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From Grothendieck to Naor:
A Stroll through the Metric Analysis
of Banach Spaces
Gilles Godefroy (Institut de Mathématiques de Jussieu – Paris Rive Gauche, Paris, France)

In July 1954, Alexandre Grothendieck writes the introduction
to his “cours relativement complet sur la théorie des espaces
vectoriels topologiques, ou plus précisément sur la partie de
la théorie qui peut être considérée comme le prolongement di-
rect et l’aboutissement des idées de S. Banach”, published in
Sao Paulo under the title “espaces vectoriels topologiques”.
He states that Banach’s theory has not really been surpassed
in its essential results, which are the applications of the Baire
and Hahn-Banach theorems. He mentions, though, a semi-
nary on the “most recent developments in tensorial topolog-
ical analysis”, without specifying that these are due to him
and that they represent a real surpassing of Banach’s ideas
and those of his school. In fact, these fundamental results
had been published by Grothendieck the year before, also in
Sao Paulo, in his famous Résumé [6]. Rather than being a
“straightforward continuation of S. Banach’s ideas”, they of-
fer a radically different point of view, even if we had to wait
until 1968 for the importance of the Résumé to be internation-
ally recognised, thanks to an article by Joram Lindenstrauss
and Alexander Pelczynski. This article marks the beginning of
the study of (metric, finite-dimensional, combinatorial) rigid
structures in functional analysis, some examples of which can
be seen below. A nonlinear component has recently been in-
troduced in this field of research, which was motivated, in par-
ticular, by questions from computer science and where many
young talents have obtained outstanding results over the past
15 years. Among this new generation, Assaf Naor plays a cen-
tral role and the reader will notice that his work constitutes the
thread of this note.

So why should we try to embed metric spaces into one
Banach space or another? What importance can the numerical
value of the Grothendieck constant possibly have? We do not
ask these questions out of mere intellectual curiosity. They are
indeed a way toward discoveries. Let us see how.

1 The Ribe programme

The theorem of M. I. Kadec (1967) states that any separable
Banach space of infinite dimension is homeomorphic to the
Hilbert space. This result was extended to the non-separable
case in 1981 by H. Torunczyk, who showed that two Ba-
nach spaces of the same density character are homeomorphic
(where the density character of a space is the minimum of
the set of cardinals of dense subsets). The topological theory
of Banach spaces is thus trivial, in a sense. However, these
first results fail to provide information when we consider ap-
plications that are not supposed to be linear but respect all

or part of the metric structure, and can force the isomor-
phism; the classical theorem of Mazur-Ulam, for instance,
states that any surjective isometry between Banach spaces
is affine. In 1976, Martin Ribe published a very interesting
theorem, which states that two uniformly homeomorphic Ba-
nach spaces have the same local structure, that is, the same
subspaces of finite dimension up to an isomorphism constant.
This means that if there exists a bijection f between two Ba-
nach spaces X and Y such that f and f −1 are both uniformly
continuous then there exists a constant C > 0 such that for any
subspace of finite dimension E ⊂ X, there exists a subspace
F ⊂ Y such that F is C-isomorph to E (so there exists a linear
isomorphism T from E to F such that ‖T‖.‖T−1‖ ≤ C) and
conversely when X and Y are swapped. In simpler words, X
and Y have the same subspaces of finite dimension. The local
structure of a Banach space is thus a uniform invariant.

A quantitative form of the theorem of Ribe was given by
Bourgain in 1987. To express it, we need the following nota-
tion, which will be used throughout this note. If (M, dM) and
(N, dN) are two metric spaces and if f : M → N fulfils

adM(x, y) ≤ dN
(
f (x), f (y)

) ≤ AdM(x, y) (1)

for any pair (x, y) ∈ M2, the quantity A/a = D( f ) is said to
be the distortion of f . If there exists such a function f , we say
that M bi-Lipschitz embeds into N. In this case, we write

cN(M) = inf
{
D( f ); f : M → N satisfies (1)

}

and, of course, cN(M) = +∞ if there is no such function f .
In the particular case where N = Lp, endowed with its usual
norm, we simply write

cLp (M) = cp(M).

The cases p = 2 and p = 1 will be particularly important. Us-
ing this notation, Bourgain’s theorem of discretisation reads
as follows. There exists an absolute constant C > 0 such that
if ε > 0, Y is a normed space, X is a normed space of dimen-
sion n and N is a δ-lattice of X with

δ < e−(n/ε)Cn

then cY (N) ≥ (1 − ε)cY (X). We recall that N is a δ-lattice of
X if for any x ∈ X, one has inf{‖x − y‖; y ∈ N} ≤ δ. So,
if a sufficiently fine lattice of X embeds bi-Lipschitzly into
Y , the same applies for the whole space X. The Ribe theo-
rem follows, since a uniformly continuous map defined on
a normed space becomes Lipschitz when restricted to a uni-
formly discrete lattice with a quantitative control. The theo-
rem of discretisation suggests the existence of finite metric
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spaces, which represent an obstruction to a local property of
Banach spaces.

Ribe’s theorem gives a start to the Ribe programme, in
the terminology of Joram Lindenstrauss and Jean Bourgain:
given a local property (p) of Banach spaces, find a property
(P) of metric spaces M that coincides with (p) when M is a
Banach space. The Ribe theorem states that this is possible, in
principle, but will only be useful if the property (P) is as sim-
ple and canonical as possible. The Ribe programme aims to
transfer the properties of the structured field of Banach spaces
to the larger class of metric spaces. It allows us to study met-
ric spaces using our knowledge and intuition on the geometry
of Banach spaces. Assad Naor is an eminent expert on this ap-
proach, which has turned out to be remarkably efficient when
studying metric spaces, enabling us to find applications that
might not have been discovered without the Ribe programme.
The metric spaces hide rich structures that we are able to dis-
cover when we consider the right properties (P) that derive
from the local properties of Banach spaces.

Thus, the purpose of the Ribe programme is in particular
the following. Given a local property (p), find a good defi-
nition of a property (P) of the metric spaces and, once it is
defined, prove that when the metric space in question is a Ba-
nach space, (P) reduces to (p). If this approach is interesting
for Banach spaces, it turns out to be the key to problems about
metric spaces, which at first sight have no relation to normed
spaces. Our main reference about the Ribe programme is [13]
and the reader may also refer to the lecture by Keith Ball at
the Bourbaki seminar [1].

A Banach space X is said to be of type p, where 1 ≤ p ≤ 2,
if there exists C > 0 such that

2−n
∑
εi=±1

‖
n∑

i=1

εi xi‖X ≤ C


n∑

i=1

‖xi‖pX


1/p

for all vectors x1, x2, . . . xn in X. The triangular inequality
yields that every space is of type 1, so type p appears as a
strong triangular inequality (modulo a randomisation). The
inequalities of Khintchine show that no Banach space can be
of type p > 2. On the other hand, a Banach space is of cotype
q, with 2 ≤ q < +∞, if one has


n∑

i=1

‖xi‖qX


1/q

≤ C2−n
∑
εi=±1

‖
n∑

i=1

εi xi‖X

Again, the inequalities of Khintchine show that the cotype of
every space is bounded below by 2. The spaces lp (1 ≤ p <
+∞) are of type inf(p, 2) and of cotype sup(p, 2). The theorem
of Kwapien (1972) states that a Banach space X is isomorphic
to a Hilbert space if and only if X is of type 2 and of cotype 2.

From a geometric point of view, the definition of type can
be seen as an inequality between the lengths of the diago-
nals of a parallelepiped and the lengths of their edges, which
extends the Euclidean identity of the parallelogram. The non-
linear version, given by Per Enflo, is the following. A geo-
metric cube of a metric space M is a subset of M indexed by
{−1, 1}n. A diagonal is a pair (xε , x−ε) and an edge is a pair
(xε , xδ), where ε and δ differ by only one coordinate. Then, M
has, by definition, metric type p if one has

2−n
∑

diagonals ≤ C
(
2−n
∑

(edges)p
)1/p
.

It is clear that a Banach space X of metric type p also has
type p, and an inequality given by Gilles Pisier in 1986 shows
(almost) the converse: if X is of type p then it is of metric type
p − ε for all ε > 0. Gilles Pisier also showed, in 1973, that a
Banach space X has a non-trivial type p > 1 if and only if
it does not contain uniformly the spaces ln1 (so, Rn equipped
with the norm ‖ . ‖1). In other words, X only has the trivial
type p = 1 if and only if there exists C > 0 such that for
any n, there exists a subspace En of X that is C-isomorph to
ln1. The corresponding metric result was shown in 1986 by J.
Bourgain, V. Milman and H. Wolfson: a metric space M has
a type p > 1 if and only if it does not contain uniformly bi-
Lipschitz copies of Hamming cubes Hn = ({−1, 1}n, ‖ . ‖1). So,
the uniform presence of Hamming cubes in a Banach space X
(i.e. supn[cX(Hn)] < ∞) is the metric obstruction to the non-
trivial type for X.

It turns out to be difficult to find a good definition of the
metric cotype but the problem was solved by Manor Mendel
and Assaf Naor in 2008: a metric space M is of cotype q if
there exists C > 0 such that for every n, there exists k such
that for every function f : Zn

2k → M, one has

n∑
j=1

∑
x∈Zn

2k

dM
(
f (x + ke j), f (x)

)q

≤ Ckq/3n
∑

ε∈{−1,0,1}n

∑
x∈Zn

2k

dM
(
f (x + ε, f (x)

)q
,

where e j stands for the element of Zn
2k that takes the value 1

at position j and 0 elsewhere. With this definition, a Banach
space X is of cotype q if and only if it has metric cotype q,
leading to a metric analogue to the theorem of Bernard Mau-
rey and Gilles Pisier (1976) saying that a Banach space is of
cotype q < +∞ if and only if it does not uniformly contain
the spaces ln∞. M. Mendel and A. Naor deduced from these
considerations a very general dichotomy theorem.

Theorem 1. LetF be a family of metric spaces. Then, exactly
one of the following assertions is true:
(i) For every finite metric space F and every ε > 0, there

exists M ∈ F such that cM(F) ≤ 1 + ε.
(ii) There exist α > 0 and K > 0 such that for any integer

n, there exists a metric space Mn with n points such that
for all N ∈ F , one has cN(Mn) ≥ K(logn)α.

In other terms, if a family F is not quasi-isometrically
universal for the finite metric spaces then spaces of cardinal-
ity n will show it with a distortion that grows, at least, like a
power of log(n).

We have, thus, a convenient metric approach of type and
cotype: let us remark on the latter that a Banach space X has a
trivial cotype (+∞) if and only if it contains bi-Lipschitzly all
the locally finite metric spaces [2] with a distortion bounded
from above by a universal constant. We recall that a Banach
space X is said to be super-reflexive when every space Y with
the same local structure as X (that is, uniformly the same
subspaces of finite dimension) is reflexive. The metric char-
acterisation of super reflexivity was given by J. Bourgain in
1986: let T k

n be the k-regular tree of height n equipped with
the geodesic distance. Then, a Banach space X is super re-
flexive if and only if, for every k ≥ 3, one has

lim
n→+∞

cX(T k
n) = +∞.



Feature

EMS Newsletter March 2018 11

Bourgain also showed that, for a fixed k, the quantity c2(T k
n)

is of order
√

log n. This leads naturally to the project of char-
acterising the quantitative properties of the norms in metric
terms, since the theorem of Enflo-Pisier states that a space
is super reflexive if and only if it admits an equivalent norm
that is uniformly convex and/or uniformly smooth, with the
modulus of convexity and/or smoothness being controlled by
a power of the parameter. J. R. Lee, M. Mendel, A. Naor
and Y. Peres showed that the existence of a uniformly con-
vex norm with a module in εq on X was equivalent to the
Markov type q (a metric notion introduced by Keith Ball) but,
so far, there has been no metric characterisation of the spaces
for which there exists a uniformly smooth norm with module
in ηp. We remark, along these lines, that if two Banach spaces
X and Y contain Lipschitz-isomorphic lattices (which is the
case when X and Y are uniformly homeomorphic) and if X
has an asymptotically uniformly smooth norm with asymp-
totic modulus of power type p then Y will have, for all ε > 0,
such a norm with an asymptotic modulus of power type (p−ε)
and this ε > 0 disappears if X and Y are Lipschitz-isomorphic
([4] and Theorem 3.2 in [5]).

The most important result of the local theory of Banach
spaces is undoubtedly the Dvoretzky theorem. Its role in the
Ribe programme as well as the ideas it inspired are so impor-
tant that we dedicate an entire chapter to it.

2 The nonlinear versions of the Dvoretzky
theorem

In 1961, Aryeh Dvoretzky positively solved a conjecture for-
mulated by Grothendieck in 1956, establishing the following
fundamental theorem. Let n be an integer and ε > 0. There
exists an integer N = N(n, ε) such that if X is a normed space
of dimension N, there exists a linear map T : ln2 → X such
that ‖T‖.‖T−1‖ < 1 + ε (where, of course, T−1 is defined on
the range of T ). In other words, every normed space of suf-
ficiently large dimension contains almost spherical sections.
Works by T. Figiel, J. Lindenstrauss, V. Milman and Yehoram
Gordon (1985) prove more precisely that there exists a uni-
versal constant c such that if 0 < ε < 1 and n ∈ N, one can
use N(n, ε) = exp[cnε−2].

Together with the Ribe programme, the Dvoretzky theo-
rem suggests the following conjecture. Given a finite metric
space M, there exists a large subset S of M such that c2(S ) is
small; therefore, S embeds into the Euclidian space with con-
trolled distortion. The publications of Assaf Naor, some of
them in collaboration with Manor Mendel, precisely establish
this conjecture, which paved the way to many applications.
Our main reference on this subject is [10]. This work proves
the central role that is played by ultrametric spaces, which
will be described below.

A metric space M is said to be ultrametric if, for all x, y
and z in M, one has d(x, z) ≤ sup[d(x, y), d(y, z)]. If a fi-
nite set M is ultrametric, the relation R, defined by xRy if
d(x, y) < diam(M), is an equivalence relation. When applying
this remark to every equivalence class (which is itself ultra-
metric) and iteratively, one can identify M with the leaves
of a tree equipped with the geodesic distance. It follows, in
particular, that a finite ultrametric space and, more generally,
a compact ultrametric space M embeds isometrically into a

Hilbert space: c2(M) = 1. The main result of the work by
Mendel and Naor is the theorem of the ultrametric skeleton
[11], which reads as follows.

Theorem 2. For every ε > 0, there exists cε ∈ [1,+∞) such
that: for any compact metric space M and any probability
measure µ on M, there exists a compact subset S of M and a
probability measure ν supported by S such that S embeds into
an ultrametric space with distortion at most 9/ε and, for every
(x, r) ∈ M×[0,+∞), one has ν(B(x, r)∩S ) ≤ (µ(B(x, cεr)))1−ε .

This ubiquity of ultrametric spaces, which was discovered
through the Ribe programme, bears numerous consequences.
Here is a first corollary.

Corollary 1. For any ε > 0 and any integer n, every finite
metric space M of cardinality n contains a subset S of car-
dinality at least n1−ε embedded in an ultrametric space with
distortion at most (9/ε).

We now apply the theorem to a uniform probability µ on
M and to r = 0. As ν is a probability on the subspace S , there
exists x ∈ S such that ν({x}) ≥ 1/|S |. But ν({x}) ≤ µ({x})1−ε =
1/n1−ε . Therefore, |S | ≥ n1−ε .

Assaf Naor and Terence Tao have proven that in corollary
1 we can replace (9/ε) by a bound D(ε) that tends toward 2
when ε tends toward 1. This is an aspect of the “phase tran-
sition at distortion 2”, discovered by Y. Bartal, N. Linial, M.
Mendel and A. Naor, of the maximum size of the approxi-
mately Euclidean subset of a metric space of cardinality n,
which, when one crosses the distortion 2, passes from a power
of n to log(n). Assaf Naor and the above co-authors have also
shown that there exist metric spaces of cardinality n for which
the corollary leads to an optimal result of existence of subsets
that are embeddable into the Euclidean space. Therefore, up
to a universal factor, the best way to find an approximately
Euclidean subset is to find an approximately ultrametric one.

The corollary below uses a non-trivial probability mea-
sure µ.

Corollary 2. For any ε ∈ (0, 1) and any α ∈ (0,+∞), every
metric compact M with its Hausdorff dimension greater than
α contains a closed subset with a Hausdorff dimension bigger
than (1− ε)α that is embedded into an ultrametric space with
distortion at most (9/ε).

In order to deduce this corollary from Theorem 2, we use
a Frostman measure µ on M, that is, a measure such that
µ(B(x, r)) ≤ Crα for all couples (x, r), and then it can be
easily proved that S is convenient. The dimension of S is,
again, optimal, even for the approximately Euclidean subsets.
A beautiful application of this corollary, given by T. Keleti,
A. Mathe and O. Zindulka, is that if K is a metric compact
with Hausdorff dimension bigger than n ∈ N, there exists a
Lipschitz surjection of K onto [0, 1]n.

Theorem 2 is linked to the theorem of majorising mea-
sures by Michel Talagrand [16]. We recall that if X is a metric
space and PX the set of probability measures on X, the func-
tional γ2(X) of Fernique–Talagrand is defined by the formula

γ2(X) = inf
µ∈PX

sup
x∈X

∫ +∞
0

√
−log
(
µ
(
B(x, r)

))
dr.

An important step in the proof is to construct in every finite
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metric space X a subset S that embeds (with an absolute upper
bound on the distortion) into an ultrametric space, such that
one has γ2(X) ≤ Cγ2(S ). It turns out that Theorem 2 allows
us to prove the theorem of majorising measures, by describing
it as the result of an integration on r of pointwise estimates.
We can see the link between the two theorems through the
role of the trees with orthogonal branches, which represent
the Gaussian processes with independent increments and also
allow the Euclidean embedding of ultrametric spaces.

Corollary 1 has, in addition, applications to theoretical
computer science. This is not surprising, since an essentially
Euclidean set constitutes a field where linear algebra and the
numerous algorithms it contains can display all their power.
Besides, we know that Naor, who is today at the Department
of Mathematics at Princeton University, was formerly a mem-
ber of Microsoft Research. Let us turn to the approximate dis-
tance oracle. A metric space with n points is completely de-
termined by the distances between points, that is, by n(n−1)/2
pieces of data. However, the triangular inequality shows that
those data are not independent. There exists a certain redun-
dancy, which invites us to search for an essential subset of
distances that will allow the estimation of all the others with a
given precision. Corollary 1 allowed M. Mendel and A. Naor
to prove the existence of a “constant query time oracle” for
the approximate distances as follows.

Corollary 3. Let D be strictly greater than 1. Any metric
space M of n points can be preprocessed in a time O(n2), in
a way so as to stock a number O(n1+O(1/D)) of data such that,
given (x, y) ∈ M2, one obtains, in a uniformly bounded time,
a number E(x, y) that satisfies d(x, y) ≤ E(x, y) ≤ Dd(x, y).

The importance of this result (which was improved quan-
titatively in 2014 by S. Chechik, using similar methods) lies in
the fact that the query time is bounded by a universal constant
and therefore depends neither on D nor on n. At the price of
a certain distortion D, it is possible to control both the query
time and the size of the data.

3 Grothendieck inequality and combinatorial
optimisation

In his article from 1953 that founds the metric theory of tensor
products and the modern theory of continuous linear operators
between Banach spaces [6], Alexandre Grothendieck showed
the following inequality. There exists a constant KG such that,
if S H refers to the unit sphere of the Hilbert space (usually
denoted H), one has, for all integers n and m and any real
matrix (ai j),

sup


m∑

i=1

n∑
j=1

ai j〈xi, y j〉; (xi), (y j) ⊂ S H



≤ KG sup


m∑

i=1

n∑
j=1

ai jεiδ j; εi = ±1, δ j = ±1

 . (2)

In other words, if we replace the Hilbert space on the left by
the set of real numbers, the supremum is of the same order.
There exists a complex version of this inequality, which dif-
fers from the real version only by the value of the constant
KG.

In his seminal article, Grothendieck applies this inequality
to the linear operators, proving, among many other results,
that every operator T from L∞ to L1 factors through a Hilbert
space, i.e. that there exist operators A : L∞ → H and B :
H → L1 such that T = BA. An essential reference regarding
applications of the Grothendieck inequality is Gilles Pisier’s
article from 2012 [15].

The link between the Grothendieck inequality and combi-
natorial optimisation, for which article [7] is our main refer-
ence, is established by the interpretation of inequality (2) as
a vectorial relaxation of the estimate of a supremum. Given a
sufficiently regular compact convex set K of semidefinite pos-
itive symmetric matrices k × k and a matrix (ci j), one can, in
polynomial time, compute the maximum of the quantity

k∑
i=1

k∑
j=1

ci jxi j

on all matrices (xi j) belonging to K. The computation of the
left side of (2) is an example of this technique (called semidef-
inite programming, our reference being [14]) and can there-
fore be done in polynomial time in k with arbitrary precision.
This is consequently the case for the right side of (2), up to
the constant KG, of course. The right side is the norm of the
matrix (ai j), considered as a linear map from ln∞ to lm1 .

Following Noga Alon and Assaf Naor in their discovery,
we investigate the link between inequality (2) and the estima-
tion of the cut norm of an m × n matrix A = (ai j), defined
by

‖A‖cut = max
S ,T
|
∑

i∈S , j∈T
ai j|,

where the maximum is taken over the subsets S ⊂ {1, . . . ,m}
and T ⊂ {1, . . . n}. Let B be the matrix of size (m+ 1)× (n+ 1)
obtained by attaching to A a column and a line, in such a way
that all lines and all columns of B are of zero sum. A quite
simple direct calculation proves that

‖A‖cut =
1
4
‖B‖∞→1.

The semidefinite programming allows one to calculate the
quantity ‖B‖∞→1 in polynomial time, up to the constant KG.
The same holds for the norm ‖A‖cut and there exists, accord-
ingly, an algorithm of polynomial time that computes a quan-
tity α(A) such that

‖A‖cut ≤ α(A) ≤ C‖A‖cut, (3)

with C = KG. However, unless P = NP, such an algorithm
does not exist if C < 13/12, and P. Raghavendra and D.
Steurer have proven that modulo the combinatorial conjecture
named (UGC) (unique games conjecture), the Grothendieck
constant is optimal for the existence of an algorithm of poly-
nomial time that provides α(A) satisfying (3). We will return
to the numerical value of the Grothendieck constant below.

The regularity lemma by Szemeredi states informally that
every combinatorial graph G (a finite set V of vertices pair-
wise linked or not by edges forming a set E ⊂ V2) can be
partitioned into a controlled number of subsets that interact
pseudo-randomly. More precisely, if X and Y are disjoint sub-
sets of V , one denotes by e(X, Y) = |(X × Y) ∩ E| the cardinal
of the set of edges that join X and Y . If ε > 0 and δ > 0, we
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say that the pair (X, Y) is (ε, δ)-regular if, once S ⊂ X and
T ⊂ Y satisfy |S | ≥ δ|X| and |T | ≥ δ|Y |, one has∣∣∣∣∣

e(S , T )
|S |.|T | −

e(X, Y)
|X|.|Y |

∣∣∣∣∣ ≤ ε.
This quasi-uniformity of the quantities e(S , T )/|S |.|T | means
that the pair (X, Y) is pseudo-random, that is to say, close to a
bipartite graph where every pair (x, y) ∈ X × Y is joined inde-
pendently by an edge with probability e(X, Y)/|X|.|Y |. In order
to construct Szemeredi partitions in polynomial time, the im-
portant step is to determine in polynomial time if a pair (X, Y)
is close to being (ε, δ)-regular. For this purpose, N. Alon and
A. Naor consider, given two disjoint subsets X and Y of car-
dinality n of V , the matrix A = (axy) indexed by (X × Y), such
that

axy = 1 − e(X, Y)
|X|.|Y |

if (x, y) ∈ E and

axy = −
e(X, Y)
|X|.|Y |

otherwise. Therefore, the matrix A is the difference of the ad-
jacency matrix of the graph G restricted to X ×Y and a matrix
whose entries are the probabilities that two vertices of X and
Y are connected. It can easily be verified that if (X, Y) is not
(ε, δ)-regular then ‖A‖cut ≥ εδ2n2. The algorithm for the com-
putation of the cut norm (up to KG) in polynomial time allows
one to decide in polynomial time if (X, Y) is (ε, δ)-regular or
to find a pair of parts of X and Y that prove it is not (for other
values of ε and δ). This also requires a polynomial time for
the procedure of rounding, which we describe below.

Our goal is to find the choices of signs (εi) and (δ j), whose
existence is guaranteed by inequality (2) and which fulfil this
inequality. To achieve this, we will apply a method developed
by Jean-Louis Krivine in 1977. Let f and g be two measur-
able odd functions from Rk to {−1, 1}. Let G1 and G2 be two
independent arbitrary Gaussian vectors in Rk. For t ∈ (−1, 1),
we define

Hf ,g(t) = E

 f
(

1
√

2
G1

)
g


t
√

2
G1 +

√
1 − t2
√

2
G2


 .

Under a simple condition, an analytic method allows one to
determine a scalar c( f , g) such that if (xi), (y j) are vectors of
norm 1 in (2), there exist unit vectors (ui), (v j) in Rm+n such
that for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, one has

〈ui, v j〉 = H−1
f ,g

(
c( f , g)〈xi, y j〉

)
.

Now, let G be a random k × (m+ n) matrix whose coefficients
are independent standard Gaussian variables. If one sets

εi = f
(

1
√

2
Gui

)
, δ j = g

(
1
√

2
Gvj

)
,

we find

E


m∑

i=1

n∑
j=1

ai jεiδ j

 = c( f , g)
m∑

i=1

n∑
j=1

ai j〈xi, y j〉.

This identity produces the rounding algorithm in polynomial
time to produce a conveniant choice of signs for (2), also ap-
plicable to the (ε, δ)-regular couples of Szemeredi. Besides
that, it allows one to bound KG, since it proves that for ev-
ery pair ( f , g), one has c( f , g)−1 ≥ KG. Using f = g =
sign(x), Jean-Louis Krivine has shown by this method that

KG ≤ π/(2log(1 +
√

2)), and this is the best possible result
when considering the odd functions defined on R. However,
M. Braverman, M. Makarychev, K. Makarychev and Assaf
Naor proved in 2011 that if f = g corresponds to the parti-
tion of the plane on both sides of the graph of the polynomial
y = c(x5 − 10x3 + 15x) with a well chosen c > 0, the resulting
estimation is better than the one given by Krivine. This solved
a problem that had been open since 1977. So, the current es-
timates for the Grothendieck constant are:
π

2
eη

2
0 = 1.676 . . . ≤ KG < π/

(
2log(1 +

√
2)
)
= 1.782 . . . ,

where η0 = 0.25573 . . . is the only solution to the equation

1 − 2

√
2
π

∫ η
0

e−z2/2dz =
2
π

e−η
2
.

This lower bound was obtained in 1991 by J. A. Reeds in an
unpublished work.

M. Braverman, M. Makarychev, K. Makarychev and As-
saf Naor have conjectured that the best Krivine scheme in di-
mension 2 corresponds to two distinct odd partitions f and g,
where f is the following “tiger fur”:

It is likely that Krivine schemes in dimension k ≥ 3 will lead
to finer bounds on the Grothendieck constant.

Let us follow the thoughts of Assaf Naor and his co-
authors on the combinatorial aspects of inequality (2). Let
G be a graph with n vertices denoted by {1, . . . n} and E ⊂
{1, . . . n}2 the set of its edges. The Grothendieck constant of
G, denoted by K(G), is the smallest constant K such that

sup
(xi)⊂S H

∑
(i, j)∈E

ai j〈xi, x j〉 ≤ K sup
εi=±1

∑
(i, j)∈E

ai jεiε j (4)

holds true for any real matrix A = (ai j). The Grothendieck
inequality (2) is the particular case of (4) that corresponds
to the bipartite graphs (i.e. of chromatic number 2) and, as a
consequence,

KG = sup
n

{
K(G); G bipartite graph with n vertices

}
.

Additionally, if Kn stands for the complete graph with n ver-
tices, the corresponding Grothendieck constant is of order
log(n). The Grothendieck constant of a graph G is clearly re-
lated to the combinatorics of G and has, as such, its own inter-
est. On the other hand, the right term in (4) is relevant to sta-
tistical physics: if G weighted by the matrix A represents the
possible interactions of n particles affected by a spin εi = ±1
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then the total energy generated by these particles in the system
in the Ising model of the spin glass is E = −(

∑
(i, j)∈E ai jεiε j). A

configuration of the spins (εi) ∈ {−1, 1}n represents a ground
state if it minimises the total energy.

So, finding a ground state of the spin glass corresponds to
maximising the right term in (4). It is known that this can be
done in polynomial time for the planar graphs and that it is an
NP-complete problem if G is a grid in dimension 3. However,
as the quantity on the left side in (4) is related to semidefinite
programming, the right side can be calculated in polynomial
time up to a factor K(G).

We would like to close this section by mentioning the
work of M. Charikar and A. Wirth on the case of the graphs
G = (V, E) with their edges weighted by 1 or −1 if the vertices
are considered to be “similar” or “different”, the absence of an
edge meaning that no judgement is given regarding the simi-
larity of the corresponding vertices. The problem to be solved
is to split the graph G in a manner that maximises the num-
ber of similarities between the members of the same subset
of the partition as well as the number of differences between
members of different subsets. The bottleneck of the construc-
tion is to obtain a partition in two subsets, which again means
maximising the right side in (4) and consequently requires the
same techniques.

4 Extensions of Lipschitz functions

Let M be a metric space and S a non-empty subset of M. A
formula given by MacShane (1934) proves that any Lipschitz
function f : S → R extends to a function with the same
Lipschitz constant on M. In order to obtain such an extension,
all we need to do is to set

f (m) = inf
{
f (s) + Lip( f )d(m, s); s ∈ S

}
.

As we know, a function f : M → N between two metric
spaces is said to be Lipschitz if there exists C > 0 such
that dN( f (x), f (y)) ≤ CdM(x, y) for all (x, y) ∈ M2, and the
minimum of the constants C for which these inequalities are
fulfilled is called the Lipschitz constant of f and is denoted
Lip( f ).

MacShane’s formula is a very useful tool but has two
shortcomings: firstly, it is not linear in f and secondly, it es-
sentially uses the order structure on R. It is therefore not di-
rectly usable for the similar question of the extension of Lip-
schitz functions with values in a Banach space. A positive
result (contemporary to MacShane’s formula) is Kirszbraun’s
theorem, which states that if S is a subset of a Hilbert space
H, every Lipschitz map from S to H can be extended with
the same Lipschitz constant to H. However, Joram Linden-
strauss proved in 1963 that this result cannot be extended to
Banach spaces, even if we allow extensions with arbitrary
Lipschitz constants. This more general frame provides spe-
cific problems, since a “point by point” extension technique
and Zorn’s lemma will not lead to a result if the Lipschitz
constant explodes during construction. In his PhD (directed
by J. Lindenstrauss, himself a student of Dvoretzky), Assaf
Naor showed, in particular, that a Lipschitz map from a sub-
set S of a Hilbert space H to a Banach space X can’t gener-
ally extend Lipschitzly to H, even if, for instance, X = L4.
The Kirszbraun theorem is, thus, essentially optimal. How-

ever, on the positive side, A. Naor, Y. Peres, O. Schramm and
S. Sheffield established the nonlinear version of a classical re-
sult by Bernard Maurey: every Lipschitz function of a subset
S of a 2-uniformly smooth space X in a 2-uniformly convex
space Y extends Lipschitzly to the space X.

This theorem is only one of the results on Lipschitz ex-
tensions obtained by Assaf Naor. Our reference for the rest
of this section will be his article from 2005 with James R.
Lee [9]. One of the difficulties we need to overcome in rela-
tion to the extensions is the transition from a local to a global
extension. To achieve this, one of the ideas of Lee and Naor
was to use partitions of unity that are subordinated to a ran-
dom covering, and to obtain the desired regularity by taking
the average. This analytic approach will be combined with
some particular decompositions taken from theoretical com-
puter science and adapted here to infinite sets, respecting the
conditions for measurability.

In the following, we would like to present more precisely
the least technical concept from this approach: the gentle par-
titions of unity. If M is a metric space, S a closed subset of
M and (Ω, µ) a measured space, and if K > 0, a function
Ψ : Ω × M → (0,+∞) is a K-gentle partition of unity relative
to S if the following applies:
(i) For every x ∈ M\S , the function ω → Ψ(ω, x) is mea-

surable and
∫
Ω
Ψ(ω, x)dµ(ω) = 1.

(ii) If x ∈ S , we have Ψ(ω, x) = 0 for every ω ∈ Ω.
(iii) There exists a Borel function γ : Ω → S such that, for

every (x, y) ∈ M2,∫
Ω

d(γ(ω), x).|Ψ(ω, x) − Ψ(ω, y)|dµ(ω) ≤ Kd(x, y).

If f is a Lipschitz function defined on S on values in a Banach
space Z, we set, for any x ∈ M\S ,

f (x) =
∫
Ω

f
(
γ(ω)
)
Ψ(ω, x)dµ(ω)

and f (x) = f (x) if x ∈ S . It can easily be seen that f , which of
course extends f , is Lipschitz and fulfils Lip( f ) ≤ 3KLip( f ).
Note that the extension f obtained by this formula depends
linearly upon f .

The problem is now to establish the existence of gentle
partitions. Lee and Naor prove that, referring to the subset
S , being doubling is a sufficient condition. We know that a
metric space M is said to be doubling, with doubling constant
λ(M), if any ball of M is contained in the union of λ(M) balls
of half radius. They then prove the following.

Theorem 3. There exists a universal constant C > 0 such
that if M is a doubling metric space, of doubling constant
λ(M), Y a metric space that contains M isometrically and Z
a Banach space then every Lipschitz function f : M → Z
extends to a Lipschitz function f : Y → Z such that Lip( f ) ≤
Clog(λ(M))Lip( f ).

This theorem generalises and unifies previous results of
W. B. Johnson, J. Lindenstrauss and G. Schechtman. If M
is a finite metric space of cardinality n then log(λ(M)) =
O(log(n)). Furthermore, if M is a subset of a space Rd then
Log(λ(M)) = O(d). Note that, for spaces of cardinality n, Lee
and Naor prove that there exists an extension that satisfies
Lip( f ) ≤ C(log(n)/log(log(n)))Lip( f ).
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James R. Lee and Assaf Naor also show that, in Theo-
rem 3, one can replace the doubling space M by a subset of
a Riemann surface of genus g, and then one has Lip( f ) ≤
C(g + 1)Lip( f ). On the other hand, recall that a graph G ex-
cludes a graph H if one cannot find H based on G by iterating
the following operations: removing an edge or collapsing it
by identifying the two vertices joined by that edge. Lee and
Naor then prove that if a graph G excludes the complete graph
of n vertices Kn then G = M satisfies the conclusion of The-
orem 3 with Lip( f ) ≤ Cn2Lip( f ). Thus, the trees (that is, the
graphs that exclude K3) uniformly satisfy Theorem 3, which
is a theorem due to Jiri Matoušek. Furthermore, the planar
graphs (which exclude K5) satisfy the same conclusion, up to
a constant. Interestingly, Theorem 3 also allows one to prove
that if M is a doubling metric space, the free space F (M) on
M has Grothendieck’s bounded approximation property [8].

5 Lipschitz embeddings

We begin this section with a closer look at the doubling metric
spaces M, for which exists a constant λ(M) such that any ball
in M is contained in the union of λ(M) balls of half radius.
Patrice Assouad obtained, in 1983, the following noteworthy
result. Let (M, d) be a doubling space. For any α ∈ (0, 1), one
denotes by Mα the space M equipped with the distance dα

defined by dα(x, y) = [d(x, y)]α. Then, there exists N(α) such
that the space Mα embeds bi-Lipschitzly into lN(α)

2 , i.e. into
RN(α) endowed with the Euclidean distance. The operation
that consists of replacing a distance d by dα with 0 < α < 1
is called snowflaking. Assouad’s theorem was improved in
2012 by Assaf Naor and Ofer Neiman as follows. If K > 0
and ε ∈ (0, 1/2), there exist N = N(K) and D = D(K, ε) such
that if M is a K-doubling metric space then M1−ε embeds bi-
Lipschitzly into lN(K)

2 with distortion D(K, ε). Compared to
the original result by Assouad, the improvement is that the
dimension N does not depend on ε anymore.

Another groundbreaking contribution to the theory of Lip-
schitz embeddings was made by Jean Bourgain in 1986: any
finite metric space of cardinality |M| embeds into the Hilbert
space with a distortion D = O(log(|M|)). It is convenient to
compare this result with the theorem by Fritz John, which
states that the Banach-Mazur distance of a normed space of
dimension n to ln2 is bounded from above by

√
n. The example

of the cubes M = {0, 1}k might suggest that the metric ana-
logue of the dimension of a finite space M is log(|M|), and the
expected estimation would be O(

√
log(|M|). The upper bound

given by Bourgain is, however, optimal, which follows, in par-
ticular, from an essentially nonlinear phenomenon: the exis-
tence of expanding graphs. Assaf Naor and his collaborators
have given further examples from harmonic analysis, as well
as a noteworthy link to Assouad’s theorem: any finite metric
space M of doubling constant λ(M) embeds into the Hilbert
space with a distortion D = O(

√
log(λ(M))log(|M|). Bour-

gain’s theorem then follows from the trivial bound λ(M) ≤
|M|. There is an important lemma by Bill Johnson and Joram
Lindenstrauss on dimension reduction that we would like to
mention: if M is a finite subset of the Hilbert space H and
ε > 0, there exists a bi-Lipschitz map f : M → ln2 (which is,
in fact, the restriction of a linear map of H in H) of distor-
tion D( f ) < 1 + ε, with n = O(log(|M|)/ε2)). In a joint work

published in 2010, Bill Johnson and Assaf Naor showed that
a Banach space X that fulfils the conclusion of this lemma
is very close to a Hilbert space, without necessarily being it-
self Hilbertian. In particular, Lp only fulfils the conclusion if
p = 2.

Following Assaf Naor’s contribution to the international
congress in Hyderabad in 2010 [12], we now examine the
connections between these embedding theorems, the Heisen-
berg group and the algorithms for solving the Sparsest Cut
problem. These connections are relevant to the geometric the-
ory of groups, for which our reference is Etienne Ghys’ Bour-
baki lecture [3] and, of course, the work of M. Gromov. We
denote by H the Heisenberg group considered as the space
R3 endowed with the structure of a non-commutative group
described by

(a, b, c).(a′, b′, c′) = (a + a′, b + b′, c + c′ + ab′ − ba′).

We denote by H(Z) its discrete subgroup Z3. If we equip H(Z)
with the word distance related to a finite family of generators
(equivalent to the Carnot-Carathéodory distance), we obtain a
doubling metric space. It follows from the theorem of differ-
entiability by Pierre Pansu that this doubling space does not
bi-Lipschitz embed into the Hilbert space, which leads to the
necessity of snowflaking in Assouad’s theorem. More gener-
ally, Pansu’s theorem implies that H(Z) does not embed into
Lp with 1 < p < +∞ but is not applicable to possible embed-
dings in L1.

A metric space (M, d) is said to be of negative type if its
snowflaking M1/2 = (M, d1/2) embeds isometrically into the
Hilbert space. The space L1 is of negative type. The group
H(Z), equipped with an equivalent distance, is also of neg-
ative type. We now describe the relationship between these
particular metric spaces and the Sparsest Cut problem.

Let C and D be two symmetric functions {1, . . . n} ×
{1, . . . n} → (0,+∞), named “capacity” and “demand”. If S
is a non-empty subset of {1, . . . n}, we set

Φ(S ) =

∑n
i=1
∑n

j=1 C(i, j)|1S (i) − 1S ( j)|∑n
i=1
∑n

j=1 D(i, j)|1S (i) − 1S ( j)| .

We now seek to estimate the quantity Φ∗(C,D) = minS Φ(S ),
which is the smallest possible ratio of capacity/demand for
cuts between S and its complement, hence the name Sparsest
Cut. The particular case where C(i, j) = 1 if i and j are joined
by an edge and C(i, j) = 0 otherwise, and where D = 1, is the
problem of isoperimetry of G: find a subset S such that the
relation of the cardinal of its border (i.e. the edges between S
and V\S ) to its cardinal is the smallest possible. It is known
that the computation of Φ∗(C,D) is NP-complete. Under the
combinatorial conjecture (UGC), this is even the case for the
estimation of Φ∗(C,D) up to a constant: we cannot expect to
find a “Grothendieck constant” in this case as we did in Sec-
tion 3. However, a similar approach is used in Naor’s article.

A first step is to use an extreme ray argument to prove the
equation

Φ∗(C,D) = min
( fi)⊂L1

∑n
i=1
∑n

j=1 C(i, j)‖ fi − f j‖1∑n
i=1
∑n

j=1 D(i, j)‖ fi − f j‖1
. (5)

We can now consider the minimisation problem in the larger
space of all metrics on {1, . . . , n}, which leads to a problem
of linear programming, solvable in polynomial time. But ac-
cording to Bourgain’s theorem, a minimising distance will be



16 EMS Newsletter March 2018

Feature

at a distance controlled by log(n) of a Euclidean distance,
which is embeddable in L1 (which isometrically contains l2
via a sequence of independent Gaussian variables). We then
deduce from (5) that we have solved the Sparsest Cut prob-
lem in polynomial time, up to a factor log(n). A look into the
proof of Bourgain’s theorem also shows us a way of obtaining
a set S that realises a small cut.

However, there is an even better way, which is to use the
fact that the metric of L1 is of negative type. Let M(C,D) be
defined as the minimum of the quantity

∑n
i=1
∑n

j=1 C(i, j)di j

under the constraint that
∑n

i=1
∑n

j=1 D(i, j)di j = 1 and di j is
a metric of negative type. As in Section 3, we can calculate
in polynomial time the quantity M(C,D) by semidefinite pro-
gramming. It is clear that M(C,D) ≤ Φ∗(C,D). Equation (5)
additionally shows that Φ∗(C,D) ≤ CnM(C,D), where we set

Cn = sup
{
c1({1, . . . , n}, d); d a metric of negative type

}

and this inequality is exactly optimal. Thus, in order to ap-
proximately solve the Sparsest Cut problem in polynomial
time, we are led to examine the embedding of finite metric
spaces in L1. Assaf Naor proves (together with S. Arora and
J. R. Lee) that c1(M) ≤ c2(M) = O(log(|M|)1/2+o(1)) if M
is of negative type but also (together with J. Cheeger and B.
Kleiner) that c1(Mn) ≥ (log(n))c for a certain c > 0 if Mn

is the subset {1, . . . , n}3 of H(Z). The quantity o(1) that ap-
pears in the first result is an artefact of the proof, controlled
by (logloglogn)/(loglogn), and it is likely it can be eliminated;
this is at least possible in the particular case of the isoperi-
metric problem. Work (since 2014) of Vincent Lafforgue and
Assaf Naor suggested the existence of finite sets such that the
constant c in the second result should be the optimal value
1/2, and this was indeed shown by A. Naor and R. Young in
2017, using the 5-dimensional Heisenberg group. Hence, the
bi-Lipschitz embedding of metric spaces of negative type in
L1 gives a solution to the Sparsest Cut problem in polynomial
time, up to a proportion O(

√
logn).

We now come to the end of our portrait of recent work
on metric theory of normed spaces but would like to invite
the reader to consult the original articles. To conclude, let us
frame the current approach in its historical context. In the past
century, existence theorems in analysis have mostly been ob-
tained by more or less constructive topological methods, re-
lying, for instance, on compactness or completeness, or on
fine combinatorial results. After that, probabilistic methods
have been powerful tools, which have established, by the use
of random methods, the existence of numerous objects that
were not provided by explicit construction. The spectacular
explosion of our computational power invites us no longer to
seek non-constructive existence theorems that are unsatisfac-
tory for those who need to apply them. We are now able to
determine if and how an algorithm can provide the mathe-
matical object for which we search, in an optimal or almost
optimal manner. All of the highlighted contributions clearly
belong to that third generation. Let us keep up with recent
progress: the 21st century has only just begun.
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