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depth such as geometry of the Siegel operators, filtrations associated to 1-dimensional
cusps, decomposition of vector-valued Jacobi forms, square integrability etc; and (3) as
applications derive several types of vanishing theorems for vector-valued modular forms of
small weight. Our vanishing theorems imply in particular vanishing of holomorphic tensors of
degree less than n/2− 1 on orthogonal modular varieties, which is optimal as a general
bound. The fundamental ingredients of the theory are the two Hodge bundles. The first is
the Hodge line bundle which already appears in the theory of scalar-valued modular forms.
The second Hodge bundle emerges in the vector-valued theory and plays a central role. It
corresponds to the non-abelian part O(n,ℝ) of the maximal compact subgroup of O(2, n).
The main focus of this monograph is centered around the properties and the role of the
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Abstract

This memoir is devoted to the theory of vector-valued modular forms for orthogonal
groups of signature .2; n/. Our purpose is multi-layered: (1) to lay a foundation of the
theory of vector-valued orthogonal modular forms; (2) to develop some aspects of the
theory in more depth such as geometry of the Siegel operators, filtrations associated
to 1-dimensional cusps, decomposition of vector-valued Jacobi forms, square integ-
rability, etc.; and (3) as applications derive several types of vanishing theorems for
vector-valued modular forms of small weight. Our vanishing theorems imply in par-
ticular vanishing of holomorphic tensors of degree less than n=2 � 1 on orthogonal
modular varieties, which is optimal as a general bound. The fundamental ingredients
of the theory are the two Hodge bundles. The first is the Hodge line bundle which
already appears in the theory of scalar-valued modular forms. The second Hodge
bundle emerges in the vector-valued theory and plays a central role. It corresponds
to the non-abelian part O.n;R/ of the maximal compact subgroup of O.2; n/. The
main focus of this memoir is centred around the properties and the role of the second
Hodge bundle in the theory of vector-valued orthogonal modular forms.
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Chapter 1

Introduction

In the theory of modular forms of several variables, it is natural and also necessary
to study vector-valued modular forms. One way to account for this is that scalar-
valued modular forms are concerned only with the 1-dimensional abelian quotient
of the maximal compact subgroup K of the Lie group, while the contribution from
the whole K emerges if we consider vector-valued modular forms. In more con-
crete levels, the significance of vector-valued modular forms appears in the study
of the cohomology of modular varieties, holomorphic tensors on modular varieties,
and constructions of Galois representations, etc. The passage from scalar-valued to
vector-valued modular forms is an intrinsic non-abelianization step.

This subject has been well developed for Siegel modular forms since the pioneer-
ing work of Freitag, Weissauer and others around the early 1980s (see, e.g., [44] for
a survey). In particular, a lot of detailed study have been done in the case of Siegel
modular forms of genus 2.

By contrast, despite its potential and expected applications, no systematic theory
of vector-valued modular forms for orthogonal groups of signature .2; n/ seems to
have been developed so far. Only recently its application to holomorphic tensors on
modular varieties started to be investigated [34]. The observation that some aspects
of the theory of scalar-valued Siegel modular forms of genus 2 have been generalized
to orthogonal modular forms, rather than to Siegel modular forms of higher genus,
also suggests a promising theory.

Vector-valued orthogonal modular forms will have applications to the geometry
and arithmetic of orthogonal modular varieties, and so, especially to the moduli
spaces of K3 surfaces and holomorphic symplectic varieties. Moreover, from the geo-
metric viewpoint of K3 surfaces, vector-valued modular forms on a period domain
of (lattice-polarized) K3 surfaces are considered as holomorphic invariants related to
the family that can be captured by the variation of the Hodge structures on H 2.K3/

but typically not by the Hodge line bundle H 0.KK3/ alone. For example in this dir-
ection, the infinitesimal invariants of normal functions for higher Chow cycles in
CH 2.K3; 1/ give vector-valued modular forms with singularities (Section 3.8). This
geometric viewpoint offers another motivation to develop the theory of vector-valued
orthogonal modular forms.

The purpose of this memoir is multi-layered:

(1) to lay a foundation of the theory of vector-valued orthogonal modular forms,

(2) to investigate some aspects of the theory in more depth, and
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(3) as applications to establish several types of vanishing theorems for vector-
valued modular forms of small weight.

Our theory is developed in a full generality in the sense that we work with gen-
eral arithmetic groups � < OC.L/ for general integral quadratic forms L of sig-
nature .2; n/. The facts that unimodular lattices are rare even up to Q-equivalence
(unlike the symplectic case) and that various types of groups � appear in the moduli
examples urge us to work in this generality.

Our approach is geometric in the sense that we define modular forms as sec-
tions of the automorphic vector bundles. Trivializations of the automorphic vector
bundles, and thus passage from sections of vector bundles to vector-valued functions,
are provided for each 0-dimensional cusp. This approach is suitable for working with
general � , without losing connection with the more classical style.

In the rest of this introduction, we give a summary of the theory developed in this
memoir.

The two Hodge bundles (Section 2)

Let L be an integral quadratic lattice of signature .2; n/. We assume n � 3 for simpli-
city. The Hermitian symmetric domain D D DL attached to L is defined as an open
subset of the isotropic quadric in PLC . It parametrizes polarized Hodge structures
0 � F 2 � F 1 � LC of weight 2 on L with dimF 2 D 1 and F 1 D .F 2/?. Over D

we have two fundamental Hodge bundles. The first is the Hodge line bundle

L D OPLC .�1/jD ;

which geometrically consists of the period lines F 2 in the Hodge filtrations. In terms
of representation theory, L is the homogeneous line bundle associated to the standard
character of C� � C� � O.n;C/, where C� � O.n;C/ is the reductive part of a
standard parabolic subgroup of O.LC/ ' O.nC 2;C/. Invariant sections of powers
of L are scalar-valued modular forms on D , which have been classically studied.

The Hodge line bundle L is naturally embedded in LC ˝OD as an isotropic sub
line bundle. The second Hodge bundle is defined as

E D L?=L:

Geometrically this vector bundle consists of the middle graded quotients F 1=F 2 of
the Hodge filtrations. In terms of representation theory, E is the homogeneous vector
bundle associated to the standard representation of O.n;C/�C� �O.n;C/. It is this
second Hodge bundle E that emerges in the theory of vector-valued modular forms
on D and plays a central role in this memoir.

While L is concerned with scalar-valued modular forms, E is responsible for the
higher rank aspect of the theory of vector-valued modular forms. While L provides
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a polarization, E is an orthogonal vector bundle, and in particular self-dual (but not
trivial). Thus L and E are rather contrastive.

Vector-valued modular forms (Section 3)

Weights of vector-valued modular forms on D are expressed by pairs .�; k/, where
� D .�1 � � � � � �n � 0/ is a partition which corresponds to an irreducible repres-
entation V� of O.n;C/, and k is an integer which corresponds to a character of C�.
The partition � satisfies t�1 C t�2 � n, where t� is the transpose of �. To such a pair
.�; k/ we associate the automorphic vector bundle

E�;k D E� ˝L˝k;

where E� is the vector bundle constructed from E by applying the orthogonal Schur
functor associated to �. Modular forms of weight .�; k/ are defined as holomorphic
sections of E�;k over D invariant under a finite-index subgroup � of OC.L/ (with
cusp conditions when n � 2). We denote by M�;k.�/ the space of �-modular forms
of weight .�; k/.

Sometimes it is more appropriate to work with irreducible representations of
SO.n;C/ rather than O.n;C/, but in that way we obtain only SOC.LR/-equivariant
vector bundles. Since in some applications we encounter subgroups � of OC.L/ not
contained in SOC.L/, we decided to work with O.n;C/ at the outset. It is not difficult
to switch to SO.n;C/ (see Section 3.6).

Fourier expansion (Section 3)

A first basic point is that E�;k can be trivialized for each 0-dimensional cusp of D in
a natural way. Let I be a rank 1 primitive isotropic sublattice ofL, which corresponds
to a 0-dimensional cusp of D . The quotient lattice I?=I is naturally endowed with a
hyperbolic quadratic form. Then we have isomorphisms

I_C ˝OD ! L; .I?=I /C ˝OD ! E;

canonically associated to I . If we write V.I /�;k D ..I?=I /C/� ˝ .I
_
C /
˝k , these

induce an isomorphism
V.I /�;k ˝OD ! E�;k;

which we call the I -trivialization of E�;k . Via this trivialization, modular forms of
weight .�; k/ are identified with V.I /�;k-valued holomorphic functions f on D sat-
isfying invariance with the factor of automorphy. Then, after taking the tube domain
realization of D associated to I [40], we obtain the Fourier expansion of f of the
form

f .Z/ D
X

l2U.I/_Z

a.l/ exp.2�i.l; Z//; Z 2 DI ;
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where a.l/ 2 V.I /�;k , DI is the tube domain in .I?=I /C ˝ IC , and U.I /_Z is a
certain full lattice in .I?=I /Q ˝ IQ. By the Koecher principle, the index vectors l
range only over the intersection of U.I /_Z with the closure of the positive cone (a con-
nected component of the locus of vectors of positive norm). We prove that the con-
stant term a.0/ always vanishes unless � D .0/; .1n/, which correspond to the trivial
and the determinant characters, respectively. (In what follows, we write � D 1; det
instead.) Therefore the Siegel operators are interesting only at the 1-dimensional
cusps. We can speak of rationality of the Fourier coefficients a.l/ because V.I /�;k
has a natural Q-structure.

In this way, the choice of a 0-dimensional cusp I determines a passage to a
more classical style of defining modular forms. Since there is no distinguished 0-
dimensional cusp for a general arithmetic group � , we need to treat all 0-dimensional
cusps equally. Even after the I -trivialization, it is more suitable to have V.I /�;k as
the canonical space of values, rather than identifying it with CN by choosing a basis.
This approach enables us to develop various later constructions in an intrinsic and
coherent way (and so, in a full generality) without sacrificing the classical style.

These most basic parts of the theory are developed in Sections 2 and 3. In Sec-
tion 4, as a functorial aspect of the theory, we study pullback and quasi-pullback of
vector-valued modular forms to sub orthogonal modular varieties. This type of opera-
tions are sometimes called the Witt operators. The consideration of pullbacks leads to
an elementary vanishing theorem for M�;k.�/ in k � 0 (Proposition 4.4). We prove
that the quasi-pullback produces cusp forms (Proposition 4.10), generalizing a result
of Gritsenko–Hulek–Sankaran [22] in the scalar-valued case.

After these foundational parts, this memoir is developed in the following two
directions:

(1) Geometric treatment of the Siegel operators and the Fourier–Jacobi expan-
sions at 1-dimensional cusps (Sections 5–9).

(2) Square integrability of modular forms (Sections 10-11).

Both lead, as applications, to vanishing theorems of respective type for modular forms
of small weight.

Siegel operator (Section 6)

Let J be a rank 2 primitive isotropic sublattice of L. This corresponds to a 1-dimen-
sional cusp HJ of D , which is isomorphic to the upper half plane. We take a geomet-
ric approach for introducing and studying the Siegel operator and the Fourier–Jacobi
expansion at the cusp HJ , by using the partial toroidal compactification over HJ .
The Siegel operator is the restriction to the boundary divisor, and the Fourier–Jacobi
expansion is the Taylor expansion along it.
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The Siegel domain realization of D with respect to J [40] is a two-step fibration

D
�1
�! VJ

�2
�! HJ ;

where �1 is a fibration of upper half planes and �2 is an affine space bundle. Divid-
ing D by a rank 1 abelian group U.J /Z < � , the quotient X.J / D D=U.J /Z is a
fibration of punctured discs over VJ . The partial toroidal compactification

X.J / ,! X.J /

is obtained by filling the origins of the punctured discs [2]. Its boundary divisor�J is
naturally identified with VJ . We can extend E�;k to a vector bundle over X.J / via the
I -trivialization for an arbitrary 0-dimensional cusp I � J , the result being independ-
ent of I (Section 5.4). This is an explicit form of Mumford’s canonical extension [36]
which is suitable for dealing with the Fourier–Jacobi expansion. If f is a �-modular
form of weight .�;k/, it extends to a holomorphic section of the extended bundle E�;k
over X.J /.

Intuitively (and more traditionally), the Siegel operator should be an operation of
“restriction to HJ ” which produces vector-valued modular forms of some reduced
weight on HJ . Geometrically this requires some justification because of the complic-
ated structure around the boundary of the Baily–Borel compactification. We take a
somewhat indirect but more geometrically tractable approach, working with the auto-
morphic vector bundle E�;k over the partial toroidal compactification X.J /.

Let LJ be the Hodge line bundle on HJ . We write V.J / D .J?=J /C . For the
given partition � D .�1 � � � � � �n/, we denote by V.J /�0 the irreducible represent-
ation of O.V .J // ' O.n � 2;C/ for the partition �0 D .�2 � � � � � �n�1/.

Theorem 1.1 (Theorem 6.1). Let � ¤ 1; det. There exists a sub vector bundle EJ
�;k

of E�;k such that EJ
�;k
j�J ' �

�
2L
˝kC�1
J ˝ V.J /�0 and that the restriction of every

modular form f of weight .�; k/ to �J takes values in EJ
�;k
j�J . In particular, there

exists a V.J /�0-valued cusp form ˆJf of weight k C �1 on HJ such that f j�J D
��2 .ˆJf /.

The map

M�;k.�/! SkC�1.�J /˝ V.J /�0 ; f 7! ˆJf;

is the Siegel operator at the J -cusp, where �J is a suitable subgroup of SL.J / '
SL.2;Z/. If we take the I -trivialization for a 0-dimensional cusp I � J and intro-
duce suitable coordinates .�; z; w/ on the tube domain in which the Siegel domain
realization is given by

.�; z; w/ 7! .�; z/ 7! �;
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the Siegel operator can be expressed as

.ˆJf /.�/ D lim
t!1

f .�; 0; i t/; � 2 H:

In this way, the naive “restriction to HJ ” can be geometrically justified at the level of
automorphic vector bundles as the combined operation

restrict to �J C reduce to EJ�;k C descend to HJ :

This a priori tells us the modularity of ˆJf with its weight. When n D 3, the weight
calculation in Theorem 1.1 agrees with the corresponding result for Siegel modular
forms of genus 2 [1, 47]. The sub vector bundle EJ

�;k
will be taken up in Section 8

again from the viewpoint of a filtration on E�;k .

Fourier–Jacobi expansion (Section 7)

Next we explain the Fourier–Jacobi expansion at the J -cusp. Let‚J be the conormal
bundle of �J in X.J /. After certain choices, we have a special generator !J of the
ideal sheaf of �J . With this normal coordinate, we can take the Taylor expansion of
a modular form f 2M�;k.�/ along �J as a section of the extended bundle E�;k:

f D
X
m�0

�m!
m
J : (1.1)

The m-th Taylor coefficient �m, or rather �m ˝ !˝mJ , is essentially a section of the
vector bundle E�;k ˝ ‚

˝m
J over �J . We call (1.1) the Fourier–Jacobi expansion

of f at the J -cusp, and call the section �m ˝ !˝mJ of E�;k ˝ ‚
˝m
J for m > 0 the

m-th Fourier–Jacobi coefficient of f . (�0 is just f j�J considered above.) Although
the choice of !J is needed for defining the Fourier–Jacobi expansion, the resulting
expansion and the sections of E�;k ˝‚

˝m
J are independent of this choice, thus canon-

ically determined by J (Section 7.2). This geometric definition of Fourier–Jacobi
expansion, whose advantage is its canonicity, agrees with the more familiar style of
defining Fourier–Jacobi expansion by slicing the Fourier expansion (Section 7.1) if
we take the .I; !J /-trivialization.

In general, we define vector-valued Jacobi forms of weight .�;k/ and indexm>0
as holomorphic sections of E�;k ˝‚

˝m
J over �J D VJ which is invariant under the

integral Jacobi group and satisfies a certain cusp condition (Definition 7.10). Them-th
Fourier–Jacobi coefficient of a modular form of weight .�; k/ is such a vector-valued
Jacobi form (Proposition 7.12). In the scalar-valued case, our geometric definition
agrees with the classical definition of Jacobi forms [20, 43] after introducing suitable
coordinates and trivialization (Section 7.4). When n D 3, our vector-valued Jacobi
forms essentially agree with those considered by Ibukiyama–Kyomura [27] for Siegel
modular forms of genus 2.
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Filtrations associated to 1-dimension cusps (Section 8)

While a 0-dimensional cusp of D provides a trivialization of E�;k which enables
the Fourier expansion, we will show that a 1-dimensional cusp introduces a filtration
on E�;k which is useful when studying the Fourier–Jacobi expansion. To start with,
we observe that for each 1-dimensional cusp J , the second Hodge bundle E has an
isotropic sub line bundle EJ canonically determined by J . This defines the filtration

0 � EJ � E?J � E

associated to the J -cusp, which we call the J -filtration. Its graded quotients are
respectively isomorphic to

EJ ' �
�LJ ; E?J =EJ ' .J

?=J /C ˝OD ; E=E?J ' �
�L�1J ;

where � D �2 ı �1 is the projection from D to HJ . The J -filtration is translated
to a constant filtration on V.I / ˝ OD by the I -trivialization for every adjacent 0-
dimensional cusp I � J (Proposition 8.3).

The J -filtration on E induces a (decreasing) filtration on a general automorphic
vector bundle E�;k , also called the J -filtration, whose graded quotient in level r is iso-
morphic to a direct sum of copies of ��L˝kCrJ . Representation-theoretic calculations
show that the J -filtration on E�;k has length � 2�1 C 1 (from level ��1 to �1), and
that the sub vector bundle EJ

�;k
of E�;k in Theorem 1.1 is exactly the last (D level �1)

sub vector bundle in the J -filtration (Proposition 8.13). Moreover, we have a duality
between the graded quotients in level r and �r .

We give two applications of the J -filtration. The first is decomposition of vector-
valued Jacobi forms. We prove that a vector-valued Jacobi form of weight .�; k/
decomposes, in a certain sense, into a tuple of scalar-valued Jacobi forms of various
weights in the range Œk � �1; k C �1� (Proposition 8.15). More precisely, what is
proved is that certain graded pieces are scalar-valued Jacobi forms, so this result does
not mean that the theory of vector-valued Jacobi forms reduces to the scalar-valued
theory. Nevertheless, this decomposition theorem enables us to derive some basic
results for vector-valued Jacobi forms from those for scalar-valued ones. For example,
we deduce that vector-valued Jacobi forms of weight .�; k/ with

k C �1 < n=2 � 1

vanish (Corollary 8.18). In the case of Siegel modular forms of genus 2 (namely,
n D 3), the fact that vector-valued Jacobi forms decompose into scalar-valued Jacobi
forms was first found by Ibukiyama and Kyomura [27]. Their method is different,
using differential operators, but it might be plausible that their decomposition agrees
with that of us.
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Vanishing theorem I (Section 9)

It is a classical fact that there is no nonzero scalar-valued modular form of weight
0 < k < n=2 � 1 on D . Two proofs of this fact are well known. The first uses van-
ishing of Jacobi forms (cf. [20, 43]), and the second uses classification of unitary
representations. We give two generalizations of this classical vanishing theorem to
the vector-valued case, corresponding to these two approaches.

Our first vanishing theorem belongs to the Jacobi form approach, and is obtained
as the second application of the J -filtration. We assume that L has Witt index 2,
i.e., D has a 1-dimensional cusp. This is always satisfied when n � 5.

Theorem 1.2 (Theorem 9.1). Let �¤ 1;det. If k < �1C n=2� 1, thenM�;k.�/D 0.
In particular, M�;k.�/ D 0 whenever k < n=2.

As a consequence, we obtain the following vanishing theorem for holomorphic
tensors on the modular variety �nD .

Corollary 1.3 (Theorem 9.5). Let X be the regular locus of �nD . Then we have

H 0.X; .�1X /
˝k/ D 0

for all 0 < k < n=2 � 1.

Moreover, we obtain a classification of possible types of holomorphic tensors of
the next few degrees up to n=2 (Proposition 9.6). The vanishing bound k < n=2 � 1
is optimal as a general bound.

The proof of Theorem 1.2 is built on the results of Sections 7 and 8, and proceeds
as follows. We apply the classical vanishing theorem of scalar-valued Jacobi forms of
weight < n=2� 1 [20,43] to the first graded quotient of the J -filtration on E�;k . This
implies that the Fourier–Jacobi coefficients of f 2 M�;k.�/ take values in a certain
sub vector bundle of E�;k ˝ ‚

˝m
J . Passing to the Fourier expansion at I � J , we

see that the Fourier coefficients of f are contained in a proper subspace of V.I /�;k .
Finally, running J over all 1-dimensional cusps containing I , we conclude that the
Fourier coefficients are zero.

In the case of Siegel modular forms of genus 2, the idea to use Jacobi forms to
deduce a vanishing theorem for vector-valued modular forms seems to go back to
Ibukiyama [25, Section 6]. Our proof of Theorem 1.2 can be regarded as a generaliz-
ation of his argument.

In this way, we have the unified viewpoint that the Siegel operator is concerned
with the last sub vector bundle in the J -filtration, while the proof of Theorem 1.2
makes use of the first graded quotient. We expect that a closer look at the intermediate
pieces of the J -filtration would tell us more.
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Square integrability (Section 10)

We now turn to our second line of investigation. We can explicitly define and calcu-
late an invariant Hermitian metric on E (and on L, which is well known). They are
essentially the Hodge metrics. They induce an invariant Hermitian metric . ; /�;k on
a general automorphic vector bundle E�;k . Apart from the matter of convergence, this
defines the Petersson inner product on M�;k.�/:

.f; g/ D

Z
�nD

.f; g/�;kvolD ; f; g 2M�;k.�/;

where volD is the invariant volume form on D . When f or g is a cusp form, this
integral converges as usual. Conversely, we prove the following. Let

x� D .x�1; : : : ; x�Œn=2�/ D .�1 � �n; �2 � �n�1; : : : ; �Œn=2� � �nC1�Œn=2�/

be the highest weight for SO.n;C/ associated to �. We write jx�j D
P
i
x�i .

Theorem 1.4 (Theorem 10.1). Let �¤ 1;det and assume that k � nC jx�j � 1. Then
a modular form f of weight .�; k/ is a cusp form if and only if .f; f / <1.

This holds also for � D 1; det at least when L has Witt index 2 (Remark 10.13).
In fact, Theorem 10.1 contains one more result that any modular form of weight
.�; k/ with k < n � jx�j � 1 and � ¤ 1; det is square integrable, but this is rather an
intermediate step in the proof of our second vanishing theorem.

Vanishing theorem II (Section 11)

Our study of square integrability is partly motivated by the following vanishing the-
orem. Let corank.�/ be the maximal index 1� i � Œn=2� such that x�1Dx�2D � � �D x�i .
Let S�;k.�/ �M�;k.�/ be the subspace of cusp forms.

Theorem 1.5 (Theorem 11.1). Let � ¤ 1; det. If k < nC �1 � corank.�/ � 1, there
is no nonzero square integrable modular form of weight .�; k/. In particular,

(1) S�;k.�/ D 0 if k < nC �1 � corank.�/ � 1.

(2) M�;k.�/ D 0 if k < n � jx�j � 1.

Although �1 C n=2� 1 < nC �1 � corank.�/� 1, Theorem 1.5 does not super-
sede Theorem 1.2 because it is about square integrable modular forms. It depends on
.�; k/ which bound in Theorem 1.2 or Theorem 1.5 (2) is larger. The two vanishing
theorems are rather complementary.

The proof of Theorem 1.5 is parallel to Weissauer’s vanishing theorem [47] for
Siegel modular forms. If we have a square integrable modular form, we can con-
struct a unitary highest weight module for SOC.LR/ by a standard procedure. Then
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the bound k < n C �1 � corank.�/ � 1 is derived from the classification of unit-
ary highest weight modules [12, 13, 28]. The more specific conclusions (1), (2) are
consequences of the square integrability theorem (Theorem 10.1).

Terminology and notation

Let us summarize some frequently used terminology and notation.
(1) By a lattice we mean a free Z-module L of finite rank equipped with a nonde-

generate symmetric bilinear form .�; �/ WL�L!Z. (Sometimes we still use the word
“lattice” when the bilinear form is only Q-valued.) The dual lattice Hom.L;Z/ of L
is written as L_. A sublattice M of L is called primitive if L=M is free. We denote
byM? the orthogonal complement ofM in L. A sublattice I of L is called isotropic
if .I; I /� 0. The lattice L is called an even lattice if .l; l/ 2 2Z for every l 2 L. The
orthogonal group of a lattice L is denoted by O.L/. For F D Q;R;C we write

LF D L˝Z F:

This is a quadratic space over F . Its orthogonal group is denoted by O.LF /. The spe-
cial orthogonal group, namely, the subgroup of O.LF / of determinant 1, is denoted
by SO.LF /. A lattice L in a Q-quadratic space V is called a full lattice in V if
V D LQ. For a rational number ˛ ¤ 0 we write L.˛/ for the ˛-scaling of L, namely,
the same underlying Z-module with the bilinear form multiplied by ˛. In the context
of lattices, the symbol U will stand for the integral hyperbolic plane, namely, the even
unimodular lattice of signature .1; 1/.

(2) LetG be a group acting on a setX and let Y be a subset ofX . By the stabilizer
of Y in G, we mean the subgroup of G consisting of elements g such that g.Y /D Y .

(3) Let V be a nondegenerate quadratic space over F DQ;R;C. Let I be an iso-
tropic line in V , and P.I / be the stabilizer of I in O.V /. Then we have the canonical
exact sequence

0! .I?=I /˝F I ! P.I /! GL.I / � O.I?=I /! 1: (1.2)

Here P.I / ! GL.I / and P.I / ! O.I?=I / are the natural maps, and the map
.I?=I /˝F I ! P.I / sends a vector m˝ l of .I?=I /˝F I to the isometry Em˝l
of V defined by

Em˝l.v/ D v � . zm; v/l C .l; v/ zm �
1

2
.m;m/.l; v/l; v 2 V: (1.3)

Here zm 2 I? is a lift of m 2 I?=I . In particular, when v 2 I?, (1.3) is simplified to

Em˝l.v/ D v � .m; v/l:



Introduction 11

The isometries Em˝l are sometimes called the Eichler transvections. If we take a
basis e1; : : : ; en of V such that I D he1i, I? D he1; : : : ; en�1i and .e1; en/ D 1,
.ei ; en/ D 0 for i > 1, then Em˝e1 is expressed by the matrix0@1 �m_ �.m;m/=2

0 In�2 m

0 0 1

1A ;
where we regard m 2 he2; : : : ; en�1i ' I?=I . The group .I?=I /˝F I of Eichler
transvections is the unipotent radical of P.I /.

(4) We will not distinguish between vector bundles and locally free sheaves on a
complex manifold X . The fiber of a vector bundle F over a point x 2 X is denoted
by Fx (not the germ of the sheaf). A collection of sections of a vector bundle F is
called a frame of F when it defines an isomorphism O˚rX ' F , i.e., it forms a basis
in every fiber. The dual vector bundle of F is denoted by F _.

(5) Let X be a complex manifold and G be a group acting on X . Let F be a
G-equivariant vector bundle on X . Suppose that F is endowed with an isomorphism

�WV ˝OX ! F

for a C-linear space V . Then the factor of automorphy of the G-action on F with
respect to the trivialization � is the GL.V /-valued function on G �X defined by

j.g; x/ D ��1gx ı g ı �x W V ! Fx ! Fgx ! V

for g 2 G, x 2 X . Here the middle map is the equivariant action by g. If � is a
subgroup of G, a �-invariant section of F over X is identified via � with a V -valued
holomorphic function f on X satisfying f .
x/ D j.
; x/f .x/ for every 
 2 � and
x 2 X .

(6) We write e.z/D exp.2�iz/ for z 2 C=Z. We use the symbol H for the upper
half plane ¹� 2 C j Im.�/ > 0º.

Organization

The logical dependence between the chapters is as follows. A dotted arrow means
that the dependence is weak.

Section 4 Section 6

�� ''

Section 2 // Section 3 //

77

''

Section 5 //

77

��

Section 7 // Section 8 // Section 9

Section 10 // Section 11





Chapter 2

The two Hodge bundles

In this chapter we study some basic properties of the Hodge bundles L and E . In
Section 2.1 we recall basic facts on the Hermitian symmetric domains of type IV. The
Hodge line bundle L is well known, and we recall it in Section 2.2. In Sections 2.3
and 2.4 we study the second Hodge bundle E . In Section 2.5 we describe E and L in
the case n � 4 under the accidental isomorphisms.

2.1 The domain

Let L be a lattice of signature .2; n/. Let Q D QL be the isotropic quadric in PLC

defined by the equation .!;!/D 0 for ! 2LC . We express a point ofQ as Œ!�DC!.
The open set of Q defined by the inequality .!; x!/ > 0 has two connected compon-
ents. They are interchanged by the complex conjugation ! 7! x!. We choose one of
them and denote it by D D DL. This is the Hermitian symmetric domain attached
to L. In Cartan’s classification, D is a Hermitian symmetric domain of type IV. The
isotropic quadric Q is the compact dual of D . Points of D are in one-to-one corres-
pondence with positive-definite planes in LR, by associating

D 3 Œ!� 7! H! D hRe.!/; Im.!/i:

The choice of the component D determines orientation on the positive-definite planes.
Note that .Re.!/; Im.!//D 0 and .Re.!/;Re.!//D .Im.!/; Im.!// by the isotrop-
icity condition .!; !/ D 0.

We denote by OC.LR/ the index 2 subgroup of O.LR/ preserving the compon-
ent D . Then OC.LR/ consists of two connected components, the identity component
being

SOC.LR/ D OC.LR/ \ SO.LR/:

The stabilizer K of a point Œ!� 2 D in OC.LR/ is the same as the stabilizer of the
oriented plane H! , and is described as

K D SO.H!/ � O.H?! / ' SO.2;R/ � O.n;R/:

This is a maximal compact subgroup of OC.LR/. We have D ' OC.LR/=K. On the
other hand, as explained in (1.2), the stabilizer P of Œ!� in O.LC/ sits in the canonical
exact sequence

0! .!?=C!/˝C! ! P ! GL.C!/ � O.!?=C!/! 1:
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The reductive part

GL.C!/ � O.!?=C!/ ' C� � O.n;C/

is the complexification of K.
The domain D has two types of rational boundary components (cusps): 0-dimen-

sional and 1-dimensional cusps. The 0-dimensional cusps correspond to rational iso-
tropic lines in LQ, or equivalently, rank 1 primitive isotropic sublattices I of L. The
point pI D ŒIC� ofQ is in the closure of D , and this is the 0-dimensional cusp corres-
ponding to I . The 1-dimensional cusps correspond to rational isotropic planes in LQ,
or equivalently, rank 2 primitive isotropic sublattices J of L. Each such J determines
the line PJC on Q. If we remove PJR from PJC , then PJC � PJR consists of two
copies of the upper half plane, one in the closure of D . This component, say HJ , is
the 1-dimensional cusp corresponding to J . A 0-dimensional cusp pI is in the closure
of a 1-dimensional cusp HJ if and only if I � J .

Let OC.L/ D O.L/ \ OC.LR/ and � be a finite-index subgroup of OC.L/. By
Baily–Borel [3], the quotient space

F .�/bb D �n
�
D [

[
J

HJ [

[
I

pI

�
has the structure of a normal projective variety of dimension n. Here the union of D

and the cusps is equipped with the so-called Satake topology. In particular, the quo-
tient

F .�/ D �nD

is a normal quasi-projective variety. The variety F .�/bb is called the Baily–Borel
compactification of F .�/.

2.2 The Hodge line bundle

In this section we recall the first Hodge bundle. Let OQ.�1/ be the tautological line
bundle over Q � PLC . The Hodge line bundle over D is defined as

L D OQ.�1/jD :

This is an OC.LR/-invariant sub line bundle of LC ˝ OD . The fiber of L over
Œ!� 2D is the line C!. By definition L extends overQ naturally, and we sometimes
write L D OQ.�1/ when no confusion is likely to occur. A holomorphic section
of L˝k over D invariant under a finite-index subgroup of OC.L/ and holomorphic
at the cusps (in the sense explained later) is called a (scalar-valued) modular form of
weight k.
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The stabilizer K � OC.LR/ of a point Œ!� 2 D acts on the fiber LŒ!� of L as
the weight 1 character of SO.2;R/ � K. Therefore, if we denote by W ' C the
representation space of the weight 1 character of SO.2;R/, we have an OC.LR/-
equivariant isomorphism

L ' OC.LR/ �K LŒ!� ' OC.LR/ �K W:

Similarly, the extension OQ.�1/ overQ is the homogeneous line bundle correspond-
ing to the weight 1 character of C� � C� � O.n;C/.

A trivialization of L can be defined for each 0-dimensional cusp of D as follows.
Let I be a rank 1 primitive isotropic sublattice of L. For later use, it is useful to work
over the following enlargement of D :

D.I / D Q �Q \ PI?C :

This is a Zariski open set of Q containing D . Its complement Q \ PI?C is the cone
over the isotropic quadric in P .I?=I /C with vertex ŒIC�. If Œ!� 2 D.I /, the pairing
between IC and C! is nonzero. This defines an isomorphism C! ! I_C . Since C!
is the fiber of L D OQ.�1/ over Œ!�, by varying Œ!� we obtain an isomorphism

I_C ˝OD.I / ! L (2.1)

of line bundles on D.I /. We call this isomorphism the I -trivialization of L. This is
equivariant with respect to the stabilizer of IC in O.LC/. Over Q the I -trivialization
has pole of order 1 at the divisor Q \ PI?C , and hence extends to an isomorphism

I_C ˝OQ ! L.Q \ PI?C /:

In what follows, we work over D . We call the restriction of (2.1) to D the I -
trivialization of L too. If we choose a nonzero vector of I_C , it defines a nowhere
vanishing section of L via the I -trivialization. To be more specific, we choose a
vector l ¤ 0 2 I and let sl be the section of L corresponding to the dual vector of l .
This section is determined by the condition that the vector

sl.Œ!�/ 2 LŒ!� D C!

has pairing 1 with l . The factor of automorphy of the OC.LR/-action on L with
respect to the I -trivialization is a function on OC.LR/ �D which can be written as

j.g; Œ!�/ D
g � sl.Œ!�/

sl.Œg!�/
D
.g!; l/

.!; l/
; g 2 OC.LR/; Œ!� 2 D : (2.2)

This gives a more classical style of defining scalar-valued modular forms. Note that
if g acts trivially on IR, then j.g; Œ!�/ � 1.
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2.3 The second Hodge bundle

In this section we define the second Hodge bundle. We have a natural quadratic form
on the vector bundle LC ˝ OD . By the definition of Q, L is an isotropic sub line
bundle of LC ˝OD , so we have L � L?. The second Hodge bundle is defined by

E D L?=L:

This is an OC.LR/-equivariant vector bundle of rank n over D . The fiber of E over
Œ!� 2 D is !?=C!. The quadratic form on LC ˝ OD induces a nondegenerate
OC.LR/-invariant quadratic form on E . In other words, E is an orthogonal vector
bundle. In particular, we have E_ ' E . Since L is naturally defined on Q, E is also
naturally defined on Q. This is an O.LC/-equivariant vector bundle. By abuse of
notation, we often use the same notation E for this extended vector bundle.

The stabilizer K � OC.LR/ of a point Œ!� 2 D acts on the fiber EŒ!� of E as the
standard C-representation of O.n;R/ � K, because we have a natural isomorphism
H?! ˝R C ' !?=C!. Therefore, if we denote by V D Cn the standard representa-
tion space of O.n;C/, we have an OC.LR/-equivariant isomorphism

E ' OC.LR/ �K EŒ!� ' OC.LR/ �K V: (2.3)

Similarly, the extension of E overQ is the homogeneous vector bundle corresponding
to the standard representation of O.n;C/ � C� � O.n;C/.

We present some examples where E and L appear naturally.

Example 2.1. The “third” Hodge bundle .LC ˝ OD/=L
? is isomorphic to L�1 by

the natural pairing with L.

Example 2.2. The determinant line bundle det E D ^nE of E is isomorphic, as an
OC.LR/-equivariant bundle, to the line bundle det˝OD associated to the determin-
ant character detWOC.LR/! ¹˙1º of OC.LR/. Indeed, by Example 2.1, we have
the OC.LR/-equivariant isomorphism

det E ' det.LC ˝OD/˝L˝L�1 ' det.LC ˝OD/ ' det˝OD :

The line bundle det˝OD appears in the study of scalar-valued modular forms with
determinant character.

Example 2.3. Let TD and �1
D

be the tangent and cotangent bundles of D , respect-
ively. Then we have the canonical isomorphisms

TD ' E ˝L�1; �1D ' E ˝L: (2.4)

Indeed, by the Euler sequence for PLC , we have

TPLC ' OPLC .1/˝ ..LC ˝OPLC /=OPLC .�1//:
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As a sub vector bundle of TPLC jQ, we have

TQ ' OQ.1/˝ .OQ.�1/
?=OQ.�1// D L�1 ˝ E:

The isomorphism for �1Q is obtained by taking the dual.
Tautologically, the identity of D can be regarded as the period map

Œ!� 7! LŒ!�

for the universal variation 0�L�L? �LC ˝OD of Hodge structures on D . Then
the isomorphism TD ' L�1 ˝ E is nothing but the differential of this tautological
period map (cf. [46, Section 10.1]). By taking the adjunctions of

TD ' L�1 ˝ E;

we obtain the homomorphisms

L˝ TD

'
�! E; E ˝ TD ! L�1: (2.5)

These are familiar forms in the context of variation of Hodge structures. Here the
second homomorphism is given by the pairing on E:

E ˝ TD ' E ˝ E ˝L�1 ! L�1:

Example 2.4. Adjunctions of (2.5) induce the following complex of vector bundles
on D (the Koszul complex):

L! E ˝�1D ! L�1 ˝�2D : (2.6)

Here the second homomorphism is the composition

E ˝�1D ' L�1 ˝�1D ˝�
1
D

^
�! L�1 ˝�2D :

By (2.4), the Koszul complex is identified with the complex

L˝
�
OD ! E˝2

^
�! ^

2E
�
;

where OD ! E˝2 is the embedding defined by the quadratic form on E . This shows
that (2.6) is indeed a complex, and its middle cohomology sheaf is isomorphic to

.Sym2 E=OD/˝L ' E.2/ ˝L;

where E.2/ is the automorphic vector bundle associated to the representation
Sym2 Cn=C of O.n;C/ (see Section 3.2). The Koszul complex will be taken up in
Section 3.8.
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2.4 I-trivialization of the second Hodge bundle

In this section we define a trivialization of E associated to each 0-dimensional cusp.
This is the starting point of various later constructions.

Let I be a rank 1 primitive isotropic sublattice of L. The quadratic form on L
induces a hyperbolic quadratic form on the Z-module I?=I . We write

V.I /F D .I
?=I /˝Z F

for F DQ;R;C. This is a quadratic space over F . We especially abbreviate V.I /D
V.I /C . We consider the following sub vector bundle of LC ˝OD.I /:

I? \L? D .I?C ˝OD.I // \L?:

The fiber of I? \L? over Œ!� 2 D.I / is the subspace I?C \ !
? of LC . The projec-

tion L? ! E induces a homomorphism I? \ L? ! E , and the projection I?C !
V.I / induces a homomorphism I? \L? ! V.I /˝OD.I /.

Lemma 2.5. The homomorphisms I? \L? ! E and I? \L? ! V.I /˝ OD.I /

are isomorphisms. Therefore we obtain an isomorphism

V.I /˝OD.I / ! E (2.7)

of vector bundles on D.I /. This is equivariant with respect to the stabilizer of IC

in O.LC/, and preserves the quadratic forms on both sides.

Proof. At the fibers over a point Œ!� 2 D.I /, the two homomorphisms are given by
the linear maps I?C \ !

? ! !?=C! and I?C \ !
? ! .I?=I /C , respectively. The

source and the target have the same dimension (D n) for both maps, so it suffices
to check the injectivity of these two maps. This is equivalent to I?C \ C! D 0 and
!? \ IC D 0, respectively, and both follow from the nondegeneracy .IC;C!/ ¤ 0
for Œ!� 2 D.I /.

Since both I?C \ !
? ! !?=C! and I?C \ !

? ! .I?=I /C preserve the quad-
ratic forms, so does the composition

!?=C! ! .I?=I /C:

Hence (2.7) preserves the quadratic forms. The equivariance of (2.7) can be verified
similarly.

We call the isomorphism (2.7) and its restriction to D the I -trivialization of E .
This is a trivialization as an orthogonal vector bundle. See Claim 6.10 for the bound-
ary behavior of this isomorphism at a Zariski open set of the divisor Q \ PI?C .

For later use, we calculate the sections of E corresponding to vectors of V.I /. We
choose a vector l ¤ 0 of I and let sl be the corresponding section of L as defined in
Section 2.2.
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Lemma 2.6. Let v be a vector of V.I /. We define a section of I? \L? by

sv.Œ!�/ D Qv � . Qv; sl.Œ!�//l; Œ!� 2 D.I /;

where Qv 2 I?C is a lift of v 2 V.I / and we regard sl.Œ!�/ 2C! �LC . Then the image
of sv in E is the section of E which corresponds by the I -trivialization to the constant
section of V.I /˝OD.I / with value v.

Proof. It is straightforward to check that sv.Œ!�/ does not depend on the choice of the
lift Qv and that .sv.Œ!�/;!/D .sv.Œ!�/; l/D 0. Thus sv is indeed a section of I? \L?.
Since sv.Œ!�/ � Qv mod IC as a vector of I?C , the image of sv.Œ!�/ in V.I / is v. This
proves our assertion.

2.5 Accidental isomorphisms

When n � 4, orthogonal modular varieties are isomorphic to other types of clas-
sical modular varieties by the so-called accidental isomorphisms. In this section we
explain how the second Hodge bundle E in n � 4 is translated under the accidental
isomorphism. (This is well known for L; we also include it for completeness.) This
correspondence is the basis of comparing vector-valued orthogonal modular forms
in n D 3; 4 with vector-valued Siegel and Hermitian modular forms, respectively.
We explain the translation from both algebro-geometric and representation-theoretic
viewpoints. Since the contents of this section will be used only sporadically in the
rest of this memoir, the reader may skip it for the moment.

2.5.1 Modular curves

When nD 1, the accidental isomorphism between the real Lie groups is PSL.2;R/'
SOC.1; 2/. Its complexification is the isomorphism PSL.2;C/' SO.3;C/. This lifts
to SL.2;C/ ' Spin.3;C/. The isomorphism between the compact duals is provided
by the anti-canonical embedding P1 ,! P2 of P1, which maps P1 to a conicQ� P2.
This gives an isomorphism between the upper half plane and the type IV domain in
n D 1. The line bundle L D OQ.�1/ on Q is identified with OP1.�2/ on P1. This
means that orthogonal modular forms of weight k correspond to elliptic modular
forms of weight 2k.

The reductive part of a standard parabolic subgroup of SL.2;C/ is the 1-dimen-
sional torus T consisting of diagonal matrices

�
˛ 0
0 ˛�1

�
of determinant 1. The corres-

ponding group in PSL.2;C/ is T= � 1. The weight 2 character ˛ 7! ˛2 of T defines
an isomorphism T= � 1 ' C�. This explains OQ.�1/ ' OP1.�2/ from representa-
tion theory.
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The full orthogonal group O.3;C/ is SO.3;C/ � ¹˙ idº. By Example 2.2, the
second Hodge bundle E is the line bundle associated to the determinant character
detWO.3;C/! ¹˙1º. This is nontrivial as an O.3;C/-line bundle, but trivial as an
SO.3;C/-line bundle. Therefore E cannot be detected at the side of SL.2;C/.

2.5.2 Hilbert modular surfaces

When n D 2, the accidental isomorphism between the real Lie groups is

SL.2;R/ � SL.2;R/=.�1;�1/ ' SOC.2; 2/:

Its complexification is

SL.2;C/ � SL.2;C/=.�1;�1/ ' SO.4;C/:

This lifts to SL.2;C/ � SL.2;C/ ' Spin.4;C/. The isomorphism between the com-
pact duals is provided by the Segre embedding P1 � P1 ,! P3 of P1 � P1, which
maps P1 � P1 to a quadric surface Q � P3. This gives an isomorphism between the
product of two upper half planes and the type IV domain in n D 2. Since the Segre
embedding is defined by OP1�P1.1; 1/, the Hodge line bundle L D OQ.�1/ on Q
is identified with OP1�P1.�1;�1/ on P1 � P1. This means that orthogonal modular
forms of weight k correspond to Hilbert modular forms of weight .k; k/.

We explain the representation-theoretic aspect. The reductive part of a standard
parabolic subgroup of SL.2;C/ � SL.2;C/ is the 2-dimensional torus T1 � T2 con-
sisting of pairs .˛;ˇ/ of diagonal matrices in each SL.2;C/. The corresponding group
in SL.2;C/ � SL.2;C/=.�1;�1/ is T1 � T2=.�1;�1/. We have natural isomorph-
isms

T1 � T2=.�1;�1/ ' C� �C� ' C� � SO.2;C/; (2.8)

where the first isomorphism is induced by

T1 � T2 ! C� �C�; .˛; ˇ/ 7! .˛ˇ; ˛�1ˇ/:

This is the isomorphism between the reductive parts of standard parabolic subgroups
of SL.2;C/ � SL.2;C/=.�1;�1/ and SO.4;C/. The pullback of the weight 1 char-
acter of C� � C� � SO.2;C/ to T1 � T2 by (2.8) is the tensor product �1 � �2 of
the weight 1 characters �1, �2 of T1, T2. This explains OQ.�1/ ' OP1�P1.�1;�1/

from representation theory.
The second Hodge bundle E is described as follows.

Lemma 2.7. We have an O.4;C/-equivariant isomorphism

E ' OP1�P1.�1; 1/˚OP1�P1.1;�1/: (2.9)
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Proof. Let �i WP1 � P1 ! P1 be the i -th projection. Then

�1P1�P1 ' �
�
1�

1
P1 ˚ �

�
2�

1
P1 ' OP1�P1.�2; 0/˚OP1�P1.0;�2/:

By (2.4) and L�1 ' OP1�P1.1; 1/, we have

E ' �1P1�P1 ˝OP1�P1.1; 1/ ' OP1�P1.�1; 1/˚OP1�P1.1;�1/:

This proves (2.9).

Note that O.4;C/ is the semi-product S2 Ë SO.4;C/, where S2 switches the
two SL.2;C/. This involution switches the two rulings ofQ ' P1 � P1, and acts on
the right-hand side of (2.9) by switching the two components.

At the level of representations, the isomorphism (2.9) comes from the follow-
ing correspondence. Let � be the weight 1 character of SO.2;C/ ' C�. The 2-
dimensional standard representation of SO.2;C/ is �˚ ��1. The pullback of � to
T1 � T2 by (2.8) is the character ��11 � �2. Hence the pullback of the standard rep-
resentation of SO.2;C/ to T1 � T2 is .��11 � �2/˚ .�1 � ��12 /. This explains (2.9)
from representation theory.

By Lemma 2.7, a general automorphic vector bundle E�;k onQ decomposes into
a direct sum of various line bundles OP1�P1.a; b/. This means that vector-valued
orthogonal modular forms in n D 2 decompose into tuples of scalar-valued Hilbert
modular forms of various weights, so we have nothing new here.

2.5.3 Siegel modular 3-folds

When n D 3, the accidental isomorphism between the real Lie groups is

PSp.4;R/ ' SOC.2; 3/:

Its complexification is PSp.4;C/ ' SO.5;C/, which lifts to Sp.4;C/ ' Spin.5;C/.
The isomorphism between the compact duals is provided by the Plücker embedding
LG.2; 4/ ,! PV D P4 of the Lagrangian Grassmannian LG.2; 4/. Here V is the 5-
dimensional irreducible representation of Sp.4;C/ appearing in ^2C4. The Plücker
embedding maps LG.2; 4/ to a 3-dimensional quadric Q � P4, and hence gives an
isomorphism between the Siegel upper half space of genus 2 and the type IV domain
in n D 3.

Let F be the rank 2 universal sub vector bundle over LG.2; 4/. (This is the
weight 1 Hodge bundle for Siegel modular 3-folds.) Since the Plücker embedding
is defined by OLG.1/ D det F _, the Hodge line bundle L D OQ.�1/ on Q is identi-
fied with det F on LG.2; 4/. This means that orthogonal modular forms of weight k
correspond to Siegel modular forms of weight k.
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We explain the representation-theoretic aspect. The reductive part of a standard
parabolic subgroup of Sp.4;C/ is isomorphic to GL.2;C/. The corresponding group
in PSp.4;C/ is GL.2;C/= � 1. We have a natural isomorphism

GL.2;C/= � 1 ' C� � PGL.2;C/ ' C� � SO.3;C/; (2.10)

where GL.2;C/ ! C� in the first isomorphism is the determinant character, and
PGL.2;C/ ' SO.3;C/ in the second isomorphism is the accidental isomorphism in
n D 1. This gives the isomorphism between the reductive parts of standard parabolic
subgroups of PSp.4;C/ and SO.5;C/. By construction, the pullback of the weight 1
character of C� to GL.2;C/ by (2.10) is the determinant character of GL.2;C/. This
explains L ' det F from representation theory.

The second Hodge bundle E is described as follows.

Lemma 2.8. We have an SO.5;C/-equivariant isomorphism

E ' Sym2 F ˝L�1: (2.11)

Proof. It is known (see, e.g., [44, Section 14]) that we have an Sp.4;C/-equivariant
isomorphism

�1LG ' Sym2 F :

Then (2.11) follows from the isomorphism E ' �1LG ˝L�1 in (2.4).

Note that F is not SO.5;C/-linearized but Sym2 F is. At the level of repres-
entations, the isomorphism (2.11) comes from the following fact: the symmetric
square of the standard representation of GL.2;C/, when viewed as a representation
of C� � SO.3;C/ via (2.10), is isomorphic to the tensor product of the weight 1
character of C� and the standard representation of SO.3;C/.

The full orthogonal group O.5;C/ is SO.5;C/ � ¹˙ idº. As an O.5;C/-vector
bundle, we have

E ' Sym2 F ˝L�1 ˝ det :

The twist by det cannot be detected at the side of Sp.4;C/.

2.5.4 Hermitian modular 4-folds

When n D 4, the accidental isomorphism between the real Lie groups is

SU.2; 2/= � 1 ' SOC.2; 4/:

The complexification is SL.4;C/= � 1 ' SO.6;C/. This lifts to

SL.4;C/ ' Spin.6;C/:
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The isomorphism between the compact duals is provided by the Plücker embedding
G.2; 4/ ,! P .^2C4/ D P5 of the Grassmannian G.2; 4/. This maps G.2; 4/ to a
4-dimensional quadric Q � P5, and gives an isomorphism between the Hermitian
upper half space of degree 2 and the type IV domain in n D 4.

The reductive part of a standard parabolic subgroup of SL.4;C/ is the group

G D

²�
g1 0

0 g2

� ˇ̌̌̌
g1; g2 2 GL.2;C/; detg2 D detg�11

³
:

The corresponding group in SL.4;C/=� 1 isG=� 1. We have a natural isomorphism

G= � 1 ' C� � .SL.2;C/ � SL.2;C/=.�1;�1// ' C� � SO.4;C/: (2.12)

Here the first isomorphism sends .g1; g2/ 2 G to .det g1;˙˛�1g1;˙˛g2/, where
˛ is one of the square roots of det g1, and the second isomorphism is given by the
accidental isomorphism in n D 2. This is the isomorphism between the reductive
parts of standard parabolic subgroups of SL.4;C/= � 1 and SO.6;C/.

Let F , G be the universal sub and quotient vector bundles on G.2; 4/, respect-
ively. Since the Plücker embedding is defined by OG.2;4/.1/D detG D .detF /�1, the
Hodge line bundle L D OQ.�1/ is isomorphic to det F . Thus orthogonal modular
forms of weight k correspond to Hermitian modular forms of weight k. At the level
of representations, this comes from the fact that the pullback of the weight 1 character
of C� to G by (2.12) is the character of G given by .g1; g2/ 7! detg1.

The second Hodge bundle E is described as follows.

Lemma 2.9. We have an SO.6;C/-equivariant isomorphism

E ' F ˝ G : (2.13)

Proof. We have a canonical isomorphism TG.2;4/ ' F _˝ G . The natural symplectic
form F ˝F ! detF induces an isomorphism F _'F ˝L�1. Therefore, by (2.4),
we have

E ' TG.2;4/ ˝L ' F _ ˝ G ˝L ' F ˝ G :

This proves (2.13).

Note that each F , G is not SO.6;C/-linearized, but F ˝ G is. At the level of
representations, the isomorphism (2.13) comes from the following correspondence.
Let Vi , i D 1; 2, be the representation of G obtained as the pullback of the standard
representation of GL.2;C/ by the i -th projection G ! GL.2;C/, .g1; g2/ 7! gi .
Then V1, V2 correspond to the homogeneous vector bundles F , G , respectively.
Each V1, V2 is not a representation of G= � 1, but V1 ˝ V2 is. Then, as a repres-
entation of C� � .SL.2;C/2=.�1;�1// via the first isomorphism in (2.12), V1 ˝ V2
is isomorphic to the external tensor product of the standard representations of the



The two Hodge bundles 24

two SL.2;C/ (with weight 0 on C�). This in turn is the standard representation of
SO.4;C/ via the second isomorphism in (2.12). This explains the isomorphism (2.13)
from representation theory.

Finally, O.6;C/ is the semi-product S2 Ë SO.6;C/, where S2 D h�i acts on
G.2; 4/ by the following involution: choose a symplectic form on C4 (say the stand-
ard one), and sends 2-dimensional subspaces W � C4 to W ? � C4. This involution
exchanges the two P3-families of planes on G.2; 4/ D Q. (This is essentially the
involution Z 7! Z0 in [17, Section 1] on the Hermitian upper half space.) The invol-
ution � acts on the vector bundle F ˝ G ' F _ ˝ G_ by ��F ' G_ and ��G ' F _.
Then (2.13) is an O.6;C/-equivariant isomorphism.



Chapter 3

Vector-valued modular forms

In this chapter we define vector-valued orthogonal modular forms (Section 3.2) and
explain their Fourier expansions at 0-dimensional cusps (Sections 3.3–3.5). These
are the most fundamental parts of this memoir. The rest of this chapter (Sections 3.6–
3.8) is devoted to supplementary materials: the passage from O to SO, an example of
explicit construction, and an interaction with algebraic cycles.

3.1 Representations of O.n; C/

We begin by recollection of some basic facts from the representation theory for
O.n;C/. Our main reference for representation theory is [38, Section 8] (whose
main contents are more or less covered by [18, Section 19] and [19, Sections 5.5.5
and 10.2]). In what follows and in Section 3.6, all representations are assumed to be
finite dimensional over C.

Irreducible representations of O.n;C/ are labelled by partitions

� D .�1 � � � � � �n � 0/

such that t�1C t�2� n, where t� is the transpose of �. The irreducible representation
corresponding to such a partition � is constructed as follows. Let V D Cn be the
standard representation of O.n;C/. Let d D j�j D

P
i �i be the size of �. We denote

by V Œd� the intersection of the kernels of the contraction maps

V ˝d ! V ˝d�2

for all pairs of indices. Vectors in V Œd� are called traceless tensors or harmonic
tensors in the literature. The symmetric group Sd acts on V ˝d naturally and pre-
serves V Œd�. Let T D T #

�
be the column canonical tableau on � (namely, 1; 2; : : : ; t�1

on the first column, t�1 C 1; : : : ; t�1 C t�2 on the second column, : : : ). Let c� D
b�a� 2 CSd be the Young symmetrizer associated to T , where

a� D
X
�2HT

�; b� D
X
�2VT

sgn.�/�

as usual. (HT and VT are the row and the column Young subgroups of Sd for the
tableau T , respectively.) We apply the orthogonal Schur functor for � to V :

V� D c� � V
Œd�
D V Œd� \ .c� � V

˝d /:
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This space V� is the irreducible representation of O.n;C/ labelled by the partition �.
Since b� maps V ˝d to ^

t�1V ˝ � � � ˝ ^
t��1V , we have

V� � ^
t�1V ˝ � � � ˝ ^

t��1V � V ˝d : (3.1)

If we take a basis e1; : : : ; en of V such that .ei ; ej / D 1 when i C j D nC 1 and
.ei ; ej / D 0 otherwise, V� especially contains the vector

.e1 ^ � � � ^ et�1/˝ .e1 ^ � � � ^ et�2/˝ � � � ˝ .e1 ^ � � � ^ et��1
/ (3.2)

(see [38, Section 8.3.1]).

Example 3.1. (1) The exterior tensor ^dV for 0� d � n corresponds to the partition
� D .1d / D .1; : : : ; 1/. By abuse of notation, we sometimes write � D 1; St;^d ; det
instead of � D .0/; .1/; .1d /; .1n/, respectively.

(2) The symmetric tensor Symd V is reducible and decomposes as

Symd V D V.d/ ˚ Symd�2 V D � � �

D V.d/ ˚ V.d�2/ ˚ � � � ˚ V.1/ or .0/:

Geometrically, V.d/ is the cohomology H 0.OQn�2.d// for the isotropic quadric

Qn�2 � PV

of dimension n � 2.

3.2 Automorphic vector bundles

In this section we define automorphic vector bundles and vector-valued modular
forms. Let L be a lattice of signature .2; n/. For simplicity of exposition we assume
n� 3 so that the Koecher principle holds. (This assumption can be somewhat justified
by our calculation of E in the case n � 2 in Section 2.5.) Let � D .�1 � � � � � �n/ be
a partition as in Section 3.1 and let d D j�j. Recall that the second Hodge bundle E

is endowed with a canonical quadratic form. Let E Œd� � E˝d be the intersection
of the kernels of the contractions E˝d ! E˝d�2 for all pairs of indices. The fibers
of E Œd� consist of traceless tensors in the fibers of E˝d . The symmetric group Sd acts
on E˝d fiberwise and preserves E Œd�. We define the vector bundle E� by applying the
orthogonal Schur functor for � relatively to E:

E� D c� � E
Œd�
D E Œd� \ .c� � E

˝d /:

By construction E� is a sub vector bundle of E˝d , naturally defined over Q and is
O.LC/-invariant.
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Let I be a rank 1 primitive isotropic sublattice of L. Recall from Section 2.4 that
we have the I -trivialization E ' V.I /˝ OD.I / over D.I / D Q �Q \ PI?C . Let
V.I /� be the irreducible representation of O.V .I // ' O.n;C/ obtained by applying
the orthogonal Schur functor for � to V.I /. Since the I -trivialization of E preserves
the quadratic forms, it induces an isomorphism

E� ' V.I /� ˝OD.I /

over D.I /. We call this isomorphism the I -trivialization of E�.
Next for k 2 Z we consider the tensor product

E�;k D E� ˝L˝k :

This is an O.LC/-equivariant vector bundle on Q. If we write

V.I /�;k D V.I /� ˝ .I
_
C /
˝k;

the I -trivializations of E� and L˝k induce an isomorphism

E�;k ' V.I /�;k ˝OD.I /

over D.I /. This is equivariant with respect to the stabilizer of IC in O.LC/. We call
this isomorphism the I -trivialization of E�;k .

In what follows, we work over D . We use the same notations E�, E�;k for the
restriction of E�, E�;k to D . These are OC.LR/-equivariant vector bundles on D .
Like (2.3), we have an OC.LR/-equivariant isomorphism

E� ' OC.LR/ �K .E�/Œ!� ' OC.LR/ �K V�; (3.3)

where K is the stabilizer of Œ!� in OC.LR/. The I -trivialization of E�;k is defined
over D . Let j.g; Œ!�/ be the factor of automorphy for the OC.LR/-action on E�;k
with respect to the I -trivialization. This is a GL.V .I /�;k/-valued function on
OC.LR/ �D . Since the I -trivialization is equivariant with respect to the stabilizer
of IR in OC.LR/, we especially have the following.

Lemma 3.2. When g 2 OC.LR/ stabilizes IR, the value of j.g; Œ!�/ is constant
over D , given by the natural action of g on V.I /�;k .

Now let � be a finite-index subgroup of OC.L/. We call a �-invariant holo-
morphic section of E�;k over D a modular form of weight .�; k/ with respect to � .
By the I -trivialization, a modular form of weight .�; k/ is identified with a V.I /�;k-
valued holomorphic function f on D such that

f .
Œ!�/ D j.
; Œ!�/f .Œ!�/
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for every 
 2 � and Œ!� 2 D . We denote by M�;k.�/ the space of modular forms
of weight .�; k/ with respect to � . When � D .0/, we especially write M.0/;k.�/ D

Mk.�/ as usual.
When � id 2 � , the weight .�; k/ satisfies a parity condition. We state it in a

slightly generalized form.

Lemma 3.3. Let Œ!� 2 D and �Œ!� be the stabilizer of Œ!� in � . The value of a
�-modular form of weight .�; k/ at Œ!� is contained in the �Œ!�-invariant part of
.E�;k/Œ!�. In particular, when � id 2 � and k C j�j is odd, we have

M�;k.�/ D 0:

Proof. The first assertion follows from the �Œ!�-invariance of the section. As for the
second assertion, we note that � id acts on both L and E as the scalar multiplication
by �1. Since E� is a sub vector bundle of E˝j�j, � id acts on E�;k as the scalar
multiplication by .�1/kCj�j. Therefore, when k C j�j is odd, � id has no nonzero
invariant part in every fiber of E�;k .

Product of vector-valued modular forms can be given as follows. Suppose that we
have a nonzero O.n;C/-homomorphism

' W V�1 ˝ V�2 ! V�3 (3.4)

for partitions �1, �2, �3 for O.n;C/. This uniquely induces an OC.LR/-equivariant
homomorphism

' W E�1;k1 ˝ E�2;k2 ! E�3;k1Ck2 :

If f1, f2 are �-modular forms of weight .�1; k1/, .�2; k2/, respectively, then

f1 �' f2 WD '.f1 ˝ f2/

is a �-modular form of weight .�3; k1 C k2/. This is the “'-product” of f1 and f2.
Note that a homomorphism (3.4) exists exactly when V�3 appears in the irreducible
decomposition of V�1 ˝V�2 , and it is unique up to constant when the multiplicity is 1.
This information can be read off from the Littlewood–Richardson numbers [29, 31],
see also [38, Section 12].

The map (3.4) also uniquely induces an O.V .I //-homomorphism

'I W V.I /�1;k1 ˝ V.I /�2;k2 ! V.I /�3;k1Ck2 : (3.5)

If we denote by � the relevant I -trivialization maps, then we have

�.f1/ �'I �.f2/ D �.f1 �' f2/: (3.6)

In this sense, '-product and I -trivialization are compatible.
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It will be useful to know how orthogonal weights .�; k/ in n D 3; 4 are trans-
lated by the accidental isomorphisms. For simplicity we assume t�1 < n=2, namely,
t�1 D 1. See Section 3.6 for some justification of this assumption. (There is no essen-
tial loss of generality when n D 3.) Henceforth we write � D .d/ with d a natural
number.

Example 3.4. Let n D 3. Let F be the rank 2 Hodge bundle considered in Sec-
tion 2.5.3. Automorphic vector bundles on Siegel modular 3-folds can be expressed
as Symj F ˝L˝l with j 2 Z�0 and l 2 Z. In the literature this is often referred to
as weight .Symj ; detl/. This corresponds to the highest weight .�1; �2/ D .j C l; l/
of GL.2;C/. When j D 2d is even, we have

Sym2d F ' .Sym2 F /.d/ ' E.d/ ˝L˝d

by Lemma 2.8. Therefore

Sym2d F ˝L˝l ' E.d/ ˝L˝lCd :

Thus we have the following correspondence of weights:

orthogonal weight ..d/; k/

$ Siegel weight .Symj ; detl/ with .j; l/ D .2d; k � d/

$ GL.2;C/-weight .�1; �2/ D .k C d; k � d/

Example 3.5. Let n D 4. Let F and G be the rank 2 Hodge bundles considered
in Section 2.5.4. Automorphic vector bundles on Hermitian modular 4-folds can be
expressed as

L˝k ˝ Symj1 F ˝ Symj2 G ; k 2 Z; j1; j2 2 Z�0: (3.7)

On the other hand, in [17, Section 2], weights of vector-valued Hermitian modular
forms of degree 2 are expressed as .r;�1� �2/, where r 2Z and �1, �2 are symmetric
tensors of the standard representation of GL.2;C/. (We are working with SU.2; 2/
rather than U.2; 2/, and we do not consider twist by a character as in [17].) Then L

corresponds to the weight r D 1, F corresponds to the weight �1 D St, and

L˝ G ' G_ ' ��F

corresponds to the weight �2 D St. Thus the vector bundle (3.7) corresponds to the
Hermitian weight .r; �1 � �2/ with r D k � j2, �1 D Symj1 and �2 D Symj2 .

Now, by Lemma 2.9, we have

E.d/ ' Symd F ˝ Symd G :
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Therefore the weights correspond as follows:

orthogonal weight ..d/; k/

$ Hermitian weight .k � d;Symd �Symd /

In [17, Sections 3 and 4], some examples in the case d D 1 are studied in detail.

3.3 Tube domain realization

In this section we recall the tube domain realization of D associated to a 0-dimen-
sional cusp. We refer the reader to [21, 33, 35] for some more details. This section is
preliminaries for the Fourier expansion (Section 3.4).

We choose a rank 1 primitive isotropic sublattice I of L, which is fixed through-
out Sections 3.3–3.5. Recall that this corresponds to the 0-dimensional cusp ŒIC�

of D . The Z-module .I?=I /˝Z I is canonically endowed with the structure of a
hyperbolic lattice, from the quadratic form on I?=I and the standard quadratic form
I � I ! I˝2 ' Z on I in which the generators of I have norm 1. For F DQ;R;C
we write

U.I /F D .I
?=I /F ˝F IF D V.I /F ˝F IF :

This is a quadratic space over F , hyperbolic when F D Q;R.

3.3.1 Tube domain realization

The linear projection PLC Ü P .L=I /C from the point ŒIC� 2 Q defines an iso-
morphism

D.I /! P .L=I /C � PV.I /: (3.8)

We choose, as an auxiliary data, a rank 1 sublattice I 0 � L such that .I; I 0/ ¤ 0.
This determines a base point of the affine space P .L=I /C � PV.I / and hence an
isomorphism

P .L=I /C � PV.I /! V.I /˝C IC D U.I /C: (3.9)

Since the quadratic form on U.I /R is hyperbolic, the set of vectors v 2 U.I /R with
.v; v/ > 0 consists of two connected components. The choice of the component D

determines one of them, which we denote by CI (the positive cone). Let

DI D ¹Z 2 U.I /C j Im.Z/ 2 CI º

be the tube domain associated to CI . Then the composition of (3.8) and (3.9) gives
an isomorphism

D
'
�! DI � U.I /C: (3.10)

This is the tube domain realization of D associated to I . If we change I 0, this iso-
morphism is shifted by the translation by a vector of U.I /Q.



Tube domain realization 31

3.3.2 Stabilizer

Next we recall the structure of the stabilizer of the I -cusp. Let F DQ;R. We denote
by �.I /F the stabilizer of I in OC.LF / (not the stabilizer of IF ). Elements of �.I /F
act on U.I /F as isometries. Let OC.U.I /F / be the subgroup of O.U.I /F / pre-
serving the positive cone CI . By (1.2), �.I /F sits in the canonical exact sequence

0! U.I /F ! �.I /F ! OC.U.I /F / � GL.I /! 1: (3.11)

Here the subgroup U.I /F consists of the Eichler transvections of LF with respect
to the isotropic line IF . The adjoint action of �.I /F on U.I /F via (3.11) coincides
with the natural action of �.I /F on .I?=I /F ˝ IF .

The choice of I 0 determines the lift V.I /F ' .IF ˚ I 0F /
? of V.I /F in I?F , and

thus a splitting LF ' UF ˚ V.I /F . This determines a section of (3.11)

OC.U.I /F / � GL.I / ,! �.I /F ;

by letting OC.U.I /F / ' OC.V .I /F / act on the lifted component V.I /F � LF and
mapping GL.I / D ¹˙1º to ¹˙ idº. In this way, from the choice of I 0, we obtain a
splitting of (3.11):

�.I /F ' .OC.U.I /F / � GL.I // Ë U.I /F ; (3.12)

where OC.U.I /F / acts on U.I /F in the natural way and GL.I / acts on U.I /F
trivially. This splitting is compatible with the tube domain realization in the following
sense. We translate the �.I /F -action on D to action of �.I /F on DI via the tube
domain realization (3.10) defined by (the same) I 0. Then,

• the unipotent radical U.I /F � �.I /F acts on DI as the translation by U.I /F
on U.I /C ,

• the lifted group OC.U.I /F / in (3.12) acts on DI by its linear action on U.I /C ,

• the lifted group GL.I / D ¹˙ idº acts trivially.

Now let � be a finite-index subgroup of OC.L/. We write

�.I /Z D �.I /Q \ �; U.I /Z D U.I /Q \ �; �.I /Z D �.I /Z=U.I /Z:

The group �.I /Z is the stabilizer of I in � . The exact sequence

0! U.I /Z ! �.I /Z ! �.I /Z ! 1 (3.13)

is naturally embedded in (3.11). The group U.I /Z is a full lattice in U.I /Q. It defines
the algebraic torus

T .I / D U.I /C=U.I /Z:
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Then the tube domain realization (3.10) induces an isomorphism

D=U.I /Z
'
�! DI=U.I /Z � T .I /:

The group �.I /Z acts on D=U.I /Z'DI=U.I /Z. Let x
 2 �.I /Z and let 
 2 �.I /Z
be its lift. According to the splitting (3.12), we express 
 as


 D .
1; "; ˛/; 
1 2 OC.U.I /Z/; " D ˙ id; ˛ 2 U.I /Q: (3.14)

Here 
1, a priori an element of OC.U.I /Q/, is contained in OC.U.I /Z/ because
the adjoint action of �.I /Z on U.I /Q preserves the lattice U.I /Z. Then the action
of x
 on DI=U.I /Z is given by the linear action by 
1 plus the translation by Œ˛� 2
U.I /Q=U.I /Z. Note that x
 is determined by .
1; "/ because the projection

�.I /Z ! OC.U.I /Q/ � GL.I /

is injective. Nevertheless, the translation component Œ˛� could be nontrivial because
(3.13) may not necessarily split.

3.4 Fourier expansion

Let I and I 0 be as in Section 3.3. Let f be a modular form of weight .�; k/ on D

with respect to a finite-index subgroup � of OC.L/. By the I -trivialization E�;k '

V.I /�;k ˝OD and the tube domain realization D 'DI , we regard f as a V.I /�;k-
valued holomorphic function on the tube domain DI (again denoted by f ). The
subgroup U.I /Z of �.I /Z acts on DI by translation, and acts on V.I /�;k trivially.
By Lemma 3.2, this shows that the function f is invariant under the translation by
the lattice U.I /Z. Therefore it admits a Fourier expansion of the form

f .Z/ D
X

l2U.I/_Z

a.l/ql ; ql D e..l; Z//;

forZ 2DI , where a.l/ 2 V.I /�;k and U.I /_Z � U.I /Q is the dual lattice of U.I /Z.
This series is convergent when Im.Z/ is sufficiently large. The Fourier coefficients
a.l/ can be expressed as

a.l/ D

Z
U.I/R=U.I/Z

f .Z0 C v/e.�.Z0 C v; l//dv; (3.15)

where dv is the flat volume form on U.I /R normalized so that U.I /R=U.I /Z has
volume 1.

The Koecher principle says that we have a.l/ ¤ 0 only when l is in the closure
of the positive cone CI , which is the dual cone of CI . See, e.g., [44, p. 191] for a



Fourier expansion 33

proof of the Koecher principle in the vector-valued Siegel modular case. The present
case can be proved similarly by using (3.15) and Proposition 3.6 below. See also [8,
Proposition 4.15] for the scalar-valued case. In general, when n � 2, the condition
a.l/ ¤ 0) l 2 CI is the holomorphicity condition required around the I -cusp.

The modular form f is called a cusp form if a.l/ ¤ 0 only when l 2 CI at every
0-dimensional cusp I . We denote by

S�;k.�/ �M�;k.�/

the subspace of cusp forms.
It should be noted that the Fourier expansion depends on the choice of I 0. If

we change I 0, the tube domain realization is shifted by the translation by a vector
of U.I /Q, say v0. Then we need to replace f .Z/ by f .Z C v0/, and the Fourier
coefficient a.l/ is replaced by e..l; v0// � a.l/. In what follows, when we speak of
Fourier expansion at the I -cusp, the choice of I 0 (and hence of the tube domain
realization D ! DI ) is subsumed.

The Fourier coefficients satisfy the following symmetry under �.I /Z.

Proposition 3.6. Let x
 2 �.I /Z. Let 
 D .
1; "; ˛/ be its lift in �.I /Z expressed as
in (3.14). Then we have

a.
1l/ D e.�.
1l; ˛// � 
.a.l// (3.16)

for every l 2 U.I /_Z.

Proof. By Lemma 3.2, the factor of automorphy for 
 is given by its natural action
on V.I /�;k . Therefore we have

f .
.Z// D 
.f .Z//; Z 2 DI ;

where 
 acts on DI via the tube domain realization D 'DI . We compute the Fourier
expansion of both sides. Since 
.Z/ D 
1Z C ˛, we have

f .
.Z// D
X
l

a.l/e..l; 
1Z C ˛//

D

X
l

a.l/e..l; ˛//e..
�11 l; Z//

D

X
l

a.
1l/e..
1l; ˛//e..l; Z//:

In the last equality we rewrote l as 
1l . Comparing this with


.f .Z// D
X
l


.a.l//e..l; Z//;

we obtain 
.a.l// D e..
1l; ˛//a.
1l/.
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In the right-hand side of (3.16), the action of 
 on a.l/ 2 V.I /�;k is determined
by .
1; "/. More precisely, 
 acts on IC by " 2 ¹˙1º, and on V.I / D U.I /C ˝ I_C
by 
1 ˝ ".

Proposition 3.6 implies the vanishing of the constant term a.0/ in most cases.

Proposition 3.7. Assume that � ¤ 1; det. Then a.0/ D 0.

Proof. We apply Proposition 3.6 to l D 0 and elements x
 in the subgroup

¹x
 2 �.I /Z j " D 1; det 
1 D 1º (3.17)

of �.I /Z. By trivializing I ' Z, we identify V.I /�;k with V.I /�. We also identify
SO.U.I /Q/ with SO.V .I /Q/ naturally. Then elements x
 of the group (3.17) act
on V.I /�;k by the action of 
1 2 SO.V .I /Q/ on V.I /�. Therefore, by Proposi-
tion 3.6, we find that a.0/D 
1.a.0//2 V.I /� for every such x
 . The mapping x
 7! 
1
embeds the group (3.17) into SO.V .I /Q/, and the image is an arithmetic subgroup of
SO.V .I /Q/. By the density theorem of Borel [7] (see also [41, Corollary 5.15]), it is
Zariski dense in SO.V .I //. Therefore the vector a.0/ 2 V.I /� is invariant under the
action of SO.V .I // on V.I /�. However, by our assumption �¤ 1;det, the SO.n;C/-
representation V� contains no nonzero invariant vector (cf. Section 3.6). Therefore
a.0/ D 0.

Remark 3.8. Since V.I /C and IC have the natural Q-structures V.I /Q and IQ,
respectively, the C-linear space V.I /�;k has the natural Q-structure

V.I /Q;� ˝ .I
_
Q/
˝k;

where V.I /Q;� D c� � V.I /
Œd�
Q is the Q-representation of O.V .I /Q/ obtained by

applying the orthogonal Schur functor to V.I /Q. Thus we can speak of rationality
and algebraicity of the Fourier coefficients a.l/. (Rationality depends on the choice
of I 0, but algebraicity does not because the transition constant e..l; v0// is a root
of unity.) When the homomorphism 'I in (3.5) is defined over Q, the '-product of
two modular forms with rational Fourier coefficients at the I -cusp again has rational
Fourier coefficients by (3.6).

3.5 Geometry of Fourier expansion

Let I and I 0 be as in Sections 3.3 and 3.4. In this section we recall the partial toroidal
compactifications of D=U.I /Z following [2] and explain the Fourier expansion from
that point of view.
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3.5.1 Partial toroidal compactification

We write X.I / D D=U.I /Z. The tube domain realization identifies X.I / with the
open set DI=U.I /Z of the torus T .I /. Let

CCI D CI [
[
v

R�0v

be the union of the positive cone CI and the rays R�0v generated by rational isotropic
vectors v in CI . Let †I D .�˛/ be a rational polyhedral cone decomposition of CCI ,
namely, a fan in U.I /R whose support is CCI . Note that every rational isotropic ray
in CCI must be included in†I . We will often abbreviate†I D†when I is clear from
the context. The fan† is said to be �.I /Z-admissible if it is preserved by the �.I /Z-
action on U.I /R and there are only finitely many cones up to the �.I /Z-action. The
fan † is called regular if each cone �˛ is generated by a part of a Z-basis of U.I /Z.
It is possible to choose † to be �.I /Z-admissible and regular [2, 14].

Let† be a �.I /Z-admissible fan. It determines a �.I /Z-equivariant torus embed-
ding T .I / ,! T .I /†. The toric variety T .I /† is normal; it is nonsingular if † is
regular. The cones � in † correspond to the boundary strata of T .I /†, say �� . A
stratum �� is in the closure of another stratum �� if and only if � is a face of � .
The stratum �� is isomorphic to the quotient torus of T .I / defined by the quotient
lattice U.I /Z=.U.I /Z \ h�i/, where h�i is the R-span of � . In particular, the rays
R�0v in † correspond to the boundary strata of codimension 1, say �v . If we take v
to be a primitive vector of U.I /Z, the stratum �v is isomorphic to the quotient torus
of T .I / defined by U.I /Z=Zv. The variety T .I /† is nonsingular along �v . If we
take a vector l 2 U.I /_Z with .v; l/ D 1, then ql D e..l; Z// is a character of T .I /
and extends holomorphically over �v . The divisor �v is defined by ql D 0. More
generally, a character ql of T .I /, where l 2 U.I /_Z extends holomorphically around
a boundary stratum �� (i.e., extends over �� and the strata �� which contains ��
in its closure) if and only if .l; �/ � 0, or in other words, l is in the dual cone of � . If
moreover l has positive pairing with the relative interior of � , the extended function
vanishes identically at �� .

Now let X.I /† be the interior of the closure of X.I / in T .I /†. We call X.I /†

the partial toroidal compactification of X.I / defined by the fan †. As a partial com-
pactification of X.I / D D=U.I /Z, this does not depend on the choice of I 0. When
a cone � 2 † is not an isotropic ray, its relative interior is contained in CI , and the
corresponding boundary stratum �� of T .I /† is totally contained in X.I /†. On
the other hand, when � D R�0v is an isotropic ray, only an open subset of �v is
contained in X.I /†. (This will be glued with the boundary of the partial toroidal
compactification over the corresponding 1-dimensional cusp: see Section 5.3.) By
abuse of notation, we still write �v for the boundary stratum in X.I /† in this case.
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3.5.2 Fourier expansion and Taylor expansion

Let f .Z/D
P
l a.l/q

l be the Fourier expansion of a �-modular form of weight .�;k/
at the I -cusp. This can be viewed as the expansion of the V.I /�;k-valued function f
on X.I / by the characters of T .I /.

Lemma 3.9. The function f on X.I / extends holomorphically over X.I /†. When
� ¤ 1; det and � is not an isotropic ray, f vanishes at the corresponding boundary
stratum �� . When f is a cusp form, it vanishes at every boundary stratum �� .

Proof. Since the dual cone of CI is CI itself, CI is contained in the dual cone of every
cone � in †. Therefore, if l 2 U.I /_Z \ CI , then l is contained in the dual cone of
every � , which implies that the function ql extends holomorphically over X.I /†. By
the cusp condition in the Fourier expansion, this shows that the function f extends
holomorphically over X.I /†.

When � is not an isotropic ray, its relative interior is contained in CI . Hence any
nonzero vector l 2 U.I /_Z \ CI has positive pairing with the relative interior of � .
This shows that the corresponding character ql vanishes at the boundary stratum�� .
It follows that f j�� is the constant a.0/. By Proposition 3.7, this vanishes when
� ¤ 1; det.

Finally, if f is a cusp form, we have a.l/ ¤ 0 only when l 2 CI . Such a vector l
has positive pairing with the relative interior of every cone � 2†, and so, ql vanishes
at �� . Therefore f vanishes at the boundary of X.I /†.

Let us explain that the Fourier expansion gives Taylor expansion along each
boundary divisor. Let � D R�0v be a ray in † with v 2 U.I /Z primitive. We can
rewrite the Fourier expansion of f as

f .Z/ D
X
m�0

X
l2U.I/_Z
.l;v/Dm

a.l/ql : (3.18)

We choose a vector l0 2 U.I /_Z with .l0; v/ D 1 and put q0 D ql0 . The boundary
divisor �v is defined by q0 D 0. We put

�m D
X

l2U.I/_Z
.l;v/Dm

a.l/ql�ml0 D
X

l2v?\U.I/_Z

a.l Cml0/q
l :

Note that v? \ U.I /_Z is the dual lattice of U.I /Z=Zv and hence is the character
lattice of the quotient torus �v . Therefore �m is (the pullback of) a V.I /�;k-valued
function on �v . Then (3.18) can be rewritten as

f .Z/ D
X
m�0

�mq
m
0 :
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This is the Taylor expansion of f along the divisor �v with normal parameter q0,
and �m (as a function on �v) is the m-th Taylor coefficient. In particular, the restric-
tion of f to �v is given by �0:

f j�v D �0 D
X

l2v?\U.I/_Z

a.l/ql :

When .v; v/ ¤ 0, this reduces to a.0/ because v? \ CI D ¹0º holds (cf. the proof of
Lemma 3.9). On the other hand, when .v; v/ D 0, this reduces to

f j�v D
X

l2Qv\U.I/_Z

a.l/ql (3.19)

because v? \ CI D R�0v.

Remark 3.10. Sometimes it is useful to allow l0 from an overlattice of U.I /_Z, e.g.,
when considering the Fourier–Jacobi expansion (Section 7). Then q0 and �m are still
defined, as functions on a finite cover of T .I /.

3.5.3 Canonical extension

In Sections 3.4 and 3.5, we regarded modular forms as V.I /�;k-valued functions via
the I -trivialization. Let us go back to the viewpoint of sections of E�;k . The vector
bundle E�;k on D descends to a vector bundle on X.I /DD=U.I /Z, which we again
denote by E�;k . We extend it over X.I /† as follows.

Since the I -trivialization E�;k ' V.I /�;k ˝ OD is equivariant with respect
to U.I /Z which acts on V.I /�;k trivially, it descends to an isomorphism

E�;k ' V.I /�;k ˝OX.I /

over X.I /. Then we can extend E�;k to a vector bundle over X.I /† (still denoted
by E�;k) so that this isomorphism extends to E�;k ' V.I /�;k ˝OX.I /† over X.I /†.
In other words, the extension is defined so that the frame of E�;k over X.I / corres-
ponding to a basis of V.I /�;k by the I -trivialization extends to a frame of the exten-
ded bundle E�;k . This is an explicit form of Mumford’s canonical extension [36]. By
construction, a section f of E�;k over X.I / extends to a holomorphic section of the
extended bundle E�;k over X.I /† if and only if f viewed as a V.I /�;k-valued func-
tion via the I -trivialization extends holomorphically over X.I /†. Then Lemma 3.9
can be restated as follows.

Lemma 3.11. A modular form f 2M�;k.�/ as a section of E�;k over X.I / extends
to a holomorphic section of the extended bundle E�;k over X.I /†. When � ¤ 1; det
and � is not an isotropic ray, this extended section vanishes at �� . When f is a cusp
form, this section vanishes at every �� .
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3.6 Special orthogonal groups

In the theory of orthogonal modular forms, there is an option at the outset: which Lie
group to mainly work with. The full orthogonal group O, or the special orthogonal
group SO, or the spin group Spin, or even the pin group Pin. We decided to start
with O for two reasons: (1) in some applications we need to consider subgroups � of
OC.L/ not contained in SOC.L/, and (2) the explicit construction by the orthogonal
Schur functor for E will be useful at some points.

On the other hand, it is sometimes more convenient to work with SO. In this
section we explain the switch from O to SO. The contents of this section will be used
only in Sections 6.1, 10 and 11, so the reader may skip it for the moment.

3.6.1 Representations of SO.n; C/

We first recall some basic facts from the representation theory of SO.n;C/ fol-
lowing [38, Sections 4 and 8] and [18, Section 19]. Irreducible representations of
SO.n;C/ are labelled by their highest weights. When n D 2m is even, the highest
weights are expressed by m-tuples � D .�1; : : : ; �m/ of integers, nonnegative for
i < m, such that �1 � � � � � �m�1 � j�mj. We write �� D .�1; : : : ; �m�1;��m/ for
such �. When n D 2m C 1 is odd, the highest weights are expressed by m-tuples
� D .�1; : : : ; �m/ of nonnegative integers such that �1 � � � � � �m � 0. We denote
byW� the irreducible representation of SO.n;C/with highest weight �. The dual rep-
resentationW _� is isomorphic toW� itself when n is odd or 4jn, while it is isomorphic
to W�� in the case n � 2 mod 4.

By the Weyl unitary trick, W� remains irreducible as a representation of

SO.n;R/ � SO.n;C/;

and the above classification is the same as the classification of irreducible C-represen-
tations of SO.n;R/.

The restriction rule from O.n;C/ to SO.n;C/ is as follows [38, Proposition 8.24].
Let �D .�1 � � � � � �n � 0/ be a partition expressing an irreducible representation V�
of O.n;C/. We define a highest weight x� for SO.n;C/ by

x� D .�1 � �n; �2 � �n�1; : : : ; �Œn=2� � �nC1�Œn=2�/:

Note that x� itself can be viewed as a partition for O.n;C/. When n is odd or n D
2m is even with t�1 ¤ m, the O.n;C/-representation V� remains irreducible as a
representation of SO.n;C/, with highest weight x�. The vector defined in (3.2) is a
highest weight vector. Thus V� ' Wx� as a representation of SO.n;C/ in this case. In
particular, since the highest weight for the partition x� is x� itself, we have V� ' Vx� as
SO.n;C/-representations. More specifically, when t�1 < n=2 we have x� D �, while
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when t�1 > n=2 we have V� ' Vx� ˝ det as O.n;C/-representations. (In the latter
case, the partitions � and x� are called associated in [18, 38].)

In the remaining case, namely, when n D 2m is even and t�1 D m, V� gets redu-
cible when restricted to SO.n;C/. More precisely,

V� ' Wx� ˚Wx�� (3.20)

as a representation of SO.n;C/. Note that x� D � and �m ¤ 0 in this case. Since
x� ¤ x��, this decomposition is unique. In this case, V� is the induced representation
from the representation Wx� of SO.n;C/ � O.n;C/.

3.6.2 Automorphic vector bundles

We go back to the automorphic vector bundles on D . We choose a base point Œ!0�2D .
Let K ' SO.2;R/ � O.n;R/ and SK ' SO.2;R/ � SO.n;R/ be the stabilizers
of Œ!0� in OC.LR/ and in SOC.LR/, respectively (cf. Section 2.1).

Proposition 3.12. The following holds.

(1) If either n is odd or nD 2m is even with t�1¤m, then E� remains irreducible
as an SOC.LR/-equivariant vector bundle, and we have

E� ' SOC.LR/ �SK Wx�:

In particular, we have E� ' Ex� as SOC.LR/-equivariant vector bundles.

(2) If n is even and t�1 D n=2, then E� as an SOC.LR/-vector bundle decom-
poses into the direct sum of two non-isomorphic vector bundles:

E� ' EC
�
˚ E�� (3.21)

with each component isomorphic to SOC.LR/ �SK Wx� and SOC.LR/ �SK
Wx�� , respectively.

Proof. By (3.3), we have E� ' OC.LR/ �K V� as an OC.LR/-equivariant vector
bundle. Therefore

E� ' SOC.LR/ �SK V�

as an SOC.LR/-equivariant vector bundle. Note that the representation of O.n;R/'
O.H?!0/ � K on V� D .!?0 =C!0/� ' .H

?
!0
˝R C/� extends to a representation of

O.n;C/ ' O.H?!0 ˝R C/ naturally. Then our assertions follow from the restriction
rule for SO.n;C/ � O.n;C/.

At each fiber of the vector bundle, the decomposition (3.21) is the irreducible de-
composition of .!?=C!/� as a representation of SO.!?=C!/. The I -trivialization
respects the decomposition (3.21) in the following sense. As a representation of
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SO.V .I //, V.I /� decomposes according to (3.20), which we denote by V.I /� D
W.I/x�˚W.I/x�� . By the uniqueness of the decomposition (3.20), the I -trivialization
E� ' V.I /� ˝OD sends the decomposition (3.21) of E� to the decomposition

V.I /� ˝OD D .W.I /x� ˝OD/˚ .W.I /x�� ˝OD/

of V.I /� ˝OD . Thus we have the I -trivializations

EC
�
' W.I/x� ˝OD ; E�� ' W.I/x�� ˝OD (3.22)

of each component EC
�

, E�
�

.

3.7 Rankin–Cohen brackets

In this section, as an example of explicit construction of vector-valued modular forms,
we define the Rankin–Cohen bracket of two scalar-valued modular forms. This is
a general method: see, e.g., [9, 16, 17, 26, 42] for the case of some other types of
modular forms, where Rankin–Cohen bracket is a successful technique for explicitly
describing some modules of vector-valued modular forms.

Let f , g be nonzero scalar-valued modular forms of weight k, l , respectively, for
� < OC.L/. We define the Rankin–Cohen bracket of f and g by

¹f; gº D .gkC1=f l�1/˝ d.f l=gk/:

Here gkC1=f l�1 is a meromorphic section of

L˝l.kC1/�k.l�1/ D L˝kCl ;

and d.f l=gk/ is the exterior differential of the meromorphic function f l=gk on D .
Thus d.f l=gk/ is a meromorphic 1-form on D . It is immediate to see that ¹g; f º D
�¹f; gº. When k D l , the Rankin–Cohen bracket reduces to the more simple expres-
sion

¹f; gº D .gkC1=f k�1/˝ k.f=g/k�1 � d.f=g/

D kg2 ˝ d.f=g/:

Proposition 3.13. The Rankin–Cohen bracket ¹f; gº is a modular form of weight
.St; k C l C 1/ for � . We have ¹f; gº ¤ 0 unless when f l is a constant multiple
of gk .

Proof. Since gkC1=f l�1 and d.f l=gk/ are meromorphic sections of L˝kCl and
�1

D
' E ˝L, respectively, ¹f; gº is a meromorphic section of E ˝L˝kClC1, i.e.,

has weight .St;kC l C 1/. The �-invariance is obvious from the definition. It remains
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to check the holomorphicity over D . We take a frame s of L and write f D Qf s˝k ,
g D Qgs˝l with Qf , Qg holomorphic functions on D . Then

¹f; gº D . QgkC1= Qf l�1/s˝kCl ˝ d. Qf l= Qgk/

D s˝kCl ˝ .l.d Qf / Qg � k.d Qg/ Qf /:

From this expression, we find that ¹f; gº is holomorphic. The nonvanishing assertion
is apparent.

When f D 0 or gD 0, we simply set ¹f;gº D 0. Then the Rankin–Cohen bracket
defines a bilinear map

Mk.�/ �Ml.�/!MSt;kClC1.�/:

When k D l , this induces ^2Mk.�/!MSt;2kC1.�/ by the anti-commutativity.

3.8 Higher Chow cycles on K3 surfaces

One of the geometric significance of vector-valued modular forms on D is the appear-
ance of the middle graded piece of the Hodge filtration, while scalar-valued modular
forms are concerned only with the last piece. Thus the connection between modu-
lar forms and geometry related to the variation of Hodge structures on D shows up
fully. In this section we present such an example of geometric construction of vector-
valued modular forms with singularities. This section is independent of the rest of the
memoir.

Let � WX ! B be a smooth family of K3 surfaces. We say that � WX ! B is
lattice-polarized with period lattice L if we have a sub local system ƒNS of R2��Z
whose fibers are primitive hyperbolic sublattices of the Néron–Severi lattices of the
�-fibers Xb and the fibers of ƒT D ƒ?NS are isometric to L. Let zB be an unramified
cover of B , where the local system ƒT can be trivialized (e.g., the universal cover)
and let zX D X �B zB . After choosing a base point o 2 zB and an isometry

.ƒT /o ' L;

we have the period map

zP W zB ! D ; b 7! ŒH 2;0. zXb/ � LC�:

If � is a finite-index subgroup of OC.L/ which contains the monodromy group
of ƒT , zP descends to a holomorphic map

P W B ! F .�/:
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When B is algebraic, P is a morphism of algebraic varieties by Borel’s extension
theorem.

Let Z D .Zb/ be a family of higher Chow cycles in CH 2.Xb; 1/. By this, we
mean that

• Z is a higher Chow cycle of type .2; 1/ on the total space X , i.e., a codimen-
sion 2 cycle on X �A1 which meets X � ¹0º and X � ¹1º properly and satisfies
ZjX�¹0º D ZjX�¹1º, and

• the restriction Zb D ZjXb to each fiber Xb is well defined, i.e., without using the
moving lemma, Z already intersects with Xb � A1 properly and gives a higher
Chow cycle on Xb .

The normal function �Z of Z is defined as a holomorphic section of the fibration of
the generalized intermediate Jacobians H=.F 2H CR2��Z/. Here H D R2��C ˝
OB and .F pH /p is the Hodge filtration on H . The infinitesimal invariant ı�Z of �Z
is defined as a section of the middle cohomology sheaf of the Koszul complex

F 2H ! .F 1H=F 2H /˝�1B ! .H=F 1H /˝�2B (3.23)

over B . See [11, 45] for more details and examples.
We explain the connection with vector-valued modular forms. We first consider

the case where zB D B is an analytic open set of D and the period map B ! D

coincides with the inclusion map. Then we can identify

F 2H D LjB ; F 1H=F 2H D EjB ˚ .ƒNS ˝Z OB/; H=F 1H D L�1jB :

The Koszul complex (3.23) is the direct sum of the complex

0! ƒNS ˝�
1
B ! 0

and the modular Koszul complex (2.6) restricted to B:

L! E ˝�1B ! L�1 ˝�2B :

According to this decomposition, we can write ı�Z as ..ı�Z/pol; .ı�Z/prim/, where
.ı�Z/pol is a section of ƒNS ˝�1B and .ı�Z/prim is a section of the middle cohomo-
logy sheaf of the modular Koszul complex overB . By the calculation in Example 2.4,
we see that

.ı�Z/prim 2 H
0.B;E.2/ ˝L/;

namely, .ı�Z/prim is a local modular form of weight .�; k/ D ..2/; 1/ over B .
Now we consider the case where the family � WX ! B is algebraic, � id 62 � , and

the algebraic period map P WB ! F .�/ is birational. By removing some divisors
from B if necessary, we may assume that P is an open immersion and D ! F .�/

is unramified over B � F .�/. Then we may take zB to be a �-invariant Zariski open
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set of D . In this case, the Koszul complex (3.23) over B is the direct sum of 0!
ƒNS ˝�

1
B! 0 and the descent of the modular Koszul complex (2.6) from zB �D to

B � F .�/. LetZ be a family of higher Chow cycles onX ! B as above. According
to the decomposition of the Koszul complex over B , we can write

ı�Z D ..ı�Z/pol; .ı�Z/prim/

as in the local case. Then the pullback of the primitive part .ı�Z/prim to zB is a �-
invariant holomorphic section of E.2/ ˝ L over zB . By a vanishing theorem proved
later (Theorem 9.1), there is no nonzero holomorphic modular form of weight ..2/; 1/
on D . Hence, if .ı�Z/prim does not vanish identically, it must have a singularity at
some component of the complement of zB in D . In other words, the primitive part
.ı�Z/prim of the infinitesimal invariant ı�Z of Z is a modular form of weight ..2/; 1/
with singularities.





Chapter 4

Witt operators

In this chapter, as a functorial aspect of the theory, we study pullback of vector-
valued modular forms to sub orthogonal modular varieties, an operation sometimes
called the Witt operator. Let L be a lattice of signature .2; n/ and L0 be a primitive
sublattice of L of signature .2; n0/. We put K D .L0/? \ L and r D rank.K/ D
n � n0. If we write D 0 D DL0 , then D 0 D PL0C \ D . Let f be a vector-valued
modular form on D . In Section 4.1 we study the restriction of f to D 0. This produces
a vector-valued modular form on D 0, whose weight (in general reducible) can be
known from the branching rule for O.n0;C/ � O.n;C/. An immediate consequence
is the vanishing of M�;k.�/ in k � 0 (Proposition 4.4). A more interesting situation
is the case when f vanishes identically at D 0, which we study in Section 4.2. In that
case, we can define the so-called quasi-pullback of f , which produces a cusp form
on D 0 (Proposition 4.10). These operations will be useful when studying concrete
examples.

Restriction of modular forms to sub modular varieties has been considered
classically for scalar-valued Siegel modular forms, going back to Witt [48]. Quasi-
pullback has been also considered in this case: see [10, Section 2] for a general
treatment.

Quasi-pullback of orthogonal modular forms was first considered for Borcherds
products by Borcherds [5, 6], and later for general scalar-valued modular forms by
Gritsenko–Hulek–Sankaran [22, Section 8.4] in the case r D 1. Our terminology
“quasi-pullback” comes from this series of work. The cuspidality of quasi-pullback
was first proved in [21, 22] in the scalar-valued case. Our Proposition 4.10 is the
vector-valued generalization.

4.1 Ordinary pullback

We embed OC.L0R/ � O.KR/ in OC.LR/ naturally. This is the stabilizer of L0R in
OC.LR/. Let � be a finite-index subgroup of OC.L/. Then � 0 D � \ OC.L0/ is a
finite-index subgroup of OC.L0/, and G D � \ O.K/ is a finite group. The product
� 0 �G is a finite-index subgroup of the stabilizer of L0 in � .

Let L0, E 0 be the Hodge bundles on D 0. Since OPLC .�1/jPL0C
D OPL0C

.�1/,
we have LjD 0 D L0. We also have a natural isomorphism

EjD 0 ' E 0 ˚ .KC ˝OD 0/; (4.1)
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which at each fiber is the decomposition

.!? \ LC/=C! D ..!
?
\ L0C/=C!/˚KC:

This corresponds to the decomposition St D St0˚ St00 of the standard representation
of O.n;C/ when restricted to the subgroup O.n0;C/�O.r;C/, where St0 and St00 are
the standard representations of O.n0;C/ and O.r;C/, respectively.

Let � be a partition expressing an irreducible representation V� of O.n;C/. We
denote by

V� '
M
˛

V 0�0.˛/ � V
00
�00.˛/ (4.2)

the irreducible decomposition as a representation of O.n0;C/�O.r;C/, where V 0
�0.˛/

(resp., V 00
�00.˛/

) is the irreducible representation of O.n0;C/ (resp., O.r;C/) with par-
tition �0.˛/ (resp., �00.˛/). See [30, 32] for an explicit description of this restriction
rule in terms of the Littlewood–Richardson numbers. Let k be an integer.

Proposition 4.1. Restriction of modular forms to D 0 � D defines a linear map

M�;k.�/!
M
˛

M�0.˛/;k.�
0/˝ .KC/

G
�00.˛/; f 7! f jD 0 :

This maps cusp forms to cusp forms.

For the proof of Proposition 4.1, we need to calculate the Fourier expansion
of f jD 0 . We take a rank 1 primitive isotropic sublattice I of L0. Let U.I /Z � U.I /Q
be as in Section 3.3 and we define U.I /0Z � U.I /

0
Q similarly for .L0; � 0/. Then

U.I /0Q � U.I /Q and U.I /0Z � U.I /Z. If we write K 0Q D KQ ˝ IQ, we have

U.I /Q D U.I /
0
Q ˚K

0
Q:

The tube domain realization with respect to I (with I 0 also taken from L0) identifies
D 0 � D with

D 0I D DI \ U.I /
0
C � DI :

Lemma 4.2. Let f .Z/D
P
l2U.I/_Z

a.l/ql be the Fourier expansion of f 2M�;k.�/

at the I -cusp of D . Then we have

f jD 0
I
.Z0/ D

X
l 02.U.I/0Z/

_

b.l 0/.q0/l
0

; .q0/l
0

D e..l 0; Z0//; (4.3)

for Z0 2 D 0I , where
b.l 0/ D

X
l 002K0Q

l 0Cl 002U.I/_Z

a.l 0 C l 00/:
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Proof. Let � WU.I /Q ! U.I /0Q be the orthogonal projection. This maps U.I /_Z to a
sublattice of .U.I /0Z/

_. For l 2 U.I /_Z, the restriction of the function ql D e..l;Z//
to D 0I � DI is .q0/�.l/ D e..�.l/; Z0//. Then our assertion follows by substituting
ql D .q0/�.l/ in f D

P
l a.l/q

l . Note that the sum defining b.l 0/ is actually a finite
sum by the condition l 0 C l 00 2 CI (the cusp condition for f ) and the fact that K 0Q is
negative-definite.

Now we prove Proposition 4.1.

Proof of Proposition 4.1. From the expression (3.3) and the decomposition (4.2), we
see that

E�jD 0 '
M
˛

E 0�0.˛/ ˝ .KC/�00.˛/ (4.4)

as an OC.L0R/ � O.KR/-equivariant vector bundle on D 0. With the isomorphism
LjD 0 D L0, we obtain

E�;kjD 0 '
M
˛

E 0�0.˛/;k ˝ .KC/�00.˛/:

If f is a �-invariant section of E�;k over D , this shows that f jD 0 is a � 0 � G-
invariant section of

L
˛ E 0

�0.˛/;k
˝ .KC/�00.˛/ over D 0. Hence it is a � 0-invariant

section of
L
˛ E 0

�0.˛/;k
˝ .KC/

G
�00.˛/

over D 0.
Holomorphicity of f jD 0 at the cusps of D 0 holds automatically when n0 � 3 by

the Koecher principle. In general, this can be seen from Lemma 4.2 as follows. Let I
and K 0Q be as in Lemma 4.2. Since K 0Q is negative-definite, the orthogonal projec-
tion U.I /R ! U.I /0R maps the positive cone CI of U.I /R to the positive cone C 0I
of U.I /0R, and maps CI to C 0I . Hence the vectors l 0 in (4.3) actually range over
.U.I /0Z/

_ \ C 0I . This proves the holomorphicity of f jD 0 around the I -cusp of D 0.
Since I is arbitrary, f is holomorphic at all cusps of D 0. When f is a cusp form, the
vectors l 0 range over .U.I /0Z/

_ \ C 0I for the same reason. This means that f jD 0 is a
cusp form. This proves Proposition 4.1.

Example 4.3. Let us look at a typical example. Let � D St. As noticed before, this
decomposes as St D St0˚ St00 when restricted to O.n0;C/ � O.r;C/, which corres-
ponds to the decomposition (4.1). Therefore restriction to D 0 gives a linear map

MSt;k.�/!MSt0;k.�
0/˚ .Mk.�

0/˝KGC /:

The first component MSt;k.�/ ! MSt0;k.�
0/ can be considered as the main com-

ponent of the restriction, but we also obtain some scalar-valued modular forms in
Mk.�

0/˝KGC as “extra” components. When G fixes no nonzero vector of K, these
extra components vanish. For example, this happens when � contains a reflection
and L0 is the fixed lattice of this reflection.
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As an application of Proposition 4.1, we obtain the following elementary vanish-
ing theorem. Although this will be superseded later (Section 9), we present it here
because it can be proved easily and is already informative.

Proposition 4.4. When k < 0, we haveM�;k.�/D 0. Moreover, we haveM�;0.�/D

0 when � ¤ 1; det.

Proof. Let f 2M�;k.�/ with k < 0. We consider restriction of f to 1-dimensional
domains DL0 � D for sublattices L0 � L of signature .2; 1/. As a representation
of O.1;C/ D ¹˙ idº, V� is a direct sum of copies of the trivial character and the
determinant character. By Proposition 4.1 and the calculation in Section 2.5.1, we see
that f jDL0 is a tuple of scalar-valued modular forms of weight 2k < 0 on the upper
half plane DL0 . Since there is no nonzero elliptic modular form of negative weight,
we find that f vanishes identically at DL0 . Now, if we vary L0, then DL0 run over a
dense subset of D . Therefore f � 0.

When f 2M�;0.�/with �¤1;det, by combining Proposition 3.7 and Lemma 4.2,
we see that f jDL0 is a tuple of scalar-valued cusp forms of weight 0 on DL0 , which
vanish identically. Therefore f � 0 similarly.

The idea to deduce a vanishing theorem by considering restriction to sub mod-
ular varieties is classical. In the case of Siegel modular forms, this goes back to
Freitag [15].

Proposition 4.4 in particular implies the following.

Proposition 4.5. Let n � 3. Assume that h�;� idi does not contain a reflection. Let
X be the regular locus of F .�/ D �nD . Then H 0.X; T˝kX / D 0 for every k > 0.

Proof. Let � WD ! F .�/ be the projection and X 0 � X be the locus where � is
unramified. By [21], the absence of reflection in h�;� idi implies that � is unramified
in codimension 1, so the complement of ��1.X 0/ in D has codimension � 2. Since
we can pull back sections of T˝kX 0 by the étale map

��1.X 0/! X 0;

we see that

H 0.X; T˝kX / D H 0.X 0; T˝kX 0 / D H
0
�
��1.X 0/; T˝k

��1.X 0/

��
D H 0.D ; T˝k

D
/� :

Since TD ' E ˝L�1 by (2.4), we find that

H 0.X; T˝kX / D H 0.D ;E˝k ˝L˝�k/� D
M
i

M�.i/;�k.�/;

where �.i/ run over the irreducible summands of St˝k . By Proposition 4.4, the last
space vanishes when �k < 0.
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4.2 Quasi-pullback

In this section we show that when f jD 0 � 0, we can still obtain a nonzero cusp form
on D 0 by considering the Taylor expansion of f along D 0. We assume n0 � 3 for
simplicity of exposition, but the results below hold also when n0 � 2 (see the proof
of Proposition 4.10).

We first describe the normal bundle N D ND 0=D of D 0 in D .

Lemma 4.6. We have N ' .L0/�1 ˝KC as an OC.L0R/�O.KR/-equivariant vec-
tor bundle on D 0.

Proof. By (2.4) and (4.1), we have natural isomorphisms

TD jD 0 ' .E ˝L�1/jD 0 ' .E
0
˚ .KC ˝OD 0//˝ .L

0/�1

' TD 0 ˚ ..L
0/�1 ˝KC/:

This implies
N ' .L0/�1 ˝KC:

Let 	 be the ideal sheaf of D 0 � D and � � 0. By Lemma 4.6 we have

	�=	�C1jD 0 ' Sym� N _ ' .L0/˝� ˝ Sym� K_C (4.5)

as an OC.L0R/ � O.KR/-equivariant vector bundle on D 0. Therefore we have the
exact sequence

0! 	�C1E�;k ! 	�E�;k ! E�jD 0 ˝ .L
0/˝kC� ˝ Sym� K_C ! 0 (4.6)

of sheaves on D . By (4.4) we have an OC.L0R/ � O.KR/-equivariant isomorphism

E�jD 0 ˝ .L
0/˝kC� ˝ Sym� K_C '

M
˛

E 0�0.˛/;kC� ˝ .KC/�00.˛/ ˝ Sym� K_C:

Note thatK_C 'KC canonically by the pairing onK. Taking global sections in (4.6),
and then the � 0 �G-invariant part, we obtain the exact sequence

0! H 0.D ;	�C1E�;k/
�0�G

! H 0.D ;	�E�;k/
�0�G

!

M
˛

M�0.˛/;kC�.�
0/˝ ..KC/�00.˛/ ˝ Sym� KC/

G : (4.7)

By definition, a modular form f 2 M�;k.�/ vanishes to order � � along D 0 if it is
a section of the subsheaf 	�E�;k of E�;k . The vanishing order of f along D 0 is the
largest � for which f is a section of 	�E�;k .
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Definition 4.7. Let f 2M�;k.�/ and � be the vanishing order of f at D 0. We define
the quasi-pullback of f

f kD 0 2
M
˛

M�0.˛/;kC�.�
0/˝ ..KC/�00.˛/ ˝ Sym� KC/

G

as the image of f by the last map in (4.7).

By the exactness of (4.7) and the definition of the vanishing order, we have
f kD 0 6� 0. Note that the vanishing order � contributes to the increase kÝ k C �

of the scalar weight. When � D 0, the quasi-pullback is just the ordinary pullback
considered in Section 4.1.

Example 4.8. When r D 1, ignoring the symmetry byG � ¹˙ idº, the quasi-pullback
f kD 0 belongs to

L
˛M�0.˛/;kC�.�

0/. Explicitly, f kD 0 is given by the restriction of
f=.�; ı/� to D 0, where ı is a nonzero vector of K and .�; ı/ is the section of O.1/

defined by the pairing with ı.

Example 4.9. The quasi-pullback of a Borcherds product f considered by Borcherds
[5,6] is defined as f=

Q
ı.ı; �/jD 0 , where ı run over primitive vectors inK (with mul-

tiplicity) such that f vanishes at ı? \D . This is a single scalar-valued modular form
(again a Borcherds product), while our quasi-pullback produces a tuple of scalar-
valued modular forms, or more canonically, a Sym� KC-valued modular form. The
relationship is as follows.

The denominator
Q
ı.ı; �/ is a section of 	� � O.�/ over D . This corresponds to

a sheaf homomorphism �WL˝� ! 	� . By a property of Borcherds products, f is a
section of the subsheaf �.L˝�/ �L˝k of 	� �L˝k . Letx�W .L0/˝� ! Sym� N _ be the
embedding induced by �jD 0 and (4.5). Under the isomorphism

Sym� N _ ' .L0/˝� ˝ Sym� K_C;

this corresponds to the vector
Q
ı.�; ı/ of Sym� K_C , which in turn corresponds to the

vector
Q
ı ı of Sym�KC . Then f kD 0 as a section of Sym�N _˝ .L0/˝k takes values

in the sub line bundlex�..L0/˝�/˝ .L0/˝k ' .L0/˝kC� . This section of .L0/˝kC� is
the quasi-pullback in [5, 6].

Next we prove the cuspidality of quasi-pullback. In the case �D 0 and r D 1, this
is due to Gritsenko–Hulek–Sankaran [22, Theorem 8.18].

Proposition 4.10. Let f 2 M�;k.�/ and � be the vanishing order of f at D 0. Sup-
pose that � > 0. Then f kD 0 is a cusp form. Thus

f kD 0 2
M
˛

S�0.˛/;kC�.�
0/˝ ..KC/�00.˛/ ˝ Sym� KC/

G :

For the proof of Proposition 4.10, we calculate the Fourier expansion of f kD 0 .
We work under the same setting and notation as in the proof of Lemma 4.2. We
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choose a basis of K 0Q. According to the decomposition U.I /Q D U.I /0Q ˚K
0
Q, we

express a point of U.I /C as Z D .Z0; z1; : : : ; zr/ with Z0 2 U.I /0C and zi 2 C.
Then D 0I � DI is defined by z1 D � � � D zr D 0. The coordinates z1; : : : ; zr give
a trivialization of the conormal bundle N _ of D 0I . The quasi-pullback f kD 0 as a
V.I /�;k ˝ Sym� Cr -valued function on D 0I is given, up to constants, by the Taylor
coefficients of f along D 0I in degree �:

f kD 0.Z
0/ D

�
@�f

@z
�1
1 � � � @z

�r
r

.Z0; 0/

�
�1C���C�rD�

We calculate the Fourier expansion of the Taylor coefficients. In what follows, we
identify .K 0Q/

_ 'Qr by the dual basis of the chosen basis ofK 0Q and express vectors
of .K 0Q/

_ as .n1; : : : ; nr/, ni 2 Q.

Lemma 4.11. Let f .Z/D
P
l a.l/q

l be the Fourier expansion of f . Let .�1; : : : ; �r/
be an index with �1 C � � � C �r D �. Then we have

@�f

@z
�1
1 � � � @z

�r
r

.Z0; 0/ D .2�
p
�1/�

X
l 02.U.I/0Z/

_

b.l 0/.q0/l
0

;

where .q0/l
0

D e..l 0; Z0// and

b.l 0/ D
X

.n1;:::;nr /2Qr

l 0C.n1;:::;nr /2U.I/
_
Z

n
�1
1 � � �n

�r
r � a.l

0
C .n1; : : : ; nr//:

Here, by convention, 00 D 1 but 0m D 0 when m > 0.

Note that the sum defining b.l 0/ is actually a finite sum for the same reason as in
Lemma 4.2.

Proof. We can rewrite the Fourier expansion of f as

f .Z0; z1; : : : ; zr/

D

X
l 0

X
.n1;:::;nr /

a.l 0 C .n1; : : : ; nr// � e..l
0
C .n1; : : : ; nr/; .Z

0; z1; : : : ; zr///

D

X
l 0

X
.n1;:::;nr /

a.l 0 C .n1; : : : ; nr// � e..l
0; Z0// �

rY
iD1

e.nizi /:

Here l 0 ranges over .U.I /0Z/
_ and .n1; : : : ; nr/ ranges over vectors in Qr D .K 0Q/

_

such that l 0 C .n1; : : : ; nr/ 2 U.I /_Z. Since we have

@�
Q
i e.nizi /

@z
�1
1 � � � @z

�r
r

D .2�
p
�1/�

Y
i

n
�i
i � e.nizi /;
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we see that

@�f

@z
�1
1 � � � @z

�r
r

.Z0; z1; : : : ; zr/

D .2�
p
�1/�

X
l 0

X
.n1;:::;nr /

a.l 0 C .n1; : : : ; nr// � .q
0/l
0

�

Y
i

n
�i
i � e.nizi /:

Substituting z1 D � � � D zr D 0, this proves Lemma 4.11.

Now we complete the proof of Proposition 4.10.

Proof of Proposition 4.10. Let l 0 be a vector in C 0I \ .U.I /
0
Z/
_ with .l 0; l 0/ D 0.

For .n1; : : : ; nr/ 2 Qr , we have l 0 C .n1; : : : ; nr/ 2 CI only when .n1; : : : ; nr/ D
.0; : : : ; 0/ because K 0Q is negative-definite and perpendicular to U.I /0Q. By Lem-
ma 4.11, this shows that

b.l 0/ D 0�1 � � � 0�r � a.l 0/ D 0

because .�1; : : : ; �r/ ¤ .0; : : : ; 0/ by the assumption � > 0. This proves Proposi-
tion 4.10.



Chapter 5

Canonical extension over 1-dimensional cusps

In this chapter we recall the partial toroidal compactification over a 1-dimensional
cusp and the canonical extension of the automorphic vector bundles over it. This
provides a geometric basis for the Siegel operator (Section 6) and the Fourier–Jacobi
expansion (Section 7). Except for a few calculations in Sections 5.4 and 5.5, most
contents of this chapter are essentially expository. We refer the reader to [2] for the
general theory of toroidal compactification, to [21,33,35] for its specialization to the
case of orthogonal modular varieties (especially for more details on the contents of
Sections 5.1–5.3), and to [36] for the general theory of canonical extension. Never-
theless, since this chapter is the basis of many later chapters, we tried to keep the
presentation as self-contained, explicit, and coherent as possible.

Throughout this chapter, L is a lattice of signature .2; n/ with n � 3. We fix a
rank 2 primitive isotropic sublattice J of L, which corresponds to a 1-dimensional
cusp of D D DL. We write

V.J /F D .J
?=J /˝Z F

for F D Q;R;C. This is a quadratic space over F , negative-definite when F D
Q;R. We especially abbreviate V.J /D V.J /C . We also write U.J /F D ^2JF . The
choice of the component D determines an orientation of J so that the R-isomorphism
.!; �/WJR!C preserves the orientation for any Œ!�2D . This determines the positive
part of U.J /R.

For 2U DU ˚U , where U is the integral hyperbolic plane, we will denote by e1,
f1 and e2, f2 the standard hyperbolic basis of the first and the second components,
respectively. We say that an embedding �W 2UF ,! LF is compatible with J if it
satisfies �.Ze1 ˚ Ze2/ D J . This defines a lift V.J /F ' �.2UF /? \ LF of V.J /F
in J?F and hence a splitting

LF ' 2UF ˚ V.J /F D .JF ˚ J
_
F /˚ V.J /F ; (5.1)

where we identify �.hf1; f2i/ with J_F . We often choose a rank 1 primitive sublat-
tice I of J . We say that �W2UF ,!LF is compatible with I � J if �.Ze1˚Ze2/D J
and �.Ze1/ D I .

5.1 Siegel domain realization

In this section we recall the Siegel domain realization of D with respect to the J -cusp
and explain its relation with the tube domain realization.
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5.1.1 Siegel domain realization

The filtration J � J? � L on L determines the two-step linear projection

PLC
�1Ü P .L=J /C

�2Ü P .L=J?/C: (5.2)

Via the pairing on LC , this is identified with the dual projection

PL_C Ü P .J?C /
_Ü PJ_C :

The centre of �1 is PJC , and the centre of �2 is PV.J /. The projection �2 identifies
P .L=J /C � PV.J / with an affine space bundle over P .L=J?/C . If we choose a lift
V.J / ,! J?C of V.J /, it defines a splitting .L=J /C D V.J / ˚ .L=J?/C , and so,
defines an isomorphism between the affine space bundle P .L=J /C � PV.J / with
the vector bundle V.J /˝O.1/ over P .L=J?/C .

We restrict (5.2) to the isotropic quadric Q � PLC . The closure of a �1-fiber
is a plane containing PJC . When this plane is not contained in PJ?C , it intersects
properly with Q at two distinct lines, one being PJC . This shows that

�1jQ W Q �Q \ PJ?C ! P .L=J /C � PV.J /

is an affine line bundle.
Next we restrict (5.2) further to an enlargement of the domain D � Q. Let HJ

be the connected component of PJ_C � PJ_R consisting of C-linear maps �WJC!C
such that �jJR W JR ! C is an orientation-preserving R-isomorphism. By the canon-
ical isomorphism PJ_C'PJC , HJ corresponds to the J -cusp. We put VJD�

�1
2 .HJ /

and D.J / D .�1jQ/
�1.VJ /. Then D � D.J /. We thus have the extended two-step

fibration
D � D.J /

�1
�! VJ

�2
�! HJ ; (5.3)

where VJ !HJ is an affine space bundle isomorphic to V.J /˝OHJ .1/, D.J /!

VJ is an affine line bundle, and D!VJ is an upper half plane bundle inside D.J /!

VJ . This is the Siegel domain realization of D with respect to J . (Up to this point,
canonically determined by J .)

5.1.2 Relation with tube domain realization

We choose a rank 1 primitive sublattice I of J . Recall from Section 3.3 that the
tube domain realization at the I -cusp (before choosing a base point) is the canonical
embedding

D � D.I /
'
�! P .L=I /C � PV.I /

induced by the projection PLC Ü P .L=I /C . Note that D.J / � D.I /. We can
factor the projection �1 in (5.2) as:

PLC Ü P .L=I /C Ü P .L=J /C Ü P .L=J?/C:
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Hence we have the following commutative diagram:

P .L=I /C�PV.I / P .L=J /C�P .I?=J /C P .L=J?/C�P .I?=J?/C

D�D.J / VJ HJ :
�1 �2

Here the upper row is projections of affine spaces, the left vertical map is the tube
domain realization at I , and other vertical maps are natural inclusions. The two
squares are cartesian, i.e., D.J / ! VJ ! HJ is the restriction of the upper row
over HJ . Thus the Siegel domain realization at J can be given by a decomposition
of the tube domain realization at I � J .

Next we choose a rank 1 isotropic sublattice I 0 � L with .I; I 0/ ¤ 0 and accord-
ingly a base point of the affine space P .L=I /C � PV.I /. This identifies the upper
row of the above diagram with the linear maps

U.I /C D .I
?=I /C ˝ IC ! .I?=J /C ˝ IC ! .I?=J?/C ˝ IC:

We identify U.J /C D ^2JC with the isotropic line .J=I /C ˝ IC in U.I /C . Then
this is written as the quotient maps

U.I /C ! U.I /C=U.J /C ! U.I /C=U.J /
?
C: (5.4)

Therefore, after choosing the base point I 0, the above commutative diagram can be
rewritten as

U.I /C U.I /C=U.J /C U.I /C=U.J /
?
C

D � D.J / VJ HJ

�1 �2

�1 �2

where the vertical embeddings are defined by I 0 and the two squares are cartesian.
This gives a simpler (but depending on I , I 0) expression of the Siegel domain realiz-
ation.

Finally, we introduce coordinates. Let vJ be the positive generator of ^2J ' Z.
We choose an isotropic vector lJ 2 U.I /Q with .vJ ; lJ / D 1. This defines a split-
ting U.I /Q ' UQ ˚KQ, where KQ D V.J /Q ˝ IQ, which determines a splitting
of (5.4). Accordingly, we express a point of U.I /C ' ClJ �KC �CvJ as

Z D .�; z; w/ D �lJ C z C wvJ ; z 2 KC; �; w 2 C: (5.5)

In these coordinates, the I -directed Siegel domain realization (5.4) is expressed by

.�; z; w/ 7! .�; z/ 7! �:
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The w-component gives coordinates on the �1-fibers (' U.J /C), and � gives coor-
dinates on the base U.I /C=U.J /?C ' U.J /

_
C . The images of the embeddings

D.J / ,! U.I /C; VJ ,! U.I /C=U.J /C; HJ ,! U.I /C=U.J /
?
C

are all defined by the inequality Im.�/ > 0, and the tube domain DI � U.I /C is
defined by the inequalities

�.Im.z/; Im.z// < 2 Im.�/ � Im.w/; Im.�/ > 0:

Thus the choice of I , I 0, lJ defines a passage from the canonical presentation (5.3)
to a more classical presentation of the Siegel domain realization.

Remark 5.1. The choice of I 0 and lJ is almost equivalent to the choice of an embed-
ding 2UQ ,! LQ compatible with IQ � JQ. More precisely, we choose one of the
two generators of I ' Z, say vI . Let v0I 2 I

0
Q be the dual vector of vI in I 0Q. We

can write vJ D QvJ ˝ vI and lJ D QlJ ˝ vI for some vectors QvJ 2 .I 0Q/
? \ JQ and

QlJ 2 .I
0
Q/
? \ I?Q . This defines an embedding 2UQ ,! LQ compatible with IQ � JQ

by sending
e1 7! vI ; f1 7! v0I ; e2 7! QvJ ; f2 7! QlJ :

5.2 Jacobi group

In this section we describe the rational/real Jacobi group of the J -cusp and its action
on the Siegel domain realization.

Let F D Q, R. Let �.J /F be the subgroup of the stabilizer of JF in O.LF / act-
ing trivially on ^2JF and V.J /F . We call �.J /F the Jacobi group for J over F . (It
is certainly useful to take into account the action on V.J /F , but here we refrain from
doing so for simplicity of exposition.) The Jacobi group has the canonical filtration

U.J /F � W.J /F � �.J /F

defined by

W.J /F D Ker.�.J /F ! SL.JF //;

U.J /F D Ker.�.J /F ! GL.J?F //:

The group U.J /F consists of the Eichler transvections El˝l 0 for l; l 0 2 JF . Since
El 0˝l D E�l˝l 0 , U.J /F is canonically isomorphic to ^2JF . This justifies our use of
the notation U.J /F . We also have the canonical isomorphism

V.J /F ˝ JF ! W.J /F =U.J /F ; m˝ l 7! E zm˝l mod U.J /F ;
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where zm 2 J?F is a lift ofm 2 V.J /F . The linear space V.J /F ˝ JF has a canonical
U.J /F -valued symplectic form as the tensor product of the quadratic form on V.J /F
and the canonical ^2JF -valued symplectic form on JF . We thus have the canonical
exact sequences

0! W.J /F ! �.J /F ! SL.JF /! 1;

0! U.J /F ! W.J /F ! V.J /F ˝ JF ! 0:
(5.6)

The group U.J /F is the centre of �.J /F , and W.J /F is the unipotent radical of
�.J /F . The first sequence (5.6) splits if we choose an embedding 2UF ,! LF com-
patible with JF and hence a splitting LF ' .JF ˚ J_F /˚ V.J /F as in (5.1):

�.J /F ' SL.JF / ËW.J /F : (5.7)

Here the lifted group SL.JF / � �.J /F acts on the component JF ˚ J_F in the nat-
ural way. The adjoint action of SL.JF / on W.J /F =U.J /F ' V.J /F ˝ JF is the
tensor product of the natural action of SL.JF / on JF and the trivial action on V.J /F .
The group W.J /F is isomorphic to the Heisenberg group attached to the symplectic
space V.J /F ˝ JF with centre U.J /F . We call W.J /F the Heisenberg group for J
over F .

If I is a rank 1 primitive sublattice of J , we have

U.J /F � U.I /F � �.J /F ; (5.8)

as can be seen from the definitions. In U.I /F D .I?=I /F ˝ IF , U.J /F corresponds
to the isotropic line .J=I /F ˝ IF . We also have W.J /F � �.I /F and

U.I /F \W.J /F D U.J /
?
F D .J

?=I /F ˝ IF :

The image of W.J /F in O.V .I /F / is the group of Eichler transvections of V.I /F
with respect to the isotropic line .J=I /F .

The Jacobi group �.J /F preserves the Siegel domain realization (5.3) by defin-
ition. The actions of the factors U.J /F , W.J /F =U.J /F , SL.JF / of �.J /F on the
spaces in (5.3) are described as follows.

(1) The group U.J /F acts on VJ trivially. The projection D.J /! VJ is a prin-
cipal U.J /C-bundle, where U.J /C D ^2JC is the group of Eichler transvections
El˝l 0 with l; l 0 2 JC .

(2) The Heisenberg group W.J /F acts on HJ trivially. The quotient W.J /F =
U.J /F acts on the fibers of VJ ! HJ by translation. More precisely, if � is a point
of HJ � PJ_C and JC D J 1;0 ˚ J 0;1 is the corresponding Hodge decomposition
of JC (where J 1;0 is the kernel), the fiber of OHJ .1/ over � is JC=J

1;0. So the
fiber .VJ /� of VJ over � is an affine space for V.J / ˝C .JC=J

1;0/. On the other
hand, we have a natural projection V.J /R ˝R JR ! V.J /˝C .JC=J

1;0/ which is
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an R-isomorphism. Then the action of an element of W.J /R=U.J /R ' V.J /R ˝R

JR on the affine space .VJ /� is the translation by its projection image in V.J /˝C

.JC=J
1;0/.

(3) To describe the action of SL.JF /, we take an embedding 2UF ,! LF com-
patible with JF . As explained before, this induces an isomorphism VJ ' V.J / ˝

OHJ .1/ and a lift SL.JF / ,! �.J /F . Then the lifted group SL.JF / acts on VJ by
its equivariant action on OHJ .1/.

5.3 Partial toroidal compactification

Let � be a finite-index subgroup of OC.L/. We take the intersection of �.J /Q,
W.J /Q, U.J /Q with � and denote them by

�.J /Z D �.J /Q \ �; W.J /Z D W.J /Q \ �; U.J /Z D U.J /Q \ �:

By the orientation on J , we have a distinguished isomorphism U.J /Z ' Z. We also
denote by �.J /�Z the stabilizer of J in � . The integral Jacobi group �.J /Z is of finite
index in �.J /�Z because

�.J /�Z=�.J /Z ,! O.J?=J /

and O.J?=J / is a finite group. If � is neat, we have �.J /�Z D �.J /Z.
We put

�.J /Z D �.J /Z=U.J /Z; �.J /F D �.J /F =U.J /Z

for F D Q;R. These quotients make sense because U.J /F is the centre of �.J /F .
By definition we have the canonical exact sequence

0! W.J /Z=U.J /Z ! �.J /Z ! �.J /Z=W.J /Z ! 1;

which is canonically embedded in the quotient of (5.6) by U.J /F : more specific-
ally, �.J /Z=W.J /Z is embedded in SL.J / as a finite-index subgroup, and W.J /Z=
U.J /Z is embedded in V.J /Q ˝ JQ as a full lattice.

Let T .J /D U.J /C=U.J /Z ' C� be the 1-dimensional torus defined by U.J /Z.
We denote by T .J / ' C the natural partial compactification of T .J /. We take the
quotient of D � D.J / by U.J /Z:

X.J / D D=U.J /Z; T .J / D D.J /=U.J /Z:

Then T .J / is a principal T .J /-bundle over VJ , which contains X.J / as a fibration of
punctured discs. Let T .J /D T .J /�T.J / T .J / be the relative torus embedding. This
has the structure of a line bundle on VJ : the scalar multiplication on each fiber is given
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by the action of T .J / ' C�, and the sum is determined by the scalar multiplication
because the fiber is 1-dimensional. The group �.J /R acts on T .J / naturally, and this
extends to an action on T .J /. The fact that �.J /R commutes with U.J /C implies
that the action of �.J /R on T .J / is an equivariant action on the line bundle.

Let X.J / be the interior of the closure of X.J / in T .J /. We call X.J / the
partial toroidal compactification of X.J /. This is a disc bundle over VJ obtained by
filling the origins in the punctured disc bundle X.J /! VJ . Let�J be the boundary
divisor of X.J /. This is naturally isomorphic to VJ . We denote by ‚J the conormal
bundle of�J in X.J /. This is a �.J /R-equivariant line bundle on�J . (Although the
subgroup U.J /R=U.J /Z of �.J /R acts on �J trivially, it acts on the fibers of ‚J
by rotations.)

Lemma 5.2. We have a natural �.J /R-equivariant isomorphism‚_ ' T .J / of line
bundles on �J .

Proof. Since �J is the zero section of the line bundle T .J /, its normal bundle
in X.J / is the same as the normal bundle in T .J /, which is isomorphic to T .J /

itself.

The partial compactification X.J / already appears in essence in the partial com-
pactifications X.I /† for I � J considered in Section 3.5.1. Recall that the isotropic
ray �J D .U.J /R/�0 appears in every �.I /Z-admissible fan † as in Section 3.5.1.
Since U.J /Z � U.I /Z, we have a natural étale map X.J /! X.I / which is a free
quotient map by U.I /Z=U.J /Z.

Lemma 5.3. The map X.J /!X.I / extends to an étale map X.J /!X.I /†. The
image of�J is a Zariski open set of the boundary divisor of X.I /† associated to the
isotropic ray �J .

Proof. Since D.J / � D.I /, we have the following commutative diagram (cf. Sec-
tion 5.1.2):

T .J / D.I /=U.J /Z T .I /

VJ D.I /=U.J /C T .I /=T .J /:

Here the vertical maps are principal T .J /-bundles, and the two right horizontal maps
are free quotients by U.I /Z=U.J /Z. The two squares are cartesian: the right is the
pullback of a principal T .J /-bundle to a U.I /Z=U.J /Z-cover, and the left is the
restriction to an open set. Since the upper row is T .J /-equivariant, it extends to

T .J / ,! .D.I /=U.J /Z/ �T.J / T .J /! T .I / �T.J / T .J /:

The second map is still a free quotient by U.I /Z=U.J /Z. The image of �J � T .J /

by this map is an open set of the (unique) boundary divisor of T .I / �T.J / T .J /.
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Since T .I / �T.J / T .J / is the torus embedding of T .I / associated to the ray �J , it
is a Zariski open set of T .I /†. Thus we obtain an étale map T .J /! T .I /† which
maps �J to an open set of the boundary divisor of T .I /† corresponding to �J .

5.4 Canonical extension

In this section, which is the central part of Section 5, we extend the automorphic
vector bundles E�;k over X.J /. This is an explicit form of Mumford’s canonical
extension [36] which is suitable for dealing with the Fourier–Jacobi expansion. We
use the same notations L, E , E�, E�;k for the descends of these vector bundles
to X.J /. They are �.J /R-equivariant vector bundles on X.J /.

We choose an adjacent 0-dimensional cusp I � J . Since U.J /Z � �.I /R, the I -
trivialization of E�;k over D descends to an isomorphism E�;k ' V.I /�;k ˝ OX.J /

over X.J / D D=U.J /Z. Thus we still have the I -trivialization over X.J /. This is
equivariant with respect to .�.I /R \ �.J /R/=U.J /Z. We extend E�;k to a vector
bundle over X.J / (still use the same notation) by requiring that this isomorphism
extends to

E�;k ' V.I /�;k ˝O
X.J /:

We call it the canonical extension of E�;k over X.J /. This is the pullback of the
canonical extension over X.I /† defined in Section 3.5.3 by the gluing map X.J /!

X.I /† in Lemma 5.3. By construction, the frame of E�;k over X.J / corresponding
to a basis of V.I /�;k via the I -trivialization extends to a frame of the extended bundle
over X.J /.

Proposition 5.4. The canonical extension of E�;k over X.J / defined above does not
depend on the choice of I . The action of �.J /R on E�;k over X.J / extends to action
on the canonical extension of E�;k over X.J /.

The proof of this proposition amounts to the following assertion.

Lemma 5.5. The factor of automorphy of the �.J /R-action on E�;k with respect to
the I -trivialization is constant on each fiber of �1WD ! VJ . In particular, if I 0 is
another R-line in JR, the difference of the I -trivialization and the I 0-trivialization at
Œ!� 2 D as the composition map

V.I /�;k ! .E�;k/Œ!� ! V.I 0/�;k (5.9)

is constant on each �1-fiber.

Proof. Let j.
; Œ!�/ be the factor of automorphy in question. This is a GL.V .I /�;k/-
valued function on �.J /R �D . What has to be shown is that j.
; Œ!�/D j.
; Œ!0�/ if
�1.Œ!�/ D �1.Œ!

0�/. We consider the natural extension of E�;k over D.J /, on which
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the groupU.J /C ��.J /R acts equivariantly. Note thatU.J /C commutes with �.J /R.
We can write Œ!0� D gŒ!� for some g 2 U.J /C . Since U.J /C acts trivially on IC

and V.I /, we have j.g; �/ � id. Therefore

j.
; gŒ!�/ D j.
g; Œ!�/ D j.g
; Œ!�/ D j.
; Œ!�/:

As for the second assertion, we choose 
 2 �.J /R with 
.IR/ D I
0. Then (5.9)

coincides with the isomorphism


 ı j.
�1; Œ!�/ W V.I /�;k ! V.I /�;k ! V.I 0/�;k :

Hence the constancy of j.
�1; Œ!�/ over �1-fibers implies that of (5.9).

Now we can prove Proposition 5.4.

Proof of Proposition 5.4. Let I , I 0 be two rank 1 primitive sublattices of J . By the
second assertion of Lemma 5.5, the difference of the I -trivialization and the I 0-
trivialization

V.I /�;k ˝OX.J / ! E�;k ! V.I 0/�;k ˝OX.J /; (5.10)

viewed as a GL.n;C/-valued holomorphic function on X.J / via basis of V.I /�;k
and V.I 0/�;k , is constant on each fiber of X.J / ! VJ . Therefore it extends to a
GL.n;C/-valued holomorphic function over X.J /. This implies that (5.10) extends
to an isomorphism

V.I /�;k ˝O
X.J / ! V.I 0/�;k ˝O

X.J /

over X.J /. Thus the two extensions agree.
Extendability of the �.J /R-action on E�;k can be verified as follows. Let 
 2

�.J /R. The 
 -action on E�;k sends a frame corresponding to a basis of V.I /�;k
via the I -trivialization to a frame corresponding to a basis of V.
I /�;k via the 
I -
trivialization. By Lemma 5.5 again, the latter extends to a frame over X.J / also in
the I -trivialization. Thus 
 sends an extendable frame to an extendable frame. This
means that the 
 -action extends over X.J /.

The fact that the canonical extension comes with an I -trivialization (but inde-
pendent of it) enables us to develop the theory of Fourier–Jacobi expansion (Sec-
tion 7) in an intrinsic but still explicit way. The following property will play a funda-
mental role in Section 7.

Proposition 5.6. Let �1WX.J / ! VJ ' �J be the projection. Then we have a
�.J /R-equivariant isomorphism E�;k ' �

�
1 .E�;kj�J / over X.J /.
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Proof. We fix a rank 1 primitive sublattice I � J and let j.
; Œ!�/ be the factor
of automorphy of the �.J /R-action on E�;k with respect to the I -trivialization. By
Lemma 5.5, the GL.V .I /�;k/-valued function j.
; Œ!�/ on �.J /R �X.J / descends
to a GL.V .I /�;k/-valued function on �.J /R � �J . This gives the factor of auto-
morphy of the �.J /R-action on E�;kj�J with respect to the I -trivialization

E�;kj�J ' V.I /�;k ˝O�J :

The fact that its pullback agrees with the factor of automorphy of E�;k implies that
the composition

��1 .E�;kj�J /! ��1 .V .I /�;k ˝O�J / ' V.I /�;k ˝O
X.J / ! E�;k

gives a �.J /R-equivariant isomorphism ��1 .E�;kj�J /! E�;k over X.J /, where the
first isomorphism is the pullback of the I -trivialization over �J , and the last iso-
morphism is the I -trivialization over X.J /.

Remark 5.7. By the proof, we have the following commutative diagram:

��1 .E�;kj�J /
//

��

E�;k

��

��1 .V .I /�;k ˝O�J /
// V.I /�;k ˝O

X.J /:

Here the upper arrow is the isomorphism in Proposition 5.6, the vertical arrows are
the I -trivializations, and the lower arrow is the natural isomorphism.

Remark 5.8. Although the canonical extension at the level of X.J / still has a trivi-
alization (by construction), this no longer holds when passing to the full toroidal
compactifications (Section 5.6). Around �J we need to further take the quotient
by �.J /Z, which does not preserve the trivialization.

5.5 The Hodge line bundle at the boundary

In this section we study the Hodge line bundle L relative to the J -cusp and show that
its canonical extension can be understood more directly. Let

LJ D OHJ .�1/ D OP.L=J?/C .�1/jHJ

be the Hodge bundle over the upper half plane HJ . The group �.J /R acts on LJ

equivariantly via the natural map �.J /R ! SL.JR/. Let � D �2 ı �1WD ! HJ be
the projection from D to HJ .
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Lemma 5.9. We have a �.J /R-equivariant isomorphism L ' ��LJ over D .

Proof. Recall that � is restriction of the projection PLC Ü P .L=J?/C . Since this
is induced by the linear map LC ! .L=J?/C , we have a natural isomorphism

��OP.L=J?/C .�1/ ' OPLC .�1/

over PLC � PJ?C . Restricting this isomorphism to D , we obtain L ' ��LJ . Since
the projection LC ! .L=J?/C is �.J /R-equivariant, so is the isomorphism L '

��LJ .

The fiber of ��LJ over Œ!� 2D is the image of the projection C!! .L=J?/C ,
and the isomorphism L! ��LJ over Œ!� is identified with the natural map C! !
Im.C! ! .L=J?/C/.

The projection D ! HJ descends to X.J /! HJ and extends to X.J /! HJ

naturally. We denote it again by � WX.J /! HJ . The isomorphism in Lemma 5.9
descends to a �.J /R-equivariant isomorphism L' ��LJ jX.J / over X.J /. We have
respective extension of both sides over X.J /: for L the canonical extension construc-
ted in Section 5.4, and for ��LJ jX.J / the natural extension ��LJ . It turns out that
these two extensions agree, as the following proposition shows.

Proposition 5.10. The isomorphism L'��LJ jX.J / over X.J / extends to a �.J /R-
equivariant isomorphism between the canonical extension of L and ��LJ over
X.J /. In particular, we have Lj�J ' �

�
2LJ over �J .

Proof. We choose a rank 1 primitive sublattice I � J . The canonical extension of L

is defined via the I -trivialization of L, which we denote by �I WL' I_C ˝OX.J /. On
the other hand, we also have a trivialization �0I WLJ ' I

_
C ˝OHJ of LJ D OHJ .�1/

over HJ � P .L=J?/C induced by the pairing between .L=J?/C and IC . The nat-
ural extension ��LJ of ��LJ jX.J / over X.J / coincides with the extension via the
trivialization

��LJ jX.J /

���0
I

���! ��.I_C ˝OHJ /jX.J / D I
_
C ˝OX.J /; (5.11)

because ���0I is defined over X.J /.
We observe that the composition of (5.11) with the isomorphism L'��LJ jX.J /

in Lemma 5.9 coincides with the I -trivialization �I of L: this is just the remark that
taking the pairing of a vector ! 2 LC with IC (this is �I ) is the same as projecting !
to .L=J?/C (this is L! ��LJ ) and then taking pairing with IC (this is ���0I ). From
this coincidence, we see that the isomorphism in Lemma 5.9 extends to an isomorph-
ism over X.J / from the extension of L via �I (this is the canonical extension of L)
to the extension of ��LJ jX.J / via ���0I (this is ��LJ ). The �.J /R-equivariance
holds by continuity.
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Thus the canonical extension of L defined in Section 5.4 via the I -trivialization
can be understood more directly as the canonical (verbatim) extension ��LJ of
��LJ jX.J /.

Remark 5.11. By the proof of Proposition 5.10, LJ is endowed with the I -trivial-
ization I_C ˝ OHJ ! LJ induced by the pairing between .L=J?/C and IC , and its
pullback by � agrees with the I -trivialization of L via the isomorphism L ' ��LJ .

5.6 Toroidal compactification

In this section we recall the (full) toroidal compactifications of the modular variety
F .�/ D �nD following [2]. While this provides a background for our geometric
approach, logically it will be used only in Section 10 in a rather auxiliary way, so the
reader may skip it for the moment.

The data for constructing a toroidal compactification of F .�/ is a collection†D
.†I / of �.I /Z-admissible rational polyhedral cone decomposition of CCI � U.I /R
in the sense of Section 3.5.1, one for each �-equivalence class of rank 1 primitive
isotropic sublattices I of L. Two fans †I , †I 0 for different �-equivalence classes I ,
I 0 are independent, and no choice is required for rank 2 isotropic sublattices J (it is
canonical). Then the toroidal compactification is defined by

F .�/† D
�
D t

G
I

X.I /†I t
G
J

X.J /
�.
�;

where I (resp., J ) run over all primitive isotropic sublattices of L of rank 1 (resp.,
rank 2), and � is the equivalence relation generated by the following étale maps.

(1) The 
 -action D ! D , X.I /†I ! X.
I /†
I , X.J /! X.
J / for 
 2 � .

(2) The gluing maps D!X.I /†I , D!X.J / and X.J /!X.I /†I for I � J
as in Lemma 5.3.

By [2, Section III.5], F .�/† is a compact Moishezon space which contains F .�/

as a Zariski open set and has a morphism F .�/† ! F .�/bb to the Baily–Borel
compactification. We have natural maps

X.I /†I =�.I /Z ! F .�/†; X.J /=.�.J /�Z=U.J /Z/! F .�/†: (5.12)

These maps are isomorphism in a neighbourhood of the locus of boundary points
lying over the I -cusp and the J -cusp, respectively (see [2, p. 175]). We may choose†
so that F .�/† is projective. When � is neat and each fan †I is regular, i.e., every
cone is generated by a part of a Z-basis of U.I /Z, then F .�/† is nonsingular [2,
Section III.7].



Toroidal compactification 65

Next we explain the canonical extension of E�;k over F .�/† (cf. [36]). We
assume that � is neat and† is regular. Then not only � itself but also the subquotients
�.I /Z and �.J /�Z=U.J /Z D �.J /Z are torsion-free, so the quotient map

D t
G
I

X.I /†I t
G
J

X.J /! F .�/†

is étale. The vector bundle E�;k is initially defined on D and hence on

D t
G
I

X.I / t
G
J

X.J /:

In Sections 3.5.3 and 5.4, we constructed the canonical extension of E�;k over X.I /†I

and X.J /, respectively. By construction we have a natural isomorphism

p�E�;k ' E�;k

for a gluing map p in (2) above. Moreover, we have a natural isomorphism 
�E�;k '

E�;k for the action of 
 2 �: this is evident for D and X.I /†I , while it is assured by
Proposition 5.4 for X.J /. Since these isomorphisms are compatible with each other,
the extended vector bundle E�;k on

D t
G
I

X.I /†I t
G
J

X.J /

descends to a vector bundle on F .�/†. We denote it again by E�;k . This is the
same as extending E�;k on F .�/ over the boundary of F .�/† by using the local
charts (5.12).

Proposition 5.12. For � neat, we have M�;k.�/ D H
0.F .�/†;E�;k/.

Proof. We have the natural inclusion

H 0.F .�/†;E�;k/ ,! H 0.F .�/;E�;k/ DM�;k.�/:

It is sufficient to see that this is surjective. Let f 2 M�;k.�/. As a section of E�;k
over X.I /, f extends holomorphically over X.I /†I by Lemma 3.11. By the gluing,
f extends holomorphically over X.J /. Therefore, as a section of E�;k over F .�/,
f extends holomorphically over F .�/†.

Let us remark an immediate consequence of this interpretation. We go back
to a general finite-index subgroup � of OC.L/. For a fixed �, the direct sumL
k�0M�;k.�/ is a module over the ring

L
k�0Mk.�/ of scalar-valued modular

forms.

Proposition 5.13. For each �, the module
L
kM�;k.�/ is finitely generated over the

ring
L
kMk.�/.
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Proof. We may assume that � is neat by replacing the given � by its neat sub-
group of finite index. We take a smooth toroidal compactification F .�/† as above
and let � WF .�/† ! F .�/bb be the projection to the Baily–Borel compactification.
Then L˝n D ��O.1/ for an ample line bundle O.1/ on F .�/bb by [36, Proposi-
tion 3.4 (b)]. (In fact, L itself descends, but we do not need that.) It suffices to show
that for each 0 � k0 < n, the module

L
k M�;k0Cnk.�/ is finitely generated overL

kMnk.�/. By Proposition 5.12, we haveM
k�0

M�;k0Cnk.�/ D
M
k�0

H 0.F .�/†;E�;k0 ˝ �
�O.k//

'

M
k�0

H 0.F .�/bb; ��E�;k0 ˝O.k//;

where the second isomorphism follows from the projection formula for � . Since
F .�/bb is projective, the last module is finitely generated over the ringM

k

H 0.F .�/bb;O.k// D
M
k

Mnk.�/

by a general theorem of Serre (see, e.g., [37, p. 128]).



Chapter 6

Geometry of Siegel operators

Let L be a lattice of signature .2; n/ with n � 3 and � be a finite-index subgroup
of OC.L/. Let � D .�1 � � � � � �n/ be a partition expressing an irreducible repres-
entation of O.n;C/. We assume � ¤ 1; det. This in particular implies �n D 0, and
so, t�1 < n. In Proposition 3.7, we proved that a modular form f 2M�;k.�/ always
vanishes at all 0-dimensional cusps. In this chapter we study the restriction of f to a
1-dimensional cusp, an operation usually called the Siegel operator.

Let J be a rank 2 primitive isotropic sublattice of L, which we fix throughout this
chapter. A traditional way to define the Siegel operator ˆJ at the J -cusp is to choose
a 0-dimensional cusp I � J , take the I -trivialization and the coordinates .�; z;w/ as
in Section 5.1.2, and set

.ˆJf /.�/ D lim
t!1

f .�; 0; i t/; � 2 H: (6.1)

In this way it is easy to define the Siegel operator, but we have to check the modularity
of ˆJf and calculate its reduced weight after defining it.

In this chapter we take a more geometric approach working directly with the auto-
morphic vector bundle E�;k . This improves the geometric understanding of the Siegel
operator, and tells us a priori the modularity ofˆJf and its weight. We work with the
partial toroidal compactification X.J /, rather than with the Baily–Borel compactific-
ation, because the boundary structure of X.J / is easier to handle and E�;k extends
to a vector bundle over X.J / as we have seen in Section 5. We also wanted to put
the Siegel operator on the same ground as the Fourier–Jacobi expansion (Section 7).
Understanding the Siegel operator at the level of toroidal compactification will be
useful in some geometric applications.

Let �J be the boundary divisor of X.J / and �2W�J ! HJ be the projection to
the J -cusp. Let LJ be the Hodge bundle on HJ . For V.J / D .J?=J /C we denote
by V.J /�0 the irreducible representation of O.V .J // ' O.n � 2;C/ with partition
�0 D .�2 � � � � � �n�1/. Our result is summarized as follows.

Theorem 6.1. Let � ¤ 1; det. There exists a �.J /R-invariant sub vector bundle EJ
�

of E� with the following properties.

(1) EJ
�

extends to a sub vector bundle of the canonical extension of E� over
X.J /.

(2) We have a �.J /R-equivariant isomorphism EJ
�
j�J ' �

�
2L
˝�1
J ˝ V.J /�0 .

(3) If f is a �-modular form of weight .�; k/, its restriction to �J as a section
of E�;k takes values in the sub vector bundle EJ

�
˝L˝kj�J of E�;kj�J .
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In particular, we have
f j�J D �

�
2 .ˆJf /

for a V.J /�0-valued cusp form ˆJf of weight k C �1 on HJ with respect to the
image of �.J /Z ! SL.J /. If f D

P
l a.l/q

l is the Fourier expansion of f at a 0-
dimensional cusp I � J , the Fourier expansion of ˆJf at the I -cusp of HJ is given
by

.ˆJf /.�/ D
X

l2�J\U.I/
_
Z

a.l/e..l; �//; � 2 HJ � U.I /C=U.J /
?
C; (6.2)

where �J D .U.J /R/�0 is the isotropic ray in U.I /R corresponding to J .

In (6.2), the pairing .l; �/ for l 2 �J and � 2 HJ is the natural pairing between
U.J /C and U.I /C=U.J /?C . (This � 2 HJ is different from the coordinate � 2 H in
Section 5.1.2, but rather is identified with the point �lJ there.)

A point here is that the vector bundle E�;k “reduces” to the sub vector bundle
EJ
�
˝L˝k at the boundary divisor�J . This is the difference with the Siegel operator

in the scalar-valued case. This reduction corresponds to the reduction �Ý �1 � �0
of the weight, and makes it possible to descend f j�J to HJ . Roughly speaking, this
reduction occurs as a result of taking the direct image of E�;k to the Baily–Borel com-
pactification. In this way, the naive Siegel operator (6.1) can be more geometrically
understood as

restriction to �J C reduction to EJ� ˝L˝k C descend to HJ :

The sub vector bundle EJ
�

will be taken up again in Section 8.3 from the viewpoint
of a filtration on E�.

In Section 6.1 we prepare some calculations related to EJ
�

. In Section 6.2 we
define EJ

�
and prove the properties (1), (2) in Theorem 6.1. The Siegel operatorˆJ is

defined in Section 6.3, and the remaining assertions of Theorem 6.1 are proved there.

6.1 Invariant part for a unipotent group

This section is preliminaries for introducing the Siegel operator. We prove that the
Fourier coefficients of a modular form in the J -ray are contained in the invariant
subspace for a certain unipotent subgroup of O.n;C/, and study this space as a rep-
resentation of C� � O.n � 2;C/.

Let F D Q;R. Let W.J /F � �.J /F be the Heisenberg group and the Jacobi
group for J over F defined in Section 5.2. We choose a rank 1 primitive sublattice I
of J , and also a rank 1 sublattice I 0 of L with .I; I 0/¤ 0. Let �.I /F be the stabilizer
of I as in Section 3.3.2 and let

�.I; J /F D �.J /F \ Ker.�.I /F ! GL.I //:
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By definition �.I;J /F consists of isometries ofLF which act trivially on IF , JF =IF
and V.J /F D .J?=J /F . As a subgroup of �.J /F , �.I; J /F contains W.J /F , and
the quotient �.I; J /F =W.J /F ' F is the subgroup of �.J /F =W.J /F ' SL.JF /
which acts trivially on IF .

As a subgroup of �.I /F , �.I; J /F contains the unipotent radical U.I /F of
�.I /F by (5.8). Let U.J=I /F be the subgroup of O.V .I /F / acting trivially on
JF =IF and V.J /F . Then U.J=I /F is the image of �.I; J /F in O.V .I /F /. This
is also the image of W.J /F in O.V .I /F /. From (3.11), we have the exact sequence

0! U.I /F ! �.I; J /F ! U.J=I /F ! 0: (6.3)

By (1.2), the group U.J=I /F is the unipotent radical of the stabilizer of JF =IF in
O.V .I /F / and consists of the Eichler transvections of V.I /F with respect to JF =IF .
We have a canonical isomorphism

U.J=I /F ' V.J /F ˝F .JF =IF /:

We define U.J=I /C < O.V .I // similarly.
Now let f be a modular form of weight .�; k/ with respect to � , and f DP
l a.l/q

l be its Fourier expansion at I . We are interested in the Fourier coefficients
a.l/ 2 V.I /�;k for l in the isotropic ray �J D ..J=I /R˝ IR/�0 corresponding to J .
We denote by

V.I /U� D V.I /
U.J=I/C
�

the invariant subspace of V.I /� for the unipotent subgroup U.J=I /C of O.V .I //,
and put

V.I /U�;k D V.I /
U
� ˝ .I

_
C /
˝k
� V.I /�;k :

Lemma 6.2. If l 2 U.I /_Z \ �J , then a.l/ 2 V.I /U
�;k

.

Proof. We take the splitting of (6.3) for F D Q following (3.12), and accordingly
express elements of �.I; J /Q as .
1; ˛/, where 
1 2 U.J=I /Q � O.V .I /Q/ and
˛ 2 U.I /Q. (In the notation (3.14), this is .
1 ˝ idI ; 1; ˛/.) There exists a finite-
index subgroup H of �.I; J /Q \ � such that ˛ 2 U.I /Z for every element .
1; ˛/
of H . The group �.I; J /Q acts trivially on the isotropic ray �J . Therefore, if l 2
U.I /_Z \ �J , we see from Proposition 3.6 that

a.l/ D a.
1l/ D 
1.a.l//

for every element .
1; ˛/ of H . Here 
1 2 U.J=I /Q acts on V.I /�;k by its natural
action on V.I /�. This equality means that a.l/ is contained in the H -invariant sub-
space V.I /H

�;k
D V.I /H

�
˝ .I_C /

˝k of V.I /�;k . The image of H by the projection

�.I; J /Q ! U.J=I /Q; .
1; ˛/ 7! 
1;
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is a full lattice in U.J=I /Q. In particular, it is Zariski dense in U.J=I /C . This shows
that V.I /H

�
D V.I /U

�
, and so, a.l/ 2 V.I /U

�;k
.

Let P.J=I /C be the stabilizer of the isotropic line JC=IC � V.I / in O.V .I //.
Then U.J=I /C is the unipotent radical of P.J=I /C and sits in the exact sequence
(cf. (1.2))

0! U.J=I /C ! P.J=I /C ! GL.JC=IC/ � O.V .J //! 1: (6.4)

Therefore V.I /U
�

is a representation of

GL.JC=IC/ � O.V .J // ' C� � O.n � 2;C/ ' SO.2;C/ � O.n � 2;C/:

Proposition 6.3. Let � ¤ det. As a representation of C� � O.V .J // we have

V.I /U� ' ��1 � V.J /�0 ;

where ��1 is the character of C� of weight �1 and V.J /�0 is the irreducible repres-
entation of O.V .J // associated to the partition �0 D .�2 � � � � � �n�1/.

Proof. This is purely a representation-theoretic calculation. Let us first rewrite the
setting. Let VDCn be ann-dimensional quadratic space over C with a basis e1; : : : ; en
such that .ei ; ej / D 1 if i C j D n C 1 and .ei ; ej / D 0 otherwise. Let P be the
stabilizer of the isotropic line Ce1 in O.V / and let V 0 D he2; : : : ; en�1i. Then

P D .C� � O.V 0// Ë U;

where C� D SO.he1; eni/ ' GL.Ce1/ and U is the group of unipotent matrices0@1 �v_ �.v; v/=2

0 In�2 v

0 0 1

1A v 2 V 0:

The problem is to calculate the U -invariant part V U
�

of V� as a representation of the
reductive part C� � O.V 0/.

Step 1. There exists a C� � O.V 0/-equivariant embedding ��1 � V 0�0 ,! V U
�

.

Proof. We write

W0 D ^
t�1V ˝ � � � ˝ ^

t��1V;

W0
0
D ^

t�1�1V 0 ˝ � � � ˝ ^
t��1�1V 0;

W1 D
�
Ce1 ^ ^

t�1�1V 0
�
˝ � � � ˝

�
Ce1 ^ ^

t��1�1V 0
�
:
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We have a natural C� � O.V 0/-equivariant isomorphism

� W Ce˝�11 ˝W 00
'
�! W1 � W0:

Recall from (3.1) that V� � W0 and V 0
�0
� W 00. (Here we notice that the transpose

of �0 is .t�1 � 1; : : : ; t��1 � 1/.) We shall show that the image of Ce˝�11 ˝ V 0
�0

by �
is contained in V U

�
. Since Ce˝�11 ' ��1 as a representation of C�, this would imply

our assertion.
Since U acts onW1 trivially, it does so on �.Ce˝�11 ˝ V 0

�0
/. Thus it suffices to see

that �.Ce˝�11 ˝ V 0
�0
/ is contained in V�. Recall from (3.2) that V� and V 0

�0
, respect-

ively, contain the vectors

v� D

�1O
iD1

.e1 ^ � � � ^ et�i /; v0�0 D

�1O
iD1

.e2 ^ � � � ^ et�i /:

Since �.e˝�11 ˝ v0
�0
/ D v�, we have O.V 0/ � �.e˝�11 ˝ v0

�0
/ � V�. Taking the linear

hull and using the irreducibility of V 0
�0

, we see that �.Ce˝�11 ˝ V 0
�0
/ � V�.

For the proof of Proposition 6.3, it thus suffices to prove dimV 0
�0
D dimV U

�
. We

use the restriction to SO.V / � O.V /. We first consider the case when V� remains
irreducible as a representation of SO.V /. As recalled in Section 3.6.1, this occurs
exactly when n is odd or n is even with t�1 ¤ n=2, and V� has highest weight

x� D .x�1; : : : ; x�Œn=2�/ D .�1; �2 � �n�1; : : : ; �Œn=2� � �nC1�Œn=2�/

in this case.

Step 2. When V� is irreducible as a representation of SO.V /, V U
�

is irreducible as a
representation of SO.V 0/ with highest weight x�0 D .x�2; : : : ; x�Œn=2�/. In particular, we
have dimV 0

�0
D dimV U

�
.

Proof. LetB andB 0 be the groups of upper triangular matrices in SO.V / and SO.V 0/,
respectively (the standard Borel subgroups). LetU0 andU 00 be the groups of unipotent
matrices in B and B 0, respectively. Then U and U 00 generate U0. Therefore we have

V
U0
�
D .V U� /

U 0
0 : (6.5)

The space V U0
�

is the highest weight space for the SO.V /-representation V�, while
.V U
�
/U
0
0 is the highest weight space for the SO.V 0/-representation V U

�
. The irredu-

cibility of V� as an SO.V /-representation implies dimV U0
�
D 1, which in turn implies

by (6.5) the irreducibility of V U
�

as a representation of SO.V 0/.
We shall calculate the highest weight of V U

�
for SO.V 0/. Let T and T 0 be the

groups of diagonal matrices in B and B 0, respectively. Then T D C� � T 0. The
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highest weight x� D .x�1; : : : ; x�Œn=2�/ of the SO.V /-representation V� is the weight
of the T -action on the highest weight space V U0

�
. Therefore T 0 acts by weight x�0 D

.x�2; : : : ; x�Œn=2�/ on V U0
�

. By (6.5), this means that the highest weight of V U
�

for
SO.V 0/ is x�0.

It remains to cover the exceptional case where V� gets reducible when restricted
to SO.V /, namely, n is even and t�1 D n=2.

Step 3. We have dim V 0
�0
D dim V U

�
even when V� is reducible as a representation

of SO.V /.

Proof. In this case, the irreducible summands of V� have highest weight x� D �

and ��, respectively. We can argue similarly for each irreducible summand. This
shows that V U

�
as a representation of SO.V 0/ has two irreducible summands, of

highest weight �0 D .�2; : : : ; �n=2/ and .��/0 D .�2; : : : ;��n=2/. On the other hand,
V 0
�0

is also reducible as a representation of SO.V 0/with highest weight �0 and .�0/�D
.��/0 by Section 3.6.1. This implies that V U

�
' V 0

�0
as SO.V 0/-representations.

The proof of Proposition 6.3 is now complete.

6.2 The sub vector bundle EJ
�

Let �¤ det. We define the sub vector bundle EJ
�

of E� as the image of V.I /U
�
˝OD

by the I -trivialization �I WV.I /� ˝OD ! E�.

Lemma 6.4. The sub vector bundle EJ
�

of E� is �.J /R-invariant. In particular, it
does not depend on the choice of I .

Proof. Let 
 2 �.J /R. What has to be shown is that the image of V.I /U
�
˝ OD by

the composition homomorphism

V.I /� ˝OD

�I
�! E�



�! E�

��1
I
��! V.I /� ˝OD

is again V.I /U
�
˝OD . This homomorphism coincides with

V.I /� ˝OD



�! V.
I /� ˝OD

�
I
��! E�

��1
I
��! V.I /� ˝OD ;

where �
I is the 
I -trivialization. The image of V.I /U
�

by 
 W V.I /� ! V.
I /� is
V.
I /U

�
, the invariant subspace of V.
I /� for the unipotent radical U.
JC=
IC/ D

U.JC=
IC/ of the stabilizer of JC=
IC in O.V .
I //. Therefore it suffices to show
that the homomorphism

��1
I ı �I W V.I /� ˝OD ! V.
I /� ˝OD

sends V.I /U
�
˝OD to V.
I /U

�
˝OD .
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The problem is pointwise. Let Œ!� 2 D . At the fiber of E over Œ!�, the difference
of the I -trivialization and the 
I -trivialization is the isometry

I?C =IC ! I?C \ !
?
! !?=C! ! 
I?C \ !

?
! 
I?C =
IC:

This sends the isotropic line JC=IC of I?C =IC as

JC=IC ! JC \ !
?
D JC \ !

?
! JC=
IC:

Therefore the induced isomorphism

O.V .I //! O.V .
I //

sends the subgroupU.J=I /C toU.JC=
IC/. It follows that the induced isomorphism

.��1
I ı �I /Œ!� W V.I /� ! V.
I /�

sends V.I /U
�

to V.
I /U
�

.

Recall that the canonical extension of E� over the partial toroidal compactification
X.J / is defined via the I -trivialization V.I /� ˝ OX.J / ! E�. Therefore, by con-
struction, EJ

�
extends to a sub vector bundle of the canonical extension of E� (again

denoted by EJ
�

). The I -trivialization E� ! V.I /� ˝ O
X.J / over X.J / sends EJ

�
to

V.I /U
�
˝O

X.J /.

Proposition 6.5. There exists an SL.JR/-equivariant vector bundle ˆJE� on HJ

such that we have a �.J /R-equivariant isomorphism

EJ� j�J ' �
�
2 .ˆJE�/

of vector bundles on �J .

Proof. Let j.
; Œ!�/ be the factor of automorphy of the �.J /R-action on EJ
�

with
respect to the I -trivialization EJ

�
' V.I /U

�
˝OD . This is a GL.V .I /U

�
/-valued func-

tion on �.J /R �D . We shall prove the following.

(1) For fixed 
 , the function j.
; Œ!�/ of Œ!� is constant on each fiber of D!HJ .

(2) j.
; Œ!�/ D id if 
 2 W.J /R.

Since �.J /R=W.J /R ' SL.JR/, these properties ensure that j.
; Œ!�/ descends to
a GL.V .I /U

�
/-valued function on SL.JR/ �HJ . This function defines the factor of

automorphy of an SL.JR/-equivariant vector bundle ˆJE� on HJ such that EJ
�
'

��.ˆJE�/ as �.J /R-equivariant vector bundles on D . This gives an isomorphism
EJ
�
j�J ' �

�
2 .ˆJE�/ over �J .

We first check the property (2). Since W.J /R acts on IR trivially, we see from
Lemma 3.2 that the factor of automorphy of the W.J /R-action on E� with respect



Geometry of Siegel operators 74

to the I -trivialization is given by the natural action of W.J /R on V.I /�. Since the
image of W.J /R in O.V .I /R/ is equal to U.J=I /R, W.J /R acts on V.I /U

�
trivially

by definition. This implies (2).
Next we verify the property (1). The fibers of D ! VJ are contained in U.J /C-

orbits in D.J / � D , and the fibers of �J ! HJ are W.J /R=U.J /R-orbits. In
particular, the constancy on the fibers of D ! VJ would follow from the constancy
on U.J /R-orbits and the identity theorem in complex analysis for U.J /R � U.J /C .
Thus we are reduced to checking the constancy onW.J /R-orbits. Let 
 2 �.J /R and
g 2 W.J /R. Then we can calculate

j.
; g.Œ!�// D j.
g; Œ!�/ ı j.g; Œ!�/�1 D j.
g; Œ!�/

D j.
g
�1; 
.Œ!�// ı j.
; Œ!�/ D j.
; Œ!�/:

In the second and the last equalities we used the property (2) proved above, with the
normality ofW.J /R in �.J /R in the last equality. The property (1) is thus proved.

Remark 6.6. By construction, ˆJE� is endowed with a trivialization

V.I /U� ˝OHJ ' ˆJE�;

whose pullback agrees with the I -trivialization V.I /U
�
˝ O�J ' EJ

�
j�J of EJ

�

over �J .

We can calculate the weights of ˆJE� by using Proposition 6.3. Let LJ be the
Hodge bundle on HJ .

Proposition 6.7. There exists an SL.JR/-equivariant isomorphism

ˆJE� ' L
˝�1
J ˝ V.J /�0 ;

of vector bundles on HJ .

The proof of Proposition 6.7 is divided into several steps. Let us formulate the first
half as preparatory lemmas as follows. Let P.J / be the stabilizer of JC in O.LC/.
We write Q.J / D Q �Q \ PJ?C . Recall that E� is naturally defined over Q as an
O.LC/-equivariant vector bundle.

Lemma 6.8. The vector bundle EJ
�

extends to a P.J /-invariant sub vector bundle
of E� over Q.J / (again denoted by EJ

�
).

Proof. For each C-line I 0 � JC , the I 0-trivialization �I 0 WV.I 0/�˝O! E� is defined
over Q.I 0/ D Q �Q \ P .I 0/?. The same argument as the second half of the proof
of Lemma 6.4 shows that for two C-lines I1; I2 � JC , we have

�I1.V .I1/
U
� ˝O/ D �I2.V .I2/

U
� ˝O/
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overQ.I1/\Q.I2/. Therefore, by gluing the image of �I 0 for all C-lines I 0� JC , we
obtain a sub vector bundle of E� over Q.J / D

S
I 0 Q.I

0/ which extends EJ
�

. Since

 2P.J / sends �I 0.V .I 0/U� ˝O/ to �
I 0.V .
I 0/U� ˝O/ (cf. the proof of Lemma 6.4),
this sub vector bundle is P.J /-invariant.

Lemma 6.9. Let DJ D Q.J / \ PI?C . The I -trivialization V.I /U
�
˝ OD.I / ! EJ

�

over D.I / extends to an isomorphism

V.I /U� ˝OQ.J/ ! EJ� ˝OQ.J/.�1DJ / (6.6)

over Q.J /, which is equivariant with respect to the stabilizer of IC in P.J /.

Proof. We choose an arbitrary embedding 2UC ,! LC compatible with IC � JC

in the sense of Section 5 and accordingly take a lift GL.JC/ ,! P.J / of GL.JC/.
Let T ' C� be the subgroup of GL.JC/ consisting of matrices

�
1 0
0 ˛

�
, ˛ 2 C�, with

respect to the basis e1; e2 of JC . (e1 spans IC and e2 spans JC=IC .) The image of T
in P.J=I /C is a lift of GL.JC=IC/ in (6.4). Then

V.I / D Ce2 ˚ V.J /˚Cf2

is the weight decomposition for T , where Ce2, V.J /, Cf2 have weight 1, 0, �1,
respectively. A general T -orbit C ı D T Œ!� in D.I / gives a flow converging to the
point p D Œf2� ofDJ as ˛! 0 from a normal direction. Let C D C ı [ p 'C be the
closure of such a T -orbit inQ.J /. The proof of Lemma 6.9 is based on the following
assertion.

Claim 6.10. The I -trivialization EjCı ' V.I / ˝ OCı over C ı extends to an iso-
morphism

EjC ' Ce2 ˝OC .�p/˚ V.J /˝OC ˚Cf2 ˝OC .p/

over C .

We postpone the proof of this claim for a while and continue the proof of Lem-
ma 6.9. From Claim 6.10, we see that if V.I /� D

L
r V.r/ is the weight decom-

position for T with V.r/ the weight r subspace, the I -trivialization of E� over C ı

extends to an isomorphism

E�jC '
M
r

V.r/˝OC .�rp/

over C . Since V.I /U
�
� V.�1/ by Proposition 6.3, we obtain

EJ� jC ' V.I /
U
� ˝OC .��1p/:

Finally, if we vary the embedding 2UC ,! LC , then the point p D Œf2� runs overDJ .
This implies the assertion of Lemma 6.9.
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We give the postponed proof of Claim 6.10.

Proof of Claim 6.10. Let v 2V.I / be a weight vector for T with weight r 2 ¹�1;0;1º
and let sv be the corresponding section of E . We calculate the limit behavior of sv on
the T -orbit C ı D T Œ!� as ˛! 0. We write 
˛ D

�
1 0
0 ˛

�
2 T . We lift V.I / ,! I?C by

the given embedding UC ,! LC . By Lemma 2.6 for l D e1 2 I , we have

sv.
˛Œ!�/ D v � .v; se1.
˛Œ!�//e1 mod C
˛.!/

D v � .v; 
˛.se1.Œ!�///e1 mod C
˛.!/

D v � .
�1˛ .v/; se1.Œ!�//e1 mod C
˛.!/

D v � ˛�r.v; se1.Œ!�//e1 mod C
˛.!/: (6.7)

We take the Ce2-trivialization of E and express sv.
˛Œ!�/ as a V.Ce2/-valued func-
tion. We identify V.Ce2/ D Ce1 ˚ V.J / ˚ Cf1 naturally. Then, according to the
weight r of v, we have

sv.
˛Œ!�/ D

8̂̂<̂
:̂
v C C1.v/e1 v 2 V.J /;

˛�1C2e1 v D e2;

˛C�12 f1 C ˛C3e1 C ˛v0 v D f2

as a V.Ce2/-valued function. Here C1.v/ is a linear function on V.J /, C2¤ 0 and C3
are constants, and v0 2 V.J / is some constant vector. These expressions in the cases
v 2 V.J / and v D e2 are apparent from (6.7), because the vector in (6.7) is already
perpendicular to e2 in these cases. The case v D f2 follows from the conditions

.sf2 ; se2/ D 1; .sf2 ; sf2/ D 0; .sf2 ; sw/ D 0 for w 2 V.J /:

(This can also be calculated by using the coordinates .�; z; w/ in Section 5.1.2.) The
assertion of Claim 6.10 now follows from these expressions.

Now we can complete the proof of Proposition 6.7.

Proof of Proposition 6.7. We pass from Q.J / to PJ_C . By the same argument as the
proof of Proposition 6.5 with �.J /R replaced by P.J / and W.J /R replaced by the
kernel of P.J / ! GL.JC/ � O.V .J //, we find that the P.J /-equivariant vector
bundle EJ

�
on Q.J / descends to a GL.JC/ � O.V .J //-equivariant vector bundle

on PJ_C . This is an extension of ˆJE�, and we denote it again by ˆJE�. Let pI D
I? \ PJ_C be the I -cusp of HJ . SinceDJ is the fiber ofQ.J /! PJ_C over pI , we
find that the isomorphism (6.6) descends to an isomorphism

V.I /U� ˝OPJ_C
! ˆJE� ˝OPJ_C

.�1pI /: (6.8)

This is equivariant with respect to the stabilizer of IC in GL.JC/ and O.V .J //. Note
that these groups act on V.I /U

�
by the representation in Proposition 6.3.
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Claim 6.11. The element g.˛/ D
�
˛ 0
0 ˛�1

�
of GL.JC/, ˛ 2 C�, acts on the fiber

of ˆJE� over pI as the scalar multiplication by ˛�1 .

We prove Claim 6.11. By Proposition 6.3, the matrices
�
1 0
0 ˛

�
in GL.JC/ act on

V.I /U
�

as the scalar multiplication by ˛�1 . Moreover, the matrices
�
ˇ 0
0 1

�
act on V.I /

trivially. It follows that g.˛/ acts on V.I /U
�

as the scalar multiplication by ˛��1 . On
the other hand, since the tangent space of pI 2 PJ_C is

Hom.I? \ J_C ; J
_
C =.I

?
\ J_C // ' Hom..J=I /_C; I

_
C /;

the element g.˛/ acts on it by the multiplication by ˛�2. Hence g.˛/ acts on the fiber
of OPJ_C

.��1pI / over pI as the multiplication by ˛2�1 . By the isomorphism (6.8),
we find that g.˛/ acts on the fiber of ˆJE� over pI as the scalar multiplication by
˛��1 � ˛2�1 D ˛�1 . This proves Claim 6.11.

We go back to the proof of Proposition 6.7. The torus consisting of the matri-
ces g.˛/ is the reductive part of the stabilizer of pI in SL.JC/. Therefore Claim 6.11
implies that ˆJE� is isomorphic to a direct sum of copies of L

˝�1
J as an SL.JC/-

equivariant vector bundle on PJ_C . Moreover, by the isomorphism (6.8) and Pro-
position 6.3, the action of O.V .J // on the fibers of ˆJE� is isomorphic to the
representation V.J /�0 . Therefore ˆJE� ' L

˝�1
J ˝ V.J /�0 as SL.JC/ � O.V .J //-

equivariant vector bundles on PJ_C . This finishes the proof of Proposition 6.7.

Remark 6.12. By the proof, the vector bundleˆJE� is in fact SL.JR/�O.V .J /R/-
linearized, and the isomorphism ˆJE� ' L

˝�1
J ˝ V.J /�0 is SL.JR/ � O.V .J /R/-

equivariant.

6.3 The Siegel operator

Combining the arguments so far, we can now define the Siegel operator at the J -cusp.

Proposition 6.13. Let f 2M�;k.�/ with � ¤ 1; det. There exists a cusp form ˆJf

on HJ with values in ˆJE� ˝L˝kJ ' L
˝�1Ck
J ˝ V.J /�0 and invariant under the

image of �.J /Z ! SL.J / such that f j�J D ��2 .ˆJf /. If f D
P
l a.l/q

l is the
Fourier expansion of f at a 0-dimensional cusp I � J , the Fourier expansion ofˆJf
at the I -cusp of HJ is given by

.ˆJf /.�/ D
X

l2�J\U.I/
_
Z

a.l/e..l; �//; � 2 HJ � U.I /C=U.J /
?
C:

Here we recall that LJ and ˆJE� on HJ are endowed with I -trivializations
whose pullback agree with the I -trivializations of L and EJ

�
, respectively (Re-

marks 5.11 and 6.6). These define the I -trivialization

ˆJE� ˝L˝kJ ' V.I /
U
�;k ˝OHJ
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of ˆJE� ˝L˝kJ whose pullback agrees with the I -trivialization of EJ
�
˝L˝k . The

Fourier expansion of ˆJf is done with respect to this trivialization.

Proof. We choose a rank 1 primitive sublattice I � J and let f D
P
l a.l/q

l be
the Fourier expansion of f at I . By (3.19) and the gluing map X.J /! X.I /† in
Lemma 5.3, we see that

f j�J D
X

l2�J\U.I/
_
Z

a.l/ql (6.9)

as a V.I /�;k-valued function on �J � U.I /C=U.J /C . By Lemma 6.2, the func-
tion f j�J takes values in V.I /U

�;k
. This in turn implies that f j�J as a section

of E�;kj�J takes values in the sub vector bundle

EJ� ˝L˝kj�J ' �
�
2 .ˆJE� ˝L˝kJ / ' ��2L

˝�1Ck
J ˝ V.J /�0 :

Since the section f j�J is �.J /Z-invariant, it is in particular W.J /Z=U.J /Z-invari-
ant, and so, it descends to a section of the vector bundle x��2L

˝�1Ck
J ˝ V.J /�0 over

�J =.W.J /Z=U.J /Z/, where

x�2 W �J =.W.J /Z=U.J /Z/! HJ

is the projection. Since x�2 is a proper map (family of abelian varieties), we find that
f j�J is constant on each �2-fiber. Therefore f j�J D �

�
2 .ˆJf / for a section ˆJf

of L
˝�1Ck
J ˝ V.J /�0 over HJ . Since f j�J is �.J /Z-invariant, ˆJf is invariant

under the image of �.J /Z ! SL.J /.
The fact that the pullback of the I -trivialization of ˆJE� ˝L˝kJ agrees with the

I -trivialization of EJ
�
˝L˝k implies that the pullback of ˆJf as a V.I /U

�;k
-valued

function by �J ! HJ is equal to f j�J as a V.I /U
�;k

-valued function. Therefore
ˆJf as a V.I /U

�;k
-valued function on HJ is given by the right-hand side of (6.9):

ˆJf D
X

l2�J\U.I/
_
Z

a.l/ql :

Here ql for l 2 �J \U.I /_Z is naturally viewed as a function on HJ�U.I /C=U.J /
?
C

by the pairing between U.J /C and U.I /C=U.J /?C . This gives the Fourier expansion
of ˆJf at the I -cusp of HJ . By Proposition 3.7, ˆJf vanishes at the I -cusp. Since
this holds at every cusp of HJ , we see that ˆJf is a cusp form.

Let �J be the image of �.J /Z in SL.J / ' SL.2;Z/. We call the map

M�;k.�/! S�1Ck.�J /˝ V.J /�0 ; f 7! ˆJf; (6.10)

the Siegel operator at the J -cusp.
We look at some examples. We use the same notation as in the proof of Proposi-

tion 6.3.
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Example 6.14. Let � D .1d / for 0 < d < n, namely, V� D ^dV . Then�
^
dV
�U
D Ce1 ^

�
^
d�1
he1; : : : ; en�1i

�
' Ce1 ˝^

d�1
he2; : : : ; en�1i:

In this case, ˆJf is a
�
n�2
d�1

�
-tuple of scalar-valued cusp forms of weight k C 1.

Example 6.15. Let � D .d/, namely, V.d/ is the main irreducible component of
Symd V (see Example 3.1 (2)). We have

V U.d/ D Ce˝d1 � Symd V:

In this case, ˆJf is a single scalar-valued cusp form of weight k C d .

The Siegel operator for vector-valued Siegel modular forms is studied in [47,
Section 2]. The case of genus 2 is also studied in [1, Section 1]. Let us observe that
the weight calculation in Example 6.15 in the case n D 3 agrees with the results
of [1, 47] for Siegel modular forms of genus 2.

Example 6.16. Let n D 3. In [1,47], it is proved that the Siegel operator for a Siegel
modular form of genus 2 and weight .Symj ;detl/ produces a scalar-valued cusp form
of weight j C l on the 1-dimensional cusp.

On the other hand, when j D 2d is even, we saw in Example 3.4 that the Siegel
weight .Sym2d ; detl/ corresponds to the orthogonal weight .�; k/ D ..d/; d C l/.
According to Example 6.15, ˆJf is a cusp form of weight d C .d C l/ D j C l .
This agrees with the above results of [1, 47].

In general, the Siegel operator in the form of (6.10) is still not surjective for the
following obvious reason. Let �.J /�Z be the stabilizer of J in � , and let ��J be the
image of �.J /�Z in SL.J / � O.J?=J /. Then �J D ��J \ SL.J / is of finite index
and normal in ��J . Let

G D ��J =�J ' �.J /
�
Z=�.J /Z:

The modular forms are not only �.J /Z-invariant but also �.J /�Z-invariant. There-
fore, in view of Remark 6.12, we see that the image of the map (6.10) is contained in
the G-invariant part of S�1Ck.�J /˝ V.J /�0 .





Chapter 7

Fourier–Jacobi expansion

Let L be a lattice of signature .2; n/ with n � 3 and � be a finite-index subgroup
of OC.L/. We fix a rank 2 primitive isotropic sublattice J of L. In this chapter we
study the Fourier–Jacobi expansion of vector-valued modular forms at the J -cusp.
From a geometric point of view, the Fourier–Jacobi expansion is the Taylor expansion
along the boundary divisor�J of the partial toroidal compactification X.J /. Them-
th Fourier–Jacobi coefficient is them-th Taylor coefficient, and is essentially a section
of the vector bundle E�;k ˝‚

˝m
J over�J , where‚J is the conormal bundle of�J .

Here we have some special properties beyond general Taylor expansion:

• existence of the projection �1WX.J /! �J and the isomorphism

E�;k ' �
�
1 .E�;kj�J /

(Proposition 5.6), and

• existence of a special generator !J of the ideal sheaf of�J which is a linear map
on each fiber of �1.

These properties ensure that the m-th Fourier–Jacobi coefficient as a section of the
vector bundle E�;k ˝ ‚

˝m
J over �J is canonically defined (Corollary 7.5) and is

invariant under �.J /Z. If we take the .I; !J /-trivialization for I � J , we can pass
to a more familiar definition of the Fourier–Jacobi coefficient as a slice in the Fourier
expansion at I .

In general, we define vector-valued Jacobi forms as �.J /Z-invariant sections
of E�;k ˝ ‚

˝m
J over �J with cusp condition (Definition 7.10). Thus the Fourier–

Jacobi coefficients are vector-valued Jacobi forms (Proposition 7.12). Although our
approach is geometric, our Jacobi forms in the scalar-valued case are indeed classical
Jacobi forms in the sense of Skoruppa [43] if we introduce suitable coordinates and
the .I; !J /-trivialization (Section 7.4). When n D 3, our vector-valued Jacobi forms
essentially agree with those considered by Ibukiyama–Kyomura [27] for Siegel mod-
ular forms of genus 2.

When J comes from an integral embedding 2U ,!L and � is the so-called stable
orthogonal group, the Fourier–Jacobi expansion of scalar-valued modular forms is
well understood through the work of Gritsenko [20]. A large part of this chapter
can be regarded as a geometric reformulation and a generalization of the calculation
in [20, Section 2]. A lot of effort will be paid for keeping introduction of coordinates
as minimal as possible (though never zero), or in other words, for describing what is
canonical in a canonical way. We believe that this style would be suitable even in the
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scalar-valued case when working with general .�; J /, for which simple expression
by coordinates is no longer available.

7.1 Fourier–Jacobi and Fourier expansion

We begin with the familiar (but non-canonical) way to define Fourier–Jacobi expan-
sion: slicing the Fourier expansion. The passage to a canonical formulation will be
given in Section 7.2.

We choose a rank 1 primitive sublattice I of J , and also a rank 1 sublattice I 0 �L
with .I; I 0/¤ 0. Recall from Section 5.1.2 that U.J /R D ^2JR is identified with the
isotropic line .J=I /R ˝ IR in U.I /R D .I?=I /R ˝ IR, and that the Siegel domain
realization of D with respect to J can be identified with the restriction of the projec-
tion

U.I /C ! U.I /C=U.J /C ! U.I /C=U.J /
?
C

to the tube domain DI � U.I /C after the tube domain realization D 'DI . The ori-
entation of J determines the nonnegative part �J D .U.J /R/�0 of U.J /R. Let vJ;�
be the positive generator ofU.J /ZDU.J /Q \� . We choose a rational isotropic vec-
tor lJ;� 2U.I /Q such that .vJ;� ; lJ;�/D 1. Then vJ;� , lJ;� span a rational hyperbolic
plane in U.I /Q. We put

!J D q
lJ;� D e..lJ;� ; Z//; Z 2 U.I /C:

This is a holomorphic function on U.I /C invariant under the translation by U.J /Z.
Thus we have chosen the auxiliary datum I , I 0, lJ;� . These will be fixed until Lem-
ma 7.4.

Let f be a �-modular form of weight .�; k/. We identify f with a V.I /�;k-
valued holomorphic function on DI via the I -trivialization and the tube domain
realization, and let f .Z/ D

P
l a.l/q

l be its Fourier expansion. Like the calcula-
tion in Section 3.5.2 (see also Remark 3.10), we can rewrite the Fourier expansion
as

f .Z/ D
X
m�0

� X
l2U.J /?Q

a.l CmlJ;�/q
l
�
!mJ : (7.1)

Here l ranges over vectors inU.J /?Q such that l CmlJ;� 2U.I /_Z. They form a trans-
lation of a full lattice in U.J /?Q. Although lJ;� is not necessarily a vector in U.I /_Z,
this expression still makes sense over the tube domain DI . We call (7.1) the Fourier–
Jacobi expansion of f at the J -cusp relative to I , I 0, lJ;� , and usually write it as

f D
X
m�0

�m!
m
J (7.2)
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with
�m D

X
l2U.J /?Q

a.l CmlJ;�/q
l : (7.3)

We call �m the m-th Fourier–Jacobi coefficient of f at the J -cusp relative to I ,
I 0, lJ;� . This is a V.I /�;k-valued function on DI . Since l 2 U.J /?Q in (7.3), �m
actually descends to a V.I /�;k-valued function on �J � U.I /C=U.J /C . We often
do not specify the precise index lattice in (7.3); it is convenient to allow enlarging it
as necessary by putting a.l CmlJ;�/ D 0 when l CmlJ;� 62 U.I /_Z. When m D 0,
�0 is the restriction of f to�J and was studied in Section 6. In this chapter we study
the case m > 0.

7.2 Geometric approach to Fourier–Jacobi expansion

In Sections 7.2 and 7.3 we give a geometric reformulation of the Fourier–Jacobi
expansion (7.2). Our starting observation is (compare with Section 3.5.2):

Lemma 7.1. The Fourier–Jacobi expansion (7.2) gives the Taylor expansion of the
V.I /�;k-valued holomorphic function f on X.J / along the boundary divisor �J
with respect to the normal parameter !J , where �m is the m-th Taylor coefficient as
a V.I /�;k-valued function on �J .

Proof. Since the function f is invariant under the translation by U.J /Z � U.I /Z, it
descends to a function on X.J / ' DI=U.J /Z. Since .lJ;� ; vJ;�/ D 1 for the posit-
ive generator vJ;� of U.J /Z, the function !J D e..lJ;� ; Z// descends to a function
on X.J / and extends holomorphically over X.J /, with the boundary divisor �J
defined by !J D 0. In particular, !J generates the ideal sheaf of �J . On the other
hand, as explained above, the Fourier–Jacobi coefficient �m is the pullback of a
V.I /�;k-valued function on�J � U.I /C=U.J /C (again denoted by �m). Thus f DP
m.�

�
1�m/!

m
J gives the Taylor expansion of f along�J with respect to the normal

parameter !J , in which the V.I /�;k-valued function �m on �J is the m-th Taylor
coefficient.

Recall from Section 5.3 that X.J / is an open set of the relative torus embedding
T .J / D T .J / �T.J / T .J / which has the structure of a line bundle on �J . Since
D.J / � D.I / ' U.I /C , the function !J on X.J / extends over T .J / naturally. It
is a linear map on each fiber of T .J /! �J . Indeed, the fact that !J preserves the
scalar multiplication follows from the equality

e..lJ;� ; ˛vJ;� CZ// D e.˛/ � e..lJ;� ; Z//; ˛ 2 C;

and similarly for the sum. The following property will be used in Section 7.3.
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Lemma 7.2. For each 
 2 �.J /Z we have 
�!J D .��1 j
 / � !J for a nowhere van-
ishing function j
 on �J .

Proof. Since 
 acts on T .J /! �J as an equivariant action on the line bundle (see
Section 5.3), 
�!J is also linear on each fiber. Therefore 
�!J =!J is the pullback
of a function on �J . See also Corollary 7.15 for a computational proof.

Let us reformulate Lemma 7.1 by passing from vector-valued functions to sec-
tions of vector bundles. Let 	 D 	�J be the ideal sheaf of �J and ‚J D 	=	2

be the conormal bundle of �J . As explained above, !J generates 	 over X.J /. In
particular, it generates ‚J over �J . We have

	m=	mC1 ' ‚˝mJ D O�J!
˝m
J

for every m � 0. In what follows, we write E�;kj�J ˝ ‚
˝m
J D E�;k ˝ ‚

˝m
J for

simplicity. The I -trivialization E�;kj�J ' V.I /�;k ˝O�J of E�;kj�J and the trivi-
alization of ‚˝mJ by !˝mJ define an isomorphism

E�;k ˝‚
˝m
J ' V.I /�;k ˝O�J :

We call this isomorphism the .I; !J /-trivialization of E�;k ˝ ‚
˝m
J . Via this iso-

morphism, we regard the V.I /�;k-valued function �m over�J as a section of E�;k ˝

‚˝mJ over �J . Specifically, the process is to multiply the function �m by !˝mJ , and
then regard �m ˝ !˝mJ as a section of E�;k ˝‚

˝m
J by the I -trivialization.

Proposition 7.3. The Taylor expansion of sections of E�;k over X.J / along the
boundary divisor �J with respect to the normal parameter !J and with the pull-
back

��1 WH
0.�J ;E�;kj�J / ,! H 0.X.J /;E�;k/ (7.4)

defines an embedding

H 0.X.J /;E�;k/ ,!
Y
m�0

H 0.�J ;E�;k ˝‚
˝m
J /; f 7! .�m ˝ !

˝m
J /m; (7.5)

where �m are the sections of E�;kj�J with f D
P
m.�

�
1�m/!

m
J . If we send a modular

form f 2 M�;k.�/ as a section of E�;k by this map, its image is the Fourier–Jacobi
coefficients of f regarded as sections of E�;k ˝‚

˝m
J via the .I; !J /-trivialization.

Here the pullback map (7.4) is defined by the isomorphism

E�;k ' �
�
1 .E�;kj�J /

in Proposition 5.6. Via the I -trivialization, this is just the pullback of V.I /�;k-valued
functions by �1WX.J /! �J (see Remark 5.7). The existence of this pullback map
is one of key properties in the Fourier–Jacobi expansion.
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Proof. The exact sequence of sheaves

0! 	mC1E�;k ! 	mE�;k ! E�;k ˝‚
˝m
J ! 0

on X.J / defines the canonical exact sequence

0! H 0.X.J /;	mC1E�;k/! H 0.X.J /;	mE�;k/! H 0.�J ;E�;k ˝‚
˝m
J /:

(7.6)
The generator !mJ of 	m and the pullback map

��1 WH
0.�J ;E�;kj�J /! H 0.X.J /;E�;k/

define the splitting map

H 0.�J ;E�;k ˝‚
˝m
J / ,! H 0.X.J /;	mE�;k/; � ˝ !˝mJ 7! !mJ � �

�
1� (7.7)

of (7.6). Here !˝mJ in the source is a section of ‚˝mJ over �J , while !mJ in the
target is a section of the sheaf 	m over X.J /. This defines a splitting of the filtration
.H 0.X.J /;	mE�;k//m on H 0.X.J /;E�;k/ and thus an embedding

H 0.X.J /;E�;k/ ,!
Y
m�0

H 0.�J ;E�;k ˝‚
˝m
J /:

Explicitly, this is given by writing a section f of E�;k over X.J / as

f D
X
m

.��1�m/!
m
J

with �m a section of E�;kj�J , and sending f to the collection .�m ˝ !˝mJ /m of
sections.

Since ��1 is just the ordinary pullback after the I -trivialization, the equation
f D

P
m.�

�
1�m/!

m
J when f is a modular form coincides with the Fourier–Jacobi

expansion (7.2) of f after the I -trivialization. Thus the I -trivialization of �m is the
m-th Fourier–Jacobi coefficient (7.3). It follows that the section �m ˝ !˝mJ is identi-
fied with the Fourier–Jacobi coefficient by the .I; !J /-trivialization.

At first glance, the Taylor expansion (7.5) may seem non-canonical because the
lifting map (7.7) uses the special normal parameter !J , which as a function on X.J /

depends on the choice of lJ;� , I 0, I . In fact, it is canonical.

Lemma 7.4. The map (7.7), and hence the Taylor expansion (7.5), does not depend
on the choice of lJ;� , I 0, I .

Proof. Let z!J be the special normal parameter constructed from another such data
. zI ; zI 0; QlJ;�/. Both !J and z!J extend over T .J / and are linear at each fiber of the
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projection �1WT .J /!�J . Therefore we have z!J =!J D ��1 � for a nowhere vanish-
ing holomorphic function � on �J . Then the map (7.7) defined by using z!J in place
of !J sends � ˝ !˝mJ as

� ˝ !˝mJ D .��m�/˝ z!˝mJ 7! z!mJ � �
�
1 .�
�m�/ D !mJ � �

�
1�:

This coincides with the map using !J .

This in particular implies the following.

Corollary 7.5. The m-th Fourier–Jacobi coefficient of a modular form, viewed as a
section of E�;k ˝ ‚

˝m
J over �J via the .I; !J /-trivialization, does not depend on

the choice of lJ;� , I 0, I .

This means that we obtain the same section of E�;k ˝‚
˝m
J even if we start from

the Fourier expansion at another 0-dimensional cusp zI � J .
To summarize, the Fourier–Jacobi expansion of a modular form f as a sec-

tion of E�;k is a canonical Taylor expansion along �J which uses but does not
depend on the choice of a special normal parameter !J . The m-th Fourier–Jacobi
coefficient is canonically determined as a section of E�;k ˝ ‚

˝m
J . If we take the

.I;!J /-trivialization, this section is identified with the V.I /�;k-valued function (7.3)
defined as a slice in the Fourier expansion of f at the I -cusp.

7.3 Vector-valued Jacobi forms

We want to refine Proposition 7.3 by taking the invariant part for the integral Jacobi
group �.J /Z and imposing cusp condition. This leads us to define vector-valued
Jacobi forms in a geometric style. In what follows, we let m > 0 and consider the
vector bundle E�;k ˝‚

˝m
J over �J , leaving modular forms on D for a while.

As in Sections 7.1 and 7.2, we choose a rank 1 primitive sublattice I of J , a
rank 1 sublattice I 0 � L with .I; I 0/ ¤ 0, and an isotropic vector lJ;� 2 U.I /Q
with .lJ;� ; vJ;�/ D 1. (I will be fixed until Definition 7.10, and I 0, lJ;� will be
fixed until Lemma 7.9.) We keep the same notation as in Section 7.1. Since U.I /Z �
�.J /Z by (5.8), the group �.J /R contains U.I /Z=U.J /Z as a subgroup. As recalled
in Section 7.1, I 0 determines an embedding �J ,! U.I /C=U.J /C . The action of
U.I /Z=U.J /Z on �J is given by the translation on U.I /C=U.J /C .

We consider the action of U.I /Z=U.J /Z on the vector bundle E�;k ˝‚
˝m
J . The

I -trivialization E�;kj�J ' V.I /�;k ˝O�J over�J is equivariant with respect to the
subgroup .�.I /R \ �.J /R/=U.J /Z of �.J /R. In particular, it is equivariant with
respect to U.I /Z=U.J /Z. Since U.I /Z=U.J /Z acts trivially on V.I /�;k , the factor
of automorphy for the I -trivialization of E�;kj�J is trivial on this group. On the other
hand, as for the !J -trivialization of ‚J , we note the following.
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Lemma 7.6. There exists a finite-index sublattice ƒ0 of U.I /Z=U.J /Z such that

�!J D !J for every 
 2ƒ0. In particular, the factor of automorphy for the .I;!J /-
trivialization E�;k˝‚

˝m
J 'V.I /�;k˝O�J of E�;k˝‚

˝m
J is trivial on the groupƒ0.

Proof. Recall that v 2 U.I /R acts on the tube domain DI ' D as the translation
by v, say tv . Then

t�v!J D e..lJ;� ; Z C v// D e..lJ;� ; v// � !J :

Therefore, if we put

ƒ0 D ¹v 2 U.I /Z=U.J /Z j .lJ;� ; v C U.J /Z/ � Zº; (7.8)

we have t�v!J D !J for every v 2ƒ0. Since .U.I /Z; lJ;�/�Q and U.I /Z is finitely
generated, we have .U.I /Z; lJ;�/ � N�1Z for some natural number N . This shows
that ƒ0 is of finite index in U.I /Z=U.J /Z.

Let � be a �.J /Z-invariant section of the vector bundle E�;k ˝‚
˝m
J over �J .

By the .I; !J /-trivialization of E�;k ˝‚
˝m
J , we regard � as a V.I /�;k-valued holo-

morphic function on �J . By Lemma 7.6, the function � is invariant under the trans-
lation by the lattice ƒ0. Therefore it admits a Fourier expansion of the form

�.Z/ D
X
l2ƒ

a.l/ql ; Z 2 �J � U.I /C=U.J /C; (7.9)

where a.l/ 2 V.I /�;k , ql D e..l; Z//, and ƒ is a full lattice in U.J /?Q (which is the
dual space of U.I /Q=U.J /Q).

At this point, ƒ can be taken to be the dual lattice of ƒ0 defined by (7.8), but
we can replace ƒ by its arbitrary overlattice (or even the whole U.J /?Q) by setting
a.l/ D 0 if l 62 ƒ_0 . It is sometimes convenient to enlarge ƒ in this way. For this
reason, we do not specify the lattice ƒ in (7.9).

Remark 7.7. The dual lattice of ƒ0 in U.J /?Q can be explicitly written as

ƒ_0 D hU.I /
_
Z;ZlJ;�i \ U.J /

?
Q:

We do not use this information.

Replacing ƒ by its overlattice, we assume that ƒ is of the split form

ƒ D Z.ˇ1vJ;�/˚K;

where ˇ1 > 0 is a rational number andK is a full lattice in l?J;� \U.J /
?
Q. Note thatK

is negative-definite. Accordingly, we can rewrite the Fourier expansion of � as

�.Z/ D
X
n2ˇ1Z

X
l2K

a.n; l/qlqnJ;� ; qJ;� D e..vJ;� ; Z//; (7.10)

for Z 2 �J � U.I /C=U.J /C .
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Definition 7.8. We say that � is holomorphic at the I -cusp of HJ if a.n; l/¤ 0 only
when 2nm � j.l; l/j. We say that � vanishes at the I -cusp if a.n; l/ ¤ 0 only when
2nm > j.l; l/j.

The expression (7.10) of the Fourier expansion of � depends on the choice of I 0,
lJ;� , ƒ. Specifically,

• I 0 determines the embedding �J ,! U.I /C=U.J /C .

• lJ;� determines the normal parameter !J which determines the trivialization
of‚˝mJ . The vector lJ;� also determines the splitting U.J /?Q D U.J /Q˚KQ of
the index space U.J /?Q.

• ƒ is the index lattice in the Fourier expansion which is taken to be a split form.

However, we can prove the following.

Lemma 7.9. Definition 7.8 does not depend on the choice of I 0, lJ;� , ƒ.

Proof. We verify this for the holomorphicity condition. The case of vanishing condi-
tion is similar.

(1) If we change I 0, its effect is the translation on�J � U.I /C=U.J /C by a vec-
tor of U.I /Q=U.J /Q. This multiplies each Fourier coefficient a.n; l/ by a nonzero
constant, so its vanishing/nonvanishing does not change.

(2) The condition 2nm � j.l; l/j is the same as the condition

.mlJ;� C v;mlJ;� C v/ � 0 (7.11)

for the vector vDnvJ;�Cl ofU.J /?Q which corresponds to the index .n; l/. With lJ;�
fixed, this condition does not depend on the lattice ƒ.

(3) Finally, if we change lJ;� , the new vector can be written as

l 0J;� D lJ;� C l0 � 2
�1.l0; l0/vJ;�

for some vector l0 2 KQ. Since the normal parameter !J D e..lJ;� ; Z// is replaced
by

!0J D e..l
0
J;� ; Z// D q

l0 � q
�.l0;l0/=2
J;� � !J ;

we have to multiply the function � by q�ml0 � qm.l0;l0/=2J;� when passing from the !J -
trivialization to the !0J -trivialization of ‚˝mJ . Also

KQ D l
?
J;� \ U.J /

?
Q

is replaced by K 0Q D .l
0
J;�/

? \ U.J /?Q, for which we have the natural isometry

KQ ! K 0Q; l 7! l 0 WD l � .l; l0/vJ;� :
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Therefore the new Fourier expansion is

�0 WD � � q�ml0 � q
m.l0;l0/=2
J;�

D

X
n2Q

X
l2KQ

a.n; l/ql�ml0q
nCm.l0;l0/=2
J;�

D

X
n2Q

X
l2KQ

a.n; l/ql
0�ml 0

0q
nC.l;l0/�m.l0;l0/=2
J;� :

In the last equality we used

l �ml0 D .l �ml0/
0
C .l �ml0; l0/vJ;� :

This means that a.n; l/ is equal to the Fourier coefficient of �0 of index

.nC .l; l0/ �m.l0; l0/=2; l
0
�ml 00/ 2 Q˚K 0Q:

The holomorphicity condition 2nm � �.l; l/ for � can be rewritten as

2m.nC .l; l0/ �m.l0; l0/=2/ � �.l
0
�ml 00; l

0
�ml 00/:

This is the holomorphicity condition for �0.

Lemma 7.9 ensures that Definition 7.8 is well defined for a �.J /Z-invariant sec-
tion of E�;k ˝‚

˝m
J .

Definition 7.10. We denote by

J�;k;m.�.J /Z/ � H
0.�J ;E�;k ˝‚

˝m
J /

the space of �.J /Z-invariant sections � of E�;k ˝ ‚
˝m
J over �J which are holo-

morphic at every cusp I � J of HJ in the sense of Definition 7.8. We call such
a section � a Jacobi form of weight .�; k/ and index m for the integral Jacobi
group �.J /Z. We call � a Jacobi cusp form if it vanishes at every cusp I � J . When
� D .0/, we especially write J.0/;k;m.�.J /Z/ D Jk;m.�.J /Z/.

For later use (Section 7.4), we note the following.

Lemma 7.11. Let 
 be an element of �.J /Q which stabilizes J . A �.J /Z-invariant
section � of E�;k ˝ ‚

˝m
J over �J is holomorphic at the 
.I /-cusp of HJ if and

only if the 
�1�.J /Z
 -invariant section 
�� of E�;k ˝‚
˝m
J is holomorphic at the

I -cusp of HJ .

Proof. This holds because the pullback of a Fourier expansion of � at the 
.I /-cusp
by the 
 -action


 W U.I /C=U.J /C ! U.
I /C=U.J /C

and the isomorphism 
 W V.I /�;k ! V.
I /�;k gives a Fourier expansion of 
�� at
the I -cusp.
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Now we go back to modular forms on D and refine Proposition 7.3 forM�;k.�/.
Recall that them-th Fourier–Jacobi coefficient of a modular form was initially defined
as a V.I /�;k-valued function on �J by (7.3), and then regarded as a section of the
vector bundle E�;k ˝‚

˝m
J by the .I;!J /-trivialization. By Corollary 7.5, this section

is independent of I .

Proposition 7.12. For m > 0 the m-th Fourier–Jacobi coefficient of a modular form
f 2 M�;k.�/ as a section of E�;k ˝ ‚

˝m
J is a Jacobi form of weight .�; k/ and

index m in the sense of Definition 7.10. When f is a cusp form, the Fourier–Jacobi
coefficient is a Jacobi cusp form.

Proof. In what follows, z�m stands for the m-th Fourier–Jacobi coefficient of f as
a section of E�;k ˝ ‚

˝m
J . What has to be shown is that z�m is �.J /Z-invariant and

is holomorphic at every cusp of HJ . We first check the cusp condition. Let I � J
be an arbitrary cusp (not necessarily the initial one). Corollary 7.5 ensures that the
Fourier expansion of z�m at the I -cusp of HJ is given by the series (7.3) obtained from
the Fourier expansion of f at the I -cusp of D . Then the holomorphicity condition
for z�m at I , written in the form (7.11), follows from the cusp condition in the Fourier
expansion of f at I . The assertion for cusp forms follows similarly.

It remains to check the �.J /Z-invariance of z�m. Let �m D z�m˝!˝�mJ . This is a
section of E�;kj�J whose I -trivialization is the .I; !J /-trivialized form (7.3) of z�m.
By Proposition 7.3, we have the expansion

f D
X
m

.��1�m/!
m
J (7.12)

as a section of E�;k , where we view !J as a generator of the ideal sheaf 	 of�J . We
let 
 2 �.J /Z act on this equality. Then we have


�f D
X
m


�.��1�m/.

�!J /

m
D

X
m

��1 .

��m/.


�!J /
m

by Proposition 5.6. By Lemma 7.2, we have 
�!J D .��1 j
 / � !J for a holomorphic
function j
 on �J . Therefore we have


�f D
X
m

��1 .j
m

 � 


��m/!
m
J : (7.13)

Since f is �-invariant, we have 
�f D f . Comparing (7.12) and (7.13), we obtain
�m D j

m

 � 


��m for every m. This means that z�m D �m ˝ !˝mJ is 
 -invariant. This
proves Proposition 7.12.

When m D 0 and � ¤ det, let us denote by J�;k;0.�.J /Z/ the space of �.J /Z-
invariant sections of

EJ� ˝L˝kj�J ' �
�
2L
˝kC�1
J ˝ V.J /�0
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over �J which is holomorphic at every cusp of HJ . By the result of Section 6,
the 0-th Fourier–Jacobi coefficient �0 D f j�J of a modular form f 2 M�;k.�/

belongs to this space (cuspidal when �¤ 1). Then, as a refinement of Proposition 7.3
for M�;k.�/, we see that the Fourier–Jacobi expansion gives the embedding

M�;k.�/ ,!
Y
m�0

J�;k;m.�.J /Z/; f D
X
m

.��1�m/!
m
J 7! .�m ˝ !

m
J /m;

which is canonically determined by J .

7.4 Classical Jacobi forms

In this section we introduce coordinates and translate Jacobi forms with � D 0 in
the sense of Definition 7.10 to classical scalar-valued Jacobi forms à la [20, 43]. The
result is stated in Proposition 7.18. Our purpose is to deduce a vanishing theorem in
the present setting (Proposition 7.19) from the one for classical Jacobi forms.

7.4.1 Coordinates

We begin by setting some notations. In U.J /Q ' ^2JQ we have two natural lattices:
^2J and U.J /Z. The former depends on L, and the latter depends on � . Recall that
the positive generator of U.J /Z is denoted by vJ;� (Section 7.1), and the positive
generator of ^2J is denoted by vJ (Section 5.1.2). Then vJ D ˇ0vJ;� for some
rational number ˇ0 > 0. This constant ˇ0 depends only on L and � . We choose an
isotropic plane in LQ whose pairing with JQ is nondegenerate, and denote it by J_Q
for the obvious reason. This is fixed throughout Section 7.4. We identify V.J /Q D
.J?=J /Q with the subspace .JQ ˚ J

_
Q/
? of LQ.

Next we choose a rank 1 primitive sublattice I of J . Let e1, f1, e2, f2 be the
standard hyperbolic basis of 2U . We take an embedding 2UQ ,! LQ which sends

Ze1 ˚ Ze2 ! J; Ze1 ! I; Qf1 ˚Qf2 ! J_Q

isomorphically. Thus it is compatible with I � J in the sense of Section 5. We
identify e1, f1, e2, f2 with their image in LQ. Then vJ D e2 ˝ e1. We define vectors
lJ ; lJ;� 2 U.I /Q (as in Sections 5.1.2 and 7.1) by lJ D f2˝ e1 and lJ;� D ˇ0lJ . We
also put I 0 D Zf1. The choice of these data has two effects: it introduces coordinates
on D and on the Jacobi group.

The coordinates on D are introduced following Section 5.1.2. The choice of
I 0 D Zf1 defines the tube domain realization D ! DI � U.I /C . According to the
decomposition

U.I /C D .UC ˚ V.J /C/˝ IC D ClJ � .V .J /˝Ce1/ �CvJ ;
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we express a point of U.I /C as

Z D �lJ C z ˝ e1 C wvJ D .�; z; w/; �; w 2 C; z 2 V.J /C:

These are the same coordinates as in (5.5) except that z in (5.5) is z ˝ e1 here. When
Z 2 DI , the corresponding point of D is C!.Z/, where

!.Z/ D f1 C �f2 C z C we2 � ..z; z/=2C �w/e1 2 LC: (7.14)

Note that this vector is normalized so as to have pairing 1 with e1. In these coordin-
ates, the Siegel domain realization D!VJ !HJ with respect to J is the restriction
of the projection

ClJ � V.J / �CvJ ! ClJ � V.J /! ClJ ; .�; z; w/ 7! .�; z/ 7! �

to the tube domain DI . The coordinates introduced on HJ � P .L=J?/C and VJ �

P .L=J /C are written as

H
'
�! HJ ; � 7! �lJ D C.f1 C �f2/; (7.15)

H � V.J /
'
�! VJ ; .�; z/ 7! �lJ C z ˝ e1 D C.f1 C �f2 C z/: (7.16)

Note that the isomorphism (7.15) maps the cusps P1Q D ¹i1º[Q of H � P1 to the
cusps PJ_Q of HJ � PJ_C , and especially maps the cusp i1 to the I -cusp I? \PJ_C
of HJ .

Next we consider the Jacobi group �.J /F , F D Q;R. Recall from (5.7) that the
splitting LF D .JF ˚ J_F /˚ V.J /F defines an isomorphism

�.J /F ' SL.JF / ËW.J /F ; (7.17)

which we fix below. (This splitting depends on J_F , but not on I .) We identify

SL.JF / D SL.J_F / D SL.2; F /

by the basis f2, f1 of J_F , or equivalently, by the basis e1;�e2 of JF . Thus an element�
a b
c d

�
2 SL.2; F / acts on JF ˚ J_F by

e1 7! ae1 � ce2; e2 7! �be1 C de2; f1 7! df1 C bf2; f2 7! cf1 C af2:

Finally, we have a splitting of the Heisenberg group W.J /F as a set:

W.J /F ' U.J /F � .V .J /F ˝ Fe1/ � .V .J /F ˝ Fe2/

' F � V.J /F � V.J /F ; (7.18)

where we take vJ as the basis of U.J /F . Accordingly, we write an element of
W.J /F as .˛; v1; v2/, where ˛ 2 F and v1; v2 2 V.J /F � LF . In this expression,
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.˛; 0; 0/D ˛vJ corresponds to E˛e2^e1 2 U.J /F , .0; v1; 0/ to Ev1˝e1 , and .0; 0; v2/
to Ev2˝e2 . Note that each V.J /F ˝ Fe1 and V.J /F ˝ Fe2 are, respectively, sub-
groups of W.J /F , but they do not commute.

Proposition 7.13. The action of �.J /F on D is described as follows.

(1) .˛; 0; 0/ 2 U.J /F acts by

.�; z; w/ 7! .�; z; w C ˛/:

(2) .0; v1; 0/ 2 W.J /F acts by

.�; z; w/ 7! .�; z C v1; w/:

(3) .0; 0; v2/ 2 W.J /F acts by

.�; z; w/ 7! .�; z C �v2; w � .v2; z/ � 2
�1.v2; v2/�/:

(4)
�
a b
c d

�
2 SL.2; F / acts by

.�; z; w/ 7!

�
a� C b

c� C b
;

z

c� C d
;w C

c.z; z/

2.c� C d/

�
:

Proof. Let !.Z/ 2 LC be as in (7.14). By direct calculation using the definition (1.3)
of Eichler transvections, we see that

E˛e2^e1.!.Z// D f1 C �f2 C z C .w C ˛/e2 C Ae1

D !.Z C .0; 0; ˛//;

Ev1˝e1.!.Z// D f1 C �f2 C .z C v1/C we2 C Ae1

D !.Z C .0; v1; 0//;

Ev2˝e2.!.Z// D f1 C �f2 C .z C �v2/C.w � .z; v2/�.�=2/.v2; v2//e2 C Ae1

D !.Z C .0; �v2;�.z; v2/ � .�=2/.v2; v2///;�
a b

c d

�
.!.Z// D .c� C d/f1 C .a� C b/f2

C z C ..c� C d/w C .c=2/.z; z//e2 C Ae1:

Here the constant A in each equation is an unspecified constant determined by the
isotropicity condition. This proves (1)–(4).

Proposition 7.13 agrees with the classical description of the action of Jacobi group
in [20, p. 1185]. (˛, v1, v2 correspond to r , y, x in [20], respectively.) We note two
consequences of the calculation in Proposition 7.13.
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Corollary 7.14. Let 
 2 �.J /R and
�
a b
c d

�
be its image in SL.2;R/. The factor of

automorphy of the 
 -action on L with respect to the I -trivialization L ' I_C ˝ OD

is c� C d .

Proof. In view of (2.2), this follows by looking at the coefficients of f1 in the equa-
tions in the proof of Proposition 7.13.

This gives a computational explanation of the �.J /R-equivariant isomorphism
L ' ��LJ in Lemma 5.9. We also provide a computational proof of Lemma 7.2.

Corollary 7.15 (cf. Lemma 7.2). Let 
 2 �.J /R and !J D e..lJ;� ; Z// be as in
Section 7.1. Then 
�!J D j
 .�; z/!J for a function j
 .�; z/ of .�; z/ which does not
depend on the w-component.

Proof. Since lJ;� D ˇ0lJ , if we express Z D .�; z; w/, we have

!J D e..lJ;� ; Z// D e..ˇ0lJ ; wvJ // D e.ˇ0w/:

Therefore, if we denote by 
�w the w-component of 
.Z/, we have

.
�!J /=!J D e.ˇ0.

�w � w//: (7.19)

It remains to observe from Proposition 7.13 that 
�w �w depends only on .�; z/.

The function j
 .�; z/ is the inverse of the factor of automorphy of the 
 -action
(D pullback by 
�1) on the conormal bundle ‚J of �J with respect to the !J -
trivialization. Thus j
 .�; z/ is the multiplier in the slash operator by 
 on ‚J with
respect to the !J -trivialization. By (7.19), j
 .�; z/ is explicitly written as follows.

j
 .�; z/ D

8̂̂̂̂
<̂
ˆ̂̂:
e.ˇ0˛/; 
 D .˛; 0; 0/;

1; 
 D .0; v1; 0/;

e.�ˇ0.v2; z/ � 2
�1ˇ0.v2; v2/�/; 
 D .0; 0; v2/;

e
�
ˇ0c.z;z/
2.c�Cd/

�
; 
 D

�
a b
c d

�
:

(7.20)

If we divide �.J /R by U.J /R, these coincide with the multipliers in the slash oper-
ator in [43, p. 248] with k D 0 and the quadratic space V.J /Q.�ˇ0/. (We identify
the half-integral matrix F in [43] with the even lattice with Gram matrix 2F , and this
lattice tensored with Q corresponds to our V.J /Q.�ˇ0/.)

7.4.2 Translation to classical Jacobi forms

Now, using the coordinates prepared in Section 7.4.1, we describe Jacobi forms with
� D 0 in a more classical manner. We identify

�J ' H � V.J /
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by (7.16) and accordingly use the coordinates .�; z/ on �J . We put qJ D e.�/ D

e..vJ ;Z// and qJ;� D e..vJ;� ;Z// (as in (7.10)) forZ D .�; z/ 2�J . Since vJ;� D
ˇ�10 vJ , then qJ;� D e.ˇ�10 �/ D .qJ /

ˇ�1
0 . We also write ˇ2 D ˇ�10 ˇ1.

Let � 2 Jk;m.�.J /Z/ be a Jacobi form of weight .0; k/ and index m in the sense
of Definition 7.10. Via the .I; !J /-trivialization and the basis e1 of I ,

L˝k ˝‚˝mJ ' .I_C /
˝k
˝O�J ' O�J ;

we regard � as a scalar-valued function on �J . Let V.J /.ˇ0m/ be the scaling of the
quadratic space V.J / by ˇ0m.

Lemma 7.16. We identify V.J / D V.J /.ˇ0m/ as a C-linear space naturally and
regard � as a function on �J ' H � V.J /.ˇ0m/. Then � has a Fourier expansion
of the form

�.�; z/ D
X
n2ˇ2Z

X
l2KI .ˇ0m/_

a.n; l/qlqnJ ; � 2 H; z 2 V.J /.ˇ0m/:

Here ql D e..l; z// with .l; z/ being the pairing in V.J /.ˇ0m/, and KI is some full
lattice in V.J /Q such that KI .ˇ0/ is an even lattice. The holomorphicity condition
at the I -cusp is 2n � j.l; l/j.

Proof. Recall from (7.10) that � as a function on H � V.J / has a Fourier expansion
of the form

�.�; z/ D
X
n2ˇ1Z

X
l2K0

a.n; l/qlqnJ;� ; � 2 H; z 2 V.J /;

whereK 0 is some full lattice in V.J /Q and ql D e..l; z//. (The vectors l in (7.10) are
l ˝ e1 here.) The I -cusp condition is 2nm � j.l; l/j. We substitute qJ;� D .qJ /ˇ

�1
0

and rewrite ˇ�10 n as n. Then this expression is rewritten as

�.�; z/ D
X
n2ˇ2Z

X
l2K0

a.n; l/qlqnJ ; � 2 H; z 2 V.J /;

with the I -cusp condition being 2nˇ0m � j.l; l/j. By enlarging K 0, we may assume
that K 0 D K_I for a lattice KI � V.J /Q such that KI .ˇ0/ is even.

Next we identify V.J / D V.J /.ˇ0m/ as a C-linear space, which multiplies the
quadratic form by ˇ0m. This identification maps the lattice K_I � V.J / to the lattice
ˇ0mKI .ˇ0m/

_�V.J /.ˇ0m/. Then, by multiplying the index latticeK_I by .ˇ0m/�1

and identifying it with KI .ˇ0m/_ by this scaling, the Fourier expansion of � as a
function on H � V.J /.mˇ0/ is written as

�.�; z/ D
X
n2ˇ2Z

X
l2KI .ˇ0m/_

a.n; l/qlqnJ ; � 2 H; z 2 V.J /.ˇ0m/;
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where .l; z/ in ql D e..l; z// is the pairing in V.J /.ˇ0m/. The I -cusp condition is
then rewritten as 2n � j.l; l/j for l 2 KI .ˇ0m/_.

Here we passed from qJ;� to qJ because the latter does not depend on � , and
passed from V.J / to V.J /.ˇ0m/ in order to match our holomorphicity condition at
the I -cusp to the holomorphicity condition at i1 of Skoruppa [43, p. 249].

Next we shrink the integral Jacobi group �.J /Z to a subgroup of simpler form.
We let �J � SL.J / be the intersection of �.J /Z with the lifted group SL.JQ/ �

�.J /Q. (This is different from the notation in Section 6.3 in general.) Note that �J
does not depend on I (but on J_Q � LQ). The splitting (7.17) defines an isomorphism

�.J /Q=U.J /Q ' SL.JQ/ Ë .V .J /Q ˝ JQ/;

where SL.JQ/ acts on V.J /Q ˝ JQ by its natural action on JQ. We fix this splitting
of �.J /Q=U.J /Q. The inclusion �.J /Z � �.J /Q defines a canonical injective map
�.J /Z ! �.J /Q=U.J /Q. Its image is not necessarily a semi-product. Elements in
the intersection �.J /Z \ .V .J /Q ˝Qei / are images of elements of �.J /Z of the
form E˛e1^e2 ı Ev˝ei , v 2 V.J /Q, but ˛e1 ^ e2 2 U.J /Q is not necessarily con-
tained in U.J /Z in general. We remedy these two subtle problems by passing to a
subgroup of �.J /Z as follows.

Lemma 7.17. There exists a full lattice K 0I in V.J /Q such that

�J Ë .K 0I ˝Z J / � �.J /Z (7.21)

as subgroups of �.J /Q=U.J /Q, and for each i D 1; 2, the subgroup K 0I ˝Z Zei of
this semi-product is contained in the image of W.J /Z \ .V .J /Q ˝Qei / in �.J /Q=
U.J /Q, where V.J /Q ˝Qei is the component of W.J /Q in (7.18).

Proof. The intersection of W.J /Z with the component V.J /Q ˝Qei in (7.18) is a
full lattice in V.J /Q ˝Qei and hence can be written as Ki ˝Z Zei for some full
lattice Ki in V.J /Q. We put K 0I D K1 \ K2. Then the second property holds by
construction. Since J D Ze1 ˚ Ze2, it follows that

K 0I ˝Z J � �.J /Z \ .V .J /Q ˝ JQ/:

Since we also have �J � �.J /Z \ SL.JQ/ by construction, the inclusion (7.21) is
verified.

The second property in Lemma 7.17 means that Ev˝e1 ; Ev˝e2 2 W.J /Z for v 2
K 0I , and their images in �.J /Q=U.J /Q form the subgroupsK 0I ˝Z Ze1,K 0I ˝Z Ze2
in (7.21), respectively. Their factors of automorphy on ‚J are given by the second
and the third line in (7.20), respectively. This is why we require the second property
in Lemma 7.17.
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We can now state the translation of Jacobi forms in a precise form. For an even
negative-definite lattice K 0, let Jk;K0.�J / be the space of Jacobi forms of weight k
and index lattice K 0.�1/ for the group

�J < SL.J / ' SL.2;Z/

in the sense of Skoruppa [43, p. 249]. (In the notation of [43],K 0.�1/ is the positive-
definite even lattice with Gram matrix 2F , and corresponds to the Zn in the Heisen-
berg group in [43, p. 248]. The dual lattice of K 0.�1/ corresponds to the index Zn in
the Fourier expansion in [43, p. 249].)

Proposition 7.18. There exists a full lattice K in V.J /Q such that K.ˇ0/ is an even
lattice and we have an embedding

Jk;m.�.J /Z/ ,! Jk;K.ˇ0m/.�J /

for every m > 0 and k 2 Z.

Proof. The correspondence is summarized as follows.

(1) Start from a section � of L˝k ˝‚˝mJ over �J .

(2) Choose a rank 1 primitive sublattice I � J and identify � with a holomorphic
function on �J by the .I; !J /-trivialization of L˝k ˝‚˝mJ .

(3) Identify �J ' H � V.J /.ˇ0m/ by the coordinates in Section 7.4.1 and the
scaling

V.J / ' V.J /.ˇ0m/:

(4) In this way � is identified with a holomorphic function on H � V.J /.ˇ0m/.

We shall show that this correspondence defines a well-defined map fromJk;m.�.J /Z/

to Jk;K.ˇ0m/.�J / for a suitable lattice K � V.J /Q.
We replace KI in Lemma 7.16 and K 0I in Lemma 7.17 by their intersection

KI \K
0
I and rewrite it as KI . Then Lemma 7.16 says that our Jacobi form � viewed

as a function on H� V.J /.ˇ0m/ by the above procedure has the same shape of Four-
ier expansion as that of Jacobi forms of weight k and index lattice KI .ˇ0m/ at i1
in the sense of [43, p. 249]. Our I -cusp condition 2n � j.l; l/j agrees with the holo-
morphicity condition at i1 in [43]. By Corollary 7.14 and (7.20), we see that the
factor of automorphy for the action of �J Ë .KI ˝ J / on L˝k ˝‚˝mJ with respect
to the .I; !J /-trivialization agrees with the factor of automorphy for the slash oper-
ator jk;V.J /.ˇ0m/ in [43, p. 248]. Therefore the function � satisfies the transformation
rule of [43, p. 249] (Definition (i)) for the group �J < SL.J / with weight k and
index lattice KI .ˇ0m/. In particular, the function � is also holomorphic (in the sense
of [43]) at the cusps equivalent to I under �J .

It remains to cover all cusps. The coincidence of the automorphy factors on
SL.JR/ implies that the function �jk;V.J /.ˇ0m/
 for 
 2 SL.J / is identified with



Fourier–Jacobi expansion 98

the section 
�� via the .I; !J /-trivialization. Then we have

the section � is holomorphic at the 
I -cusp in our sense

, the section 
�� is holomorphic at the I -cusp in our sense

, the function �jk;V.J /.ˇ0m/
 is holomorphic at i1 in the sense of [43].

The first equivalence follows from Lemma 7.11, and the second equivalence follows
by applying the argument so far to the Jacobi form 
�� for 
�1�.J /Z
 � �.J /Q
(with J D 
.J / and U.J /Z unchanged). Here the index lattice for 
�� is determined
from the Fourier expansion of 
�� at the I -cusp with the group 
�1�.J /Z
 , by
the procedure in Lemma 7.16. We denote it by K
I .ˇ0m/, with K
I a full lattice
in V.J /Q. This may be in general different from KI .

Then we take representatives I1 D I; I2; : : : ; IN of �J -equivalence classes of
rank 1 primitive sublattices of J and put

K D
\
i

KIi � V.J /Q:

As a function on H � V.J /.ˇ0m/, � satisfies the transformation rule of Jacobi forms
of weight k and index lattice K.ˇ0m/ for �J < SL.J /, and is holomorphic at the
cusps I1 D i1; I2; : : : ; IN of HJ ' H in the sense of [43]. If 
.Ii /, 
 2 �J , is an
arbitrary cusp of HJ , the holomorphicity of � D �jk;V.J /.ˇ0m/
 at Ii implies that
of � at 
.Ii /. Thus � is holomorphic at all cusps, namely, � 2 Jk;K.ˇ0m/.�J /.

Proposition 7.18 implies the following.

Proposition 7.19. We have Jk;m.�.J /Z/ D 0 when k < n=2 � 1.

Proof. This holds because Jk;K0.�J / D 0 when k < rk.K 0/=2 D n=2 � 1 (see [43,
p. 251]).



Chapter 8

Filtrations associated to 1-dimensional cusps

Let L, � , J be as in Section 7. In this chapter we introduce filtrations on the auto-
morphic vector bundles canonically associated to the J -cusp, and study its basic
properties. These filtrations will play a fundamental role in the study of the Fourier–
Jacobi expansion. Our geometric approach will be effective here. In Section 8.1 we
define the filtration on the second Hodge bundle E . This induces filtrations on general
automorphic vector bundles E�;k (Section 8.2). In Section 8.3 we study these filtra-
tions from the viewpoint of representations of a parabolic subgroup. In Section 8.4,
as the first application of our filtration, we prove that vector-valued Jacobi forms
decompose, in a certain sense, into scalar-valued Jacobi forms of various weights.
The second application will be given in Section 9.

8.1 J -filtration on E

In this section we define a filtration on E canonically associated to J . For Œ!� 2 D

we consider the filtration

0 � !? \ JC � !
?
\ J?C � !

? (8.1)

on !? D !? \ LC .

Lemma 8.1. Let pW!?! !?=C! be the projection. Then p.!? \ JC/ has dimen-
sion 1 and p.!? \ J?C / D p.!

? \ JC/
? in !?=C!.

Proof. Since .!; J / 6� 0, we have dim.!? \ JC/ D 1. The fact that C! 6� JC then
implies that p.!? \ JC/ has dimension 1. Next we prove the second assertion. It is
clear that p.!? \ J?C / � p.!

? \ JC/
?. Since p.!? \ JC/

? is of codimension 1
in !?=C! by the first assertion, it is sufficient to show that p.!? \ J?C / is of codi-
mension 1 too. Since C! 6� JC , we have .!; J?/ 6� 0. This implies that !? \ J?C
is of codimension 1 in J?C , and so of codimension 2 in !?. The fact that C! 6� J?C
implies that the projection !? \ J?C ! !?=C! is injective. Hence p.!? \ J?C / is
of codimension 1 in !?=C!.

Let EJ be the sub line bundle of E whose fiber over Œ!� 2 D is the image of
!? \ JC in !?=C!. This is an isotropic sub line bundle of E . Taking the image
of (8.1) in !?=C! and varying Œ!� 2 D , we obtain the filtration

0 � EJ � E?J � E (8.2)

on E . We call it the J -filtration on E . By construction, this is �.J /R-invariant.
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We calculate the graded quotients of the J -filtration. Let � WD ! HJ be the
projection to the J -cusp and LJ be the Hodge bundle on HJ . We write V.J / D
.J?=J /C as before.

Proposition 8.2. We have �.J /R-equivariant isomorphisms

EJ ' �
�LJ ; E?J =EJ ' V.J /˝OD ; E=E?J ' �

�L�1J : (8.3)

Proof. We begin with EJ . Let Œ!�2D . The fiber of EJ over Œ!� is the line!? \ JC �

JC , while that of ��LJ is the image of C! in .L=J?/C . In order to compare these
two lines, we consider the canonical isomorphisms

.L=J?/C ! J_C  JC: (8.4)

Here the first map is induced by the pairing on L, and the second map is induced by
the canonical symplectic form J � J !^2J 'Z on J . The second map sends a line
in JC to its annihilator in J_C . In (8.4), the above two lines are both sent to the line
.C!; �/jJC in J_C (the pairing of JC with C!). This gives the canonical isomorphism

.��LJ /Œ!� D Im.C! ! .L=J?/C/! !? \ JC D .EJ /Œ!�:

Varying Œ!�, we obtain a �.J /R-equivariant isomorphism ��LJ ' EJ .
Consequently, we obtain the description of the last graded quotient

E=E?J ' E_J ' �
�L�1J ;

where the first map is induced by the quadratic form on E .
Finally, we consider the middle graded quotient E?J =EJ . The fiber of this vector

bundle over Œ!� 2 D is .!? \ J?C /=.!
? \ JC/. We have a natural map

.!? \ J?C /=.!
?
\ JC/! J?C =JC D V.J /: (8.5)

This is clearly injective. Since the source and the target have the same dimension, this
map is an isomorphism. Varying Œ!�, we obtain a �.J /R-equivariant isomorphism
E?J =EJ ! V.J /˝OD .

Next we choose a rank 1 primitive sublattice I of J and describe the J -filtration
under the I -trivialization.

Proposition 8.3. The I -trivialization E ' V.I / ˝ OD sends the J -filtration (8.2)
on E to the filtration

.0 � J=I � J?=I � I?=I /C ˝OD

on V.I /˝OD .
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Proof. Since the I -trivialization V.I /˝ OD ! E preserves the quadratic forms, it
suffices to check that this sends .J=I /C ˝OD to EJ . Recall that the I -trivialization
at Œ!� 2 D is the composition map

I?C =IC ! !? \ I?C ! !?=C!: (8.6)

The inverse of the first map sends the line !? \ JC in !? \ I?C to the line JC=IC in
I?C =IC , and the second map sends !? \ JC to .EJ /Œ!� by definition. Therefore (8.6)
sends JC=IC to .EJ /Œ!�. This proves our assertion.

The J -filtration descends to a filtration on the descent of E to X.J /DD=U.J /Z.
We consider the canonical extension over the partial toroidal compactification X.J /.

Proposition 8.4. The J -filtration on E over X.J / extends to a filtration on the
canonical extension of E over X.J / by �.J /R-invariant sub vector bundles. The iso-
morphisms (8.3) for the graded quotients on X.J / extend to isomorphisms between
the canonical extensions of both sides over X.J /.

Proof. We choose a rank 1 primitive sublattice I of J . Recall that the canonical
extension of E is defined via the I -trivialization E ! V.I / ˝ OX.J /. By Propos-
ition 8.3, the I -trivialization sends the sub vector bundles EJ and E?J of E to the
sub vector bundles .J=I /C ˝ OX.J / and .J?=I /C ˝ OX.J / of V.I / ˝ OX.J /,
respectively. The latter clearly extend to the sub vector bundles .J=I /C ˝ O

X.J /

and .J?=I /C ˝ O
X.J / of V.I /˝ O

X.J /, respectively. This means that EJ and E?J

extend to sub vector bundles of the canonical extension of E . They are still �.J /R-
invariant by continuity.

We prove that the isomorphisms (8.3) extend over X.J /. We begin with EJ '

��LJ . For each Œ!� 2 D we have the following commutative diagram of isomorph-
isms between 1-dimensional linear spaces:

!? \ JC
p1 //

p3

��

.C!; �/jJC

p4

��

JC=IC p2
// I_C :

Here p1 is restriction of the second isomorphism JC ! J_C in (8.4), p2 is the map
induced from this JC ! J_C , p3 is the natural projection, and p4 is the restriction
of the natural map J_C ! I_C to the line .C!; �/jJC of J_C . Recall from the proof of
Proposition 8.2 that p1 is identified with the isomorphism EJ ! ��LJ at Œ!� after
the canonical isomorphism

J_C ' .L=J
?/C:
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Varying Œ!�, we obtain the following commutative diagram of isomorphisms between
line bundles on X.J /:

EJ
p1 //

p3

��

��LJ

p4

��

.J=I /C ˝OX.J / p2
// I_C ˝OX.J /:

Here p1 is the isomorphism we want to extend, p2 is the constant homomorphism,
p3 is the I -trivialization of EJ , and p4 is the pullback of the I -trivialization of LJ

(cf. Remark 5.11). By construction, the canonical extension of EJ is given via p3.
Similarly, by the proof of Proposition 5.10, the canonical extension of ��LJ is given
via p4. Since p2 is constant, it extends over X.J /. Then this commutative diagram
shows that p1 extends to an isomorphism between the canonical extensions of EJ
and ��LJ .

Next we consider E?J =EJ ! V.J /˝OX.J /. We observe that for each Œ!� 2 D ,
the natural composition

.!? \ J?C /=.!
?
\ JC/! .J?C =IC/=.JC=IC/! J?C =JC;

where the first isomorphism comes from !? \ I?C ! I?C =IC , coincides with the iso-
morphism (8.5) defining E?J =EJ !V.J /˝OX.J / at Œ!�. Therefore the isomorphism
E?J =EJ ! V.J /˝OX.J / in (8.3) factorizes as

E?J =EJ ! .J?=I /C ˝OX.J /=.J=I /C ˝OX.J / ! V.J /˝OX.J /;

where the first isomorphism is induced by the I -trivialization and hence gives the
canonical extension of E?J =EJ , and the second isomorphism is the constant homo-
morphism. The constancy of the second isomorphism ensures that it extends over
X.J /. This shows that the isomorphism E?J =EJ ! V.J /˝ OX.J / in (8.3) extends
to an isomorphism between the canonical extensions.

Finally, the extendability of E=E?J ' �
�L�1J follows from the extendability of

EJ ' ��LJ and the fact that the quadratic form on E extends over the canonical
extension (by construction).

8.2 J -filtration on E�;k

In this section we use the J -filtration on E to define a filtration on a general auto-
morphic vector bundle E�;k .

We begin with a recollection from linear algebra. Let V be a C-linear space of
finite dimension endowed with a decreasing filtration of length 3:

0 � F 1V � F 0V � F �1V D V:
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We denote by
Grr V D F rV=F rC1V

the r-th graded quotient. (By convention, F 2V D 0.) Let d > 0. On the tensor product
V ˝d we have a decreasing filtration of length 2d C 1 defined by

F rV ˝d D
X
jEi jDr

F i1V ˝ F i2V ˝ � � � ˝ F idV; �d � r � d; (8.7)

where Ei D .i1; : : : ; id / run over all multi-indices such that jEi j D i1C � � � C id is equal
to r . The graded quotient Grr V ˝d D F rV ˝d=F rC1V ˝d is canonically isomorphic
to

Grr V ˝d '
M
jEi jDr

Gri1 V ˝ Gri2 V ˝ � � � ˝ Grid V: (8.8)

This construction of filtration is well known in the case d D 2; the construction for
general d is obtained inductively.

We apply this construction relatively to the J -filtration on the second Hodge
bundle E . We put

F 1E D EJ ; F 0E D E?J ; F �1E D E;

and define a decreasing filtration

0 � F dE˝d � F d�1E˝d � � � � � F �dE˝d D E˝d

of length 2d C 1 on E˝d by

F rE˝d D
X
jEi jDr

F i1E ˝ F i2E ˝ � � � ˝ F idE; �d � r � d:

This is a filtration by �.J /R-invariant sub vector bundles.

Lemma 8.5. We have a �.J /R-equivariant isomorphism

Grr E˝d ' ��L˝rJ ˝
M
jEi jDr

V.J /˝b.
Ei/;

where b.Ei/ � 0 is the number of components i� of Ei D .i1; : : : ; id / equal to 0.

Proof. By (8.8) we have

Grr E˝d '
M
jEi jDr

Gri1 E ˝ � � � ˝ Grid E: (8.9)
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By Proposition 8.2, each factor Gri� E is isomorphic to ��LJ , V.J /˝OD , ��L�1J
according to i� D 1; 0;�1, respectively. Let a.Ei/, b.Ei/, c.Ei/ be the number of com-
ponents i� of Ei D .i1; : : : ; id / equal to 1, 0,�1, respectively. Then (8.9) can be written
more explicitly as

Grr E˝d '
M
jEi jDr

V.J /˝b.
Ei/
˝ ��L

˝a.Ei/�c.Ei/
J :

We have a.Ei/ � c.Ei/ D jEi j D r .

Since Gr�i E ' .Gri E/_, the expression (8.9) shows that we have the duality

Gr�r E˝d ' .Grr E˝d /_;

by sending an index Ei D .i1; : : : ; id / to its dual index .�i1; : : : ;�id /.
By Proposition 8.3, the I -trivialization

E˝d ' V.I /˝d ˝OD

sends the sub vector bundle F rE˝d of E˝d to the sub vector bundle F rV.I /˝d ˝
OD of V.I /˝d ˝OD , where F rV.I /˝d is the filtration (8.7) applied to V D V.I /,
F 1V D.J=I /C and F 0V D.J?=I /C . This implies that the filtration F �E˝d on E˝d

over X.J / extends to a filtration on the canonical extension of E˝d over X.J / by
sub vector bundles. (We use the same notation.)

Now we consider a general automorphic vector bundle E�;k D E� ˝ L˝k . Let
d D j�j. Recall from Section 3.2 that E� D c� � E

Œd� is defined as an OC.LR/-
invariant sub vector bundle of E˝d , where c� D b�a� is the Young symmetrizer
for �. We define a decreasing filtration on E� by taking the intersection with F rE˝d

inside E˝d :
F rE� D E� \ F

rE˝d ; �d � r � d:

Then we take the twist by L˝k:

F rE�;k D F
rE� ˝L˝k :

This is a �.J /R-invariant filtration on E�;k . We call it the J -filtration on E�;k . This
is a standard filtration on E�;k that can be induced from the J -filtration on E . In
Proposition 8.13, we will prove that the range of the level r reduces to ��1 � r � �1.

Remark 8.6. We also have the following natural expressions of F rE�:

F rE� D c�.E
Œd�
\ F rE˝d / D E Œd� \ c�.F

rE˝d /:

These equalities hold because we have c�.F rE˝d / � F rE˝d by the Sd -invariance
of F rE˝d and c� is an idempotent up to scalar multiplication.
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Let
F rV.I /� D V.I /� \ F

rV.I /˝d ; �d � r � d; (8.10)

be the similar filtration on V.I /�. The I -trivialization E� ' V.I /� ˝ OD sends the
J -filtration F �E� on E� to the filtration F �V.I /� ˝ OD on V.I /� ˝ OD . This
implies that the J -filtration on E�;k , after descending to X.J /, extends to a filtra-
tion on the canonical extension of E�;k over X.J / by �.J /R-invariant sub vector
bundles.

Proposition 8.7. At the boundary divisor�J of X.J /, we have a �.J /R-equivariant
isomorphism

Grr.E�;kj�J / ' .�
�
2L˝rCkJ /˚˛.r/; (8.11)

where ˛.r/ � 0 is the rank of Grr E� and �2 is the projection �J ! HJ .

Proof. Since Lj�J ' �
�
2LJ by Proposition 5.10, it suffices to prove this assertion in

the case k D 0. By Lemma 8.5, we have a �.J /R-equivariant embedding

Grr E� ,! Grr E˝j�j ' .��L˝rJ /˚b

over X.J / for some b > 0. By Proposition 8.4, this embedding extends over X.J /.
By restricting it to �J , we obtain a �.J /R-equivariant embedding

Grr.E�j�J / ,! .��2L˝rJ /˚b:

The image of this embedding is a �.J /R-invariant sub vector bundle of .��2L˝rJ /˚b .
Since the Heisenberg group W.J /R � �.J /R acts on each fiber of �2W�J ! HJ

transitively, this image can be written as ��2F for some SL.JR/-invariant sub vector
bundle F of .L˝rJ /˚b . By the SL.JR/-invariance, F is isomorphic to a direct sum
of copies of L˝rJ .

Before finishing this section, we look at two typical examples.

Example 8.8. Let �D .1d /with 0 < d < n, namely, V� D^dV . We have ^iEJ D 0
if i > 1 and .^iE?J / ^ .^

jE/ D ^iCjE if j > 0. This shows that the J -filtration on
^dE reduces to the following filtration of length 3:

0 � EJ ^
�
^
d�1E?J

�
� ^

dE?J C EJ ^
�
^
d�1E

�
� ^

dE:

These three subspaces have level 1, 0, �1, respectively. (Note that we have ^d�1E D
.^d�2E?J / ^ E in the second term and ^dE D .^d�1E?J / ^ E in the last term.) The
three graded quotients are, respectively, isomorphic to

EJ ˝^
d�1.E?J =EJ / ' ^

d�1V.J /˝ ��LJ ;

^
d .E?J =EJ /˚^

d�2.E?J =EJ / '
�
^
dV.J /˚^d�2V.J /

�
˝OD ;

.E=E?J /˝^
d�1.E?J =EJ / ' ^

d�1V.J /˝ ��L�1J :

Here ^d�2V.J / D 0 when d D 1, and ^dV.J / D 0 when d D n � 1.
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Example 8.9. The J -filtration on Symd E has length 2d C 1, with subspaces

F r Symd E D
X

aCbCcDd
a�cDr

Syma EJ � Symb E?J � Symc E; �d � r � d:

The graded quotient Grr Symd E is isomorphic to

��L˝rJ ˝ .Symd�jrj V.J /˚ Symd�jrj�2 V.J /˚ � � � ˚ Sym0 or 1 V.J //:

This shows that the J -filtration on the main irreducible component E.d/ of Symd E

has length 2d C 1 with graded quotient

Grr E.d/ ' �
�L˝rJ ˝ Symd�jrj V.J /; �d � r � d: (8.12)

8.3 J -filtration and representations

In this section we study the J -filtration, in its I -trivialized form, from the viewpoint
of representations of a parabolic subgroup. As consequences, we determine the range
of possible levels, and also relate the Siegel operator (Section 6) to the J -filtration.

We choose a rank 1 primitive sublattice I � J . Let P.J=I /C be the stabilizer of
the isotropic line .J=I /C � V.I / in O.V .I //. As in (6.4), P.J=I /C sits in the exact
sequence

0! U.J=I /C ! P.J=I /C ! GL..J=I /C/ � O.V .J //! 1; (8.13)

where U.J=I /C ' V.J /˝ .J=I /C is the unipotent radical of P.J=I /C consisting
of the Eichler transvections of V.I / with respect to .J=I /C . The filtration

.F rV.I //�1�r�1 D .0 � .J=I /C � .J
?=I /C � V.I //

on V.I / is P.J=I /C-invariant. The unipotent radical U.J=I /C acts on the graded
quotients trivially, so they are representations of

GL..J=I /C/ � O.V .J // ' C� � O.n � 2;C/:

Specifically,

• Gr1 V.I / D .J=I /C is the weight 1 character of C�.

• Gr0 V.I / D V.J / is the standard representation of O.V .J //.

• Gr�1 V.I / D .J=I /_C is the weight �1 character of C�.

Let d > 0. As in (8.7), let

F rV.I /˝d D
X
jEi jDr

F i1V.I /˝ � � � ˝ F idV.I /; �d � r � d;
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be the induced filtration on V.I /˝d . This is P.J=I /C-invariant. By (8.8), the uni-
potent radical U.J=I /C acts on the graded quotients Grr V.I /˝d trivially. Hence
Grr V.I /˝d is a representation of C� � O.V .J //. Specifically, by the same calcula-
tion as in Lemma 8.5, we have

Grr V.I /˝d ' �r �
M
jEi jDr

V.J /˝b.
Ei/; (8.14)

where �r is the weight r character of C�. If we take a lift of C� �O.V .J // in (8.13),
we have a decomposition

V.I /˝d '

dM
rD�d

Grr V.I /˝d

as a representation of C� �O.V .J // because C� �O.V .J // is reductive. By (8.14),
this is the weight decomposition with respect to C�.

Now let � D .�1 � � � � � �n/ be a partition expressing an irreducible representa-
tion of O.V .I // ' O.n;C/. As in (8.10), let

F rV.I /� D V.I /� \ F
rV.I /˝j�j

be the filtration induced on the space V.I /�. This is a P.J=I /C-invariant filtration,
and U.J=I /C acts on the graded quotients trivially. By the above argument, if we
take a lift of C� � O.V .J // in (8.13), we have a decomposition

V.I /� '
M
r

Grr V.I /� (8.15)

as a representation of C� � O.V .J //, and this agrees with the weight decomposition
for C� with Grr V.I /� being the weight r subspace.

Proposition 8.10. Let � ¤ det. We have

F �1C1V.I /� D 0; F ��1V.I /� D V.I /�: (8.16)

Thus the filtration F �V.I /� has length � 2�1 C 1, from level ��1 to �1. Moreover,
we have

F �1V.I /� D V.I /
U.J=I/C
�

: (8.17)

Proof. This is purely a representation-theoretic calculation. We write V D V.I / and
take a basis e1; : : : ; en of V such that .J=I /C D Ce1, .ei ; ej / D 1 if i C j D nC 1,
and .ei ; ej / D 0 otherwise. We also write P D P.J=I /C and U D U.J=I /C . (The
same notation as in the proof of Proposition 6.3.) We identify V.J / with V 0 D
he2; : : : ; en�1i. This defines a lift C� � O.V 0/ ,! P . Then C� acts on Ce1 by
weight 1, on V 0 by weight 0, and on Cen by weight �1.
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We first prove (8.16). Recall from (3.1) that

V� � ^
t�1V ˝ � � � ˝ ^

t��1V: (8.18)

Since the weights of C� on each space ^iV are only �1, 0, 1, the weights of C�

on the right-hand side of (8.18) are contained in the range Œ��1; �1�. Therefore the
weights of C� on V� are contained in Œ��1;�1�. Since Grr V� is the weight r subspace
for the action of C�, this shows that Grr V� ¤ 0 only when ��1 � r � �1. This
implies (8.16).

Next we prove (8.17). In Proposition 6.3, we proved that V U
�
' ��1 �W as a

representation of C� � O.V 0/, where W is a representation of

O.V 0/ ' O.n � 2;C/:

(We do not use precise information onW .) In particular, C� acts on V U
�

by weight �1.
This means that V U

�
� F �1V�. On the other hand, since U acts trivially on

Gr�1 V� D F �1V�=F �1C1V� D F �1V�;

we also see that F �1V� � V U� . Therefore F �1V� D V U� .

We have the following duality between the graded quotients.

Lemma 8.11. We have Grr V.I /� ' Gr�r V.I /� as representations of O.V .J //.

Proof. We keep the notation as in the proof of Proposition 8.10 and take the C� �
O.V 0/-decomposition (8.15) of V�. Let � be the involution of V which exchanges e1
and en and acts on V 0 D he2; : : : ; en�1i trivially. Thus � and C� D SO.he1; eni/
generate O.he1; eni/. The involution � normalizes C� � O.V 0/. Its adjoint action acts
on C� by ˛ 7! ˛�1, and acts on O.V 0/ trivially. Therefore the action of � on V� maps
the weight r subspace Grr V� to the weight �r subspace Gr�r V�, and this map is
O.V 0/-equivariant.

It will be useful to know that the graded quotients in level ��1 and �1 are indeed
nontrivial.

Lemma 8.12. Let � ¤ det. We have Gr�1 V.I /� ¤ 0 and Gr��1 V.I /� ¤ 0.

Proof. We keep the notation as in the proof of Proposition 8.10. Recall from (3.2)
that V� contains the vector

.e1 ^ � � � ^ et�1/˝ .e1 ^ � � � ^ et�2/˝ � � � ˝ .e1 ^ � � � ^ et��1
/:

Since t�1 < n by � ¤ det, this vector is contained in the weight �1 subspace for the
C�-action. Therefore Gr�1 V� ¤ 0. The nontriviality of Gr��1 V� then follows from
Lemma 8.11.
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Since (8.15) is the weight decomposition for C�, we can write

Grr V.I /� ' �r � V.J /�0.r/

as a representation of C� � O.V .J //, where V.J /�0.r/ is some (in general redu-
cible) representation of O.V .J //'O.n� 2;C/. The representation V.J /�0.r/ can be
understood through the restriction rule of V� for SO.2;C/�O.n� 2;C/� O.n;C/.
See [30, 32] for a description of this restriction rule in terms of the Littlewood–
Richardson numbers.

By translating the conclusions of Proposition 8.10 and Lemmas 8.11 and 8.12 by
the I -trivialization, we obtain the following consequence for the J -filtration on E�.

Proposition 8.13. Let � ¤ det. The J -filtration F �E� on E� satisfies

F �1C1E� D 0; F ��1E� D E�

and
F �1E� D Gr�1 E� ¤ 0; Gr��1 E� ¤ 0:

Thus F �E� has length� 2�1C 1, from level ��1 to �1. The graded quotients Grr E�
and Gr�r E� have the same rank. Moreover, F �1E� coincides with the sub vector
bundle EJ

�
of E� defined in Section 6.2.

Remark 8.14. (1) By this description of EJ
�

, some of the results of Section 6.2 also
follow from the results of Section 8.2.

(2) The isomorphism (8.11) can be written better as

Grr.E�;kj�J / ' �
�
2L˝rCkJ ˝ V.J /�0.r/:

8.4 Decomposition of Jacobi forms

In this section we use the J -filtration on E�;k to show that vector-valued Jacobi forms
decompose, in a sense, into some tuples of scalar-valued Jacobi forms.

Proposition 8.15. Let � ¤ det. There exists an injective map

J�;k;m.�.J /Z/ ,!

�1M
rD��1

JkCr;m.�.J /Z/
˚˛.r/; (8.19)

where ˛.r/ is the rank of Grr E�.

Proof. We use the notation in Section 7. Let F rJ�;k;m.�.J /Z/ be the subspace of
J�;k;m.�.J /Z/ consisting of Jacobi forms which take values in the sub vector bundle
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F rE�;k ˝ ‚
˝m
J of E�;k ˝ ‚

˝m
J . This defines a filtration on J�;k;m.�.J /Z/ from

level r D ��1 to �1. By the exact sequence

0! F rC1E�;k ˝‚
˝m
J ! F rE�;k ˝‚

˝m
J ! Grr E�;k ˝‚

˝m
J ! 0

and Proposition 8.7, we obtain an embedding

Grr.J�;k;m.�.J /Z// ,! H 0.�J ;Grr E�;k ˝‚
˝m
J /�.J /Z

' H 0.�J ; .�
�
2L˝rCkJ /˚˛.r/ ˝‚˝mJ /�.J /Z :

The image of this embedding is contained in JrCk;m.�.J /Z/˚˛.r/, namely, holo-
morphic at the cusps of HJ . Indeed, if we take the .I; !J /-trivialization at I � J ,
the quotient homomorphism F rE�;k ˝‚

˝m
J ! Grr E�;k ˝‚

˝m
J is identified with

the quotient homomorphism

F rV.I /� ˝ .I
_
C /
˝k
˝O�J ! Grr V.I /� ˝ .I_C /

˝k
˝O�J :

Since this is constant over �J , its effect on the Fourier expansion of a Jacobi form
is just reducing each Fourier coefficient from F rV.I /� ˝ .I

_
C /
˝k to Grr V.I /� ˝

.I_C /
˝k , so the Fourier coefficients still satisfy the holomorphicity condition at the

I -cusp.
Therefore we obtain a canonical embedding

Grr.J�;k;m.�.J /Z// ,! JrCk;m.�.J /Z/
˚˛.r/: (8.20)

Finally, if we choose a splitting of the filtration F �Jk;�;m.�.J /Z/, we obtain a (non-
canonical) isomorphism

Jk;�;m.�.J /Z/ '

�1M
rD��1

Grr.Jk;�;m.�.J /Z//:

This defines an embedding as claimed.

As the proof shows, the embedding (8.19) is not canonical: it requires a choice of
a splitting of the filtration F �J�;k;m.�.J /Z/. But at least the last subspace is canon-
ically determined.

Corollary 8.16. Let � ¤ det. We have a canonical embedding

JkC�1;m.�.J /Z/˝ V.J /�0 ,! J�;k;m.�.J /Z/;

where �0 D .�2 � � � � � �n�1/.

Proof. The last (= level �1) subspace F �1J�;k;m.�.J /Z/ is the space of Jacobi forms
with values in F �1E�;k ˝‚˝mJ . By Proposition 8.13 and Theorem 6.1, this sub vec-
tor bundle is isomorphic to ��2L

˝kC�1
J ˝ V.J /�0 ˝‚

˝m
J .
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Example 8.17. Let n D 3 and � D .d/. In this case, in view of (8.12), the embed-
ding (8.19) takes the form

J.d/;k;m.�.J /Z/ ,!

dM
rD�d

JkCr;m.�.J /Z/:

In the context of Siegel modular forms of genus 2, Ibukiyama–Kyomura [27] found
an isomorphism of the same shape for a certain type of integral Jacobi groups. (In our
notation, LD 2U ˚ h�2i,K D h�2i, J � 2U the standard one, U.J /Z D^2J , and
�.J /Z D �J Ë .K ˝ J /.) The method of Ibukiyama and Kyomura is different, based
on differential operators. It might be plausible that their decomposition essentially
agrees with that of us.

Propositions 8.15 and 7.18 enable us to deduce some basic results for vector-
valued Jacobi forms from those for scalar-valued Jacobi forms. We present two such
consequences.

Corollary 8.18. Let � ¤ det. We have J�;k;m.�.J /Z/ D 0 when k C �1 < n=2� 1.

Proof. In this case, all weights k C r in (8.19) satisfy k C r � k C �1 < n=2 � 1.
Then we have JkCr;m.�.J /Z/ D 0 by Proposition 7.19.

Corollary 8.19. J�;k;m.�.J /Z/ has finite dimension. Moreover, we have the follow-
ing asymptotic estimates:

dimJ�;k;m.�.J /Z/ D O.k/ .k !1/;

dimJ�;k;m.�.J /Z/ D O.m
n�2/ .m!1/:

Proof. By Propositions 8.15 and 7.18, we have

dimJ�;k;m.�.J /Z/ �

�1X
rD��1

˛.r/ � dimJkCr;m.�.J /Z/

�

�1X
rD��1

˛.r/ � dimJkCr;K.ˇ0m/.�J /;

where K, ˇ0, �J do not depend on �, k, m. By the dimension formula of Skoruppa
[43, Theorem 6], we see that each JkCr;K.ˇ0m/.�J / is finite dimensional and

dimJkCr;K.ˇ0m/.�J / D O.k/ .k !1/;

dimJkCr;K.ˇ0m/.�J / D O.detK.ˇ0m// D O.mn�2/ .m!1/:

These imply the asymptotic estimates for dimJ�;k;m.�.J /Z/.
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Remark 8.20. From Proposition 8.10, we have imposed the assumption � ¤ det.
This was necessary in our representation-theoretic calculation. Indeed, (8.17) and
Lemma 8.12 do not hold for � D det. On the other hand, since �.J /Z � SOC.L/,
Jacobi forms with � D det are the same as those with � D 1 (scalar-valued Jacobi
forms) as far as �.J /Z is concerned. The difference arises when we consider the
action by the full stabilizer �.J /�Z, which may contain an element of determinant�1.



Chapter 9

Vanishing theorem I

Let L be a lattice of signature .2; n/ with n � 3. We assume that L has Witt index 2,
i.e., has a rank 2 isotropic sublattice. This is always satisfied when n � 5. Let �
be a finite-index subgroup of OC.L/. Let � D .�1 � � � � � �n/ be a partition with
t�1 C

t�2 � n which expresses an irreducible representation of O.n;C/. We assume
�¤ 1;det. In this chapter, as an application of the J -filtration, we prove the following
vanishing theorem.

Theorem 9.1. Let �¤ 1;det. If k < �1C n=2� 1, thenM�;k.�/D 0. In particular,
we have M�;k.�/ D 0 whenever k < n=2.

This generalizes the well-known vanishing theorem Mk.�/ D 0 for 0 < k <

n=2� 1 in the scalar-valued case. This classical fact can be deduced from the vanish-
ing of scalar-valued Jacobi forms (Fourier–Jacobi coefficients) of weight < n=2 � 1.
Our proof of Theorem 9.1 is a natural generalization of this approach. The outline is
as follows.

The first step is to take the projection E�;k ! Gr��1 E�;k to the first graded quo-
tient of the J -filtration for each 1-dimensional cusp J . Then we apply the classical
vanishing theorem of scalar-valued Jacobi forms (Proposition 7.19) to Gr��1 E�;k .
This tells us that when k � �1 < n=2 � 1, the Fourier coefficients of a modular form
at a 0-dimensional cusp I � J are contained in a proper subspace of V.I /�;k . Finally,
running J over all 1-dimensional cusps containing I , we find that the Fourier coeffi-
cients are zero.

The second step of this argument (and hence the bound in Theorem 9.1) could
be improved for some specific .�; L/ if a stronger vanishing theorem of classical
Jacobi forms is available (cf. Remark 9.4). Theorem 9.1 would be a prototype in this
direction.

Let us look at Theorem 9.1 in the cases n D 3; 4 under the accidental isomorph-
isms.

Example 9.2. Let n D 3. Recall from Example 3.4 that the orthogonal weight

.�; k/ D ..d/; k/

corresponds to the GL.2;C/-weight .�1; �2/ D .k C d; k � d/ for Siegel modular
forms of genus 2. In this case, the bound in Theorem 9.1 is k < d C 1=2, namely,
k � d . This is rewritten as �2 � 0. This is the same bound as the vanishing theorem
of Freitag [15] and Weissauer [47] for Siegel modular forms of genus 2.
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In the case of Siegel modular forms of genus 2, the idea to use Jacobi forms
to derive a vanishing theorem of vector-valued modular forms seems to go back to
Ibukiyama. See [25, Section 6] (and also [26, p. 54]). Our proof of Theorem 9.1 can
be regarded as a generalization of the argument of Ibukiyama.

Example 9.3. Let nD4. Recall from Example 3.5 that the orthogonal weight .�;k/D
..d/; k/ corresponds to the weight .r; � � �/ with r D k � d and � D Symd for
Hermitian modular forms of degree 2. In this case, the bound in Theorem 9.1 is k <
d C 1, i.e., k � d . Thus Theorem 9.1 says that there is no nonzero Hermitian modular
form of degree 2 and weight .r; �� �/with �D Symd

¤ 1when r � 0. Furthermore,
our second vanishing theorem (Theorem 11.1 (1)) says that there is no nonzero cusp
form when r � 1.

The rest of this chapter is as follows. In Section 9.1 we prove Theorem 9.1. In
Section 9.2 we give an application of Theorem 9.1 to the vanishing of holomorphic
tensors of small degree on the modular variety F .�/.

9.1 Proof of Theorem 9.1

In this section we prove Theorem 9.1. Let � ¤ 1; det and assume that k � �1 <
n=2 � 1. For a rank 2 primitive isotropic sublattice J of L, we denote by FJE�;k D

F
��1C1
J E�;k the level ��1 C 1 (D the first) sub vector bundle of E�;k in the J -

filtration. Here we add J in the notation in order to indicate the cusp.

Step 1. Every Jacobi form in J�;k;m.�.J /Z/ takes values in the sub vector bundle
FJE�;k ˝‚

˝m
J of E�;k ˝‚

˝m
J .

Proof. Recall from (8.20) that we have an embedding

Gr��1.J�;k;m.�.J /Z// ,! Jk��1;m.�.J /Z/
˚˛.��1/:

Since k � �1 < n=2 � 1, we have

Jk��1;m.�.J /Z/ D 0

by Proposition 7.19. Therefore Gr��1.J�;k;m.�.J /Z// D 0, which means that every
Jacobi form in J�;k;m.�.J /Z/ takes values in FJE�;k ˝‚

˝m
J .

Now let f 2 M�;k.�/. We want to prove that f D 0. We fix a rank 1 primitive
isotropic sublattice I of L and let f D

P
l a.l/q

l be the Fourier expansion of f at
the I -cusp, where a.l/ 2 V.I /�;k . For a rank 2 primitive isotropic sublattice J of L
containing I , we denote by FJV.I /� D F

��1C1
J V.I /� the level ��1 C 1 subspace

in the J -filtration (8.10) on V.I /� and write

FJV.I /�;k D FJV.I /� ˝ .I
_
C /
˝k
� V.I /�;k :
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Step 2. Every Fourier coefficient a.l/ is contained in the subspace FJV.I /�;k
of V.I /�;k .

Proof. Let �J be the isotropic ray in U.I /R corresponding to J . If l 2 �J , then a.l/
appears as a Fourier coefficient of the restriction f j�J of f to �J . By Lemma 6.2
and Proposition 8.10, we see that a.l/ is contained in F �1J V.I /�;k � FJV.I /�;k .

Next let l 62 �J . Then a.l/ appears as a Fourier coefficient of the m-th Fourier–
Jacobi coefficient �m of f for some m > 0 along the J -cusp (see Section 7.1). By
Proposition 7.12, �m is a Jacobi form of weight .�;k/ and indexm. By Step 1, �m as a
section of E�;k ˝‚

˝m
J takes values in the sub vector bundle FJE�;k ˝‚

˝m
J . Since

the I -trivialization over X.J / sends FJE�;k to FJV.I /�;k ˝ O
X.J /, this implies

that the Jacobi form �m, regarded as a V.I /�;k-valued function on�J via the .I;!J /-
trivialization, takes values in the subspace FJV.I /�;k of V.I /�;k . It follows that its
Fourier coefficients a.l/ are contained in FJV.I /�;k .

Step 3. Every Fourier coefficient a.l/ is zero.

Proof. LetW D
T
J�I FJV.I /�. By applying Step 2 to all J � I , we find that a.l/

is contained inW ˝ .I_C /
˝k . We shall prove thatW D 0. Since .J=I /Q runs over all

isotropic lines in V.I /Q in the definition of W and

F
JV.I /� D 
.FJV.I /�/

for 
 2 O.V .I /Q/, we see that W is an O.V .I /Q/-invariant subspace of V.I /�.
Since O.V .I /Q/ is Zariski dense in O.V .I //, we find that W is O.V .I //-invariant.
But V.I /� is irreducible as a representation of O.V .I //, so we have either W D 0
or W D V.I /�. Since FJV.I /� ¤ V.I /� by Lemma 8.12, we have W ¤ V.I /�.
Therefore W D 0. This finishes the proof of Theorem 9.1.

Remark 9.4. At least when V� remains irreducible as a representation of SO.n;C/, it
is also possible to replace the argument in Step 3 by an argument using the symmetry
of the Fourier coefficients in Proposition 3.6 and the Zariski density of �.I /Z as
in the proof of Proposition 3.7. This approach allows improvement of Theorem 9.1
when a stronger vanishing theorem of scalar-valued Jacobi forms holds for �.J /Z.

9.2 Vanishing of holomorphic tensors

In this section, as an application of Theorem 9.1, we deduce vanishing of holomorphic
tensors of small degree on the modular variety F .�/ D �nD . To be more precise,
let X be the regular locus of F .�/. Sections of .�1X /

˝k are called holomorphic
tensors on X . Among them, those which extend holomorphically over a smooth pro-
jective compactification of X are a birational invariant of F .�/.
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Theorem 9.5. When 0 < k < n=2� 1, we have H 0.X; .�1X /
˝k/ D 0. In particular,

H 0. zX; .�1
zX
/˝k/ D 0 for any smooth projective model zX of F .�/.

Proof. Let � WD ! F .�/ be the projection. We can pull back sections of .�1X /
˝k to

�-invariant sections of .�1
��1.X/

/˝k . They extend holomorphically over D because
the complement of ��1.X/ in D is of codimension � 2. Hence we have an embed-
ding

H 0.X; .�1X /
˝k/ ,! H 0.D ; .�1D/

˝k/� : (9.1)

Recall from (2.4) that�1
D
'E˝L. If we denote by St˝k D

L
˛ V�.˛/ the irreducible

decomposition of St˝k , we thus obtain an embedding

H 0.X; .�1X /
˝k/ ,!

M
˛

M�.˛/;k.�/: (9.2)

When �.˛/ ¤ 1; det, we have M�.˛/;k.�/ D 0 for k < n=2 by Theorem 9.1. The
determinant character does not appear in the irreducible decomposition of St˝k if
k < n [38, Theorem 8.21]. Finally, when �.˛/D 1, we haveMk.�/D 0 for 0 < k <
n=2 � 1 as it is classically known. Therefore H 0.X; .�1X /

˝k/ D 0 when 0 < k <

n=2 � 1.

We can also classify possible types of holomorphic tensors on X in the next few
degrees n=2 � 1 � k � n=2.

Proposition 9.6. We write N.k/ D kŠ=2k=2.k=2/Š when k is even.

(1) Let k D Œ.n � 1/=2�. Then we have an embedding

H 0.X; .�1X /
˝k/ ,!

´
0 n � 0; 3 mod 4;

Mk.�/
˚N.k/ n � 1; 2 mod 4:

(2) Let k D n=2 with n even. Then we have an embedding

H 0.X; .�1X /
˝k/ ,!

´
M^k ;k.�/ n � 2 mod 4;

M^k ;k.�/˚Mk.�/
˚N.k/ n � 0 mod 4:

The component M^k ;k.�/ in (2) gives the holomorphic differential forms of
degree k D n=2. The component Mk.�/

˚N.k/ in both (1) and (2) corresponds to
the trivial summands in St˝k . In both (1) and (2), the embedding is an isomorphism
when h�;� idi contains no reflection.

Proof. We keep the same notation as in the proof of Theorem 9.5.
(1) When �.˛/ ¤ 1; det, we still have

M�.˛/;k.�/ D 0
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for k < n=2 by Theorem 9.1. The determinant character does not appear too. By [38,
Exercise 12.2], St˝k does not contain the trivial representation when k is odd, while
it occurs with multiplicity N.k/ when k is even.

(2) When �.˛/¤^d with 0 � d � n, we have �1 � 2, and so,M�.˛/;n=2.�/D 0

by Theorem 9.1. By [38, Theorem 8.21], the representations ^d with d > n=2 or
d 6� n=2 mod 2 do not appear in St˝n=2, and ^n=2 occurs with multiplicity 1. The
multiplicity of the trivial summand is as before. It remains to consider ^d with
0 < d < n=2 and d � n=2 mod 2. We apply our second vanishing theorem (The-
orem 11.1 (2)). This says that M^d ;n=2.�/ D 0 when n=2 � n � d � 2, namely,
d � n=2 � 2.

Finally, when h�;� idi contains no reflection, the projection D!F .�/ is unram-
ified in codimension 1 by [21]. Then (9.1) and (9.2) are isomorphisms, and so, the
above embeddings are isomorphisms.

Remark 9.7. (1) The weight k D Œ.n � 1/=2� in Proposition 9.6 (1) is the so-called
singular weight when n is even, and the critical weight when n is odd, for scalar-
valued modular forms. Since Mk.�/ ¤ 0 in general for these weights, the bound in
Theorem 9.5 is optimal as a general bound.

(2) Theorem 9.5 and Proposition 9.6 imply in particular vanishing of holomorphic
differential forms of degree < n=2 on X . Via the extension theorem of Pommeren-
ing [39], this can also be deduced from the vanishing of the corresponding Hodge
components in the L2-cohomology (cf. [4]).





Chapter 10

Square integrability

Let L be a lattice of signature .2; n/ with n � 3 and � be a finite-index subgroup
of OC.L/. In this chapter we study convergence of the Petersson inner productZ

F .�/

.f; g/�;kvolD

for f; g 2M�;k.�/, where . ; /�;k is the Petersson metric on the vector bundle E�;k
and volD is the invariant volume form on D .

For �D .�1 � � � � � �n/ let x�D .�1 � �n; : : : ; �Œn=2� � �nC1�Œn=2�/ be the asso-
ciated highest weight for SO.n;C/ (see Section 3.6.1). We denote by jx�j the sum of
all components of x�. Our results are summarized as follows.

Theorem 10.1. Let f; g 2M�;k.�/ with � ¤ 1; det.

(1) If f is a cusp form, then
R

F .�/
.f; g/�;kvolD <1.

(2) When k � nC jx�j � 1, f is a cusp form if and only ifZ
F .�/

.f; f /�;kvolD <1:

(3) When k � n � jx�j � 2, we always have
R

F .�/
.f; g/�;kvolD <1.

See Remark 10.13 for the scalar-valued case. The assertion (1) should be more or
less standard. The assertions (2) and (3) give a characterization of square integrability
except in the range

n � jx�j � 1 � k � nC jx�j � 2: (10.1)

The assertion (3) is in fact an intermediate step in the proof of our second vanishing
theorem (Theorem 11.1), where we eventually prove that M�;k.�/ D 0 in the range
k � n � jx�j � 2.

This chapter starts with defining the Petersson metrics on the Hodge bundles
explicitly (Section 10.1) and calculating them over the tube domain (Section 10.2). In
Section 10.3 we give some asymptotic estimates needed in the proof of Theorem 10.1.
In Section 10.4 we prove Theorem 10.1.

10.1 Petersson metrics

In this section we explicitly define the Petersson metrics on the Hodge bundles L

and E , and hence on the automorphic vector bundles E�;k .
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We begin with L. By the definition of D , the Hermitian form .�; N�/ on LC is pos-
itive on the lines parametrized by D . Thus restriction of this Hermitian form defines
a Hermitian metric on each fiber of L, and hence an OC.LR/-invariant Hermitian
metric on L. We call it the Petersson metric on L and denote it by . ; /L.

Next we consider E . We first define the real part of E . We writeLR for the product
real vector bundleLR �D , which we regard as a sub real vector bundle ofLC ˝OD

in the natural way. Then we define a sub real vector bundle of LR by

ER WD L? \ LR D .L˚ xL/
?
\ LR:

This is a real vector bundle of rank n. By the second expression, the fiber of ER over
Œ!� 2 D is the negative-definite subspace

hRe.!/; Im.!/i? \ LR (10.2)

of LR (cf. Section 2.1). The OC.LR/-action on LR preserves the sub vector bun-
dle ER. The natural homomorphism

ER ˝R C ,! L? ! E

gives an OC.LR/-equivariant C1-isomorphism between ER ˝R C and E . This de-
fines a real structure of E .

By the description (10.2) of the fibers, the real vector bundle ER is naturally
endowed with an OC.LR/-invariant negative-definite quadratic form. We take the
.�1/-scaling to turn it to positive-definite. This is a Riemannian metric on ER. It
extends to a Hermitian metric on ER ˝R C in the usual way. (Explicitly, the Her-
mitian pairing between two vectors v; w is the quadratic pairing between v and Nw.)
Via the C1-isomorphism ER˝R C! E , we obtain an OC.LR/-invariant Hermitian
metric on E . We call it the Petersson metric on E and denote it by . ; /E .

The Petersson metric on E induces an OC.LR/-invariant Hermitian metric on
E˝d , and hence by restriction an OC.LR/-invariant Hermitian metric on E� with
j�j D d . Taking the tensor product with the Petersson metric on L˝k , we obtain an
OC.LR/-invariant Hermitian metric on E�;k . We call it the Petersson metric on E�;k
and denote it by . ; /�;k .

Remark 10.2. WhenL is the primitive integral cohomology of a lattice-polarized K3
surface X with period Œ!� 2 D , we have the identifications

LŒ!� D H
2;0.X/; ER;Œ!� D H

1;1
prim.X;R/;

and ER;Œ!�˝R C! EŒ!� is identified withH 1;1
prim.X;C/!H 2;0.X/?=H 2;0.X/. On

H 2;0.X/ and H 1;1
prim.X;C/ we have the so-called Hodge metrics defined by

R
X
˛ ^ x̌

and �
R
X
˛ ^ x̌, respectively (see [46, Section 6.3.2]). Thus the Petersson metrics

on L and E are essentially the Hodge metrics in this geometric setting.
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Let I be a rank 1 primitive isotropic sublattice of L. For a vector v of V.I /R D
.I?=I /R, let sv be the section of E which corresponds to the constant section v
of V.I /˝ OD by the I -trivialization V.I /˝ OD ' E . We compute the Hermitian
pairing between these distinguished sections. We choose and fix a lift V.I /R ,! I?R
of V.I /R and regard vectors of V.I /R as vectors of I?R � LR in this way.

Lemma 10.3. Let v1; v2 2 V.I /R. The pairing of the sections sv1 , sv2 of E with
respect to the Petersson metric . ; /E is given by

.sv1.Œ!�/; sv2.Œ!�//E D �.v1; v2/C
2 � .v1; Im.!// � .v2; Im.!//

.Im.!/; Im.!//

for Œ!� 2 D . In the right-hand side, . ; / is the quadratic form on LR, and ! is
normalized so as to have real pairing with IR. In particular, .sv1 ; sv2/E is R-valued.

Proof. Let Œ!� 2 D . We choose a nonzero vector l 2 I . We may normalize ! so that
.l; !/ D 1. For v 2 V.I /R � I?R we write

˛.v/ D
.v; Im.!//

.Im.!/; Im.!//
D

.v; Im.!//
.Re.!/;Re.!//

2 R

and define a vector of LC by

s0v.Œ!�/ D v � .v; !/l C
p
�1˛.v/!: (10.3)

Claim 10.4. s0v is a section of ER ˝R C and is the image of sv under the C1-
isomorphism E ! ER ˝R C.

We prove Claim 10.4. The conditions to be checked are

.Re.s0v.Œ!�//; !/ D 0; .Im.s0v.Œ!�//; !/ D 0; s0v.Œ!�/ 2 sv.Œ!�/CC!:

Since sv.Œ!�/ D v � .v; !/l C C! by Lemma 2.6, the last condition follows from
the definition of s0v . We check the first equality. Since

Re.s0v.Œ!�// D v � .v;Re.!//l � ˛.v/ � Im.!/;

we see that

.Re.s0v.Œ!�//; !/ D .v; !/ � .v;Re.!// �
p
�1˛.v/.Im.!/; Im.!//

D .v; !/ � .v;Re.!// �
p
�1.v; Im.!//

D 0:

In the first equality we used .Re.!/; Im.!// D 0. The equality .Im.s0v.Œ!�//; !/ D 0
can be verified similarly. This proves Claim 10.4.
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We return to the proof of Lemma 10.3. We take two vectors v1; v2 2 V.I /R. By
definition, .sv1.Œ!�/; sv2.Œ!�//E is the pairing of s0v1.Œ!�/ and s0v2.Œ!�/ with respect to
the Hermitian form on ER ˝R C. This in turn is the pairing of the vectors s0v1.Œ!�/
and s0v2.Œ!�/ of LC with respect to the .�1/-scaling of the quadratic form on LC . By
the expression (10.3) of s0v.Œ!�/, we can calculate

� .sv1.Œ!�/; sv2.Œ!�//E

D .v1 � .v1; !/l C
p
�1˛.v1/!; v2 � .v2; x!/l �

p
�1˛.v2/x!/

D .v1; v2/C ˛.v1/˛.v2/.!; x!/ � 2˛.v1/.Im.!/; v2/ � 2˛.v2/.Im.!/; v1/:

Since we have

˛.v1/˛.v2/.!; x!/ D 2˛.v1/.Im.!/; v2/ D 2˛.v2/.Im.!/; v1/

D
2.v1; Im.!//.v2; Im.!//

.Im.!/; Im.!//
;

this proves Lemma 10.3.

Remark 10.5. By the expression (10.3), the imaginary part of s0v.Œ!�/ is nonzero for
general Œ!�. This shows that the real structure on E ' V.I /˝ OD given by ER is
different from that given by V.I /R. Nevertheless, the Petersson metric on the real
part given by V.I /R is R-valued by Lemma 10.3.

Let volD be the invariant volume form on D . The Petersson metric . ; /det;n of
weight .det; n/ gives an invariant metric on the canonical bundle KD ' L˝n ˝ det,
where det stands for the determinant character (cf. Example 2.2). This can be used
to express volD as follows. If � is an arbitrary nonzero vector of .KD/Œ!� over a
point Œ!� of D , the volume form volD at Œ!� is written as

volD.Œ!�/ D
� ^ x�

.�;�/det;n
(10.4)

up to a constant independent of Œ!�. Indeed, the right-hand side does not depend
on the choice of �, and the differential form of degree .n; n/ on D defined by the
right-hand side is clearly OC.LR/-invariant, so it should coincide with volD up to
constant.

10.2 Petersson metrics on the tube domain

Let I be a rank 1 primitive isotropic sublattice of L. We calculate the Petersson
metrics on L, E over the tube domain DI � U.I /C . We choose a rank 1 isotropic
sublattice I 0 � L with .I; I 0/ ¤ 0. Recall that the choice of I 0 determines a tube
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domain realization D!DI . We take a generator l of I and identifyU.I /Q'V.I /Q
accordingly.

Lemma 10.6. On the tube domain DI we have

.sl.Z/; sl.Z//L D 2.Im.Z/; Im.Z//; (10.5)

.sv1.Z/; sv2.Z//E D �.v1; v2/C
2 � .v1; Im.Z// � .v2; Im.Z//

.Im.Z/; Im.Z//
; (10.6)

for Z 2 DI . Here sl is the section of L corresponding to the dual vector of l , v1, v2
are vectors of V.I /R, and . ; / in the right-hand sides are the natural quadratic form
on V.I /R ' U.I /R.

Proof. We begin with . ; /L. We can view the section sl over DI as a function DI !

LC which lifts the inverse DI ! D of the tube domain realization and satisfies
.sl ; l/ � 1. Let l 0 be the vector of I 0Q with .l; l 0/ D 1, and we identify V.I /Q with
.IQ ˚ I

0
Q/
?. Then we can explicitly write sl as

sl.Z/ D l
0
CZ � 2�1.Z;Z/l 2 LC

for Z 2 DI � V.I /. Thus we have

.sl.Z/; sl.Z//L D .sl.Z/; sl.Z// D .Z; xZ/ � .Z;Z/=2 � .Z;Z/=2

D 2.Im.Z/; Im.Z//:

Next we calculate . ; /E . By Lemma 10.3, we have

.sv1.Z/; sv2.Z//E D �.v1; v2/C
2 � .v1; Im.sl.Z/// � .v2; Im.sl.Z///

.Im.sl.Z//; Im.sl.Z///
:

Since
Im.sl.Z// D Im.Z/ � 2�1 Im..Z;Z//l;

we see that

.Im.sl.Z//; Im.sl.Z/// D .Im.Z/; Im.Z//; .vi ; Im.sl.Z/// D .vi ; Im.Z//:

This proves (10.6).

At each point Z 2 DI , the Petersson metric on E can be understood as follows.
We take an R-basis v1; : : : ; vn of V.I /R such that v1 2R Im.Z/ and .vi ; Im.Z//D 0
for i > 1. Then, by (10.6), we have

.svi .Z/; svj .Z//E D

8̂̂<̂
:̂
.v1; v1/; i D j D 1;

�.vi ; vj /; i; j > 1;

0; i D 1; j > 1:
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The right-hand side can be seen as the positive-definite modification of the hyperbolic
quadratic form on V.I /R given by taking the .�1/-scaling of the negative-definite
subspace Im.Z/?. The Petersson metric on EZ ' V.I / is the Hermitian extension of
this modified real metric on V.I /R to V.I /.

Finally, we recall the expression of volD over DI . Let volI be a flat volume form
on DI � U.I /C . Then, as it is well known, we have

volD D .Im.Z/; Im.Z//�n volI : (10.7)

This can be seen by substituting � D s˝n
l
˝ v0 in (10.4) and using (10.5), where v0

is a nonzero vector of det. The section s˝n
l
˝ v0 of L˝n ˝ det corresponds to a flat

canonical form on DI � U.I /C by its U.I /C-invariance.

10.3 Asymptotic estimates on the tube domain

In this section we prepare some estimates of the Petersson metrics on E�;k over the
tube domain DI . This will be a main ingredient in the proof of Theorem 10.1. We
keep the setting of Section 10.2.

We choose an R-basis ¹viºi of the real part .V .I /R/� of V.I /�. Then ¹viºi is
also a C-basis of V.I /�. Let s0i be the section of E� corresponding to vi via the I -
trivialization E� ' V.I /�˝OD and let si D s0i ˝ s

˝k
l

. Then ¹siºi is a frame of E�;k
corresponding to a basis of V.I /�;k by the I -trivialization. Accordingly, we express a
section f of E�;k over D 'DI as f D

P
i fisi with fi a scalar-valued holomorphic

function on DI .

Lemma 10.7. There exist real homogeneous polynomials ¹Pij ºi;j on U.I /R of de-
gree � 2j�j determined by the basis ¹viºi of .V .I /R/� such that

.f; g/�;kvolD D
X
i;j

figj � Pij .Im.Z// � .Im.Z/; Im.Z//k�n�j�j volI (10.8)

for all sections fD
P
ifisi , gD

P
igisi of E�;k over DI . The matrix .Pij .Im.Z///i;j

is symmetric and positive-definite for Z 2 DI .

Proof. The section s0i is an R-linear combination of j�j-fold tensor products of the
distinguished sections sv of E associated to v 2 V.I /R. (Recall that V� � V ˝j�j.)
The equation (10.6) can be written as

.sv1.Z/; sv2.Z//E D
�.v1; v2/.Im.Z/; Im.Z//C 2.v1; Im.Z//.v2; Im.Z//

.Im.Z/; Im.Z//
:

The numerator is a real homogeneous polynomial of Im.Z/ of degree � 2. Therefore
the Petersson paring between s0i and s0j can be written as

.s0i .Z/; s
0
j .Z//� D Pij .Im.Z// � .Im.Z/; Im.Z//

�j�j (10.9)
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for a real homogeneous polynomial Pij of Im.Z/ of degree � 2j�j. Together with
(10.5) and (10.7), we obtain

.si .Z/; sj .Z//�;kvolD D Pij .Im.Z// � .Im.Z/; Im.Z//k�n�j�j volI :

This proves the equality (10.8). Since the matrix ..s0i .Z/; s
0
j .Z//�/i;j is real symmet-

ric and positive-definite, so is .Pij .Im.Z///i;j by (10.9).

Let � be a finite-index subgroup of OC.L/ and let X.I / D DI=U.I /Z. We
take a regular �.I /Z-admissible cone decomposition †I of CCI � U.I /R in the
sense of Section 3.5.1. Let X.I /†I be the associated partial toroidal compactific-
ation of X.I /. Let � be a cone in †I of dimension c. By the regularity of †I , we
can write � D R�0v1 C � � � C R�0vc such that v1; : : : ; vc is a part of a Z-basis of
U.I /Z, say v1; : : : ; vn. Let l1; : : : ; ln 2 U.I /_Z be the dual basis of v1; : : : ; vn. Then
zi D .li ; Z/, 1 � i � n, are flat coordinates on U.I /C . We have

volI D dz1 ^ � � � ^ dzn ^ d Nz1 ^ � � � ^ d Nzn

up to constant. We write qi D e.zi / for 1 � i � c. Let �� be the boundary stratum
of X.I /†I corresponding to the cone � , and �i D �vi be the boundary divisor
corresponding to the ray R�0vi . Then q1; : : : ; qc ; zcC1; : : : ; zn give local coordinates
around �� . The divisor �i is defined by qi D 0, and �� is defined by q1 D � � � D
qc D 0. We write qi D rie.�i / with ri D jqi j and 0 � �i < 1. Then

volI D
dq1

q1
^
d Nq1

Nq1
^ � � � ^

dqc

qc
^
d Nqc

Nqc
^ dzcC1 ^ � � � ^ d Nzn

D
1

r1 � � � rc
dr1 ^ d�1 ^ � � � ^ drc ^ d�c ^ dzcC1 ^ � � � ^ d Nzn (10.10)

up to constant.
We give an asymptotic estimate of the right-hand side of (10.8) as q1; : : : ; qc

approach to 0. We take an arbitrary base point Z0 2DI and consider a flow of points
of the form

Z D Z.t1; : : : ; tc/ D Z0 C
p
�1.t1v1 C � � � C tcvc/; t1; : : : ; tc !1: (10.11)

This flow converges to a point of �� as t1; : : : ; tc !1, and every point of �� can
be obtained in this way. Let v0 D Im.Z0/. This is a vector in the positive cone CI .

Lemma 10.8. The following asymptotic estimates hold as t1; : : : ; tc !1.

Pij .Im.Z// D O..t1 C � � � C tc/2j�j/; (10.12)

.Im.Z/; Im.Z// D O..t1 C � � � C tc/2/; (10.13)

.Im.Z/; Im.Z//�1 D O..t1 C � � � C tc/�1/: (10.14)
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Proof. We have Im.Z/D v0C
P
i tivi . Since Pij is a real homogeneous polynomial

of degree � 2j�j on U.I /R, we see that Pij .v0 C
P
i tivi / is a real inhomogeneous

polynomial of t1; : : : ; tc of degree � 2j�j. This implies (10.12). Next we have

.Im.Z/; Im.Z// D .v0; v0/C 2
X
i

.v0; vi /ti C 2
X
i¤j

.vi ; vj /ti tj C
X
i

.vi ; vi /t
2
i :

The estimate (10.13) is obvious from this expression. Since v0 2 CI and v1; : : : ; vc 2
CI , all coefficients in the right-hand side are nonnegative; possibly except for .vi ; vi /
with i � 1, they are furthermore positive. Therefore we have

.Im.Z/; Im.Z// > 2
X
i

.v0; vi /ti > C �
X
i

ti

for some constant C > 0. This implies (10.14).

Lemma 10.9. In a small neighbourhood of an arbitrary point of �� , we have

Pij .Im.Z// D O..� log r1 � � � rc/2j�j/; (10.15)

.Im.Z/; Im.Z// D O..� log r1 � � � rc/2/; (10.16)

.Im.Z/; Im.Z//�1 D O..� log r1 � � � rc/�1/; (10.17)

as q1; : : : ; qc ! 0.

Proof. We consider the flow (10.11) with Z0 varying over the range where Re.Z0/
is in a fundamental neighbourhood of U.I /R=U.I /Z and v0 D Im.Z0/ is in a small
neighbourhood of an arbitrary point of CI . Since

ri D jqi j D exp.�2�.li ; Im.Z/// D exp.�2�.li ; v0/ � 2�ti /;

we have
ti D �.2�/

�1 log ri � .li ; v0/: (10.18)

The constant term �.li ; v0/ depends on v0 D Im.Z0/ continuously. Therefore our
assertions follow by substituting ti � �.2�/�1 log ri in the estimates in Lemma 10.8
and using log r1 C � � � C log rc D log r1 � � � rc .

Summing up the calculations so far, we obtain the following asymptotic estimate
of .f; g/�;kvolD .

Proposition 10.10. Let f D
P
i fisi and g D

P
i gisi be as in Lemma 10.7. In a

small neighbourhood of an arbitrary point of �� , we have

.f; g/�;kvolD D
X
i;j

fi Ngj �O..� log r1 � � � rc/˛/ � .r1 � � � rc/�1

� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn
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as q1; : : : ; qc ! 0, where

˛ D

´
2k � 2n; k � nC j�j;

k � nC j�j; k < nC j�j:

Proof. By substituting (10.15) and (10.10) in the right-hand side of (10.8), we obtain

.f; g/�;kvolD

D

X
i;j

fi Ngj �O..� log r1 � � � rc/2j�j/ � .Im.Z/; Im.Z//k�n�j�j

� .r1 � � � rc/
�1
� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn:

Then, according to whether the power degree k � n � j�j of .Im.Z/; Im.Z// is non-
negative or negative, we use (10.16) and (10.17), respectively.

Before going to Section 10.4, we recall the following exercise in calculus.

Lemma 10.11. Let m 2 Z. The integral

lim
"!0

Z 1=2

"

1

.log r/m � r
dr

converges if m � 2, and diverges if m � 1.

Proof. This can be seen from�
1

.log r/m�1

�0
D

1 �m

.log r/m � r

when m ¤ 1, and .log.� log r//0 D ..log r/ � r/�1 when m D 1.

10.4 Proof of Theorem 10.1

Now we prove Theorem 10.1. Let us begin with some reductions. For the proof of
Theorem 10.1, there is no loss of generality even if we replace the given group � by
a subgroup of finite index. Thus we may assume that � is neat. In particular, � is
contained in SOC.L/. By Proposition 3.12 (1), when t�1 > n=2, we have E� ' Ex�
as SOC.LR/-equivariant vector bundles. This isomorphism preserves the Petersson
metrics up to constant by their uniqueness as SOC.LR/-invariant Hermitian metrics.
Thus we have a natural isomorphism

M�;k.�/ 'Mx�;k.�/
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which preserves the Petersson inner product up to constant. Since the highest weight
for the partition x� is x� itself, the assertions of Theorem 10.1 for weight .�; k/ follow
from those for weight .x�; k/. Therefore, for the proof of Theorem 10.1, we may
assume that t�1 � n=2.

We take a smooth toroidal compactification F .�/† of F .�/, where the fans †I
are regular. We take a subdivision of †I as follows.

Lemma 10.12. There exists a �.I /Z-admissible and regular subdivision †0I of †I
such that every cone in †0I contains at most one isotropic ray.

Proof. We take representatives �1; : : : ; �N of �.I /Z-equivalence classes of 2-dimen-
sional cones spanned by two isotropic rays. For each �a, we choose a rational vec-
tor from the interior of �a. This vector has positive norm, and the ray it generates
divides �a. By letting �.I /Z act, we obtain a division of every 2-dimensional cone �
spanned by two isotropic rays. This is well defined because �.I /Z is torsion-free, and
so, acts on the set of such cones freely. The collection of these divisions is �.I /Z-
invariant by construction.

The division of � uniquely induces a division of every cone � having � as a
face, because � is simplicial. Explicitly, if � DR�0v1C � � � CR�0vc , � DR�0v1C
R�0v2 and v0 2 � is the division vector, we add the wall R�0v0 C R�0v3 C � � � C
R�0vc . The collection of these new walls defines a �.I /Z-invariant subdivision of
the fan †I such that every cone contains at most one isotropic ray. Taking its regular
subdivision [2, p. 186], we obtain a desired subdivision.

Thus our reduced situation is: � is neat, t�1 � n=2 so that x�D �, and every cone
in †I contains at most one isotropic ray. (The last property will be used only in the
proof of the assertion (3).)

Now, the integral
R

F .�/
.f; g/�;kvolD converges if for every boundary point x

of F .�/† there exists a neighbourhood U D Ux of x such that
R
U
.f; g/�;kvolD

converges. Therefore, for the proof of (1) and (3) of Theorem 10.1, it suffices to verify
the convergence of the integral over U . Conversely, when f D g, if

R
U
.f;f /�;kvolD

diverges around some boundary point x, then
R

F .�/
.f; f /�;kvolD diverges because

.f;f /�;k is nonnegative, real-valued. Therefore, for the proof of (2) of Theorem 10.1,
it suffices to show that the integral

R
U
.f; f /�;kvolD diverges at some U when f is

not a cusp form.
Recall that we have étale maps X.I /†I ! F .�/† and X.J /! F .�/† which

give local charts around the boundary points of F .�/†. Moreover, we have an étale
gluing map X.J /!X.I /†I for I � J . Therefore the problem is reduced to estimat-
ing

R
U
.f; g/�;kvolD for a small neighbourhood U of a boundary point of the partial

toroidal compactification X.I /†I over a 0-dimensional cusp I . We are thus in the
situation of Section 10.3. In what follows, we use the same notation as in Section 10.3.
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(1) We first prove the assertion (1) of Theorem 10.1. By Proposition 10.10, the
local integral

R
U
.f; g/�;kvolD can be bounded from above by

lim
"1;:::;"c!0

Z a1

"1

� � �

Z ac

"c

Z 1

0

� � �

Z 1

0

Z
U 0X

i;j

fi Ngj �O..� log r1 � � � rc/N / � .r1 � � � rc/�1

� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn

for some integer N > 0, where a1; : : : ; ac > 0 are small constants and U 0 is a small
open set in �� with coordinates zcC1; : : : ; zn. If f is a cusp form, its components fi
vanish at the boundary divisors �1; : : : ; �c by Lemma 3.9. Hence

fi D q1 � � � qc �O.1/:

Similarly we have gj D O.1/. We also have � log r1 � � � rc �
Qc
lD1.� log rl/. Then

the above integral can be bounded from above by

lim
"1;:::;"c!0

Z a1

"1

� � �

Z ac

"c

cY
lD1

O..� log rl/N /dr1 ^ � � � ^ drc :

This integral converges because
R a
"
.log r/Ndr converges in "! 0. Thus the integ-

ral
R
U
.f; g/�;kvolD converges if f is a cusp form. This proves the assertion (1) of

Theorem 10.1.
(3) Next we prove the assertion (3) of Theorem 10.1. Let k � n � j�j � 2. When

� has no isotropic ray, f and g vanish at the boundary divisors �1; : : : ; �c by
Lemma 3.9. (Recall our assumption �¤ 1;det.) Therefore we can give a similar (actu-
ally stronger) estimate as in the case (1) above, which implies that

R
U
.f; g/�;kvolD

converges. We consider the case when � has an isotropic ray, say R�0v1. Since other
rays R�0v2; : : : ;R�0vc are not isotropic by our assumption, we see from Lemma 3.9
that f and g vanish at �2; : : : ; �c . Therefore we have f D q2 � � � qc � O.1/ and
g D q2 � � � qc � O.1/. By substituting these estimates in the second case of Proposi-
tion 10.10, we see that

.f; g/�;kvolD D .r2 � � � rc/ �O.1/ �O..� log r1 � � � rc/k�nCj�j/ � r�11
� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn:

We have .� log r1 � � � rc/�1 � .� log r1/�1. Therefore
R
U
.f;g/�;kvolD can be bound-

ed from above by

lim
"1!0

Z a1

"1

O..� log r1/k�nCj�j � r�11 /dr1:

Since k � nC j�j � �2 by the assumption, this integral converges by Lemma 10.11.
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(2) Finally, we prove the assertion (2) of Theorem 10.1. When L has Witt
index � 1, we have S�;k.�/ D M�;k.�/ by Proposition 3.7. Thus we may assume
that L has Witt index 2. Let k � nC j�j � 1 and assume that f is not a cusp form.
Then f does not vanish identically at a boundary divisor � D �� corresponding
to an isotropic ray � D R�0v for some 0-dimensional cusp I . We shall show thatR
U
.f; f /�;kvolD diverges for a general point x of �. Thus we consider the case

c D 1. We rewrite q1 D r1e.�1/ as q D re.�/, and also denote Z0 D .z2; : : : ; zc/

which give local charts on �.
We go back to the flow Z D Z0 C

p
�1tv in Section 10.3. Then Pij .Im.Z//

is a real polynomial of t whose coefficients depend continuously on v0 D Im.Z0/.
Therefore, by substituting (10.18), we see that in a neighbourhood of x,

Pij .Im.Z// D Qij .log r/

for a real polynomial Qij of one variable whose coefficients depend continuously
on Z0. Moreover, as in the proof of Lemma 10.8, we have

.Im.Z/; Im.Z// D .v0; v0/C 2.v0; v/t � �C log r

for some constant C D C.Z0/ > 0 depending continuously on Z0. Therefore, by the
same calculation as in Section 10.3, we see that

.f; f /�;kvolD <
X
i;j

fifjQij .log r/.� log r/k�n�j�jr�1dr ^ d� ^ � � �

as r ! 0.
We take the base change of the frame .si /i by a GLN .C/-valued holomorphic

function A D A.Z0/ of Z0 around x so that f1 ! 1 and fi ! 0 for i > 1 as r ! 0.
This is possible because f ¤ 0 2 V.I /�;k around x. Then the real symmetric mat-
rix Q D .Qij /i;j is replaced by the Hermitian matrix t xAQA, which we denote by
Q0 D .Q0ij /i;j . Each Q0ij is a C-polynomial of log r whose coefficients depend con-
tinuously on Z0. Since the Hermitian matrix Q0 is positive-definite when r is small,
we have in particular Q011 ¤ 0. Then

.f; f /�;kvolD < Q011.log r/.� log r/k�n�j�jr�1dr ^ d� ^ � � �

as r ! 0. Since Q011 is a nonzero real polynomial and k � n � j�j � �1 by our
assumption, we obtain

.f; f /�;kvolD < .� log r/�1r�1dr ^ d� ^ � � �

as r ! 0. By Lemma 10.11, this implies that the integral
R
U
.f; f /�;kvolD diverges.

This completes the proof of Theorem 10.1.
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Remark 10.13. As the proof shows, the assertion (1) of Theorem 10.1 holds even
when �D 1; det. Similarly, the assertion (2) holds also for �D 1; det at least when L
has Witt index 2. On the other hand, the proof of (3) makes use of Proposition 3.7,
which requires � ¤ 1; det.





Chapter 11

Vanishing theorem II

Let L be a lattice of signature .2; n/ with n � 3 and � be a finite-index subgroup
of OC.L/. Let � D .�1 � � � � � �n/ be a partition expressing an irreducible repres-
entation of O.n;C/. We assume � ¤ 1; det. Therefore �1 > 0 and �n D 0. In this
chapter we prove our second type of vanishing theorem. We define the corank of �,
denoted by corank.�/, as the maximal index 1 � i � Œn=2� such that

�1 D �2 D � � � D �i and �n D �n�1 D � � � D �nC1�i D 0:

Let

x� D .x�1; : : : ; x�Œn=2�/ D .�1 � �n; �2 � �n�1; : : : ; �Œn=2� � �nC1�Œn=2�/

be the highest weight for SO.n;C/ associated to �. Then corank.�/ is the maximal
index i such that x�1 D x�2 D � � � D x�i . Let jx�j D

P
i
x�i be as in Section 10.

Our second vanishing theorem is the following.

Theorem 11.1. Let � ¤ 1; det. If k < nC �1 � corank.�/ � 1, there is no nonzero
square integrable modular form of weight .�; k/. In particular,

(1) S�;k.�/ D 0 when k < nC �1 � corank.�/ � 1.

(2) M�;k.�/ D 0 when k < n � jx�j � 1.

We compare Theorems 11.1 and 9.1. The bound n=2C �1 � 1 in Theorem 9.1
is smaller than the main bound n C �1 � corank.�/ � 1 in Theorem 11.1 because
corank.�/� Œn=2�. However, Theorem 11.1 is about square integrable modular forms,
while Theorem 9.1 is about the wholeM�;k.�/, so Theorem 11.1 does not supersede
Theorem 9.1. The comparison of Theorem 11.1 (1) and Theorem 9.1 raises the ques-
tion if we have convergent Eisenstein series in the range

n=2C �1 � 1 � k < nC �1 � corank.�/ � 1:

As for the comparison of Theorem 11.1 (2) and Theorem 9.1, it depends on � which
n� jx�j � 1 or n=2� 1C �1 is larger. Roughly speaking, Theorem 11.1 (2) is stronger
when jx�j is small, while Theorem 9.1 is stronger when �1 is large. Thus Theor-
ems 11.1 and 9.1 are rather complementary.

The proof of Theorem 11.1 follows the same strategy as Weissauer’s vanishing
theorem for vector-valued Siegel modular forms [47]. If we have a square integrable
modular form f ¤ 0, we can construct a unitary highest weight module for the Lie
algebra of SOC.LR/ by a standard procedure (cf. [23, 47] for the Siegel case). By
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computing its weight and comparing it with the classification of unitarizable highest
weight modules [12, 13, 28], we obtain the bound k � nC �1 � corank.�/ � 1. The
more specific assertions (1), (2) in Theorem 11.1 are derived from combination with
Theorem 10.1.

The rest of this chapter is devoted to the proof of Theorem 11.1. The construction
of highest weight module occupies Sections 11.1 and 11.2, and the concluding step
is done in Section 11.3.

11.1 Lifting to the Lie group

In this section we work with G D SOC.LR/. We lift a square integrable modular
form on D to a square integrable function on G in a standard way. We choose a base
point Œ!0� 2 D . Let K ' SO.2;R/ � SO.n;R/ be the stabilizer of Œ!0� in G. We
denote by g, k the Lie algebras of G, K, respectively. Let g D k ˚ p be the Cartan
decomposition of g with respect to k, and pC D pC ˚ p� be the eigendecomposition
for the adjoint action of so.2;R/ � k on p. Then p is identified with the real tangent
space TŒ!0�;RD of D at Œ!0�, and the decomposition pC D pC ˚ p� corresponds to
the decomposition

TŒ!0�;RD ˝R C D T 1;0
Œ!0�

D ˚ T
0;1
Œ!0�

D :

For each point Œ!�D g.Œ!0�/ of D , the g-action gives an isomorphism p�! T
0;1
Œ!�

D .
This isomorphism is unique up to the adjoint action of K.

The Lie group P� D exp.p�/ is abelian and is the unipotent radical of the stabil-
izer of Œ!0� in SO.LC/ (see, e.g., [2, pp. 107–108]). Therefore, in view of (1.2), P�
coincides with the group of Eichler transvections of LC with respect to the isotropic
line C!0. In particular, P� acts trivially on C!0 D LŒ!0� and !?0 =C!0 D EŒ!0�. We
will use this property in the proof of Claim 11.3 (3) below.

Now let � be a partition for O.n;C/ and x� be the associated highest weight for
SO.n;C/. To start with O.n;C/ is somewhat roundabout here, but this is for consist-
ency with the formulation of Theorem 11.1 and eventually with other chapters. We
first consider the case when V� remains irreducible as a representation of SO.n;C/
(cf. Section 3.6.1). Let Wx�;k be the finite-dimensional irreducible C-representation
of K ' SO.n;R/ � SO.2;R/ with highest weight .x�; k/.

Lemma 11.2. Assume that either n is odd or nD 2m is even with t�1¤m. Let f ¤ 0
be a square integrable modular form of weight .�; k/ for a finite-index subgroup �
of SOC.L/. Then there exists a smooth function �f ¤ 0 on G with the following
properties.

(1) �f 2 L2.�nG/.
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(2) p� � �f D 0. (Here g acts on �f as the derivative of the rightG-translations.)

(3) The linear subspace of L2.�nG/ spanned by the right K-translations of �f
is finite dimensional and is isomorphic to W _

x�;k
as a K-representation.

Proof. We choose a rank 1 primitive isotropic sublattice I of L and let j.g; Œ!�/ be
the factor of automorphy associated to the I -trivialization E�;k ' V.I /�;k ˝ OD .
The homomorphism

K ! End.V .I /�;k/; k 7! j.k; Œ!0�/; (11.1)

defines a representation of K on V.I /�;k ' .E�;k/Œ!0�. This is irreducible of highest
weight .x�; k/ by our assumption on �. The Petersson metric on .E�;k/Œ!0� is K-
invariant. Via the I -trivialization at Œ!0�, this defines a K-invariant Hermitian metric
on V.I /�;k . The induced constant Hermitian metric on the product vector bundleG �
V.I /�;k overG corresponds to the Petersson metric on E�;k through the isomorphism

E�;k ' G �K .E�;k/Œ!0� ' G �K V.I /�;k : (11.2)

Via the I -trivialization we regard the modular form f as a V.I /�;k-valued holo-
morphic function on D . We define a V.I /�;k-valued smooth function Qf on G by

Qf .g/ D j.g; Œ!0�/
�1
� f .g.Œ!0�//; g 2 G:

This is the V.I /�;k-valued function on G that corresponds to the section f of E�;k
via the G-equivariant isomorphism (11.2).

Claim 11.3. The V.I /�;k-valued function Qf satisfies the following.

(1) Qf .
g/ D Qf .g/ for 
 2 � .

(2) Qf .gk/ D k�1. Qf .g// for k 2 K, where k�1 acts on V.I /�;k by (11.1).

(3) p� � Qf D 0.

(4) Qf is square integrable over �nG with respect to the Haar measure on G and
the Hermitian metric on V.I /�;k .

All these properties should be standard. We supply an argument for the sake of
completeness (cf. [23] for the Siegel modular case). The property (1) follows from the
�-invariance of f , and the property (2) is just the invariance of Qf under theK-action
on G � V.I /�;k . Both (1) and (2) can also be checked directly by using the cocycle
condition for j.g; Œ!�/.

The property (4) holds because we haveZ
�nG

. Qf .g/; Qf .g//d�G D

Z
�nD

volD

Z
K

. Qf .g/; Qf .g//d�K

D

Z
�nD

.f; f /�;kvolD
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up to constant, where d�G , d�K are the Haar measures on G, K, respectively, and
. ; / in the first line is the Hermitian metric on V.I /�;k .

Finally, we check the property (3). We have

X � Qf .g/ D .X � j.g; Œ!0�/
�1/f .g.Œ!0�//C j.g; Œ!0�/

�1.X � f .g.Œ!0�///

for X 2 p�. Then X � f .g.Œ!0�// D 0 by the holomorphicity of f . As for the first
term, since P� fixes Œ!0� and acts trivially on .E�;k/Œ!0� as noticed before, we have

j.g exp.tX/; Œ!0�/ D j.g; exp.tX/.Œ!0�// ı j.exp.tX/; Œ!0�/ D j.g; Œ!0�/:

This shows that X � j.g; Œ!0�/ D 0, and so,

X � j.g; Œ!0�/
�1
D �j.g; !0/

�1
ı .X � j.g; Œ!0�// ı j.g; Œ!0�/

�1
D 0:

Therefore X � Qf D 0. Claim 11.3 is thus verified.
We go back to the proof of Lemma 11.2. The property (2) in Claim 11.3 means

that Qf as a vector of the K-representation

L2.�nG; V.I /�;k/ ' L
2.�nG/˝ V.I /�;k ' L

2.�nG/˝Wx�;k

is K-invariant. Therefore it corresponds to a nonzero K-homomorphism

f̂ W W
_
x�;k
! L2.�nG/;

which must be injective by the irreducibility of W _
x�;k

. The image of f̂ consists of
the scalar-valued functions L ı Qf for L 2 V.I /_

�;k
. By the irreducibility, the K-orbit

of any such nonzero vector generates the image of f̂ . Then we put �f D L ı Qf
for an arbitrary L ¤ 0. The property (3) in Claim 11.3 implies the property (2) in
Lemma 11.2. This finishes the proof of Lemma 11.2.

11.2 Highest weight modules

In this section we construct from �f a unitary highest weight module of g. The result
is summarized in Propositions 11.4 and 11.5.

First we recall the theory of highest weight modules following [12, 13, 24] and
specialized to G D SOC.LR/. Let k0 D so.2;R/ and k1 D so.n;R/. Then k D k0 ˚

k1, k0 is the centre of k, and k1 D Œk; k� is the semi-simple part of k. We take a maximal
abelian subalgebra h of k. Then hC is a Cartan subalgebra of gC . We have hD k0˚ h1
with h1 D h \ k1 being a maximal abelian subalgebra of k1. We may take a Borel
subalgebra b of gC constructed from the root data in hC which is the direct sum of a
Borel subalgebra of kC and p� (rather than pC).
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Let z� 2 h_C be a weight which is dominant and integral with respect to kC (rather
than gC). According to the decomposition h D k0 ˚ h1, we can write

z� D .�; ˛/; � 2 .h1/
_
C; ˛ 2 .k0/

_
C ' C;

with � a dominant and integral weight for .k1/C D so.n;C/. Here we identify

.k0/
_
C ' C

by the pairing with the unique maximal non-compact positive root. (In the notation
of [13, Section 4], � D .m2; : : : ;mn/ and ˛ D m1; in the notation of [12, Sections 10
and 11], � D .�2; : : : ; �n/ and ˛ D �1 C z.) We denote by C�;˛ the 1-dimensional
module of hC of weight .�; ˛/. We can regard C�;˛ as a module of b naturally. We
also denote byW�;˛ the finite-dimensional irreducible module of kC of highest weight
.�; ˛/. This is compatible with the notation in Section 11.1.

Let U.gC/ and U.b/ be the universal enveloping algebras of gC and b, respect-
ively. Let

M.�; ˛/ D U.gC/˝U.b/ C�;˛

be the Verma module of gC with highest weight .�; ˛/. The module M.�; ˛/ has a
unique irreducible quotient L.�; ˛/ (see [24, Section 1.3]). This is called the irredu-
cible highest weight module of gC with highest weight .�; ˛/. The module L.�; ˛/ is
also a unique irreducible quotient of the generalized (or parabolic) Verma module

N.�; ˛/ D U.gC/˝U.kC˚p�/ W�;˛;

because N.�; ˛/ is also a quotient of M.�; ˛/ (see [24, Section 9.4]). The highest
weight module L.�; ˛/ is said to be unitarizable if it is isomorphic as a gC-module
to the K-finite part of a unitary representation of G.

Now we go back to modular forms on D .

Proposition 11.4. Assume that either n is odd or n D 2m is even with t�1 ¤ m. If
we have a square integrable modular form f ¤ 0 2 M�;k.�/, then the irreducible
highest weight module L.x�_;�k/ is unitarizable.

Proof. Let Vf be the minimal Hilbert subspace of L2.�nG/ which contains the right
G-translations of the function �f in Lemma 11.2. This is a sub unitary representa-
tion of L2.�nG/. The K-finite part .Vf /K of Vf is a .g; K/-module. Let V0 be the
subspace of .Vf /K generated by the right K-translations of �f . By Lemma 11.2 (3),
V0 is isomorphic to W _

x�;k
D Wx�_;�k as a K-representation. By Lemma 11.2 (2), V0

is annihilated by p�. Indeed, for X 2 p� and k 2 K, we have

k�1 � .X � .k � �f // D Adk�1.X/ � �f D 0
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because the adjoint action of K preserves p�. Therefore the natural homomorphism
U.gC/˝C V0� .Vf /K descends to a surjective homomorphism

N.x�_;�k/ ' U.gC/˝U.kC˚p�/ V0� .Vf /K

from the generalized Verma module N.x�_;�k/. By the minimality of the quotient
L.x�_;�k/, this in turn implies that there exists a surjective homomorphism

.Vf /K� L.x�_;�k/:

Since .Vf /K is unitarizable, so is L.x�_;�k/.

So far we have considered the case when V� remains irreducible as an SO.n;C/-
representation. It remains to consider the exceptional case nD 2m, t�1Dm, where V�
gets reducible. In that case, Proposition 11.4 is modified as follows. For a highest
weight � D .�1; : : : ; �m/ for SO.2m;C/, we write �� D .�1; : : : ; �m�1;��m/ as in
Section 3.6.1.

Proposition 11.5. Let nD 2m be even and t�1 D m. Suppose that we have a square
integrable modular form f ¤ 0 2M�;k.�/. Then either L.x�_;�k/ or L..x��/_;�k/
is unitarizable.

Proof. According to the decomposition of E� in Proposition 3.12 (2), we can write
f D .fC; f�/ with fC of weight .x�; k/ and f� of weight .x��; k/ with respect to
SO.n;R/ � SO.2;R/. We have either fC ¤ 0 or f� ¤ 0. Then we can do the same
construction for the nonzero component f˙ as before, by using the component-wise
I -trivialization (3.22).

Finally, we recall the classification of unitarizable irreducible highest weight
modules [12, 13, 28]. For our purpose, we restrict ourselves to those weights .�; ˛/
such that ˛ 2 Z and � is a highest weight for SO.n;C/ (rather than so.n; C/).
In this situation, the version in [13] is convenient to use. For such a weight � D
.�1; : : : ; �Œn=2�/, we denote by corank.�/ the maximal index i such that

�1 D �2 D � � � D �i�1 D j�i j:

Theorem 11.6 ([12,13,28]). Let �D.�1; : : : ;�Œn=2�/ be a highest weight for SO.n;C/.
Assume that �1 ¤ 0, i.e., � nontrivial. Let ˛ 2 Z. Then the irreducible highest weight
module L.�; ˛/ is unitarizable if and only if �˛ � nC �1 � corank.�/ � 1.

Here we follow [13, Theorems 4.2 and 4.3], with ˛ D m1, � D .m2; : : : ; mn/

and corank.�/ D i � 1 in the notation there. A complete classification of unitary
irreducible highest weight modules for general .�; ˛/ (and also for other Lie groups)
is given in [12, 28]. For the proof of Theorem 11.1, we just use the “only if” part of
Theorem 11.6.
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Remark 11.7. In fact, the result of [12] tells us more than unitarizability. Let �1 > 0.
By the calculation of “the first reduction point” in [12, Lemmas 10.3 and 11.3], we
see that the generalized Verma module N.�; ˛/ is already irreducible when �˛ >
nC �1 � corank.�/� 1. ThusL.�;˛/DN.�;˛/ in that case. Furthermore, according
to [12, Theorem 2.4 (b)], L.�; ˛/ belongs to the holomorphic discrete series when
�˛ > nC �1 � 1, and to the limit of holomorphic discrete series when �˛ D nC
�1 � 1. Note that ˛ D �1 C z in the notation of [12, Sections 10 and 11], and this �1
corresponds to ��1 � nC 1 in our notation, so z in [12] is ˛ C nC �1 � 1 here.

11.3 Proof of Theorem 11.1

With the preliminaries in Sections 11.1 and 11.2, we can now complete the proof of
Theorem 11.1. Let n� 3 and �¤ 1;det. We first consider the case when either n is odd
or n D 2m is even with t�1 ¤ m. Suppose that we have a square integrable modular
form f ¤ 0 2 M�;k.�/. Then the highest weight module L.x�_;�k/ is unitarizable
by Proposition 11.4. By applying Theorem 11.6 to .�; ˛/ D .x�_;�k/, we see that
.�; k/ must satisfy

k � nC .x�_/1 � corank.x�_/ � 1:

Recall from Section 3.6.1 that x�_ D x� in the case n 6� 2 mod 4 and x�_ D x�� in the
case n � 2 mod 4. Since n � 3, we have x�1 D .x��/1, and so,

.x�_/1 D x�1 D �1 (11.3)

in both cases. Since corank.x��/ D corank.x�/, we also have

corank.x�_/ D corank.x�/ D corank.�/ (11.4)

by the definition of corank.�/. (Note that all components of x� are nonnegative.)
Hence .�; k/ satisfies the bound

k � nC �1 � corank.�/ � 1: (11.5)

This proves the main assertion of Theorem 11.1. The assertion (1) for S�;k.�/ is
then a consequence of Theorem 10.1 (1). As for the assertion (2), we note that the
inequality

n � jx�j � 1 < nC �1 � corank.�/ � 1

holds, because corank.x�/ � jx�j and �1 > 0. Therefore, when k < n � jx�j � 1, any
modular form of weight .�; k/ is square integrable by Theorem 10.1 (3), but at the
same time its weight violates the bound (11.5). This implies thatM�;k.�/D 0 in this
case.
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Next we consider the exceptional case when n D 2m is even and t�1 D m. Note
that x�D� in this case. If we have a square integrable modular form f ¤ 02M�;k.�/,
then either L.x�_;�k/ or L..x��/_;�k/ is unitarizable by Proposition 11.5. Since
�_ D � or ��, this means that either L.�;�k/ or L.��;�k/ is unitarizable. By The-
orem 11.6, we obtain the bound

k � min.nC �1 � corank.�/ � 1; nC .��/1 � corank.��/ � 1/:

Since .��/1 D �1 and corank.��/ D corank.�/ as before, this reduces to the same
bound as (11.5). The rest of the argument is similar to the non-exceptional case. This
completes the proof of Theorem 11.1.

Remark 11.8. Since Theorem 11.1 (2) is derived from Theorem 10.1 (3), this part
could be improved if we could improve the characterization of square integrability in
the remaining range (10.1).

Remark 11.9. Let Vf � L2.�nG/ be the unitary representation attached to a square
integrable modular form f 2M�;k.�/, say in the non-exceptional case. Recall from
the proof of Proposition 11.4 that

N.x�_;�k/� .Vf /K� L.x�_;�k/:

If we apply Remark 11.7 to .�; ˛/D .x�_;�k/ and use (11.3) and (11.4), we find that

.Vf /K ' L.x�
_;�k/ ' N.x�_;�k/

when k � nC �1 � corank.�/. The unitary representation Vf belongs to the holo-
morphic discrete series when k � nC �1, and to the limit of holomorphic discrete
series when k D nC �1 � 1.
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