turns
out (Corollary 2.6.7) that all coherent modules are indeed almost coherent, but we do
not know a direct way to see that.

Lemma 2.6.5. Let M be an R-module. Then M is an almost coherent module if one
of the following holds:

(1) For any finitely generated ideal vy C m, there exist a coherent R-module N
and a morphism f: N — M such that wio(Ker f) = 0 and mo(Coker f) =0.

(2) For any finitely generated ideal my C wm, there exist an almost coherent
R-module N and a morphism f: N — M such that wo(Ker f) = 0 and
mo(Coker ) = 0.

Proof. We start the proof by noting that M comes with the natural almost isomor-
phism M — M. Since both assumptions on M pass through this almost isomor-
phism, Lemma 2.6.4 implies that it suffices to show that M, := M? is almost coher-
ent.

Lemma 2.5.7 guarantees that M, is almost finitely generated. Thus, we only need
to check the second condition from Definition 2.6.1. So we pick an arbitrary almost
finitely generated R-submodule M; C M, and wish to show that it is almost finitely
presented. We choose an arbitrary finitely generated ideal m C mt and another finitely
generated ideal mt; C mu such that gy C m%

We use Lemma 2.5.8 to find a morphism ¢: R" — M7 such that m; (Coker¢) = 0.
We denote by eq, ..., e, the standard basis of R” and by x; := ¢(e;) the image of e;
in M;. We also choose a set of generators (g1, ..., &) of the ideal ;.

By assumption, there is a morphism f: N — M, with a(n) (almost) coherent
R-module N such that m(Coker f) = 0 and m; (Ker ) = 0. This implies that
g;x; is in the image of f foranyi =1,...,m,j = 1,...,n. Let us choose some
vi,j € N such that f(y; ;) = &x;, and define an R-module N’ as the submodule
of N generated by all y; ;. By construction, N’ is a finite R-module. Since N is a
(almost) coherent module, we conclude that N’ is (almost) finitely presented.
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We observe that f/ := f|y- naturally lands in M, and we have m; (Ker /') =0
and m?(Coker f') = 0. Since mo C m?3, this shows that the morphism

N’L)Ml

has kernel and cokernel killed by m(. Lemma 2.5.8 shows that M; is almost finitely
presented. u

Question 2.6.6. Does the converse of Lemma 2.6.5 hold?
Corollary 2.6.7. Any coherent R-module M is almost coherent.

The next thing we want to show is that almost coherent modules form a weak
Serre subcategory of Modg. This is an almost analogue of the corresponding state-
ment in the classical case.

Lemma 2.6.8. Let R and m be as above. Then

(1) an almost finitely generated almost submodule of an almost coherent module
is almost coherent;

(2) let o: N* — M* be an almost homomorphism from an almost finitely gener-
ated R?*-module to an almost coherent R*-module, then Ker ¢ is an almost
finitely generated R*-module;

(3) let p: N — M? be an injective almost homomorphism of almost coherent
R%-modules, then Coker ¢ is an almost coherent R*-module;

@) let o: N* — M*? be an almost homomorphism of almost coherent R*-mod-
ules, then Ker ¢ and Coker ¢ are almost coherent R*-modules;

(5) given a short exact sequence of R*-modules 0 > M'* — M?% — M"* — 0,
if two out of three are almost coherent, so is the third.

Proof. (1) This is evident from the definition of an almost coherent almost module.
(2) Let us define N”* := Im ¢ and N'* := Ker ¢, then Corollary 2.5.16 implies
that N”’¢ is an almost finitely generated almost submodule of M%. Furthermore, it is
almost finitely presented since M ¢ is almost coherent. Thus, Corollary 2.5.16 implies
that N/ is almost finitely generated as well.
(3) We denote Coker ¢ by M"?, then we have a short exact sequence

0> N> M*—> M" 0.

Corollary 2.5.16 implies that M is almost finitely generated. Let us choose any
almost finitely generated almost submodule M{* C M" and denote its pre-image
in M“ by M{. Then we have a short exact sequence

0—> N%—> M{ > M{*—0.
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Corollary 2.5.16 guarantees that M is an almost finitely generated almost submodule
of M. Since M is almost coherent, we see that M{ is an almost finitely presented
R?-module. Therefore, Corollary 2.5.16 implies that M is also almost finitely pre-
sented. Hence, the R%-module M "¢ is almost coherent.

(4) We know that N'* := Ker ¢ is almost finitely generated by (2). Since N is
almost coherent, we conclude that N is almost coherent by (1). We define N"? :=
Im ¢ and M := Coker ¢, then we note that we have two short exact sequences

0—>N?*—> N> N'" 0,
0> N"" > M% > M" - 0.

We observe that (3) shows that N is almost coherent, then we use (3) once more to
conclude that M" is also almost coherent.

(5) The only thing that we are left to show is that if M’* and M"* are almost
coherent, so is M“. It is almost finitely generated by Corollary 2.5.16. In order to
check the second condition from Definition 2.6.1, we choose an almost finitely gen-
erated almost submodule M{ C M?. Let us denote by M, its image in M"“, and
by M“ the kernel of this map. So we have a short exact sequence

0— M{® —> M{ - M{* —0.

Corollary 2.5.16 guarantees that M;" is an almost finitely generated almost submod-
ule of the almost coherent R*-module M"¢. Hence, (1) implies that M{¢ is almost
coherent, in particular, it is almost finitely presented. Moreover, we use (2) to see
that M|? is an almost finitely generated almost submodule of M’¢. Since M is
almost coherent, we conclude that M/ is almost finitely presented. Finally, Corol-
lary 2.5.16 shows that M is almost finitely presented as well. This finishes the proof
of almost coherence of the R*-module M“. ]

Corollary 2.6.9. Let M? be an almost finitely presented R*-module and let N¢ be an
almost coherent R*-module. Then M?* ® ga N¢ and alHompga (M %, N%) are almost
coherent.

Proof. We use Proposition 2.2.1 (1) and (3) to reduce the question to showing that
M ®pgr N and Homg (M, N) are almost coherent R-modules for any almost finitely
presented R-module M and almost coherent R-module N.

Step 1: The case of a finitely presented module M. In this case, we choose a presen-
tation of M as the quotient

R" - R" - M — 0.
Then we have short exact sequences

N*" > N" > M QrN =0
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and
0 - Homg(M,N) - N™ — N".

We note that Lemma 2.6.8 (5) implies that N and N" are almost coherent. Thus,
Lemma 2.6.8 (5) guarantees that both M ® g N and Homg (M, N') are almost coher-
ent as well.

Step 2: The general case. The argument is similar to the one used in Step 2 of the
proof of Lemma 2.5.17. We approximate M by finitely presented R-modules. This
gives us approximations of M?¢ ® ga N¢ and alHompga (M ¢, N¢) by almost coherent
modules. Now Lemma 2.6.5 guarantees that these modules are almost coherent. We
leave the details to the interested reader. |

We define Mod’*" (resp. Modss") to be the strictly full* subcategory of Modg
(resp. Mod ra) consisting of almost coherent R-modules (resp. R-modules).

Corollary 2.6.10. The category Mod’s*" (resp. Modss") is a weak Serre subcategory
of Modrg (resp. Modga ).

Corollary 2.6.10 and the discussion in [68, Tag 06UP] ensure that Do (R) and’
D.con(R)? are strictly full saturated® triangulated subcategories of D(R) and D(R)%
respectively. We define D;goh(R) := Dyeon(R) N DT(R) and similarly for all other
bounded versions.

Lemma 2.6.11. Let M € D(R) be a complex of R-modules. Then M € D,con(R) if
one of the following holds:

(1) for every finitely generated ideal wmy C m, there are N € Deon(R) and a
morphism f: N — M such that my (Hi (cone(f))) = 0 foreveryi € Z;

(2) for every finitely generated ideal my C m, there are N € Dycon(R) and a
morphism f: N — M such that my (Hi (cone(f))) = 0 foreveryi € Z.

Proof. This is an easy consequence of Lemma 2.6.5 applied together with the defini-
tion of D,con(R). [ ]

The last part of this subsection is dedicated to the study of almost coherent rings
and almost coherent modules over almost coherent rings. Recall that coherent mod-
ules over a coherent ring coincide with finitely presented ones. Similarly, we will
show that almost coherent modules over an almost coherent ring turn out to be the
same as almost finitely presented ones.

A strictly full subcategory is a full subcategory that is closed under isomorphisms.

SThese are, respectively, full subcategories of D(R) and D(R)“ of complexes with almost
coherent cohomology modules.

A strictly full subcategory D’ of a triangulated category D is saturated if X @ Y € D’
implies X, Y € D’.


https://stacks.math.columbia.edu/tag/06UP
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Definition 2.6.12. We say that a ring R is almost coherent if the rank-1 free module
R is almost coherent as an R-module.

Lemma 2.6.13. A coherent ring R is almost coherent.
Proof. Apply Corollary 2.6.7 to the rank-1 free module R. |

Lemma 2.6.14. If R is an almost coherent ring, then any almost finitely presented
R-module M is almost coherent.

Proof. Step 1: If M is finitely presented over R, then we can write it as a cokernel
of a map between free finite rank modules. A free finite rank module over an almost
coherent ring is almost coherent due to Lemma 2.6.8 (5). A cokernel of a map of
almost coherent modules is almost coherent due to Lemma 2.6.8 (4). Therefore, any
finitely presented M is almost coherent.

Step 2: Suppose that M is merely almost finitely presented. Lemma 2.5.7 guarantees
that, for any finitely generated moy C 11, we can find a finitely presented module N
and amap f: N — M such that Ker f and Coker f are annihilated by mo. We know
that NV is almost coherent by Step 1. Therefore, Lemma 2.6.5 (2) implies that M is
almost coherent as well. ]

Corollary 2.6.15. Let R be an almost coherent ring. Then an R-module M is almost
coherent if and only if it is almost finitely presented.

Proof. The “only if” part is clear from the definition, the “if” part follows from
Lemma 2.6.14. u

Our next big goal is to show that bounded above almost coherent complexes over
an almost coherent ring are exactly “almost pseudo-coherent complexes™ in some
precise way. More precisely, any element M € D__, (R) can be “approximated” up
to any small torsion by complexes of finite free modules.

Proposition 2.6.16. Let R be an almost coherent ring and let M € D™(R). Then
M € D, (R) if and only if, for every finitely generated ideal o C m, there are a
complex F* of finite free R-modules, and a morphism

fF*—> M

such that m (Hi (cone(f))) = 0 foreveryi € Z. Moreover, if M € DCSO(;(R), one can
choose F* € Comp="(R).

Proof. The “if” direction is Lemma 2.6.11. So we only need to prove the “only if”
direction. For this direction, we fix a finitely generated ideal mo C m and another
finitely generated ideal mi; C m such that mo C m?.
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Without loss of generality, we may and do assume that M € D=°(R), and then
we choose a complex M* € Comp=(R) that represents M. Now we prove a slightly
more precise claim:

Claim. Foreveryn € Z, there is a complex of finite free modules F,} with a morphism
Jui Ep — M® such that
(1) F; e Comp™%(R);
(2) o= "tF* = F*  and c=""" f, = fu_1, where 0=""1 is the naive trun-
cation;
(3) kernels and cokernels of H ( f,,) are annihilated by w, fori > n + 1;
(4) the cokernel of H" ( f,,) is annihilated by m.

Proof of the claim. We argue by descending inductionon . If n > 1, F'* = 0 works.
Now we suppose that we can construct F,;, and wish to construct F,;_,. Consider the
morphism f; presented as a commutative diagram

d;;? dn+1

F

0 s 0 )F,f )F’:"H—)...

T

M2 ——— M > > MMl —
dn72 dnfl qn dn+1
M M M M

,
N
L

Firstly, Ker(d;) is almost coherent as a kernel between finitely presented modules
over an almost coherent ring. Secondly, the R-module

B" := Ker(Ker(d}) — H"(M))

is also almost coherent as a kernel between almost coherent modules. Therefore, there
are a finite free R-module F*~! and a morphism

d:F" ' — B"

such that m; (Cokerd’) = 0. Since H”~! (M) is almost coherent, we can find a finite
free R-module F”"~! and a morphism

A:F”n_l s Hn—l(M)

such that ma; (CokerA) = 0. Let v: F"*~! — Z"~1(M*) be any lift of A to the module
of closed elements Z"~1(M*®) = Ker(d}, 1). We define

f//n—l. F//n—l N Mn—l

to be the composition of v with the inclusion Z"~1(M*®) — M"1,
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Now we wish to define F,;_, and f,,_;. We start with F,_,; we put F," | = F"
ifm>n, F', =0if m <n —1, F,?__ll = F"~1 @ F""=1 and define the only

non-evident differential
d’}:_ll Fr?—_ll — F/n—l D F//n—l — Fr:l

to be zero on F”"~! and equal to d’ on F™~!. It is evident that d% o %' =0, so
this structure defines a complex Fn'_1 of finite free R-modules.
We are only left to define f,—;. We must put f,”, = f" if m >n —1 and

T, =0if m < n —1, so the only question is to define fn”__ll. By construction, we

have f(d'F™~1') c d};'M"~!, so we can find
f/ 1.F/n—l _ Mn—l
M
such thatd"' o f/ | = f" od'. Thus we define
nn_—11: Fr:‘l_—ll — F/n—l @ F//n—l N Mn—l

tobe f,_, on F m=1 and fi,onF m=1 Then it is evident from the construction
that f,°_, is a morphism of complexes, i.e. , it fits the diagram

0 Fn—l d’};l Fr d’;’ Fn-l—l d’;’+l
n—1 n—1 n—1
-1 —+1
J/ lf;{ll J/ y{l—l lfn—l
Mn—2 Mn—l s M" \ Mn+1
% 7 7
dn—2 dn—l dn dn+l
M M M M

By construction, the kernel and cokernel of H”( f,,—1) are annihilated by i, and
the cokernel of H*~1( f,—1) is annihilated by m;. So this finishes the proof of the
claim. ]

Now the morphism f: F* — M*® simply comes as the colimit of f,, i.e.,
f =colim f,: F* = colim F, — M*®.

It is not hard to see that the cohomology groups of cone(f) are annihilated by
my C mi. =

Corollary 2.6.17. Let R be a coherent ring and M € D?(R). Then M € D?_ (R) if

acoh

and only if, for every finitely generated ideal miy C m, there is a complex N € Dé’oh(R)
together with a morphism f: N — M such that mo(H! (cone( f))) = 0 for all i.
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Proof. The “if” direction is Lemma 2.6.11. So we only need to deal with the “only
if” direction. Assume that M € D?(R). Then Proposition 2.6.16 implies that there
are F € D, (R) and a morphism f: F — M such that mo(H’ (cone(f))) = 0 for
all i. Now we can replace F by F' := 12?F to get the desired approximation with
F' eDE,(R). n

Proposition 2.6.18. Let R be an almost coherent ring, and let M®, N¢ be objects
in D, (R). Then M* ®%, N* € D, (R)“.

acol

Proof. Proposition 2.4.13 ensures that it suffices to show that M ®1Le N €D, (R)
for M, N € D_, (R). Clearly, we can cohomologically shift both M and N to assume
that they lie DY (R).

Now we fix a finitely generated ideal mi; C mt and use Proposition 2.6.16 to find
an exact triangle

F*—> M — Q,
where F* € D=°(R) is a complex of finite free modules and H’ (Q) are all annihilated
by m;. Then it is easy to see that the kernel and cokernel of the map
H(F*®%K N) - H (M ®% N)
are annihilated by mi]H. Now we note that, clearly,
F* Rk N~ F % N

lies in D_; (R) because F* is a complex of finite free modules. For each pair of an
integer i > 0 and a finitely generated ideal my C m = m’*!, we can find another
finitely generated ideal 1y such that mg C m’IH. Therefore, the map

H(F*®% N) - H (M ®% N)

is a morphism with an almost coherent source and 1y-torsion kernel and cokernel.
Therefore, Lemma 2.6.5 (2) implies the claim. [

Proposition 2.6.19. Let R be an almost coherent ring, and let M* € D, (R)%,
N¢ e DI (R)?. Then RalHompga(M%, N%) € DI (R)%.

acoh acoh

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.8
and the same approximation argument to reduce to the case M = F* is a bounded
above complex of finite free modules. In this case, the claim is essentially obvious
due to the explicit construction of the Hom-complex Hom% (F*, N). ]

Proposition 2.6.20. Let R be an almost coherent ring, let M € D, (R), let N €
D1 (R), and let P be an almost flat R-module. Then the natural map

RHomgr(M,N) g P — RHomg(M, N ®r P)
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is an almost isomorphism.

Similarly, RHomga(M%, N%) ®%, P4 — RHomga(M%, N* ®%, P%) is an
almost isomorphism for any M € D, (R)%, N® € D*(R)%, and P? an almost
flat R%-module.

Proof. The proof is similar to that of the above lemmas. ]

Corollary 2.6.21. Let R be an almost coherent ring, let M be an object in D ; (R)“,

let N¢ be an object in DT (R)%, and let P be an almost flat R*-module. Then the
natural map

RalHomga (M?, N%) @k, P® — RalHomga (M9, N® @ga P?)

is an isomorphism in D(R?).

2.7 Almost noetherian rings

The main goal of this section is to define the almost analogue of the noetherian prop-
erty. We also verify some of its basic properties. Even though most of the basic
facts about noetherian rings carry over to the almost world, we warn the reader that
Hilbert’s Nullstellensatz seems to be more subtle in the almost world (see Warn-
ing 2.7.9); we are able to establish it only in some very particular situations in Sec-
tion 2.11.

As in the previous sections, we fix a ring R with an ideal m such that m?> = m
and m = m Qg m is flat, and we always do almost mathematics with respect to this
ideal.

Definition 2.7.1. A ring R is almost noetherian if every ideal I C R is almost finitely
generated.

The main goal is to show that every almost finitely generated module over an
almost noetherian ring is almost finitely presented. In particular, an almost noetherian
ring is almost coherent.

Lemma 2.7.2. Let R be an almost noetherian ring, and M C R"™ an R-submodule.
Then M is almost finitely generated.

Proof. We argue by induction on n. The base of induction is n = 1, where the claim
follows from the definition of an almost noetherian ring.

Suppose we know the claim for n — 1, so we deduce the claim for n. Denote by
R"! C R"™ afree R-module spanned by the first n — 1 standard basis elements of R”",
and denote by M’ := M N R"™! the intersection of M with R"~!. Then we have a
short exact sequence

0->M - M—>M"—-0,
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where M is naturally an R-submodule of R ~ R"/R"~!. By the induction hypoth-
esis, M’ is almost finitely generated. Then M” is almost finitely generated by almost
noetherianness of R. Thus, M is almost finitely generated by Lemma 2.5.15 (2). =

Lemma 2.7.3. Let R be an almost noetherian ring. Then any almost finitely gener-
ated R-module M is almost finitely presented.

Proof. Pick any finitely generated sub-ideal g C m. By Lemma 2.5.5, there is an
R-linear homomorphism

fR"—> M

such that mg(Coker f) = 0. Consider N := Ker(f). Lemma 2.7.2 ensures that N is
also almost finitely generated, so there is an R-linear homomorphism

g:R"™ - N
such that mg(Coker g’) = 0. Therefore, the composition
R & R Loy

is a three-term complex with nig(Coker ) = 0 and mo(Ker ) C Im(g). Since g
was an arbitrary finitely generated sub-ideal in m, we conclude that M is almost
finitely presented by Lemma 2.5.7 (3). |

Corollary 2.7.4. A ring R is almost noetherian if and only if any almost finitely
generated R-module M is almost finitely presented.

Proof. If R is almost noetherian, then any almost finitely generated R-module is
almost finitely presented due to Lemma 2.7.3.

Now we suppose that every almost finitely generated R-module is almost finitely
presented, and we wish to show that R is almost noetherian. Consider an ideal I C R.
Then R/ is clearly a finitely generated R-module, in particular, it is almost finitely
generated. Therefore, it is almost finitely presented by our assumption on R. Now the
short exact sequence

0—>1I—-R—>R/I—>0

and Lemma 2.5.15 (3) imply that / is almost finitely generated. ]

Corollary 2.7.5. Let R — R’ be an almost isomorphism of rings. Then R is almost
noetherian if and only if R’ is.

Corollary 2.7.6. Let R be an almost noetherian ring, and M an almost finitely gen-
erated R-module. Then any submodule N C M is almost finitely generated.
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Proof. Consider the short exact sequence
0—>N-—>M-—>M/N —0.

By construction, M/N is almost finitely generated and, therefore, almost finitely
presented by Lemma 2.7.3. So Lemma 2.5.15 (3) implies that N is almost finitely
generated. ]

Corollary 2.7.7. Let R be an almost noetherian ring. Then R is almost coherent.

Proof. Lemma 2.6.4 guarantees that it suffices to show that Ry >~ 1 is almost finitely
generated and every finitely generated submodule of R) is almost finitely presented.
The first property is trivial since R; is almost isomorphic to R, and the second one
follows from Lemma 2.7.3. ]

Corollary 2.7.8. Let R be an almost noetherian ring. Then an R-module M (resp.
an R%-module M?) is almost coherent if and only if it is almost finitely generated.

Proof. 1t suffices to prove the claim for an honest R-module M. Corollary 2.7.7 and
Corollary 2.6.15 imply that M is almost coherent if and only if it is almost finitely
presented. Now Lemma 2.7.3 says that M is almost finitely presented if and only if it
is almost finitely generated. This finishes the proof. ]

Warning 2.7.9. Unlike the case of usual noetherian rings, Hilbert’s Nullstellensatz is
more subtle in the almost world. In particular, we do not know if a polynomial algebra
in a finite number of variables over an almost noetherian ring is almost noetherian.
However, we will show that Hilbert’s Nullstellensatz holds for perfectoid valuation
rings in Section 2.11.

Example 2.7.10. Let By be the period ring from [22, Definition 1.6.2]. Then [69,
Corollary 8.16] implies that the rings B;F are almost noetherian for any closed interval
I C (0, 00). Another family of examples of almost noetherian rings will be con-
structed in Section 2.11.

2.8 Base change for almost modules

In this section, we discuss the behavior of almost modules with respect to base
change. Recall that, for a ring homomorphism ¢: R — S, we always do almost math-
ematics on S-modules with respect to the ideal g = mS; look at Lemma 2.1.11
for details.

Lemma 2.8.1. Let ¢: R — S be a ring homomorphism, and let M? be an almost
finitely generated (resp. almost finitely presented) R*-module. Then the S®-module
Mg = M?® ®ga S is almost finitely generated (resp. almost finitely presented).
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Proof. The claim follows from Lemma 2.5.7 (2) and the fact that, for any finitely
generated ideal my C mg, there is a finitely generated ideal mo C m such that
my C moS. We give a complete proof only in the case of finitely presented mod-
ules because the other case is an easier version of the same argument.

First, we note that it suffices to show that M ®g S is almost finitely presented.
Now we note that, for any finitely generated ideal m; C mg, there is a finitely gener-
ated ideal my C 1 such that m{) C mS. Therefore, it suffices to check the condition
of Lemma 2.5.7 (2) only for ideals of the form m(S, where my C m is a finitely
generated sub-ideal. Then we choose some finitely generated ideal mt; C 1 such that
my C m% and use Lemma 2.5.7 (2) to find a finitely presented module N and a map
f:N — M such that mi; (Ker f) = m;(Coker ) = 0. Consider an exact sequence

0—->K—>N i) M—-Q0—0
and denote the image of f by M’. Then we have the following exact sequences:

K®rS—>NQrS—>M QrS—0,
Torf(Q,S)—>M'®RS—>M®RS—>Q®RS_

Since K ®r S, Torf(Q, S) and Q ®g S are killed by m;S, we conclude that
Coker(f ®g S) and Ker(f ®g S) are annihilated by m?2S. In particular, they are
killed by m(S. Since N ®g S is finitely presented over S, Lemma 2.5.7 finishes the
proof. ]

Corollary 2.8.2. Let R — S be a ring homomorphism of almost coherent rings, and
let M“ be an object of D, (R)*. Then M*¢ ®1LQ(, S eD_ ., (5%

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.16
and a similar approximation argument based on Proposition 2.6.16 to reduce to the
case M ~ F*, where F* is a bounded above complex of finite free modules. In this
case, the claim is essentially obvious. [

Lemma 2.8.3. Let S be an R-algebra that is finite (resp. finitely presented) as an
R-module, and let M? be an S*-module. Then M? is almost finitely generated (resp.
almost finitely presented) over R? if and only if it is almost finitely generated (resp.
almost finitely presented) over S¢.

Proof. As always, we first reduce the question to the case of an honest S-module M .
Now we use the observation that it suffices to check the condition of Lemma 2.5.7 (2)
only for the ideals of the form 1S for some finitely generated ideal gy C mt C R.
Then the only non-trivial direction is to show that M is almost finitely presented
over § if it is almost finitely presented over R. This is proven in a more general
situation in Lemma 2.8.4. ]
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Lemma 2.8.4. Let S be a possibly non-commutative R-algebra that is finite as a
left (resp. right) R-module, and let M be a left (resp. right) S-module that is almost
finitely presented over R. Then M is almost finitely presented over S (i.e., for every
finitely generated ideal miy C m, there exist a finitely presented left (resp. right) S-
module N and a map N — M such that Ker f and Coker f are annihilated by my).

Remark 2.8.5. This lemma will actually be used for a non-commutative ring S in
the proof of Theorem 5.2.1 that, in turn, will be used in the proof of formal GAGA
for almost coherent sheaves Theorem 5.3.2. Namely, we will apply Lemma 2.8.4 to
S =Endpvy (OB O(1) D --- D O(N)).

Besides this application, we will usually use Lemma 2.8.4 when R and S are
almost coherent commutative rings. In this case, the proof of Lemma 2.8.4 can be
significantly simplified.

Proof. We give a proof for left S-modules; the proof for right S-modules is the same.
We start the proof by choosing some generators x1,. . ., x, of S as an R-module. Then
we pick a finitely generated ideal my C m and another finitely generated ideal nt;
such that mg C m% We also choose some generators (g1, ..., &) = my and find a
three-term complex

RER L M
such that niy (Coker /) = 0 and mi;(Ker ) C Im g. Next we consider the images

vi = f(e;) € M of the standard basis elements in R™. Then we can find some
Bi.j.s.r € R such that

m
£sXiyj = Y Bijsr - yr With B o, € R

r=1

foranys =1,...,k;i=1,...,n; j =1,...,m. Furthermore, we have ¢ “relations”

m
Zai,jyj = 0 with o € R
j=1

such that for any relation Z;’;l b;y; = 0 with b; € R and any ¢ € m, we have that
the vector {eb; }7-, € R™ lives in the R-subspace generated by vectors {a; ;}7-, for
J =1,...,2.Or, in other words, if Y7_; & jy; = 0 then 6(3_7L; o je;) € Im(g)
for any ¢ € m;.

Now we are finally ready to define a three-term complex

grmitt Xy gm 2y,

We define the map ¢ to be the unique S-linear homomorphism such that ¢(e;) = y;
for the standard basis in S”*. We define v as the unique S -linear homomorphism such
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that

U (fijs) = esXiej — Zﬂws reerand Y (f)) = Zal,JeJ

r=1

for the standard basis

c Snmk-i—t'
Then we clearly have that ¢ o ¢ = 0 and that wi; (Coker ¢) = 0. We claim that
m?(Kerg) C Imy.

Let <p(z;"=1 ciei) = 0 for some elements ¢; € S. We can write each

n
ci =Y rijxjwithri j € R 2.8.1)
J=1
because x1, ..., X, are R-module generators of S. Consequently, the condition that

@(3_iL, cie;) = 0 is equivalent to Y, - r; jx;y; = 0. Now recall next that for any
s =1,...,k we have

m
EsXjYi = E ﬂj,i,s,r *Vr-
r=1

Therefore, multiplying equation (2.8.1) by &5, we get an equality
m m
0= SS(Z ri,jiji) = Zri,j (Z Bjis.r -yr) = Z(Z Ti,j j,i,s,r)yr
i,j i,j r=1 r=1 1i,j

This means that for any s’ = 1,... k, the vector {es(3_; ; r,-,‘,-,B‘,-,i,s,r)};"zl € R™
lives in an R-subspace generated by vectors {o;,; }7 ;. In particular, for any r and s,
es'(D_;.j 7i,j Bjisrer) is equal to ¥ (some sum of f;') by the definition of .

After unwinding all definitions, we get the following:

m
8s/8s<z ciei)
i=1
= SS/ES(ZI”, ,x]e,)
(Zrzj(gsx]ez Zﬁ]tsrer‘i‘zlgjtsrer))
= &y (Z ri,j (gsxjei - Zﬂj,i,s,rer)) + &y (Z(Z rl-,jﬂj,i,s,r)er>
i,j r r i,j

= w(gs/ Z r,-,jfj,i,s) + w<s0me sum of fl’)

i,J
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So we see that m? Ker(¢) C Im . In particular, we have mg Ker(p) C Im .
Now we replace the map ¢: S — M with the induced map

@: Coker(y) > M

to get a map from a finitely presented left S-module such that Ker(¢) and Coker(¢)
are annihillated by m. |

2.9 Almost faithfully flat algebras

In this section, we study the almost faithfully flat morphisms of algebras. This notion
turns out to be quite subtle in the almost world due to the following two observa-
tions: The first observation is that, for an almost faithfully flat morphism R — S, the
R{-module S{ is always flat, but not necessarily faithfully flat (see Warning 6.1.8).
Another observation is that Sy usually does not have a structure of an R-algebra.

For these reasons, it is not evident how to relate almost faithful flatness of an
R-algebra S to some classical faithful flatness. In order to make this possible, we
replace the (—);-functor with another functor (—)y that takes into account the R-
algebra structure on S. This functor will send almost faithfully flat R-algebras into
faithfully flat R-algebras, however, it will not, in general, send flat R-algebras into
flat R-algebras. However, this functor will suffice for the purpose of studying almost
faithfully flat morphisms.

In this section, we follow [26] pretty closely.

For the rest of the section, we fix a ring R with an ideal of almost mathematics m.

Definition 2.9.1. A homomorphism of R-algebras A — B is almost flat (resp. almost
faithfully flat) if B? is a flat (resp. faithfully flat) A*-module (see Definition 2.2.5).

Lemma 2.9.2. Any (faithfully) flat A-algebra B is almost (faithfully) flat.
Proof. This follows directly from Lemma 2.2.6. |

Lemma 2.9.3. Let A be an R-algebra and f: A — B a morphism of R-algebras.
Then B is almost faithfully flat over A if and only if B¢ is a flat A*-module and
A?* — B? is universally injective, i.e., for any A%*-module M, the natural morphism
M4 — M?® ®4a B? is injective in Mod§.

Proof. Suppose that B is almost faithfully flat. Then B¢ is a flat A*-module by def-
inition. So we only need to show that A* — B¢ is universally injective. Pick any
M? € Mod§ and consider the A%-module

N% :=Ker(M?* — M? ®4a B?).
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Flatness of B¢ implies that the morphism

N @4a B - M? ®4a B
is injective. Now we also note that the morphism

N% ®qa B* > M ®4a B

is equal to zero by our choice of N¢. This implies that N¢ ® 4 B* >~ 0. Since B¢ is
faithfully flat over A%, we conclude that N¢ ~ 0.

Now we suppose that B¢ is a flat A%*-module and A4 — B¢ is universally injec-
tive. Thus, for any A4-module M ¢, we have an injection M4 — M ®4a B%. So if
M? ®4a B* ~ 0, we conclude that M ¢ ~ 0. Thus B“ is faithfully flat over A%. m

Corollary 2.9.4. Let A be an R-algebra and f: A — B a morphism of R-algebras.
Then B is almost faithfully flat over A if and only if B* and Coker( f%) are flat A%-
modules.

Proof. By Lemma 2.9.3, it suffices to show that f¢ is universally injective if and only
if Coker(f¢) is A%-flat. Next we observe that, for any A*-module M ¢, we have the
isomorphism Ker(M® — M® ®4a B4) ~ H™1(M“ ®%, Coker(f%)). In particular,

H™Y(M? ®%a Coker(f?)) ~ 0

for any A%-module M if and only if the functor — ® 4« Coker( f*): Modj — Mod%
is exact. In other words, A* — B? is universally injective if and only if Coker( f¢)
is flat over A“. ]

Now we define the functor (—)y: Algr — Algr. We start by constructing an R-
algebra structure on R @ A{ = R @ (m ®g A) by defining the multiplication as

r®a)- ' ®d)=(r')® (rd +r'a+ ad)

and the summation law coordinate-wise. One easily checks that this is a well-defined
(unital, commutative) R-algebra structure on R @ Af. We consider the R-submodule
14 of R & A, generated by elements of the form (mn,—m @ n ® 14) for m, n € m.

Lemma 2.9.5. The R-module 14 C R & AY is an ideal.

Proof. It suffices to show that, for any element (r,x ® y ® @) in R & A?, the product
FrPxQyQa) - (mn®-men 1ly)

lies in I4 for any m, n € m. By definition,

rFrex®y®a) - mn®-menQ ly)
=(rmn) @ (—mInQly+xmO qyn®@a—xmQ yn Qa)
=r(mn®-menQly) e ly. ]
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Definition 2.9.6. The functor (—)y;: Algr — Algp is defined as
A (R® AY) /14
with the induced R-algebra structure.

For any R-algebra 4, there is a functorial R-algebra homomorphism R & Af —
A defined by
réo(men®a)—r+mna.
Clearly, this homomorphism is zero on /4, so it descends to an R-algebra homomor-
phism n: Ay — A.
Lemma 2.9.7. (1) For any R-algebra A, the natural morphism n: Ay — A is an
almost isomorphism.
(2) A morphism of R-algebras f: A — B is almost injective (as a morphism of
R-modules) if and only if fi: An — By is injective.
(3) For any morphism of R-algebras f: A — B, there is a canonical isomor-

phism of Ay-modules Coker( fi1) >~ Coker( f):.
(4) The functor (—)n: Alggr — Alggr commutes with tensor products.

Proof. (1) We recall that the morphism A; — A is an almost isomorphism. In par-
ticular, it is almost surjective. Thus, Ay — A is also almost surjective. Now we
check almost injectivity. Suppose n(a) = 0 where a = r & Zle m; @n; a; €
R ® 1wt ® Aanda € Ay is the class of a in Ayy. Then the condition n(a) = 0 implies
that there is an equality

k
r—+ Zminiai =0
i=1
in A. In particular, for every ¢ € m, we have er = Z;‘Zl(—mi)(snia,-) in A. Thus,
we see that

k k k
ca =¢erd® Zm,- Qn; ea; = Z(—m,-)(sn,-a,-) <) Zmi Qn;ea; 1y
i=1

i=1 i=1
k

= Z((—mi)(fniai) ®m; Qenja; ® lA) € 4.
i=1

Therefore, ea = 0 for every ¢ € m. In particular, 7, is almost injective.
(2) and (3) Consider a commutative diagram

An /1IN By

A |



Almost commutative algebra 64

Since n4 and np are almost isomorphisms, we see that f is almost injective if and
only if fy is almost injective. So we are left to show that fy is injective if f is almost
injective, and Coker( f11) = Coker( f),. For this, we consider a commutative diagram
of short exact sequences

0 > Iy > R @ A > Ap > 0
la liderg lf”
0 > Ip > R&® B > Bn > 0.

Clearly, « is surjective, Ker(id & f)) = Ker( fi) = Ker(f ), and Coker(id & f;) =
Coker( fi) = Coker(f);. Thus, the Snake lemma implies that

Ker(f); — Ker( fiy)

is surjective and
Coker( fi1) — Coker(f):

is an isomorphism. Thus fy is injective if f is almost injective, and Coker( fi;) =

Coker( f ).
(4) This is an elementary but pretty tedious computation. We leave it to the inter-
ested reader. ]

Corollary 2.9.8. For any R-algebra A, the forgetful functor Mod . — Modzﬁ is an

[Tl

equivalence for x € {* ”, aft, afp, acoh}.

Proof. For x = “”, the claim follows from Lemma 2.9.7 (1), Corollary 2.5.13, and
Lemma 2.6.3. u

Corollary 2.9.9. Let f: A — B be an almost faithfully flat morphism of R-algebras.
Then fu: Ay — By is faithfully flat.

Proof. Let us denote by Q the cokernel of f as an A-module. Then Lemma 2.9.3
and Lemma 2.9.7 (2), (3) ensure that fi;: Ay — By is injective and Coker( fy) =
Coker( f)1. Now Corollary 2.9.4 and Lemma 2.2.7 applied to Af; ~ A“ imply that
Coker( fi1) = Coker(f), is a flat Ayy-module. This already implies that B is a flat
Ayp-module as an extension of two flat Ay-modules. To see that it is faithfully flat, we
note that flatness of Coker( fy1) implies that

M —-> M R4y B

is injective for any Ay;-module M. So M ®y4,, By >~ 0 if and only if M =~ 0. In other
words, By is a faithfully flat A;;-module. ]

Warning 2.9.10. The functor (—)yy does not send flat A-algebras to flat Ay -algebras.
See [26, Remark 3.1.3].
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For future reference, we also show that the base change functor interacts espe-
cially well with the Hom-functor in the almost flat situation.

Lemma 2.9.11. Let R — S be an almost flat morphism of rings, let M be an almost
finitely presented R-module, and let N be an R-module. Then the natural map

Homg(M,N) ®g S — Homg(M ®r S, N ®r S)
is an almost isomorphism.
Proof. This follows from the classical ®-Hom adjunction and Lemma 2.5.18. ]

Lemma 2.9.12. Let R be an almost coherent ring, let R — S be an almost flat map
of rings, and let M € D, (R), N € DT (R). Then the natural map

RHomg (M, N) ®§ S — RHomg (M ®ILQ S,N ®§ S)
is an almost isomorphism.

Proof. We recall that we always have a canonical isomorphism RHompg (K, L) ~
RHomg (K ®§ S, L) for any K € D™(R) and any L € DT (S). This implies that it
suffices to show that the natural map

RHomg(M, N) ®% § — RHomg(M, N ®% §)

is an almost isomorphism. This follows from Proposition 2.6.20. |

2.10 Almost faithfully flat descent

The main goal of this section is to show almost faithfully flat descent for almost
modules.
For the rest of the section, we fix a ring R with an ideal of almost mathematics m.
In this section, for any morphism A — B of R-algebras, we denote the tensor
product functor — ® 4« B¢ simply by

f*:Mod§ — Mod.

In particular, if A — B is a morphism of R-algebras, the canonical “co-projection”
morphisms p;: B — B ®4 B induce morphisms

pi:Modz — Mod3g 5
fori € {1,2}. The same applies to the “co-projections”
* a a
pi.j*Modgg, p — Modgg g, B

for i # j € {1,2,3}.
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Definition 2.10.1. The almost descent category Desc /4 for a morphism of R-alge-
bras A — B is the category whose objects are pairs (M?, ¢), where M4 € Mod§
and

¢: pY(M?) — p3(M?)
in an isomorphism of (B ®4 B)“-modules such that py 5(¢) = p3 3($) o pi, ().

Morphisms between (M4, ¢ar) and (N¢, ¢ ) are defined to be B4-linear homomor-
phisms f: M? — N such that the diagram

k ¢ k
PF(M®) —=—— p3(M“)

ot (f)l lp; )

PHNG ———— p3(N%)
commutes.

Remark 2.10.2. Explicitly, an object of the descent category Desc /4 18 @ BY-mod-
ule M¢ with a (B ®4 B)?-linear homomorphism ¢: M? ®4a B¢ — B% ®ga M?
satisfying the “cocycle condition”.

There is a natural functor
Ind: Modj — Desc 4

that sends M? to f*(M%) = M? ® 4« B* where we make the canonical identification
¢:pT [T (M?) >~ p5 f*(M?) coming from the equality f o p; = f o ps.

To define the functor in the other direction, we note that we have the natural B4-
module morphisms ;: M¢ — p*(M*?) fori € {1, 2}. Explicitly, they are defined as
morphisms induced by ¢; (m) =m ® 1 and 1, (m) = 1 ® m. Therefore, given a descent
datum (M¢,¢) € Descy /4> We can define an A“-module

‘_71.
q 1=

Ker(M?, ¢) = Ker(M % M ®4a BY)
that is functorial in Desc‘l’; /A Therefore, this defines a functor

Ker: Descy, . — Mody.

We show that Ker and Ind are quasi-inverse to each other and induce an equiva-
lence between Desc /A and Mod{ for an almost faithfully flat morphism f: 4 — B.

Theorem 2.10.3. Let f: A — B be an almost faithfully flat morphism. Then
Ind: Modj — Descy 4

is an equivalence, and its quasi-inverse is given by Ker: Descf /4~ Modj.
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Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with f to
assume that f is faithfully flat. Then the claim follows from the classical faithfully
flat descent (see [14, Theorem 6.1/4]) and the observation that the classical versions
of Ind and Ker carry almost isomorphisms to almost isomorphisms. |

On a similar note, we show that the Amitsur complex for an almost faithfully flat
morphism is acyclic.

Lemma 2.10.4. Let f: A — B be an almost faithfully flat morphism of R-algebras,
and M € Mod%. Then the Amitsur complex

0—)Ma—)Ma®Au Ba—)Ma®Aa Ba®Aa B? — ...

is an exact complex of Mod$ -modules (see the discussion around [68, Tag 023K] for
the precise definition of differentials in this complex).

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with fj to
assume that f is faithfully flat. Then the claim follows from [68, Tag 023M]. ]

Now we show that some properties of A%-modules can be verified after a faith-
fully flat base change.

Lemma 2.10.5. Let f: A — B be an almost faithfully flat morphism of R-algebras,
and let M? be an A*-module. Then M is an almost finitely generated (resp. almost
finitely presented) A%-module if and only if M? ® gqa B? is an almost finitely gener-
ated (resp. almost finitely presented) B*-module.

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with fy to
assume that f is a faithfully flat morphism. Then a standard argument reduces the
questions to the case of an honest A-module M, i.e., we show that an A-module M
is almost finitely generated (resp. almost finitely presented) if so is the B-module
M ®4 B.

We start with the almost finitely generated case. So we assume that M ®4 B is
almost finitely generated over B and wish to show that M is almost finitely generated
over A. Our assumption implies that, for any ¢ € m, we can choose a morphism
g:B" - M ®4 B such that ¢(Coker g) = 0. Let us consider the standard basis
€1,...,e, of B" and write

g(ei) = Zmi’j ®bi,j withmi’j € M,bi,j € B.
J

We define the A-module F as the finite free A-module with the basis e; ;. Then we
define the morphism
h: F — M


https://stacks.math.columbia.edu/tag/023K
https://stacks.math.columbia.edu/tag/023M
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as the unique A-linear homomorphism with /(e; ;) = m; ;. It is easy to see that
e(Coker(h ®4 B)) = 0. Since f is faithfully flat, this implies that e(Coker h) = 0.
We conclude that M is almost finitely generated as € was an arbitrary element of .

Now we deal with the almost finitely presented case. We pick some finitely gener-
ated ideal my Cm, and another finitely generated ideal m; C i such that my C njnu.
We try to find a three-term complex

am 5oqn Loy

such that mg(Coker ) = 0 and mo(Ker ) C Img.
The almost finitely generated case established above implies that M is almost
finitely generated. In particular, we have some morphism

aLom
such that ni; (Coker f) = 0, thus m; (Coker(f ®4 B)) = 0 as well. Therefore, we can
apply Lemma 2.5.6 to find a homomorphism g’: B™ — B" satisfying the conditions
mo(Ker(f ®4 B)) CIm(g") and (f ®4 B) o g’ = 0. This implies that g’ lands inside
Ker(f ®4 B) = Ker(f) ®4 B due to A-flatness of B.
Now we do the same trick as above: we write

glei) = Zmi,j ® bi’j withm; ; € Ker(f),bi,j € B,
J

we define an R-module F as a finite free A-module with a basis ¢;, ;, and then we
define the morphism
g: F — Ker(f)

as the unique A-linear morphism such that g(e; ;) = m; j. With that, we can see
that mo(Ker(f ®4 B)) C Im(g ®4 B). Since B is faithfully flat, we conclude that
mo(Ker f) C Im(g) as well. This shows that a three-term complex

FE anlim
does the job. Therefore, M is an almost finitely presented A-module. |

Corollary 2.10.6. Let f: A — B be an almost faithfully flat morphism of R-algebras,
and let M? be an A*-module. Suppose that M* @4« B? is an almost coherent
B%-module. Then so is M.

Proof. This follows directly from Lemma 2.6.3 and Lemma 2.10.5. ]

Lemma 2.10.7. Let f: A — B be an almost faithfully flat morphism of R-algebras,
and let M? be an A%-module. Then M is a flat (resp. faithfully flat) A%-module if
and only if M* ®4a B® is a flat (resp. faithfully flat) B*-module.
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Proof. The classical proof works verbatim in the almost world. We leave the details
to the reader. ]

2.11 (Topologically) Finite type K *-algebras

This section is devoted to the proof that (topologically) finite type algebras over a
perfectoid valuation ring K are almost noetherian. We refer to Appendix B for the
relevant background on perfectoid valuation rings.

For the rest of the section, we fix a perfectoid valuation ring K * (see Defini-
tion B.2) with perfectoid fraction field K, associated rank-1 valuation ring O = K°
(see Remark B.3), and ideal of topologically nilpotent elements m = K°° C K.
Lemma B.12 ensures that m is flat over K+ and Tt ~ m? = m. Therefore, it makes
sense to do almost mathematics with respect to the pair (K*, m). In what follows,
we always do almost mathematics on K +-modules with respect to this ideal.

Warning 2.11.1. The ideal m C K™ is not the maximal ideal of K. Instead, it is
the maximal ideal of the associated rank-1 valuation ring Og.

Lemma 2.11.2. Let KT be a perfectoid valuation ring. Then the natural inclusion
1: KT — Ok is an almost isomorphism.

Proof. Clearly, the map 1: K™ — g is injective, so it suffices to show that its co-
kernel is almost zero, i.e., annihilated by any ¢ € m. Pick an element x € Ok, then
ex € m C K. Therefore, we conclude that e(Coker ¢) = O finishing the proof. m

The first main result of this section is that any (topologically) finite type algebra
over Kt is almost noetherian.

Lemma 2.11.3. Let K+ be a perfectoid valuation ring, and n > 0 an integer. Then
the Tate algebra K™ (T, ..., T,) is almost noetherian.

Proof. First, we note that O (T, ..., T,) ~ KT(Ty,...,T,) ®g+ Ok. Therefore,
Lemma 2.11.2 implies that the natural morphism

KYTy,....T,) » Og(Ty,.... Ty)

is an almost isomorphism. So Corollary 2.7.5 ensures that it suffices to show that
Ok (T, ..., T,) is almost noetherian.

Pick any ideal I C Og(Ty,...,T,) = K{(T1,...,T,)° and 0 # ¢ € m. Now [43,
Satz 5.1] (or [11, Lemma 6.4/5]) applied to B = K(T1,...,T,), E = O (T1,...,T,),
E' =1, and o = |¢|g guarantees that there is a finite submodule E” C I such that
el C E”. Since ¢ was an arbitrary element of m, we conclude that / is indeed almost
finitely generated. |
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Corollary 2.11.4. Let Kt be a perfectoid valuation ring, w € m, and n > 0 an
integer. Then the polynomial algebra (K™ /@™)[Ty, ..., T,] is almost noetherian for
anym > 1.

Proof. It easily follows from Lemma 2.11.3, Corollary 2.7.4, and Lemma 2.8.3. =

Theorem 2.11.5. Let K™ be a perfectoid valuation ring, and A a topologically finite
type KT -algebra. Then A is almost noetherian.

Proof. Since A is topologically finite type over K, there exists a surjection
fKHTy,....,T,) > A—0.

Pick an ideal / C A and consider its pre-image J = f~1(I). Then J is almost finitely
generated over K+ (Ty, ..., T,) by Lemma 2.11.3. Therefore, Lemma 2.5.15 (1)
ensures that / is almost finitely generated over K+ (T7,. .., T,). Finally, Lemma 2.8.3
ensures that / is almost finitely generated over A. |

Now we are going to show that any finite type K *-algebra is almost noetherian.
Before doing this, we need a couple of preliminary lemmas.

Lemma 2.11.6. Let R be a rank-1 valuation ring with a non-zero topologically nilpo-
tent element w € R, and M a finite R[T1, ..., T,]-module. Then M [w*°] = M [@€]
for some ¢ > 0.

Proof. The R[Ty, ..., T,]-module M’ := M /M @] is finitely generated. Further-
more, M’ is R-flat because it is torsion free (and R is a valuation ring). Therefore,
[68, Tag 053E] ensures that M’ is finitely presented over R[T1, ..., Ty]. Thus, we
conclude that M [w®] is finitely generated. In particular, M [w®>°] = M [w€] for
some N. |

Lemma 2.11.7. Let R be a rank-1 valuation ring with a non-zero topologically nilpo-
tent element w € R, M afinite R[T1,. .., T,]-module, and N C M an R[T1,. .., T,]-
submodule. Then there is a non-negative integer ¢ such that

NNw™ M =w™(N Nw°M)
for everym > 0.

Proof. Lemma 2.11.6 ensures that there is a suitable ¢ such that (M/N)[@w ] =
(M/N)[w€]. Therefore, [25, Lemma 0.8.2.14] guarantees that, indeed,

NNo™ M =o™(NNwM)

for every m > 0. [


https://stacks.math.columbia.edu/tag/053E
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Lemma 2.11.8. Let Kt be a perfectoid valuation ring, and n > 0 an integer. Then
the polynomial algebra KT [Ty, ..., T,] is almost noetherian.

Proof. Similarly to the proof of Lemma 2.11.3, it suffices to treat the case Kt = Ok
a perfectoid valuation ring of rank-1 with a pseudo-uniformizer w.

Now we fix anideal I C A := Ok][T,..., T,] and wish to show that [ is almost
finitely generated. Recall that the polynomial algebra K[T71, ..., T,] is noetherian by
Hilbert’s Nullstellensatz. Therefore, the ideal

1[$]cK[Tl,...,Tn]

is finitely generated. So we can choose a finitely generated sub-ideal J C [ such that
any element of //J is annihilated by a power of @, i.e., (I /J)[w®>] = I/J. Clearly
1/J is a submodule of a finite A-module A/J, so Lemma 2.11.6 easily implies that

1/ =/ D™ =U1/])[w]

for some ¢ > 0. In other words, w€l C J. Now we use Lemma 2.11.7 to get an
integer ¢’ such that
INw“AcC ol CJ.

We note that 7/(I N w® A) is an ideal in A/w* A, and therefore it is almost finitely
generated over A/ w< A by Corollary 2.11.4. Lemma 2.8.3 guarantees that it is also
almost finitely generated over A.

The inclusion / Nw< A C J implies that //J is a quotient of an almost finitely
generated A-module 7/(I N w® A), and so is also almost finitely generated. Finally,
the short exact sequence

0->J—>I1—->1/J—-0

and Lemma 2.5.15 (2) imply that 7 is almost finitely generated as well. |

Theorem 2.11.9. Let K+ be a perfectoid valuation ring, and A a finite type K-
algebra. Then A is almost noetherian.

Proof. 1t follows from Lemma 2.11.8, similarly to how Theorem 2.11.5 follows from
Lemma 2.11.3. u

2.12 Almost finitely generated modules over adhesive rings
This section discusses some basic aspects of almost finitely generated modules over

adhesive rings. The results of this section will be crucial in defining and verifying
certain good properties of adically quasi-coherent, almost coherent sheaves on “good”
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formal schemes in Section 4.5. One of the essential ingredients that we will need later
is the “weak” version of the Artin—Rees lemma (Lemma 2.12.6) and Lemma 2.12.7.
Recall that these properties are already known for finite modules over adhesive rings.
This is explained in a beautiful paper [24]. The main goal of this section is to extend
these results to the case of almost finitely generated modules.

That being said, let us introduce the set-up for this section. We start with the
definition of an adhesive ring:

Definition 2.12.1. [24, Definition 7.1.1] An adically topologized ring R endowed
with the adic topology defined by a finitely generated ideal / C R is said to be (/-
adically) adhesive if it is noetherian outside’ I and satisfies the following condition:
for any finitely generated R-module M, its [ °°-torsion part M [ °°] is finitely gener-
ated.

Remark 2.12.2. Following the convention of [24], we do not require a ring R with
adic topology to be either I -adically complete or separated.

Set-up 2.12.3. We fix an [ -adically adhesive ring R with an ideal m such that / C m,
m? = m and ™ = m ®g m is flat. We always do almost mathematics with respect

to the ideal m.

The main example of an adhesive ring is a (topologically) finitely presented
algebra over a complete microbial valuation ring. This follows from [24, Proposi-
tion 7.2.2] and [24, Theorem 7.3.2]. For example, any topologically finitely presented
algebra over a complete rank-1 valuation ring is adhesive.

Lemma 2.12.4. Let R be as in Set-up 2.12.3, and let M be an I -torsionfree almost
finitely generated module. Then M is almost finitely presented. Similarly, any satu-
rated submodule® of an almost finitely generated R-module is almost finitely gener-
ated.

Proof. As M is almost finitely generated, we can find a finitely generated submod-
ule N C M that contains migM for a choice of a finitely generated ideal g C m.
Since N is a submodule of M, it is itself /-torsion free. Then [24, Proposition 7.1.2]
shows that N is finitely presented. Then Lemma 2.5.7 (2) implies that M is almost
finitely presented.

Now let M be an almost finitely generated R-module, and let M’ C M be a
saturated submodule. Then M /M’ is almost finitely generated by Lemma 2.5.15 (1)
and it is /-torsion free. Therefore, it is almost finitely presented by the argument
above. Then Lemma 2.5.15 (3) guarantees that M’ is almost finitely generated. |

"By definition, this means that the scheme Spec A \ V(/) is noetherian.
8A submodule N C M is saturated if M/ N[I°°] = 0.
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Lemma 2.12.5. Let R be as in Set-up 2.12.3, and let M be an almost finitely gen-
erated R-module. Then the I°°-torsion module M [I°] is bounded (i.e., there is an
integer n such that M[I"] = M[I°°]).

Proof. Since M is almost finitely generated and the ideal / C m is finitely gener-
ated, we conclude that there exists a finitely generated submodule N C M such that
IM C N.Then I(M[I®®]) C N[I®], and N[I®°]is finitely generated by adhesive-
ness of the ring R. In particular, there is an integer n such that N[/ °°] is annihilated
by 1. This implies that any element of M [I°°] is annihilated by /71, [

Lemma 2.12.6. Let R be as in Set-up 2.12.3, and let M be an almost finitely gener-
ated R-module. Suppose that N C M is a submodule of M. For any integer n, there
is an integer m such that N N 1™ M C I"N. In particular, the induced topology on
the module N coincides with the I -adic one.

Proof. If M is finitely generated, then this is [24, Theorem 4.2.2]. In general, we
use the definition of almost finitely generated module to find a submodule M’ C M
such that M is finitely generated and IM C M’. We define N’ :== N N M’ as the
intersection of those modules. Then the established “weak” form of the Artin—Rees
lemma for finitely generated R-modules provides us with an integer m such that
N'NnI™M' C I"N'. In particular, we have

"M AN cI™™' 0NN CI'"N' CI"N.
Then we conclude that
I"PMANCI™MnM NNCI™MNN CI"N.
Since n was arbitrary, we conclude the claim. ]

Lemma 2.12.7. Let R be as in Set-up 2.12.3, and let M be an almost finitely gen-
erated R-module. Then the natural morphism M Qg R — M is an isomorphism.
In particular, any almost finitely generated module over a complete adhesive ring is
complete.

Proof. We know that the claim holds for finitely generated modules by [24, Proposi-
tion 4.3.4]. Now we deal with the almost finitely generated case. We choose a finitely
generated submodule N C M such that /M C N. Lemma 2.12.6 implies that the
induced topology on N coincides with the [-adic topology on N. Thus the short
exact sequence

0>N-—>M-—>M/N—0
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remains exact after completion. Since R — R is flat by [24, Proposition 4.3.4], we
conclude that we have a morphism of short exact sequences

0 — s NQRR— M®rR —— (M/N)Q@g R —— 0

Jo» [ow [

~ —~

0 s N s M y M/N —— 0.

Note that ¢ is an isomorphism as N is finitely generated, and ¢/ is isomorphism

since it is an /-torsion module so M/N ~ (M/N) Qg R ~ ]\7/7\’ . The five lemma
implies that @p is an isomorphism as well. |

Corollary 2.12.8. Let R be as in Set-up 2.12.3, and let M € Dyeon(R). Suppose that
R is I -adically complete. Then M is I -adically derived complete.’

Proof. First of all, we note that [68, Tag 091P] implies that M is derived complete
if and only if so are H' (M) for any integer i. So it suffices to show that any almost
coherent R-module is derived complete. Lemma 2.12.7 gives that any such module is
classically complete, and [68, Tag 091T] ensures that any classically complete mod-
ule is derived complete. |

2.13 Modules over topologically finite type K *-algebras

The main goal of this section is to show that almost finite presentation of derived com-
plete modules over a topologically finite type K *-algebras can be checked modulo
the pseudo-uniformizer.

For the rest of the section we fix a valuation perfectoid ring K+ (see Defini-
tion B.2) with perfectoid fraction field K, associated rank-1 valuation ring O = K°
(see Remark B.3), and ideal of topologically nilpotent elements m = K°° C KT with
a pseudo-uniformizer € m as in Lemma B.9 (in particular, m = [ J,, wl/P" K.
Lemma B.12 ensures that mt is flat over Kt and T ~ m? = m. Therefore, it makes
sense to do almost mathematics with respect to the pair (K, m). In what follows,
we always do almost mathematics on K +-modules with respect to this ideal.

Lemma 2.13.1. Let R be a topologically finite type K™ -algebra, and M an R-
module that is w-adically derived complete. Suppose that M /wM is almost coher-
ent, then M is almost coherent as well.

9Look at [68, Tag 091NT] for the definition of derived completeness (or Definition A.1 in
case of a principal ideal 7).
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Proof. Theorem 2.11.5 ensures that R is almost noetherian, and so Corollary 2.7.8
implies that it suffices to check that M is almost finitely generated. Recall that m =
U, @!/?P" K™ for a pseudo-uniformizer z as in Lemma B.9.
The assumption on M says that M /@M is almost coherent. Therefore, there is a
morphism
2. (R/wR) — M/wM

such that w /P (Coker g) = 0. We denote its cokernel by O := Coker(g). Now we
lift g to a morphism
g RS> M

and denote is cokernel by Q := Coker(g).

Step 1: Q is annihilated by w'/?. Suppose that /7 Q # 0, so there is xo € Q such
that w /P x # 0. Firstly, we note that Q /@ ~ Q is annihilated by @ !/?, so

w'/Pxy = wx; = w' VP (w/Pxy).
Now we apply the same thing to x; to get
wl/pr — wl—l/p(wl/l)xl) — (wl—l/p)Z(wl/pXZ)_
Continue the process to get a sequence of elements x,, € Q such that
wl—l/p(wl/pxn) — wl/”xn_l.

The sequence {w '/?x;} gives an element of

wl—1/p wl—1/p

T°Q.w!™!?) = lim(- - 0 0)

that is non-trivial because @ !/?x¢ # 0. Now we note that R€ is derived w -adically
complete since R is classically w-adically complete by [11, Corollary 7.3/9] and
any classically complete module is derived complete by [68, Tag 091T]. Therefore,
Q is w-adically derived complete as a cokernel of derived complete modules (see
[68, Tag 091U]). Now [68, Tag 091S], Remark A.2, and [68, Tag 091Q] imply that
T°(Q, w'~'/?) must be zero leading to the contradiction.

Step 2: M is almost coherent. Note that Q ~ Q/wQ and Q is w'/P-torsion, so
O ~ Q. We know that Q is almost finitely generated over R/@R because it is
a quotient of an almost finitely generated module M/wM . Therefore, Q ~ Q is
almost finitely generated over R by Lemma 2.8.3. Now M is an extension of a finite
R-module Im(g) by an almost finitely generated R-module Q, so it is also almost
finitely generated by Lemma 2.5.15 (2). In particular, it is almost coherent since R is
almost noetherian. |


https://stacks.math.columbia.edu/tag/091T
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Theorem 2.13.2. Let R be a topologically finite type K -algebra, and M € D(R)
a w-adically derived complete complex. Suppose that [M ]/ w] € Dz[]i(’f}f](R /@), then
M e DR

acoh

Proof. Lemma A.3 guarantees that M € DI©41(R), so we only need to show that
cohomology groups of M are almost coherent over R.
We argue by induction on d — c. If ¢ = d, then HY(M)/w ~ H([M/w]) is
almost coherent. Therefore, M ~ H? (M )[—d] is almost coherent by Lemma 2.13.1.
If d > ¢, we consider an exact triangle

=471 — M — HY(M)[—d].

We see that both =9~ M and H? (M) are derived complete by [68, Tag 091P] and
[68, Tag 091S]. Moreover, we know that HY (M) /@ ~ H? ([M/w]) is almost coher-
ent. Therefore, HY (M) is almost coherent by Lemma 2.13.1. Finally,

is a (shifted) cone of a morphism in deh(R/w) therefore, [t=¢ "' M /w] also lies in
aCOh(R /). By the induction hypothesis, we conclude that t=¢ "1 M e plcd- 1](R).

acoh

So M e DI%4(R). -

acoh

Corollary 2.13.3. Let R be a topologically finite type K"’-algebra and M € D(R) a
w-adically derived complete complex. Suppose that [M*/w] € D e, d](R /@)%, then

acoh
M4 e DA Ry,

acoh

Proof. Note that m ® M is derived complete by Lemma A.4. So the claim follows
from Theorem 2.13.2 applied to m @ M. ]
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Chapter 3

Almost mathematics on ringed sites

The main goal of this chapter is to “globalize” the results of Chapter 2. The two main
cases of interest are almost coherent sheaves on schemes and “good” formal schemes.
In order to treat those cases uniformly, we define the notion of almost sheaves in the
most general set-up of ringed sites and check their basic properties. This is the content
of Section 3.1. Sections 4.1 and 4.5 are devoted to establishing the foundations of
almost coherent sheaves on schemes and formal schemes, respectively. In particular,
we show that the notion of almost finitely generated (resp. presented, resp. coher-
ent) module globalizes well on schemes and some “good” formal schemes. Then we
discuss the derived category of almost sheaves and various functors on the derived
categories of almost sheaves. Later in Chapter 4, we use this theory to establish foun-
dations of almost coherent sheaves on schemes and formal schemes, respectively.

3.1 The category of OF -modules

We start this section by fixing a ring R with an ideal m such that m = m? and
m = m ®g m is R-flat. We always do almost mathematics with respect to this ideal.
The main goal of this section is to globalize the notion of almost mathematics to the
case of ringed R-sites.

In this section, we fix a ringed R-site (X, Ox), i.e., a ringed site (X, Ox) where
Oy is a sheaf of R-algebras on X . Note that any ringed site (X, Ox) is, in particular, a
ringed Oy (X)-site. The main goal of this section is to develop foundations of almost
mathematics on ringed R-sites.

We note that, on each open U € X, it makes sense to speak of almost Ox (U )-
modules with respect to the ideal mOyx (U); we refer to Lemma 2.1.11 for the details.
In what follows, we extend the definition of almost modules to the category of Ox-
modules.

Definition 3.1.1. Let (X, Ox) be aringed R-site, and let  be any Ox-module. Then
the sheaf of almost section M ® F is the sheafification of the presheaf defined via the
formula

U m®grF ).

Remark 3.1.2. This definition coincides with the tensor product it ® g ¥, where
m is the constant sheaf associated with the R-module m. Alternatively, we see that
mF ~ @X Roy F where@x = @@R Ox.
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We also note that flatness of the R-module @t implies that the functor — ® 1 is
exact and descends to a functor

—@m:D(X) - D(X),

where D(X) is the derived category of Qx-modules.

Definition 3.1.3. An Ox-module ¥ is almost zero if m ® ¥ is zero. We denote the
category of almost zero Qx-modules by Xy .

Remark 3.1.4. Since @i is an R-flat module, we easily see that the category of almost
zero Ox-modules is a Serre subcategory of Modp, = Mody.

Lemma 3.1.5. Let (X, Ox) be a ringed R-site, and let ¥ be an Ox-module. Suppose
that U is a base of topology on X . Then the following conditions are equivalent:

(1) ¥ ® 1 is the zero sheaf.

(2) Foranye e m, e¥ = 0.

(3) Forany U € U, the module 1l @ ¥ (U) is zero.
(4) Forany U € U, the module m ® ¥ (U) is zero.
(5) Forany U € U, the module m(F (U)) is zero.

Proof. We first show that (1) implies (2). We pick an element ¢ € m = m? and write
itase =) x; - y; for some x;, y; € m. So the multiplication by & map can be decom-
posed as
®2 X ®yi ~
7 IO oo w
where the last map is induced by the multiplication map it — R. Thenif ¥ ® mt =
0, the multiplication by ¢ map is zero for any & € m. Now (2) easily implies (5).
Further, Lemma 2.1.1 ensures that (3), (4), and (5) are equivalent. Finally, (3) clearly

implies (1). u

Lemma 3.1.6. Let (X, Ox) be a ringed R-site, and let ¥ be an almost zero Ox -
module. Then H (U, ) =% 0 for any open' U € X and anyi > 0.

Proof. If ¥ is almost zero, then ¢¥ = 0 for any ¢ € mt by Lemma 3.1.5. Since the
functors H (X, —) are R-linear, we conclude that eH! (U, ) = 0 for any open U and
any ¢ € m,i > 0. Thus Lemma 2.1.1 ensures that H (U, ) = 0. ]

Definition 3.1.7. We say that a homomorphism ¢: ¥ — § of Ox-modules is an
almost isomorphism if Ker(¢) and Coker(p) are almost zero.

'An open U € X is by definition an object U € Ob(X) of the category underlying the
site X.
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Lemma 3.1.8. A homomorphism ¢: ¥ — § of Ox-modules is an almost isomor-
phism if and only if o(U): F(U) — §(U) is an almost isomorphism of Ox (U)-
modules for any open U € X.

Proof. The < implication is clear from the definitions. We give a proof of the =
implication.

Suppose that ¢ is an almost isomorphism. We define the auxiliary Qx-modules:
K = Ker(p), F' := Im(¢), @ := Coker(p). Lemma 3.1.6 implies that the maps

FU) — F'(U) and F'(U) — €(U)

are almost isomorphisms. In particular, the composition ¥ (U) — (U ) must also be
an almost isomorphism. |

Now we discuss the notion of almost @x-modules on a ringed R-site (X, Ox).
This notion can be defined in two different ways: either as the quotient of the category
of Ox-modules by the Serre subcategory of almost zero modules or as modules over
the almost structure sheaf @F. Now we need to explain these two notions in more
detail.

Definition 3.1.9. We define the category of almost Ox -modules as the quotient cate-

gory
MOd%X = MOd@X/Ex.

Now we define the category Mod@)a( of O%-modules that we will show to be
equivalent to Mod‘(’DX. We recall that the almostification functor (—)¢ is exact and
commutes with arbitrary products. This allows us to define the almost structure sheaf:

Definition 3.1.10. The almost structure sheaf O% is the sheaf 2 of R%-modules
O%: (0Ob(X))® — Mod%

defined via the formula U +— Ox (U)%.

Definition 3.1.11. We define the category of O%-modules Modg as the category of
modules over O% € Shv(X, R) in the categorical sense. More precisely, the objects
are sheaves of R*-modules ¥ with a map ¥ ®ga O — F over R“ satisfying the
usual axioms for a module. Morphisms are defined in the evident way.

‘We now define the functor
(—)*:Modo, — Modoq

that sends a sheaf to its “almostification”, i.e., it applies the functor (—)%: Modg —
Mod% section-wise. Since the almostification functor (—)? is exact and commutes

’It is a sheaf exactly because (—)¢ is exact and commutes with arbitrary products.
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with arbitrary product, it is evident that ¥ ¢ is actually a sheaf for any Oy -module £ .
Moreover, it is clear that ¢ ~ 0 for any almost zero Ox-module ¥ . Thus, it induces
the functor
(—)“:Modp, — Modgg .

The claim is that this functor induces the equivalence of categories. The first step
towards the proof is to construct the right adjoint to (—)¢: Modp, — Modgg . Our
construction of the right adjoint functor will use the existence of the left adjoint func-
tor. So we slightly postpone the proof of the equivalence mentioned above and first
discuss adjoints to (—)¢.

We start with the definition of the left adjoint functor. The idea is to apply the
functor (—);: Modpg — Modg, section-wise, though this strategy does not quite
work as (—) does not commute with infinite products.

Definition 3.1.12. We define the desired functor in two steps.
*  First, (-){:Modge — Modg, as’

F U FQO)N.

e With its help, (—)i: Modge — Modg, as the composition (=) =)o (—)!p ,
where (—)* is the sheafification functor.
Lemma 3.1.13. Let (X, Ox) be a ringed R-site.
(1) The functor
(—)!ZMOd@)a( — Modg,

is the left adjoint to the localization functor (—)*: Modg,, — Modgg. In
particular, we have a functorial isomorphism

Homgg (¥, §%) ~ Homg, (#1,9)

forany ¥ € Modyq % € Modg,, .
(2) The functor (—)1: MOd@f\J, — Modg, is exact.

(3) The counit morphism (¥%)y — F is an almost isomorphism for any object
F € Modp,, . The unit morphism § — ($)* is an isomorphism for any object
g < Modyg . In particular, the functor (—)? is essentially surjective.

Proof. (1) follows from Lemma 2.1.9 (3) and the adjunction between sheafication and
the forgetful functor. More precisely, we have the following functorial isomorphisms:

Homgg (¥, 9%) ~ HomMong (%7, 6) >~ Homgy (1, 9).

3M0d(’;X stands for the category of modules over O in the category of presheaves.
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We show (2). It is easy to see that (—); is left exact from Lemma 2.1.9 (4) and
the exactness of the sheafification functor. It is also right exact since it is a left adjoint
functor to (—)%.

Now we show (3). Lemma 2.1.9 (5) ensures that the kernel and cokernel of the
counit map of presheaves (¥ “)f’ — ¥ are annihilated by any & € m. Then the same
holds after sheafification, proving that (¥¢){ — ¥ is an almost isomorphism by
Lemma 3.1.5.

We consider the unit map § — (6))¢, we note that using the adjuction ((—)1, (—)%)
section-wise, we can refine this map

5 — ()" - (%)

It suffices to show that both maps are isomorphisms; the first map is an isomorphism
by Lemma 2.1.9 (5). In particular, this implies that (ﬁlp )¢ is already a sheaf of almost
R“-modules, but then we see that the natural map (ﬁ!p )¢ — (%)% must also be an
isomorphism as it coincides with the sheafification in the category of presheaves of
R?-modules. ]

Remark 3.1.14. In what follows, we denote the objects of Modge by F ¢ to distin-
guish Oy and OF-modules. This notation does not cause any confusion as (—)¢ is
essentially surjective.

Now we construct the right adjoint functor to (—)“. The naive idea of apply-
ing (—)« section-wise works well in this case.

Definition 3.1.15. The functor of almost sections (—)«: Modpg — Modo, is de-
fined as
F%+ (U — Homg(mt, F4(U),) = Hompg(m, T(U))),

where the equality comes from Lemma 2.1.8 (2).

Remark 3.1.16. The functor (—)s is well defined, i.e., it defines a sheaf of Ox-
modules. This follows from the fact that Homg (11, —) is left exact and commutes
with arbitrary products.

Lemma 3.1.17. Let (X, Ox) be a ringed R-site.

(1) The functor (—)x: Mod@; — Modg,, is the right adjoint to the exact local-
ization functor (—)*: Modg, — Modgg . In particular, it is left exact.

(2) The unit morphism ¥ — (¥ %)« is an almost isomorphism for any object
F € Modg,, . The counit morphism (§2)* — §% is an isomorphism for any
54 ¢ MOd@jl\/.

Proof. 1t is sufficient to check both claims section-wise. This, in turn, follows from
Lemma 2.1.9 (1) and Lemma 2.1.9 (2) respectively. ]
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Corollary 3.1.18. The functor (—)*: Modgp, — Mod(z)}a( commutes with limits and
colimits. In particular, Mod@; is complete and cocomplete, and filtered colimits and
(finite) products are exact in Mod(z)sz(.

Proof. The first claim follows from the fact that (—)¢ admits left and right adjoints.
The second claim follows from the first claim, the exactness of (—)%, and analogous
exactness properties in Mod g. ]

Corollary 3.1.19. Let (X, Ox) be a ringed R-site. Then the functor
(—)*:Modg, — Modpg
is exact.
Proof. The functor (—)“ is exact as it has both left and right adjoints. ]
Theorem 3.1.20. Let (X, Ox) be a ringed R-site. Then the functor
(—)*:Mody, — Modpg
is an equivalence of categories.

Proof. Lemma 3.1.17 implies that the functor (—)%: Modp, — Modgg has a right
adjoint functor (—)« such that the counit morphism (—)? o (—)« — id is an iso-
morphism of functors. Moreover, the exactness of (—)¢ implies that a morphism
¢: ¥ — § is an almost isomorphism if and only if p?: ¢ — §¢ is an isomorphism.
Thus, [27, Proposition 1.3] guarantees that the induced functor (—)¢: Mod‘éx —
Modgg is an equivalence. u

Remark 3.1.21. In what follows, we do not distinguish MOd(gsl( and Mod‘éx. More-
over, we sometimes denote both categories by Mod§ or Mody« to simplify the
notation.

3.2 Basic functors on categories of @F -modules

We discuss how to define certain basic functors on Mod%. Our main functors of
interest are Hom, alHom, ®, f*, and f, (for any map f of ringed sites). We define
their almost analogues and discuss the relation with their classical versions. As a by-
product, we give a slightly more intrinsic definition of (—)«: Mody — Mody along
the lines of the definition of the Mod%-version of this functor. For the rest of the
section, we fix a ring R with an ideal m such that m = m2and @ = m Qg m
is R-flat. We also fix an ringed R-site (X, Ox) that we also consider as a ringed
Ox (X)-site.



Basic functors on categories of 9% -modules 83

Definition 3.2.1. The global and local Hom functors are defined as follows:

* The global Hom functor
Homga (—, —): Mody, x Modya — Modo, (x)

is defined as (¥¢,9%) Homgg (F2,9%).

* The local Hom functor
Honlgﬁ(—g—01h40d§2><h40an-—>D40dX

is defined as (F%,6%) — (U — Homgg (¥“|v. 5 |u))- The standard argument
shows that this functor is well defined, i.e., Hom g¢ (¥,9) is indeed a sheaf of
Ox-modules.

Lemma 3.2.2. Let U € Ob(X), and let ¥¢, 5% be O%-modules. Then the natural
map
I'(U, Hom 04 (F°, %)) — Homgg, (F%u. 5% v)

is an isomorphism of Ox (U)-modules.
Proof. This is evident from the definition. ]

Lemma 3.2.3. Let (X, Ox) be a ringed R-site. Then there is a functorial isomor-
phism of Ox -modules

Hom gq (%, §) = Hom o, (F)1.9)
for ¥ € Mod§ and § € Mody.

Proof. Lemma 3.2.2 and Lemma 3.1.13 ensure that the desired isomorphism exists
section-wise. It glues to a global isomorphism of sheaves since these section-wise
isomorphisms are functorial in U. |

Now we move on to show a promised more intrinsic definition of the functor (—)x.
As a warm-up, we need the following result:

Lemma 3.2.4. Suppose that the ringed R-site (X, Ox) has a final object that (by
slight abuse of notation) we denote by X. Then the evaluation map

evy:Homge (0%, 9) — Homg, (x)a (0% (X). §%(X))
¢ = @(X)

is an isomorphism of Ox (X)-modules for any §* € Mody.
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Proof. As (—)¢ is essentially surjective by Lemma 3.1.13 (3), there exists some Oy -
module § with almostification being equal to §¢. Now we recall that the data of an
O%-linear homomorphism ¢: 9% — §¢ is equivalent to the data of Oy (U )“-linear
homomorphisms ¢y € Homg, ()« (9% (U), §%(U)) for each open U in X such that
the diagram

Ox(U)* 245 g(U)"

1% U
r@%‘vl l’gﬂ\y

Ox(V)* ——= §(V)°

commutes for any V' C U. Now we note that an Ox (U )?-linear homomorphism ¢
uniquely determines an Ox (V' )“-linear homomorphism ¢y in such a diagram. Indeed,
this follows from the equality

Homg, (1)« (Ox (V). §(V)?)
= Home, (v) (T ® Ox (V), (V)
= Hom@X(V)(r'rvl ® Ox(U) ®oyw) Ox(V), ;9(V))
= Homg, ) (T ® Ox(U).§(V))
= Homg, )« (Ox (U)*, §(V)?).

Now we use the assumption that X is the final object to conclude that any homomor-
phism ¢: OF — §“ is uniquely defined by ¢(X). ]

Corollary 3.2.5. Let (X, Ox) be an ringed R-site and let U € Ob(X). Then the
evaluation map

evy:Homgg (03, 917;) — Home,, )« (O (U), 94(U))
¢ = o(U)
is an isomorphism of Ox (U)-modules for any §* € Mody.

Proof. For the purpose of the proof, we can change the site X to the slicing site X/ U
of objects over U. Then U automatically becomes the final objectin X/ U, so we can
apply Lemma 3.2.4 to finish the proof. |

Now we are ready to prove a new description of the sheaf version of the func-
tor (—)«.

Lemma 3.2.6. Let (X, Ox) be a ringed R-site. Then there is a functorial isomor-
phism of Ox -modules
Hom pg (0%, F%) — 72

for ¥ € ModY.
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Proof. Lemma 3.2.2 and Corollary 3.2.5 imply the existence of an isomorphism of
Ox (U)-modules

I'(U.Hom g¢ (0% . F%)) = Home,, )« (0f (V). F(U))

that is functorial in both U and F¢. We use the functorial isomorphism of Ox (U)-
modules

Homg,, )« (Oy (U)*, F*(U)) ~ Homga (R*, F4(U)) = (F)«(U)
to construct a functorial isomorphism
I'(U,Hom g¢ (0%. F%)) = (F*)« (V).
Functoriality in U ensures that it glues to the global isomorphism of @x-modules
Hom ga (0%. ) = F2. ]
Now we discuss the functor of almost homomorphisms.

Definition 3.2.7. The global and local alHom functors are defined as follows:
e The global alHom functor

alHomgg (—, —): Mody, x Mody« — Modga
is defined as
(F,6%) — Homgg (F*,9%)* ~ Home, ((F¢),.§)".
e The local alHom functor
alHom g (—, —): Mody, x Mody« — Modxa
is defined as
(F8 > (U~ alHomeg, (Fu. 8% u)?).

Remark 3.2.8. At this point we have not checked that alHom g¢ (F4,6%) is actually
a sheaf. However, this follows from the following lemma:

Lemma 3.2.9. The natural map
Hom g, (M ® ¥,9)? — alHom 0 (¥%,8%

is an almost isomorphism of O%-modules for any ¥¢,§* € Mody. In particular,
alHom g¢ (¥¢,§%) is a sheaf of Oy -modules.
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Proof. This follows from the sequence of functorial in U isomorphisms:
Hom g, (ni ® ¥, 9)(U)* ~* Homg,, (W ® ¥ |v, §|v)*
~4 alHom@g/ (.(Fa|U, g |U)
~“ alHom ¢ (¥, §°)(U) [

In order to make Definition 3.2.7 computable, we need to show that these functors
can be computed by using any representative for ¢ and §¢.

Proposition 3.2.10. Letr (X, Ox) be a ringed R-site.

(1) There is a natural transformation of functors

Hy (_>_)
Mod? x Mody ox > Mody
x| / l(—)a
Mody, x Modya > Modya

alHom —,—
(951( ( )

that makes the diagram (2, 1)-commutative. In particular, it yields an isomor-
phism alHomgg (¥4,9%) ~ Homg, (¥,9)" forany ¥,§ € Mody.

(2) There is a natural transformation of functors

Hom Ox (=)

Mody x Mody > Mody
(—)”x(—)”l / l(—)a
Mody, x Modya s Mody«

llH —,—
a Om@f\l/( )

that makes the diagram (2, 1)-commutative. In particular, it yields an isomor-
phism alHom g¢ (¥, %%) >~ Hom ¢, (¥, 9)* for any ¥, § € Mody.

Proof. The proof is similar to the proof of Proposition 2.2.1 (3). The only new thing
is that we need to prove an analogue of Corollary 2.1.13, that is, that the func-
tors alHome,, (—, §), alHom ¢, (—, &) preserve almost isomorphisms. It essentially
boils down to showing that Extzgx (K,8) =* 0 and E_sz (K,8) = 0 for any
K € Xx,9 € Mody, and an integer i > 0.

Now Lemma 3.1.5 implies that e X = 0 for any ¢ € m. With that at hand, we see
that Ext’éX (K,%)and @bx (K ,¥§) are also annihilated by any ¢ € m since the func-
tors Ext’@X (—.9),Extjy (—.%) are R-linear. Thus, Ext’@X (K.9)and Exty (K. 9)
are almost zero by Lemma 2.1.1 and Lemma 3.1.5 respectively. |

Definition 3.2.11. The tensor product functor — ® ¢ — Mody x Mody — Mody
is defined as
(F9.6%) > 72 ®g, 9.



Basic functors on categories of O -modules 87

Proposition 3.2.12. There is a natural transformation of functors

Mody x Mody > Mody

0
(—)4 X(_)al / l(_)a

Mod$ x Modj > Mody

that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism
(F Qoy §)* =~ F° Roe g4

forany ¥ ,8 € Mody.
Proof. The proof is analogous to that of Propisition 2.2.1 (1). ]

The tensor product is adjoint to Hom as it happens in the case of R*-modules.
We give a proof of the local version of this statement.

Lemma 3.2.13. Let (X, Ox) be aringed R-site, and let ¥, 5%, H* be Of-modules.
Then there is a functorial isomorphism

Hom oy (7 ®eg 57, #) ~ Hom og (7, alHom og (7, #)).
After passing to the global sections, this gives the isomorphism
Homgg (F¢ Roa G4, H) ~ Homgg (J’("a,M@; (4, H?)).
And after passing to the almostifications, it gives an isomorphism
alHom gy (7 ®gy 9, H*) = alHom g (7, alHom g (°, J6)).

Proof. We compute I'(U, Hom 0% (F¢ ®o4¢ g%, #?)) by using Lemma 3.2.2 and
the standard (®, Hom ) adjunction. Namely,

[ (U, Hom ga (7 ®gq §¢, #*))

~ Homge, (F“|u ®og, §°u, #*|v) Lemma 3.2.2
~ Homgg, (Flv ®0y Elv)*. Hv) Proposition 3.2.12
~ Homg,, (M ® (¥ |v ®e, Flv). X|v) Lemma 3.1.13
~ Homg,, (T ® ¥ |v) ®o, (MR F|v), H|v) m® ~ m
~ Homg,, (M ® #|v.Hom g, (M Q@ v, H|v)) (®, Hom) adjunction
:Hom(gaU(? |U,M@U(m®§|u,]€|y)) Lemma 3.1.13

~ I'(U,Hom 0 (?“,alHom(g)a( (8%, HY))). Lemma 3.2.2
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Since these identifications are functorial in U, we can glue them to a global isomor-
phism

Hom pg (F¢ ®04 g%, #?) ~ Hom 0 (¢, alHom 0 (g%, #)).
This finishes the proof. ]

Corollary 3.2.14. Let (X, Ox) be a ringed R-site, and let ¥ be an O%-module.
Then the functor — Qg ¥ @ is left adjoint to alHom 0¢ (F 4 -).

For what follows, we fix amap f: (X, Ox) — (Y, Oy) of ringed R-sites. We are
going to define the almost version of the pullback and pushforward functors.

Definition 3.2.15. The pullback functor f*:Mody — Mody is defined as
7 (7 ()"

In what follows, we will often abuse notation and simply write f* instead of f*.
This is “allowed” by Proposition 3.2.19.

As always, we want to show that this functor can be actually computed by apply-
ing f* to any representative of #“. The main ingredient is to show that f* sends
almost isomorphisms to almost isomorphisms. The following lemma shows slightly
more, and will be quite useful later on:

Lemma 3.2.16. Let f:(X,0Ox) — (Y,Oy) be a morphism of ringed R-sites. Then for
any Ox -module ¥, there is a natural isomorphism ¢¢ (¥): f*(M@ F) >m Q f*F
Sfunctorial in F .

Proof. We use Remark 3.1.2 to conclude that i ® ¥ is functorially isomorphic to
My ®@, ¥, where my = m ®g Oy. Now we note that f*(iiiy) >~ miy as can
be easily seen from the very definitions (using that mt is R-flat). Therefore, @7 (F)
comes from the fact that the pullback functor commutes with the tensor product. More
precisely, we define it as the composition

fr@®F) = f*(@iy ®oy F)— [*({Hy) oy f(F) = Ty ®oy f*(F). m

We now also show a derived version of Lemma 3.2.16 that will be used later in
the text.

Lemma 3.2.17. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. Then
forany ¥ € D(X), there is a natural isomorphism

er(F)LffM®F) >mQLf*F

Sfunctorial in F .
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Proof. Similarly, we use Remark 3.1.2 to say that i ® ¥ is functorially isomorphic
to iy ®p, ¥, where ity '=m ®g Oy. Wenote that L f*(ity ) ~ f*(Miy) >~ miy
as m is R-flat. The rest of the proof is the same using the L f* functorially commutes
with the derived tensor product. ]

Corollary 3.2.18. Let f:(X,0x) — (Y, Oy) be a morphism of ringed R-sites, and
let o: ¥ — § be an almost isomorphism of Oy -modules. Then the homomorphism
(@) f*(F) = f*(9) is an almost isomorphism.

Proof. The question boils down to showing that the homomorphism
me fH(F) >me [F(H)

is an isomorphism. Lemma 3.2.16 ensures that it is sufficient to prove that the map
[fAey) - ff(ueY)

is an isomorphism. But this is clear because the map M ® ¥ — W ® ¢ is already an
isomorphism. |

Proposition 3.2.19. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites.
Then there is a natural transformation of functors

Mody —> Modyx

| e e

Mod§, ———— Mod}

that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism (f*F)* >~ fX(F¢) forany ¥ € Mody.

Proof. The proof is similar to that of Proposition 2.2.1. For any ¥ € Mody, we
define pz: f*(M @ F)? — f*(F)* as the map induced by the natural homomor-
phism m ® ¥ — F. It is clearly functorial in ¥, and it is an isomorphism by

Corollary 3.2.18. ]
Definition 3.2.20. The pushforward functor f:Mody — Mod is defined as
“ o (f(F)"

In what follows, we will often abuse the notation and simply write fy instead of f2.
This is “allowed” by Proposition 3.2.24.
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Definition 3.2.21. The global sections functor I'*(X,—):Mod§ — Mod% is defined
as

Fs (X, 79

In what follows, we will often abuse the notation and simply write I" instead of I'¢.
This is also “allowed” by Proposition 3.2.24.

Remark 3.2.22. The global section functor can be realized as the pushforward along
the map (X, Ox) — (*, R).

Lemma 3.2.23. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites, and let
©: F — § be an almost isomorphism. Then the morphism [y (¢): fx(F) — f«(§) is
an almost isomorphism.

Proof. The standard argument considering the kernel and cokernel of ¢ shows that
it is sufficient to prove that f, K =% 0, R! f, KX =% 0 for any almost zero Ox-
module K. This follows from R-linearity of f, and Lemma 3.1.5. |

Proposition 3.2.24. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-spaces.
Then there is a natural transformation of functors

Mody —> Mody

| e

Mod§ ——— Modj

that makes the diagram (2, 1)- commutative In particular, there is a functorial isomor-
phism (f«F)* ~ f2(F?) forany F € Mody. The same results hold for T'*(X, —).

Proof. We define pg: fou(fl @ F)¢ — fo(F)? as the map induced by the natural
homomorphism mt ® ¥ — ¥. It is clearly functorial in %, and it is an isomorphism
by Lemma 3.2.23. ]

Lemma 3.2.25. Let (X, Ox) be a ringed R-site, and let ', G be O%-modules. Then
the natural morphism

I'(U, alHom 0% (F°,6%) - alHomgg (Fv. €% v)
is an isomorphism of R*-modules for any U € Ob(X).

Proof. The claim easily follows from Lemma 3.2.2, Proposition 3.2.10 (2), and Propo-
sition 3.2.24. ]
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Lemma 3.2.26. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites, and
let ¢ € Mody, and §% € Mod%. Then there is a functorial isomorphism of Oy -
modules

feHom gg (f*(F%), §%) ~ Hom g (7, f+(9%)).
After passing to the global sections, this gives the isomorphism of Oy (Y )-modules
Homgg (f*(F),§%) ~ Homeg (F°, f+x(§%)).
And after passing to the almostifications, it gives the isomorphism of O -modules
fralHom og (f*(F%),§) 2 alHom g (7, /+(5%)).

Proof. This is a combination of the classical ( f*, fi)-adjunction, Lemma 3.1.13,
Lemma 3.2.16, Proposition 3.2.19, and Proposition 3.2.24. Indeed we choose U €
Ob(Y) and denote its pullback by V := f~1(U). We also define ¢ := F¢|y and
Gy = §%|y. The claim follows from the sequence of functorial 1somorph1sms

F(U,HO_I’H@@ (?a, f*(ga)))

~ Homeyg, (7. f<(5)) Lemma 3.2.2
~ Homgg (¥, fx (&v)%) Proposition 3.2.24
~ Homg,, (M ® Fu. fx($v)) Lemma 3.1.13
~ Homg,, (f*(W ® Fv), 5v) (f*, f+)-adjunction
~ Homg,, (M ® f*(Fv). 5v) Lemma 3.2.16
~ Homge (f*(Fv)". %) Lemma 3.1.13
~ Homgg (/*(F5). 59) Proposition 3.2.19
~ T'(U, f*Hin(g}a((f*(?“),ﬁ")). Lemma 3.2.2

Since these identifications are functorial in U, we can glue them to a global isomor-
phism
fxHom g (f* (), §%) = Hom gg (7, fu(5°)). .

Corollary 3.2.27. Let f:(X,0x) — (Y, Oy) be a morphism of ringed R-sites. Then
the functors  fyx: Mody ——= Mod$ : f* are adjoint.

3.3 Digression: The projection formula

In this section, we show that the tensor product it ® — behaves especially well on
locally spectral spaces”*. For instance, we show that we can explicitly describe sec-

4We refer to [68, Tag 08YF] and [70, Section 3] for a comprehensive discussion of (locally)
spectral spaces.


https://stacks.math.columbia.edu/tag/08YF
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tions of m ® F on a basis of opens for such spaces, and verify a version of the
projection formula for this tensor product.

Lemma 3.3.1. Let (X, Ox) be a locally spectral, locally ringed R-space. Then for
any spectral® open subset U C X, the natural morphism

mer FU) > @me F)(U)
is an isomorphism of Ox (U)-modules.

Proof. As spectral subspaces form a basis of topology on X, it suffices to show that
the functor
U—->m@r¥F )

satisfies the sheaf condition on spectral open subsets. In particular, we can assume
that X itself is spectral.

As any open spectral U is quasi-compact, we conclude that any open covering
U = J;¢; Ui admits a refinement by a finite one. Thus, it is sufficient to check the
sheaf condition for finite coverings of a spectral space by spectral open subspaces.
Thus, we need to show that, for any finite covering U = Uie ;7 Ui, the sequence

n n
0->TRr FU) - [[(@erFU))— [] (@ er FU NU)))
i=1 i,j=1
is exact. This follows from flatness of 11 and the fact that tensor product commutes
with finite direct products. ]

Now we want to show a version of the projection formula for the functor M ® —,
it will take some time to rigorously prove it. We recall that a map of locally spectral
spaces is called spectral, if the pre-image of any spectral open subset is spectral.

Lemma 3.3.2. Let (X, Ox) be a spectral locally ringed R-space. Then for any injec-
tive Ox-module I, the Ox-module @ ® I is H*(X, —)-acyclic.

Proof. We note that spectral open subspaces form a basis for the topology on X . Thus
[68, Tag O1EV] and [68, Tag 0A36] imply that it suffices to show that

m®I|U

@MRIHV)—— (R I)U)

is surjective for any inclusion of any spectral open subsets U — V. Lemma 3.3.1
says that this map rgg I|5 is identified with the map

Qrrrlly

m®RI(V)—>m®RI(U)

>We remind the reader that any quasi-compact quasi-separated open subset of a locally
spectral space is spectral. This can be easily seen from the definitions.


https://stacks.math.columbia.edu/tag/01EV
https://stacks.math.columbia.edu/tag/0A36
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But now we note that r I|5 is surjective since any injective Ox-module is flasque
by [68, Tag 01EA], and therefore the map ™ ®g r 1|[‘§ is surjective as well. ]

Corollary 3.3.3. Letr f:(X,Ox) — (Y, Oy) be a spectral morphism of locally spec-
tral, locally ringed R-spaces, and let I be an injective Ox-module. Then Tt @ I is

fx(=)-acyclic.

Proof. 1t suffices to show that for any open spectral U C Y, the higher cohomology
groups
H (Xu. (@ ® I)lx,)

vanish. This follows from Lemma 3.3.2 since Xy is spectral because both f and U
are spectral. ]

Lemma 3.3.4. Let f:(X,0Ox) — (Y, Oy) be a spectral morphism of locally spectral,
locally ringed R-spaces, and let ¥ be an Ox-module. Then there is an isomorphism

B-m® fLF - fim®F)
functorial in F .

Proof. 1t suffices to define a morphism on a basis of spectral open subspaces U C Y.
For any such U C Y, we define

Bu:(m® fiF)U) — fulti @ F)(U)

as the composition of isomorphisms

@ ® LF)U) 2L & g (fF)U) = 7 ®r F(Xy)
s (@ ® F)(Xy) = fulfi @ F)U)

with oy and ay,, being isomorphisms from Lemma 3.3.1. Since the construction
of « is functorial in U, we conclude that 8 defines a morphism of sheaves. It is an
isomorphism because B is an isomorphism on a basis of Y. ]

Lemma 3.3.5. Let f:(X,0Ox) — (Y, Oy) be a spectral morphism of locally spectral,
locally ringed R-spaces. Then for any ¥ € D(X), there is a morphism

pr(F): T RRATF — Rfu([i ® F)

Sfunctorial in F. This map is an isomorphism in either of the following cases:
* the complex F is bounded below, i.e., ¥ € DT (X), or

* the space X is locally of uniformly bounded Krull dimension and ¥ € D(X).


https://stacks.math.columbia.edu/tag/01EA
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Proof. We start the proof by constructing the map ps (F). Note that by adjunction it
suffices to construct a map

LffMQRfLF)>mRF.
We define this map as the composition

—~ A'(Rf*f) — ~® T~
L@ ORAF) L R QL RAF T Fie F,

where the first map is the isomorphism coming from Lemma 3.2.17 and the second
map comes from the counit n of the (L f*, R f,)-adjunction.

Now we show that ps(F) is an isomorphism for ¥ € D (X). We choose an
injective resolution ¥ — I°. In this case, we use Corollary 3.3.3 to note that § is the
natural map

m® fu(I%) > fum®I%)

that is an isomorphism by Lemma 3.3.4.

The last thing we need to show is that ps () is an isomorphism for any unbound-
ed ¥ when X is locally of uniformly bounded Krull dimension. The claim is local,
so we may and do assume that both X and Y are spectral spaces. As X is quasi-
compact (because it is spectral) and locally of finite Krull dimension, we conclude
that X has finite Krull dimension, say N := dim X. Then [57, Corollary 4.6] (or
[68, Tag 0A3G]) implies that H* (U, §) = 0 for any open spectral U C X, § € Mody,
and i > N. In particular, R! f+€ = 0 for any § € Mody, and i > N. Thus we see
that the assumptions of [68, Tag OD6U] are verified in this case (with A4 = Mody
and A" = Mody), so the natural map

HIRfF) = H R (ZTF))

is an isomorphism for any ¥ € D(X), j > N — n. As mt is R-flat, we get the com-
mutative diagram

99 ([ @ RfLF) Her) . gpi(RAF ® F))

H (T QRfu(127"F)) ———— H (Rf(T ® 127" F))

ij(Prz—njr)

with the vertical arrows being isomorphisms for j > N — n, and the bottom horizontal
map is an isomorphism as 1= % € DT (X). Thus, by choosing an appropriate n > 0,
we see that #/ (pg ) is an isomorphism for any j; so p# is an isomorphism itself. m


https://stacks.math.columbia.edu/tag/0A3G
https://stacks.math.columbia.edu/tag/0D6U
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3.4 Derived category of Oy -modules

This section is a global analogue of Section 2.3. We give two different definitions of
the derived category of almost @x-modules and then show that they coincide.

For the rest of the section, we fix aring R with an ideal m such that m = m? and
m = m ®g m is R-flat. We also fix an ringed R-site (X, Ox).

Definition 3.4.1. By definition, the derived category of O%-modules is D(X%) =
D(Mody ).

We define the bounded version of the derived category of almost R-modules
D*(X?) for * € {4+, —, b} as the full subcategory of D(X“) consisting of bounded
below (resp. bounded above, resp. bounded) complexes.

Definition 3.4.2. We define the almost derived category of Ox-modules as the Verdier
quotient® D(X)“ := D(Mody)/Ds, (Mody).

Remark 3.4.3. We recall that Xy is the Serre subcategory of Mody that consists of
the almost zero Oy -modules.

We note that the functor (—)%: Mody — Modj is exact and additive. Thus, it can
be derived to the functor (—)%:D(X) — D(X¢). Similarly, the functor (—);: Mody —
Mody can be derived to the functor (—);: D(X?) — D(X). The standard argument
shows that (—); is a left adjoint functor to the functor (—)¢ as this already happens on
the level of abelian categories.

We also want to establish a derived version of the functor (—),. But since the
functor is only left exact, we do need to do some work to derive it. Namely, we need
to ensure that @%-modules admit enough K-injective complexes.

Definition 3.4.4. We say that a complex of O§-modules 1*“ is K-injective if the
condition HomK((gsz()(C *@ [%9) = 0 is satisfied for any acyclic complex C*“ of
R%-modules.

Remark 3.4.5. We remind the reader that K(O%) stands for the homotopy category
of O%-modules.

Lemma 3.4.6. The functor (—)“: Comp(Ox) — Comp(0O%) sends K-injective O% -
complexes to K-injective O -complexes.

Proof. We note that (—)% admits an exact left adjoint (—); thus [68, Tag 08BJ] ensures
that (—)¢ preserves K-injective complexes. [

6We refer to [68, Tag 05RA] for an extensive discussion of Verdier quotients of triangulated
categories.
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Corollary 3.4.7. Let (X, Ox) be a ringed R-site. Then every ¥*¢ € Comp(©%) is
quasi-isomorphic to a K-injective complex.

Proof. The proof of Corollary 2.3.6 works verbatim with the only exception that one
needs to use [68, Tag 079P] instead of [68, Tag 090Y]. [

Similarly to the case of R%-modules, we define the functor (—).:D(X?) — D(X)
as the derived functor of (—)«:Mod§ —Mody . This functor exists by [68, Tag 070K].

Lemma 3.4.8. Let (X, Ox) be a ringed R-site.

(1) The functors (—)*: D(X) =—= D(X?) : (=) are adjoint. Moreover, the
counit (resp. unit) morphism

(F) — F (resp. § — (§1)°)

is an almost isomorphism (resp. isomorphism) for any ¥ € D(X), 8 € D(X4).
In particular, the functor (—)¢ is essentially surjective.

(2) The functor (—)%: D(X) — D(X?%) also admits a right adjoint functor
(—)x:D(X?) — D(X). Moreover, the unit (resp. counit) morphism

F = (F (resp. (8:)* - §)
is an almost isomorphism (resp. isomorphism) for any ¥ € D(X), 8§ € D(X9).
Proof. The proof is similar to that of Lemma 2.3.7. |

Theorem 3.4.9. The functor (—)*:D(X) — D(X?) induces an equivalence of trian-
gulated categories (—)%:D(X)? — D(X?).

Proof. The proof is similar to that of Theorem 2.3.8. |
Remark 3.4.10. Theorem 3.4.9 shows that the two notions of the derived category
of almost modules are the same. In what follows, we do not distinguish D(X¢) and
D(X)* anymore.

3.5 Basic functors on derived categories of OF -modules

Now we can “derive” certain functors constructed in Section 3.2. For the rest of the

section, we fix a ringed R-site (X, Ox). The section follows the exposition of Sec-
tion 2.4 very closely.
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Definition 3.5.1. We define the derived Hom functors
RHom g¢ (—, -): DX x D(X%) — D(X),

and
RHom@; (=, =):DXYY? xD(X%) — D(R)
as it is done in [68, Tag 08DH] and [68, Tag OB6A], respectively.

Definition 3.5.2. We define the global Ext-modules as the R-modules
Extz; (79.8%) =H (RHom@g( (F9,89)

for ¥4, 8% € Mody .
Finally, we define the local Ext-sheaves as the Ox-modules Ext iga (F4,8%) :=
. X
' (RHom g (¥, 94)), for 7,6 € Mody .

Remark 3.5.3. We see that [68, Tag 0A64] implies that there is a functorial isomor-
phism
H (RHOm(gsl( (F4,6%) ~ Homp(gya (¥, §°[i])

for ¥4,8% € D(X)“.

Remark 3.5.4. The standard argument shows that there is a functorial isomorphism
RT (U, RHom 0% (?a, ga)) g RHom(gé (?a |U, g? |U)

forany open U € X, ¥%,9% € D(X)“.

Now we show a local version of the ((—), (—)%)-adjunction, and relate RHom
(resp. RHom) to a certain derived functor. This goes in complete analogy with the
situation in the usual (not almost) world.

Lemma 3.5.5. Let (X, Ox) be a ringed R-site.
(1) There is a functorial isomorphism

RHom ¢ (¥4, 9“) ~ RHom o, (¥,°. %)

forany ¥ € D(X)? and § € D(X). In particular, this isomorphism induces
functorial isomorphisms

RHomge (¢, 9%) >~ RHomg, (#,°, 9)

and
HOInD(X)a (37“, ga) ~ RHOII]D(X) (‘77!“ , 5).

(2) Forany chosen ¥ ¢ € Mody, the functor RHomgg¢ (F%,-):D(X)* - D(R)
is isomorphic to the (right) derived functor of Homgg (¥4, —).
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(3) For any chosen ¥ € Mod%, the functor RHom 0% (F4,-):D(X)? > D(X)

is isomorphic to the (right) derived functor of Homgg (¥4, —).

Proof. (1) Lemma 3.4.6 and the construction of derived homs ensure that

RHom g¢ (7, §) ~ Hom 5 (F*¢, 1)

RHom g, (7. ) ~ Hom g (F,"“, I*),
where § — I°®is a K-injective resolution. Now we recall the term-wise equalities

Hom'é;;((f""“,f"“): 1_[ Hom gq (%4, I74)
p+q=n

Homp (7,74, I°) = 1_[ Hom o, (%, *, I?).
p+a=n

Thus Lemma 3.2.3 produces term-wise isomorphisms
Kkn: Hom ’(’95,( (¥4, I%%) — Homp, ("%, I*)

that commute with the differentials by inspection, therefore defining the desired iso-
morphism of complexes.

Parts (2) and (3) are identical to Lemma 2.4.3 (2). [ ]

Definition 3.5.6. We define the derived almost Hom functors

RalHom p¢ (—, —): DX x D(X%) — D(X9),
RalHomeg (—, —): D(X*) x D(X%) — D(R?)

as

RalHom o (7¢,9%) := RHom 0 (F7,9%)% = RHom o, (7", 9)“,
RalHomgq (¢, 6“) :== RHomeg (¢, 9%)* = RHomg, (#,*,9)".

Definition 3.5.7. The global almost Ext modules are defined as the R“-modules
alExt’O)a( (¥4,8% :=H (RalHomgg (¥¢,69)) for 74,5 € Mody .

We define the local almost Ext sheaves as the O§-modules alExt ‘é)a( (74,89) .=
H'(RalHom 0% (¥4,8%) for 4,6 € Mod.
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Proposition 3.5.8. Let (X, Ox) be a ringed R-site.

(1) There is a natural transformation of functors

RHom ¢, (——)

D(X)® x D(X) s D(X)

) x(—)al 7 l(—)a

D(X9) x D(X?) y D(X)

RalH ——
a om@f\z/( )

that makes the diagram (2, 1)-commutative. In particular, it yields an isom-
prphism RalHom g¢ (7%,6%) ~ RHom g, (¥.9)" forany ¥,9 € D(X).
(2) Forany 9 € Mod%, the functor RalHom 0% (F2,—):DX)* > D(X)%is
isomorphic to the (right) derived functor of alHom g¢ (F¢,-).
(3) The analogous results hold true for the functor RalHom@; (—,—).

Proof. The proof is identical to that of Proposition 2.4.8. One only needs to use
Proposition 3.2.10 in place of Proposition 2.2.1 (3). |

Now we deal with the case of the derived tensor product functor. We will show
that our definition of the derived tensor product functor makes RalHom 0% (—,—) into
the inner Hom functor.

Definition 3.5.9. We say that a complex of O%-modules F* is almost K-flat if the

naive tensor product complex €* ®:9)a( F %% is acyclic for any acyclic complex €*¢
of O%-modules.

Lemma 3.5.10. The functor (—)*: Comp(Ox) — Comp(O%) sends K -flat Ox -com-
plexes to almost K-flat O% -complexes.

Proof. The proof Lemma 2.4.10 applies verbatim. ]

Lemma 3.5.11. Let f:(X,Ox) — (Y, Oy) be a morphism of ringed R-sites, and let
F*% € Comp(0%) be an almost K-flat complex. Then f*(F*?) € Comp(0%) is
almost K -flat.

Proof. The proof of [68, Tag 06Y W] works verbatim in this situation. ]

Corollary 3.5.12. Every object ¥*¢ € Comp(0%) is quasi-isomorphic to an almost
K-flat complex.

Proof. The proof of Corollary 2.4.11 applies verbatim with the only difference that
one needs to use [68, Tag 06 YF] in place of [68, Tag 06Y4]. [
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Definition 3.5.13. We define the derived tensor product functor
- ®(L,; —D(X)? x D(X)* — D(X)*
by the rule (¥¢,9%) — (6 ®éX 6))¢ for any 4,6 € D(X)“.

Proposition 3.5.14. (1) There is a natural transformation of functors

D(X) x D(X) Pox s D(X)

(—)ax<—)al / l(—)“

D(X)? x D(X)® - y D(X)*

that makes the diagram (2, 1)-commutative. In particular, there is a functorial
isomorphism (¥ ®éX 9)¢ ~ 74 RL, 69 forany .8 € D(X).
X
(2) For any chosen ¥* € Mody, the functor ¢ ®1L2a —D(X)* - D(X)% is
isomorphic to the (left) derived functor of ¥ ¢ Ry —

Proof. Again, the proof is identical to that of Proposition 3.5.14. The only non-trivial
input that we need is the existence of sufficiently many K-flat complexes of O%-
modules. But this is guaranteed by Corollary 3.5.12. |

Remark 3.5.15. For any ¥¢,9¢ € D(X)%, there is a canonical morphism
RalHom g¢ (79, §%) ®g, ¥° — §°

that, after the identifications from Proposition 3.5.8 and Proposition 3.5.14, is the
almostification of the canonical morphism

RHom g, (7%, 9) ®g, 5" — &
from [68, Tag 0A8V].

Lemma 3.5.16. Let (X, Ox) be a ringed R-site, and let F¢,8%, #% € D(X)?. Then
we have a functorial isomorphism

RHom p¢ (7 ®é§,( g9, #“) ~ RHom 0 (¢, RalHom ga (8%, #9)).
This induces functorial isomorphisms
RHomgg (37“ ®é§ g, J(“) ~ RHompg (J’7a, RalHom g« (7, %”)),
RalHom 0 (37" ®é§,( g4, J€a) ~ RalHom 0% (3‘7“, RalHom g« (9%, Jf“)),
RalHomeg (¢ ®gq . #*) =~ RalHomgg (7, RalHom ga (9%, J)).
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Proof. The proof of the first isomorphism is very similar to that of Lemma 2.4.14.
We leave the details to the interested reader. The second isomorphism comes from
the fist one by applying the functor RT" (X, —). The third and the fourth isomorphisms
are obtained by applying (—)“ to the first and the second isomorphisms respectively.
Here, we implicitly use Proposition 3.5.8. ]

Corollary 3.5.17. Let (X, Ox) be a ringed R-site, and let §% € D(X)“*. Then the
Sfunctors

RalHom o (%, —): D(X)* — D(X)*: - ®L5,( g

are adjoint.

Now we discuss the almost analogues of derived pullbacks and derived pushfor-
wards. We start with the derived pullbacks:

Definition 3.5.18. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. We
define the derived pullback functor

Lf*D(Y)* — D(X)*

as the derived functor of the right exact, additive functor f*: Mody — ModY.

Remark 3.5.19. We need to explain why the desired derived functor exists and how
it can be computed. It turns out that it can be constructed by choosing K-flat res-
olutions, the argument for this is identical to [68, Tag 06YY]. We only emphasize
that three main inputs are Lemma 3.5.11, Lemma 3.5.10, and an almost analogue of
[68, Tag 06YG].

Proposition 3.5.20. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites.
Then there is a natural transformation of functors

py) —" L px)

|

D(Y)“ 0 D(X)“

that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism (L f*%)* ~ L f*(£?) forany ¥ € D(Y).

Proof. We construct the natural transformation p: L f* o (=)¢ = (—=)% o L f* as fol-
lows: Pick any object ¥ € D(Y) and its K-flat representative K®, then K* is adapted
to compute the usual derived pullback L f*. Lemma 3.5.11 ensures JK*? is also
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adapted to compute the almost version of the derived pullback L f*. So we define the
morphism

py: (fF(® K*))* — fH(K®)*

as the natural morphism induced by m ® K* — K. This map is clearly functorial,
so it defines a transformation of functors p. To show that it is an isomorphism of
functors, it suffices to show that the map

frame K — 1K)

is an almost isomorphism of complexes for any K-flat complex K*°. But this is clear
as m ® K*® — K* is an almost isomorphism, and Corollary 3.2.18 ensures that f™*
preserves almost isomorphisms. ]

Definition 3.5.21. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. We
define the derived pushforward functor

Rf:D(X)? — D(Y)*

as the derived functor of the left exact, additive functor f: M0d§’( — Mod‘,’,.
We define the derived global sections functor RT' (U, —): D(X)? — D(R)% in a
similar way for any open U C X.

Remark 3.5.22. This functor exists by abstract nonsense (i.e., [68, Tag 070K]) as the
category Mod§ has enough K-injective complexes by Corollary 3.4.7.

Proposition 3.5.23. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites.
Then there is a natural transformation of functors

DY) — R py)

o

D(X)? T> D(Y)?
that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism (R f )% ~ R fi.(F?) for any F € D(X). The analogous results hold for
the functor RT (U, —).

Proof. The proof is very similar to that of Proposition 3.5.20. The main essential
ingredients are: (—)? sends K -injective complexes to K -injective complexes, and f
preserves almost isomorphisms. These two results were shown in Lemma 3.4.6 and
Lemma 3.2.23. ]
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Lemma 3.5.24. Let (X, Ox) be a ringed R-site, let ¥ be an O%-module, and let
U € X be an open object. Then we have a canonical isomorphism

RT (U, RalHom g (¥, 9)) ~ RalHomgg (¥|v, §°|v)

Proof. This easily follows from Remark 3.5.4, Proposition 3.5.8, and finally Propo-
sition 3.5.23. ]

Lemma 3.5.25. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. Then
there is a functorial isomorphism

R f«RHom ¢ (Lf*%%, 6% ~ RHom oe (F4 RfGY)
for F* € D(Y)4, 62 € D(X)“. This isomorphism induces isomorphisms
R f«RalHom ¢ (Lf*%%, 6% ~ RalHom ou (F4 Rf59),
RHomgg (Lf*F4, 8% ~ RHomgg (¢, R f5%),
RalHomgg (Lf*F4, 8% ~ RalHomgg (¥, R £, §9).
Proof. Tt is a standard exercise to show that the first isomorphism implies all other
isomorphisms by applying certain functors to it, so we deal only with the first one.
The proof of the first one is also quite standard and similar to Lemma 3.2.26, but

we spell it out for the reader’s convenience. The desired isomorphism comes from a
sequence of canonical identifications:

R f.RHom gg (L f*(F%). §%)

~ R f«RHom g¢ (L f* ()", ) Proposition 3.5.20
~ R f,RHom g, (W @ Lf*(F), %) Lemma 3.5.5 (1)
~ Rf,RHom g, (L/* (WM ® 7)., %) Lemma 3.2.17
~ RHom g, (T ® #,R /(%)) classical
~ RHom ga (¥, R f«(9)“) Lemma 3.5.5 (1)
~ RHom p¢ (F*RfA(ED) Proposition 3.5.23. [

Corollary 3.5.26. Let f:(X,Ox) — (Y, Oy) be a morphism of ringed R-sites. Then
the functors R fiu(—):D(X)? &= D(Y)*:Lf*(—) are adjoint.

Now we discuss the projection formula in the world of almost sheaves. Sup-
pose f:(X,0Ox) — (Y, Oy) is a morphism of ringed R-sites, ¢ € D(X)%, and
§% € D(Y)?. We wish to construct the projection morphism

o:Rf(F9) ®g¥ g — R fi(F° ®g§,( Lf*($9).
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By Corollary 3.5.26, it is equivalent to constructing a morphism
. frod L I g L
T LI (RA(F) ®ga §°) > F* ®ga L (5.
We define 7 as the composition of the natural isomorphism
L (Rf(F) ®Gg 9°) ~ Lf*(RA(F)) ®gg Lf*(57)
and the morphism

L/ (RA(F) @y L7 (5% 25 7 @b, L")

induced by the counit of the (L f*, R f;)-adjunction.

Proposition 3.5.27. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites,
F?eD(X)4 and § € D(Y) a perfect complex. Then the projection morphism

o:Rf(F9) ®{;by, g — R fi(F* ®g§ Lf*($%)
is an isomorphism in D(Y)%.

Proof. The claim is local on Y, so we may assume that § is isomorphic to a bounded
complex of finite free Oy-modules. Then an easy argument with naive filtrations
reduces the question to the case when § = OF. This case is essentially obvious. m



Chapter 4

Almost coherent sheaves on schemes and formal
schemes

In this chapter, we develop a theory of almost coherent sheaves on schemes, and on a
“nice” class of formal schemes.

4.1 Schemes. The category of almost coherent O} -modules

In this section we discuss the notion of almost quasi-coherent, almost finite type,
almost finitely presented and almost coherent sheaves on an arbitrary scheme. One of
the main goals is to show that almost coherent sheaves form a weak Serre subcategory
in Ox-modules. Another important result is the “approximation” Corollary 4.3.5; it
will play a key role in reducing many global results about almost finitely presented
Ox-modules to the classical case of finitely presented Oxy-modules. In particular,
we follow this approach in our proof of the almost proper mapping theorem in Sec-
tion 5.1.

As always, we fix aring R with an ideal m such that m = m? and T = m @ g m
is R-flat. We always do almost mathematics with respect to this ideal. In what fol-
lows, X will always denote an R-scheme. Note that this implies that X is a locally
spectral, ringed R-site, so the results of Chapter 3 and in particular Section 3.3 apply.

We begin with some definitions:

Definition 4.1.1. We say that an O§-module ¥ ¢ is almost quasi-coherent if the asso-
ciated Ox-module #* ~ m ® ¥ is quasi-coherent.

We say that an Ox-module ¥ is almost quasi-coherent if ¥ ¢ is an almost quasi-
coherent @5 -module.

Remark 4.1.2. Any quasi-coherent Ox-module is almost quasi-coherent.

Remark 4.1.3. We denote by Mod;f,f C Modyua the full subcategory consisting of
almost quasi-coherent @5 -modules. It is straightforward' to see that the “almostifi-
cation” functor induces an equivalence

Mody; ~ Mody, /(Sx N Mody,),

ie., Mod;lz is equivalent to the quotient category of quasi-coherent Qy-modules by
the full subcategory of almost zero, quasi-coherent Qx-modules.

I'The proof is completely similar to the proof of Theorem 3.1.20 or Theorem 3.4.9.
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Definition 4.1.4. We say that an 05 -module ¥ is of almost finite type (resp. almost
finitely presented) if ¥¢ is almost quasi-coherent, and there is a covering of X by
open affines {U; }iey such that £%(U;) is an almost finitely generated (resp. almost
finitely presented) O% (U;)-module.

We say that an Ox-module ¥ is of almost finite type (resp. almost finitely pre-
sented) if so is 4.

Remark 4.1.5. We denote by Modj,lfc’aft (resp. Mod‘}f’afp) the full subcategory of
Mody consisting of almost finite type (resp. almost finitely presented) quasi-coherent
Ox-modules. Similarly, we denote by Mod}‘(fﬁz (resp. Mod;l(fﬂ) the full subcategory of
Mody« consisting of almost finite type (resp. almost finitely presented) @§-modules.
Again, it is straightforward to see that the “almostification” functors induce equiva-

lences
Modyl, ~ Mod¥""/(Sx N Mods™"), Modyh ~ Mod*?/(Sx N Mod*?).

Remark 4.1.6. Recall that, in the usual theory of Ox-modules, finite type Ox-mod-
ules are usually not required to be quasi-coherent. However, it is more convenient
for our purposes to put almost quasi-coherence in the definition of almost finite type
modules.

The first thing that we need to check is that these notions do not depend on a
choice of an affine covering.

Lemma 4.1.7. Let ¥¢ be an almost finite type (resp. almost finitely presented) O% -
module on an R-scheme X. Then ¥4 (U) is an almost finitely generated (resp. almost
finitely presented) O% (U)-module for any open affine U C X.

Proof. First, Corollary 2.5.12 and Lemma 3.3.1 imply that for any open affine U,
F4(U) is almost finitely generated (resp. almost finitely presented) if and only if so
is (M ® F¢)(U). Thus, we can replace ¢ by # >~ m ® ¥ to assume that 5 is an
honest quasi-coherent Qx-module.

Now Lemma 2.8.1 guarantees that the problem is local on X. So we can assume
that X = U is an affine scheme and we need to show that & (X) is almost finitely
generated (resp. almost finitely presented).

We pick some covering X = (J;_, U; by open affines U; such that % (U;) is
almost finitely generated (resp. almost finitely presented) as an Ox (U;)-module. We
note that since ¥ is quasi-coherent, we have an isomorphism

FUi) ~ F(X) ®oyx) Ox (U;).
Now we see that the map Ox (X) — []/_; Ox (U;) is faithfully flat, and the module

F(X) oy (x) (ﬁ (9X(Ui)) ~ (ﬁ @X(Ui)) ®ox(x) F(X)
i=1

i=1
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is almost finitely generated (resp. almost finitely presented) over [/, Ox (U;). Thus,
Lemma 2.10.5 guarantees that ¥ (X)) is almost finitely generated (resp. almost finitely
presented) as an Ox (X )-module. ]

Corollary 4.1.8. Let X = Spec A be an affine R-scheme, and let ¢ be an almost
quasi-coherent O%-module. Then ¢ is almost finite type (resp. almost finitely pre-
sented) if and only if T'(X, F%) is almost finitely generated (resp. almost finitely
presented) A-module.

Now we check that almost finite type and almost finitely presented @5 -modules
behave nicely in short exact sequences.

v
Lemma 4.1.9. Ler 0 — '@ % ga X g7a 0 be an exact sequence of O%-
modules.

(1) If ¢ is almost of finite type and F''* is almost quasi-coherent, then ¥ is
almost finite type.

2) If F'* and F"* are of almost finite type (resp. finitely presented), then so
is 4.

(3) If ¥4 is of almost finite type and F"* is almost finitely presented, then F'*
is of almost finite type.

@) If ¢ is almost finitely presented and F'* is of almost finite type, then "¢
is almost finitely presented.

Proof. First of all, we apply the exact functor (—); to all @§-modules in question to
assume the short sequence is an exact sequence of Ox-modules and all Ox-modules
in this sequence are quasi-coherent. Note that we implicitly use here that quasi-
coherent modules form a Serre subcategory of all Oxy-modules by [68, Tag O1IE].
Then we check the statement on the level of global sections on all open affine sub-
schemes U C X using that quasi-coherent sheaves have vanishing higher cohomology
on affine schemes. That is done in Lemma 2.5.15. ]

Definition 4.1.10. An O%-module ¥ is almost coherent if ¥ ¢ is almost finite type,
and for any open set U, any almost finite type Of,-submodule §¢ C (¥¢|y) is an
almost finitely presented Of;-module.

We say that an Ox-module ¥ is almost coherent if ¥
O%-module.

2 is an almost coherent

Lemma 4.1.11. Let X be an R-scheme, and let ¥ be an O%-module. Then the
following are equivalent:

(1) F2 is almost coherent;

(2) F%is almost quasi-coherent, and the O% (U )-module ¢ (U ) is almost coher-
ent for any open affine subscheme U C X;
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(3) F¢ is almost quasi-coherent, and there is a covering of X by open affine
subschemes {U;}iey such that F%(U;) is almost coherent for each i.

In particular, if X = Spec A is an affine R-scheme and ¥ ¢ is an almost quasi-
coherent O%-module, then ¥ is almost coherent if and only if ¥9(X) is almost

coherent as an A-module.

Proof. We start the proof by noting that we can replace ¥ by ¥,* to assume that ¥
is a quasi-coherent Ox-module.

First, we check that (1) implies (2). Given any affine open U C X and any
almost finitely generated almost submodule M* C ¥ (U)“%, we define an almost sub-
sheaf (]\Tf)y C (Flu)?*. We see that (J\T“d)! must be an almost finitely presented
Oy-module, so Lemma 4.1.7 guarantees that My is an almost finitely presented
Ox (U)-module. Therefore, any almost finitely generated submodule M¢ C ¥ (U )%
is almost finitely presented. This shows that ¥ (U) is almost coherent.

Now we show that (2) implies (1). Suppose that ¥ is almost quasi-coherent and
F (U) is almost coherent for any open affine U C X. First of all, it implies that ¥
is of almost finite type, since this notion is local by definition. Now suppose that we
have an almost finite type almost Ox-submodule § C (¥ |y )¢ for some open U. It is
represented by a homomorphism

fegsF

with & being an @x-module of almost finite type, and Tt ® Ker g >~ 0. We want to
show that § is almost finitely presented as an Oy -module. This is a local question, so
we can assume that U is affine. Then Lemma 3.3.1 implies that the natural morphism

gU):mrEWU) — F(U)

defines an almost submodule of % (U). We conclude that i ® g §(U) is almost
finitely presented by the assumption on % (U). Since the notion of almost finitely
presented Oy -module is local, we see that & is almost finitely presented.

Clearly, (2) implies (3), and it is easy to see that Corollary 2.10.6 guarantees
that (3) implies (2). [ ]

Corollary 4.1.12. Let X be an R-scheme.

(1) Any almost finite type O%-submodule of an almost coherent O%-module is
almost coherent.

(2) Let ¢: ¥ — §% be a homomorphism from an almost finite type O%-module
to an almost coherent O%-module, then Ker(¢) is an almost finite type O%-
module.

() Let ¢: ¥ — §% be a homomorphism of almost coherent O%-modules, then
Ker(¢) and Coker(p) are almost coherent O5 -modules.
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(4) Given a short exact sequence of O -modules
0> F"* > F?—>F" >0,
if two out of three are almost coherent, so is the third.

Proof. The proofs of parts (1), (2) and (3) are quite straightforward. As usually, we
apply (—): to assume that all sheaves in question are quasi-coherent Oy-modules.
Then the question is local and it is sufficient to work on global sections over all affine
open subschemes U C X. So the problem is reduced to Lemma 2.6.8.

The proof of part (4) is similar, but we need to invoke that given a short exact
sequence of Qx-modules

0> 5> %> " -0,

if two of these sheaves are quasi-coherent, so is the third one. This is proven in the
affine case in [68, Tag O11E], the general case reduces to the affine one. The rest of
the argument is the same. |

Definition 4.1.13. We define the categories Modi*" (resp. Modgf’mh, resp. Modis"
as the full subcategory of Mody (resp. Mody, resp. Modx«) consisting of the almost
coherent Oy-modules (resp. quasi-coherent almost coherent modules, resp. almost
coherent almost Ox-modules). As always, it is straightforward to see that the “almos-
tification” functor induces the equivalence

Modis" ~ Mod$*™"/(Sx N Mod§***").

Moreover, Corollary 4.1.12 ensures that M0d§(°°h C Mody, Mod;l(c’acoh C Mody, and
Modis" C Modya are weak Serre subcategories.

The last thing that we discuss here is the notion of almost coherent schemes.

Definition 4.1.14. We say that an R-scheme X is almost coherent if the sheaf Oy is
an almost coherent @x-module.

Lemma 4.1.15. Let X be a coherent R-scheme. Then X is also almost coherent.

Proof. The structure sheaf Oy is quasi-coherent by definition. Lemma 4.1.11 says
that it suffices to show that Ox (U) is an almost coherent Ox (U )-module for any
open affine U C X. Since X is coherent, we conclude that Ox (U) is coherent as an
Ox (U)-module. Then Lemma 2.6.7 implies that it is actually almost coherent. ]

Lemma 4.1.16. Let X be an almost coherent R-scheme. Then an O%-module ¥ is
almost coherent if and only if it is of almost finite presentation.

Proof. The “only if” part is easy since any almost coherent O%-module is of almost
finite presentation by definition. The “if” part is a local question, so we can assume
that X is affine, then the claim follows from Lemma 2.6.14. [
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4.2 Schemes. Basic functors on almost coherent (95’( -modules

This section is devoted to study how certain functors defined in Section 3.2 inter-
act with the notions of almost (quasi-) coherent @%-modules defined in the previous
section.

As always, we fix aring R with an ideal m such that m = m? and it = m @ g m
is R-flat. We always do almost mathematics with respect to this ideal.

We start with the affine situation, i.e., X = Spec A. In this case, we note that
the functor (:3: Mody — Modgl(C sends almost zero A-modules to almost zero Ox-
modules. Thus, it induces the functor

(9):Moda — Mody.

Lemma 4.2.1. Let X = Spec A be an affine R-scheme. Then forany * € {« 7, aft, afp,
acoh}, the functor (—):Mod 4 — Mod}](c induces equivalences (—):Mod}; — Mod‘;(c’*.
The quasi-inverse functor is given by I' (X, —).

Proof. We note that the functor 2:5: Mody — Mod;l(C is an equivalence with the
quasi-inverse I'(X, —). Now we note that Corollary 4.1.8 and Lemma 4.1.11 guar-
antee that a quasi-coherent Qx-module ¥ is almost finite type (resp. almost finitely
presented, resp. almost coherent) if I' (X, ') is almost finitely generated (resp. almost
finitely presented, resp. almost coherent) as an A-module. ]

Lemma 4.2.2. Let X = Spec A be an affine R-scheme. Then for any x € {“ 7, aft, afp,
acoh}, the functor (:5: Mod g« — Mod';(qi induces an equivalence (:ja: Mod g« —
Mod;l(qz and restricts to further equivalences (:_5“: Mod}, — Mody.. The quasi-
inverse functor is given by I' (X, —).

Proof. We note that E:SZ Mody — Mod;](C induces an equivalence between almost
zero A-modules and almost zero, quasi-coherent Oy -modules. Thus, the claim fol-
lows from Lemma 4.2.1, Remark 4.1.3, Remark 4.1.5, Definition 4.1.13 and the anal-
ogous presentations of Mod. as quotients of Mod« for any * € {aft, afp,acoh}. m

Now we show that the pullback functor preserves almost finite type and almost
finitely presented O%-modules.

Lemma 4.2.3. Let f: X — Y be a morphism of R-schemes.

(1) Suppose that X = Spec B, Y = Spec A are affine R-schemes. Then f*(M?)
is functorially isomorphic to M?* ®4a B? for any M* € Modj.
(2) The functor f* preserves almost quasi-coherence (resp. almost finite type,

resp. almost finitely presented) for O-modules.

(3) The functor f* preserves almost quasi-coherence (resp. almost finite type,
resp. almost finitely presented) for O%-modules.
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Proof. (1) follows from Proposition 3.2.19 and the analogous result for quasi-coher-
ent Oy -modules. More precisely, Proposition 3.2.19 provides us with the functorial
isomorphism

017 = (£ ()" = (M @5 B)" ~ M* @0 B°.

Now we note that (2) and (3) are local on X and Y, so we may and do assume that
X = Spec B, Y = Spec A are affine R-schemes. Furthermore, it clearly suffices to
prove (2) as (3) follows formally from it.

Now Lemma 4.2.2 guarantees that any almost quasi-coherent @5 -module is iso-
%ﬁﬁ for some A*-module M¢. Furthermore, (1) ensures that f *(W) >~
M*“ ®4a B is an almost quasi-coherent @§-module. The other claims from (2) are
proven similarly using Lemma 4.2.2 and Lemma 2.8.1. ]

Now we discuss that tensor product preserves certain finiteness properties of
almost sheaves.

Lemma 4.2.4. Let X be an R-scheme.

(1) Suppose that X = Spe%ﬁne R-scheme. Then M4 Rog N s Sfunc-
torially isomorphic to M® @a N¢ for any M?*, N¢ € Mod.

(2) Let ¥9,6% be two almost finite type (resp. almost finitely presented) O%-
modules. Then the O%-module ¢ Ro¢ G2 is almost finite type (resp. almost
finitely presented). The analogous result holds for Ox-modules ¥, S .

(3) Let ¥¢ be an almost coherent O%-module, and let §° be an almost finitely
presented Oy -module. Then ¥ @gg § is an almost coherent Oy -module.
The analogous result holds for Ox-modules ¥, 8.

Proof. The proof is similar to the proof of Lemma 4.2.3. The only difference is that
one needs to use Proposition 3.2.12 in place of Proposition 3.2.19 to prove Part (1).
Part (2) follows from Lemma 2.5.17, and Part (3) follows from Corollary 2.6.9. [

We show that f; preserves almost quasi-coherence of @%-modules for any quasi-
compact and quasi-separated morphism f'. Later on, we will be able to show that f
also preserves almost coherence of @“-modules for certain proper morphisms.

Lemma 4.2.5. Let f: X — Y be a quasi-compact and quasi-separated morphism of
R-schemes.

(1) The Oy-module f«(F) is almost quasi-coherent for any almost quasi-coher-
ent Ox-module ¥ .

(2) The OF-module fi(¥¢) is almost quasi-coherent for any almost quasi-co-
herent O%-module 5.
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Proof. Since ¥ is almost quasi-coherent, we conclude that mt ® ¥ is a quasi-coher-
ent Ox-module. Thus f, (Tl ® ¥) is a quasi-coherent Oy -module by [68, Tag 01LC].
Recall that the projection formula (Lemma 3.3.4) ensures that

f[r(MRF)>mQ fiufF.

Thus, we see that Mt ® fiF =~ fi(F9), is a quasi-coherent Oy -module. This shows
that both f.(F) and f.(F?) are almost quasi-coherent over Oy and 0%, respec-
tively. This finishes the proof. ]

Finally, we deal with the Hom 0% (=, —) functor. We start with the following
preparatory lemma:
Lemma 4.2.6. Let X be an R-scheme.

(1) Suppose X = Spec A is an affine R-scheme. Then the canonical map

Homy (M., N) — Hom g, (M, N) “2.1)

is an almost isomorphism of Ox-modules for any almost finitely presented
A-module M and any A-module N.

(2) Suppose X = Spec A is an affine R-scheme. Then there is a functorial iso-
morphism

alHoma (M, N“) = alHom g¢ (M, N¥) 4.2.2)

of O%-modules for any almost finitely presented A%-module M, and any
A%-module N¢. We also get a functorial almost isomorphism

Hom, (M. N) ~° Hom g (M%, N%) (4.2.3)

of Ox-modules for any almost finitely presented A-module M, and any A-
module N .

(3) Suppose ¥ is an almost finitely presented Ox-module and '§ is an almost
quasi-coherent Ox -module, then Hom o, (¥, §) is an almost quasi-coherent
Ox-module.

(4) Suppose ¢ is an almost finitely presented O%-module and §¢ is an almost
quasi-coherent Oy -module, then Hom g¢ (¥ ¢,6%) (resp. alHom g¢ (¥,§))
is an almost quasi-coherent Ox -module (resp. Q% -module).

Proof. (1) Note the canonical morphism Homy (M, N) — Homg, (M, N ) for any
A-modules M, N. This induces a morphism

HomN) — Hom g, (M, N).
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In order to show that it is an almost isomorphism for an almost finitely presented M,
it suffices to show that the natural map

Homy (M, N) ®4 Af — HOl‘IlA/.(M R4 Af, N ®4 Af)

is an almost isomorphism for any f € A. This follows from Lemma 2.9.11.
(2) follows easily from (1). Indeed, we apply the functorial isomorphism

Hom o, (¥.9)* ~ alHom ¢ (74,69

from Proposition 3.2.10 (2) to the almost isomorphism in Part (1) to get a functorial
isomorphism

Homy (M, N)? ~ alHom ¢ (M%,N%).
Now we use Proposition 2.2.1 (3) to get a functorial isomorphism

alHomya (M %, N?) ~ Homy (M, N ).

Applying the functor (:5 to this isomorphism and composing it with the isomorphism
above, we get a functorial isomorphism

alHonWN“) =~ alHom pg (W, ]’\771).

The construction of the isomorphism (4.2.3) is similar and even easier.
(3) is a local question, so we can assume that X = Spec A. We note that

Hom o, (¥.%) ~* Homp, (M Q@ F, M Q)

by Proposition 3.2.10 (2). Thus, we can assume that both ¥ and § are quasi-coherent.
Then the claim follows from (1) and Lemma 4.2.1.
(4) is similarly just a consequence of (2) and Lemma 4.2.2. ]

Corollary 4.2.7. Let X be an R-scheme.

(1) Let ¥ be an almost finitely presented Ox-module, and let § be an almost
coherent Ox -module. Then Hom o, (¥, ) is an almost coherent Ox -module.

(2) Let ¥ be an almost finitely presented O%-module, and let % be an almost
coherent Oy -module. Then Hom gg (¥, 5%) (resp. alHom gg (¥4, 5%)) is
an almost coherent Ox -module (resp. Og-module).

Proof. We start by observing that Hom g, (¥,9) ~“ Hom g, (m ® ¥, m ® §) by
Proposition 3.2.10 (2). Thus we can assume that both ¥ and § are actually quasi-
coherent. In that case we use Lemma 4.2.6 (1) and Lemma 4.1.11 to reduce the
question to showing that Hom 4 (M, N) is almost coherent for any almost finitely
presented M and almost coherent N. However, this has already been done in Corol-
lary 2.6.9.

Part (2) follows from Part (1) thanks to the isomorphisms Hom gg¢ (¥, §) =~
Hom o, (%, %) and alHom g¢ (¥, %“) >~ Hom ¢, (¥, ). ]
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4.3 Schemes. Approximation of almost finitely presented O -modules

One of the defects of our definition of almost finitely presented Ox-modules is that it
is (Zariski)-local on X'; we require the existence of an approximation by finitely pre-
sented O -modules only Zariski-locally on X . In particular, this definition is not well
adapted to proving global statements such as the almost proper mapping theorem. We
resolve this issue by showing that (on a quasi-compact quasi-separated scheme) any
almost finitely presented @%-module can be globally approximated by finitely pre-
sented Qx-modules.

As always, we fix aring R with an ideal m such that m = m? and Tt = m @ g m
is R-flat. We always do almost mathematics with respect to this ideal.

Lemma 4.3.1. Let X be an R-scheme, and {§}ic; a filtered diagram of almost
quasi-coherent O -modules.

(1) The natural morphism
Yy colim; alHom g, (¥¢, §{) — alHom @, (¥, colim; )
is injective for an almost finitely generated O%-module ¥ °.
(2) The natural morphism
y§: colimy alHom o, (¥¢, §f) — alHom g, (¥4, colim; )
is an almost isomorphism for an almost finitely presented 0% -module ¥ .

Proof. The statement is local, so we can assume that X = Spec A is an affine scheme.
Then Lemma 4.2.2 implies that ¢ ~ M and §/ ~ N/ for an almost finitely
generated (resp. almost finitely presented) A-module M. Then [68, Tag 009F] and
Lemma 4.2.6 imply that it suffices to show that

yay: colim; alHomya (M#, Nf) — alHomua (M, colim N}*)
is injective (resp. an isomorphism) in Mod%. But this is exactly Corollary 2.5.11. m

Corollary 4.3.2. Let X be a quasi-compact and quasi-separated R-scheme, and
{8/ }ier a filtered diagram of almost quasi-coherent O -modules.

(1) The natural morphism
vy colimy alHomg,, (F¢,6%) — alHomg, (¥, colim; §7)

is injective for an almost finitely generated O%-module .

(2) The natural morphism
y%: colimy alHomg,, (¥, §/) — alHomg, (¥, colim; §;)

is an almost isomorphism for an almost finitely presented 0% -module 5.
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Proof. It formally follows from Lemma 3.2.25, Lemma 4.3.1, and [68, Tag 009F]
(and Corollary 3.1.18). [ ]

Definition 4.3.3. An Ox-module F is globally almost finitely generated (resp. glob-
ally almost finitely presented) if, for every finitely generated ideal mo C m, there
are a quasi-coherent finitely generated (resp. finitely presented) Ox-module § and a
morphism f:§ — ¥ such that m(Ker f) = 0, mo(Coker f) = 0.

Lemma 4.3.4. Let X be a quasi-compact and quasi-separated R-scheme, and ¥ an
almost adically quasi-coherent Ox -module.

(1) If, for any filtered diagram of adically quasi-coherent Ox-modules {G; }icy,
the natural morphism

colim; Homg, (¥, §;) — Homg, (¥, colim; §;)

is almost injective, then ¥ is globally almost finitely generated.

(2) If, for any filtered system of adically quasi-coherent Ox -modules {§;}icy, the
natural morphism

colim; Home, (¥, §;) — Homg, (¥, colim; ;)
is an almost isomorphism, then ¥ is globally almost finitely presented.

Proof. Lemma 3.2.25 and Corollary 3.1.18 ensure that we can replace ¥ with ¥
without loss of generality. So, we may and do assume that ¥ is quasi-coherent. Then
the proof of Lemma 2.5.10 works essentially verbatim. We repeat it for the reader’s
convenience.

(1) Note that ¥ ~ colimy ¥; is a filtered colimit of its finitely generated Ox-
submodules (see [68, Tag 01PG]). Therefore, we see that

colim; Homg,, (¥, ¥ /¥;) ~* Home, (¥, colim; (¥ /%)) =~ 0.

Consider an element « of the colimit that has a representative the quotient mor-
phism ¥ — ¥ /%; (for some choice of i). Then, for every ¢ € m, we have e = 0
in colim; Homg, (¥, ¥ /¥%;). Explicitly this means that there is j > i such that
e¥ C Fj. Now note that this property is preserved by replacing j with any j’' > j.
Therefore, for any g = (¢1,...,&,), We can find a finitely generated Ox -submodule
Fi C F such that moF C F;. Therefore, ¥ is almost finitely generated.

(2) Fix any finitely generated sub-ideal my = (g1, ..., &,) C m. We use [68,
Tag 01PJ] to write ¥ =~ colimp ¥ as a filtered colimit of finitely presented Ox-
modules. By assumption, the natural morphism

colimpy Homg, (¥, ¥3) — Homg, (¥, colimp ¥,) = Homg, (¥, F)
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is an almost isomorphism. In particular, ¢;id# lies in the image of this map for
every i = 1,...,n. This means that, for every ¢&;, there are A; € A and a morphism
gi: ¥ — ¥, such that the composition satisfies

fi; 08 = &idg,

where f3,: ¥3, — F is the natural morphism to the colimit. Note that the existence
of such a g; is preserved by replacing A; with any A} > A;. Therefore, using that { ¥} }
is a filtered diagram, we can find an index A with maps

gi:¥F — F)
such that fj o g; = ¢;id#. Now we consider the morphism
G; = gio [ —e&idg,: F) — F,.
Note that Im(G;) C Ker(f}) because
faogio fo— freiidg, =¢&ifi—¢& f =0.

We also have that ¢; Ker(f) C Im(G;) because G |ker(r,) = €iid. So, Y, Im(G;) is
a quasi-coherent finitely generated @y -module such that

mo(Ker f3) C ZIm(Gi) C Ker(fy).

Therefore, f: ¥’ := F,/(3_; Im(G;)) — ¥ is a morphism such that ¥ is finitely
presented, nig(Ker f) = 0, and mg(Coker f) = 0. Since my C mt was an arbitrary
finitely generated sub-ideal, we infer that ¥ is globally almost finitely presented. m

Corollary 4.3.5. Let X be a quasi-compact and quasi-separated R-scheme, and
let ¥ be an almost quasi-coherent Ox-module. Then ¥ is almost finitely presented
(resp. almost finitely generated) if and only if for any finitely generated ideal my C m
there is a morphism f:§ — ¥ such that § is a quasi-coherent finitely presented
(resp. finitely generated) Ox-module, mo(Ker ) = 0 and my(Coker ) = 0.

Proof. Corollary 4.3.2 ensures that ¥ satisfies the conditions of Lemma 4.3.4. Now,
Lemma 4.3.4 gives the desired result. u

Corollary 4.3.6. Let X be a quasi-compact and quasi-separated R-scheme, and ¢
an almost quasi-coherent Q% -module.

(1) F¢ is almost finitely generated if and only if, for every filtered diagram
{8 }ier of almost quasi-coherent O% -modules, the natural morphism

colimy alHomgg (¥4, 4;") — alHomea (¥, colim; ;)

is injective in Mod%.
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(2) F* is almost finitely presented if and only if, for every filtered diagram
19 }ier of almost quasi-coherent O -modules, the natural morphism

colim; alHomgg (¥, 4;") — alHomeg (¥, colim; ;)

is an isomorphism in Mod%.

4.4 Schemes. Derived category of almost coherent @} -modules

The goal of this section is to define different versions of the “derived category of
almost coherent sheaves”. Namely, we define the categories Dycon(X ), Dgc,acon(X),
and D, (X)%. Then we show that many functors of interest preserve almost coher-
ence in an appropriate sense.

Definition 4.4.1. We define Dy (X) (resp. Dy (X)%) to be the full triangulated
subcategory of D(X) (resp. D(X)%) consisting of the complexes with almost quasi-
coherent cohomology sheaves.

Definition 4.4.2. We define Dycon(X) (resp. Dgc,acon(X), resp. Dycon(X)?) to be the
full triangulated subcategory of D(X) (resp. D(X), resp. D(X)?) consisting of the
complexes with almost coherent (resp. quasi-coherent and almost coherent, resp.
almost coherent) cohomology sheaves.

Remark 4.4.3. Definition 4.4.2 makes sense as the categories Modi™", Modg(c’mh,
and Modg‘fgh are weak Serre subcategories of Mody, Mody, and Mod§, respectively.

Now suppose that X = Spec A is an affine R-scheme. Then we note that the
functor -
(—):Mod4 — Mody

is additive and exact, thus it can be easily derived to the functor
(9):D(4) = Dye(X).

Lemma 4.4.4. Let X = Spec A be an affine R-scheme. Then the functor
(5):D(4) = Dye(X)

is a t-exact equivalence of triangulated categories® with the quasi-inverse given by
RI'(X, —). Moreover, these two functors induce the equivalence

—_—

(_):D:coh(A) <:> D;

qc,acoh

(X):RT(X,—)

forany x € {“”, +,—,b}.

ZMeant with respect to the standard ¢-structures.
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Proof. The first part is just [68, Tag 06Z0]. In particular, it shows the isomorphism
H (R[(X, 7)) ~ HY(X, #!(F)) forany ¥ € Dy (X). Now Lemma 4.1.11 implies
that J¢/(¥) is almost coherent if and only if so is H*(X, #?(¥)). So the functor
RI(X, —) sends Dy ., (X) to Dy . (A4).

We also observe that the functor ( ) clearly sends Dycon(A) 10 Dyc,acon(X). Thus,
we conclude that ( ) and RI'(X, —) induce an equivalence between D,.,,(A) and
Dgc,acon(X). The bounded versions follow from #-exactness of both functors. ]

Lemma 4.4.5. Let X = Spec A be an affine R-scheme. Then the almostification func-
tor

(5)%: D2, (X) > DX, (X)*
induces an equivalence D} (X)/DqC =y (X) = D (X)4 for any x € {* 7, +,—, b}.
Similarly, the induced functor

qc acoh(X)/ch Zx (X) _> Dacoh (X)a

is an equivalence for any * € {“ 7, +,—, b}.

Proof. The functor (—)1:D; (X)* — Dg (X) gives the left adjoint to (—)* such that
id — (=) o (—)% is an isomorphism and the kernel of (—)? consists exactly of the
morphisms f* such that cone( f) € Dy 5 (X). Thus, the dual version of [27, Propo-
sition 1.3] finishes the proof of the first claim. The proof of the second claim is similar
once one notices that M? is almost coherent for any almost coherent A%-module M“.
The latter fact follows from Lemma 4.1.11. ]

Lemma 4.1.11 ensures that D(4)* >~ D(4)/Dx,(A). Since (:5 clearly sends

Dy, (4) to ch Sy (X), we conclude that it induces a functor

(9):D*(4)% = DL (X)°.
Theorem 4.4.6. Let X = Spec A be an affine R-scheme. Then the functor
(9):D(A)* = Dyge(X)*

is a t-exact equivalence of triangulated categories with the quasi-inverse given by
RI' (X, —). Moreover, these two functors induce equivalences

( ):D} (A ——= D} ,(X)“:R[(X,—)

SJorany x € {“”,+,—,b}.
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Proof. We note that Lemma 4.4.4 ensures that (:5: D;‘C,acoh(X ) = DX (X)% is an
equivalence with quasi-inverse RI"(X, —). Moreover, (—)¢ induces an equivalence
between Dy, (A) and Dy 5, (X); we leave the verification to the interested reader.

Thus, Lemma 4.4.5 ensures that (—) gives an equivalence
D(4)* =~ D(4)/Dx,, (4) = Dge(X)/Dye, 5y (X) = Dyge(X)*.

Its quasi-inverse is given by the functor RI"(X, —): Dygc(X)? — D(A)? by Proposi-
tion 3.5.23.

The version with almost coherent cohomology sheaves is similar to the analogous
statement from Lemma 4.4.4. ]

Lemma 4.4.7. Let f: X — Y be a morphism of R-schemes.
(1) Suppose that both X = Spec B and Y = Spec A are affine R-schemes. Then
Lf*(jl-/[\‘;) is functorially isomorphic to W for any M% € D(A)“%.
(2) The functor L f* carries an object of DY, .(Y) to an object of D} (X) for

aqc aqe

* e {‘6 ’)’ _}.
(3) The functor L f* carries an object of Dy, .(Y)* to an object of Dy, .(X)* for
* e {‘6 ))’ _}‘

(4) Suppose that X and Y are almost coherent R-schemes. Then the functor L f*
carries an object of D .z (Y) (resp. Dy, (Y)) to an object of D ., (X)
(resp. D, (X))

(5) Suppose that X and Y are almost coherent R-schemes. Then the functor L f*
carries an object of D . (Y )% to an object of D . (X)“.

acoh acoh

Proof. We start with Part (1). We use Proposition 3.5.%()£_sge the isomorphism
Lf*(W) ~ (Lf*(f];[/))a Proposition 2.4.16 says that (M ®% B)* ~ M* ®%, B¢,
so it suffices to show L f *(]\7) ~M ®f; B. But this is a classical fact about quasi-
coherent sheaves.

Now we show (2). We note that Lemma 3.2.17 implies that L f*(ft ® %) ~
mLf*(F) for any ¥ € D(Y). Thus, we can replace ¥ with m ® F to assume
that it is quasi-coherent. Then it is a standard fact that L f* sends D3 (Y') to Dg.(X)
for x € {*”, —}.

(3) follows from Part (2) by noting that L f*(#¢) ~ (L f*(#%))* according to
Proposition 3.5.20.

To prove (4), we use again the isomorphism L f*(t ® ¥) >~ m ® L f*(¥)
to assume that ¥ is in D ., (X). Then Lemma 4.4.4 guarantees that there exists
M € D_, (A) such that M ~ . Thus Part (1) and Lemma 4.1.11 ensure that it is
sufficient to show that M*®%, B ~ (M ®% B)* has almost finitely presented coho-
mology modules. This is exactly the content of Corollary 2.8.2.
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(5) follows from (4) as L f*(F¢) >~ (L f*(F))*. u

Lemma 4.4.8. Let X be an R-scheme.
(1) Suppose that X = Spec A is an affine R-scheme. Then M@ ®L§( N is Sfunc-
torially isomorphic to M ¢ ®j¢, N¢ forany M¢, N¢ € D(A)“.
(2) Let .8 € D}, (X), then }‘@5}(@ € Dyge(X) for € {7, ).
(3) Let ¥, 6% € D}, (X)*, then W@Laﬁa € Dy (X)4 for x € {7, =)
(4) Suppose that X is an almost coherent R-scheme, and let ¥ ,8 € D;C acoh(X)
L (X)). Then ¥ ®L G eD_ ,.on(X) (resp. D, (X))

qc,acol

(resp. D

(5) Suppose that X is an almost coherent R-scheme, and let ¥,5% e D, (X)“.
Then ¥9Q%, 9% € D, (X)“.
X

Proof. The proof is basically identical to that of Lemma 4.4.7 and is left to the reader.
We only mention that one has to use Proposition 2.6.18 in place of Corollary 2.8.2. =

Lemma 4.4.9. Let f: X — Y be a quasi-compact and quasi-separated morphism of
R-schemes. Suppose that Y is quasi-compact.

(1) The functor R f carries Dy, (X) to Dy (Y) for any * € {* 7, —, +,b}.

aqc

(2) The functor R fy carries DY, (X)? to DY (Y)? for any x € {7, —, +, b}.

aqe aqe

Proof. Proposition 3.5.23 tells us that (R /)% ~ R f,. ¥ 2. Since (1t @ )¢ ~ F4,
we see that it suffices to show that the functor

I{j;(fﬁ 69'_)
carries Dy (X) to Dan(Y) for any * € {“”, —, 4, b}. Since M @ F is in Dy (X),
we conclude that it is enough to show that R (=) carries D7 (X)) to D7 (Y') for any
x € {“”,—, 4+, b}. This is proven in [68, Tag 08D5]. [

Before going to the case of the derived Hom-functors, we recall the construction
of the functorial map

Y¥:RHomy (M, N) — RHom g, (7\7, N)

forany M € D(A), N € DT (A), and an affine scheme X = Spec A. For this, we
recall that the functor Z:S is left adjoint to the global section functor I'(X, —) on the
abelian level. Thus, after deriving these functors, we see that ﬁ is left adjoint to
RI(X, —). Thus it follows that, for any ¥ € D(X ), there is a canonical morphism
RT (X, F) — F. We apply it to ¥ = RHom g, (M, N) to obtain the desired mor-
phism

:RHomy (M, N) — RHom o, (M, N).

Lemma 4.4.10. Let X be an almost coherent R-scheme.


https://stacks.math.columbia.edu/tag/08D5
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(1) Suppose X = Spec A is an affine R-scheme. The canonical map
W:RHo;nA\(M/, N) — RHom ¢, (M, N)

is an almost isomorphism for M € D___, (A), N € DT (A).

acoh

(2) Suppose X = Spec A is an affine R-scheme. There is a functorial isomor-

phism

RalHom« (M?, N%) =~ RalHom g¢ (M7, N%)
for M* € D, (A)?, N® € DY (A)?. We also get a functorial almost isomor-
phism

RHome (M®, N*) ~% RHom gg (M?, N°)

for M € D (A), N € DT (A).

acoh

(3) Suppose ¥ € D, (X) and § € D} (X). Then RHom g, (¥,%) € D (X).

aqe aqc

(4) Suppose that F¢ € D, (X)* and §% € D} (X)?. In this case we have both

aqc

RHom g¢ (79, 9%) € D, (X) and RalHom ¢ (5%, 9%) € D} (X)“.

aqc aqc

Proof. We start with (1). We use the convergent compatible spectral sequences

E2? = Ext{(H (M), N) = Ext} "4 (M, N)
EY =Exth (H9(M).N) = Ext5" (M. N)

to reduce to the case when M € Mod%" is an A-module concentrated in degree 0.

Similarly, we use the compatible spectral sequences

EZ? = Ext}(M,H? (N)) = Ext] "7 (M, N)
psq 7 T10( NS +q9 (77 X
E7Y = Exty (M,HP(N)) = Extg (M, N)

to assume that N € Mody,. Thus, the claim boils down to showing that the natural
map

Ext](M,N) — Ext} (M.N)

acoh

is an almost isomorphism for any M € Mod;*", N € Mody, and p > 0. Lemma 3.1.5
says that it is sufficient to show that the kernel and cokernel are annihilated by any
finitely generated sub-ideal my C m.

Recall that, for any Oy-modules ¥, §, the sheaf E_xtgx (F,9) is canonically
isomorphic to the sheafification of the presheaf

U EXtZU (Flu.%v).
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Thus, in order to show that the map Extﬁ (M,N) — @{;X (?\7, N ) is an almost
isomorphism, it suffices to show that

Exty(M,N) ®4 Ay — Extgxf (My., Ny)
is an almost isomorphism. Now we use canonical isomorphisms

Extg, (My. Ny) ~ Hompx (M. Ny[p])

~ Homyp4,)(My, N¢[p])
o gD
o~ ExtAf (My, Ny),

where the second isomorphism follows using that (:5 induces a t-exact equivalence
(—):D(Af) — Dy (Spec Ay). Thus, the question boils down to showing that the nat-
ural map

Extf;(M, N)®4 Ay — Extf;f(Mf, Ny)

is an almost isomorphism. This follows from Lemma 2.9.12.

(2) formally follows from (1) by using Proposition 3.5.8 (1).

(3) is also a basic consequence of (2). Indeed, the claim is local, so we can assume
that X = Spec A is an affine R-scheme. In that case, we use Theorem 4.4.6 to say that
F~M, - M, G ~ N for some M € D, (4), N € D*(A4). Then RHom o, (¥, ) ~

aco!

RHomy (M N) by (2), and the latter complex has almost quasi-coherent cohomology
sheaves by design.
(4) easily follows from (3) and the isomorphisms

RHom ¢ (¥, §%) ~ RHom o (#,. %)
RalHom p¢ (¥, 9%) ~ RHom o, (%, 9)"

that come from Lemma 3.5.5 (1) and Definition 3.5.6. ]

Corollary 4.4.11. Let X be an almost coherent R-scheme.
(1) Let ¥ €Dy woh(X), G € Daqc acoh(X). Then RHom g, (¥,8) € Daqc acoh (X)-
(2) Let ¥4eD, , (X), §%€ Dacoh (X)“ Then RalHom g¢ (¥4.§) € Dacoh (X)4

Proof. The question is local on X, so we can assume that X = Spec 4 is affine. Then
Lemma 4.4.10, Theorem 4.4.6, and Lemma 4.1.11 reduce both questions to showing
that RHomy (M, N) € Ddcoh(A) for M € D_,(A) and N € Dacoh(A). This is the
content of Proposition 2.6.19. ]
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Proposition 4.4.12. Let f: X — Y be a quasi-compact quasi-separated morphism
of R-schemes, ¢ € Dygc(X)?, and § € Dy (Y ). Then the projection morphism
(see the discussion before Proposition 3.5.27)

PRI(FY) ®Gg 6% — Rf(F ®gg L*(59)
is an isomorphism in D(Y)%.

Proof. Proposition 3.5.14, Proposition 3.5.20, and Proposition 3.5.23 imply that we
can replace ¥ (resp. §%) with % € Dg.(X)“ (resp. §) € Dg.(Y)?). So it suffices
to show the analogous result for modules with quasi-coherent cohomology sheaves.
This is proven in [68, Tag O8EU]. |

4.5 Formal schemes. The category of almost coherent (9;-modules

In this section, we discuss the notion of almost coherent sheaves on “good” formal
schemes. One of the main complications compared to the case of usual schemes is
that there is no good notion of a “quasi-coherent” sheaf on a formal scheme. Namely,
even though there is a notion of adically quasi-coherent sheaves on a large class of
formal schemes due to [25, Section 1.3], this notion does not behave well. In particu-
lar, this category is not a weak Serre subcategory of Qx-modules for a “nice” formal
scheme X.

Another (related) difficulty comes from the lack of the Artin—Rees lemma for
not finitely generated modules. More precisely, many operations with adically quasi-
coherent sheaves require taking completions, but this operation is usually not exact
without the presence of the Artin—Rees lemma.

We deal with this by using a version of the Artin—Rees lemma (Lemma 2.12.6)
for almost finitely generated modules over “good” rings. The presence of the Artin—
Rees lemma suggests that it is reasonable to expect that we might have a good notion
of adically quasi-coherent, almost coherent (9%-modules on some “good” class of
formal schemes.

We start by giving a set-up in which we can develop the theory of almost coherent
sheaves.

Set-up 4.5.1. We fix a ring R with a finitely generated ideal / such that R is -
adically complete, I -adically topologically universally adhesive®, and I -torsion free
with an ideal m such that 7 C m, m? = w and W = m g m is R-flat.

3This means that the algebra R(X1, ..., X,)[T1. ..., T)] is I-adically adhesive for any n
and m.


https://stacks.math.columbia.edu/tag/08EU
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The basic example of such a ring is a complete microbial® valuation ring R with
algebraically closed fraction field K. We pick a pseudo-uniformizer w and define
I = (w), m:= U,ﬁl(wl/") for some compatible choice of roots of . We note
that R is topologically universally adhesive by [24, Theorem 7.3.2].

We note that the assumptions in Set-up 4.5.1 imply that any finitely presented
algebra over a topologically finitely presented R-algebra is coherent and 7 -adically
adhesive. Coherence follows from [24, Proposition 7.2.2] and adhesiveness follows
from the definition. In what follows, we will use those facts without saying.

In what follows, X always means a topologically finitely presented formal R-
scheme. We will denote by X := X xgpr g Spec R/ k+1 the “reduction” schemes.
They come equipped with a closed immersion i;: X; — X. Also, given any Ox-
module ¥, we will always denote its “reduction” i F by Fy.

Definition 4.5.2. [25, Definition 1.3.1.3] An Ox-module ¥ on a formal scheme X of
finite ideal type is called adically quasi-coherent if ¥ — lim, ¥, is an isomorphism
and, for any open formal subscheme U C ¥ and any ideal of definition I of finite
type, the sheaf ¥ /I ¥ is a quasi-coherent sheaf on the scheme (U, Oy /I).

We denote by ModgeC the full subcategory of Modx consisting of the adically
quasi-coherent @x-modules.
Definition 4.5.3. We say that an O%-module ¢ is almost adically quasi-coherent
if #? >~ W ® ¥ is an adically quasi-coherent @%-module. We denote by Mody,,
the full subcategory of Modxa consisting of the almost adically quasi-coherent Q-
modules.

We say that an QOx-module F is almost adically quasi-coherent if ¥ ¢ is an almost
quasi-coherent O%-module. We denote by Modgeqc the full subcategory of Modx con-
sisting of the adically quasi-coherent @x-modules.

Remark 4.5.4. In general, we cannot say that every adically quasi-coherent Ox-
module ¥ is almost adically quasi-coherent. The problem is that the sheaf m ® ¥
might not be complete, i.e., the map  ® F — limy W ® F, is a priori only an almost
isomorphism.

Lemma 4.5.5. Let X be a topologically finitely presented formal R-scheme for R
as in Set-up 4.5.1, and let ¥ be an almost adically quasi-coherent O%-module.
Then ¥,? is almost quasi-coherent for all k. Moreover, if an O%-module §° is anni-
hilated by some 1", then €% is almost adically quasi-coherent if and only if so
is §7.

4A valuation ring R is microbial if there is a non-zero topologically nilpotent element @ €
R. Any such element is called a pseudo-uniformizer.
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Proof. To prove the first claim, it is sufficient to show that 1 ® F} is quasi-coherent
provided that i ®  is adically quasi-coherent. We use Corollary 3.2.18 to say that
m® Fr ~ (M ® F)i and the reduction of an adically quasi-coherent module is
quasi-coherent. Therefore, each ¥;? is almost adically quasi-coherent.

Now if § is annihilated by 1" *!, then § = i, . 9,. We use the projection formula
(Lemma 3.3.5) to see that M ® § = iy, «(F, ® m). Clearly, i, « sends quasi-coherent
sheaves to adically quasi-coherent sheaves. So §¢ is almost adically quasi-coherent
if sois 7. m

Definition 4.5.6. We say that an O%-module 5 is of almost finite type (resp. almost
finitely presented) if ¥¢ is almost adically quasi-coherent, and there is a covering
of X by open affines {U; };cy such that ¢ (U;) is an almost finitely generated (resp.
almost finitely presented) 0% (U;)-module. We denote these categories by ModElft
and Mod‘;‘a’ respectively.

We say that an Ox-module ¥ is of almost finite type (resp. almost finitely pre-
sented) if so is ¥ ¢. We denote these categories by Modaﬂ and Modgp respectively.

Definition 4.5.7. We say that an Og-module ¥ is adically quasi-coherent of almost
finite type (resp. adically quasi-coherent almost finitely presented) if it is adically
quasi-coherent and there is a covering of X by open affines {U; };ey such that ¥ (U;)
is an almost finitely generated (resp. almost ﬁmtely presented) O (U;)-module. We
denote these categories by ModqC A and ModqC -afp respectively.

Remark 4.5.8. If ¢ is a finite type (resp. finitely presented) @%-module, then it
follows that (¥ ¢) is adically quasi-coherent of almost finite type (resp. almost finite
presentation).

o a

Remark 4.5.9. We note that, a priori, it is not clear if ¢ is an almost finite type
(resp. almost finitely presented) O%-module for an adically quasi-coherent almost
finite type (resp. almost finitely presented) Ox-module ¥ . The problem comes from
the fact that we do not require i ® ¥ to be adically quasi-coherent in Definition 4.5.7.
However, we will show in Lemma 4.5.10 that it is indeed automatic in this case.

Lemma 4.5.10. Let X be a topologically finitely presented formal R-scheme for R as
in Set-up 4.5.1, and let ¥ be an adically quasi-coherent Ox-module of almost finite
type (resp. of almost finite presentation). Then @ ® ¥ is adically quasi-coherent. In
particular, ¥ is almost of finite type (resp. almost finitely presented).

Proof. Corollary 2.5.12 and Lemma 3.3.1 imply that the only condition we really
need to check is that it ® ¥ is adically quasi-coherent. Therefore, it suffices to prove
the result for an adically quasi-coherent, almost finite type @x-module ¥ .

Since the question is local on X, we can assume that X = Spf A is affine and
M = F(X) is almost finitely generated over A. Then we use [25, Theorem 1.3.2.8]
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to conclude that % is isomorphic to M2. We claim that @ ® ¥ is isomorphic to
(i ®4 M)2 as that would imply that i ® ¥ is adically quasi-coherent by [25,
Proposition 1.3.2.2]. In order to show that i ® # is isomorphic to (T ®g M)2,
we need to check two things: for any open affine Spf B = U C X the B-module
(M ® F)(U) is I-adically complete, and then the natural map (it @ g M)®4B —
( ® F)(N) is an isomorphism.

We start with the first claim. Lemma 3.3.1 says that (it ® #)(U) is isomorphic
to i @g F (). Since ¥ is adically quasi-coherent, ¥ (1) ~ M &4 B, and therefore
(M ®F)U) ~ 1 ®r (MRJ4B). Lemma 2.8.1 says that M ®,4 B is almost finitely
generated over B, so it is already [ -adically complete by Lemma 2.12.7. Therefore,
we see that Ml @ g F (U) >~ 1t @ g (M ®4 B), and the latter is almost finitely generated
over B by Corollary 2.5.12. Thus, we use Lemma 2.12.7 once again to show its
completeness.

Now we show that the natural morphism (ft ® g M)Q@4B — (it @ F)(U) is an
isomorphism. Again, using the same results as above, we can get rid of any comple-
tions and identify this map with the “identity” map

(T Qr M)®4B — T ®r (M Q4B).
This finishes the proof. ]

Lemma 4.5.11. Let X be a topologically finitely presented formal R-scheme for R
as in Set-up 4.5.1, and let F* be an almost finite type (resp. almost finitely presented)
O%-module. Then the (9;k -module 5,7 is almost finite type (resp. almost finitely pre-
sented) for any integer k.

Proof. Lemma 4.5.5 implies that each ¥ is an almost quasi-coherent Oy, -module.
So it is sufficient to find a covering of X by open affines U; x such that ¥* (U; x) is
almost finitely generated (resp. almost finitely presented) over (9§’Ek (U; k). We choose
a covering of X by open affines U; such that ¥¢(U;) are almost finitely gener-
ated (resp. almost finitely presented) over O% (U;). Since the underlying topological
spaces of X and Xj are the same, we conclude that U; ; form an affine open cover-
ing of X. Then using the vanishing result for higher cohomology groups of adically
quasi-coherent sheaves on affine formal schemes of finite type [25, Theorem 1.7.1.1]
and Lemma 3.3.1, we deduce that

FEWp) ~ (W@ FE)Up)* =~ (@@ F W)/ 1FF)*
is almost finitely generated (resp. almost finitely presented) over Ox, (U; ). ]

Lemma 4.5.12. Let X be a locally topologically finitely presented formal R-scheme
for R as in Set-up 4.5.1, and let F¢ be an almost finite type (resp. almost finitely
presented) O%-module. Then F¢(U) is an almost finitely generated (resp. almost
finitely presented) O% ()-module for any open affine U C X.
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Proof. Corollary 2.5.12 and Lemma 3.3.1 guarantee that we can replace ¥ with
m ® F for the purpose of the proof. Thus, we may and do assume that ¥ is an
adically quasi-coherent almost finitely generated (resp. almost finitely presented) O %-
module. Then, using Lemma 2.8.1 and Lemma 2.12.7, we can use the argument as in
the proof of Lemma 4.5.10 to show that the restriction of ¥ to any open formal sub-
scheme is still adically quasi-coherent of almost finite type (resp. finitely presented).
Thus, we may and do assume that X = Spf A is an affine formal R-scheme.

So, now we have an affine topologically finitely presented formal R-scheme
X = Spf A, a finite’ covering of ¥ by affines U; = Spf A;, and an adically quasi-
coherent Ox-module F such that ¥ (U;) is almost finitely generated (resp. almost
finitely presented) A;-module. We want to show that ¥ (X) is an almost finitely gen-
erated (resp. almost finitely presented) A-module.

First, we deal with the almost finitely generated case. We note that Lemma 4.1.7,
Lemma 4.5.11, and [25, Theorem 1.7.1.1] imply that ¥ (X)/1 is almost finitely gen-
erated. We know that ¥ is adically quasi-coherent, so & (X) must be an [ -adically
complete A-module. Therefore, Lemma 2.5.20 guarantees that ¥ (X) is an almost
finitely generated A-module.

Now we move to the almost finitely presented case. We already know that ¥ (X)
is almost finitely generated over A. Thus, the standard argument with Lemma 2.12.7
implies that ¥ (U;) = F(X) ®4 A; for any i. Recall that [25, Proposition 1.4.8.1]
implies® that each A — A; is flat. Since Spf A; form a covering of Spf 4, we conclude
that A — ]_[l’-’=1 Aj is faithfully flat. Now the result follows from faithfully flat descent
for almost finitely presented modules, which is proven in Lemma 2.10.5. |

Corollary 4.5.13. Let X = Spf A be a topologically finitely presented affine formal
R-scheme for R as in Set-up 4.5.1, and let ¥¢ be an almost adically quasi-coherent
O%-module. Then ¥ is almost finite type (resp. almost finitely presented) if and only
if (%) is an almost finitely generated (resp. almost finitely presented) A*-module.

Similarly, an adically quasi-coherent Ox-module ¥ is of almost finite type (resp.
almost finitely presented) if and only if ¥ (X) is an almost finitely generated (resp.
almost finitely presented) A-module.

Lemma 4.5.14. Let X = Spf A be a topologically finitely presented affine formal R-
scheme for R as in Set-up 4.5.1, let : N — M be a homomorphism of almost finitely
generated A-modules. Then the following sequence:

A
0 — (Kerg)® - N2 Lomh (Coker p)® — 0

is exact. Moreover, Im(¢)® ~ Im(¢?2).

SWe implicitly use here that ¥ is quasi-compact.
Topologically universally adhesive rings are by definition “t. u. rigid-noetherian”.
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Proof. We denote the kernel Kerg by K, the image Im(¢) by M’, and the cokernel
Cokerg by Q.

We start with Ker ¢®: We note that (Ker ¢2)(¥) = K, this induces a natural mor-
phism a: K2 — Ker ¢2. In order to show that it is an isomorphism, it suffices to
check that it induces an isomorphism on values over a basis of principal open sub-
sets. Now recall that for any A-module L, we have an equality L* (Spf Ainy) = Z},
where the completion is taken with respect to the 7-adic topology. Thus, in order
to check that « is an isomorphism, it suffices to show that I/{} is naturally identi-
fied with (Ker ¢)(Spf A(ry) = Ker(ﬂ]} — ]\//[;) Using the Artin—Rees lemma (see
Lemma 2.12.6) over the adhesive ring A7, we conclude that the induced topologies
on Ky and M ]’, coincide with the I-adic ones. This implies that

K; =limK;/1"K; = lim K7 /(I" Ny N Ky)
and -
Mj’r = lim M}/I”Mf’ = lim M}/(]”Mf N M}).
This guarantees that we have two exact sequences:

0—>I/(;—>f/[7—>f4;—>0, 0—>X/I\}—>N}

In particular, we get that the natural map I/(} — Ker(@ — ]/V}) 1s an isomorphism.
This shows that K2 ~ Ker(¢p?).

We prove the claim for Tm ¢®: We note that since the category of Q@x-modules is
abelian, we can identify Im ¢ ~ Coker(K® — N%). We observe that [25, Theo-
rem 1.7.1.1] and the established fact above that Ker ¢ is adically quasi-coherent imply
that the natural map ¥ (U)/K2(U) — (Im ¢2)(U) is an isomorphism for any affine
open formal subscheme U. In particular, we have (Im¢2)(¥) = M/K = M’. There-
fore, we have a natural map (M) — Im¢® and we show that it is an isomorphism.
It suffices to show that this map is an isomorphism on values over a basis of princi-
pal open subsets. Then we use the identification  (1)/K2 (1) ~ (Im¢)(U) and the
short exact sequence
0— I/(} — M} — X/I\J’, — 0,

to finish the proof.

We show the claim for Coker ¢®: The argument is identical to the argument for Im ¢
once we know that Im ¢ = Ker(¥ — Coker ¢) is adically quasi-coherent. |

Corollary 4.5.15. Let X = Spf A be a topologically finitely presented affine formal
R-scheme for R as in Set-up 4.5.1, let M be an almost finitely generated A-module,
and let N be any A-submodule of M. Then the following sequence is exact:

A
0— N2 2o M2 = (M/N)® 0.
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Proof. We just apply Lemma 4.5.14 to the homomorphism M — M/N of almost
finitely generated A-modules. |

Corollary 4.5.16. Let X be a topologically finitely presented formal R-scheme for R
as in Set-up 4.5.1, and let ¢: F — § be a morphism of adically quasi-coherent,
almost finite type Ox-modules. Then Ker ¢ is an adically quasi-coherent Qx-module,
Coker ¢ and Im ¢ are adically quasi-coherent Ox-modules of almost finite type.

Corollary 4.5.17. Let X be a topologically finitely presented formal R-scheme for
R as in Set-up 4.5.1, and let ¢: F¢ — §% be a morphism of almost finite type
O%-modules. Then Ker ¢ is an almost adically quasi-coherent O%-module, Coker ¢
and Im ¢ are O%-modules of almost finite type.

Proof. We apply the exact functor (—); to the map ¢ and reduce the claim to Corol-
lary 4.5.16. ]

Now we are ready to show that almost finite type and almost finitely presented
O x-modules share many good properties as we would expect. The only subtle thing
is that we do not know whether an adically quasi-coherent quotient of an adically
quasi-coherent, almost finite type (9x-module is of almost finite type. The main extra
complication here is that we need to be very careful with the adically quasi-coherent
condition in the definition of almost finite type (resp. almost finitely presented) mod-
ules since that condition does not behave well in general.

Lemma4.5.18. Let0 — F' 5 K> F" — 0 be an exact sequence of Ox-modules,
then the following assertions hold:

(1) If ¥ is adically quasi-coherent of almost finite type and F' is adically quasi-
coherent, then ¥ is adically quasi-coherent of almost finite type.

(2) If ' and ¥ are adically quasi-coherent of almost finite type (resp. almost
finitely presented), then so is .

(3) If ¥ is adically quasi-coherent of almost finite type, and " is adically quasi-
coherent, almost finitely presented, then ¥’ is adically quasi-coherent of al-
most finite type.

@) If ¥ is adically quasi-coherent almost finitely presented, and F' is adi-
cally quasi-coherent of almost finite type, then " is adically quasi-coherent,
almost finitely presented.

Proof. (1) Without loss of generality, we can assume that X = Spf A is an affine
formal scheme. Then ¥ = M* for some almost finitely generated A-module M,
and ' = N2 for some A-submodule N C M. Then Corollary 4.5.15 ensures that
F" ~ (M/N)?. In particular, it is adically quasi-coherent. The claim is then an easy
consequence of the vanishing theorem [25, Theorem 1.7.1.1] and Lemma 2.5.15 (1).
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(2) The difficult part is to show that ¥ is adically quasi-coherent. In fact, once we
know that ¥ is adically quasi-coherent, it is automatically of almost finite type (resp.
almost finitely presented) by [25, Theorem 1.7.1.1] and Lemma 2.5.15 (2).

In order to show that ¥ is adically quasi-coherent, we may and do assume that
X = Spf A is an affine formal R-scheme for some adhesive ring A. Then let us intro-
duce A-modules M’ := F'(X), M := ¥ (X),and M" := " (X). We have the natural
morphism M2 — % and we show that it is an isomorphism. The vanishing theorem
[25, Theorem 1.7.1.1] implies that we have a short exact sequence:

0->M - M—>M"—0.

Thus by Lemma 2.5.15 (2), M is almost finitely generated (resp. almost finitely pre-
sented). Then Lemma 4.5.14 gives that we have a short exact sequence

0—> M2 M2 M2 o,

Using the vanishing theorem [25, Theorem 1.7.1.1] once again, we get a commutative
diagram

0 s M'A > MA . MUA > 0
0 s F s F s F > 0,

where the rows are exact, and the left and right vertical arrows are isomorphisms.
That implies that the map M2 — ¥ is an isomorphism.

(3) This easily follows from Lemma 2.5.15 (3), Corollary 4.5.16, and [25, Theo-
rem [.7.1.1].

(4) This also easily follows from Lemma 2.5.15 (4), Corollary 4.5.16, and [25,
Theorem 1.7.1.1]. [

We also give the almost version of Lemma 4.5.18:

Corollary 4.5.19. Let 0 — 5@ % ga £> F" — 0 be an exact sequence of O%-
modules, then the following hold:

(1) If ¥ is of almost finite type and F'* is almost adically quasi-coherent,
then "% is of almost finite type.

(2) If F'* and ¥ are of almost finite type (resp. almost finitely presented), then
sois F°.

(3) If 9 is of almost finite type and F"'* is almost finitely presented, then F'?
is of almost finite type.
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@) If 79 is of almost finitely presented and F'* is of almost finite type, then "¢
is almost finitely presented.

Definition 4.5.20. An O%-module ¥ is almost coherent if ¥ is almost finite type
and for any open set U, any finite type O%-submodule §¢ C (¥ |n)? is an almost
finitely presented @y -module.

An Ox-module ¥ is (adically quasi-coherent) almost coherent if F¢ is almost
coherent (and ¥ is adically quasi-coherent).

Remark 4.5.21. We note that Lemma 4.5.10 ensures that any adically quasi-coherent
almost coherent @y -module ¥ is almost coherent.

Lemma 4.5.22. Let ¥ be an O%-module on a topologically finitely presented for-
mal R-scheme X. Then the following are equivalent:

(1) F2 is almost coherent;

(2) Fis almost quasi-coherent and the O% (U)-module ¥ ¢ (1) is almost coher-
ent for any open affine formal subscheme U C X;

(3) F¢ is almost quasi-coherent and there is a covering of X by open affine
subschemes {U;};er such that ¥ *(0;) is almost coherent for each i.

In particular, an O%-module ¥ is almost coherent if and only if it is almost finitely
presented.

Proof. The proof that these three notions are equivalent is identical to the proof of
Lemma 4.5.22 modulo facts that we have already established in this chapter, espe-
cially Lemma 4.5.14.

As for the last claim, we recall that X is topologically finitely presented over a
topologically universally adhesive ring, so O (1) is coherent for any open affine U
[25, Proposition 0.8.5.23, Lemma 1.1.7.4, Proposition 1.2.3.3]. Then the equivalence
is proved by Lemma 2.6.13 and Corollary 2.6.15. |

Although Lemma 4.5.22 says that the notion of almost coherence coincides with
the notion of almost finite presentation, it shows that almost coherence is morally
“the correct” definition. In what follows, we prefer to use the terminology of almost
coherent sheaves as it is shorter and gives a better intuition from our point of view.

Lemma 4.5.23. (1) Any almost finite type O%-submodule of an almost coherent
O%-module is almost coherent.

(2) Let ¢: ¥ — §% be a homomorphism from an almost finite type O%-module
to an almost coherent O%-module. Then Ker ¢ is an almost finite type O%-
module.

(3) Let ¢: ¥ — §% be a homomorphism of almost coherent O%-modules. Then
Ker ¢ and Coker ¢ are almost coherent O x-modules.
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(4) Given a short exact sequence of O%-modules

0= F > F4 - F" -0,

if two out of three are almost coherent, then so is the third one.

Remark 4.5.24. There is also an evident version of this lemma for adically quasi-
coherent almost coherent (9 x-modules.

Proof. The proof is identical to the proof of Corollary 4.1.12 once we have estab-
lished Corollary 4.5.16 and the equivalence of almost coherent and almost finitely
presented Ox-modules from Lemma 4.5.22. ]

Corollary 4.5.25. Let X be a topologically finitely presented formal R-scheme for R
as in Set-up 4.5.1. Then the category ModaaeCOh (resp. Modgg’amh, Modgggh ) of almost
coherent Ox-modules (resp. adically quasi-coherent, almost coherent O x-modules,
resp. almost coherent O%-modules) is a weak Serre subcategory of Modg (resp.
Mody, resp. Mod% ).

4.6 Formal schemes. Basic functors on almost coherent @;-modules

In this section, we study the interaction between the functors defined in Section 3.2
and the notion of almost (quasi-)coherent O%-modules. The exposition follows Sec-
tion 4.2 very closely.

We start with an affine situation, i.e., ¥ = Spf A. In this case, we note that the
functor (—)*: Mody — Modgg sends almost zero A-modules to almost zero Ox-
modules. Thus, it induces a functor

(=)*:Mod« — Modza.

Lemma 4.6.1. Let X = Spf A be an affine formal R-scheme for R as in Set-up 4.5.1.
Then (—)®: Mody — Mod(iC induces an equivalence (—)*: Mod}; — Mod;c’* for
any * € {aft, acoh}. The quasi-inverse functor is given by I' (X, —).

Proof. We note first that the functor (—)2: Mody — Modgg induces an equivalence
between the category of [-adically complete A-modules and adically quasi-coherent
Ox-modules by [25, Theorem 1.3.2.8]. Recall that almost finite type modules are
complete due to Lemma 2.12.7. Thus, it suffices to show that an adically quasi-
coherent @x-module is almost finitely generated (resp. almost coherent) if and only
if sois I'(X, ). Now this follows from Corollary 4.5.13 and Lemma 4.5.22. ]

Lemma 4.6.2. Let X = Spf A be an affine formal R-scheme for R as in Set-up 4.5.1.
Then (—)%:Mody — Modj; induces equivalences (—)2:Mod}j« — Mod}%., for any
x € {aft, acoh}. The quasi-inverse functor is given by I' (X, —).
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Proof. The proof is analogous to Lemma 4.2.2 once Lemma 4.6.1 is verified. |

Now we recall that, for any R-scheme X, we can define the /-adic completion
of X as a colimit colim(Xy, Oy, ) of the reductions X} := X x g Spec R/I**1in the
category of formal schemes. We refer to [25, Section 1.4(c)] for more details. This
completion comes with a map of locally ringed spaces

c:)?—>X.

In the affine case, we note that gec\A = Spf A for any R-algebra A.” We study
properties of the completion map for a (topologically) finitely presented R-algebra A.

Lemma 4.6.3. Let X = Spec A be an affine R-scheme for R as in Set-up 4.5.1. Sup-
pose that A is either finitely presented or topologically finitely presented over R. Then
the morphism c: X > Xis flat, and there is a functorial isomorphism M2 = c* (?\7[/)
for any almost finitely generated A-module M.

Proof. The flatness assertion is proven in [25, Proposition 1.1.4.7 (2)]. Now the natu-
ral map
M — H°(X.c*(M))

induces the map M2 — ¢* (M). To show that it is an isomorphism, it suffices to show
that the map
Mf — Mf ®A_/' Af

is an isomorphism for any f € A. This follows from Lemma 2.12.7, as each such Ay
is [ -adically adhesive. u

Corollary 4.6.4. Let X be a locally finitely presented R-scheme for a ring R as in
Set-up 4.5.1. Then the morphism c: X = Xis flat and c* sends almost finite type
O% -modules (resp. almost coherent O%-modules) to almost finite type O%-modules
(resp. almost coherent O%-modules).

Similarly, ¢* sends quasi-coherent almost finite type Ox-modules (resp. quasi-
coherent almost coherent Ox -modules) to adically quasi-coherent almost finite type
Ox-modules (resp. adically quasi-coherent almost coherent O x-modules)

Proof. The statement is local, so we can assume that X = Spec A. Then the claim
follows from Lemma 4.6.3. [

Now we show that the pullback functor preserves almost finite type and almost
coherent O%-modules.

"We note that A is 1 -adically complete due to [68, Tag 05GG].


https://stacks.math.columbia.edu/tag/05GG
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Lemma 4.6.5. Let §: X — %) be a morphism of locally finitely presented formal R-
schemes for R as in Set-up 4.5.1.

(1) Suppose that X = Spf B and %)) = Spf A are affine formal R-schemes. Then
F*(M2) is functorially isomorphic to (M ®4 B)?, for any M € Modff[.

(2) Suppose again that X = Spf B and %)) = Spf A are affine formal R-schemes.
Then $¥(M*?) is functorially isomorphic to (M® ® g4a B*)?, for any M¢ €
Mo da,aft

A

(3) The functor {* sends ModqC Al (resp. Modqc 20 1o MOd‘j‘ft (resp. Modqc’aCOh ).
(4) The functor T* sends MOddft (resp. Mod‘leOh ) to Mod® %a (resp. Moddc"h .

Proof. We prove (1), the other parts follow from this (as in the proof of Lemma 4.2.3).
We consider a commutative diagram

Spf B LA Spec B

il 1%

Spt A ———> Spec Am

where the map f Spec B — Spec A is the map induced by f#: A — B. Then we have
that M2 ~ c*M by Lemma 4.6.3. Therefore,

F*(M2) = e} (f*M) ~ c}(M @4 B) = (M @4 B)®
where the last isomorphism follows from Lemma 4.6.3. ]

The next thing we discuss is the interaction of tensor products and almost coherent
sheaves.

Lemma 4.6.6. Let X be a topologically finitely presented formal R-scheme for R as
in Set-up 4.5.1.

(1) Suppose that ¥ = Spf A is affine. Then M» ®ox N A s functorially isomor-
phic to (M ®4 N)* for any M, N € Mod".

(2) Suppose that ¥ = Spf A is affine. Then M %> ®oq N%2 s functorially iso-
morphic to (M* @qa N%)? for any M* ,N® e Modaﬁ

(3) Let ¥,%§ be two adically quasi-coherent almost finite type (resp. almost
finitely presented) Ogx-modules. Then the Ox-module ¥ ®o, § is adically
quasi-coherent of almost finite type (resp. almost finitely presented).

(4) Let 9,5 be two almost finite type (resp. almost coherent) O%-modules.
Then the O%-module ¥ ®o4 G2 is of almost finite type (resp. almost coher-
ent). The analogous result holds for Ox-modules ¥ ,'§.
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Proof. Again, we only show (1) as the other parts follow from this similarly to the
proof of Lemma 4.2.4.

The proof of (1) is, in turn, similar to that of Lemma 4.6.5 (1). We consider the
completion morphism c¢: Spf A — Spec A. Then we have a sequence of isomorphisms

M8 @o, N* = * (i) B0, * (V)
:C*(/M®05pecA N) :C*(m):(M ®A N)A |
Finally, we deal with the functor Hom 0% (—, —). We start with the following
preparatory lemma:

Lemma 4.6.7. Let X be a locally topologically finitely presented formal R-scheme
for R as in Set-up 4.5.1.

(1) Suppose X = Spf A is affine. Then the canonical map
Homy(M, N)® — Hom o, (M*, N?) (4.6.1)

is an almost isomorphism for any almost coherent A-modules M and N .

(2) Suppose X = Spf A is affine. Then there is a functorial isomorphism
alHomya (M, N)® =~ alHom gg (M **, N®%) (4.6.2)

for any almost coherent A%-modules M? and N¢. We also get a functorial
almost isomorphism

Homya (M?, N®)* ~* Hom gq (M, N*) (4.6.3)

for any almost coherent A*-modules M* and N*°.

(3) Suppose ¥ and G are almost coherent Og-modules. Then Hom o, (¥,§) is
an almost coherent Ox-module.

(4) Suppose ¥ and §° are almost coherent O%-modules. Then
Hom pg (7%, 6%) (resp. alHom 04 (72, 8%))
is an almost coherent Og-module (resp. O%-module).

Proof. Again, the proof is analogous to that of Lemma 4.2.6 and Corollary 4.2.7
once (1) is proven. So we only give a proof of (1) here.

We note that both M and N are [-adically complete by Lemma 2.12.7. Now
we use [25] to say that the natural map Homy (M, N) — Homg, (M2, N?) is an
isomorphism. This induces a morphism

Homy (M, N)* — Hom g, (M*, N).
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In order to prove that it is an almost isomorphism, it suffices to show that the natural
map
Homy (M. N)®4 A7y — Homy, ,, (M&aA(r). N®aA(y))

is an almost isomorphism for any f € A. Now we note that Homy (M, N) is almost
coherent by Corollary 2.6.9. Thus, Hom4 (M, N) ®4 Ay is already complete, so
the completed tensor product coincides with the usual one. Similarly, M ® aA(fy
M ®4 Agyy and N@AA{f} >~ N ®4 A(y). Therefore, the question boils down to
showing that the natural map

Homy (M, N) ®4 A{f} — HomA(f} (M ®4 A{f}, N ®g4 A{f})

is an almost isomorphism. This, in turn, follows from Lemma 2.9.11. [

4.7 Formal schemes. Approximation of almost coherent O -modules

In this section, we fix aring R as in Set-up 4.5.1, and a topologically finitely presented
formal R-scheme X.

The main goal of this section is to establish an analogue of Corollary 4.3.5 in the
context of formal schemes. More precisely, we show that, for any finitely generated
ideal o C m, an almost coherent Ox-module F can be “approximated” by a coher-
ent Og-module Gy, up to my C m torsion. It turns out that this result is more subtle
than its algebraic counterpart because, in general, we do not know if we can present
an adically quasi-coherent @x-module as a filtered colimit of finitely presented O%-
modules. Also, colimits are much more subtle in the formal set-up due to the presence
of topology. It seems unlikely that the method used in the proof Corollary 4.3.5 can
be used in the formal set-up. Instead, we take another route and, instead, we first
approximate J up to bounded torsion and then reduce to the algebraic case.

Definition 4.7.1. A map of Ox-modules ¢:§ — ¥ is an FP-approximation if § is a
finitely presented @x-module, and /" (Ker¢) = 0, 1" (Coker ¢p) = 0 for some n > 0.

If mo C m is a finitely generated sub-ideal of 11, a map of Ox-modules ¢: § —F
is an FP-mg-approximation if it is an FP-approximation and wiy(Coker ¢p) = 0.

Lemma 4.7.2. Let X = Spf A be an affine topologically finitely presented formal
R-scheme, and ¥ an adically quasi-coherent Ox-module of almost finite type. Then,
Sfor any finitely generated ideal my C wm, ¥ admits an FP-mg-approximation.

Proof. Lemma 4.6.2 guarantees that ¥ = M “ for some almost finitely generated A-
module M. Then, by definition, there is a submodule N C M such that mo(M/N).
By assumption, U := Spec A \ V(I) is noetherian, so N |y is a finitely presented Oy -
module. Then [25, Lemma 0.8.1.6 (2)] guarantees that there is a finitely presented
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A-module N’ with a surjective map N’ — N such that its kernel K is 7 °°-torsion. In
particular, K C N'[I°°]. But since A is I -adically complete and noetherian outside 7,
[24, Theorem 5.1.2 and Definition 4.3.1] guarantee that N'[1*°] = N'[I"] for some
n > 0. In particular, K is an /”-torsion module.

Therefore, we have an exact sequence

0>K—>N —->M-— Q0 —0,

whith the properties that N’ is finitely presented, M is almost finitely generated,
moQ = 0and /1" K = 0 for some n > 1. Now Lemma 4.5.14 says that the following
sequence is exact:

0> K*»> N2> M2 0% —o0.
In particular, N2 is a finitely presented Ox-module, mo(Q?) = 0,and I"(K%). =

Lemma 4.7.3. [25, Exercise 1.3.4] Let X be a finitely presented formal R-scheme, ¥
an adically quasi-coherent QOx-module of finite type, and § C ¥ an adically quasi-
coherent Ox-submodule. Then § is a filtered colimit § = colimycp &, of adically
quasi-coherent Ox-submodules of finite type such that, for all A € A, § /8, is anni-
hilated by I" for a fixed n > 0.

Lemma 4.7.4. Let X be a finitely presented formal R-scheme, ¥ an adically quasi-
coherent, almost finitely generated Ox-module, and ¢;: 8 — F fori = 1,2 two
FP-wg-approximations of ¥ for some finitely generated sub-ideal vy C w. Then
there is a commutative diagram

71
[\
a1
¢ &
H — F,
qu /
[05]
12
where ¢ and q; are FP-mg-approximations fori = 1, 2.

Proof. By assumption, there is an integer ¢ > 0 such that Ker(¢;) and Coker(¢;) are
annihilated by /¢ for i = 0, 1. Therefore, we may replace mig by g + /€ to assume
that g contains 7°€.

Now we define X to be the kernel of the natural morphism §; & ¥, — % . Note
that it is an adically quasi-coherent Qx-submodule of §; @ 9, due to Lemma 4.5.14.
Therefore, Lemma 4.7.3 applies to the inclusion K C §; @ §,, so we can write
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K = colimycp K, as a filtered colimit of adically quasi-coherent, finite type Q-
submodules of §; @ §, with I™ (K /K ;) = 0 for some fixed m > 0 and every A € A.
We define #) = (61 ® §,)/ K, it comes with the natural morphisms

¢A:J€)L — ?,
gia: G — ¥,

fori = 1,2. We claim that these morphisms satisfy the claim of the lemma for some
A€ A ie., ¢, and g; ; are FP-mg-approximations.

Since X is topologically finitely presented (in particular, it is quasi-compact and
quasi-separated), these claims can be checked locally. So we may and do assume
that X = Spf A is affine. Then we use Lemma 4.6.2, [25, Theorem 1.3.2.8, Propo-
sition 1.3.5.4] to reduce to the situation where X = Spf A, ¥ = M Ag = NIA,
G, = N2A for some almost finitely generated A-module M, and finitely presented
A-modules N, N, with maps of sheaves induced by homomorphisms Ny — M and
N; — M. Then Lemma 4.5.14 says that X = K2 for K =Ker(N; & N, — M), and
K = colimycp K for finitely generated A-submodules® K, with I™(K/K}) = 0
for some fixed m > 0 and all A € A. So one can use Lemma 4.5.14 once again to
conclude that it suffices (due to the assumption that /¢ C 1) to show that, for some
A € A, the natural morphisms (N; & N,)/K; — M, N; — (N1 & N»)/ K, have
kernels annihilated by some power of 7, and cokernels annihilated by 1.

The kernels of N; — (N1 @ N,)/ K, (for i = 1,2) embed into the respective
kernels for the natural morphisms N; — M, so they are automatically annihilated by
some power of I for any A € A. Also, clearly, the morphism (N; & N,)/K; — M
has kernel K/ K that is annihilated by /™ by the choice of K.

Therefore, it suffices to show that we can choose A € A such that g; »: N; —
(N1 ® N2)/K) (fori = 1,2) and ¢): (N1 & N,)/K;, — M have cokernels annihi-
lated by tg. The latter case is automatic and actually holds for any A € A. So the
only non-trivial thing we need to check is that mg(Coker g; ;) = 0 for some A € A.

Let (my,...,mg) € mq be a finite set of generators, and {y; j};jes, a finite set
of generators of N; for i = 1, 2. Denote by y; ; the image of y; ; in M. Define
Xi jk € No_jtobealiftof myy; j e Min N, fork=1,...,d,i =1,2and j € J;.
Note that elements (my y1,j,x1,jk) € N1 @ Nz and (x5 jx,miy2,;) € Ny @ N, lie
in K. Consequently, for some A € A, K, contains the elements (mg y1,;, X1, %) and
(x2,jk,mky2,;). Then it is easy to see that the cokernels of N; — (N1 @& N2)/Kj,
are annihilated by mg. This finishes the proof. ]

Lemma 4.7.5. Let X be a finitely presented formal R-scheme, ¥ an adically quasi-
coherent, almost finitely generated Ox-module. Then, for any finitely generated ideal
mo C m, ¥ is FP-mg-approximated.

$Here, K = I'(¥, KX,), so the equality follows from [68, Tag 009F].


https://stacks.math.columbia.edu/tag/009F
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Proof. First, we note that Lemma 4.7.2 guarantees that the claim holds if X is affine.
Now choose a covering of X by open affines ¥ = | J7_, B;. We know that claim
on each B;, so it suffices to show that, if X = U; U U, is a union of two finitely
presented open formal subschemes and ¥ is FP-mg-approximated on U; and U,,
then ¥ is FP-mg-approximated on X.

Suppose that §; — F |u; are FP-mg-approximations on U; for i = 1, 2. Then the
intersection U 5 := U; N U, is again a topologically finitely presented formal R-
scheme because X is so. Therefore, Lemma 4.7.4 guarantees that we can find another
FP-mg-approximation # — ¥ |y, , that is dominated by both ; |111,2—>3"|u1,2 for
i = 1,2. Consider the Oy, ,-modules

Ki = Ker(§ilu, , — H) fori =1,2.

Lemma 4.5.14 guarantees that both K; are adically quasi-coherent Ox-modules of
finite type.” The fact that Gilu,, — J are FP-mo-approximations ensures that
both K; are killed by some /™ for m > 1. In particular, we see that K; C G;[1™]|u, ,,
so they are naturally quasi-coherent sheaves on X,,—1 = X xspr g Spec R/I™. There-
fore, one can use [68, Tag 01PF] (applied to X,,—;) to extend X; to

Ki CG[I™ C 8,

where X; are adically quasi-coherent QOx-modules of finite type. Then we see that
9/ K — ¥ |u, are FP-my-approximations of ¥ |y, that are isomorphic on the inter-
section. Therefore, they glue to a global FP-mig-approximation § — . ]

Theorem 4.7.6. Let X be a finitely presented formal R-scheme, ¥ an almost finitely
generated (resp. almost finitely presented) Ox-module. Then, for any finitely gener-
ated ideal g C m, there are an adically quasi-coherent, finitely generated (resp.
finitely presented) Ox-module § and a map ¢:§ — F such that mg(Coker p) = 0
and mo(Ker ¢) = 0.

Proof. Without loss of generality, we can replace ¥ by it ® %, so we may and do
assume that ¥ is adically quasi-coherent.

The case of almost adically quasi-coherent, almost finite type @x-module ¥ fol-
lows from Lemma 4.7.5. Indeed, there is an FP-mg-approximation ¢’: §' — %, so
we define ¢: ¥ — F to be the natural inclusion § := Im(¢’) — . This gives the
desired morphism as § is an adically quasi-coherent @x-module of almost finite type
by Corollary 4.5.16.

Now suppose F is an adically quasi-coherent, almost finitely presented Ox-
module. Then we use Lemma 4.7.5 to find an FP-mg-approximation ¢’: ¢’ — ¥ .

9Since they are kernels of morphisms between coherent 0 x-modules.


https://stacks.math.columbia.edu/tag/01PF
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Now we note that any almost finitely presented (9x-module is almost coherent by
Lemma 4.5.22. Therefore, Ker ¢ is again adically quasi-coherent, almost finitely
presented. Therefore, we can find an FP-mg-approximation ¢”: §” — Ker(¢’) by
Lemma 4.7.5. Denote by ¢”’: §” — G’ the composition of ¢” with the natural inclu-
sion Ker(¢’) — &’. Now it is easy to check that ¢: Coker(¢p”’) — F gives the desired
“approximation”. |

4.8 Formal schemes. Derived category of almost coherent (9;-m0dules

We discuss the notion of the derived category of almost coherent sheaves on a formal
scheme X. One major issue is that, in this situation, the derived category of O%-
modules with adically quasi-coherent cohomology sheaves is not well defined, as
adically quasi-coherent sheaves do not form a weak Serre subcategory of Modg.

To overcome this issue, we follow the strategy used in [49] and define another
category “Dgc(¥)” completely on the level of derived categories. For the rest of the
section, we fix a base ring R as in Set-up 4.5.1.

Definition 4.8.1. Let X be a locally topologically finitely presented R-scheme. Then
we define the derived category of adically quasi-coherent sheaves “Dy.(%)” as a full
subcategory of D(X) consisting of objects & such that the following conditions are
met:

» Forevery open affine I C X, RT(U, ) € D(Ox (1)) is derived [ -adically com-
plete.
* For every inclusion U C ‘8 of affine formal subschemes of X, the natural mor-
phism
T\ L T

is an isomorphism, where the completion is understood in the derived sense.

Remark 4.8.2. We refer to [68, Tag 091N] and [68, Tag 0995] for a self-contained
discussion on derived completions of modules and sheaves of modules respectively.

We now want to give an interpretation of “Dg.(¥)” in terms of A-modules for an
affine formal scheme X = Spf A. We recall that in the case of schemes, we have a
natural equivalence Dy.(Spec A) >~ D(A) and the map is induced by RI"(Spec 4, —).
In the case of formal schemes, it is not literally true. We need to impose certain
completeness conditions.

Definition 4.8.3. Let A be a ring with a finitely generated ideal /. We define the
complete derived category Deomp(A, I) C D(A) as a full triangulated subcategory
consisting of the I -adically derived complete objects.
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Suppose that X = Spf A is a topologically finitely presented affine formal R-
scheme. We note that the natural functor R['(¥X, —): D(X) — D(A) induces a functor

RT (%X, —): “Dye(%)” = Deomp(4. ).

We wish to show that this functor is an equivalence. For this, we need some prelimi-
nary lemmas:

Lemma 4.8.4. Let A be a topologically finitely presented R-algebra for R as in Set-
up 4.5.1, let f € A be any element, and let (x1,...,xq) = I be a choice of generators
for the ideal of definition of R. Denote by K(Af;xY,...,x}) the Koszul complexes for
the sequence (x{, ..., x%). Then the pro-systems {K(As;xY,...,x7)} and {Ay /I"}
are isomorphic in Pro(D(Ay)).

Proof. The proof is the same as [68, Tag 0921]. The only difference is that one needs
to use [24, Theorem 4.2.2 (2) (b)] in place of the usual Artin—Rees lemma. ]

Lemma 4.8.5. Let A be a topologically finitely presented R-algebra for R as in Set-
up 4.5.1, let f € A be any element. Then the completed localization A(yy coincides
with the I -adic derived completion of Ay.

Proof. Choose some generators I = (x1,...,Xx4). Then we know that the derived
completion of A is given by Rlim, K(As; x!, ..., xl’}), where K(Az; xT,... ,xZ,)
is the Koszul complex for the sequence (x7, ... ,xfl). Lemma 4.8.4 implies that the

pro-systems {K(Ag; x{,...,x})} and {Ay/I"} are naturally pro-isomorphic. Thus
we have an isomorphism

RlimK(Af;xf,.. . ,xZ:) = RlimAf/I” ~ A{f}.
n n

The last isomorphism uses the Mittag-Leffler criterion to ensure vanishing of lim®.
]

Theorem 4.8.6 ([49, Corollary 8.2.4.15]). Let X = Spf A be an affine, finitely pre-
sented formal scheme over R as in Set-up 4.5.1. Then the corresponding functor
RI(X, —): “Dge(X)” = Deomp(A, 1) is an equivalence of categories.

Proof. Lemma 4.8.5 implies that the definition of Spf A4 in [49] is compatible with the
classical one. Now [49, Proposition 8.2.4.18] ensures that our definition of “Dgc(X¥)”
is equivalent to the homotopy category of Qcoh(¥) in the sense of [49]. Therefore, the
result follows from [49, Corollary 8.2.4.15] by passing to the homotopy categories.
The proof of [49, Corollary 8.2.4.15] can also be rephrased in our situation with-
out using any derived geometry. However, it would require quite a long digression. m
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Definition 4.8.7. We denote by
(=) Deomp(A4, 1) = “Dye(¥)”
the pseudo-inverse to RI'(X, —): “Dgc(X)” — Deomp(A4, I). We note that
RI(Spf A¢ry, ME2) >~ M®4 Ay
for any M € Deomp(A4, 1).

Remark 4.8.8. The functor (—)£2 is not compatible with the “abelian” functor (—)?
used the previous sections.

Now we define a category Dqc acon(%) and show that it is equivalent to Dycon(A).
Theorem 4.8.6 will be an important technical tool for establishing this equivalence.

Definition 4.8.9. We define D acon(X) (resp. Dycon(X)%) to be the full triangulated
subcategory of D(X) (resp. D(X)?) consisting of the complexes with adically quasi-
coherent, almost coherent (resp. almost coherent) cohomology sheaves (resp. almost
sheaves).

Remark 4.8.10. An argument similar to the one in the proof of Lemma 4.4.5 shows
that Dycon(X)“ is equivalent to the Verdier quotient Dc acon (¥)/Dgc, = 5 ().

In order to show an equivalence D¢ acon(¥X) 2 Dycon(A), our first goal is to show
that Dy acon lies inside “Dgc(X)”. This is not entirely obvious because the definition
of Dyc acon (¥) imposes some restrictions on individual cohomology sheaves while the
definition of “Dyc(X)” on the whole complex itself.

Lemma 4.8.11. Let X = Spf A be an affine topologically finitely presented formal
R-scheme for R as in Set-up 4.5.1. Then the functor RI'(X, —): Dgc,acon(¥) — D(A)
is t-exact (with respect to the evident t-structures on both sides) and factors through
D.con(A). More precisely, there is an isomorphism

H' (RT(X, 7)) ~ H(X, #'(F)) € Mod’"
for any object ¥ € Dy acon(X).

Proof. We note that the vanishing theorem [25, Theorem 1.7.1.1] implies that we
can use [68, Tag 0D6U] with N = 0. Thus, we see that the map H' (R[(¥, )) —
H (RI(¥, 7' ¥)) is an isomorphism for any integer i, and that R['(¥, ) € Dycon(A)
for any ¥ € Dgcacon( X ). Applying it together with the canonical isomorphism
H (R[(¥, 721 F)) ~ HO(¥, #'(F)), we get the desired result. [

Lemma 4.8.12. Let X be a locally topologically finitely presented formal R-scheme
for R as in Set-up 4.5.1. Then D¢ acon(X) is naturally a full triangulated subcategory
of “Dge(X) .
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Proof. Both D¢ acon(¥) and “Dyc(X)” are full triangulated subcategories of D(X).
Thus, it suffices to show that any F € Dgc,acon(X) lies in “Dgc (X)”.

Lemma 4.8.11 and Corollary 2.12.8 imply that R['(U, ) € Deomp(A4, I') for any
open affine I C X. Now suppose U C ‘B is an inclusion of open affine formal sub-
schemes in X. We consider the natural morphism

RT (B, F)8, () 0z(W) - RC(U, ).

We note that Ox (1) is flat over Ox (V) by [25, Proposition 1.4.8.1]. Thus, the com-
plex

RT (B, ) ®, (x) 9z

lies in Dycon(O% (U)) by Lemma 2.8.1. Therefore, it also lies in Deomp(A4, 1) by Corol-
lary 2.12.8. So we conclude that

RI(B. )8, () Ox(W) ~ RT(B. F) ®F_ o) Ox(W).

Using O (°B)-flatness of Ox(U), we conclude that the question boils down to show-
ing that
H (B, F7) Q0% (B) (9x(u) — H u,F)

is an isomorphism for all . Now Lemma 4.8.11 implies that this, in turn, reduces to
showing that the natural map

T(T, H'(F)) ®oxm) Oxary — DU, K (F))

is an isomorphism. Without loss of generality, we may assume X = 8 = Spf A. Then
J1(F) is an adically quasi-coherent, almost coherent 9x-module, so Lemma 4.6.1
ensures that it is isomorphic to M2 for some M € Mod’*". Thus, the desired claim
follows from [25, Lemma 3.6.4] and the observation that M ® g, ¢5) Ox (1) is already

I -adically complete due to Lemma 2.12.7. |

Now we show that the functor (—)Z2 sends Dyon(A4) to Dyc,acon(Spf A). This is
also not entirely obvious as (—)L2 is a priori different from the classical version of
the (—)2-functor studied in previous sections. However, we show that these functors

coincide on Mod°".

Lemma 4.8.13. Let X = Spf A be an affine topologically finitely presented formal
R-scheme for R as in Set-up 4.5.1. Then the functor (—)X2: Dyeon(A) — “Dyc(X)”
factors through Dyc acon(X). Moreover, for any M € Dycon(A) and an integer i, there
is a functorial isomorphism

HI (M)A ~ JE(MED).
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Proof. We note that H (X, ML2) ~ H' (M) due to its construction. Since F* (M L2)
is canonically isomorphic to the sheafification of the presheaf

U H U, M2,

we get that there is a canonical map H! (M) — I'(¥X, #*(M*)). By the universal
property of the classical (—)2 functor, we get a functorial morphism

H (M)2 - H'(ML2).

Since Hi (M) is almost coherent, we only need to show that this map is an isomor-
phism for any 7. This boils down (using almost coherence of H (M)) to showing that
the natural morphism

H (M) ®4 Agsy — H (Spf Agpy, M%)

is an isomorphism for all f € A. Now recall that RT"(Spf Ay 1y, MLA) ~ M@jA{f}
forany f € A. Using that M € D,con(A), A¢ ) is flat over A, and that almost coherent
complexes are derived complete by Corollary 2.12.8, we conclude that the natural
map

H' (M) ®4 Aqsy — H (Spf (s, M%)

is an isomorphism finishing the proof. |

Corollary 4.8.14. Let X = Spf A be an affine topologically finitely presented for-
mal R-scheme for R as in Set-up 4.5.1. Suppose that M € D(A) has almost zero
cohomology modules. Then H'(M*™?) is an almost zero, adically quasi-coherent
Ox-module for each integer i. Therefore, in particular, (—)Y2 induces a functor
(_)LA: Dacoh(A)a - Dacoh(%)a-

Proof. We note that any almost zero A-module is almost coherent, thus the result
follows directly from the formula H (M)? ~ #/(ML%) in Lemma 4.8.13. [

Theorem 4.8.15. Let X = Spf A be an affine topologically finitely presented formal
R-scheme for R as in Set-up 4.5.1. Then RI'(X, —): Dgc acon(X) — Dacon(A) is a
t-exact equivalence of triangulated categories with the pseudo-inverse (—)L2.

Proof. Lemma 4.8.11 implies that RI" (X, —) induces the stated functor Dgc acon (%) —
D.con(A) and that this functor is ¢-exact. Lemma 4.8.12 and Theorem 4.8.6 ensure
that it is sufficient to show that (—)Z2 sends Dycon(A) to Dyc,acon (%), this follows
from Lemma 4.8.13. ]

Now we can pass to the almost categories using Remark 4.8.10 to get the almost
version of Theorem 4.8.15.
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Corollary 4.8.16. Let X = Spf A be an affine topologically finitely presented formal
R-scheme for R as in Set-up 4.5.1. Then RI'(X, —): Dycon(X)? — Dyeon(A)? is a
t-exact equivalence of triangulated categories with the pseudo-inverse (—)L2.

4.9 Formal schemes. Basic functors on derived categories of
O%-modules

We discuss the derived analogue of the main results of Section 4.6. We show that
the derived completion, derived tensor product, derived pullback, and derived almost
Hom functors preserve complexes with almost coherent cohomology sheaves under
certain conditions. For the rest of the section, we fix a ring R as in Set-up 4.5.1.

We start with the completion functor. We recall that we have defined the mor-
phism of locally ringed spaces c: X — X for any R-scheme X . If X is locally finitely
presented over R or X = Spec A for a topologically finitely presented R-algebra A,
then ¢ is a flat morphism as shown in Lemma 4.6.3 and Corollary 4.6.4.

Lemma 4.9.1. Let X = Spec A be an affine R-scheme for R as in Set-up 4.5.1.
Suppose that A is either finitely presented or topologically finitely presented over R.
Suppose M € Dycon(A). Then ME2 ~ Le*(M).

Proof. First of all, we show that Lc*(ﬁ) € ch,acoh()? ). Indeed, the functor c* is
exact as c is flat. Thus, Lemma 4.6.3 guarantees that we have a sequence of isomor-
phisms

I (Le* (M) ~ *(H (M) ~ (H (M))".
In particular, Theorem 4.8.6 ensures that the natural morphism

M ~ RT(X, M) — RT(X,Lc*(M))

induces the morphism M L4 — Lc*(ﬁ). As ¢* is exact, Lemma 4.8.13 implies that
it is sufficient to show that the natural map

H (M)? > c*(ﬁ%)

is an isomorphism for all . This follows from Lemma 4.6.3. |

Corollary 4.9.2. Let X be a locally finitely presented R-scheme for a ring R as
in Set-up 4.5.1. Then Lc¢* induces functors Lc*: D;C,acoh(X) — D* (X) (resp.

R qc,acoh
Lc*:D* _(X)? — D*_ (X)?) forany x € {7, —, b, +}.

acoh acoh

Proof. The claim is local, so it suffices to assume that X = Spec A. Then it follows
from the exactness of ¢* and Lemma 4.9.1. |
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Lemma 4.9.3. Let §: X — %) be a morphism of locally finitely presented formal R-
schemes for R as in Set-up 4.5.1.

(1) Suppose that X = Spf B, YY) = Spf A are affine formal R-schemes. Then there
is a functorial isomorphism

Lf*(MY%) ~ (M ®4 B)*2

forany M € D,con(A).
(2) Suppose that X = Spf B, YY) = Spf A are affine formal R-schemes. Then there
is a functorial isomorphism

Lf*(Ma,LA) ~ (Ma ®A“ Ba)LA

Sfor any M? € Dyeon(A).
(3) The functor L* carries D;C’acoh %) ro D&,acoh (%).
(4) The functor Lf* carries D_, (N)* to D, (X)“.

acoh

Proof. The proof is similar to the proof of Lemma 4.6.5. We use Lemma 4.9.1 and
Lemma 4.8.13 to reduce to the analogous algebraic facts that were already proven in
Lemma 4.2.3. |

Lemma 4.94. Let X be a locally topologically finitely presented formal R-scheme
for R as in Set-up 4.5.1.

(1) Suppose that X = Spf A is affine. Then there is a functorial isomorphism
MLA ®éx NLA ~ (M ®51, N)LA
forany M, N € Dyon(A).
(2) Suppose that X = Spf A is affine. Then there is a functorial isomorphism
M(l,LA ®éa){ Na,LA ~ (Ma ®1‘l{a Na)LA
forany M?, N € Dycon(A)“.
(3) Let ¥, 9 € D o on(X). Then F ®§_ 9 € D ().
4) Let 9, 9% e D, (X)?. Then ¥¢ ®ég€ G e D, (X)4.

Proof. Similarly to Lemma 4.9.3, we use Lemma 4.9.1 and Lemma 4.8.13 to reduce
to the analogous algebraic facts that were already proven in Lemma 4.2.4. ]

Now we discuss the functor RalHom o, (—, —). Our strategy of showing that
RalHom (—, —) preserves almost coherent complexes will be slightly different from
the schematic case. The main technical problem corresponds to defining the map
RalHomya (M“, N*)%4 — RalHom ga (M**4, NL2) in the affine case.
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The main issue is that we do not know if (=)L is a left adjoint to the func-
tor of global section on the whole category D(X); we only know that it becomes
a pseudo-inverse to RI'(X, —) after restriction to “Dg.(X)”. However, the complex
RHom g, (M LA NLA) itself usually does not lie inside “Dyc(X)”. To overcome this
issue, we will show that

it ® RHom g, (M54, NE2)

does lie in “Dyc(X)” for M € D, (A) and N € D' (A).

acoh acoh
Since “Dgc(X)” was defined in a bit abstract way, it is probably the easiest way to

show that m ® RHom o, (M LA NLA) actually lies in Dy acon(%). That is sufficient
by Lemma 4.8.12.

Lemma 4.9.5. Let X = Spf A be a topologically finitely presented formal R-scheme
for R as in Set-up 4.5.1. For M, N € Mod’{*", there is a natural almost isomorphism

p A~ p A A
for every integer p.
Proof. We recall that E—thx (M”, N?) is canonically isomorphic to the sheafifica-

tion of the presheaf
U~ Exty (M %[, N*[u).

In particular, there is a canonical map Extf;36 (M2, N2) —> T'(%, @f;x (M2, N2)).
It induces a morphism

Extg, (M2, N®)% > Extg (M4 N%). 4.9.1)

Now we note that the classical (—)? functor and the derived version coincide on
almost coherent modules thanks to Lemma 4.8.13. As a consequence, the equivalence
“Dye(X)” = Deomp (A, I') coming from Theorem 4.8.6 and Lemma 4.8.13 ensures that
Ext(’;96 (MA,N2) ~ Extﬁ (M, N). So the map (4.9.1) becomes a map

Extf(M,N)* — @g%(MA, N2).

We note that Extﬁ (M, N) is an almost coherent A-module by Proposition 2.6.19.
Using that almost coherent modules are complete, we conclude that it suffices to
show that

A A
Exty (M. N) ®4 A¢py — Ethpf A(f}(M Ispt Ay N lspr 4;,)

is an almost isomorphism. Using Lemma 4.6.5 and the equivalence “Dyc(X)” =~
Deomp (A, I) as above, we see that the map above becomes the canonical map

EXtﬁ(M, N)®4 Agry — EXti{f}(M ®4 Agry, N ®4 Agry).
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Finally, this map is an almost isomorphism by Lemma 2.9.12. |

Corollary 4.9.6. Let X be a locally topologically finitely presented formal R-scheme
for R as in Set-up 4.5.1. Then

i ® RHom o, (¥,%) e DL, (&)

qc,acol

for F €D . n(X), and § € DL, (¥).

qc,acoh

Proof. The claim is local, so we can assume that X = Spf A. Then we use the Ext-
spectral sequence and Lemma 4.5.18 to reduce to the case when ¥ and § are in
Modgec’amh. Thus, Lemma 4.6.2 ensures that ¥ = M2 and € = N2 for some M,
N € Mod’®". So Lemma 4.9.5 guarantees that

JP (RHom o, (7, 9)) ~* Exth (M, N)~.
In other words,
it ® #7(RHom o, (7, 9)) =~ fit ® Extf(M, N)~.

Now Ext§ (M, N )2 is an adically quasi-coherent, almost coherent @z-module as a
consequence of Proposition 2.6.19 and Lemma 4.6.1. So Lemma 4.5.10 guarantees
that M ® Extf; (M, N)* is also adically quasi-coherent and almost coherent. There-
fore, it ® RHom o, (¥, 8) € DI . (%). "

qc,acoh

Lemma 4.9.7. Let X be a locally topologically finitely presented formal R-scheme
for R as in Set-up 4.5.1.

(1) Suppose X = Spf A is affine. Then there is a functorial isomorphism
RalHomya (M?, N*)Y® — RalHom 02 (MaLA NaLA),

for M € D, (A)* and N € D}, (4)%.

acoh
(2) Suppose ¥¢ € D:;Oh(i)“ and G € D (X) are almost coherent O%-mod-

ules. Then RalHom ga (¢, 97) € D' (¥)“

acoh
Proof. We start with (1). Proposition 3.5.8 implies that the map
(% ® RHom o, (M *. N*))" — RalHom gg (M**, N*)
is an isomorphism in D(X)?. Similarly, the map
(7 ® RHomy (M, N)2)* — RalHomya (M, N4)A

is an isomorphism by Lemma 4.9.5. Thus, it suffices to construct a functorial isomor-
phism
it ® RHomu (M, N)“® — it ® RHom o, (M 24, NE2).
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Now Lemma 4.8.13 and Corollary 4.9.6 guarantee that
it ® RHom g, (M™%, NL2) € Dyc seon(¥).
Proposition 2.6.19, Lemma 4.6.1, and Lemma 4.5.10 also guarantee that
it ® RHomy (M, N)® € Dyc acon(%).

Thus, Theorem 4.8.6 ensures that, in order to construct the desired isomorphism, it
suffices to do it after applying RT' (¥, —). The projection formula (see Lemma 3.3.5)
and the definition of the functor (—)X2 provide us with functorial isomorphisms

RI(%, i ® RHomy (M, N)*4) ~ it ® RHomy (M, N)
and

RI (%, ® RHom g, (M™%, N1%)) ~ fit ® R['(¥, RHom o, (M4, NL4))
~ it ® RHomg, (M L4, NLA)
~ m ® RHomy (M, N)

where the last isomorphism uses the equivalence from Theorem 4.8.6. Thus, we see
RI'(¥, # ® RHomy (M, N)L2) ~ RI(¥, it ® RHom g, (M2, NE2)).
As a consequence, we have a functorial isomorhism
it ® RHomy (M, N)L2 5 fit @ RHom o, (M2, NLA),
This induces the desired isomorphism
RalHomy« (M?, N4)L2 5 RalHom oo (M1, NOLR),

(2) is an easy consequence of (1), Proposition 2.6.19, and Corollary 4.8.14. n






Chapter 5

Cohomological properties of almost coherent sheaves

The main goal of this chapter is to establish that almost coherent sheaves share sim-
ilar cohomological properties to classical coherent sheaves. In particular, we prove
almost versions of the proper mapping theorem (both for schemes and nice formal
schemes), of the formal GAGA theorem, of the formal function theorem, and of the
Grothendieck duality. The formal GAGA theorem is arguably quite surprising in the
almost coherent context because almost coherent sheaves are rarely of finite type, so
none of the classical proofs of the formal GAGA theorem applies in this situation.
We resolve this issue by adapting a new approach to GAGA theorems due to J. Hall
(see [31]).

5.1 Almost proper mapping theorem

The main goal of this section is to prove the almost proper mapping theorem which
says that derived pushforward along a proper (topologically) finitely presented mor-
phism of nice (formal) schemes preserves almost coherent sheaves.

The idea of the proof is relatively easy: we approximate an almost finitely pre-
sented Ox -module by a finitely presented one using Corollary 4.3.5 or Theorem 4.7.6
and then use the usual proper mapping theorem. For this, we will need a version of the
proper mapping theorem for a class of non-noetherian rings, which we review below.

Definition 5.1.1. We say that a scheme Y is universally coherent if any scheme X
that is locally of finite presentation over Y is coherent (i.e. the structure sheaf Oy is
coherent).

Theorem 5.1.2 (Proper mapping theorem [25, Theorem 1.8.1.3]). Let Y be a univer-
sally coherent quasi-compact scheme, and let f: X — Y be a proper morphism of
finite presentation. Then R fi sends D’ (X) to D* (Y) for any x € {“ 7, +,—, b}.

coh coh

We want to generalize this theorem to the “almost world”. So we pick a ring R
and a fixed ideal m C R such that m? = m and M = m @ m is R-flat. In this
section, we always consider almost mathematics with respect to this ideal.

Theorem 5.1.3 (Almost proper mapping theorem). Let Y be a universally coherent
quasi-compact R-scheme, and let f:X — Y be a proper, finitely presented morphism.
Then the following statements hold:

e The functor R fy sends D* (X) to D* (Y) forany x € {“ 7, +,—,b}.

qc,acoh qc,acoh

o The functor R fi sends D¥ _ (X)? to D’ _ (Y)* forany x € {“ 7, +,—,b}.

acoh acoh
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o The functor R fy sends D _ (X) to DT (Y).

acoh acoh
* IfY has finite Krull dimension, then R fy sends D}, . (X) to D}, . (Y) for any
xe{“”, +,—, b}

Lemma 5.1.4. Let Y be a quasi-compact scheme of finite Krull dimension, and let
f:X — Y be a finite type, quasi-separated morphism. Then X has finite Krull dimen-
sion, and fy has finite cohomological dimension on Mody.

Proof. First of all, we show that X has finite Krull dimension. Indeed, the morphism
f:X — Y is quasi-compact, therefore X is quasi-compact. So it suffices to show
that X locally has finite Krull dimension. Thus, we can assume that X = Spec B and
Y = Spec A are affine, and the map is given by a finite type morphism A — B. In
this case, we have dim ¥ = dim A and dim X = dim B. Thus, it is enough to show
that the Krull dimension of a finite type A-algebra is finite. This readily reduces the
question to the case of a polynomial algebra dim A[ X7, ..., X,]. Now [3, Chapter 11
Exercise 6] implies that dim A[X1, ..., X,] <dim A4 + 2n.

Now we prove that f has finite cohomological dimension. We note that it suffices
to show that there is an integer N such that, for any open affine U C Y, the cohomol-
ogy groups H' (Xy, ) vanish fori > N and any Ox,, -module ¥ . We recall that f
is quasi-separated, so Xy is quasi-compact, quasi-separated and dim Xy < dim X for
any open U C X. Therefore, it suffices to show that on any spectral space X, we have
H (X,¥) =0fori > dim X and ¥ € Ab(X). This is proven in [57, Corollary 4.6]
(another reference is [68, Tag 0A3G]). Thus, we conclude that N = dim X does the
job. |

Proof of Theorem 5.1.3. We divide the proof into several steps.

Step 0: Reduction to the case of bounded below derived categories. We note that f
has a bounded cohomological dimension on Mod}l;. Indeed, for any quasi-compact
separated scheme X and ¥ € Modj,, we can compute H (X, ¥) via the alternating
Cech complex for some finite affine covering of X. Therefore, if X can be covered
by N affines, the functor f, restricted to Mod(;(C has cohomological dimension at
most N.

Now we use [68, Tag 0D6U] (alternatively, one can use [46, Lemma 3.4]) to
reduce the question of proving the claim for any ¥ € Dy acon(X) to the question
of proving the claim for all its truncations t=¢¥ . In particular, we reduce the case
of ¥ € Dgc,acon(X) to the case where ¥ € D+qc,acoh(X ). Similarly, (using Proposi-
tion 3.5.23), we reduce the case of F¢ € D,on(X)? to the case of F¢ € D:zoh(X)“.

Using Lemma 5.1.4, a similar argument also allows us to reduce the case of
F € Dyeon(X) to the case of ¥ € D (Y) when Y has finite Krull dimension.

acoh

Step 1: Reduction to the case of quasi-coherent almost coherent sheaves. Using the
projection formula Lemma 3.3.5 (resp. Proposition 3.5.23), we see that, in order to
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show that R f, sends D;th
fices to show the analogous result for D

sequence

(X) to DY (Y) (resp. D (X)4 to D, (Y)?), it suf-

;; acoh (X ). Moreover, we can use the spectral

EZY = RP £, 309(F) = RPH4 f,(F)

to reduce the claim to the fact that higher derived pushforwards of a quasi-coherent,
almost coherent sheaf are quasi-coherent and almost coherent.

Step 2: The case of a quasi-coherent, almost coherent Qx-module ¥. We show
that R’ £, ¥ is a quasi-coherent, almost coherent 9y -module for any quasi-coherent,
almost coherent @x-module ¥ and any i . First, we note that R £, ¥ is quasi-coherent,
as higher pushforwards along quasi-compact, quasi-separated morphisms preserve
quasi-coherence.

Now we show that Rf f«F is almost coherent. Note that it is sufficient to show
that R’ £, F is almost finitely presented, as Y is a coherent scheme (this follows from
Lemma4.1.15 and Lemma 4.1.16). We choose some finitely generated ideal my C m
and another finitely generated ideal m; C m such that my C m?. Then we use Corol-
lary 4.3.5 to find a finitely presented Qx-module § and a morphism

0.8 > F
such that Ker(¢) and Coker(¢) are annihilated by m;. We define Ox-modules
K = Kerg, M :=Img, @ := Coker g,
so we have two short exact sequences

0> K-> ->M-—0,
O M—->F ->@—0

with sheaves K and @ killed by m;. This easily shows that the natural homomor-
phisms

R fx(¢):R f,§ - R f,, F

have kernels and cokernels annihilated by m%. Since my C m% we conclude that
mo(KerR! fx(¢)) = 0 and mo(CokerR’ fx(¢)) = 0. Moreover, we know that R? £,
is a finitely presented @Oy-module by Theorem 5.1.2 (§ is a coherent Ox-module
since X is a coherent scheme). Therefore, we use Corollary 4.3.5 to conclude that
R £, ¥ is an almost finitely presented @y -module for any i > 0. [

The next goal is to prove a version of the almost proper mapping theorem for nice
formal schemes. But before doing this, we need to establish a slightly more precise
version of the usual proper mapping theorem for formal schemes than the one in [25].
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Theorem 5.1.5 (Proper mapping theorem). Let R be as in Set-up 4.5.1, A a topolog-
ically finitely presented R-algebra, T: X — Spf A a topologically finitely presented,
proper morphism, and ¥ a coherent Ox-module. Then H (¥, ¥) is a coherent A-
module and the natural morphism

H(Z. 7)% = R'fu(F)
is an isomorphism for any i > 0.

Proof. First, we use [25, Theorem 1.11.1.2] to conclude that Rf, ¥ € D, (Spf A).

coh

Therefore, Theorem 4.8.15 implies that M := RI'(Spf A, Rf.F) lies in D _ (4),

acoh
and

MEA ~ Rf, 7.
Moreover, Lemma 4.8.13 implies that the natural map
H (X, %) ~ H (M)® - R,
is an isomorphism. Finally, we conclude that
H (%, ) ~ H°(¥,H (¥, )*) ~ H(X,R'f,. %)
must be coherent because R* {4 F is coherent. ]

Theorem 5.1.6 (Almost proper mapping theorem). Let %)) be a topologically finitely
presented formal R-scheme for R as in Set-up 4.5.1, and let 1: X — %)) be a proper,
topologically finitely presented morphism. Then the following assertions hold true:

*  The functor R sends D* (%) to D* *Y) for any x € {“ 7, +,—, b}.

qc,acoh qc,acoh
*  The functor Rfy sends D}, (X)? to D}, (V)¢ for any x € {“ ", +,—, b}.
o The functor Ri. sends D;Oh(%) to D:;oh QI))

o IfYo:="Y) xspt r (Spec R/ 1) has finite Krull dimension, then Rf, sends D}, , (¥X)
to D* (V) for any x € {7, +,—,b}.

Moreover, if Y) = Spf A is an affine scheme and ¥ is an adically quasi-coherent,
almost coherent Ox-module, then H* (X, ¥) is almost coherent over A, and the nat-
ural map H*(X, F)2 — R"§.F is an isomorphism of Osy-modules forn > 0.

Lemma 5.1.7. Let %) be a quasi-compact adic formal R-scheme, and let {: X —
) be a topologically finite type, quasi-separated morphism. Suppose furthermore
that the reduction Yo = %) Xspr g (Spec R/ 1) (or, equivalently, the “special fiber”
Y= Xspf R Spec R/Rad(1)) is of finite Krull dimension. Then X has finite Krull
dimension, and {« is of finite cohomological dimension on Modx.

Proof. The proof is identical to that of Lemma 5.1.4 once we notice that the underly-
ing topological spaces of §)), Yy, and ) are canonically identified. ]
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Also, before starting the proof of Theorem 5.1.6, we need to establish the follow-
ing preliminary lemma:

Lemma 5.1.8. Let f: X — %) = Spf A be a morphism as in Theorem 5.1.6 with
affine %)), and let ¥ € Modg be an adically quasi-coherent, almost coherent sheaf.
Then Rt F is an adically quasi-coherent, almost coherent Osy-module if

(1) the A-module H1 (X, ) is almost coherent for any q > 0, and
(2) for any g € A with 1 = Spf Ayg), the canonical map

Hq(.%, .77) ®4 A{g} — Hq(.%u, f’r‘),
is an isomorphism for any g > 0.

Proof. Consider an A-module M :=HY(%, ¥) that is almost coherent by our assump-
tion. So, Lemma 2.12.7 guarantees that M is [-adically complete, and so M2 is an
adically quasi-coherent, almost coherent @x-module. Now note that R?{, ¥ is the
sheafification of the presheaf

U HI(Xy, F).
Thus, there is a canonical map M — H°(%Y), R, ¥ ) that induces a morphism
M? - RIf, F.

The second assumption together with Lemma 2.8.1 and Lemma 2.12.7 ensure that
this map is an isomorphism on stalks (as the sheafification process preserves stalks).
Therefore, M2 — RZ{, ¥ is an isomorphism of @g-modules. In particular, R7f, %
is adically quasi-coherent and almost coherent. ]

Proof of Theorem 5.1.6. We use the same reductions as in the proof of Theorem 5.1.3

to reduce to the case of an adically quasi-coherent, almost coherent Ox-module ¥ .

Moreover, the statement is local on ), so we can assume that §Y) = Spf A is affine.
Now we show that both conditions in Lemma 5.1.8 are satisfied in our situation.

Step 1: H1(X, ¥) is almost coherent for every g > 0. Fix a finitely generated ideal
mo C m and another finitely generated ideal m; C m such that my C m%

Theorem 4.7.6 guarantees that there are a coherent Og-module §y,, and a mor-
phism ¢, : §m,; — F such that its kernel and cokernel are annihilated by m;. Then
it is easy to see that the natural morphism

HY(%, Gu,) — HI(X, F)

has kernel annihilated by m? and cokernel annihilated by m;. In particular, both
the kernel and cokernel are annihilated by mg. Since my was an arbitrary finitely
generated sub-ideal of m, it suffices to show that H (X, §,,,, ) are coherent A-modules
for any g > 0. This follows from Theorem 5.1.5.
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Step 2: The canonical maps H1(X, ¥) ®4 Aygy — HY(Xu, F) are isomorphisms for
any g € A, q >0, and 1 = Spf A(,). Lemma 4.7.5 guarantees that ¥ admits an FP-
approximation ¢: § — ¥ . Using Lemma 4.5.14, we get the short exact sequences of
adically quasi-coherent sheaves

0O K—->8§§—>M-—0,
O—-M—->F —-@Q—0,

where X and @ are annihilated by 1" for some n > 0. So X and @ can be identified
with quasi-coherent sheaves on X, := X xgpr 4 Spec A/1 n+1 Therefore, the natural
morphisms

HY (X, K) ®4 Agy = HY (X, K) @ pnt1 (A/1"F)g — HI (X n, K),
HY (X, Q) ®4 Aggy ~ H(%,, Q) @ 4,11 (A/1" 1)y — H (X0, Q)

are isomorphisms for ¢ > 0. The morphism
HY(X,6) ®4 Afgy > H (X4, 9) (5.1.1)

is an isomorphism by Theorem 5.1.5. Consequently, the five lemma and A-flatness
of A(gy imply that the morphism

Hq('%v M) ®A A{g} - Hq(-%ll, 'M)

is an isomorphism for any ¢ > 0 as well. Applying the five lemma again (and A4-
flatness of A(g}), we conclude that the morphism

HY(%,%) ®4 A{g} —HI(Xy, )

must be an isomorphism for any g > 0 as well. |

5.2 Characterization of quasi-coherent, almost coherent complexes

The main goal of this section is to show an almost analogue of [68, Tag OCSI]. This
gives a useful characterization of objects in Dgc’acoh(X ) on a separated, finitely pre-
sented R-scheme for a universally coherent R. This will be crucially used in our proof
of the almost version of the formal GAGA theorem (see Theorem 5.3.2).

Our proof follows the proof of [68, Tag OCSI] quite closely, but we need to make

certain adjustments to make the arguments work in the almost coherent setting.

Theorem 5.2.1. Let R be a universally coherent ring with an ideal m such that

m? = m and W = m ®g wm is flat. Suppose that ¥ € Dyc(P%) is an element such

that RHompn (., %) € Doy (R) for P = @y Oi). Then F € D .0, (P'R).


https://stacks.math.columbia.edu/tag/0CSI
https://stacks.math.columbia.edu/tag/0CSI

Characterization of quasi-coherent, almost coherent complexes 157

Proof. We follow the ideas of [68, Tag 0CSG]. Denote the dg algebra RHomy (£, )
by §. A computation of cohomology groups of line bundles on P, implies that S
is a “discrete” non-commutative algebra that is finite and flat over R. Now [68,
Tag 0BQU]' guarantees that the functor

— ®% P:D(S) — D (P)
is an equivalence of categories, and its quasi-inverse is given by
RHom(P, —): Dy (P) — D(S).

So, if we define M := RHom(P, ) € D(S), our assumption implies that the image
of M in D(R) lies in D, (R).

Therefore, it suffices to show that, for any N € D(S) such that its image in D(R)
lies in D,_; (R), we have that N ®I§ P lies in D .o, (PR)-

We use the convergence spectral sequence

Ey? = }PHI(N) ®% P) = HPTUN &% P)

to conclude that it suffices to assume that N is just an S-module. Now we fix a finitely
generated ideal m; C m and a finitely generated ideal mo C m such that m; C mj.
Then Lemma 2.8.4 implies that there is a finitely presented right S-module N’ with a
morphism f: N’ — N such that Ker f and Coker f are annihilated by tig. Then the
universal coherence of R and [68, Tag OCSF] imply that N’ ®% P € Dq‘c’wh (PR).
Now we note that the functor

- ®% P:D(S) — Dy (PR)
is R-linear, so the standard argument shows that the cone of the morphism
f RPN ®% P - N§ P

has cohomology sheaves annihilated by m; C mj. Since m; C m was an arbitrary
finitely generated ideal, Lemma 2.5.7 implies that N ®I§ PisinDy, ., (Pk) and this
finishes the proof. ]

Lemma 5.2.2. Let R be a universally coherent ring, let X be a finitely presented
separated R-scheme, and let K € Dy (X). If RT'(X, E ®5X K) is in D, (R) for
every E € D (X), then K € D .y (X).

Proof. We follow the proof of [68, Tag OCSL]. First, we note that the condition that
K e D;c’acoh(X ) is local on X because X is quasi-compact. Therefore, we can prove
it locally around each point x. We use [68, Tag 0CSJ] to find

Note that they have slightly different notations for R and S.
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* anopen subset U C X containing x,

e anopen subset V C P%,

e aclosed subset Z C X xg P with a point z € Z lying over x,
(X xr PR),

with a lot of properties listed in the cited lemma. Even though the notation is pretty
heavy, the only properties of these objects that we will use are that x € U and that

* anobject E € D

coh

Rg«(Lp*K ®“ E)ly =R(U — V)«(K|v).

The last formula is proven in [68, Tag 0CSK] and we refer to this lemma for a dis-
cussion of the morphism U — V that turns out to be a finitely presented closed
immersion.

That being said, it is sufficient to show that K|y is almost coherent for each
such U. Moreover, the formula Rg. (Lp*K @' E)|y = R(U — V)« (K|p), the fact
that U — V is a finitely presented closed immersion, and Lemma 2.8.4 imply that it
suffices to show that R(U — V)«(K|v) = Rg«(Lp*K &" E)|y lies in D_ .., (V).
In particular, it is enough to show that Rg.(Lp*K ®' E) € D acon (PR)-

Now we check this using Theorem 5.2.1. For doing so, we define a sheaf & :=
D7 _, Opn (i) and observe that

RHomp: (P, Rg«(Lp*K QL E)) = R[(P",Rg«(Lp*K QY E) ®I@Pn PY)
= RI'(P",Rg«(Lp*K ®" E @" Lg* "))
= RI(X xg P}, Lp*K @ E ®@"“ Lg*P")

= RT(X.Rp.(Lp*K @" E ®@" Lg*P"))

=Rl (X, K ®p, Rp«(E ®"Lg*PY)),

where the second equality and the fifth equality come from the projection formula
[68, Tag OSEU]. Now we note that the proper mapping theorem (see Theorem 5.1.2)
implies that Rp.(E ®% Lg*?") € D_, (X). So our assumption on K implies that

coh

RHomp: (P, Rg+(Lp*K @ E)) = RT (X, K ®f, Rp«(E @"Lg*PY)) € D (R).
Now Theorem 5.2.1 finishes the proof. |

Theorem 5.2.3. Let R be a universally coherent ring, let X be a separated, finitely
presented R-scheme. If ¥ € D (X) is an object such that RHomy (P, ') € D ;. (R)
forany P € Perf(X), then ¥ € ch acoh (X). Analogously, if RHomy (P, ') € Dacoh(R)
for any P € Perf(X), then ¥ € D? (X).

qc,acoh
Proof. With Lemma 5.2.2 and the equality RHomy (£, ) = RI'(X, Y ®I@x F)

at hand, the first part of the theorem is absolutely analogous to [68, Tag OCSH]. The
second part now follows directly from [68, Tag 091S] and [4, Lemma 3.0.12]. [
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5.3 The GAGA theorem

The main goal of this section is to prove the formal GAGA theorem for almost coher-
ent sheaves. It roughly says that any adically quasi-coherent, almost coherent sheaf
on a completion of a proper, finitely presented scheme admits an essentially unique
algebraization, and the same holds for morphisms of those sheaves.

We start by recalling the statement of the classical formal GAGA theorem. We
fix an [-adically complete noetherian ring A and a proper A-scheme X. Then we
consider the /-adic completion X as a formal scheme over Spf A. It comes equipped
with the natural morphism ¢: X — X of locally ringed spaces that induces a functor

¢*: Cohy — Cohg.

The GAGA theorem says that it is an equivalence of categories. Let us say a few words
about the classical proof of this theorem. It consists of three essentially independent
steps: the first is to show that the morphism c is flat; the second is to show that the
functor ¢* induces an isomorphism

c¢*:H (X,F) —» H (%, ¢*F)

for any F € Cohy and any integer i. The last is to prove that any coherent sheaf
9 € Cohpy admits a surjection of the form €; O (n;)™ — §. Though the first two
steps generalize to our set-up, there is no chance of having an analogue of the last
statement. The reason is easy: existence of such a surjection would automatically
imply that the sheaf § is of finite type, however, almost coherent sheaves are usually
not of finite type.

This issue suggests that we should take another approach to GAGA theorems
recently developed by J. Hall in his paper [31]. The main advantage of this approach
is that it first constructs a candidate for algebraization, and only then proves that this
candidate indeed provides an algebraization. We adapt this strategy to our almost
context.

We start with the discussion of the GAGA functor in the almost world. In what
follows, we assume that R is a ring from Set-up 4.5.1. We fix a finitely presented
R-scheme X, and we consider its /-adic completion X that is a topologically finitely
presented formal R-scheme. The formal scheme ¥ comes equipped with the canoni-
cal morphism of locally ringed spaces

c:(X,0%) —> (X, 0x)
that induces the pullback functor
Lc*:D(X) — D(%).

We now want to check that this functor preserves quasi-coherent, almost coherent
objects. This verification will be necessary even to formulate the GAGA statement.
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Lemma 5.3.1. Let R be a ring as in Set-up 4.5.1, A a topologically finitely presented
R-algebra, and X a finitely presented A-scheme. Then the morphism c is flat, and
the funtor ¢*: Mody — Modx sends (quasi-coherent and) almost coherent sheaves
to (adically quasi-coherent and) almost coherent sheaves. In particular, it induces
functors

Lc™: qc acoh (X) - DZC acoh (%)
forany x € {“”,+,—,b}.

Proof. The flatness assertion follows from [25, Proposition 1.1.4.7 (2)]. Flatness of ¢
implies that it suffices to show that ¢*(G) is an adically quasi-coherent, almost coher-
ent Ox-module for a quasi-coherent, almost coherent Oy-module G. This claim is
Zariski-local on X. Thus we can assume that X = Spec A is affine, so G ~ M for
some almost finitely presented A-module M. This case is done in Lemma 4.6.3. =

Theorem 5.3.2. Let R be a ring as in Set-up 4.5.1, A a topologically finitely pre-
sented R-algebra, and X a finitely presented, proper A-scheme. Then the functor

Lc*: (X) = Dy eon(X)

qc acoh

induces an equivalence of categories for x € {“ 7, 4+, —, b}.

Corollary 5.3.3. Let R, A and X be as in Theorem 5.3.2. Then the functor

Lc™: (X)* - D, (%)

acoh

induces an equivalence of categories for x € {“ 7, +,—, b}.

Corollary 5.3.4. Let R, A, and X be as in Theorem 5.3.2, and let K € Dgc acon(X).
Then the natural map

Bk:RT (X, K) — RI(X,Lc*K)
is an isomorphism. Moreover, Bk is an almost isomorphism for K € D,con(X).

Proof. Note that the case of K € Dyon(X) follows from the case of K € Dgc,acon(X)
due to Lemma 3.2.17 and Proposition 3.5.23. So, it suffices to prove the claim for
K e ch,acoh(X)-

Now since we are allowed to replace K with K[i] for any integer i, it suffices to
show that the map

HO(RI'(X, K)) ~ Homy (Ox, K) — Homg(O%,Lc*K) ~ H*(RT' (%, Lc*K))

is an isomorphism. This follows from Theorem 5.3.2 together with the observation
that Ox¢ ~ Lc*Oy. ]
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Our proof of Theorem 5.3.2 will follow Jack Hall’s proof of the GAGA theorem
very closely with some simplifications due to the flatness of the functor ¢*. As he
works entirely in the setting of pseudo-coherent objects, and almost coherent sheaves
may not be pseudo-coherent, we have to repeat some arguments in our setting.

Before we embark on the proof, we need to define the functor in the other direc-
tion. Recall that the morphism of locally ringed spaces ¢ defines the derived pushfor-
ward functor

Rey: D(X) — D(X).

This functor is £-exact as ¢: X — X is topologically just a closed immersion. In partic-
ular, it preserves boundedness of complexes (in any direction). However, that functor
usually does not preserve (almost) coherent objects as can be seen in the example of
RexOx = c«O%. A way to fix it is to use the quasi-coherator functor

ROx:D(X) — Dy (X)

that is defined as the right adjoint to the inclusion ¢: Dy (X) — D(X). It exists by
[68, Tag OCRO]. We define the functor

Rege: D(X) — Dye(X)

as the composition Rege := RQx o Rey.
Combining the adjunctions (Lc*, Rcy) and (1, RQx), we conclude that we have
a pair of the adjoint functors:

Lc*: Dge(X) 2 D(X) Rege.
That gives us the unit and counit morphisms
n:id — RegeLe™ and &: Le*Rege — id.

For future reference, we also note that the above adjunction and the monoidal property
of the functor L¢* define a projection morphism

n6.7:G ®I@X (RcgeF) = Rege(Le*G ®]@3€ F)
forany G € Dyc(X) and any ¥ € D(X). Before discussing the proof of Theorem 5.3.2,

we need to establish some properties of these functors.

Lemma 5.3.5. Let R be a ring as in Set-up 4.5.1, A a topologically finitely presented
R-algebra, and X a finitely presented A-scheme. Then there is an integer N = N(X)
such that Reqe carries ch'facoh (%) to DqSC”JrN (X) (resp. Dg‘é::c]oh (%) to D([fé’"JrN](X )
for any integer n. In particular, the natural map

T7Rege ¥ — ¢ (chch”_Nf)

is an isomorphism for any ¥ € D acon(X) and any integer a.
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Proof. We explain the proof that Reqc carries DZ”, ., (¥) to quc'”'N (X); the case of
Dl (%) is similar. We fix an object ¥ € D= (%) and note that Re, F = ¢4 F

qc,acoh qc,acoh
since c is topologically a closed immersion. Thus, [68, Tag 0CSA] implies” that it

suffices to show that
H (RT(U,Re,¥)) = H (RT(U, ¢+ F)) =0
for any open affine U C X and any i > n. Therefore, we see that
H (RT(U,Re, %)) = H(R[(U, 7)) = H (U, Fp).

and thus Lemma 4.8.11 implies that H’ ((7, $|(7) = 0 for any i > n. This finishes the
proof of the first claim in the lemma.
The second claim of the lemma follows from the first claim and the distinguished
triangle
rSaN=-lg g 5 zaNg  sa-N-lg

Namely, we apply the exact functor Reg, to this distinguished triangle to get that
Rege (t59V71F) — RegeF — Rege (129N F) — Rege (r=NV 717 [1))
is a distinguished triangle in Dyc(X) and that Reg (r=¢N71%) € D="1(X). This
implies that the map
TR F — 129 Reo(t29N F)
is an isomorphism. |

Lemma 5.3.6. Let X be as in Theorem 53.2, ¥ € ch acoh(X) and G € D (X)

Suppose that for each i there is some n; such that I"i #* () = 0 and 1™ ¢} (G)
Then the natural morphisms ng and €¢ are isomorphisms.

Proof. We prove the claim only for & as the other claim is similar.

Reduction to the case when ¥ € Dé’c acoh (X): First, we note that it suffices to show
that the natural map
2% — 2L Rege F
is an isomorphism for any integer a. Moreover, we also note that 7-exactness of
Lc¢* and Lemma 5.3.5 imply that there is an integer N such that the natural map
T29Lc*RegeF — 12%Le*Reg 724N F is an isomorphism for any integer a. In par-
ticular, we have a commutative diagram

e Ny Lc*chc(tz"_N?’)

| |

T24F — 5 1Z9Lc*Rege F =~ 12Le*Reg 24N F,

ZWe note that the proof of [68, Tag 0CSA] works well with a = —oo as well.
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where the vertical maps induce isomorphisms in degree > a. Therefore, it suffices to
prove the claim for 724~V . So we may and do assume that ¥ is bounded.

Proof for a bounded ¥ : The case of a bounded ¥ easily reduces to the case of an
adically quasi-coherent, almost coherent @x-module ¥ concentrated in degree 0. In
that situation, we have I¥+t1% = 0 for some k. This implies that ¥ = iy . Fr =
Riy . Fy for the closed immersion ix: X — X. Now it is straightforward to see that
the canonical map

Rij «Fr — Lc™*Rege(Rig 1 Fk )

is an isomorphism. The key is flatness of ¢ and the observation that Rey (Rig « ) is
already quasi-coherent, so the quasi-coherator does nothing in this case. |

Lemma 5.3.7. If G € Dy (X) and ¥ € D(X), then the natural projection morphism
76,5:G ®g, ReeF = Rege(Le*G ®p, F)

is an isomorphism if G is perfect.

Proof. [31, Lemma 4.3]. ]

Now we come to the key input ingredient. Although Rc is quite abstract and
difficult to compute in practice, it turns out that the almost proper mapping theorem
allows us to check that this functor sends D__ . .. (¥) to D__ . . (X). This would give

us a candidate for an algebraization.

qc,acoh qc,acoh

Lemma 5.3.8. Let R be a ring as in Set-up 4.5.1, A a topologically finitely presented
R-algebra, and X a finitely presented, proper A-scheme. Then Ry sends D;c,acoh (%)
to D} (X) for x € {—, b}.

qc,acoh

Proof. We prove only the bounded above case as the other one follows from this
using Lemma 5.3.5. We pick any ¥ € D . ;,(¥) and use Theorem 5.2.3 to say that
it is sufficient to show that RHomy (P, Rcx F) € D (R) for any perfect complex
P € Perf(X). For this, we consider the following sequence of isomorphisms:

RHomy (P, Rcgc ) = RHomg (Lc*P, )
_ *p\V oL
= RHomg (O%, (Lc P) Ry F)
— * Vv L lrod
=R (%, (Lc*P)Y ®p, F).

Then we note that & := (Lc¢*P)Y is a perfect complex of Ox-modules, and therefore
°®L F lies in Dq_C acon (). Thus, RI'(¥, P F) lies in Dy, (R) due to the
almost proper mapping theorem (see Theorem S 1 6) |

Finally, we are ready to give a proof of the GAGA theorem.

Proof of Theorem 5.3.2. For clarity, we divide the proof into the verification of sev-
eral claims.
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Claim 0O: It suffices to show the theorem for x = —, that is, for bounded above
derived categories. Indeed, flatness of ¢* implies that L¢c* preserves boundedness
(resp. boundedness above, resp. boundedness below), so it suffices to show that the
natural morphisms

16:G = RegcLe*G,
eg:Lc*Rege ¥ — F

are isomorphisms for any G € Dy acon(X) and F € D acon(%).
We fix N as in Lemma 5.3.5. Then flatness of ¢* and Lemma 5.3.5 guarantee that

Reg Le*t29G e DIl X)),
Lc*Reg t24F € D@l (x).

Therefore, we see that 7 is an isomorphism on J’ for i < a if and only if the
same holds for 7,<a—15. Since a was arbitrary, we conclude that it suffices to show
that ng is an isomorphism for G € D ., (X ). Similar argument shows that it suffices
to show that g is an isomorphism for ¥ € D ,.,;,(X). So it suffices to prove the
theorem for * = —.

Before we formulate the next claim, we need to use the so-called “approximation
by perfect complexes” [68, Tag 0SEL] to find some P € Perf(X) such that 2P ~
Ox /I ~ Ox, and whose support is equal to Xo. We note that it implies that all coho-
mology sheaves J' (P) are killed by some power of /. We also denote its (derived)
pullback by & := Lc*P.

Claim 1: If G € D ., (X) such that G ®I@X P >~ 0, then we have G =~ 0. Similarly,
if ¥ € Dy yeon(X) such that ¥ ®I(§3€ P >~ 0, then F >~ 0. We choose a maximal
m (assuming that G % 0) such that #™(G) # 0. Then we see that H™ (G ®';9X P) ~
H"™(G) ®oy Ox, = H™(G)/I. Also, (¥™(G)/I)(U) = H"™(G)(U)/I ~0onany
open affine U. So Nakayama’s lemma (see Lemma 2.5.19) implies that #™(G)(U) ~
0 for any such U. This contradicts the choice of m. The proof in the formal set-up is

the same once we notice that #°(P) = Og/I.

Claim 2: The map ng: G — ReqcLe*G is an isomorphism for any G € D acon (X)-
Claim 1 implies that it is sufficient to show that the map

£6 ®, P:G ®, P— RegLe*G @y, P (5.3.1)

is an isomorphism. Recall that the cohomology sheaves of P are killed by some power
of I. This property passes to G ®I@X P, so we can use Lemma 5.3.6 to get that the
map
. L , L
£, P* G®g, P~ Rege(Le™ (G ®oy P))
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is an isomorphism. Now comes the key: we fit the morphism £Gel, P into the follow-
ing commutative triangle:

£6®%p, P

L \ * L
G®y > RegLc™G ®oy P

L
G® T, Lk
X P.Lc*G

Rege(Le*(G ®159X P)) ——— Rege(Le*G ®g% Lc*P),

where the bottom horizontal arrow is the isomorphism map induced by the monoidal
structure on Lc ™. Moreover, we have already established that the left vertical arrow is
an isomorphism, and the right vertical arrow is an isomorphism due to Lemma 5.3.7.
That shows that the top horizontal must also be an isomorphism.

Claim 3: The map ez :Lc*Reqc ¥ — F is an isomorphism for any ¥ € D acon (X)-
We use Claim 1 again to say that it is sufficient to show that the map

e ®(L93€ Lc*P:Le*Rege 7 ®I@3€ Lc*P — F ®I@% Lc*P
is an isomorphism. But that map fits into the commutative diagram:

Sg-®L Lc*P
Le*Rego ¥ ®f Le*P —— 5 F @ Lc*P

zJ/ )I;fr ®L(93e Lc*P

LC* (RCqC ®L P) W LC Rch (5(7 ®Ié‘£ LC*P)
where the vertical morphism on the left is the canonical isomorphism induced by the
monoidal structure on L¢*, the bottom morphism is an isomorphism by Lemma 5.3.7,
and the right vertical morphism is an isomorphism by Lemma 5.3.6. This implies that
the top horizontal morphism is an isomorphism as well. This finishes the proof. =

5.4 The formal function theorem

In this section, we prove the formal function theorem for almost coherent sheaves as
a consequence of the formal GAGA theorem established in the previous section.

For the rest of the section, we fix a ring R as in Set-up 4.5.1 and a finitely pre-
sented or a topologically finitely presented R-algebra A.

Remark 5.4.1. Both A and A are topologically universally adhesive by [25, Propo-
sition 0.8.5.19], and they are (topologically universally) coherent by [25, Proposi-
tion 0.8.5.23].
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For the next definition, we fix a finitely presented A-scheme X and an Oy-
module F .

Definition 5.4.2. The natural I-filtration F*H! (X, ¥) on H (X, ¥) is defined via
the formula

F'H (X, F) = Im(H (X, ["F) — H (X, F)).

The natural I-topology on H (X, ) is the topology induced by the natural /-
filtration.

Lemma 5.4.3. Let X be a finitely presented A-scheme, ¥ a quasi-coherent almost
finitely generated Ox-module, and § C ¥ a quasi-coherent Ox -submodule of ¥ .
Then, for any n, there is an m such that ¥ Ng C I"§.

Proof. 1t suffices to assume that X is affine, in which case the claim follows from
Lemma 2.12.6. [

Lemma 5.4.4. Let X be a finitely presented A-scheme, ¥ and § quasi-coherent
almost finitely generated Ox -modules, and ¢:'§ — ¥ an Ox-linear homomorphism
such that Ker(¢) and Coker(¢) are annihilated by 1€ for some integer c. Then, for
every i > 0, the natural I -topology on H (X, ) coincides with the topology induced
by the filtration

FilgH' (X, ¥) = Im(H (X, I"9) — H' (X, F)).
Proof. Consider the short exact sequences

0—-K—>86—>H—0,
0O—-H—->F -Q—0,

where K and @ are annihilated by /€. The first short exact sequence induces the
following short exact sequence:

0> KNIM"g > 1I"g > I"H -0

for any m > 0. Lemma 5.4.3 implies that X N ["™§ C €K = 0 for m > 0. Therefore,
the natural map /"™§ — [™H is an isomorphism for m > 0. Note that # is almost
finitely generated and quasi-coherent, so we can replace § with K to assume that ¢
is injective.

Clearly, Fil’;Hi (X, %) C FkH! (X, ¥) for every k. So it suffices to show that, for
any k, there is m such that F"H! (X, ¥) C Fil{; Hi (X, F). We consider the short exact
sequence

0—-86NI"F - I"F - 1"Q — 0.
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Ifm>c,wegetthat§ N I™F = I"™F because [°Q ~ 0. Now we use Lemma 5.4.3
to conclude there is m > ¢ such that

I"F =§nI"F C I*.
Therefore, F"H! (X, ¥) C Filif;H" (X, 7). ]

Lemma 5.4.5. Let X be a finitely presented A-scheme, ¥ and § quasi-coherent
almost finitely generated Ox-modules, and ¢: § — F an Ox -linear homomorphism
such that Ker(¢) and Coker(¢) are annihilated by 1€ for some integer c. Suppose
that the natural I -topology on H' (X, §) is the I-adic topology. Then the same holds
forH (X, F).
Proof. Clearly, I"H! (X, ¥) C F"H' (X, ). So it suffices to show that, for every n,
there is an m such that F"H! (X, ¥) C I"H! (X, F).

The assumption that the natural /-topology on H’ (X, §) coincides with the I-

adic topology guarantees that F¥H (X, §) C I"H! (X, §) for large enough k. Pick
such k. Lemma 5.4.4 implies that

F"H (X, %) c Im(H (X, I*8) - H (X, 7))
for large enough m. So we get that
F"H (X, %) C Im(H (X, I*9) — H (X, 7))
C Im(I"H (X, 9) > H(X.¥)) C I"H' (X, F)
for a large enough m. ]

Theorem 5.4.6. Let X be a proper, finitely presented A-scheme, and ¥ a quasi-
coherent, almost coherent Ox-module. Then the natural I-topology on H (X, F)
coincides with the I -adic topology for any i > 0.

Proof. Lemma 4.7.3 guarantees that there are a finitely presented Qx-module ¥ and a
morphism ¢:§ — F such that /" (Ker¢) = 0 and /" (Coker ¢) = 0 for some integer
n > 0. Lemma 5.4.5 then ensures that it suffices to prove the claim for §. In this case,
the claim follows [25, Proposition 1.8.5.2 and Lemma 0.7.4.3] and Remark 5.4.1. =

Now we consider a proper, finitely presented A-scheme X, and an almost coher-
ent Oy-module ¥ . We denote the [-adic completion of X by X, so we have the
following commutative diagram:

X ——X

fl lf (5.4.1)

Spf(f/l\) — Spec A.
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Then we consider four different cohomology groups

H (X, c*F), H(X, F), H(X, F) ®4 A, and imH' (X,,, %),
n

and note that they are related via the following A-linear homomorphisms:

H (X, F)®4 A —L 5 H(X, F)
n l l@’ (5.4.2)
H (X, c*F) —— lim, H (X, F).
Y&

We show that all these morphisms are (almost) isomorphisms:

Theorem 5.4.7. In the notation as above, all maps oy, BY%, v, ¢4 are almost
isomorphisms for any almost coherent Ox-module ¥ . If ¥ is quasi-coherent, almost
coherent, then these maps are isomorphisms.

Proof. Once again, we divide the proof into several (numbered) steps.

Step 0: Reduction to the case of a quasi-coherent, almost coherent sheaf ¥. We
observe that Lemma 3.3.1, Lemma 3.2.17 and the fact that limits of two almost iso-
morphic direct systems are almost the same, allow us to replace ¥ with m ® ¥ to
assume that ¥ is quasi-coherent and almost coherent.

Step 1: a} is an isomorphism. This is just a consequence of Lemma 2.12.7, as we
established in Theorem 5.1.3 that H' (X, ) is an almost coherent A-module.

Step 2:A/3 ’37 is an isomorphism. We note that the assumptions on 4 imply that the map
A — A is flat by [25, Proposition 0.8.218]. Thus, flat base change for quasi-coherent
cohomology groups implies that H: (X, ¥) ®4 A~H (X 7, F ). Therefore, we may
and do assume that A4 is I -adically complete. Then the map H' (X, ¥) — H* (X, ¢* %)
is an isomorphism by Theorem 5.3.2.

Step 3: af;F is injective. Theorem 5.4.6 and Corollary 5.3.4 imply that the 7-adic
topology of H* (X, ¥) coincides with the natural /-topology. Therefore,

H (X, F)
Im(H (X, ["*1F) > H(X, F))

H (X, %) ~ lim
n

Clearly, we have an inclusion

H (X, %)

: : H' (X, Fp).
Im(H’(X,I”+1fF)—>H’(X,37))(_> (Xn. F2)

Therefore, we conclude that ozf;,; is injective by left exactness of the limit functor.
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Step 4: y; is surjective. Recall that ¥ =~ limy F; because ¥ is adically quasi-
coherent. Therefore, [25, Corollary 0.3.2.16] implies that it is sufficient to show that
there is a basis of opens 8B such that, for every U € B,

H U, %) =0fori > 1,

and
HO(U, Fr41) — HO(U, F%) is surjective for any k > 0.

Vanishing of the higher cohomology groups of adically quasi-coherent sheaves on
affine formal schemes (see [25, Theorem 1.7.1.1]) implies that one can take 8 to be
the basis consisting of open affine formal subschemes of X. Therefore, we get that y;
is indeed surjective for any i > 0.

Step 5: oz;; and y; are isomorphisms. This follows formally from commutativity of
Diagram (5.4.1) and the previous steps. |

5.5 Almost version of Grothendieck duality

For this section, we fix a universally coherent ring R with an ideal m such that
it := m ®g m is R-flat and m? = m. Since R is universally coherent, there is a
good theory of a functor f' for morphisms f between finitely presented, separated
R-schemes.’

Proposition 5.5.1. Let f: X — Y be a morphism between separated, finitely pre-
sented R-schemes. Then f' sends D L(Y) to D' L (X).

qc,aco qc,aco

Proof. The only thing that we need to check here is that f' preserves almost coher-
ence of cohomology sheaves. This statement is local, so we can assume that both X
and Y are affine. Then we can choose a closed embedding X — A}, — Y. So, it
suffices to prove the claim for a finitely presented closed immersion and for the mor-
phism A} — Y.

In the case f: X — Y a finitely presented closed immersion, we know that for
any ¥ € DE(Y),

/'¥ ~ RHomy (fuOx. F).

Since Y is a coherent scheme and f is finitely presented, we conclude that f.Ox

is an almost coherent Oy -module. So, f"f = RHom y (f+Ox,F) € Dyc,acon(X) by
Corollary 4.4.11.

3This theory does not seem to be addressed in the literature in this generality, however, all
arguments from [68, Tag ODWE] can be adapted to this level of generality with little or no extra
work. See [71, Section 2.1-2.2] for more detail.
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Now we consider the case of a relative affine space f: X = A} — Y. In this
case, we have f'% ~Lf*¥ ®@X Q;’(/Y[ n]. Then L f*(¥) € DI, . (X) in view
of Lemma 4.4.7 (4), and so L f*% ®(9X QS’(/Y[ n] € D(;FC acoh (X ) because Q;’(/Y is

(non-canonically) isomorphic to Oy . ]

qc,acoh

Now we use Proposition 5.5.1 to define the almost version of the upper shriek
functor:

Definition 5.5.2. Let f: X — Y be a morphism of separated finitely presented R-
schemes. We define the almost upper shriek functor f,):D} (Y)* — DI (X)? as

Ja(F) = (f1(F))*. aqe

Remark 5.5.3. In what follows, we will usually denote the functor £, simply by f"
as it will not cause any confusion.

aqc

Lemma 5.5.4. Let f X — Y be a morphism between separated, finitely presented
R-schemes. Then f' carries D (Y)? to DF_ (X)“.

acoh acoh

Proof. This follows from Proposition 5.5.1. ]
Theorem 5.5.5. Let f: X — Y be as above. Suppose that f is proper. Then the
functor f*: aqc(Y)“ an(X)“ is a right adjoint to R f,.: D} (Y)* — D} (X)“.

aqe

(Y) due

aqe

We note that the theorem makes sense as R f; carries D} (X)¢ into D}

aqc aqc
to Lemma 4.4.9.

Proof. This follows from a sequence of canonical isomorphisms:

Homp(yya (R f+F ¢, %) >~ Hompy) (T @ Rf4F, ) Lemma 3.1.13
~ Hompy) (Rfx (W ® F).9) Lemma 3.3.5
~ Homp(x)(M ® ¥, f !(ﬁ)) Grothendieck duality
~ Hompx)a (?“,f!(ﬁ)“). Lemma3.1.13. =

Now suppose that f X — Y is a proper morphism of separated, finitely pre-
sented R-schemes, & D + (X)?, and §¢ € D;{lC(Y)“. Then we want to construct
a canonical morphism

R f.RalHom y (. f'(§)) — RalHomy (R f(¥*). §%).
Lemma 3.5.16 says that such a map is equivalent to a map
R fRalHom (¥, f*(§9)) ®, Rfx(F) — §°.
We construct the latter map as the composition

R f,RalHom x (¢, f'(§%)) ®g, Rf(F?)
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— Rf«(RalHom x (¢, f'(§9) ®g, F*) - Rfu [ — §°,

where the first map is induced by the relative cup product (see [68, Tag 0B68]),
the second map comes from Remark 3.5.15, and the last map is the counit of the
(R f, f')-adjunction.

Lemma 5.5.6. Let f: X — Y be a proper morphism of separated, finitely presented
R-schemes, ¥4 € D, (X)%, and §¢ € an(Y)“ Then the map

R f,RalHom x (¢, f'(¢%)) — RalHom y (R f,(F %), §%)

is an (almost) isomorphism in D} (X)%.

aqe

Proof. We note that R f,RalHom y (¥4, f'(§%)) lies in Daqc(Y)“ as a consequence
of Lemma 4.4.10 (4) and Lemma 4.4.9. Likewise, RalHom y (R fi (%), %) lies in
+ (Y)“% by Theorem 5.1.3 and Lemma 4.4.10 (4). Therefore, it suffices to show that

aqc

RHomy (#¢, R fxRalHom x (¥, f’(ﬁ“)))
— RHomy (#¢, RalHom y (R fx(¥¢), %))

is an isomorphism for any #¢ € D;ZC(Y)“. This follows from the following sequence
of isomorphisms:
RHomy (#¢, R fxRalHom x (¢, f!(ﬁa)))
~ RHomy (L f*#“, RalHom x (¢, f'(§%)))
~ RHomX(Lf He ®0X Fe f (ﬁ“))
~ RHomy (Rfi(Lf*#° ®g, F°).5%)
~ RHomy (#° @ Rfx(F¥%),§9)

~ RHomy (#“, RalHom y (R fx(¥ ), §%)).

The first isomorphism holds by Corollary 3.5.26. The second isomorphism holds by
Lemma 3.5.16. The third isomorphism holds by Theorem 5.5.5. The fourth isomor-
phism holds by Proposition 4.4.12. The fifth equality holds by Lemma 3.5.16. |

Theorem 5.5.7. Let f: X — Y be as above. Suppose that f is smooth of pure dimen-
siond. Then f'(=) ~ Lf*(-) ®g, Q% y[d].

Proof. Tt follows from the corresponding statement in the classical Grothendieck
duality. |

We summarize all results of this section in the following theorem:
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Theorem 5.5.8. Let R be a universally coherent ring with an ideal m such that
m:=m Qg m is R-flat and m> = m, and FPSg be the category of finitely pre-
sented, separated R-schemes. Then there is a well-defined pseudo-functor (=)' from
FPS into the 2-category of categories such that

(D) (X)' =D (X)4;

aqc
(2) for a smooth morphism f:X — Y of pure relative dimension d, we have a
natural isomorphism f' ~ L f*(—) ®%L, le(/y[d];

X
(3) for a proper morphism f:X — Y, the functor f' is the right adjoint of
Rf: D (X)¢ — DI (Y)4

aqe aqe



Chapter 6

O* /p-modules

The main goal of this chapter is to discuss the comparison results between O/ p-
modules in the étale, quasi-proétale, and v-topologies. In particular, we show that the
categories of O/ p-vector bundles in all these topologies are canonically equiva-
lent. Furthermore, one can compute cohomology groups with respect to any of these
topologies (without passing to almost mathematics). A good understanding of O / p-
vector bundles in the v-topology will be crucial for our proof of almost coherence of
nearby cycles for general O / p-vector bundles (see Theorem 7.1.2). We also discuss
more general @/ p-modules in Section 6.7.

In this chapter, we will freely use the notions of perfectoid spaces and their tilts
as developed in [58] and [61].

6.1 Recollection: The v-topology

In this section, we discuss the v-topology on adic spaces and show some of its basic
properties that seem difficult to find explicitly stated in the literature.

Before we start this discussion, we recall the notion of a diamond and its relation
to the notion of an adic space. To motivate this discussion, we remind the reader of
the two major problems with the category of adic spaces: the existence of non-sheafy
(pre-)adic spaces and the lack of (finite) limits in the category of adic spaces. It turns
out that both of these problems go away if we consider a (pre-)adic space over Q,, as
some kind of sheaf X © on the category of perfectoid spaces of characteristic p > 0. It
could sound somewhat counter-intuitive to consider a p-adic rigid-analytic variety as
a sheaf on characteristic p objects, but it turns out to be quite useful in practice. The
main idea is that an § = Spa (R, R*)-point of X< should be a choice of an untilt $*
of S (this is a mixed characteristic object) and a morphism S$* — X . This procedure
turns out to remember a lot of information about X (e.g., étale cohomology), but not
all information about X (see Warning 6.1.8).

Definition 6.1.1 ([61, Definitions 8.1, 12.1, and 14.1]). The category Perf is the cat-
egory of characteristic p perfectoid spaces.

The v-topology is the Grothendieck topology on Perf, defined such that a family
{fi: Xi = X};ier of morphisms in Perf is a covering if, for any quasi-compact open
U C X, there are a finite subset /o C / and quasi-compact opens {U; C Xj};e1, such
that U C U, ey, fi (Ui).
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A small v-sheaf is a v-sheaf Y on Perf such that there is an epimorphism of
v-sheaves Y’ — Y for some perfectoid space Y.

The v-site Yy, of a small v-sheaf Y is the site whose objects are all maps Y’ — Y
from small v-sheaves Y’, with coverings given by families {¥; — Y };ey such that
Ll;e; Yi — Y is an epimorphism of v-sheaves.

Remark 6.1.2. The v-site of a small v-sheaf Y has all finite limits by [61, Proposi-
tion 12.10] and [68, Tag 0020].

In what follows, we denote by Adg,, the category of adic spaces over Spa (Qp,Z))
and by pAdg, the category of pre-adic spaces over Spa (Qp,Z;) as defined in [62,
Definition 2.1.5] and [41, Definition 8.2.3].! The category of pre-adic spaces satisfies
the following list of properties (see [62, Proposition 2.1.6] or [41, Section 8.2.3]):

(1) The natural functor Adg, — pAdy,, is fully faithful.

(2) There is a functor (Tate-Huber(g,,z,)*"")*® — pAdg, from the opposite
category of complete Tate—Huber pairs over (Q,, Z,) to the category of pre-
adic spaces over Spa (Q,, Zp). To each such (4, A™) it assigns the pre-adic
affinoid space’ Spa (4, A™).

(3) For an adic space S and a pre-adic affinoid space Spa (A4, A1), the set of
morphisms is given by

HompAde (S7Spa (Av A+)) = Homcont((Aa A+)7 ((DS(S), (9;’_(‘9)))

@ pAde has all finite limits.

(5) With a pseudo-adic space X, one can functorially associate an underlying
topological space | X| such that it coincides with the usual underlying topo-
logical space |X| when either Spm+) is a pre-adic affinoid space or
X =(X],0x, (9;) is an adic space.

(6) With every pre-adic space X € pAdy,, one can functorially associate an étale
site X¢ such that X¢ coincides with the classical étale site when X is a locally
strongly noetherian space or a perfectoid space (see [38, Section 2.1] and
[58, Section 7]).

Warning 6.1.3. In general, it is not true that Hompag,,, (Spa (B,B™"),Spa(A, A+))
is equal to Homeon ((4, AT), (B, BT)) unless Spa (B, BT) is sheafy. In particular,

the functor

comp  \Op
(Tate—Huber(Qp’Zp)) — pAdy,

is not fully faithful.

These spaces are called adic in [62], we prefer to call them pre-adic to distinguish them
from the usual adic spaces in the sense of Huber.

2We follow [41] and use the notation Spm+) for affinoid pre-adic spaces. If A4 is
sheafy, we freely identify it with Spa (4, AT).
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Definition 6.1.4 ([62, Definition 2.4.1]). Let X; be a cofiltered inverse system of pre-
adic spaces with quasi-compact and quasi-separated transition maps, X a pre-adic
space, and f;: X — X; a compatible family of morphisms.

We say that X is a tilde-limit of X;, X ~ lim; X; if the map of underlying topo-
logical spaces |X| — limy |X;| is a homeomorphism and there is an open covering
of X by affinoids Spa (4, AT) C X, such that the map

colim, A —> A

Spa(4,AT)CX;

has dense image, where the filtered colimit runs over all open affinoids
Spa(4, A1) c X;
over which Spa (4, A7) C X — X; factors.

Definition 6.1.5 ([61, Definition 15.5]). The diamond associated with X € pAde

is a presheaf
X©: Perf® — Sets

such that, for any perfectoid space S of characteristic p, we have
X°(S) = {((s*,0), f: 5" — X)}/isom,

where S* is a perfectoid space, ¢: (S ”)b — § is an isomorphism of the tilt of S#
with S, and f:S¥ — X is a morphism of pre-adic spaces.

The diamantine spectrum Spd (A, AT) of a Huber pair (4, A™) is a presheaf
Spa (A4, A1)©.

We list the main properties of this functor:

Proposition 6.1.6. The diamondification functor factors through the category of v-
sheaves. Moreover, the functor (—)%: PAdg, — Shv(Perf,) satisfies the following list
of properties:

(1) if X is a perfectoid space, then X° ~ X°;

(2) X° is a small v-sheaf for any X € pAde ;3

(3) if {Xi = X}ies is an open (resp. étale) covering in pAde, then the family
{Xi<> — X Vi1 is an open (resp. étale) covering of X©;

(4) there is a functorial homeomorphism | X | ~ |X°| for any X € PAdg,;

(5) if X is a perfectoid space such that X ~ lim; X; in pAde with quasi-
compact quasi-separated transition maps, then X — lim; X l<> is an iso-
morphism;

(6) the functor (—)°: :pAde — Shv(Perf,) commutes with fiber products.

31t is even a locally spatial diamond in the sense of [61, Definition 11.17].
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Proof. The first claim follows from [61, Corollary 3.20] and the definition of the
diamondification functor. As for the second claim, [61, Proposition 15.6] implies
that X © is a diamond, and so it is a small v-sheaf due to [61, Proposition 11.9] and the
definition of a diamond (see [61, Definition 11.1]). The third and fourth claims follow
from [61, Lemma 15.6]. The proof of the fifth claim is identical to that of [62, Propo-
sition 2.4.5] (the statement makes the assumption that X and X; are defined over a
perfectoid field, but it is not used in the proof).

Now we give a proof of the sixth claim. Let U — V, W — V be morphisms in
PAdg, with the fiber product U xy W. We fix a perfectoid space S of characteris-
tic p. Then we have a sequence of identifications

(U xy W)°(S)
= {((Sﬁ,[), S* > U xy W)} /isom

= {((8%.0. 8% — U)}/isom x (st .55 - v)y/isom 1((SF.0). S¥ — W)} /isom
= US(8) xyo(s) WO(S),

which is functorial in S. Therefore, this defines an isomorphism
(U xy W)°® S U xye WO. n

Warning 6.1.7. The functor (—)< does not send the final object to the final object.
In particular, it does not commute with all finite limits.

Warning 6.1.8. The functor (—)°: pAdg, — Shv(Perfy) is not fully faithful. This
observation is quite crucial for our proof of Theorem 7.10.3. In that proof, we exploit
Theorem 7.10.1 which guarantees that some non-perfectoid affinoid (pre-)adic spaces
become perfectoid after diamondification.

The next goal is to discuss some examples of v-covers of X ©.

Definition 6.1.9. A family of morphisms { fi: X; — X}ier in pAdy, is a naive v-
covering if, for any quasi-compact open U C X, there are a finite subset /o C [/ and
quasi-compact opens {U; C X;}ier, such that [U| C U, ¢, | /il (Ui ]).

Remark 6.1.10. Using that the natural morphism |X xy Z| — |X| x|y| |Z] is sur-
jective, it is easy to see that a pullback of a naive v-covering is a naive v-covering.

Lemma 6.1.11. Let f: X — Y be an étale morphism of pre-adic spaces in PAdg,
(in the sense of [41, Definition 8.2.19]). Then f is an open map.

Proof. By definition, open immersions induce open maps of underlying topological
spaces. Therefore, after unraveling the definition of étale morphisms, it suffices to
show that a map of pre-adic spaces | Spa (¢)|: | Spa (B, BT)| — | Spa (A4, A™)]| is
open when ¢: (4, AT) — (B, B™) is a finite étale morphism of Tate—Huber pairs.
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In this case, Lemma C.2.9 and Corollary C.3.12 allow us to assume that (4, A1) is
strongly noetherian. Then the result follows from [38, Lemma 1.7.9] (alternatively,
one can directly adapt the proof of [38, Lemma 1.7.9] to work in the non-noetherian
case). ]

Example 6.1.12. (1) A quasi-compact surjective morphism X — Y of pre-adic
spaces over Spa (Q,, Z,) is a naive v-cover;

(2) Lemma 6.1.11 implies that a family of jointly surjective étale morphisms
{Xi; — X} of pre-adic spaces over Spa (Q,,Zp) is a naive v-cover.

Our next goal is to show that the diamondification functor (—)° sends naive v-
covers to surjections of small v-sheaves.

Lemma 6.1.13. Let f: X — Y be a quasi-compact (resp. quasi-separated) morphism
inpAdg,. Then O X© = Y is quasi-compact (resp. quasi-separated) in the sense
of [61, p. 40].

Proof. We first deal with a quasi-compact f. In order to check that £ is quasi-
compact, it suffices to show that S xy< X< is quasi-compact for any morphism
S — Y with an affinoid perfectoid S. By definition, this morphism corresponds to a
morphism S* — ¥ with an affinoid perfectoid source S*. By Proposition 6.1.6, we
have S xyo X© ~ (Sﬁ Xy X)O, so [61, Lemma 15.6] implies that

1S xyo X >~ |S* xy X|

is quasi-compact by our assumption on f. Now S xy¢ X< is quasi-compact due to
the combination of [61, Proposition 12.14 (iii) and Lemma 15.6].

The case of a quasi-separated f follows from Proposition 6.1.6 and the quasi-
compact case by considering the diagonal morphism As: X — X xy X. |

Lemma 6.1.14. Let {fi: X; — X}ier be a naive v-covering in pAdg,. Then the
Sfamily {fioz Xi<> — X®}ieq is a v-covering as well.

Proof. We can find a covering {U; — X};cs by open affinoids. Proposition 6.1.6
implies that {U j<> — X ©Vis a v-covering. Therefore, it suffices to show that the fam-
ily {fi,j: Xi,; = Xi xx U;j = Uj}ier is a v-covering for every j € J. Since naive
v-covers are preserved by open base change, we reduce to the case when X is an
affinoid.

Moreover, the proof of [61, Proposition 15.4] ensures that there is a v-surjection
f:S — X where S is an affinoid perfectoid space. By definition, the map f corre-
sponds to a map g: S* — X . Proposition 6.1.6 ensures that diamondization commutes
with fiber products, so it suffices to show that {(X; xx S¥)® — (S%)®Vics is a v-
covering. In other words, we can assume that X = § # is an affinoid perfectoid space.
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Now we can find a covering {U; ; — X;};jey; by open affinoids for each i € I.
Then the family {U;; — X}ier,jes; is also a naive v-covering, and so it suffices
to show that {Ufj — Xo}jel,jeji is a v-covering. In other words, we can assume
that X is an affinoid perfectoid space and that all X; are affinoids. A similar argument
allows us to assume that each X; is an affinoid perfectoid space.

Finally, we note that under our assumption that X and X; are (affinoid) per-
fectoids, {X; — X}ier is a naive v-covering if and only if {Xi<> — XYer is a
v-covering since |Xl.<>| ~ |X;| and | X®| = |X| by [6], Lemma 15.6]. ]

6.2 Recollection: The quasi-proétale topology

The main goal of this section is to recall the notions of a quasi-proétale morphism
and the quasi-proétale topology. This topology will be a crucial intermediate tool to
relate the v-topology to the étale topology.

In this section, we will only work with strongly sheafy spaces in the sense of
Definition C.4.1. We advise the reader to look at Appendix C for basic definitions
involving such spaces. Most likely, this discussion can be generalized to arbitrary
affinoid pre-adic spaces, but we do not do this since we will never need this level of
generality.

For the purpose of the next definition, we fix a morphism f: X = Spa(S,S*) —
Y = Spa(R, R™) of strongly sheafy Tate-affinoid adic spaces.

Definition 6.2.1. A morphism f:Spa(S,S*) — Spa (R, R™) is an affinoid strongly
pro-étale morphism if there is a cofiltered system of strongly étale morphisms of
strongly sheafy affinoid adic spaces (see Definition C.4.5)

Spa (R;, R;") — Spa(R, R™)

such that (S, S*) = (mu, ((:ﬁm[\R,);r ) is the completed uniform filtered
colimit of (R;, R;") (see Definition C.2.4).

We will usually write Spa (S, S*) a lim; Spa (R;, R;") — Spa (R, RT) for an
affinoid strongly pro-étale presentation of Spa (S, S*) — Spa (R, R™).

Remark 6.2.2. Explicitly, Remark C.2.5 implies that ST = (colim; Rl.Jr )5 is equal
to the w-adic completion of colim; R;r and S§ = S+ [%] for any choice of a pseudo-
uniformizer w € RY.

Remark 6.2.3. We note that Theorem C.3.10 (1) (see also [62, Proposition 2.4.2])
implies that Spa (S, ST) ~ lim; Spa (R;, Rl.Jr ) for an affinoid strongly pro-étale mor-
phism Spa (S, ST) ~ lim; Spa (R;, R}") — Spa (R, R™T).

Warning 6.2.4. Definition 6.2.1 is more restrictive than [61, Definition 7.8] when
Spa (R, R™) is an affinoid perfectoid space.
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Definition 6.2.5. A perfectoid space X is strictly totally disconnected if X is quasi-
compact, quasi-separated, and every étale cover of X splits.

Lemma 6.2.6. Let each X, Y, Y’, and Z be affinoid spaces over Spa (Qp,Z,). We
assume that each of them is strongly sheafy.

(1) Let f: X — Y and g:Y — Z be affinoid strongly pro-étale morphisms. Then
the composition g o f: X — Z is also an affinoid strongly pro-étale mor-
phism.

(2) Let f: X — Y be an affinoid strongly pro-étale morphism, let g:Y' — Y
be a morphism of adic spaces with Y' being an affinoid perfectoid space
(resp. strictly totally disconnected perfectoid space), and let Xy .= X xy Y’
be the fiber product (in pre-adic spaces). Then X }?, is an affinoid perfectoid
space (resp. strictly totally disconnected perfectoid space) and the morphism
f)?,: X;,}, — Y’? is an affinoid pro-étale morphism in the sense of [61, Defi-
nition 7.8].

Proof. (1) The proof of [52, Lemma 2.5 (1)] goes through if we use Theorem C.3.10
in place of [61, Proposition 6.4] (and [38, Proposition 1.7.1]).

Now we show (2). We set X = Spa(S,S™),Y =Spa(R,R"),Y'=Spa(R,R'"),
and let X ~ lim; (X; = Spa(R;, R;")) — Y = Spa(R, R™T) be an affinoid strongly
pro-étale presentation of X — Y. Then Proposition 6.1.6 (5) implies that

X© =lim X2
1

Therefore, X1</>/ = lim; (X; xy Y')® — Y'®. Hence it suffices to show that each
(X; xy Y")® is represented by an affinoid perfectoid space, and that each morphism
fio: (X; xy Y)® — Y'® is étale. By construction, fi<> is étale. In particular, (X; Xy
Y")® is represented by a perfectoid space. Furthermore, fi<> is a composition of finite
étale maps and finite disjoint unions of rational subdomains. Therefore, (X; xy Y')®
is an affinoid perfectoid space due to the combination of [58, Theorem 6.3 and The-
orem 7.9].

If Y’ is strictly totally disconnected, then [61, Lemma 7.19] implies that X ;?, is
also represented by a strictly totally disconnected perfectoid space. ]

Warning 6.2.7. [52, Lemma 2.5 (1)] claims a stronger version of Lemma 6.2.6 (2).
However, it seems to be false (see Warning 7.6.5).

Now we are ready to show that the issue raised in Warning 6.2.4 disappears when
the target is a strictly totally disconnected perfectoid space.

Lemma 6.2.8. Let X = Spa (R, R™) be a strictly totally disconnected perfectoid
space, and let f:Y = Spa(S,ST) — X = Spa (R, R™) be an affinoid pro-étale
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morphism (in the sense of [61, Definition 7.8]). Then f is an affinoid strongly pro-
étale morphism.

Proof. The proof of [61, Lemma 7.19] ensures that f can be realized as a pro-
(rational subdomain) inside the pro-(finite étale) morphism X X, (x) o(Y'). Each of
these morphisms is an affinoid strongly pro-étale morphism. Thus, Lemma 6.2.6 (1)
ensures that f is an affinoid strongly pro-étale morphism as well. ]

For the next definition, we fix a morphism f: X — Y of adic spaces such that X
and Y are strongly sheafy adic spaces over Spa (Qp, Zp).

Definition 6.2.9. A morphism f: X — Y is strongly pro-étale if, for every point
x € X, there are an open affinoid x € U C X and an open affinoid f(x) e V C Y
such that f|y: U — V is affinoid strongly pro-étale.

Now we are ready to define quasi-proétale morphisms.

Definition 6.2.10 ([61, Definition 10.1 and 14.1]). A morphism of small v-sheaves
f:X — Y is quasi-proétale if it is locally separated, and for every morphism S — Y
with a strictly totally disconnected perfectoid S, the fiber product X5 := X xy S is
represented by a perfectoid space and Xg — S is pro-étale.

The quasi-proétale site X e Of a small v-sheaf is the site whose objects are
quasi-proétale morphisms ¥ — X, with coverings given by families {¥Y; — Y };er
such that | |;c; ¥; — Y is a surjection of v-sheaves.

Lemma 6.2.11. Let f: X — Y be a strongly pro-étale morphism such that both X
and Y are strongly sheafy adic spaces over Spa (Qp.Zp). Then f X0 5 YQis
quasi-proétale. Furthermore, if f is also a naive v-covering, then f © is a quasi-
proétale covering.

Proof. The question is local on the source and on the target, so we can assume that f’
is an affinoid strongly pro-étale morphism. Then it is easy to see that f<: X¢ — Y ©
is a separated morphism (for example, it is quasi-separated due to Lemma 6.1.13
and then the valuative criterion [61, Proposition 10.9] implies that it is separated).
Therefore, it suffices to show that, for any strictly totally disconnected perfectoid S
and a morphism S — Y | the fiber product S Xyo X ¢ — § is a pro-étale morphism
of perfectoid spaces.

Now we recall that a morphism f: S — Y < uniquely corresponds to a morphism
g:S* — Y. Proposition 6.1.6 (6) implies that

S xyo X© =~ (8% xy X)°.

Therefore, Lemma 6.2.6 (2) implies that S xy< X — S is affinoid pro-étale in the
sense of [61, Definition 7.8]. This finishes the proof that £ is quasi-proétale. If we
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also assume that f is a naive v-covering, then Lemma 6.1.14 ensures that £ is a
surjection of v-sheaves. Thus, < is a quasi-proétale covering in this case. ]

Finally, we wish to show that strongly sheafy Tate-affinoids Spa (4, A™) admit
affinoid strongly pro-étale covers by strictly totally disconnected perfectoid spaces.
For this, we will need some preliminary lemmas:

Lemma 6.2.12. Let (A, A™) be an affinoid perfectoid pair. Suppose that every surjec-
tive (affinoid) strongly étale morphism Spa (B, BT) — Spa (A, A1) admits a section
(see Definition C.4.5). Then Spa (A, A™) is a strictly totally disconnected perfectoid
space.

Proof. Tt suffices to show that every étale surjective morphism X — Spa (4, A™)
admits a section. Any such morphism can be dominated by a surjective morphism of
the form | |;; X; — Spa (A4, A*) where X; = Spa (B;, B;*) — Spa (4, A™) is affi-
noid strongly étale and / is a finite set. Then Remark C.4.7 implies that | |;; X; —
Spa (4;, A;r ) is itself strongly étale (and affinoid), so it admits a section due to the
assumption on X . Therefore, X — Spa (A, A™) also admits a section. |

Lemma 6.2.13. Let Spa (A, A™) denote a strongly sheafy Tate-affinoid space over
Spa(Qp, Zy). Then there is an affinoid strongly pro-étale covering Spa (Ao, AL) —
Spa (A, A™) such that the fiber products Spd (Aeo, Ag;)j/Spd AAT) gre represented
by strictly totally disconnected (affinoid) perfectoid spaces for j > 1. In particular,

Spd (Ao, AJ) — Spd (4, 4T)
is a quasi-proétale covering by a strictly totally disconnected perfectoid space.

Proof. For the purpose of the present proof, we say that a strongly étale morphism
f:(R,RT)— (S,S™) of complete Tate—Huber pairs is a covering if the correspond-
ing morphism | Spa ( f)|: | Spa (S, ST)| — | Spa (R, R™)| is surjective.

To begin with, we fix a set of representatives of all strongly étale coverings
{(A, AT) — (4;, A" )}ier. Then, for each finite subset S C 7, we define

(AS7 A;’:) = ®S€S(AS5 A:_)

Each (4gs, A;) is a strongly étale covering of (A, A™). For each § C S’, we put
fs.s7:(As, A;r) — (As’, A;f,) to be the natural morphism induced by S < S’. Then
we see that {(A4s, A;), fs.5/}ScI fnie 1 a filtered system of strongly étale (A4, A™)-
algebras. We put

1

(A1), A*(1)) = ((colimg Ag)[;],conms A%)
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to be the completed uniform filtered colimit of (Ag, A;’) (see Definition C.2.4). The-
orem C.3.10 implies that every strongly étale covering (4, AY) — (B, B™) admits a
splitting over (A(1), AT (1)). We repeat the same construction to inductively define

(4(2). A7 (2)) = (A1), AT (1)),
(A(3), AT (3)) = (AQ)(1), A (1))....,
(A(n), AT (n)) == (A — 1)(1), A(n — D*(D))....

Finally, we let (Ao, AZ,) be the completed uniform filtered colimit of (A(n), A(n)™).
Then Theorem C.3.10 implies that any strongly étale covering of (Aso, AZ,) comes
from a covering of some (A(n), A*(n)), hence it admits a splitting over (A(n + 1),
At (n + 1)). In particular, every strongly étale covering of (Ao, AL)) admits a split-
ting. The proof of [61, Lemma 15.3] implies that (As0, AZ) is a perfectoid pair. In
particular, it is strongly sheafy. Furthermore, Lemma 6.2.12 ensures that it is strictly
totally disconnected. We notice that the morphism Spa (Ao, AZ)) — Spa (4, A™) is
an affinoid strongly pro-étale covering. Finally, we conclude that all fiber products
Spd (Awo, A;ro)j /Spd (4.47) gre represented by strictly totally disconnected perfectoid
spaces due to Lemma 6.2.6 (2). [

Lemma 6.2.14. Let X = Spa (A, A") denote a strongly sheafy Tate-affinoid over
Spa (Qp. Zp). Then the set of all morphisms f<>: Y® — X for an affinoid per-
fectoid Y with an affinoid strongly pro-étale morphism f:Y — X forms a basis
of X ©

qproét’

Proof. Let Z — X< be a quasi-proétale morphism. We wish to show that it can be
covered (in the quasi-proétale topology) by elements of the form Y¢ — X< for an
affinoid perfectoid Y and an affinoid strongly pro-étale morphism ¥ — X.

Then Lemma 6.2.13 implies that we can find an affinoid strongly pro-étale cov-
ering X’ — X such that X’ is a strictly totally disconnected perfectoid space. Since
Z — X° is quasi-proétale, we conclude that Z xx< X’< is a perfectoid space and
Z xxo X' is pro-étale. Therefore, we can cover it (in the analytic topology) by
affinoid perfectoid spaces Z; such that each Z; is an affinoid perfectoid space and
Z; — X'° is affinoid pro-étale. By construction {Z; — Z};ey is a covering in the
quasi-proétale topology.

Now Lemma 6.2.8 implies that each Z; — X' is affinoid strongly pro-étale.
Therefore, when we pass to the corresponding untilts, we get morphisms Z lﬁ — X’
that are affinoid strongly pro-étale as well (we use [61, Theorem 3.12 and Theo-
rem 6.1]). Consequently, Lemma 6.2.6 (1) implies that each Z? — X is an affi-

noid strongly pro-étale morphism (with an affinoid perfectoid Z? ). By construction
(Zf)<> = Z; — X cover the morphism ¥ — X©. ]
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6.3 Integral structure sheaves

In this section, we define various structure sheaves associated with a (pre-)adic space
over Q,. Then we discuss the relationship between some of these sheaves. We will
continue the discussion between these sheaves (and their cohomology) in the next
section.

First, we note that the étale, quasi-proétale, and v-sites of a pre-adic space X over
Spa (Qp, Z,) are related via the following sequence of morphisms of sites:

x¢ 2 x° X, (6.3.1)
qproét
which essentially come from the fact that any étale covering is a quasi-proétale cover-
ing, and any quasi-proétale covering is a v-covering.* Now we define various structure
sheaves on each of these sites:

Definition 6.3.1. Let X be a pre-adic space over Spa (Qp, Z,).
The integral “untilted” structure sheaf (9;;<> is a sheaf of rings on X l? obtained
as the sheafification of a pre-sheaf defined by the assignment

{8 = X} > 0, (s%)

for any perfectoid space S — X< over X< (the transition maps are defined in the
evident way”).

The rational “untilted " structure sheaf Oy« is a sheaf of rings on X l? given by
the formula Oy = <>[ |

The mod- p structure sheaf ot xo/ P is the quotient of (9;;0 by p in the category
of sheaves of rings on X2.

The quasi-proétale integral “untilted” structure sheaf (9 « 1s the restriction
of (9+<> to the quasi-proétale site of X, i.e., Oy o= = A« (9Jr o

The quasi-proétale mod-p structure sheaf (9X<> /pis the quotient of (9X<> by p
in the quasi-proétale site X ;;mel

If X is a strongly sheafy space over Spa (Qp,Z,), the étale mod-p structure
sheaf (9;('él / p is the quotient of (9;& by p in the étale site X (see Definition C.4.9
and Lemma C.4.11).

4To show that the natural continuous functors Xe¢ — X Oroet and X Oroel — X f induce
morphisms of sites (in the other direction), one needs to verify that all these sites admit finite
limits and these functors commute with all finite limits. We leave this as an exercise to the
interested reader.

5Recall that a morphism S — X < is, by definition, a datum of an untilt S¥ with a morphism
S* — X and an isomorphism (S#)? ~ . Thus, a pair of morphisms T — § — X < defines a

pair T% — §% - X.
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Remark 6.3.2. We note that it is not, a priori, clear whether 95" o/p = A+ (0Fs/p).
The problem comes from the fact that A is not an exact functor so it is not clear
whether it commutes with quotiening by p.

Remark 6.3.3. The relation between (9;;; /p and (9;&« / p is even more mysterious.
The first sheaf is defined via descent from perfectoid spaces, so it seems subtle to
control values of this sheaf on locally noetherian adic spaces. On the contrary, the
second sheaf is defined using the étale topology on Xy, so its definition has no direct
relation to perfectoid spaces when X is a locally noetherian adic space.

By definition, for a strongly sheafy adic space X over Spa (Q,.Z,), we can pro-
mote Diagram (6.3.1) to a diagram of morphisms of ringed sites:

(X2, 056 /P) == (X e O/ P) —— (Xei, OF,/p). (63.2)

gproet’

‘We also have “tilted” versions of the structure sheaves:

Definition 6.3.4. Let X be a pre-adic space over Spa (Qp, Z,).
The integral “tilted” structure sheaf (9b is the sheaf of rings on X obtained
as the sheafification of a pre-sheaf defined by the assignment

{S - X% > 08(5)

for any perfectoid space S — X< over X ©.

If X is a pre-adic space over a p-adic perfectoid pair (R, R™) with a good pseudo-
umformlzer w € R (see Definition B.11), the rational “tilted” structure sheaf (9
is (9 [ 51

We start with some easy properties of these structure sheaves:

Lemma 6.3.5. Let X € pAdgy, be a pre-adic space over Spa(Qp,Zy). Then

(1) for any affinoid perfectoid space Y = Spa(S,S™1) — X°, we have the coho-
mology groups H°(Y, (9+ o) = SHT and H (Y, (9+ o) = 0fori > 1;

(2) for any affinoid perfectozd space Y = Spa(S, S +) — X, we have the coho-
mology groups H°(Y, (9X<>) = St and H (Y, (9X<>) ~%0fori > 1;

(3) the sheaf O} xo I8 derived p-adically complete and p-torsion free;

(4) if X is pre-adic space over a perfectoid pair (R, R+) with a good pseudo-
umformlzer w € R, the sheaf O Xi is derived w" -adically complete and
wP-torsion free;

(5) if X is a pre-adic space over a perfectoid pair (R, R") with a good pseudo—
uniformizer w € R, there is a canonical isomorphism 97, xo /P (9 bt o/ w’
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Proof. (1) and (2) follow directly from [61, Theorem 8.7 and Proposition 8.8].
(3) To show that (9;;<> is p-torsion free, it suffices to show that Oy« (U) is
p-torsion free on a basis of X ,? . Therefore, it is enough to show that

Oyo(Y)

is p-torsion free for any affinoid perfectoid space ¥ — X ©. This follows from (1).
Lemma A.8 ensures that, for the purpose of proving that (9;;<> is p-adically
derived complete, it suffices to show that

RI(Y,0F,)

is derived p-adically complete for any affinoid perfectoid space of the form Y =
Spa (S, S*) — X. Then it suffices to show that each cohomology group H’ (Y, (9;;0)
is derived p-adically complete. Now (1) implies that

HO(Y,0,) = sh+

is p-adically complete, and so it is derived p-adically complete (see [68, Tag 091R]).
Moreover, (1) implies that all higher cohomology groups

H (Y.0},) ~° 0

are almost zero. In particular, they are p-torsion, and so derived p-adically complete.
Thus, RI'(Y, (9;0) is derived p-adically complete finishing the proof.

(4) This is completely analogous to the proof of (3) using (2) in place of (1).

(5) Denote by F the presheaf quotient of (9;('<> by p, and by § the presheaf
quotient of (9;’2; by @". It suffices to construct a functorial isomorphism

F(U) ~ §U)

on a basis of X f . Therefore, it suffices to construct such an isomorphism for any
affinoid perfectoid space U — X <. Then (1) and (2) ensure that, for an affinoid per-
fectoid space U = Spa(S,ST) - X©,

FU) ~ Sh+/psht,
U)~ST/w’st.

Essentially by the definition of a tilt, we have a canonical isomorphism
Sﬂ,-i-/pSﬁ,-i- — Sﬁ,-i-/wsﬂ,-i- ~ S+/wbS+

finishing the proof. |
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Remark 6.3.6. The conclusion of Lemma 6.3.5 (1), (3) holds for the sheaf (9;‘3 by
a similar proof (using [61, Theorem 8.5] in place of [61, Theorem 8.7 and Proposi-
tion 8.8]). If X is a perfectoid space, the same conclusions hold for O;él with a similar
proof (using [61, Theorem 6.3] in place of [61, Theorem 8.7 and Proposition 8.8]).

Our next goal is to discuss the precise relation between (9;;<> /D, (95&; /p, and
(9;61 / p. If one is willing to work in the almost world, then one can quite easily see
that each of these sheaves is obtained as the (derived) restriction of the previous one to
the smaller site (this essentially boils down to Lemma 6.3.5). However, to understand
the relation between the categories of @/ p-vector bundles in different topologies,
it is essential to understand the relation between these sheaves on the nose. This turns
out to be quite subtle and will be discussed in the rest of this and the next sections.

Lemma 6.3.7. Let X € pAde be a pre-adic space over Spa (Qp, Zp). Then the
natural morphism

(9;q<g/p — A«(O0F o/ p)

is an isomorphism. If X is a strongly sheafy adic space over Spa (Qp, Zp), then the
natural morphisms °

w (0%, /p) = Oxs/p.
0%, /P — Rus(04e/ p)

are isomorphisms as well.

Proof. The first result is [52, Proposition 2.13]. For the second result, we note that
[52, Lemma 2.7] ensures’ that, for a strongly sheafy adic space X, the sheaf O;q% is
isomorphic to

O+ 1 —1(+ /,n)\8

(9quD = hrlln,u ((DXét/p )-

Now we know that the quasi-proétale site of a diamond is replete (in the sense of
[9, Definition 3.1.1]) due to [52, Lemma 1.2]. Therefore, the fact that (93(:1 is p-
torsion free and [9, Proposition 3.1.10] imply that

@;qp ~ Rlim M_I(O}Eél/p”) ~ M_I(OJ’;él)

®The functor u~1: Ab(Xe) — e/‘w(’r(X;;mél
groups.

"Strictly speaking, the proof of [52, Lemma 2.7] assumes that X is either locally noethe-
rian or perfectoid. However, a similar proof works for any strongly sheafy X if one uses
Lemma 6.2.14 in place of [52, Lemma 2.6].

8The sheaf (9;‘;5 is denoted by @}’}o in [52].

) denotes the pullback of sheaves of abelian
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is the derived p-adic completion of j1~! ((9;?5,1). Since (9;0 is also p-torsion free by
Lemma 6.3.5, the universal property of derived completion implies that

Oxs/p = [0%s/p]

~ [ (©F)/p]
~ ot ((9§él/p).

Finally, [61, Proposition 14.8 and Lemma 15.6] imply that
O%/P = Ruwpt™ (0%, /1) = Rux (%5 / ). .

Our next goal is to compare RA ((9;?<> / p) with (9;;5 / p. To do this, we need a
number of preliminary results. This will be done in the next section.

6.4 v-descent for étale cohomology of O /p

The main goal of this section is to show that the natural morphism
Oa/p — Rha(0Fo /)

is an isomorphism. However, our argument is a bit roundabout, and we first show
that the étale cohomology complex RI™( X, (93}3,l / p) satisfies v-descent on affinoid
perfectoid spaces. Even to formulate this precisely, we will need to use co-categories
as developed in [48]. In what follows, we denote by D (Z) the oo-enhancement of the
triangulated derived category of abelian groups D(Z). We are also going to slightly
abuse the notation and identify a (usual) category € with its nerve N(€) (see [50,
Tag 002M]) considered as an oco-category.

We fix a category PerfAffg, of affinoid perfectoid spaces over Spa (Qp, Z,). For
any morphism Z — Y, we can consider its Cech nerve C(Z /Y) as a simplicial object
in PerfAfo,,, i.e., a functor

C(Z/Y): A® — PerfAffq,.
More explicitly, the n-th term
CZ/Y), =z"Y

is the n-th fiber product of Z over Y. Face and degeneracy maps are defined in an
evident way.

For any functor (in the co-categorical sense) ¥ : PerfAff‘(’fp — D(Z), we can com-
pose  with C(Z /Y )P to get a cosimplicial object C(Z /Y, ) in D(Z), whose n-th
term is given by

C(Z)Y, F)n = F(ZMY).


https://kerodon.net/tag/002M
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Now it makes sense to talk about (derived) limits over this cosimplicial object (see
[50, Tag 02VY] for more detail).

Definition 6.4.1. Let F: PerfAfngp — D(Z) be a functor (understood in the oco-
categorical sense).

* A morphism Z — Y is of ¥ -descent if the natural morphism
F)—>RIEImC(Z/Y, F),
neA

is an equivalence;

* amorphism Z — Y is of universal ¥ -descent if, for every morphism Y’ — Y,
the base change Z xy Y’ — Y’ is of ¥ -descent;

» ¥ satisfies v-descent (resp. quasi-proétale descent) if every v-covering’ (resp.
quasi-proétale covering) X — Y is of (universal'’) ¥ -descent;

* Fisa(derived) v-sheaf if ¥ satisfies v-descent and for any Y1, Y> € PerfAffq,,
the natural morphism ¥ (Y1 U Y2) — F (Y1) x ¥ (Y>) is an equivalence.

Remark 6.4.2. A functor ¥ : PerfAff‘(’zpp — D(Z) is a (derived) v-sheaf in the sense of
Definition 6.4.1 if and only if it is a D (Z)-valued sheaf on the (big) v-site PerfAffg,
(see [49, Section A.3.3] for the precise definition). See [49, Proposition A.3.3.1] for
a detailed proof of this fact.

Our current goal is to give an explicit condition that ensures that a functor ¥
satisfies v-descent. Later on, we will show that the étale cohomology of the O/ p-
sheaf satisfies this condition. This will be the crucial input to relate RA ((9;?<> / p)

_l'_
to (9Xq<; /p.

Lemma 6.4.3 ([47, Lemma 3.1.2]). Let ¥: PerfAff‘(’;,7 — D(Z) be a functor (in the
oo-categorical sense), and f:Z — Y, g: Z' — Z be morphisms in PerfAffq,. Then

(1) if f has a section, then it is of universal ¥ -descent;

(2) if f and g are of universal ¥ -descent, then [ o g: Z' — Y is of universal
F -descent;

(3) if f o g is of universal ¥ -descent, then f is so.

Lemma 6.4.4. Let Y be a strictly totally disconnected perfectoid space, and let
Z — Y be a v-cover by an affinoid perfectoid space. Then there is a presentation

°A morphism f:Z — Y in PerfAffq, is a v-covering (resp. a quasi-proétale covering) if
P X% > Y<isso.

10We note that if every v-covering (resp. quasi-proétale covering) is of  -descent, then they
are automatically of universal ¥ -descent because v-coverings (resp. quasi-proétale coverings)
are closed under pullbacks in PerfAffg, .


https://kerodon.net/tag/02VY
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Z =limy Z; — Y as a cofiltered limit of affinoid perfectoid spaces over Y such that
each Z; — Y admits a section.

Proof. The proof of [52, Lemma 2.11] carries over to this case if one uses [34,
Lemma 2.23] in place of [61, Lemma 9.5]. [

Definition 6.4.5. A v-covering Z — Y of affinoid perfectoid spaces is nice if it can
be written as a cofiltered limit Z = lim; Z; — Y of affinoid perfectoid spaces over Y
such that each Z; — Y admits a section.

Remark 6.4.6. ([61, Proposition 6.5]) We recall that the category of affinoid per-
fectoid spaces PerfAff admits cofiltered limits. Namely, the limit of the cofiltered
system {Spa (S;, Sl.+)} is given by Spa (S, S ) where S is the z -adic completion of
colimy Si+ (for some compatible choice of pseudo-uniformizers @) and S = S+ [%]
In particular, PerfAffg, also admits all cofiltered limits. Moreover, one can choose
w = p in this case.

Lemma 6.4.7. Let ¥ : PerfAffg’p — D(Z) be a functor (in the co-categorical sense)
such that

(1) F is universally bounded below, i.e., there is an integer N such that ¥ (Y) €
D="N(Z) forany Y € PerfAffy,;

(2) F satisfies quasi-proétale descent;
(3) for an affinoid perfectoid space Z = limy Z; that is a cofiltered limit of affi-
noid perfectoid spaces Z; over Spa (Qp, Zy), the natural morphism

hocolim; ¥ (Z;) — ¥ (Z)

is an equivalence.

Then ¥ satisfies v-descent.

Proof. By shifting, we can assume that 7 (Y) € D=%(Z) forany Y ¢ PerfAffq,. We
pick a v-covering f: Z — Y in PerfAffg,, and wish to show that it is of universal
F -descent. We use [61, Lemma 7.18] to find a quasi-proétale covering g: Y’ — X
such that Y is strictly totally disconnected. Then we consider the fiber product

ZxyY %257

| It

Y’T>Y.

Lemma 6.4.3 implies that f is of universal % -descent if g and f’ are so. By assump-
tion, ¥ satisfies quasi-proétale descent, so g is of universal ¥ -descent. Therefore, it
suffices to show that f” is of universal ¥ -descent.
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We rename f” by f to reduce the question to showing that any v-cover f:Z — Y
with a strictly totally disconnected Y is of universal ¥ -descent. Further, Lemma 6.4.4
implies that f is nice, so it suffices to show that any nice v-cover (with an arbitrary
affinoid perfectoid target space) is of universal ¥ -descent. The property of being nice
is preserved by arbitrary pullbacks, so it suffices to show that a nice v-cover is of ¥ -
descent.

After all these reductions, we are in the situation of a v-cover f:Z — Y that can
be written as a cofiltered limit Z = lim; Z; — Y of affinoid perfectoid spaces over Y
admitting a Y -section. Lemma 6.4.3 ensures that each f;: Z; — Y is of ¥ -descent
since it has a section. We wish to show that

F(Y)—>R lim C(Z/Y, F)n
ne

is an equivalence. By assumption, we know that the natural morphism
hocolim; C(Z; /Y, F)p — C(Z/ Y. F ),

is an equivalence for any n > 0. Now the claim follows from the fact that totalization
of a coconnective cosimplisial object commutes with filtered (homotopy) colimits
(for example, this follows from [44, Corollary 3.1.13] applied to € = Fun(A, D(Z)),
D = D(Z), and F = hocolim). ]

The next goal is to show that the functor (in the co-categorical sense)
R« (—, O/ p): PerfAffy — D(Z)
Y € PerAffg, + RI'(Ye. OF /p)
is a (derived) v-sheaf.

Lemma 6.4.8. The functor RT¢(—, OF / p): PerfAffg’p — D(Z) satisfies quasi-pro-
étale descent.

Proof. By Lemma 6.3.7, we have a functorial isomorphism
RT (Ya. 03, /p) ~ RI(Y,S, (9;‘]3 /D).

Now the quasi-proétale cohomology satisfies quasi-proétale descent by definition. m

Lemma 6.4.9. Let {Z; = Spa (S;, S,~+)}ie 1 be a cofiltered system of affinoid perfec-
toid spaces over (Qp.Zy), and let Z o, = lim Z; with morphisms f;: Zoo — Z;. Then

the natural morphism
: -1
colimy f; O‘ZFi’é‘/p — (92)0“

/p

is an isomorphism, where f;: Xoo — X; are the natural projection morphisms and
fi_l is the pullback functor on small étale topoi.

ét
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Proof. Note that [61, Proposition 6.5] implies that Z, = Spa (Seo, SJ;), where SE
is the p-adic completion of colim; S; Tand Seo = S +[ ].

Now we put F to be the sheaf c011m1 /i 1(92r e Slnce filtered colimits are exact,
we conclude that ¥ /p = colim; f;~ 1(92r &/ P- Because affinoid perfectoid spaces
Usw = Z, étale over Z, form a basis of the étale site Z ¢, it thus suffices to
show that the natural morphism

F(Uso)/p — (9200 t(Uoo)/p

is an isomorpism for any such Uy — Zo. Then [61, Proposition 6.4 (iv)] implies
that, for some io € I, there is an affinoid perfectoid space U;, with an étale morphism
Ui, — Zi, such that

Uio XZiO Zoo ~ Uoo‘

Forany j > ip, weput U; :=U;

io Xz;, Zj- Since fiber products commute with limits,
we see that

Uoo ~ lim U,'

in the category of affinoid perfectoid spaces. From this it follows that (9+ o Uso) =
(cohm,>,0 Z; (U )) . Arguing asin [61, Proposmon 14.9] (or as in [23 Proposi-
tion 5.9.2]), we conclude that ¥ (Uso) = colim;>;, O Zi et(U ). Thus, [68, Tag 05GG]
ensures that the natural morphism

F(Us)/p — (9200 +(Uso)
is an isomorphism. u

Corollary 6.4.10. Let Z be an affinoid perfectoid space over Spa (Qp, Z,), and let
Z =1limy Z; be a cofiltered limit of affinoid perfectoid spaces Z; over Spa (Qp. Zp).
Then the natural morphism

hocolim; RT(Z; ¢, (92 él/P) — RI'(Ze. (9—Z:t/p)
is an equivalence.

Proof. The result is a formal consequence of Lemma 6.4.9 and [61, Proposition 6.4]
(for example, argue as in [23, Proposition 5.9.2]). [ ]

Corollary 6.4.11. The functor RT¢(—, OT/p): PerfAffg’p — D(Z) is a (derived)
v-sheaf.

Proof. Clearly, RT's(—, OT/p) transforms disjoint unions into direct products, so it
suffices to show that R['g(—, @/ p) satisfies v-descent. Then it suffices to show that
RT«(—, OT/ p) satisfies the conditions of Lemma 6.4.7.


https://stacks.math.columbia.edu/tag/05GG
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By definition, RI" (Y, (9;;[/[)) € D=%(Z) forany Y € AffPerfq,. Lemma 6.4.8
implies that R[g(—, @O/ p) satisfies quasi-proétale descent, and Corollary 6.4.10
ensures that it satisfies the third condition of Lemma 6.4.7. Thus, Lemma 6.4.7 guar-
antees that R[g(—, @1/ p) satisfies v-descent. ]

Lemma 6.4.12. Let Y € PerfAffy,, and let K — Y be a v-hypercover in Yv<> (in
the sense of [68, Tag 01G5]). Then there is a split (in the sense of [68, Tag 017P])
v-hypercover K' — Y such that each term K, is a strictly totally disconnected per-
fectoid space, and there is a morphism K'® — K of augmented (over Y ) simplicial
objects.

Proof. This is a standard consequence of the fact that any v-small sheaf X admits a v-
covering f: X’ — X with a strictly totally disconnected affinoid perfectoid space X’.
Since this reduction is standard, we only indicate that one should argue as in [68,
Tag ODAV] or [21, Theorem 4.16] by inductively constructing a split r-truncated
hypercover K’ with a morphism K’ — K, . For this inductive step, the crucial input
is [21, Theorem 4.12] that allows us to construct morphisms from a split (truncated)
hypercovering. |

Lemma 6.4.13. For an affinoid perfectoid space Y = Spa (S, S™) over Spa(Q,,Z,),
the natural morphism

RI(Ye, 0%, /p) = RT(Y,?, 01/ p)
is an isomorphism.

Proof. We divide the proof into several steps.

Step 1: Compute RT'(Y,?, (9;0/17) “explicitly” in terms of hypercovers (see [68,
Tag 01GS5) for a definition of a hypercovering). Let us denote by HC(Y ©) the cate-
gory of all v-hypercovers of ¥ up to homotopy.'' Likewise, we denote by HC(Y)
the category of all v-hypercovers of Y in PerfAffq, up to homotopy, and by HCyq(Y)
the full subcategory of hypercovers K — Y such that each K, is strictly totally dis-
connected.

Then the diamondification functor naturally extends to a fully faithful functor
(—)°:HCyq(Y) = HC(Y ). Lemma 6.4.12 ensures that this functor is cofinal, and so
[68, Tag 01HO] implies that, for every integer i > 0, we have a canonical isomorphism

H' (Y2, 04,/ p) ~ colimgenc, ) H (KY. 0F ./ p). (6.4.1)

where H (K;> , (9;5<> / p) are the Cech cohomology groups associated with a hyper-
cover K¢ — Y (see [68, Tag 01GUJ).

See [68, Tag 01GZ] for the precise definition.
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Moreover, for any affinoid perfectoid space Z with a map Z — Y, we have a
natural isomorphism (9;<> /Plzo = (9;<> / p- Furthermore, Lemma 6.3.7 ensures that

HY(z$. 0], /p) ~H*(Z$. 0}, /p) ~H*(Z4. OF /).

If Z = Spa (S, S™) is strictly totally disconnected, we can simplify it even further by
noting that all étale sheaves on Z¢ have trivial higher cohomology groups, so

HY(Z&. 0% /p) ~ S*/pST.

Combining all these observations, we see that Equation (6.4.1) can be simplified
to the following form:

Hi(YOv (9;0/17) >~ colimg eHcy(v) H' (S(;’:K/P - Sl—’,_K/p e S,;’:K/P - ),

(6.4.2)
where K, = Spa (Sy x, S,;': k) 1s a strictly totally disconnected perfectoid space, and
the differentials are given by the usual Cech-type differentials.

Step 2: RT¢(—, O/ p) satisfies v-hyperdescent. First, we note that Corollary 6.4.11
and [49, Proposition A.3.3.1] ensure that RT" ét(_, (9;,; / p) is a D(Z)-valued v-sheaf
on PerfAffq ,- Moreover, forany Y € PerfAffq s WE know that

RT (Ys, 0, /p) € D=°(Z).

Therefore, [48, Lemma 6.5.2.9] implies that Rg(—, O™ /p) is a hypercomplete
(derived) v-sheaf. Furthermore, [48, Corollary 6.5.3.13] implies that any hypercom-
plete (derived) v-sheaf F (in particular, R[¢(—, @1/ p)) satisfies hyperdescent, i.e.,
for any v-hypercovering K — X, the natural morphism

F(X) - Rlim ¥ (K;)
neA

is an equivalence.

Step 3: Compute RT (Y, (9;;{/[)) “explicitly” in terms of hypercovers. By Step 2,
we know that, for any v-hypercovering K — Y in PerfAffq,, the natural morphism

€t ne n.ét
is an isomorphism. Now we assume that each term K, = Spa (Sn, K> SZ K) is strictly

totally disconnected, so higher étale cohomology of any étale sheaf on K, vanishes.
Thus, we have

R (K e, 0%, . /P) ~ H(Knat, OF, /D) ~ S /DS k-
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Therefore, in this case, the totalization Rlim,ea R (Ky &, (9;(’11 ./ p) can be explic-

itly computed as the Cech cohomology associated with the hypercovering K — Y.
More explicitly, we see that, for every integer i > 0, we have

H' (Ya, 03, /p) > H (S x/p = Sitg/p— - Six/p— )

with standard Cech-type differentials. Since this formula holds for any v-hypercover
K — Y with strictly totally disconnected terms K, we can pass to the filtered co-
limit'? over HC4(Y) to see that, for every integer i > 0,

H (Ye, OF / p) = colimgencaur) H (S§ /P = Six/p = - Six/p = -+),
(6.4.3)
where K;,, = Spa (Sn, K> S,’,f K) is a strictly totally disconnected perfectoid space, and

the differentials are given by the usual éech-type differentials.

Step 4: Finish the proof. Now Equations (6.4.2) and (6.4.3) imply that the natural
morphism
H' (Ya. 03, /p) — H (Y. 04/ p)

is an isomorphism for every i > 0. In other words, the morphism
RT(Ye. OF /p) — RI (Y2, 0),/p)
is an isomorphism. u

Corollary 6.4.14. Let X € pAde be a pre-adic space over Spa(Qp,Zy). Then the
natural morphism
o;q%/p — RA«(0F/p)

is an isomorphism.

Proof. Lemma 6.3.7 ensures that (9;3/19 — A ((9;0/}7) is an isomorphism. Thus,
it suffices to show that
R/ (0Fo/p) >0

for j > 1. Since strictly totally disconnected spaces form a basis for the quasi-proétale
topology of any diamond, it suffices to show that

H (Y, 05./p) =0

for a totally strictly disconnected perfectoid Y — X and j > 1. Lemma 6.4.13 implies
that
H (Y2, 0}, /p) ~ W (Ya, 0F / p).

12The category HCyq(Y) is cofiltered because it is a cofinal category in the filtered category
HC(Y ). See Step 1 and [68, Tag 01GZ] for more detail.
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Now the latter group vanishes because any étale sheaf on a strictly totally discon-
nected perfectoid space has trivial higher cohomology groups. ]

Corollary 6.4.15. Let X be a strongly sheafy adic space over Spa(Qp,Zp). Then the
natural morphisms

RT (X, 0% /p) — RT (XS, Oxs/p) = RT (X2, 0%, /p)

are isomorphisms.
Proof. 1t follows directly from Lemma 6.3.7 and Corollary 6.4.14. |

Corollary 6.4.16. Let X = Spa (R, R™) be a strictly totally disconnected perfectoid
space over Spa (Qy, Z,). Then we have H' (Xl?, (9;0/1)) ~ 0 for everyi > 1, and
HO(XP, 0%, /p) ~ RT/pR™.

Remark 6.4.17. We emphasize that Corollary 6.4.16 guarantees the actual vanishing
of higher v-cohomology groups of O%< /p on a strictly totally disconnected perfec-
toid space X . This is quite surprising for two reasons: this vanishing holds on the nose
(without passing to the almost category), the definition of strictly totally disconnected

perfectoid spaces, a priori, guarantees vanishing only of étale cohomology groups (as
opposed to the v-cohomology groups).

Proof. Corollary 6.4.15 implies that
RT(X?.0F./p) ~RI(X. 0% /p).

Since X is a strictly totally disconnected space, so any étale sheaf has no higher
cohomology groups. This implies that H (X l? , (9;<> / p) ~ Qfori > 1, and

H (XY, 0%, /p) ~H* (X, 0% )/p ~ R*/pR*. "
As an application, we get the following result:

Corollary 6.4.18. Let K be a p-adic non-archimedean field, let K™ C K be an open
and bounded valuation subring, and let X be a locally noetherian adic space over
Spa(K,K%). Put X° := X Xspa (K,k+) Spa (K, Ok). Then the natural morphism

RF(X;)’ O;O/P) ®k+/p Ok/p — RF(XS,O’O;O.Q/p)

is an isomorphism. In particular, if (K, K) is a perfectoid field pair, then the natural
morphism
RT(X$. 0%, /p) - RT(X3°. 05, . /p)

Xo.<

is an almost isomorphism.
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Proof. Using the Mayer—Vietoris spectral sequence, we can localize the problem
on X. Thus, we can assume that X = Spa (4, A™) is affinoid. Then we can find a
quasi-proétale covering Spd (Axo, AL) — Spd (A4, A™) such that all fiber products

Spd (Aco, A;ro)j/Spd(A,AH = Spd (B;, BJ.“L)

are strictly totally disconnected (affinoid) perfectoid spaces for j > 1. Thus, Corol-
lary 6.4.16 implies that

H' (Spd (B;. B ). 0F./p) ~ 0
fori, j > 1, and
H®(Spd (B;, B} )v, O3 /p) =~ B/ pB;
for j > 1. Therefore, we can compute H/ (X l? , (9;;<> / p) via the Cech cohomology
groups of the covering Spd (Aso, A%) — Spa (4, A™). So we get an isomorphism
H (X, 0% /p) ~H (B} /p— B /p—--).

Now the morphism Spa (K, Q) — Spa (K, K™) is a pro-open immersion, so the
fiber products
Spa (Bf’ BJ+) X Spa (K,K+) Spa (K, Ok)

are strictly totally disconnected affinoid perfectoid spaces represented by
Spa (Bj, Bj®K+(9K)-

In particular, the same argument as above implies that the @ /p cohomology of
X can be computed as follows:

HZ(XI?’O’(O;(_O/}?) ZHZ(BI_I_/P ®K+/p (9[(/]7 —> B;—/p ®K+/p (QK/p _>)

Now [53, Theorem 10.1] implies that O is an algebraic localization of K, so Ok
is K*-flat. Thus, we get the desired isomorphism

RT (X2, 0% /p) ®k+/, Ox/p — RO (X7°, 05, ./ p).
If K is perfectoid, the almost isomorphism
RT (X[, 0%./p) = RTO(X7C. 0L, o/ 1)

now follows from Lemma B.13. [

B3For example, the proof of Lemma 7.4.6 goes through without any changes as O is an
algebraic localization of K.
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6.5 O /p-vector bundles in different topologies

The main goal of this section is to show that the categories of v-, quasi-proétale, and
étale O/ p-vector bundles are all equivalent.

The results of this section are mostly due to B. Heuer. A version of these results
has also appeared in [35]. We present a slightly different argument that avoids non-
abelian cohomology. We heartfully thank B.Heuer for various discussions around
these questions and for allowing the author to present a variation of his ideas in this
section.

For the next definition, we fix a pre-adic space X over Spa (Qp.Z,).

Definition 6.5.1. An (9+<>/p module & (in the v-topology on X ) is an (9+<>/p-
vector bundle if there is a v-covering {X; — X ®};e; such that €|x, ~ (O X<>/ )5 X,
for some integers r;. The category of (9;(5<> / p-vector bundles will be denoted by
Veet(X$, 0%/ p).

An (9+<> /p-module & (in the quasi-proétale topology on X ) is said to be an
(9+<> /p vector bundle if there is a quasi-proétale covering {X; — X ®};<; such that
& | X ~ (95 Y3/ Py %, for some integers r;. We will denote the category of O >/ p-
vector bundles by Vect(X © (9+<> /p).

Let now X be a strongly noetherian adic space over Spa (Qp,Z,). An (9 /D"
module & (in the étale topology on X) is an (9 X / p-vector bundle if, there is an etale
covering {X; — X };es such that &y, ~ (O;é‘/p) |§}i for some integers r;. We will
denote the category of (9+, / p-vector bundles by Vect(Xét, (9; / p).

Remark 6.5.2. Note that (9+<>/ p-vector bundles are “b1g sheaves”, i.e., they are
defined on the big v-site X <§‘ In contrast, (9 XS /p and OF x,,/ P-vector bundles are

“small sheaves”; i.e., they are defined on the small quasi-proétale X q?aroét or the small
étale site Xy respectively.

The main goal of this section is to show that all these notions of @/ p-vector
bundles are equivalent.

First, we define the functors between these categories of @/ p-vector bundles
which we later show to be equivalences. For this we note that Lemma 6.3.7 implies
that wt ((93(F /p) ~ <> / p. Consequently, ;™! carries (9;?ét / p-vector bundles to

<> / p-vector bundles In particular, it defines the functor

w* = p" Veet(Xa, O/ p) = Vect(X;;, (9X<>/p)
Unfortunately, the natural morphism A~ (95 </ p) = Ofe/p is not an isomorphism
(see Remark 6.5.2). For this reason, we define A* to be the o+ / p-module pullback”
functor

A% Vect(qu, (9X<>/[7) - Vect(X,?, O;Q/P),
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defined by the formula
*o . 1—1 +
A& =A176 ®)k—10;<>/p (9X<>/p'
qp

Our goal is to show that both A* and p* are equivalences. Before we do this, we
need some preliminary lemmas:

Lemma 6.5.3. Let X be a pre-adic space over Spa (Qp,Zp), let & be an (9;0/]7-
vector bundle, and let Z = limj Z; be a cofiltered limit of affinoid perfectoid spaces
over X. Then the natural morphism

colim; H*(ZP,. &) — H(Z? . €)

v’

is an isomorphism.

Proof. Without loss of generality, we can assume that / has a final object 0. Then,
by the sheaf condition and exactness of filtered colimits, it sufﬁces to show the claim
v-locally on Zj. Therefore, we may assume that &| < =~ ( 7o / p) is a free vector
bundle. The claim then follows from Corollary 6.4.10. |

Corollary 6.5.4. Let X be a pre-adic space over Spa(Q,,Z,), let & be an (9;0/])—
vector bundle, and let Z ~ limy; Z; — Z be an affinoid strongly pro-étale morphism
of strongly sheafy Tate-affinoid spaces over X. Then the natural morphism

colim; H*(Z?,. &) — H*(Z{ . €)

1,v’
is an isomorphism.

Proof. We can prove the claim v-locally on Z(? . Therefore, we can choose a v-
covering ZO — Z with a strictly totally disconnected perfectoid space 70. The proof
of Lemma 6.2.6 (2) ensures that each Z— =Z; Xz, 70 is a strictly totally discon-
nected affinoid space, and the diamond (Z x z, 70)0 is a strictly totally disconnected
perfectoid space (of characteristic p). Therefore, we see that the natural morphism

2 = ((Z XZo ’ZO)O)ﬁ — Z Xz, FZO
becomes an isomorphism after applying the diamondification functor, and
7 ~1limZ;
I
in the category of perfectoid spaces over X. Since the question is v-local on Z & and
depends only on the associated diamonds of Z; and Z, we can replace Z; and Z with

Ziand Z, respectively, to achieve that each Z; and Z is an affinoid perfectoid. In
this case, the result follows from Lemma 6.5.3. [
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Lemma 6.5.5. Let X be a pre-adic space over Spa(Qp,Zy), let & be an (9;('0/1)—
vector bundle, and let Z ~ limj Z; — Z be an affinoid strongly pro-étale morphism
of strongly sheafy Tate-affinoid adic spaces over X. If §| 7o ~ ((9}'<> / p)d for some
. o T d
integer d, then there is ani € I such that |, ~ ((920/[7) .

Proof. We choose an isomorphism
f:(0Fo/p) = €lze
and wish to descend it to a finite level.

Step 1: We approximate f. Corollary 6.5.4 ensures that we can find i € [ and a
morphism

d
fi: ((920/;7) — 8|Zi<>
such that fi|zo = f.
Step 2: Approximate f~': 8|0 — ((9;<> / p)d. We note that the dual sheaf
_ +
gY = Hom(g;O/p(S, @Xo/p)

is also an (9;;<> / p-vector bundle. So we can apply the same argument as in Step 1 to
(F ™Y (0F0/p)" > €Y1z0 =Hom g+, (6.0%/p)lz0
to find (after possible enlarging i € /) a morphism
g ((9;?/p)d — 8V|Z§>
such that g/| ;o = (f~!). By dualizing, we get a morphism
gi:€lz0 — ((9;?/17)'1
such that g;|zo = fL.

Step 3: Show that f; o g; = id and g; o f; = id after possibly enlarging i € 1. We
show the first claim, the second is proven in the same way (and even easier). We
consider idg|Z o and f; o g; as sections of the internal Hom shealf, i.e.,

idel,o fiogi € (End gy, (6))(Z7).

For brevity, we simply denote End ,+ /p (&) by End . Note that End is again an
x<

(9;;<> / p-vector bundle, and so Lemma 6.5.3 ensures that

colim; End (Z7) = 6(Z°).
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Thus if f; o g; and id are equal in the colimit, they are equal on Z i<> for some large
index i. Similarly, g; o f; = id for some i € I. Therefore, f;: ((D'ZFQ/p)d = 8|Zi<>
is an isomorphism fori > 0. ' [

Lemma 6.5.6. Let Y denote a strictly totally disconnected perfectoid space over
Spa (Qp.Zy), and let € be an (9;,’0/ p-vector bundle. Then there is a finite clopen
decomposition Y = | |;c; Yi such that & |Yi<> >~ ((9;‘4<> / p)ri for some integers r;.

Proof. By assumption, there is a v-covering { f;: Z; — Y = Y"};c; by affinoid
perfectoid spaces. Since Y is quasi-compact, we can assume that J is a finite set.

Weput Y/" == f;(Z;) C Y". This subset is pro-constructible by [68, Tag 0A2S]
and it is generalizing due to [38, Lemma 1.1.10]. Therefore, [61, Lemma 7.6] implies
that there is a canonical structure of an affinoid perfectoid space on Yj” " such that
y Y — Y" is a pro-(rational subdomain). In particular, Y/" is strictly totally dis-
connected for every j € J (for example, due to [61, Lemma 7.19]).

Lemma 6.4.4 implies that, foreach j € J, we can write Z; = limp ; Z; ; — Yj’”
as a cofiltered limit of affinoid perfectoid spaces such that Z; , — Y, admits a sec-
tion for each A € A j. Therefore, Lemma 6.5.5 ensures that, for each j € J, there is
Aj € A; such that 8|Z_/,A_,- is a free (Q;Lo/p—vector bundle. Since each Z; 5, — Y/”
admits a section, we can pull back this trivialization along the section to conclude that
& |ng~ is a free O ;0 / p-vector bundle.

Now we use Lemma 6.5.5 and the fact that ¢;: ¥;” — Y b is a pro-(rational sub-
domain) to find a rational open subdomain Y;" C Y" such that Y/ CY/and & |Yj’

is a free (9;<> / p-vector bundle of rank r (). Finally, for each integer i, we put Y/ to

be the union of all ¥;” such that r(;j) = i (in other words, it is the union of Y;" such
that & |ij’ is free of rank i). Then all Y/ are disjoint and only finitely many of them
are non-empty. Finally, we define / to be the (finite) set of integers such that Y, # @.
Then Y = Y = | |;; Y/ is a finite clopen decomposition such that &y is finite
free. Then the set of untilts Y; := Yidi c (Y?)* =Y does the job. ]

Theorem 6.5.7 (see also [35]). Let X be a pre-adic space over Q. Then the functor

A*:Veet(X g, Oxfe/ p) — Vect(X. 0%/ p)

is an equivalence of categories. Furthermore, for any (9;0 / p-vector bundle &, the
qp

natural morphism
& —> RAA*E

is an isomorphism.

Proof. We start the proof by showing that the natural morphism

& > RANL*E
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is an isomorphism. The claim is quasi-proétale local, hence we can assume that & is
a trivial (9;;5 / p-vector bundle. In this case, the claim follows from Corollary 6.4.14.

This already implies full faithfulness of A*. Indeed, it follows from a sequence of
isomorphisms:

Home;go/p(k*sl,,x*sz) ~ Hom@;ﬁ/p(Sl,)L*)L*Sz) ~ Hom@;ﬁ/l,(&, &,).

To show that A* is essentially surjective, it is enough to show that, for an (9;;<> /p-
vector bundle &, A& is an (9;‘4% / p-vector bundle and the natural morphism

& - A*1.6

is an isomorphism. Both claims are quasi-proétale local on X<, so we can assume
that X is a strictly totally disconnected perfectoid space. Then we can assume that &
is a free vector bundle due to Lemma 6.5.6. Then 1,.& is a free (D;q% / p-vector bundle
by Lemma 6.3.7. Thus, the natural morphism

& - A" A€
is evidently an isomorphism. ]

Lemma 6.5.8. Let X be a strongly sheafy adic space over Spa (Qp, Z,), and let &
be an (9X<> / p-vector bundle (equivalently, an (9"'<> / p-vector bundle). Then there is
an étale covering {X| — X }icy such that € |X’<> >~ ((9X/<>/p)rl for some integers r;.

Proof. The question is local on X. So we can assume that X = Spa (4, A™") for a
complete strongly sheafy Tate—Huber pair (A4, A1). Then the result follows directly
from Lemma 6.2.13, Theorem C.3.10, Lemma 6.5.6, and Lemma 6.5.3. [

Theorem 6.5.9 (See also [35]). Let X denote a strongly sheafy adic space over
Spa (Qp, Zp). Then the functor

¥ Vect(Xg, (9; /p) = Vect(qu, ;’:ﬁ/p)

is an equivalence of categories. Furthermore, for any (9;<> / p-vector bundle &, the
ét
natural morphism

& - Ru,u*é

is an isomorphism.

Proof. The proof is completely analogous to the proof of Theorem 6.5.7 making use
of Lemma 6.5.8 in place of Lemma 6.5.6. |
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6.6 Trivializing @ /p-vector bundles

We recall that Theorem 6.5.7 and Theorem 6.5.9 ensure that the categories of O/ p-
vector bundles in the v, quasi-proétale, and étale topologies are equivalent. In partic-
ular, any @/ p-vector bundle in the v-topology can be trivialized étale locally. The
main goal of this section is to show that it suffices to consider some very specific étale
covers.

To do this, we need to start with the discussion of @t/ p-vector bundles on some
very specific adic spaces.

Lemma 6.6.1. Let X = Spa (A, A™) be a Tate affinoid pre-adic space such that A™
is a Priifer domain (in the sense of [28, Theorem 22.1 and the discussion before it]).
Then the specialization map spy:|X | — | Spf A™| = |Spec AT /A°°| is a homeomor-
phism.

Proof. First, (the proof of) [5, Theorem 8.1.2] implies that it suffices to show that
Spec A1 does not admit any non-trivial admissible blow-ups. For this, it suffices to
show that any finitely generated ideal I C A™ is invertible. This is, in turn, one of the
defining properties of Priifer domains (see [28, Theorem 22.1]). [ ]

Lemma 6.6.2. Let X = Spa (K, K) be a Tate affinoid adic space such that K is a
non-archimedean field and K is a Priifer domain.'* Then the morphism of locally
ringed spaces

spy: (Xan, Of ) — (Spf K, Ospr k+)

is an isomorphism.

Proof. Lemma 6.6.1 implies that spy is a homeomorphism. Therefore, it suffices to
show that spf: Ogpt k+ — st’,k((Q)‘(Ir ) is an isomorphism. It suffices to show that
spk (Dy) is an isomorphism for any f € K.

Since K is a non-archimedean field, we conclude that K° = Ok is a rank-1
valuation ring. Then we consider the inclusions K°° C K™ C Ok and fix a pseudo-
uniformizer @ € K*. Since Ok is a rank-1 valuation ring, we conclude that the
induced topologies on Qg and K™ coincide with the z -adic topologies.

Now pick f € KT.If f € K°°, then K+[%] = K and so the principal open D( /)
is empty. In particular, spf( (Dy) is clearly an isomorphism. Therefore, we can assume
that f € K+ ~ K°°. Then K+[%] C O is an open subring, so K+[%] is already
complete in the w-adic topology. In particular, we conclude that O g+ (D(f)) =
Kt [%] Likewise, since K+ [%] C K is already complete and integrally closed, we
conclude that

(2..0%)(0() = 0 (X(5)) = K*[ 7]

4We do not assume that K is a valuation ring.
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In particular, we conclude that spff (Dy) is an isomorphism, finishing the proof. |

Now we recall that any locally noetherian analytic adic space X comes with the
natural morphism of ringed sites ix: (Xe, (9;(;) — (Xan, 05 ). We show that this is
an equivalence for some special X .

Lemma 6.6.3. Let X = Spa (K, K1) be a Tate affinoid adic space such that K is a
non-archimedean field,"> and let U C X be a non-empty rational subdomain. Then
U = Spa (K, K'") for some Tate—Huber pair (K, K'T).

Proof. Since U is an affinoid space, we only need to show that Ox (U) = K. First,
we choose a pseudo-uniformizer 7o € K. Then we note that K° = O is a rank-1
valuation ring since K is a non-archimedean field. In particular, we conclude that the
induced topologies on both K° and K coincide with the @ -adic topology (and both
are complete with respect to this topology).

Now we consider the case U = X(%) for some f, g € K*. Since K is a field, we
can assume that U = X(%) for some f € K*.If f € K°°, then X(%) = O, so we
can assume that f ¢ K°°. Then we recall that the induced topology on K is equal
to the w-adic topology to conclude that (see [37, Section 1])

o= (x* (3], )]

where K+[%] is the K *-subalgebra of K[%] = K generated by % Since f ¢ K°°,
we conclude that K [%] C Ok is an open subring of Ok . Thus, it is already complete

in the @ -adic topology. So we conclude that

ovter = ([ 2] =«

A rational subdomain U is equal to X (1 gf”) for some f1,..., fu.g € K*. Denote
by U; the rational subdomain X (%) Then

U=U,nUN---NU,.
Therefore, we see that
Ox(U) ~ Ox (U QkOx (U2)Rk ---®kOx (Uy) ~ KRk KQk - QK ~ K. m

Lemma 6.6.4. Let X = Spa (C, C™) be a Tate affinoid adic space such that C is an

16

algebraically closed non-archimedean field.'® Let w € C be a pseudo-uniformizer.

Then the morphism of ringed topoi

ix: (Xét, (9;(_&) — (X'dn’ (9;’_)

'SWe do not assume that Kt is a valuation ring.
16We do not assume that C 1 is a valuation ring.
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is an equivalence. In particular, the functor iy Vinduces an equivalence of categories
1. + ~ +
ix ' Vect(Xan, Oy /) — Vect(Xe, (9Xél/w).

Proof. We verify conditions (a)—(d) of [38, Corollary A.5]. Conditions (a) and (c)
are clear. Condition (d) follows from the fact that étale maps are open. Indeed, in
the notation of [38, Corollary A.5], we can take I = {0}, Xo = X, Yy = ¢(X), and
Xo — Yo the map induced by ¢.

Therefore, we are only left to check condition (c) of loc. cit. That is, we need to
show that any étale morphism f:Y — X admits an étale covering {¥; — X }ies such
that ¥; — X is an open immersion.

Without loss of generality, we can assume that ¥ = Spa (A4, A™) is affinoid.
We can construct Y; analytically locally on X. Lemma 6.6.2 implies that we can
freely replace X with any non-empty open affinoid without changing the assump-
tions on X . Therefore, [38, Lemma 2.2.8] implies that we can assume that f:Y — X
factors as a composition of an open immersion j: ¥ — Y/X followed by a finite étale
morphism 7/ X.Y/X - X.Since X is strongly noetherian, we conclude that the cat-
egory Xy of finite étale adic spaces over X is equivalent to the category Cy of finite
étale C-algebras. Since C is algebraically closed, we conclude that Y/X = | |..; X;
is a disjoint union of a finite number of copies of X (X; >~ X). Therefore,

jinYi=XinY >Y}
gives the desired covering of Y.

Now to conclude that i;l : Vect(Xan, (9;/15) — VeCt(Xét, O)Zt/w) is an equiv-
alence, it suffices to show that i, 1(9;(r Jw = (9;?ét /w. Since ix! is exact, it suffices
to show that iy 1 (9; = (9;&. For this, it suffices to show that i X’*(O;(—él = OF, but this
is evident from the definition. ]

Lemma 6.6.5. Let K be a non-archimedean field with an open and bounded val-

uation subring K* C K and a pseudo-uniformizer w € K. Let K*P be a sep-

arable closure of K, and let {K;}ier be a filtered system of finite subextensions

K C K; C K*%®. Foreachi € I, we put Kl.+ to be the integral closure of K™ in K;.
Then the completed colimit

+ o (eali +\A

CT .= (cohml K; )(w)

is a Priifer domain and C = C +[%] is an algebraically closed non-archimedean

field.

Proof. First, we note that [36, Lemma 1.6] implies that C is the usual completion of
the topological field K*°P. Therefore, [12, Proposition 3.4.1/3 and Proposition 3.4.1/6]



Trivializing @1/ p-vector bundles 205

imply that C is algebraically closed. So we only need to show that C T is a Priifer
domain.

First, we note that [28, Theorem 22.1] ensures that K is a Priifer domain. Then
[28, Theorem 22.3] implies that each Kl.Jr is a Priifer domain. Now we note that
colimy Ki+ is a domain, so [28, Proposition 22.6] ensures that it is a Priifer domain.
Then [56, Theorem 4] implies that it suffices to show that every torsionfree C*-
module M is flat. Clearly, M[%] is a flat C = C+[%]-module because C is a
field. Furthermore, [19, Chapter VII, Proposition 4.5] applied to A = M and A =
colimy K;r implies that M is flat over colimy K;r . In particular, M/@w M is flat over
Ct/w ~ (colim1 K{F)/w. Therefore, [11, Lemma 8.2/1] concludes that M is flat
over C and finishes the proof. ]

Lemma 6.6.6. In the notation of Lemma 6.6.5, any finite projective Ct /w-module
is free.

Proof. First, we note that C* /@ ~ colim; (Ki+ /@ ). Therefore, a standard approxi-
mation argument reduces the question of showing that every finite projective K l+ /-
module is finite free. Let us denote the residue field of (the rank-1 valuation ring)
K? = Ok, by k;. Then we observe that K° = rad(z), and thus K;r/rad(w) =
K /K?° C Ok, /K?° = k; is a domain. In particular,

|Spec Ki+/w| = |Spec KZ.JF/KE’°|

is irreducible. Furthermore, [17, Ch. VI Section 8.3, Thm. 1 and Ch.VI, Section 8.6,
Prop. 6] imply that each K l+ is semi-local. In particular, the ring K l+ /@ is semi-local
as well. Therefore, [68, Tag 02M9] and the above observation, that |Spec K;L /@] is
irreducible, guarantee that any finite projective K l.+ /@ -module is free. ]

Corollary 6.6.7. In the notation of Lemma 6.6.5, put X = Spa (C, C™). Then any
(93(:1 /@ -vector bundle is free.

Proof. Lemma 6.6.2, Lemma 6.6.4, and Lemma 6.6.5 imply that the category of
(93(:1 /w-vector bundles is equivalent to the category of usual vector bundles on the
scheme Spec C ™ /. Any such vector bundle is free due to Lemma 6.6.6. ]

Now we can prove the main result of this section:

Theorem 6.6.8. Let X be a strongly sheafy adic space over Spa(Qp,Zp), let x € X
be a point, and let & be an (9;0/ p-vector bundle. Then Ihere are an dffinoid open
subset x € Uy C X and a finite étale surjective morphism Uy — Uy such that |5, ~
((95)?/1))(1 for some integer d.

Proof. For clarity, we divide the proof into several steps.
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Step 1: The space X = Spa (K, K) for a non-archimedean field K and an open
and bounded valuation subring K* C K. In this case, we first fix a separable clo-
sure K*P of K. We put {K;};ecs to be a filtered system of all finite sub-extensions
K C K; C K*P, we also put Ki+ to be the integral closure of K* in K;. Then
Lemma 6.6.5 ensures that C* := (colim1 KI.JF)(AP) is a Priifer domain and C =
ct [%] is an algebraically closed non-archimedean field. Therefore, Corollary 6.6.7
implies that &|spq (c,c+) is free. By construction,

Spa(C,.C™) ~ liIm Spa (K;, K;") — Spa (K, K™)

is an affinoid strongly pro-étale morphism. Therefore, Lemma 6.5.5 implies that there
is an index i € I such that &|spq(k; K+) is free. Now the result follows from the
evident observation that Spa (K;, K ) — Spa (K, KT) is a surjective finite étale
morphism.

Step 2: General X. Step 1 constructs a finite separable extension k/(;) C K such
that &|gpq (k,x+) i free, where K is the integral closure of k/(;)+ in K.

Now, [5, Proposition 7.5.5 (5)] 1mphes that (9Jr X.x is p-adically henselian, and
there is a natural isomorphism ((9; x) »n = k(x)Jr So, [26, Proposition 5.4.54] says
that we can find a finite étale morphism Oy » — A such that A ®g,, , k(x)

Since Oy x is a local ring with residue field k(x), we easily conclude that Ox » — A
is also faithfully flat. Now we recall that Ox x = colimyeycx Ox(V'), so a standard
approximation argument implies that we can find an affinoid open x € V C X and a
faithfully flat finite étale morphism Ox (V') — Ay such that Ay ®o, () Ox,x =~ A.

For each affinoid open subset x C W C V, we put Ay = Ay Qo v) Ox (W)
and put A?,{, to be the integral closure of Ox (W) in Ay . Then Lemma C.1.1 ensures
that (Aw, A?;,) is a complete Tate—Huber pair for each open affinoid x C W C V.
Furthermore, the corresponding morphism fy: Spa (Aw, A{;) — W is a finite étale
surjection due to Lemma C.1.2. By construction, we have that

Spa(K, K1) ~ xel%VnéVSpa (Aw, A;{,) — Spa (Ay, AJIE)

is an affinoid strongly pro-€tale morphism, and &|g,q (kg +) is free. So, Lemma 6.5.5
implies that there is an open affinoid subspace x € U, C V such that & |spq (4, AD)
is free. Then U, = Spa (Ay, A;}) does the job. ]

Now we summarize all results about various @/ p-vector bundles below:

Corollary 6.6.9. Let X be a strongly sheafy adic space over Spa (Qp, Zp). Then
(1) the categories Vect(X; (9;;,[/1)), Vect(Xé;, (9+<>/p) and Vect(X?; O;O/p)
are equivalent;

(2) these equivalences preserve cohomology groups;
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3) for any (9;('<> / p-vector bundle & and a point x € X, there exists an open affi-
noid subspace x € Uy C X and a finite étale surjective morphism U, — Uy
such that & | ge is a free vector bundle.

6.7 Etale coefficients

The main goal of this section is to relate the étale and v-cohomology groups of étale
“overconvergent” @/ p-modules.

We fix a strongly sheafy adic space X over Spa (Qp,Z,). Then we note that
any étale sheaf of F,-modules ¥ on X defines sheaves = !% and A~1pu~1F of
Fp-modules on X <> and X2 respectively, see Dlagram (6.3.1). In what follows, we
abuse the notation and denote (A~ ' F) ®g, O X<> /p simplyby F @ OF yo!p for
any ¥ € Shv(Xg; Fp). Similarly, we denote by (1™ '¥) ®r, O < /p simply by

Oy /D

Before we go to the comparison results, we need to discuss some preliminary
results on sheaves on pro-finite sets. They turn out to be tied up with overconvergent
étale sheaves on strictly totally disconnected spaces.

i~

Definition 6.7.1. For S a pro-finite set, a sheaf of F,-modules #
if there exists a finite decomposition of S into a disjoint union of clopen subsets
S = LI, Si such that ¥ |s, is a constant sheaf of finite rank.

is constructible

Lemma 6.7.2. Let S be a pro-finite set, and let f:F — § be a morphism of con-
structible sheaves of ¥,-modules. Then Ker f and Coker f are constructible.

Proof. Since S is pro-finite, each point s € S admits a clopen subset s € Uy C S
such that both ¥ |y, and § |y, are constant. Since S is quasi-compact, we can find a
finite disjoint union decomposition S = |_|!_, U; such that both % Flu, and §|y, are
constant. So we can assume that both ¥ and § are constant. Then it is easy to see
that the kernel and the cokernel are constant as well. |

Lemma 6.7.3. Let S be a pro-finite set, and let ¥ be a sheaf of Fp-vector spaces.
Then ¥ =~ colimy F; for a filtered system of constructible sheaves ;.

Proof. We use [68, Tag 093C], with B being the collection of clopen subsets of S, to
write ¥ as a filtered colimit of the form

m
F ~ colimy Coker(@ v, = @ F,u)
j=1 i=1

Now Lemma 6.7.2 implies that each cokernel is constructible finishing the proof. m
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Definition 6.7.4. A sheaf of F,-modules ¥ on Xg is overconvergent if, for every
specialization 7 — § of geometric points of X, the specialization map 5 — F7 is an
isomorphism.

Definition 6.7.5. An étale sheaf of F,-modules ¥ on a strictly totally disconnected
perfectoid space X is special if there exists a finite decomposition of X into a disjoint
union of clopen subsets X = |_|?=1 X; such that ¥ |x, is a constant sheaf of finite
rank.

Lemma 6.7.6. Let X be a strictly totally disconnected perfectoid space, and ¥ an
overconvergent étale sheaf of F,-modules. Then ¥ = colimy F; for a filtered system
of special sheaves ¥; of ¥,-modules.

Proof. Since X is strictly totally disconnected, the étale and analytic sites of X are
equivalent. So we can argue on the analytic site of X. By [6]1, Lemma 7.3], there
is a continuous surjection 7: X — mo(X) onto a pro-finite set 7o(X) of connected
components.

Step 1: The natural map n*n.¥ — F is an isomorphism. It suffices to check that
it is an isomorphism on stalks. Pick a point x € X, then [6], Lemma 7.3] implies
that the connected component of x has a unique closed point s. Then after unrav-
eling all definitions, one gets that the map (7 *m. %)y — F is naturally identified
with the specialization map ¥; — ¥ that is an isomorphism by the overconvergent
assumption.

Step 2: Finish the proof. Lemma 6.7.3 ensures that 7, ¥ =~ colim; §/ is a filtered
colimit of constructible sheaves. Since pullback commutes with all colimits, we get
isomorphisms ¥ =~ 7*m,F =~ colim; 7*§/. This finishes the proof since each §; :=
m*§] is special. [

Lemma 6.7.7. Let X be a strongly sheafy adic space over Spa (Qp,Zy), and let ¥
be an overconvergent étale sheaf of ¥,-modules. Then the natural morphism

+ [rod + lrod
Oxs/P®F — RA(O%o/p® F)
is an isomorphism.

Proof. Since strictly totally disconnected spaces form a basis for the quasi-proétale
topology on X ©, it suffices to show that @ is an isomorphism on such spaces. Then
we can write ¥ >~ colim; ¥; as a filtered colimit of special sheaves by Lemma 6.7.6.
One easily checks that « is a coherent morphism of algebraic topoi, and thus each
R"/\*((D;E<> /p ® —) commutes with filtered colimits by [2, Exp. VI Theoreme 5.1].
Thus, it suffices to prove the claim for a special . By the definition of a special
sheaf, there exists a disjoint decomposition X = | |'_, X; into clopen subsets such

that ¥ |y, is constant of finite rank. Since the question is local on X ©

qproé> WE can
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replace X with each X; to assume that F is constant. In this case, the claim follows
from Corollary 6.4.14. ]

Remark 6.7.8. We do not know if Lemma 6.7.7 holds for non-overconvergent étale
sheaves ¥ .

Now we discuss the relation between the étale and quasi-proétale topologies.

Lemma 6.7.9. Let X be a strongly sheafy adic space over Spa(Qp,Zp), and let ¥
be an overconvergent étale sheaf of ¥,-modules. Then the natural morphism

O%,/P®F = Ruw(Ofe/p ® F)
is an isomorphism.

Proof. As aconsequence of Lemma 6.3.7, the right-hand side is canonically isomor-
phic to Rpxpn ™ (OF /p ® F). So the result follows from [61, Proposition 14.8]. m

Now we combine all these results together:

Lemma 6.7.10. Let X be a strongly sheafy adic space over Spa (Qp,Zy), and ¥ an
overconvergent étale sheaf of F,-modules on X. Then the natural morphisms

0%, /p® F > Rua(OFs /9 7).
(9;;;/17 ®F - RA(0F./p® F)

are isomorphisms.

6.8 Application: @t and @ vector bundles

In this section, we discuss the relation between OFc and Oy« vector bundles in
different topologies. As an application of the methods developed in this section, we
reprove a theorem of Kedlaya—Liu saying that, for a perfectoid space X, the categories
of Oy« -vector bundles in the analytic, étale, quasi-proétale, and v-topologies are all
equivalent. To achieve this result, we prove an intermediate claim that the categories
of O}« -vector bundles in the étale, quasi-proétale, and v-topologies are equivalent.
The results of this section will not be used in the rest of the memoir.

We define the categories of v, quasi-proétale, and étale @ T -vector bundles on X
(resp. O-vector bundles on X') similarly to Definition 6.5.1.

We start by understanding the category of () ¥«-torsors on an affinoid perfectoid
space X.

Lemma 6.8.1. Let (R, R") be a perfectoid pair, and let f:(RT)% — (RT)? be
an R -linear homomorphism such that f: (R /R°°)® — (Rt /R°®)¢ is an isomor-
phism. Then f is an isomorphism.
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Proof. Lemma B.9 (2) together with a standard approximation argument imply that
fmodw: (Rt /w)? — (Rt /w)? is an isomorphism. Then [68, Tag 0315] implies
that f is surjective, put K = Ker f. We note that K is derived @ -adically complete
due to [68, Tag 091U]. Furthermore, our assumption implies that K/@wK = 0, so
[68, Tag 09B9] ensures that K = 0. In particular, f is an isomorphism. ]

Lemma 6.8.2. Let X = Spa(R,R™) be an affinoid perfectoid space over Spa(Q,,Zy),
and let & be an (9;0-vect0r bundle. If &/ p is a free (D;Q/p-vector bundle, then &
is a free (9;;<> -vector bundle.

Proof. In this proof, we put m = R°° and always do almost mathematics with respect
to this ideal (see Lemma B.12).

Lemma 6.3.5 (1) implies that RT'(X2, &/ p) is almost concentrated in degree 0.
Then Lemma 6.3.5 (3), [68, Tag 0AOG], and Lemma A.5 imply that R['(X?, €) is
almost concentrated in degree 0. This implies that

m Qg+ RO(XY,8) = RT(XZ, m ®g+ 8) = RT(XZ, mE) (6.8.1)
and
m ®p+ RO(XZ,8/p) = R[(XZ, m @p+ &/p) = RT(XZ, mE/pmE) (6.8.2)

are concentrated in degree 0. Since &/ p is trivial, we conclude that & /m & is a trivial
O /m-vector bundle. We choose an isomorphism € /mé& ~ (O / m)d and define
a basis

el,....el € HO(X,?, 8/m8)

Then we consider the short exact sequence

0> mQp+ (6/p) > &/pm&E — E/mE — 0.

Now (6.8.1) implies that we can lift €/’ to elements ¢, € H*(X?, &/ pm§). Then we
use the commutative diagram

0 —— m Qg+ pé > & >y &/ pm& ——— 0
> &

0 > & » &/p ——— 0

P

and (6.8.2) to conclude that the natural morphism H° (Xl?, €/pmé€) —H° (Xf, S/p)
factors through HO(X?, €)/p C HO(XS. &/ p). This implies that we can lift e/ to
elements ¢; € H*(X?, €). This defines a morphism

¢: ((Q;Q)d — 8.


https://stacks.math.columbia.edu/tag/0315
https://stacks.math.columbia.edu/tag/091U
https://stacks.math.columbia.edu/tag/09B9
https://stacks.math.columbia.edu/tag/0A0G
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By construction, ¢ mod mt becomes an isomorphism. We wish to show that this
implies that ¢ is an isomorphism. This can be checked v-locally on X, so we can
assume that & =~ ((9;0)‘1, and we need to check that ¢(X’) is an isomorphism for
any affinoid perfectoid X’ — X. Then the result follows directly from Lemma 6.3.5
and Lemma 6.8.1. =

Corollary 6.8.3. Let X be a perfectoid space over Spa (Qp,Zp), and let & be an
(9+<> vector bundle. Then, for each x € X, there are an open subspace x € U, C X
and a finite étale surjective morphism U, — Uy such that & |7 g, 18 trivial.

Proof. This formally follows from Corollary 6.6.9 and Lemma 6.8.2. |
Now we denote by
pt=pt ®u-10% (9;‘%:Vect(Xét; (9;;61) — Vect(Xgp: O;q%)

and
A* =1 ®0, OFo: Vect(Xg: Oxc) — Vect(X: 0%
the pullback functors.
Now we can show that the categories of @ -vector bundles in the étale, quasi-

proétale, and v topologies are all equivalent:

Theorem 6.8.4. Let X be a pre-adic space over Spa (Qp,Zp).

(1) Then the functor A*: Vect(Xég, (9"' ) — Vect(X<> (9+ ) is an equivalence.

Furthermore, for any (9X<> -vector bundle V, the natuml morphism
V — RAATV

is an isomorphism.

(2) If X is perfectoid, then the functor p*: Vect(Xet, (9Jr ) — Vect(X ;;, (9 )
is an equivalence. Furthermore, for any (9+ -vector bundle &, the natural
morphism

€ — Ru.u*€
is an isomorphism.
Proof. First, we note that the second claim is quasi-proétale local on X, so we can
assume that X is a perfectoid space. Then the proof is very similar to that of Theo-
rem 6.5.7. We spell out the main steps.
We first show that the natural morphisms
.9+ +
o (9Xét — RM*Ochg’
.9+ +
B: 0ch5 — RA.O4,
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are isomorphisms. For this, we note that Remark 6.3.6 implies that (9;?0«’ (9;(% s
and (9;;<> are derived p-adically complete and p-torsion free. Therefore, we can
check that & and 8 are isomorphisms modulo p (in the derived sense). This follows
from Theorem 6.5.9 and Theorem 6.5.7.

This formally implies that the maps V — RA,A*V and & — Ru.pu*& are iso-
morphisms. This, in turn, formally implies that A* and w* are fully faithful. Essential
surjectivity of both functors follows from Corollary 6.8.3. ]

Remark 6.8.5. We note that [35, Theorem 4.27] gives a much more general version
of Theorem 6.8.4. However, Corollary 6.8.3 does not seem to be addressed in [35].

Now we discuss the case of Qx-vector bundles. We first wish to show that any
O x<-vector bundle (in the v-topology) admits an (9;;<> -lattice étale locally on X.
This will be our key tool to reduce questions about @-vector bundles to the case of
O -vector bundles. For this, we will need a number of preliminary lemmas:

Lemma 6.8.6. Let A be an f -henselian ring for some regular element f € A, and
let A be its f-adic completion. Then the natural morphism

GLy (A[$])/GLA(4) — GL, (A [4])/GLA(A)
is a bijection.

Proof. In this proof, we denote by Vect,(R) the groupoid of finite projective R-
modules of rank-n, and by Vect, (R) the set of isomorphism classes of finite projective
R-modules of rank-n.

Now we start the proof. First, [68, Tag 0BNS] ensures that (4 — A, f)is a
gluing data. Second, [68, Tag OBNW] ensures that any finite projective A-module
is glueable. Therefore, [68, Tag 0BP2] and [68, Tag OBP6] imply that the following
diagram of groupoids:

®A1:1\

Vect,, (4) - » Vect, (4)
_®AAfl l-@;l\z‘i\[%]
Vect, (A7) ——— Vect,(A[+])
—®a,4 [7

is cartesian. Therefore, we can pass to homotopy groups at the free module A” to get
a long exact sequence of pointed sets:

0 — GLp(4) — GLy(A[F])x GLy(A) —— GLn(A[F])

Vect, (4) ~» Vect, (A) x Vectn(A[%]) — Vectn(/:l\[%]) — 0.


https://stacks.math.columbia.edu/tag/0BNS
https://stacks.math.columbia.edu/tag/0BNW
https://stacks.math.columbia.edu/tag/0BP2
https://stacks.math.columbia.edu/tag/0BP6
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To prove the claim, it suffices to show that the fiber of @ over the pair of trivial rank-n
modules is just a point. This follows from [68, Tag 0D4A] which even implies that
the map Vect, (A) — Vect,(A) is a bijection. [

Definition 6.8.7. Let X be a pre-adic space over Spa (Qp, Zy). The (pre-)sheaf of
invertible matrices GL, x< on X 1? is defined via the rule

(S — X°) > GL, (O4:(S)

for any affinoid perfectoid space S over X <.
We define the (pre-)sheaf of integral invertible matrices GL,J[’ xo on X 1? via the
rule
(S — X®) > GL,(03.(5%)

for any affinoid perfectoid space S over X <.

One easily checks that a GL,,, x < is a v-sheaf since it is isomorphic to the diamond
associated with the classical (pre)-adic space GL, g, Xq, X. Similarly, GL,“:’ x< 18
a v-sheaf since it is isomorphic to the diamond associated with the (pre-)adic space
(GLn.g, DY) xq, X.

For the next definition, we fix a pre-adic spce X over Spa (Q,.Z,) and an O y -
vector bundle &.

Definition 6.8.8. The sheaf of lattices Latty (&) is the v-sheaf defined by the formula

(S - X°)~ {8+ € Vect(SF¢: 04, o). ¢: 8+[%] > 8|s}/isom

for each affinoid perfectoid S — X< over X .

Lemma 6.8.9. Let X denote a pre-adic space over Spa (Qp.,Zy), and let & be an
O y<-vector bundle. Then, v-locally on X, the sheaf Latty (&) is isomorphic to
GLy x</GL} yo.

Proof. The claim is v-local on X by design, so we can assume that & ~ (9;1(0. Then
we note that GL,, x< acts &, i.e., for any g € GL, x<(S) we have an isomorphism
g*:&s — &g. Therefore, it also acts on Latty (&) via the rule

g(6F,p: €7 = €)=(6".g"00).

Now let & C & be the trivial lattice ((9;;0)(1 - (9;1(<> = &, this defines a point {( €
Latty (&). Then the orbit map defines a morphism of sheaves o: GL,, x¢ — Latty (€)

via the rule
g — g(lo).


https://stacks.math.columbia.edu/tag/0D4A

O /p-modules 214

The stabilizer of £ is equal to GL;’, x<, 0 o factors through an injective morphism
B:GLy x</GL} yo <> Lattx (€).

So we are only left to show that it is surjective. Let S — Latty (&) be a point corre-
sponding to a lattice (€™, ). We need to show that this point lies in the image of 8
locally in the v-topology. By definition, there is a v-covering S’ — S such that & T | g/
becomes a free (D;O-vector bundle. But then there is an element g € GL, x<(S’)

such that g(6%) = &; | s/. In particular, (§ *|s/, ¢|s’) lies in the image of A(S’). m

Corollary 6.8.10. Let X be a pre-adic space over Spa (Qp, Zp), let & be an Oy -
vector bundle, and let Z = limy Z; be a cofiltered limit of affinoid perfectoid spaces
over X. Then the natural morphism

colimy Latty (8)(Z7) — Lattx (§)(Z°)
is a bijection.

Proof. Let Z; = Spa(R;, R;"), we put RE = colim; R;"” and denote by RY, its p-
adic completion. Then we note that the claim is v-local on Z, so we can assume that &
is a free @ y-vector bundle. Then Lemma 6.8.9 implies that it suffices to show that

GL (RS [41)/GLa(R) — L (RE[L])/GL(RE)

is a bijection. This follows directly from Lemma 6.8.6, [68, Tag OALJ], and [68,
Tag OFWT]. |

Corollary 6.8.11. Let X be a pre-adic space over Spa (Qp, Zp), let & be an Oy -
vector bundle, and let Z ~ limj Z; — Z be an affinoid strongly pro-étale morphism
of strongly sheafy Tate-affinoid adic spaces over X. Then the natural morphism

colimy Latty (&) (Zio) — Latty (8) (ZO)
is a bijection.

Proof. This is a direct consequence of Corollary 6.8.10 (one can argue as in Corol-
lary 6.5.4). ]

Corollary 6.8.12. Let X be a strongly sheafy adic space over Spa (Qp,Zy), let & be
an Oy« -vector bundle. Then there are an étale covering X' — X, an (9;(',0-vect0r
bundle &, and an isomorphism 8+[%] ~ &y
Proof. First, we note that we want to show that Latty (&) admits a section for some
étale covering X' — X. For this, we can assume that X is an affinoid space.

If X is strictly totally disconnected, the result follows from the observation that
such a section exists after a v-surjection, Lemma 6.4.4, and Corollary 6.8.10. Then
the result follows from Lemma 6.2.13 and Corollary 6.8.11. |


https://stacks.math.columbia.edu/tag/0ALJ
https://stacks.math.columbia.edu/tag/0FWT
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We will later be able to prove a more precise version of Corollary 6.8.12. But,
before that, we show that all possible versions of @Ox-vector bundles coincide on
perfectoid spaces. For this, we denote by 7: (X¢, Ox,) — (Xan, Ox) the natural mor-
phism of ringed sites. We also denote by

r* = g1 ®r—10y,, Ox, :Vect(Xau; Ox,,) — Vect(Xe; Ox,),

w* = ,u_l ®/F1<9xél (9Xq<;:Vect(Xét;(9Xél) — Vect(X;;;(QX;;),

A =271 ®r-10xg (9X<>:Vect(Xq<>p; Oxg) — Vect(X: Oyxo)

the natural pullback functors.

Theorem 6.8.13 ([42, Theorem 3.5.8], [63, Lemma 17.1.8], [35, Theorem 4.27]).
Let X be a pre-adic space over Spa (Qp,Zp).
(1) If X is strongly sheafy, then w*: Vect(Xan, Ox ) — Vect(Xe, Ox,,) is an equiv-
alence. Moreover, the natural morphism

£ - Roa*&

is an isomorphism for any Ox -vector bundle £. Further, if X = Spa (A4, A™)
for a strongly sheafy Tate ring A, then Vect(Xan, Ox) is equivalent to the
category of finitely generated projective R-modules.

(2) If X is perfectoid, then u*: Vect(Xe:; Ox,) — Vect(Xgp: (9Xq<§) is an equiva-
lence. Furthermore, the natural morphism

& — Ruu*€

is an isomorphism for any O x,-vector bundle &.

(3) The functor A*: Vect(X;;; OXq%) — Vect(Xf; (9X<>) is an equivalence. Fur-

thermore, the natural morphism
V — RAA*V
is an equivalence for any xg-vector bundle V.

Proof. (1) follows from [41, Theorem 8.2.22 (c), (d)].

Part (3) is quasi-proétale local on X, so we can assume that X is an affinoid
perfectoid for the purpose of proving (2) and (3).

Then it follows from Theorem 6.8.4 that the natural maps (93(:[ — Ru«0 x$
and Oxg — RAOy« are isomorphisms. Then this formally implies that the maps
& > Ruxpu*€ and V — RA,A*V are isomorphisms. This, in turn, formally implies
that ©* and A* are fully faithful. In order to show essential surjectivity, it suffices
to show that any O y<-vector bundle can be trivialized étale locally on X (for a
perfectoid space X). This follows from the combination of Corollary 6.8.12 and
Corollary 6.8.3. |
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Finally, we give a more refined version of Corollary 6.8.12:

Corollary 6.8.14. Let X be a strongly sheafy adic space over Spa (Qp, Zp), and

let & be an O x«-vector bundle. Then, for each x € X, there are an open subspace

x € Uy C X, a finite étale surjective morphism Uy — Uy, and an (9[:1']_)?-\1661‘01‘ bun-
+ +[L1] ~ ~

dle & such that &} [;] ~ &g -

Proof. Using Corollary 6.8.11 in place of Lemma 6.5.5, we can repeat the argument
of Theorem 6.6.8 once we know that &|syq(c,c+) admits a lattice for any mor-
phism Spa (C, C*) — X such that C is an algebraically closed non-archimedean
field (and any open, integrally closed, bounded subring C* C C).!” For this, we
note that (C, CT) is a perfectoid pair, so Theorem 6.8.13 implies that the category
of Ospa(c,c+)-vector bundles is equivalent to the category of finite-dimensional C-
vector spaces. In particular, any & |spq(c,c+) is a free bundle, so it clearly admits an
(9;;<> -lattice. This finishes the proof. |

"The proof of Theorem 6.6.8 ensures that it suffices to prove this claim for a very restrictive
class of such pairs (C, C 1), but this is irrelevant for the current proof.



Chapter 7

Almost coherence of ¢ p-adic nearby cycles”

7.1 Introduction

The main goal of this chapter is to study the “p-adic nearby cycles” sheaves Rv, (9;("<>

and R\)*(Q;(r<> / p for a rigid-analytic variety X. We also study other versions with
more general “coefficients” including @/ p-vector bundles in the v-topology, and
sheaves of the form OF«/p ® F for a Zariski-constructible sheaf ¥ (see Defini-
tion 7.1.7). These complexes turn out to be almost coherent; this makes it possible
to study étale cohomology groups of rigid-analytic varieties using (almost) coherent
methods on the special fiber.

Before giving precise definitions, let us explain the main motivation to study these
sheaves and their relation with étale cohomology of rigid-analytic varieties in the sim-
plest case of the “nearby cycles” of the sheaf (9;6‘ /p. In [59], P. Scholze proved ([59,
Theorem 5.1]) that the étale cohomology groups H' (X, F) are finite for any smooth,
proper rigid-analytic variety X over an algebraically closed p-adic non-archimedean
field C. There are two important ingredients: the almost primitive comparison theo-
rem that says that H (X, (Q;Eét / p) are almost isomorphic to H' (X, F,) ® Oc¢/p, and
the almost finiteness of H’ (X, (9;& /p).

The proof of the almost finiteness result in [59] uses properness of X in a very
elaborate way; first, the proof constructs some specific “good covering” of X by affi-
noids and then shows that there is enough cancelation in the Cech-to-derived spectral
sequence associated with that covering. We note that all terms of the second page
of this spectral sequence are not almost finitely generated, but mysteriously there is
enough cancelation so that the terms of the co-page become almost finitely generated.
We refer to [59, Section 5] for details.

Our main goal is to give a more geometric and conceptual way to prove this
almost finiteness result. Instead of constructing an explicit “nice” covering of X, we
separate the problem into two different problems. We choose an admissible formal
Oc¢-model X of X and consider the associated morphism of ringed topoi

t: (X, 0%,) = (%zar Oz)
that induces the morphism
t: (Xe, (9;6[/17) — (Xzar. O/ p) = (¥0.Ox,).
where Xo 1= X Xspr 9 Spec Oc/ p is the mod-p fiber of X. Then one can write

RT (X, 0% /p) ~ RT (X0, Rt.0% /p).
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so one can separately study the “nearby cycles” complex Rt,k(?;(rét / p and its derived
global sections on Xg.

The key is that now X is proper over Spf Ok by [51, Lemma 2.6]" (or [65, Corol-
lary 4.4 and 4.5]). Thus, the almost proper mapping theorem (see Theorem 5.1.3) tells
us that, to prove the almost finiteness of RI" (X, (9;(;[ / p), it is sufficient only to show
that Rt*@;(réI /p € D, (X) has almost coherent cohomology sheaves.

The main advantage now is that we can study the “nearby cycles” R, (9;(:[/ p
locally on the formal model X. So this holds for any admissible formal model and
not only for proper ones. Moreover, the only place where we use properness of X in
our proof is to get properness of the formal model X to be able to apply the almost
proper mapping theorem (see Theorem 5.1.3). This allows us to avoid all elaborate
spectral sequence arguments while at the same time making the essential part of the
proof local on X.

Now we discuss how we prove that Rz, (9;?5,1/ p is almost coherent. In fact, we
will prove a much stronger result that Rz, & is almost coherent for any @/ p-vector
bundle & in the v-topology. However, we find it instructive to discuss the simplest
case first.

When & = (9;(:, l / p, the main idea of the proof is similar to the idea behind the
proof [59, Lemma 5.6]: we reduce the general case to the case of an affine X with
“nice” coordinates, where everything can be reduced to almost coherence of certain
continuous group cohomology via perfectoid techniques. In order to make this work,
we have to pass to a finer topology that allows towers of finite étale morphisms.
There are different possible choices, but we find the v-topology on the associated
diamond X of X (in the sense of [61]) to be the most convenient for our purposes
(see Chapter 6 for the detailed discussion).

The case of a general (9;<> / p-vector bundle (see Definition 6.5.1) will cause us
more trouble; we will use the structure results from Section 6.6 to handle a general
(9;?<> / p-vector bundle. The main crucial input that we are going to use is that the
category of (9;;<> / p-vector bundles is equivalent to the category of étale (9;(2t /p-
vector bundles and that, locally, any (9;;<> / p-vector bundle can be trivialized by some
very particular étale covering (see Corollary 6.6.9).

That being said, we can move to the formulation of the main theorem of this
section. We refer to Chapter 6 for the definition of the quasi-proétale and v-topologies
on X< for a rigid-analytic variety over a non-archimedean field K. These sites come
with their “integral” structure sheaves OF<, OFo, and (9;;éI (see Definition 6.3.1)
and a diagram of morphisms of ringed sites (see Diagram (6.3.1) and (6.3.2)):

A
(X9.0%0) == (X$ e OFg) —— (X O%,) ——= (¥ 0z) (.1D)
v

IStrictly speaking, his proof is written under the assumption that O is discretely valued.
However, it can be easily generalized to the of a general rank-1 complete valuation ring O g .
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and the mod- p version

(X2 050/P) 2 (XS i Ok /) 25 (Xe. 0%, /1) 2 (%zar. Ox,)-

w
(7.1.2)

If there is any ambiguity in the meaning of v, we then denote it by v to explicitly
specify the formal model for these functors.

Recall that for a perfectoid field K, Lemma B.12 ensures that the maximal ideal
m C Ok is an ideal of almost mathematics with flat @ ~ m?2 = m. For the rest of
this section, we fix a p-adic perfectoid field K, and always do almost mathematics
with respect to the ideal m.

We are ready to formulate our first main result. We thank B. Heuer for the sug-
gestion of trying to prove Theorem 7.1.2 for all (9;('<> / p-vector bundles.

Definition 7.1.1. An OF</p-module & is a small O}« / p-vector bundle if there is
a finite étale surjective morphism V' — U such that 8|VU<> >~ ((9:;0/ p)" for some
integer r.

Theorem 7.1.2. Let X be an admissible formal O g-scheme with adic generic fiber X
of dimension d and mod-p fiber X, and let & be an Q%< | p-vector bundle. Then

(1) Rvy€ € DT (%) and (Rv,8)¢ € D2 (x4)a;

qc,acoh acoh

(2) if X = Spf A is affine, then the natural map

H (X, €) — R'vi(8)

is an isomorphism for everyi > 0;

(3) the formation of R*v«(&) commutes with étale base change, i.e., for any étale
morphism §:%) — X with adic generic fiber f:Y — X, the natural morphism

fo (Ri 1)35’*(8)) — R! vm,*(Slyo)

is an isomorphism for any i > 0;

(4) if X has an open affine covering X = | J;c; U; such that & |, ) is small,
then
(Rv,€)* € DL (%)

acoh

(5) there is an admissible blow-up X' — X such that X' has an open affine cov-
ering X' =\ J;c; Wi such that &|; )< is small.
In particular, there is a cofinal family of admissible formal models {X;};ct
of X such that
(Rug; .&)" € D (X ).

acoh

foreachi € 1.
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Remark 7.1.3. We refer to Definition 4.4.1 and Definition 4.4.2 for the precise def-
inition of all derived categories appearing in Theorem 7.1.2. In order to avoid any
confusion, we explicate that the expression (Rv,&)% € Dgg(’)ﬁ](ﬁo)“ means that the
complex (Rv, &) is almost concentrated in degree [0, d] and each of its cohomology

sheaves is almost coherent.

Remark 7.1.4. We note that Theorem 7.1.2 (1) implies that the nearby cycles Rv. &
is quasi-coherent on the nose (as opposed to being almost quasi-coherent). This is
quite unexpected to the author since all previous results on the cohomology groups
of @1/ p were only available in the almost category.

Remark 7.1.5. If K = C is algebraically closed, the proof gives a non-almost version
of cohomological bound. Namely, we see that
Rv.& € D24 (%),

However, we do not know if Rv,& is concentrated in degrees [0, d] on the nose (for
a cofinal family of formal models).

Remark 7.1.6. Ofer Gabber has informed the author that he knows an example of a
smooth affinoid rigid-analytic variety X, a formal model ¥, and an (9;;<> / p-vector
bundle & such that Rvg . & is not almost concentrated in degrees [0, d].

One can prove a slightly more precise version in case & is equal to the tensor
product of a Zariski-constructible étale sheaf of F,-modules and (9;;0 /D.

Definition 7.1.7 ([32]). An étale sheaf ¥ of F,-modules is a local system if it is a
locally constant sheaf with finite stalks.

An étale sheaf F of F,-modules is Zariski-constructible if there is a locally finite
stratification X =| [;; Z; into Zariski locally closed subspaces Z; such that 5|z,
is a local system.

The category D (X;F}) is a full subcategory of D(X¢; F,,) consisting of objects
with Zariski-constructible cohomology sheaves.

Remark 7.1.8. Any Zariski-constructible sheaf ¥ is overconvergent, i.e., for any
morphism 77 — § of geometric points in X, the specialization map 5 — F7 is an
isomorphism.

Note that any sheaf of F,-modules on X4 can be treated as a sheaf on any of
the sites X2, X;;mét, or Xpro¢ via the pullback functors along the morphisms in Dia-
gram (7.1.1). In what follows, we abuse the notation and implicitly treat a sheaf ¥ as
a sheaf on any of those sites. We also denote the tensor product ¥ ®r,, (9;(r / p simply
by ¥ ® Oy /p in what follows.

Now we discuss an integral version of Theorem 7.1.2:
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Theorem 7.1.9. Let X be an admissible formal O g-scheme with adic generic fiber X
of dimension d and mod-p fiber Xy, and ¥ € D[ZrC’S] (X:;Fp). Then

(1) there is an isomorphism Rty (¥ ® O;ét/p) ~ Ru.(F ® (9;0/[));

(2) Ruu(F® OF,/p) €D oo (Xo), and Ruu (F ® OF, /p)* e DISFT(Eo)2;

(3) if X = Spf A is affine, then the natural map
Hi(X,?, F® O;O/p) — R"v*(f)‘7 ® (9;0/17)
is an isomorphism for every i > 0;
(4) the formation of R vy (3‘7 ® (9;<> / p) commutes with étale base change, i.e.,

for any étale morphism 1:%) — X with adic generic fiber f:Y — X, the
natural morphism

f(;k(Ri VEE,*(? ® @;o/p)) - RiV‘D,* (f_lj’v ® (9;'_0/p)
is an isomorphism for any i > 0.

Definition 7.1.10. An O;O-vector bundle & is a small O« -vector bundle if € /p&
is a small (9;;<> / p-vector bundle (see Definition 7.1.1).

Theorem 7.1.11. Let X be an admissible formal Ok -scheme with adic generic fiber
X of dimension d, and let & be an (9;0-vect0r bundle. Then

(1) Rvy& € DT (X) and (Rv,&)* € D224 (x)a;

qc,acoh acoh

(2) if ¥ = Spf A is affine, then the natural map
H (X2,6)"* - Riv.(€)
is an isomorphism for every i > 0;

(3) the formation of R' v« (&) commutes with étale base change, i.e., for any étale

morphism 1:%Y) — X with adic generic fiber f:Y — X, the natural morphism
F*(R'vg,«(8)) = Rivy «(Ey<)

is an isomorphism for any i > 0;

(4) if X has an open affine covering X = | J;c; Wi such that & |, )< is small,
then

(Rv.€)* € D4 (x)e,

(5) there is an admissible blow-up X' — X such that X' has an open affine cov-
ering X' = | J;c; Wi such that &|; )< is small.
In particular, there is a cofinal family of admissible formal models {¥X}};c1
of X such that

acoh

(Rvg, .)€ DIl (&)”,

foreachi € 1.
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Remark 7.1.12. We refer to Definition 4.8.9 for the precise definition of all derived
categories appearing in Theorem 7.1.11.

Remark 7.1.13. One can also prove a version of Theorem 7.1.11 for Zariski-con-
structible Z,-sheaves in the sense of [7, Definition 3.32]. However, we prefer not to
do this here as it does not require new ideas but instead complicates the notation.

For the version of Theorem 7.1.11 with the pro-€tale site X ¢ as defined in [59]
and [60], see Theorem 7.13.6.

The rest of the memoir is devoted to proving Theorem 7.1.9, Theorem 7.1.2, and
Theorem 7.1.11 and discussing their applications. We have decided to work entirely
in the v-site of X< because it is quite flexible for different types of arguments (e.g.,
proper descent, torsors under pro-finite groups, etc.). However, most of the argument
can be done using the more classical pro-étale site defined in [59]. However, it is
crucial to use the theory of diamonds to get an almost cohomological bound on Rv, &
for non-smooth X, and it also seems difficult to justify that the sheaves R/v, & are
quasi-coherent without using (at least) quasi-proétale topology.

7.2 Digression: Geometric points

In this section, we discuss preliminary results that will be used both in the proof of
Theorem 7.1.9 and in deriving applications from it.
We start the section by recalling some definitions.

Definition 7.2.1. [67, Section 2.1.4] An extension of non-archimedean fields”> K C
L is topologically algebraic if the algebraic closure of K in L is dense in L. Equiva-
lently, K C L is topologically algebraic if L is a non-archimedean subfield of K.

Lemma 7.2.2. (1) Let K C L and L C M be two topologically algebraic exten-
sions of non-archimedean fields. Then K C M is also topologically algebraic.
(2) Let
N +—— L
M <+— K
be a commutative diagram of non-archimedean fields such that LM is dense

in N and K C L is topologically algebraic. Then M C N is also a topolog-
ically algebraic extension.

Recall that non-archimedean fields are complete by our convention.
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Proof. (1) We know that L C K and M C L since both extensions are topologically
algebraic. Since L is already algebraically closed, we conclude that M C L C K.
(2) First, we note that

LM CKM CKMCM,
where the composites s are taken inside ﬁ Then we note that LM\ C N is dense, so

the inclusion LM C M uniquely extends to an inclusion N C M. This implies that
M C N is topologically algebraic. ]

Definition 7.2.3. A geometric point above the point x € X of an analytic adic space X
is a morphism x: Spa (C (x),C (x)+) — X such that C(x) is an algebraically closed
non-archimedean field, C(x)" is an open and bounded valuation subring of C(x),
and the corresponding extension of completed residue fields k/(;) C C(x) is a topo-
logically algebraic extension.

Remark 7.2.4. If Spa (C (x), C(x)+) — Xisa g/egmetric point, then C(x) can be
identified with the completed algebraic closure of k(x) (or, equivalently, of k(x)) and
C(x)* with a valuation ring extending k(x)* (or, equivalently, k(x)*). Therefore,
Definition 7.2.3 is more restrictive than [38, Definition 2.5.1], but coincides with the
subclass of geometric points constructed in [38, eq. (2.5.2)].

Lemma 7.2.5. Let K be a non-archimedean field with an open and bounded valua-
tion subring K™ C K and a pseudo-uniformizer w. Let f: X — Y be a morphism
of locally of finite type (K, K*)-adic spaces, and y: Spa (C(y), C(y)+) — Y bea
geometric point above y € Y. Then the natural morphism

a:i”' (0%, /@) —>(9;7él/w

is an isomorphism, where i: X5 — X is the “projection” of the geometric fiber
Xy =X xy Spa(C(y),C(y)") back to X.

Proof. [38, Proposition 2.5.5] ensures that it suffices to show that a is an isomor-
phism on stalks at geometric points of X5. Now note that Lemma 7.2.2 implies
that any geometric point X: Spa (C x),C (x)+) — X5 defines a geometric point
x":Spa (C(x),C(x)*) — X of X by taking the composition of X with i. So it is
enough to show that the natural map

(0% /m)5 = (71 (OF /)~ (0%, . /™)s 72.1)

is an isomorphism. But [38, Proposition 2.6.1] naturally identifies both sides of (7.2.1)
with C(x)™ /@ C(x)™ finishing the proof. ]

Remark 7.2.6. Lemma 7.2.5 is very specific to the adic geometry (and quite counter-
intuitive from the algebraic point of view). Its scheme-theoretic version with O /@
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replaced by O is false. The main feature of analytic adic geometry (implicitly) used
in the proof is that the morphism (9)}|r . — k(x)T becomes an isomorphism after the
w-adic completion.

Lemma 7.2.7. Let C be an algebraically closed non-archimedean field, let C* C C
be an open and bounded valuation subring with a pseudo-uniformizer w € C T, and
let (C,C™) be the corresponding Huber pair. Let (C,CT) — (D, DT) be a finite
morphism of complete Huber pairs with a local ring D. Then the natural morphism

Ct/wCt - D" /wD™*
is an isomorphism.

Proof. First, we show that CT/wCT — DT /wDT is injective. For that, suppose
that¢ € C*/@w C™ is an element in the kernel and lift it to ¢ € C*. The assumption
on ¢ implies that ¢ = wd for some d € D*. Thend =c/m e CN Dt =C™.
Therefore,¢ = 0in C*/wC™.

Now we check surjectivity. Since D is a local ring that is finite over an alge-
braically closed field C, we conclude that D is an Artin local ring and D /nil(D) >~ C.
Therefore, forevery d € DV, we can find ¢ € C and d’ € nil(D) such thatd =c +d’.
Since nil(D) € D°° C D*, we conclude thatc =d —d’ € DT N C = C*. Now
note that d’/ 7 is still a nilpotent element of D, thus d’/w € nil(D) C DT. So we
conclude that

d=c+w(d/w)

proving that C*/w C* — DY /wD™ is surjective. n

Corollary 7.2.8. Let K be a p-adic non-archimedean field, and K™ an open and
bounded valuation subring of K. Let : X — Y be a finite morphism of locally finite
type (K, K¥)-adic spaces. Then the natural morphism

c: (f*Ep) ® (9;;,/17 g f*((93(:[/1))
is an isomorphim on Y.

Proof. We use [38, Proposition 2.5.5] to ensure that it suffices to show that ¢ is
an isomorphism on stalks at geometric points. Thus, [38, Proposition 2.6.1] and
Lemma 7.2.5 imply that it suffices to show that the natural map

H(X.F,) ® CT/p — HG(X, 0% /p)

is an isomorphism when ¥ = Spa (C, C ") for an algebraically closed p-adic non-
archimedean field C and an open and bounded valuation subring C* C C. In this
case, X = Spa(D,D™) for some finite morphism of Huber pairs (C,C*) — (D,DV).
In particular, D is a finite C-algebra, so it is a finite direct product of local artinian
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C-algebras. By passing to a direct factor of D (or, geometrically, to a connected
component of Spa (D, DT)), we can assume that D is local. In particular, D does not
have any idempotents, and therefore Spa (D, D+) is connected. In this case, we have

Ho(X,F,) ® CT/pCT =~ C*/pCT,

since HY (X, F,) >~ F, since Spa (D, D) is connected.
Now we observe that Spa (D, DT).q >~ Spa (C, C™), so all étale sheaves on
Spa (D, D) do not have higher cohomology groups. Thus, we have

HY (X, 0% /p) ~ D*/pD*.
In particular, the question boils down to showing that the natural map
ct/pCct — DV/pD™
is an isomorphism. This was already done in Lemma 7.2.7. ]

Corollary 7.2.9. Let K be a p-adic non-archimedean field, f: X — Y a finite mor-
phism of rigid-analytic varieties over K, and ¥ € Dlz’c (X Fp). Then the natural
morphism
C(fF)® OF,/p — fulF ® OF, /p)

is an isomorphim on Y.

Proof. We recall that [7, Proposition 3.6] says that D’;c (X;Fp) is a thick triangulated
subcategory of D(X«; F) generated by objects of the form g, F,, for finite morphisms
g: X’ — X. Since both claims in the question satisfy the 2-out-of-3 property and
are preserved by passing to direct summands, it suffices to prove the claim only for

¥ = g«F,. In this situation, the claim follows from Corollary 7.2.8 by the sequence
of isomorphisms

f+(g+(E,)) ® Oy, /p = (f 0 g)+(E,) ® Oy, /p
~ (f 08)«(0x, /1)
~ fu(8+0x, /P)
~ fu(g+F, ® (9;(:,1/17). n

7.3 Applications

The main goal of this section is to discuss some applications of Theorem 7.1.9. In
particular, we show that ““p-adic nearby cycles” commute with proper pushfowards
and prove finiteness of the usual étale cohomology of proper rigid-analytic varieties.
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For the rest of the section, we fix a p-adic algebraically closed field C with its
rank-1 valuation ring O¢, maximal ideal m C O¢, and a good pseudo-uniformizer
w € O¢ (see Definition B.11). We always do almost mathematics with respect to the
ideal m in this section. If we need to consider a more general non-archimedean field,
we denote it by K.

The first non-trivial consequence of Theorem 7.1.11 is that the v-cohomology
groups of O}« -vector bundles have bounded p-torsion.

Lemma 7.3.1. Let K be a p-adic perfectoid field, let X = Spf Ag be an affine admis-
sible formal Ok-scheme with adic generic fiber X, and let & be an (9;0—vect0r
bundle. Then the cohomology groups H (X;> , 6 ) are almost finitely presented over
Ao. In particular, they are p-adically complete and have bounded torsion p°-torsion.

Proof. This is a straightforward consequence of Theorem 7.1.11, Lemma 2.12.5, and
Lemma 2.12.7. ]

+
X

pretty differently from the analytic cohomology groups of (9)‘(|r . Indeed, we refer to
[5, Remark 9.3.4] (that can be easily adapted to the p-adic situation) for an example
of an affinoid rigid-analytic variety with unbounded p™-torsion in H, (X, (9; ). The
same example shows that H., (X, @) could have unbounded p®°-torsion.

Remark 7.3.2. Lemma 7.3.1 implies that the v-cohomology groups of @7 ., behave

Theorem 7.3.3. Let K be a p-adic perfectoid field, let X be a proper rigid-analytic
K-variety of dimension d, and let & be an (9;('<> -vector bundle (resp. (9;?<> / p-vector
bundle). Then
RF (X2 €) DL (04)".
Proof. We firstly deal with the case of an (9;('<> / p-vector bundle &. We choose an
admissible formal model X of X as in Part (5) of Theorem 7.1.2. This formal model
is automatically proper by [51, Lemma 2.6] and [65, Corollary 4.4 and 4.5]. Now
Theorem 7.1.2 implies that
(Rv,&) € D (%),
Recall that the underlying topological space of X is equal to the underlying topo-
logical space of the special fiber X := X Xgpr 0 Spec Oc /m. Thus, [25, Corol-
lary I1.10.1.11] implies that Xy has Krull dimension d. Therefore, Theorem 5.1.3,
[68, Tag 0A3G], and Lemma 3.3.5 imply that
RT (XS, 6) ~ RT' (X0, Rua(€))* € D220k / p)°.

The case of an (9;;<> -vector bundle follows from the (9;;<> / p-case, Corollary 2.13.3,
and Lemma 6.3.5 (3). ]


https://stacks.math.columbia.edu/tag/0A3G
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Lemma 7.3.4. Let X be a proper rigid-analytic variety over C of dimension d,
and let ¥ be a Zariski-constructible sheaf of ¥p-modules on X¢. Then we have
RIC(XP.F ® 05./p) € DiiNOc/ p)°.

acoh

Proof. The proof is analogous to the proof of Theorem 7.3.3 using Theorem 7.1.9 in
place of Theorem 7.1.2. ]

Now we discuss finiteness of classical étale cohomology groups. Later, we will
generalize it to Zariski-constructible coefficients.

Lemma 7.3.5. Let X be a proper rigid-analytic variety over C of dimension d. Then

RI(X.F,) € D29 (F )

coh

and the natural morphism
RT(X.F,) ® Oc/p — RT (XS, 0/ p)
is an almost isomorphism.

Proof. The proof will be divided into several steps.

Step 1: RT (X o o +) e pl°:29] ((9b ) We consider the tllted 1ntegral structure

acoh

sheaf Xj; (see Definition 6.3.4). Lemma 6.3.5 (4) ensures that (9 1s derived w®-
adically complete and Lemma 6.3.5 (5) implies that

bt b7 o [0+ ~ o+
¥ ~ ~
[(9 o/ ] [OXQ/P] (9X<>/P-

Therefore, [68, Tag OBLX] guarantees that RI" (X 2, o> +) € D((9b ) is derived w"-
adically complete. Moreover, Lemma 7.3.4 implies

[RT (XS, 055)" /w"] ~ RT (X2, 0%, /p)* € D22 (0c/p)”.

acoh

Thus, Corollary 2.13.3 applied to R = CT = (9"C implies that RF(XI?, (9;;’;)‘1
D[O 2d] ((9b )

acoh

Step 2: RI'(X, F)p) € D% 2d](Fp) and the natural morphlsm RI'(X,F,) ® Cc’ —

coh

RT (X 2, (93(0) is an isomorphism. After inverting @, Step 1 implies that
R[(X2,0%.) e D224(C).

coh

Since (95(<> is a sheaf of F-algebras, we have a natural Frobenius morphism

F(9 (9


https://stacks.math.columbia.edu/tag/0BLX
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that can be easily seen to be an isomorphism by Lemma 6.3.5 (2) (and Remark B.7).
Now we use the Artin—Shreier short exact sequence

F—id
0—>Ep—>(9;<>—>(9§(<>—>0

on the v-site X 1? to get the associated long exact sequence’

H (F)—id

S H(X.F,) - H (X2.00 ) H (X2, 0%,) - H (X, F,) — -

We already know that each group H! (X 2, (9;0) is a finitely generated C’-vector
space, each H’ (F) is a Frobenius-linear automorphism, and C b is an algebraically
closed field of characteristic p (see [58, Theorem 3.7]). Thus (the proof of) [68,
Tag 0A3L] ensures that H' (F) — id is surjective for each i > 0 (so H' (X, F,) ~
H' (X he O;Q)F =!) and the natural morphism

H (X.F,) ® C* — H (X2, 05%.)

is an isomorphism. In particular, we have dimg, H' (X,F,) = dimcy H (X2, (9§( o)
the natural morphism
RI(X.F,) ® C* — RI(XY,0%.)

is an isomorphism, and RI'(X,F,) € DE?);IZd](Fp).

Step 3: The natural morphism RT'(X,F,) ® Oc/p — RT (le> (Q;Q/p) is an almost
isomorphism. It suffices to show that

RT(X,F,) ® OF — R (X2, 0%%)

is an almost isomorphism. The version with (9;0/ p would follow by taking the
derived mod-w" reduction. Therefore, it suffices to show that

b,+
)

H (X.F,) ® O¢ — H (X2, 0%

is an almost isomorphism for each i > 0. We consider the following commutative
diagram:
H (X.F)) ® 0 —*— H'(X?.0})

| !

H (X,F,) ® C" —5 H (XS, 0%.).

3We implicitly use that H' (X, F,) ~ H! (XY, Fp) by [61, Propositions 14.7, 14.8, and
Lemma 15.6].
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By Step 2, we know that § is an isomorphism. Since i is injective, we conclude that «
is injective as well. So it suffices to show that « is almost surjective.

The actions of Frobenius on (9bc and on (9';:; induce the Frobenius actions on
H (X F,) ® (9"0 and H (X, (9;’:;), respectively. Moreover, the map « is Frobenius-
equivariant. The action on H (X, F,) ® (9bC is an isomorphism because (9bc is perfect,
and the action on H! (X2, (9;’2;) is an isomorphism because Frobenius is already an
isomorphism on O X:; due to Lemma 6.3.5 (2) (and Remark B.7). Therefore, it makes
sense to consider the inverse Frobenius action F~! on both modules and « commutes
with this action.

Next we pick an element x € H (X2, (9;’:;). Since F is an isomorphism on
H! (le> , (9;’1), we conclude that there exists some x’ € H (X;> , (9;1) such that
F™(x’) = x holds. Since H' (X2, (9;’1) is almost coherent, Lemma 2.12.5 implies
that it has bounded (w")*-torsion. Combining this with the fact that 8 is an isomor-
phism, we conclude that there is an integer N' and an element y’ € H (X2, F,) ® O bc
such that a(y’) = (@) x’. Therefore,

(@)Y x = F((@")V ) = F7(a() = «(F ().

Thus (w")N/pmx = a(y) where y = F7(y') e H (X, F,)® (9"C. Since N/ p™ can
be made arbitrary small by increasing m, we conclude that « is almost surjective. m

Lemma 7.3.6. Let X be a proper rigid-analytic variety over C of dimension d, and
F e DE’C’S](X ;Fp) for some integers [r, s]. Then
RT (X, ) e DI T24(F ).

coh

Proof. First, [38, Corollary 2.8.3] implies that RT" (X, ) € DI»$*+24)(F ). Therefore,
it suffices to show that RI'(X, ) € Dcon(F,). For this, we recall that [7, Propo-
sition 3.6] says that Dlz’C (X, Fp) is a thick triangulated subcategory of D(X¢: Fp)
generated by objects of the form fi(F,) for finite morphisms f: X’ — X. Since
Since Deon(Fp) is a thick triangulated subcategory of D(F)), it suffices to prove the
claim for ¥ = f,(F,). Then Lemma 7.3.5 and [38, Proposition 2.6.3] imply that
RI(X. f+(F,)) = R (X", F,) € D2Y(F,). n

coh

The last thing we discuss is the behavior of the “p-adic nearby cycles” under
proper pushforwards. We start with the following lemma:

Lemma 7.3.7. Let K be a p-adic perfectoid field K, let f: X — Y be a proper mor-
phism of rigid-analytic varieties over K, and let ¥ € Dlz’c (X:;¥p). Then the natural
morphism

Rf.F ® OF /p — Rf(F ® OF /p)

is an almost isomorphism.
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Proof. The claim is local on Y, so we can assume that Y is affinoid. Then a sim-
ilar argument to the proof of Lemma 7.3.6 allows us to reduce to the case when
¥ = g«(F,) for a finite map g: X" — X. Therefore, Corollary 7.2.8 implies that it
suffices to prove the claim for the morphism f o g: X' — Y and ¥ = F,,.

Now [38, Proposition 2.5.5] guarantees that it suffices to show the claim on stalks
at geometric points. Therefore, by Lemma 7.2.5 we reduce the question to showing
that, for any proper adic space X over a geometric point Spa (C, C*), the natural
morphism

RI(X,F,) ® C™/p — RI'(X, 0% /p)

is an almost isomorphism. Denote by X° 1= X xg,, (c,c+) Spa (C, C°). Now [38,
Proposition 8.2.3 (ii)] implies that RI'(X,F,) ~ RI'(X°,F,), Lemma 2.11.2 implies
that C*/pC*+ ~% Oc/pOc, and Corollary 6.4.15 and Corollary 6.4.18 imply that

RT(X,0%, /p) ~ RT(X°, 0;;;/,)).

Combining these results, we may replace (C, CT) with (C, O¢) and X with X° to
achieve that Spa (C, Oc¢) is a geometric point of rank-1. In this case, the claim was
already proven in Lemma 7.3.6. |

Now we show that p-adic nearby cycles commute with proper morphisms.

Corollary 7.3.8. Let K be a p-adic perfectoid field K, let T: X — %)) be a proper
morphism of admissible formal Ok -schemes with adic generic fiber f: X — Y, and
let ¥ € DIZ’C (X Fp). Then the natural morphism

Ruy «(RAF ® (9;0/]9) — Rfo« (Rvg«(F ® (9;0/]9))
is an almost isomorphism.

Proof. First, note that R £, ¥ has overconvergent cohomology sheaves by [38, Propo-
sition 8.2.3 (ii)] and Remark 7.1.8. Therefore, Lemma 6.7.10 implies that

Ruy «(RAF ® OF,/p) = Ry« (RfLF ® O5, /p).

where 15: (Yer. OF, /p) = (Vo. Os,) is the natural morphism of ringed sites. Simi-
larly, we have an isomorphism

Rfo.«(Rvz«(F ® OF./p)) ~ Rio«(Riz«(F ® O%_ /p)).
Therefore, it suffices to show that the natural morphism
Riy «(RfeF ® OF /p) = Rio«(Rix «(F ® OF /p))

is an almost isomorphism.
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For this, we observe that the commutative diagram of ringed sites

(X 0%, /P) —— (%o.0x)
fl lfo
(Yeta (9Y /P) (;DO’ (9‘30)

implies that
Rfo.«(Riz«(F ® OF /p)) ~ Ry «(Rfu(F ® O%, /).
Therefore, the morphism
Riy «(Rf+F QOF /p) = Rio.«(Reyg «(F® OF / p)) ~ Reyy « (R fu(F® OF, / p))

is an almost isomorphism due to Lemma 7.3.7 and Proposition 3.5.23. |

7.4 Perfectoid covers of affinoids

The main goal of this section is to show almost vanishing of higher v-cohomology
groups of a small @}« / p-vector bundle on an affinoid perfectoid space. Later on, we
will apply it to certain pro-étale coverings of Spa (4, A™) to reduce the computation
of v-cohomology groups to the computation of Cech cohomology groups.

Set-up 7.4.1. We fix

(1) a p-adic perfectoid field K together with its rank-1 open and bounded val-
uation ring denoted by Ok and a good pseudo-uniformizer @w € Ok as in
Definition B.11 (we always do almost mathematics with respect to the ideal
m =, """ 0 = K*°);

(2) an affine admissible formal Qg -scheme X = Spf A, with adic generic fiber
X = Spa(A4,A™);

(3) and an affinoid perfectoid pair (Aso, AZ)) (see Definition B.5) with a mor-
phism (4, AT) — (Ao, AL) such that Spd (Ao, AL) — Spd (4, AT) is a
v-covering (see Definition 6.1.1 and Definition 6.1.5);

(4) asmall (9;'('<> / p-vector bundle & (see Definition 7.1.1).

Definition 7.4.2. We say that a p-torsionfree (equivalently, w -torsionfree) Ok -alge-
bra R is integrally perfectoid if the Frobenius homomorphism

p
R/wR 25 R/wPR = R/pR

is an isomorphism.
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Remark 7.4.3. [8, Lemma 3.10] implies that this definition coincides with [8, Defi-
nition 3.5] for p-torsionfree Og-algebras. In particular, AL is an integral perfectoid
O -algebra by [8, Lemma 3.20].

Lemma 7.4.4. Under the assumption of Set-up 7.4.1, let T: Spf By — Spf Ao be an
étale morphism of admissible affine formal Ok -schemes. Then BY, = By @AOA:O is
p-torsion free integrally perfectoid Ok-algebra.

Proof. Firstly, we note that A9 — By is a flat morphism by [25, Proposition 1.4.8.1],
s0 By ®4, A;ro is w-torsion free. Since the w-adic completion of a w -torsionfree
algebra is w-torsion free, we conclude that B, = Bo®4, A% is w-torsion free. We
see that the only thing we are left to show is that the Frobenius morphism

BY /wB} — B, /w?BZ,

is an isomorphism. We consider the commutative diagram

Spec B/ F\
x

lot lfoo/wp

Spec AY Jo ————2— Spec AL, /P,

We need to show that ®% is an isomorphism. We know that fo. /@ ? and foo/w are
étale morphisms since f is so, and moreover the Frobenius ® is an isomorphism by
Remark 7.4.3. Therefore, the morphism

a:Spec (B /w? ® 4t /opr AL /w) — Spec AL/

is étale as a base change of the étale morphism fo, /@ ?. Thus, we conclude that F is
an étale morphism as a morphism between étale A} /@ -schemes. Now we note that
®% x By is an isomorphism since @3 is an isomorphism. Therefore, ®7% is an étale
morphism as a composition of an étale morphism and an isomorphism. However, ®7%
is a bijective radiciel morphism since it is the absolute Frobenius morphism. Thus,
we conclude that it must be an isomorphism as any étale, bijective radiciel morphism
is an isomorphism by [29, Exp. I, Théoreme 5.1]. [

Corollary 7.4.5. Under the assumption of Set-up 7.4.1, let §: Spf By — Spf Ag be
an étale morphism of admissible affine formal Ok -schemes. Then

(Boos BY) = ((Bo®ao A)[ 5], Bo®ayAL,)

is a perfectoid pair.
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Proof. Lemma 7.4.4 states that BY = BOQ’Z\)AOA;LO is a p-torsionfree integral per-
fectoid. Now Bo ®4, A%, is integrally closed in By ®4, A%[] because AT is
integrally closed in A and By is étale over Ag. Therefore, [5, Lemma 5.1.2] ensures
that the same holds after completion, i.e., BY, is integrally closed in Boo. Thus [8,
Lemma 3.20] guarantees that (Bso, BY) is a perfectoid pair. ]

Lemma 7.4.6. Under the assumption of Set-up 7.4.1, let T: Spf By — Spf Ao be
an étale morphism of admissible affine formal Og-schemes with adic generic fiber
Spa (B, BT) — Spa (A, A™). Then the natural morphism

((Bo®aoAL)[ 5] Bo®agAL) = (BB®aAco, (BR4Ax)™)
is an isomorphism of Tate—Huber pairs.

Proof. By [36, Lemma 1.6], B&gAco =~ (BO<§>A0A;LO)[%]. Now, (B®yAso)t is
defined to be the integral closure of the image of the map

Bt®,+ A} — BR®uAco.
By [36, Lemma 1.6], we also have

BT®,4+ AL ~ (BT ®,4+ AZL) ® 0@y A (Bo®ayAL)-

Since B is integral over By, we have that B*® 4+ AL is integral over Bo®4,A4%.
In particular, we see that (B<§>AAOO)Jr is integral over BOQ’Z\)AOA;. However, Corol-
lary 7.4.5 implies that Bo® 4, AL is a subalgebra of B®4 Ao that is integrally closed
in B®4Aoo. Thus, we have an isomorphism

BO@A()A:’)—O ~ (B®AAoo)+~ ]
Remark 7.4.7. Tt will be crucial for our arguments later that (B®4 Aso) ™ is equal to
By @AOA;Z, and not simply to its integral closure.

Lemma 7.4.8. Under the assumption of Set-up 7.4.1, we put
Mg = H’(Spd (Aeo, AL). €).

Then Mg is an almost faithfully flat, almost finitely presented A7,/ p-module, and
for every morphism Spa (D, DV) — Spa (Awo, AL) of affinoid perfectoid spaces, the
natural morphism

D*/p — H%(Spd (D, D%),. €)

Me ® 41,
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is an almost isomorphism.4 Moreover,
H' (Spd (oo, AL)v, &) =4 0
fori > 0.

Proof. We divide the proof into several steps.

Step 1: HO(Spd(Aoo, AL)v, 8) is almost flat and almost finitely presented. The
smallness assumption implies that there is a finite étale surjection Spa (B, BT) —
Spa (Ao, AL) such that E|spa(B,B+) = ((O;O/p)' for some integer r > 0. The adic
space Spa (B, B™) is affinoid perfectoid by [59, Theorem 7.9].

The natural morphism A — B™ is almost finitely presented and almost faith-
fully flat by [59, Theorem 7.9] (see also [5, Theorem 10.0.9] for the almost faithfully
flat part). Since &|spq(B,p+) is trivial, Lemma 6.3.5 (1) implies that

H%(Spd (B, B*),.8) ~* (BY/pB™)".

In particular, it is almost flat and almost finitely presented. We now want to descend
these properties to H? (Spd (Aoos ALy, & ) For this, we use Proposition 6.1.6 to recall
that diamondification commutes with fiber products, and so

Spd (B, B™) X $pd (Aoo Aty SPA (B, B™T)
~ (Spa (B, BY) Xg, (4. 4%, SPa(B, B1))®
~ Spd (B®4., B, (B®4..B)").
By the proof of [58, Proposition 6.18] (and Lemma B.13), we see that B¥ ® 4+ B+ —

(B® 4., B)T is an almost isomorphism (while, a priori, the latter group is the integral
closure of the former one inside B® 4., B). In particular,

BY/p®u,,BT/p =" (B®4,B)"/p(BRa B)T.

Thus
HO(Spd (B®u, B. (B®4o, B) )y, €) = ((BY/p)®id/r)’

and the two natural morphisms

HO(Spd (B. BY),.6) ®p+/, (BF/p)®iksr
— H°(Spd (B®4., B. (B®4,,B)F),. €)

“We note that & is a sheaf on a (big) v-site of Spd (4, A1), so it makes sense to evaluate &
onSpd(D, D).
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are almost isomorphisms. We use the sheaf condition and the previous discussion to
get the following almost exact sequence:

0 — H%(Spd (Aee. AL, . €) —>H’(Spd (B, BT),. &)
—H"(Spd (B, B"),. €) ®p+,, (BT /p)®?).

Theorem 2.10.3 applied to the almost faithfully flat morphism AL /pAT —
B /pB™ implies that the natural morphism

H®(Spd (Ao, A%,) - &) ® 4t ,, BY/p — H(Spd (B, BT)y. €) (74.1)

/p

is an almost isomorphism. The above computation tells us that H°(Spd (B, B™),, &)
is almost faithfully flat and almost finitely presented over B /pB™. Thus, the faith-
fully flat descent for flatness and almost finitely presented modules (see Lemma 2.10.5
and Lemma 2.10.7) implies that H® (Spd (Aoos AL ), & ) is almost faithfully flat and
almost finitely presented over A} /pAL.

Step 2: H® (Spd(Aoo, Ay, 6 ) almost commutes with base change. By the proof
of [58, Proposition 6.18] (and by virtue of Lemma B.13), we can conclude that
Spa (B, BT)Xspa(400,4%) Spa (D, DT) exists as an adic space and is represented by
Spa (R, R™) for a perfectoid pair (R, R™") such that

BY/p®,+,,D"/p—R"/p (7.4.2)
is an almost isomorphism. Thus, the proof of Step 1 and (7.4.2) imply that

H°(Spd (D, DT),, €) ® 4t /) B*/p — H°(Spd (R, R)y, €)

/
is an almost isomorphism. Now we wish to show that the natural morphism
HO(Spd (oo, A%)0. €) ® 41, D¥/p — H'(Spd (D, D), €)

is an almost isomorphism. By the faithfully flat descent, it suffices to check after
tensoring against B™/ p over A} / p. Therefore, we use (7.4.1) and (7.4.2) to see that
it suffices to show that

H%(Spd (B, B¥)y.€) ®p+,, RT/p — H(Spd (R, RT),. &)

is an almost isomorphism. Now Lemma 6.3.5 (1) almost identifies (in the technical
sense) this morphism with the identity morphism

(B¥/pB™) ®p+,, R*/p — (RT/pRT)"

since € |spq(B,+) is a trivial O/ p-vector bundle of rank r. This map is clearly an
isomorphism.



Almost coherence of ““p-adic nearby cycles” 236

Step 3: H (Spd(Aos, AZ)v, €) is almost zero fori > 0. As in Step 1, we use that
Spa(B. B*) — Spa(4co, AL)

is a finite étale morphism of affinoid perfectoid spaces to conclude that all fiber prod-

ucts
Spa (B, B)//50d (oo, AL)

are represented by affinoid perfectoid spaces Spa (B;, B j+) and the natural morphisms

®./’
(BY/pB™) Ak/rak — BF/pB}

are almost isomorphisms. Since each restriction &|spq (B ,BH) is trivial, it is ensured
by Lemma 6.3.5 (1) that the higher cohomology of & on Spd (B, B j+) almost van-
ishes. Thus, RI" (Spd (Ao ALy, € ) is almost isomorphic to the Cech complex asso-
ciated with the covering Spd (B, Bt) — Spd (Awo, AL)). Step 2 implies that this
complex is almost isomorphic to the standard Amitsur complex

0— Mg > Mg®,+, BY/p—>Me®,1, BY/p®,y B /p—--

Almost exactness of this complex follows from Lemma 2.10.4. ]

7.5 Strictly totally disconnected covers of affinoids

The main goal of this section is to eliminate almost mathematics in Lemma 7.4.8
under some stronger assumptions on A .

Set-up 7.5.1. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring
denoted by Ok and a good pseudo-uniformizer @ € Ok (we always do
almost mathematics with respect to the ideal m = [, wl/P"9x = K °°);

(2) an affine admissible formal Qg -scheme X = Spf A, with adic generic fiber
X = Spa(4,47);

(3) a strictly totally disconnected affinoid perfectoid space Spa (Ao, AL) (see
Definition 6.2.5) with a morphism

Spa (Aeo, AL) — Spa (A4, AT)
such that Spd (Ao, AL)) — Spd (A4, AT) is a v-covering and all fiber products
Spd (Ao, AL)7/S04 (44T

are strictly totally disconnected affinoid perfectoid spaces.
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Corollary 7.5.2. Under the assumption of Set-up 7.5.1, let §: Spf By — Spf Ag be
an étale morphism of admissible affine formal Ok -schemes. Then

(Boo, BE) = ((Bo®ao AL)[ 5], Bo®aoAL)

is a perfectoid pair and Spa (Boo, BY) is a strictly totally disconnected (affinoid)
perfectoid space.

Proof. Corollary 7.4.5 already implies that Spa (B, BY,) is an affinoid perfectoid
space. Moreover, Lemma 7.4.6 implies that

Spa (Boo, BY,) =~ Spa (B, BT) Xgp, (4.4+) SPa (Aco. AL),

where Spa (B, B™) is the generic fiber of Spf By. So Spa (Boo, BY,) — Spa(Acc, AL)
is an étale morphism, thus the claim follows from [61, Lemma 7.19]. [ ]

Lemma 7.5.3. Under the assumption of Set-up 7.5.1, let Mg be the A} /pAL -
module
Mg = H’(Spd (Ao, AL) 0. €).

Then Mg is a finite projective (AL /p)"-module. Moreover, for every morphism
Spa (D, D) — Spa (Ao, AY) of strictly totally disconnected affinoid perfectoid
spaces, the natural morphism

Mg ® 4%, DT/p — H°(Spd (D, D)y, €)
is an isomorphism. Furthermore,
H' (Spd (Ao, AL)J/SP(AAD g) ~
fori,j > 1.

Proof. Lemma 6.5.6 implies that we can replace Spa (4, A%) by a finite clopen
decomposition to assume” that € [spq (4.0, 4t) = ((95‘;';Jd (Aoo,AgLo)/P)r for some inte-
ger r. Then Corollary 6.4.16 implies that Mg ~ (A% /p)". The same applies to
€|spa(p,p+) therefore the natural morphism

Mg ®,+ ,, D /p=(A%/p)" ® s, D" /p = (DF/p)
is clearly an isomorphism. Furthermore, Corollary 6.4.16 implies that
H' (Spd (Aoo, AL)H/SPAAT) g) ~
i +
J/spd(4,4T)

fori, j > 1 because we assume that all fiber products Spd (Ao, AL)
representable by strictly totally disconnected (affinoid) perfectoid spaces. ]

3 At this step, the map Spd (Ao, A;"o) — Spd (4, A1) might not be a v-covering anymore.
But this will not matter for the rest of the proof.



Almost coherence of ““p-adic nearby cycles” 238

Corollary 7.5.4. Under the assumption of Set-up 7.5.1, let §: Spf By — Spf Ag be
an étale morphism, and let (Boo, BY) be the perfectoid pair from Corollary 7.4.5.
Then the natural morphism

; +
F(Spd (Aoo, A:o){;/spd(A’A )’ 8) ®40/p4o Bo/pBo
— T(Spd (Boo, BL)™ ), )

is an isomorphism for j > 1.

Proof. For j = 1, the result follows from Lemma 7.5.3 and Corollary 7.5.2. For
J > 1, we know that X; := Spd (Aeo, AT )j/ Spd (4.47) g represented by a strictly
totally disconnected perfectoid space. The morphism X; — Spd (A A™T) defines a
strictly totally disconnected perfectoid space X # with a morphism X — Spa(4,A™).
One checks that X o Spa (4, A™) satisfies the assumptions of Set—up 7.5.1, so we
can replace Spa (Aoo, AL) with X‘1 toreduce the caseof j > 1tothecase j = 1. =

Corollary 7.5.5. Under the assumption of Set-up 7.5.1, let §: Spf By — Spf Ag be
an étale morphism, and let Spa (B, B™) be the adic generic fiber of Spf (By). Then
the natural morphism

H' (Spd (A, A™)y, &) ®4,/pa, Bo/pBo — H' (Spd (B, BY),. €)
is an isomorphism fori > 0.

Proof. Arguing as in the proof of Corollary 7.5.4, we see that Lemma 7.5.3 implies
that

H' (Spd (Aoo, AL)H/SPAAD) g) ~ o

for i, j > 1. Consequently, the cohomology groups H'(Spd (4, A*),, &) can be
computed via the cohomology of the Cech complex associated with the covering
Spd (Ao, AL)) — Spd (A4, AT). By Corollary 7.5.2, the same applies to Spa (B, B™)
and the Cech complex associated with the covering Spd (Boo, BY) — Spd (B, B™).
Therefore, the claim follows from Corollary 7.5.4. |

Corollary 7.5.6. Under the assumption of Set-up 7.4.1, let K C C be a completed
algebraic closure of K, and Spa (Ac, Aé) = Spa (A, AT) xgpa(k,0) SPa(C, O¢).
Then the natural morphism

H' (Spd (4, A1)y, 8) ®0x/p Oc/p — H (Spd (Ac, A)w, E)

is an almost isomorphism.
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Proof. The proof is similar to that of Corollary 7.5.4 and Corollary 7.5.5. The only
change we need to make is that the fiber product

Spa (Aco, AL) Xspa(x,0) SPa (L, OL)

is a strictly totally disconnected affinoid perfectoid space with the +-ring almost
isomorphic to AgLo@@ « OL. The strictly totally disconnected claim follows from [61,
Lemma 7.19] and the almost computation of the +-ring follows from the proof of
[59, Proposition 6.18]. ]

7.6 Perfectoid torsors

We apply the results of Section 7.4 to certain pro-étale covers of Spa (4, A™) to see
that the computation of v-cohomology groups can often be reduced to the compu-
tation of certain continuous cohomology groups. To make this precise, we need to
define the notion of a G-torsor under a pro-finite group G.

Definition 7.6.1. A v-sheaf G associated with a pro-finite group G is a v-sheaf
G: Perf®? — Sets such that G(S) = Homeon(|S], G).

A morphism of v-sheaves X — Y is a G-torsor if it is a v-surjection and there is
anactiona: G x X — X over Y such that the morphisma Xy p2:Gx X - X xy X
is an isomorphism, where p,: G x X — X is the canonical projection.

Remark 7.6.2. If a pro-finite group G is a cofiltered limit of finite groups, that is,
G ~ limy G;, then G =~ lim; G;.

Now we can formulate the precise set-up we are going to work in.

Set-up 7.6.3. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring
denoted by Ok and a good pseudo-uniformizer w € Ok (we always do
almost mathematics with respect to the ideal m = _J,, wl/P"9g = K °°);

(2) an admissible formal Og-scheme X = Spf A( with adic generic fiber X =
Spa (A4, A™1);

(3) amorphism (A4, AT) — (Ao, AL) such (Aeo, AL) is a perfectoid pair and
Spd (Ao, AL)) — Spd (A4, AT) is a A -torsor under a pro-finite group Aso;

(4) asmall (9;<> / p-vector bundle &.

At the beginning of this section, we analyze the structure of the fiber products
Spd (Ao, A;Lo)j/ Spd (4.4%) for j > 1. For a general v-cover, we cannot say much
about these fiber products. However, we have much more control in the case of G-
torsors.
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Lemma 7.6.4. With the notation and under the assumption of Set-up 7.6.3, the fiber
product Spd (Aeo, A;ro)j/ Spd (4,47) g represented by an affinoid perfectoid space®
Spa (75, Tj+), for every j > 0. Moreover, for every j > 0,

(Tj, T77) = (Mapeu (AL, A%0), Mape, (AL, A%H))
and Ttt +/pTﬁ T+ T+/w ~ Mapcom(A{,o | AL/ pAL).

Proof. We first show that Spd (Aeo, A)7/SP4(4:4™) are representable by affinoid
perfectoid spaces. We write a presentation of A, = limy A; as a cofiltered limit of
finite groups. Since Spd (Aeo, A%) — Spd (A, AT) is a A -torsor, we get that

Spd (Aoo. AT)//SPIAAT) ~ Gpd (4, AT) x AL
~ liIm(Spa (Ab, A%y x é{_l)
~ liIm(Spa (Map(A{_l, A(bx,), Map(A{_l, A"O’OJF)))
is a cofiltered limit of affinoid perfectoid spaces, so it is an affinoid perfectoid space
Spa (T, T+) by [61, Proposition 6.5]. Moreover, loc. cit. implies that T/Jr is equal

to the w” adlc completion of the filtered colimit colimy Map(A’ L oAb >Fand T} =
TjJr [w—]. In particular, we already see that

THY pTHY ~ TF J(@)° T = (colim; Map(A! ™", 4%1))/(w)®
~ colimy Map(A7 ™, A%/ (w) A%H)
~ colimy Map(A{_l, A;ro/wA;ro)
~ colimy Map(Aij_l, A;ro/pA;ro)
> Mapg,, (AL, AL/ pAL).

Now we compute Tj+ and T;. We start with Tj"':
Tj+ ~ lilgn(coliml Map(Aij_l, Abo’o+)/(wb)”)
~ lim(coliml Map(A.j_l, Ab’+/(wb)"A|;’o+))
~ hmMap(A L A% /(@b A%)
~ Mapey (A%5 ! lim AP /(@) A%)
~ Map,o, (AL, A%H).

Recall that Spd (Ao, Aio) is itself represented by an affinoid perfectoid Spa (4%, AZ‘J).
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Since A is compact and A';o i~ A'C’;o+ [#], we also have
1

7~ T[]

7T Legb

. i b
>~ colim Map, o, (A5, A%)

A%

xwb,n
>~ Map o (AL, colim

x~ Mapcom(Ago_l, Al;o)

xwP

finishing the proof. |

Warning 7.6.5. The fiber product Spa (Aoo, AZ,) Xspa(4,4+) Spa (Ao, AL) in the
category of adic spaces is often not a perfectoid space. This already happens for

Spa (4, A™) = Spa (Qp. Zp) and Spa (Aeo, AL = Spa (Qp(ipeo)", Zp[ipee]").
However, the diamond Spd (Aeo, AL) Xspa(4,4+) Spd (Aes, AL) is always repre-
sented by an affinoid perfectoid space as guaranteed by Lemma 7.6.4.

Note that since Spd (Aoo, AZ)) — Spd (A, AT) is a A -torsor, there is a canonical
continuous A7 -linear action of A on A} . Now we want to relate v-cohomology
groups of & to the continuous group cohomology of A . This is done in the following
lemmas:

Lemma 7.6.6. Under the assumption of Set-up 7.6.3, we define Mg to be the A%,/ p-
module H® (Spd (Asos AL, & ) Then Mg is an almost faithfully flat, almost finitely
presented AL,/ p-module, and for every i, j > 1,

HO (Spd (AOO’A:O){)./Spd (A’A+) ’8) :d Mapcont(Ago_l’Mg) :ll Mapcont(Aggl’(Mg)!)’
H' (Spd (oo, AT) /P4 (AAT) g) ~a .

Proof. Lemma 7.6.4 implies that all fiber products Spd (A oo, AT)//SP4(A:A™) gatisfy

the assumptions of Lemma 7.4.8. Thus, Lemma 7.4.8 and the computation of fiber
products in Lemma 7.6.4 imply that

H' (Spd (Aoo, AL)/SP(AAT) g) ~a g
for every i, j > 1, and the natural morphism
M ® %/ p Mapeoy (AL A%/ p) = H(Spd (Aoo, ALY/ 4T )
is an almost isomorphism for every j > 1. Thus, it suffices to show that the natural
morphism

Mg ® 4+, Mapeou (AL AL/ p) = Map.u (AL, Me)

/p

is an isomorphism. This can be done by writing A, = lim; A; and reducing to the
case of a finite group similarly to the proof of Lemma 7.6.4. The almost isomorphism

Mapcont(Aéo_l’ Mg) ~4 Mapcont(Aégl’ (Mél)')
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is achieved similarly using that (—); commutes with colimits being a left adjoint func-
tor. n

Lemma 7.6.7. Under the assumption of Set-up 7.6.3, let Mg be the A} /pAL -
module H® (Spd (Asos AL )0, 6 ) Then there is a canonical continuous action of A
on (Mg) compatible with the action of Ao on AL/ p, ie., glam) = g(a)g(m) for
anya € AL /p and m € Mg.

Proof. By Lemma 7.6.4, the fiber product Spd (Aoo, AL) Xspa (4,4+) Spd (Aes, AL)
is represented by an affinoid perfectoid space Spa (73, T2+) of characteristic p. There-
fore, we can uniquely write it as Spd (S, S ™) for an untilt of (7>, T2+) corresponding
to the morphism Spa (72, T, ) — Spd (4, AT) — Spd (Q,, Z,).

Lemma 7.4.8 implies that the descent data for the sheaf & provide us with an
(ST /pST)4-isomorphism

(ST/p)* QL pye (Mg)* — (Mg)* ®aty/pya (ST/p)*

satisfying the cocycle condition. By Corollary 2.2.4 (2), this defines an (A} /p)?-
linear morphism

(Me)* — (Me)” ®ut/pme (S*/p)".
By Lemma 7.4.8 and Lemma 7.6.6, this is equivalent to an (4}, / p)?-linear morphism
(Mg)" — Mapoy (Ao, (MEN)”.
By Lemma 2.1.9 (3), this is the same as an (A%, / pAZ)-linear morphism
¢: (Mg), = Map,gy (Aco. (ME),).
This defines a morphism

¥: Aoo — Homuz s, ((Me),, (Me),)

by the rule
y(g)(m) = (¢(m))(g).

One checks that the cocycle condition translates to the statement that y is a group
homomorphism, i.e., it defines an action of Ao Similarly, one checks that A%,/ p-
linearity of ¢ translates into the fact that this action is compatible with the action on
A}/ p. And continuity of ¢ translates to the fact that y defines a continuous action,
i.e., the natural morphism

COlimUiquo,open(Mél)!Ui — (Mg)'AOO

is an isomorphism. |
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Corollary 7.6.8. Under the assumption of Set-up 7.6.3, let Mg be the AL,/ p-module
H%(Spd (Aeo. AL)v. €). Then

H' (Spd (4, AT)y, &) ~* H. (Ao, (ME)1).
Proof. Lemma 7.6.6 implies that
H' (Spd (Aoo, AL)H/SP(AAT) g) ~a g

for i, j > 1. Consequently, the cohomology groups H! (Spd (A, ATy, 8) can be
almost computed via cohomology of the Cech complex associated with the cover-
ing Spd (Awo, AL) — Spd (A, A™). Moreover, Lemma 7.6.6 also implies that the
terms of this complex can be almost identified with the bar complex computing the
continuous cohomology of the pro-finite group A, with coefficients in the discrete
module (Mg),. We leave it to the reader to verify that the differentials in the Cech
complex coincide with the differentials in the bar complex computing the continuous
cohomology. |

For future reference, we also discuss the following base change result:

Lemma 7.6.9. Let G be a pro-finite group, and let M be a discrete R-module that
has a continuous R-linear action of G. Suppose that R — A is a flat homomorphism
of rings. Then the canonical morphism H. (G, M) @ g A — H. (G, M ®pg A) is
an isomorphism fori > 0.

Proof. We first prove the claim for H?. Since G acts on M continuously, we can write
M = colim; M; as a filtered colimit of G-stable R-submodules of M such that the
action of G on M; factors through a finite group G;. Since both H® (G, —) ® g 4 and
HO (G,— ®g A) commute with filtered colimits, we can reduce to the case when the
action of G factors through a finite group quotient. In this case, the result is classical
(see, for example, [29, Exp. V, Proposition 1.9]).

In general, the result follows from the following sequence of isomorphisms:
H.,.(G. M) ®r A = (colimpy «G,open H' (G/H, M™)) ® g A
~ colimp «G,open (H' (G/H, M™) @ A)
~ colimpy «G,open H' (G/H, M @ A)
~ colimp «G,open H' (G/H, (M ®g A))
~H,, (G. M ®g A). n

cont

7.7 Nearby cycles are quasi-coherent

We start the proof of Theorem 7.1.9 and Theorem 7.1.2 in this section. Namely, we
show that the complex Rv. & is quasi-coherent and commutes with étale base change
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for an (9;;0 / p-vector bundle &. The main idea is to apply the results of Section 7.4
to a particular perfectoid covering of X .

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-
uniformizer w € Ok (see Definition B.11). We always do almost mathematics with
respect to the ideal m = | J, w /7" 9.

Lemma 7.7.1. Let X = Spf Ag be an admissible affine formal Ok -scheme with an
affinoid generic fiber X = Spa (A, A™"), and let & be an O;O/p—vector bundle. Then
Riv. & is quasi-coherent for i > 0. More precisely, the natural morphism

Hi(Xl?,E) — R, &

is an isomorphism for any i > 0.

Proof. The universal property of the tilde-construction implies that we do have a
natural morphism

c:H (XS, €) — R'v,&.
Recall that R'v, & is the sheafification of the presheaf defined by the rule
U~ H (u%v, 8)

Thus, in order to show that ¢ is an isomorphism, it suffices to show that the natural
morphism
H (X, €) ®40/p (40/p), - H (UE . €)

is an isomorphism for any open formal subscheme Spf (4¢) sy C Spf 4. We choose
a covering Spa (Aso, Aoo) — Spa (A, A™) from Lemma 6.2.13. Then the result fol-
lows from Corollary 7.5.5 since (A, AT) — (Ao, AL) fits into Set-up 7.5.1. ]

Theorem 7.7.2. Let X be an admissible formal Ok -scheme with adic generic fiber
X = Xk, and let & be an (9;;<> / p-vector bundle. Then R' v, & is quasi-coherent for
i > 0. Furthermore, if :%Y) — X is an étale morphism with generic fiber f:Y — X,
then the natural morphism

f (R'vz,+€) — R'vy «(Elys)
is an isomorphism for any i > 0.

Proof. Both claims are local on X and %), so we can assume that X = Spf Ay and
%) = Spf By are affine. Then quasi-coherence of R'v,(&) directly follows from
Lemma 7.7.1. In order to show that fg(R'vz «€) — Rivy «(6]ye) is an isomor-
phism, it suffices to show that the natural morphism

H' (X7, €)®a0/pBo/p = H (Y, €)
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is an isomorphism. This follows by the application of Corollary 7.5.5 to the covering
Spa (Aso, AL) — Spa (A, A™) from Lemma 6.2.13. ]

For future reference, we also prove the following result:

Lemma 7.7.3. Let X = Spa(A, A™) be an affinoid rigid-analytic space over K, let &
be an O;Q/p-vecmr bundle, and let K C C be a completed algebraic closure of K.
Then

H'(X].€) ®o,/p Oc/p — H'(XE,. €)
is an almost isomorphism.

Proof. Similarly to the reasoning above, this follows directly from Corollary 7.5.6
using the covering Spa (Ao, A%) — Spa (4, A1) from Lemma 6.2.13. ]

7.8 Nearby cycles are almost coherent for smooth X and small &

The main goal of this section is to show that the complex Rv. & has almost coherent
cohomology sheaves for an admissible formal @Ok -scheme with smooth generic fiber.
The main idea is to apply the results of Section 7.6 to a particular “small” perfectoid
torsor cover of X, where one has good control over the structure group A .

For the rest of the section, we fix a p-adic perfectoid field K with a good pseudo-
uniformizer @w € Q. We always do almost mathematics with respect to the ideal
m = |J,w/?" Ok.

Before we embark on the proof, we discuss the overall strategy of the proof. We
proceed in four steps: first, we show the result for @;‘1 and & = (9;;<> /p; then we
deduce the result for affine formal schemes such that the adic generic fiber admits a
map to a torus T¢ that is a composition of finite étale maps and rational embeddings.
After that, we finish the proof for & = (9;?<> / p and a general smooth X by choosing
a “good” covering of X, possibly after an admissible blow-up of X. We reduce the
general case to the case & = (9;<> / p via Corollary 6.6.9.

The main ingredient for the third step is Achinger’s result ([ 1, Proposition 6.6.1])
that any étale morphism g: Spa (4, AT) — D% can be replaced with a finite étale
morphism

g':Spa(4,4") — D%.

The proof of this result in [1] is given only for rigid-analytic varieties over discretely
valued non-archimedean fields, but we need to apply it in the perfectoid situation that
is never discretely valued. So Appendix D provides the reader with a detailed proof
of this result without any discreteness assumptions.

To realize the above sketched strategy, we consider X = Spf (QK(Tlil, e, Tnil),
and set RT 1= Og (T, ..., T ) and R} = Ok (TEY7", . T,77"). We note
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that the map Spf R} — Spf R* defines a Wpm-torsor, thus w7, continuously acts
on R, by RT-linear automorphisms.
Now we consider the RT-algebra

RE = Og(T{Y77 . TEYP™) = (colim, RY

where ~ stands for the p-adic completion. It comes with a continuous R*-linear
action of the profinite group Ao 1= Z,(1)" = T, (jpoe) on RE,. We trivialize Z, (1)
by choosing some compatible system of p’-th roots of unity (¢,, $p2,8p3, ... ). To
describe the action of A, on RY, we need the following definition:

l
Definition 7.8.1. For any a € Z[%], we define (¢ as ¢*7" whenever ap’ € Z. It is
easy to see that this definition does not depend on the choice of /.

Essentially by definition, the k-th basis vector yx € Aoo = Zj acts on RY as
J/k(Tlal ---T,,“") = gale"l e TAn,

Lemma 7.8.2 ([59, Lemma 5.5]). Let RT, R;ro and A be as above. Then the coho-
i

com(AOO’ R:o/p) are almost coherent R™ / p-modules. Moreover,

mology groups H
the natural map

Heon(Boo: R5/P) ®R+p AT/ p = Hygn(Boo. R/ p ®r+/p AT/ )
is an isomorphism for a p-torsionfree R™ -algebra A™ and i > 0.

Proof. We note that R/ p is an almost noetherian ring due Theorem 2.11.5. Thus,
Corollary 2.7.8 implies that H (Ao, RE/pRY,) is almost coherent if it is almost
finitely generated.

Now [8, Lemma 7.3] says that RTcon(Aoo. R,/ p) is computed via the Koszul
complex K(R;ro/p; yi—1,...,Yn— 1). Then, similarly to [6, Lemma 4.6], we can
write

=K(R+/p;0,0,...,0)€B @ K(R+/p;é’a‘—l,.,,,g‘“"_1)_

(@i,....an)
€(z[1/plN(0,1))"

‘We observe that
H' (K(Rt/p;0,0,...,0)) = A'(R"/p)

is a free finitely presented R*/ p-module. For each (ay, ...,a,) € (Z[%] n,1))",
we can assume that a; has the minimal p-adic valuation for the purpose of proving
that

K(RL/piyi—1,....vn — 1)
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has almost finitely generated cohomology groups. Then [8, Lemma 7.10] implies that
H (K(RT/p; ¢ —1,...,¢% — 1)) is finitely presented over R*/p and a {1 — 1-
torsion module. Note that

v(p)

vp (' = 1) =vp(f — 1) = P

where a; = b/p! with ged(b, p) = 1. Furthermore, for any 4 € Z, there are only
finitely many indices (a1,...,a,) € (Z[%] N (0, 1))" with v, (a;) > h. This implies
that

is a finitely presented R/ p-module up to any @ 1/7" _torsion. In particular, this mod-
ule is almost finitely presented.

Now we show that H (A, R, /p) commutes with base change for any Ok-

flat algebra A™. In order to show this, we observe that the (R™/p)[As]-module
R} /p comes as a tensor product M ®¢,./, R/ p for the (Ok/ p)[Aco]-module

M= @ (Ok/pO)T" - Tn,
(ay,-.-,an)
€(Z[1/pIN[0,1))"
where the basis element y acts by
Vk(T1a1 ‘_‘T:n) — é-aleal "'Tr?n'

Therefore, the desired claim follows from a sequence of isomorphisms

Hign(Boos RG/P) @Rt p AT/
= (Hiont(AOO’ M) ®ay/p R/ p) QRr+/p AT/p
~ Hen (Moo, M) ®ay/p AT/ p
~ Hy (Doos M ®0x/p AT/ )
= Hiont(Aoo’ RY/p Qr+/p A+/P),

where the third isomorphism uses Lemma 7.6.9. ]

Lemma 7.8.2 combined with Corollary 7.6.8 essentially settles the first step of our
strategy. Now we move to the second step. We start with the following preliminary
result:

Lemma 7.8.3. Let Ag be a topological/l_)i finitely presented Og-algebra, and P a
topologically free Ag-module, i.e., P = @y Ag for some set I. Then M is Ay-flat.
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Proof. We start the proof by noting that [68, Tag 00M5] guarantees that it suffices to
show that TorfO(P, M) = 0 for any finitely presented Ag-module M. We choose a
presentation

0—>Q—>A;—>M—0

and observe that Q is finitely presented because Ay is coherent. So vanishing of Tory
is equivalent to showing that

P®4, 0 — P ®4 A"
is injective.
Now note that Q[p®°], Aj[p°°], and M [p°°] are bounded by [11, Lemma 7.3/7],
so the same holds for @; Q, @; A}, and @; M. Therefore, the usual p-adic com-
pletions of EB; O, @; Aj and @; M coincide with their derived p-adic completions.

Since derived p-adic completion is exact (in the sense of triangulated categories) and
coincides with the usual one on these modules, we get that the sequence

0> 0> PAa—> @M —0
1 1 1

is exact.
Now we want to show that this short exact sequence is the same as the sequence

P®AOQ—>P®AOA8—>P®AOM—>O.

As a consequence, this will show that P ®4, O — P ®4, Ay is injective.
For each Ag-module N, there is a canonical map

P &4, N > PN,
1

So we have a morphism of sequences:

PQyQ —— PQuyAy ——— PRy M ——— 0

l l l

0—>®1Q —>®1A8 —>®1M—>0.

The map Aj ®4, P — @1/13 is an isomorphism because Aj ®4, P = P" is
already p-adically complete. This implies that the arrow

M®AOP—>@M
1
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is surjective. But then

P®A0Q_>®Q
1

is surjective since M was an arbitrary finitely presented A-module. Now a diagram
chase implies that

M ®4, P — @ M
1
is also injective. And, therefore, it is an isomorphism. So

P®A0Q_>®Q
1

is also an isomorphism. Therefore, these two sequences are the same. In particular,
P®AOQ—>P®AOA3
is injective. ]

To establish the second part of our strategy, we will also need a slightly refined
version of [59, Lemma 4.5] specific to the situation of an étale morphism to a torus.
We recall that we have defined

RT = O (T{L, ... . TEY,
R = O (TEYP" . TP,
and
R:—o _ GK(Tlil/p“’ . H’Tnil/p‘”) = (colimn R;)A,

and the group A =~ Z;? continuously acts on RY,. We also define R (resp. Ry,
and Ro) as RT[ 5] (resp. R[] and REL[]). Furthermore, for an étale morphism
Spa(A, AT) — Spa(R, RT) = T", we define a Huber pair

(Am. A}) = (Rm ®r A, (R ®r A)T) = (Rm®rA, (Rm®rA)T),

where (R, ®RrA)™ is the integral closure of the image of R} ® g+ AT in R,,@rA.
Similarly, we define

AL = (colim, A})"

and Ao = AL[ 5]

Lemma 7.8.4. [59, Lemma 4.5] Let Spa (A, AT) — Spa (R, RT) = T" be a mor-
phism that is a composition of finite étale maps and rational embeddings. Then the
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pair (Ao, AL) is an affinoid perfectoid pair, Spd (Ao, AL) — Spd (4, AT) is a
A -torsor, and, for any n € Z, there exists m such that the morphism

+35 + +
A QRERS — AL
is injective with cokernel annihilated by w 1/p",

Proof. We note that [59, Lemma 4.5] proves that (Aeo, AL) is an affinoid perfec-
toid space (denoted by (Seo, S;;) there). By construction (and Proposition 6.1.6 (6)),
Spd (Am, Af) — Spd (A, A™) is a (Z/ p™Z)"-torsor. Therefore Spd (Aoo, AL) =~
lim,, Spd (A, A}) (see Proposition 6.1.6 (5)) is a A, ~ limy, (Z/p"Z)"-torsor.
Thus, we are only left to show that, for any n € Z, there exists m such that the mor-
phism

AL ®rtRE — AL

is injective with the cokernel annihilated by @ 1/p"

In the following, we denote by A,, the p-adic completion of the p-torsionfree
quotient of A ®gt RE (A is denoted by A,, in [59, Lemma 4.5]). Then [59,
Lemma 4.5] shows that, for any n € Z, there exists m such that the map Ap — AL
has cokernel annihilated by w!/P" . Moreover, the map becomes an isomorphism
after inverting p. We observe that this implies that Ay — A} is injective as the
kernel should be p®°-torsion, but the p-adic completion of a p-torsionfree ring is
p-torsion free. Thus, the only thing we need to show is that A} ® R RZ is already
p-torsion free for any m. We note that R}, is topologically free as an R;\-module
because

RE = O (TEVP™ L TP
N +1/p™ m 1/pP1 bn
= D Or(TEV?" . TEP"y TP e
(b1,...,bp)EL\mZ"
—_~ b "
= [any RE.TM/P oM™

(b1 5eeesbn)EL\MZ

Thus, R} is R;}-flat for any m due to Lemma 7.8.3. Therefore, A} ® g+ RY is flat
over A,*,;, S0 it is, in particular, Og-flat. As a consequence, it does not have any non-
zero p-torsion. This finishes the proof. ]

Lemma 7.8.5. Let X = Spf Ao be an affine admissible formal Og-scheme with
generic fiber X = Spa (A, A™) that admits a map f: X — T" = Spa (R, R") that
factors as a composition of finite étale morphisms and rational embeddings. Then the
cohomology groups

H (X7 050/ p)

are almost coherent Ay / p-modules fori > 0.
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Proof. We denote the completed algebraic closure of K by C. Then we note that
Lemma 7.7.3 implies that

H' (X7, 050/ p) ®ox/p Oc/p = H (XE,. Ogo/p)
is an almost isomorphism for any i > 0. Therefore, faithful flatness of the morphism
Ok/p — Oc/p and Lemma 2.10.5 imply that it suffices to prove the claim under
the additional assumption that K = C is algebraically closed.

Theorem 2.11.5 ensures that Ag is an almost noetherian ring, thus it suffices to
show that H' (X2, (9;‘5<> / p) are almost finitely generated Ao/ p-modules.

Now the generic fiber X is smooth over C, so [12, Corollary 6.4.1/5] implies
that AT = A° is a flat, topologically finitely type @¢c-algebra that is finite over 4.
Thus Lemma 2.8.3 ensures that it suffices to show that H! (X 2, (9;;<> / p) is an almost
finitely generated A*/pA™-module for i > 0. We note that A™ is almost noetherian as
a topologically finitely generated ()¢ -algebra, so almost coherent and almost finitely
generated AT -modules coincide.

We consider the A -torsor Spd (Ao, AL) — Spd (A4, A1) that was constructed
in Lemma 7.8.4. Thus, Corollary 7.6.8 ensures that

RT (X2, 0F o/ p)~* RTcon(Aoo. AL/ p).

oo

So we reduce the problem to showing that the complex RTcon(Aoo, AL/ p) has
almost finitely generated cohomology modules.
We pick any ¢ € Q- and use Lemma 7.8.4 to find m such that the map

Af®rt RE — AL
is injective with cokernel killed by p?. Thus, we conclude that the map
An/p ®RS /0 RGP~ AL/ D
has kernel and cokernel annihilated by p®. Then it is clear that the induced map
Heon (Boos A/ P ®Rf 10 R/ P) = Heon (Do, AL/ D)

has kernel and cokernel annihilated by p2® for any i > 0. Therefore, Lemma 2.5.7
implies that it is sufficient to show that H. | (Acs, A}/ p ®r/p RE/p) is almost
finitely generated over A™/p for any m > 0 and any i > 0.

The trick now is to consider the subgroup p™ A that acts trivially on A4}/ p to
pull it out of the cohomology group by Lemma 7.8.2. More precisely, we consider

the Hochschild—Serre spectral sequence

ES =H (Aco/ P Aoor o (0" Moo, A/ p @k 5 RE /D))
= Hi! (Acos A/ P ® R0 RE/ D).
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We recall that the group cohomology of any finite group G can be computed via
an explicit bar complex. Namely, for a G-module M, the complex looks like

0 g d!
c’'(GM)y—C G M)—---,

where
C(G,M)={f:G — M}~ M®*

and

d'(f)(go.g1.---.8i) =80~ f(g1.--..&i)

]
+ > (=1) f(g0.---.8i—2:8-18j:&j+1+---&i)
i=1
+ (=D f(go, ..., gi-1)-

In case M is an AT/ p-module and G acts A*/ p-linearly on M, all terms C' (G, M)
have a natural structure of an A™/p-module, and the differentials are A™/ p-linear.
Moreover, the terms C' (G, M) are finite direct sums of M as an AT/ p-module. In
particular, they are almost coherent, if so is M. Thus, Lemma 2.6.8 guarantees that
all cohomology groups H (G, M) are almost coherent over AT /p if M is almost
coherent (equivalently, almost finitely generated) over A*/p.

We now apply this observation (together with Lemma 2.6.8) to

G = Aco/p" A and M =HL,(p" Ao, A/ P ®r/» REL/ D)

to conclude that it suffices to show that Hgom (pm Aoo, A/ p ®R%/p R;ro/p) is almost
coherent (equivalently, almost finitely generated) over A™/p for any j > 0, m > 0.
We note that A}, is finite over AT by [12, Corollary 6.4.1/5]. Thus, Lemma 2.8.3
implies that it is enough to show that Hgom( P Ao, A/ P @R p RE/ p) is almost
finitely generated over A4/ p fori > 0and m > 0. Now we use Lemma 7.8.2 to write

Hlon (P Aco. A}/ P rit/p RE/P) = Hlon(P™ Ao, RL/ P) Qrit/p A/ p-

Moreover, Lemma 7.8.2 guarantees that H'ciom( " Aco, RE/ p) is almost finitely gen-
erated over R;f;/p. Thus Hl,, (p" Ao, RL/ p) ®Rj:/p Ajf/ p is almost finitely gen-
erated over A;F /p by Lemma 2.8.1. n

Corollary 7.8.6. Let X = Spf A9 and X = Spa (A, A1) be as in Lemma 7.8.5, and
let & be a small (9;('<> / p-vector bundle. Then the cohomology group H! (XY, €) is
almost coherent over Ay/ pAg for any i > 0.

Proof. Similarly to the proof of Lemma 7.8.5, we can assume that K = C is alge-
braically closed and A9 = A° = A" is almost noetherian.
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By assumption, we can find a finite étale surjection ¥ — X that splits &. Since X
is noetherian, we can dominate it by a Galois cover to assume that Y — X is a G-
torsor for a finite group G such that 8|Y,§> ~ ((9;;<> /p)" for some r. Then we have
the Hochschild—Serre spectral sequence

By = H(G.H (2. (0F0/p)')) = H (x2.6).

Now note that [12, Corollary 6.4/5] implies that (9; (X) —> (91}L (Y) is a finite mor-
phism. Therefore, similarly to the proof of Lemma 7.8.5, the argument with the
explicit bar complex computing H (G, —) implies that it is sufficient to show that
H/ (Yv(), (Q;Q/p)r) is almost coherent over Q;Q(YQ)/p for j > 0. But this is done
in Lemma 7.8.5. u

Lemma 7.8.7. Let K be a p-adic perfectoid field, let X be an admissible formal
Ok-scheme with adic generic fiber X = Xk, and let & be an O;O/p—vector bundle
on Xl?. Then there is a collection of

(1) an admissible blow-up X' — X,
(2) a finite open affine cover X' = | J;c; U;,

such that, for every i € I, the restriction & |(11i, S is small.

Proof. Corollary 6.6.9 ensures that there is a finite open cover X = J;<; U; such that
€|(; x)¢ can be trivialized by a finite étale surjection. Therefore, [11, Lemma 8.4/5]
implies that there is an admissible blow-up X' — X with a covering X' = | J;.; U;
such that U; ¢ = U;. We can then refine U to assume that each U; = Spf A4; ¢ is
affine. ]

Theorem 7.8.8. Let X be an admissible formal O g-scheme with smooth adic generic
fiber X and mod-p fiber X. Then

(Rv.€)* € DY (¥0)*
for any (9;('<> / p-vector bundle &.

Proof. First, we note that the claim is clearly Zariski-local on X and descends through
rig-isomorphisms by the almost proper mapping theorem (see Theorem 5.1.3). Thus
Lemma 7.8.7 implies that it suffices to prove the theorem for X = Spf A an affine
formal O g-scheme and a small &.

Now we note that X is rig-smooth in the terminology of [15, Section 3]. Thus, [15,
Proposition 3.7] states that there are an admissible blow-up 7: X’ — X and a covering
of X’ by open affine formal subschemes U with rig-étale morphisms f/: U; — K'gk,
i.e., the adic generic fibers Tl’ K 11;.’ Kk = D"Kf are étale. We apply the almost proper
mapping theorem (see Theorem 5.1.3) again to conclude that it suffices to show the
theorem for X’. Moreover, since the claim is Zariski-local on X, we can even pass to
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each U/ separately. So we reduce to the case where X = Spf Ay is affine, admits a
rig-étale morphism f: X — K%K, and & is small.

We wish to reduce the question to the situation of Corollary 7.8.6, though we are
still not quite there. The key trick now is to use Theorem D.4 to find a finite rig-étale
morphism f: X — K‘éK. In particular, the generic fiber fx: X — D‘I’; is a finite étale
morphism. So the only thing we are left to do is to embed D;l( into T;l( as a rational
subset. This is done by observing that

-1 Ty—1
Dy ~Th(“—. ... ) cTi.
P P

In particular, X admits an étale morphism to a torus that is a composition of a finite
étale morphism and a rational embedding. Therefore, Corollary 7.8.6 implies that

RI(XS,€)" € D (40/pAo)”.

Finally, we note that Theorem 7.7.2 ensures that RT" (X 1? ,E ) ~ Rv,é&, so
(Rv.8)? € D! (%0)*

by Theorem 4.4.6. |

7.9 Nearby cycles are almost coherent for general X and &

The main goal of this section is to generalize Theorem 7.8.8 to the case of a general
generic fiber X. The idea is to reduce the general case to the smooth case by means
of Lemma 5.4.4, resolution of singularities, and proper hyperdescent.

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-
uniformizer w € Ok (see Definition B.11). We always do almost mathematics with
respect to the ideal m = | J, @ /7" 9.

Lemma 7.9.1. Let Spf Ag be an admissible affine formal Og-scheme with adic
generic fiber Spa (A, AT). Let f: X — Spa (A, A™) be a proper morphism with
smooth X, and let & be an (954;)d (4,4+)/ p-vector bundle. Then H (X2, &) is an almost
coherent Agy/ p-module for any i > 0.

Proof. First, [13, Assertion (c) on p. 307] implies that we can choose an admissible
formal Og-model X of X with a morphism f: ¥ — Spa Ag such that fx = f. The
map f is proper by [51, Lemma 2.6] (or [65, Corollary 4.4 and 4.5]). Now we can
compute
RI(XJ, &) ~ R (%o, RuE).

Theorem 7.8.8 implies that Rv.& € D;toh (¥0) as X is smooth. Thus, Theorem 5.1.3
implies that

R (X7, &) ~ R (%o, RviE) € D, (4o/p). n
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Now we recall the notion of a hypercovering that will be crucial for our proof.
We refer to [68, Tag 01FX] and [21] for more detail.

Definition 7.9.2. Let € be a category admitting finite limits. Let P be a class of
morphisms in € which is stable under base change, preserved under composition
(hence under products), and contains all isomorphisms. A simplicial object X, in €
is said to be a P-hypercovering if, for all n > 0, the natural adjunction map’

Xe — cosky (Skn (X.))

induces a map X, 41 — (cosk, (sk,(Xe)))n+1 in degree n + 1 which is in P. If X, is
an augmented simplicial complex, we make a similar definition but also require the
case n = —1 (and then we say X, is a P-hypercovering of X_1).

Lemma 7.9.3. Let X be a quasi-compact, quasi-separated rigid-analytic variety
over K. Then there is a proper hypercovering a: Xo — X such that all X; are smooth
over K.

Proof. First, we note that quasi-compact rigid-analytic varieties over Spa (K, Ok)
admit resolution of singularities by [66, Theorem 5.2.2]. Thus, the proof of [21,
Theorem 4.16] (or [68, Tag 0DAX]) carries over to show that there is a proper hyper-
covering a: Xe — X such that all X; are smooth over Spa (K, Ok). ]

Lemma 7.94. Let a: Xe — X be a proper hypercovering of a rigid-analytic vari-
ety X. Then a®: X& — X© is a v-hypercovering of X .

Proof. The functor (—)© commutes with fiber products by Proposition 6.1.6 (6). So

((coskn (sk, X.))n+1)<>2 (COSkn (Skn X?))n—f—l'

Therefore, the only thing we need to show is that (—) sends proper coverings to
v-coverings. This follows from Lemma 6.1.14 and Example 6.1.12. |

Theorem 7.9.5. Let X be an admissible formal O g -scheme with adic generic fiber X
and mod-p fiber Xo == X Xspr 05 Spec O/ p. Then

Rv.& € Df | (¥o)
for any (9;<> / p-vector bundle &.

Proof. The claim is Zariski-local on X, so we can assume that X = Spf A is affine.
Thus, Theorem 7.7.2 and Theorem 4.4.6 ensure that it suffices to show that

RI(XS, &) € DL, (Ao/p).

See [21, Section 3] (or [68, Tag 0AMAL]) for the definition of the coskeleton functor.
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Lemma 7.9.3 shows that there is a proper hypercovering a: Xe¢ — X with smooth X;,
and Lemma 7.9.4 implies that a: X — X is then a v-hypercovering.
The proof of [68, Tag 01GY] implies that there is a spectral sequence
Ey/ =H/(X7,.6) = H' (X2, €).
Lemma 7.9.1 guarantees that H/ (X fv, &) is almost coherent over Ao/ p for every
i, j > 0. Therefore, Lemma 2.6.8 guarantees that H' */ (X;> , €) is almost coherent
over Ag/p foreveryi + j > 0. [

7.10 Cohomological bound on nearby cycles

The main goal of this section is to show that Rv, & is almost concentrated in degrees
[0, d] for a small vector bundle &. This claim turns out to be pretty hard. To achieve
this result, we have to use a recent notion of perfectoidization developed in [10] that
gives a stronger version of the almost purity theorem in the world of diamonds. Our
approach is strongly motivated by the proof of [30, Proposition 7.5.2].

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-
uniformizer @ € Og. We always do almost mathematics with respect to the ideal
m = |J,w/?" Ok.

In this section, it is crucial that we work on the level of diamonds. The main
observation is that the functor

(-)®: {(Pre—)Adic Analytic Spaces} — {Diamonds}

is not fully faithful, so it is possible that a non-perfectoid (pre)-adic space becomes
representable by an affinoid perfectoid space after diamondification (we already saw
this phenomenon in Warning 7.6.5). An explicit construction of such examples is the
crux of our argument in this section. To construct such spaces, we need the following
theorem of B. Bhatt and P. Scholze:

Theorem 7.10.1 ([10, Theorem 10.11]). Let R be an integral perfectoid ring.® Let
R — S be the p-adic completion of an integral map. Then there exists an integral
perfectoid ring Spera together with a map of R-algebras S — Spersa, such that it is
initial among all R-algebra maps S — S’ for S’ being integral perfectoid.

Now we show how this result can be used to obtain a cohomological bound on
Rv.&. We recall that a torus

T¢ = Spa (K(T{', ... TF1), 0k(T{E, ..., TF)) = Spa (R, R™)

$We use [8, Definition 3.5] as the definition of integral perfectoid rings here. This definition
coincides with Definition 7.4.2 in the p-torsionfree case, but it is less restrictive in general.
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admits a map
T, = Spa (K(T{EV7™ L TEVP™) 0k (TP L TEVP™) - 1

such that T, is an affinoid perfectoid space, and the map becomes a A = Z, (1)4-
torsor after applying the diamondification functor.
Now we can embed a d-dimensional disk D as a rational subdomain

p? =Td(u,...,T”_l) cTé,
P P

so the fiber product
D, = D? xpa T4, — D?

is again an affinoid perfectoid covering of D4 by Lemma 7.8.4.

If X = Spa(4, AT) — D is an arbitrary finite morphism, then the fiber product
X Xpa Dgo may not be an affinoid perfectoid space (or even an adic space). How-
ever, it turns out that the associated diamond is always representable by an affinoid
perfectoid space.

Lemma 7.10.2. Let f: X =Spa (A4, At) — D? be a finite morphism of rigid-analytic

K-spaces. Then the fiber product X O% =X Xpd.< Dgc’)<> is representable by an affi-
noid perfectoid space (of characteristic p).

Proof. Let us say that DY = Spa (S, ST) and DL = Spa (Sso. S5). The map f
defines an integral morphism S* — AT, we define

Al = SE®grAT.

This is a p-adic completion of an integral morphism over an integral perfectoid
ring S;g (see [8, Lemma 3.20]), so there is a map

Alo g (Alo)perfd

initial to an integral perfectoid ring. We define A, as Alo[%] and A7 as the inte-

gral closure of Alo in Aso. Then (Ao, AL) is an affinoid perfectoid pair by [8,
Lemma 3.21]. Therefore, it suffices to show that the natural morphism

Spd (Ao, AZ) — Spd (A, A™) xspa(s,s+) Spd (Sso. S5)

is an isomorphism. This can be easily checked on the level of rational points by the
universal property of (Aio)perfd and the construction of the diamondification functor
in Definition 6.1.5 (and [8, Lemma 3.20] that relates affinoid perfectoid pairs and
integral affinoid rings). |
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Theorem 7.10.3. Let X = Spf Ag be an admissible formal Og-scheme with adic
generic fiber X = Spa (A, A™) of dimension d, and let € be a small (9;0/p-vect0r
bundle. Then

RT (X2, €)" e D440/ p)".

acoh

Proof. Lemma 7.9.1 ensures that RT" (Xl?, 8) € Ducon(Ao/ p), so it suffices to show
that )

H (X2.,8) ~“ 0
for i > d. The Noether normalization theorem (see [11, Proposition 3.1.3]) implies
that there is a finite morphism f: X — D¢. We consider the A 00 = Zp(l)d-torsor

X2 ~ X© xpao DL° — X©.

As a consequence of Lemma 7.10.2, X o% is represented by an affinoid perfectoid
space Spd (Aoo, AL) = Spa (A, A%"). Thus, we are in the situation of Set-up 7.6.3.
So Corollary 7.6.8 implies that

H (X$.8) > HL | (Doo, (ME)),

where Mg ~ H°(X, o%,v, &). Therefore, the claim follows from the observation that

the cohomological dimension of A, >~ Zp(l)d ~ Zl‘f isd dueto[8,Lemma7.3]. m

7.11 Proof of Theorem 7.1.2

The main goal of this section is to give a full proof of Theorem 7.1.2. Most of the
hard work was already done in the previous sections.

For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-
uniformizer @ € Ok as in Remark B.10. We always do almost mathematics with
respect to the ideal m = | J, w /7" 9.

Theorem 7.11.1. Let X be an admissible formal Ok -scheme with adic generic fiber
X of dimension d and mod-p fiber X, and let & be an Q%< | p-vector bundle. Then

(1) Ru,& e DY (¥0) and (Rv58)% € D224 (x)a;

qc,acoh acoh

(2) if X = Spf A is affine, then the natural map

H (XS, €) — R'vi(€)
is an isomorphism for every i > 0;

(3) the formation of R' v« (&) commutes with étale base change, i.e., for any étale
morphism 1:%) — X with adic generic fiber f:Y — X, the natural morphism

o (R'vg.«(€)) — Rivy «(Ely<)

is an isomorphism for any i > 0;
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(4) if X has an open affine covering X = | J;c;W; such that €|, )< is small,
then
(Rv*E;)a e pl9l (%o)a;

acoh

(5) there is an admissible blow-up X' — X such that X' has an open affine cov-
ering X' = | J; ;Wi such that €|, x)© is small.
In particular, there is a cofinal family of admissible formal models {X; };c1 of
X such that
(Rug; )" € D) (o).

acoh

foreachi € I.

Proof. The first part of (1), (2), and (3) follow from Theorem 7.7.2 together with
Theorem 7.9.5. Now to show that Rv, & is almost concentrated in degrees [0, 2d], it
suffices to show that, for every affine I = Spf Ay C X, the complex RT" (ll%v, &)4
(almost) lies in DI%241(4, /p)?. By Lemma 7.7.3 and full faithful flatness of Ok /p —
Oc/p, it is sufficient to prove it under the additional assumption that K = C is
algebraically closed. Then Theorem 6.5.7 and Theorem 6.5.9 imply that

& = Ru RALE
is an (9;?6,I / p-vector bundle concentrated in degree 0. Therefore,
RT (U ,.€) ~ RT (Uce. €).
and
RI (Uc . &) € D29 (4,/p)
due to [38, Corollary 2.8.3 and Corollary 1.8.8].

In order to show (4), we consider an open affine covering X = | J;;U; and denote
U; = Spf A;. Then Part (2) implies that it suffices to show that
RT (U 5)0,€)" € D% (4,/p)*

acoh

for each i € I. This follows from Theorem 7.10.3 and the assumption that &|u; )<
is small.
(5) now follows from Lemma 7.8.7. [ ]

7.12 Proof of Theorem 7.1.9

The main goal of this section is to prove Theorem 7.1.9. The idea is to reduce to the
case of a constant Zariski-constructible sheaf through a sequence of reductions; in
this case, the result follows directly from Theorem 7.1.2.
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For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-
uniformizer @ € Ok as in Remark B.10. We always do almost mathematics with
respect to the ideal m = | J, w /7" Og.

We consider the following diagram of morphisms of ringed sites:

(X2, 050/P) =2 (X0 Oks/p) == (Xe, OF, /1) = (Ezr, O)-

v

Both v, and ¢, will play an important role in the proof.

Lemma 7.12.1. Let f: X — %)) be a finite morphism of admissible formal O g -schemes
with adic generic fiber f:X — Y, and ¥ € Db (X :Fp). Then the natural morphism

Ruy «(f+F ® (9;0/]9) — Rfo« (Rvz«(F ® G;Q/p))
is an isomorphism in D(5)o).

Proof. First, we note that f is finite, and so fx >~ R f, due to [38, Proposition 2.6.3].
Now the proof of Corollary 7.3.8 just goes through using Corollary 7.2.9 (that does
not use Theorem 7.1.9 as an input) in place of Lemma 7.3.7. ]

Lemma 7.12.2. Let f: X — Y be a finite morphism of quasi-compact, quasi-sepa-
rated rigid-analytic varieties over K, and ¥ € DQ’C’S] (X F¥p) such that

R\)x,*(}v ® 0;0/p)a c D[r,s-i—d](%o)a

acoh

(resp.
Rvaﬁj,* (37 ® (9;(_0/p) € D;::,acoh (&0))

for any formal Og-model X of X. Then, for any formal Og-model §Y) of Y,
Ireg ,s+d
Ruy(fF ® 0F,/p)" € Din (o)
(resp.
RV‘D,* (f*‘(f: ® (9;”_0/p) € D(_ltz,acoh(gpo))‘

Proof. First, we note that we can choose a finite morphism : X — %) such that its
generic fiber fx is equal to f (for example, this follows from [25, Corollary 11.5.3.3,
I1.5.3.4]).

Now Lemma 7.12.1 ensures that the natural morphism

R”‘D,*(f*j: ® (9;0/17) - RfO,*(RVX,*(j'“ ® (9;0/17))

is an isomorphism. Therefore, Rvy «(f«+F ® Ofc/p) already lies in Dycon(o)*
(resp. in Dgcacon(Wo)) by Theorem 5.1.3. The cohomological bound follows from
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Proposition 3.5.23 and the fact that the finite morphism fg is (almost) exact on (al-
most) quasi-coherent sheaves. ]

Lemma 7.12.3. Let X be an admissible formal O g -scheme with adic generic fiber X
of dimension d and mod-p fiber Xy, and let ¥ € Dgrc’s] (X:Fp). Then

Ri(F ® 0%, /p) ~ Rvi(F ® OF./p) € D, ,.on(Xo),

and

Rl)*(? ® (9;’(.0/[))(1 c D[r,s—i—d](‘%o)a'

qc,acoh

Proof. Lemma 6.7.10 and Remark 7.1.8 imply that
| 4 (37 ® (Q;Fé[/p) ~ R, (37 ® (9;0/]7).

In what follows, we will freely identify these sheaves. Also, we can assume that ¥ is
concentrated in degree 0, i.e., ¥ is a usual Zariski-constructible sheaf.

Step 1: The case of a local system . Inthiscase, & = F ® O;O/p fits the assump-
tion of Theorem 7.11.1. Since an F,-local system on any rigid-analytic variety Y
splits by a finite étale cover, so ¥ ® (9;;<> / p is small for any open affinoid U C X.
Thus, the desired claim follows from Theorem 7.11.1.

Step 2: Case of a zero-dimensional X. If X is of dimension 0, then any Zariski-
constructible sheaf on X is a local system. So the claim follows from Step 1.

Now we argue by induction on dim X . We suppose the claim is known for every
rigid-analytic variety of dimension less than d (and any Zariski-constructible ') and
wish to prove the claim for X of dimension d.

Step 3: Reduction to the case of a reduced X. Consider the reduction morphism
i: Xea — X. Then ig is an equivalence of étale topoi, we see that

i 'F > §F
is an isomorphism. Thus the claim follows from Lemma 7.12.2.

Step 4: Reduction to the case of a normal X. Consider the normalization morphism
f: X’ — X. It is finite by [20, Theorem 2.1.2] and an isomorphism outside of a
nowhere dense Zariski-closed subset Z. We use [38, Proposition 2.6.3] and argue on
stalks to conclude that the natural morphism & — fi f 1 is injective. Therefore,
there is an exact sequence

O—>37—>f*f_1.77—>i*§—>0,

where i: Z — X is a Zariski-closed immersion with dim Z < dim X and § is a
Zariski-constructible sheaf on Z. Now the induction hypothesis and Lemma 7.12.2
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ensure that

Ruv, (l*g &® (9;(_0/17) € D:;,acoh('%o)’
Rv*(l*g ® (9;0/17)0 c D[O’d_l](xo)a_

acoh

Therefore, it suffices to show the claim for fy f ~1% Thus, Lemma 7.12.2 guarantees
that it suffices to show that

Rl)x/,*(f_lff’v ® (9;,0/p) € D(_]t,acoh(x())’
Rz (/717 ® 0} o /p)* € D" ()"

acoh

for any admissible formal Og-model X’ of X’. So we may and do assume that X is
normal.

Step 5: Reduction to the case ¥ = F,. By definition of a Zariski-constructible sheaf,
there are a nowhere dense Zariski-closed subseti: Z — X with the open complement
Jj:U — X and an F,-local system L on U such that ¥ |y ~ L. In particular, there is
a short exact sequence

0> jL—> % —>i,F|z—0.

Similarly to the argument in Step 4, it suffices to prove the claim for ¥ = jL.

Then “méthode de la trace” (see [68, Tag 03SH]) implies that there is a finite
étale covering g: U’ — U of degree prime-to-p such that L’ := L|y/ is an iterated
extension of constant sheaves F,,. Then L is a direct summand of g« (L). Thus, it is
enough to prove the claim for

F = ji(g+L).

Moreover, it suffices to prove the claim for ¥ = ji(g«F,) because the claim of
Lemma 7.12.3 satisfies the 2-out-of-3 property, and both functors g. and jy are exact.

Now we use [32, Theorem 1.6] to extend g to a finite morphism g’: X’ — X.
Then a similar reduction shows that it suffices to prove the claim for ¥ = g/, (Ep).
This case follows from Step 1 and Lemma 7.12.2. |

Theorem 7.12.4. Let X be an admissible formal Ok -scheme with adic generic fiber
X of dimension d and mod-p fiber Xy, and ¥ € DE’C’S] (X:;Fp). Then
(1) there is an isomorphism Rt (¥ ® @;(rél/p) ~ Ru,(F ® (9;0/17);
() Ruw(F ® OF . /p) € DY, oo (Fo), and Rvu(F ® 05,/ p)*e DL (Xo)%:
(3) if ¥ = Spf A is affine, then the natural map

Hi(XI?,?®(9;<>/p) —>Riv*(.77®(9;<>/p)

is an isomorphism for every i > 0;
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(4) the formation of R' vy (ff"' ® (9;<> / p) commutes with étale base change, i.e.,
for any étale morphism 1:%) — X with adic generic fiber f:Y — X, the
natural morphism

fg(Riv.%,*(fF ® (9;(_0/17)) - Rivsx),* (f_l“;(7 ® (9;'_0/]7)
is an isomorphism for any i > 0.

Proof. (1) and (2) follow from Lemma 7.12.3. Now (3) follows from Lemma 4.4.4
and the isomorphism

RT (X0.Rv.(F ® 0}, /p)) ~RT(X2. ¥ ® O}, /p).
We are left to show (4). By (1), it suffices to show that the natural morphism
fo (R'tz,«(F ® O, /p)) — Ry« (/T'F ® OF, /p)

is an isomorphism. Moreover, [7, Proposition 3.6] ensures that it suffices to prove
the claim for ¥ = g.(F,) for some finite morphism g: X’ — X. Then we can lift
it to a finite morphism g: ¥ — X as in the proof of Lemma 7.12.2. Then we have a
commutative diagram

t< /
(Y. 0F,/p) . > (Vo Oy)
% , %
(X Ox, /p) : > (X5, O0x;) %
g/
l g0
ts
g (Ye.. 0%,/ P) 2 > (o, Ox,)
/ ; %
x
(X.0%./p) > (X0.0%,)

(7.12.1)
with )’ = %) xx X’ and Y’ being its adic generic fiber. Then we have a sequence of
isomorphisms:

fo (Rix.« (g+(E,) ® O, /p)) = 1 (Riz.«(Rg: 0y, /)
~ f5 (Rgo.«(Rrz « Oy, /p))
~ Ry (fo” (Rex < O, /1))
~ Rgp . (R« (O, /1))
~ Riy . (Rg,Oy, /p)
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~ Rt‘p,*(g; (Ep) ® (9;;:1/p)
=~ Rl‘p,*(f_l(g*Ep) ® (9;:61/p)'

The first isomorphism holds by (the proof of) Corollary 7.2.9. The second isomor-
phism is formal and follows from Diagram (7.12.1). The third isomorphism holds by
flat base change applied to f¢. The fourth isomorphism follows from Theorem 7.11.1
applied to & = (9;;/<> /p and the étale morphism %) — X’. The fifth isomorphism
is formal again. The sixth isomorphism follows from (the proof of) Corollary 7.2.9.
Finally, the last isomorphism follows from [38, Theorem 4.3.1]. |

7.13 Proof of Theorem 7.1.11

The main goal of this section is to prove Theorem 7.1.11. The proof is a formal
reduction to the case of (9;;<> / p-vector bundles. After that, we also discuss a version
of this theorem for the classical pro-étale site from [59].

For the rest of this section, we fix a perfectoid p-adic field K with a good pseudo-
uniformizer @ € Og. We always do almost mathematics with respect to the ideal
m = J,w!/?" Ok.

Lemma 7.13.1. Let X be a rigid-analytic variety over K, and let & be an (9;<> -vector
bundle on X. Then & is derived p-adically complete.

Proof. 1t suffices to prove the claim v-locally on X 1? . Therefore, we may and do
assume that & = ((Q;Q)r for some integer r. Then the claim follows immediately
from Lemma 6.3.5 (3). u

Lemma 7.13.2. Let X = Spf Ay be an affine admissible formal Ok -scheme with adic
generic fiber X = Spa (A, A™) of dimension d, and let & be an (D;Q—vector bundle.
Then

RT (X2, €)" e D24 (4,).

acoh

Moreover;
RT (X2, €)" e D% (40)

acoh

if & is small (see Definition 7.1.10).

Proof. Lemma 7.13.1 implies that & is derived p-adically complete. Thus, the result
follows from Theorem 7.1.2, [68, Tag 0AOG], and Corollary 2.13.3. [

Lemma 7.13.3. Let X = Spf Ag be an admissible affine formal Ok-scheme with
adic generic fiber X = Spa (A, A1), and §: Spf By — Spf A an étale morphism
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with adic generic fiber f:Y — X, and & an @;O—vecmr bundle on X. Then the
natural morphism

r:RT(XY,8) ®4, Bo — RT(Y,C, €)
is an isomorphism.

Proof. The morphism Ay — By is flat since { is étale. Now Lemma 7.13.2 and
Lemma 2.12.7 ensure that the cohomology groups of both RI" (X 1? , € ) ®4, Bo and
RF(YUO, 8) are (classically) p-adically complete. In particular, both complexes are
derived p-adically complete. So it suffices to show that r is an isomorphism after
taking derived mod- p fiber (see [68, Tag 0G1U]). Then the claim follows from The-
orem 7.11.1 (3) (4). [ ]

Theorem 7.13.4. Let X be an admissible formal Ok -scheme with adic generic fiber
X of dimension d, and let & be an (D;Q—vector bundle. Then

(1) Rvy& € DT (%) and (Rv,&)* € D224 (x)a;

qc,acoh acoh

(2) if X = Spf A is affine, then the natural map
H (X2.€)" - Riv.(€)

is an isomorphism for every i > 0;

(3) the formation of R' v« (&) commutes with étale base change, i.e., for any étale
morphism §:%)) — X with adic generic fiber f:Y — X, the natural morphism

F*(R'vg,«(€)) = Ry «(Elyo)

is an isomorphism for anyi > 0;
(4) if X has an open affine covering X = | J;c; Wi such that 8|, x) is small,
then
(Rv.€)" e D24 (%)*;

acoh

(5) there is an admissible blow-up X' — X such that X' has an open affine cov-
ering X' = | J; ;Ui such that &\, x)© is small.
In particular, there is a cofinal family of admissible formal models {X;};c1
of X such that
(R, .6)° < D))

acoh

foreachi € 1.

Proof. First, (5) follows directly from Lemma 7.8.7. Therefore, we only need to
prove (1)—(4). These claims are local on X, so we can assume that X = Spf A4 is
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affine. Then it suffices to show that, for every étale morphism Spf By — Spf Ay with
adic generic fiber Y — X,
Hl (YUQ, 8|Y<>)

is almost coherent for i > 0,
H (Y, €lyo) =40
fori > 2d (resp. fori > d if & is small), and the natural morphism
H' (XS, €) ®4, Bo — H (Y. Elyo)

is an isomorphism (see Lemma 5.1.8 and its proof). The first two claims follow
from Lemma 7.13.2, while the last one follows from Lemma 7.13.3 (and Aq-flatness
of By). [ ]

Let us also mention a version of Theorem 7.1.11 for the pro-étale site of X as
defined in [59] and [60]. It will be convenient to have this reference in our future
work. In what follows, @;(r is the completed integral structure sheaf on X5 (see
[59, Definition 4.1]), and

V' (Xpmét, @;)_) (‘%Zarv (9‘%)
is the evident morphism of ringed sites.

Theorem 7.13.5. Let X be an admissible formal Ok -scheme with adic generic fiber
X of dimension d and mod- p fiber X¢. Then

(1) RV, (05 /p) € DE . (%o) and RV, (05 /p)* € D (x4,

qc,acoh acoh

(2) if X = Spf A is affine, then the natural map

Hi (Xproéts (9;/17) - Ri U;((g;/p)

is an isomorphism for everyi > 0;

(3) the formation of RV, ((9; / p) commutes with étale base change, i.e., for any
étale morphism 1:%) — X with adic generic fiber f:Y — X, the natural
morphism

fo (R'v (O /p)) — R'vy (05 /p)
is an isomorphism for anyi > 0.

Proof. By [59, Corollary 3.17], Rv, (0¥ / p) ~ Rt (O} /p). So the results follow
formally from Theorem 7.12.4. ]

Theorem 7.13.6. Let X be an admissible formal Ok -scheme with adic generic fiber
X of dimension d. Then
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(1) RV,OF € DE (%) and (Rv,0%)" € D% (x)e;

qc,acol acoh

(2) if X = Spf A is affine, then the natural map
. o~ A . o~
H' (Xproe. O5%)" = RV, 0F

is an isomorphism for every i > 0;

(3) the formation of RV, (&) commutes with étale base change, i.e., for any étale
morphism §:%) — X with adic generic fiber f:Y — X, the natural morphism

F* (R . (0%)) = R'vyy L (OF)
is an isomorphism for any i > 0.

Proof. The proof is identical to the proof of Theorem 7.13.4 once one establishes that
the sheaf (9)“,|r is p-adically derived complete. For this, see [8, Remark 5.5]. |






Appendix A

Derived complete modules

The main goal of this appendix is to collect some standard results on derived complete
modules that seem difficult to find in the literature.
For the rest of the appendix, we fix a ring R with an element @w € R.

Definition A.1. A complex M € D(R) is w-adically derived complete (or just de-
rived complete) if the natural morphism M — Rlim,[M/w@"] is an isomorphism.

Remark A.2. This definition coincides with [68, Tag 091S] due to [68, Tag 091Z].

Lemma A.3. Let M € D(R) be a derived complete complex. Then
(1) M e D=/(R) if [M/w] € D! (R/w);
(2) M € D=4 (R) if[M/w] € D=4 (R /w).

Proof. (1): By shifting, we can assume that d = 0. Now suppose that [M/w] €
D=°(R/w). Then we use an exact triangles

[M/w] — [M/@"] — [M/z""]

to ensure that [M /"] € D=°(R /w") for every n > 0. Now we use that M is derived
complete to see that the natural morphism

M — Rlim[M/@" M]
n

is an isomophism. By passing to cohomology groups (and using that lim has coho-
mological dimension 1), we see that

0 — R! 11’5nH"—1([M/w"]) — H (M) - li,{nHi([M/w”]) -0

are exact for any integer i. This implies that H (M) = 0 fori < 0,i.e., M € D=°(R).
(2): Similarly, we can assume that d = 0. Then the same inductive argument
shows that [M/w"] € D=°(R/w") and we have short exact sequences

0 — R! lilgnHi_l([M/w"]) —H (M) - li}{nHi([M/w”]) — 0.

This implies that M € D=<!(R) and H'(M) = R! lim,, H’([M/@"]). Now note that
the exact triangle

M/w] — [M/w"] - [M/w" ]
and the fact that [M/w] € D=<°(R /@) imply that H*([M/="]) — H°([M/="~'])
is surjective, so R! lim, H°([M/@"]) = 0 by the Mittag-Leffler criterion. n


https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/091Z
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Lemma A.4. Let R be a ring with an ideal of almost mathematics m and an element
w € m. Let M € D(R) be a derived w-adically complete complex. Then @ @ M is
also derived w-adically complete complex.

Proof. Consider the exact triangle
mM—>M— Q.

Since M ® M — M is an almost isomorphism, we see that the cohomology groups
of Q are almost zero. In particular, they are w-torsion, so derived complete. There-
fore, Q is derived complete (for example, by [68, Tag 091P] and [68, Tag 091S]). Now
derived completeness of M and Q implies derived completeness of Tt @ M. ]

Lemma A.5. Let R be a ring with an ideal of almost mathematics wm and an element
w € m. Let M € D(R) be a w-adically derived complete complex. Then

(1) M* e DZ4(R)? if[M*/w] € DZ4(R/wR)*;
(2) M? e D=4 (R)? if[M*/w] € D=*(R/wR)".

Proof. Lemma A.4 guarantees that it ® M is derived w-adically complete. There-
fore, the claim follows from Lemma A.3 applied to it ® M. u

Now we fix an ringed R-site (X, Ox).

Definition A.6. A complex M € D(X; Oy) is w-adically derived complete (or just
derived complete) if the natural morphism M — Rlim,[M/w"] is an isomorphism.

Remark A.7. This definition coincides with [68, Tag 0999] by [68, Tag 0AOE].

Lemma A.8. Let B C Ob(X) be a basis in a ringed site (X,0x) and M € D(X; Ox).
Then M is w-adically derived complete if and only if RT'(U, M) is w-adically
derived complete for any U € B.

Proof. Suppose that M is w-adically derived complete. Then RI'(U, M) is derived
w-adically complete for any U € Ob(X) by [68, Tag OBLX].

Now suppose that RT" (U, M) is @ -adically derived complete for any U € 8, and
consider the derived w-adic completion M — M with the associated distinguished
triangle

We aim at showing that Q ~ 0. In order to show it, it suffices to establish that
RI'(U, Q) >~ 0 for any U € B. Now we use [68, Tag 0BLX] to conclude that

RIO(U, M) ~ RT(U, M),


https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/0999
https://stacks.math.columbia.edu/tag/0A0E
https://stacks.math.columbia.edu/tag/0BLX
https://stacks.math.columbia.edu/tag/0BLX
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so we get the distinguished triangle
RT(U, M) — RT(U, M) — RI(U, M).

Since RT"(U, M) is derived w-adically complete by the assumption, we see that the
morphism
RT'(U, M) — RI'(U, Q)

is an isomorphism. Therefore, we conclude that RI'(U, Q) ~ 0. This finishes the
proof. |






Appendix B

Perfectoid rings

The main goal of this appendix is to recall the main structural results about perfectoid
rings.

Definition B.1 ([61, Definition 3.6]). A non-archimedean field (K, |. |g) is a perfec-
toid field if there is a pseudo-uniformizer w € K suchthat w? | p in O = {x eK|
|x] < l} and the p-th power Frobenius map

(DI@K/W(QK — (DK/ZUP@K

is an isomorphism.

Definition B.2. A complete valuation ring K is a perfectoid valuation ring if its
fraction field K := Frac(K ™) is a perfectoid field with its valuation topology.

A Huber pair (K, K1) is a perfectoid field pair if K is a perfectoid field and K+
is an open and bounded valuation subring.

Remark B.3. Any perfectoid valuation ring KT is automatically microbial (see [64,
Lecture 9, Proposition 9.1.3 and Definition 9.1.4]). Note that any rank-1 valuation
ring KT € KTt C K defines the same topology on K by [17, Ch. VI Section 7.2,
Proposition 3]. Therefore, K1 must be equal to K°, the set of power-bounded ele-
ments. In particular, there is a unique rank-1 valuation ring between K+ and K that
we denote by Ok, and the associated rank-1 valuation on K by | . |x: K — Rxo.

Lemma B.4 ([61, Proposition 3.8]). Let K be a non-archimedean field. Then K is a
perfectoid field if and only if the following conditions hold:

(1) K is not discretely valued,

2 Iplk <1,
(3) the Frobenius morphism ®: Ok [/ pOx — O/ pOk is surjective.

We wish to show that the ideal m = K°° C K1 defines an ideal of almost math-
ematics in K. For future reference, it will be convenient to do that in the more
general set-up of perfectoid pairs.

Definition B.5 ([61, Definition 3.1]). A complete Tate—Huber pair (R, R™) is called
a perfectoid pair if R is a uniform Tate ring that contains a pseudo-uniformizer
wgr € R° suchpthat wllé | p in R° and moreover, the Frobenius homomorphism
R°/wRR°i'_—>£—>R°/w£R° is an isomorphism.

A Tate—Huber pair (R, R™) is a p-adic perfectoid pair if it is a perfectoid pair,
and p # Oin R.

A Tate ring R is a perfectoid ring if (R, R°) is a perfectoid pair.
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Remark B.6. It is not, a priori, clear that a perfectoid ring R that is a field is a
perfectoid field (in the sense of Definition B.1). The problem is to verify that R has a
non-archimedean topology on it. This turned out to be always true by [40].

Remark B.7. By [01, Proposition 3.5], a complete Tate ring R of characteristic p
is perfectoid if and only if R is perfect as a ring, i.e., the Frobenius morphism is an
isomorphism.

Remark B.8. In the definition of a perfectoid pair above, it suffices to require that
R°/wR R Re /@ & R° be surjective. This map actually turns out to be always
injective. Moreover, this condition turns out to be equivalent to the surjectivity of the
Frobenius map

R°/pR° — R°/pR"°.

In particular, it is independent of a choice of a pseudo-uniformizer w}e’ | p,see [61,
Remark 3.2] for more detail. Therefore, if R is an algebra over a perfectoid field K
with a pseudo-uniformizer wg € Ok, one can always take @wr = wg. In particular,
every perfectoid ring in the sense of [58, Definition 5.1] is a perfectoid ring in the
sense of Definition B.5.

Lemma B.9 ([61, Lemma 3.10]). Let (R, R™) be a perfectoid pair. Then there is a
pseudo-uniformizer @ € R°° such that

(1) @w? | pin R

(2) @ admits a compatible sequence of p"-th roots w'/?" € Rt forn > 0.

In this case, R°® = @ "/?" R™T.

Proof. [61, Lemma 3.10] says that there is a pseudo-uniformizer w € R°° C R™
such that @w? | p in R°, and there is a compatible sequence of the p”-th roots
wl/P" ¢ R° forn > 0. Since R is integrally closed, we conclude that all wl/P"
must lie in RT. Since R°° is a radical ideal of RT and contains @, it clearly contains
Un>0w e RT.

Now we pick an element x € R°°, and wish to show that x € | J, . @ '/?" RT.
Since x is topologically nilpotent, we can find an integer m such that -

m
x?" € wRT.

Therefore, x?" = wa fora € R*. Thus

m

b4
(—1);1;'") =ae RT.
w

Therefore, —%7 € RT because R* is integrally closed in R. Sox € w!/?" RT. m
w
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Remark B.10. If (R, R*) is a p-adic perfectoid pair, then one can choose w such
that w? RT™ = pR™. Indeed, [8, Lemma 3.20] implies that R™ is perfectoid in the
sense of [8, Definition 3.5]. Thus the desired w exists by [8, Lemma 3.9].

Definition B.11. A pseudo-uniformizer w € R of a p-adic perfectoid pair (R,R™)
is good if wR™ = pR™ and w admits a compatible sequence of p-power roots.

For the rest of the appendix, we fix a perfectoid pair (R, RT) and the ideal
m = R°°. Our goal is to show that m defines a set-up for almost mathematics, i.e.,
i = m ®p+ mis RT-flat and m? = m.

Lemma B.12. Let (R, R™") be a perfectoid pair, and m = R°° the associated ideal

of topologically nilpotent elements. Then w is flat over Rt and m ~ m? = m.

Proof. Lemma B.9 implies that m is flat as a colimit of free modules of rank-1.
Now we wish to show that m? = m. We take any element x € m, by Lemma B.9
we know that x = w!/?" g for some integer n and a € R7T. Therefore,

+1y p—1 +1
x = (@P") T (@ a) € m,
Now we consider the short exact sequence
0—>m— R - R"/m — 0.

By flatness of m, we know that it remains exact after applying the functor — ® g+ m.
Therefore, the sequence

0> —>m—m/m?—0

2

is exact. Since m“* = m, we conclude that

W~ m? =m. [
Lemma B.13. For a perfectoid pair (R, R™), the natural inclusion 1: Rt — R° is
an almost isomorphism.

Proof. Clearly, the map 1: RT — R° is injective, so it suffices to show that its cokernel
is almost zero, i.e., annihilated by any ¢ € m. Pick an element x € R°, then ex €
R°° C R™. Therefore, we conclude that e(Coker ¢) = 0 finishing the proof. ]






Appendix C
Strongly sheafy adic spaces

In this appendix, we discuss the notion of strongly sheafy spaces following [33]
and [41].

C.1 Preliminary results

In this section, we discuss some results about general Tate—Huber pairs.

Lemma C.1.1. Let (A, A) be a complete Tate—Huber pair with a pair of definition
(A9 C AT, w), and let A — B be a finite étale morphism. Topologize B using its
natural A-module topology (see [72, Appendix B.3]). Then (B, B™) is a complete
Tate—Huber pair where B™ is the integral closure of At in B.

Proof. Step 1: B is complete in its natural topology. Since B is finite étale, B is
a projective A-module of finite rank. Then there is another finite A-module M such
that B ® M ~ A®"_ Consider the projection p: A®" — B, the natural topology on B
coincides with the quotient topology (see [72, Lemma B.3.2]). Using the fact that A4 is
a Huber ring, it is not difficult to show that the quotient topology on B should coincide
with the subspace topology. Since A®" is complete, we conclude that the natural
topology on B is separated. Therefore, the same applies to M since we never used the
ring structure on B. Then B is closed in A as a kernel of a continuous homomorphism
with a separated target. In particular, B is complete in its subspace (equivalently,
quotient) topology, and as discussed above, this topology coincides with the natural
topology. So it is complete in its natural topology.

Step 2: B admits a finite set of A-module generators x1, ..., X, that are integral
over Ay. Pick any finite set x|, ..., x; € B of A-module generators. It suffices to
show that x; = wx] € B are integral over A, for some integer c¢. So it is enough to
show that, for any b € B, there is an integer ¢ such that @b is integral over Ay.

By definition, b is integral over A. So we can find a monic equation

b" + a4 dag=0

with ag € A fork = 0,...,n — 1. Then there is an integer ¢ such that wa; € Ag
fork = 0,...,n — 1. Thus, the equation

(@h)" + ap_ 1w (@) L+ +agw™ =0

shows that w b is integral over Ay.



Strongly sheafy adic spaces 278

Step 3: An Ag-subalgebra By of B generated by x1, . .., X, is finite as an Ag-module.
Clearly, this algebra is finitely generated over Ay as an algebra and every element is
integral. Therefore, it is finite.

Step 4: By is open in B and the induced topology coincides with the w-adic one.
Choose some Ag-module generators by, ..., b, € By. Clearly, Bo[%] = B, so the

A-linear morphism
m
q: @ Ae; —> B
i=1

sending e; to b; is surjective. By [37, Lemma 2.4 (i)], ¢ is open. In particular, the
topology on B is the quotient topology along g. Therefore, By is open in B as
g~ ' (By) is a subgroup that contains an open subgroup EB;”zl Aoe;. Moreover, the
topology on By is w-adic since By = q(€D;_,; Aoe;) with the quotient topology, and
the topology on B/ Aoe; is already w-adic.

Step 5: (B, B™) is a complete Huber pair. We have already shown that B is complete
in its natural topology and (By, @) is a pair of definition for this topology. There-
fore, B is a Huber ring. It suffices to show that B is open, integrally closed, and lies
in B°. Openness is clear since By C BT, and B™ is integrally closed by definition.
One also easily shows that B* C B° because B is integral over AT C A4°. "

Lemma C.1.2. Let (A, AT) and (B, BY) be as in Lemma C.1.1. Then Spec B —
Spec A is surjective if and only if Spa (B, BT) — Spa (A, A™) is surjective.

Proof. First, we assume that Spec B — Spec A is surjective. In order to show that
Spa(B, B™) — Spa (A, A™) is surjective, we need to show that B@Alc/(;) # 0 for any
x € Spa(A, A"). Now [72, Lemma B.3.5] and Lemma C.1.1 ensure that B@Ak/(-;) =
B ®4 k/(;) To finish the proof, we note that B ®4 k # 0 for any field k and a
homomorphism A — k (in particular, this holds for A — k/(;)).

Now we assume that Spa (B, BT) — Spa (4, A™) is surjective. Then we note
that [37, Lemma 1.4] implies that every maximal ideal m C A admits a valuation
v € Spa (A, AT) such that supp(v) = m. This implies that the image of the morphism
Spec B — Spec A contains all closed points of Spec A. Since étale morphisms are
open, we conclude that Spec B — Spec A must be surjective. ]

Now we discuss the notion of semi-uniform Tate—Huber pairs.

Lemma C.1.3. Let (A, A™) be a (possibly noncomplete) Tate—Huber pair. Then A™
is bounded if and only if A is uniform (i.e., A° is bounded).

Proof. Clearly, A is bounded if A° is bounded. So we assume that A™ is bounded
and we wish to show that A° is bounded as well. Choose a ring of definition 49 C A™
and a pseudo-uniformizer w € Ay. Since AT is bounded, we conclude that there is an
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integer N such that AT C #AO- Now we note that A°® C AT since A™ is integrally
closed and open. Since @ is topologically nilpotent and any element a € A° is power
bounded, we conclude that wA° C A°° C AT. Therefore, A° C #Ao, ie., A°1is
bounded. |

The above lemma motivates the following definition:

Definition C.1.4. A (possibly noncomplete) Tate—Huber pair (A4, A™) is uniform if
AT C A is bounded.

Remark C.1.5. [36, Proposition 1] implies that (4, A1) is uniform if and only if
the subspace topology on A™ coincides with the w-adic topology for a (equivalently,
any) choice of a pseudo-uniformizer w € A™. Lemma C.1.3 implies that it is equiv-
alent to asking that the subspace topology on A° coincides with the w-adic topology.

Lemma C.1.6. Let A be a (possibly noncomplete) Tate ring. If A is Hausdorff, then
A is reduced. In particular, any complete uniform Tate ring is reduced.

Proof. Let a € A be a nilpotent element. We choose a pseudo-uniformizer w € A°.
Then % is nilpotent for any n > 0. In particular, it is bounded, so % € A°. Thus,
a € w"A° for any n > 0. Since A is uniform, we conclude that the topology on A°
coincides with the w-adic topology. Since A is Hausdorff, (),., @w"”A° = 0. Thus,
a = 0 finishing the proof. - |

Definition C.1.7. Let (A, A™) be a (possibly noncomplete) Tate—Huber pair with a
pseudo-uniformizer @ € A™. The uniformization of (A, A") is the Tate-Huber pair
(Au, A}), where A = A1, A, = A, and the topology on A, is induced from the
w-adic topology on A

The uniform completion of (A, A1) is the Tate—Huber pair (A,,, A") obtained as
the completion of (A4, A;r ) (see [36, Lemma 1.6]).

Remark C.1.8. We leave it to the reader to check that the uniformization is indeed
a Tate—Huber pair and that it is independent of the choice of a pseudo-uniformizer
w € AT, In fact, uniformization is a left adjoint functor to the inclusion of uniform
Tate—Huber pairs into the category of all Tate—Huber pairs. Likewise, uniform com-
pletion is a left adjoint functor to the inclusion of complete uniform Tate—Huber pairs
into all Tate—Huber pairs.

Now we discuss the relation between the topology of Spa (4, A™) and its uniform
completion.
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Lemma C.1.9. Let (A, A1) be a (possibly noncomplete) Tate—Huber pair. Then the
natural morphisms

Spa (Ay. Ajf) — Spa (4, A™),
Spa (A, AT) — Spa (4, A™),
Spa(A,, A7) — Spa(A4, A™)

are homeomorphisms that induce bijections on the sets of rational subdomains.

Proof. First, [36, Proposition 3.9] implies that the natural morphism Spa (/’1\ , /TJF) —
Spa (A, AT) is a homeomorphism that induces a bijection on the sets of rational
subdomains. Applying the same result to (A4y, A;), we see that it suffices to show the
claim for Spa (A,, A;") — Spa (4, A™).

For this, we note that rational subdomains on both sides are indexed by tuples
(fi,..., fu, g) of non-zero elements in A generating the unit ideal, so we conclude
that it suffices to show that Spa (4, A™) — Spa (A4, 4;) is a bijection. After unrav-
eling the definition, we see that it suffices to show that any continuous (in the usual
topology) valuation v: A — I'y, U {0} is continuous in the topology induced from the
w-adic topology on A*. Since v is continuous, [64, Corollary 9.3.3] implies that
v(w) € I'y is cofinal and v(wa) < 1 for any ring of definition @w € Ay. Likewise,
loc. cit. implies that it suffices to show that v(wa) < 1 for any @ € A™. This follows
from [36, Corollary 1.3], which ensures that we can always find a ring of definition
Ao C AT which contains both a and w. [ ]

Lemma C.1.10. Let (A, A1) be a complete Tate—Huber pair, and let w € AT be a
pseudo-uniformizer. Then A" is w-adically henselian.

Proof. First, [36, Corollary 1.3] ensures that AT is a filtered colimit of its subrings
of definition A9 C A™. Therefore, the result follows from [68, Tag OALJ] and [68,
Tag OFWT]. ]

Lemma C.1.11. Let (A, A™) be a (possibly noncomplete) Tate—Huber pair with a
pseudo-uniformizer w € AT. Suppose that AT is w-adically henselian, then the
natural functors

— Q4 A: Ay — Agg,

— ®4 Ay: Agg — Ay s

are equivalences. Further; the natural maps Idem(A) — Idem(A ) and Idem(A4) —
Idem(A,,) are bijections.


https://stacks.math.columbia.edu/tag/0ALJ
https://stacks.math.columbia.edu/tag/0FWT
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Proof. The semi-uniform completions of (4, AT) and (4, A1) coincide, therefore
Lemma C.1.10 implies that it suffices to prove both claims for /fu

The claim about finite étale algebras follows immediately from [26, Proposi-
tion 5.4.54] and the observation that w € AT is a regular element. Then the claim
about idempotents follows from [68, Tag 09XI] and the observation that any idempo-
tent e € A must lie in A™ because it is integral over Z. |

C.2 Noetherian approximation

The main goal of this section is to show a version of noetherian approximation for
complete Tate—Huber pairs. The main result of this section was originally shown in
[41, Proposition 2.6.2] in a slightly different language.

To motivate the definition below, we want to mention one important subtlety of
working with complete Tate—Huber pairs: this category does not admit filtered col-
imits. However, this issue can be remedied by considering Tate—Huber pairs together
with the choice of a ring of definition.

Definition C.2.1. A Tate—Huber quadruple (A, AT, Ay, @) is a quadruple of a Tate—
Huber pair (4, A+), a ring of definition Ay, and a pseudo-uniformizer w € Ag. A
morphism of Tate—Huber quadruples

fi(A, AT, Ao, w) — (B, B, By. )

is a continuous ring homomorphism f: A — B such that f(A™) C BT, f(Ao) C By,
and f(w) = 7.

For the next definition, we fix a filtered system {(A,-, Ai+, Aio, @), ﬁaj}iel of
Tate—Huber quadruples.'

Definition C.2.2. The filtered colimit of {(A;. AT, Aio. ). fi;}, o, is the Tate~
Huber quadruple
(colims A;, colimy A7, colims A; o, @),
where we topologize A; by requiring colimy A; o C colim; A; to be a ring of defini-
tion with a pseudo-uniformizer w.”
The completed filtered colimit of {(A,-, Ai+, Aio, @), fiaj}iel is the Tate—Huber
quadruple

(Aoo, A;ro, Aso,0: w):z (ch\Ai,coliml A:r,cmo, w),

'We slightly abuse notation and denote the pseudo-unifomizer in A4; ¢ by the same letter .

2We note that this implies that the subspace topology on colim; A4; g is equal to the w-adic
topology. We warn the reader that the colimit topology on A; ¢ is usually different from the
w-adic one.


https://stacks.math.columbia.edu/tag/09XI
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where = stands for the topological completion in the sense of [18, Chapitre III, Sec-
tion 3 n.4] (see also [18, Chapitre III, Section 6 n.5 and Chapitre III,Section 7 n.2]).

Remark C.2.3. [36, Lemma 1.6] gives a very explicit description of completed fil-
tered colimits. Namely, the ring A o is equal to (colimy A; )%, the usual w-adic
completion of colimy A4; o, the ring A; = (colimy Ai+) ®colims 4; ¢ Aoo,0, and the ring
Ao = AL[ 7] = Aol 7]

For the next definition, we fix a filtered system of {(Ai, Ai+ ), fi, j}i jer of (not
necessarily uniform) Tate—Huber pairs with a compatible choice of pseudo-uniformiz-
+
ersw € A"

i,0

Definition C.2.4. The uniform filtered colimit of {(A;. A]). fi.;}; jey 1 the filtered

colimit of the Tate—Huber quadruples {Ai,u, At AT w}i oy (see Definition C.1.7).

i iu

The completed uniform filtered colimit of {(A,-, A;F), f,-,j}i jer
filtered colimit of the Tate—Huber quadruples {Ai’u, At AT w} .

iu“tiu iel”

is the completed

Remark C.2.5. Remark C.2.3 implies that the completed uniform filtered colimit is
explicitly given by the pair ((551?11?17;t L] m ), where (—) stands for the
w-adic completion.

Now we wish to prove a version of noetherian approximation for complete (uni-
form) Tate—Huber pairs. Before we do this, we need to invoke the following basic
fact:

Lemma C.2.6. Let (A, AT) be a complete Tate—Huber pair, and let I C A be a
closed ideal. Then (A/I,(A/I)") is a complete Tate—Huber pair, where (A/I)" is
the integral closure of AT /(I N AT) in A/I.

Proof. First, we choose a ring of definition A¢ and a pseudo-uniformizer w € Ay.
Then A/ is complete in the quotient topology due to [16, Chapitre IX Section 3
Proposition 1] and [16, Chapitre IX Section 3 Proposition 4]. Then [37, Proposi-
tion 2.4 (ii)] ensures that the natural morphism 7: A — A/ is open. Therefore,
7w(Ap) C A/I is an open subset such that the subset topology coincides with the
w-adic topology. Furthermore, (the image of) @ is clearly a topologically nilpotent
unit in A/ 7. Therefore, we conclude that A/ is a complete Tate ring. Thus, we only
need to show that (4/1)" is open, integrally closed, and lies in (4/1)°. It is closed
integrally by construction and is open because it contains 7 (Ap). Finally, we note that
by construction we have (A/1)* C w(A°)* C (A/1)°, where 7 (A°)" is the integral
closure of w(A°)in A/1. [

Example C.2.7. Let A be a Tate ring and let e € A be an idempotent element. Then
the ideal eA is closed in A since it is equal to the kernel of the continuous multiplica-
tion by (1 — e¢) map.
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Finally, we are ready to prove the main results of this section.

Lemma C.2.8 (cf., [41, Proposition 2.6.2]). Let (A, A1) be a complete Tate—Huber
pair, let Ay € AT be a ring of defintion, and let w € Ay be a pseudo-uniformizer. Then
there is a filtered system of Tate—Huber quadruples {(Al- , A;F, Aio, w)}ie[ such that

(1) each A; is a strongly noetherian complete Tate algebra;

(2) the completed filtered colimit (Ao, AL, Aco,0, @) of {(Ai, Ai+, Aio, @)}ier
is isomorphic to (A, A", Ay, @).

Proof. The choice of a pseudo-uniformizer @ € A™ defines a map (Z(1)), Z[t]) —
(A, AT). Then we put [ to be the filtered poset of all finite subsets S C A™. For each
S € I, we consider the unique (Z((?)), Z[¢]))-linear continuous morphism

as: (Z(O)(Xy)res. Z[1](X) fes) — (4, AT)

that sends Xy to f. We put /g = Kerag and I; = Is NZ[t](Xf)fes. The ideal Ig
is closed because it is the kernel of a continuous morphism. Therefore, Lemma C.2.6
gives us a complete Tate—Huber pair

(As, AZ) = (ZO)(Xs)res/Is, (LN Xf) res/Is)T)

that admits an injective continuous morphism as: (Ayg, Ag) — (A, A"). We finally
define
As,o = (Z(){Xf)res/IF) N Ao.

This subring is clearly open and bounded, so it is a ring of definition due to [36,
Proposition 1]. Finally, we put @w € Ag o to be the image of . Therefore, we note
that

{(AS’ A; As.0. w)}SeI

with natural (injective) transition maps is a filtered system of Tate—Huber quadruples.
Using the explicit description of completed filtered colimits from Remark C.2.3, we
note that the (uncompleted) filtered colimit of {(AS, Ag, As.o. w)} sel coincides
with the completed filtered colimit, and it is isomorphic to (4, AT, Ag, @ ). To finish
the proof, we only need to show that each Ag is strongly noetherian. This follows
from the fact that Z((¢)) admits a noetherian ring of definition and A is topologically
finite type over Z((t)). ]

Lemma C.2.9. Let (A, A) be a complete uniform Tate—Huber pair, and let w € Ag
be a pseudo-uniformizer. Then there is a filtered system of complete uniform Tate—
Huber pairs {(A;, A?_)}iel such that

(1) each A; is strongly noetherian;

(2) the completed uniform filtered colimit (Ao, AL) of { (A;, Af )}l. <7 s isomor-
phicto (A, A™T).
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Proof. The proof is similar to that of Lemma C.2.8. We define the index set / as in
the proof of Lemma C.2.8. Likewise, for any S € I, we define Ag, Ag, and Ag o as
in the proof of Lemma C.2.8 as well. Then we wish to show that the Huber-Tate pair
(As, A;) is uniform. Once we know this fact, the rest of the argument is the same.
Now we show that (Ag, Aj{) is uniform. We note that Z[¢] is excellent due to
[68, Tag 07QW]. Therefore, [45, Main Theorem 2] implies that A ¢ is also excellent.
Then we recall that A}r was defined as the integral closure of Ag o inside A. Since
A is reduced due to Lemma C.1.6, [68, Tag 03GH] and [68, Tag 07QV] imply that
A; is a finite Ag o-module. Therefore, there is an integer n such that A;’ C #A 5,05
i.e., A; is bounded. This finishes the proof. [

C.3 Etale maps

In this section, we discuss (strongly) étale maps of general complete Tate—Huber
pairs. We also show that strongly étale morphisms satisfy approximation along com-
pleted (uniform) filtered colimits of complete Tate—Huber pairs.

Definition C.3.1. A morphism (4, A1) — (B, B™) of complete Tate—Huber pairs is
a rational subdomain if there is a finite set of non-zero elements f1,..., f,,g € 4
which generates the unit ideal in A and (B, B") = (A(%), A(%)Jr) asan (4, AT)-
algebra. We denote by (A, A1), the poset’ of rational subdomains of (4, A™) (it
coincides with the poset of rational subdomains of Spa (4, A™)).

A morphism (A4, A1) — (B, B™) of complete Tate—Huber pairs is strongly finite
étale if A — B is finite étale and B is the integral closure of A™ in B. We denote by
(A, A1) the category of finite étale (A4, A™)-pairs and all (A4, A™)-linear morphisms
between them.

A morphism (4, A1) — (B, B™) of complete Tate—Huber pairs is strongly étale
if it can be written as a finite composition of finite étale morphisms and rational
subdomains. We denote by (A, A™) the category of étale (A4, A™)-pairs and all
(A, A*)-linear morphisms between them.

Remark C.3.2. In what follows, we will freely use the fact that the category of
complete Tate-Huber pairs admits pushouts. Explicitly, the pushout (B, Bt) ® AA+
(C,C™)is given by

(B®4C, (BR4C)T),

where B®4C is the completed tensor product, and (B®4C)7 is the integral closure
of (the image of) BT @ 4+C* in BR4C.

3[37, Proposition 1.3] implies that there is at most one unique continuous (A4, A1)-linear
morphism between two rational subdomains over (4, A1).


https://stacks.math.columbia.edu/tag/07QW
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Remark C.3.3. By definition, strongly étale maps are closed under composition.
Lemma C.1.1 implies that strongly finite étale maps are closed under pushouts of
complete Tate—Huber pairs (since completion is not needed). Therefore, all strongly
étale maps are also closed under pushouts in the category of complete Tate—-Huber
pairs.

Remark C.3.4. Lemma C.1.1 ensures that there is an equivalence (A4, A1) >~ A
for any complete Tate—Huber pair (4, A™).

Now we wish to show that the category of strongly étale (A, A™)-pairs satisfies
approximation with respect to completed filtered colimits. It will be convenient to
first prove a version of this result for completed uniform filtered colimits. For this, we
need a number of preliminary lemmas.

Definition C.3.5. A morphism f: (A4, A") — (B, B™) of complete Tate—Huber pairs
is a clopen immersion if A — B is a topological quotient morphism, B™ is equal to
the integral closure of A1, and Ker f is generated by an idempotent element e e € A

Remark C.3.6. If f: (A, A") — (B, B™) is a clopen immersion, then Lemma C.2.6
implies that
(B,B™) = (A/es A, (AT /(er AN AT))T)

as complete Tate—Huber pairs.

Remark C.3.7. We note that the idempotent e € A in Definition C.3.5 is unique if
exists. In particular, two clopen immersions f:(A4,A") — (B,BT)and g:(4,A™") —
(B, B™) coincide if and only if e; = e,.

For the purpose of the next definition, we fix a complete Tate—Huber pair (4, A™)
and an (A, A™)-linear morphism f: (B, BT) — (C, C™T) of complete Tate—Huber
pairs.

Definition C.3.8. The graph of f is the unique continuous (A4, A™)-linear morphism
Iy (B@)AC, (B@AC)Jr) — (C,CcH)

which sends b ® c to f(b)c.
The diagonal of f is the morphism As: (C®pC, (C®C)T) — (C,C™T) that
sends ¢ ® ¢’ to cc’.

Lemma C.3.9. Let f:(A,AT)— (B,B")and g:(B,B*) — (C,C™) be morphisms
of complete Tate—Huber pairs such that g and h :== g o f are strongly étale. Then the
morphisms Ag and I'g are clopen immersions.

Proof. First, we note that it suffices to prove the claim for A (for all g). This follows
from the following pushout square (for simplicity, we suppress the +-rings in the
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diagram below):

and the observation that clopen immersions are preserved by pushouts. Now we
show that A is a clopen immersion if Ay and Ay, are so. For this, we consider the
following diagram (for simplicity, we suppress the +--rings in the diagram below):

~ Ar
B®4B —— B

g®gl l (C3.1)

C&C —%5 CR®RC 2, (.
Ap

where the left square is a pushout square. Now, if A is a clopen immersion, then « is
a clopen immersion as well. Now since « and Ay, are clopen immersions, then Ay is
a clopen immersion as well (with ea, = a(ea,,)). Therefore, we reduce the question
to showing that f and & are clopen immersions. In other words, we can assume that
g is a strongly étale morphism.

Now we use Diagram (C.3.1) and the observation that clopen immersions are
preserved by compositions to conclude that it suffices to prove the result separately
for strongly finite étale morphisms and rational subdomains. If g is a rational subdo-
main, then Ay is clearly an isomorphism. Therefore, it suffices to assume that g is a
strongly finite étale map. In this case, Lemma C.1.1 and [72, Lemma B.3.5] imply that
B®4B = B ®4 B. Therefore, the result follows from the algebro-geometric claim
that Spec B — Spec (B ®4 B) is a clopen immersion for a finite étale A — B. =

Theorem C.3.10. Let {(A;, A;‘)}ie 1 be a filtered system of complete uniform Tate—
Huber pairs, and let (Aoo, AL) = (m[%], m) be its completed
uniform filtered colimit. Then
(1) the natural map | Spa(Aso, AL)| — limy | Spa (Ai,Alf")| is a homeomorphism
of spectral spaces;
(2) the natural map colimy (A;, A;L)rsd — (Ao, Ajo)rsd is a bijection;
(3) the natural functor 2- colimy (A;, A;’_)sfét — (Aoo, A;_O)Sfét is an equivalence;

(4) the natural functor 2-colimy (A;, AiJr )sét = (Aoo, A;ro)sé[ is an equivalence.
Proof. Let us denote by (Z, Z+) = (colimy A;”[%] colim; A;" ) the uncompleted

uniform filtered colimit of (A;, A;F). Then we easily see that the natural morphism

|Spa(4,47)| — limy | Spa (4, A:")| is a homeomorphism. Now [36, Proposition 3.9]
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implies that the natural map | Spa (Aeo, AL)| — | Spa (4, Z+)| is a homeomorphism
that induces a bijection on rational subdomains. This already proves (1). To see (2),
we use that the homeomorphism | Spa (4, Z+)| ~ | Spa(Aco, AL))| induces a bijection
on rational subdomains. Since every rational subdomain of | Spa (4, Z+)| is defined
at a finite level, we conclude that the natural morphism

colimy (At s A?_)rsd g (Aoo» A;)rsd

is surjective. The map is also injective due to and [68, Tag 0A30]. This finishes the
proof of (2).

(3) follows from Lemma C.1.11, Remark C.3.4, and a standard (algebraic) ap-
proximation for finite étale algebras.

Now we show (4). First, we set up some notation. For any complete Tate—-Huber
(A;, A )-pair (B;, B;") and i’ > i € I U {oo}, we put

(B}, B/*) == (Bi®a, Air, (Bi®4, Ai")").

Observation. For any compatible sequence of complete Tate—Huber (A4;, Ai+ )-pairs
(Bi, Bl.+), the uniform completion of (B, BY,) and the compeleted uniform filtered
colimit of {(B;, B])}ier are isomorphic as (4, A™)-pairs.

In what follows, we will freely use this observation. Finally, we are ready to start
the proof.

Step 0: Essential surjectivity. Using Observation, Lemma C.1.9, and Lemma C.1.11,
we can inductively reduce the question to showing that any rational subdomain (resp.
finite étale pair) over (Ao, AY)) comes from a finite level. This follows directly
from (1) (resp. (2)).

Step 1: Faithfulness. We start with fixing two systems of compatible morphisms
fi. gi: (Bi, Bl.+) — (C;, Ci+) in (A4;, A;_)sét and then wish to show that, if their
pushouts to (Aso, AL) coincide, then f; = g; for some i > 0. For this, we set
Joor &oo: (Boos BL) = (Coo, C) to be the morphisms induced by f; and g; respec-
tively.

The graphs I'y,, I'y;, I'z, and I'g_ are clopen immersions due to Lemma C.3.9.
We notice moreover that f; = g; (resp. foo = goo) if and only if I'y, = T'y; (resp.
Iy, = Iy, ). Furthermore, Remark C.3.7 implies that 'y, = I'y; (resp. 'y, = T'g )
if and only if er, = ery, (resp. er,. . = €rg.)- Thus, we reduce the question to
showing that if two idempotents e, ¢’ € A; become equal in A, they are already
equal in A; for some j > i. This follows from Lemma C.1.11 and usual properties
of filtered colimits. This finishes the proof of faithfulness.

Step 2: Fullness. We start with two compatible sequences (B;, Bi+), (G, Cl.+) of ele-
ments in (4;, A;L)Sét and a continuous (A, AL)-linear morphism foo: (Boo, BY) —
(Coo, C;g), we wish to show that it is defined over (4;, A;") for some i € I. For this,


https://stacks.math.columbia.edu/tag/0A30
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we can freely replace I with I-;, for some io to assume that / has a minimal element
ipel.

We write the morphism g;,: (4;,, A:g ) = (B, B;(;) as a composition of n mor-
phisms, each of which is finite étale or a rational subdomain. We argue by induction
onn.If n =0, then (4;,, A;g ) = (Bj,, Bl.“g) and then the result is obvious (the mor-
phism fo, must be the structure morphism (Ao, A%) = (Coo, C), so it descends
toanyi € I).

Now we do the induction step. We write g;, as a composition

(ig: A1) 22 (8L BIF) 22 (B, Byy).

10° 10’ 10°

where gl’.0 is either strongly finite étale or a rational subdomain, and /;, is a compo-
sition of at most n — 1 finite étale and rational subdomain morphisms. By induction,
we know that there is i € I such that the morphism [ = foo 0 gi: (BL,, BIT) —
(Coo, CZ) is defined over i € I. So we can replace ip with i to assume that there is a
morphism
fio: (Biy, Biy) = (Cig. Ci7)
such that its pushout to (Ase, AL) is equal to fL.
Consider the following diagram:

(Ci ’ Ci+)

/ ] rf (C3.2)

(A1 A)) — (B Bi*) —» (Bi. B})
for i > ig € I. The proof of faithfulness boils down to constructing a morphism f;
such that Diagram (C.3.2) commutes and the pushout of f; to (Ae, AL) is equal
to foo. For this, we consider two cases.

Case 1: glfo is a rational subdomain. In this case, [37, Proposition 1.3] implies that,
for eachi € I U oo, there is at most one f; which makes Diagram (C.3.2) commute.
Furthermore, it exists if and only if

[Spa ()] |Spa (€. C;1)| — [Spa (B]. B

factors through [Spa (B;, B;")| C |Spa (B, B/*)|. Loc. cit. implies that [Spa (L)
factors through |Spa (Beo, BL)| C |Spa (BL,. BL)|. So, Observation, Lemma C.1.9,
Part (1), [68, Tag 0A2S], and [68, Tag 0A2X] imply that there is an index i € I such
that

|Spa (f;)]:|Spa (Ci.C;")| — |Spa(B;]. B/1)|
factors through the inclusion |Spa (B;, Bl-+)| C |Spa (B], Bi/+)|. This defines a mor-
phism f;: (B;, Bl.+) — (C;, Cl.+) which makes Diagram (C.3.2) commute. Further-
more, its pushout to (Aeo, AL)) equals f5 due to its uniqueness.


https://stacks.math.columbia.edu/tag/0A2S
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Case 2: glfo is a finite étale morphism. Then we consider the pushout diagram

(Ci. C") —= (Di, D) == (Bi®p;Ci. (Bi®p,Ci)¥)

ﬁ/T Tf‘i//

(B].B/") { » (Bi. B}"),

and notice that morphisms f; that make Diagram (C.3.2) commute are in bijection
with morphisms B;: (D;, Di+) — (Cj, Ci+) such that B; o a; = id, i.e., they are in
bijection with sections of «;. Now we note that «; are finite étale as pushouts of finite
étale morphisms. Therefore, we note that the question boils down to showing that
any section of a finite étale morphism @eo: (Coo, C£) — (Doo, DY) comes from a
finite level. This follows from Observation, Lemma C.1.11, and Part (2) (applied to
the filtered system {(C;, Ci+)},-61). ]

Corollary C.3.11. Let (A, A+) be a complete Tate—Huber pair with the uniform
completion (/Tu, /T,J[ ) Then the natural functor

(4. 47) = (A A7)

sét u

is an equivalence.

Proof. This follows directly from Theorem C.3.10 applied to the constant filtered
system {(4, AT)}. n

Corollary C.3.12. Let {(A,- , Ai+ , Aio, w)}l. 7 be afiltered system of complete Tate—
Huber quadruples and set

(AOO,A;,AOO,O, w) = (Cmi,m,cmo, w)

its completed filtered colimit. Then
(1) the natural map | Spa(Aso, AL)| — limy | Spa(4;, Al+)| is a homeomorphism
of spectral spaces;
(2) the natural map colimy (A;, A;")rsd — (Ao, Ag’o)md is a bijection;
(3) the natural functor 2- colimy (A;, Aj_)sfét — (Aoo, A;ro)sfét is an equivalence;

(4) the natural functor 2- colimy (A;, A?‘ )sét = (Aoo, A;‘o)sét is an equivalence.

Proof. This follows directly from Theorem C.3.10 and Corollary C.3.11 by replacing
Ai, Af, Aso, and AZ, by their uniform completions. ]



Strongly sheafy adic spaces 290

C.4 Strongly sheafy adic spaces

In this section, we define the notion of a strongly sheafy adic space. We also define
the étale structure sheaves on such spaces.

Definition C.4.1 ([33, Definition 4.1]). A complete Tate ring A is strongly sheafy if
A(Ty,...,Ty) is sheafy for any integer d > 0.

A Tate-affinoid (pre-)adic space X = Spa (A, A1) is strongly sheafy if A is
strongly sheafy.

An adic space X is strongly sheafy if there is an open covering of X by strongly
sheafy Tate-affinoids.

Example C.4.2. A strongly noetherian Tate ring A is strongly sheafy (see [37, The-
orem 2.2]). Likewise, a sousperfectoid Tate ring A is strongly sheafy as well (see
[33, Definition 7.1 and Corollary 7.4]).

Remark C.4.3. [33, Proposition 5.5] and (the proof of) [33, Theorem 5.6] imply that,
if (A, A™") is a sheafy complete Tate—Huber pair and Spa (A4, A™) is a strongly sheafy
adic space, then A is a strongly sheafy Tate ring.

Remark C.4.4. [33, Theorem 5.6 and Definition 5.4] imply that, if (4, AT) is a
strongly sheafy Tate—Huber ring and (4, AT) — (B, B™) is a strongly étale mor-
phism, then (B, B™T) is strongly sheafy as well.

The above remark allows us to make the following definition:

Definition C.4.5. A morphism of strongly sheafy Tate-affinoids Spa (B, B*) —
Spa (A, A™) is strongly finite étale if (A, AT) — (B, B™") is strongly finite étale
(in the sense of Definition C.3.1).

A morphism of strongly sheafy Tate-affinoids Spa (B, B*) — Spa (A4, A™) is
(affinoid) strongly étale if (A, AT) — (B, B™) is strongly étale (in the sense of Def-
inition C.3.1).

Remark C.4.6. We note that finite disjoint unions of rational subdomains | |;; X; —
X = Spa (A, A") are strongly étale as they can be decomposed as a composition
Ll;es Xi = L;e; X — X, where the first morphism is a rational subdomain and the
second morphism is strongly finite étale.

Remark C.4.7. More generally, if {X; — X};e; is a finite family of strongly étale
morphisms, then | |;c; X; — X is a strongly étale morphism as well.

Lemma C.4.8. Let Y be a strongly sheafy adic space, let X be a pre-adic space (in
the sense of [41, Definition 8.2.3]), and let f: X — Y be an étale morphism (in the
sense of [41, Definition 8.2.16]). Then X is a strongly sheafy adic space.
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Proof. The claim is local in the analytic topology on both X and Y . Therefore, we can
assume that X = Spm ),Y = SpmJF) for a strongly sheafy Tate ring A,
and the morphism (4, A1) — (B, B™) is strongly étale. Then (B, B™) is strongly
sheafy due to Remark C.4.4. |

Finally, we can define the étale integral and structure (pre-)sheaves on strongly
sheafy spaces:

Definition C.4.9. Let X be a strongly sheafy adic space. The érale structure pre-
sheaf Oy, is a pre-sheaf of rings on X defined via the assignment

étale

(Y — X) > Oy(Y)
with evident transition maps. The integral étale structure pre-sheaf (9)21 is a pre-sheaf
of rings on X defined via the assignment

étale

(Y — X) = 0F(Y)
with evident transition maps.

Before we show that Oy, and (9;5[ are sheaves, we need to prove the following
basic lemma:

Lemma C.4.10. Let {(pi: (A, A") — (B, Bﬁ)}iel be a family of morphisms of com-
plete Tate~Huber pairs such that \ J;<; | Spa (¢:)|(| Spa (B;, B;")|) = | Spa (4, A™),
andleta € A. Thena € A" if and only if g;(a) € B;".

Proof. If a € A™, then clearly ¢;(a) € Bi+ for every i € I. Now we assume that
pi(a) € Bi+ for all i € I and wish to show that ¢ € A™. First, [36, Lemma 3.3 (i)]
(or [37, Proposition 1.6 (iv)]) implies that

AY ={f eA|v(f) <1VveSpa(d, 4"}

Therefore, we wish to show that v(a) < 1 for any v € Spa (4, A™"). For this, we
choose i € [ and a w; € Spa(B;, Bl.+) such that Spa (¢; ) (w) = v. Then we know that

v(a) = w(gi(a)) < 1.
This finishes the proof. ]

Lemma C.4.11. For a strongly sheafy adic space X, the étale pre-sheaves Ox,
and (9;ét are sheaves.

Proof. Let {Y,- — Y}i <7 be a covering in Xg. We wish to verify the sheaf axiom
for Oy, and (9;?ét with respect to this covering. Lemma C.4.8 implies that the usual
(analytic) pre-sheaves O, (9; , Oy, and Oy, are sheaves (in the analytic topology).
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Therefore, we can verify the sheaf condition analytically locally on ¥ and Y;. There-
fore, we can assume that all spaces involved are strongly sheafy Tate-affinoids and
all morphisms are strongly étale. In this case, sheafiness of Oy, follows from the last
sentence of [33, Proposition 5.5] and (the proof of) [33, Theorem 5.6]. Then sheafi-
ness of (9;(::t follows from sheafiness of Oy, and Lemma C.4.10. m



Appendix D

Achinger’s result in the non-noetherian case

Recall that P. Achinger proved a remarkable result [ 1, Proposition 6.6.1] that says that
an affinoid rigid-analytic variety X = Spa (A4, A™) that admits an étale map to a closed
unit disk D%, also admits a finite étale map to D% provided that K is the fraction field
of a complete DVR R with residue field of characteristic p. This result is an analytic
analogue of a more classical result of Kedlaya ([39] and [1, Proposition 5.2.1]), that
an affine k-scheme X = Spec A that admits an étale map to an affine space A} also
admits a finite €étale map to A} provided that k has characteristic p.

We generalize P. Achinger’s result to the non-noetherian setting. The proof essen-
tially follows the ideas of [1], we only need to be slightly more careful at some
places due to non-noetherian issues. We also show a version of this result for for-
mal schemes.

Lemma D.1. Let k be a field of characteristic p, and let A be a finite type k-algebra
such that dim A < d for some integer d. Suppose that x1,...,xq € A are some

elements of A, and m is any integer m > 0. Then there exist elements y1,...,yq € A
such that the map [ k[T, ..., Tyl — A, defined as f(T;) = x; + y! s finite.

Proof. We extend the set x1, ..., x; to some set of generators xq,...,Xg,..., Xy
of A as a k-algebra. This defines a presentation A = k[Ty,...,T4,...,T,]/1 for
some ideal I C k[Ty,..., Ty, ..., T,]. We prove the claim by induction onn — d.

The case of n —d = 0 is trivial as then the map f: k[T1,...,Ty] — A, defined
by f(T;) = x;, is surjective. Therefore, it is finite.

Now we do the induction argument, so we suppose that n — d > 1. We consider
the elements

Fon!

im .
xi=xi—xF ,i=1,...,n—1

for some integer m’ > m. Now the assumption n > d + 1 and Krull’s principal ideal
theorem imply that we can choose some non-zero element g € I, thus we have an
expression

’

’ 4
’ m / 2m / (n—1)m
gxy+xP xy +xP o x, +xP ,Xp) = 0.

Now [55, Section 1] implies that there is some large m’ such that this expression is
a polynomial in x, with coefficients in k[x], ..., x)_,] and a non-zero leading term.
We may and do assume that this leading term is 1. So x, is integral over a s_ul?ring
of R generated by x{,...,x],_,, we denote this ring by R'. Since x; = x| + x,flm ,we
conclude that R is integral over R’. Moreover, R is finite over R’ because it is finite
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type over k. Now we note that [54, Theorem 9.3] implies that dim R’ < dim R < d,
and R’ is generated by x},...,x,_, as a k-algebra. So we can use the induction
hypothesis to find some elements

Vi Vg R

such that the morphism f': k[T, ..., Ty] — R, defined as f'(T;) = x| + (y))?",
is finite. Therefore, the composite morphism

fik[Ty,....Ts] — R

is also finite. We now observe that

m m 7 m

FT) = x]+ D" =xi +x2" + D" =x + 2T 4y

Therefore, the set (y; = x,{)lm - + ¥))i=1,...,a does the job. [ ]

Lemma D.2. Let O be a complete valuation ring of rank-1 with maximal ideal m
and residue field k. Suppose that f: A — B is a morphism of topologically finitely
generated Ok-algebras. Then f is finite if and only if f Q@ k: A ®ov k — B Qo k
is finite.

Proof. The “only if” part is clear, so we only need to deal with the “if”” part. We recall
that [53, Lemma (28.P) p. 212] says that A — B is finite if and only if A/n — B/x
is finite for some pseudo-uniformizer & € (0. So we only need to show that finiteness
of A ®9 k — B ®p k implies that there is a pseudo-uniformizer 7 € O such that
A/mw — B/ is finite. Then we note that the maximal ideal m is a filtered colimit
of its finitely generated subideals {/;};cs. Moreover, the valuation property of the
ring @ implies that this colimit is actually direct and that /; = () is principal for
any j € J. We also observe that each 7; is a pseudo-uniformizer since @ is of rank-1.
Thus we see that

A®p k - B ®@k =colimjej(A/nj — B/m;)

and A/m; — B/m;j is a finite type morphism by the assumption that both A and B
are topologically finitely generated. Then [68, Tag 07RG] implies that there is j € J
such that A/mw; — B/n; is finite. Therefore, A — B is finite as well. L]

Before going to the proof of Theorem D.4, we need to show a result on the dimen-
sion theory of rigid-analytic spaces that seem to be missing in the literature. It seems
that there is no generally accepted definition of a dimension of adic spaces. We define
the dimension as dim X = sup,y dim Oy x, this is consistent with the definition of
dimension in [25, Definition I1.10.1.1]. We denote by X! C X the set of all classical
points of X.


https://stacks.math.columbia.edu/tag/07RG
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Lemma D.3. Let f: X = Spa(B, BT) — Y = Spa (A4, A") be an étale morphism
of rigid-analytic varieties over a complete rank-1 field K, then dim B > dim A. If Y
is equidimensional, i.e., diim Oy,, = dimY for any classical point y € Y., then we
have an equality dim B = dim A. In particular, if f:Spa(A4,A") — D‘Ii( is étale, then
dimA =d.

Proof. We note that [25, Proposition I1.10.1.9 and Corollary I11.10.1.10] imply that

dim X = dim B = sup (dimOx ), and dimY = dim A = sup (dim Oy,,).
xeXedl erCl

Since f is topologically finite type, it sends classical points to classical points. There-
fore, [38, Lemma 1.6.4, Corollary 1.7.4, and Proposition 1.7.9] imply that the map
Oy, f(x) = Oxx is finite étale for any x € X Thus, we see that

dim B = sup (dim (9X,x) = sup (dim @Y,f(x)) <dimY.

xeX¢ xeXe

It is also clear that this inequality becomes an equality if ¥ is equidimensional.

Finally, we claim that D‘Ii{ =Spa(K(Ty,...,Ty),Ox(T1,...,Tg)) =Spa(A,A™)
is equidimensional. Pick any classical point x € (D‘I’é)Cl and a corresponding maximal
ideal my € K(T1,...,T4). Then we know that Ay, . and (QD%,X are noe@n byBé,
Proposition 0.9.3.9, Theorem I1.8.3.6], moreover, the isomorphism OD?( x = Am,
holds by [25, Proposition 11.8.3.1]. Therefore, we get

dim OD?(,X = dim (9D‘,’<,x =dimAy, =dimAy,, =d,
where the last equality comes from [25, Proposition 0.9.3.9]. ]

For the rest of the section we fix a complete rank-1 valuation ring @ with fraction
field K and characteristic p residue field k. We refer to [38, Section 1.9] for the
construction of the adic generic fiber of a topologically finitely generated formal ©-
scheme. The only thing we mention here is that it sends an affine formal scheme
Spf A to the affinoid adic space Spa (4 ® 9 K, A™), where A™ is the integral closure
of the image Im(4 — A ®p K).

Theorem D.4. In the notation as above, let g: Spf A — Kg be a morphism of flat,
topologically finitely generated formal O)-schemes such that the adic generic fiber
gk:Spa (A ®9 K, AT) — D}"< is étale. Under these assumptions, there is a finite
morphism f:Spf A — 1&?9 that is étale on adic generic fibers.

Proof. First of all, we note that Lemma D.3 implies that dim A ® 9 K = d. Now
[25, Theorem 9.2.10] says that there exists a finite injective morphism

@:O(Ty,....Tq)— A
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with an Og-flat cokernel. This implies that K(T},...,Ty) — A ®@ K is finite and
injective. Flatness of Coker ¢ implies that the map

K[Ti,....Ty] = A®ok

is also finite and injective, so dim A ® 9 k = d. Now we finish the proof in two
slightly different ways depending on char K.

Case 1: char K = p. We consider the morphism g*: O(T}, ..., T;) — A induced
by g. We define x; := g*(T;) fori = 1,...,d. Since dim A ® 9 k = d, we can apply
Lemma D.1 to the residue classes X7, ...,Xg7 and m = 1 to get elements y;,...,yg €
A ®@ k such that the map

fHK[Ty,....Tq] > A Qe k, defined as f#(T;) = X7 + y;? fori = 1,....d,
is finite. We lift y; in an arbitrary way to elements y; € A, and define
fRo(r,....T;) - A

as f*(T;) = x; + y} foranyi = 1,...,d. This map is finite by Lemma D.2.

Now we note that X := Spa (4 ®@ K, A™) is smooth over K, so [15, Proposi-
tion 2.6] says that étaleness of fgx: X — D}i( is equivalent to the bijectivity of the
map

1
fKQDd/K — SZX/K.

This easily follows from étaleness of gx and the fact that d(x; + y7) = d(x;) in
characteristic p.

Case 2: char K = 0. We denote Spf A by X and we denote its adic generic fiber
Spa (A ®e K, AT) by X. Then we use [15, Proposition 2.6] once again to see that
the map

1
gKQDd d /K - Qy/x

is an isomorphism. Since (Q%/@)K ~ QX/K and the same for Ad and Dd,
conclude that the fundamental short exact sequence ([25, Proposition I 3.6.3, Propo-
sition 1.5.2.5 and Theorem 1.5.2.6])

*S1 81 a1
QA‘é/@ — Qx/@ — Q%/Kg —0

= 0. Furthermore, we know that

implies that (ﬁ;E JAd ) K

¢

for a finite A-module Q1 A/O(T ... (see [25, Corollary 1.5.1.11]). We denote this
module by Ql for the rest of the proof and recall that the condition (Q} /Ad )g =0
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is equivalent to Q; ®@ K = 0. Using finiteness of Qé and adhesiveness of A, we
conclude that there is an integer k such that

ka; =0

as p is a pseudo-uniformizer in @. Now, similarly to the case of charK = p, we
consider the morphism
g#:(9(T1,...,Td) — A

and define x; := g*(T;) fori = 1,...,d. Again, using that dim 4 ® 9 k = d, we can
apply Lemma D.1 to the residue classes x1,...,Xxg; and m = k + 1 to get elements
Y1s-..,Vd € A ®@ k such that the map

F:k[Tl,...,Td] — A ®p k, defined asF(Ti) =x_i+ﬁpk+l fori =1,....,d,
is finite. We lift y; to some elements y; € A and define
ffo(r,....T;) - A

k
by fH(T;) = xi +yF ™' The map f* is finite by Lemma D.2.
We are only left to show that the induced map

f:X—>1§d

is €tale on adic generic fibers. Next we claim that p (Q ) = 0. Indeed, we use [25,
Proposition 1.5.1.10] to trivialize Q Ty Ty} )0 = @l_ldT O(T1,...,Ty), so we
have the fundamental exact sequence

k+1
dTj—>d(xi+y] )~

P 4dT; Qlio— Qb =0

k+1
asd(y?" ") is divisible by p¥*1. Therefore, we see that modulo p¥*1, this sequence
is equal to

d
dT[—)d i ~ ~
@A/pkHdT,- Cxi) Q}i/@/pkﬂ N Q}/pk+1 o
i=1
Thus, we see that fi}/pk+1 ~ Q;,/pk“. In particular,
kA1 ka1 ka1 ka1
(P"2p)/p(P"2p) = (P72¢)/P(P72¢) = 0
by the choice of k. Therefore, p* Q} = 0 by [53, Lemma 28.P p. 212]. By passing to

the adic generic fiber, we get the map fx: X — D?{ such that

d(fi): f§ g 1k = Qx
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is surjective. However, we recall that X and D}l( are both smooth rigid-analytic vari-
eties of (pure) dimension d. Thus d r s a surjective map of vector bundles of the
same dimension d, so it must be an isomorphism. Finally, [15, Proposition 2.6]
implies that fx is étale. ]

Corollary D.5. Let K be a complete rank-1 valuation field with valuation ring Ok,
and residue field k of characteristic p. Suppose that g: X = Spa (A, AT) — D?( isan
étale morphism of affinoid rigid-analytic K -varieties. Then there exists a finite étale
morphism f: X — D%.

Proof. We note that [37, Lemma 4.4] implies that AT = A4°, so the map g corresponds
to the map
g (K(T1., ... Ta), Ok(Th..... Ta)) — (A, A°)

of Tate—Huber pairs. Theorem D.4 implies that it suffices to show that the image of
Ok (T1,...,Ty) lies inside some ring of definition A9 C A.
Since A is topologically finitely generated, we can extend g* to a surjection

0: K{Ty,....,Tg,X1,..., Xp) > A.

Then
A() = gD(@K(Tl,.. . ,Td,X],...,Xn>)

is bounded and it is open as a consequence of the Banach open mapping theorem ([37,
Lemma 2.4 (i)]). Thus, it is a ring of definition containing g* ((9K (T1,..., Td)). ]
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MEMOIRS OF THE EUROPEAN MATHEMATICAL SOCIETY

Bogdan Zavyalov
Almost Coherent Modules and
Almost Coherent Sheaves

We extend the theory of almost coherent modules that was introduced in Almost ring theory
by Gabber and Ramero (2003). Then we globalize it by developing a new theory of almost
coherent sheaves on schemes and on a class of “nice” formal schemes. We show that these
sheaves satisfy many properties similar to usual coherent sheaves, i.e., the amost proper
mapping theorem, the formal GAGA, etc. We also construct an almost version of the
Grothendieck twisted image functor f' and verify its properties. Lastly, we study sheaves of
p-adic nearby cycles on admissible formal models of rigid-analytic varieties and show that
these sheaves provide examples of almost coherent sheaves. This gives a new proof of the
finiteness result for étale cohomology of proper rigid-analytic varieties obtained before in
Scholze’s work p-adic Hodge theory for rigid-analytic varieties (2013).
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