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Some Recent Interactions of
Probability and Number Theory
Corentin Perret-Gentil (Centre de recherches mathématiques, Montréal, Canada)

Around eighty years after its birth, the field of probabilistic
number theory continues to see very interesting developments.
On the occasion of a thematic program on the subject that
took place last May in Montréal, we give a brief survey of a
(far from exhaustive) selection of recent advances.

1 Introduction

While many number-theoretical questions are statistical in na-
ture, probabilistic number theory is usually understood as the
use of probabilistic techniques or ideas in number theory [44],
analogously to what analysis is to analytic number theory. The
association of the two latter was notably proved fruitful in
Hadamard and de la Vallée Poussin’s 1896 proof of the prime
number theorem

π(x) ∼ x
log x

(x→ ∞), (1)

that gives an asymptotic for the number π(x) of prime num-
bers p ≤ x.

The origins of probabilistic number theory can be traced
back to Turán’s new proof [47], in 1934, of the result by
Hardy and Ramanujan from 1917 on the normal order of ω,
the “number of prime divisors” function: for any ε > 0,

|ω(n) − log log n| ≤ (log log n)1/2+ε

for almost all integers n (that is, the proportion of integers n ≤
N such that this does not hold goes to 0 as N → ∞). Turán’s
argument can be seen as based on Chebyshev’s inequality

Prob
(
|X − E(X)| ≥ α

√
Var(X)

)
≤ 1/α2,

for any α > 0 and X a random variable with finite expected
value E(X) and variance Var(X). However, as Elliott reports

[11, Ch. 12], Turán did not realise it before a letter from the
probabilist Mark Kac. It is relevant to recall here that, at the
time of Turán’s paper, Kolmogorov’s axiomatisation of prob-
ability theory had just been published, in 1933.

Still according to [11], Kac asked Turán whether he could
compute higher asymptotic moments of ω, maybe suggesting
that ω had a Gaussian limiting probability distribution. Using
the concept of independent random variables and the central
limit theorem,1 Erdős and Kac ([12], 1940) proved this and
strengthened the Hardy–Ramanujan theorem by showing that

f (n) =
ω(n) − log log n√

log log n
(n ∈ N)

has a standard normal limiting probability distribution, i.e.,

|{n ≤ x : f (n) ≤ z}|
x

x→∞−−−−→ 1
√

2π

∫ z

−∞
e−t2/2dt =: Φ(z)

for any z ∈ R. Along with the Erdős–Wintner theorem (1939)
on limiting distributions of additive functions on the integers,
this can be seen as the beginning of probabilistic number the-
ory. We refer the reader to W. Schwarz’s survey [44] for an
account of the main developments that followed.

Herein, we would like to give a brief survey of a (far from
exhaustive) selection of recent works that use concepts such
as martingales, suprema of Gaussian and log-correlated pro-
cesses, orderings of weakly correlated random variables, nor-
mal approximations, large deviation estimates, comparison
inequalities, and random Fourier series, to obtain significant
results or insights in number theory.

1 A proof using the method of moments was given by Halberstam in 1955.
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2 Random multiplicative functions

We recall that the Möbius function µ : N → {−1, 0, 1} is de-
fined by µ(n) = (−1)ω(n) if n is square-free and µ(n) = 0 oth-
erwise. It is multiplicative, and the prime number theorem (1)
is equivalent to

Mµ(x) :=
∑
n≤x

µ(n) = o(x) and
∑
n≤x

µ(n)
n
= o(1)

as x→ ∞. The summatory function Mµ(x) is called Mertens’
function, and it turns out that the Riemann hypothesis is
equivalent to Mµ(x) = O(x1/2+ε) for any ε > 0. On the other
hand, we have

lim
x→∞

Mµ(x)/
√

x > 0 and lim
x→∞

Mµ(x)/
√

x < 0,

and an unpublished conjecture of Gonek states that

lim
x→∞

Mµ(x)
√

x(log log log x)5/4
= ±A

for some constant A > 0 (see [40]).
As a heuristic for sums of multiplicative functions such

as Mµ(x), Wintner ([48], 1944) studied sums of Rademacher
random multiplicative functions f : for f (p) a sequence of in-
dependent identically distributed (iid) random variables in-
dexed by primes, uniform on {−1, 1}, we let

f (n) :=


∏

p|n f (p), n square-free,
0 otherwise.

Wintner showed that for any ε > 0,

Mf (x) :=
∑
n≤x

f (n) �ε x1/2+ε almost surely

as x → ∞, most recently improved by Lau–Tenenbaum–Wu
([37], 2013) to Mf (x) �ε

√
x(log log x)2+ε almost surely,

which is to be compared with the law of the iterated logarithm

lim
n→∞

∑n
i=1 Xi√

2n log log n
= 1 almost surely,

when Xi are iid with mean 0 and variance 1 (e.g., if no multi-
plicative structure were imposed on f ).

On the other hand, Halász ([20], 1982) showed that there
exists a constant B > 0 such that

Mf (x) � O
(√

xe−B
√

log log x log log log x
)

almost surely. (2)
Alternatively, one may also define f (p) to be uniform on the
unit circle inC, giving rise to Steinhaus random multiplicative
functions.

Martingales and normal distributions of M(k)
f (x)

Given the considerations above about a random multiplicative
function f , it would be interesting to obtain information on
the limiting distribution of Mf (x) as x→ ∞. A simpler object
is obtained by restricting the sum to integers having a fixed
small number k ≥ 1 of prime factors, that is,

M(k)
f (x) :=

∑
n≤x
ω(n)=k

f (n).

When k is small, there is not as much multiplicative depen-
dency among the values of f in the sum, and the problem
may be more manageable than for the full sum Mf (x). For ex-
ample, when k = 1, the limiting distribution of M(1)

f (x)/
√

x is
standard normal by the central limit theorem.

In 2009, Hough [29] showed

Theorem 1 ([29]). For f Rademacher, z ∈ R, and k = k(x) =
o(log log log x), we have a normal limiting distribution:

P


M(k)

f (x)

E
(
M(k)

f (x)2
) ≤ z


x→∞−−−−→ Φ(z). (3)

The proof proceeds, classically, by the method of mo-
ments. An important idea is that if n has few prime factors,
then it should have a large one.

In 2013, Harper [23] significantly extended the range al-
lowed for k by another method:

Theorem 2 ([23]). For f Rademacher, z ∈ R, and k = k(x) =
o(log log x), the limiting normal distribution (3) still holds.

His idea, starting from an insight of Blei and Janson ([3],
2004), is to identify a martingale difference sequence and ap-
ply the central limit theorem for those due to McLeish ([39],
1974). Indeed, we can decompose M(k)(x) =

∑
p≤x M(k)

p (x),
where

M(k)
p (x) := f (p)

∑
n≤x/p
ω(n)=k−1

P(n)<p

f (n),

for P(n) the largest prime factor of n. By the linearity of ex-
pectation, it follows that

E
(
M(k)

p (x) | f (�) (� < p prime)
)
= 0,

so that
(
M(k)

p (x)
)

p is a martingale difference sequence with re-
spect to the filtration

(
σ({ f (�) : � ≤ p prime}))p. Theorem 2 is

then reduced to verifying the hypotheses of McLeish’s result,
which amounts to number-theoretical estimates that constitute
most of the paper.

Using a version of Stein’s method for normal approxi-
mation developed by Chatterjee ([9], 2008), Chatterjee and
Soundararajan ([10], 2012) obtained a similar result for sums
of f in short intervals.

Note that the range k = ω(n) = o(log log n) of Theorem 2
falls just short of the size of a typical integer given by the
Erdős–Kac theorem (see Section 1). One may wonder how
large k may be while keeping a normal limiting distribution
(3). In the same article [23], Harper also gave the following
negative result:

Theorem 3 ([23]). Let 0 < ε < A. The limiting normal distri-
bution (3) does not hold if ε log log x ≤ k = k(x) ≤ A log log x.

This is proved by showing that the expectation of a thresh-
olded second moment does not converge to what it should,
through a conditioning argument that allows a good estima-
tion.

Lower bounds for suprema of Gaussian processes, and
omega results for Mf (x)
Another interesting result by Harper ([21], 2013) is the fol-
lowing strong improvement to Halász’s negative result (2):

Theorem 4 ([21]). For f Rademacher and ε > 0, we have

Mf (x) � O
(√

x(log log x)−2.5+ε) almost surely.

The main input is new general bounds for suprema of
Gaussian processes. Indeed, Halász’s proof of (2) shows that
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almost certain lower bounds on |Mf (x)| can be obtained from
lower bounds on

sup
t≥1

exp
(
S (t, x, f ) − log t − log log(t + 2)/2

)
,

where

S (t, x, f ) :=
∑
p≤x

f (p)
cos(t log p)
p1/2+1/ log x .

Using a multivariate central limit theorem, f (p) can be re-
placed by a sequence g(p) of independent standard Gaussians.
Moreover, t can essentially be assumed to lie in a finite set T .

To analyse the resulting process (S (t, x, g))t∈T , Harper de-
velops general lower bounds for upper tail probabilities

P
(

max
t∈T

Z(t) ≥ u
)
, with Z(t) jointly standard normal,

which can be non-trivial even when u is of moderate size,
while existing results require u to be very large. The strat-
egy is to first decompose and condition the probability, and
then to apply several comparison inequalities, along with the
known distribution of the maximum of a Brownian motion.
This yields lower bounds on the resulting probabilities that
depend on the correlations between the Z(t), which are esti-
mated in the case of the process above.

Moments of random multiplicative functions
Using the results of Harper [21] mentioned in the previous
section, Harper, Nikeghbali, and Radziwiłł ([27], 2015) ob-
tained lower bounds on the moments

Nf (x, k) := E
∣∣∣Mf (x)

∣∣∣k

of Mf (x), improving on results of Bondarenko–Seip ([6],
2016):

Theorem 5 ([27]). For f Rademacher or Steinhaus, as
x→ ∞,

N f (x, 1) �
√

x(log log x)−3+o(1). (4)

In particular, for k ∈ [0, 1], N f (x, 2k) � xk(log log x)−6+o(1).

A first application of the lower bounds from [21] gives
that (4) holds for infinitely many x, and a more delicate argu-
ment yields the theorem.

The authors also compute certain moments asymptoti-
cally,2 relying on a general result of La Bretèche (2001) on
mean values of multiplicative functions:

Theorem 6 ([27]). Let k ≥ 1 be an integer. There exist ex-
plicit constants Ck,Dk > 0 such that, as x → ∞ we have the
following:
1. For f Steinhaus,

N f (x, 2k) ∼ Ck xk(log x)(k−1)2
. (5)

2. For f Rademacher and k ≥ 3,

E
(
Mf (x)k

)
∼ Dk xk/2(log x)k(k−3)/2.

From Theorems 5 and 6, they make the following guesses
for the remaining moments:

2 This was also obtained independently by Granville and Soundararajan
(unpublished), and by Heap and Lindqvist (2016).

Conjecture 7 ([27]). For f Steinhaus and k ∈ R+, there exists
a constant Ck > 0 such that
• if k ≥ 1, the asymptotic (5) still holds;
• if k ∈ [0, 1], then Nf (x, 2k) ∼ Ck xk as x→ ∞.

In particular, the case k = 1 would disprove Helson’s con-
jecture ([28], 2010) that Mf (x) exhibits more than square-root
cancellation:

Conjecture 8 ([28]). For f Steinhaus, as x → ∞, N f (x, 1) =
o(
√

x).

This conjecture would be surprising from the point of
view of a number-theoretical model, but it can be motivated
as follows (see also [27, pp. 2–3], [28]): by definition of f ,
the statement is equivalent to

lim
T→∞

∫ T

0

∣∣∣∣∣∣∣
∑
n≤x

n−it

∣∣∣∣∣∣∣ dt = o(
√

x).

A first insight is that the inner sum is a multiplicative analogue
of the Dirichlet kernel

∑
n≤x e2πint, whose L1 norm on [0, 2π]

is� log x. A second one is that Bondarenko, Heap, and Seip
([5], 2015) showed that

lim
T→∞

∫ T

0

∣∣∣∣∣∣∣
∑
n≤x

n−1/2−it

∣∣∣∣∣∣∣ dt � (log x)1/4+o(1),

which is also stronger than square-root cancellation.
In two recent preprints [24,25], Harper announced explicit

formulas for all the moments E|Mf (x)|k, with k ∈ R+ and f
Rademacher or Steinhaus. In particular, for f Steinhaus,

Nf (x, 1) �
√

x(log log x)−1/4,

which (for k = 1 and f Steinhaus) proves Helson’s conjec-
ture 8 and disproves Conjecture 7.

The first step in the computation of the moments is a care-
ful passage to Euler products, reducing to the consideration of
expected values of the form

E


[∫ 1/2

−1/2
|Fx(1/2 + it)|2dt

]k/2 , Fx(s) =
∏
p≤x

(
1 − f (p)

ps

)−1

,

where the random variables (log |Fx(1/2 + it)|)|t|≤1/2 are ap-
proximately Gaussian and have logarithmic covariance struc-
ture. Writing
∣∣∣Fx(1/2 + it)

∣∣∣2 = e2h(t) with h(t) = log
∣∣∣Fx(1/2 + it)

∣∣∣,
the second step draws links to critical multiplicative chaos to
analyse these random Euler products.

3 Maximum of the zeta function on bounded
intervals

Little is known about the maximum modulus

M(T ) := max
0≤t≤T

|ζ(1/2 + it)|

of the Riemann zeta function on an initial interval of the criti-
cal line. The Lindelöf hypothesis (hence the Riemann hypoth-
esis) implies that

M(T ) � exp
(
C

log T
log log T

)
as T → ∞
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for some constant C > 0. A conjecture of Farmer, Gonek, and
Hughes ([13], 2007) states that

M(T ) = exp
(( 1
√

2
+ o(1)

) √
log T log log T

)
. (6)

Alternatively, one may also consider bounded intervals, for
which Fyodorov, Hiary, and Keating ([17,18]) have proposed,
based on numerical evidence and links with statistical me-
chanics the following conjecture:

Conjecture 9. For t sampled uniformly in [0, T ],

max
u∈R
|u−t|≤1

log |ζ(1/2 + iu)| = log log T − 3
4

log log log T + XT ,

where XT is a random variable converging weakly to an ex-
plicit distribution as T → ∞.

Note that by Selberg’s central limit theorem ([45], 1946),
for t ∈ [0, T ] uniform,

log |ζ(1/2 + it)|√
(1/2) log log T

converges in law to a standard normal random variable. More-
over, the maximum of independent normal random variables
with mean 0 and variance 1

2 log log T is

log log T − 1
4

log log log T + O(1),

which is a summand − 1
2 log log log T away from Conjec-

ture 9; the former would account for the non-independence.
There is a multivariate version of Selberg’s theorem by Bour-
gade ([7], 2010), with logarithmic correlations, but this is not
enough to make this heuristic rigorous (see [2, p. 4]).

From the analysis of log-correlated random processes
(more particularly branching random walks), Arguin, Be-
lius, Harper, Radziwiłł, and Soundararajan have recently pro-
gressed towards Conjecture 9, or an analogue in a random
model. This will be the subject of the following sections.

Supremum of log-correlated Gaussian random variables
and leading-order term for a random model
As for conjecture (6) of Farmer–Gonek–Hughes, Conjecture
9 is based on modelling |ζ(1/2+is)| by the characteristic poly-
nomial of a random unitary matrix.

In 2013, Harper [22] obtained the leading term log log T
for an analogous model based on random Euler products. The
motivation for the model is the following, adapted from an
argument by Soundararajan based on the work of Selberg:

Proposition 10 ([22]). Under the Riemann hypothesis, for
T ≥ 1 large enough, there exists H ⊂ [T, T + 1] of relative
measure ≥ 0.99 such that for all t ∈ H,

log |ζ(1/2 + it)| = Re


∑
p≤T

1
p1/2+it

log(T/p)
log T

 + O(1).

Since (p−it)p prime, for t ∈ [0, T ] uniform, converges as T
goes to∞, in the sense of finite distributions, to (Up)p prime for
Up iid uniform on the unit circle, this suggest the model

M̃1(T ) := max
h∈[0,1]

∑
p≤T

Re(Up p−ih)
p1/2 (7)

for maxh∈[0,1] log |ζ(1/2+ i(t+ h))| when t is uniform in [0, T ].
Harper’s main result is then essentially the following:

Theorem 11 ([22]). As T → ∞, M̃1(T ) = (1+oP(1)) log log T,
where oP(1) stands for convergence to 0 in probability.

More precisely, it is also shown that the second-order term
should lie between −2 log log log T and − 1

4 log log log T . The
upper bounds use tail bounds for sums of independent random
variables of Talagrand ([46], 1995), while the lower bound
uses the bounds from [21] mentioned in Section 2.

Branching random walks and Conjecture 9 for the model
Through a connection with branching random walks, Arguin,
Belius, and Harper ([2], 2017) managed to obtain the second-
order term for the model (7), thus improving Theorem 11:

Theorem 12 ([2]). As T → ∞, we have

M̃1(T ) = log log T − 3
4

log log log T + oP(log log log T ),

where the error converges to 0 in probability when divided by
log log log T.

Let us assume that log T = 2n for some integer n ≥ 1,
and for every h ∈ [0, 1], let Xn(h) =

∑
p≤e2n Re(Up p−ih)p−1/2.

One can compute the covariances explicitly and check that for
h, h′ ∈ [0, 1],

E
(
Xn(h)Xn(h′)

) ≈ 1
2


(−1) log |h − h′| : |h − h′| ≥ 2−n,

n log 2 : |h − h′| < 2−n.

Decomposing

Xn(h) =
n∑

i=0

Yi(h) with Yi(h) :=
∑

2i−1<p≤2i

Re(Up p−ih)p−1/2

and letting h∧ h′ =
⌊− log(|h − h′|)/ log 2

⌋
, we have that Yi(h)

and Yi(h′) are almost perfectly correlated with variance σ2 ≈
log(2)/2 if i ≤ h ∧ h′, and almost perfectly correlated if i >
h ∧ h′. Moreover, the variation of the Xn(h) is captured by 2n

equally spaced h ∈ [0, 1].
This is similar to a branching random walk (or branching

Brownian motion) on a binary tree of depth n, where iid Gaus-
sian random variables Yi with mean 0 and variance σ2 are at-
tached to every edge, and each of the 2n leaves is associated
with the unique random walk on the edges from the root. In-
deed, Xn(h) and Xn(h′) would correspond to leaves with low-
est common ancestor at height h ∧ h′ (see Figure 1).

Bramson ([8], 1978) determined the maximum of a branch-
ing Brownian motion to be roughly

cn − 3σ2

2c
log n, where c = σ

√
2 log 2.

When σ2 = log(2)/2, this gives precisely the leading- and
subleading-order terms predicted by Conjecture 9.

Working on this analogy, Arguin, Belius, and Harper ob-
tained Theorem 12 using a method of Kistler ([32], 2015) to

h1 ∧h2

hh1 h2

N(0,σ2) N(0,σ2)

Figure 1. Branching Brownian motion.
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handle processes like Xn(h) that may not have an exact tree
structure and where the Yi may not be exactly Gaussian. Two
particular pieces of information required by the method are
large deviation estimates and Berry–Esseen approximations
(to compare the Yi to Gaussians). We refer the reader to [2, pp.
5–7] for a detailed sketch of the strategy.

Branching random walks and leading-order term for the
actual zeta function
In collaboration with Bourgade, Radziwiłł, and Soundarara-
jan, Arguin and Belius ([1], 2016) successfully adapted these
ideas to obtain the leading-order term in Conjecture 9, that is,
for the actual zeta function:3

Theorem 13 ([1]). For ε > 0 and t uniform in [T, 2T ],
∣∣∣∣∣∣∣∣
max
u∈R
|u−t|≤1

log |ζ(1/2 + iu)| − log log T

∣∣∣∣∣∣∣∣
< ε

almost surely, as T → ∞.

The implied upper bound follows from a Sobolev-type
inequality and known bounds on the moments of ζ. For the
lower bound, the first step is to reduce to understanding the
maximum of finite Dirichlet series

∑
p≤X p−σ+iu, where σ ≈

1/2; this is done using ideas from the alternative proof by
Radziwiłł and Soundararajan ([41], 2015) of Selberg’s cen-
tral limit theorem. Then, an approximate branching random
walk is identified and studied with Kistler’s method, as in [2]
with the model arising from Proposition 10.

4 Biases in prime number races

The prime number theorem in arithmetic progressions, a
quantitative version of Dirichlet’s theorem on primes in arith-
metic progressions, states that if q ≥ 1 and a ∈ (Z/q)×, then

π(x, q, a) :=
|{p ≤ x : p ≡ a (mod q)}|

π(x)
∼ 1
ϕ(q)

as x → ∞, where π(x) is the number of primes p ≤ x. In
other words, primes equidistribute in admissible congruence
classes.

In particular, if a1, a2 ∈ (Z/q)×, then π(x,q,a1)
π(x,q,a2) → 1. One

may wonder whether π(x, q, a1) > π(x, q, a2) for infinitely
many x, and if the two orderings are equally likely. Cheby-
shev observed in 1853 that, surprisingly, we have π(x, 4, 3) >
π(x, 4, 1) most of the time.

More generally, for n, q ≥ 2 fixed and

a ∈ An(q) := {a ∈ ((Z/q)×)n : a1, . . . , an distinct},

we can study the x ≥ 2 such that the ordering

π(x, q, a1) > π(x, q, a2) > · · · > π(x, q, an) (8)

holds (a “Shanks–Rényi prime number race”).
In a breakthrough work, Rubinstein and Sarnak ([43],

1994) showed that, conditionally on the general Riemann
hypothesis (GRH) and the Q-linear independence of non-
negative imaginary parts of non-trivial zeros of Dirichlet L-

3 The same result was obtained independently at the same time by J. Naj-
nudel, under the Riemann hypothesis.

functions (conjecture LI), the ordering (8) happens for in-
finitely many x, actually for a positive logarithmic density4

δ(a, q) := lim
X→∞

1
log X

∫ X

2
δ(8) holds

dx
x
.

Under these conjectures, they confirm Chebyshev’s observa-
tion by showing that δ(3, 1, 4) = 0.9959 . . . In general, they
give an explicit expression for the densities δ(a, q), a criterion
for the symmetry of the density function (in which cases the
races are unbiased, i.e., δ(a, q) = 1/n! for all a ∈ An(q)), and
show that the biases dissolve as q→ ∞, that is,

lim
q→∞

max
a∈An(q)

|δ(a, q) − 1/n!| = 0 (9)

when n ≥ 2 is fixed. To do so, the main step is the following:

Theorem 14 ([43]). As X → ∞,

(x ∈ [2, X]) �→
(

log x
√

x
(ϕ(q)π(x, q, ai) − π(x))

)

1≤i≤n

has limiting distribution given by the random vector

Xq,a1,...,an =
(
X(q, a1), . . . , X(q, an)

)
, where

X(q, a) = −Cq(a) +
∑

χ (mod q)
χ�χ0

∑
γχ>0

2 Re
(
χ(a)U(γχ)

)
√

1/4 + γ2
χ

,

Cq(a) = −1 +
∑

b2≡a (mod q)
1≤b≤q

1,

for U(γχ) iid on the unit circle in C and γχ running over the
non-negative zeros of L(1/2 + iγχ, χ).

We refer the reader to [19] for a survey of subsequent re-
sults.

In the remainder of this section, we will direct our atten-
tion to recent advances in prime number races with many con-
testants, that is, when n is allowed to grow to infinity with q,
instead of being fixed. All the results stated will be conditional
on the GRH and LI conjectures.

Prime races with many contestants
Feuerverger and Martin ([14], 2000) conjectured that (9) still
holds when n = n(q) → ∞, n ≤ ϕ(q), i.e., the biases still
dissolve.

In 2012, Lamzouri [35] obtained a first uniform version
of (9) in a certain range:

Theorem 15 ([35]). If 2 ≤ n ≤
√

log q and a ∈ An(q), then

δ(a, q) =
1
n!

(
1 + O

( n2

log q

))
.

Note that the second summand of X(q, a) above is given as
a weighted sum of independent random variables, and Cq(a)
can essentially be ignored. The idea behind Theorem 15 is to
approximate Xq,a1,...,an as a multivariate normal random vari-
able (through a quantitative central limit theorem), with an
estimated covariance matrix, and to then directly estimate the
resulting density function.

Concerning larger ranges of n, an unpublished conjecture
of Ford and Lamzouri states that there should actually be a
transition when n = (log q)1+o(1):

4 However, the natural density does not exist, disproving a conjecture by
Knapowksi and Turán.
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Conjecture 16. Let ε > 0, q ≥ 2 be large enough, and
n = n(q).
1. If 2 ≤ n ≤ (log q)1−ε, then (9) holds.
2. If (log q)1+ε ≤ n ≤ ϕ(q), then there are extreme biases,

namely there exist a, b ∈ An(q) such that

n!δ(a, q)→ 0 and n!δ(b, q)→ ∞.
A stronger version of the first part of the conjecture was

proved last year by Harper and Lamzouri ([26], 2018):

Theorem 17 ([26]). If 2 ≤ n ≤ (log q)/(log log q)4, then (9)
holds. More precisely, for any a ∈ An(q),

δ(a, q) =
1
n!

(
1 + O

(n(log n)4

log q

))
.

This follows the same strategy as Theorem 15 above (per-
forming the normal approximation with a 2009 result by
Reinert and Röllin [42]), but with better estimates for the co-
variances through harmonic analysis.

Orderings of weakly correlated normal random variables
and the leader in prime races
From there, we can also study the “leader” in a prime number
race, i.e., for a ∈ An(q), the logarithmic density δ1(a, q) of
the x ≥ 2 such that

π(x, q, a1) > π(x, q, a2), . . . , π(x, q, an). (10)

An application of Theorem 17 shows that δ1(a, q) → 1/n if
2 ≤ n = n(q) = o(log q/(log log q)4), i.e., each contestant has
an equal chance of being the leader in this range. However,
Harper and Lamzouri showed that this can be significantly
extended with more involved arguments:

Theorem 18 ([26]). We have δ1(a, q) → 1/n as soon as 2 ≤
n = n(q) ≤ ϕ(q)1/32.

After the normal approximation and the estimation of the
covariances, this is derived from a general result on the order-
ing of weakly correlated jointly normal random variables that
Harper and Lamzouri establish:

Theorem 19 ([26]). For n ≥ 2 and ε > 0, let X1, . . . , Xn

be jointly normal random variables, each with mean 0 and
variance 1. Let ri, j = E(XiXj) denote the covariances, and
assume that |ri, j| ≤ ε whenever i � j. Then
∣∣∣∣∣P
(
X1 > max

2≤i≤n
Xi

)
− 1

n

∣∣∣∣∣ �ε n−100 + n−1.99
∑

2≤i≤n

|r1,i|

+ n−2.99
∑

2≤i< j≤n

|ri, j|.

If the Xi were independent, then the probability would be
exactly 1/n. An important input in the proof of Theorem 19
is the use of the normal comparison result of Li–Shao ([38],
2002) to compare X1, . . . , Xn to independent normal random
variables. However, as the probabilities may be small with
respect to rather large bounds on the covariances (as is the
case for Theorem 18), this alone may yield a trivial bound. To
overcome this, the authors note that if the Xi were indepen-
dent, then

max
2≤ j≤n

X j =

√(
2 − o(1)

)
log n with high probability,

while
P
(
X1 >

√(
2 − o(1)

)
log n

)
=

1
n1−o(1) .

In other words, the small probability 1/n that X1 is the leader
is mostly caused by the event that X1 is large enough to be
so. Conditioning on the latter gives bounds which are more
achievable, and using Slepian’s comparison inequality (which
is single sided unlike that of Li–Shao, but always non-trivial)
allows one to conclude the argument.

Using similar ideas, Harper and Lamzouri also obtain es-
timates for the logarithmic density δk(a, q) (for k < n) of the
x ≥ 2 such that

π(x, q, a1) > · · · > π(x, q, ak) > max
k+1≤ j≤n

π(x, q, a j). (11)

Normal approximation and extreme biases
In the direction of the second part of Conjecture 16, Harper
and Lamzouri ([26], 2018) gave one of the first results (along
with work by Fiorilli [15]) where biases do not dissolve
asymptotically:

Theorem 20 ([26]). Let ε > 0. There exists a constant cε > 0
such that if ϕ(q)ε ≤ n ≤ ϕ(q), there exists a ∈ An(q) with

δ(a, q) < (1 − cε)/n!.

The idea is to get biases for δk(a, q), which then gives bi-
ases for δ(a, q) by summing over permutations of the compo-
nents of a. The ordering (11) corresponds to the ordering

X(q, a1) > · · · > X(q, ak) > max
k+1≤ j≤n

X(q, a j) (12)

of the random variables in Theorem 14. If this holds, then
X(q, a1), . . . , X(q, ak) (after renormalization) should all be lar-
ger than ≈

√
2 log n with high probability, as in the previous

section. If (a1, . . . , ak) ∈ Ak(q) is chosen so that X(q, a1), . . . ,
X(q, ak) have (maximum) pairwise correlations ≈ − log 2

log q , this
introduces a bias of size ≈ k log n

log q inside the exponential of
the density function, after normal approximation as in The-
orem 17.

However, note that the biases in Theorem 20 are always
close to and smaller than 1, unlike the extreme biases pre-
dicted by Conjecture 16. In a recent preprint, Ford, Harper,
and Lamzouri [16] improve on this by showing that the sec-
ond part of the conjecture holds, actually as soon as n/ log q
goes to∞. More precisely,

Theorem 21 ([16]). There exists an absolute constant C > 0
such that if 1 � n ≤ ϕ(q), there exist a, b ∈ An(q) with

δ(a, q) ≤ exp
(
−min(n, ϕ(q)1/50)

C log q

)
1
n!
,

δ(b, q) ≥ exp
(

min(n, ϕ(q)1/50)
C log q

)
1
n!
.

This follows the same strategy as the one sketched above
for Theorem 20, with two main improvements: to get extreme
biases, the parameter k is allowed to grow to the order of mag-
nitude of n instead of being fixed; to get small and large bi-
ases, the situation (12) is replaced by a slightly different one.
One of the issues that arises is that the typical Berry–Esseen-
type errors in the normal approximation of Xq,a1,...,an are too
large with respect to the main term. To overcome this, the
authors develop a multivariate “moderate deviation” estimate
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for sums of independent random variables, from the Linde-
berg replacement strategy.

5 Random Fourier series and paths of partial
exponential sums

We conclude with works on exponential sums that also in-
volve some deep results from algebraic geometry.

An exponential sum of fundamental interest in number
theory is the Kloosterman sum

Kl2,p(a) =
1
√

p

∑
x∈F×p

exp
(

2πi(ax + x)
p

)
(a ∈ F×p).

These are real numbers, and Weil’s proof of the Riemann hy-
pothesis for curves over finite fields (1948) shows that they
lie in [−2, 2]. In practice, partial Kloosterman sums

Kl2,p(a, t) =
1
√

p

∑
0≤x≤tp

exp
(

2πi(ax + x)
p

)
∈ C,

for t ∈ [0, 1), are just as interesting. When t is not an integer
multiple of 1/p, let us replace Kl2,p(a, t) by a linear interpola-
tion of the values at the two closest integers. For every a ∈ F×p ,
this gives a continuous path t �→ Kl2,p(a, t) made of straight
lines, that ends at Kl2,p(a) ∈ [−2, 2] (see Figure 2). In the
1980s, such paths of partial exponential sums were studied by
Lehmer, Dekking–Mendès France, Loxton, and Deshouillers.
For the Kloosterman sum, with the uniform measure on F×p ,
we get a stochastic process

(
Kp(t)

)
t∈[0,1),

whose limiting distribution (as p → ∞) was recently studied
by Kowalski and Sawin ([33], 2014). To do so, they define the
random Fourier series

K(t) =
∑
h∈Z

exp(2πihz) − 1
2πih

STh (t ∈ [0, 1]),

where (STh)h∈Z are independent random variables distributed
according to the Sato–Tate measure 1

2π

√
4 − x2 on [−2, 2].

Their main result is the following:

Theorem 22 ([33]). 1. K(t) converges almost surely and in
law, taking symmetric partial sums. The limit, as a random
function, is almost surely continuous. For any t ∈ [0, 1),
one has E(K(t)) = 0 and Var(K(t)) = t.

2. In the sense of convergence of finite distributions,
(
Kp(t)

)
t∈[0,1)

p→∞
−−−−→

fd

(
K(t)
)
t∈[0,1).
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Figure 2. Partial sums of the Kloosterman sum Kl2,547(1).

The proof of the second part uses the method of moments.
The latter are estimated asymptotically from the work of Katz
[30, 31], relying in particular on Deligne’s generalisation of
the Riemann hypothesis over finite fields.

One could also ask for the stronger result of convergence
in law as C([0, 1))-valued random variables. It turns out that
this is linked to important conjectures on short exponential
sums. Using Prokhorov’s theorem (that is, by checking Kol-
mogorov’s tightness criterion), Kowalski and Sawin show the
convergence in law unconditionally for Birch sums

Bip(a, t) =
1
√

p

∑
n≤t

exp
(

2πi(ax + x3)
p

)
(a ∈ F×p)

and for a two-dimensional domain variant of Kl2,p.

This yields interesting applications, such as bounds for
the probability of large values of partial Kloosterman sums
and partial Birch sums, which is analogous to the recent re-
sults of Bober, Goldmakher, Granville, and Koukoulopoulos
([4], 2018) for Dirichlet characters. For example, we have the
following theorem:

Theorem 23 ([33]). For A > 0, let

L(A) = lim
p→∞

|{a ∈ F×p : max0≤t<p |Bip(a, t)| > A}|
p − 1

.

There exists a constant c > 0 such that for any A > 0,

c−1 exp(− exp(Ac)) ≤ L(A) ≤ c exp(− exp(A/c)).

This follows from Theorem 22, with elementary argu-
ments for the lower bound, and general tail bounds on sums
of martingale difference sequences for the upper bound (see
also Section 2).

Theorem 23 was very recently improved in a preprint by
Lamzouri [36], in particular by obtaining upper and lower
bounds in a uniform range for A with respect to p, and of
roughly the same order of magnitude. The lower bound holds
similarly for Kloosterman sums, while the upper bounds is
conditional on certain bounds on short Kloosterman sums.

Finally, the support of the random Fourier series K(t) was
computed by Kowalski and Sawin in a subsequent work ([34],
2017), with further arithmetic applications to Kloosterman
sums having all their partial sums small.
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