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On the solution of the
scalar-plus-compact problem
by Argyros and Haydon
András Zsák (Peterhouse, University of Cambridge, UK)

Whether there is a Banach space on which every operator is
a compact perturbation of a scalar multiple of the identity
was one of the most famous, longstanding open problems
in the theory of Banach spaces. It is known as the scalar-
plus-compact problem and it was solved by Spiros Argyros
and Richard Haydon some 10 years ago by constructing a
Banach space that has the scalar-plus-compact property. In
recognition of this major contribution to mathematics, Argy-
ros and Haydon were invited speakers at the 2018 ICM in
Rio de Janeiro. Their achievement was spectacular, particu-
larly as at the time no one expected a breakthrough. The so-
lution of the scalar-plus-compact problem caught not just the
mathematical community but also Argyros and Haydon by
surprise.

1 The origins

If X is an infinite-dimensional Banach space, what opera-
tors, i.e. continuous linear maps, on X are there? The Hahn–
Banach theorem provides a rich supply of continuous linear
functionals: for every non-zero vector x, there is a continuous
linear map f : X → R such that f (x) = 1. It follows that, for
non-zero vectors x and y, there is a continuous rank-1 oper-
ator T : X → X with T (x) = y given by T (z) = f (z)y. By
taking sums, we obtain a large supply of finite-rank opera-
tors on X, and the limit of a sequence of finite-rank opera-
tors is compact. Recall that an operator T on X is compact
if for every bounded sequence (xn) in X, the sequence (T xn)
has a convergent subsequence. Whether every compact op-
erator is the limit of a sequence of finite-rank operators was
another very famous open problem going back to Banach’s
book [9]. It was solved in the negative by Per Enflo in 1973
by constructing a Banach space that fails the so-called ap-
proximation property [12]. In this article, all Banach spaces
under consideration have the approximation property, and so
every compact operator can be expressed as the limit of a se-
quence of finite-rank operators. Assuming this for our space
X, let us continue by asking if there are any non-compact op-
erators on X. The answer is trivially ‘yes’: any non-zero mul-
tiple of the identity operator is non-compact since our space X
is infinite-dimensional. The construction of operators in this
generality stops here: there seems to be no general method of
finding operators that are not of the form λ Id+K, where K is
a compact operator. In contrast, specific spaces, like Hilbert
space, have very rich algebras of operators. In his famous list
of open problems from 1976, Joram Lindenstrauss [26] began
with the following question.

(Q.1) Does there exist an infinite-dimensional Banach space
X so that every operator T : X → X is of the form T =
λ Id+K, where K is compact?

Lindenstrauss goes on and lists some of the peculiar proper-
ties such a space X would have to possess:
(i) X is not isomorphic to its subspaces of finite codimen-

sion.
(ii) X is indecomposable, i.e. every decomposition of X as

a direct sum X = Y ⊕ Z is trivial: either Y or Z is finite-
dimensional.

(iii) Every operator on X has a non-trivial, proper, closed in-
variant subspace, i.e. if T is an operator on X then there
is a closed subspace Y of X such that Y � {0}, Y � X
and T (Y) ⊂ Y .

The first property follows since every operator on X is either
compact or, being a compact perturbation of a non-zero mul-
tiple of the identity operator, Fredholm with index zero. The
second property can be established as follows. If T = λ Id+K
is a projection on X then λ must be 0 or 1; hence, either T
or Id−T is a compact projection and thus either the range
or the kernel of T is finite-dimensional. The third property is
far from being straightforward and follows from a theorem of
Aronszajn and Smith [8], which states that every compact op-
erator on a (complex) Banach space has a non-trivial, proper,
closed invariant subspace.

Independently of the scalar-plus-compact problem, the
three properties above lead to three questions, each asking for
the existence or otherwise of a Banach space satisfying the
given property. These questions themselves became very im-
portant in their own right. This is hardly surprising; after all,
these are fairly basic structure-theory questions of the kind
that arise in most areas of mathematics. Indeed, in most fields
of research, an important aim is to classify the central ob-
jects of study, in our case Banach spaces, and to decompose a
general object into simpler building blocks. This usually goes
hand-in-hand with a similar study of the morphisms, in our
case operators. A very simple example is the question of di-
agonalisability of matrices. For general Banach space opera-
tors, a more basic question is concerned with the existence of
invariant subspaces.

The first two of these three questions were already an-
swered in the 1990s. Tim Gowers solved the so-called Ba-
nach hyperplane problem [18] by constructing a Banach space
not isomorphic to its hyperplanes, i.e. its closed subspaces
of codimension 1. His space also satisfied the stronger prop-
erty (i) above. Another major breakthrough of the 1990s was
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the solution by Tim Gowers and Bernard Maurey of the un-
conditional basic sequence problem [21]: they constructed a
space that contains no subspace with an unconditional ba-
sis. An unconditional basis is an infinite coordinate system
with lots of symmetries. A Banach space that has an uncon-
ditional basis has many operators and is thus far from the
scalar-plus-compact property. As pointed out by Bill Johnson
at the time, the proof of Gowers and Maurey showed a much
stronger property of their space: it is indecomposable (prop-
erty (ii) above) and, in fact, even hereditarily indecompos-
able, meaning that no closed, infinite-dimensional subspace
is decomposable. The study of hereditarily indecomposable
(HI) spaces has since become a very important area in the
field. HI constructions also happen to play a major role in the
solution of the scalar-plus-compact problem.

Concerning property (iii), it was already known to John
von Neumann that compact operators on Hilbert space have
invariant subspaces. For general Banach spaces, this was
proved by Aronszajn and Smith, as mentioned above. Whether
every operator on an arbitrary Banach space has non-trivial,
proper, closed invariant subspaces remained a major unsolved
problem for some time. The first counterexamples were pro-
duced by Charles Read [28] and Per Enflo [13]. Both were
highly complex examples that were later simplified, strength-
ened and generalised. It is still an open problem whether op-
erators on Hilbert space have invariant subspaces. Indeed, it
may even be possible that every dual operator on a dual Ba-
nach space has an invariant subspace. It is therefore signifi-
cant that there is a Banach space on which it is true that ev-
ery operator has an invariant subspace. The Argyros–Haydon
space is the first such example.

2 History and ingredients

Recall that a Banach space is said to be hereditarily inde-
composable (HI) if every subspace of X is indecomposable.
The first example of an HI space is the space XGM of Gow-
ers and Maurey that solved the unconditional basic sequence
problem. Studying the operators on XGM, Gowers and Maurey
proved in [21] that every operator from a subspace of XGM to
the whole space is the sum of a scalar multiple of the inclusion
operator and a strictly singular operator, which implies that
XGM is HI. (The reverse implication also holds for a complex
HI space by a result of Valentin Ferenczi [14].) In particular,
every operator on XGM is a strictly singular perturbation of a
scalar multiple of the identity. A strictly singular operator is
one that is not an isomorphism on any (infinite-dimensional)
subspace. Equivalently, an operator T on a Banach space X is
strictly singular if every subspace contains for every ε > 0 an
element x such that ‖T x‖ < ε‖x‖. Strictly singular operators
share many of the properties of compact operators. However,
they form an operator ideal that is strictly larger than the ideal
of compact operators. It was thus not clear whether XGM was
already a solution of the scalar-plus-compact problem.

Gowers was able to construct a strictly singular, non-
compact operator on a subspace of XGM [19]. Thus, XGM
could not be a solution of the stronger version of the scalar-
plus-compact problem asking for all operators from a sub-
space to the whole space to be compact perturbations of scalar
multiples of the inclusion map. Later, George Androulakis

and Thomas Schlumprecht [1] showed that strictly singular,
non-compact operators exist on the whole space XGM. A sim-
ilar result was shown by Ioannis Gasparis [17] for Argyros-
Deliyanni space (the first example of an asymptotic �1 HI
space). For these reasons, it became widely accepted that the
standard HI constructions would not solve the scalar-plus-
compact problem and that a solution was some way away.
This is why the landmark result of Argyros and Haydon
came as such a surprise not just to the Banach space com-
munity but also to the authors. Indeed, Argyros and Hay-
don did not set out to solve the problem. They were try-
ing to exhibit a hereditarily indecomposable predual of �1 as
an extreme example of the phenomenon that the dual of an
HI space need not be HI. They followed the classical ingre-
dients for HI constructions: rapidly increasing sequences of
�1-averages and special functionals using Maurey-Rosenthal
coding. However, they did not follow the classical method of
constructing HI spaces, which begins with the space of fi-
nite sequences and continues with the construction of a suit-
able exotic norm. Instead, they followed the method of Jean
Bourgain and Freddy Delbaen [11] for constructing classes
of L∞-spaces. These are spaces that locally, i.e. at the level
of finite-dimensional subspaces, look just like spaces of con-
tinuous functions on a compact space and have a priori noth-
ing to do with HI spaces. The Bourgain–Delbaen method is
very different from classical HI constructions in that they
begin with a very familiar norm, the norm of the space �∞
of bounded sequences, and construct their space using care-
fully chosen exotic vectors in �∞. In the delicate construc-
tion of Argyros and Haydon, the classical HI ingredients
are “woven into” the Bourgain–Delbaen method. Serendipi-
tously, this extra L∞-structure was exactly what was needed
to show that strictly singular operators are compact. In order
to explain this remarkable construction, we will have to delve
into the constructions of HI spaces and their predecessors:
Schlumprecht’s space and Tsirelson space. We also need to
take a close look at Bourgain–Delbaen spaces and the analy-
sis of their subspace structure by Haydon some 20 years later.

3 Tsirelson space, Schlumprecht’s space and
HI constructions

Many constructions of Banach spaces, and in particular all
the ones described in this section, begin with the space c00 of
eventually zero scalar sequences. For an element x = (xi) of
c00, we let supp x = {i ∈ N : xi � 0} denote the support of
x. For subsets A and B of N, we write A < B if a < b for
all a ∈ A and b ∈ B; and for x, y ∈ c00, we write x < y if
supp x < supp y, i.e. if the nonzero coordinates of x ‘come
before’ the nonzero coordinates of y. Similarly, we write n <
x if {n} < supp x, etc.

A norm on c00 is defined by means of a norming set, which
is itself a subset of c00. The action of an element f = ( fi) ∈ c00
on x = (xi) ∈ c00 is defined as 〈x, f 〉 = ∑i xi fi. Suppose
that W is a subset of c00 containing the unit vector basis (en)
(where en is the sequence whose nth coordinate is 1 and all
other coordinates are zero) and that W is contained in the unit
ball of �∞. Then, the expression

‖x‖ = sup
{|〈x, f 〉| : f ∈ W

}
(1)
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defines a norm on c00 satisfying ‖x‖∞ � ‖x‖ � ‖x‖1, where
‖·‖∞ and ‖·‖1 denote the �∞-norm and �1-norm respectively.
The completion X of (c00, ‖·‖) is then a Banach space whose
structure is determined by the choice of W. When considering
the subspace structure of X, standard perturbation arguments
show that it is sufficient to consider only a special type of
subspace called a block subspace, which is one generated by
a sequence of successive vectors x1 < x2 < x3 < . . . in c00.

The first space we describe is the famous example of Boris
Tsirelson [30]: a Banach space without a subspace isomorphic
to one of the classical sequence spaces c0 or �p, 1 � p < ∞,
which solved a longstanding open problem going back to Ba-
nach’s book [9]. It is customary to use the term Tsirelson
space for the dual space T of Tsirelson’s original construc-
tion, which also solves the same problem. The description of
T by Tadek Figiel and Bill Johnson [15] is an example of
the general process described above for constructing Banach
spaces. The norming set W is defined inductively: it is the
smallest subset of c00 that contains ±en for all n and is closed
under the following operation. If f1 < f2 < · · · < fn are in W
and n < f1 then 1

2 ( f1+ f2+· · ·+ fn) is also in W. Tsirelson space
T is then defined to be the completion of (c00, ‖·‖), where the
norm ‖·‖ is defined as in (1) above. Note that without the ad-
missibility condition n < f1 or without the factor 1

2 , the space
T would be isomorphic to �1.

The proof that Tsirelson space contains no copy of any of
the classical sequence spaces is surprisingly simple. First, it
follows easily from the definition of the norming set W that T
is an asymptotic �1 space, which roughly means that for any
n ∈ N, any n vectors ‘deep enough’ in the space behave like
the unit vector basis of �n1. More precisely, if n < x1 < · · · < xn

and ‖xi‖ = 1 for all i then the norm of
∑n

i=1 aixi in T is the �1-
norm

∑n
i=1|ai| (up to a factor 2) for arbitrary scalars ai. This

immediately rules out the possibility of a subspace of T being
isomorphic to �p for 1 < p < ∞ or to c0.

Proving that T contains no copy of �1 requires a bit more
effort. This should not come as a surprise since, as we saw
above, T is, in an asymptotic sense, close to �1. The proof
is indirect: one demonstrates a hereditary property of T (i.e.
one that passes to all subspaces) that �1 lacks. This property is
distortability: an important property in its own right and one
that is intertwined with the development of HI spaces. We say
that a Banach space X with norm ‖·‖ is distortable if there
exist λ > 1 and an equivalent norm |||·||| on X such that for ev-
ery (infinite-dimensional) subspace Y of X, there are vectors
y, z ∈ Y with ‖y‖ = ‖z‖ = 1 and |||y|||/|||z||| > λ. In other words,
‖·‖ and |||·||| are not λ-equivalent, not even after passing to a
subspace. In this case, we say that X is λ-distortable. A Ba-
nach space is arbitrarily distortable if it is λ-distortable for all
λ > 1. An old result of Robert James [24] says that �1 and c0
are not distortable, which means that a Banach space contain-
ing an isomorphic copy of one of these sequence spaces also
contains almost isometric copies. Hence, a distortable space
cannot contain a subspace isomorphic to �1 or c0.

The proof that T is distortable features an ingredient that
is crucial in all HI constructions: rapidly increasing sequences
of �1-averages. We say that x ∈ c00 is an �n1-vector of constant
C if there is a decomposition x = x1+x2+· · ·+xn of x such that
x1 < x2 < · · · < xn and ‖xi‖ � C

n ‖x‖ for all i. If, in addition,
we have ‖x‖ = 1 then x is called an �n1-average of constant C

or an �1-average of constant C and length n. (Here ‖·‖ is the
norm of T but the definitions make sense for any norm on c00.)
Note that, by the triangle inequality, C is necessarily at least 1.
We say that a (finite or infinite) sequence x1 < x2 < . . . is a
rapidly increasing sequence (RIS) if xi is an �ni

1 -average of
constant very close to 1 and n1 < n2 < . . . is a very fast-
growing sequence of integers. (These conditions are of course
made precise.) If x = x1 + x2 + · · · + xn, where x1 < x2 <
· · · < xn is an RIS of length n, then we call x an RIS vector
(of length n) and x/‖x‖ a normalised RIS vector (of length
n).

The earlier observation that T is asymptotic �1 shows
that T , and indeed every block subspace of T , contains �n1-
averages of constant 2 for any n. James’ argument showing
that �1 is not distortable can be generalised to prove the fol-
lowing: if a space contains, for some C > 1 and for all n, �n1-
averages of constant C then it also contains, for all C > 1 and
for all n, �n1-averages of constant C. In particular, this holds
in Tsirelson space and in all its block subspaces. In turn, this
also implies that every block subspace of T contains RIS vec-
tors of length n for all n. Let us now define a new norm |||·||| on
T as follows. Fix some large m ∈ N and for x ∈ T , define

|||x||| = sup
m∑

i=1

‖yi‖, (2)

where the supremum is over all decompositions x = y1+ · · ·+
ym of x with y1 < · · · < ym. This is clearly m-equivalent to the
original norm. By definition, an �n1-average x of constant C
comes with a specific decomposition x = x1 + · · · + xn, where
x1 < · · · < xn and ‖xi‖ � C

n for all i. These xi add up in an
�1-fashion in the sense that

∑‖xi‖ is at most C. It turns out that
the same is true for any decomposition of x; more precisely,
if x = y1 + · · · + ym, where y1 < · · · < ym, then

∑‖yi‖ is at
most C

(
1 + m

n
)
. Thus, if x is an �n1-average of constant C with

C very close to 1 and with n much larger than m then |||x||| ≈
1 = ‖x‖. RIS vectors, on the other hand, behave differently.
Let z = z1 + · · · + zm be an RIS vector of length m, where
z1 < · · · < zm and zi is an �ni

1 -average of constant close to 1
and with n1 < · · · < nm growing rapidly as in the definition.
Then, |||z||| � ∑m

i=1‖zi‖ = m. Since ‖zi‖ = 1 for all i, there exist
f1 < · · · < fm in W such that 〈zi, fi〉 ≈ 1 for all i. Assuming,
for argument’s sake, that m < f1, we have f = 1

2 ( f1 + · · · +
fm) ∈ W and hence ‖z‖ � 〈z, f 〉 ≈ m/2. The key combinatorial
lemma for T shows that this lower bound is essentially the
best possible, i.e. that ‖z‖ ≈ m/2. The proof makes important
use of the rapid growth of n1 < n2 < · · · < nm. Thus, every
block subspace of T contains a normalised vector whose |||·|||-
norm is at least approximately 2. This demonstrates that T is
λ-distortable for any λ < 2.

We remark that if we replace the factor 1
2 in the definition

of the norming set W of T by an arbitrary θ ∈ (0, 1), we obtain
a space that is λ-distortable for all λ < θ−1. Thus, for all λ > 1,
there exists a λ-distortable Banach space. It is a famous open
problem whether T is arbitrarily distortable. For some while,
it was not known if such a space exists at all. A remarkable
space constructed by Schlumprecht [29] provided the first ex-
ample, as well as a key step toward subsequent constructions
of HI spaces.

Schlumprecht’s space S is defined in a similar way to
Tsirelson space. We introduce the function ϕ(x) = log2(1+ x)
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defined on [1,∞) and take our norming set to be the smallest
subset W of c00 containing ±en for all n and closed under the
following operation: for any n ∈ N, if f1 < f2 < · · · < fn
belong to W then so does f = ϕ(n)−1( f1 + · · ·+ fn). So, we no
longer require the fi to be ‘far out’ in c00; instead, there is a
higher price to be paid for a large value of n, namely the factor
ϕ(n)−1 replacing the constant factor 1/2 of T . The space S is
the completion of (c00, ‖·‖), where the norm ‖·‖ is defined as
in (1) above.

The proof that S is arbitrarily distortable is similar to the
argument used in T : the different behaviour of �1-averages
and RIS vectors is key. We fix a large m ∈ N and define an
equivalent norm |||·||| for S by (2). Again using James’ argu-
ment, it is not hard to show that every block subspace of S
contains �n1-averages of constant C for all C > 1 and for all
n, and hence RIS vectors of all lengths. Again, if x is an �n1-
average of constant C with C very close to 1 and with n much
larger than m then |||x||| ≈ 1. On the other hand, RIS vectors
behave very differently. Let z = z1 + · · ·+ zm be an RIS vector
of length m, where z1 < · · · < zm and zi is an �ni

1 -average of
constant close to 1 and with n1 < · · · < nm growing rapidly
as in the definition. Then, |||z||| � ∑m

i=1‖zi‖ = m. Since ‖zi‖ = 1
for all i, there exist f1 < · · · < fm in W such that 〈zi, fi〉 ≈ 1
for all i. Then, f = ϕ(m)−1( f1 + · · · + fm) ∈ W and hence
‖z‖ � 〈z, f 〉 ≈ m/ϕ(m). The key combinatorial lemma, as in
T but this time much harder to prove, says that this lower
bound is essentially the best possible, i.e. that ‖z‖ ≈ m/ϕ(m).
Thus, every block subspace of T contains a normalised vector
whose |||·|||-norm is at least approximately ϕ(m). This shows
that S is arbitrarily distortable.

The space XGM of Gowers and Maurey [21] was the first
example of an hereditarily indecomposable Banach space and
was a development of Schlumprecht’s space. In addition to
rapidly increasing sequences of �1-averages, the construction
also made use of Maurey-Rosenthal coding. This was intro-
duced by Bernard Maurey and Haskell Rosenthal in their con-
struction of a normalised weakly null sequence without an
unconditional subsequence [27]. As with the spaces T and S ,
the Gowers-Maurey space XGM is the completion of (c00, ‖·‖),
where the norm ‖·‖ is defined by (1) with a suitably cho-
sen W ⊂ c00. The norming set W is defined as the small-
est subset of c00 containing ±en for all n and satisfying cer-
tain closure properties. These include the one already used
in the construction of S : if f1 < · · · < fn are in W then so
is ϕ(n)−1( f1 + · · · + fn). In addition, a crucial role is played
by functionals of the form ϕ(k)−1/2(g1 + · · · + gk) for certain
special sequences g1, . . . , gk of elements of W. These have a
certain tree-like structure: if g1, g2, . . . and h1, h2, . . . are spe-
cial sequences and i is minimal such that gi � hi then, for
all j, l > i, the functionals g j and hl behave very differently.
This is achieved by an injective function σ called the Maurey-
Rosenthal coding: σ(g1, . . . , g j−1) defines a certain parameter
of g j. These so-called special functionals are in some sense
rare and, in particular, their length k must come from some
very lacunary subset of N.

It is again fairly straightforward to establish that ev-
ery block subspace of XGM contains �1-averages of arbitrary
length and constant arbitrarily close to 1, and hence RIS vec-
tors of arbitrary length. The key inequality of S also holds
in XGM with some restriction: if x is an RIS vector in XGM

of length m then ‖x‖ ≈ m/ϕ(m), provided x is roughly
speaking not aligned with a special functional that would
force it to have a much bigger norm of at least m/

√
ϕ(m).

In particular, if m is far from the lacunary set of possible
lengths of special sequences then ‖x‖ ≈ m/ϕ(m) always
holds.

The key properties of T and S come from the different be-
haviour of �1-averages and RIS vectors. If we think of an RIS
vector built from �1-averages as having complexity 1 then, in
showing that XGM is hereditarily indecomposable, we shall
need rapidly increasing sequences of complexity 2. By this,
we mean sequences x1 < · · · < xm, where each xi is a nor-
malised RIS vector of some length ni and n1 < · · · < nm is
a fast-growing sequence. The difference in behaviour comes
from the alignment or otherwise of this complexity-2 RIS
with a special sequence of functionals.

An easy equivalent definition of HI goes as follows. A
Banach space X is hereditarily indecomposable if and only if,
for any two (infinite-dimensional) subspaces Y and Z of X,
the ratio ‖y + z‖/‖y − z‖, y ∈ Y and z ∈ Z, can get arbitrarily
large. Informally, the ‘angle’ between any two subspaces is
zero. Assume then that Y and Z are subspaces of X, which can
be taken to be block subspaces after perturbation. It is then
possible to build a complexity-2 RIS x1 < · · · < xk together
with a special sequence g1 < · · · < gk of functionals such that
xi ∈ Y for all odd values of i, xi ∈ Z for all even values of i
and 〈xi, gi〉 ≈ 1. Set y = x1 + x3 + . . . , z = x2 + x4 + . . . and
g = ϕ(k)−1/2(g1 + · · · + gk). Then, y ∈ Y , z ∈ Z and g ∈ W is a
special functional. It follows that

‖y + z‖ � 〈y + z, g〉 = ϕ(k)−1/2
∑
〈xi, gi〉 ≈ k/

√
ϕ(k) .

On the other hand, 〈y − z, g〉 = ϕ(k)−1/2∑(−1)i−1〈xi, gi〉 ≈ 0
because of cancellations. Due to the tree-like structure of spe-
cial functionals, the same holds for any special functional of
length k. This is one of the situations when the key inequal-
ity of S applies, and we obtain ‖y − z‖ ≈ k/ϕ(k). The ratio
‖y + z‖/‖y − z‖ ≈

√
ϕ(k) gets arbitrarily large and so XGM is

hereditarily indecomposable.
As mentioned earlier, on the space XGM , every operator is

a strictly singular perturbation of a scalar multiple of the iden-
tity. This can be seen as follows. Given a bounded linear oper-
ator T on XGM , we first find λ ∈ R such that (T −λ)xi → 0 for
every infinite rapidly increasing sequence (xi). This is done in
two steps. First one shows that d(T xi,Rxi) → 0 as i → ∞.
If that were not the case then we could build an RIS vector
x of complexity 2 (as in the proof that XGM is HI) such that
‖T x‖/‖x‖ > ‖T‖. It then follows that for some λ ∈ R, we have
(T − λ)xi → 0 as i → ∞. By “merging” two infinite rapidly
increasing sequences, it is clear that λ does not depend on
(xi). Finally, since every block subspace contains a rapidly in-
creasing sequence, it follows that T − λ is strictly singular. It
is worth pointing out that for the stronger property of com-
pactness, we would need (T − λ)xi → 0 for every bounded
sequence x1 < x2 < . . . .

Following the first construction of an HI space by Gow-
ers and Maurey, the class of HI spaces has been studied ex-
tensively by many people, notably by Argyros and his co-
authors. The motivation for this was Gowers’ famous di-
chotomy theorem: for every Banach space X, either X is un-
conditionally saturated (every subspace of X contains a fur-
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ther subspace with an unconditional basis) or X has an HI
subspace. It was therefore of interest to better understand the
structure of HI spaces: their duality, quotients and operator
algebras. In [2], Argyros showed that if a separable Banach
space Z contains isomorphic copies of every separable, re-
flexive HI space then Z must, in fact, be universal, i.e. it must
contain isomorphic copies of all separable Banach spaces.
Thus, HI spaces are in some sense ubiquitous despite being
so difficult to come by. Extending earlier work of Argyros
and Vaggelis Felouzis [3], Argyros and Andreas Tolias [7]
showed that every separable Banach space either contains �1
or is the quotient of an HI space, which implies that the class
of HI spaces and their duals is very rich. A remarkable result
of Argyros and Tolias [6] shows that there is a dual pair of
Banach spaces: one is HI and the other is unconditionally sat-
urated, i.e. they are on opposite sides of Gowers’ Dichotomy.
All these examples are Tsirelson-like constructions: they be-
gin with c00 and a norming set W closed under certain opera-
tions that are defined by a sequence (θ j,A j), where θ j ∈ (0, 1)
and A j is a family of finite subsets of N for each j ∈ N. The
norming set W is defined to be the smallest subset of c00 con-
taining ±en for all n such that if f1 < · · · < fn are in W and
{min supp fi : 1 � i � n} ∈ A j then θ j( f1 + · · · + fn) ∈ W.
Note that if θ j =

1
2 and A j = {A ⊂ N : |A| � min A} for all

j then we obtain Tsirelson space T . If θ j = log2(1 + j)−1

and A j = {A ⊂ N : |A| � j} for all j then we recover
Schlumprecht’s space S . It turns out that the classical se-
quence spaces �p can also be obtained by a suitable choice
of (θ j,A j). This was shown by Steven Bellenot in [10]. There
is an alternative Tsirelson-like construction, which yields a
norm equivalent to the �p-norm and which has a place in the
story of the solution to the scalar-plus-compact problem. Fix
real numbers a, b ∈ (0, 1) with a + b > 1 and let W be the
smallest subset of c00 containing ±en for all n, such that if
f < g are in W then so is a f + bg. Let us denote by Ua,b

the completion of (c00, ‖·‖), where ‖·‖ is defined by (1) for
this choice of W. It was shown by Haydon in his work [22]
on Bourgain–Delbaen spaces that Ua,b is isomorphic to �p,
where p is determined by the equations 1/p + 1/p′ = 1 =
ap′ + bp′ .

4 The Bourgain–Delbaen construction

We now turn to the other line of research that paved the way
to the solution of the scalar-plus-compact problem. Recall
that a Banach space X is a L∞-space if for some λ � 1
and for every finite-dimensional subspace E of X, there is
a finite-dimensional subspace F of X such that E ⊂ F and
the Banach-Mazur distance d(F, �n∞) � λ, where n = dim F.
Thus, locally, L∞-spaces behave like C(K) spaces, i.e. spaces
of continuous functions on compact Hausdorff spaces. For
this reason, it was believed that, in some sense, a L∞-space
cannot be too far from a C(K) space. It therefore came as a
surprise when Bourgain and Delbaen [11] constructed new
examples that showed a great diversity of L∞-spaces and set-
tled several open problems in the theory of Banach spaces. In
particular, they constructed separable L∞-spaces not contain-
ing c0 whose dual is �1. More precisely, for given real num-
bers a, b satisfying 0 < b < 1/2 < a < 1 and a + b > 1,
they constructed a separable L∞-space Xa,b that is somewhat

reflexive (every subspace contains a further subspace that is
reflexive) and whose dual is isomorphic to �1. The proof that
Xa,b is somewhat reflexive uses norm estimates involving the
space Ua,b defined above. Much later, Haydon carried out a
careful analysis of the subspace structure of Xa,b. In [22], he
proved that every block subspace of Xa,b contains a subspace
isomorphic to Ua,b and that Ua,b is isomorphic to some �p

space.
All constructions of HI spaces before Argyros and Hay-

don begin with c00 and equip it with some exotic norm. The
Bourgain–Delbaen construction is very different: they con-
struct their space inside �∞ by choosing exotic vectors. We
now describe this in a bit more detail, following [4]. The vec-
tors constructed inside �∞ will be the biorthogonal functionals
of a basis of �1. Denoting by X the subspace of �∞ generated
by these vectors, �1 embeds into X∗ (and will sometimes be
the whole of X∗). For this reason, we think of elements of �1
as functionals. Accordingly, we denote by (e∗n) the unit vec-
tor basis of �1, whereas we use the notation (en) for the same
vectors when inside �∞. From now on, we shall also think of
elements of �∞ as functions x : N→ R and write x(γ) instead
of xγ for γ ∈ N. The support supp x of x now has the usual
meaning for functions: supp x = {γ ∈ N : x(γ) � 0}.

A basis (d∗n) of �1 is called triangular if d∗n =
∑n

j=1 an, je∗j
with an,n � 0. We shall always take an,n = 1. In that case,
the biorthogonal vectors (dn) in �∞ form a basis of their
closed linear span X. Moreover, for each n ∈ N, the space
span{d1, . . . , dn} is isomorphic to �n∞ via the map sending x
to its restriction to {1, . . . , n}. To put it in another way, each
u ∈ �n∞ has a unique extension x into span{d1, . . . , dn} with
x(γ) = u(γ) for all γ � n. This property will be crucial for the
scalar-plus-compact property of the Argyros–Haydon space.
The isomorphism constant between span{d1, . . . , dn} and �n∞
turns out to be bounded by the basis constant of (d∗i ), which
implies that X is a L∞-space. The basis (d∗n) is constructed
recursively: at each step, an element c∗n ∈ span{e∗i : i < n} is
chosen and d∗n is defined to be d∗n = e∗n − c∗n. (The recursion
is actually done in batches and, at each step, several func-
tionals are chosen at once.) Of course, the clever part of the
Bourgain–Delbaen construction lies in the choice of the vec-
tors (c∗i ). Since the norm on the space X is simply the �∞-
norm, one needs estimates on how the evaluation functionals
e∗n act on certain vectors. Observing that e∗n = d∗n + c∗n and us-
ing induction, one can express these evaluation functionals as
sums of successive functionals, which is called the evaluation
analysis by Argyros and Haydon. In the Bourgain–Delbaen
spaces Xa,b, the evaluation analysis features the functionals
that define the spaces Ua,b. This makes the way in which the
Tsirelson-like construction of Ua,b is “woven” into the con-
struction of Xa,b more transparent.

5 The Argyros–Haydon space

We now finally turn our attention to the space XAH of Argy-
ros and Haydon. As mentioned already, their initial aim was
to construct a separable L∞-space that is hereditarily inde-
composable. Their idea was that since it was possible to re-
cursively build into the dual of the Bourgain–Delbaen space
Xa,b the Tsirelson-like norming set of Ua,b, the same can per-
haps be done with much more sophisticated Tsirelson-like
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constructions. Indeed, this was already done by Haydon for
Tsirelson space T in [23]. The remarkable feat of Argyros and
Haydon was to take this much further and build a Bourgain–
Delbaen space modelled on a Tsirelson-like HI space. The
construction begins with fixing two very fast-growing se-
quences (mi) and (ni) of positive integers. For j ∈ N, let
θ j = m−1

j and A j = {A ⊂ N : |A| � 4n j}. The sequence
(θ j,A j) then defines a Tsirelson-like space T [(θ j,A j)] and
this forms the backbone of XAH , together with a Maurey-
Rosenthal coding used in the construction of XGM . As for the
original Bourgain–Delbaen spaces, a triangular basis (d∗n) of
�1 is constructed recursively in batches. This leads to a par-
titioning of N into intervals ∆1 < ∆2 < . . . , where by an
interval we mean a set of the form {m,m + 1, . . . , n} for some
m � n in N. We begin with setting ∆1 = {1} and d∗1 = e∗1.
The construction then proceeds in stages. At the nth stage,
intervals ∆1 < · · · < ∆n and triangular basis vectors d∗γ,
γ ∈ Γn =

⋃n
i=1 ∆i for �1(Γn) are assumed to have been con-

structed. We then fix a certain, carefully chosen finite subset
of �1(Γn) enumerated as b∗γ, γ ∈ ∆n+1, which then defines the
next interval ∆n+1. The nth stage of the construction is com-
pleted by setting d∗γ = e∗γ − b∗γ for each γ ∈ ∆n+1. This process
then produces a basis (d∗γ)γ∈N of �1. As before, we now denote
by (dn) the biorthogonal sequence in �∞. The space XAH is de-
fined to be the closed linear span of (dn) in �∞. It follows that
XAH is a L∞-space with basis (dn).

The key to the construction is of course the choice of the
functionals b∗γ in the recursive construction of the basis of �1.
This is done in such a way that, for γ ∈ N, the evaluation
analysis of e∗γ has the following form:

e∗γ =
a∑

r=1

d∗ξr + m−1
j

a∑
r=1

x∗r ,

where 1 � ξ1 < ξ2 < · · · < ξa = γ and the x∗i are function-
als so that the second term m−1

j
∑a

r=1 x∗r is one of the norming
functionals of the Tsirelson-like space T [(θ j,A j)]. The factor
m−1

j here is called the weight of γ, denoted w(γ). The recur-
sive construction of the basis (d∗γ) of �1 is carried out in a way
that ensures that there is an abundance of possible evaluation
analyses produced by those γ that have even weight (meaning
that j is even). On the other hand, there is a restriction on eval-
uation functionals of odd weight governed by a certain injec-
tive function σ : N → N. This coding function is constructed
alongside the triangular basis in the recursive process at the
start. Now, if γ ∈ N has odd weight, say w(γ) = m−1

2 j−1, then
e∗γ has evaluation analysis

e∗γ =
a∑

r=1

d∗ξr + m−1
2 j−1

a∑
r=1

y∗r ,

where each y∗r is some projection of an evaluation functional
e∗ηr

, with e∗ηr
having even weight w(ηr) = m−1

4σ(ξr−1) for 1 < r �
a. Clearly, these evaluation functionals of odd weight corre-
spond to the special functionals in Gowers-Maurey space. Be-
cause of the injectivity of σ, these evaluation functionals also
have a tree-like structure.

Let us now turn to the properties of XAH . As in any
Tsirelson-like space, from the abundance of functionals of
even weight, one can deduce that, for every C > 1, every
block subspace of XAH contains arbitrarily long �1-averages

of constant C. Recall that an �n1-average of constant C comes
with a decomposition as a sum of n vectors that add in an �1-
fashion up to a factor C, and that the same holds for any de-
composition into m successive vectors as long as m is much
smaller than n. The analogous result in XAH has a similar
proof and is as follows. If x is an �n j

1 -average of constant C
and γ is of weight m−1

i with i < j then |x(γ)| � 2Cm−1
i .

The next step is to define rapidly increasing sequences. Rather
than defining this as a sequence of �1-averages, we instead use
the property of �1-averages just observed. So, a (finite or infi-
nite) sequence x1 < x2 < . . . is a rapidly increasing sequence
of constant C (or C-RIS) if:
(i) ‖xk‖ � C for all k
and there exists a fast-growing sequence j1 < j2 < . . . such
that, for all k,
(ii) |xk(γ)| � Cm−1

i whenever w(γ) = m−1
i and i < jk.

It follows from above that, for every C > 2, every block sub-
space of XAH contains a C-RIS.

Recall that the key inequality in Schlumprecht’s space
says that an RIS vector of length m has norm at most approx-
imately m/ϕ(m). There is an analogue in XAH with a similar
proof and it is, in turn, a special case of what Argyros and
Haydon call the basic inequality. It says that if (xk)

n j0
k=1 is a

C-RIS then ∥∥∥∥
n j0∑
k=1

xk

∥∥∥∥ � 10C
nj0

mj0
. (3)

(Note that in S one has n j0 = j0 and mj0 = ϕ( j0).) Using ter-
minology introduced earlier, the RIS above might be called
a complexity-1 RIS. For a complexity-2 RIS, which can be
built as in XGM , there is a better norm estimate. Argyros and
Haydon introduce the notion of an exact pair, examples of
which include normalised RIS vectors. One can then recur-
sively build sequences (xk)

n2 j0−1

k=1 of exact pairs, called depen-
dent sequences, together with functionals that will end up be-
ing the evaluation analysis of some e∗γ of odd weight m−1

2 j0−1.
This is analogous to building complexity-2 RIS vectors and
special functionals in the proof that XGM is hereditarily inde-
composable.

There are, in fact, two types of exact pairs (and hence de-
pendent sequences): 0-pairs and 1-pairs. (This is not the exact
terminology of [4].) As the name suggests, an exact pair is not
just a vector x but a pair (x, η), where η ∈ N and x(η) is 0 or
1. When the xk are type-1 exact pairs taken from given block
subspaces Y and Z by alternating between them, the resulting
dependent sequence will satisfy the norm estimate

∥∥∥∥
n2 j0−1∑
k=1

(−1)k xk

∥∥∥∥ � 40C
nj0

m2
j0

,

which is an improvement on (3). This roughly follows from
the fact that evaluating the above sum at γ would give some-
thing small and so, by the tree-like structure of odd-weight
evaluation functionals, every other e∗γ′ of weight m−1

2 j0−1 is
small on the sum. On the other hand, evaluation at γ gives

∥∥∥∥
n2 j0−1∑
k=1

xk

∥∥∥∥ � n j0

mj0
.

This already implies that XAH is hereditarily indecomposable.
We now turn to operators. Assume that T is a bounded

linear operator on XAH . Assume that (xi) is an infinite C-RIS
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such that d(T xi,Rxi) �→ 0. Using Hahn–Banach, one can then
find δ > 0 and build exact 0-pairs (z, η) with Tz(η) > δ. One
can then recursively construct a dependent sequence (zk)

n2 j0−1

k=1
of 0-pairs that forms an RIS, and for which one gets the im-
proved estimate

∥∥∥∥
n2 j0−1∑
k=1

zk

∥∥∥∥ � C′
n j0

m2
j0

,

where C′ is a constant depending on C. On the other hand,
the recursive construction produces an evaluation functional
e∗γ of weight m−1

2 j0−1 for which

n2 j0−1∑
k=1

Tzk(γ) � δ′
n j0

mj0
,

where δ′ depends only on δ. Putting z =
∑n2 j0−1

k=1 zk, we obtain
‖Tz‖/‖z‖ � δ′mj0/C

′, which is a contradiction for large j0. It
follows that d(T xi,Rxi) → 0. It is not difficult to deduce that
there is a λ ∈ R such that (T − λ)xi → 0 for every RIS (xi).
This already implies that T − λ is strictly singular.

We now come to the most important property of XAH and
show that the above operator T − λ is in fact compact. At
this point the “special functionals”, i.e. evaluations of odd
weight, play no role whatsoever; instead, the L∞-structure
becomes important. Suppose we are given x ∈ XAH , which
we write as x =

∑
γ∈N aγdγ in terms of the basis (dγ). As-

sume x has finite support and n is minimal so that {γ ∈ N :
aγ � 0} ⊂ Γn =

⋃n
i=1 ∆i. Call this n the maximum range of

x, denoted max ranx. Let u ∈ �∞(Γn) be the restriction of x to
Γn. Recall that x is the unique element of span{dγ : γ ∈ Γn}
that extends u, i.e. for which x(γ) = u(γ) for all γ ∈ Γn

and, moreover, the map u �→ x is an isomorphism. The set
{γ ∈ Γn : x(γ) � 0} is called the local support of x, which
contains lots of information, in particular about rapidly in-
creasing sequences. Suppose that (xk) is a bounded block se-
quence. We say that (xk) has bounded local weight if there ex-
ists j ∈ N so that each γ in the local support of xk has weight
at least m−1

j . We say (xk) has rapidly decreasing local weight
if each γ in the local support of xk+1 has weight less than m−1

ik
,

where ik = max ran xk. In either case, the sequence (xk) is
an RIS. This allows one to split any bounded block sequence
into the sum of rapidly increasing sequences (after passing to
subsequence) by splitting the local support. Indeed, given a
bounded block sequence (xk), let uk be the restriction of xk to
Γik , where ik = max ran xk. Write uk = vk + wk inside �∞(Γik )
as a sum of disjointly supported vectors by splitting the sup-
port of uk, i.e. the local support of xk, according to the weight
of the coordinates by choosing some suitable threshold. Let
yk and zk be the unique extensions into span{dγ : γ ∈ Γik }
of vk and wk respectively. Then, xk = yk + zk and (yk) and
(zk) are bounded block sequences. After passing to a subse-
quence, it is possible to arrange that (yk) has bounded local
weight and (zk) has rapidly decreasing local weight, and hence
both are rapidly increasing sequences. Returning to our oper-
ator T − λ, since it converges to zero on any RIS, it follows
that T − λ also converges to zero on (xk), which was an ar-
bitrary bounded block sequence. In particular, T − λ is com-
pact.

6 Other developments and open problems

We already observed the peculiar properties of XAH that fol-
low from the space having very few operators. In particular, it
is the first Banach space on which every operator has a non-
trivial invariant subspace. Let us now mention another appli-
cation. In his 1972 memoir, Barry Johnson [25] introduced
the notion of amenability of Banach algebras and posed the
question of whether the algebra L(X) of all operators on a
Banach space X can ever be amenable. It was pointed out by
Garth Dales that the space XAH provides the first example sim-
ply because L(XAH) = K(XAH) ⊕ R Id is the unitisation of
K(XAH), and it was already known that K(X) is amenable for
a L∞-space X.

Since the solution of the scalar-plus-compact problem, a
large number of articles have appeared, inspired by the land-
mark paper of Argyros and Haydon. We briefly mention a
few of these. Around the same time that the Argyros–Haydon
paper was published, Dan Freeman, Ted Odell and Thomas
Schlumprecht [16] obtained another very important result that
also uses the Bourgain–Delbaen method of constructing L∞-
spaces. They show the universality of �1 as a dual space: if
X is a Banach space with separable dual then X embeds into
a L∞-space Y whose dual Y∗ is isomorphic to �1. Combin-
ing and extending the ideas and techniques in this paper and
in the Argyros–Haydon paper led to the following beauti-
ful result of Argyros, Freeman, Haydon, Odell, Raikoftsalis,
Schlumprecht and Zisimopoulou: every separable, uniformly
convex space is isomorphic to a subspace of a Banach space
X with the scalar-plus-compact property and such that X∗ is
isomorphic to �1. Note that being hereditarily indecompos-
able, XAH has a very limited subspace structure, so this result
shows the richness of the class of spaces with the scalar-plus-
compact property.

One important open problem mentioned in [4] is whether
there is a reflexive Banach space with the scalar-plus-compact
property. Such a space would also be the first example of a re-
flexive space with the invariant subspace property (ISP), i.e.
on which every operator has a non-trivial, proper, closed in-
variant subspace. Although this problem is still open, in a ma-
jor breakthrough, Argyros and Pavlos Motakis [5] were able
to construct the first example of a reflexive space XIS P with
the invariant subspace property. Moreover, XIS P is the first
space for which every subspace has the ISP.

We conclude with two further important open problems.
As mentioned earlier, for every subspace Y of the Gowers-
Maurey space XGM , every operator Y → XGM is a strictly
singular perturbation of a scalar multiple of the inclusion op-
erator. It is not known whether there is a space X such that for
every subspace Y of X, every operator Y → X is a compact
perturbation of a scalar multiple of the inclusion operator.

We began with a discussion of the most general opera-
tor one can construct on a Banach space with the approxima-
tion property. For a general Banach space, the Hahn–Banach
theorem only guarantees the existence of nuclear operators,
which can be written as an absolutely convergent sum of
rank-1 operators. The question thus arises whether there is
a Banach space X on which every operator is of the form
λ Id+N, where N is nuclear. As Tim Gowers commented in
one of his blogs [20], the Argyros–Haydon space is already



Feature

EMS Newsletter December 2018 15

the ‘ultimate space’, and this space X would be ‘beyond ulti-
mate’.
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