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Peter Sarnak is the Eu-
gene Higgins Profes-
sor of Mathematics at 
Princeton University, as 
well as a Professor at the 
School of Mathematics 
of the Institute for Ad-
vanced Study, Princeton.
Born in 1953 in Johan-
nesburg, South Africa, 
he studied at the Univer-
sity of Witwatersrand, 
obtaining a BSc in 1974 
and a postgraduate BSc 
(Hons) in 1975.

He obtained his PhD 
from Stanford Univer-

sity in 1980 under the direction of Paul Cohen.
Sarnak is known for his groundbreaking contributions 

to number theory and problems of mathematical analysis 
motivated by number theory. The techniques he employs 
in his research, as well as his interests, are surprisingly 
wide-ranging, from zeta functions and automorphic forms 
to mathematical physics and quantum computation.

Throughout his career, he has received several pres-
tigious awards, including the Pólya Prize (1998), the Os-
trowski Prize (2001), the Levi L. Conant Prize (2003), the 
Cole Prize (2005) and the Wolf Prize (2014), and has been 
awarded with honorary doctorates from several universi-
ties. He has also been elected as a member of several im-
portant academies and societies, including as a Member of 
the National Academy of Sciences (USA) and a Fellow of 
the Royal Society (UK). Peter Sarnak has also supervised 
more than 50 PhD students!

M. Th. Rassias: If I remember correctly, as a high school 
student you were very much involved with chess com-
petitions and you did not get really interested in math-
ematics until your undergraduate years. Is this related 
to how mathematics was taught to you in your early life 
in South Africa or was it just a matter of taste at the 
time? Provided with other inputs, might you have been 
participating in mathematics problem-solving competi-
tions during your high school years instead?
P. Sarnak: The mathematics that I was exposed to in high 
school in South Africa in the late 1960s was mostly rou-
tine and, while it came easily to me, I wasn’t aware of any 
of the challenges that mathematics had to offer. On the 
other hand, chess was a challenge and one that was de-
cided with an immediate outcome. I was drawn to it from 
an early age and probably hit my peak aged 16. My father 
was very supportive of my involvement in chess competi-
tions until I declared my intention of going abroad af-
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ter school and trying to make it as a professional chess 
player. He insisted that I go to university first to study 
and, indeed, once I got there (at the University of Wit-
watersrand in Johannesburg) and was introduced to real 
mathematics and especially abstraction, I was quickly 
drawn to its beauty and challenge. I carried on playing 
chess competitively until my early 20s but, after that and 
until today, mathematics has been my passion. 

Were you exposed to any other scientific disciplines be-
fore choosing mathematics? (If yes, was that beneficial?) 
As I mentioned, the subjects that came easily to me in 
high school were mathematics and science (the latter 
meaning basic physics and chemistry). Being a profes-
sional mathematician was not on my radar (or of those 
around me). So, I was planning to major in physics. How-
ever, in my first year, I had a miserable time in the labo-
ratory and a good friend of mine Eddie Price, who was 
one of the top chess players in South Africa at the time 
and also a lecturer in the physics department of the uni-
versity, told me that if it is the theoretical side of phys-
ics that I enjoy then I would be better off doing applied 
mathematics. So, I majored in mathematics and applied 
mathematics and, while it is “pure” mathematics that has 
driven my main interests and research, my early intro-
duction to applied mathematics played a key role in me 
having broad mathematical interests and an appreciation 
of its applications.

Do you believe that the strategic way of thinking you 
cultivated as a professional chess player helped you 
when approaching mathematical problems and, if so, 
in what way?
The deductive analytic and positional reasoning, and the 
rich chess theory that human chess players employ (I say 
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ever, when one gets down to understanding as to how an 
argument works, you find that the fundamental ideas and 
tools are much more limited than what might be appar-
ent at first. In Hilbert’s time, say, one person, like himself 
or his student Weyl, could have a good understanding of 
large portions of central mathematics. While today this 
might seem impossible, our mathematical universe is still 
small and the cornerstones from which major develop-
ments and changes are taking place at any given period 
are quite limited. 

Is there a mathematician who influenced you the most, 
either through collaborations or interactions or even by 
studying their work?
Firstly, Paul Cohen, who was my thesis advisor, had a ma-
jor influence on my mathematical taste, knowledge, in-
sight and intuition. His view of the unity of mathematics 
(and that one really need not stick to a small sub-field) 
made a big impression on me. Together, Paul and I stud-
ied a good portion of Selberg’s works, and the core of 
my own work is very much shaped and influenced by 
Selberg’s ideas.

I remember you saying to us in a work group seminar 
at Fine Hall, Princeton, around three years ago, that 
you believed that the problem of factoring integers into 
primes must not be as hard as we think and that at some 
point someone will find an easy way to factor in poly-
nomial time. Why is that?
There is no theoretical evidence that factoring is diffi-
cult and if an efficient algorithm to factor were found, no 
problem that is expected to be difficult (e.g. an NP com-
plete problem) would follow. At this point in time and as 
far as is known in the public domain, there is no known 
efficient factoring algorithm, and the evidence that is of-
fered to it being “hard” is that smart people have tried 
and failed. If our attitude in mathematics is that smart 
people have failed to solve a problem therefore it cannot 
be solved, we would be out of business as far as attacking 
the central unsolved problems.

Us mathematicians working in the trenches must 
have some beliefs as to what is true and what can be 
proved in order to proceed in our efforts, and my belief 
as far as factoring goes is that it can be done efficiently. 
In fact, one can take Shor’s quantum factoring algorithm 
as evidence that factoring can be done efficiently with a 
classical computer.  

Speaking about primes, you have formulated a very 
intriguing conjecture related to the Möbius function, 
which has captured the interest of many mathemati-
cians. Would you like to describe it for the readers who 
do not belong to the world of number theory?
The parity of the number of prime factors of a number 
n is an elusive quantity that carries a lot of information 
(even the complexity of computing this parity appears to 
be as difficult as factoring n).

If n is square-free, the Möbius function m(n) is 
(–1)^(parity), while m(n) is zero for numbers that are not 
square-free. As a function of n, m(n) is apparently very 

human since, if I understand correctly, the recent com-
puter programs such as the machine learning “alpha go”, 
which are stronger than any program, apparently use 
very little “rich human chess theory”), have a lot of simi-
larities to parts of mathematics. It is certainly very good 
training for the mind and for mathematics, in a similar 
way to mathematics competitions, but like the latter it is 
neither necessary nor sufficient for being a good math-
ematician.

Was there a specific paper, book, lecture or even theo-
rem you came across that won you over to mathemat-
ics? What was the spark?
What won me over as a first year undergraduate study-
ing mathematics was abstraction and specifically that 
conceptual thinking can make the solution of a problem 
and understanding of a theory completely transparent. I 
remember the first course in abstract linear algebra as a 
spark, and also a topology course that drew me to want 
to learn and understand much more.

One may state that mathematics has witnessed a great 
expansion over the last, say, 100 years, with many dif-
ferent areas emerging and various methods discovered, 
bridging seemingly different fields. You once said that: 
“Mathematics is really very small, not big. There aren’t 
that many great ideas and people use the same idea over 
and over again in different contexts.” As a mathemati-
cian who has worked in various areas of mathematics 
and who has used a variety of techniques in order to 
tackle difficult problems, do you believe that the more 
one matures in mathematics, the greater the unity one 
sees in it? 
I continue to hold the opinion in the quote that you 
mention, though now, some years later, with the explo-
sion of papers on the arXiv, it seems harder to hold that 
view. Mathematical research is looking more like other 
sciences, with many papers having multiple authors and 
even some research being done in what looks like math-
ematics laboratories. Some of this is natural, thanks to 
various tools becoming very specialised and complicated 
and so it is not surprising that technical projects draw 
contributions from people with different expertise. How-
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random. For example, the partial sums of m(n) for n up to 
N are of order roughly sqrt(N) if and only if the Riemann 
hypothesis is true. More generally, the sum of m(n).f(n) 
for n up to N is expected to have some cancellation for a 
bounded function f(n) if the latter is of “low complexity”; 
this heuristic is known as the Möbius randomness princi-
ple and goes back at least to I. M. Vinogradov. My “Mö-
bius disjointness conjecture” that you mention makes 
this heuristic precise by realising f(n) as an observable 
sequence in a (topological) dynamical system.

If the system is deterministic (i.e. has zero entropy) 
then there should be cancellation. The primary tool for 
estimating such sums when f(n) is not a multiplicative 
function of n (f(n) is multiplicative if f(mn) = f(m).f(m)
when m and n are relatively prime) is Vinogradov’s bi-
linear method. For f(n) an observable in a dynamical sys-
tem, Vinogradov’s bi-linear sum is a Birkhoff sum for the 
joining of the system with itself.

This allows for dynamical ideas to be brought into 
the study of these sums and, as a consequence, there has 
been a lot of progress proving this Möbius disjointness 
conjecture for many deterministic systems. For logarith-
mically averaged versions of the conjecture, there is even 
more progress, thanks to works of Matomaki/Radziwill, 
Tao and Frantzikinakis and Host. In the latter, notions 
from Furstenberg’s non-conventional ergodic averages 
and his dynamical disjointness play a central role.

It is really impressive that in your work you are able to 
use techniques from seemingly independent areas in or-
der to solve a problem you are working on. In that man-
ner, you have studied and discovered some fascinating 
interconnections. One example is the association of the 
problem of sums of squares in number theory with ob-
jects from quantum computation, such as the so-called 
Golden Gates. Would you like to discuss this topic? 
Yes, I would be happy to elaborate on this topic. It turns 
out that for the construction of universal quantum gates, 
one is faced with the problem of providing an optimal 
set of topological generators for the groups G = SU(2) 
and SU(4) (the first for single qubits and the second 
for two qubits). By optimal, we mean that the words of 
length m in the generators cover G (with its bi-invariant 
metric) optimally for all large m and that there is an effi-
cient algorithm to find the best approximation of length 
m for any g in G. Standard quantum computation text-
books give specific generators for SU(2), such as “Clif-
ford matrices plus T”. It turns out that these generate an 
S-arithmetic unitary group defined over a real quadratic 
number field and it is precisely this that makes them 
good generators. In recent work, Parzanchevski and I 
show how, for each of the (finite) symmetry groups of 
the Platonic solids, one can add an involution yielding an 
essentially optimal generating set for SU(2). Interesting-
ly, the proof of the optimal (almost) covering property 
makes use of the Ramanujan conjectures established by 
Deligne. An heuristic algorithm developed by Ross and 
Selinger to navigate with the Clifford and T matrices 
can be adapted for all these “arithmetic Golden Gates”, 
as I like to call them, and leads to efficient navigation. 

While the mathematics of S-arithmetic unitary groups 
is available and provides such Golden Gates for SU(4) 
(Parzanchevski), efficient navigation remains open in 
this case.

How do you see the future of applications of number 
theory to other fields of science?
In Hardy’s “Mathematicians Apology”, he points to the 
theory of numbers as the epitome of “pure mathematics” 
and being very far from applications.

The modern digital and computer world has proven 
him to be quite mistaken. The applied area that is often 
pointed to as far as applications of number theory go is 
cryptography (for example, RSA and factoring). How-
ever, it runs much further than that. In fact, any funda-
mental problem that is discrete in nature (e.g. quantum 
mechanics) will, when studied down to its finest features, 
become one of number theory. There are many examples, 
such as the quantum gates above, where number theory 
problems that emerge are also ones that have been iden-
tified by number theorists as fundamental. I like to think 
that the reason for this is that in number theory (and in 
mathematics more generally), mathematicians are look-
ing for the deeper truths about whole numbers and, 
while we are not motivated by applications, these come 
naturally in cases where our insights are fundamental 
features of the objects that we study. In any case, when 
things work out this way, it is particularly pleasing.

My colleague Michail Aizenman (a mathematical 
physicist) once commented in a lecture on random ma-
trix theory and zeros of the zeta function that “number 
theory is the final frontier of science”. He doesn’t have to 
convince me of that!

Mentoring young researchers can be an important as-
pect of the life of a mathematician. Hilbert, for exam-
ple, supervised 69 PhD students throughout his life. It is 
said that he enjoyed interacting with students and used 
to go for long walks with them to discuss mathematics. 
You have already supervised more than 50 PhD students 
and I have personally witnessed the very close relations 
you have with them. Would you like to talk about this 
aspect of your mathematical life?
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one provides encouragement and makes sure that the 
person being mentored is working on interesting prob-
lems and that they are aware of the basic tools that are 
available and what is known.

Note: The copyright of the pictures featured in this inter-
view is held by C. J. Mozzochi, Princeton, NJ. We thank 
him very much for giving us the permission to publish 
them in this interview.

Michael Th. Rassias is on the Editorial Board of the EMS 
Newsletter. 

Yes, I have guided quite a number of PhD students over 
the years and I am very fortunate to have had this oppor-
tunity. For me, teaching, communicating and mentoring 
are an integral part of doing mathematics. Very often, I 
learn as much from these exchanges as do those being 
mentored. Over time, this reciprocal activity of guiding 
many PhD students has allowed me to learn and ap-
preciate a much wider landscape of mathematics and it 
has opened doors to finding unexpected connections be-
tween disparate areas.

Directly and indirectly, the students I have mentored 
have played a big role in what I have managed to do. My 
role as a senior mentor is mostly that of being a coach: 


