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The 100th Jubilee of Riesz Theory
Albrecht Pietsch (University of Jena, Germany)

The Riesz spectral theory of compact operators was created
just 100 years ago. This jubilee is a very welcome occasion
for writing a detailed appreciation. Surely, the Riesz paper
[24] and Banach’s monograph [2], which grew out of his
thesis [3], are the most important publications of classical
Banach space theory; see also [21]. The presentation by both
these authors is so convincing that most of their proofs can be
used in today’s lectures.

The Riesz paper was finished in Győr (Hungary) on Jan-
uary 19, 1916, and printed on December 3–5 1916. However,
in most bibliographies it is dated to the year 1918, when vol-
ume 41 of Acta Mathematica was completed; a consequence
of World War I. By the way, there is also a Hungarian version
from February 14, 1916 with the title “Lineáris függvénye-
gyenletekről”; see [25].

We stress the fact that F. Riesz wrote his contribution at
a time when the concept of an abstract Banach space did not
exist. Indeed, claiming in [24, p. 71]

Der in den neueren Untersuchungen über diverse Funktional-
räume bewanderte Leser wird die allgemeinere Verwendbarkeit
der Methode sofort erkennen,

he exclusively used the space C[a, b] of continuous functions
on an interval [a, b], equipped with the sup-norm. In other
words, he stated that almost all of his results remain true in
abstract Banach spaces.

Around the year 1905, D. Hilbert and his pupil E. Schmidt
had developed a determinant-free approach to Fredholm’s
theory of integral equations of the second kind, which is
based on �2 and L2[a, b] (in a hidden form); see [11]. Sub-
sequently, F. Riesz introduced the spaces Lp[a, b] and �p with
1 ≤ p < ∞; see [26, 27]. Since orthogonality was no longer
available for p � 2, he tried to overcome this trouble in the
most simple case, namely, C[a, b].

To understand the situation in which F. Riesz started his
investigations and to see their most important applications,
the reader may consult the beautiful survey on ‘Integralglei-
chungen und Gleichungen mit unendlichvielen Unbekannten’
[10] written by E. Hellinger and O. Toeplitz.

D. Hilbert treated completely continuous bilinear forms
on �2 × �2, and F. Riesz observed that the corresponding oper-
ators are characterised by the property that weakly convergent
sequences are mapped to norm convergent sequences; see [27,
p. 96]. On the other hand, in the paper under review, he refers
to an operator T on C[a, b] as completely continuous if every
bounded sequence ( fn) contains a subsequence whose image
(T fni ) is norm convergent. For the moment, we will distin-
guish these concepts by saying that an operator is completely
continuous ‘in the sense of Hilbert’ or ‘in the sense of Riesz’.
Naturally, F. Riesz knew that both kinds of complete conti-
nuity coincide for operators on �2. For general spaces, com-
pletely continuous operators in the sense of Riesz are also
completely continuous in the sense of Hilbert, whereas the
converse implication fails. However, the following counterex-

amples were available only later. J. Schur [30, § 4] showed
that the identity map of �1 is completely continuous in the
sense of Hilbert and, of course, it fails to be completely con-
tinuous in the sense of Riesz. Moreover, let C(T) be the space
of all continuous 2π-periodic functions. Then the rule

P : f (t) =
∞∑

n=−∞
γneint �→ (

γ2k
)∞
k=0

defines a 2-summing operator from C(T) onto �2, which is
completely continuous in the sense of Hilbert but not in the
sense of Riesz; see [33, Sec. III.F].

In Hille’s monograph ‘Functional analysis and semi-
groups’ [13, p. 49] the term ‘compact’ was used instead of
completely continuous in the sense of Riesz. Luckily, this pro-
posal has prevailed and our temporary suffix ‘in the sense of
Hilbert’ becomes unnecessary. From now on, we will employ
the attributes ‘compact’ and ‘completely continuous’ in this
way, which has become standard.

Let L(X, Y) denote the Banach spaces of all (bounded, lin-
ear) operators from the Banach space X into the Banach space
Y . If X = Y , then we simply write L(X) instead of L(X, X).
The identity map of X is denoted by I or, more precisely, by
IX . Every A ∈ L(X, Y) has the rangeM(A) := {Ax : x ∈ X}
and the null space N(A) := {x ∈ X : Ax = o}.

The main results of F. Riesz say that the following prop-
erties hold for any compact operator T ∈ L(X):

If

M((I − T )m) =M((I − T )m+1),
then

M((I − T )m+1) =M((I − T )m+2).
The rangesM((I−T )m) are closed and form a non-increasing
sequence, which stabilizes for some index m0.

If

N((I − T )n) = N((I − T )n+1),
then

N((I − T )n+1) = N((I − T )n+2).
The null spacesN((I−T )n) are finite-dimensional and form a
non-decreasing sequence, which stabilizes for some index n0.

The indices m0 and n0 coincide when they are chosen as
small as possible; their joint value is denoted by p. Then X is
the direct sum of the T -invariant subspacesM((I − T )p) and
N((I − T )p).

In the regular case p = 0, the operator I − T is an
isomorphism. In other words, the equation x − T x = a
admits a unique solution x ∈ X for every a ∈ X. In the sin-
gular case p > 0, the restriction of I − T to M((I − T )p) is
an isomorphism and the restriction to the finite-dimensional
space N((I − T )p) is nilpotent. This means that solving the

The 100th Jubilee of Riesz Theory
Albrecht Pietsch (University of Jena, Germany)



History

32 EMS Newsletter March 2019

equation x − T x = a is reduced to a problem of classical lin-
ear algebra, at least in principle.

The general concept of a dual (adjoint, conjugate)
operator, which is based on the Hahn–Banach extension the-
orem, was introduced only at the end of the 1920s; see [4,
Théorème 1]. Hence F. Riesz had to restrict his considera-
tions to the very special case of transposed integral equa-
tions, which are generated by continuous kernels K(x, y) and
K(y, x). The missing keystone was laid by J. Schauder [29].
His main result says that the dual operator T ∗ : Y∗ → X∗ is
compact if and only if so is the original operator T : X→ Y .
Moreover, dim

(N(I∗ −T ∗)
)
= dim

(N(I −T )
)
. In view of this

important contribution, the joint outcome is often called the
Riesz–Schauder theory.

An intermediate result is due to T. H. Hildebrandt [12],
who used – in a hidden form – the codimension ofM(I − T ).
Indeed, in view of the fact thatN(I∗ −T ∗) and

[
X/M(I −T )

]∗
are isometric, we get dim

[N(I∗ − T ∗)
]
= cod

[M(I − T )
]
.

Therefore dim
[N(I∗ − T ∗)

]
= dim

[N(I − T )
]

is equivalent to
the formula cod

[M(I −T )
]
= dim

[N(I −T )
]
, which does not

require the knowledge of any dual operator.
Let A ∈ L(X, Y). Following [9, pp. 307–308], the equation

Ax = b is said to be normally solvable provided that, for given
b ∈ Y , there exists a solution x ∈ X if and only if 〈b, y∗〉 = 0
whenever A∗y∗ = o. Remarkably, this happens just in the case
when the rangeM(A) is closed. Hence all operators I−T with
compact T ∈ L(X) are normally solvable.

The preceding results remain true when I − T is replaced
by I − ζT with any complex parameter ζ. If I − ζT is singular,
then we call ζ a characteristic value. F. Riesz proved that the
characteristic values have no finite accumulation point. Note
that he referred to those numbers as eigenvalues. This term is
now commonly used for λ ∈ C when working with the scale
λI − T .

The Riesz paper has stimulated many remarkable devel-
opments. Some of them will be sketched in the rest of this
review. For more detailed information the reader is referred
to [19, Sect. 2.6, Subsect. 5.2.2, 5.2.3, and 8.3.1 (short biog-
raphy)].

Already F. Riesz [24, p. 74] has observed that the class
of compact operators is an ideal, now denoted by K. Fur-
ther related ideals are F, the class of finite rank operators,
and V, the class of completely continuous operators. Note
that F ⊂ K ⊂ V. From Banach’s monograph [2, Chap. VI,
Théorème 2], we know that K is closed in the norm topol-
ogy of L. Therefore the closure F, whose members are the
approximable operators, is contained in K. A long-standing
open problem asked whether even equality holds. The famous
negative answer was finally given by P. Enflo [6] when he
constructed a Banach space without the approximation prop-
erty.

According to the Russian terminology, A ∈ L(X, Y) is re-
ferred to as a Φ-operator (Φ stands for Fredholm) if there are
operators U,V ∈ L(Y, X), S ∈ K(X), and T ∈ K(Y) such that
UA = IX −S and AV = IY −T ; see [7, p. 195]. The preced-
ing definition means that A is invertible modulo the ideal K,
which can even be replaced by F. We know from F. V. Atkin-
son [1, Theorem 1] that Φ-operators are characterised by the
property of having finite-dimensional null spaces and finite-
codimensional closed ranges. By the way, a famous lemma of

T. Kato [14, p. 275] says that cod
[M(A)

]
< ∞ automatically

implies thatM(A) is closed.
F. Riesz has shown that, for compact T , all operators I−ζT

with ζ ∈ C have very nice properties. Therefore the question
arose whether his results hold for more general operators. In a
first step, S. M. Nikolskij [16] confirmed this expectation for
operators that admit a compact power. To formulate a com-
plete answer, we refer to T ∈ L(X) as a Riesz operator if
every I − ζT with ζ ∈ C behaves in the desired way. To treat
real operators, one must pass to their complexifications. Riesz
operators can be characterised by various conditions of a quite
different flavour.
(1) Every I − ζT with ζ ∈ C is a Φ-operator.
(2) According to A. F. Ruston [28, Theorem 3.1], T is quasi-

nilpotent with respect to the quotient norm

|||T n||| = inf
{‖T n − K‖ : K ∈ K(X)

}
.

This means that

lim
n→∞
|||T n|||1/n = 0.

(3) The resolvent (I − ζT )−1 is a meromorphic L(X)-valued
function on the complex plane such that the singular part
of the Laurent expansion at every pole has finite rank co-
efficients; see [24, p. 90], [27, pp. 113–121], [29, Foot-
note 18 on p. 193], [5, p. 198], and [31, p. 660]. Note
that the characteristic values coincide with the poles,
whose order is just the index p at which the sequences{M((I − ζT )m)} and

{N((I − ζT )n)} stabilize.
(4) For every ε > 0 there exists some n such that T n(BX)

can be covered by a finite number of balls y+ εnBX . Here
BX denotes the closed unit ball of X. A presentation of
the Riesz theory based on a slightly modified geometric
property is given in [18, Sec. 3.2 and 7.4.1].

T. T. West [32, Counterexamples] observed that the set of all
Riesz operators on some Banach space may fail to be closed
under addition, multiplication, and passing to the limit with
respect to the operator norm. So it makes sense to look for
closed idealsA such that all componentsA(X) consist of Riesz
operators. The classical examples are F and K.

A much larger idealS, introduced by T. Kato [14, pp. 284–
288], consists of the strictly singular (semicompact) operators
T ∈ L(X, Y) defined by the following property: If there exists
a constant c > 0 such that ‖T x‖ ≥ c‖x‖ for all x in a closed
subspace M, then M is finite-dimensional. Dualisation yields
the closed ideal of stricly cosingular (co-semicompact) oper-
ators. Both ideals are extensively treated in a monograph [22,
pp. 252–263, 315–317] written by D. Przeworska-Rolewicz
and S. Rolewicz. An increasing 1-parameter scale of closed
ideals lying between K and S was constructed in [20].

The largest ideal of this kind, here abbreviated by R, was
introduced in [17, p. 57]. Its components R(X, Y) are formed
by all T ∈ L(X, Y) such that IX + AT , or equivalently IY + T A,
is a Φ-operator for every A ∈ A(Y, X). Since this definition
is based on earlier results of I. Ts. Gokhberg, A. S. Markus,
and I. A. Feldman [8] as well as of D. Kleinecke [15], the
members of R were called Gochberg operators or inessential
(which does not mean that Gochberg is inessential).
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