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1 Introduction to Bitcoin

Bitcoin is a new decentralised payment network that started
operating in January 2009. This new technology was created
by a pseudonymous author, or group of authors, called Satoshi
Nakamoto, in an article that was publically released [1] in
the cypherpunk mailing list. The cypherpunks are anarchists
and cryptographers who have been concerned with personal
privacy in the Internet since the 90s. This article follows on
from a general presentation of Bitcoin by the second author
[2]. We refer to this previous article for general background.
Here we focus on mathematics being a feature of the security
and effectiveness of Bitcoin protocol.

Roughly speaking, the Bitcoin’s protocol is a mathemat-
ical algorithm on a network which manages transaction data
and builds majority consensus among the participants. Thus,
if a majority of the participants are honest, then we get an
honest automatic consensus. Its main feature is decentralisa-
tion, which means that no organisation or central structure is
in charge. The nodes of the network are voluntary participants
that enjoy equal rights and obligations. The network is open
and anyone can participate. Once launched, the network is re-
silient and unstoppable. It has been functioning permanently
without significant interruption since January 2009.

The code and development are open. The same code has
been reused and modified to create hundreds of other cryp-
tocurrencies based on the same principles. The security of
the network relies on strong cryptography (several orders
of magnitude stronger than the cryptography used in classi-
cal financial services). For example, classical hash functions
(SHA256, RIPEMD-160) and elliptic curve digital signatures
algorithm (ECDSA) are employed. The cryptography used
is very standard and well known, so we will not dwell on
the mathematics of these cryptographic tools, but interesting
cryptographical research is motivated by the special features
of other cryptocurrencies.

Nodes and mining
The bitcoin network is composed of nodes that correspond to
the bitcoin program running on different machines and com-
municate with their neighbours. Properly formatted bitcoin
transactions flood the network, and are checked, broadcasted
and validated continuously by the nodes which follow a pre-
cise set of rules. There is no way to force the nodes to follow
these rules. Incentives are created so that any divergence from
the rules is economically penalised, thus creating a virtuous
cycle. In this way, the network is a complex dynamical system
and it is far from obvious that is is stable. The stability of this
system is a very interesting and fundamental mathematical
problem. In this study, we will encounter special functions,
martingale theory, Markov chains, Dyck words, etc.

Nodes in the network broadcast transactions and can par-
ticipate in their validation. The process of validating trans-
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actions is also called “mining” because it is related to the
production of new bitcoins. The intuition behind bitcoin is
that of a sort of “electronic gold”, and the rate of produc-
tion of bitcoins is implemented in the protocol rules. On av-
erage, every 10 minutes a block of transactions is validated
and new bitcoins are minted in a special transaction with-
out bitcoin input, called the coinbase transaction. At the be-
ginning, 50 B were created in each block, and about every
4 years (more precisely, every 210.000 blocks), the produc-
tion is divided by 2. This event is called a “halving”. So far,
we have had two halvings, and the production is currently of
12.5 B per 10 minutes, or 1.800 B per day. The next halving
will occur in April–May 2020. This geometric decrease of the
production limits the total amount of bitcoins to 21 million.
Currently, about 18 million have already been created. Each
block containing the validated transactions can contain about
3 to 4 thousand transactions and has a size of about 1 Mb.
These blocks are linked together cryptographically, and the
set of all these blocks forms the “blockchain” that contains
the full history of bitcoin transactions. This data is stored effi-
ciently, and the current blockchain is only about 260.000 Mb.
The cryptographical link between blocks is provided by the
mining/validation procedure that is based on a hash function
and a “Proof of Work”. It costs computation power to val-
idate a block and this is what ensures that the data cannot
be tampered with or corrupted. In order to modify a single
bit of a block, we must redo all computations that have been
used to build all the subsequent blocks until the last current
one. Currently the computation power needed to change the
last few blocks of the more than 600 thousand composing the
blockchain is beyond the capabilities of any state or company.

The mining/validation procedure is a sort of decentralised
lottery. A miner (this is a node engaging in validating trans-
actions) packs together a block of floating, not yet validated
transactions, and builds a header of this block that contains a
hash of the previous block header. The hash algorithm used is
SHA-256 (iterated twice), that outputs 256 bits. Mathemati-
cally, a hash function is a deterministic one way function: it is
easy to compute, but practically impossible to find pre-images
or collisions (two files giving the same output). It also enjoys
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pseudo-random properties, that is, if we change a bit of the
input, the bits of the output behave as uncorrelated random
variables taking the values 0 and 1 with equal probabilities.
The mining procedure consists of finding a hash that is below
a pre-fixed threshold, which is called the difficulty. The dif-
ficulty is updated every two weeks (or more precisely every
2016 blocks) so that the rate of validation remains at 1 block
per 10 minutes. The pseudo-random properties of the hash
function ensure that the only way to find this hash is to probe
many hashes, therefore changing a parameter in the header
(the nonce). The first miner to find a solution makes the block
public, and the network adopts the block as the last block in
the blockchain.

It can happen that two blocks are simultaneously val-
idated in different parts of the network. Then a competi-
tion follows between the two candidates, and the first one to
have a mined block on top of it wins. The other one is dis-
carded and is called an orphan block. The blockchain with the
larger amount of work (which is in general the longer one) is
adopted by the nodes.

When a transaction is included in the last block of the
blockchain, we say that it has one confirmation. Any extra
block mined on top of this one gives another confirmation to
the transaction and engraves it further inside the blockchain.

This apparently complicated procedure is necessary to en-
sure that neither the network nor the blockchain can be cor-
rupted. Any participant must commit some computer power
in order to participate in the decision of validation. The main
obstacle for the invention of a decentralised currency was to
prevent a double spend without a central accounting authority.
Hence, the first mathematical problem that Nakamoto consid-
ers in his founding article [1] is to estimate the probability
of a double spend. In the following we consider this and other
stability problems, and mathematically prove the (almost gen-
eral) stability of the mining rules.

2 The mining model

We consider a miner with a fraction 0 < p ≤ 1 of the total
hashrate. His profit comes from the block rewards of his val-
idated blocks. It is important to know the probability of suc-
cess when mining a block. The average number of blocks per
unit of time that he succeeds in mining is proportional to his
hashrate p. The whole network takes on average τ0 = 10 min
to validate a block, hence our miner takes on average t0 =

τ0
p .

We consider the random variable T giving the time between
blocks mined by our miner. The pseudo-random properties of
the hash function show that mining is a Markov process, that
is, memoryless. It is then an elementary exercise to show from
this property that T follows an exponential distribution,

fτ(t) = αe−αt

where α = 1/t0 = 1/E[T]. If the miner starts mining at t = 0,
and if we denote T1 the time needed to mine a first block,
then T2, . . . ,Tn the inter-block mining times of successive
blocks, then the Markov property shows that the random vari-
ables T1,T2, . . . ,Tn are independent and are all identically
distributed following the same exponential law. Therefore, the
time needed to discover n blocks is

Sn = T1 + T2 + . . . + Tn .

The random variable Sn follows the n-convolution of the ex-
ponential distribution and, as is well known, this gives a
Gamma distribution with parameters (n, α),

fSn (t) =
αn

(n − 1)!
tn−1e−αt

with cumulative distribution

FSn (t) =
∫ t

0
fSn (u)du = 1 − e−αt

n−1∑
k=0

(αt)k

k!
.

From this we conclude that if N(t) is the process counting the
number of blocks validated at time t > 0, N(t) = max{n ≥
0; Sn < t}, then we have

P[N(t) = n] = FSn (t) − FSn+1 (t) =
(αt)n

n!
e−αt ,

and N(t) follows a Poisson law with mean value αt. This result
is classical, and the mathematics of bitcoin mining, as well
as other cryptocurrencies with validation based on proof of
work, are mathematics of Poisson processes.

3 The double spend problem

The first crucial mathematical problem that deserves atten-
tion in the bitcoin protocol is the possibility of realisation of a
double spend. This was the major obstacle to overcome for the
invention of decentralised cryptocurrencies, thus it is not sur-
prising that Nakamoto addresses this problem in Section 11
of his founding article [1]. He considers the situation where
a malicious miner makes a payment, then in secret tries to
validate a second conflicting transaction in a new block, from
the same address, but to a new address that he controls, which
allows him to recover the funds.

For this, once the first transaction has been validated in a
block in the official blockchain and the vendor has delivered
the goods (the vendor will not deliver unless some confirma-
tions are visible), the only possibility consists of rewriting the
blockchain from that block. This is feasible if he controls a
majority of the hashrate, that is, if his relative hashrate q sat-
isfies q > 1/2, because then he is able to mine faster than
the rest of the network, and he can rewrite the last end of the
blockchain as he desires. This is the reason why decentralised
mining is necessary so that no one controls more than half of
the mining power. But even when 0 < q < 1/2 he can try
to attempt a double spend and will succeed with a non-zero
probability. The first mathematical problem consists of com-
puting the probability that the malicious miner succeeds in
rewriting the last n ≥ 1 blocks. We assume that the remain-
ing relative hashrate, p = 1 − q, consists of honest miners
following the protocol rules.

This problem is similar to the classical gambler’s ruin
problem. Nakamoto observes that the probability of catching
up n blocks is

qn =

(
q
p

)n
(Nakamoto)

The modelisation of mining shows that the processes N(t) and
N′(t) counting the number of mined blocks at time t by the
honest and malicious miners, respectively, are independent
Poisson processes with respective parameters α et α′ satis-
fying

p =
α

α + α′
, q =

α′

α + α′
.
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The random variable Xn = N′(Sn) of the number of blocks
mined by the attacker when the honest miners have mined
their n-th block follows a negative binomial variable with pa-
rameters (n, p) ([3]), thus, for an integer k ≥ 1 we have

P[Xn = k] = pkqk
(
k + n − 1

k

)
.

Nakamoto, in section 11 of [1], abusively approximates Xn =

N′(Sn) by N′(tn) where

tn = E[Sn] = nE[T] =
nτ0

p
This means that he considers the classical approximation of
a negative binomial variable by a Poisson variable. Rosenfeld
observes in [4] that the negative binomial variable seems to be
a better approximation. We proved in [3] that this was indeed
the case, and we could find the exact formula for the double
spend probability after z confirmations (z is the classical no-
tation used by Nakamoto for the number of confirmations).

Theorem 1 ([3], 2017). After z confirmations, the probabil-
ity of success of a double spend by attackers with a relative
hashrate of 0 < q < 1/2 is

P(z) = I4pq(z, 1/2)

where Ix(a, b) is the incomplete regularised beta function

Ix(a, b) =
Γ(a + b)
Γ(a)Γ(b)

∫ x

0
ta−1(1 − t)b−1 dt .

Bitcoin security depends on this probability computation.
It is not just a theoretical result. It allows the estimation of the
risk of a transaction to be reversed and the number of con-
firmations required to consider it definitive. For example, if
q = 0.1, after 6 confirmations, the probability of a double
spend is smaller than 1 % (for complete tables see [5]).

In his founding article, Nakamoto tried to compute this
probability from his approximate argument and ran a numeri-
cal simulation. He convinced himself that the probability con-
verges exponentially to 0 when the number of confirmations z
goes to infinite (as he states “we can see the probability drop
off exponentially with z”). The numerical simulation is not
a proof, but this statement is repeated over and over again,
however never proved before 2017. With the previous exact
formula, using classical methods (Watson Lemma), we can
prove the following Corollary:

Corollary 2. Let s = 4pq < 1. When z→ +∞ the probability
P(z) decays exponentially, and, more precisely,

P(z) ∼ sz

√
π(1 − s)z

.

One can obtain higher order asymptotics in the classical
way or by using equivalent combinatorical methods as in [6].

We can be more precise by looking at the time it takes
for the honest network to mine z blocks. A longer duration
than the average τ1 = zτ0 leaves extra time for the attacker
to build his replacement blockchain, and with this conditional
knowledge the probability changes. If we define κ = τ1

zτ0
, we

can compute this probability P(z, κ) and we can also obtain an
exact formula using the regularised incomplete Gamma func-
tion

Q(s, x) =
Γ(s, x)
Γ(x)

Figure 2. Probabilities P(z, κ) for q = 0.1 and distinct values of z

where

Γ(s, x) =
∫ +∞

x
ts−1e−t dt

is the incomplete Gamma function.

Theorem 3. We have

P(z, κ) = 1 − Q(z, κ z q/p) +
(

q
p

)z
eκ z p−q

p Q(z, κ z) ,

Figure 2 shows the graphs of κ �→ P(z, κ) for different
values of z.

4 Mining profitability

After studying the security of the protocol, the next impor-
tant problem is its stability. For a decentralised protocol it
is fundamental that the interests of the individuals are prop-
erly aligned with the protocol rules. In particular, the max-
imal gain of miners should be achieved when following the
protocol rules. This is far from obvious, and we know from
the study of unstable dynamical systems that this is hard to
achieve. It is somewhat surprising that this has been empiri-
cally verified since Bitcoin’s inception.

For example, it is by no means obvious that is in the
best interest of a miner to immediately publish a block that
he has validated. He can keep it secret and secretly push his
advantage, but then he runs the risk that another miner pub-
lishes a validated block and the public blockchain adopts it,
thus losing his reward. This type of scenario has been dis-
cussed since 2012 in bitcointalk forum, created by Nakamoto
in 2010.

To answer this question, we first need to develop a proper
profitability model. As in any business, mining profitability
is accounted by the “Profit and Loss” per unit of time. The
profits of a miner come from the block rewards that include
the coinbase reward in new bitcoins created, and the transac-
tion fees of the transactions in the block. The profitability at
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instant t > 0 is given by

PL(t) =
R(t) − C(t)

t
where R(t) and C(t) represent, respectively, the rewards and
the cost of the mining operation up to time t. If we don’t con-
sider transaction fees, we have

R(t) = N(t) b

where b > 0 is the coinbase reward. If we include transaction
fees, the last equation remains true, taking the average reward
using the classical Wald theorem.

The random variable C(t) representing the cost of mining
operations is far more complex to determine, since it depends
on external factors (such as electricity costs, mining hardware
costs, geographic location, currency exchange rate, etc). But,
fortunately, we don’t need it in the comparison of the prof-
itability of different mining strategies, as we explain next.

The mining activity is repetitive and the miners return to
the same initial state after some time, for instance, to start
mining a fresh block. A mining strategy is composed by cy-
cles where the miner invariably returns to the initial state. It is
a “game with repetition” similar to those employed by profit
gamblers in casino games (when they can spot a weakness
that makes the game profitable). For example, an honest miner
starts a cycle each time the network, he or someone else, has
validated a new block.

We denote by τ the duration of the cycle, and we are in-
terested in integrable strategies for which E[τ] < +∞ (this
means that the cycles almost surely up in finite time). Then
it is easy to check, using the law of large numbers and Wald
theorem, that the long term profitability is given a.s. by the
limit

PL∞ = lim
t→+∞

R(t) − C(t)
t

=
E[R] − E[C]
E[τ]

.

As observed before, the second cost term is hard to compute,
but the revenue term, that we call revenue ratio, is in general
computable

Γ =
E[R]
E[τ]

.

For example, for an honest miner we have E[R] = p.0+q.b =
qb and E[τ] = τ0, and therefore

ΓH =
qb
τ0
.

We have the fundamental theorem on comparison of mining
strategies with the same cost ratio. This is the case when both
strategies use the full mining power at all time.

Theorem 4 ([7], 2018). We consider two mining strategies
ξ and η with the same cost by unit of time. Then ξ is more
profitable than η if and only if

Γη ≤ Γξ.

5 Protocol stability

We can now mathematically study the protocol stability. The
following remarkable result (remarkable because it is hard to
imagine how Nakamoto could have foreseen it) validates the
proper adjustment of the protocol:

Theorem 5 ([7], 2018). In the absence of difficulty adjust-
ment, the optimal mining strategy is to immediately publish
all mined blocks as soon as they are discovered.

Remember that the difficulty of mining adjusts about ev-
ery two weeks, so at the same time we spot a weakness of the
protocol that we discuss below.

This theorem holds true for any hashrate of the miner and
without any assumption of the type of miners present in the
network. It does not change anything that eventually there are
some dishonest miners in the network.

The proof is simple and a good example of the power of
martingale techniques. For a constant difficulty, the average
speed of block discovery remains constant and the counting
process N(t) is a Poisson process with intensity α = p

τ0
where

p is the relative hashrate of the miner. The cycle duration τ is
a stopping time and the revenue per cycle equals to R = N (τ).
Its mean value is then obtained using Doob’s stopping time to
the martingale N(t) − αt. Finally, we get Γ ≤ ΓH .

But the bitcoin protocol does have a difficulty adjustment
algorithm that is necessary, in particular during the develop-
ment phase. Theorem 5 shows that this is the only vector
of attack. This difficulty adjustment provides a steady mon-
etary creation and ensures that the interblock validation time
stays at around 10 minutes. A minimum delay is necessary
to allow a good synchronisation of all network nodes. If the
hashrate accelerates without a difficulty adjustment, then the
nodes will desynchronize, and many competing blockchains
will appear, leaving a chaotic state.

6 Profitability of rogue strategies

In view of Theorems 4 and 5, and in order to decide if a min-
ing strategy is more profitable than the honest strategy, we
need only compute the revenue ratio Γ with the difficulty ad-
justment integrated. Selfish mining (SM strategy 1) is an ex-
ample of rogue strategy. Instead of publishing a new block,
the miner keeps the block secret and tries to build a longer
blockchain, increasing its advantage. When he makes it pub-
lic, he will orphan the last mined honest blocks and will reap
the rewards. To be precise, the attack cycles are defined as
follows: the miner starts mining a new block on top of the of-
ficial blockchain. If an honest miner finds a block first, then
the cycle ends and he starts over. Otherwise, when he is the
first to find a block, he keeps mining on top of it, and keeping
it secret. If before he mines a second block the honest network
mines one public block, then he publishes his block immedi-
ately, thus trying to get a maximum proportion 0 < γ < 1
of honest miners to adopt his block. The propagation is not
instantaneous and the efficiency depends on the new parame-
ter γ which represents his good connectivity to the network.
A competition follows, and if the next block is mined on top
of the honest block, then the selfish miner looses the rewards
of this block and the attack cycle ends. If he, or his allied
honest miners, mine the next block, then they publish it and
the attack cycle ends again. If the attacker succeeds in mining
two consecutive secret blocks at the beginning, then he con-
tinues working on his secret blockchain until he has only one
block of advantage with respect to the public blockchain. In
this case, he doesn’t run any risk of being joined by the pub-
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lic blockchain and publishes all his secret blockchain, thus
reaping all the rewards and ending the attack cycle again. In
few words, the rogue miner spends most of his time replacing
honest blocks by those that he has mined in advance and kept
secret. The mean duration E[τ] of the attack cycle is obtained
as a variation of the following result about Poisson processes.

Proposition 6 (Poisson races). Let N and N′ be two indepen-
dent Poisson processes with respective parameters α and α′,
with α′ < α and N(0) = N′(0) = 0. Then, the stopping time

σ = inf{t > 0; N(t) = N′(t) + 1}

is almost surely finite, and we have

E[σ] =
1

α − α′ , E[N′(σ)] =
α′

α − α′ , E[N(σ)] =
α

α − α′ .

The proof is a simple application of Doob’s stopping time
theorem. Here, N and N′ are the counting processes of blocks
mined by the honest miners and the attacker. To finish, we
must compute the intensities α and α′. At the beginning we
have α = α0 =

p
τ0

and α′ = α′0 =
q
τ0

, where p is the apparent
hashrate of the honest miners and q the one of the attacker. But
the existence of a selfish miner perturbs the network and slows
down the production of blocks. Instead of having one block
for each period τ0, the progression of the official blockchain
is of E[N(τ) ∨ N′(τ)] blocks during E[τ]. After validation of
2016 official blocks, this triggers a difficulty adjustment that
can be important. The new difficulty is obtained from the old
one by multiplication by a factor δ < 1 given by

δ =
E[N(τ) ∨ N′(τ)] τ0

E[τ]
.

After the difficulty adjustment, the new mining parameters are
α = α1 =

α0
δ

and α′ = α′1 =
α′0
δ

. The stopping time τ and
the parameter δ can be computed using the relation |N(τ) −
N′(τ)| = 1. This can be used to compute the revenue ratio of
the strategy [7]. This analysis can also be checked by mining
simulators.

An alternative procedure consists of modelling the net-
work by a Markov chain, where the different states correspond
to a different degree of progress by the selfish miner. Each
transition corresponds to a revenue increase π and π′ for the
honest and selfish miner. By another application of the law of
large numbers, we prove that the long-term apparent hashrate
of the strategy, defined as the proportion of mined blocks by
the selfish miner compared to the total number of blocks, is
given by the formula

q′ =
E[π′]

E[π] + E[π′]
.

The expectation is taken as relative to the stationary proba-
bility that exists because the Markov chain is transitive and
recurrent. Indeed, the Markov chain is essentially a random
walk on N partially reflexive on 0. The computation of this
stationary probability proves the following theorem:

Theorem 7 ([8], 2014). The apparent hashrate of the selfish
miner is

q′ =
(
(1 + pq)(p − q) + pq

)
q − (1 − γ)p2q(p − q)

p2q + p − q

The results from [7] and [8] obtained by these different
methods are compatible. The revenue ratio Γ1 and the appar-
ent hashrate q′ are related by the following equation:

Γ1 = q′
b
τ0

But the first analysis is finer, since it does explain the change
of profitablity regime after the difficulty adjustment. In partic-
ular, it allows us to compute the duration before running into
profitability for the attacker. The selfish miner starts by losing
money, then after the difficulty adjustment that favours him,
starts making profits. For example, with q = 0.1 and γ = 0.9,
he needs to wait 10 weeks in order to be profitable. This partly
explains why such an attack has never been observed in the
bitcoin network.

Theorem 4 gives an explicit semi-algebraic condition on
the parameters, namely q′ > q, that determines the values of
the parameters q and γ for which the selfish mining strategy
is more profitable than honest mining.

Theorem 5 shows that the achilles heel of the protocole is
the difficulty adjustment formula. This formula is supposed to
contain the information about the total hashrate, but in reality
it ignores the orphan blocks. The authors propose a solution
that incorporates this count, and this solves the stability prob-
lem of the protocol [7].

There are other possible block-withholding strategies that
are variations of the above strategy [9]. These are more agres-
sive strategies. In the initial situation where the attacker suc-
ceeds in being two blocks ahead, instead of publishing the
whole secret chain when he is only one block ahead, he can
wait to be caught up to release his blocks and then start a final
competition between the two competing chains. The attack
cycle ends when the outcome is decided. This is the “Lead
Stubborn Mining” (LSM, strategy 2). In this strategy it is im-
portant that the miner regularly publishes his secret blocks
with the same height of the official blockchain, to attract part
of the honest miners in order to take out hashrate from the
pool of honest miners. Also in this way, even if he loses the
final competition he will succeed in incorporating some of his
blocks in the official blockchain and reap the corresponding
rewards.

Another even more agressive variation consists of wait-
ing not to be caught up, but to be behind one block. This
is the “Equal Fork Stubborn Mining Strategy” (EFSM, strat-
egy 3). Here again, it is important to publish secret blocks
regularly. Finally, the authors have considered another more
agressive variation where the stubborn miner follows EFSM
but then doesn’t stop when he is one block behind. He
keeps on mining until his delay becomes greater than a
threshold A or until he successfully comes from behind,
catches up and finally takes the advantage over the official
blockchain.

This strategy seems desperate because the official block-
chain progress is faster, on average. But in the case of catch-
ing up, the selfish miner wins the jackpot of all the blocks
he replaces. This is the “A-Trailing Mining” strategy (A-TM,
strategy 4). The authors of [9] conduct a numerical study of
profitability by running a Montecarlo simulation and compare
the profitability of the different strategies for different param-
eter values (q, γ). But we can find closed form formulas for
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Figure 3. Comparison of HM, SM, LSM, EFSM and A-TSM

the revenue ratio of all these strategies using the precedent
martingale approach.

Theorem 8 ([7, 10–12]). We have
Γ1

ΓH
=

(1 + pq)(p − q) + pq − (1 − γ)p2(p − q)
p2q + p − q

Γ2

ΓH
=

p + pq − q2

p + pq − q
− p(p − q) f (γ, p, q)

p + pq − q

Γ3

ΓH
=

1
p
− p − q

pq
f (γ, p, q)

Γ4

ΓH

=

1 + (1−γ)p(p−q)
(p+pq−q2)[A+1]

((
[A − 1] + 1

p
PA(λ)
[A+1]

)
λ2 − 2√

1−4(1−γ)pq+p−q

)

p+pq−q
p+pq−q2 +

(1−γ)pq
p+pq−q2 (A + λ)

(
1

[A+1] −
1

A+λ

)

with

f (γ, p, q) =
1 − γ
γ
·
(
1 − 1

2q

(
1 −
√

1 − 4(1 − γ)pq
))

and

λ = q/p, q [n] =
1 − λn

1 − λ for n ∈ N,

PA(λ) =
1 − AλA−1 + AλA+1 − λ2A

(1 − λ)3 .

We can plot the parameter regions where each strategy is
the best one (Figure 3). The Catalan numbers appear naturally
in the computations.

Cn =
1

2n + 1

(
2n
n

)
=

(2n)!
n!(n + 1)!

.

For this reason, their generating function appears in the for-
mulas

C(x) =
+∞∑
n=0

Cnxn =
1 −
√

1 − 4x
2x

We observe that
√

1 − 4pq = p − q and C(pq) = 1/p, and
this justifies the definition of new probability distributions
that arise in the proofs.

Definition 9. A discrete random variable X taking integer val-
ues follows a Catalan distribution of the first type if we have,
for n ≥ 0,

P[X = n] = Cn p(pq)n.

It follows a Catalan distribution of the second type if P[X =
0] = p and for n ≥ 1,

P[X = n] = Cn−1(pq)n.

It follows a Catalan distribution of the third type if P[X = 0] =
p, P[X = 1] = pq + pq2 and for n ≥ 2,

P[X = n] = pq2Cn−1(pq)n−1.

7 Dyck words

We can recover these results by a direct combinatorical ap-
proach representing each attack cycle by a Dyck word.

Definition 10. A Dyck word is a word built from the two
letter alphabet {S ,H} which contains as many S letters as H
letters, and such that any prefix word contains more or equal
S letters than H letters. We denote D the set of Dyck words,
and for n ≥ 0,Dn the subset of Dyck worlds of length 2n.

The relation to Catalan numbers is classical: the cardinal
of Dn is Cn. We can encode attack cycles by a chronologic
succession of block discoveries (disregarding if it is made
public or not). For a selfish block we use the letter S (for “self-
ish”) and for the honest blocks the letter H (for “honest”).

The link between the selfish mining strategy and Dyck
words is given by the following proposition:

Proposition 11. The attack cycles of the SM strategy are H,
SHH, SHS, and SSwH where w ∈ D.

At the end of the cycle, we can summarise and count the
total number of official blocks, say L, and how many of these
blocks were mined by the attacker, say Z. Then, for strategy 1
(SM), the random variable L−1 follows a Catalan distribution
of the third type, and except for some particular cases (when
L < 3), we always have L = Z. The apparent hashrate q′ is
then given by the formula:

q′ =
E[Z]
E[L]

We can then directly recover Theorem 7 by this simpler com-
binatorical procedure [12]. The other rogue strategies can be
studied in a similar way. The Catalan distribution of the first
type arises in the study of the strategy EFSM (strategy 3), and
the one of the second type for the strategy LSM (strategy 2).
We can then recover all the results given by the Markov chain
analysis. Unfortunately, we cannot recover the more finer re-
sults obtained by martingales techniques.

This sort of analysis applies to other Proof of Work
cryptocurrencies, and to Ethereum, which has a more com-
plex reward system and a different difficulty adjustment for-
mula [13].

8 Nakamoto double spend revisited

We come back to the fundamental double spend problem from
the Nakamoto bitcoin paper discussed in Section 3. In that
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Figure 4. Graph of ΓA, for z = 2, v = b and A = 3, 5, 10

section, we computed the probability of success of a double
spend. But now, with the profitability model knowledge from
Section 4, we can study its profitability and get better esti-
mates on the number of confirmations that are safe to con-
sider a paiement definitive. The double spend strategy as pre-
sented in [1] is unsound because there is a non-zero proba-
bility of failure, and in that case, if we keep mining in the
hope of catching up from far behind the official blockchain,
we have a positive probability of total ruin. Also, the strat-
egy is not integrable, since the expected duration of the attack
is infinite. Thus, we must obviously apply a threshold to the
unfavourable situation where we are lagging far behind the
official blockchain.

We assume that the number of confirmations requested by
the recipient of the transaction is z and we assume that we
are never behind A ≥ z blocks of the official blockchain. This
defines an integrable strategy, the A-Nakamoto double spend
strategy. Putting aside technical details about premining, the
probability of success of this strategy is a modification of the
probability from Theorem 1.

Theorem 12 ([14], 2019). After z confirmations, the proba-
bility of success of an A-Nakamoto double spend is

PA(z) =
P(z) − λA

1 − λA

where P(z) is the probability from Theorem 1 and λ = q/p.

If v is the amount to double spend, then we can compute
the revenue ratio ΓA = E[R]/E[τ].

Theorem 13 ([14], 2019). With the previous notations, the
expected revenue and the expected duration of the A-Nakamoto
double spend strategy is

E[RA]/b =
qz
2p

I4pq(z, 1/2) − AλA

p(1 − λ)3[A]2 I(p−q)2 (1/2, z)

+
2 − λ + λA+1

(1 − λ)2[A]
pz−1qz

B(z, z)
+ PA(z)

( v
b
+ 1
)

E[TA]/τ0 =
z

2p
I4pq(z, 1/2) +

A
p(1 − λ)2[A]

I(p−q)2 (1/2, z)

− pz−1qz

p(1 − λ) B(z, z)
+

1
q

with the notation [n] = 1−λn

1−λ for an integer n ≥ 0, and B is the
classical Beta function.

In principle, a powerful miner does not have an interest
in participating in a large double spend, since doing so will
undermine the foundations of his business. For a small miner
with relative hashrate 0 < q << 1 we can estimate from which
amount a double spend can be profitable. For this we only
need to use the inequality from Theorem 4: ΓA ≥ ΓH = qb/τ0,

and take the asymptotics q→ 0 (with A and z being fixed, but
the final result turns out to be independent of A).

Corollary 14. When q → 0 , the minimal amount v for an
Nakamoto double spend with z ≥ 1 confirmations is

v ≥ q−z

2
(

2z−1
z

) b = v0 .

For example, in practice, with a 10% hashrate, q = 0.01,
and only one confirmation, z = 1, we need to double spend
more than v0/b = 50 coinbases. With the actual coinbase re-
ward of b = 12.5 B and the actual prize over 8.300 euros, this
represents more than 5 million euros.

Hence, for all practical purposes and normal amount
transactions, only one confirmation is enough to consider the
transaction definitive.

Conclusions
Bitcoin provides a good example of the universality of math-
ematical applications and its potential to impact our society.
With the glimpse we have given, we hope to have convinced
our colleagues that the Bitcoin protocol also motivates some
exciting Mathematics.

Bibliography

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
www.bitcoin.org/bitcoin.pdf, released on November 1st 2008 on the
USENET Cryptography Mailing List “Bitcoin P2P e-cash paper”.

[2] R. Pérez-Marco, “Bitcoin and decentralized trust protocols,” Newslet-
ter European Mathematical Society, vol. 21, no. 100, pp. 31–38, 2016.

[3] C. Grunspan and R. Pérez-Marco, “Double spend races,” Int. Journal
Theoretical and Applied Finance, vol. 21, no. 08, 2018.

[4] M. Rosenfeld, “Analysis of hashrate-based double spending,”
arXiv:1402.2009, 2014.

[5] C. Grunspan and R. Pérez-Marco, “Satoshi risk tables,”
arXiv:1702.04421, 2017.

[6] E. Giogladis and D. Zeilberger, “A combinatorial-probabilistic analy-
sis of bitcoin attacks,” Journal of Difference Equations and its Appli-
cations, vol. 25, no. 1, 2019.

[7] C. Grunspan and R. Pérez-Marco, “On the profitability of selfish min-
ing,” arXiv:1805.08281, 2018.

[8] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, pp. 95–102, June 2018.

[9] K. Nayak, S. Kumar, A. K. Miller, and E. Shi, “Stubborn mining:
Generalizing selfish mining and combining with an eclipse attack,”
2016 IEEE European Symposium on Security and Privacy (EuroS&
P), pp. 305–320, 2015.

[10] C. Grunspan and R. Pérez-Marco, “On the profitability of stubborn
mining,” arXiv:1808.01041, 2018.

[11] C. Grunspan and R. Pérez-Marco, “On the profitability of trailing min-
ing,” arXiv:1811.09322, 2018.

[12] C. Grunspan and R. Pérez-Marco, “Bitcoin selfish mining and Dyck
words,” arXiv:1811.09322, 2019.

[13] C. Grunspan and R. Pérez-Marco, “Selfish mining in Ethereum,”
arXiv:1904.13330, 2019.

[14] C. Grunspan and R. Pérez-Marco, “On profitability of nakamoto dou-
ble spend,” arXiv:1912.06412, 2019.

The authors [cyril@grunspan.net,
ricardo.perez.marco@gmail.com]
did study at Lycée Louis-le-Grand
with the late Prof André Warusfel,
and are alumni of the École Normale

Supérieure of Paris. They are pioneers in mathematical re-
search in Bitcoin and other cryptocurrencies and organize
regularly the Paris cryptofinance seminar since 2016.


