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Solved and Unsolved Problems
Michael Th. Rassias (Institute of Mathematics, University of Zürich, Switzerland)

Probability theory is nothing but common sense

reduced to calculation.

Pierre-Simon Laplace (1749–1827)

The column this month is devoted to probability theory. The pro-

posed problems range from basic to fairly demanding so a wide

range of our readers should be able to tackle them. As always, there

is also a proposed open research problem. The open problem, along

with the relevant discussion, is provided by Martin Hairer.

Probability theory traces back to the 16th century, when the Ital-

ian polymath Gerolamo Cardano attempted to mathematically anal-

yse games of chance. More specifically, his book about games of

chance, published in 1663 (written ca. 1564), contains the first sys-

tematic treatqment of probability. Probability theory also traces back

to 17th century France, when Blaise Pascal and Pierre de Fermat

corresponded about problems of games of chance. In modern math-

ematics, probability theory is an extremely applicable and versatile

field, which is used in a surprisingly broad spectrum of areas, such as

weather prediction, medicine/biology, equity trading, machine per-

ception, music, etc.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

197. In a game, a player moves a counter on the integers accord-

ing to the following rules. During each round, a fair die is thrown.

If the die shows “5” or “6”, the counter is moved up one position

and if it shows “1” or “2”, it is moved down one position. If the die

shows “3” or “4”, the counter is moved up one position if the cur-

rent position is positive, down one position if the current position

is negative and stays at the same position if the current position

is 0. Let Xn denote the position of the player after n rounds when

starting at X0 = 1. Find the probability p that lim Xn = +∞ and

show that Xn/n → 1/3 with probability p and Xn/n → −1/3 with

probability 1 − p.

(Andreas Eberle, Institute for Applied Mathematics,

Probability Theory, Bonn, Germany)

198. Let B := (Bt)t≥0 be Brownian motion in the complex plane.

Suppose that B0 = 1.

(a) Let T1 be the first time that B hits the imaginary axis, T2 be

the first time after T1 that B hits the real axis, T3 be the first

time after T2 that B hits the imaginary axis, etc. Prove that,

for each n ≥ 1, the probability that |BTn | ≤ 1 is 1/2.

(b) More generally, let ℓn be lines through 0 for n ≥ 1 such that

1 � ℓ1. Let T1 := inf{t ≥ 0 ; Bt ∈ ℓ1} and recursively define

Tn+1 := inf{t > Tn ; Bt ∈ ℓn+1} for n ≥ 1. Prove that, for each

n ≥ 1, the probability that |BTn | ≤ 1 is 1/2.

(c) In the context of part (b), let αn be the smaller of the two

angles between ℓn and ℓn+1. Show that
∑∞

n=1 αn = ∞ iff, for

all ǫ > 0, the probability that ǫ ≤ |BTn | ≤ 1/ǫ tends to 0 as

n →∞.

(d) In the context of part (a), show that

lim
n→∞

P
[

exp
(−δn

√
n
) ≤ |BTn | ≤ exp

(
δn

√
n
)]
=

∫ 2δ/π

−2δ/π

e−u2/2

√
2π

du

if δn ≥ 0 tend to δ ∈ [0,∞].

(Russell Lyons, Department of Mathematics, Indiana University,

USA. [Partially supported by the National Science Foundation

under grant DMS-1612363])

199. Suppose that each carioca (native of Rio de Janeiro) likes

at least half of the other 223 cariocas. Prove that there exists a set A

of 1000 cariocas with the following property: for each pair of car-

iocas in A, there exists a distinct carioca who likes both of them.

(Rob Morris, IMPA, Rio de Janeiro, Brazil)

200. Let X,Y,Z be independent and uniformly distributed in

[0, 1]. What is the probability that three sticks of length X, Y and

Z can be assembled together to form a triangle?

(Sebastien Vasey, Department of Mathematics, Harvard

University, Cambridge, Massachusetts, USA)

201. Suppose that each hour, one of the following four events

may happen to a certain type of cell: it may die, it may split into

two cells, it may split into three cells or it may remain a single cell.

Suppose these four events are equally likely. Start with a popula-

tion consisting of a single cell. What is the probability that the

population eventually goes extinct?

(Sebastien Vasey, Department of Mathematics, Harvard

University, Cambridge, Massachusetts, USA)

202. We flip a fair coin repeatedly and record the outcomes.

(1) How many coin flips do we need on average to see three tails

in a row?

(2) Suppose that we stop when we first see heads, heads, tails (H,

H, T) or tails, heads, tails (T, H, T) come up in this order on

three consecutive flips. What is the probability that we stop at

H, H, T?

(Benedek Valkó, Department of Mathematics, University of

Wisconsin Madison, Madison, Wisconsin, USA)

II An Open Problem, by Martin Hairer

(Mathematics Institute, Imperial College London,

UK)

Before trying to formulate this open problem, I would like to start by

introducing one of the most important objects in probability theory,

namely Brownian motion. One way of viewing Brownian motion is

as a random variable B taking values in the space C of continuous

functions from R to R and satisfying the following two properties.

Claim 1 (i) One has B(0) = 0 almost surely.

(ii) For any finite sequence of times (t1, . . . , tn), the Rn-valued

random variable (B(t1), . . . , B(tn)) is a centred Gaussian ran-

dom variable such that E(B(ti) − B(t j))
2 = |ti − t j| for any

i, j ∈ {1, . . . , n}.
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Why is Brownian motion so important? One reason is that it ap-

pears in the following “functional” version of the central limit theo-

rem. Consider a sequence {ξi}i∈Z of independent and identically dis-

tributed (i.i.d.) random variables with vanishing expectation and unit

variance. We use these to define a collection of random variables S n

for n ∈ Z by specifying that

S 0 = 0 , S n+1 − S n = ξn .

The central limit theorem then tells us that, as n → ∞, S n/
√

n con-

verges in law to a standard Gaussian random variable. On the other

hand, we can define a random continuous function S (t) by setting

S (n) = S n for n ∈ Z and by extending this to arguments in R by

linear interpolation. If we rescale this random function appropriately

by setting S (N)(t) = S (Nt)/
√

N, we obtain the following result [3].

Theorem 1 As N →∞, the sequence of C-valued random variables

S (N) converges in law to a Brownian motion.

This way of obtaining Brownian motion immediately suggests

a number of properties that are not completely obvious at first sight

from the definition above, although they can easily be read off prop-

erty (ii) above. First, since the ξn are i.i.d., the collection ξ̃n = ξn+m

is equal in law to the original sequence for every fixed m ∈ Z. At the

level of S , this implies that if we define the translation operators

(TτS )(t) = S (t + τ) − S (τ) so that TτTν = Tτ+ν , (1)

TτS
law
= S for every τ ∈ Z. Similarly, we can define rescaling opera-

tors

(SλαS )(t) = λ−αS (λt) so that SλαSµα = Sλµα , (2)

as well as S (N) = SN
1/2

S . Finally, we note that since the ξi are inde-

pendent, there exists δ > 0 such that, conditional on the ‘present’

{S (t) : |t − t0| ≤ δ}, the ‘future’ {S (t) : t > t0} is independent of the

‘past’ {S (t) : t ≤ t0} for every t0 ∈ R. This suggests the following.

Proposition 1 Brownian motion satisfies the following properties.

Claim 2 Translation invariance: TτB
law
= B for all τ ∈ R.

Scale invariance: SλαB
law
= B for α = 1/2 and all λ > 0.

Markov property: For any t0 ∈ R, conditional on Bt0 , {B(t) : t > t0}
is independent of {B(t) : t ≤ t0}.

As a matter of fact, up to multiplication by a real number, Brow-

nian motion is the only C-valued random variable with these proper-

ties that also vanishes at the origin. Furthermore, even if we relax the

second condition to allow for values α � 1/2, it remains the case that

Brownian motion is the only continuous stochastic process satisfy-

ing all of these properties. If we allow for discontinuous processes

then we can find other processes satisfying these properties but there

are still very “few” of them. More precisely, for each value α > 1/2,

there is a process Lα (the so-called ‘spectrally positive 1/α-stable

Lévy process’) such that every process satisfying the properties of

Proposition 1 is of the form κ+Lα − κ− L̃α, where κ± are two positive

numbers and L̃α is an independent copy of Lα.

Processes satisfying the three properties of Proposition 1 arise

naturally (or rather, in many cases, are conjectured to arise) as scal-

ing limits of various “toy models” of statistical mechanics. In these

situations, however, one is typically interested in processes that do

not depend on a time parameter but instead on two or more “spatial”

parameters. Furthermore, in most known cases, the processes aris-

ing in this way are random Schwartz distributions, so that some care

has to be taken with the formulation of the Markov property. One

formulation is the following.

Definition 1 A random distribution η on Rd satisfies the germ

Markov property if, for any smooth domain D and any neighbour-

hood U of ∂D, the laws of {η(φ) : supp φ ⊂ D} and {η(φ) : supp φ ⊂
Dc} are independent, conditional on {η(φ) : supp φ ⊂ U}.

For d > 2, the “free field” is the analogue of Brownian motion

and is defined as the random distribution η such that all random vari-

ables of the type η(φ) with φ ∈ C∞
0

are jointly centred Gaussians with

covariance given by

Eη(φ)η(ψ) =

∫
Rd

∫
Rd

φ(x)ψ(y)|x − y|2−d dx dy .

Again, this is translation invariant, has the germ Markov property

and is scale invariant with exponent α = 1− d

2
. (A similar object also

exists for d = 2 and is of great interest but the associated notion of

“translation invariance” is more involved.) An answer to the follow-

ing question would be a gigantic breakthrough in probability theory

and mathematical physics.

203* Open Problem. For d ≥ 2 and α < 0, characterise all (if

any) random distributions that are invariant under the Euclidean

transformations, scale invariant with exponent α and satisfy the

germ Markov property.

Any partial result, including the description of any previously un-

known non-Gaussian random distribution with these properties,

would be very welcome. Besides the free field, one such random

distribution was recently constructed in d = 2 with exponent −1/8

as the scaling limit of the Ising model at criticality [1, 2]. Con-

formal field theory provides a conjectured characterisation of a

whole family of such objects for a range of exponents α in d = 2

but the case d ≥ 3 is wide open, even at the conjectural level.

Another breakthrough in this direction was the recent character-

isation [4] of the “KPZ fixed point”, a space-time random func-

tion H (in space dimension 1) that is translation invariant, has

the germ Markov property and is scale invariant in the sense that

λ−1H(λ2x, λ3t)
law
= H(x, t).
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III Solutions

187. Let (an)n≥1, (bn)n≥1 and (cn)n≥0 be sequences such that

an > 0, bn > 0 and cn > 0 for n ≥ 1 and:

(G1) c0 = 0 and cn is increasing,

(G2) cn+1 − cn is decreasing for n ≥ 0,

(G3) ck

(
ak+1

ak

− 1

)
≥ cn

(
bn+1

bn

− 1

)
for 1 ≤ k < n.

Given a function f , let

An =
1

cn−1

n−1∑
k=1

f

(
ak

bn

)
, n ≥ 2.

Then, if f is real, convex increasing and non-negative on an inter-

val [D, E] that includes all the points
ak

bn
for k < n, prove that An

increases with n.

(Shoshana Abramovich, University of Haifa, Israel)
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Solution by the proposer. Similarly to [1, Theorem 5.1], we will show

that under our conditions,

An+1 − An ≥ 0, n ≥ 2. (3)

By the definition of An, we get

An+1 − An =
1

cn

n�
k=1

f

�
ak

bn+1

�
− 1

cn−1

n−1�
k=1

f

�
ak

bn

�
(4)

=
1

cn−1

�
cn−1

cn

n�
k=1

f

�
ak

bn+1

�
−

n−1�
k=1

f

�
ak

bn

��
.

To enable proving (3), we rewrite

cn−1

cn

n�
k=1

f

�
ak

bn+1

�
, n ≥ 2. (5)

By using (G2), we get that

cn−1 > cn − ck + ck−1.

As f is non-negative and cn > 0 when n ≥ 1, we get from (5) that

cn−1

cn

n�
k=1

f

�
ak

bn+1

�
≥

n�
k=1

ck−1 + cn − ck

cn

f

�
ak

bn+1

�
(6)

=

n�
k=1

ck−1

cn

f

�
ak

bn+1

�
+

n�
k=1

cn − ck

cn

f

�
ak

bn+1

�
.

It is given that c0 = 0, therefore (6) leads to

cn−1

cn

n�
k=1

f

�
ak

bn+1

�
≥

n�
k=1

ck−1

cn

f

�
ak

bn+1

�
+

n�
k=1

cn − ck

cn

f

�
ak

bn+1

�
(7)

=

n�
k=2

ck−1

cn

f

�
ak

bn+1

�
+

n−1�
k=1

cn − ck

cn

f

�
ak

bn+1

�

=

n−1�
k=1

�
ck

cn

f

�
ak+1

bn+1

�
+

cn − ck

cn

f

�
ak

bn+1

��
.

From (7), by using the convexity of f , we get that

cn−1

cn

n�
k=1

f

�
ak

bn+1

�
≥

n−1�
k=1

�
ck

cn

f

�
ak+1

bn+1

�
+

cn − ck

cn

f

�
ak

bn+1

��
(8)

≥
n−1�
k=1

f

�
ck

cn

�
ak+1

bn+1

�
+

cn − ck

cn

�
ak

bn+1

��
.

We see now by (G3), because ak > 0, bk > 0 and ck > 0, k ≥ 1, that

�
ck

cn

�
ak+1

bn+1

�
+

cn − ck

cn

�
ak

bn+1

��
− ak

bn

=
ak

cnbn+1

�
ck

�
ak+1

ak

− 1

�
− cn

�
bn+1

bn

− 1

��
≥ 0,

1 ≤ k < n. (9)

Hence, from (9),
�

ck

cn

�
ak+1

bn+1

�
+

cn − ck

cn

�
ak

bn+1

��
≥ ak

bn

, 1 ≤ k < n, (10)

and, as f is increasing on the interval [D, E], from (10):

f

�
ck

cn

�
ak+1

bn+1

�
+

cn − ck

cn

�
ak

bn+1

��
≥ f

�
ak

bn

�
, 1 ≤ k < n. (11)

From (7) and (11), we get that

cn−1

cn

n�
k=1

f

�
ak

bn+1

�
≥ f

�
ck

cn

�
ak+1

bn+1

�
+

cn − ck

cn

�
ak

bn+1

��
(12)

≥ f

�
ak

bn

�
, 2 ≤ k < n.

From (12) and (4), we get that (3) holds, which means that An is

increasing with n, n ≥ 2. �
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Also solved by Mihaly Bencze (Romania), Socratis Varelogiannis

(France), Alexander Vauth (Germany).

188. For a function f : R → R and a positive integer n, we

denote by f n the function defined by f n(x) = ( f (x))n.

(a) Show that if f : R→ R is a function that has an antiderivative

then f n : R → R satisfies the intermediate value property for

any n ≥ 1.

(b) Give an example of a function f : R → R that has an an-

tiderivative and for which f n : R → R has no antiderivatives

for any n ≥ 2.

(Dorin Andrica, Babesş Bolyai University, Cluj-Napoca,

Romania, and Vlad Crişan, University of Göttingen, Germany)

Solution by the proposers.

(a) Since f has an antiderivative, f satisfies the intermediate value

property (IVP). The compositum of two functions satisfying the

IVP is again a function satisfying IVP. Note that

f n = g ◦ f ,

where g : R → R is defined as g(x) = xn. It is easy to see that g

has the IVP, hence f n = g ◦ f must also satisfy the IVP.

(b) We use the following classical result.

Lemma 1 For a ∈ R \ {0} and b ∈ R, the function defined by

fa,b(x) =


cos a

x
if x � 0

b if x = 0

has an antiderivative if and only if b = 0.

From Lemma 1, it follows that the function f : R→ R given by

f (x) =


cos2 1

x
if x � 0

1
2

if x = 0

has an antiderivative.

We now have that

f n(x) =


cos2n 1

x
if x � 0

( 1
2
)n if x = 0.

We shall prove that f n has no antiderivative for n ≥ 2. For this, one

uses the following identity, whose proof is just a simple induction.

Lemma 2 For any reals x1, . . . , xm, one has

cos x1 cos x2 · · · cos xm =
1

2m

�
cos(±x1 ± x2 ± · · · ± xm),

where the sum on the right side is over all 2m possible choices of

signs.
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Using Lemma 2, we can write

f n(x) =



1

22n

�
+,− cos(±1

x
± · · · ± 1

x������������������������
2n terms

) if x � 0

1
2n if x = 0,

=
1

22n

�
+,−�0

f
(±1 ± · · · ± 1����������������������

2n terms

,0)
+


1

22n S n if x � 0
1

2n if x = 0,

where the last sum is over all possible choices of signs for which we

have

±1 ± · · · ± 1����������������������
2n terms

� 0

and S n is the number of combinations for which

±1 ± · · · ± 1����������������������
2n terms

= 0.

Using Lemma 1, we have that f n has an antiderivative if and only if
1

22n S n =
1
2n , i.e., S n = 2n. On the other hand, it is clear that

S n =

�
2n

n

�
,

so the last condition becomes
�

2n

n

�
= 2n. This equation has no solu-

tion for n ≥ 2 since, for example, any prime p between n and 2n

divides
�

2n

n

�
but does not divide 2n. �

Also solved by Mihaly Bencze (Romania), John N. Daras (Greece),

Sotirios E. Louridas (Greece).

189.

(a) Let { fn}∞n=1
be an increasing sequence of continuous real-

valued functions on a compact metric space X that converges

pointwisely to a continuous function f . Show that the conver-

gence must be uniform.

(b) Show by a counterexample that the compactness of X in (a) is

necessary.

(c) Determine whether (a) remains valid if the sequence { fn}∞n=1
is

not monotone.

(W. S. Cheung, University of Hong Kong, Pokfulam, Hong Kong)

Solution by the proposer.

(a) For any n ∈ N, write gn := f − fn. As fn ↑ f pointwisely on X,

we have gn ↓ 0 pointwisely on X.

Let ε > 0 be given. For any x ∈ X, there exists Nx ∈ N such that

gNx (x) < ε .

Since gNx is continuous, there exists an open neighbourhood Bx

of x in X such that

gNx (y) < ε for all y ∈ Bx .

Do this for every x ∈ X. The open cover {Bx : x ∈ X} of X has a

finite subcover, say {Bx1
, . . . , Bxk

}. Write

N := max{Nx1
, . . . ,Nxk

} .

For any y ∈ X, there is an i ∈ {1, . . . , k} such that y ∈ Bxi
. Hence,

for any n ≥ N ≥ Nxi
, we have

0 ≤ gn(y) ≤ gN (y) ≤ gNxi
(y) < ε .

Hence {gn} → 0 uniformly on X and so { fn} → f uniformly

on X.

(b) For any n ∈ N, consider fn : R→ R given by

fn(x) :=
�
1 − 1

n

�
x .

Clearly, fn(x) ↑ f (x) := x pointwisely on R but, as

sup
n→∞

���� fn(x) − f (x)
��� : x ∈ R

�
= sup

n→∞

� |x|
n

: x ∈ R
�
= ∞ ,

the convergence is not uniform.

(c) Without the monotonicity, (a) will no longer be valid. For exam-

ple, consider the sequence fn : X = [0, 1]→ R given by

fn(x) :=



0 0 ≤ x ≤ 1 − 2
n

n2 x − n2 + 2n 1 − 2
n
≤ x ≤ 1 − 1

n

−n2 x + n2 1 − 1
n
≤ x ≤ 1 .

fn is continuous on X for each n and fn → f ≡ 0 pointwisely on

X but, as

sup
n→∞

���� fn(x)− f (x)
��� : x ∈ X

�
= sup

n→∞

�
fn(x) : x ∈ X

�
= sup

n→∞

�
n
�
= ∞ ,

the convergence is not uniform. �

Also solved by Socratis Varelogiannis (France), Alexander Vauth

(Germany), Jeff Webb (UK).

190. Let {an} be a sequence of positive numbers. In the ratio test,

we know that the condition

lim
n→∞

an+1

an

= 1

is not sufficient to determine whether the series

∞�
n=1

an is conver-

gent or divergent. For example, if an = 1/n then

an+1

an

=
n

n + 1
= 1 − 1

n + 1
= 1 − n + 1

(n + 1)2

and if an = 1/n2 then

an+1

an

=
n2

(n + 1)2
= 1 − 2n + 1

(n + 1)2
.

Hence, the coefficient a in the expression 1 − an+1

(n+1)2 plays an im-

portant role in the convergence of
�

an. In this question, we would

like to study it more closely.

Let a be a non-negative real number and let {an} be a sequence

with an > 0, satisfying

an+1

an

≤ 1 − an + 1

(n + 1)2
(13)

for all n ≥ n0 := [|2 − a|] + 1, where [x] is the integral part of x.

(i) Show that if a > 0 then

lim
n→∞

an = 0.

If a = 0, for any λ > 0, find an example such that

lim
n→∞

an = λ.

(ii) Show that if a > 1 then

∞�
n=1

an

is convergent. Is this still true when a = 1?

(Stephen Choi and Peter Lam, Simon Fraser University,

Burnaby B.C., Canada)
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Solution by the proposers. (i) In view of (13), the sequence {an} is

eventually monotonically decreasing and bounded below by 0. So,

lim
n→∞

an exists and is non-negative.

By (13), we have

an+1 ≤
�

n2 + (2 − a)n

(n + 1)2

�
an ≤ · · · ≤ an0

n�
i=n0

�
i2 + (2 − a)i

(i + 1)2

�
(14)

for all n ≥ n0. It follows that

1

an+1

≥ 1

an0

n�
i=n0

�
(i + 1)2

i2 + (2 − a)i

�
=

1

an0

n�
i=n0

�
1 +

ai + 1

i2 + (2 − a)i

�
(15)

for all n ≥ n0.

If a > 2 then

∞�
i=n0

ai + 1

i2 + (2 − a)i
≥
∞�

i=n0

a

i
= ∞.

If 2 > a > 0 then

∞�
i=n0

ai + 1

i2 + (2 − a)i
≥
∞�

i=n0

a

2i
= ∞

because i > (2 − a) for i ≥ n0. Since

n�
i=n0

�
1 +

ai + 1

i2 + (2 − a)i

�
≥ 1 +

n�
n=n0

ai + 1

i2 + (2 − a)i
,

we have lim
n→∞

an = 0 by (15).

If a = 0, for any λ > 0, take an = λ(n + 1)/n. Then,

an+1

an

= 1 − 1

(n + 1)2

and lim
n→∞

an = λ.

(ii) If a > 1, in view of (14), for any n ≥ n0, we have

an+1 ≤ an0

n�
i=n0

�
i2 + (2 − a)i

(i + 1)2

�

= an0


n�

i=n0

i

i + 1


n�

i=n0

�
i + (2 − a)

i + 1

�

= an0

n0

n + 1

n�
i=n0

�
1 − a − 1

i + 1

�

=
an0

n0

n + 1
exp


n�

i=n0

log

�
1 − a − 1

i + 1

� .

Now, using an elementary inequality log(1 − x) ≤ −x for 0 ≤ x < 1,

we have

an+1 ≤
an0

n0

n + 1
exp

−(a − 1)

n�
i=n0

1

i + 1



≤
an0

n0

n + 1
exp

�
−(a − 1)

� n+2

n0+1

1

x
dx

�

≤
an0

n0

n + 1
exp

�
−(a − 1) log

�
n + 2

n0 + 1

��

=
an0

n0

n + 1

�
n0 + 1

n + 2

�(a−1)

≤
an0

(n0 + 1)a

(n + 1)a

for all n ≥ n0. Since the series
�∞

n=1
1

(n+1)a converges, so does
�∞

n=1 an.

If a = 1, the statement is false by considering the counterexam-

ple an = 1/n. �

Also solved by Mihaly Bencze (Romania), Panagiotis Krasopoulos

(Greece).

191. Show that for any a, b > 0, we have

1

2

�
1 − min {a, b}

max {a, b}

�2
≤ b − a

a
− ln b + ln a ≤ 1

2

�
max {a, b}
min {a, b} − 1

�2
.

(Silvestru Sever Dragomir, Victoria University,

Melbourne City, Australia)

Solution by the proposer. Integrating by parts, we have

� b

a

b − t

t2
dt =

b − a

a
− ln b + ln a (16)

for any a, b > 0.

If b > a then

1

2

(b − a)2

a2
≥
� b

a

b − t

t2
dt ≥ 1

2

(b − a)2

b2
. (17)

If a > b then

� b

a

b − t

t2
dt = −

� a

b

b − t

t2
dt =

� a

b

t − b

t2
dt

and

1

2

(b − a)2

b2
≥
� a

b

t − b

t2
dt ≥ 1

2

(b − a)2

a2
. (18)

Therefore, by (17) and (18), we have for any a, b > 0 that

� b

a

b − t

t2
dt ≥ 1

2

(b − a)2

max2 {a, b} =
1

2

�
min {a, b}
max {a, b} − 1

�2

and

� b

a

b − t

t2
dt ≤ 1

2

(b − a)2

min2 {a, b}
=

1

2

�
max {a, b}
min {a, b} − 1

�2
.

By the representation (16), we then get the desired result. �

Also solved by Jim K. Kelesis (Greece), Panagiotis Krasopoulos

(Greece), Alexander Vauth (Germany).

192. Let a, b, c, d ∈ R with bc > 0. Calculate

lim
n→∞

�
cos a

n
sin b

n
c
n

cos d
n

�n
.

(Ovidiu Furdui, Technical University of Cluj-Napoca,

Cluj-Napoca, Romania)
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Solution by the proposer. The limit equals


cosh
√

bc b√
bc

sinh
√

bc
c√
bc

sinh
√

bc cosh
√

bc

 .

Let

A =

�
cos a

n
sin b

n
c
n

cos d
n

�
.

The characteristic equation of A is given by

λ2 −
�
cos

a

n
+ cos

d

n

�
λ + cos

a

n
cos

d

n
− c

n
sin

b

n
= 0.

The discriminant of this equation is ∆ =
�
cos a

n
− cos d

n

�2
+ 4c

n
sin b

n
.

Since bc > 0, one has that either both b and c are positive or both are

negative real numbers. If b and c are positive numbers, one has that

for large n, 0 < b
n
< π and hence ∆ > 0. If b and c are negative real

numbers then, for large n, one has that −π < b
n
< 0 and it follows,

since sin b

n
< 0, that ∆ > 0. Therefore, there are two real distinct

eigenvalues of A given by

λ1 =
1
2

�
cos a

n
+ cos d

n

�
+ 1

2

��
cos a

n
− cos d

n

�2
+ 4c

n
sin b

n
,

λ2 =
1
2

�
cos a

n
+ cos d

n

�
− 1

2

��
cos a

n
− cos d

n

�2
+ 4c

n
sin b

n
.

Now we need Theorem 4.7 on page 194 (see also Remark 3.1 on

page 109) in [1], which states that if n ∈ N, A ∈ M2 (C) and λ1 � λ2

are the eigenvalues of A then

An =
λn

1
− λn

2

λ1 − λ2

A +
λ1λ

n
2
− λ2λ

n
1

λ1 − λ2

I2.

Let k ∈ N. An easy calculation, based on the previous formula,

shows that

Ak =
λk

1
(1 − λ2) + λk

2
(λ1 − 1)

λ1 − λ2

I2 +
λk

1
− λk

2

λ1 − λ2

�
cos a

n
− 1 sin b

n
c

n
cos d

n
− 1

�
.

When k = n, one has that

An =
λn

1
(1 − λ2) + λn

2
(λ1 − 1)

λ1 − λ2

I2

+
λn

1
− λn

2

λ1 − λ2

�
cos a

n
− 1 sin b

n
c
n

cos d
n
− 1

�
. (19)

We have that lim
n→∞
λn

1
= e

√
bc and lim

n→∞
λn

2
= e−

√
bc. On the other hand,

a calculation shows that lim
n→∞

1−λ2

λ1−λ2
= lim

n→∞
λ1−1

λ1−λ2
= 1

2
, lim

n→∞

cos a
n−1

λ1−λ2
=

lim
n→∞

cos d
n −1

λ1−λ2
= 0, lim

n→∞

sin b
n

λ1−λ2
= b

2
√

bc
and lim

n→∞

c
n

λ1−λ2
= c

2
√

bc
.

Passing to the limit as n → ∞ in (19) and using the previous

limits we have that

lim
n→∞

An =
e
√

bc + e−
√

bc

2
I2 +
�
e
√

bc − e−
√

bc
� 

0 b

2
√

bc
c

2
√

bc
0



=


cosh

√
bc b√

bc
sinh

√
bc

c√
bc

sinh
√

bc cosh
√

bc



and the problem is solved. �
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