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Systems of points with
Coulomb interactions
Sylvia Serfaty (New York University, USA)

Large ensembles of points with Coulomb interactions arise
in various settings of condensed matter physics, classical and
quantum mechanics, and even approximation theory, and give
rise to a variety of questions pertaining to calculus of varia-
tions, partial differential equations and probability. We will
review motivations from these fields as well as “mean-field
limit” results that allow us to derive effective models and
equations describing those systems at the macroscopic scale.
We then explain how to analyse the next-order beyond the
mean-field limit, obtaining information about systems at the
microscopic level. In the setting of statistical mechanics, this
allows, for instance, the observation of the effect of tempera-
ture and a connection with crystallisation questions.

1 General setup

The 18th century physicist Charles-Augustin de Coulomb
was the first to postulate that electrically charged particles in-
teract with one another by a force proportional to the inverse
square of their distance apart, in a way similar to Newton’s
gravitational force. In this paper, we are interested in large
systems of points (or particles) interacting by such forces,
having as motivation, besides the case of classical mechan-
ics, numerous other situations that we will detail below.

Recalling that force is the gradient of energy, we consider
a system of N particles with energy of the form

HN(x1, . . . , xN) =
1
2

∑
1≤i� j≤N

g(xi − x j) + N
N∑

i=1

V(xi). (1.1)

Here, the points xi belong to the Euclidean space Rd, although
it is also interesting to consider points on manifolds. The in-
teraction kernel g(x) is taken to be

g(x) = − log |x|, in dimension d = 2, (1.2)

g(x) =
1
|x|d−2 , in dimension d ≥ 3. (1.3)

Up to a multiplicative constant, this is the Coulomb kernel in
dimension d ≥ 2, i.e. the fundamental solution to the Laplace
operator, solving

− ∆g = cdδ0, (1.4)

where δ0 is the Dirac mass at the origin and cd is an explicit
constant depending only on the dimension.

It is also interesting to broaden the study to the one-
dimensional logarithmic case

g(x) = − log |x|, in dimension d = 1, (1.5)

which is not Coulombian, and to more general Riesz interac-
tion kernels of the form

g(x) =
1
|x|s , s > 0. (1.6)

The one-dimensional Coulomb interaction with kernel −|x| is
also of interest but has been extensively studied and is well
understood.

We also include a possible external field or confining po-
tential V , which is assumed to be sufficiently smooth and
tending to infinity fast enough at infinity. The factor N in front
of V makes the total confinement energy of the same order
as the total repulsion energy, effectively balancing them and
confining the system to a subset of Rd of fixed size.

The Coulomb interaction and the Laplace operator are ob-
viously extremely important and ubiquitous in physics, as the
fundamental interactions of nature (gravitation and electro-
magnetic) are Coulombic. Below, we will further review the
reasons for studying this type of system.

There are several mathematical problems that are interest-
ing to study, all in the asymptotic limit N → ∞:
(1) Understand the minimisers and possibly critical points of

(1.1).
(2) Understand the statistical mechanics of systems with en-

ergy HN and inverse temperature β > 0, governed by the
so-called Gibbs measure

dPN,β(x1, . . . , xN) =
1

ZN,β
e−βHN (x1,...,xN )dx1 . . . dxN . (1.7)

Here, PN,β is the probability density of observing the sys-
tem in the configuration (x1, . . . , xN) if the inverse of the
temperature is 1/β. The constant ZN,β, which is called the
“partition function” in physics, is the normalisation con-
stant that makes PN,β a probability measure,1 i.e.,

ZN,β =

∫
(Rd)N

e−βHN (x1,...,xN )dx1 . . . dxN . (1.8)

(3) Understand the dynamic evolutions associated to (1.1),
such as the gradient flow of HN given by the system of
coupled ODEs

ẋi = −
1
N
∇iHN(x1, . . . , xN), (1.9)

the conservative dynamics given by the system of ODEs

ẋi =
1
N
J∇iHN(x1, . . . , xN), (1.10)

where J is an antisymmetric matrix, or the Hamiltonian
dynamics given by Newton’s law

ẍi = −
1
N
∇iHN(x1, . . . , xN). (1.11)

We can also be interested in these dynamics with added
noise.

1 One does not know how to explicitly compute the integrals (1.8) except
in the particular case of (1.5) for specific cases of V where they are called
Selberg integrals (see [Fo]).
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From a mathematical point of view, the study of such systems
touches on several fields of mathematical analysis (partial
differential equations, calculus of variations, approximation
theory), probability theory, mathematical physics and even
geometry (when one considers such systems on manifolds).
Some of the crystallisation questions they lead to also overlap
with number theory, as we will see below.

2 Motivations

There is a large number of motivations for the study of the
above questions. We briefly describe some of them:
(1) In superconductors, superfluids and Bose–Einstein con-

densates, one observes the occurrence of quantised “vor-
tices”, which behave mathematically like interacting par-
ticles with two-dimensional Coulomb interactions. In
these systems, the vortices repel each other logarithmi-
cally, while being confined together by the effect of the
magnetic field or rotation, and the result of the compe-
tition between these two effects is that, as predicted by
Abrikosov, the vortices arrange themselves in a perfect
triangular lattice pattern, called an Abrikosov lattice (see
Figure 1; for more pictures, see www.fys.uio.no/super/
vortex/).
These systems are, in fact, described by an energy (the
Ginzburg–Landau energy) and associated PDEs but we
can show rigorously (in a study started by Bethuel–
Brezis–Hélein and continued by [SS]; see also [Se1])
that, in the case (1.2), the analysis of the vortices is re-
duced to the discrete problems described above.
Another motivation is the analysis of vortices in classical
fluids, such as that initiated by Onsager (see [MP]) or in
plasma physics.

(2) Fekete points in approximation theory: these points arise
in interpolation theory as the points minimising interpo-
lation errors for numerical integration. They are defined
as those points maximising the quantity∏

i� j

|xi − x j|

or, equivalently, minimising

−
∑
i� j

log |xi − x j|.

Figure 1. Vortices (in black) forming an Abrikosov lattice. H. F. Hess et
al., Bell Labs, Phys. Rev. Lett. 62, 214 (1989).

Figure 2. Solution of the sphere packing problem in dimension 2

They are often studied on the sphere or on other mani-
folds. In approximation theory [SK], we are also inter-
ested in the minimisation of Riesz energies

∑
i� j

1
|xi − x j|s

(2.1)

for all values of s. One can show that, by letting s → 0,
the minimisers of Riesz energies converge to those of the
logarithmic energy, whereas when s→ ∞, they converge
to the minimisers of the optimal sphere packing prob-
lem (whose solution in dimension 2 is known, from Fejes
Tóth, to be the triangular lattice represented in Figure 2).
It has been proven by Hales that the solution of the same
packing problem in dimension 3 is an FCC (face-centred
cubic) lattice, as was conjectured by Kepler. In higher di-
mensions, the solution is only known in dimensions 8 and
24, due to a recent breakthrough by Viazovska (see the
presentation in [Coh] and the review [Sl]). In high dimen-
sions, where the problem is important for error correcting
codes, the solution is expected not to be a lattice.

(3) Statistical mechanics and quantum mechanics: in physics,
the ensemble given by (1.7) in the Coulomb case is called
a two-dimensional Coulomb gas or a one-component
plasma and is a classic ensemble of statistical mechan-
ics whose analysis is considered difficult due to the
long range of the interactions. The study of the two-
dimensional Coulomb gas, as well as the one-dimensional
log gas, is also motivated by the analysis of certain quan-
tum wave-functions (fractional quantum Hall effect, free
fermions in a magnetic field, etc.), as well as by several
stochastic models in probability (see [Fo]). The variant of
the two-dimensional Coulomb case with coexisting posi-
tive and negative charges is interesting in certain theoret-
ical physics models (XY-model, sine-Gordon), which ex-
hibit a Kosterlitz–Thouless phase transition (see [Spe]).

(4) Random matrices (see [Fo]): in the particular cases (1.5)
and (1.2), the Gibbs measure (1.7) corresponds, in cer-
tain instances, to the distribution law of the eigenvalues
of certain well known ensembles:
◦ The law of the complex eigenvalues of an N × N ma-

trix where the entries are Gaussian i.i.d. is (1.7) with
(1.2), β = 2 and V(x) = |x|2. This is called the Ginibre
ensemble.
◦ The law of the real eigenvalues of an N × N Hermi-

tian matrix with complex Gaussian i.i.d. entries is (1.7)
with (1.5), β = 2 and V(x) = x2/2. This is called the
GUE (unitary Gaussian) ensemble.
◦ The law of the real eigenvalues of an N ×N symmetric

matrix with Gaussian i.i.d. entries is (1.7) with (1.5),
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β = 1 and V(x) = x2/2. This is called the GOE (or-
thogonal Gaussian) ensemble.

(5) Complex geometry provides other examples of motiva-
tions. See, for instance, the works of Robert Berman and
co-authors.

3 The mean-field limit and theoretical physics

Questions
The first question that naturally arises is to understand the
limit as N → ∞ of the empirical measure defined by

µN :=
1
N

N∑
i=1

δxi (3.1)

for configurations of points that minimise the energy (1.1),
critical points, solutions of the evolution problems presented
above and typical configurations under the Gibbs measure
(1.7), thus hoping to derive effective equations or minimi-
sation problems that describe the average or mean-field be-
haviour of the system. The term mean-field refers to the fact
that, from a physics point of view, each particle feels the col-
lective (mean) field g∗µN generated by all the other particles.
Convergence in the mean-field is thus equivalent, in some
sense, to the “propagation of molecular chaos” (see [Go]).
From the statistical mechanics point of view, we also try to
understand the temperature dependence of the behaviour of
the system and the eventual occurrence of phase transitions.

The equilibrium measure
The energy (1.1) can be written as

HN(x1, . . . , xN)

= N2
(

1
2

�
Rd×Rd\�

g(x − y)dµN(x)dµN(y)

+

∫
Rd

V(x)dµN(x)
)
,

where � denotes the diagonal of Rd × Rd. Thus, it is natural
to consider the “continuum version” of the energy, namely,

IV (µ) :=
1
2

�
Rd×Rd

g(x − y)dµ(x)dµ(y) +
∫
Rd

V(x)dµ(x).

It is well known from potential theory that, in the space
of probability measures, IV admits a unique minimiser, µV ,
which is called the equilibrium measure and is characterised
by the fact that there exists a constant c such that

hµV + V ≥ c in Rd

hµV + V = c in the support of µV ,
(3.2)

where
hµV (x) :=

∫
Rd

g(x − y)dµV (y) (3.3)

is the (electric) potential generated by µV . This is true for
Coulomb and for Riesz interactions, as well as for more gen-
eral kernels. In the Coulomb case, the equilibrium measure
can be interpreted with the help of an obstacle problem, and
in the Riesz case with a fractional obstacle problem (see [Se1,
Chap. 2]). An example is provided by Coulomb interaction (in
any dimension) with confinement potential V = c|x|2. In this
case, we can verify that the equilibrium measure is always a

(multiple of the) characteristic function of a ball. In the con-
text of the Ginibre ensemble in Random Matrix Theory, this is
known as the “circle law”. Another important example is that
of the logarithm interaction in dimension 1 with quadratic po-
tential V: the equilibrium measure has density

√
x2 − a21|x|<a,

known in Random Matrix Theory as the (Wigner) semi-circle
law for the ensembles GOE and GUE.

The energy IV is the “mean-field limit” of the energyHN

and one can show, without much difficulty, that for the min-
imisers of HN , the empirical measure converges to µV and

1
N2 minHN converges to IV (µV ).

We can interpret ∇(hµ + V) as the total mean-force felt by
a distribution with density µ. Therefore, in view of (3.2), it
is null for the minimisers. More generally, we expect that the
critical points of HN have a limiting empirical distribution
satisfying

∇(hµ + V)µ = 0. (3.4)

For the dynamics (3), the formal limit of (1.9) or (1.10) is

∂tµ = −div (∇(hµ + V)µ) (3.5)

or
∂tµ = −div (J∇(hµ + V)µ), (3.6)

again with hµ = g ∗ µ. In the case (1.2), (3.6) with V = 0 is
also well known as the vorticity form of Euler’s equation.

The difficulty in rigorously proving the convergence to-
ward solutions of these equations (whose well-posedness also
needs to be proved) consists of passing to the limit in products
of the type ∇hµµ, which are nonlinear and a priori ill-defined
in energy space. In the case of (1.2), we can overcome these
difficulties by a reformulation of the terms introduced by De-
lort in the context of his works in fluid mechanics but this
approach does not work in higher dimensions.

Until recently, all convergence results were limited to sub-
Coulomb singularities (s < d − 2) or to dimension 1. Re-
cently, a modulated energy method developed in [Se2] for
the mean-field limit of the Ginzburg-Landau equations, based
on the stability of solutions of the limiting equations for the
“Coulomb norm” (or “Riesz norm”)

‖µ‖2 =
�

g(x − y)dµ(x)dµ(y),

allowed for the treatment of Coulomb interactions and for
more singular Riesz cases.

Theorem 1 ([Se3]). For the dynamics (1.9) and (1.10), for
all d, and all s ∈ [d − 2, d) in (1.6), or (1.5) or (1.2), the
empirical measures converge to the solutions of (3.5) or (3.6),
when N → +∞, provided these are sufficiently smooth and the
initial data energies converge to those of their limits.

This result was preceded by one by Duerinckx in dimen-
sion 1 and 2 for s < 1.

As far as (1.11) is concerned, the limiting equation is for-
mally found to be the Vlasov-Poisson equation

∂tρ + v · ∇xρ + ∇(hµ + V) · ∇vρ = 0, (3.7)

where ρ(t, x, v) is the density of particles at time t with posi-
tion x and velocity v, and µ(t, x) =

∫
ρ(t, x, v)dv is the density

of particles. Notwithstanding recent progress, we do not yet
know how to prove convergence of (1.11) to (3.7) when the
interaction is Coulomb or has a stronger singularity. About
this topic, one can consult the reviews [Jab, Go].
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With temperature: statistical mechanics
Let us now consider (1.8) and turn our attention to problem
(2). It is known that even with temperature the behaviour of
the system is still governed by the equilibrium measure. The
result can be phrased using the language of Large Deviations
Principles and states, essentially, that if E is a subset of the
space of probability measures, after identifying the configu-
rations (x1, . . . , xN) in (Rd)N with their empirical measures,
we have

PN,β(E) ≈ e−βN
2(minE IV−minIV ), (3.8)

which implies, due to the uniqueness of the minimiser µV of
IV , that the configurations for which the empirical measure
do not converge to µV have a very small probability. For ex-
ample, in the case of matrices in GOE or GUE, for which the
equilibrium measure is the semi-circle law, we deduce as an
application a corollary of a result by Ben Arous and Guionnet:
the probability that a GOE or GUE matrix is definite positive
(and, thus, that all their eigenvalues are positive, which is in-
compatible with the semi-circle law because it is symmetric
relative to 0) decreases like e−cN2

.
In other words, at this leading order, temperature does not

affect the mean-field behaviour of the system. (This is not
what happens if we replace β by β/N: in this case, we have a
modified equilibrium measure that spreads out with the tem-
perature, minimising βIV (µ) +

∫
µ log µ.)

4 Beyond mean-field

In order to observe, for example, the effect of temperature
(see Figure 3), it is interesting to go beyond the mean-field
limit: expanding the energy HN to next order we have, at
the same time, access to information about the typical mi-
croscopic behaviour of the configurations. Observe that, at
the microscopic scale, the typical distance between nearest
neighbours is N−1/d.

Rigidity and Gaussian fluctuations
For minimisers of the energyHN or of typical configurations
under (1.7), since one already knows that

∑N
i=1 δxi − NµV is

small, one knows, for instance, that the so-called discrepancy
in balls Br(x), defined by

D(x, r) :=
∫

Br(x)

N∑
i=1

δxi − N dµV ,

is of order o(rdN) for fixed r > 0. It can be asked whether this
estimation can be refined and if it remains true at mesoscopic

Figure 3. Case (1.2) with N = 100 and V(x) = |x|2, for β = 400 (left) and
β = 5 (right)

scales, i.e., for r of order N−α with α < 1/d, and for all tem-
peratures. This would correspond to a rigidity result. We do
get such a result for the energy minimisers. For configurations
with temperature, in the context of bi-dimensional Coulomb
interactions, we can prove a slightly different form of such a
result: it is true when we integrate

∑N
i=1 δxi − NµV not over a

ball but against a sufficiently smooth test function. In this way,
we get an even more precise result, since we can prove that
these quantities converge to a Gaussian with explicitly known
mean and variance.

Theorem 2 ([LS2]). In case (1.2), let us assume that V ∈ C4

and µV has connected support Σ with a regular boundary. Let
f ∈ C3

c (Σ). Then,

N∑
i=1

f (xi) − N
∫
Σ

f dµV

converges in law to a Gaussian with

mean =
1

2π

(
1
β
− 1

4

) ∫
R2
∆ f log∆V,

variance=
1

2πβ

∫
R2
|∇ f |2.

This result can be localised with test-functions f supported
on any mesoscale N−α, α < 1

2 . It is also true for energy min-
imisers, formally taking β = ∞.

For an idea of the proof, we suggest the lecture notes
[Se4].

This result can be interpreted in terms of the convergence
to a suitable Gaussian free field, a sort of two-dimensional
analogue of Brownian motion. Note that a similar result was
obtained by Bauerschmidt-Bourgade-Nikula-Yau and it was
previously known for β = 2, and in the uni-dimensional loga-
rithm case for all values of β.

If f is sufficiently smooth, the associated fluctuations are
typically of order 1, i.e., much smaller than we could expect,
for example comparing with the standard Central Limit Theo-
rem, where the fluctuation of the sum of N i.i.d. random vari-
ables is typically of order

√
N. Proving this result in higher

dimension or for more general interactions remains an open
problem.

Next order in the energy
As we pointed out above, the approach we employ (initiated
with Etienne Sandier and continued with Nicolas Rougerie,
Mircea Petrache and Thomas Leblé) consists of studying the
next order of the expansion of the energy about the measure
NµV , which is formally the minimiser. Expanding and using
the characterisation (3.2), the “order 1” terms in

∑N
i=1 δxi −

NµV vanish and we obtain

HN(x1, . . . , xN) = N2IV (µV ) + FµV
N (x1, . . . , xN), (4.1)

where

FµV
N (x1, . . . , xN)

=
1
2

�
�c

g(x−y)d


N∑

i=1

δxi − NµV

 (x)d


N∑

i=1

δxi − NµV

 (y)

(4.2)
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and again � denotes the diagonal Rd×Rd. This is a next-order
expansion ofHN valid for arbitrary configurations.

The “next-order energy” FµV
N can be seen as the total

Coulomb energy of the neutral system formed by N positive
point charges at points xi and a diffuse negative charge −NµV

with the same mass. The goal is now to define the limit of this
energy when N → ∞, which will be the total Coulomb energy
(per unit volume) of an infinite system of positive charges
and a (let us say) uniformly distributed negative charge. In
physics, such a system is called a jellium. The precise def-
inition of this limiting energy is a bit complex but it uses,
in a crucial way, the Coulomb nature of the interaction. In
fact, since g is the kernel of the Laplacian, we observe that if
hµ = g ∗ µ is the electrostatic potential generated by a charge
distribution µ (with zero integral) then hµ solves the Poisson
equation

−∆hµ = cdµ,

which is a local elliptic PDE. Additionally, using the Gauss-
Green formula, we can write�

Rd×Rd
g(x − y)dµ(x)dµ(y) = − 1

cd

∫
Rd

hµ∆hµ

=
1
cd

∫
Rd
|∇hµ|2.

In another way, we can rewrite the interaction energy (which
involves a double integral) in the form of a single integral
of a local function of the electrostatic (or Coulomb) potential
generated by this distribution, itself a solution of a local equa-
tion. In Riesz’s case, these manipulations can be replaced by
similar ones using the fact that g is the kernel of an elliptic
operator in divergence form, which is still local.

With the help of this observation, we succeed in defin-
ing an infinite volume energy for an infinite configuration of
points C neutralised by a distributed charge (let us say −1) via
the solutions of

−∆H = cd


∑
p∈C
δp − 1

 .

We shall denote this energy byW(C). When the configuration
of points C is periodic with respect to a lattice Λ, the energy
W(C) has an explicit form: if there are M points ai in the
fundamental cell, we have (up to constants)

W(C) =
∑

1≤i� j≤M

GT(ai, a j),

where GT is the Green function of the torus T := Rd/Λ.
We can show that W can be obtained as the limit (in a

certain sense) of the functional FµV
N in (4.1). It also follows

from an expansion to the next order of the minimum of the
energyHN and from the fact that, after dilation, the minimis-
ers of HN must converge (almost everywhere with respect to
the origin of the dilation) to a minimiser ofW (see, for exam-
ple, [Se1]).

We are therefore led to try to determine the minimisers of
W. This problem is extremely difficult, with the exception of
the one-dimensional case, where we can prove that the min-
imum of W is attained by the lattice Z. In dimension 2 and
higher, the problem remains open and the only positive result
is the following.

Theorem 3. The minimum ofW over lattices of volume 1 in
dimension 2 is achieved uniquely by the triangular lattice.

Here, the triangular lattice means Z + Zeiπ/3 properly
scaled, i.e., what is called the Abrikosov lattice in the con-
text of superconductivity. This partial result is, in fact, a re-
sult from number theory, known since the 1950s, about the
minimisation of Epstein’s zeta function (see [Mont] and ref-
erences therein). It corresponds to minimising the height of a
flat torus in Arakelov geometry.

Since the triangular lattice is observed in experiments
with superconductors and since we have proved that the min-
imisation of the Ginzburg-Landau energy of the superconduc-
tor reduces to that of W [SS], it is natural to conjecture that
the triangular lattice is a global minimiser of the energy.

According to a conjecture of Cohn-Kumar, the triangular
lattice should be a universal minimizer in dimension 2 (i.e.,
should minimise a large class of interaction energies). An
analogous role is played in dimension 8 by the lattice E8 and
in dimension 24 by the Leech lattice, which are solutions of
the optimal packing problem, as was recently proved [Coh].
In these dimensions, the proof of the universal minimisation
is near at hand.

In dimensions d ≥ 3 (except for d = 8 and d = 24),
the minimisation of W, even among lattices, is an open
problem. As before, we can think that this relative mini-
mum is global but we expect this to be true only in low di-
mensions since computer simulations provide clear indica-
tions that in dimensions d ≥ 9 the minimisers are not lat-
tices.

These questions belong to the more general family of
crystallisation problems for which very few positive results
are known once the dimension is larger than or equal to 2 (see
the review [BLe]).

Next order with temperature
In order to observe interesting temperature effects, as well as
for applications to random matrices, we must consider βN =

βN
2
d−1.
As we saw above, the macroscopic (or “mean-field”) be-

haviour of the system does not depend upon the temperature
and is given by the equilibrium measure. On the other hand,
one can show that the microscopic behaviour depends on the
temperature and is governed by a weighted sum of the energy
W (from the previous paragraph) and a relative entropy. To
formulate the result, one needs to dilate the configurations by
N−1/d, as in the previous paragraph, and consider the limit-
ing point process Px obtained by averaging near each point
x. Here, a point process is a law on infinite configurations of
points. For instance, the Ginibre process is obtained by pass-
ing to the limit N → ∞ (after dilation) of the Ginibre en-
semble; the Poisson process Π with intensity 1 corresponds
to points thrown independently of each other in such a way
that the probability of having N(B) points in a set B is

Π
(
N(B) = n

)
=
|B|n
n!

e−|B|.

Thus, one defines a “specific relative entropy” with respect to
the Poisson process, denoted by ent[·|Π], that we can think of
as measuring how close the process P is to Poisson.
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Figure 4. Simulation of the Poisson point process with intensity 1 (left)
and the Ginibre process (right)

For all β > 0, we define the functional Fβ

Fβ(P) :=
∫
Σ

β

2
W(Px) + ent[Px|Π]dx, (4.3)

with P =
∫
Σ

Pxdx. We can now formulate a large deviations
result.

Theorem 4 ([LS1]). For all cases (1.5), (1.2) and (1.3) with
d− 2 ≤ s < d, with smooth assumptions on V and µV , and for
all β > 0, we have a Large Deviations Principle at speed N
with rate function Fβ − inf Fβ, in the sense that

PN,β(PN � P) � e−N(Fβ(P)−inf Fβ).

In this way, the Gibbs measure PN,β concentrates on mi-
croscopic point processes that minimise Fβ. This minimisa-
tion is due to a competition between energy and entropy.
When β→ 0, the entropy dominates and we can prove that the
limit processes converge to a Poisson process. When β→ ∞,
the energyW dominates, which, heuristically, forces the con-
figurations to be more “ordered” and to converge to the min-
imisers ofW. Between these two extremes, we have interme-
diate situations and to know if there is a critical β correspond-
ing to a crystallisation, or to a liquid-solid phase transition
(which is conjectured to take place for (1.2) in some physics
papers), is a problem that remains open. In dimension 1, on
the other hand, due to the fact that we can identify the min-
imisers of W, it can be concluded that a true crystallisation
result holds when the temperature tends to 0.

One consequence of this result is to provide a variational
interpretation for the few known limiting processes: the so-
called “sine-β” process, the limit in the uni-dimensional case
(1.5) and Ginibre’s process, i.e., they must minimise βW+ent.

We would like to obtain more information about the lim-
iting point processes, namely, the behaviour and decay of the
“two-points correlation functions”, which would shed light on
the existence of phase transitions and crystallisation. Unfor-
tunately, this theorem does not seem to provide much help for
these problems.

As we have seen, many questions remain open, notably
those of crystallisation, identification of minimisers and min-
ima ofW and Fβ, and the generalisation of Theorem 2 to di-
mensions d ≥ 3, to Riesz interactions and even to more gen-
eral interactions.
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