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A Brief Introduction to Approximate
Groups
Matthew C. H. Tointon (Pembroke College, University of Cambridge, United Kingdom)

We give a brief introduction to the notion of an approximate
group and some of its numerous applications.

1 Approximately closed sets

Mathematicians are used to the notion of a subgroup of a
group G as a subset containing the identity that is closed under
taking products and inverses. However, it turns out that there
are also circumstances in which we encounter subsets that are
merely ‘approximately closed’. Such sets arise in the study
of polynomial growth in geometric group theory (which in
turn has links to isoperimetric inequalities and random walks)
and in the construction of expander graphs (which are impor-
tant objects in computer science), but there are also numerous
other examples.

A priori, there are several different ways to define approx-
imate closure. One of these is the notion of a set of small
doubling, with which we commence our discussion; another
is the notion of an approximate subgroup, which we present
in detail in Section 4. We shall see that these two notions are
intimately linked.

We start by giving one interpretation of the phrase ‘ap-
proximately closed’. Given subsets A, B of a group G, we set
AB = {ab : a ∈ A, b ∈ B} and A−1 = {a−1 : a ∈ A}. We also set
A2 = AA, A3 = AAA, and so on. For additive abelian groups
we write instead A+B, −A, 2A = A+A, 3A = A+A+A and so
on. To say that a finite subset A is closed under the group op-
eration is then to say that A2 = A. One property that could be
interpreted as being an approximate version of closure is thus
that A2 is not too much bigger than A (we will discuss very
briefly in Section 4 a possible extension to infinite subsets).

Let us consider for a moment the extreme values that |A2|
can take. It is clear that |A2| ≥ |A|, with equality when A is
a finite subgroup, for example. On the other hand, it is clear
that |A2| ≤ |A|2, with equality if A = {x1, . . . , xr} and G is the
free group on the generators xi.

Although it is extremal, the case in which |A2| is com-
parable to |A|2 should not be thought of as atypical. Indeed,
there is a fairly general phenomenon whereby if A is a suit-
ably defined random set of size k inside some group then
E[|A2|] ≥ ck2 for some constant c depending on the con-
text. For example, if A is chosen uniformly from the interval
{1, . . . , n} ⊂ (Z,+) with n much larger than k then one can
essentially take c = 1

2 [4, Proposition 2.1.1]. This suggests
that a condition of the type |A2| = o(|A|2) is a stong constraint
on the set A. We will consider this condition in its strongest
form, in which

|A2| ≤ K|A| (1)

for a given K ≥ 1.

Definition 1. A set A satisfying (1) is called a set of doubling
at most K, or simply a set of small doubling. The quantity
|A|2/|A| is called the doubling constant of A. Similarly, a set A
satisfying |A3| ≤ K|A| is called a set of tripling at most K, or
simply a set of small tripling. The quantity |A|3/|A| is called
the tripling constant of A.

Since the inequality (1) is in some sense the opposite of
what we would expect from a random set, it is reasonable to
suppose that a set of small doubling should possess a certain
amount of ‘structure’. One of the principal goals of the theory
of approximate groups is to describe this structure. In this ar-
ticle we give a brief overview of this theory; for more details,
and for a more complete bibliography, the reader can consult
the author’s book [4].

We will often assume that the set A contains the identity
and is symmetric, which is to say closed under taking inverses.
For the majority of the results we present this is not a neces-
sary hypothesis, but it simplifies the exposition and the nota-
tion.

2 First examples

A trivial family of examples of sets of small doubling is given
by small sets: if |A| ≤ K then of course A satisfies |A2| ≤ K|A|.
We will therefore focus on sets of size significantly larger than
K. Finite subgroups also give easy examples of sets of small
doubling. Note also that if a set A0 has doubling constant at
most K, and A is a subset of A0 of density at most α ∈ [0, 1]
(which is to say that |A| ≥ α|A0|), then we have

|A2| ≤ |A2
0| ≤ K|A0| ≤

K
α
|A|,

and so the doubling constant of A is at most K/α. Thus, if A
is sufficiently dense in some set of small doubling A0 then A
is also a set of small doubling. In particular, if H is a finite
subgroup of G and the density in H of some subset A ⊂ H
is at least 1/K then the doubling constant of A is at most K.
Freiman showed that for small enough K this essentially ex-
hausts all of the examples of sets of doubling K. More pre-
cisely, he showed that if |A2| < 3

2 |A| then A2 is a coset of a
finite subgroup (see [4, Theorem 2.2.1]).

We now consider a more interesting example. Note first
of all that if B ⊂ Zd is a ‘box’ of the form

B = {x ∈ Zd : |xi| ≤ Li for i = 1, . . . , d}
for some Li ∈ N then

|B + B| ≤ 2d |B| (2)

regardless of the values taken by the Li. Boxes in Zd are thus
sets of small doubling. It is also easy to check that their homo-
morphic images are also sets of small doubling. To see this,
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first note that such a box B satisfies a stronger property than
(2), in that there exists a set X satisfying |X| = 2d such that

B + B ⊂ B + X, (3)
as illustrated in the following diagram.

B + B

B

This means that if G is an abelian group and π : Zd → G is a
homomorphism then π(B)+π(B) ⊂ π(X)+π(B). In particular,
|π(B) + π(B)| ≤ 2d |π(B)|, and so π(B) has small doubling.

A homomorphic image of a box such as B is called a
progression. More precisely, if x1, . . . , xd are elements of an
abelian group and L1, . . . , Ld ∈ N then we set

P = P(x; L) = {�1x1 + · · · + �d xd : |�i| ≤ Li}.
We call P a progression, and we call d the rank or the di-
mension of P. For example, in the following diagram we il-
lustrate the progression P(9, 2; 2, 1) ⊂ Z, viewed as π(Z2 ∩
([−2, 2] × [−1, 1])) with π : Z2 → Z defined by π(1, 0) = 9
and π(0, 1) = 2.

π

−18 −9 −2 0 2 9 18

To explain the term progression, note that if the rank of P is 1
then P is an arithmetic progression.

We have just seen that subgroups, progressions of bounded
rank, and their dense subsets are all examples of sets of small
doubling. The following remarkable theorem, due to Freiman
in the case G = Z and Green and Ruzsa in the general
case, shows that these are essentially the only examples in
an abelian group.

Theorem 2 (Green–Ruzsa). Let G be an abelian group, and
suppose that A ⊂ G is a finite subset satisfying |A+A| ≤ K|A|.
Then there exist a finite subgroup H and a progression P of
rank at most r(K) such that A is a subset of H + P of density
at least δ(K).

The proof is largely Fourier analytic, and gives explicit
bounds on r(K) and δ(K). Optimising these bounds continues
to be an area of active research.

3 Plünnecke’s inequalities and Ruzsa’s
covering lemma

The proof of Theorem 2 is too long to be included in this
article, but we will illustrate two fundamental tools from the

proof by considering the following special case.

Proposition 3 (Ruzsa). Let m ∈ N, and let G be an abelian
group in which each element has order at most m (such as
G = (Z/mZ)n for some n ∈ N). Suppose that A is a finite
symmetric subset of G such that |A + A| ≤ K|A|. Then A is a
subset of density at least 1/(mK4

K) in some finite subgroup of
G.

The first tool we present is Plünnecke’s inequalities,
which were first proved by Plünnecke, then rediscovered and
generalised by Ruzsa, and finally proved much more simply
by Petridis.

Proposition 4 (Plünnecke–Ruzsa). Let G be an abelian group
and suppose that A is a finite subset satisfying |A+ A| ≤ K|A|.
Then |mA − nA| ≤ Km+n|A| for every m, n ∈ N.

We will soon see concretely the role that this result plays
in the proof of Proposition 3, but before that let us give a brief
heuristic discussion of why one might expect such a result to
be useful. First, note that if H is a subgroup then mH = H
for every m ∈ N, a property that we use often without even
thinking. Proposition 4 says that a set of small doubling sat-
isfies an approximate version of this property: if A is a fi-
nite set satisfying |A + A| ≤ K|A| then, for every m ∈ N, on
the one hand the set mA is not much bigger than A, and on
the other hand it is also of small doubling, in the sense that
|mA + mA| ≤ K2m|A| ≤ K2m|mA|.

Another important tool featuring in the proof of Proposi-
tion 3 is the so-called ‘covering lemma’ of Ruzsa. We present
a slightly simplified version of it here; see [1, Lemma 5.1] for
a more general statement.

Lemma 5 (Ruzsa). Suppose A is a finite symmetric subset of
a group G such that |A4| ≤ K|A|. Then there exists X ⊂ G of
size at most K such that A3 ⊂ XA2.

Proof. Let X ⊂ A3 be maximal such that the subsets xA with
x ∈ X are disjoint, noting that |XA| = |X||A|. Since XA ⊂
A4, this implies that |X||A| ≤ K|A|, and hence that |X| ≤ K.
Moreover, given z ∈ A3 the maximality of X implies that there
exist x ∈ X and a1, a2 ∈ A such that za1 = xa2, and hence
z = xa2a−1

1 ∈ XA2. In particular, A3 ⊂ XA2 as required. �

Proof of Proposition 3. Proposition 4 implies that

|4A| ≤ K4|A|.

Lemma 5 therefore implies that there exists a set X of size at
most K4 such that 3A ⊂ X + 2A. This implies by induction
that mA ⊂ (m− 2)X + 2A for every m > 3. Writing 〈B〉 for the
subgroup generated by a set B, we deduce in particular that
〈A〉 ⊂ 〈X〉 + 2A, and hence that |〈A〉| ≤ |〈X〉||2A| ≤ mK4

K|A|,
as required. �

4 Approximate groups

When G is not abelian, Proposition 4 no longer holds as
stated. For example, if G is the free product H ∗ 〈x〉 with x
some element of infinite order, and if we take

A = H ∪ {x}, (4)
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then A2 = H∪ xH∪Hx∪{x2}, hence in particular |A2| ≤ 3|A|.
On the other hand, A3 ⊃ HxH and |HxH| = |H|2, so |A3| ≥
1
4 |A|2.

Nonetheless, it turns out that if we replace |A + A| ≤ K|A|
with a slightly stronger hypothesis then we can obtain a con-
clusion analogous to that of Proposition 4. In fact, there are at
least two such possible ways in which to strengthen the condi-
tion of small doubling. The first is to replace it with the condi-
tion of small tripling: an argument of Ruzsa shows that if we
assume |A3| ≤ K|A| instead of |A2| ≤ K|A| for a finite symmet-
ric set A then we may conclude that |Am| ≤ Km−2|A| for every
m ∈ N. In other words, unlike small doubling, small tripling
permits us to bound the sizes of all of the sets A4, A5, . . ..

The second possibility is to replace the condition |A2| ≤
K|A| by a property that we have already encountered in both
Lemma 5 and (3): the existence of a set X of bounded size
such that A2 ⊂ XA, which easily implies that A has small
doubling. It is this condition that underpins the following def-
inition of an approximate subgroup, which is due to Tao.

Definition 6. A subset A of a group G is a K-approximate
(sub)group if it is symmetric and contains the identity and
there exists a set X ⊂ G of size at most K such that A2 ⊂ XA.

It is easy to see by induction that a K-approximate group
A satisfies Am ⊂ Xm−1A for every m ∈ N, so if A is finite
then |Am| ≤ Km−1|A| and once again we have an analogue of
Proposition 4.

In fact, these two conditions – having small tripling and
being an approximate group – are essentially equivalent for fi-
nite sets. We have just noted that if A is a finite K-approximate
group then |A3| ≤ K2|A|, so A has small tripling. Conversely,
for a finite symmetric set A satisfying |A3| ≤ K|A|, the result
of Ruzsa shows that |A4| ≤ K2|A|, and then Lemma 5 implies
that A2 is a K4-approximate subgroup (we have A3 ⊂ XA2 by
Lemma 5, and hence A4 = A3A ⊂ XA3 ⊂ X2A2).

Note that one advantage of the notion of an approximate
subgroup is that it can be applied without modification to arbi-
trary infinite subsets of groups, for which the notion of small
tripling does not in general make sense. Indeed, infinite ap-
proximate groups have begun to be studied in certain con-
texts. However, at the time of writing the theory is far more
advanced for finite approximate groups, and we will concen-
trate on them for the remainder of this article.

When introducing the definition of approximate groups,
Tao showed that the study of sets of small doubling essen-
tially reduces to the study of finite approximate groups. First,
note that in example (4), A possesses a large subset that is a
1-approximate subgroup, namely H. Tao showed that this is a
general phenomenon, in the sense that there exists C > 0 such
that given any set |A2| ≤ K|A| there exists a KC-approximate
group B ⊂ G of size at most KC |A| such that A is contained
in a union of at most KC left translates of B. One may thus
replace the hypothesis |A2| ≤ K|A| by the hypothesis of being
a K-approximate subgroup without really losing any general-
ity, whilst gaining the ability to control the sizes of the sets
A4, A5, . . .

We close this section by noting that Ruzsa proved Lemma 5
several years before the introduction of Definition 6 by Tao.
In that sense, Ruzsa’s work can be thought of as a precursor
to the notion of approximate group.

5 Basic properties

Here are two simple but useful properties of a subgroup H of
G:
(1) If π : G → Z is a homomorphism then π(H) is again a

subgroup of Z.
(2) If N < G is another subgroup then H ∩ N is also a sub-

group.
It turns out that these properties have approximate analogues
for approximate groups and sets of small tripling. For (1), if
A is a K-approximate subgroup of G and π : G → Z is a
homomorphism then it is trivially the case that π(A) is a K-
approximate subgroup of Z. Less obviously, an argument of
Helfgott shows that if A is a finite symmetric subset of G then

|π(A)m|
|π(A)| ≤

|Am+2|
|A| ,

so in particular if |A3| ≤ K|A| then |π(A)3| ≤ K3|π(A)|. For (2),
one can show for example that A and B are finite symmetric
subsets of G then

|Am ∩ Bn|
|A2 ∩ B2| ≤

|Am+1|
|A|
|Bn+1|
|B|

for every m, n ≥ 2, and in particular if |A3| ≤ K|A| and |B3| ≤
L|B| then |(A2 ∩ B2)3| ≤ (KL)5|A2 ∩ B2|. Similarly, if A is a
K-approximate group and B is an L-approximate group then
A2∩B2 is a (KL)3-approximate group. See [4, §2.6] for proofs
and generalisations of these assertions.

We saw in the previous section that approximate groups
and sets of small tripling are essentially equivalent notions.
In this section we have seen that they satisfy the same basic
properties, which renders them interchangeable in a number
of arguments.

6 Approximate subgroups of non-abelian
groups

One can generalise the concept of progression to certain non-
abelian groups. For example, consider the Heisenberg group
H defined by

H =


1 Z Z
0 1 Z
0 0 1

 =



1 n2 n3
0 1 n1
0 0 1

 : ni ∈ Z

 ,

and set

Q =




1 �1 �3
0 1 �2
0 0 1

 : |�1| ≤ L1, |�2| ≤ L1, |�3| ≤ L1L2

 .

It is an easy exercise to check that

Q3 ⊂




1 �1 �3
0 1 �2
0 0 1

 :
|�1| ≤ 3L1,
|�2| ≤ 3L1,
|�3| ≤ 8L1L2

 ,

and hence that |Q3| ≤ 72|Q| regardless of the values of L1, L2.
The key property of H that makes this true is that it is

nilpotent. To define this, first define the lower central series of
a group G to be the decreasing sequence of normal subgroups
G = G1 > G2 > · · · defined recursively by setting G1 = G and
Gn+1 = [G,Gn]. A group G is then said to be nilpotent if there
exists s such that Gs+1 = {1}. The smallest s for which this
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holds is said to be the step or class of G. For the Heisenberg
group H we have

H2 =


1 0 Z
0 1 0
0 0 1

 and H3 = {1},

so that H is 2-step nilpotent.
It turns out that we can define a progression in the same

way as we did in the Heisenberg group in an arbitrary nilpo-
tent group, as follows.

Definition 7. Let G be an s-step nilpotent group, let
x1, . . . , xr ∈ G, and let L1, . . . , Lr ∈ N. Then we define
P(x; L) ⊂ G to be the set of those elements of G express-
ible as products of the elements x±1

i in which each xi and its
inverse appear at most Li times between them. We call P(x; L)
a nilprogression of rank r and step s.

One can show that if the Li are large enough in terms of
r and s then the nilprogression P(x; L) is a K-approximate
group of some K depending only on r and s.

The ‘progression’ Q is not exactly a nilprogression, but
one can check that if we set

x1 =


1 0 0
0 1 1
0 0 1

 , x2 =


1 1 0
0 1 0
0 0 1


then P(x; L) ⊂ Q ⊂ P(x; 5L), so Q is roughly equivalent
to a nilprogression in some sense. See [4, Definition 5.6.2]
for a generalisation of Q to arbitrary nilpotent groups, and
[4, Proposition 5.6.4] for further details on this rough equiva-
lence.

The following remarkable result of Breuillard, Green and
Tao shows that nilprogressions are essentially the most gen-
eral examples of sets of small doubling.

Theorem 8 (Breuillard–Green–Tao [1, Theorem 2.12]). Let
G be an arbitrary group and A ⊂ G a finite subset such that
|A2| ≤ K|A|. Then G contains a subset P containing a finite
subgroup H normalised by P, such that the image of P in
〈P〉/H is a nilprogression of rank at most r(K) and step at
most s(K), and such that |P| ≤ t(K)|A|. There also exists a set
X of size at most i(K) such that A ⊂ XP.

In addition to the general theory of approximate groups,
the proof of Theorem 8 uses tools from model theory intro-
duced by Hrushovski, and arguments essentially due to Glea-
son arising from the solution to Hilbert’s fifth problem in the
1950s.

The use of an ultrafilter in the model-theoretic arguments
means that the proof of Theorem 8 gives no explicit bound on
i(K). For some applications of approximate groups, notably
those to growth of groups that we present in Section 7, this
does not pose a major problem. However, there are also appli-
cations of approximate groups, such as to expansion, in which
it is important to have more explicit results than Theorem 8.
Partly for this reason, numerous authors have given proofs of
Theorem 8 that offer explicit bounds on i(K) in return for re-
stricting attention to certain specific classes of groups. There
are such results, for example, in the case of soluble groups,
residually nilpotent groups, and certain linear groups. In the
next section we will discuss briefly how some of these results
for linear groups are used in the construction of expanders.

7 Applications to growth and expansion in
groups

In this section we describe two of the most spectacular ap-
plications of approximate groups. We begin with applications
to growth of finitely generated groups, a notion that is in turn
linked to random walks, geometric group theory and differ-
ential geometry. After that we will discuss applications to ex-
pansion, a notion which appears in several branches of math-
ematics and has numerous applications, particularly in theo-
retical computer science.

Let G be a finitely generated group and S a finite sym-
metric generating subset. The growth of G refers to the speed
with which the cardinality of the sets S 1, S 2, . . . grows. It is
not difficult to show that if G is virtually nilpotent – that is to
say, if G contains a nilpotent subgroup of finite index – then
there exist C, d ≥ 0 such that |S n| ≤ Cnd for every n ∈ N.
In that case we say that G has polynomial growth. A funda-
mental theorem of Gromov says that the converse also holds:
every finitely generated group of polynomial growth is virtu-
ally nilpotent.

It turns out that approximate groups can be used to prove
Gromov’s theorem. In fact, Breuillard, Green and Tao used
Theorem 8 to prove a refined version of Gromov’s theorem.
For example, the quantitative statement of Gromov’s theorem
implicitly requires the generating set to be of bounded cardi-
nality, but in the Breuillard–Green–Tao version this hypothe-
sis is not necessary.

The observation that allows one to reduce Gromov’s the-
orem to Theorem 8 is that the condition

|S n| ≤ nd |S | (5)

implies that there exists K ≥ 1 depending only on d, and an
integer m satisfying

√
n ≤ m ≤ n, such that |S 2m| ≤ K|S m|.

In other words, (5) implies that there exists m not too small
such that S m is a set of small doubling. Thus, approximate
groups appear very naturally in the study of groups of poly-
nomial growth. We refer the reader to [4, Chapter 11] and the
references therein for more details and further applications in
this direction.

Another important application of approximate groups is
the construction of expander graphs. An expander graph is
a graph that is both sparse and highly connected. Precisely,
given a subset A of a finite graph Γ, we define the boundary
∂A of A by setting ∂A = {x ∈ Γ \A : (∃a ∈ A)(x ∼ a)}, and we
define the (vertex) Cheeger constant h(Γ) of Γ by setting

h(Γ) = min
|A|≤|Γ|/2

|∂A|
|A| .

Given ε > 0 and d ∈ N, a family X of finite graphs is said to
be a family of (ε, d)-expanders if h(Γ) ≥ ε for every Γ ∈ X,
if supΓ∈X |Γ| = ∞, and if each vertex of each graph in X has
degree at most d. Note that if a finite graph Γ is complete then
h(Γ) ≥ 1; the upper bound on the degrees rules out this trivial
situation, and is the sense in which expanders are sparse.

To see why such graphs are interesting, note that sparsity
and high connectivity are both desirable properties of commu-
nication and transport networks, yet are intuitively difficult to
achieve simultaneously.

One of the objectives, and one of the difficulties, in the
theory of expander graphs is their construction. One fruitful
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approach is based on group theory and the notion of a Cayley
graph. Given a finitely generated group G and a finite sym-
metric generating set S , the Cayley graph Γ(G, S ) has the el-
ements of G as its vertices, and has x and y joined by an edge
if there exists s ∈ S such that xs = y.

It turns out that certain results using techniques from the
theory of approximate groups can be applied in the construc-
tion of expander Cayley graphs. For example, for S Ln(K)
we have the following theorem, which was announced inde-
pendently (within four hours of one another!) by Breuillard–
Green–Tao and Pyber–Szabo, Helfgott having already treated
the cases d = 2, 3 for K = Fp with p prime.

Theorem 9 ([2, Theorem 1.5.1]). Let K be a finite field and
let n ≥ 2. Let A be a generating set of S Ln(K). Suppose that
ε > 0 is small enough in terms of n. Then either |A3| ≥ |A|1+ε,
or |A| ≥ |S Ln(K)|1−cnε, with cn a certain constant depending
only on n.

It turns out that using Theorem 9 and an ingenious ar-
gument of Bourgain and Gamburd one can show that certain
Cayley graphs of S Ln(Fp) are expander graphs. For further
details on this argument and its history the reader can consult
Tao’s book [2].
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