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Friable Integers: An Overview
Cécile Dartyge (Université Lorraine, Vandoeuvre les Nancy, France)

1 Introduction

A friable (or smooth) integer is an integer without large prime
factors. More precisely, let P+(n), P−(n) denote respectively
the largest and the smallest prime factor of an integer n.1 For
y � 2, an integer n is said to be y-friable if P+(n) � y and y-
sifted if P−(n) > y. The term ‘friable’ reflects the possibility
of splitting these integers into small divisors – the small prime
factors. When the friable parameter y is very small, these inte-
gers can be represented as products of divisors with good size
control. This flexibility in the factoring of friable integers is at
the origin of several recent breakthroughs in analytic number
theory. Another fundamental observation is that every integer
n has a unique decomposition of the form n = ab where a is
y-friable and b is y-sifted. The structure of the sifted part b
resembles that of a prime number while the friable part a is
supposed to behave more like a standard integer. This simple
idea is often an efficient starting point in the study of sums
appearing in analytic number theory problems, as described,
for example, in Section 5.1.

Research on friable integers really started less than a hun-
dred years ago. Since the 1980s, the theory has been actively
developing not only for its own interest, but also for the mul-
tiple applications available.

Let S (x, y) denote the set of the y-friable integers not ex-
ceeding x and let Ψ(x, y) be its cardinality. In the first part
of this survey, we provide an account of the various meth-
ods developed for estimating Ψ(x, y) according to the relative
sizes of x and y and we briefly describe some results related
to multiplicative properties of friable integers. Next we depict
the role of friable integers in certain factoring algorithms. In
the last part, we present various number theoretic-problems
for which friable integers led to significant advances.

This presentation is far from exhaustive. Our aim is
mainly to provide an overview of the role of friable integers in
different areas from number theory. One will find more com-
plete presentations in the impressive survey papers of Hilde-
brand and Tenenbaum [13], Granville [11], Pomerance [17].
We furthermore recommend the book by Crandall and Pomer-
ance [5] and those by Tenenbaum [18,19] which are unavoid-
able references respectively in algorithmic and analytic num-
ber theory.

Throughout this text the letter p with or without subscript
denotes a prime number and (a, b) is the g.c.d. of the integers
a and b. To simplify notation, we write lnk(t) the kth iterated
Napierian logarithm of the positive real number t, so that, in
particular, for k = 2, ln2 t = ln ln t.

1 With the conventions P+(1) = 1 and P−(1) = ∞.

2 How to count friable integers?

2.1 The Dickman function
According to the sizes of y and x, several methods allow ap-
proximating Ψ(x, y). Most of the estimates produced depend
on the ratio

u =
ln x
ln y
·

Dickman proved in 1930 that for all fixed u > 0, a positive
proportion of integers less than x are x1/u-friable:

lim
x→+∞

Ψ(x, x1/u)
x

= �(u)

where �, the Dickman function, is the only continuous func-
tion on R+, differentiable on ]1,+∞[, and satisfying the delay
differential equation

u�′(u) = �(u − 1)

with initial condition �(u) = 1 for 0 � u � 1. This function
�(u) corresponds to the probability of an integer less than x
being x1/u-friable. The Dickman function also appears in an-
other context with no connection to friable integers: if {Un}∞n=1
is a sequence of independent random variables uniformly dis-
tributed in [0, 1], then the series Y = U1+U1U2+U1U2U3+· · ·
converges almost surely to a random variable distributed ac-
cording to an absolutely continuous law with density e−γ�,
where γ is the Euler constant.2

Such emergence of delay differential equations is not spe-
cific to the study of friable integers. It is genuinely linked to
sieve methods. Let us, traditionally, note Φ(x, y) the number
of y-sifted integers not exceeding x. Then a similar process
leads to proving that the probability for an integer to be y-
sifted is ω(u) (see for example [19], Chapter III.6), where
ω(u) is the Buchstab function. This function is defined by
ω(u) = 1/u for 1 � u � 2 and (uω(u))′ = ω(u − 1), with
continuity at u = 2. Similar functions show up, for example,
in the Rosser–Iwaniec sieve or the Jurkat–Richert sieve.

The reader will find in [19, Chapter III.5] a very precise
study of the Dickman function. It is rapidly decreasing as u
tends to +∞, as shown by the Hildebrand–Tenenbaum esti-
mate ([13, Corollary 2.3]), valid for u � 1:

�(u) = exp
{
−u
(

ln u + ln2(u + 2) − 1 + O
( ln2(u + 2)

ln(u + 2)

))}
.

The function � has been implemented in several pieces of
mathematical software, for example Sage. The following val-
ues are given in [11]:

�(2) ≈ 3.07 × 10−2, �(5) ≈ 3.55 × 10−4,

�(10) ≈ 2.77 × 10−11, �(20) ≈ 2.46 × 10−29,

�(50) ≈ 6.72 × 10−97, etc.

2 So γ = limN→∞
∑N

n=1 1/n − ln N.
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2.2 Ψ(x,y) for large y, through functional equations
This initial result by Dickman has been improved by de
Bruijn. The starting idea is as follows: for z � y, an inte-
ger n counted in Ψ(x, z) is either y-friable or of type mp with
P+(m) � p, and the prime p lies in ]y, z]. We deduce the Buch-
stab identity:

Ψ(x, y) = Ψ(x, z) −
∑

y<p�z

Ψ
( x

p
, p
)

(1 < y � z � x). (1)

This leads to an iteration with (obvious) initial condition
Ψ(x, y) = �x� (y � x).

Since x/p � p when
√

x � p � x, we immediately get
Ψ(x/p, p) = �x/p� under this assumption. Applying this to (1)
yields an asymptotic formula for y > x1/2. Inserting this new
formula back into (1), we get an estimate for Ψ(x, y) when
y > x1/3 and so on. This functional approach leads to the uni-
form estimate for x � y � 2 (see for example Theorem III.5.8
of [18]):

Ψ(x, y) = x�(u) + O
( x
ln y

)
.

This formula loses accuracy for “large” values of u. For ex-
ample, when u � ln2 y, the main term x�(u) is dominated by
the error term O(x/ ln y). Given the present state of zero-free
regions of the Riemann zeta function, the limit of de Bruijn’s
method is actually the range

y > exp
(
(ln x)5/8+ε), (2)

for any fixed ε > 0. The range of de Bruijn’s approximation
to Ψ(x, y) has been improved by Hildebrand through another
functional equation:

Ψ(x, y) ln x =
∫ x

1
Ψ(t, y)

d t
t
+
∑

pk�x
p�y

Ψ
( x

pk , y
)

ln p. (3)

This is derived by evaluating in two different ways the sum

S =
∑

n∈S (x,y)

ln n.

First, Abel summation provides

S = Ψ(x, y) ln x −
∫ x

1
Ψ(t, y)

d t
t
,

then the additivity of the logarithm ln n =
∑

pk |n ln p furnishes
the second term of the right-hand side of (3). An advantage
of this formula is keeping the friable parameter y constant, so
that Ψ(x, y) appears as a mean value of itself in only one vari-
able. This makes the regularization arising from the iterations
more efficient. Hildebrand proved that, for all fixed ε > 0, the
formula

Ψ(x, y) = x�(u)
{

1 + O
( ln(u + 1)

ln y

)}
(4)

holds uniformly in a range larger than (2)
exp((ln2 x)5/3+ε) � y � x. (5)

This region (5) is closely related to the error term of the
prime number theorem. Any progress on this error term im-
plies a corresponding improvement on (5). Actually, Hilde-
brand proved that the Riemann hypothesis3 is satisfied if and

3 The Riemann ζ function is defined by ζ(s) =
∑

n�1 1/ns for s ∈ C with
real part strictly larger than 1. It has an analytic continuation, also denoted
ζ, on C � {1} into a function with a simple pole at s = 1. The Riemann
hypothesis asserts that the real parts of all non-trivial zeros of ζ are equal
to 1/2.

only if (4) holds in the region y � (ln x)2+ε. In the same range
(5), Saias obtained an estimate for Ψ(x, y) which is more pre-
cise than (4), the main term x�(u) being replaced by a more
involved expression Λ(x, y), already present in de Bruijn’s ar-
ticle. Nevertheless, it is possible to obtain asymptotic formu-
las for ln(Ψ(x, y)/x) in wider domains. Very precise formulas
may be found for example in [4], [13], or [19] . A conse-
quence of these estimates is that for all fixed 0 < ε < 1, and
uniformly for u � y1−ε, we have

Ψ(x, y) = xu−(1+o(1))u, (6)

as y and u tend to +∞, . This formula gives an idea of the
order of magnitude of Ψ(x, y). We deduce for example that
for fixed α > 1, Ψ(x, (ln x)α) = x1−1/α+o(1).

2.3 Geometric method for small values of y
When y gets smaller than a power of ln x, one must proceed
in a different way to obtain an asymptotic formula. We ob-
serve that Ψ(x, y) is the number of solutions (mp)p�y in non-
negative integers of the inequality

∏
p�y pmp � x. Taking log-

arithms, this condition becomes
∑

p�y mp ln p � ln x. We are
thus counting integer points inside a polytope of Rπ(y), where
π(y) is the number of prime numbers not exceeding y. This ap-
proach is efficient for very small values of y. Ennola proved
in this way that for 2 � y �

√
ln x,

Ψ(x, y) =
1
π(y)!

∏
p�y

ln x
ln p

{
1 + O

( y2

(ln x)(ln y)

)}
. (7)

La Bretèche and Tenenbaum [4] improved on this result
(range for y, quality of the error term) by employing a mixed
approach resting on the residue theorem and the saddle-point
method, as described in the next paragraph.

2.4 The saddle-point method
Formula (4) provides an approximation to Ψ(x, y) by a regu-
lar function but this is not the case for (7) which depends on
π(y)!. What happens in the domain not covered by these two
estimations, that is,

√
ln x � y � exp((ln ln x)5/3+ε)?

This question has been solved by Hildebrand and Tenen-
baum. They gave an estimate for Ψ(x, y) by using a third ap-
proach: the saddle-point method. The indicator function of y-
friable integers is a multiplicative function. Let ζ(s, y) be the
associated Dirichlet series:

ζ(s, y) :=
∑

P+(n)�y

1
ns =

∏
p�y

(
1 − 1

ps

)−1
.

By Perron’s formula, ([19, Chapter II.2]), we can represent
Ψ(x, y) in the following way for all α > 0 and x � N:

Ψ(x, y) =
1

2iπ

∫ α+i∞

α−i∞
ζ(s, y)xs d s

s
·

The optimal choice for α corresponds to the saddle point of
the integrand, that is, the unique solution of the equation

− ζ
′(α, y)
ζ(α, y)

= ln x, with − ζ
′(α, y)
ζ(α, y)

=
∑
p�y

ln p
pα − 1

· (8)

Hildebrand and Tenenbaum obtained the following formula,
valid uniformly for x � y � 2:

Ψ(x, y) =
xαζ(α, y)

α
√

2πϕ2(α, y)

{
1 + O

(1
u
+

ln y
y

)}
,
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where ϕ2(s, y) is the second derivative in s of ln ζ(s, y).
A priori this formula provides only little directly exploit-

able information since the parameter α defined by (8) looks
rather mysterious. However, by the prime number theorem
Hildebrand and Tenenbaum obtained precise asymptotic es-
timates for α = α(x, y). This enabled them to recover, and
actually extend, the results of Hildebrand mentioned in the
previous section. Moreover, they determined very precise es-
timates for the local behaviour for Ψ(x, y). For example, pro-
vided y tends to +∞, they proved that α(x, y) = o(1) if and
only if y � (ln x)1+o(1) where now the “o(1)” refers to x. A
consequence is that the asymptotics Ψ(2x, y) ∼ Ψ(x, y) holds
if, and only if, y � (ln x)1+o(1).

Very recently, La Bretèche and Tenenbaum [4] obtained
new estimates for Ψ(x, y) in the critical range 1 � y �
(ln x)1+o(1) elucidating completely the behaviour of this func-
tion in this region. Their results highlight some important
discontinuities of Ψ(x, y) when y is a prime number of size
o((ln x)2/3(ln2 x)1/3). The extremely friable integers are not
smooth.

3 Some properties of friable integers

Before setting out the applications in cryptography and in
other problems of analytic number theory, we address the fol-
lowing question: In what respect do friable integers behave
like ordinary integers?

We will employ several criteria frequently used in ana-
lytic number theory: distribution in short intervals, in arith-
metic progressions, and restricted mean values of multiplica-
tive functions. The last paragraph in this section is devoted
to the Turán–Kubilius inequality, an important tool in proba-
bilistic number theory.

3.1 Distribution in short intervals
We expect that friable integers are evenly distributed in short
intervals, that is,

Ψ(x + z, y) − Ψ(x, y)
z

∼ Ψ(x, y)
x

(9)

in a large range for x, y, z. Hildebrand obtained an estimate
of type (9) in the domain (5) and provided the interval length
z satisfies xy−5/12 � z � x. Hildebrand and Tenenbaum es-
tablished asymptotic estimates in larger domains in y but for
longer intervals ]x, x + z[.

For shorter intervals, Friedlander and Lagarias proved that
there exists a constant c > 0 such that for all fixed α > 0 and
β > 1−α−cα(1−α), the interval [x, x+ xβ] contains a positive
proportion of xα-friable integers. Other results on the distri-
bution of friable integers in short intervals appear in [13] and
[11]. Very recently, Matomäki and Radziwiłł [15] achieved
spectacular progress: they showed that for all ε > 0, there
exists C(ε) > 0 such that, for large enough x, the interval[
x, x + C(ε)

√
x
]

contains at least
√

x/(ln x)4 xε-friable inte-
gers. We will see in Section 5 that exhibiting friable integers
in such small intervals is an important step in several factor-
ing algorithms. For example, this is the case for the quadratic
sieve.

3.2 Friable integers in arithmetic progressions
We denote byΨ(x, y; a, q) the number of y-friable integers not
exceeding x and congruent to a modulo q and we let Ψq(x, y)
stand for the cardinality of y-friable integers � x and coprime
to q. When (a, q) � 1 and q is y-friable, this cardinality is
equal to Ψ(x/d, y; a/d, q/d) where we have put d = (a, q). It
is thus sufficient to restrict to the case (a, q) = 1. Assuming
good distribution in the invertible classes modulo q, we expect
that, for (a, q) = 1,

Ψ(x, y; a, q) ∼
Ψq(x, y)
ϕ(q)

, (10)

where ϕ is the Euler totient function: ϕ(n) = #(Z/nZ)∗. Here
again there are two goals: to find estimates in domains as large
as possible in terms of both q and y. In fact, determining the
main term Ψq(x, y) is already a difficult problem.

In this direction, one can find very nice results in the
literature such as the works of Fouvry and Tenenbaum [9],
Granville [10], and recently the articles by Harper [12] and
Drappeau [8]. Harper proved that (10) holds provided the ra-
tio ln x/ ln q tends to∞ and q � y4

√
e−ε, y � y0(ε).

However the condition ln x/ ln q → ∞ is very restricting:
it doesn’t cover the case q ≈ xα even for very small α > 0.
This obstacle can be circumvented by considering the dis-
tribution on average over q. Indeed, Harper proved that, for
suitable c > 0, relation (10) is satisfied for all (ln x)c � y � x
and almost all q �

√
Ψ(x, y)(ln x)−7/2. Furthermore, Drappeau

obtained a similar result on average for q < x3/5−ε but with a
weaker control of the uniformity in the classes a modulo q and
for a friability range of type (ln x)c � y � xc′ where c′ > 0 is
a very small constant.

3.3 Multiplicative functions and friable integers
In analytic number theory, one often faces the problem of es-
timating sums of the type

Ψ f (x, y) :=
∑

n∈S (x,y)

f (n)

where f is a multiplicative function such that f (mn) =
f (m) f (n) whenever (m, n) = 1. Some typical examples are the
τ function which furnishes the number of divisors, Dirichlet
characters, the Möbius function which will be defined in Sec-
tion 5.1, r(n) the number of representations of n as a sum of
two squares and �P(n) the number of roots of P modulo n for
a given polynomial P ∈ Z[X]. When f is an oscillating func-
tion such that

∑
n�x f (n) = o(x), as for example the Möbius

function or Dirichlet characters, one aims to obtain the largest
possible region in y for whichΨ f (x, y) = o(Ψ(x, y)). When the
function f is non-negative, one hopes for asymptotic formu-
las. In applications, the values f (p) are often close on average
to a real number κ: κ = 2 for f = τ, κ = 1 for f = �P if P is
irreducible, etc.

Under such hypotheses Tenenbaum and Wu [20] proved
formulas of the type

Ψ f (x, y) = Cκ( f )x�κ(u) ln(y)κ−1(1 + E(x, y)
)
,

where �κ is the fractional convolution power of order κ of the
Dickman function,4 Cκ( f ) is a convergent Eulerian product

4 The function �κ is continuous on ]0,∞[, differentiable on [1,∞[, and sat-
isfies the delay equation u�′k(u) + (1 − κ)�κ(u) + κ�k(u − 1) = 0 for u > 1,
with initial condition �κ(u) = uκ−1/Γ(κ) for 0 < u � 1.
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depending on f and κ, and E(x, y) is an error term, which for
brevity we do not define here. Under very general conditions,
we have E(x, y) = o(1) in ranges analogous to the Hildebrand
region (5) for Ψ(x, y).

3.4 The Turán–Kubilius inequality
In analytic number theory, one frequently needs to evaluate
the normal behaviour of a given arithmetic function, i.e., the
behaviour for almost all integers n, or again on a set of inte-
gers having natural density 1.5 In particular, one would like
to know whether there exists a function g with any prescribed
regularity such that | f (n) − g(n)| is very small for almost all
integers n. In this case we say that g is a normal order of f . A
famous example is the Hardy and Ramanujan theorem stating
that g(n) = ln2 n is a normal order for either of the functions
ω(n) and Ω(n), giving the total number of prime factors of n,
counted with or without multiplicity.

In many instances, a good candidate for g is the mean
value of f , that is,

g(N) = EN( f ) =
1
N

∑
n�N

f (n).

We enter the domain of probabilistic number theory. An often
efficient method consists in evaluating the variance

VN( f ) = EN(| f (n) − EN( f )|2)

and applying the Bienaymé–Chebyshev inequality. We need
however to be able to evaluate this variance and approximate
the mean.

The Turán–Kubilius inequality provides a bound for the
variance of additive functions. An arithmetic function h is said
to be additive if h(mn) = h(m)+h(n) whenever (m, n) = 1. The
functions ln n, ω(n), Ω(n), are prototypes of additive func-
tions. Such functions are determined by their values on prime
powers. The reader will find in [19] a detailed construction
of the probabilistic model that can be attached to an additive
function. Approximating the probability that an integer is di-
visible by pk and not by pk+1 by 1/pk−1/pk+1 = (1−1/p)p−k,
it is reasonable to expect that, for additive f , the mean value
EN( f ) is close to E∗N( f ) :=

∑
pν�N(1− 1/p) f (pν)/pν. A corre-

sponding approximation of the variance becomes

V∗N( f ) =
1
N

∑
1�n�N

∣∣∣ f (n) − E∗N( f )
∣∣∣2.

The Turán–Kubilius inequality states that, uniformly for all
additive, complex-valued f , we have

V∗N( f ) �
{

4 + O
(√ ln ln N

ln N

)}
BN( f )2,

where BN( f )2 is the corresponding approximation of the sec-
ond moment:

BN( f )2 =
∑
pν�N

| f (pν)|2
pν

(
1 − 1

p

)
.

As an immediate application we get a quantitative version of
the Hardy–Ramanujan theorem quoted above. La Bretèche

5 A subset A ⊂ N is of natural density 1 if

lim
N→∞

1
N

#{n � N : n ∈ A} = 1.

and Tenenbaum [3] extended this inequality to friable inte-
gers. For p � y, the probability that a friable integer is exactly
divisible by pk is close to (1 − 1/pα)p−kα where α is the sad-
dle point defined by (8). The expectation, variance, and sec-
ond order moment associated to this probabilistic model for
friable integers are respectively

E∗N( f , y) =
∑

pν∈S (N,y)

f (pν)
pαν

(
1 − 1

pα

)
,

V∗N( f , y) =
1

Ψ(N, y)

∑
n∈S (N,y)

| f (n) − E∗N( f , y)|2,

BN( f , y)2 =
∑

pν∈S (N,y)

| f (pν)|2
pαν

(
1 − 1

pα

)
.

La Bretèche and Tenenbaum proved that there exists an abso-
lute constant C > 0 such that for all 2 � y � N, we have

V∗N( f , y) � CBN( f , y)2.

Furthermore, they established in the same optimal range the
more precise inequality

V∗N( f , y) � V(Zf ),

where V(Zf ) is the variance of the probabilistic model Zf as-
sociated to the additive function f on the set of friable inte-
gers. This theorem has very nice consequences for properties
of friable integers. In this survey, we will present only one but
the reader will find other interesting applications in [3]. Let us
denote by {p j(n)}1� j≤ω(n) the increasing sequence of the prime
factors of an integer n. A very surprising fact is that, for al-
most all integers n, the order of magnitude of p j(n) depends
only on j: for almost all n � x, we have ln2(p j(n)) ∼ j for
Jx � j � ω(n), where Jx is any function tending to infinity
with x.

The friable Turán–Kubilius inequality provides a normal
order for these quantities p j(n) when n runs through friable
integers. La Bretèche and Tenenbaum proved that “small”
prime factors of friable integers behave similarly to those of
ordinary integers but that, after a certain critical index, one
observes an increasing compression phenomenon. In partic-
ular, for almost all n ∈ S (x, y) and y � (ln x)1+o(1), Jx as
above, we have p j(n) = p1+o(1)

j for Jx � j � ω(n), where
p j is the jth prime number. Since, by the prime number theo-
rem, p j ∼ j ln j, the situation is thus very different from that
of generic, normal integers.

4 Applications to algorithmic number theory
and cryptography

Security of a variety of public-key cryptographic systems re-
lies on the difficulty of factoring integers whose prime factors
are large. For example, the public key in the RSA system is
an integer N that is the product of two “large” prime factors,
i.e., N = pq. Decoding is equivalent to determining the prime
factors p and q.

Friable integers play a prominent role in a number of fac-
toring algorithms, in particular in the process of finding the
above p and q. Friable integers are also needed in the discrete
logarithm problem and in some primality testing. In this sec-
tion we provide a general idea of their use in some of these
algorithms. We have selected situations that can be described
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with little mathematical background only. In particular we
will not evoke the factoring algorithms and the primality test-
ing based on elliptic curves which are nevertheless most fre-
quently used.

The role of the friable integers in these algorithms is anal-
ogous to the one that will be depicted in this section even if
the context is different. We refer for example to Pomerance’s
survey in the International Mathematical Congress in Zurich
in 1994 [17] and to the book by Crandall and Pomerance [5],
which are important references in this context.

4.1 The quadratic sieve
The quadratic sieve was devised by Pomerance at the begin-
ning of the eighties. We aim to find the prime factors of an
integer n that we know to be composite. The starting idea is
that if a and b are two integers such that a � ±b (mod n) and
a2 ≡ b2 (mod n) then (a−b, n) will be a non-trivial divisor of
n. The challenge is thus to determine such integers a and b.

The first step of the quadratic sieve consists in considering
the y-friable values of the polynomial Q(t) = t2 − n when t is
close to

√
n, that is, for |t −

√
n| < nε with some small ε > 0.

For such t, Q(t) will be small: |Q(t)| � (2 + n−1/2+ε)n1/2+ε <
3n1/2+ε. It is natural to expect that these values have multi-
plicative properties resembling those of the integers in the in-
terval ] − 3n1/2+ε, 3n1/2+ε[. Why do we need so many friable
values Q(t)? We write as (t1,Q(t1)), . . . , (tN ,Q(tN)) the pairs
for which Q(ti) is friable. The second idea of Pomerance is
that if we have at least N � π(y)+1 such y-friable integers then
we can build a square with these Q(ti). This can be seen with
a linear algebraic argument. The factoring of each Q(ti) is of
the shape Q(ti) =

∏
p�y pvp(Q(ti)) where vp(a) denotes the p-

adic valuation of a. We can associate to each Q(ti) a vector in
F
π(y)
2 whose coordinates are the vp(Q(ti)) mod 2, p � y. Since

N > π(y), the number of vectors is strictly bigger than the di-
mension. Thus these vectors are not independent, and there
exists J ⊂ {1, . . . ,N} such that

∑
j∈J vp(Q(t j)) ≡ 0 mod 2 for

all p � y, in other words such that
∏

j∈J
∏

p�y pvp(Q(t j)) is a
square denoted by v2. We will get

(∏
j∈J

t j

)2
≡
∏
j∈J

(t2
j − n) ≡ v2 (mod n).

If
∏

j∈J t j � ±v (mod n), (v −∏ j∈J t j, n) is a non-trivial di-
visor of n detected with friable integers. Using (6) and under
the assumption that the values of the previous polynomial be-
have like generic integers in the interval ] − 3n1/2+ε, 3n1/2+ε[,
Pomerance proved that the complexity of the quadratic sieve
is L(n)1+o(1) with L(n) = exp(

√
ln n ln2 n) ; L(n)

√
2/2 is in fact

the optimal friable limit for this algorithm.

4.2 The number field sieve
The quadratic sieve is usually used for factoring integers with
less than one hundred digits. For larger integers the number
field sieve, to which this section is devoted, is available.

Let n be a number to factorise. We first determine a poly-
nomial f of degree d � 2 such that f (m) ≡ 0 (mod n) for
some integer m close to n1/d. For example, for m = �n1/d�, we
can form the polynomial f with the expansion of n in base m:
n = md + cd−1md−1 + · · · + c1m + c0, where the digits c j lie
between 0 and m− 1. Next, we consider the polynomial f (X).
If it is reducible, we immediately obtain a factor of n. We can

thus assume this does not hold. Let ϑ ∈ C be a root of f (X).
We try to find a set S of pairs of coprime integers (a, b) such
that ∏

(a,b)∈S
(a − bϑ) = γ2,

∏
(a,b)∈S

(a − bm) = v2 (11)

for some γ ∈ Z[ϑ], v ∈ Z. The process to derive such squares
is similar to the one described in the case of the quadratic
sieve. The first step consists in finding pairs (a, b) such that
(a − bm) and N(a − bϑ) are friable where N is the norm on
Q(ϑ).

Assuming again that the values of the considered polyno-
mials behave like random integers, Buhler, H. Lenstra, and
Pomerance proved that the complexity of the number field
sieve is� exp(c(ln n)1/3(ln2 n)2/3), this bound being achieved

for polynomials of degree d ∼
(

3 ln n
ln2 n

)1/3
. These results are

based in particular on conjectures on the distribution of fri-
able integers in short intervals and in polynomial sequences.
Currently these conjectures are out of reach, especially in the
case of the number field sieve where the degree of the optimal
polynomial is very high.

These last years, much research has been devoted to this
subject. We saw above that binary forms of type

F(a, b) = (a − bm)N(a − bϑ)

play an important role in the number field sieve. For general
binary forms F ∈ Z[X1, X2], Balog, Blomer, Tenenbaum, and
the author established some lower bounds for

ΨF(x, y) =
∣∣∣{1 � a, b � x : P+

(
F(a, b)

)
� y
}∣∣∣

when y � xαF+ε where αF depends on the structure of F. In
the case of irreducible binary forms, the exponent

αF = deg F − 2

is admissible. Lachand [14] obtained asymptotic formulas
valid in domains with y = xo(1) when f is a cubic or a prod-
uct of linear terms (with an explicit expression of the previous
y-exponent “o(1)” in the cubic case).

4.3 The discrete logarithm problem
The discrete logarithm is used in many cryptographic proto-
cols. Let p be a large prime number, g a generator of F∗p, and
t ∈ F∗p. The discrete logarithm problem6 consists in determin-
ing � such that g� = t. We then write � = logg t. We start out by
selecting those powers gm having a y-friable representative. If
we can find sufficiently many such powers, a linear algebra
argument will enable us to determine the discrete logarithms
of the primes q � y. After this stage, we consider the products
gmt where m is a random integer. If one of the gmt is y-friable,
thus of type gmt =

∏r
i=1 qai

i , with all the qi � y, we will deduce
that logg t = −m +

∑r
i=1 ai logg(qi).

5 Applications of friable integers to analysis
and number theory

On many occasions, friable integers opened new perspectives
in problems that had remained out of reach for decades. In
this section we briefly expose their use in various contexts.

6 We can work in a more general context by replacing F∗p with a cyclic
group.
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5.1 The prime number theorem, Daboussi’s theorem for
multiplicative functions

In the first half of the last century, many mathematicians were
convinced that an elementary proof of the prime number the-
orem was not possible; the qualification ‘elementary’ means
here using only the usual tools of real analysis, and among
other things avoiding complex analysis.

It was a huge surprise when Erdős and Selberg provided
in 1949 an elementary but rather difficult proof of the prime
number theorem.

In 1984, Daboussi [6] gave a very elegant proof by using
friable integers. Let µ denote the Möbius function. This func-
tion is defined in the following way: µ(n) = 0 if n is divisible
by the square of a prime number, otherwise µ(n) = (−1)ω(n),
where ω(n) is the number of distinct prime factors of n. A
classical result in number theory asserts that the prime num-
ber theorem is equivalent to the formula

M(x) :=
∑
n�x

µ(n) = o(x). (12)

One of the ideas of Daboussi is to represent M(x) in terms of
sums of the Möbius function over friable integers, viz.

M(x, y) :=
∑

n∈S (x,y)

µ(n).

Writing n = ab where a is y-friable and b is y-sifted, we arrive
at the formula

M(x) =
∑

P−(b)>y

µ(b)M(x/b, y).

The other steps follow a more natural progression than the
initial proof of Erdős and Selberg. The main ingredients are
very simple estimates on sifted and on friable integers, the
crucial point being the upper bound of some kind of mean
value of the M(x, y).

This limpid process of sifted–friable factorization com-
bined with convolution7 methods may be used to produce a
new proof of the following theorem due to Daboussi: if f is a
multiplicative function (i.e., f (mn) = f (m) f (n) when m and n
are coprime) with modulus at most 1 then for all real irrational
α, we have

lim
x→∞

1
x

∑
n�x

f (n) exp(2iπnα) = 0.

5.2 Friable integers and Waring’s problem
Waring’s problem consists in determining, given an integer
k � 2, the smallest integer s such that all natural numbers
can be represented as a sum of s kth powers. In a slightly
weaker version one only asks that all sufficiently large enough
integers are representable. In this latter version the number s
is traditionally denoted by G(k). For example, Linnik showed
that G(3) � 7, and Davenport proved that G(4) = 16.

The circle method is a direct approach in which one ex-
presses the number R(n) of representations of any integer n as
sum of s kth powers by a Cauchy or a Fourier integral:

R(n) =
∫ 1

0
F(α)s exp(−2iπnα) dα,

7 The convolution product of two arithmetic functions is defined in Sec-
tion 5.3.

with F(α) =
∑

m�n1/k

exp(2iπmkα).

The main contribution to this integral arises from the so-called
major arcs corresponding to those α close to a rational num-
ber with small denominator. Traditionally, the set of these α
is denoted byM, and its complement m =]0, 1[�M is called
the set of minor arcs.

An important feature of this method consists in showing
that the contribution from the minor arcs is negligible. One
can use bounds of type

∫
m

|F(α)|s dα � max
α∈m
|F(α)|s−2�

∫ 1

0
|F(α)|2� dα,

with 2� � s. The integral on the right-hand side then corre-
sponds to the number of solutions of the Diophantine equation

xk
1 + · · · + xk

� = yk
1 + · · · + yk

� (1 � xi, yi � n1/k).

By restricting some variables to be friable, Wooley [21] set-
tled functional inequalities between the number of solutions
of a Diophantine equation in � friable variables xi, yi and the
number of solutions of an equation in �−1 variables. The pro-
cess is very complicated and not suitable for a short account,
however Wooley obtained in this way many important new re-
sults, in particular that G(k) � k ln k+k ln2 k+O(k) as k → ∞.
The best previously know bound was � (2 + o(1))k ln k.

5.3 Friable summation and Davenport identities
Duffin and then Fouvry and Tenenbaum [9] introduced a
new summation method, called friable summation or P-
summation. It consists of ordering the indexes of a series ac-
cording to their largest prime factor and then studying conver-
gence as the friable parameter approaches infinity. This leads
to the following definition: a series

∑
αn is said to have friable

sum α (or to be P-convergent to α) if∑
P+(n)�y

αn = α + o(1) (y→ +∞).

A series already summable for the friable method is called
regular if it is convergent in the usual sense and its friable
sum α is equal to its ordinary sum:

lim
y→+∞

∑
P+(n)�y

αn = α = lim
N→+∞

N∑
n=1

αn.

It may happen that the friable sum exists but does not co-
incide with the usual sum. Theorem 11 of [9] provides in-
finitely many examples. While, for ϑ ∈ R � Z, the series∑

n�1 exp(2iπnϑ)/n converges (in the usual sense) to

log
( 1
1 − exp(2iπϑ)

)
,

where, here and in the sequel to this paragraph, the complex
logarithm is understood as the principal determination, Fou-
vry and Tenenbaum proved that, for all rationals ϑ = a/q with
(a, q) = 1, 1 � a < q the friable sum exists and has value

lim
y→∞

∑
P(n)�y

exp(2iπna/q)
n

= log
( 1
1 − exp(2iπa/q)

)
+
Λ(q)
ϕ(q)
,

whereΛ is the Von Mangoldt function, defined byΛ(q) = ln p
if q = pk, Λ(q) = 0 otherwise.

Friable summation avoids the Gibbs phenomenon and can
be employed to solve arduous questions in analysis such as
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the problem of Davenport’s identities that we will describe
now.

The Dirichlet convolution product of two arithmetic func-
tions u, v is defined by the formula

u ∗ v(n) =
∑
d|n

u(d)v(n/d) (n � 1).

The identity element for this composition law in the ring of
arithmetic functions is often denoted by δ, so that δ(n) = 1 for
n = 1 and δ(n) = 0 for n � 2. We denote by 1 the constant
function equal to 1 for all positive integers. We then have the
fundamental formula δ = µ ∗ 1.

Let B1(t) be the first Bernoulli function, defined by B1(t) =
{t} − 1/2 if t � Z and B1(t) = 0 for t ∈ Z, where {t} denotes the
fractional part of t. It coincides everywhere with its Fourier
series:

B1(ϑ) = −
∑
k�1

sin(2πkϑ)
πk

.

With this equation, we formally obtain for two arithmetic
functions f and g such that f = g ∗ 1, the beautiful identity

∑
m�1

f (m)
πm

sin(2πmϑ) +
∑
n�1

g(n)
n

B1(nϑ) = 0. (13)

This led Davenport to formulate the following problem: given
f and g, determine those real numbers ϑ such that relation
(13) holds. This is a very difficult task and we do not provide
a general answer.

Davenport proved that, in the case ( f , g) = (δ, µ), identity
(13) is satisfied for all ϑ ∈ R. However, his argument does not
work in the emblematic cases ( f , g) = (ln,Λ), (τ, 1), where τ
is the divisor counting function. It was only sixty years later
that these cases were solved by La Bretèche and Tenenbaum
[2]. One of the crucial ingredients of their work is the applica-
tion of friable summation which is remarkably well adapted
to this problem. They proved that for ( f , g) = (ln,Λ), (13)
holds for all real ϑ, but, in the case ( f , g) = (τ, 1), they gave
a criterion in terms of the continued fraction expansion of the
irrational ϑ for the validity of (13). The case of the powers of
convolution of 1 has then been handled by B. Martin.

5.4 Small gaps between prime numbers
We end this survey with an account of spectacular progress
obtained using friable integers: the works of Zhang [22] and
Maynard [16] on small gaps between the prime numbers.
Zhang caused a sensation in 20138 by showing that there are
infinitely many prime numbers p � q such that

|p − q| � 70 000 000.

After this breakthrough the upper bound was reduced several
times, in particular by the Polymath project. At the end of this
same year there was another spectacular result: Maynard an-
nounced that this bound could be reduced to 600. The current
value is 246. The twin prime conjecture, which corresponds to
infinitely many prime gaps equal to 2, seems less inaccessible
than ten years ago.

A key ingredient of Zhang’s proof is a result on the aver-
age distribution of the primes in arithmetic progressions with
friable moduli. This friable structure enables one to consider

8 The corresponding article appeared in 2014.

sets of integers not exceeding x and satisfying some congru-
ence conditions modulo integers larger than

√
x; this was cru-

cial in Zhang’s approach to prove bounded gaps between in-
finitely many prime numbers.

Very recently Régis de la Bretèche [1] wrote a fascinat-
ing article for the Gazette des Mathématiciens on the coop-
erative project Polymath around the breakthroughs by Zhang
[22] and Maynard [16] on this subject. The interested reader
can look at [1] (in French) for more details of this wonderful
progress. Undoubtedly, very beautiful mathematics is yet to
be discovered along the paths of friable integers.

Acknowledgements
I am very grateful to Pierrick Gaudry, Martine and Hervé
Queffélec, Anne de Roton, Gérald Tenenbaum, and to the two
anonymous referees for their meticulous rereading and for all
their remarks related to the French version in the Gazette des
Mathématiciens [7]. I would also like to express warm thanks
to Irène Marcovici and to Gérald Tenenbaum for all their help
for this English version.

Bibliography

[1] R. de la Bretèche. Petits écarts entre les nombres premiers et
polymath: une nouvelle manière de faire de la recherche en
mathématiques? SMF Gaz. des Math., 140:19–31, 2014.

[2] R. de la Bretèche and G. Tenenbaum. Séries trigonométriques
à coefficients arithmétiques. J. Anal. Math. 92, 92:1–79, 2004.

[3] R. de la Bretèche and G. Tenenbaum. Entiers friables : inégal-
ité de Turán–Kubilius et applications. Invent. Math., 159:531–
588, 2005.

[4] R. de la Bretèche and G. Tenenbaum. Une nouvelle approche
dans la théorie des entiers friables. Compos. Math., 153:453–
473, 2017.

[5] R. Crandall and C. Pomerance. Prime numbers, a computa-
tional perspective, volume 4ème édition. Springer, 546 pp.,
2001.

[6] H. Daboussi. Sur le théorème des nombres premiers. C. R.
Acad. Sc. Paris, Série I, 298(8):161–164, 1984.

[7] C. Dartyge. Entiers friables : un tour d’horizon. SMF Gaz. des
Math., 156:29–39, 2018.

[8] S. Drappeau. Théorèmes de type Fouvry–Iwaniec pour les
entiers friables. Compos. Math., 151:828–862, 2015.

[9] E. Fouvry and G. Tenenbaum. Entiers sans grand facteur pre-
mier en progressions arithmétiques. Proc. London Math. Soc.
(3), 63:449–494, 1991.

[10] A. Granville. Integers, without large prime factors, in arith-
metic progressions. I. Acta Math., 170:255–273, 1993.

[11] A. Granville. Smooth numbers: computational number theory
and beyond. Algorithmic number theory, MSRI Proceedings,
44:267–323, 2008.

[12] A. J. Harper. On a paper of K. Soundararajan on smooth
numbers in arithmetic progressions. J. Number Theory,
132(1):182–199, 2012.

[13] A. Hildebrand and G. Tenenbaum. Integers without large
prime factors. Journal de Théorie des Nombres de Bordeaux,
5(2):411–484, 1993.

[14] A. Lachand. Entiers friables et formes binaires. Thèse, Uni-
versité de Lorraine, 2014.

[15] K. Matomäki and M. Radziwiłł. Multiplicative functions in
short intervals. Ann. of Math. (2), 183(3):1015–1056, 2016.

[16] J. Maynard. Small gaps between primes. Ann. of Math. (2),
183(1):383–413, 2015.

[17] C. Pomerance. The role of smooth sumbers in number theo-
retic algorithms. Proceedings of the international comgress



Feature

13

of mathematiciens, Zurich Switzerland 1994, 5(2):411–422,
1995.

[18] G. Tenenbaum. Introduction à la théorie analytique et prob-
abiliste des nombres, volume 4ème édition. coll. Échelles,
Belin, 592 pp., 2015.

[19] G. Tenenbaum. Introduction to Analytic and Probabilistic
Number Theory, volume Third edition. Graduate Studies in
Mathematics 163, Amer. Math. Soc., 2015.

[20] G. Tenenbaum and J. Wu. Moyennes de certaines fonctions
multiplicatives sur les entiers friables. J. Reine Angew. Math.,
564:119–166, 2003.

[21] T. D. Wooley. Large improvements in Waring’s problem. Ann.
of Maths., 135:131–164, 1992.

[22] Y. Zhang. Bounded gaps between primes. Ann. of Math. (2),
179(3):1121–1174, 2014.

Cécile Dartyge [cecile.dartyge@univ-lorraine.
fr] is maîtresse de conférences in the Institut
Elie Cartan, Université de Lorraine, France.
Her actual research interests are in analytic
number theory.

Some Recent Interactions of
Probability and Number Theory
Corentin Perret-Gentil (Centre de recherches mathématiques, Montréal, Canada)

EMS Newsletter March 2019 




