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Kinetic Equations: A French History
Claude Bardos (University Pierre and Marie Curie and CNRS [and WPI Wien], Paris, France) and
Norbert J. Mauser (Wolfgang Pauli Institute and University of Wien, Austria)

1 Introduction

In this article, we aim to describe the evolution of the math-
ematical study of kinetic equations between 1970 and 2000,
covering French activity in particular. Of course, the subject
being broad, we are going to focus on certain aspects. Particu-
lar attention will be paid to the role of the “averaging lemmas”
as a crucial tool in classical kinetic theory. In this context, we
are also going to present the Wigner transform in quantum
kinetic theory, as well as the link to classical physics, in the
“semi-classical” limit �→ 0.

Asymptotic analysis will be a central topic in the follow-
ing. For this reason, we are going to trace the development
from (“mesoscopic”) kinetic equations, like the Boltzmann
equation, to (“macroscopic”) fluid equations, like the Euler or
Navier-Stokes equations, when certain parameters (Strouhal
and Knudsen numbers) tend to zero. In order to place things
in their context, it seemed important to us to have a look back
and recall the pioneers. From the decade of 2000 on, how-
ever, the subject in a way “exploded” so that many additional
papers would be necessary to expose it adequately.

To situate kinetic equations in a broader perspective, it
seems advisable to remark that it took humanity thousands
of years to invent, with Leibniz in 1684 and Newton in 1713,
differential equations, well suited for the description of move-
ment, while the invention of partial derivatives, describing
continuous media, then took only 30 years, for example with
d’Alembert in 1747 and Euler in 1775. In this context, for rar-
efied media, the notion of a “particle density” with a speed v
at a point x is due to Maxwell in 1866, who also proposed
the speed distribution that today bears his name. The “ki-
netic” equations, dedicated to the evolution of that density,
appear subsequently with Boltzmann in 1872 and Lorentz in
1905. The importance of Boltzmann’s ideas may not have
been recognised immediately but they have played an essen-
tial role in mathematics since the beginning of the 20th cen-
tury, through Hilbert’s 6th problem, exposed by him at the
International Congress of Mathematicians (ICM) in 1900 in
Paris, as well as through several contributions made by Ein-
stein.

However, it was not before 1970 that mathematicians, and
in particular French mathematicians, developed a genuine in-
terest in the subject. As an example, at the ICM in Nice in
1970, there was only one single talk (by Guiraud) related to
this problem. One may also quote, regarding that period, some
articles by specialists in mechanics, like Choquet-Bruhat and
Bancel in 1973 and, of course, Cabannes in 1962, who was
subsequently going to play a major role.

The subject gained growing importance in our community
and in particular in France, as proved by the Fields Medals for
P.-L. Lions (1994) and for Villani (2010), as well as numerous
other international prizes.

This is certainly, among other reasons, due to the fact that
kinetic equations appear in a broad variety of sciences: astro-
physics, spaceflight (especially regarding the re-entry of vehi-
cles into the atmosphere), interaction between fluids and par-
ticles, nuclear physics, semi-conductor technology and biol-
ogy (for modelling cell evolution in immunology and chemo-
taxis). In addition, research in this field requires both pure
and applied mathematics, with results of a geometric nature
or related to harmonic analysis, probability and numerical
methods. This explains why the subject is part of the expan-
sion and globalisation of mathematical research. Many Sum-
mer (or Winter) schools have been dedicated to it, leading
to diverse international collaborations, for example the GdR
SPARCH (led by Raviart) and, in particular, the European
network HYKE (HYperbolic and Kinetic Equations, led by
N. M.), which unified the communities of “kinetic equations”
and “hyperbolic conservation laws”. It is certainly impossible
to describe, in detail, all the mentioned topics at once, there-
fore we, as two active witnesses of the evolution in France
and Europe, chose to focus on the years 1970–2000, with the
history of “averaging lemmas” being a central thread.

2 The time of the physicists and prehistory

The kinetic equations concern quantities f (x, v, t), with f ≥ 0
representing a density (in the sense of a probability) of par-
ticles situated at a point x and time t, additionally depending
on a kinetic variable v. In the initial examples, v represents the
speed of the particles, so f is the density of particles at point
x with speed v at time t. We call Rd

x × Rd
v “the phase space”

in d space dimensions (d = 3 or d = 2, 1 for systems with
symmetry or confinement). The speed v can be replaced by
a “momentum” ξ, etc., or a length and a direction when the
objects are polymers or biological cells.

The kinetic equations contain by nature a “free transport”
term (= “advection term”): ∂t f + v · ∇x f , which represents
the evolution of the particle density in the absence of exterior
forces. In this simple case, for an initial datum f0 = f (t = 0),
the solution of the equation

∂t f + v · ∇x f = 0

will be
f (x, v, t) = f0(x − vt, v).

In the presence of an external force F (gravity, electric
force, etc.), we have to add to this free transport a term that
corresponds to Newton’s second law d

dt v = F (mass m = 1).
If this force comes from a potential, i.e., F = −∇xV , we have
a so-called Liouville equation:

∂t f + v · ∇x f − ∇xV · ∇v f = 0 , f (x, v, 0) = f0(x, v) , (1)

which, with the Poisson bracket

{H, f } = ∇vH · ∇x f − ∇xH · ∇v f (2)
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of the Hamiltonian H(x, v), i.e., the energy |v|2
2 + V(x), and

the function f , can also be expressed in its symplectic form:
∂t f + {H, f } = 0. If the force F depends on the solution
f , Equation (1) becomes nonlinear, which is the case of the
Vlasov equation (see Section 6).

With the kinetic equations describing intermediate regimes
between the dynamics of particles and macroscopic observ-
ables, certain parameters (measuring, for instance, the rar-
efaction of the environment or the time scale) appear natu-
rally. In particular, the Strouhal number, St, gives the timescales,
while the Knudsen number, Kn, describes the density of the
medium (also called the “mean free path”). Finally, a mathe-
matical analysis leads to the introduction of a small reference
parameter, denoted by ε, to be compared to the other parame-
ters.

We consider three equations in order to illustrate this anal-
ysis. We consider the Boltzmann equation

St∂t f + v · ∇x f =
1
ε
C( f , f ), (3)

the Lorentz equation

ε∂t f + v · ∇x f

= −1
ε

∫
Rd

k(x, v,w)
(
f (t, x, v) − f (t, x,w)

)
dµ(w) (4)

and, with S 2 being the unit sphere of R3, an equation for a
simplified model of the transport:

ε∂t f + ω · ∇x f = −1
ε

(
f −
∫

S 2
f (x, ω′, t)dω′

)
. (5)

In the Boltzmann equation (3), C( f , f ) represents the changes
in particle speed due to elastic binary collisions, i.e., conserv-
ing the mass, linear momentum and the energy of the two
colliding particles. In the scope of this article, we omit details
of its structure; it is sufficient to keep in mind that one has:∫

Rd
v

C( f , f )dv = 0 ,
∫
Rd

v

C( f , f )vdv = 0,

∫
Rd

v

C( f , f )
|v|2
2

dv = 0,
(6)

as well as the decrease of the “entropy production”, which
vanishes for a Maxwellian distribution. It follows that∫

Rd
v

C( f , f ) log f dv ≤ 0 (7)

and, moreover, if ∫
Rd

v

C( f , f ) log f dv = 0

then
f (x, v, t) = Mρ,u,θ(x, v, t) =

ρ

(2πθ)
d
2

e−
|v−u|2

2θ , (8)

where ρ(x, t), u(x, t) and θ(x, t) are the macroscopic densities
characterising the Maxwellian distribution.

The relation (7) yields, in particular, the decrease of en-
tropy

d
dt

∫
Rd

x×Rd
v

f (x, v, t) log f (x, v, t)dxdv ≤ 0,

which is the famous H-theorem, a subject of controversies in
Boltzmann’s time as it seemed to be in apparent contradic-
tion with Poincaré’s recurrence principle. One can say that, at

present, this paradox has been solved. The Lorentz equation
(4) describes a situation in which the dominant process is the
interaction of particles with an environment while the inter-
action between the particles is neglected. This explains why
the equation is linear. It was introduced by Lorentz in 1905
for the evolution of electrons between atoms. Subsequently, it
has played an essential role in the study of the interaction be-
tween neutrons and atomic nuclei. Here, k(x, v,w) represents
a positive and symmetric nucleus while dµ(w) is a probability
on Rd

v . The parameter ε is introduced to validate macroscopic
approximations.

The “simplified transport model” (5) is an adaptation of
the Lorentz equation (4) and corresponds to a measure dµ
only supported on the unit sphere, so the absolute value of
the speed is not affected by the interaction.

Concerning the Boltzmann equation, one obtains from the
entropy balance that

d
dt

∫ ∫
Rd×Rd

fε(x, v, t) log fε(x, v, t)dxdv

+
1
ε

d
dt

∫ ∫
Rd×Rd

fε(x, v, t)C( fε , fε) log fε(x, v, t)dxdv = 0.

From Equation (8), one also infers that, for ε → 0, any ad-
herence value of the family fε is a local Maxwellian, i.e., a
Gaussian M given by (8). By inserting this expression into the
Boltzmann equation and by using Equation (6) of momentum
conservation, one additionally deduces that the macroscopic
parameters are the solution of the Euler equations of com-
pressible fluids:

St∂tρ + ∇x · (ρu) = 0,

St∂t(ρu) + ∇x · (ρu ⊗ u + ρθ) = 0,

St∂t

(
ρ
|u|2
2
+

d
2
ρθ
)
+ ∇x ·

(
u
(
ρ
|u|2
2
+

d + 2
2
ρθ
))
= 0.

(9)

This derivation (in a more modern form, of course) motivated
Hilbert when he announced his 6th problem at the ICM in
Paris in 1900:

Boltzmann’s work on the principles of mechanics suggests the
problem of developing mathematically the limiting processes,
there merely indicated, which lead from the atomistic view to
the laws of motion of continua.

On the other hand, we observe that Equations (9) expresses
neither the viscosity nor the thermal diffusivity of the fluid
(fundamental quantities in fluid mechanics). To solve the
problem, Hilbert suggests in 1916 to express these quanti-
ties in the second term in ε of a formal development of the
function fε . Independently, Chapman in 1916 and Enskog in
1917 established a more direct connection between the Boltz-
mann equation and the macroscopic equations. Rather than
considering the first two terms of the development in ε, they
introduce a local Maxwellian (8), which depends on the pa-
rameter

Mε(x, v, t) =
ρε

(2πθε)
d
2

e−
|v−uε |2

2θε , (10)

and they prove that, for Mε to be a solution of the Boltzmann
equation up to an ε2-order term, it is necessary and suffi-
cient that ρε, uε , θε are solutions of the “macroscopic” Navier-
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Stokes equations

St∂tρε + ∇x(ρεuε) = 0 ,

St∂t(ρεuε) + ∇x(ρεuε ⊗ uε + ρεθε)

= ε∇x ·
{
ν(θε)(σ(uε) −

2
d
∇x · σ(uε)I)

}
,

St∂t

(
ρε
|uε |2

2
+

d
2
ρεθε

)
+ ∇x

(
uε
(
ρ
|uε |2

2
+

d + 2
2
ρεθε
))

=
εν(θε)

2
σ(uε) : σ(uε) + ε∇x · [κ(θε)∇xθε],

(11)

with

σ(uε) =
∇uε + ∇tuε

2
, σ(uε) : σ(uε) = Traceσ(uε) ⊗ σ(uε).

Thus, the viscosity εν(θε) and the thermal diffusivity εκ(θε),
two macroscopic quantities that in Boltzmann’s or Maxwell’s
time were already experimentally measurable, are, in the
above derivations, quantities that are proportional to the
Knudsen number. They depend on the macroscopic temper-
ature according to the power laws, which can be intuited (and
even computed) from the interaction between the molecules.
The accordance between the experimentally obtained mea-
surements and the formulas deduced from the above calcu-
lation allowed the confirmation of the hypotheses on the dy-
namics of those molecules.

Some of the above calculations are very formal: as all
these equations are nonlinear, studying them rigorously was
only possible with the modern tools of functional analysis.
In particular, the Euler equations support singular solutions
(with discontinuities) and under natural conditions of com-
pression, regular solutions become singular at finite time.
They are good examples of notions of derivatives being used
in the sense of distributions and, hence, the solutions are
weak. We observe that the relation of conservation of the
macroscopic entropy can be derived from these equations:

∂t

(
ρ log

ρ
2
3

θ

)
+ ∇x ·

(
ρu log

ρ
2
3

θ

)
= 0 . (12)

However, this type of computation is no longer valid in the
presence of discontinuities. One can also demonstrate that, if
the weak solutions of the compressible Euler equations are
weak limits, in a convenient sense, of solutions to Navier-
Stokes equations or moments of solutions to the Boltzmann
equation, they only satisfy Relation (12) in the sense of an in-
equality (it turns out that the left side is negative or zero). In
one space dimension, this constraint ensures the uniqueness
and stability of the corresponding solutions. In more than one
dimension, however, the recent works of Chiodaroli, De Lel-
lis and Kreml [8], following up on the results obtained by De
Lellis and Szkelyhidi, have proven a total instability (even an
infinite number of entropic solutions) for the Euler equations.

Extracting what can be rigorously proven (considering the
available tools) is the aim of the research activity of the years
1970–2000, which mainly involves incompressible solutions
of Navier-Stokes and fluctuations of renormalisable solutions
(in the sense of DiPerna–Lions) of the Boltzmann equation.
This is a central object of this article (see Section 4).

3 The CEA and the transport equation

As mentioned above, after Hilbert and during the interwar
period, we hardly find any research on this subject led by
French mathematicians. They seemed to have forgotten, for
example, Poincaré as well as Hilbert’s 6th problem. On the
other hand, there is at least a physicist, Jacques Yvon, who
had already formulated problems in a new language, the in-
terest of which would be understood only many years later
by the mathematicians. In 1936 (see [23]), he introduced, in
order to examine a gas of N molecules, in addition to the
densities of n ≤ N particles f N

n (x1, x2, . . . , xn, v1, v2, . . . , vn),
the joint probability to have the first particle at position x1
with speed v1 , the second at position x2 with speed v2, etc.,
and he made explicit the relations between those densities.
Every density f N

n is, for n < N, a solution of an equation
evolving in its second term the density f N

n+1. And, of course,
f N
N coincides with the solution of the Liouville equation de-

termined by the initial system. He demonstrated that the so-
lutions of the Boltzmann equation produce, by factorisation,
approximate solutions of this system of equations. He also in-
vented a hierarchy of equations that would be rediscovered 11
years later by Kirkwood, Born and Green, as well as by Bo-
goliubov, and would therefore be named BBGKY hierarchy.
Besides its very concrete interpretation in physics, this hier-
archy was going to play an important role in mathematical
proofs, starting with the works of Grad in 1949 and Lanford
in 1974 on the rigorous derivation of the Boltzmann equa-
tion.

The “Commissariat à l’Energie Atomique” (CEA) was
founded in 1945 and Yvon entered it in 1946, first as a collab-
orator, secondly as an “external member” in 1949 and finally
becoming high-commissioner from 1970 to 1975.

On the transport equation of neutrons, he wrote: “I soon
understood (1946) that Boltzmann’s integro-differential equa-
tion, slightly modified, would serve as an arsenal for the new
mathematical physicists.” As mentioned above, it is, in fact,
an application of the Lorentz equation to interactions (absorp-
tion and re-emission) of neutrons with surrounding atoms.
This equation, which of course does not have an explicit so-
lution, forms part of the challenges that the CEA would face
with the help of computers and more mathematics. It is the
programme of Amouyal and Horowitz, defined under the in-
fluence of Yvon and within this framework, where Dautray
was to become, in 1955, part of the CEA’s mathematical
physics group. That’s where J.-L. Lions met him as an ex-
ternal collaborator introduced by Lattes.

Thanks to the participation and financial support of the
CEA and industry partners like EDF and Dassault, and with
the collaboration of some former students of J.-L. Lions, this
group played a major role in the expansion of applied mathe-
matics in the 1950s, where kinetic equations were important,
initially through the organisation of Summer schools like the
CEA-EDF-INRIA at Bréau Castle (following the example of
the physics schools of Houches and, later on, Cargèse), which
are very popular in our community.

His position as a university professor allowed J.-L. Lions
to invite some of the leading mathematicians in the domain
of kinetic equations to extended stays in France: Nishida to
Orsay in 1974, Ukai to Orsay and Paris 13 in 1977, Nico-
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laenko to Orsay in 1977 and Papanicolaou to the INRIA and
the Summer school at Bréau Castle in 1978.

Finally, there is an important publication that should be
explicitly highlighted. Dautray took the initiative to coor-
dinate, together with J.-L. Lions, the elaboration of a trea-
tise in applied mathematics “Analyse Mathématique et Calcul
Numérique pour les Sciences et la Technologie”. The first of
the 9 volumes was published in 1984 by Masson, Paris, and
there were subsequently various versions and translations, in
particular one published by Springer in English.

The initiative was inspired by the work of the Bourbaki
group on one hand and Courant-Hilbert, a seminal book of
mathematical physics, on the other. J.-L. Lions and Dautray
followed the structure of this reference book regarding its sub-
jects, its volumes and chapters but they delegated, even more
than Courant–Hilbert (where the contributions of Friedrichs,
John, Lax, Nirenberg and others are mentioned), the writing
of chapters and whole volumes of the work to younger re-
searchers, quoting them entirely. Following Bourbaki’s tradi-
tion in optimising editing, Dautray gathered the writers and
made the different contributions circulate for reciprocal re-
views.

At the time, he arranged convenient conditions for such
an initiative. He had ensured the collaboration of various CEA
researchers, among them Sentis and Kavenoky. He had Cesse-
nat, a CEA engineer, working full-time on the project and
could count on permanent consultants such as P.-L. Lions and
Perthame. He had also ensured the collaboration of scien-
tists doing their military service (which was still mandatory
at the time). Among such scientists doing their military ser-
vice were, in 1985, some of our (then juvenile) colleagues like
Julia and Golse.

Diffusion approximation
Dautray and J.-L. Lions entrusted the redaction of a volume
on the transport equation to C. B. In particular, Dautray in-
sisted on the rigorous formulation of the diffusion approxi-
mation.

The evolution of neutrons in the presence of reactive nu-
clei (uranium or plutonium) is described by a kinetic equation
of Lorentz type (4). However, as with every kinetic equation,
it depends on the 2d variables of the phase space and on the
time variable. A direct calculation is thus not possible. Also
in the 1940s-60s, Metropolis and Ulam at Los Alamos, Khas-
minski in Russia and Benoist at the CEA used, in order to
calculate the “macroscopic” density of particles

ρ(x, t) =
∫
Rd

f (x, v, t)dv (13)

at point x and time t, an approximation called diffusion ap-
proximation, which is defined by the solution of the equation:

∂tρ − κ∆ρ = cρ . (14)

This approach (valid near the critical regime) was based on
a scale estimate together with a probabilistic interpretation.
This is, by the way, the procedure on which is based the so-
called Monte Carlo method for calculating integrals and solu-
tions of equations with partial derivatives. While the method
was well explained from the angle of physics in the book by
Weinberg and Wigner in 1958 [22], one was far from having
a precise mathematical formulation allowing its justification.

In 1974, Larsen and Keller were inspired by the role of the
Knudsen and the Strouhal number in the Boltzmann equation
to produce a direct proof based on functional analysis. Fol-
lowing Dautray’s suggestion, this proof was reproduced in the
book. For better understanding, we also reproduce it here, in
the framework of the following simplified model

∂t fε+
1
ε
ω·∇x fε+

1
ε2

(
fε−

1
4π

∫
S2

fε(x, ω′)dω′
)
= c(x) fε , (15)

where ω ∈ S2, x ∈ Ω ⊂ R3 and x �→ c(x) is a function de-
pending only on x, positive or negative. Of course, it is con-
venient to add conditions on the limits. In neutron physics,
the standard boundary condition is the absorbing condition
(any particle that leaves the environment is absorbed by the
surroundings and thus does not return). By introducing the
external normal �n to the boundary ∂Ω , this can be expressed
by the following:

∀(x, ω) ∈ ∂Ω × S2, ω · �n(x) < 0⇒ fε(x, ω, t) = 0 . (16)

Applying the Green formula, multiplication by fε and integra-
tion on ∂Ω × S2 leads to the inequality

d
dt

1
2

∫
Ω×S2
| fε(x, ω, t)|2dωdx

+
1
ε2

∫
Ω

dx
∫
S2

(
fε −

1
4π

∫
S2

fε(x, ω)dω
)2

dω

≤
∫
Ω×S2

c(x)| fε(x, ω, t)|2dωdx .

(17)

It turns out that the solutions are, for 0 ≤ t ≤ T , uniformly
bounded with respect to ε in L2(Ω × S2) and that, for ε → 0,
any value of adherence of the sequence fε in L2 is a func-
tion ρ(x, t) that is independent of ω , as will be the case for
other weak limits fε . The integration of the relation (15) with
respect to ω yields the conservation law:

∂t
1

4π

∫
S2

fε(x, ω)dω + ∇x ·
( 1
4πε

∫
S2
ω fε(x, ω)dω

)

= c(x)
1

4π

∫
S2

fε(x, ω)dω . (18)

With
∫
S2 ω fε(x, ω)dω converging weakly to 0, it is convenient

(as has already been mentioned) to raise the indetermination
in the second term of the first member of (18). To do this, we
multiply the equation (15) a second time by εω and obtain,
after integration:

1
4πε

∫
S2
ω fε(x, ω)dω

= −∇x
1

4π

∫
S2
ω ⊗ ω fε(x, ω, t)dω

+ ε
1

4π

∫
S2
ω(c(x) fε(x, ω, t)

− ε∂t fε(x, ω, t)dω

→ ∇x
1

4π

∫
S2
ω ⊗ ωdω : ∇x f (x, t) = −1

3
∇xρ(x, t) .

(19)

By putting this into equation (18) and taking the limit (it is a
linear problem and at this point the nature of the convergence
does not need to be given), we obtain:

∂tρ(x, t) − 1
3
∆ρ(x, t) = c(x)ρ(x, t) . (20)



14 EMS Newsletter September 2018

Feature

Now, the problem with the boundary condition on ∂Ω has to
be solved. Taking (16) into account, the Dirichlet condition

x ∈ ∂Ω⇒ ρ(x, t) = 0

seems to be the most natural. However, in the 1950s, physi-
cists (see page 198 of [22]) observed that the approximation
was much better if one replaces the Dirichlet condition by a
condition of the Robin type:

x ∈ ∂Ω⇒ ρ(x, t) + λ∂�nρ(x, t) = 0 .

The term λ with the dimension of length is called extrapo-
lation length. Its evaluation is inspired by the observation of
stellar radiation.

While writing the Dautray-Lions volume, with the scales
that Larsen and Keller proposed, the direct (quantitative)
demonstration for the calculation of this λ was found, by
analysing the transport problem in a half-space named Milne
space (after the astrophysician).

It turns out that this problem appears in an analogous man-
ner in the relation between the Boltzmann equation and the
compressible Navier-Stokes equation (11). The adaptation of
the results obtained in Milne space to the Boltzmann equa-
tion was considered in 1986 in an article by Bardos, Caflish
and Nicolaenko [1]. Also, this type of research was applied
in the space shuttle project HERMES, planned in 1975 but
then abandoned in 1992. Being a European project, it re-
quired regular collaborations between industry and university
researchers, amongst them, in particular, (together with the
French scientists) Neunzert from Kaiserlautern and Cercig-
nani from the Politecnico de Milan (who had worked contin-
uously and very successfully on the Boltzmann equation since
1962).

This collaboration also continued beyond the European
borders, with Desphande (Indian Institute of Science, Banga-
lore), for example, and especially with Sone and his group at
the Laboratory of Aeronautical Engineering in Kyoto.

Approximation of the critical size
In a volume dedicated to the transport equation and edited by
the CEA, it was natural to evoke the critical size problem,
which, in the kinetic regime, is expressed by the principal
eigenvalue of the (unbounded) operator, defined on L2(Ω×Rd

v )
by

T ( f ) = f �→ −v · ∇x f +L f , (21)

with a convenient boundary condition (for example, the ab-
sorbing one), while L is a linear operator that acts on the
variables v and represents the effects of the environment on
the particles (absorption and re-emission). The Lorentz equa-
tions (4) and their simplification (5) give the most significant
prototypes. The spectral analysis of the operator f �→ T ( f ) is
not simple because it is neither selfadjoint nor anti-selfadjoint
and its spectrum may contain, at the same time, a continuous
spectrum and eigenvalues with finite multiplicity.

Nevertheless, mathematicians like Albertoni- Montagnini
in 1966 and Ghidouche-Point-Ukai in 1976 have demon-
strated the existence of a real and simple principal eigenvalue.
It is thus natural to expect that the eigenvalue obtained by the
diffusion approximation would deliver a “good approxima-
tion” of the principal eigenvalue Λε of the transport operator

and therefore contribute to determining the critical character
of the material.

In the case of the simplified model (5), using the scale
change by Larsen and Keller, we are led to consider the pair
(Λε , fε(x, v) ≥ 0) as a solution of the equation (with absorbing
boundary conditions):

− 1
ε
ω · ∇x fε −

1
ε2

(
fε −

1
4π

∫
S2

fε(x, ω′)dω′
)
+ c(x) fε = Λε fε ,

fε(x, v) ≥ 0 ,
∫
Ω×S2
| fε(x, ω)|2dxdω = 1 .

(22)
In a paper [18], which was part of his “Thèse d’Etat” de-
fended in 1981, Sentis proved that the pair (Λε , fε) converges
to (Λ, u), a solution of the diffusion equation with Dirichlet
boundary conditions:

1
3
∆u + c(x)u = Λu, u = 0 on ∂Ω . (23)

The aim was also to demonstrate that, with the introduction
of the extrapolation length λ given by Milne’s problem, the
principal eigenvalue corresponding to the same operator with
the Robin condition

uε + ελ∂�nuε = 0 on ∂Ω (24)

should give an approximation of higher order.
These results were then included in the last chapter of

Dautray-Lions’ book on transport. But, meanwhile, toward
the end of 1984, Cessenat, entrusted by Dautray with the final
proofreading of the different contributions, had discovered a
“gap” in the proof. In the proof of the main result [18], it was
not really established that

∫
S2 fε(x, ω)dω converges to a non-

zero function. He asked Sentis to solve the problem urgently
(as the proofs needed to be sent to the editor). Sentis asked
Golse, by that time working with him in the CEA as part of
his military duties, and Perthame, also by that time a consul-
tant at the CEA and sharing his office, to help him correct the
proof.

It is clear that if f ∈ L2(Ω × S2) and ω · ∇x f ∈ L2(Ω × S2)
then the function x �→ f (x, ω) possesses a supplementary reg-
ularity in the direction ω but that does not help further. In fact,
they proved in a note to the CRAS, published at the beginning
of 1985, that if the functions f are bounded in L2(Ω×S2) and
are such that ‖ω · ∇x f ‖L2(Ω×S2) are bounded then, for every
function φ ∈ L∞(S2), the averages

∫
S2 f (x, ω)φ(ω)dω form a

relatively compact set in L2(Ω). That lemma allowed the cor-
rection of the proof of the announced result. Later on, Golse,
Perthame and Sentis showed, together with P.-L. Lions, that
these averages belong to the Sobolev space H

1
2
x , that is, one

gains half a notch of regularity in x. More precisely, as an
example, we have [12]:

Theorem 3.1. For all test functions φ ∈ L∞(Rd
v ) with compact

support, there exists a constant C(φ) such that if f ∈ L2(Rt ×
Rd

x × Rd
v ) and

ε∂t f + v · ∇x f = h ∈ L2(Rt × Rd
x × Rd

v )

then
∥∥∥∥∥
∫

f (x, v, t)φ(v)dv
∥∥∥∥∥

L2(Rt ,H
1
2 (Rd

x))
≤ C(φ)‖h‖L2(Rt×Rd

x×Rd
v ).



Feature

EMS Newsletter September 2018 15

Proof. We denote by f̂ (ξ, v, τ) the Fourier transform with re-
spect to x, t of the function f (x, v, t) and similarly for the func-
tion ĥ. We would like to bound

|ξ|
∣∣∣∣∣
∫

f̂ (ξ, v, τ)φ(v)dv
∣∣∣∣∣
2
.

With this aim, we introduce the parameter α and decompose
the integral into two parts respectively to the sign of |ετ + ξ ·
v| − α. We bound∣∣∣∣∣

∫
1|ετ+ξ·v|≤α f̂ (ξ, v, τ)φ(v)dv

∣∣∣∣∣
2

by ( ∫
| f̂ (ξ, v, τ)|2dv

)( ∫
1|ετ+ξ·v|≤α|φ(v)|2dv

)
.

Next, we note that |(ετ + ξ · v) f̂ (ξ, v, τ)| = |ĥ(ξ, v, τ)| to bound
∣∣∣∣∣
∫

1|ετ+ξ·v|>α f̂ (ξ, v, τ)φ(v)dv
∣∣∣∣∣
2

by ( ∫
|ĥ(ξ, v, τ)|2dv

)( ∫ 1|ετ+ξ·v|>α
|ετ + ξ · v|2 |φ(v)|2dv

)
.

Both integrals depending on φ can directly be estimated. We
conclude the proof with an optimal choice of α. �

Dautray later discovered that Theorem 3.1 had a forerun-
ner. In 1984, Agoshkov established a result of that type. He
used it for trace theorems that were very useful in numerical
analysis. The broader significance of his formulation, how-
ever, he seemed to overlook.

4 Application of averaging lemmas

One of the challenges of the 1980s was the proof of the ex-
istence of solutions (possibly in a weak sense) for the Boltz-
mann equation for any natural initial datum, using only mass
and energy conservation:
∫
Rd

x×Rd
v

(
1 +
|v|2
2

)
f (x, v, t)dxdv

=

∫
Rd

x×Rd
v

(
1 +
|v|2
2

)
f (x, v, 0)dxdv,

as well as the decrease of entropy:
∫
Rd

x×Rd
v

f (x, v, t) log f (x, v, t)dxdv

≤
∫
Rd

x×Rd
v

f (x, v, 0) log f (x, 0)dxdv,

leading to the idea of adapting Theorem 3.1 to other functions
spaces. So, in 1988, Golse, P.-L. Lions, Perthame and Sentis
[12] demonstrated by interpolation that the relations

f (x, v) and v · ∇x f ∈ Lp(Rd
x × Rd

v ) (25)

yield, for 1 < p < ∞ (with φ ∈ L∞(R3
v) of compact support)

and for 0 < s < inf(1/p, 1 − 1/p), the estimate∥∥∥∥∥
∫
Rd

v

f (x, v)φ(v)dv
∥∥∥∥∥

W s,p
≤ C(φ)‖ f ‖1−s

Lp(Rd
x×Rd

v )‖v · ∇x f ‖sLp(Rd
x×Rd

v ) .

Using a basic example, they observed that this estimate does
not extend to the case p = 1 . In an attempt to overcome that
obstacle, DiPerna and P.-L. Lions used, together with the av-
eraging lemma, the a priori estimates of energy and especially

entropy. This is how they came to prove the existence of solu-
tions for the Boltzmann equation (in a relatively weak sense)
called renormalised but global in time and depending only on
the natural properties of the initial data (see [6]).

The analogy between this proof and the one given by
Leray for the Navier-Stokes equations is striking, both for
the results and the methods. It therefore becomes intuitive
to have, at the macroscopic limit of the Boltzmann equation,
“turbulent” Leray solutions of incompressible Navier-Stokes
equations (∇ · u = 0) with strictly positive viscosity.

In 1991, Bayly, Levermore and Passot [3] observed that,
if we introduce into the equations (11) a speed as well as fluc-
tuations of density and temperature of order ε : (u, ρ, θ) =
(εũ, 1+ερ̃, 1+εθ̃), we obtain formally, within the limit ε → 0,
the incompressible Navier-Stokes equations with, in particu-
lar, strictly positive viscosity ν∗ and thermal diffusiveness κ∗.

In order to link the solutions found by DiPerna–Lions to
those given by Leray, it is convenient to consider functions

fε =
1

(2π)
d
2

e−
|v|2
2
(
1 + εgε(x, v, t)

)
, (26)

solutions of re-scaled Boltzmann equations:

ε∂t fε + v · ∇x fε =
1
ε
C( fε). (27)

This approach was suggested in 1990-91, firstly for the formal
calculations in the stationary regime by Sone, then for regular
regimes and finite times by Marra, Esposito and Lebowitz and
finally by Bardos, Golse and Levermore (see [2]), inspired
by the derivation of the diffusion approximation for Equa-
tion (15) by the method of moments. This calculation was,
at the time, formal and it was justified only for very regular
and small initial data in relation to the viscosity by Bardos
and Ukai in 1991.

The final goal, which was the proof of convergence for
any time and any “natural” initial data, was the object of vari-
ous contributions and it was only completely achieved in 2004
by Golse and Saint-Raymond [13].

In [13], the authors use, in addition to the deduced esti-
mates of energy and entropy, a control of the acoustic waves
(given by P.-L. Lions and Masmoudi [14]), as well as a refined
version of the averaging lemmas. They demonstrate that, for a
family of solutions of the free transport equation, the proper-
ties of equi-integrability in the variables v can be transposed
into equi-integrability in the variables (x, v) in a way that, with
the Dunford-Pettis theorem, obtains strong convergence. This
results from the following proposition.

Proposition 4.1. For all 1 ≤ p ≤ q ≤ ∞, every solution f of
the equation

∂t f + v · ∇x f = 0 on R × Rd
x × Rd

v (28)

satisfies the estimate

‖ f (t)‖Lq
x(Lp

v ) ≤ |t|−d( 1
p−

1
q )|| f (0)||L∞x (Lp

v ). (29)

5 Averaging lemmas and the Wigner transform

In Proposition 4.1, the reader will note an astonishing similar-
ity with the properties of regularisation of the free Schrödinger
equation (and its Strichartz inequalities) that are obtained by
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representing, for t > 0, the solution of the free Schrödinger
equation in Rd

i∂tψ +
1
2
∆ψ = 0

by the formula

ψ(x, t) =
e−i dπ

4

(2πt)
d
2

∫
Rd

e−
|x−y|2

2it ψ0(y)dy, (30)

from which can be deduced, on the one hand, the regularising
effect (for example, for every distribution with compact sup-
port, the function ψ(x, t) is analytic) and on the other hand,
the effect of dispersion:

‖ψ(·, t)‖L∞(Rd) ≤
1

(2πt)
d
2

∫
Rd
|ψ0(y)|dy. (31)

Taking into account the relation

d
dt
‖ψ(·, t)‖L2(Rd) = 0, (32)

one can deduce the classical Strichartz estimates.
The relation between the dispersion effect for the transport

equation and the Schrödinger equation was described in detail
for the first time by Castella and Perthame [5]. It is naturally
explained by considering the Wigner transform w(x, v, t) [11],
which allows the definition of a “quantum kinetic theory” in
the “phase space” (Rd

x × Rd
v ) by introducing the Wigner func-

tion:

w(x, v, t) =
1

(2π)d

∫
Rd

y

ψ
(
x +

y
2

)
ψ∗
(
x − y

2

)
e−iv·ydy , (33)

which transforms the complex-valued wave function into a
real-valued function on the phase space, with the inconve-
nience that w may be negative. It is not a probability distribu-
tion in the strict sense like f in the classical kinetic equations.
Apart from that, the Wigner function has all the good proper-
ties, with, for example, the moments in v giving macroscopic
densities like densities of “position”∫

Rd
v

w(x, v, t)dv =
∣∣∣ψ(x, t)

∣∣∣2 = ρ(x, t)

and “current”∫
Rd

v

vw(x, v, t)dv = Im
(∇ψ(x, t)ψ∗(x, t)

)
= J(x, t). (34)

The free Schrödinger equation (30) transforms directly into
the free transport equation

i∂tψ +
1
2
∆ψ = 0 ⇒ ∂tw(x, v, t) + v · ∇xw(x, v, t) = 0,

from which we deduce again (32), noting that

|ψ(x, t)|2 =
∫
Rd

v

w(x, v, t)dv

=

∫
Rd

v

w0(x − vt, v, t)dv.

In the same way, in the papers by Perthame, Gasser and
Markowich (see [17]), there is a systematisation from the ki-
netic point of view, in order to find the dispersion estimates,
as well as a generalisation of that method for other PDEs.

More generally, with a real potential V and Planck con-
stant � (the limit � → 0 of which represents the “(semi)
classical” limit), H�ψ = − �

2

2 ∆ψ + Vψ defines a Hamiltonian

operator (unbounded but selfadjoint) on the space L2(Rd) .
Then, the solution of the Schrödinger equation

i�∂tψ� = −
�2

2
∆ψ� + Vψ� (35)

is given by ψ0 �→ ψ�(t) = e−i t
�H�ψ0, with e−itH� being a unitary

group.
Now, the time evolution of the Wigner function is given by

the Wigner equation consisting of the classical free transport
operator and a pseudodifferential operator in V (clearly non-
local due to the Fourier transform in definition (33)):

∂tw�(x, v, t) + v · ∇xw�(x, v, t) − [Θ(V�)w�
]
(x, v, t) = 0,

where Θ(V�)w�](x, v, t) is given by the integral in (y, v′) of the
product of

1
(2π)d

V
(
x + �y2

) − V
(
x − �y2

)
i�

e−iv·y

and
ei v′ ·(x−y)

� w�
( x + y

2
, v′, t
)
.

For a sufficiently regular potential V , one has
[
Θ(V�)w�

]
(x, v, t) = ∇xV(x)∇vw�(x, v, t) + O(�) .

So, we recover, at least formally, the Liouville equation, in
the limit � → 0. It can be demonstrated that, under cer-
tain hypotheses, the “Wigner function” w�(x, v, t) converges
to a non-negative measure w0(x, v, t), called “the Wigner mea-
sure” by P.-L. Lions and Paul [15], and, for this w0(x, v, t) ≥ 0,
we recover, at least formally, classical kinetic theory, i.e., the
Liouville equation

∂tw0(x, v, t) + v · ∇xw0(x, v, t) − ∇xV · ∇vw0(x, v, t) = 0 .
(36)

The above derivations can be rigorously justified: the general
theory for the linear case is elaborated in [11] and the spe-
cial nonlinear case for the limit of the “Schrödinger–Poisson”
system toward “Vlasov–Poisson” is given in [15] and [25].

We would like to close this brief presentation of “quantum
kinetics” with the following comments.

(1) The Wigner function is a reformulation of the “den-
sity matrix” K�(x, y, t), defined for a “pure state” ψ like
K�(x, y, t) = ψ�(x, t) ⊗ ψ∗�(y, t) . This density matrix, which is
the kernel of an integral operator in L2(Rd) named the “den-
sity operator” K̂, is a key object of statistical quantum me-
chanics. In the general case of a “mixed state", where the sys-
tem is found with a probability λ j in the state ψ j(x, t), with
λ j ≥ 0 and

∑∞
j=1 λ j = 1, one has

K�(x, y, t) =
∞∑
j=1

λ j(ψ j)�(x, t) ⊗ (ψ j)∗�(y, t) . (37)

While the operator K̂� is a solution of the Heisenberg-von
Neumann equation

i�
d
dt

K̂� + [H�, K̂�] = 0 , (38)

the relation between the density matrix K�(x, y, t) and the
Wigner function w�(x, v, t) is given by

K�(x, y, t) =
∫
Rd

v

ei v·(x−y)
� w�

( x + y
2
, v, t
)
dv (39)
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and

w�(x, v, t) =
1

(2π)d

∫
Rd

y

e−iv·yK�
(
x +
�y
2
, x − �y

2
, t
)
dy.

With � → 0, the formal calculation above yields a cor-
respondence between the evolution of K̂� according to the
Heisenberg–von Neumann equation (38) and the evolution of
w = lim�→0 w� according to the (kinetic) Liouville equation:

∂tw + {H,w} = 0. (40)

We see how, within the “(semi)classical limit”, the commu-
tator of the operators becomes the Poisson bracket (2) of the
functions.

(2) Under the hypotheses of convenient regularity of w, we
find, as part of Weyl calculus, the theorem obtained by Egorov
in 1970 [9], using the integral Fourier operators introduced by
Hörmander. This theorem precisely states that, in this setting,
the operator e−i t

� Ĥ�K�(0)ei t
� Ĥ� is, up to a computable rest, de-

scribed by Formula (39), with w being the solution of Equa-
tion (40).

The main lines of the computation above remain formally
valid in the nonlinear case, where the potential V depends
on the solution as in the Heisenberg–von Neumann–Poisson
case:

i
d
dt

K̂� +
[
− �

2

2
+ V�, K̂�

]
= 0 ,

V�(x) =
1

4π

∫
R3

x

1
|x − y|Kh(y, y)dy,

that is,
−∆V� = Kh(x, x) = Trace (K̂�).

We thus obtain, in the limit �→ 0, the Vlasov–Poisson equa-
tion

∂tw + w · ∇xw − ∇xV · ∇vw = 0,

ρ(x, v, t) =
∫
R3

v

w(x, v, t)dv,

− ∆V(x, t) = ρ(x, t).

Because of the problem’s nonlinearity, the justification, in
the existing proofs of taking the limit � → 0, requires that
the Wigner transform of the initial datum Kh(0) is uniformly
bounded in L2 . In one space dimension, this was realised for
weak (non-unique) solutions of Vlasov-Poisson with measure
valued initial datum by Zheng, Zhang and Mauser [25]. But,
in higher dimensions, as stated in the papers by P. L. Lions-
Paul and Markowich–Mauser, it seems unavoidable to con-
sider mixed states (37), with a very restrictive condition on
the λ j, which must depend on the Planck constant � in a way
that

∞∑
j=1

(λ�j )
2 ≤ C�3. (41)

Interestingly, we see that this idea already appears in 1946
in a notice by Yvon [24]. Actually, we find Jacques Yvon’s
presence throughout the whole history of this subject!

Taking into account the different fields of application,
many mathematical variants of the averaging lemmas have
appeared; for example, in [12], the following theorem under-
lines the role of a transversal hypothesis.

Theorem 5.1. Let µ be a bounded positive measure on Rd
v

such that

sup
v∈S d−1

µ
({

v ∈ Rd
v/|v · e| ≤ ε

}) ≤ Cε , ∀ε > 0 . (42)

Then, with u a solution of the equation u + v · ∇xu = f ,the
map f �→

∫
u(x, v)dµ(v) is continuous from L2(dx ⊗ dµ(v)) to

H
1
2 (Rd

x).

This result has been generalised by Gérard and Golse
[10] for averages with respect to y of solutions to pseudo-
differential equations. In order to handle problems of Vlasov–
Maxwell type, DiPerna and P. L. Lions [7] have, in the theory
of kinetic equations, included averaging lemmas with differ-
ential operators in the variable v, and this point of view has
been systematically generalised in the paper by Tadmor and
Tao [20].

6 Conclusions: kinetic equations and
statistical limits

The contributions mentioned above on the subject of av-
eraging lemmas solely concerned the relations between ki-
netic and macroscopic equations. But, of course, their history
also involves relations between the dynamics of N particles
(molecules, atoms, ions and electrons) with N large or tend-
ing to infinity. One then enters into the realm of (classical or
quantum) statistical mechanics, which could easily provide
subjects for a lot of further articles.

We should mention that, in an intuitive and formal way,
those relations could already be found in the spirit of Maxwell,
Boltzmann and Lorentz: one of the most important tools was
the BBGKY hierarchy, as introduced in this context by Yvon
in 1935 [24], and the first rigorous works are due to Grad and
Lanford.

It should also be noted that there are important similari-
ties between the derivations of kinetic models from classical
statistical mechanics and from quantum statistical mechanics.
This can be explained by using the Wigner transformation.
It is in this same context that the Vlasov equation mentioned
above appears naturally.

We observe that Vlasov presented his equation in 1938,
66 years after the Boltzmann equations. This is explained
by the fact that the Vlasov equation applies to modern do-
mains of physics, while the Boltzmann equation was related
to 19th century physics. However, because of its really non-
linear character, it contains the theory’s essential difficulties.

After the pioneering works of Neunzert and Spohn (see
[19]), the subject developed within the same community, also
using the tools referred to above (for example, the version of
the averaging lemmas given in [7]). Moreover, Vlasov’s ap-
proach has morphed into new shapes motivated by contempo-
rary physics, in particular in the modelling of plasmas, for
instance in the context of nuclear fusion (the international
project ITER, between Japan and Cadarache). A relativistic
version of Vlasov’s equation, where the force F is the Lorentz
force containing the magnetic field, and where the speed v is
bounded by the speed of light c and given by v(ξ) with ξ ∈ Rd,
yields the nonlinear “Vlasov–Maxwell” system. Furthermore,
there are “semi-non-relativistic” approaches of order 1/c or
O(1/c2) (for a concise presentation of this hierarchy of non-
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linear kinetic equations, see, for example, [4]). We notice that,
for this kind of kinetic equation, a lot of problems are still un-
solved in mathematical and numerical analyses.

Finally, as the Liouville equation (1) generates a Hamil-
tonian flow that preserves the measure on the phase space,
there have been recent works (Brenier et al.) on the relations
between Vlasov-Monge-Ampère equations and the optimal
transport equation (see [21]).

With these observations in mind, it is clear that, since
the decade of 2000, works on this subject multiplied with,
amongst others, the work by Mouhot and Villani in 2011
on Landau damping [16], which contributed to a second
Fields Medal for the French kinetic community. The Euro-
pean network HYKE (HYperbolic and Kinetic Equations,
2002-2005), with its 350 researchers in 16 European coun-
tries and the USA, amongst them nearly all the mathemati-
cians cited in this article (and some young fellow researchers
that left us too soon, like N. BenAbdallah and F. Poupaud),
acted as an important catalyst in this evolution.
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