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Solved and Unsolved Problems
Michael Th. Rassias (Institute of Mathematics, University of Zürich, Switzerland)

Newton has shown us that a law is only a
necessary relation between the present state
of the world and its immediately subsequent

state. All the other laws since discovered
are nothing else; they are in sum,

differential equations..

Henri Poincaré (1854–1912)

The present column is devoted to Partial Differential Equations
(PDEs). The study of PDEs has proved to have a tremendously wide
spectrum of applications to various domains, from the study of black
holes to mathematical finance. Such equations can be used to de-
scribe and quantitatively investigate various and diverse phenomena
such as heat, sound, elasticity, fluid dynamics, quantum mechanics,
etc.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

211. Recall that a smooth function u : R2 → R is called har-
monic if

∆u(x, y) :=
∂2u
∂x2 (x, y) +

∂2u
∂y2 (x, y) = 0 , for any (x, y) ∈ R2.

Determine all harmonic polynomials in two real variables.

(Giovanni Bellettini, Dipartimento di Ingegneria
dell’Informazione e Scienze Matematiche, Siena, Italia, and

ICTP International Centre for Theoretical Physics, Mathematics
Section, Trieste, Italy)

212 Reaction-diffusion systems of the form

ut = Duxx + g(u) + µMu, (x, t) ∈ R × (0,∞),

where

u(x, t) ∈ Rn, gi(u) = riui

1 −
n∑

j=1

α ju j

 , ri, αi > 0,

i = 1, . . . , n, µ > 0,

and D and M are constant n × n matrices such that D is positive-
definite diagonal and M has strictly positive off-diagonal elements
and zero column sums, arise in the modelling of the population
densities of n phenotypes of a species that diffuse, compete both
within a phenotype and with other phenotypes, and may mutate
from one phenotype to another. Denoting the Perron-Frobenius

eigenvalue of a matrix Q by ηPF[Q] and assuming that the n phe-
notypes spread together into an unoccupied spatial region at the
µ-dependent speed

c(µ) := inf
β>0
ηPF

[
βD + β−1(diag(r1, . . . , rn) + µM)

]
,

which is determined by the linearisation of the reaction-diffusion
system about the extinction steady state u = (0, . . . , 0) ∈ Rn, prove
that spreading speed c(µ) is a non-increasing function of µ.

(Elaine Crooks, Department of Mathematics,
College of Science, Swansea University,

Swansea, UK)

213. Consider the second-order PDE with non-constant coeffi-
cients,

uxx − x2uyy = 0.

Find at least one family of solutions.

(Jonathan Fraser, School of Mathematics and Statistics,
The University of St Andrews, Scotland)

214. Let u solve
(∆ + 2002 xy2)u = 1

on the triangle T = {(x, y) : 0 < x < 1, 0 < y < 1 − x} with zero
Dirichlet conditions:

u(x, 0) = u(0, y) = u(x, 1 − x) = 0.

What are the first 10 significant digits of u(0.1, 0.2)?

(Sheehan Olver, Department of Mathematics,
Imperial College, London, UK)

215. Let u be an entire harmonic function in Rn, satisfying
u(x) ≥ −c(1 + |x|m) for some constants c > 0 and m ∈ N. Show
that u is a polynomial of degree less or equal to m.

(Gantumur Tsogtgerel, McGill University,
Department of Mathematics and Statistics,

Montreal, Canada)

216. Let f : [0,∞)→ (0,∞) be a continuous function satisfying
f (x)→ 0 as x→ ∞, and let

Ω = {(x, y) ∈ R2 : x > 0, 0 < y < f (x)}.

Exhibit an unbounded function u in Ω, such that u ∈ Hk(Ω) for
all k ≥ 0. Here Hk(Ω) is the standard Sobolev space of functions
whose partial derivatives of all orders up to k are square integrable.

(Gantumur Tsogtgerel, McGill University,
Department of Mathematics and Statistics,

Montreal, Canada)

Solved and Unsolved Problems
Michael Th. Rassias (University of Zürich, Switzerland)



Problem Corner

60 EMS Newsletter September 2019

II Open Problem. New rigorous developments
regarding the Fokas method and an open problem
by A. S. Fokas (DAMTP, University of Cambridge,
UK) and T. Özsarı1 (Department of Mathematics,
Izmir Institute of Technology, Turkey)

Initial-boundary value problems for nonlinear
Schrödinger type equations

Consider the following nonlinear Schrödinger equation (NLS) on a
domain Ω ⊂ Rn, n ≥ 1 with p > 0, κ ∈ R − {0}, σ ∈ {2, 4}, disregard-
ing for the moment initial and boundary conditions (b.c.):

i∂tu + (−∆)
σ
2 u + κ|u|pu = 0, x ∈ Ω, t ∈ (0, T ). (1)

This equation is the classical NLS when σ = 2 and the biharmonic
NLS when σ = 4.

It is easy to see that if Ω = Rn, then

uε(x, t) � ε−
σ
p u(ε−1 x, ε−σt)

defines an invariant scaling of the above equation. Namely, u solves
(1) on (0, T ) iff uε solves (1) on (0, εσT ). Moreover,

|uε(0)|Ḣs
x
= ε

n
2 −
σ
p −s|u(0)|Ḣs

x
.

Therefore, if s < s∗ � n
2 −

σ
p , then both |uε(0)|Ḣs

x
and the life span

of uε vanish as ε → 0+. This suggests that the problem is locally
illposed for s < s∗ and locally wellposed otherwise, where local
wellposedness is in the Hadamard’s sense (existence, uniqueness,
and uniform continuity with respect to data for some T > 0). It is
generally easier to establish such results for 0 ≤ s < s∗ whenever
s∗ > 0 (L2-supercritical) or for s < s∗ = 0 (L2-critical). For in-
stance, at least for the focusing problems for NLS (σ = 2, κ < 0),
one can simply reduce the problem to one of blow-up in arbitrarily
small time in the case s∗ ≥ 0 by constructing a blow-up solution
and rescaling it. However, if p < 2σ

n , then s∗ < 0, in which case
an explicit blow-up solution cannot be constructed. Therefore, one
wonders what is the range of s for which local wellposedness fails
when s∗ < 0 (L2-subcritical). The answer to this question for the
Cauchy problem in Rn is that wellposedness fails in Hs

x indeed for
any s < max(0, s∗) [2]. This is proven by showing that the solution
operator is no longer uniformly continuous. These observations (see
[2] for further details) motivate us to consider the local wellposed-
ness problem for (1) with respect to the above ranges also in the case
of domains with a boundary.

If ∂Ω � ∅, then (1) also requires appropriate boundary con-
ditions (and compatibility conditions if s is sufficiently large that
traces exist) for wellposedness to hold. Recent papers treating
the half-space case Ω = Rn

+ (n = 1, 2) for the problem (1)
obtained wellposedness for nonnegative s. For instance, in the
one dimensional case with Ω = R+, the natural space for the
data of NLS subject to Dirichlet b.c. u|x=0 = g turns out to

be (u(0), g) ∈ Hs
x(R+) × H

2s+1
4

t (0, T ), see for instance [3], [6], and
[8]. On the other hand, this space for the biharmonic NLS sub-
ject to Dirichlet–Neumann b.c. u|x=0 = g, ux|x=0 = h becomes

(u(0), g, h) ∈ Hs
x(R+) × H

2s+3
8

t (0, T ) × H
2s+1

8
t (0, T ) [7]. In the two di-

mensional case, the spaces for boundary data turn out to be of Bour-
gain type [1], [5].

One of the effective methods for the treatment of the above half-
space problems is the so-called Uniform Transform Method (a.k.a.
Fokas method) [4]. It has been shown by many researchers that the

Fokas method is a powerful tool for solving initial – (inhomoge-
neous) boundary-value problems. Although this method was initially
introduced for obtaining formal representation formulas for solu-
tions, it has been shown recently that it can also be used to obtain rig-
orous wellposedness results in the fractional Sobolev and Bourgain
spaces. Initially, nonlinear dispersive partial differential equations
(PDEs) with power type nonlinearities such as NLS were treated at
the high regularity level with this method by obtaining estimates in
the L∞t Hs

x norm with s > 1/2, see, e.g., [3] and [5]. In this setting,
Hs

x becomes a Banach algebra (i.e., |uv|Hs
x � |u|Hs

x |v|Hs
x ) and therefore

handling the nonlinearities via contraction is relatively easier. Un-
fortunately, in the low regularity setting s ≤ 1

2 , Hs
x looses its algebra

structure and estimates in the L∞t Hs
x norm are not good enough for

performing the associated nonlinear analysis. The classical method
in the theory of nonlinear dispersive PDEs for dealing with this dif-
ficulty is to prove Strichartz type estimates which measure the size
and decay of solutions in mixed norm function spaces Lq

t W s,r
x , where

(q, r) satisfies a special admissibility condition intrinsic to the un-
derlying evolution operator. However, proving these inequalities for
inhomogeneous initial boundary value problems is generally more
difficult than proving them for the corresponding Cauchy problems
on the whole space Rn. It is well known that Strichartz estimates
holding on Rn may fail on a general domain Ω ⊂ Rn or on a mani-
fold M with or without boundary and some loss in regularity is in-
dispensable even in nice and smooth geometries. Researchers have
used quite technical tools in order to prove these estimates for in-
homogeneous initial boundary value problems even in low dimen-
sional settings. The second author has recently shown, in connection
with the biharmonic NLS [7], that the kernel of the integral formula
obtained by the Fokas method representing the solution has a nice
space-time structure for applying the elementary tools of harmonic
analysis such as Van der Corput lemma to prove decay properties in
the time variable, which eventually yields necessary Strichartz esti-
mates. The time decay of the kernel in Fokas’s integral formula for
the solution of the boundary value problem can also be used to prove
Strichartz estimates for a wide range of dispersive PDEs, at least in
the half-space case.

The literature mentioned above on the local wellposedness for
the inhomogeneous boundary value problems for the classical NLS
in fractional spaces covers the half-space case in dimensions n = 1, 2
and the finite interval case Ω = (0, L) in dimension n = 1. In the lat-
ter case, it was found that the boundary data must be taken from

H
s+1
2

t (0, T ) in order to establish the local wellposedness at the level
of Hs

x(0, L) [8]. One observes that boundary input was associated
with a smoother space compared to the half-line problem in order to
get well-posedness in Hs

x(0, L). To the best of our knowledge, there
is no work which establishes the local wellposedness for NLS on
bounded rectangular domains in 2 + 1 and higher dimensional set-
tings. Therefore, we would like to end this short note with the fol-
lowing open problem which might be of interest to researchers in
analysis of PDEs.

Note
1. T. Özsarı’s research is supported by TÜBİTAK 1001 Grant #117F449.

217*. Open Problem. Let Ω = (a, b) × (c, d) be a rectangle in
R2, and consider the NLS in (1) (σ = 2) with Dirichlet b.c. on all
sides of ∂Ω and initial datum u0 ∈ Hs(Ω). Determine the maximal
range of s and the (optimal) function spaces for boundary data for
which the local wellposedness for (1) holds true in Hs

x(Ω).
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III Solutions

204. Note that in any topological space with an isolated point,
any two dense sets must intersect. Show that there is a 0-
dimensional, Hausdorff topological space X with no isolated
points so that still, there are no disjoint dense sets in X.

(Daniel Soukup, Kurt Gödel Research Center,
University of Vienna, Austria)

Solution by the proposer.

First proof. Take the set of rational numbers Q and consider the set
T of all possible 0-dimensional topologies τ on Q that have no iso-
lated point. For example, the usual Euclidean topology is in T . Now,
note that any chain in T has an upper bound; indeed, the union of an
increasing chain of such topologies forms a basis for an element in
T . Hence, by Zorn’s lemma, there must be a maximal element τ in
T .

We claim that any two τ-dense subsets D, E of Q must meet.
First, note that neither D nor E can have isolated points; indeed, if U
is open and U ∩ D is a singleton x then U \ {x} is a non-empty open
set that avoids D. But now, if D and E are disjoint, then the topology
generated by τ ∪ {D, E} is still in T and a proper extension of τ. �

Such spaces, with no disjoint dense sets, are called irresolvable
and the above result was first proved by Hewitt in 1943.2 Studying
the degrees of resolvability, i.e., the maximal number of pairwise
disjoint dense sets in spaces, is still an active area of research.3 In
fact, any dense-in-itself compact or metrizable space is maximally
resolvable, i.e., contains as many pairwise disjoint dense sets as the
minimal size of a non-empty open set.4

Let us present another, more constructive argument for the exis-
tence of irresolvable spaces.

Second proof. We construct a countable, dense subset

X = {xn : n ∈ ω}

of the product 22ℵ0 so that X is also irresolvable (in the subspace
topology). We proceed by an induction of length 2ℵ0 and at step α,
we will specify the coordinates xn(α). Moreover, we will make sure
that

X � α = {xn � α : n < ω}
is always dense in 2α.

Define
{xn � ω : n < ω}

to be an arbitrary dense subset of 2ω. Now, list all infinite, co-infinite
subsets of ω as

{Iα : ω ≤ α < 2ℵ0 }.
These correspond to partitions of X and we will make sure at step α
that

XIα = {xn : n ∈ Iα} and X \ XIα

cannot both be dense in the final space X. Suppose we defined

X � α = {xn � α : n < ω}

already. Now, consider the set XIα � α and its complement in X � α.
If both these sets are dense in X � α, or equivalently in 2α, then we
simply put xn(α) = 0 if and only if n ∈ Iα. Note that our set X � α + 1
remained dense in 2α+1 and XIα � α + 1 is now clopen in X � α + 1.
In limit steps of the induction, we simply take unions of the functions
xn � α that we constructed already. This finishes the construction.

It should be clear that X is irresolvable. Indeed, if A ⊂ X is
dense and co-dense then A � α is dense and co-dense in X � α for
any α < 22ℵ0 . Hence, if XIα = A then at step α, we must have made
A � α + 1 clopen. In turn, A is clopen as well, a contradiction. �

Notes
2. E. Hewitt, A problem of set-theoretic topology. Duke Math. J. 10 (1943),

309–333.
3. Juhász, I., Soukup, L., & Szentmiklóssy, Z. (2006). D-forced spaces: A

new approach to resolvability. Topology and its Applications 153(11),
1800–1824.

4. Ceder, J. (1964). On maximally resolvable spaces. Fundamenta Mathe-
maticae 55(1), 87–93.

Also solved by John N. Daras (Greece), Socratis Varelogiannis
(France), Alexander Vauth (Germany)

205. For X = {{x, y} : x, y ∈ Q}, find a function b : X → N such
that {

b({x, y}) : x, y ∈ B
}
= N,

whenever B ⊆ Q is homeomorphic to Q.

(Boriša Kuzeljević, University of Novi Sad,
Department of Mathematics and Informatics, Serbia)

Solution by the proposer. This solution is by James Baumgartner.
First fix an enumeration of Q = {qn : n ∈ N}. For each n ∈ N, fix a
set

N(qn, q0),N(qn, q1), . . . ,N(qn, qn)

of pairwise disjoint neighbourhoods of q0, . . . , qn, respectively. Now
define a function f : X → X. For {qm, qn} in X: if m < n and there is
i < m so that qn ∈ N(qm, qi), then let

f ({qm, qn}) = {qi, qm}.
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Otherwise let f ({qm, qn}) undefined. Denote

f 1({x, y}) = f ({x, y}), and f n+1({x, y}) = f
(
f n({x, y}))

for each n ≥ 1 and {x, y} ∈ X. By definition of f , for a fixed x, y ∈ Q,
there is n ≥ 1 for which f n({x, y}) is undefined. Define b({x, y}) to be
the least n such that f n+1({x, y}) is undefined. Suppose that B ⊆ Q is
homeomorphic to Q. We prove by induction on l ∈ N that

{0, . . . , 2l − 1} ⊆ {b({x, y}) : x, y ∈ B}.

This will finish the proof.
Let l = 1. There is qn ∈ B ∩ N(q0, q0) for n > 0. Note that

f ({q0, qn}) is undefined. Also, N(qn, q0) ∩ B is infinite since q0 is
a limit point of B. So if xk ∈ N(qn, q0) ∩ B and k > n, then

f ({qn, qk}) = {q0, qn}.

Hence b({q0, qn}) = 0, while b({qn, qk}) = 1.
Now suppose that l ≥ 1 and that

{0, . . . , 2l − 1} ⊆ {b({x, y}) : x, y ∈ B
}
.

By inductive hypothesis, there are qm and qn in B such that
b({qm, qn}) = 2l − 1. Suppose that m < n. Since qm, qn are limit
points of B, there are

qi ∈ N(qn, qm) ∩ B and qj ∈ N(qi, qn) ∩ B,

where j > i > n. Now

f ({qi, qj}) = {qn, qi} and f ({qn, qi}) = {qm, qn},

so
b({qn, qi}) = 2l and b({qi, qj}) = 2l + 1.

�

Also solved by Mihaly Bencze (Romania), Socratis Varelogiannis
(France).

206. Suppose that (G, ·) is a group, with identity element e
and (G, τ) is a compact metrisable topological space. Suppose
also that Lg : (G, τ)→ (G, τ) and Rg : (G, τ)→ (G, τ) defined by,
Lg(x) := g · x and Rg(x) := x · g for all x ∈ G, are continuous func-
tions. Show that (G, ·, τ) is in fact a topological group.

(Warren B. Moors, Department of Mathematics,
The University of Auckland, New Zealand)

Solution by the proposer. Let π : G × G → G be defined by
π(h, g) := h · g for all (h, g) ∈ G × G. We will first show that there
exists an element h0 ∈ G such that π is continuous at (h0, e). Let
(Vn : n ∈ N) be a countable base for the topology on (G, τ). For each
(m, n) ∈ N × N, let

F(m,n) := {g ∈ G : Lg(Vm) ⊆ Vn}.

Then, since each Rg is continuous, each set F(m,n) is closed. For each
(m, n) ∈ N × N, let D(m,n) := Bd(F(m,n)) = F(m,n) \ int(F(m,n)). Then
each D(m,n) is closed and has no interior.

We claim that π is continuous at each point of
G \

⋃
(m,n)∈N×N

D(m,n)

 ×G ;

which is nonempty, by the Baire category theorem. Let

(h0, g) ∈
G \

⋃
(m,n)∈N×N

D(m,n)

 ×G

and let W be an open neighbourhood of π(h0, g). By appealing to the
regularity of (G, τ) there exists an n ∈ N such that

π(h0, g) ∈ Vn ⊆ Vn ⊆ W.

Since Lh0 is continuous at g there exists an m ∈ N such that g ∈ Vm

and Lh0 (Vm) ⊆ Vn. Hence, h0 ∈ F(m,n) and so

h0 ∈ F(m,n) \
⋃

(m′ ,n′)∈N×N D(m′ ,n′) ⊆ F(m,n) \ D(m,n) ⊆ int(F(m,n)).

Let U := int(F(m,n)). Then h0 ∈ U and

π(U × Vm) ⊆ Vn ⊆ W.

This shows that π is continuous at each point of {h0} × G. In par-
ticular, at (h0, e). We now show that π is continuous at any point of
G × G. Let (x, y) be any point of G × G and let (xn : n ∈ N) be a
sequence in G converging to x and let (yn : n ∈ N) be a sequence in
G converging to y. Then, (h0 · x−1 · xn : n ∈ N) converges to h0 and
(yn · y−1 : n ∈ N) converges to e. Therefore,

lim
n→∞

(h0 · x−1 · xn) · (yn · y−1) = lim
n→∞
π((h0 · x−1 · xn), yn · y−1)

= π(h0, e)

= h0.

and so

x · y = (x · h−1
0 ) · (h0) · y

= (x · h−1
0 ) ·
(
lim
n→∞

(h0 · x−1 · xn) · (yn · y−1)
)
· y by above

= lim
n→∞

(
(x · h−1

0 ) · (h0 · x−1 · xn) · (yn · y−1) · y
)

(∗∗)

= lim
n→∞

xn · yn.

Note that (∗∗) follows from the continuity of the function, g �→
(x · h−1

0 ) · g · y. Hence, we have that limn→∞ xn · yn = x · y. It now
only remains to show that inversion I : (G, τ)→ (G, τ) defined by,
I(x) := x−1 for all x ∈ G, is continuous on G. In fact, since (G, τ) is
compact it is sufficient to show that the graph of I is closed. However,

Graph(I) = {(x, y) ∈ G ×G : y = x−1}
= {(x, y) ∈ G ×G : x · y = e}
= π−1({e});

which is closed, since {e} is closed and π is continuous. �

Also solved by Sotirios Louridas (Greece), Alexander Vauth (Ger-
many)

207. We will say that a nonempty subset A of a normed linear
space (X, ‖ · ‖) is a uniquely remotal set if for each x ∈ X,

{
y ∈ A : ‖y − x‖ = sup{‖a − x‖ : a ∈ A}}

is a singleton. Clearly, nonempty uniquely remotal sets are
bounded. Show that if (X, ‖ · ‖) is a finite-dimensional normed lin-
ear space and A is a nonempty closed and convex uniquely remotal
subset of X, then A is a singleton set.

(Warren B. Moors, Department of Mathematics,
The University of Auckland, New Zealand)
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Solution by the proposer. Let A be a nonempty uniquely remotal sub-
set of a finite dimensional normed linear space (X, ‖ · ‖). For each
a ∈ A, let ra : X → [0,∞) be defined by, ra(x) := ‖x − a‖ for all
x ∈ X. Let r : X → [0,∞) be defined by, r(x) := supa∈A ra(x) for
all x ∈ X. Then r is 1-Lipschitz and convex, as it is the pointwise
supremum of a family of 1-Lipschitz convex functions. Since A is a
nonempty uniquely remotal we can define a function fA : X → A
(called the farthest point mapping) by,

{ fA(x)} := {y ∈ A : ‖y − x‖ = r(x)} for all x ∈ X.

Since A is closed and bounded, A is compact (in the norm topol-
ogy). Thus, to show that fA is continuous, it is sufficient to show that
fA has a closed graph. To this end, suppose that x = limn→∞ xn and
y := limn→∞ fA(xn). Then, y ∈ A, since A is closed and

r(x) = lim
n→∞

r(xn)

= lim
n→∞
‖ fA(xn) − xn‖

=
∥∥∥∥ lim

n→∞
( fA(xn) − xn)

∥∥∥∥
= ‖y − x‖.

Therefore, y = fA(x). We now apply Brouwer’s fixed-point theorem
to the continuous function ( fA)|A : A → A to obtain a fixed-point
x0 ∈ A. That is, fA(x0) = x0. Since x0 is the “farthest point in A”
from x0, we must have that A = {x0}. �

Also solved by Mihaly Bencze (Romania), Socratis Varelogiannis
(France).

208. Let X be any set. A family F of functions from X to {0, 1}
is said to separate countable sets and points if for every countable
set B ⊆ X and every x ∈ X \ B, there is a function f ∈ F so that
f (x) = 1 and f [B] = {0}.
Let κ and λ be infinite cardinals with λ ≤ 2κ. Give {0, 1} the dis-
crete topology and {0, 1}λ the usual product topology. Show that
the following are equivalent:
1. there is a family F of λ many functions from κ to {0, 1} such

that F separates countable sets and points;
2. there is a subspace X ⊆ {0, 1}λ of size κ such that every count-

able subset of X is closed in X.

(Dilip Raghavan, Department of Mathematics,
National University of Singapore, Singapore)

Solution by the proposer. The proof of (1) =⇒ (2) just requires rein-
terpreting the functions, but the proof of (2) =⇒ (1) uses the coding
that is used in the proof that large independent families exist.

(1) =⇒ (2): Let { fξ : ξ < λ} be a 1-1 enumeration of the family
F . Thus for each ξ < λ, fξ : κ → {0, 1}. Now for each α < κ, we de-
fine a function gα : λ → {0, 1} by stipulating that gα(ξ) = fξ(α), for
each ξ < λ. Suppose B ⊆ κ is countable and β ∈ κ \ B. By hypothesis
there exists ξ < λ such that fξ(β) = 1 and fξ(α) = 0, for all α ∈ B.
Thus gβ(ξ) = 1 and gα(ξ) = 0, for all α ∈ B. So

U =
{
g ∈ {0, 1}λ : g(ξ) = 1

}

is an open neighbourhood of gβ which has empty intersection with
{gα : α ∈ B}. This shows that {gα : α < κ} is a collection of κ many
distinct points of {0, 1}λ with the property that every countable subset
of it is relatively closed. This proves (2).

(2) =⇒ (1): Let {gα : α < κ} be a 1-1 enumeration of X. Thus for
each α < κ, gα : λ→ {0, 1}. Let

L = {〈s,H〉 : s ⊆ λ is a finite set and H ⊆ {0, 1}s} .

The cardinality of L is λ. We will now produce a family
{
f〈s,H〉 : 〈s,H〉 ∈ L

}

of functions from κ to {0, 1} which separates countable sets from
points. For a fixed 〈s,H〉 ∈ L, define f〈s,H〉 : κ → {0, 1} by stipulating
that for each α < κ, f〈s,H〉(α) = 1 if and only if gα�s ∈ H. Suppose
B ⊆ κ is countable and β ∈ κ\B. By hypothesis {gα : α ∈ B} is closed
in X, and so gβ is not in the closure of {gα : α ∈ B}. Therefore we
can find a finite set s ⊆ λ such that the open neighbourhood

U =
{
g ∈ {0, 1}λ : g�s = gβ�s

}

of gβ misses {gα : α ∈ B}. Let

H = {gβ�s} ⊆ {0, 1}s.

So 〈s,H〉 ∈ L. Now since gβ�s ∈ H, we have f〈s,H〉(β) = 1. On the
other hand, for each α ∈ B, gα � U, and so gα�s � gβ�s. Hence for
all α ∈ B, gα�s � H, whence f〈s,H〉(α) = 0. So the function f〈s,H〉
separates B from β. Now

{
f〈s,H〉 : 〈s,H〉 ∈ L

}

is a family of at most λ many functions from κ to {0, 1} which sepa-
rates countable sets from points. Since the hypothesis is that λ ≤ 2κ,
we may enlarge this family, if necessary, by adding λ many distinct
functions from κ to {0, 1} to produce a family of exactly λmany func-
tions from κ to {0, 1} which separates countable sets from points. �

Also solved by Mihaly Bencze (Romania), John N. Daras (Greece),
Sotirios Louridas (Greece).

209. A subset X of a partial order (P,≤) is cofinal in P if for
each p ∈ P there is an x ∈ X satisfying p ≤ x. Let βω denote
the Stone–Čech compactification of the natural numbers, and let
ω∗ denote the Stone–Čech remainder, βω \ ω. A neighbourhood
base Nx at a point x forms a directed partial order under reverse
inclusion. A neighbourhood base (Nx,⊇) is said to be cofinal in
another neighborhood base (Ny,⊇) if there is a map f : Nx → Ny

such that f maps each neighbourhood base at x to a neighborhood
base at y. Assume the Continuum Hypothesis. Show that there are
at least two points x, y in ω∗ with neighbourhood bases (Nx,⊇)
and (Ny,⊇) which are cofinally incomparable; that is, neither is
cofinal in the other.

(Natasha Dobrinen, Department of Mathematics,
University of Denver, USA)

Solution by the proposer. Recall that the points inω∗ are nonprincipal
ultrafilters. Let Fin denote the set of all finite nonempty subsets of
N. An ultrafilterU is selective if for any collection {Us : s ∈ Fin} of
members ofU, there is a selector X ∈ U such that for each s ∈ Fin,
X/s := X \ (max(s)+1) ⊆ Us. Assuming the Continuum Hypothesis,
we can build selective ultrafilters by transfinite recursion. As any ul-
trafilter partially ordered by reverse inclusion is Dedekind complete,
one need only consider cofinal maps which are monotone: Y ⊇ X
implies f (Y) ⊇ f (X). Identify the collection of all subsets of the nat-
ural numbers with the Cantor space C via their indicator functions.
Continuity of cofinal maps is with respect to the topology on C.
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Claim 1 If U is selective, then for any monotone cofinal map
f : U → V, there is an X ∈ U such that f is continuous when
restricted to {U ∈ U : U ⊆ X}.

Proof. Given U, V and f , for each finite set s ⊆ N, take a set
Xs ∈ U satisfying the following: Xs = Xs/s, and for all k ≤ max(s),
k ∈ f (s ∪ Xs) if and only if k ∈ f (Y) for each Y ∈ U with s
an initial segment of Y . By monotonicity of f , such an Xs in U
exists. Since U is selective, there is a member U ∈ U such that
for each finite set s, U/s ⊆ Xs. Then f is continuous when re-
stricted to {U ∈ U : U ⊆ X}: Given U ⊆ X in U, for any
k, let s be any nitial segment of U for which k ≤ max(s). Then
k ∈ f (U)←→ k ∈ f (s ∪ X)←→ k ∈ f (s ∪ Xs). �

Claim 2 There are two selective ultrafilters which are cofinally in-
comparable.

Proof. Fix an enumeration 〈 fα : α < ω1〉 of all monotone contin-
uous maps from the Cantor space into itself. An equivalent form of
selective ultrafilter is that for each partition of N into infinitely many
pieces, either one piece is in the ultrafilter, or else there is a mem-
ber of the ultrafilter which intersects each piece exactly once. Fix an
enumeration 〈Pα : α < ω1〉 of all partitions {Pn

α : n < ω} of ω into
infinitely many pieces. We construct a sequence of countable filter
bases (closed under finite intersection) via transfinite recursion on
ω1.

Let U0 = V0 = F r, the Frechét filter of cofinite sets of natural
numbers. For α < ω1, given countable filter bases Uα and Vα, ex-
tend them to filter bases Uα+1 and Vα+1 as follows: If there is an n
such that Pn

α ∈ Uα, let U′α = Uα. Otherwise, there is an infinite set
X such that for each n, |X ∩ Pn

α| = 1 and the set Uα ∪ {X} generates
a proper filter; letU′α be the filter base consisting of all intersections
of finitely many members ofUα∪{X}. In a similar manner, construct
V′α.

Since U′α is countable, it has a pseudointersection; that is, an
infinite set U such that U \ Y is finite for each Y ∈ U′α. Like-

wise, there is a pseudointersection V for V′α. If V \ fα(U) is infi-
nite, let Uα+1 = U′α, and let Vα+1 be the filter base generated by
V′α ∪{V \ fα(U)}. Otherwise, V \ fα(U) is finite. If there is an infinite
subset V ′ ⊆ V such that V ′ \ fα(X) is finite for each infinite X ⊆ U,
then fα cannot be a cofinal map into any ultrafilter containing V ′. In
this case, letUα+1 = U′α and letVα+1 be the filter base generated by
V′α ∪ {V ′}. The final case is that for each infinite V ′ ⊆ V , there is an
infinite U′ ⊆ U such that V ′ \ fα(U′) is infinite. In particular, there
is an infinite U′ ⊆ U such that V \ fα(U) is infinite. In this case, let
Uα+1 be the filter base generated by U′α ∪ {U′} and Vα+1 to be the
filter base generated byV′α ∪ {V \ fα(U)}.

If α < ω1 is a limit ordinal, take Uα to be the the union of the
Uβ, for β < α; likewise for Vα. Once the sequences of filter bases
〈Uα : α < ω1〉 and 〈Vα : α < ω1〉 are constructed, let U be an
ultrafilter extending

⋃
α<ω1
Uα and let V be an ultrafilter extending⋃

α<ω1
Vα. By the construction, U and V are selective ultrafilters,

and there is no monotone continuous function mapping one cofinally
into the other. �

Also solved by Alexander Vauth (Germany).

Note. A much lengthier construction of 2c many cofinally incompara-
ble selective ultrafilters appeared in a paper of Dobrinen and Todor-
cevic, in 2011. However, the short and straightforward construction
of two cofinally incomparable selective ultrafilters provided here did
not previously appear in the literature.

We encourage you to submit solutions to the proposed problems and
ideas on the open problems. Send your solutions by email to Michael
Th. Rassias, Institute of Mathematics, University of Zürich, Switzer-
land, michail.rassias@math.uzh.ch.
We also solicit your new problems with their solutions for the next
“Solved and Unsolved Problems” column, which will be devoted to
Analytic Number Theory.


