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A Problem for the 21st/22nd Century

Sylvain Crovisier (CNRS and Université Paris-Sud, France) and Samuel Senti (Universidade Federal do Rio de

Janeiro, Brazil)

Sylvain: At the end of 1997, Jean-Christophe welcomed me
in his huge office at the College de France. I had already met
him two years earlier at an oral “concours”. This time I came
to ask him to supervise my DEA thesis. On the board he talked
at length about dynamical systems, which he presented with a
diagram.
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He had already done a lot of work on quasi-periodical sys-
tems (circle diffeomorphisms, rational maps), but in recent
yvears he was more interested in (non-uniformly) hyperbolic
systems; a very hot topic. I left full of enthusiasm, with his
lecture notes on Jakobson’s Theorem.

Samuel: My experience is quite similar to yours. Two years
earlier; the inaugural course at the College de France on
Jakobson’s theorem had not been held yet. Still the same dis-
cussion took place, with the same supporting diagram, a well-
known schema to all those who had the chance to see Jean-
Christophe expose his programme: a short, medium and long-
term programme, and even a very long-term programme since
he dared not hope to fulfill it during his career.

We had the opportunity to follow a little bit of Jean-
Christophe’s path in the non-uniformly hyperbolic world, and
to hear him share his dream of one day understanding conser-
vative systems. In these few pages we try to give an overview
of that dream.

Hyperbolic dynamics

The study of the dynamics of a map f from a space X to itself
consists in the description of its orbits, i.e., of sequences of

the form x, f(x), f(f(x)), fF(f(f(x))),... We denote by f"(x)

the n™ iterate of x.

Uniform hyperbolicity in dimension one

Let us start by describing the dynamics of the quadratic map
fu: x = x> + a on the real line for parameter values a < —2.
We observe two kinds of orbits: some go to infinity; the others
belong to an invariant Cantor set K. Moreover, for all points
x € K the sequence of iterated derivatives Df) := Df,0--- 0o
Df,(x) grows exponentially at a given uniform rate which is
independent of x.

Despite the system’s apparent simplicity, describing the
dynamics turns out to be a surprisingly complex task for pa-
rameter values —2 < a < 0. Indeed, denoting by S, the posi-
tive fixed point of f,, the interval [-f,,3,] turns out to be in-
variant and the orbit of the critical point 0 remains bounded.
For some values of the parameter (for instance for a = —0.8),
one can decompose the system as follows:

— The orbit of any point outside [-f,,8,] goes to infinity.
— There is an invariant compact set K which does not con-
tain 0.
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Figure 1. Orbit of a uniformly hyperbolic map

— There is an attractive periodic orbit which attracts the orbit
of any point in ] — S, B.[\K.

This dynamic is uniformly hyperbolic: for orbits contained in

K, the sequence of iterated derivatives |[Df}| := |Df, o ...

o Df,| grows exponentially at a uniform rate; on the other

hand, for any other bounded orbit, it decreases to O exponen-

tially.

Hyperbolicity is a fundamental property: it implies that
the orbits of any two points in K, however close, always end
up being distinct from one another. We can thus associate to
each orbit a sequence in {—1, 1} which encodes the sign of
each iterate. Furthermore, hyperbolicity implies the system’s
stability: for any mapping C'-close to f;, the structure of the
space of orbits is unchanged.

Non uniform hyperbolicity
In 1981 Jakobson [6] showed that there exists another typical
dynamical behavior:

Theorem (Jakobson). There is a set of parameters of non-

zero measure P C [-2,0], such that for a € P and almost all

X € [_,Basﬂa]:

— the orbit of x for the quadratic map f, is dense in the inter-
val [a,a(a + 1)],

— the asymptotic growth rate of the sequence of iterated
derivatives |D f}!(x)| is exponential.

The dynamics of the maps f, is then rather well under-
stood: the orbit of almost every point of the interval [-/,, 5.]
equidistributes to the same measure (which has support in
[a,a(a + 1)]); outside that interval all orbits escape to infinity.
The dynamics is non-uniformly hyperbolic: we observe an in-
crease of the derivatives along the orbit of almost all points x,
but that exponential growth is no longer uniform in x, since
some orbits can land more or less close to the critical point O
where the derivative is zero.

The proof of Jakobson’s theorem is delicate: although
the behaviour described has non-zero measure in [-2, 0], its
complement is dense: this is Fatou’s conjecture, proved by
Graczyk and Swiatek, as well as by Lyubich in the 1990s.
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Figure 2. Orbit of a non-uniformly hyperbolic map

Afterwards, Rees [11] extended this result to rational
maps on the Riemann sphere.

Uniform hyperbolicity on surfaces

For surface diffeomorphisms, the horseshoe and Plykin’s at-

tractor are typical examples of hyperbolic dynamics. Now the

following property (H) holds at every point z:

o (Df™"(2))n=0 exponentially expands vectors outside a
subspace E*(z).
(H) o (Df™(z))n=0 exponentially expands vectors outside a
subspace E"(2).
o E*(z), E"(z) span the tangent space at z.

And so, there is a uniform integer N > 1 such that for every z

and every non zero vector v, the image DfN(z).vor Df N (z).v

has norm bigger than 2||v||. Again, we can decompose the dy-

namics as follows: there is a finite collection of elementary
invariant compact sets onto which past and future orbits accu-
mulate. There are three different types of such sets:

— Subsets that attract all orbits originating from a neighbour-
hood are the attractors. They can be periodic attractive or-
bits (sinks), or laminated sets, expanded by the dynamics,
of which Plykin’s attractor is an example.

— Subsets attracting every past orbit originating from a neigh-
bourhood are the repellers.

— There are also saddle-like subsets, in the neighbourhood of
which some orbits escape by future and past iterations. The
horseshoe is an example of such a set.

Figure 3. A Plykin attractor. It carries a lamination by curves. The dy-
namics expands along the leaves and contracts in the transversal direc-
tion.
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Figure 4. The horseshoe: A Cantor set K having a product structure. The
dynamics stretches and folds a rectangle R, contracting in the vertical
directions and expanding in the horizontal ones.

To learn more about uniformly hyperbolic dynamics we
strongly recommend the introductory text written by Jean-
Christophe [16].

Non uniform hyperbolicity on surfaces

Hyperbolic diffeomorphisms were extensively studied in the
1960-70s, but it soon became clear that they were not suffi-
cient to describe most dynamics. In a 1991 paper, Benedicks
and Carleson [1] generalised Jakobson’s theorem to surface
diffeomorphisms. They studied the Hénon family, i.e. diffeo-
morphisms of the plane of the form:

fab: (6,3) = (% +a—y,bx).

Theorem (Benedicks-Carleson). There is an open region U

of the plane and a set of parameters P C R? of non-zero mea-

sure, such that for every (a,b) € P there is a compact set

Aap C U satisfying:

— Ay is an attractor of the Hénon map f,,: the future orbit
of every point in U accumulates on a part of A, p,

— Ay is transitive: it contains a point z whose orbit is dense
in Aa,h,

— Ay is not a periodic orbit.

Subsequent work by Benedicks—Young [3] and Benedicks—
Viana [2] showed that orbits of almost all points of U dis-
tribute towards the same probability measure 5, supported
on the attractor A, . Property () stated previously is satis-
fied, asymptotically, 1, »,-almost everywhere. It is not satisfied
everywhere because U’s topology is an obstruction to uniform
hyperbolicity.

Benedicks and Carleson’s attractor is a “non-uniform ver-
sion” of Plykin’s attractor. The existence proof of such sys-
tems is a four de force: indeed, Newhouse [8] showed that
arbitrarily close to the parameters identified by Benedicks
and Carleson there are parameters for which future orbits
from U split into a infinite family of different attractors. Non
uniform hyperbolicity translates into the existence of critical
points, i.e. points z € A, admitting a vector v # 0 such that
1D f:b(z).vll decreases exponentially when n goes to +co as
well as to —oco. Homoclinic tangencies are simple examples
of critical points: in that case, z is a tangency point between
two curves W* (called stable) and W* (called unstable) having
the property of being contracted towards the same periodic
orbit O both by positive respectively negative iterations. The
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Figure 5. An homoclinic tangency between the stable, W*, and unstable,
W, curves of a fixed point O

presence of critical points makes the analysis of the dynamics
especially difficult.

Non-uniformly hyperbolic horseshoes

Jean-Christophe quickly followed the development of non
uniformly hyperbolic dynamics: in 1990 he gave a Bourbaki
seminar [18] where he presented the work of Jakobson, Rees
and Benedicks-Carleson. His 1994 talk [17] at the Interna-
tional Congress of Mathematicians in Ziirich underlines the
importance of this new topic. It is also the subject of a course
which he gave at the ETHZ in 1996, of his inaugural lesson in
1997, and then of six of his courses at the College de France
between 1998 and 2016.
His goal is clearly stated [17]:

What we would like to do in the next few years is to obtain a
conceptual theory of “weakly hyperbolic basic sets” (including
of course the striking examples considered above). For a smooth
diffeomorphism f of a manifold M, such a “weakly hyperbolic
basic set” should again be a compact, invariant, transitive, lo-
cally maximal subset K of M satisfying moreover some kind (?)
of weak hyperbolicity condition.

Several aspects of the non-uniformly hyperbolic sets de-
scribed by Benedicks and Carleson in [1] and of their meth-
ods deserve to be mentioned. First of all, future iterations are
favoured over past iterations: in this framework only the first
condition in H is hard to obtain. Finally, in the proof we need
to assume that the dynamics is extremely dissipative (the pa-
rameter b — the jacobian — is assumed to be very close to 0) so
that the attractor is very thin, almost a curve.

Jean-Christophe considers a different approach to the
study of non-uniform hyperbolicity, in the spirit of Jakob-
son’s initial proof. As early as 1997-98 his course announces
a “general theory” of non-uniformly hyperbolic systems for
surface diffeomorphisms. His goal is to develop a technique
that is symmetric with respect to time, which is not restricted
to attractors, and which also helps us understand sets of large
Hausdorff dimension.

Together with Jacob Palis, they propose to apply this pro-
gramme to the study of homoclinic bifurcations of horse-
shoes: points whose future or past orbits are attracted by such
a hyperbolic set define two laminations (a stable and an un-
stable one). A change in the dynamics allows the deformation
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Figure 6. Tangency between the stable and unstable laminations of a
horseshoe

of these laminations in order to create new intersections and
thus enrich the initial dynamics. When the horseshoe is suffi-
ciently thick some intersections between the leaves of the two
laminations produce tangencies that persist for neighbouring
systems: this was highlighted by Newhouse [8] at the end of
the 1970’s, and then made precise by Palis, Takens, Moreira
and Yoccoz [7,9].

Palis-Yoccoz theorem

In this theorem the authors consider a surface diffeomorphism
fo with a horseshoe K and also a quadratic tangency point z
between a stable leave and an unstable leave. The tangency
is assumed to be isolated: the union A of Kj with the orbit
z has a neighbourhood U from which every orbit originating
from U \ Ag escapes. For a generic family (f;) containing f;
the goal is to describe the set of points A, whose orbit remains
in U in the future as well as in the past. One can also assume
that the stable and unstable laminations still intersect in the
neighbourhood of z for parameters ¢ > 0.

We associate to K the dimensions d* and d“ transversal to
the stable and unstable laminations. The Hausdorff dimension
of Ky, equal to d° + d“, plays an essential role:

— When d° +d" < 1, the set of parameters ¢ > 0 for which the
dynamics is hyperbolic [9] has total density at 0.
— When d* +d" > 1, the set of parameters ¢ > 0 for which the
dynamics is not hyperbolic [7] has total density at 0.
Trying to understand how this “loss of hyperbolicity” comes
about, Jean-Christophe and J. Palis focused on the case where
d* + d" is slightly bigger than 1. They showed that non-
uniform hyperbolicity prevails in an explicit neighbourhood
Dpy C {(d*,d"),d* +d" > 1} of the locus d* + d" = 1.

Theorem (Palis-Yoccoz [10]). Fix (d°,d") € Dpy. Then for
a non-zero measure parameter set t > 0 the set A\, is a non-
uniformly hyperbolic horseshoe.

The notion of “non-uniformly hyperbolic horseshoe” is
technical, however it satisfies two essential properties:

— The set of orbits attracted by A, (in the past or in the future)
has zero Lebesgue measure. In particular A, is “saddle”-
like and does not contain either an attractor or a repeller.

— Most (in a sense that will not be made precise here!) or-
bits of A, equidistribute by future iterations to an invariant
probability measure u; . Furthermore, y; -almost all points
satisfy H. (A similar property is satisfied for past iterations,
with respect to another measure y; .)
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Figure 7. Stable and unstable dimensions of a horseshoe

The proof [10] took several years and fills a whole volume of
the Publications Mathématiques de I’IHES. The impact left
by Jean-Christophe on this topic is considerable and exceeds
by far that monumental article.

Strong regularity

The analysis of non-uniformly hyperbolic dynamics proposed
by Benedicks and Carleson depends on a careful control of the
growth of the iterated derivatives at the critical points. How-
ever, Jean-Christophe understood that by introducing an ad
hoc version of Yoccoz puzzles (see [5], by Xavier Buff) he
would be able to isolate a structure allowing one to express
the choice of parameters in combinatorial terms. It turns out
this structure is sufficiently rigid to lead to the proof of the
positivity of the measure of the set of parameters in question.
This approach follows the spirit of Jakobson’s proof in that
the analysis of the dynamics is concentrated on a sequence of
uniformly hyperbolic sets whose uniformity degenerates as
they approach the critical value.

Strong regularity in one dimension
In order to understand these ideas in more detail, it is useful
to revisit the one dimensional case.

When the dynamics is uniformly hyperbolic, the hyper-
bolic set K can be covered by a finite family /; of disjoint
intervals, each one being diffeomorphically mapped to a pre-
determined interval by an iterate f;".

To study the dynamics of the map f,(x) = x> + a when
a € [-2,0], Jean-Christophe [13] considers the interval A =
[, —a,] Where a, is the negative fixed point of f,. Again we
can try to fill in the interval A with a (this time countable)
family I; of intervals. For the simplest intervals (away from
the critical point 0), all the iterates f*(I;) are disjoint from A
when 1 < k < n;. Near the critical point 0, there are smaller
intervals that can return several times to the interval A before
covering it.

This construction has an advantage: it allows for a succes-
sive approximation of the dynamics by the set K of orbits that
only visit a finite family of intervals /;; since K avoids a neigh-
bourhood of the critical point, a result by Maifié¢ shows that it
is uniformly hyperbolic. Enriching the family /; degenerates
the hyperbolicity.
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Figure 8. Yoccoz’s course notes on Jakobson’s theorem

The decomposition of A in intervals /; allows one to study
the dynamics in a combinatorial way, and to code the orbits
through the sequence of intervals it visits. To capture the dy-
namics which are not uniformly hyperbolic one must allow
the critical orbit to return ever closer to the critical point. Jean-
Christophe defined strongly regular maps: these are maps f;,
for which most returns of the critical orbit to the interval A be-
long to a simple interval /;. The hypothesis that the sum of all
“deep” return times of the critical orbit only represent a small
fraction of all the iterates, guarantees that the family /; indeed
fills almost all the interval A, implying that the dynamics is
non-uniformly hyperbolic.

Parameter selection

It remains to show that in the parameter set the strongly regu-
lar maps have positive Lebesgue measure. Following Adrien
Douady’s adage sow in the dynamics space to harvest in
the parameters space, Jean-Christophe shows that the depen-
dency of the puzzle structure induces a similar structure in the
parameter set, and that the latter structure is slowly varying
when one varies the parameter; a transversality phenomenon
that allows one to take advantage, in the parameter space, of
the estimates obtained in the dynamics space.

For the parameter a = —2 the second iteration of the criti-
cal point is fixed and all the intervals are simple. As a param-
eter a > —2 gets closer to —2, the part of A that is not filled
by simple intervals is contained in an ever smaller neighbour-
hood of the critical point. The dynamics in the complement
set is uniformly hyperbolic and the estimates on the expansion
rate obtained for this set are good. The strong regularity con-
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Figure 9. Maps of affine and fold types (Sketch by J.-C. Yoccoz)

dition allows for enough deep returns to exploit those good
estimates in the parameter space and prove, by a large devia-
tions argument, that the set of strongly regular parameters has
a Lebesgue density point at a = —2.

Strong regularity on surfaces

In higher dimensions, iterating a uniformly hyperbolic surface
diffeomorphism leads to composing “affine- like” maps that
expand and contract along two transverse directions (see fig-
ure 9): the composition of such maps is still affine. However,
when critical points are present, one must also consider “fold-
like” maps, i.e., maps of quadratic type. We must then check
that the compositions that show up in the system preserve this
new class of maps. In general this is not the case, and one
must select the parameters for which the folding effects do
not accumulate by iteration. The shift to dimension two also
brings other difficulties. Indeed, the sole critical point ¢ = 0
is replaced by an infinite critical set: the parameter selection
must then take each of its points into account. Furthermore,
this set is not known a priori like in dimension 1: the defini-
tion of critical point introduced previously requires the analy-
sis of the behaviour of arbitrarily long sequences ||Df"(z).vl|,
and hence a precise enough knowledge of the dynamics.

Since the critical set contains the tangency points between
the stable and unstable laminations (as in figure 6), we expect
its dimension to be bounded below by d® +d" — 1, which is the
typical dimension for the intersection of Cantor sets. There-
fore the critical set is all the more difficult to control, as the
dimension of the horseshoe is large. The case of the dynam-
ics of the Hénon attractor studied by Benedicks and Carleson
would correspond to a dimension d° = 1 and a dimension d*
extremely close to 0. By comparison, the hypothesis made on
(d*,d") by Palis-Yoccoz is completely explicit and allows us
to get close to d* + d" = 6/5.

The proof of [10] did not fully meet Jean-Christophe’s re-
quirements: the definition of strong regularity that is stated
there depends not only on the map, but also on the parametri-
sation of the family. The concept was taken up and reworked
a few years later by Pierre Berger [4] in the context of attrac-
tors. This led Jean-Christophe to schedule his 2016 course at
the College de France on a proof of Benedicks and Carleson’s
theorem which uses strong regularity and which relies heavily
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Figure 10. Some orbits of the standard map on the torus T>

on [4]. Despite his illness, he attemped one of his most ambi-
tious courses. Weakened, however, he only could present the
first two lectures — clear and deep.

Conservative dynamics

Jean-Christophe wanted to “build a theory of (weakly) hy-
perbolic systems that would allow, in the long run, to deal
with other still poorly understood examples, in particular in
the conservative." [15] He had in mind systems that preserve
a volume form. The model family of maps is the standard
family on T2 = R?/Z2:

(x,y) — (2x + asin(2rx) — y, x).

The goal being to answer this well-known dynamicists’ prob-
lem [12]:

Conjecture (Sinai). The standard family satisfies property
(H) for a set of parameters a and of points z € T* of non-
zero Lebesgue measure.

The hypothesis of volume preservation leads to new
phenomena. Indeed, the Kolmogorov-Arnold-Moser theorem
shows the existence of families of closed invariant curves,
whose union has non-zero volume, and such that on these
curves property () cannot be satisfied. Therefore it should
be checked that this “elliptic” part of the dynamics can co-
exist with a non-uniformly hyperbolic part, or that it can even
disappear when the parameter a is large enough.

Billiards

In a short interview [14], Jean-Christophe explains that Sinai’s
conjecture is his favourite open problem in dynamical sys-
tems. He decides to talk about it in a more “concrete’” exam-
ple.

If one plays billiards inside a convex domain U, one iden-
tifies each trajectory by taking note, at each reflection, of the
point of impact on the edge of U and of the angle of incidence.
One thus obtains a map of the ring A := U X (—n/2,7/2)
which associates to each reflection the next reflection. It is
a diffeomorphism that preserves a volume form! In the very
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Figure 11. Jean-Christophe Yoccoz and two of his students at Cetraro, in
1998

special case where the billiard table U is an ellipse, each or-
bit passing near the edge of the ring A belongs to an invariant
curve. In the general case, one expects to observe the coexis-
tence of invariant curves and non-uniform hyperbolicity:

Problem. Show that for the map associated with a convex bil-
liard which is not an ellipse, the set of points verifying prop-
erty () has non-zero volume.

Horseshoes with dimension arbitrarily close to 2 appear
within conservative dynamics. Yet, when d° + d" increases,
the recurrence of the critical set tends to be stronger. To show
the non-uniform hyperbolicity of these systems, it seems nec-
essary to consider frequent compositions of fold type maps
leading to higher order maps.

The difficulty is considerable. Jean-Christophe said he
was not hoping for a solution before the end of the 21st cen-

tury!

Credits

The picture of figure 10 has been obtained with an interactive
numerical experiment available at experiences.math.cnrs.fr
and done by J.-R. Chazottes and M. Monticelli. The authors
thank Stefano Marmi for the picture 11.
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