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Tensor Product and Semi-stability:
Four Variations on a Theme
Marco Maculan (Université Pierre et Marie Curie, Paris, France)

Chevalley proved that in characteristic 0 the tensor product
of semi-simple representations is semi-simple. This result has
analogues in rather diverse contexts: three of them are pre-
sented here in independent sections, focusing on the differ-
ences of the frameworks and the similarities of the proofs.
Algebraic groups will play a crucial role, sometimes in unex-
pected ways.

1 Representations

Let G be a group and k a field. In this note, a representation
of G is a finite-dimensional k-vector space V together with a
group homomorphism ρ : G → GL(V).

Semi-simple representations
A representation is said to be:
• irreducible if there are exactly two sub-vector spaces of V

stable under the action of G: the zero subspace 0 and the
whole vector space V . In particular the zero representation
is not considered to be irreducible.
• semi-simple if it can be decomposed into irreducible ones:

there are irreducible sub-representations V1, . . . ,Vn of V
such that V = V1 ⊕ · · · ⊕ Vn. This is equivalent to saying
that for every G-stable subspace W of V there is a G-stable
supplement W′.

Theorem 1 (Chevalley [8], p. 88). Suppose char(k) = 0. The
tensor product of semi-simple representations V1, V2 of G is
semi-simple.

The proof of Chevalley’s theorem is a beautiful applica-
tion of the theory of linear algebraic groups (that is, groups of
matrices defined by polynomial equations), even though the
group G may not at all be of this form.

Indeed, in order to prove theorem 1, one may suppose that
the field k is algebraically closed and look at GL(V1), GL(V2)
as algebraic groups.

Then one can suppose G to be itself a linear algebraic
group. For, it suffices to take the Zariski-closure Ḡ of the im-
age of G in GL(V1) × GL(V2), namely the set of points

x ∈ GL(V1) × GL(V2)

such that f (x) = 0 for all polynomial functions f vanishing
identically on the image of G. The semi-simplicity of the rep-
resentation V1 ⊗k V2 is equivalent for G and Ḡ, because it is
a condition that can be expressed as the vanishing of some
polynomials.

Now the theory of linear algebraic groups applies: there
is an algebraic subgroup radu(G) of G called the unipotent
radical which is connected, unipotent (meaning that all the
eigenvalues of its elements are 1), normal and contains any

other subgroup of G with these three properties. The unipotent
radical controls the semi-simplicity of the representations of
G:

Theorem 2 (Weyl [33]). Suppose char(k) = 0. An algebraic1

representation of a linear algebraic group G is semi-simple if
and only if every element of the unipotent radical acts as the
identity on V.

Applying the preceding fact, the proof of Chevalley’s the-
orem is easily achieved: since the representations V1 and V2
are supposed to be semi-simple, an element g of the unipotent
radical of G acts as the identity on V1 and V2. Therefore g
operates trivially on V1 ⊗k V2 too.

Reductive groups
Weyl’s theorem is usually formulated as follows: an alge-
braic representation of a reductive group, i.e. a linear alge-
braic group whose unipotent radical is trivial, is semi-simple.

Examples of reductive groups are GLn, SLn, SOn, Sp2n. In
general, a reductive group is the extension of a semi-simple
group by a product of copies of the multiplicative group k∗,
the algebraic equivalent of C∗. An example of a non-reductive
group is the additive group k 2, which corresponds to the com-
plex Lie group C.

Over the complex numbers, a reductive group G can be
seen also as a complex Lie group. Therefore two topologies
cohabit in it: the one coming from the topology of C (the
“usual topology”), and the Zariski one (which is coarser).
This is true for every algebraic group, but there is a topo-
logical property which is specific to reductive groups: they
contain subgroups which are dense for the Zariski topology
and compact for the usual one.

For instance, a Zariski-dense compact subgroup of GLn(C)
is the group U(n) of unitary matrices; on the other hand, the
unique compact subgroup of C is the trivial one (which is not
Zariski-dense).

For a semi-simple group G one uses É. Cartan’s classi-
fication of semi-simple Lie algebras to construct a Zariski-
dense compact subgroup K: indeed the Killing form on Lie G
is non-degenerate, and K corresponds to a maximal real Lie
sub-algebra on which the form is negative definite.

1This means that the map G → GL(V) is polynomial in the coefficients
of the matrices of G.

2The additive group k can be seen as a subgroup of GL2(k) through the
embedding

a �−→
(
1 a
0 1

)
.
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Weyl’s Unitarian Trick
Let us go back to the proof of theorem 2, in the second refor-
mulation I gave above. Quite often in algebraic geometry the
characteristic 0 hypothesis is the shade of transcendental tech-
niques, that is, analysis on real or complex numbers. Theorem
2 is an example of this phenomenon.

Indeed, in order to prove it one reduces to the case where k
is C: this is possible because the polynomial equations defin-
ing G and its representation G → GL(V) involve only finitely
many terms that are transcendental over Q.

Given a G-stable subspace W of V , finding a G-stable sup-
plement amounts to construct a G-equivariant linear projec-
tion V → W.

Here comes a remarkable argument, refined gradually by
Hilbert, Hurwitz and Weyl, who at last named it Unitarian
Trick. Pick one linear projection π : V → W and average it on
a Zariski-dense compact subgroup K of G:

π̃(v) :=
∫

K
gπ(g−1v) dµ(g), (v ∈ V),

where µ is the Haar measure of total mass 1 on K. The func-
tion π̃ is equivariant for the action of K, but by Zariski-density
of K, the projection π̃ is also G-equivariant.

A motto summarizing the previous proof might be: the sub-
group K is small for the usual topology (which permits to in-
tegrate), but big enough to control the representations of G
(which depends only on the Zariski topology).

Characteristic p > 0
Over a field k of characteristic p > 0 (assumed algebraically
closed, for simplicity), both theorems 1 and 2 are false.

On the positive side, every representation V of an algebraic
group G is semi-simple in the following cases:
• G is a finite group whose order is prime to p: given a G-

stable subspace W ⊂ V and a projection π : V → W, the
function

π̃(v) :=
1

#G

∑
g∈G

gϕ(g−1v),

is G-equivariant;
• G is the multiplicative group k∗: in this case V decomposes

as
V =
⊕
a∈Z

Va,

where Va is the subspace where t ∈ k∗ acts by ta.
Nagata [11, Théorème IV.3.3.6] shows that there are no other
possibilities: given G an algebraic group such that every rep-
resentation is semi-simple, the identity component G0 is iso-
morphic to Gr

m and G/G0 has order prime to p.
Concerning theorem 1 one has the following:

Example 3. Let k be a field characteristic p > 0 and V = k2.
Consider the k-vector space V(d) of homogeneous polynomi-
als of degree d on V: it is of dimension d + 1, a basis being
given by the monomials

xd, xd−1y, . . . , xyd−1, yd.

The group G = SL2(k) acts on V(d) through the contragradi-
ent representation: explicitly, for a polynomial f (x, y) and an
invertible matrix

g =
(
α β
γ δ

)
,

with α, β, γ, δ ∈ k such that αδ − βγ = 1,

(g f )(x, y) = f
(
g−1(x, y)

)
= f (δx − βy,−γx + αy).

The representation V(d) is irreducible for d = 1, . . . , p−1. For
d = p the map ϕ : V(1) → V(p), associating to a linear form
f its p-th power f p, is linear, injective and G-equivariant. The
image of ϕ is the kernel of the map ψ : V(p)→ V(p−2) given
by

f �−→ 1
y
∂ f
∂x
.

The exact sequence of representations

0 −→ V(1)
ϕ
−→ V(p)

ψ
−→ V(p − 2) −→ 0,

obtained in this way does not split if the field k has at least 3
elements. In particular V(p) is not semi-simple. If d1, . . . , dn

are integers ranging between 1 and p − 1 such that their sum
is p, the multiplication map f1 ⊗ · · · ⊗ fn �→ f1 · · · fn induces
a surjection W := V(d1) ⊗ · · · ⊗ V(dn)→ V(p). It follows that
W is not semi-simple.

However Serre shows that these problems do not occur as
soon as the dimension is small enough:

Theorem 4 (Serre [29]). Let W1, . . . ,Wm be semi-simple rep-
resentations of a group G on a field of characteristic p > 0.
If

m∑
i=1

dim Wi < p + m,

then W1 ⊗ · · · ⊗Wm is semi-simple.

According to Example 3 the condition in the theorem above
is sharp. Various generalizations of the result of Serre can be
found in [30, 10, 2].

2 Vector bundles on Riemann surfaces

Representations of the fundamental group
Let X be a compact Riemann surface of genus g and X̃
its universal covering. The fundamental group π1(X, x)
(with respect to a base point x) is generated by 2g loops
a1, . . . , ag, b1, . . . , bg satisfying the relation

a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1.

To a representation ρ : π1(X, x) → GLr(C) of the funda-
mental group, one associates the vector bundle E(ρ) of rank r
on X obtained as the quotient of X̃ × Cr through the action

g(x̃, v) = (gx̃, ρ(g)v).

Theorem 5 (Narasimhan–Seshadri [25]). Suppose ρ
preserves a hermitian norm on Cr. Then:
1. E(ρ) is a direct sum of simple bundles, and E(ρ) is simple

if and only ρ is irreducible;
2. if E(ρ) is simple, then it does not admit non-zero global

holomorphic sections;
3. deg E(ρ) = 0 and E(ρ) is semi-stable: deg F ≤ 0 for every

sub-vector bundle F of E(ρ).
Moreover, every stable vector bundle of degree 0 arises from
a unitary representation of the fundamental group of X.

In the previous statement, a vector bundle E is said to be:
• simple if the only endomorphisms of E are homotheties;
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• semi-stable (resp. stable) if for every sub-vector bundle F
of E different from 0 and E,

deg F
rk F

≤ deg E
rk E

, (resp. <).

The number µ(E) := deg E
rk E is called the slope of E.

Remark that a simple bundle E cannot be written as the
direct sum of two proper sub-bundles.

Statements (1) and (2) are consequences of the follow-
ing isomorphism, for unitary representations ρi : π1(X, x) →
GL(Vi) and i = 1, 2,

Homπ1(X,x)(V1,V2)
∼−→ Hom

(
E(ρ1), E(ρ2)

)
.

Statement (1) is obtained thanks to Weyl’s Unitarian Trick, by
decomposing the representation ρ into its irreducible compo-
nents. In order to get a taste of how properties of the repre-
sentation ρ transfer to those of the vector bundle E(ρ), let me
sketch the proof of (3).

The line bundle L :=
∧r E(ρ) is associated to the determi-

nant representation det ρ : π1(X, x) → C× of ρ, which is uni-
tary. If the degree of L were positive, by the Riemann-Roch
theorem, some positive enough multiple L⊗d of L would admit
non-zero global sections: this would contradict (2), as L⊗d is
indecomposable. One concludes by applying the same reason-
ing to the determinant of the representation ρ∗ contragradient
to ρ.

Take F to be a sub-vector bundle of E(ρ) and, arguing by
contradiction, assume that the degree of F is > 0. One can fur-
ther suppose that F is a line bundle: if s denotes the rank of F,
the s-th exterior power

∧s F is a sub-line bundle of the vec-
tor bundle

∧s E(ρ), which is associated to the representation∧s ρ.
As before, by the Riemann–Roch theorem, there is a pos-

itive integer d ≥ 1 such that L⊗d has non-zero sections. De-
compose the unitary representation ρ⊗d into irreducible ones
ρ1, . . . , ρn. This corresponds to writing E(ρ)⊗d as the sum of
the simple vector bundles E(ρi). The projection of L onto
E(ρi) has to be zero for all i = 1, . . . , n: otherwise E(ρi) would
have non-zero sections, which is impossible according to (2).
This implies that F is the trivial bundle, contradicting the hy-
pothesis of having positive degree.

The results of Narasimhan–Seshadri have been for quite a
long time the only tool to prove the following result:

Theorem 6. Let E, F be semi-stable vector bundles on X.
Then E ⊗ F is semi-stable.

The key situation is when E and F are stable of degree
0: if this is the case, thanks to the theorem of Narasimhan-
Seshadri, E and F are associated to unitary representations
ρE , ρF of the fundamental group. The tensor product repre-
sentation ρE ⊗ ρF is unitary, thus E ⊗ F is semi-stable.

Characteristic p > 0
On a field of positive characteristic, compact Riemann sur-
faces are replaced by smooth projective curves.

To fix ideas, let f ∈ Fp[x0, x1, x2] be an irreducible homo-
geneous polynomial and consider the locus in P2(F̄p) where it
vanishes:

X =
{
[x0 : x1 : x2] ∈ P2(F̄p) : f (x0, x1, x2) = 0

}
.

Suppose that X does not have singular points: this means that
for every point x ∈ X, some partial derivative ∂ f

∂xi
does not

vanish at x.
The genus g of X can be computed as for Riemann surfaces:

if f is of degree d, then

g =
(d − 1)(d − 2)

2
.

However X carries something that a Riemann surface does
not, the Frobenius endomorphism. It is the map sending a
point [x0 : x1 : x2] ∈ X to [xp

0 : xp
1 : xp

2 ]. Note that the
latter point still belongs to X because

f (xp
0 , x

p
1 , x

p
2 ) = f (x0, x1, x2)p = 0,

(one uses here that f has coefficients in Fp).
There is no obvious way to port unitary representations of

the fundamental group into this context. Rather, one takes the
point of view of semi-stable vector bundles, whose definition
can be translated word by word. Yet the statement analogous
to theorem 6 is false and, as one can guess, examples come
from symmetric powers:

Example 7. Let E be a vector bundle on X and consider its
i-th symmetric power Symi E.

The naive idea of embedding E into Symp E by raising
sections to the p-th power does not work this time: the map
E → Symp E, (x, s) �→ (x, sp), where x is a point of X and s is
a section of E over x, is not a bundle map. Nonetheless it in-
duces an inclusion of the pull-back Fr∗X E of E (the so-called
Frobenius twist) as a sub-vector bundle of Symp E.

If the genus of X is at least 2, there are plenty of semi-
stable vector bundles on X such that their Frobenius twist is
not semi-stable3: for such a vector bundle E, the above dis-
cussion shows that Symp E is not semi-stable.

There is also an analogue of Serre’s theorem for semi-
stable vector bundles (Balaji–Parameswaran [3], Ilangovan–
Mehta–Parameswaran [18]):

Theorem 8. Let E1, . . . , En be semi-stable vector bundles on
X. If

n∑
i=1

rk Ei < p + n,

then E1 ⊗ · · · ⊗ En is semi-stable.

Back to characteristic 0
In view of the preceding example, an algebraic proof of the-
orem 6 has to break down in positive characteristic. Let me
detail the one discovered by Ramanan–Ramanathan [26]: it
is particularly interesting from our point of view because it
makes intervene algebraic groups (where a priori there are
none).

Let V1 and V2 be semi-stable vector bundles on a compact
Riemann surface X, and let W be a sub-vector bundle of the

3For instance, consider the push-forward V := (FrX)∗OX of the trivial
bundle OX . A simple computation shows

deg V = (p − 1)(g − 1) > 0.

By the Harder–Narasimhan filtration, V contains a semi-stable vector bundle
E of positive degree. The kernel K of the induced map Fr∗X E → OX has
degree ≥ deg Fr∗X E. Having smaller rank, the slope of K is bigger than the
slope of Fr∗X E.
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is easy to obtain when W is “special” (for instance if W is of
the form W1 ⊗ W2 for sub-vector bundles Wi ⊂ Vi) or if it is
“generic” (meaning that its intersection with some filtration
has small dimension).

This heuristics is made precise by Ramanan–Ramanathan:
replacing the locutions “special” and “generic” respectively
by unstable and semi-stable in the sense of Geometric Invari-
ant Theory (GIT) permits to derive (1) in both cases. The al-
gebraic group that enters into play is GLr1,K ×GLr2,K where
K is the field of meromorphic functions on X and ri the rank
of Vi.

What goes wrong in characteristic p is the characterization
of semi-stability they use (the Hilbert–Mumford criterion [17,
24], in the version of Kempf [20] and Rousseau [27]) that
needs the field K to be perfect.

If X is a compact Riemann surface, then K is perfect be-
cause of characteristic 0. If X is a smooth projective curve
over a field k of characteristic p, K is a finite extension of the
field k(t) of rational functions in one variable, thus imperfect.

3 Weakly admissible isocrystals

Counting points with eigenvalues
Let f (x1, . . . , xn) be a polynomial with integral coefficients.
The set of its solutions modulo p,

V(Fp) :=
{
x = (x1, . . . , xn) ∈ Fn

p : f (x) = 0
}
,

is finite. What can we say about its cardinality?
There is a fruitful way to look at solutions modulo p. Con-

sider the affine variety defined by f ,

V :=
{
x ∈ F̄n

p : f (x) = 0
}
.

As an element a ∈ F̄p belongs to Fp if and only if ap = a,
a point (x1, . . . , xn) ∈ V lies in V(Fp) if and only if xp

i = xi

for all i. In other words, V(Fp) is the set of fixed points of the
Frobenius endomorphism of V (i.e. the map raising to the p-th
power the coordinates of the points of X).

A brilliant idea of Weil was to relate this point of view with
the following form of the “Lefschetz fixed point theorem”,
known as the Lefschetz–Hopf theorem:

Theorem 9. Let X be a compact manifold and F : X → X a
continuous map. If the set Fix(F) of fixed points of F is finite,
then ∑

x∈Fix(F)

i(x, F) =
∑
i≥0

(−1)i Tr
(
F∗ | Hi(X,Q)

)
,

where i(x, F) is the index of F at a fixed point x and Hi(X,Q)
the i-th rational homology group.

Weil conjectured that if there were a cohomology theory
that behaved well enough (called in this day and age “Weil
cohomology theory”) one could compute the number of ra-
tional points by means of an analogue of the Lefschetz fixed
point theorem.

Constructing such a cohomology theory has been one of
the driving forces behind the work of Grothendieck and his
school. The results in SGA 4 and 5 say that there is actually
one for each prime � � p: the étale �-adic cohomology, with
coefficients in the fieldQ� of �-adic numbers. Grothendieck in
particular was able to prove an analogue of Lefschetz’s fixed
point theorem:

Theorem 10 (Grothendieck’s trace formula [16]). Let X be a
projective4 variety over Fp. Then,

#X(Fp) =
∑
i≥0

(−1)i Tr
(

FrX | Hi
ét(X,Q�)

)
,

where X(Fp) is the set of points of X having coordinates in Fp.

Let us go back to counting the points of V(Fp). The pre-
ceding theorem suggests to pass to the projective closure of
V: consider the homogeneous polynomial associated to f ,

f̃ (x0, . . . , xn) := xd
0 f (x1/x0, . . . , xn/x0),

where d is the degree of f , and

X :=
{
x = [x0 : · · · : xn] ∈ Pn(F̄p) : f̃ (x) = 0

}
.

With this at hand, the philosophy can be restated as follows:
in order to compute the number of rational points of X (i.e.
those with coordinates in Fp), one has to estimate the size
of the eigenvalues of the Frobenius acting on the �-adic étale
cohomology.

If X is non-singular, the following facts are consequences
of Deligne’s proof of the last of Weil’s conjectures (called
Riemann hypothesis):
1. the set of eigenvalues of FrX on Hi

ét(X,Q�) does not depend
on �;

2. an eigenvalue of FrX on Hi
ét(X,Q�) is an algebraic integer,

which is not divisible by � and whose complex absolute
value is

√
pi (with respect to any complex embedding).

Divisibility properties
A question left aside is the order of divisibility by p of the
eigenvalues of the Frobenius, or in other words, their p-adic
valuation. A first result of this kind is the following:

Theorem 11 (Chevalley-Warning [28]). Suppose deg f < n.
Then #V(Fp) is divisible by p.

In order to study such a question it seems appropriate to ask
the cohomology theory to produce Qp-vector spaces. Unfor-
tunately p-adic étale cohomology does not work as one would
like and one has to consider crystalline cohomology.

From now on suppose X non-singular and that f is not di-
visible by p. The polynomial f we started with, as well as its
homogeneization f̃ , have integral coefficients. Consider the
projective variety, defined over Q,

Y :=
{
x = [x0 : · · · : xn] ∈ Pn(Q̄) : f̃ (x) = 0

}
.

As a consequence of Berthelot’s results on crystalline coho-
mology, the algebraic de Rham cohomology groups of Y , or
better said their extension to Qp,

Hq
dR(X/Qp) := Hq

dR(Y/Q) ⊗ Qp,

come equipped with a Frobenius operator FrX .
A classical conjecture of Katz proved by Mazur relates the

p-adic absolute values of the eigenvalues of FrX to the Hodge
numbers of Y ,

hi,q−i := dimQ Hq−i(Y,Ωi
Y ),

where Ωi
Y denotes the bundle of differential i-forms on Y . Or-

der the eigenvalues αi of FrX so that ordp(αi) ≤ ordp(αi+1),
and set βi = h0,q + h1,q−1 + · · · + hi,q−i.

4The results holds more generally for any algebraic variety assuming that
the cohomology is taken with compact supports.
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Theorem 12 (Katz’s conjecture [19], Mazur [22, 23]). With
the notations introduced above,

ordp(α1) + · · · + ordp(αt)

≥ 0 · h0,q + 1 · h1,q−1 + · · · + ihi,q−i + (i + 1)(t − βi), (2)

where βi < t < βi+1.

There is a more geometric way to state theorem 12. Con-
sider the Newton polygon5 of the characteristic polynomial
det(id− FrX ·t) and the polygon associated to the Hodge filtra-
tion of Hq

dR(X/Qp):

Fi Hq
dR(X/Qp) :=

q⊕
j=i

Hq− j(Y,Ω j
Y ) ⊗ Qp.

Concretely, these polygons are piecewise linear functions
starting at (0, 0) and with slopes

Newton polygon Hodge polygon

slope ord(αi) i

on the [∑i−1
j=1 mj,

∑i
j=1 mj

] [∑i−1
j=0 hj,q− j,

∑i
j=0 hj,q− j

]
interval

where mi is the multiplicity of the eigenvalue αi. Theorem 12
becomes “the Newton polygon lies above the Hodge poly-
gon”.

Example 13. Suppose X is a smooth projective curve of
genus g. Let me collect here some information on the Newton
polygon of X:
• By Serre duality, h0,1 = h1,0 = g.
• Poincaré duality implies that the Newton polygon ends at

(2g, g), as the Hodge polygon;
• Let A = Jac(X) be the jacobian variety of X. For a positive

integer n denote by A[n] the subgroup of n-torsion points
of A(F̄p). There is an integer 0 ≤ rkp(A) ≤ g, the p-rank of
A, such that

#A[n] =


nrkp(A) if n is a power of p,
n2g if n is prime to p.

The previous information describe completely the Newton
polygon of X for g = 1, 2. However, starting from g = 3
the situation is more involved (see Figure 1).

Filtered isocrystals
A strengthening of Mazur’s theorem, conjectured by Fontaine
[15] and proved by Faltings [12], states that the inequality (2)
holds for every sub-vector space W ⊂ Hq

dR(X/Qp) stable un-
der the action of the Frobenius endomorphism:∑

i

i dimQp (Wi/Wi+1) ≤ ordp det(FrX | W),

where Wi := Fi Hq
dR(X/Qp) ∩W. Moreover, the fact that both

polygons have the same end-points says that the previous in-
equality is an identity for W = Hq

dR(X/Qp).
A filtered isocrystal over Qp is a linear algebraic datum

miming the above situation: it is a triple (V, ϕ, F•V) made of

5Given a polynomial f (t) = a0 + a1t + · · · + adtd with coefficients in
Qp, its Newton polygon is the convex hull of the points (i, ordp(ai)), i.e. the
smallest convex function on the interval [0, d] such that the points (i, ordp(ai))
lie above (or on) its graph.
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rkp(A) = 3

0 1 2 3 4 5 6

rkp(A) = 2

0 1 2 3 4 5 6
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0 1 2 3 4 5 6

rkp(A) = 0
A not super-singular

0 1 2 3 4 5 6

rkp(A) = 0
A super-singular

0 1 2 3 4 5 6

Newton polygon
Hodge polygon

Figure 1: Newton polygons for a curve of genus 3

a finite-dimensional Qp-vector space, a linear map ϕ : V → V
and a decreasing filtration F•V = (FiV)i∈Z. It is said to be
weakly admissible if, for every linear subspace W ⊂ V stable
under ϕ, ∑

i

i dimQp (Wi/Wi+1) ≤ ordp det(ϕ | W),

where Wi := FiV ∩W, with equality for W = V .6

Weakly admissible filtered isocrystals are meant to be one
of the possible p-adic analogues of Hodge structures. Because
of the Künneth formula for cohomology, it is natural to ask
whether the tensor product of weakly admissible isocrystals is
weakly admissible. A partial affirmative answer was given by
Lafaille [21], while the general result was proven by Faltings
[13, 14] and Totaro [32].

The role of semi-stable vector bundles
In order to explain the approaches of Faltings and Totaro, let
me consider a slightly different situation.

Let V be a finite dimensional Qp-vector space, K a finite
extension of Qp and F•V = (FiV) a filtration of the K-vector
space V ⊗Qp K by K-vector spaces. For a Qp-linear subspace
W ⊂ V define

deg W =
∑

i

i dimQp (Wi/Wi+1), (3)

where Wi := FiV ∩ (W ⊗Qp K).
The filtered vector space (V, F•V) is said to be semi-stable

if, for all non-zero Qp-linear subspace W ⊂ V ,

µ(W) :=
deg W
dim W

≤ µ(V) :=
deg V
dim V

.

Example 14. Suppose V = Q2
p. A point x ∈ P1(Q̄p) cor-

responds to a vector line L ⊂ V ⊗Qp K for a suitable finite
extension K of Qp. The filtration

F2V := 0 ⊂ F1V := L ⊂ F0V := V ⊗Qp K

satisfies µ(V) = 3
2 and µ(W) = 2 − dimK L ∩ (W ⊗Qp K) for

every Qp-vector line W ⊂ V . In particular (V, F•V) is semi-
stable if and only if the line L is not defined over Qp.

The set of semi-stable filtrations on V is Drinfeld’s up-
per half-plane Ω1

Qp
:= P1(Q̄p) � P1(Qp). It owes its name to

Poincaré’s upper-half plane h = {z ∈ C : Im z > 0} which can
be seen as the “upper-half” of P1(C) � P1(R).

6Actually this definition is too restrictive, as one has to let the filtration
F•V to be defined only on a finite extension of Qp.
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To have a picture in mind, Drinfeld’s upper half-plane (or
better the Berkovich analytic space attached to it) retracts onto
the Bruhat-Tits building of SL2(Qp); see Figure 2.

Figure 2: The Bruhat-Tits building of SL2(Qp) for p = 2

Suppose that K is a Galois extension of Qp and consider
the filtrations F•1V, . . . , F•nV conjugated to F•V under the ac-
tion of the Galois group Gal(K/Qp). Faltings’ idea is to as-
sociate to these filtrations a vector bundle E(V) on a compact
Riemann surface Y such that E(V) is semi-stable (as a vec-
tor bundle) if and only if the filtered vector space (V, F•V)
is. Since this construction is compatible with tensor product,
one draws the result thanks to the theorem of Narasimhan–
Seshadri.

The proof of Totaro is again based on the tensor product of
semi-stable bundles, but instead of relying on the “analytic”
result of Narasimhan-Seshadri, it follows the “algebraic” ap-
proach of Ramanan–Ramanathan.

Totaro characterizes semi-stability of filtrations in terms of
Geometric Invariant Theory. It is just a matter of unwind-
ing the definitions: the reader familiar with GIT recognizes
the quantity appearing in (3) as Mumford’s µ-coefficient in
the case of filtrations [24, §4.4]. Then he uses Ramanan–
Ramanathan’s dichotomy to derive the wanted inequality.

4 Hermitian vector bundles on arithmetic curves

Euclidean lattices
An Euclidean lattice of rank n is a finitely generated subgroup
Γ of Rn such that Rn/Γ is compact. On Rn/Γ there is a unique
measure µΓ such that, for all continuous functions f : Rn → R
with compact support,∫

Rn
f (x) dλ(x) =

∫
Rn/Γ

f̃ (ξ) dµΓ(ξ),

where λ is Lebesgue measure on Rn and f̃ (ξ) =
∑
Γ+x=ξ f (x).

The volume of Rn/Γ with respect to this measure is called
the covolume of Γ. If γ1, . . . , γn is a basis of Γ, the covolume
covol(Γ) can be computed as | det(γ1, . . . , γn)|.

There is a more intrinsic definition of a Euclidean lattice: it
is a couple Ē = (E, ‖ · ‖E) made of a free abelian group E of
finite rank together with a hermitian norm ‖ · ‖E on E ⊗Z R.
Following conventions that have become usual in Arakelov
geometry, define:

the rank of Ē rk(Ē) := dimR E ⊗Z R,
the degree of Ē d̂eg(Ē) = − log covol(E),

the slope of Ē µ̂(Ē) = (rk Ē)−1 d̂eg Ē.

Diophantine approximation
Before diving into the analogy with vector bundles, let me ex-
plain how these concepts arise in Diophantine approximation.

Theorem 15 (Thue [31]). Let α ∈ R be an algebraic number
of degree d ≥ 2. Given ε > 0 there are only finitely many
rational numbers p/q ∈ Q such that∣∣∣∣∣α −

p
q

∣∣∣∣∣ <
1

q
d
2+1+ε

,

where (p, q) = 1 and q > 0.

The exponent d
2 + 1 has been successively sharpened by

Siegel, Dyson and Roth respectively to 2
√

d,
√

2d and 2, the
latter being optimal because of Dirichlet’s theorem on approx-
imation of real numbers. However all these proofs follow the
scheme of Thue’s argument, which can be roughly split in
four steps:
1. Construct a polynomial f in n variables with small integral

coefficients vanishing “as much as possible” on the point
(α, . . . , α).

2. Prove that the polynomial f does not vanish too much on
n-tuples x = (x1, . . . , xn) made of rational approximations.
Or better said some derivative g of f does not vanish at x.

3. Bound from above |g(x)| in terms of the order of vanishing
of g at (α, . . . , α) by looking at its Taylor expansion.

4. Bound from below |g(x)| by using that a positive integer is
≥ 1.

When there are too many good approximations of α to exist,
bounds in 3 and 4 are in contradiction.

In his Bourbaki report on the work of Masser and Wüstholz
on periods and isogenies of abelian varieties (having among
its consequences Mordell’s Conjecture, by the time already a
theorem of Faltings), Bost reinterprets in terms of Euclidean
lattices the preceding steps.

The point is to use a simple fact on the behaviour of slopes
with respect to linear maps:

Lemma 16 (Slopes inequality). Let Ē, F̄ be Euclidean lat-
tices and ϕ : E → F an injective map of abelian groups. Then,

µ̂(Ē) ≤ µ̂max(F̄) + log ‖ϕ‖sup,

where µ̂max(F̄) is the maximum of the slopes of sub-lattices of
F̄ and ‖ϕ‖sup is the operator norm of ϕ.

Thue’s four steps argument is translated as follows. Step 2,
which is the one with geometric content, corresponds to the
injectivity7 of the map ϕ. Step 3 corresponds to the upper
bound of ‖ϕ‖sup and step 4 to bounding the slopes of Ē and F̄.

A step that seems gone missing is the first one, which is
indeed a little different. Instead of picking a particular poly-
nomial, the slopes inequality allows to consider the whole
space of polynomials with the wanted vanishing property. In
the concrete case of Masser and Wüstholz this permitted Bost
to replace fine considerations on theta functions by geometric
arguments of Moret–Bailly.

Semi-stable lattices
A Euclidean lattice Ē is said to be semi-stable if µ̂(F̄) ≤ µ̂(Ē)
for all non-zero sub-lattices F ⊂ E with the induced Eu-
clidean norm.

7In this situation ϕ is the evaluation map of a polynomial at α (or better,
some truncated Taylor expansion of f around α).
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Question (Bost). Is the tensor product8 of semi-stable lattices
semi-stable?

Results towards a positive answer to this question have
been proved by André [1], Bost, de Shalit–Parzanovski, Chen
[7] and Bost–Künneman [6]. The best available result is the
following:

Theorem 17 (Bost-Chen [5]). Let Ē, F̄ be semi-stable Eu-
clidean lattices. Then,

µ̂max(Ē ⊗ F̄) ≤ µ̂(Ē) + µ̂(F̄) +
1
2

min
{
�(rk E), �(rk F)

}
,

where, for an integer n ≥ 2, �(n) =
∑n

i=2
1
i ≤ log n.

Furthermore, if rk E · rk F ≤ 9, then Ē ⊗ F̄ is semi-stable.

Analogy with the projective line?
The field of rational numbers ressembles somehow to the field
of rationals functions in one variable. This analogy works by
making correspond points of P1 to equivalence classes of ab-
solute values on Q. Stressing this point of view, the avatar
over Q of vector bundles are Euclidean lattices.

Nonetheless the theory of vector bundles on P1 is rather
poor: a vector bundle on P1 is a direct sum of line bundles9,
and semi-stable vector bundles are all of the form O(d)⊕n.

This is not at all the situation for Euclidean lattices: the
set of isomorphism classes of Euclidean lattices of rank n is
the double quotient GLn(Z)\GLn(R)/On(R), where On(R) is
the group of orthogonal matrices of size n. Moreover, if one
associates to a point τ in the upper half plane the lattice gen-
erated by 1 and τ, then the region of semi-stable lattices of
rank two is the closed exterior of the Ford circles in the strip
0 < Im τ ≤ 1 [1].

Figure 3: The exterior of Ford circles

Irreducible Euclidean lattices
Given a Euclidean lattice Ē, denote by Aut(Ē) the group of
elements g ∈ GL(E) respecting the Euclidean norm: it is a
finite group. A Euclidean lattice Ē is said to be irreducible if
the representation Aut(Ē)→ GL(E ⊗Z Q) is.

Example 18. Consider the real plane

H =
{
(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0

}
,

8The Euclidean norm on the tensor product is defined as follows: given
Euclidean spaces V , W with scalar products 〈·, ·〉V and 〈·, ·〉W , the tensor prod-
uct V ⊗R W is given the structure of Euclidean space by defining

〈v ⊗ w, v′ ⊗ w′〉V⊗W = 〈v, v′〉V · 〈w,w′〉W .
9In the modern literature, this theorem is sometimes referred to as the

Grothendieck–Birkhoff decomposition. However, it is easily deduced from
the Elementary Divisors theorem for the ring k[t, t−1], due to Dedekind–
Weber [9], or its complex analytic analogue discovered by Birkhoff [4].

inheriting the standard scalar product of R3. Consider the lat-
tice E = H ∩ Z3. Identifying H with the standard Euclidean
plane R2, E corresponds to the vertices of a planar tessellation
by equilateral triangles.

The group of isometries of E is the group of permutations
on 3 elements, which acts irreducibly on H.

Other examples of irreducible Euclidean lattices come
from reductive groups! Indeed, over an algebraically closed
field, reductive groups are classified by a combinatorial
datum called the root system. Simple Lie algebras correspond
to irreducible root systems, which give rise to irreducible
Euclidean lattices: the example above is the root system of
SL3.

Theorem 19 (Bost). 1. An irreducible Euclidean lattice is
semi-stable.

2. The tensor product of irreducible Euclidean lattices is
irreducible.

The first statement follows from the existence of the
Harder–Narasimhan filtration: there is a sub-lattice Ēmax
realizing the biggest slope and which is maximal for this
property. By maximality, it is unique hence stable under the
action of Aut(Ē). Therefore, if Ē is irreducible, Ē = Ēmax.

The second is a straightforward consequence of the follow-
ing classical result:

Theorem 20. Let k be a field of characteristic 0 and Vi an
irreducible representation of a group Gi over k (i = 1, 2).
Then V1 ⊗k V2 is an irreducible representation of G1 ×G2.

Theorem 20 follows from the formula

EndG1×G2 (V1 ⊗k V2) = EndG1 (V1) ⊗ EndG2 (V2) (4)

and Schur’s Lemma: if k is algebraically closed and V is an
irreducible representation of a group G, then EndG(V) = k.

Formula (4) is a special case of Jacobson’s density theorem.
Another proof, similar to that of Chevalley’s theorem, goes
as follows. One may assume that G1 and G2 are reductive
groups and the ground field is C. For i = 1, 2 let Ki be a
Zariski-dense compact subgroup of Gi. Write a G-equivariant
endomorphism ϕ of V1 ⊗k V2 as

ϕ =

N∑
λ=1

α1λ ⊗ α2λ,

with αiλ ∈ End(Vi). By G-equivariance of ϕ and Fubini’s the-
orem:

ϕ(x1 ⊗ x2) =
∫

K1×K2

gϕ(g−1(x1 ⊗ x2)) dµ1 � dµ2(g)

=

N∑
λ=1

α̃1λ ⊗ α̃2λ(x1 ⊗ x2),

where µi is the Haar measure of total mass 1 on Ki and

α̃iλ(x) :=
∫

Ki

giαiλ(g−1
i xi)dµi(gi),

is Gi-equivariant.
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where µi is the Haar measure of total mass 1 on Ki and

α̃iλ(x) :=
∫

Ki

giαiλ(g−1
i xi)dµi(gi),

is Gi-equivariant.

Ramanan–Ramanathan method, again
Chen translated the argument of Ramanan–Ramanathan, as
elaborated by Totaro, in the context of Arakelov geometry in
order to give the following bound:

µ̂max(Ē1 ⊗ · · · ⊗ Ēn) ≤
n∑

i=1

(µ̂(Ēi) + log rk Ei).

The error term is Chen’s inequality comes for a very simple
reason: the operator norm of the projection V⊗ dim V → det V
is dim V!.
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