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Renormalisation of Stochastic
Partial Differential Equations
Yvain Bruned (University of Edinburgh, United Kingdom), Martin Hairer (Imperial College London, United Kingdom)
and Lorenzo Zambotti (Sorbonne Université, Paris, France)

We present the main ideas of the renormalisation of stochastic
partial differential equations, as it appears in the theory of
regularity structures. We informally discuss the regularisation
of the noise, the transformation of the canonical model to the
renormalised one, the space of the models and the underlying
algebraic structure.

In the article [Hai14], the second author of this note intro-
duced a theory of regularity structures (RS) in order to obtain
for two important equations a notion of ‘solution’, as well as
existence and uniqueness results, which had been open prob-
lems for decades. The first part of [Hai14] is a true theory, in
the sense that it can be applied in the same way to a broad
class of problems; however, the second part, that applies this
theory to two concrete examples, contains more and more ad
hoc arguments, which must be adapted if used in different
contexts. Worse, for many other interesting equations, the ap-
proach of [Hai14] becomes intractable in practice because the
combinatorial complexity of the objects involved can become
arbitrarily large.

Fortunately, the situation has changed recently. The quar-
tet of articles [Hai14, BHZ19, CH16, BCCH17] builds a fully
automatic black box to obtain results of (local) existence
and uniqueness (modulo an element of the ‘renormalisation
group’ associated to the equation in question) for a broad class
of stochastic partial differential equations (SPDEs), which in-
cludes

∂tu = ∆u + (∂xu)2 + ξ, x ∈ R, (KPZ)
∂tu = ∆u + u ξ, x ∈ R2, (PAM)
∂tu = ∆u − u3 + ξ, x ∈ R3, (Φ4

3)

for ξ ∈ D′(Rd) a random, stationary and possibly very irreg-
ular distribution (Schwartz generalised function). The main
example of such a random distribution is given by space-time
white noise, but the theory applies to a very large class of ξ.

These equations are called singular. Why? We can notice
that it is possible to multiply a distribution T ∈ D′(Rd) and a
smooth function ψ ∈ C∞(Rd) in a canonical way, defining the
product ψT = Tψ ∈ D′(Rd) by(

ψT
)
(ϕ) =

(
Tψ
)
(ϕ) := T (ψϕ), ϕ ∈ C∞0 (Rd).

But if ψ � C∞(Rd), this product is in general not well defined.
Now, each of these equations contains some products between
a distribution in D′(Rd) and another distribution or function
that is not sufficiently regular. More precisely:
• in KPZ (Kardar-Parisi-Zhang), u is no better than Hölder

continuous in space, so the derivative ∂xu is a distribution
and (∂xu)2 is not well defined.
• in PAM (Parabolic Anderson Model), ξ is a white noise in

space, u is a non-smooth function, so u ξ is not well defined.

• in (Φ4
3), u is itself a distribution and so u3 is not well de-

fined.
In these equations, the notion of solution is therefore prob-
lematic, even before speaking of existence and uniqueness re-
sults.

Regularisation
To get around this problem, we can try to regularise the noise,
solve the equation and then pass to the limit: let ξε = �ε ∗ ξ be
a regularisation of ξ, with (�ε)ε>0 a family of even space-time
mollifers, and let uε the solution of

∂tuε = ∆uε + F(uε,∇uε, ξε) (1)

where F is a non-linear function belonging to a suitable class
of nonlinearities, which includes the nonlinearities of three
equations above. The natural question is: what happens when
ε → 0? In order to control this limit, a natural approach is to
look for a topology on the noises such that
1. the solution map Φ : ξε �→ uε is continuous
2. ξε → ξ when ε→ 0.
The first point requires a sufficiently strong topology, while
the second requires a sufficiently weak topology. In fact, no
solution seems possible if the regularity of ξ is too low, and
even in the simplest case of stochastic ordinary differential
equations it is a theorem that it is impossible to find a Banach
space containing samples of the noise ξ and making the solu-
tion map continuous [Lyo91]. The analytic part of the regu-
larity structures theory (RS) provides a framework for solving
this problem by constructing, for a given equation,
• a metric space (M, d) called space of models
• a canonical lift of any smooth ξε to a model Xε ∈ M
• a continuous function Φ : M → D′(Rd) such that

uε = Φ(Xε) solves the regularised equation (1), i.e.,
Φ(Xε) = Φ(ξε).

This scheme is inspired by the theory of rough paths, initiated
by Terry Lyons [Lyo98] and then developed, among others,
by Massimiliano Gubinelli, whose ideas of controlled rough
paths [Gub04] and branching rough paths [Gub10] served as
a direct inspiration in the elaboration of regularity structures.

The RS theory identifies a class of equations, called sub-
critical, for which the canonical model Xε ∈ M encodes a fi-
nite number of explicit multilinear functionals obtained from
the regularised noise ξε by pointwise multiplications and con-
volutions with the heat kernel G or some derivatives of G,
like for example ∂xG. Among the components of the canoni-
cal model Xε ∈ M we can thus find

ξε, ξε(G ∗ ξε) , (∂xG ∗ ξε)2, ξε
(
G ∗ (∂xG ∗ ξε)2). (2)

On the other hand, we do not have to consider all the possible
functions of this type: for example, we typically do not ex-
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pect (nor need) to make sense of ξ2, so we do not consider ξ2ε
among the components of Xε.

To describe the functions that make up the components of
Xε we use a graphical notation: each function is represented
by a rooted tree, where
• the edges correspond to convolutions with G (edges of

type ) or ∂xG (edges of type ),
• each branching point corresponds to the pointwise product

of the functions represented by the subtrees above the node
in question.
• the noises are represented by nodes of type .
For example, the four functions in (2) are represented by the
following trees:

, , , . (3)

Formally, we see Xε as a linear map sending a space H of
formal linear combinations of such trees into a space of distri-
butions by writing Xε( ) = ξε(G ∗ ξε), etc. Note that the trees
in (3) are naturally associated with a degree by applying the
following rules: white noise has degree − d

2 with d the effec-
tive dimension of the corresponding space(-time), integration
against the heat kernel increases degrees by 2, differentiation
lowers degree by 1, and degrees are additive under multipli-
cation. When d = 3 for example, we then have deg = − 3

2 ,
deg = deg = −1 and deg = − 1

2 .
By simplifying a lot, we can say that convergence in

(M, d) corresponds to the convergence of all these explicit
functions as distributions. Note, however, that M is not a
linear space: the topology of M encodes quantitative ver-
sions of statements of the type “close to the point z, the
distribution Xε( ) is well approximated by the distribution
Xε( )Xε( )(z)”. (Note that the latter always makes sense
since the argument of Xε( ) is ‘frozen’ at the value z.) A ma-
jor problem that appears in the examples (2) is that the prod-
ucts appearing in these expressions may diverge in the limit
ε→ 0, e.g.,

E[ξε(G ∗ ξε)] =
(
�ε ∗G ∗ �ε

)
(0)→ G(0) = +∞ ,

so that we do not expect in general that Xε converges in (M, d)
as ε→ 0.

Renormalisation
To overcome this problem, we must accept that it is necessary
to modify (renormalise) some components of Xε and define a
new lift X̂ε ∈ M of ξε. For example, the canonical (pointwise)
product ξε(G ∗ ξε), which diverges when ε → 0 as we have
just seen, can be replaced by

Xε
( )
= ξε(G ∗ ξε) �→ ξε(G ∗ ξε) − E[ξε(G ∗ ξε)]

= X̂ε
( )
. (4)

If, with appropriate modifications, we can build a lift X̂ε of ξε
such that
• we respect the non-linear constraints that define the space

of modelsM,
• the lift is ‘admissible’ in the sense that it respects the mean-

ing of edges as convolution operators for planted trees, so
one imposes for example that X̂ε( ) = ∂xG ∗ X̂ε( ),
• we get a converging family in (M, d) when ε→ 0,

ξ ξε

X̂ X̂ε

Xε

û uεûε

Φ

D′(Rd) D′(Rd)

M

Figure 1. Illustration of the factorisation of the application ξε �→ uε into
ξε �→ Xε �→ Φ(Xε) = uε. In the space of the modelsM, there are many
possible lifts of ξε ∈ D′(Rd), e.g. the canonical model Xε and the renor-
malised model X̂ε; it is only the latter which converges to a model X̂,
giving a lift of ξ.

then we can use the continuity of the solution map Φ and get
a family ûε := Φ(X̂ε) converging in D′(Rd) to some limit û
which may be a reasonable candidate for being ‘the’ solution
we are looking for.

The changes in the components of Xε cannot, of course,
be totally arbitrary: the non-linear structure that we have al-
ready mentioned must be preserved, see also the discussion
on page 10. The renormalisation group G− that we describe
in [BHZ19] is precisely the group of transformations of M
that respect this structure and that furthermore preserve sta-
tionarity.

This procedure can be summarised in four steps:
• Analytical step: Construction of the space of models (M, d)

and continuity of the solution map Φ : M → D′(Rd),
[Hai14].
• Algebraic step: Description of a group action on the space

of models describing the transformationM � Xε �→ X̂ε ∈
M from the canonical model to the renormalised model,
[BHZ19].
• Probabilistic step: Convergence in probability of the renor-

malised model X̂ε to a limit model X̂ in (M, d), [CH16].
• Second algebraic step: Identification of the renormalised

equation satisfied by ûε := Φ(X̂ε), [BCCH17].
The final result is a renormalised solution û := Φ(X̂), which
is also the unique solution of a fixed point problem. Let us re-
iterate that all this works for very general noises, well beyond
the Gaussian case.

Note here that the relation Φ(Xε) = Φ(ξε) is broken by
renormalisation, i.e., one has in general Φ(X̂ε) � Φ(ξε). At
first glance one may be puzzled by this: have we really solved
the original problem (5) or a completely different problem?
The answer to this is somewhat subtle and requires us to re-
alise that one rarely considers one single equation in isolation
but is typically interested in solutions to a family of equations
indexed by a number of constants (or possibly even func-
tions). For example, in the case of the KPZ equation, we could
consider the family of equations

∂tu = ∂2
xu + λ1(∂xu)2 − λ2 + ξ ,

parametrised by λ ∈ R2. We should then view both the orig-
inal ‘naive’ solution map Φ and the ‘enhanced’ solution map
Φ as depending not only on the noise ξε (or model Xε), but
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also on the parameters λ describing a sufficiently large class
of equations. It was then shown in [BCCH17] that the renor-
malisation group G− already mentioned earlier does not only
come with an action R on the space of models, but also with
an action S on the parameter space of our class of equations,
and these actions are intertwined in such a way that

Φ(λ,RgX) = Φ(S gλ,X) .

In particular, one can find elements gε ∈ G− such that

Φ(λ, X̂ε) = Φ(λ,RgεXε) = Φ(S gελ,Xε) = Φ(S gελ, ξε) .

One way of interpreting this is that the renormalisation proce-
dure is nothing but a change in parametrisation for the fam-
ily of solutions λ �→ Φ(λ, ξε). We should then interpret our
convergence as ε → 0 not as the convergence of a single so-
lution in this family, but as the simultaneous convergence of
the entire family of solutions. In this sense, the limiting so-
lution family λ �→ Φ(λ, X̂) should be viewed as the limit of
the solution families λ �→ Φ(λ, ξε) with the caveat that the
parametrisation of this family has to be adjusted as ε → 0 in
order to get a non-degenerate parametrisation of the limiting
family.

Note that this is precisely the same situation as arising in
quantum field theory, where this change in parametrisation is
the change from ‘bare’ to ‘renormalised’ coupling constants.

An example: KPZ
We consider the regularised version of the KPZ equation:

∂tuε = ∂2
xuε + λ1(∂xuε)2 + λ2 + ξε. (5)

The (minimal) list of the trees representing the components of
a model inM is in this case

, , , , , , , . (6)

The renormalised version of the equation is then

∂tûε = ∂2
xûε + λ1(∂xûε)2 + λ2 − λ2

1Cε + ξε,

Cε = E
[
(∂xG ∗ ξε)2

]
∼ 1
ε
.

(7)

This makes it plain that (7) is nothing but (5), but with the
ε-dependent change of parameters (λ1, λ2) �→ (λ1, λ2 −λ2

1Cε).
The first mathematical article on KPZ was [BG97], where the
solution is built via the Hopf-Cole transform, which is the
simple remark that zε := exp(ûε) solves the linear equation

∂tzε = ∂2
xzε + zε (ξε −Cε) . (8)

For this equation, one can show, in the particular case of regu-
larisations ξε that are white in time but coloured in space, that
zε converges when ε → 0 to a random function z, solution of
the Itô equation

∂tz = ∂2
xz + z ξ.

We can then define û := log z (after showing that z > 0 every-
where almost surely). Obviously, it is ûε = log zε, solution of
(7), which converges to û, and not uε.

It is not before [Hai13] that a direct approach to (5)–
(7) has been obtained which then allows us to deal with a
much larger class of approximating equations. The reason
why mathematicians have not been able to solve this equation
for fifteen years is that it is not easy to deal with the conver-
gence of (∂xûε)2 − Cε when ε → 0. Thanks to the RS theory,

we now know that it is enough to consider the convergence
as a distribution of the family X̂ε(τ) where τ varies over the
family (6); for example

X̂ε( ) = (∂xG ∗ ξε)2 − E
[
(∂xG ∗ ξε)2] (9)

which is the renormalised version of (∂xG ∗ ξε)2. The conti-
nuity of the map Φ allows us to conclude the convergence of
ûε := Φ(X̂ε).

SPDEs with values in a manifold
A recent application of the RS theory is the following: in
[BGHZ19] the authors of this note with F. Gabriel have con-
structed a natural random dynamic on the space of loops in
a Riemannian manifold with metric g. This evolution can be
viewed as the solution to the SPDE given in local coordinates
by

∂tuα = ∂2
xuα + Γαβγ(u) ∂xuβ∂xuγ +

m∑
i=1

σαi (u) ξi , (10)

see Figure 2. Here, Γ denotes the Christoffel symbols of the
metric g while theσi are any finite collection of smooth vector
fields such that ∑

i

σαi (u)σβi (u) = gαβ(u) . (11)

The list of trees indexing the components of a model in the
space (M, d) associated to this class of equations is much
longer. For example, the most relevant trees of negative de-
gree are the following:

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , ,

, , , , , ,

, , , , .

(12)

In [BGHZ19], natural geometric quantities such as the scalar
curvature play an important and fascinating role in the study
of the equation (10). It was shown there that it is possible to
perform the renormalisation of this equation in such a way
that solutions perform under changes of variables as expected
from the naïve application of the rules of calculus and such
that the law of these solutions is independent of the choice of
vector fields σi satisfying (11).

Figure 2. The solution of (10) on the sphere at two successive times
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The algebraic structure
We can notice that the two examples of renormalised products
that we discussed in (4)–(9) are simply given by the subtrac-
tion of a constant. In general, the renormalisation procedure
(and therefore the transformation of Xε to X̂ε) is described in
[BHZ19] by an operation of recentering. However, this recen-
tering can be (much) more complicated than the simple sub-
traction of a constant; indeed, subtraction of a constant does
not necessarily come from an ‘admissible’ transformation of
the space of models, namely from the action of an element
of the renormalisation group G−. It is shown in [BHZ19] that
as long as the collection of trees T generating H has some
properties natural in this context, there is a single (determin-
istic) gε ∈ G−, element of the renormalisation group such
that if we set X̂ε(τ) = Xε(gετ), then all components of X̂ε
(corresponding to trees of negative degree, which are the only
ones we ever considered in this note) have zero expectation.
This is very similar to the ‘BPHZ renormalisation’ prescrip-
tion found in the physics literature [BP57, Hep69, Zim69], so
we call this particular choice of X̂ε the ‘BPHZ lift’ of the
noise.

To describe the renormalisation groupG−, we consider the
algebra with unit (H−, ·, 1−) generated by the trees T− ⊂ T of
negative degree (for example (6) for the KPZ equation or (12)
for the loops in a manifold) and we realise G− as the space of
characters ofH−, which are the algebra morphisms g : H− →
R. To describe the group product in G−, we endowH− with a
structure of coalgebra with a coproduct ∆− : H− → H− ⊗H−
which satisfies a property of coassociativity

(∆− ⊗ id)∆− = (id ⊗ ∆−)∆− (13)

and a counit η− ∈ H∗− such that

(η− ⊗ id)∆− = (id ⊗ η−)∆− = id (14)

on H−. The space (H−, ·, 1−,∆−, η−) is a Hopf algebra. The
product in G− is the dual of the coproduct inH−:

G− × G− � (g1, g2) �→ g1 · g2 ∈ G−,
(g1 � g2)(h) := (g1 ⊗ g2)∆−h

for every h ∈ H−. The coassociativity (13) of ∆− implies that
this product is associative:

(g1 � g2) � g3 = g1 � (g2 � g3),

and the counit η− is the neutral element such that η− � g =
g � η− = g for every g ∈ G−, thanks to (14). Moreover, it is
possible to show that every element of G− has an inverse.

We have seen that a model X ∈ M is determined by a
linear map X : H → D′(Rd). Now if X ∈ M is a model and
g ∈ G− is an element of the renormalisation group, we can
define a new model Xg = RgX ∈ M by

Xg : H → D′(Rd), Xg(τ) := (g ⊗ X)∆−τ , (15)

where ∆− : H → H− ⊗ H is defined very similarly to the
coproduct ofH−.

As already alluded to on page 8, the renormalisation group
G−, which acts on the space of models M, must preserve
another underlying algebraic structure, described by another
group called G+ and which allows us to describe the topology
of the spaceM. Similar to the construction of G− andH−, we
have a Hopf algebra (H+, ·, 1+,∆+, η+) generated by a collec-
tion T+ of trees, this time of positive degree, and the groupG+

is described as the character group ofH+. The group G+ acts
on H similarly to above by τ �→ (id ⊗ g)∆+τ with ∆+ : H →
H ⊗ H+ given by a formula very similar to that defining ∆+.
A linear map X : H → D′(Rd) then defines a model if there
exists a G+-valued function Rd � x �→ fx ∈ G+ such that,
for every x ∈ Rd, the ‘recentred’ model Xx = (X ⊗ fx)∆+ sat-
isfies a bound of the type |Xx(τ)(ϕλx)| � λdeg τ, whenever ϕλx
is a scale λ approximation of a Dirac δ-distribution centred
at x. Making this quantitative yields a topology on the space
of models.

The fact that this topology is preserved by G− is encoded
in an action of G− on G+, that is, a group morphism of G− into
the (outer) automorphisms of G+. The action of G− on G+ is
described by a map ∆− : H+ → H− ⊗ H+ which satisfies a
property called cointeraction:

M(13)(2)(4)(∆− ⊗ ∆−)∆+ = (id ⊗ ∆+)∆− , (16)

whereM(13)(2)(4)(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) := (τ1 · τ3 ⊗ τ2 ⊗ τ4).
We now define the action of G− on G+ like this: for g− ∈

G− and g+ ∈ G+, g− • g+ ∈ G+ is given by

(g− • g+)(h+) = (g− ⊗ g+)∆−h+, ∀ h+ ∈ H+.
We can easily see that the cointeraction property (16) defines
an action:

g− • (ḡ− • g+) = (g− � ḡ−) • g+, g−, ḡ− ∈ G−, g+ ∈ G+.
Let us conclude by giving a simplified description of the op-
erations ∆±. Recall that the spacesH ,H+ andH− are realised
as vector spaces generated by (possibly collections of) rooted
and decorated trees, see for example (6) or (12) above. The
operations ∆− and ∆+ on such trees are both constructed by us-
ing an operation of extraction and contraction of subforests:

−→

−→ · ⊗

where
• we start from a tree or forest, drawn here in black on the

left
• in the center, we select a subforest, colored in red
• on the right, the selected subforest is extracted in the left

term of the tensor product, and contracted on the right.
Note that in particular the total number of edges is always
preserved by such operations.

The main difference between ∆− and ∆+ is in the selection of
the subforests which are extracted: in the case of ∆+, we ex-
tract only subforests consisting of a single tree that contains
the root of the initial tree; in the case of ∆−, we extract ar-
bitrary subforests. In addition, the operation ∆− only extracts
subtrees of negative degree while ∆+ only extracts those sub-
trees such that each ‘trunk’ adjacent to the root of the tree
remaining on the right after contraction determines a subtree
of positive degree.

Regarding the action of ∆+, consider for example again the
case of effective dimension 3, i.e., deg = − 3

2 . In this case,
one has for example

∆+ = ⊗ 1 + ⊗ , ∆+ = ⊗ 1 + 1 ⊗ ,
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since these are the only ways in which we can extract/contract
a subtree containing the root while being left on the right with
a tree whose ‘branches’ touching the root are all of positive
degree. A model X then must be such that there exists a func-
tion x �→ fx with the property that∣∣∣(X + fx X

)
(ϕλx)
∣∣∣ � λ−1 ,

∣∣∣(X + fx
)
(ϕλx)
∣∣∣ � λ1/2 .

Note now that by admissibility, one must have X = G ∗
X = G ∗ ξ, which is a Hölder continuous function. Since the
exponent 1

2 appearing in the second bound above is positive,
this forces to have fx = −(G ∗ ξ)(x). The first identity is then
precisely of the type “near x, X can be approximated by(
X
) · (X )

(x)” as mentioned earlier on page 8.
Regarding the action of ∆−, still in the same context, one

has for example

∆− = 1⊗ + ⊗ 1 , ∆− = 1⊗ + ⊗ 1+ 2 ⊗ .

(In principle, according to the description given above, one
should add additional terms obtained by extracting and con-
tracting single instances of the noise , but we can ignore
these since we will always consider centred noise.) We then
see that if we want to construct the BPHZ lift of a noise ξε,
the first identity, combined with the BPHZ prescription that
EXετ = 0 for deg τ < 0, forces us to choose a character gε
such that gε( ) = −EXε , while the second identity then
forces us to choose gε( ) = −EXε , yielding

X̂ε = Xε − EXε − 2Xε · EXε .

The coassociativity and cointeraction properties seen above
have a natural interpretation in terms of combinatorial op-
erations on these trees and forests. Note that an algebraic
structure very similar to our construction is known to arise
in the numerical analysis of ordinary differential equations.
There, this approach was pioneered by J. Butcher [But72]
who pointed out that the natural composition operation for
Runge–Kutta methods can be described by a Hopf algebra
very similar to H+. More recently, it was pointed out by E.
Hairer and his collaborators [CHV10] that an analogue of the
Hopf algebra H− has a natural interpretation as a ‘substitu-
tion operation’ for Runge–Kutta methods. The Hopf algebra
H+ is also a generalisation of the so-called Connes–Kreimer
algebra which was introduced in the 1990s to describe alge-
braically renormalisation in quantum field theory [CK98]. A
review of this algebraic structure in various contexts is carried
out in [CEFM11].
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