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Determinantal Point Processes
Adrien Hardy (Université de Lille, France) and Mylène Maïda (Université de Lille, France)

1 Introduction

If you ask a five-year-old child to randomly draw points
within a disc, they will probably produce a picture like this
one:

which looks more like the picture on the left than the one of
the right:

Figure 1. On the left, spectrum of a Ginibre matrix; on the right, sample
of independent uniform points on the disc.

However, the figure on the right is a realisation of a point pro-
cess1 which naturally corresponds to the notion of random-
ness in mathematics: the well-known homogenous Poisson
process, made of points that are chosen uniformly on the disc
and independently of one to another. In particular, with the
Poisson process, getting very close points is possible but the
human brain tends to avoid such configurations for mysteri-
ous reasons.

The figure on the left-hand side shows the eigenvalues
in the complex plane of a matrix with independent complex
Gaussian entries2, known as a Ginibre matrix. It seems that
the intuition of randomness for a five-year-old child3 fits bet-
ter with these kind of structured configurations rather than

1 In the whole article, the notion of point process refers to a spatial pro-
cess, namely random configurations (i.e. locally finite subsets) of points
in space; indeed, the word process is commonly used in this context, al-
though there is no relation to time.

2 A complex Gaussian is a complex random variable of which the real part
and the imaginary part are two independent real Gaussian variables.

realisations of a Poisson process. In this article, we want to
discuss that underlying structure, which is a particular case of
a class of point process with some intriguing properties: the
determinantal point processes, hereafter abbreviated DPPs.

The following is neither going to be a formal introduc-
tion nor an exhaustive survey of this wide topic, but rather
a personal choice of some elegant DPPs collected in various
mathematical domains4. For a more extensive and classical
presentation, see, e.g., [5, 6, 10, 11].

As for lovers of practical applications, let us imagine that
we type the query “jaguar” into a search engine. Among the
top results, we don’t want to find 10 articles on sports cars,
but also one on the animal with spotted fur, one on the film by
Francis Veber and maybe one on an American football team.
For a wide range of subjects, we need to introduce repulsion
between similar items within the algorithms: if an item has
been selected, the closely related items are less likely to be
displayed. We are going to see, towards the end of this paper,
that the DPP has already aroused curiosity among machine
learners by providing implementable solutions to this kind of
problem, and to many others.

My first DPP: The carries process.
Consider the following process, which might remind some of
us of their primary school days: you have a column of digits
which you add up one by one from top to bottom. At each
step, you note the unit of the result on the right, note a dot if
there is a number to carry, go on to the next line and so on.

3 3
+ 6 = 9
+ 5 = 4 •
+ 4 = 8
+ 4 = 2 •
+ 3 = 5
+ 3 = 8
+ 7 = 5 •

If the first column contains random, independent and identi-
cally distributed (iid) digits following the uniform distribution
on �0, 9� := {0, . . . , 9}, how will the distribution of the point
process in relation to the carries be?

0 20 40 60 80 100

Carries

Bernoulli

Figure 2. Above, the point process of carries; below, iid Bernoulli vari-
ables of the same parameter p = 9/20.

3 Study carried out on a sample of three participants, without quota sam-
pling.

4 Let us mention some noteworthy DPPs which are not quoted in our ar-
ticle: for a given graph, the process of the edges of a uniform spanning
tree is a DPP; non-intersecting random walks on a bipartite graph form, at
fixed time, a DPP; the zeros of the hyperbolic Gaussian analytic function
form a DPP; etc.
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As a column of iid uniform digits on �0, 9� leads, after suc-
cessive additions, to a column of iid units that are also uni-
form on �0, 9�, it is equivalent to consider the following de-
scent point process, treated in a more general framework by
Borodin, Diaconis and Fulman [4]: consider a column of n+1
digits S 0, S 1, . . . , S n that are iid uniform on �0, 9� and, at each
line, we note a dot on the right if the digit in this line is strictly
inferior to the previous one. More precisely, if we put

Xi := 1{S i<S i−1} ∈ {0, 1},

the descent point process is given by the random configura-
tions Dn := {i ∈ �1, n� : Xi = 1}.

For instance, in the following example, we obtain
D7 = {2, 4, 7}:

i S i Xi

0 3
1 9 0
2 4 • 1
3 8 0
4 2 • 1
5 5 0
6 8 0
7 5 • 1

The simple computation

P({i} ⊂ Dn) = P(Xi = 1) = P(S i < S i−1)

=
1

102

(
10
2

)
=

9
20
<

1
2

shows that, as one may expect, at every line the probabilty
to have a descent/carry is a little bit less than 1/2. Thus, the
sequence X1, . . . , Xn is a sequence of random Bernoulli vari-
ables5 of parameter 9/20 but they are not independent. Intu-
itively, if you have a carry in a given line, the digit in that line
tends to be small and there are less chances to have one in the
next line. On Figure 2, we compare a realisation of the pro-
cess D100 with a random configuration B100 = {i ∈ �1, 100� :
Yi = 1} where Y1, . . . ,Y100 are iid Bernoulli variables of the
same parameter 9/20.

There is clearly a property of negative association or re-
pulsion between the adjacent descents, a discrete and unidi-
mensional analogue of what we observed in Figure 1 on the
left. The following computation confirms that two adjacent
descents are negatively correlated:

P({i, i + 1} ⊂ Dn) = P(Xi = 1 and Xi+1 = 1)

= P(S i+1 < S i < S i−1)

=
1

103

(
10
3

)

=
3
25
<

(
9

20

)2

= P({i} ⊂ Dn) P({i + 1} ⊂ Dn).

5 That is to say, P(Xi = 1) = 1 − P(Xi = 0) = 9/20.

On the contrary, if |i − j| > 1, the independence implies

P({i, j} ⊂ Dn) = P(Xi = 1 and Xj = 1)

= P(S i < S i−1)P(S j < S j−1)

=

(
9
20

)2
;

we say that the process is of range 1.
Now, in order to completely describe the law of the de-

scent point process, it is enough to determine P(A ⊂ Dn)
for any subset A of �1, n�. If A has cardinal k, it is called
k-point correlation function, which we denote by ρk(A). We
have already determined the one-point correlation function
ρ1({i}) = 9/20 for any i, as well as the two-point correlation
function: for all i � j,

ρ2({i, j}) =

(

9
20

)2
if |i − j| > 1,

3
25 if |i − j| = 1.

When k ≥ 3, if A is a sequence of k consecutive numbers of
�1, n�, one has ρk(A) = 1

10k+1

(
10

k+1

)
. Otherwise, we can write

A = A1 ∪ A2 with A1 and A2 at distance at least 2 and with
respective cardinals k1 and k2, so that ρk(A) = ρk1 (A1)ρk2 (A2),
because the process is of range 1. Going a little further, we can
verify that this collection of correlation functions is encoded
by a function with two variables K : �1, n�2 → R in the
sense that, for any k ∈ �1, n� and s1, . . . , sk ∈ �1, n� pairwise
distinct, one has:

ρk({s1, . . . , sk}) = det
[
K(si, s j)

]
1≤i, j≤k

.

We say that the point process Dn is determinantal with ker-
nel K. Borodin, Diaconis and Fulman [4] obtain a rather ex-
plicit formula for the kernel:

K(i, j) := κ( j − i) where
∑
m∈Z
κ(m)zm =

1
1 − (1 − z)10 .

More generally, they show that any point process of range 1
on a segment of Z is determinantal. They also study the de-
scents of a random permutation: a permutation σ of �1, n� has
a descent at i if σ(i − 1) > σ(i). If σ is chosen uniformly in
the symmetric group, then the descent process is determinan-
tal with kernel

Kper(i, j) := κper( j − i) where
∑
m∈Z
κper(m)zm =

1
1 − ez .

Below, we are going to come across some other interesting
DPP related to random permutations.

DPP and random matrices
While the mathematical study of DPPs began in the 1970s
with Odile Macchi’s thesis, inspired by the formalism of
fermions in quantum mechanics, their appearance in random
matrix theory has widely popularised them. In the following,
we present some results that show that the set of eigenvalues
of certain matrix models form a DPP. For all the results that
are mentioned in this paragraph, we recommend for instance
the monograph [1].

A first example is given by the eigenvalues of unitary ma-
trices sampled “uniformly”. More precisely, for n ≥ 1, we
equip the unitary group Un(C) := {U ∈ Mn(C) : UU∗ = In}
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with its unique probability measure νn invariant by left and
right multiplication, namely its normalised Haar measure. We
hereby obtain a random variable random V with values in
Un(C) by specifying that P(V ∈ A) = νn(A) for any Borel
set A ⊂ Un(C). To obtain the joint probability distribution
of the n (random) eigenvalues of V, we perform a change of
variables mapping a unitary matrix to the set of its eigenval-
ues and eigenvectors,6 and then integrate on its eigenvectors.
If we denote by eiθ1 , . . . , eiθn the eigenvalues of the random
matrix V , a classical Jacobian computation in Lie group the-
ory (due to Weyl) shows that the phases (θ1, . . . , θn) ∈ [−π, π]n

follow the probability law:

dP(θ1, . . . , θn) =
1
n!

∏
j<k

|eiθ j − eiθk |2
n∏

j=1

dθ j

2π
. (1.1)

By noting that the interaction term between the eigenvalues is
the square of a Vandermonde determinant, we obtain

dP(θ1, . . . , θn) =
1
n!

det
[
KUn(C)(si, s j)

]
1≤i, j≤n

n∏
j=1

dθ j

2π
(1.2)

where we introduced the kernel

KUn(C)(x, y) :=
n−1∑
k=0

ϕk(x)ϕk(y), ϕk(x) :=
eikx

√
2π
.

Observe that KUn(C)(x, y) is the kernel of the projection op-
erator onto the subspace of L2(−π, π) of the trigonometric
polynomials of degree at most n − 1. Taking into account the
continuous character of the eigenangles, we define the “in-
finitesimal” version of the k-point correlation function we in-
troduced above for the carries process: for every k ≥ 1 and
s1, . . . , sk ∈ [−π, π] pairwise distinct,

ρk(s1, . . . , sk) := lim
ε→0

1
εk P
(
∀ j ∈ �1, k�,

{θ1, . . . , θn} ∩ [s j, s j + ε] � ∅
)
.

In other words, for any reasonable test function ϕ : [−π, π]k

→ C, one has
∫

[−π,π]k
ϕ(s)ρk(s)ds =

∫ ∑
i1�···�ik

ϕ(θi1 , . . . , θik ) dP(θ1, . . . , θn).

(1.3)
Thanks to the invariance by permutation of dP(θ1, . . . , θn), we
see that

ρk(s1, . . . , sk)

=
n!

(n − k)!

∫
[−π,π]n−k

dP(s1, . . . , sk, sk+1, . . . , sn)

=
1

(n − k)!

∫
[−π,π]n−k

det
[
KUn(C)(si, s j)

]
1≤i, j≤n

n∏
j=k+1

ds j

2π

= det
[
KUn(C)(si, s j)

]
1≤i, j≤k

, (1.4)

6 This function is not a well-defined diffeomorphism. We fix it by reducing
the source space to the matrices with simple eigenvalues (its complemen-
tary being of mesure zero for νn), and the target space by ordering the
eigenvalues and by taking a quotient to get rid of the freedom for the
eigenvectors.

Figure 3. On the left, spectrum of a realisation of V; on the right, inde-
pendent samples of uniform points on the unit circle.

where the last identity is obtained by developing the deter-
minant under the integral and by using that KUn(C)(x, y) is the
kernel of a projection operator:∫ π

−π
KUn(C)(si, s)KUn(C)(s, s j)

ds
2π
= KUn(C)(si, s j).

Thus, the point process of the eigenangles {θ1, . . . , θn} is de-
terminantal. Let us visually compare a realisation of this pro-
cess to iid uniform variables on the unit circle: as in the case
of the descents, we observe a more regular distribution than
in the independent case. The eigenangles are well-distributed
and there is little variability; while in the uniform case, we
have clusters of points which can be noticeably different from
one realisation to another.

This repulsion is also visible in the interaction term of
(1.1). It induces behaviours that are surprising for an unpre-
pared probabilist. For example, the variance7 of a sum of n
eigenangles is much smaller than the one of n iid angles. In-
deed, if η1, . . . , ηn are iid uniformly distributed on [−π, π], one
has:

Var
[ n∑

j=1

eiη j
]
=

n∑
j=1

Var
[

eiη j
]
= n.

On the other hand, for the eigenangles we compute, using
(1.4) with k = 1, 2:

Var
[ n∑

j=1

eiθ j
]
=

∫ π
−π
|eix|2KUn(C)(x, x)dx

−
∫ π
−π

∫ π
−π

ei(x−y)|KUn(C)(x, y)|2dx dy

= n −
n−1∑

k,�=0

1
(2π)2

∫ π
−π

∫ π
−π

ei(x−y)(1+k−�)dx dy

= 1.

For the sum of n random complex numbers of module 1 to
have a unit variance, independently of n, many cancellations
need to take place, and this forces the realisations of the eigen-
values not to differ too much from an equally-spaced config-
uration on the unit circle. This confirms the visual impression
of Figure 3.

A natural question is to study asymptotically the spacing
between these eigenangles when n → ∞, after an appropri-
ate scaling. Indeed, as there are n eigenangles well spread
on [−π, π], the point process { n

2πθ1, . . . ,
n

2πθn} is a subset of

7 The variance of a random complex variable Z is defined by Var(Z) :=
E|Z|2 − |E(Z)|2.
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[− n
2 ,

n
2 ], where the standard distance between two consecu-

tive points is of order one. A change of variables yields a DPP
with kernel:8

K̃Un(C)(x, y) := e−i n−1
2 (x−y) 2π

n
KUn(C)

(
2πx

n
,

2πy
n

)

=
sin π(x − y)

n sin
(
π
n (x − y)

) .

One obtains the uniform local convergence

K̃Un(C)(x, y) −−−−→
n→∞

Ksin(x, y) :=
sin π(x − y)
π(x − y)

where, by convention, Ksin(x, x) := 1. In probabilistic terms,
when n → ∞, the DPP of the normalised eigenangles
n

2πθ1, . . . ,
n

2πθn of the random unitary matrices distributed ac-
cording to the Haar measure on Un(C) converge, in the sense
of the local uniform convergence of correlation functions, to-
wards a limiting point process which is the DPP associated
with the sine kernel Ksin(x, y): for all k ≥ 1 and any reason-
able function ϕ : Rk → R,

lim
n→∞
E


∑

i1�···�ik

ϕ( n
2πθi1 , . . . ,

n
2πθik )



=

∫
Rk
ϕ(s) det

[
Ksin(si, s j)

]k
i, j=1

ds. (1.5)

Furthermore, Ksin, seen as an operator acting on L2(R), is
the projection on the space of functions whose Fourier trans-
form has support in [− 1

2 ,
1
2 ]. This latter DPP generates almost

surely infinite configurations on R.
A paradigm in random matrix theory, already appearing in

the pioneering works of Dyson and Wigner, is the idea that the
local behaviour of the eigenvalues exhibits universality, un-
like their global behaviour. To illustrate this phenomenon, let
us first introduce another popular model of random matrices:
the Gaussian Unitary Ensemble (GUE). This time we work
on the space of Hermitian matrices Hn(C) := {M ∈ Mn(C) :
M∗ = M} equipped with a Gaussian measure. More precisely,
the isomorphism Hn(C) � Rn2

induces a Lebesgue measure
dM as well as an Euclidean norm ‖M‖ = Tr(M2)1/2 on Hn(C),
and we consider the Gaussian measure gn(M) with density
proportional to e−

n
2 ‖M‖2 . A change of variables and a compu-

tation of the Jacobian similar to the one for unitary matrices
shows that the joint probability distribution of the eigenvalues
λ1, . . . , λn ∈ R of the random matrix of law gn(M) is given by:

dP(λ1, . . . , λn) :=
1
Zn

∏
j<k

|λ j − λk |2
n∏

j=1

e−
n
2 λ

2
j dλ j ,

where Zn > 0 is an explicit normalising constant9. After fur-
ther manipulations one obtains that the set of eigenvalues
{λ1, . . . , λn} is a DPP on R with kernel:

KHn(C)(x, y) :=
n−1∑
k=0

Ψn
k(x)Ψn

k(y)

8 We allowed ourselves to discretely add the term e−i n−1
2 (x−y) because mod-

ifying a kernel K(x, y) to K(x, y) f (x)
f (y) where f does not vanish does not

change the determinants associated with the correlation functions; thus,
these two kernels generate the same DPP.

9 It is a ratio of products of Gamma functions, obtained as a limit case for
Selberg’s integral formula.

−2 −1 0 1 2
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0
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5

Figure 4. Histogramme des valeurs propres d’une réalisation du GUE de
taille 300 et loi du demi-cercle

where, for all n ≥ 1, (Ψn
k)k∈N is an orthonormal basis of L2(R)

given by renormalised Hermite functions.10 Here again, we
are dealing with a projection kernel on a subspace of L2(R)
of finite dimension, the subspace of functions which can be
written P(x)e−nx2/4 where P is a polynomial of degree at the
most n − 1. When n → ∞, as illustrated in Figure 4, the
eigenvalues concentrate on the compact [−2, 2] with a density
ρ(x) := 1

2π

√
4 − x21[−2,2](x), known as the semicircle law.

If we now zoom in at a factor n, around a point x0 from
(−2, 2), it can be shown that the local behaviour of the eigen-
values around that point is again governed by the sine kernel
Ksin.More precisely, one has the uniform local convergence

1
ρ(x0)n

KHn(C)

(
x0 +

x
ρ(x0)n

, x0 +
y

ρ(x0)n

)
−−−−→
n→∞

Ksin(x, y).

Note that the limit does not depend on x0. The proof of this
convergence is a little more delicate than in the case of uni-
tary matrices. It requires a close analysis of the asymptotic
behavior of the Hermite functions.

On the other hand, if we have a closer look at the points
at the edge of the semicircle, after some rescaling, another
kernel appears, known as the Airy kernel,

KAiry(x, y) :=
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y
.

Here, Ai(x) is the Airy function, which satisfies Ai′′(x) =
xAi(x) and which plays a role in the study of the optical prop-
erties of rainbows. For example, at point 2 (the analysis at −2
is the same),

Kedge
Hn(C)(x, y) :=

1
n2/3 KHn(C)

(
2 +

x
n2/3 , 2 +

y
n2/3

)

−−−−→
n→∞

KAiry(x, y).

It is possible to show that this convergence takes place in
the sense of the convergence of the trace-class operators on
L2(s,∞) for any s > 0. We can deduce the fluctuations of the
largest eigenvalue around the right edge. Indeed, the distri-
bution function of the largest particle of a DPP on R can be
expressed in terms of a Fredholm determinant, namely

P
(
n2/3( n

max
j=1
λ j − 2

) ≤ s
)
= det(I − Kedge

Hn(C))L2(s,∞)
,

10 If Hk(x) := (−1)kex2/2( d
dx )k(e−x2/2) is the k-th Hermite polynomial, we

use Ψn
k (x) := cn

k Hk(
√

nx)e−nx2/4 with cn
k :=
∫
R

Hk(
√

nx)2e−nx2/2dx.
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which is continuous for this topology. Thus we obtain, for all
s ∈ R,

P
(
n2/3( n

max
j=1
λ j − 2

) ≤ s
)
−−−−→
n→∞

F2(s) := det(I − KAiry)L2(s,∞) .

The probability law associated with the distribution function
F2 is known as the Tracy–Widom law. The latter has estab-
lished an explicit formula for F2(s) in terms of the Hastings-
McLeod solution of the Painlevé II equation. It is also the law
of the largest particle of the DPP associated with the Airy ker-
nel. We are going to meet this law again a little bit later, in a
different context than random matrices.

After a series of works that cannot possibly all be quoted
here, it could be observed that the sine and Airy kernels
are ubiquitous in the description of the local behaviour of
the eigenvalues in a huge number of random matrix mod-
els, linked with DPP or not. We speak of universality phe-
nomenon in random matrices. It is surprising to observe that
the two universal DPPs also appear outside the context of ran-
dom matrices; in the following, we are going to present three
particularly striking examples.

Orthogonal polynomials and the sine kernel
At first we would like to present the elegant approach of Lu-
binsky [9] for the DPPs related with a family of orthogonal
polynomials. We consider a positive Borel measure µ sup-
ported in [−1, 1] such that L2(µ) contains all polynomials. We
can then define an orthonormal family of polynomials (pk)k∈N
in L2(µ) with positive dominant coefficients γk. We denote by
w(x) the Radon-Nikodym derivative of µ with respect to the
Lebesgue measure, such that µ(x) = w(x)dx + µs with µs be-
ing singular with respect to the Lebesgue measure. We next
introduce the Christoffel–Darboux kernel, well-known in ap-
proximation theory:

K(µ)
n (x, y) =

√
w(x)w(y)

n−1∑
k=0

pk(x)pk(y).

The DPP associated with this kernel almost surely generates
configurations of n points in [−1, 1]. We suppose that µ is a
regular measure on [−1, 1], in the sense that γ1/k

k converges
towards 2 when k → ∞. This is the case for, e.g., the classic
families like the Legendre, Tchebychev and, more generally,
Jacobi polynomials. It is also the case once w(x) > 0 almost
everywhere on [−1, 1]. Lubinsky proves the following result:
for any x0 of (−1, 1) such that µ is absolutely continuous on a
neighbourhood of x0, and whose density w is continuous and
strictly positive at x0, one has the uniform local convergence:

1
nρ(x0)

K(µ)
n

(
x0 +

x
nρ(x0)

, x0 +
y

nρ(x0)

)
−−−−→
n→∞

Ksin(x, y)

where ρ(x) := 1/(π(
√

1 − x2)). Note that, under the stronger
assumption that µ(x) = w(x)dx, with a positive and continu-
ous w on [−1, 1], one has a global convergence of the DPP
points associated with K(µ)

n towards the arcsine law with den-
sity ρ(x), as illustrated by Figure 5. The proof of this result is
surprisingly short, as compared to what is usually done in this
field of mathematics. It uses elementary analysis in a very
clever way to offer a robust method for the comparison be-
tween the kernels associated with different measures.
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Figure 5. Histogram of a DPP of size 300 associated to the Christoffel–
Darboux kernel and the arcsine law

Riemann zeta function and the sine kernel
Here we are going to discuss a somewhat unexpected occur-
rence of the sine process in analytic number theory. For a
complex number s with real part Re(s) > 1, the Riemann zeta
function is defined by

ζ(s) :=
∞∑

n=1

1
ns =

∏
p prime

1
1 − p−s .

This function admits a meromorphic extension to C, which
possesses “trivial” zeros at the negative even integers:
−2,−4,−6, etc. The other zeros are localized in the region
0 ≤ Re(s) ≤ 1. The celebrated Riemann conjecture claims
that those zeros all have a real part equal to 1/2. Under Rie-
mann hypothesis, one can thus write those zeros into the form
1/2 ± it j with 0 < t1 < t2 < . . . due to the symmetry
ζ(s̄) = ζ(s). Thus, a classical result is that, as n→ ∞,

Nn := #
{
j ≥ 1 : t j ≤ n

} ∼ n
2π

log
n

2π
,

which leads us to set

wj :=
t j

2π
log

t j

2π
,

so that #
{
j ≥ 1 : wj ≤ n

} ∼ n when n → ∞; the typi-
cal distance between the consecutive wj should be of order
one. In order to better understand the distances between the
renormalized zeros, at least asymptotically, we consider the
analogue of correlation functions for point processes (1.3):

R(n)
k (ϕ) :=

1
n

∑
1≤i1�···�ik≤n

ϕ(wi1 , . . . ,wik ),

for k ≥ 1 and smooth functions ϕ : Rk → R. Rudnick and
Sarnak obtain, under rather strong assumptions on ϕ, that

lim
n→∞

R(n)
k (ϕ) =

∫
s1+···+sk=0

ϕ(s) det
[
Ksin(si, s j)

]k
i, j=1

ds ,

which is a result similar to (1.5). Thus, asymptotically, the
distances between the renormalized zeros behave like a typ-
ical realisation of the sine process. The restriction of the in-
tegration domain to the hyperplane s1 + · · · + sk = 0 is due
to the fact that R(n)

k (ϕ) may depend only on the distances be-
tween the wj’s. In the case of pairwise correlations, one has,
for instance, for ϕ(x, y) = f (x − y),

lim
n→∞

1
n

∑
1≤ j��≤n

f (wj − w�) =
∫ ∞
−∞

f (y)

1 −
(

sin πy
πy

)2 dy.
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This particular case was proven by Montgomery in the 1970s,
for the functions f : R → R whose Fourier transform is
C∞ and with support in [−1, 1]. The Montgomery conjecture,
which is still open, states that the result must be true without
any support restriction. It is said that, in 1972, Montgomery,
who was then still a student but already author of the above
result, met the physicist Dyson at an afternoon tea in Prince-
ton. Dyson, an expert in random matrices, immediately rec-
ognized in Montgomery’s result the famous sine kernel.

Random permutations and Airy kernel
We end with a surprising occurrence of the Tracy–Widom law
in the study of random permutations. If σ ∈ Sn is a permu-
tation of �1, n�, we say that σ(i1) < σ(i2) < . . . < σ(ik) with
i1 < i2 < . . . < ik is an increasing subsequence of σ. We de-
note by �(σ) the longest length of an increasing subsequence.
We thus have 1 ≤ �(σ) ≤ n. For example, if

σ =

(
1 2 3 4 5 6 7 8 9
5 3 2 6 1 7 9 4 8

)
,

then �(σ) = 4 and it is reached at the increasing subsequence
5, 6, 7, 8 (but also at 2, 6, 7, 9). If now σn is a random per-
mutation sampled uniformly on the symmetric group Sn, the
study of the asymptotic behavior of �(σn) for large n is known
as the Ulam problem. After the works of Hammersley, Ver-
shik, Kerov, Logan and Schepp, one obtains that

E
[
�(σn)

] ∼ 2
√

n , n→ ∞.
An important breakthrough has been made by Baik, Deift and
Johansson [2] who obtained the fluctuations of �(σn) around
its average value: for any s ∈ R,

lim
n→∞
P
(
n−1/6(�(σn) − 2

√
n
) ≤ s
)
= F2(s).

In other words, the random variable n−1/6(�(σn) − 2
√

n) con-
verges (in the weak ∗ topology) towards the Tracy–Widom
distribution when n → ∞. To understand how the problem is
related to DPPs, we won’t present the original proof by Baik,
Deift and Johansson but rather the one by Borodin, Okounkov
and Olshanski [3]. Their analysis is based on the Robinston–
Schensted (RS) correspondence, well-known in representa-
tion theory of the symmetric group, which, to a permutation
σ ∈ Sn associates a pair of Young tableaux of the same shape.
More precisely, a partition λ = (λ1, . . . , λ�) of an integer n,
that is, a decreasing sequence of positive integers with sum n,
is encoded by a Ferrers diagram of n boxes with λi boxes on
the i-th line. For example, the partition (4, 4, 3, 1) of n = 12 is
encoded by the diagram:

Given a Ferrers diagram λ with n boxes, a Young tableau of
shape λ is a filling of the n boxes with the integers from 1
to n in a strictly increasing way along the lines and columns.
The RS correspondence associates to a permutation σ two
Young tableaux of the same shape. We successively place the
integers σ(1), σ(2), . . . in the first tableau, starting in the first
line and with the following rule: every new element σ( j) is
inserted into the first line. If σ( j) is the largest integer of the
line, we place it into a new box on the right. Otherwise, it

takes the place of the smallest integer that is larger than itself.
The latter is thus put down to the next line where the same
rules apply. The second tableau keeps track of the order in
which the boxes have been created. Thus for

σ =

(
1 2 3 4 5 6 7 8 9
5 3 2 6 1 7 9 4 8

)
,

the RS correspondence follows the successive steps:

5 3 2 26 16 167 1679 1479 1478
5 3 3 2 2 2 26 269

5 5 3 3 3 3 3
5 5 5 5 5

1 1 1 14 14 146 1467 1467 1467
2 2 2 2 2 2 28 289

3 3 3 3 3 3 3
5 5 5 5 5

Two key properties are used here. First, �(σ) = λ1, the length
of the first line of the tableaux obtained by the RS corre-
spondence. Then, when we apply the RS correspondence to
the uniform permutation σn, the probability that the shape of
the resulting tableaux is the partition λ of n equals PLn(λ) :=
1
n! dim(λ)2. Here dim(λ) is the number of Young tableaux with
shape λ; it is also the dimension of the irreducible represen-
tation of Sn indexed by the partition λ. This probability dis-
tribution PLn on the Ferrers diagrams with n boxes is called
the Plancherel measure. Consider now the poissonization Pθ

of parameter θ > 0 of the Plancherel measures, which gener-
ates Ferrers diagrams of random size: we sample an integer
N with Poisson law of parameter θ and then sample a Ferrers
diagram of N boxes following the Plancherel measure PLN .
Thus, if one denotes by |λ| := λ1 + · · · + λ� the number of
boxes of a Ferrers diagram λ, the probability under Pθ to ob-
tain a diagram λ is:

Pθ(λ) := e−θθ|λ|
(

dim(λ)
|λ|!

)2
.

This poissonisation is motivated by the following fact: if
λ = (λ1, λ2, . . .) has Pθ as its distribution, then the random
configuration xi := λi − i is a DPP on Z. Its kernel Kθ(x, y)
can be written as a double integral on complex contours; this
rewriting is well-suited for asymptotic analysis (saddle-point
method). From there, Borodin, Okounkov and Olshanski have
proven that

lim
θ→∞
θ1/6Kθ(2

√
θ + xθ1/6, 2

√
θ + yθ1/6) = KAiry(x, y).

The convergence of n−1/6(�(σn)−2
√

n ) = n−1/6(λ1−2
√

n ) to-
wards the Tracy–Widom law cited above is a consequence of
the latter, because, under Pθ, the number of boxes of a tableau
concentrates around θ when θ → ∞ (depoissonisation proce-
dure). In other words, for large integer θ, the distributions Pθ

and PLθ generate diagrams which are similar in a sense that
can be quantified.

DPP and machine learning
To conclude our little journey through the vast land of DPP,
we would like to go back to the jaguar example from the in-
troduction and outline some aspects of the use of DPP in the
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context of machine learning. The main message is that when
it comes to modelling situations which involve repulsion, di-
versity and negative correlations between objects, DPP can
provide efficient models that are easy to handle and easy to
sample. To go deeper into the subject, we recommend for ex-
ample [7].

In most of these applications, one tries to select a (ran-
dom) subset of objects in a database, that is, in a discrete set
E of cardinal n, possibly very large; typically images or texts.
We then consider a class of DPP which generate configura-
tions Ξ ⊂ E of random cardinal. In that context, we attribute
to the i-th element of E a vector Bi ∈ Rd, where the dimen-
sion d is fixed by the user. For instance, Bi encodes the pixels
of the i-th image and d will depend on the chosen resolution.
We then consider the semi-definite positive matrix L := Bt B
where B is the d × n matrix with columns Bi. We next take
K := L(I + L)−1 as a kernel of a DPP Ξ ⊂ E. Thus, for all
A ⊂ E,

P(A ⊂ Ξ) = det(KA) := det[Ki j]i, j∈A ,

with the convention det(K∅) := 1. In terms of the matrix L,
one has

P(Ξ = A) =
det(LA)

det(I + L)
.

We see that P(Ξ = A) equals, up to a normalisation constant,
the square volume of the polytope generated by the columns
Bi of B with i ∈ A. Thus, if Bi = qiϕi with qi ∈ R+ and ϕi ∈ Rd

with ‖ϕi‖ = 1, then qi is interpreted as a measure of the im-
portance of the i-th object of E, while S i j := ϕt

i ϕ j ∈ [−1, 1]
represents a measure of the similarity between the i-th and
the j-th object. More precisely, P(Ξ = A) is proportional to∏

i∈A q2
i det(S A). In practice, every object of E needs to be

labelled with its attribute (qi, ϕi), i.e., in the same way that
PageRank assigns a level of importance to every web page,
and then we compute the associated matrices L and K. A re-
alisation of the DPP with kernel K will then provide a subset
of E presenting diversity in the sense of the matrix S . For ex-
ample, if E is the set of images associated with the key word
“jaguar” on the internet, and we have previously labelled each
of its elements with the attributes (qi, ϕi), then a realisation
of the DPP Ξ will provide subset of images exhibiting diver-
sity.

It is also possible to restrict oneself to a parametrised fam-
ily of kernels Kθ and estimate θ by means of the usual statis-
tical methods from the training data. By this method, Kulesza
and Taskar [7] develop, as an example, the extractive text
summarisation where you have numerous texts on the same
subject (i.e., newspaper articles on a time line) and you want
to extract a summary, this is to say, a small number of sen-
tences which contain as much information as possible.

The interest of these models is mainly due to the fact that
they are easy to implement in an exact manner: one can reply
to most of the questions on inference in polynomial time, es-
sentially by multiplying, inverting, diagonalising or comput-
ing the determinants of matrices of size n, at a cost of O(n3)
elementary operations. In particular, we have exact algorithms
at our disposal for sampling a DPP at this cost.

The use of DPP in machine learning, as well as in spatial
statistics ([8]) or in numerical integration, is still in its infancy
but seems to spark the interest of more and more users of
applied mathematics.
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Figure 6. Sampling of a DPP associated to orthogonal polynomials in
several variables on the cube
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