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Professor Uhlenbeck, first-
ly we want to congratulate 
you on being awarded the 
Abel Prize 2019 for your 
pioneering achievements 
in geometric partial dif-
ferential equations, gauge 
theory and integrable 
systems, and for the fun-
damental impact of your 
work in analysis, geometry 
and mathematical physics. 
You will receive the prize 
tomorrow from His Maj-
esty the King of Norway. 
I’m greatly honoured, 
thank you! 

You spent your childhood in New Jersey, and you de-
scribed yourself both as a tomboy and as a reader. That 
sounds contradictory, but perhaps it isn’t? 
I don’t believe it is exactly. I think now you would just say 
that I was interested in sports and the outdoors – “tom-
boy” is an old-fashioned word – and also, everyone in my 
family read, so our favourite time during the week was 
our trip to the library.  

Your mother was an artist, and your father was an en-
gineer? 
Yes. 

Were there strong expectations as to what you and your 
siblings were to do later in your lives? 
Yes, there were strong expectations that we should be able 
to support ourselves. My parents married in the middle 
of the Great Depression, and the difficulties with having 
enough money to live were very present to them. So they 
were mostly concerned that we would actually have jobs. 
And I think they had expectations of my brother actually 
getting an engineering degree, engineering being a good 
profession. As with me they didn’t care so much what I did. 

You say that you were interested in everything, but you 
also mentioned that Latin was the only hard course in 
high school. How did you then end up with mathemat-
ics? We would have thought you would have chosen Lat-
in then? 
Well, I don’t really know myself! It was only lately I got 
the explanation for myself. But Latin was the only hard 
subject I had. It was not something you could do right 
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away, you really had to work at translating Latin. You 
know, to be in this tradition of years and years and years 
of knowledge, and actually be reading something that was 
written so long ago was exciting even when I was a young-
ster. In my last year in high school I signed up for the hon-
ours maths course which was calculus. It conflicted with 
the Latin course, so I signed up for something like Span-
ish instead. However, after one or two classes in Spanish 
I changed my mind and I went back to Latin and took 
the regular maths course, which did not conflict with the 
Latin course. 

Then you enrolled at the university as a physics major? 
That’s right. I had been turned on to physics. My father 
was a very intellectual person even though it had noth-
ing to do with his job, and he got books out of the library, 
and I remember particular books written by Fred Hoyle. I 
read all those books and I think he also read them. I have 
to confess that I didn’t do all the mathematics in them, 
but I saw all the mathematics in them. I also remember 
books by George Gamow that I found in the library. 
There weren’t many books on maths and science in the 
library at all, so my resources were somewhat limited, but 
I was fascinated by the physics. Of course, I didn’t even 
know that you could be a mathematician, so I enrolled as 
a physics major. 

So you had some experience with mathematics when you 
started at the university? 
Right. I tell the story all the time, this was three years af-
ter the Sputnik1 went up, and so there were programmes 
all over the country in integrated maths and science, en-
couraging students to study maths and science. So there 
were honours courses in maths. I took a unified course in 
which I had an honours course in maths and an honours 
course in physics and chemistry, and I just really took to 
the mathematics right from the very beginning. I enjoyed 
it and I was caught up in it, and I was actually very good 
at it. And, you know, when you’re very good at a subject, 
you’re also encouraged to go on studying it. I really en-
joyed playing with the ideas. 

Did you have an aha moment, where you sort of got 
enthralled by mathematics? You mentioned something 
about the derivative.  
That’s right! The first time I really saw a derivative, it was 
actually not with a professor, but with a teaching assis-
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1 The first artificial satellite, launched on the 4th of October 
1957 by the Soviet Union.
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tant for the course, who was doing problem sessions. We 
hadn’t got to taking derivatives in the class, but he showed 
us how to take a derivative, and he showed us how to take 
a difference quotient and take a limit. And I still remem-
ber that I turned to my fellow student and said: “Are you 
allowed to do that?” I was very excited to be able to do 
that. Also, I still remember when I was understanding the 
proof of the Heine–Borel theorem. I just remember, you 
know, arguing by using little boxes and things like that. 
And I was very excited by the experience. 

This was at the University of Michigan?  
Yes, I was a first year student there.  

The experience at Michigan you describe as sort of spe-
cial. I suppose you could have gone to other places, but 
you went to Michigan, and did that turn out to be a good 
choice? 
Yes, it turned out to be a very good choice. Well, they had 
this honours programme. I also met the right people and 
the right things happened to me. In my first year at the 
University of Michigan I earned pocket money by wait-
ressing in the dining hall. I lived in New Jersey so I didn’t 
go home for the break, and I was around. During one of 
the breaks I was in an art museum. Well, my mother was 
an artist and I had essentially been going to art museums 
since I was in the womb; anyway, I was in the art museum, 
and I bumped into a professor next to me, and it turned 
out that he was a maths professor. His name was Dan 
Hughes. He found out who I was and what I did and the 
first thing I knew – I think it was the next semester, it 
might have been my second semester, I can’t remember 
when it was – but the first thing I knew was that I was 
grading linear algebra without having ever taken it! So I 
was just taken in and, you know, I didn’t think about it as 
anything special. To me I was just somebody who didn’t 
know what was going on and wanted to learn things. But 
I think I got very good treatment by my maths professors. 

So you were actually seen and you were recognized?   
Yes. In fact, I think I took my first graduate course when 
I was a sophomore. I took the graduate course in alge-
bra and I remember we did the Wedderburn lemmas. I 
remember that I didn’t understand the course, but three 
years later when I did come to study for the preliminary 
exams I looked at the material, and I could actually pull 
it up and understand it. It’s amazing what your brain ac-
tually does – learning is not linear at all. Anyway, I was 
already in advanced maths classes as a sophomore. Then I 
spent my junior year abroad, in München, and I had beau-
tiful lectures. I took lectures from a Professor Rieger and 
a Professor Stein.  

Socially, was that a very different experience than what 
you were used to from an American university? 
The programme that I was in was from the Wayne State 
University, and there were students from all over the US 
in that programme. And I remember realising at the time 
how really good my education at Michigan was. I can tell 
you, there were students from Princeton, Yale, Columbia 

and so forth, and I was as well educated, or better edu-
cated. Certainly, my mathematical background was much 
better than the few others in the programme with maths 
majors. It was also interesting to have rubbed shoulders 
with American students from all different universities. To 
your question, the life of a German student was nothing 
like the life of an American student. You know, I went to 
the opera, I became enamoured with the theatre when I 
was there, I learned to ski, and of course I had a German 
boyfriend at some point. We went for long walks in the 
Englischer Garten, because it was romantic, and I learned 
German. Well, I can’t say that I know it still but I was 
pretty good at German at the time that I was there, even 
though I don’t have an ear for language at all. 

After the University of Michigan you decided to go on 
with a PhD-program in mathematics. You spent one 
year at the Courant Institute in New York and then you 
moved to Brandeis in Boston because your husband at 
that time was accepted to Harvard University ? 
He was a graduate student in biophysics accepted at Har-
vard, that’s right. 

But you decided on Brandeis University, even though 
you may have got into both Harvard and MIT? 
I didn’t apply. I was already aware of the fact that there 
were tensions around being a woman in mathematics. 
And I really wasn’t interested in them. NYU (New York 
University) had a very special record for women. Lipman 
Bers had been there and had trained a whole generation of 
women students. So NYU had a very good reputation to-
wards women. Brandeis hadn’t much of a reputation at all. 
I had a NSF-postdoc and I probably would have got into 
MIT and Harvard, but some inner radar said not to do that. 

You chose Richard Palais as your thesis advisor. Can 
you tell us why you chose him, and what the theme of 
your thesis was? 
I took a course from him in my first year there. I was a 
second year student and I was already being noticed, 
since I came in and passed my preliminary exams. I think 
maybe only one of the students that had been there for a 
year did so at the time, the rest all took longer. So what-
ever feelings there were about having women students 
disappeared very rapidly at Brandeis. Richard Palais had 
given this beautiful course  on infinite-dimensional topol-
ogy the year before, but that year he taught a course on 
the calculus of variations, which is the basis for his book 
on the calculus of variations and global analysis. I was just 
excited by this new field. I understood immediately what 
global analysis was like, and Palais was a beautiful lectur-
er. I still remember the day I went in and asked him about 
the heat equation, and he told me everything I needed 
to know for four to five years. I remember just making 
this conscious decision I wanted to work in this new field 
instead of doing a special case of some boundary value 
problem somewhere. I made a conscious decision to jump 
in, so to speak. 

So the theme was calculus of variations? 
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That’s right. 

So this was related to what is called global analysis? 
That’s right. It was really calculus of variations from the 
global analysis point of view. 

What is global analysis, can you describe it to us? 
I think that global analysis was the change from view-
ing an ordinary or partial differential equation as a very 
complicated object with lots of indices and with lots of 
formulas as simple equations in an infinite-dimensional 
space or an infinite-dimensional manifold. Conceptually, 
it simplifies what you’re doing tremendously. It was also 
discovered that a whole lot of stuff that you could do in 
finite dimensions you could do – under the right hypoth-
eses – in infinite-dimensions. The typical example would 
be what the Abel Prize winners Atiyah and Singer did; the 
two actually proved a theorem at that time about partial 
differential equations. Loosely speaking, it says that a par-
tial differential equation of a certain type has a kernel and 
a cokernel, like in finite dimensions, and the difference be-
tween the kernel and the cokernel comes from topology. 
This was a very exciting discovery, and it’s foundational to 
the change in perspective towards these equations. 

Here is a quote from your article in the Proceedings at the 
International Congress of Mathematics in 1990 in Kyoto, 
where you gave a plenary talk: “In the 1960s, an ambi-
tious subject called “Global Analysis” developed with the 
explicit goal of solving non-linear problems via methods 
from infinite-dimensional differential topology… The op-
timism of the era of global analysis has ultimately been 
justified, but this did not happen immediately. The prob-
lem is essentially as follows: in order to discover prop-
erties of solutions of ordinary or partially differential 
equations which have global significance, it is essential to 
make estimates.” Could you expand on that?  
Let me use something that I have thought of since I start-
ed doing interviews. It’s a little bit like the question of the 
large and the small. When you paint a picture you have to 
have an overall perspective and an overall design and an 
overall point of view, but the whole thing will fall apart if 
you can’t do the details. Saying “that’s a person” is not the 
same thing as actually making a person out of it carefully 
with all the skill and background and all the teaching that 
you have. So the inequalities are the fundamental thing 
that the global picture is made out of, but in order to know 
exactly the right ones to do you need the global picture. 

An example of that would be to find minimal surfaces in 
higher dimensions? 
That’s right. Well, in that case the problem of minimal sur-
faces turns out to be what you call a borderline case. In 
my thesis, I actually wrote down quite a few problems in 
the calculus of variations that satisfied a topological con-
dition in Morse theory called the Palais–Smale Condition. 
The techniques of manifold theory go through for analys-
ing the gradient flows, and so forth. But the problem is, 
those are made-up problems. So what happens when you 
come down to a problem that you really want to solve? 

In the case of geodesics, the Palais–Smale condition and 
all the infinite-dimensional stuff go over beautifully just 
like that, like clockwork. But, of course, we knew how to 
do geodesics: we just approximated it by broken curves, 
and reduced it to a finite dimensional problem. So, the 
question is, what good is it if it doesn’t solve the problem 
we want to solve? My observation was that if you took 
the equation that you need to minimize to get a minimal 
sphere, and you add a small term to it, then it suddenly 
satisfies the Palais-Smale condition, and Morse theory 
is true. Now you look at the solutions of that equation 
and you let the perturbation go to zero, and then you can 
see what is happening to those solutions. What happens 
is that those solutions approach a solution, which could 
be trivial. But there’s a place in the surface that you’re 
studying where, as the perturbation goes to zero, all the 
information collects over that point. So if you take a mi-
croscope and look around that point, and you make the 
area around that point bigger and bigger and bigger, in 
the limit, you can actually get a solution on the whole 
plane. And you, lo and behold, notice this in fact solves 
the whole problem for you because the point at infinity 
can be added; that’s a technical theorem. The point at in-
finity can be added and you suddenly have found your 
minimal sphere. You certainly discover that not all the so-
lutions persist, but enough of them persist so you can say 
something about the problem. 

John Nash, who shared the Abel Prize with Louis Niren-
berg in 2015, intimated to us in the interview that we 
had with him that his paper titled “Continuity of solu-
tions of parabolic and elliptic equations” from 1957–58 
might have been decisive in him getting the Fields Medal 
in 1958, except for the fact that De Giorgi, an Italian 
mathematician, had independently proved that same re-
sult at about the same time. In 1977 you published a 
paper in Acta Mathematica – a prestigious math jour-
nal – with the title “Regularity for a class of non-linear 
elliptic systems”. In the introduction you say that the 
results in that paper are an extension of the De Giorgi–
Nash–Moser result. Could you tell us about this paper 

Karen Uhlenbeck receives the Abel Prize from H.M. King Harald. 
Photographer: Trygve Indrelid/NTB
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and its genesis? Also, 
the mathematical com-
munity took notice of 
you when your paper 
appeared. Do you con-
sider this paper to be 
your first great paper? 
Yes, and I still consider 
it to be my best paper. 
In fact, it’s a very diffi-
cult paper and I wonder 
how easy it would be for 
me to understand it now. 
It’s a long time ago, it’s 
more than 40 years ago. 
But the fact is that I had 
found some calculus of 

variations problems in my thesis that satisfied Morse the-
ory, so they had a lot of critical points. But the problem 
is that the geometrically simple cases of them led to inte-
grals that were of a not completely standard sort. It turns 
out that you could find minima, but these minima were 
not necessarily smooth; these minima could have singu-
larities. I faced the fact that I needed to show that these 
minima were actually regular, real solutions, not just what 
they called weak solutions. I learned enough about the 
background of the theory when I was a graduate student 
to be able to show that the derivatives were bounded, 
but on the other hand I couldn’t carry it any further. I 
worked and fussed with this problem for a long time. In 
fact, if it had just been one function that you minimized, 
the De Giorgi–Nash–Moser result would have given that 
the solutions were regular. By the way, Moser’s name has 
been tacked on to the De Giorgi–Nash theorem since he 
simplified their proofs. But I had a system, that is many 
functions, and those techniques didn’t a priori carry over. 
I had actually met Jürgen Moser and he sent me some of 
his reprints, which I read very carefully. At some point I 
was able to use his Harnack inequalities to actually prove 
the fact that those solutions are regular. Actually, they 
have critical points where the derivative of the function 
vanishes, but I was able to see that the functions were 
smooth enough, as smooth as you would expect of them. I 
remember S.-T. Yau having me come to California to see 
him and talk to him about that paper. There I also met 
Leon Simon and Richard Schoen. 

This particular paper was on partial differential equa-
tions and had very little to do with geometry, right? 
Actually, it had nothing to do with geometry. 

The techniques you developed in this paper, were they 
important for you when you wrote papers later? 
Actually, no! Well, I’m afraid that’s a little bit of the story 
of my mathematical career. I could have pursued it and 
made extensions of it and carried it further. There were 
some non-trivial points about putting more variables in 
there, and I kind of figured out how to do it. I saw you 
could do it but I didn’t know if it was going to be useful, 
and I still don’t know whether that problem is useful. So 

I didn’t pursue it, but someone else did – Martin Fuchs 
did, actually. 

But then we are entering a different phase in the begin-
ning of the 1980s, where you published a series of highly 
influential papers. Those must have been amazing years? 
What were the conditions that made this possible? 
I don’t really know, because I was getting a divorce. I 
moved from the University of Illinois at Urbana-Cham-
paign to the University of Illinois in Chicago. I got togeth-
er with a new boyfriend, and I taught at the University of 
Illinois in Chicago. I taught two courses a term for three 
terms, three quarters a year, and I think I travelled a lot. 
So, how I did this I have no idea! I find it amazing!   

They sound like horrible conditions! 
I like to tell this, because young people really think that 
you have to be at Oxford or some other prestigious place 
to actually do good work, and I think there’s no evidence 
that that’s really true. 

One of the first papers in this remarkable series is co-
authored with Jonathan Sacks and is titled: “The exist-
ence of minimal immersions of the 2-spheres”. There 
you develop a series of techniques, both with respect to 
regularity and with respect to compactness. We couldn’t 
find the term in the paper, but is it here the “bubbling” 
idea starts? 
Well, I asked Jonathan Sacks about where that idea comes 
from, and he thinks that I actually used it in some talks 
I gave about the theorem. The technique is in the paper 
but we didn’t call it anything, and I think I only used it in 
talks. But the name caught on.  

And there you’re studying immersed 2-spheres modulo 
the action of the fundamental group, and you’re saying 
that you can represent them by particularly nice im-
mersed spheres. There were certain technical things there 
that you encountered that gave rise to these bubbling ef-
fects, right? 
Yes, right. The idea is that you add on a small term – you 
can do this to most problems actually – and then it satis-
fies the Palais–Smale condition. It allows you to construct 
a Morse theory. And that gives you lots of solutions, lots 
of minima, lots of saddle points. But now you really want 
solutions to the original problem, not to the approximate 
problem, so you want to take the perturbation away. Now 
this works best in the scale invariant case, meaning that 
the problem does not really see scales. So what happens is 
that you take the limit and get a solution. But the solution 
might actually be trivial, it might just be a map to a point. 
But you go back and see what happens to the solution 
and it actually converges everywhere, except at a finite 
number of points. And around these points what happens 
is a scaling invariant problem. So the little region around 
the point thinks it’s just as good as the big plane. And so 
you have the description of a solution as a “bubble”, a 
sphere, actually happening around a little tiny point. And 
by looking at it with a microscope, a magnifying glass, and 
blowing it up – I think I used the term “blowing it up” at 

© Lee Sandberg/Institute for  
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write down. You still have a plane, but you have all these 
ways to describe it. So what happens in gauge theory is 
that you have these physical objects called connections. I 
think they call them fields in physics; mathematicians call 
them connections. They have this gauge invariance, which 
means that they have coordinates that are free. And there 
are way too many of them – they correspond to a sym-
metry group – and you have to divide out by them. The 
problem is that you have to do something rigid, like con-
structing Euclidean coordinates on them. And what I did, 
I showed under what circumstances you can actually con-
struct these coordinates. Once you have the right coordi-
nate system you just treat it from standard PDE methods. 
That’s described in the book “Instantons and Four-Man-
ifolds” that I wrote with Daniel Freed, but you need the 
second variate equation. Someone had to do it. I have to 
say this is one example of if I hadn’t done it, someone else 
would have done it. I mean it had to be done. 

We are now talking about the Yang–Mills equations and 
gauge theory, which first popped up in physics, but had 
tremendous influence on mathematics. Many of us are 
familiar with the article from 1960 by the physicist and 
the 1963 Nobel Prize recipient, Eugene Wigner, with the 
intriguing title “The unreasonable effectiveness of math-
ematics in the natural sciences”. Considering what has 
happened in global analysis we could perhaps turn this 
on its head and say: “The unreasonable effect that phys-
ics has had on mathematics”?
No! Well, I don’t know about the Greeks, but certainly 
there was actually no difference between maths and phys-
ics with for example Isaac Newton. In fact, the real di-
vision between maths and physics occurred in the 19th 
century, where people like Weierstrass started putting all 
sorts of holes in the arguments that people were making. 
They were saying: “Okay, you take a sequence of things, 
how do you know that there is a minimum, maybe there 
isn’t any minimum, you physicists are assuming there is”. 
So you get a real division. Mathematics kind of separated 
itself because it needed the foundation of rigour. I mean, 
you can see this happening with infinite-dimensional vec-
tor spaces becoming very important. In the theory of cal-
culus of variations the most important space is called a 
Hilbert space, so that would date that for you. And they 
are absolutely essential in quantum mechanics. Physi-
cists were the ones that introduced Dirac’s deltas and so 
forth. But mathematics had to separate and make all this 
rigorous before you could actually have a mathemati-
cal subject. So you see a real division occurring between 
maths and physics at this point. Maths kind of separated 
itself and made things robust and rigorous. The physicists 
weren’t really interested in this, and actually the math-
ematicians stopped being interested in physics, too. And 
then I think it came back together at some point. 

 The example you mention is very interesting. Weierstrass 
pointed out that Riemann did not have a rigorous proof 
that the so-called Dirichlet problem had a solution. In 
fact, Riemann’s defective proof relied on a kind of mini-
mizing procedure that he called the Dirichlet principle.

this time – you see the bubble that happens at that point 
and you get a solution on a plane. Then you prove that 
can put the point at infinity in. That’s a regularity thing, 
namely that you can put the point at infinity in. So that 
way you could actually construct quite a few of these im-
mersed spheres. 

Indeed, it’s a generating set for p2, is it not?  
I think someone else proved that. Actually, this is one of 
the things we saw we could do but we didn’t do it.  

These bubbles that occur, how do you control that there 
aren’t infinitely many of them? 
That’s an estimate. Well, actually, the answer is: each bub-
ble needs a certain amount of energy, and you have only 
a finite energy. If you want you could even make an esti-
mate of how many you can have at most. 

It is hard to choose, but many people hold your two pa-
pers from 1982 titled, respectively, “Removable singu-
larities in Yang–Mills fields” and “Connections with Lp 
bounds on curvature” in particularly high esteem. Could 
you give us a brief overview? Specifically, why are the 
Yang–Mills equations important, and why is gauge in-
variance important? 
Well, the Yang–Mills equations are important because high 
energy theoretical physicists told us they were important! 
Mathematicians could very well have done the whole the-
ory, they just didn’t think of doing it. So, it’s one of these 
pieces of evidence that pure mathematics really needs 
input from outside of itself. Sometimes it’s even another 
branch of mathematics that can give valuable input, but 
this is an example of ideas outside mathematics that turn 
out to be important in mathematics. Physicists actually got 
very excited about mathematics, probably because this was 
an application of the Atiyah–Singer index theorem to tell 
you what the dimension of the space of the solutions was. 

It’s a topological invariant, and it needed ideas from 
the nascent field of global analysis. They, i.e. the physicists, 
had explicit solutions of a certain type on the four dimen-
sional sphere, solutions that they could explicitly write 
down. And they had some more complicated ones that 
they could write down. However, they knew they didn’t 
know all the solutions of the more complicated sort by 
the Atiyah–Singer index theorem, and so it becomes a 
question about what the spaces of solutions of such things 
look like. And the removable singularity theorem from 
the first paper comes from the fact that if you take a se-
quence of these solutions, and if it doesn’t converge to a 
solution, you know that it converges to a solution off a 
particular point. And at that point the bubbling phenom-
ena happens. So, my first theorem about removable singu-
larity was proving that you can put in that point where the 
solutions fail to converge. 

The second paper is a little bit different. The Yang–
Mills equations themselves are not elliptic equations, 
basically due to the presence of a large symmetry group. 
They have a coordinate invariance. It’s like you’re looking 
at a plane and you’re not using Cartesian coordinates, but 
you’re using any arbitrary set of coordinates you want to 
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That’s right!

Also, Riemann was certainly a more physics-inclined 
mathematician than Weierstrass was. 
I see. I didn’t actually realise that. I don’t really know so 
much about that part of the history. 

But then, of course, your results from these two papers 
are taken further. At this time you’re an established 
mathematician, and you’re seeing that people like 
Taubes, Freedman and Donaldson are grabbing hold of 
the things you are doing and proving remarkable things 
about four manifolds. We really don’t see the connec-
tions with what the physicists were originally thinking 
about. Could you elaborate on that? 
Well, Taubes’ PhD thesis is in physics, and as a graduate 
student he wrote a book called Vortices and Monopoles 
with his advisor Arthur Jaffe. Some of that is motivated 
by the connections with physics and, in fact, one of the hot 
topics in that subject right now is Higgs bundles. A physi-
cist at my department at the University of Texas, Andrew 
Neitzke, is studying them just as hard as any mathemati-
cian would have done, so I don’t know how much they are 
separated. But certainly they started to have a life of their 
own in mathematics. 

A quite spectacular life at that. Could you give a short 
outline of the dramatic developments in four manifold 
theory that ensued and in what parts your contributions 
were particularly important?
Donaldson’s classification of simply connected four man-
ifolds with definite intersection form is based on the con-
struction of the boundary of the moduli space of solutions 
to the self dual Yang–Mills equations. There are a number 
of ingredients in this construction. First of all, my theory 
on bubbling occurring in limits of solutions to the Yang–
Mills equations show that the boundary consists of lower 
dimensional solutions spaces with bubbles attached. Cliff 
Taubes shows which of these configurations occur as lim-
its of smooth solutions. In the simplest case, the boundary 
consists of the four manifolds itself, and the moduli space 
provides a cobordism of the manifold with a neighbour-
hood of the singular points of the moduli space. Hence, 
not all the continuous four manifolds constructed by 
Freedman can be given smooth structures. In fact, none 
of the exotic examples can be smoothed.

With R. Shoen you prove that any minimizing map 
from a Riemannian manifold to a compact Riemann-
ian manifold is smooth outside a closed bounded set of 
codimension three. Could you tell us about this result 
and why the singular set grows with the dimension?
The work of Schoen and myself on harmonics maps, and 
in fact all the theorems of this type, is based on monoto-
nicity, which estimates energy in small balls in terms of 
energy in larger balls. We show that when the scaled en-
ergy is sufficiently small, the solution is smooth. So singu-
larities need a certain amount of energy. A counting argu-
ment shows that the singularities can only form on a set 
of Hausdorff codimension two (it is four for Yang–Mills). 

It can be tricky to actually get this down to codimension 
three, but the argument depends on both monotonicity 
and an approximation to the blow-up of the singularity, 
which is a harmonic map from S n-1 into the target mani-
fold.

The conventional picture is often that a good mathema-
tician is a person with really outstanding intellectual 
power, who solves the problem through his or her supe-
rior genius, and the solution comes as a kind of bolt of 
lightening. We know of course that this is not the typical 
case…
Well, there’s a lot of luck involved. There’s a lot of knowl-
edge of how to take advantage of luck!  

Right! However, for most of us the most important qual-
ity – besides of course a good intellectual capacity – is 
perseverance and the capacity of concentration. Could 
you expand on this and, also, have you had moments of 
epiphanies, where in a flash you saw solutions to prob-
lems you had been struggling with? 
Let me answer your last question first, and the answer is 
yes. You struggle with a problem, it can be over a period 
of years, and you suddenly get some insight. You’re sud-
denly seeing it from a different point of view and you say: 
“My goodness, it has to be like that”. You may think all 
along that it has to be like that, but you don’t see why, and 
then suddenly at some moment you see why it is true. It 
could also be a very simple idea that suddenly hits you. I 
don’t remember where I was and what I was doing when I 
had those moments, but I still remember those moments.  

But in all these cases we are talking about a moment, 
like a bolt of lightening? 
There is a moment when you suddenly realise that you 
see how to do it. And that of course comes after all the 
struggle you had. Struggle isn’t the right word, because 
you wouldn’t do it if it wasn’t also a lot of fun, all the time 
you spent thinking about this problem. Then, of course, 
you get the problem that is even worse: you have to write 
it up! But there is this moment right in between when 
it’s really great. I remember these moments, but I have to 
tell you, suddenly when everything fits together you keep 
going back and checking if it’s right. In fact, I had a simi-
lar moment a year or so ago about a problem I’d started 
working on, and I kept on going back and checking it to 
be sure that it was right. As to the first part of your ques-
tion, I think you can’t do mathematics without the ability 
to concentrate. But also, that’s where the fun is, the rest 
of the world fades away and it’s you and the mathematics. 
And I think there isn’t any other way to do mathematics. 

And, of course, that’s one of the reasons that there are so 
few mathematicians. It’s a very special endeavour ap-
pealing to a small minority whose minds are wired in a 
special way.   
Well, I also think society doesn’t have the will to support 
too many mathematicians. You mentioned perseverance, 
but you know, it’s also an escape! Some of us really see it 
as an escape. 
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But there are two sides to this. The community is impor-
tant. We promised to come back to Yau, who was one 
of the mathematicians that really believed in you. That 
kind of recognition can be crucial as well. 
Yes, the community is very important. Yau is a brilliant 
mathematician, but he is also good at inspiring students 
and other people. He is good at finding mathematical re-
sults that he likes and getting other people involved in 
them.  

In 1985 you published a paper together with Yau titled 
“On the existence of Hermitian–Yang–Mills connections 
in stable vector bundles”. This work had a profound 
impact on the field of complex geometry as well as in 
physics. Edward Witten declared that the Hermitian–
Yang–Mills is one of the major building blocks of super-
symmetric string theory, and it provides a very elegant 
existence theorem by reducing to a criterion in terms of 
purely algebraic geometry. How did this work with Yau 
come about? 
I knew from the late 1970s that Yau admired my math-
ematics. Also, Richard Schoen and Yau, and Jonathan 
Sacks and I, published essentially the same paper about 
minimal immersions of Riemann surfaces. These are 
minimal objects of different shapes like a 2-sphere, a 
torus, a two-holed torus or something. Anyway, Yau ap-
proached me and told me the problem. I didn’t know an-
ything about the field at all. One of the problems was to 
find out what the stability condition means. There is also 
a different formulation in terms of complex geometry 
than in real geometry. I was able to absorb this and my 
contribution was like what I’d done before: I added an 
epsilon and a term that made the problem solvable. You 
solved that problem, and then you took the perturbation 
away and looked at limits. And again you are faced with 
the same problem as before: you have to know what the 
limits look like. And that was the hard part of the paper, 
actually. 

After 1989 you produced a series of papers about har-
monic maps into symmetric spaces where the action of 
the loop group features prominently. Could you tell us 
about this project and also about your later collabora-
tion with L. Terng and L. M. and R. J. Siebner?
I can’t really go into the work with Terng in less than ten 
pages. It is somewhat accidental that this example has to 
do with harmonic maps, as our work is on a number of dif-
ferent equations: KdV, non-linear Schrödinger and Sine–
Gordon equations. I also don’t really want to describe the 
work with Sibner and Sibner. It is based on a mountain 
pass lemma, and a loop in the space of connections which 
is not contractible, but which does not have enough en-
ergy to allow bubbling under gradient descent.

You coined the expression “linear thinking versus sloppy 
thinking” to describe two types of mathematicians. One 
type thinks linearly, step by step, while the other is a 
more intuitive type of mathematician. One type tends to 
be a theory builder, while the other tends to be a problem 
solver. You count yourself as a problem solver, right?  

Yes, I definitely belong to the problem solvers. I’m really 
not much of a theory builder at all. In fact, I don’t even 
read papers that way, I don’t read papers from start to fin-
ish. I look at the beginning, I look at the end, I look at the 
references, I try to find the main theorems, I try to find the 
definitions, and then I try to find the key lemmas. Then I 
try to prove the key lemmas, and when I get stuck on the 
key lemmas I go back and look at the paper. That’s a typi-
cal scenario for the way I read a paper. So that might give 
you some idea why I do not build theories! 

You have said, and we quote:  “I have an addiction to 
intellectual excitement, and as a consequence I find that 
I am bored with anything I understand”. Could you ex-
pand on that? Specifically, does this have as an effect 
that you have shied away from conventional problems, 
so to speak, and rather focused on problems arising in 
new and unchartered territory? 
I had the privilege of working in several fields (eigen-
value problems, harmonics maps, gauge theory, integrable 
systems) when very basic ideas were being developed. I 
know from going to seminars  that these subjects have 
developed a great deal, with many more examples and 
details worked out. I find I am not interested or excited by 
the new results as I was when the subjects were new and 
basic ideas were being worked out. I regard this as an in-
tellectual failing, and as far as I can identify my thoughts 
on my career, it is the one single regret I have. Some of 
my students have suffered, as I gave new problems in new 
fields to many of them, but then did not help advertise 
their work among my colleagues or help them develop 
their ideas as I might have. In an alternative life I might 
have contributed more to the development of mathemat-
ics instead of always looking for new directions and dif-
ferent approaches.

Hilbert in his talk at the ICM congress in 1900 in Paris, 
where he presented his famous 23 problems, said the fol-
lowing: “As long as a branch of science offers an abun-
dance of problems, so long is it alive; a lack of problems 
foreshadows extinction”. How does global analysis, in 
particular gauge theory, fare with respect to Hilbert’s 
statement? Are there still big problems around?  

© Andrea Kane/Institute for Advanced Study
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Well, a lot of the areas in which you really would like to 
understand the problems are very difficult to access and 
one is quite stuck. For example, there are lots of problems 
which have to do with complex gauge groups. The gauge 
theory that I was talking about all had to do with things 
like unitary groups and special unitary groups. You can 
actually look at special linear groups, so there is an im-
aginary part of the connection which accesses the Higgs 
field. Clifford Taubes spent a lot of time trying to under-
stand those problems. The two dimensional case of Higgs 
bundles has actually been a very hot area of research over 
the last five or six years. It’s a big open problem how to 
think of these things, because the limits of solutions have 
singularities, and it is always very difficult to understand 
singularities. So that’s a big open problem. My answer 
to you about what the big open problems are, is that we 
would all be there if we knew what they were! I haven’t 
been that active mathematically the past decade, so I 
don’t know if I’m the right person to ask. These days I 
count on other people bringing me good problems. 

But in 1988 you did make some predictions.
Oh dear!

In “Instantons and their relatives” you list five key 
points that you were thinking mathematics was moving 
towards. One was “Simplicity through complexity”. We 
think that was about moduli? 
Yes, that’s right!  

Do you feel that mathematics has gone in that direction? 
Yeah, I think so. There are a lot of topological invariants 
that are constructed using models that were originally a 
gauge group and an associated Higgs bundle. They are 
very complicated because there are a lot of fields and a lot 
of different terms. But when you actually write down the 
equations you are trying to solve and look at the space of 
solutions, the moduli space is actually very simple. So I 
think it’s fair to answer yes to your question. 

And you asked, just as a question: “And after theoretical 
physics?”, indicating that you think that in the future 

inspiration will come not only from physics, but also 
from other sciences.
Well, I’m thinking it ought to be, because certainly the 
field of mathematical biology has grown, and the field 
of computer science has a lot of interesting aspects that 
must have mathematical connotation, and so forth. 

You say another interesting thing: “I hope that no com-
ments on the place of women in mathematics are even 
relevant by 2038”.  
Yes, right, I really hope that. 

Continuing in that vein for a short moment: reflecting 
on your own experience, you say in an interview with 
the New Yorker: “I figure, if I had been five years older, I 
could not have become a mathematician because disap-
proval would be so strong”. Could you expand on that? 
I became a mathematician in the wake of the second wave 
of feminism; actually as a result of Sputnik and the second 
wave of feminism. The point is that Betty Friedan’s book 
The Feminine Mystique opened up people’s eyes to the 
fact that a lot of life was not open to women. So this is in 
the early 1960s and I was already at school at this time. By 
the time that I got into graduate school, and then looked 
for a job, the fact that women might do something else 
was actually in discussion. Five years before it probably 
wasn’t really in discussion that women might be doing 
something like this. And I feel that the combination of 
Sputnik and the second feminist movement really paved 
the way and opened the doors for me. Five years earlier I 
would have missed that. 

You have said that you were respected by your immedi-
ate mathematical colleagues, who recognized the brilliant 
mathematics you were doing. But the broader community 
was less accepting, some being very sceptical. Do we see a 
parallel here to how your most famous female predecessor, 
Emmy Noether (1882–1935), was treated way earlier? 
Well, something changed, but it changed in the 1960s. Suc-
cess for women in traditionally male fields is a complex 
issue. 

Emmy Noether was one of the great mathematicians of 
the 20th century, and she is arguably the greatest female 
mathematician of all time. She gave a plenary talk at 
the ICM (International Congress of Mathematicians) 
meeting in Zürich in 1932. The next time a woman was 
invited to give a plenary talk at an ICM meeting was in 
Kyoto in 1990, and that woman was you. You are also 
the first woman to be a recipient of the Abel Prize – al-
together there are now 20 recipients. In 2014 Maryam 
Mirzakhani became the first woman to get the Fields 
Medal – 60 Fields medals have been awarded so far. 
What this dramatically illustrates is that mathematics 
has been dominated by men. The topic women and math-
ematics is a many-faced issue involving cultural factors, 
stereotypes, prejudice and much more, and we will not 
get into that. However, we would like you to respond and 
confront directly those beliefs and viewpoints that still 
linger, and which can be summarized as follows: the rea-

From left to right: Bjørn Ian Dundas, Christian Skau and Karen  
Uhlenbeck. © Eirik Furu Baardsen/DNVA
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son mathematics is so dominated by men is for a large 
part due to the fact that men are predisposed to abstract 
thinking, and, in particular, to mathematics. 
Absolutely not! I don’t believe that at all. Among other 
things, it’s not even clear what you need to be a good 
mathematician. The more diverse population you have 
doing something like mathematics the better it is. So I 
think that is a completely misguided viewpoint. The fact 
that there were no women mathematicians was because 
they couldn’t study, they couldn’t get jobs and they had 
a hard time getting respect from all but their immediate 
colleagues. On top of that, the other women didn’t accept 
them, we even had to struggle with that. That changed 
over a period of years and there’s no question in my mind 
that things have really improved, at least in the United 
States. My understanding from talking to people is that 
it has not improved everywhere. And it’s still true that 
women in their 50s have a tough time. But the younger 
women seem to have found acceptance and openness. 
The community has changed. The younger women are 
more visible, they are more talkative and they are more 
involved in the community. I like to think that things have 
really changed, but many people don’t realise what it was 
like in the 1960s. 

So you think that the glass ceiling has been broken? 
Well, yes… yes and no. I wouldn’t say that there aren’t 
problems, it’s just a lot better than it was. 

You voice concern for minorities in mathematics, as well, 
and you did that again when you were told that you were 
going to get the Abel Prize. Is that something you have 
been concerned about for a long time? Is that related to 
other initiatives that you’ve undertaken? 
Actually, quite a few people are concerned about it. The 
fact is that – perhaps not when I was younger, but by the 
1990s when I started to help women – I became aware of 
the difficulties that under-represented minority students 
have. I also knew Elisa Armendariz very well, who was 
our chairman at the University of Texas for many years, 
and who is Hispanic. Many people are concerned about 
the difficulties that minority mathematicians have. The 
question is what you can do about it. The problem is, one 
doesn’t know what to do about it.

But you had initiatives like the Park City Mathematics 
Institute. 
The story of Park City is tied up with how I got involved 
with the women’s programme. When I founded it, I 
thought, this is great, we’ll have Park City and there will 
be a handful of women mathematicians showing up, and 
we will all get together and know each other. The prob-
lem was that there weren’t even a handful of women that 
showed up, it was so predominantly male. So that was 
when I became involved with women. And basically I got 
involved because the Institute for Advanced Study gave 
me money, secretarial support and the prestige to actually 
try to start a programme. And I had Chun-Lian Terng as 
collaborator, and we could do maths – or we thought we 
could do maths at the same time that we did this organisa-

tion – and we actually did a little maths throughout this. 
So, you know, when I see an opportunity, then I’ll try to 
do something. 

Could we ask you what you plan to do with the prize 
money?
When I learned that I had got the prize I was of course 
amazed, overwhelmed and so forth. But the very next day, 
before it was even publicly announced, somebody said: 
what are you going to do with the money? And I said: 
money? I hadn’t thought about that yet. But I thought 
about it and I realised that I wanted to do something for 
under-represented minorities. And I wanted to do some-
thing that is going to work! I don’t want to just go out 
there and do anything. So I called up my friend Rhonda 
Hughes, who I knew from the women’s programme. She 
has been running an EDGE-programme (EDGE stands 
for Enhancing Diversity in Graduate Education). She 
and Sylvia Bozeman from Spelman College have been 
running a programme for graduate students who are just 
starting out, half of which are minority women, and they 
share excellent ties with the minority maths community. 
I called her up and talked to her, and I made the decision 
that I’ll give half of the prize money away. One third of it 
will go to the Institute for Advanced Study and two thirds 
of it will go to the EDGE-foundation, which gives schol-
arships to minority students. The Institute for Advanced 
Study has already matched the money that I’ll be giving 
them for this purpose, so I’m very pleased about that.  

That’s splendid. We end this interview by asking what 
interests and hobbies you have outside mathematics? 
Walking in the mountains would be at the top of the list. 
I’ve started to paint a little bit. Actually, I was not so well 
for a while, and I started to play the recorder again, and 
I started doing some painting. At this age I have to keep 
up my exercise programme and keep up with my friends. 
I find that life is already very full. 

On behalf of the Norwegian and European Mathemati-
cal Societies, and the two of us, we thank you for this 
very interesting interview. And again, congratulations 
on being awarded the Abel Prize. 
Thank you. I am deeply honoured. 
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