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Euler, Stirling, and Wallis:
A Case Study in the Notion of
Equivalence Between Theorems
Fausto di Biase (Università “G. D’Annunzio” di Chieti-Pescara, Pescara, Italy)

The notion that two theorems may be equivalent to each other
is sometimes met with hesitation. In this article we tell a story
that shows that there is something interesting and useful in
this notion. We look at the following three results: Stirling’s
formula, Wallis’ product formula, and the evaluation of the
probability integral. The task of giving simple proofs of these
results is the object of unabated attention. In order to enhance
our understanding of these results, we show in a precise way
that these results are indeed equivalent to each other.

1 Introduction

A controversial notion
The notion that two theorems may be equivalent is sometimes
met with hesitation, since a posteriori i.e., after they have
been proved, there is apparently not much more to say.

Example 1. Consider the following two statements:
• “The Fourier series of an L2 function converges almost ev-

erywhere”;
• “The maximal operator associated to the Fourier series is

of weak type (2,2)”.
Before the truth value of any of the two statements had been
determined, in the mid-fifties it was understood that they are
equivalent to each other – thanks to the work of A. Calderón
and A. Zygmund, based on previous work of G. H. Hardy,
and J. E. Littlewood.1 This equivalence – whose roots lie in a
work by Kolmogorov [8] – turned out to be very useful, for
two reasons. Firstly, it pointed to a specific research agenda.
Secondly, it was a hint that perhaps hidden in the background
there was some more general result – which indeed was dis-
covered a few years later by E. M. Stein in a seminal, im-
portant work [16]. This example shows how the equivalence
between two statements can be useful if it can be established
before the two statements have been proven.

Example 2. Consider the following two statements:
• Every continuous map from the closed disc into itself has

at least a fixed point;
• The Hex game cannot end in a draw.
These two statements are equivalent [4]. As a matter of fact,
each of these two statements is a theorem. In this example, the
equivalence is considered of interest – even if it was establishe
after the two results had been proved – since it points to a
surprising connection between two apparently remote topics.

We would like to tell a story that will perhaps dispel the
diffidence toward this notion.

1 [19, Theorem 1.22, v.2]

A general viewpoint
The general viewpoint that we would like to suggest in this
paper is that a proof that two statements are equivalent will
enhance our understanding of the subject, provided their
equivalence assumes the form of a theorem which represents
an a priori, direct link between the two statements, where
• the term a priori means that the connection is not contin-

gent on the truth value of the two statements – a notion
vaguely inspired by modal logic [9];
• the theorem is a direct link in the sense that it shows at

once, in a visible and immediate way, and without any fur-
ther substancial work, that the two statements must neces-
sarily have the same truth value.

We should emphasize the fact that an a priori, direct link be-
tween two statements is a theorem – a positive result which
adds something to our knowledge, not a purely conjectural
result. In particular, even if the two equivalent statements at
hand should one day turn out to be false, the a priori, di-
rect link which we have determined will have increased our
knowledge.

Now, we would like to give an example of an a priori,
direct link between two well-known results. Firstly, recall that
if F and G are sequences of positive real numbers, then the
symbol Fn ∼ Gn means that limn→+∞

Fn
Gn
= 1.

Example 3. Consider the following two statements:

n! ∼ e−nnn
√

2πn (S)
(2n)!!

(2n − 1)!!
∼
√

nπ (W)

The following result is an a priori, direct link between (S)
and (W).

Theorem 4 (Moritz [13]).

n! ∼ (2n)!!
(2n − 1)!!

e−nnn
√

2 (W↔S)

The tag (↔) chosen for this formula alludes to the fact that
it shows at once, in a visible and immediate way, and without
any further substancial work, that the two statements must
necessarily have the same truth value. Moreover, the state-
ment in Theorem 4 is not contingent on the truth value of the
two statements (S) and (W). Hence, Theorem 4 is an a priori,
direct link between (S) and (W). Theorem 4 is enlightening
because it shows that (S) and (W) are different sides of the
same object, since it points to a necessary connection between
their truth values: It contains the heart of the connection be-
tween the two statements.
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The result in (S) is due to James Stirling (1692–1770),
who obtained it while working on problems of probabil-
ity theory by completing a previous result by Abraham De
Moivre (1667–1754). It is very important in probability the-
ory and it has deep connections to many other topics.

The result in (W) was proved by John Wallis (1616–1703)
in Proposition 191 of his book The Arithmetic of Infinites-
imals, published in 1656 [17]. Wallis was interested in the
application of the new ideas of infinitesimal calculus to the
computation of areas, in particular, the area of a circle, and
was led to this result by a clever use of the idea of interpola-
tion – an idea that was later used by Euler with great virtuos-
ity. Wallis’ book had a great influence on Newton, although
it had been met with sharp criticism by Fermat, Huygens and
Hobbes.

The probability integral
This name refers to the following result (due to Euler [2], [3]).

∫
R

e−x2
dx =

√
π (E)

It was rediscovered by Laplace [10], [11] and played a fun-
damental role in the work of Gauss [5]. Indeed, it plays an
important role in the method that Gauss used to predict the
position of Ceres on the basis of very few observations [6].

A tale of three stories
The task of giving simple proofs of (S), (W), and (E) is the
object of unabated attention. There are currently many simple
proofs of these results, of which [7], [12], [13], [14], [18] are
just a small sample.

Below we illustrate the general viewpoint of Sec. 1 by
looking for a priori, direct links between these results.2 In
particular, our main intent is not to obtain yet another sim-
ple proofs of these results.

We have already seen that Theorem 4 looks at the first two
results – (S) and (W) – from the general viewpoint of Sec. 1,
and establishes an a priori, direct link between them. In this
paper we try to do for the pair of statements (E) and (W) what
Moritz did for (S) and (W).

2 A priori, direct links between (E) and (W)

Lemma 5. If ln is any sequence of positive numbers such that
limn→+∞ ln = +∞ then

∫
R

e−x2
dx = lim

n→+∞

∫ ln

−ln
(1 + x2/n)

−n
dx (1)

Proof. Observe that e−x2 ≤ (1 + x2/n
)−n ≤ (1 + x2)−1. In-

deed, ez ≤ (1 − z)−1 for z ≤ 0, then let z = −x2/n. The
sequence (1 + x2/n)−n converges uniformly to e−x2

in each
bounded interval, as can be seen by the Taylor series of ln

2 We will try to use in our proofs as little machinery as we can and, more-
over, we will try to offer proofs conforming to the standards of clarity
described in [1]. An example in the negative is given by proofs by contra-
diction, which are opaque, as observed in [15, p.3], since they shed little
insight into the link between hypothesis and conclusion.

and ex. Now, given ε > 0, choose c > 0 such that

I :=
∫
R\[−c,c]

e−x2
dx < ε

and

II :=
∫
R\[−c,c]

(1 + x2)
−1

dx < ε

as we may, due to the absolute integrability of the functions.
If n is large enough, then ln > c and

III :=
∫

[−c,c]

∣∣∣∣
(
1 + x2/n

)−n − e−x2
∣∣∣∣ dx < ε

due to uniform convergence, thus∣∣∣∣∣∣
∫

[−ln,ln]

[(
1 + x2/n

)−n − e−x2
]

dx

∣∣∣∣∣∣ ≤ I + II + III < 3ε �

Corollary 6. There is an a priori, direct link between (E) and
the following statement

lim
n→+∞

√
n
∫ π

0
(sin θ)2n dθ =

√
π (E.1)

Proof. It suffices to show that∫
R

e−x2
dx = lim

n→+∞

√
n
∫ π

0
(sin θ)2n dθ (E↔E.1)

Let ln =
√

n in Lemma 5 and let x√
n = z and z = cot θ in this

order. Then
∫ √

n

−
√

n
(1 + x2/n)

−n
dx =

√
n
∫ 1

−1
(1 + z2)

−n
dz

=
√

n
∫ 3π/4

π/4
(sin θ)2n−2 dθ

Now observe that
√

n
∫ 3π/4

π/4
(sin θ)2n−2 dθ =

√
n
∫ π

0
(sin θ)2n−2 dθ + o(1)

since the difference is bounded by π
√

n2−n. Finally, integra-
tion by parts yields the familiar reduction formula

n · S n = (n − 1) · S n−2 (n ≥ 2) (2)

for the sequence S = {S n}n defined by

S n =

∫ π
0

(sin θ)n dθ (3)

which implies that
S 2n ∼ S 2n−2 (4)

We have thus proved that
∫
R

e−x2
dx = limn→+∞

√
nS 2n, hence

the conclusion. �

Corollary 7. The statement in (E) is equivalent to

S 2n ∼
√
π

n
(E.2)

Observe that the second order homogeneous difference
equation (2), together with the initial values S 0 and S 1,
uniquely determines the sequence S . A more general point
of view yields a better view. Let S = (0,+∞)N be the set of all
sequences of strictly positive numbers. If F = {Fn}n ∈ S and
p, q ∈ (0,+∞), then we define F∗(p, q) = {F∗n(p, q)}n ∈ S as
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the unique solution of the second order homogeneous differ-
ence equation

F(n)F∗n(p, q) = F(n − 1) · F∗n−2(p, q) (n ≥ 2) (5)

with initial conditions F∗0(p, q) = p, F∗1(p, q) = q. The assign-
ment F �→ F∗(p, q) is a map S → S: This map is surjective
but not injective. We call F∗(p, q) the sequence associated to
F, with initial data (p, q). If a statement does not depend on
the special choice of the initial data, we denote F∗(p, q) by
F∗.

Example 8. Let I = {In}n ∈ S be the identity sequence, de-
fined by In = n. Since S 0 = π and S 1 = 2, then (2) says that
the sequence S defined in (3) is the sequence I∗(π, 2) associ-
ated to I with initial data π and 2.

Remark 9. Observe that the sequence I, which enters in the
reduction formulas (2), acts as a “parameter”. We think that a
better understanding of our topic could be achieved by allow-
ing a change in the parameters envolved, in order to discern
the mutual relations between the various relevant properties.
For these reasons, we have introduced the space S and the map
F �→ F∗, since these constructs allow us to change the “pa-
rameters” of our phenomena, so to speak, and express the link
between the truth values of various statements. Lemma 12
will show that the equivalence between (E) and (W) is a spe-
cial case of a general equivalence, which has been expressed
by introducing the space S and the map F �→ F∗, since any-
thing which holds for every F ∈ S will also hold for I.

If F ∈ S, we define F� ∈ S as the unique solution of the
second order homogeneous difference equation

F�n = F�n−2 · Fn · (n ≥ 2)

with initial data F�0 = 1 and F�1 = F1. Hence

F�0 = 1, F�1 = F1, F�2 = F2, F�3 = F3 · F1, F�4 = F4 · F2,

Example 10. If I ∈ S is the identity sequence, defined in
Example 8, then I�n ≡ n!!

Lemma 11. If F ∈ S and p, q ∈ (0,+∞) then

F∗2n(p, q) = p
F�2n−1

F�2n

(n ≥ 1) (6)

Proof. Induction. If n = 1 then F∗2n(p, q) = F∗2(p, q) =

F∗0(p, q) F1
F2
= p F1

F2
= p F�1

F�2
. Assume that (6) holds for n. Then

F∗2(n+1)(p, q) = F∗2n+2(p, q)

= F∗2n(p, q) · F2n+1

F2n+2

= p
F�2n−1

F�2n

· F2n+1

F2n+2
= p

F�2n+1

F�2n+2

�

Lemma 12. If F ∈ S and p, q ∈ (0,+∞) then the following
conditions are equivalent:

F�2n

F�2n−1

∼
√

p
F2n

q
(W′)

F∗2n(p, q) ∼
√

p
q

F2n
(E′)

Proof. It suffices to apply (6) �

Corollary 13. (E) and (W) are equivalent.

Proof. We specialize Lemma 12 to F = I, p = π, and q = 2.
Then (W′) says that (2n)!!

(2n−1)!! ∼
√
πn, and this is (W). On the

other hand, since I∗(π, 2) = S , as seen in (3) and Example 8,
then (E′) says that S 2n ∼

√
π
n , and this is (E.2), which is equiv-

alent to (E). �

3 A proof of (E) and (W)

Since we have established that (E) and (W) are equivalent,
in order to prove them it suffices to prove one of them. In
Lemma 12 we have seen that the equivalence between (E) and
(W) is a special case of a more general equivalence, which has
been expressed in terms of the space S and the map

F �→ F∗

Now, we would like to understand the meaning of the proper-
ties (W′) and (E′) which appear in Lemma 12. Observe that
both (W′) and (E′) contain the initial data (p, q) in their state-
ment. Thus, we would like to understand those properties in
terms of the asymptotic properties of the sequence F∗, i.e., in
terms which do not depend on the initial data but only on the
behavior of F∗n for large values of n. We will now show that
this may be achieved by using the following notions.

We say that G ∈ S has step 1 if Gn ∼ Gn+1. For example,
powers of n and polynomials in n have step 1. If G has step 1
then Gn ∼ Gn+2, but this condition is strictly weaker: We say
that a sequence with the latter property has step 2. The next
result shows that monotonicity acts as a reinforcing condition.

Lemma 14. If G ∈ S has step 2 and it is and monotone then
it has step 1.

Proof. If G is decreasing then
Gn

Gn−2
<

Gn

Gn−2
· Gn−2

Gn+1

=
Gn

Gn+1
=

Gn

Gn+2
· Gn+2

Gn+1
<

Gn

Gn+2

hence the result. If G is increasing the inequalities are re-
versed. �

If G ∈ S has step 1 then, in particular, G2n+1 ∼ G2n+2,
but the latter condition is strictly weaker than the former, and
we say that a sequence which satisfies the latter condition has
partial step 1.

Lemma 15. If G ∈ S has step 2 then it has step 1 if and only
if it has partial step 1.

Proof. From G2n+1 ∼ G2n+3 and G2n+1 ∼ G2n+2 we deduce
that G2n+2 ∼ G2n+3, which means that G2n ∼ G2n+1 and since
we know that G2n+1 ∼ G2n+2, the conclusion follows. �

Monotonicity acts as a reinforcing condition also with re-
spect to the notion of having partial step 1, but actually a
weaker notion of monotonicity will do. Observe that if G ∈ S
is monotone then the subsequences {G2n}n and {G2n+1}n are
either both increasing or both decreasing, but this condition
is strictly weaker than monotonicity, and we call separately
monotone a sequence which satisfies the latter condition.
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Lemma 16. If G ∈ S is separately-monotone then it has step
1 if and only if it has partial step 1.

Proof. Since the property of having partial step 1 is weaker
than the property of having of step 1, it suffices to show that
if it has of partial step 1 and separately monotone then it has
step 1. The proof of this fact is similar to that of Lemma 14
and will be omitted. �

Now we show that F∗ shares some of the properties of F,
in a weaker form.

Lemma 17. If F has step 1 then F∗ has step 2. If F is mono-
tone then F∗ is separately-monotone.

Proof. It suffices to observe that (5) may be written as
F∗n

F∗n−2
=

Fn−1

Fn
(n ≥ 2) �

Lemma 18. If F ∈ S, p, q ∈ (0,+∞), and F1 = 1, then the
following two conditions are equivalent:
1. one of the equivalent conditions of Lemma 12 holds for F,

p, and q;
2. F∗ has partial step 1.

Proof. The following identity can be shown by induction.

F∗2n+1(p, q) = qF1
F�2n

F�2n+1

(n ≥ 1) (7)

The proof is similar to that of (6) and is omitted. Then (6)
and (7) imply that

F∗2n+1(p, q)
F∗2n+2(p, q)

=
q
p

F1
F�2nF�2n+2(

F�2n+1

)2 =
q
p

F1


F�2n+2

F�2n+1


2

1
F2n+2

(8)

If we assume that F1 = 1, then (8) shows that (W’) is equiva-
lent to F∗2n+1(p, q) ∼ F∗2n+2(p, q). �

Lemma 18 shows that the properties (W’) and (E’), ap-
pearing in Lemma 12, may be expressed in terms of asymp-
totic properties of the sequence F∗ (and say that F∗ has par-
tial step 1). Thus, we now have to show that I∗ has partial
step 1. Observe that, by Lemma 16, since I∗ has step 2, then
it has partial step 1 if and only if it has step 1. On the other
hand, Lemma 14 shows that, since I∗ has step 2, it is suffi-
cient to show that I∗ is monotone, in order to show that it has
step 1. The fact that I∗ is monotone follows from the equality
I∗(π, 2) = S and from the fact that S is monotone, and this
fact in turn follows from its “explicit” representation given
in (3).

4 Conclusion

The story about Euler, Stirling, and Wallis is not yet over, we
think. The reader has no doubt noticed that the equivalence
between (E) and (W) has been obtained through a sequence of
intermediate statements, for each of which there is an a priori,
direct link with the following one. Is it possible to achieve the
equivalence in just one step? Is there an a priori, direct link (or
a sequence of these) between (E) and (S) which does not go
through (W)? Is it possible to refine the argument involving
the map F �→ F∗?
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