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Solved and Unsolved Problems
Michael Th. Rassias (Institute of Mathematics, University of Zürich, Switzerland)

As for me, all the various journeys on which
one by one I found myself engaged,
were leading me to Analysis Situs.

Henri Poincaré (1854–1912)

The present column is devoted to topology. The proposed problems
range from tractable to fairly demanding, so that a wide range of our
readers could try to tackle them. As always, there is also a proposed
open research problem. The open problem in this column, along with
the relevant discussion, is contributed by Simon Donaldson.

The word topology is derived from the two Greek words τόπος
meaning place and λόγος meaning study. In mathematics, topology
is considered to be the study of those properties of geometrical ob-
jects that remain invariant under topological transformations. But
what is a topological transformation? A transformation of a geo-
metric figure is called topological if under this transformation the
relations of adjacency of various parts of the figure are not destroyed
and also no new ones appear. That is, in such a transformation, the
parts of a geometric figure that were in contact will remain in con-
tact, and the parts that were not in contact cannot come into contact.
Therefore, under a topological transformation we can stretch, twist,
crumple, and bend, but we can neither tear nor glue.

In the above, the notion of continuity plays an integral role and
for this reason topology progressed being influenced by the rigorous
construction of mathematical analysis. Among the mathematicians
who have been involved in the development of topology, the ones
who are generally considered to have played the most profound roles
are G. Leibniz, L. Euler, F. Gauss, B. Riemann, E. Betti, and most
importantly H. Poincaré.

Leibniz coined the term geometria situs to describe the field of
mathematics that is known today as topology, but it wasn’t until Eu-
ler that an important topological concept arose with his proof of the
now famous Euler polyhedron formula. In this study Euler intro-
duced the concept of what is now called Euler’s characteristic. Later,
Gauss also made essential contributions to the field. Subsequently,
Riemann’s work had a profound impact in the development of topol-
ogy when he introduced the concept of a Riemann surface. He intro-
duced the concept of connectivity of a surface, which helped classify
topologically compact orientable surfaces. Inspired by Riemann’s
concept of connectivity, Betti introduced connectivity numbers of
surfaces, now known as Betti numbers. In this manner Betti estab-
lished the concept of boundary and generalised Riemann’s concept
of connectivity. Later, based also on Riemann and Betti, Poincaré
made monumental contributions to the development of topology and
this is the reason why he is generally acknowledged as the father of
this field.

In 1895, in his famous memoir Analysis situs, Poincaré estab-
lished the difference between curves deformable to one another and
curves bounding a larger space, respectively leading to the concepts
of homotopy, fundamental groups, and homology. Poincaré was the
first to discover that topological arguments could be applied to prove
the existence of periodic solutions in the three-body problem of ce-
lestial mechanics.

Topology constitutes one of the most central fields of mathemat-
ics. Notwithstanding its very abstract nature, there is a staggering
number of applications of topology to various other fields of Science
such as astronomy, physics, biology, computer science and robotics.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

204. Note that in any topological space with an isolated point,
any two dense sets must intersect. Show that there is a 0-
dimensional, Hausdorff topological space X with no isolated
points so that still, there are no disjoint dense sets in X.

(Daniel Soukup, Kurt Gödel Research Center,
University of Vienna, Austria)

205. For X = {{x, y} : x, y ∈ Q}, find a function b : X → N such
that {

b({x, y}) : x, y ∈ B
}
= N,

whenever B ⊆ Q is homeomorphic to Q.

(Boriša Kuzeljević, University of Novi sad, Department of
Mathematics and Informatics, Serbia)

206. Suppose that (G, ·) is a group, with identity element e
and (G, τ) is a compact metrisable topological space. Suppose
also that Lg : (G, τ)→ (G, τ) and Rg : (G, τ)→ (G, τ) defined by,
Lg(x) := g · x and Rg(x) := x · g for all x ∈ G, are continuous func-
tions. Show that (G, ·, τ) is in fact a topological group.

(Warren B. Moors, Department of Mathematics,
The University of Auckland, New Zealand)

207. We will say that a nonempty subset A of a normed linear
space (X, ‖ · ‖) is a uniquely remotal set if for each x ∈ X,

{
y ∈ A : ‖y − x‖ = sup{‖a − x‖ : a ∈ A}}

is a singleton. Clearly, nonempty uniquely remotal sets are
bounded. Show that if (X, ‖ · ‖) is a finite-dimensional normed lin-
ear space and A is a nonempty closed and convex uniquely remotal
subset of X, then A is a singleton set.

(Warren B. Moors, Department of Mathematics,
The University of Auckland, New Zealand)

208. Let X be any set. A family F of functions from X to {0, 1}
is said to separate countable sets and points if for every countable
set B ⊆ X and every x ∈ X \ B, there is a function f ∈ F so that
f (x) = 1 and f [B] = {0}.
Let κ and λ be infinite cardinals with λ ≤ 2κ. Give {0, 1} the dis-
crete topology and {0, 1}λ the usual product topology. Show that
the following are equivalent:
1. there is a family F of λ many functions from κ to {0, 1} such

that F separates countable sets and points;
2. there is a subspace X ⊆ {0, 1}λ of size κ such that every count-

able subset of X is closed in X.

(Dilip Raghavan, Department of Mathematics,
National University of Singapore, Singapore)
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209. A subset X of a partial order (P,≤) is cofinal in P if for
each p ∈ P there is an x ∈ X satisfying p ≤ x. Let βω denote
the Stone–Čech compactification of the natural numbers, and let
ω∗ denote the Stone–Čech remainder, βω \ ω. A neighbourhood
base Nx at a point x forms a directed partial order under reverse
inclusion. A neighbourhood base (Nx,⊇) is said to be cofinal in
another neighborhood base (Ny,⊇) if there is a map f : Nx → Ny

such that f maps each neighbourhood base at x to a neighborhood
base at y. Assume the continuum hypothesis. Show that there are
at least two points x, y in ω∗ with neighbourhood bases (Nx,⊇)
and (Ny,⊇) which are cofinally incomparable; that is, neither is
cofinal in the other.

(Natasha Dobrinen, Department of Mathematics,
University of Denver, USA)

II An Open Problem, by Simon Donaldson
(Department of Mathematics, Imperial College,
London, UK)

210* A problem in 4-manifold topology. This is not a new
problem, it has been well known to 4-manifold specialists for the
20 years since the paper [1] of Fintushel and Stern, which is our
basic reference. (Other good background references include [2]
and [4].) The question involves a simple topological construction,
knot surgery, introduced by Fintushel and Stern, involving a com-
pact 4-manifold M and a knot K (i.e., an embedded circle in the
3-sphere S 3). We assume that there is an embedded 2-dimensional
torus T in M with trivial normal bundle. We fix an identification
of a neighbourhood N of T in M with a product D2 × T , where
D2 is the 2-dimensional disc . Thus the boundary of N is identi-
fied with the 3-dimensional torus T 3 = S 1 × T = S 1 × S 1 × S 1.
Likewise, a tubular neighbourhood ν of the knot K in S 3 can be
identified with D2 ×K, with boundary S 1 ×K = S 1 × S 1. Thus the
product YK = (S 3 \ ν) × S 1 has the same boundary, a 3-torus, as
the complement M \ N and we define a new compact 4-manifold

MK,φ = (M \ N) ∪φ YK ,

where the notation means that the two spaces are glued along their
common boundary using a diffeomorphism φ : ∂N → ∂YK . This
map φ is chosen to take the circle ∂D2 in the boundary of N, which
bounds a disc in N, to the “longitude” in the boundary of ν, which
is distinguished by the fact that it bounds a surface in the comple-
ment S 3 \ ν. This condition does not completely fix φ but for the
case of main interest here it is known that the resulting manifold is
independent of the choice of φ, so we just write MK . For the trivial
knot K0 the complement S 3 \ν is diffeomorphic to S 1×D2, so YK0

is the same as N and MK0 is the same as M – the construction just
cuts out N and then puts it back again.

The general problem is this: For two knots K1,K2, when is the
4-manifold MK1 diffeomorphic to MK2 ? But there is no need to be
so ambitious so we can ask the following: Can we find interesting
examples of M,K1,K2 such that MK1 and MK2 either are, or are
not, diffeomorphic?

The simplest way in which one might detect the effect of this
knot surgery is through the fundamental group. For a non-trivial
knot K, the fundamental group of the complement S 3 \ ν is a com-
plicated nonabelian group, but it has the property that it is nor-
mally generated by the loops in the boundary 2-torus. That is, the
only normal subgroup of π1(S 3 \ ν) which contains π1(∂ν) is the
whole group. It follows that if the complement M\T is simply con-

nected then the same is true of MK . In particular, this will be true if
M is simply connected and there is a 2-sphere Σ in M which meets
T transversely in a single point. From now on we restrict attention
to the case when the 4-manifold M is the 4-manifold underlying a
complex K3 surface X and T ⊂ K is a complex curve. Regarded
as complex manifolds there is a huge moduli space of K3 surfaces
(only some of which contain complex curves) but it is known that
all such pairs (X, T ) are equivalent up to diffeomorphism. For one
explicit model we could take X to be the quartic surface in CP3

defined by the equation

z4
0 + z4

1 + z4
2 + z4

3 = 0.

If κ ∈ C is a fourth root of −1 then the line L defined by the equa-
tions z1 = κz0, z3 = κz2 lies in X and for a generic plane Π through
L the intersection of X withΠ is the union of L and a smooth plane
curve of degree 3. It is well known that smooth plane cubics are
(as differentiable manifolds) 2-dimensional tori, so this gives our
torus T ⊂ X, which one can check has trivial normal bundle. Us-
ing the manifest symmetries of X we can find another line L′ in
X which is skew to L and then L′ meets T in just one point. A
standard general result in complex algebraic geometry (the Lef-
schetz hyperplane theorem) shows that X is simply connected and
since L′ is a 2-sphere (as a differentiable manifold) we see that
X \ T is simply connected. There are many other possible mod-
els for (X, T ) that one can take, for example using the “Kummer
construction” via the quotient of a 4-torus by an involution.

To set our problem in context we recall that, in 1982, Freed-
man obtained a complete classification of simply connected 4-
manifolds up to homeomorphism: everything is determined by the
homology. At the level of homology all knot complements look
the same and it follows that all the manifolds XK are homeomor-
phic to the K3 surface X. By contrast the classification up to diffeo-
morphism, which is the setting for our problem, is a complete mys-
tery. The only tools available come from the Seiberg–Witten equa-
tions which yield the Seiberg–Witten invariants. Ignoring some
significant technicalities, these invariants of a smooth 4-manifold
M take the form of a finite number of distinguished classes (“ba-
sic classes”) in the homology H2(M), with for each basic class
β a non-zero integer S W(β). So there is a way to show that 4-
manifolds are not diffeomorphic, by showing that their Seiberg–
Witten invariants are different, but if the Seiberg–Witten invariants
are the same one has no technique to decide if the manifolds are
in fact diffeomorphic, except for constructing a diffeomorphism by
hand, if such exists. The special importance of the K3 surface X
appears here in the fact that it has the simplest possible non-trivial
Seiberg–Witten invariant: there is just one basic class 0 ∈ H2(X)
and S W(0) = 1.

The main result of Fintushel and Stern in [1] is a calculation of
the Seiberg–Witten invariants of the knot-surgered manifolds XK .
To explain their result we need to recall the Alexander polynomial
of a knot K. While the knotting is invisible in the homology of
the complement S 3 \ ν we get something interesting by passing
to the infinite cyclic cover. The action of the covering transforma-
tions makes the 1-dimensional homology of this covering space a
module over the group ring of Z, which is the ring Λ = Z[t, t−1]
of Laurent series with integer coefficients. One finds that this is a
torsion module Λ/I, for a principal ideal I ⊂ Λ and the generator
of this ideal I gives the Alexander polynomial pK ∈ Λ. From this
point of view pK is defined up to multiplication by a unit in Λ but
there is a way to normalise so that

pK(t) = a0 +

g∑
i=1

ai(ti + t−i),

for integers ai with a0 + 2
∑g

i=1 ai = 1.
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Fintushel and Stern show that XK has basic classes ±2i[T ],
where [T ] is the homology class of a “parallel” copy of T in the
complement X\N (which is contained in all XK) and S W(2i[T ]) =
ai. In other words, the Seiberg–Witten invariants capture exactly
the Alexander polynomial of K. It is easy to construct distinct
knots with same Alexander polynomial, so our question becomes
the following: if K1,K2 are knots with the same Alexander poly-
nomial, are the 4-manifolds XK1 , XK2 diffeomorphic?

As we have outlined, this question is a prototype – in an ex-
plicit and elementary setting – for the fundamental mystery of
four-dimensional differential topology. There are also important
connections with symplectic topology. A knot is called “fibred”
if there is a fibration π : S 3 \ ν → S 1, extending the standard
fibration on the 2-torus boundary. The fibre S is the complement
of a disc in a compact surface of genus g and in this case the
Alexander polynomial is just t−g times the characteristic polyno-
mial of the action of the monodromy on H1(S ). In particular the
polynomial is “monic”, with leading coefficent ag equal to ±1. On
the other hand there are knots K with monic Alexander polyno-
mial which are not fibred and distinct fibred knots may have the
same Alexander polynomial. If K is fibred then one can construct
a symplectic structure ωK on XK . Conversely if XK has a symplec-
tic structure then results of Taubes on Seiberg–Witten invariants,
combined with the calculation of Fintushel and Stern, show that
pK must be monic. So we have further questions such as

1. If pK is monic but K is not fibred, does XK admit a symplectic
structure?

2. If K1,K2 are fibred knots and (XK1 , ωK1 ) is symplectomorphic
to (XK2 , ωK2 ) are K1,K2 equivalent?

Another question in the same vein as (1) is whether a 4-
manifold S 1 × Z3 admits a symplectic structure if and only if the
3-manifold Z3 fibres over the circle. This was proved by Friedl
and Vidussi [3] and by Kutluhan and Taubes [5] (with an extra
technical assumption).

If we take the product XK × S 2 we move into the realm of high-
dimensional geometric topology: the subtleties of 4 dimensions
disappear and all the manifolds are diffeomorphic. But in the sym-
plectic theory there are still interesting questions:

For which fibred knots K1,K2 are (XKi × S 2, ωKi + ωS 2 ) symplec-
tomorphic?

It seems likely that the Alexander polynomials must be the
same, using Taubes’ result relating the Seiberg–Witten and
Gromov–Witten invariants.

References
[1] R. Fintushel and R. Stern, Knots, links and 4-manifolds. Inventiones

Math. 134 (1998), 363–400.
[2] R, Fintushel and R. Stern, Six lectures on 4-manifolds in Low dimen-

sional topology. IAS/Park City Math. Series, Vol. 15 Amer. Math. Soc.
2009.

[3] S. Friedl and S. Vidussi, Twisted Alexander polynomials detect fibered
3-manifolds. Annals of Math. 173 (2011), 1587–1643.

[4] R. Gompf and A. Stipsicz, Four-manifolds and Kirby calculus. Grad.
Studies in Math. Amer. Math. Soc. (1999)

[5] C. Kutluhan and C. Taubes, Seiberg–Witten Floer homology and sym-
plectic forms on S 1 ×M3. Geometry and Topology 13 (2009), 493–525.

III Solutions

197. In a game, a player moves a counter on the integers accord-
ing to the following rules. During each round, a fair die is thrown.
If the die shows “5” or “6”, the counter is moved up one position
and if it shows “1” or “2”, it is moved down one position. If the die
shows “3” or “4”, the counter is moved up one position if the cur-
rent position is positive, down one position if the current position
is negative and stays at the same position if the current position
is 0. Let Xn denote the position of the player after n rounds when
starting at X0 = 1. Find the probability p that lim Xn = +∞ and
show that Xn/n → 1/3 with probability p and Xn/n → −1/3 with
probability 1 − p.

(Andreas Eberle, Institute for Applied Mathematics,
Probability Theory, Bonn, Germany)

Solution by the proposer. For x ∈ Z, we denote by p(x) the probabil-
ity that lim Xn = +∞ if the counter starts at X0 = x. If x > 0 then
during the first round, the player moves to x+ 1 with probability 2/3
and to x − 1 with probability 1/3. By conditioning on the first step,
we see that for x > 0,

p(x) =
2
3
P [lim Xn = ∞ | X1 = x + 1]

+
1
3
P [lim Xn = ∞ | X1 = x − 1]

=
2
3

p(x + 1) +
1
3

p(x − 1).

This intuitive argument is made mathematically rigorous by apply-
ing the Markov property for the process (Xn)n∈Z+ . Similarly, we can
consider the cases x < 0 and x = 0. We obtain the linear system

p(x) =
2
3

p(x + 1) +
1
3

p(x − 1) for all x > 0, (1)

p(x) =
1
3

p(x + 1) +
2
3

p(x − 1) for all x < 0, (2)

p(0) =
1
3

p(1) +
1
3

p(0) +
1
3

p(−1). (3)

The equation (1) can be rewritten as the difference equation

2
3
(
p(x + 1) − p(x)

)
=

1
3
(
p(x) − p(x − 1)

)
for all x > 0.

Thus the general solution of (1) is given by

p(x) = a + b · (1 − 2−x) for x ≥ 0, (4)

where a and b are real constants. Similarly, the general solution of
(2) is

p(x) = c + d · (1 − 2x) for x ≤ 0.

Matching coefficients at x = 0 shows that c = a, and taking into
account (3) implies d = −b. Hence

p(x) = a − b · (1 − 2x) for x ≤ 0. (5)

Finally, we observe that

lim
x→+∞

p(x) = 1 and lim
x→−∞

p(x) = 0. (6)

To see this let S n =
∑n

i=1 Yi where Yi = +1 if the dice shows “3”,
“4”, “5”, or “6” in the ith round, and Yi = −1 otherwise. Then by
the law of large numbers, with probability 1, lim S n/n = 1/3, and
thus lim S n = ∞. Moreover, if inf S n > −X0 then X0 + S n is always
positive, and hence Xn = X0 + S n for all n. Thus

lim inf
x→∞

p(x) ≥ lim
x→∞
P [inf S n > −x] = P [inf S n > −∞] = 1.
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This shows that limx→∞ p(x) = 1, and, by a similar argument,
limx→−∞ p(x) = 0. By (4), (5), and (6), a + b = 1 and a − b = 0,
i.e., a = b = 1/2. Hence

p(x) =


1 − 2−x−1 for x ≥ 0,
2x−1 for x ≤ 0.

In particular, for X0 = 1 we obtain

p = P [lim Xn = ∞] = p(1) = 3/4.

Moreover, by symmetry,

P [lim Xn = −∞] = p(−1) = 1/4 = 1 − p.

Hence with probability 1, we have either lim Xn = +∞ or lim Xn =

−∞. In the first case, Xn − Xn−1 = Yn for sufficiently large n, and
hence

lim(Xn/n) = lim(S n/n) = 1/3.

Similarly, in the second case,

lim(Xn/n) = −1/3. �

Also solved by Mihaly Bencze (Romania), Socratis Varelogiannis
(France), and Alexander Vauth (Germany).

198. Let B := (Bt)t≥0 be Brownian motion in the complex plane.
Suppose that B0 = 1.
(a) Let T1 be the first time that B hits the imaginary axis, T2 be

the first time after T1 that B hits the real axis, T3 be the first
time after T2 that B hits the imaginary axis, etc. Prove that,
for each n ≥ 1, the probability that |BTn | ≤ 1 is 1/2.

(b) More generally, let �n be lines through 0 for n ≥ 1 such that
1 � �1. Let T1 := inf{t ≥ 0 ; Bt ∈ �1} and recursively define
Tn+1 := inf{t > Tn ; Bt ∈ �n+1} for n ≥ 1. Prove that, for each
n ≥ 1, the probability that |BTn | ≤ 1 is 1/2.

(c) In the context of part (b), let αn be the smaller of the two
angles between �n and �n+1. Show that

∑∞
n=1 αn = ∞ iff, for

all ε > 0, the probability that ε ≤ |BTn | ≤ 1/ε tends to 0 as
n→ ∞.

(d) In the context of part (a), show that

lim
n→∞

P
[

exp
(−δn
√

n
) ≤ |BTn | ≤ exp

(
δn
√

n
)]
=

∫ 2δ/π

−2δ/π

e−u2/2

√
2π

du

if δn ≥ 0 tend to δ ∈ [0,∞].

(Russell Lyons, Department of Mathematics, Indiana University,
USA [Partially supported by the National Science Foundation

under grant DMS-1612363])

Solution by the proposer. We skip (a) and pass directly to (b). De-
note inversion in the unit circle by φ(z) := 1/z̄. It is well known
that W :=

(
φ(Bt)

)
t≥0 is a time-change of Brownian motion. Since

φ maps each line �n to itself, T1 = inf{t ≥ 0 ; Wt ∈ �1} and
Tn+1 = inf{t > Tn ; Wt ∈ �n+1} for n ≥ 1. Thus, BTn and WTn have the
same distribution. However, |Bt | ≤ 1 iff |Wt | ≥ 1. Since the chance
that |BTn | = 1 is 0 for each n, we obtain (b).

In light of (b), the conclusion of (c) is equivalent to
limn→∞ P

[|BTn | < ε
]
= 1/2 for all ε > 0.

Let T := limn→∞ Tn. If T < ∞ a.s., then limn→∞ BTn = BT , which
implies that for some ε > 0, limn→∞ P

[|BTn | < ε
]
� 1/2. Now sup-

pose that T = ∞ a.s. Neighbourhood recurrence of B shows that for

each ε > 0, there is some t < ∞ such that |Bt | ≤ ε. Let S ε be the first
such time t. The strong Markov property, scaling, rotational symme-
try, and part (b) shows that P

[|BTn | < ε
∣∣∣ Tn > S ε

]
= 1/2. Because

limn→∞ P[Tn > S ε] = 1, this shows that limn→∞ P
[|BTn | < ε

]
= 1/2.

It remains to show that if
∑∞

n=1 αn < ∞, then T < ∞ a.s., whereas
if
∑∞

n=1 αn = ∞, then T = ∞ a.s. If lim supn→∞ αn > 0, as in (a), then
this is clear from the fact that then a.s. there is no limiting argument
of BTn . In general, we use the skew-product representation of B as
Bt = exp

(
XHt + iYHt

)
, where X and Y are independent real Brown-

ian motions started at 0 and Ht :=
∫ t

0
ds/|Bs|2 (the form of H will

not matter to us). Note that HTn are functions of Y and thus inde-
pendent of X. Also, H∞ = ∞ a.s. It is well known that the expected
time for Y to visit either α > 0 or −β < 0 is αβ, whence the ex-
pectation of HTn+1 − HTn equals (π − αn)αn. Note that HTn+1 − HTn

are independent (and nonnegative). Therefore, if
∑∞

n=1 αn < ∞, then∑
n
(
HTn+1 − HTn

)
< ∞ a.s., and otherwise (by Kolmogorov’s three-

series theorem)
∑

n
(
HTn+1−HTn

)
= ∞ a.s. This is the same as HT < ∞

a.s. or HT = ∞ a.s. respectively, which in turn is equivalent to T < ∞
a.s. or T = ∞ a.s.

For part (d), note that HTn/n → π2/4 in probability by the weak
large of large numbers. With εn := exp

(−δn
√

n
)
, we have

P
[
εn ≤ |BTn | ≤ 1/εn

]
= P
[−δn
√

n ≤ XHTn
≤ δn
√

n
]

= P
[
−2δn

π
≤ X 4HTn

π2n

≤ 2δn

π

]

by Brownian scaling. Now let n→ ∞. �

Remark. The proof of (c) could be shortened by using the skew-
product representation throughout, but the proof given is more ele-
mentary in the context of (a). Part (b) could also be proved with the
skew-product representation.

Also solved by Mihaly Bencze (Romania), Sotirios E. Louridas
(Greece), and Socratis Varelogiannis (France).

199. Suppose that each carioca (native of Rio de Janeiro) likes
at least half of the other 223 cariocas. Prove that there exists a set A
of 1000 cariocas with the following property: for each pair of car-
iocas in A, there exists a distinct carioca who likes both of them.

(Rob Morris, IMPA, Rio de Janeiro, Brazil)

Solution by the proposer. Choose 10 random cariocas (possibly with
repetition), and consider the set X of cariocas that they all like. Ob-
serve that, writing V for the set of all n cariocas, we have

E
[|X|] ≥

∑
v∈V

(d(v)
n

)10

≥ 2−11n ≥ 2000,

where d(v) is the number of cariocas that like carioca v. Indeed, the
first inequality follows by linearity of expectation, together with the
fact that v ∈ X if and only if the 10 random cariocas all like v, the
second inequality uses the convexity of the function f (x) = x10 and
the fact that

∑
v∈V d(v) ≥

(
n
2

)
, and the third holds since n ≥ 223.

Now, let Y be the set of pairs of cariocas in X such that fewer
than
(

1000
2

)
cariocas like both of them. Observe that

E
[|Y |] ≤

(
n
2

)( (1000
2

)

n

)10

≤ 2189

n8 ≤ 1000,

again using the fact that n ≥ 223. It follows that E
[|X| − |Y |] ≥ 1000,

and hence there exists a choice of 10 cariocas such that |X| − |Y | ≥
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1000. Removing one carioca from each pair in X such that fewer
than
(

1000
2

)
cariocas like both of them, we obtain a set A of 1000 cari-

ocas, so that no pair in A has this property. But now we can greedily
(i.e., one by one) find a distinct carioca w for each u, v ∈ A such that
w likes both u and v, as required.

This proof is due to N. Alon, M. Krivelevich, and B. Su-
dakov [1, 5], and is based on an earlier idea of W. T. Gowers [3]
and (independently) A. V. Kostochka and V. Rödl [4]. It is a sim-
ple example of a powerful technique known as dependent random
choice; see [2]. �
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Also solved by Mihaly Bencze (Romania) and Socratis Varelogiannis
(France).

200. Let X, Y, Z be independent and uniformly distributed in
[0, 1]. What is the probability that three sticks of length X, Y and
Z can be assembled together to form a triangle?

(Sebastien Vasey, Department of Mathematics, Harvard
University, Cambridge, Massachusetts, USA)

Solution by the proposers. When x, y, z are fixed and z = max(x, y, z),
three sticks of length x, y, and z can be assembled together to form a
triangle if and only if x + y ≤ z. Let A be the event that three sticks
of length X, Y , and Z can be assembled together to form a triangle.
We want to know the probability of A. Let M = max(X, Y, Z) We first
compute P(A|Z = M). This is

P(X + Y ≤ Z|Z = M) .

We condition on Z: for a fixed z ∈ [0, 1], P(X + Y ≤ z|Z = z = M) is

P(X + Y ≤ z|X ≤ z, Y ≤ z) =
P(X + Y ≤ z)

P(X ≤ z, Y ≤ z)
.

The denominator is z2. Since the density is uniform, the nomina-
tor is the area of the triangle bounded by the x and y axes and
the line y = z − x. This area is z2

2 , and hence we obtain that
P(A|Z = z = M) = 1

2 . De-conditioning, we obtain

P(A|Z = M) =
∫ 1

0

1
2
· 1dz =

1
2
.

Similarly, P(A|X = M) = P(A|Y = M) = 1
2 . By symmetry, X, Y , and

Z are equally likely to be maximal, hence P(X = M) = P(Y = M) =
P(Z = M) = 1

3 . We conclude that P(A) = 1
2 . �

Also solved by Mihaly Bencze (Romania), Jim Kelesis (Greece),
Panagiotis Krasopoulos (Greece), Peter Marioni (USA), Socratis
Varelogiannis (France), and Alexander Vauth (Germany).

201. Suppose that each hour, one of the following four events
may happen to a certain type of cell: it may die, it may split into
two cells, it may split into three cells, or it may remain a single
cell. Suppose these four events are equally likely. Start with a pop-
ulation consisting of a single cell. What is the probability that the
population eventually goes extinct?

(Sebastien Vasey, Department of Mathematics, Harvard
University, Cambridge, Massachusetts, USA)

Solution by the proposer. Let Zn be the number of cells after n hours
(the sequence Z0, Z1, . . . is called a branching process). We have that
Z0 = 1 and the mass function fZ1 of Z1 is fZ1 (k) = 1

4 for k = 0, 1, 2, 3.
Thus its generating function is

GZ1 (s) =
∞∑

k=0

fZ1 (k)sk =
1
4

(
1 + s + s2 + s3

)
.

Write G := GZ1 , and let Gn := GZn . We claim that for n ≥ 2,
Gn = Gn−1 ◦ G. Indeed, for 1 ≤ i ≤ Zn−1, let Xi be the number of
cells that the ith cell reproduced into. Then Zn = X1+X2+ · · ·+XZn−1

and GXi (s) = G(s). Thus,

Gn(s) = E(sZn ) = E
(

E(sZn |Zn−1)
)

=

∞∑
m=0

(
G(s)
)mP(Zn−1 = m) = Gn−1

(
G(s)
)
.

We now claim that the probability η of extinction is the least nonneg-
ative solution to the equation G(s) = s. Indeed, let ηn := P(Zn = 0).
Note that (ηn)n∈N is an increasing sequence with limit η. Moreover,
Gn(0) = ηn, and so in particular G(0) = η1, η2 = G(G(0)) = G(η1),
and in general G(ηn) = ηn+1. G is continuous, so taking the limit on
both sides, G(η) = η. Clearly, η is nonnegative, and if η′ is another
nonegative solution, then 0 ≤ η′, so (using that G(s) is nondecreasing
for s ≥ 0) η1 = G(0) ≤ G(η′) = η′, and so η2 = G(η1) ≤ G(η′) = η′,
and so on. Thus ηn ≤ η′ for all n, and hence η ≤ η′.

We have shown that the desired probability of extinction is the
least nonnegative solution of 1

4 (1 + s + s2 + s3) = s, i.e., of

p(s) :=
s3

4
+

s2

4
− 3s

4
+

1
4
= 0.

To find the roots of p, note that G(1) = 1 (probabilities must sum to
1), so after a polynomial division,

p(s) = (s − 1)
(

s2

4
+

s
2
− 1

4

)
.

The second factor has roots −1 ±
√

2. Discarding the negative solu-
tion (and noting that

√
2 − 1 < 1), we obtain that the probability of

extinction is η =
√

2 − 1. �

Also solved by Mihaly Bencze (Romania), Jim Kelesis (Greece),
Panagiotis Krasopoulos (Greece), and Peter Marioni (USA).

202. We are flipping a fair coin repeatedly and recording the out-
comes.
(1) How many coin flips do we need on average to see three tails

in a row?
(2) Suppose that we stop when we first see heads, heads, tails (H,

H, T) or tails, heads, tails (T, H, T) come up in this order on
three consecutive flips. What is the probability that we stop at
H, H, T?

(Benedek Valkó, Department of Mathematics, University of
Wisconsin Madison, Madison, Wisconsin, USA)
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Solution by the proposer. Let Xk ∈ {H, T } denote the outcome of the
kth coin flip. By assumption

P(Xk = H) = P(Xk = T ) =
1
2

and the random variables {Xk, k ≥ 1} are independent. For a finite
sequence

A = (a1, . . . , an), ai ∈ {H, T }
we set

τA = inf
{
k ≥ n : Xk−n+1 = a1, Xk−n+2 = a2, . . . , Xk = an

}

to be the first time we see the sequence A appearing as the result of
consecutive outcomes in our sequence of coin flips.

The first observation is that for any finite A we have
P(τA < ∞) = 1 and E[τA] < ∞. To prove this, we divide up the
infinite coin flip sequence into consecutive blocks of n (the length of
A), and set τ̃A to be the first time we see A appearing in one of these
blocks:

τ̃A = inf
{
k ≥ 1 : X(k−1)n+1 = a1, X(k−1)n+2 = a2, . . . , Xkn = an

}
.

Since the outcomes in non-overlapping blocks are independent, and
the probability that we see A in a given block of length n is 2−n, we
have

P(̃τA = j) = 2−n (1 − 2−n) j−1 for j ≥ 1.

From this we get

P(̃τ < ∞) =
∞∑
j=1

P(̃τA = j) = 1

and

E[̃τA] =
∞∑
j=1

j · P(̃τA = j) = 2n < ∞.

By definition τA ≤ n · τ̃A, which implies P(τA < ∞) = 1 and
E[τA] < ∞.

Now we turn to the actual questions.

(a) We have to compute E[τA] where A = (T, T, T ). Consider the
following events:

B1 = {X1 = H}, B2 = {X1 = T, X2 = H},
B3 = {X1 = T, X2 = T, X3 = H}, B4 = {X1 = X2 = X3 = T }.

These are disjoint, and one of them will always happen, i.e., they
form a partition of our sample space. Hence we can compute
E[τA] by averaging the conditional expectations:

E[τA] =
4∑

i=1

E[τA|Bi]P(Bi).

The probabilities P(Bi) can be computed using the indepen-
dence of the different coin flips: P(B1) = 1/2, P(B2) = 1/4,
P(B3) = P(B4) = 1/8. If X1 = X2 = X3 = T (i.e., B4 occurs)
then τA = 3 which means that E[τA|B4] = 3. If the first coin flip
is heads (i.e., B1 occurs) then the first T, T, T sequence will have
to start at least at the second coin flip. By the independence of
the coin flips this means that τA conditioned on B1 behaves the
same way as τA + 1, which implies

E[τA|B1] = E[τA + 1] = E[τA] + 1 .

We can show E[τA|B2] = E[τA] + 2 and E[τA|B3] = E[τA] + 3
the same way. This gives

E[τA] =
1
2

(E[τA] + 1) +
1
4

(E[τA] + 2) +
1
8

(E[τA] + 3) +
1
8
· 3,

and solving this we get E[τA] = 14. (Note that we need
E[τA] < ∞ for the last step.)

(b) Let A1 = (H,H, T ) and A2 = (T,H, T ). We need to compute
P(τA1 < τA2 ). Introduce the events

C1 = {X1 = X2 = H}, C2 = {X1 = T, X2 = H},
C3 = {X1 = X2 = T }, C4 = {X1 = H, X2 = T }.

These events form a partition of our sample space, hence we
can compute P(τA1 < τA2 ) by averaging the corresponding con-
ditional probabilities:

P(τA1 < τA2 ) =
4∑

i=1

P(τA1 < τA2 |Ci)P(Ci)

=
1
4

4∑
i=1

P(τA1 < τA2 |Ci).

Given that the first two flips are heads we will have τA1 < τA2 ,
as the first appearing tails will form a sequence of H,H, T (and
T,H, T cannot happen before that). Thus P(τA1 < τA2 |C1) = 1.
Suppose now that X1 = T and X2 = H. If X3 = T (which has a
conditional probability of 1/2) then τA2 = 3 < τA1 . If X3 = H
then we are in a similar situation as before: H,H, T will come up
before T,H, T . Thus P(τA1 < τA2 |C2) = 1

2 . A similar argument
shows that P(τA1 < τA2 |C3) = P(τA1 < τA2 |C4) = 1

2 as well (in
both cases one has to consider the first heads appearing after the
second flip). This gives

P(τA1 < τA2 ) =
1
4

(
1 +

1
2
+

1
2
+

1
2

)
=

5
8
.

�

Remarks.
• One can always compute the expectation E[τA] for a given finite

sequence of length n by setting up a system of linear equations for
the conditional expectations of τA with respect to the first n − 1
possible coin flips. These equations are the consequence of the
fact that we only need to ‘remember’ the last n − 1 coin flips to
check whether we complete the sequence at a given coin flip. This
idea can also be used to compute P(τA1 < τA2 ) for any two given
sequences A1, A2.

• It might be surprising to note that there are sequences A1, A2 so
that E[τA1 ] > E[τA2 ] but P(τA1 < τA2 ) > 1/2. Moreover, there are
sequences A1, A2, A3 so that A1 is more likely to come up before
A2, A2 is more likely to come up before A3, and A3 is more likely
to come up before A1.

• Using a bit more sophisticated methods (martingales and optional
stopping, see, e.g., [1]) one can prove an explicit formula for
E[τA]. If A = (a1, . . . , an) then

E[τA] =
n∑

k=1

2k · 1(an−k+1 = a1, an−k+2 = a2, . . . , an = ak).

Thus the more ways the sequence A can ‘overlap’ with itself the
larger the expected wait time for its first appearance. A similar
formula can be derived for P(τA1 < τA2 ).
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Also solved by Marcello Galeotti (Italy), Jim Kelesis (Greece),
Socratis Varelogiannis (France), and Alexander Vauth (Germany).

We encourage you to submit solutions to the proposed problems and
ideas on the open problems. Send your solutions by email to Michael
Th. Rassias, Institute of Mathematics, University of Zürich, Switzer-
land, michail.rassias@math.uzh.ch.
We also solicit your new problems with their solutions for the next
“Solved and Unsolved Problems" column, which will be devoted to
differential equations.




