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Al-Karajı−’s school of arithmetician-algebraists
One of the major accomplishments of ninth-century 
algebraists such as al-Khwa−rizmı− and Abu− Ka−mil was 
the elaboration of a theory for second-degree equa-
tions that could be applied in order to solve both geo-
metrical and arithmetical problems. Once this theory 
was established, algebraists redirected their interest to 
new topics. By the end of the tenth century, the math-
ematician al-Karajı− chose to investigate the interaction 
between arithmetic and algebra, and began to create a 
coherent and exhaustive system of rules for calculat-
ing with algebraic entities. His work gave rise to a new 
tradition of arithmetician-algebraists, whose aim was to 
improve algebra with the help of arithmetic and vice-
versa. This tradition focused on the notion of operation, 
and its aim was to make the algebraist able to manipu-
late unknown quantities as the arithmetician manipu-
lates known ones. 

Al-Karajı−’s research was then improved upon by the 
twelfth-century scholar al-Samaw’al (d. 1135). In the mid-
dle of the thirteenth century, the Persian mathematician 
al-Zanja−nı− followed this same tradition, and his Qist·a

−s 
al-mu‘a−dala fı−‘ilm al-jabr wa’l-muqa−bala (Balance of the 
equation in the science of algebra and muqa−bala) accu-
rately recalls and elaborates upon al-Karajı−’s work. 

Algebraic powers 
In the presentation of the rules for algebraic operations, 
unknown quantities are considered as either simple or 
composed entities. The basic terms are the algebraic 
powers. These are defined by al-Zanja−nı− as follows:

A thing (shay’) multiplied by itself is called a root, 
and the result [of the multiplication] is a square […] 
The product of the root by the square is a cube, and by 
the cube a square-square, and by the square-square a 
square-cube, and by the square-cube a cube-cube, and 
by the cube-cube a square-square-cube, and so on. If 
the root is two, the square is four, the cube is eight, the 
square-square is sixteen, the square-cube is thirty-two, 
the cube-cube is sixty-four and the square-square-
cube a hundred and twenty-eight.2
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Introduction
If we consider a polynomial as an algebraic expression 
composed of two, three or several added and/or sub-
tracted terms, we might imagine that its conception is 
as old as the theory of equations itself. On the contrary, 
analysis of medieval and early modern writings dealing 
with algebraic computations shows that the definition of 
the mathematical features of this expression is far from 
being immediately evident: it requires a prior systema-
tisation of the theory of algebraic computations and a 
deep investigation of the notions of number and opera-
tion. Therefore, polynomials seem to be conceived quite 
late in the history of algebra. From the point of view of 
mathematical terminology, this is supported by the fact 
that the first occurrences of the French word polynôme 
and of the Latin word polinomius are attested in seven-
teenth-century writings.1

For a long time, algebraists manipulated a generic 
object which presented its own peculiarities, but also 
shared several features of what would later become a 
polynomial. In order to reconstruct the origins of this 
fundamental object of algebra, research needs to focus 
on the lexical choices made by some of these medieval 
and early modern algebraists. What terms did scholars 
use for their algebraic expressions? And what kind of 
object did these terms designate?

In the following sections, I present two results of my 
research into the history of algebraic expressions. The 
first case considered is that of the school of arithmetician- 
algebraists inspired by the writings of the mathematician 
al-Karajı−. This school flourished in the eastern part of the 
Arab-Islamic Empire between the end of the tenth and 
the thirteenth century. The second concerns the German 
Cossic tradition, which includes the sixteenth and seven-
teenth-century generations of Rechenmeister (masters of 
computations).

It was decided to compare these two traditions 
because, although they belong to two different times and 
places, they developed the same interest in the relation 
between algebra and arithmetic, and they seem to have 
had a common pragmatic attitude towards the way in 
which they conceived their algebraic expressions. Both 
the Arabic and the German masters aimed to develop 
the technical aspects of algebra rather than to investigate 
the nature of the entities engaged in these techniques.

2 Al-Zanja−nı−, Balance of the equation, translated from [2], fol. 
2r-v. This definition owes its origins to Diophantus, whose 
 arithmetical books were translated into Arabic in the second 
half of the ninth century by Qust·a

− ibn Lu−qa− and represented 
an important reference for the algebraic-arithmetical tradi-
tion. Al-Zanja−nı− took the definition and the numerical exam-
ple cited here from al-Karajı−’s treatise al-Fakhrı−.

1 We find the term “polynomial” in Cyriaque de Mangin’s 
Cursus mathematicus (1634); Jacques Ozanam’s Dictionnaire 
mathématique (1691); and Fantet de Lagny’s Nouveaux élé-
ments d’arithmétique et d’algèbre (1697).
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5 Al-Zanja−nı−, Balance of the equation, translated from [2], fol. 
4r.

6 This exercise is discussed by Roshdi Rashed in [1], p. 32–24. 
As can be seen, al-Samaw’al uses a mixed form for writing 
the numbers: sometimes they are written in numerals, some-
times they are written out in letters.

3 In this tradition the term “magnitude” is also applied to the 
numbers. Hence, it loses its geometrical sense and can be 
translated as “quantity”.

4 Al-Karajı−, al-Fakhrı− fı− s· ina−‘at al-jabr wa’l-muqa−bala (Book 
of al-Fakhrı− on the art of algebra and muqa−bala), translated 
from [7], p. 118.

Another example is found in al-Zanja−nı−’s explanation of 
the multiplication of two ranks:

The product of two ranks is an expression (‘iba−ra) 
obtained by the application of the multiplicand to the 
multiplicator. The product of the square by the square 
is a square-square, and by the cube it is a square-cube, 
and by the square-square it is a square-square-square, 
I mean a cube-cube. […] The rule is that you combine 
the terms (pl. of laft· ) of the multiplicand to the terms 
of the multiplicator and you first mention the smaller 
one.5

On the mathematical features of the expressions
The lack of specific terminology is probably due to the 
fact that the algebra of these texts is conceived in ordi-
nary language. Moreover, these scholars concentrated on 
improving the technical aspects of algebraic computa-
tions, and paid very little attention to more epistemologi-
cal questions about the nature of the objects they were 
working with. This non-philosophical attitude was quite 
frequent at the time, and especially in a milieu like that 
of these arithmeticians. In these texts, there is no explicit  
definition of what an expression is in the field of the 
arithmetic of the unknowns. However, if we examine the 
examples and the problems in which such expressions 
are employed, we can identify the mathematical peculi-
arities presented by these aggregates. 

Inverses of powers
The first significant difference with regard to the notion 
of polynomial is that expressions can include the inverses 
of powers. For instance, in his treatise al-Ba−hir fı−’l-jabr 
(The brilliant in algebra), al-Samaw’al gives a tabular 
method for the extraction of the square root of the fol-
lowing composed magnitude:

25 cube-cube plus nine squares-square plus 84 squares 
plus 64 units plus a hundred part of a square plus 64 
part of a square-square minus 30 square-cube and 40 
cube and 116 thing and 48 part of a thing and 96 part 
of a cube.6

This can be transcribed as follows:
25x6 + 9x4 + 84x2 + 64 + 100 1_x2 + 64 1_x4 – 30x5 – 40x3 – 116x – 
48 1_x – 96 1_x3 .

Numeral adjectives
As was previously mentioned, the algebra of these texts 
is conceived in natural language. When we analyse the 
algebraic expressions, we can see that what we call the 
coefficient of a term corresponded for al-Karajı−’s school 

As the quotation shows, the 
computations of these texts 
are expressed in rhetorical 
form: there are no sym-
bols or abbreviations and 
numbers are usually writ-
ten out in letters (see also 
Fig. 1, which reproduces an 
extract of al-Zanja−nı−’s trea-
tise).

Once the algebraic pow-
ers have been presented, 
the operations (multi-
plication, division, ratio, 
addition, subtraction and 
extraction of square root) 
are applied to them. The 
result of a computation can 
be simple, or composed of 
several simple terms.

Simple vs. composite numbers, magnitudes and 
expressions
If we examine the lexicon of the arithmetician-algebra-
ists’ treatises, al-Karajı−’s school did not have a technical 
word that specifically designated their algebraic expres-
sions. Since algebra was conceived as an art that allows 
manipulation of geometrical as well as arithmetical 
quantities, they sometimes referred to these objects as 
simple/composite numbers (‘adad) or as simple/compos-
ite magnitudes (miqda−r).3

Another interesting choice made by these authors, 
especially by al-Karajı− and al-Zanja−nı−, is the use of ter-
minology that comes from the field of linguistics. The 
implicit analogy is between a sentence as a concatena-
tion of words and an algebraic expression as an aggre-
gate of algebraic terms. Thus, we find in the texts the use 
of laft·  (“term”) or of jumla mufrad (“simple sentence”) 
in order to designate a single unknown quantity, and the 
use of jumla or of ‘iba−ra (“phrase”, “expression”) for a 
multi-terms aggregate. One example of this terminology 
occurs in al-Karajı−’s introduction of the algebraic addi-
tion:

Add two expressions (jumlataı−n), of one, two or sev-
eral genres. The rule for this is that you juxtapose 
each genre to its genre. Example: add five things and 
four squares to three things and three squares. Add 
five things to three things: this makes eight things, 
and four squares to three squares: this makes seven 
squares. Hence, the sum is eight things plus seven 
squares.4

Fig. 1. Al-Zanja−nı−’s Balance of 
the equation, fol. 4r. The word 
‘iba−ra (“expression”) appears at 
line 16.
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theory of equations. The members of this tradition were 
sixteenth and seventeenth-century Rechenmeister, espe-
cially those who worked in Ulm and Nuremberg.

As Ivo Schneider has pointed out,8 the success of the 
Rechenmeister school was directly related to the rise of 
the new bourgeoisie, who needed private teachers of 
mathematics, and especially arithmetic, for their chil-
dren. Christoph Rudolff’s Behend und hübsch Rechnung 
durch die kunstreichen Regeln Algebre, so gemeinicklich 
die Coß genennt werden (1515), Adam Ries’s Die Coß 
(1524) and Michael Stifel’s Arithmetica integra (1544) 
were three fundamental texts of the sixteenth-century 
Cossic tradition. Their work was then commented on and 
improved in the seventeenth century by a new genera-
tion of masters, among whom Peter Roth and Johannes 
Faulhaber are pre-eminent.

Stifel’s “Cossic numbers”
For the Cossic tradition, algebra is part of arithmetic. 
This subordination is clearly stated in Stifel’s Arithmetica 
Integra. According to Stifel, there are three types of num-
bers, which constitute the main topics of the three books 
of the Arithmetica Integra:

- rational numbers are the numbers of the arithmetic of 
integers and fractions (Book I, De algorithmo numero-
rum integrorum et minutiarum)9;

- irrational numbers are the numbers of the arithmetic 
of radicals (Book II, De essentia numerorum irrationa-
lium);

- Cossic numbers are the numbers of the arithmetic of 
unknown quantities (Book III, De Regula Algebrae, 
Section III, De algorithmo numerorum cossicorum).

The definition of a Cossic number is given at the very 
beginning of Section III:

Cossic numbers are numbers denominated propor-
tional to a geometrical progression.10

Stifel designated each algebraic power with a specific 
symbol (see Fig. 2). This symbolic writing of variables 
relies on that of Cardano and constitutes a significant 
innovation in early modern algebra. 

to a numeral adjective. Hence, it was interpreted as a 
counting number. For instance, in the equation: “Three 
squares plus ten things equal thirty-two units”, which we 
could transcribe as 3x2 + 10x = 32, “three” and “ten” are 
“the number of squares” and “the number of things”. 
They are conceived as a multitude of squares or things, 
as 32 is a multitude of units.7 For this reason, irrational 
numbers are accepted as solutions of the equation, but 
they are not conceivable as a “number of things”. How-
ever, it is difficult to determine whether we can speak 
of coefficients in these texts or not. Indeed, this concept 
seems to change when these authors use tabular methods 
in order to solve, for instance, the division of two com-
posed magnitudes or the extraction of square root of an 
expression, as in al-Samaw’al’s exercise. In these cases, 
numeral adjectives are directly employed and manipulat-
ed in a tabular computation. Hence, they seem to share 
some of the features of modern coefficients, and acquire 
an autonomous status in comparison to the unknown 
quantity. 

Subtracted quantities
In this arithmetic of the unknowns, although the rule 
of signs for the multiplication and the subtraction are 
already known, it is not correct to qualify the quantities 
as positive or negative: there can only be added or sub-
tracted terms. Indeed, as al-Samaw’al’s exercise shows, 
a simple or composed expression never starts with a 
minus-term: subtracted terms are always listed at the end 
of the expression, after the quantity from which they are 
subtracted. Moreover, since negative arithmetical num-
bers did not exist, negative solutions are not yet consid-
ered as solutions of algebraic problems.

The German Cossic tradition
The expressions considered by al-Karajı−’s tradition can 
be of n-degree. But when two expressions are put togeth-
er in order to compose an equation, the degree of the 
latter is never greater than 2. During the Italian Renais-
sance, algebraists developed a theory of cubic (and quar-
tic) equations solved by arithmetical tools. In this field, 
Gerolamo Cardano’s Ars Magna is one of the texts that 
had a significant impact on the German-speaking arith-
metic masters of subsequent generations. Cardano’s list 
of equations and the rules (Regulae) that he presented 
in order to solve them were discussed, although often 
not correctly understood, by the so-called Cossic tradi-
tion. The word Coß derives from the Italian cosa, which 
translated the Arabic word shay’ (“thing”). It denotes 
the unknown quantity and, by extension, algebra as a 

7 Jeffrey Oaks clarified this point in [5]. He noticed the fact 
that, in Arabic texts, the term “coefficient” does not exist. 
Instead, these scholars worked with literal collections of 
squares, things etc. In his article, Oaks presents what he calls 
the “aggregations interpretation”, according to which “the 
two sides of an Arabic equation are not linear combinations 
in the modern sense, but are collections of the algebraic pow-
ers, in which all mathematical operations have already been 
performed”. This is also an interesting observation from our 
present point of view.

8 See [8].
9 Sabine Rommevaux-Tani clarified in [6] that, for Stifel, an 

algorithmo is an explanation of how to write the numbers 
and how to add, subtract, multiply and divide them.

10 Stifel, Arithmetica Integra, translated from [9], fol. 234r.

Fig. 2. Stifel’s representation of Cossic numbers.
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lacked an explicit definition of these aggregates. Their 
focus was on the solution of the equations, and on the 
collection of problems. Compared to the algebra of six-
teenth-century authors, in the seventeenth century the 
technique for solving algebraic problems became more 
sophisticated. As shown in the analyses of Schneider 
and Manders,13 Roth and Faulhaber combined algebra 
with the theory of numbers in order to deal with high-
er-degree equations. Moreover, they presented several 
problems involving sums of series of algebraic powers, 
and transposed into algebra several classes of arithmeti-
cal problems, especially those dealing with polygonal 
numbers. Despite the similarities, the notations adopted 
in these texts suggest that the expressions conceived by 
Roth and Faulhaber still differ from the modern notion 
of the polynomial.

Fictive numbers
In these problems, Cossic quantities can be of n-degree: 
they do not include the inverse of powers, and negative 
quantities are still difficult to conceive. However, a new 
kind of number is mentioned: a number that is fictive 
(ficta, or gedicht). Inherited from Cardano, this concept 
is also present in the Cossic writings. In his Book II, Stifel 
wrote that we can imagine numbers that are less than 
nothing (finguntur numeri minores nihilo ut sunt 0-3, 0-8, 
etc.).14 In the same way, Roth mentioned the two values 
of the root –the true one (waaren) and the fictive one 
(gedicthen) – in problems like the following one:

First, 1x7 + 584x4 + 17680x3 + 18416x2 are equal to 7x6 +  
266x5 + 158688x + 174720. Given now that the value of 
one true root of this equation is 10; then the ques-
tion is what, which and how many other values of the 
root, true and fictive, will there be? Answer (Facit): 
the  others are 10 + 48, 10 – 48, also –4 and –7. Thus 
you see that this equation admits three true and two 
fictive values of the root.15

Fictive numbers do not have the same status as true 
(i.e. positive) numbers. However, their presence in these 
texts marks a significant difference in comparison to the 
Arabic context, in which these quantities are not even 
conceivable.

Simple and composed Cossic numbers
As with the Arabic expressions, Cossic numbers can be 
simple (simplices), like 20x and 30x2, composed (com-
positi), like x + x2, or diminished (diminuti), like 2x – 8. 
Moreover, since the theory of equations has a primary 
role in the German texts, simple and composed Cossic 
numbers are directly conceived in the framework of 
an equation. Hence, they are either two or three-term 
aggregates.

Seventeenth-century “Cossic quantities”
In Peter Roth’s Arithmetica Philosophica (1608) and 
Johannes Faulhaber’s Academia Algebrae (1622), the 
language of arithmetic books shifts from Latin to Ger-
man. In the new texts, numero cossico is replaced by idi-
oms that are less arithmetically denoted, such as “Cossic 
quantity” (Cossische Quantitet) and “Algebraic quantity” 
(Algebraische Quantitet).

Another term which we can already find in Cardano’s 
writings, is Aggregaten, or its Latin version Aggregata (in 
both cases, it is always used in the plural). It originally 
designates the result of a numerical sum. However, since, 
as we have mentioned, there are several types of numbers 
for the Cossic tradition, and algebraic numbers are one 
of these types, Aggregaten is also employed in the field of 
algebra, where it refers to a composed algebraic quantity.

We can find these three lexical choices juxtaposed in 
one of the problems (Quaestionen, see Fig. 3) included in 
Faulhaber’s Academia Algebrae:

There are several aggregates of D-sursolit numbers11 

formed by addition, following each other in the right 
order (so that nothing is left out), and they make 
together the sum 70322010. How many are they? And 
what are the algebraic quantities [that] are naturally 
said equal to this just set number according to a regu-
lar computation? The answer of the Aggregates is 4. 
And [this] is the desired Cossic quantity: 6x15 + 90x14 +  
525x13 + 1365x12 + 819x11 – 3003x10 – 3575x9 + 6435x8 + 
9009x7 – 9009x6 – 12285x5 + 6825x4 + 7601x3 – 2073x2 –  
1470x divided by 1260.12

On the mathematical features of the Cossic 
quantities
Except for Stifel’s definition of Cossic numbers, Peter 
Roth and Johannes Faulhaber, like al-Karajı−’s school, 

13 See [8] and [4].
14 In [9], fol. 48r.
15 Peter Roth, Arithmetica Philosophica, translated in [4], p. 201.

11 A D-sursolit number is an algebraic number of power 13. In-
deed, in the Cossic definition of algebraic powers, the solid 
number is the third algebraic power, and the sursolit number 
is the number whose exponent is the first prime exponent 
after the solid, i.e. the fifth. As Stifel’s notation shows, Cossic 
symbols are then combined with the alphabet letters B, C, 
D… in order to designate the other prime numbers.

12 Faulhaber, Academia Algebrae, translated from [3], fol. 15Csi. I 
have translated the Cossic notation into the modern symbolic 
language of mathematics. As we can see in Fig. 3, the “minus” 
symbols are expressed using the symbol of division. For this 
reason, the authors writes “divided by”. I have decided to 
translate the literal sense, but this actually means that we must 
subtract (and not divide!) 1260 from the Cossic quantity.

Fig. 3. Faulhaber, Academia Algebrae, fol. 15Csi.
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The two case studies presented here show that, as 
often happens in the history of mathematics, similar 
questions can arise and similar attitudes can be adopted 
at different periods. The scholars that we have considered 
did not focus on the definition of their algebraic expres-
sions because these generic objects were seen as parts 
of the theory of equations and functional in the resolu-
tion of problems. As historians, we can perceive not only 
that both the Arabic expression and the German Cossic 
quantity differed from the modern notion of the polyno-
mial, but also that they designated two different objects. 
In this article, I have only been able to sketch some of 
their peculiarities: a more detailed analysis will be devel-
oped in future work. What already seems clear is that 
a historical investigation, supported by textual analysis 
of the sources, of the algebraic expressions that existed 
before the polynomial contributes to clarifying the pro-
cess by which the latter was elaborated and bears direct-
ly on several significant topics in the history of algebra, 
such as the resolution of equations through arithmetical 
methods, the emergence of negative quantities and the 
introduction of a symbolic language.
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