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Number theorists are like lotus-eaters
– having tasted this food
they can never give it up.

Leopold Kronecker (1823–1891)

The present column is devoted to Analytic Number Theory. For the
previous “Solved and Unsolved Problems" column devoted to Num-
ber Theory, the interested reader is referred to the Issue 103, March
2017, of the EMS Newsletter.

I Six new problems – solutions solicited

218.
Determine the sum of the series

∞∑
n=1

ϕ(n)
2n − 1

,

where ϕ is the Euler’s totient function.

(Dorin Andrica, Babeş-Bolyai University,
Cluj-Napoca, Romania)

219a. Let ω(n) denote the number of distinct prime factors of a
non-zero natural number n.
(i) Prove that

∑
n≤x ω(n) = x log log x + O(x).

(ii) Prove that
∑

n≤x ω(n)2 = x(log log x)2 + O(x log log x
)
.

(iii) Using (i) and (ii), prove that
∑

n≤x(ω(n) − log log x)2 =

O(x log log x
)
.

(iv) Using (iii), prove that
∑

n≤x(ω(n) − log log n)2 =

O(x log log x
)
.

(v) Using (iv), prove that ω(n) has normal order log log n, i.e.,
for every ε > 0,

#
{
n ≤ x : (1 − ε) log log n < ω(n)

< (1 + ε) log log n
} ∼ x (as x→ ∞).

a. Parts (i)–(v) of Problem 219 are extracted from a proof by Paul Turán
(1910–1976), published in 1934, of a theorem of G. H. Hardy (1877–
1947) and S. Ramanujan (1887–1920), published in 1917; see refer-
ences below:
[1] G. H. Hardy and S. Ramanujan, The normal number of prime fac-

tors of a number n. Quart. J. Math. 48 (1917), 76–92.
[2] P. Turán, On a Theorem of Hardy and Ramanujan. J. London Math.

Soc. 9 (1934), 274–276.

(Alina Carmen Cojocaru, Department of Mathematics, Statistics
and Computer Science, University of Illinois at Chicago, USA,

and Institute of Mathematics “Simion Stoilow” of the Romanian
Academy, Bucharest, Romania)

220. Using Chebyshev’s Theorem, prove that for any integer M
there exists an even integer 2k such that there are at least M primes
p with p+ 2k also prime. Unfortunately 2k will depend on M. If it
did not, we would have solved the Twin Prime Conjecture, namely,
there are infinitely many primes p such that p + 2 is also prime.

(Steven J. Miller, Department of Mathematics & Statistics,
Williams College, Massachusetts, USA)

221. For any three integers a, b, c, with gcd(a, b, c) = 1, prove
that there exists an integer m such that

0 ≤ m ≤ 222002
c

1
1000 and gcd(a + mb, c) = 1.

(Abhishek Saha, School of Mathematical Sciences,
Queen Mary University of London, UK)

222. Show that
∞∑

n=1

sin2(πδn)
n2 = 1

2π
2δ(1 − δ) for 0 ≤ δ ≤ 1,

∞∑
n=1

sin3(πδn)
n3 = 1

2π
3δ2( 3

4 − δ) for 0 ≤ δ ≤ 1/2,

∞∑
n=1

sin4(πδn)
n4 = 1

2π
4δ3( 2

3 − δ) for 0 ≤ δ ≤ 1/2.

Setting δ = 1/2, deduce the values of ζ(2) and ζ(4).

(Olof Sisask, Department of Mathematics,
Stockholm University, Sweden)

223. Fix a prime number p, and an integer β ≥ 2. Consider the
function defined on x ∈ R by e(x) = exp(2πix). Given a coprime
residue class r mod pβ, consider the additive character defined on
integers m ∈ Z by m �→ e

(
mr
pβ

)
. Given a complex parameter s ∈ C

with Re(s) > 1, consider the Dirichlet series defined by

D(s, r, pβ) =
∑
m≥1

e
(

rm
pβ

)
m−s.

Show that this series has an analytic continuation to all s ∈ C, and
moreover that it satisfies a functional equation relating values at s
to 1 − s.

(Jeanine Van Order, Fakultät für Mathematik,
Universität Bielefeld, Germany.)

II (A) An Open Problem, by Joseph Najnudel (School of
Mathematics, University of Bristol, UK)

Central limit theorems for random multiplicative
functions

The distribution of the patterns obtained by taking consecutive val-
ues of arithmetic multiplicative functions have been intensively stud-
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ied. For example, a conjecture by Chowla [2] states that for all k ≥ 1,
each possible sign pattern of

(
λ(n + 1), . . . , λ(n + k)

)

appears with asymptotic density 2−k, λ being the Liouville function,
i.e.,

λ(m) = (−1)Ω(m)

whereΩ(m) is the number of prime factors of m, counted with multi-
plicity. It has been proven by Hildebrand [7] that for k = 3, the eight
possible values of

(
λ(n + 1), λ(n + 2), λ(n + 3)

)

appear infinitely often. This result has been improved by Matomäki,
Radziwill and Tao [8], who prove that these eight values appear with
a positive lower density. Similar results and conjectures are stated
for the Möbius function, or for the number of prime factors modulo
3 (see [10]).

In [9], we consider similar questions for consecutive values
of random completely multiplicative functions (Xm)m≥1, such that
(Xp)p prime are i.i.d. random variables on the unit circle U, and

Xm =
∏

p prime

Xνp(m)
p

where νp(m) is the p-adic valuation of m. In this setting, the law of
(Xm)m≥1 is completely determined by the law of X2, and we have
studied the two following cases in detail: X2 uniform on the unit
circle U, and X2 uniform on the set Uq of q-th roots of unity for
some integer q ≥ 2. The randomness we have introduced allows us
to prove more precise results than what is known for Liouville or
Möbius function, with much more elementary proofs. However, a
part of the arguments used in [9] are related to deep results on the
number and the size of the solutions of some diophantine equations.
The main result of [9] is the proof that the empirical distribution

1
N

N∑
n=1

δ(Xn+1 ,...,Xn+k) (1)

tends almost surely to the uniform distribution onUk if X2 is uniform
on U, and to the uniform distribution on Uk

q if X2 is uniform on Uq.
We also have an estimate on the speed of convergence of the em-
pirical measure: in the case of the uniform distribution on Uq, each
of the qk possible patterns for (Xn+1, . . . , Xn+k) almost surely occurs
with a proportion q−k+O(N−t) for n running between 1 and N, for all
t < 1/2. We have a similar result in the uniform case, if the test func-
tions we consider are sufficiently smooth. These results are deduced,
via the Fourier transform of the empirical measure, from the follow-
ing bound, available for all (m1, . . . ,mk) � (0, . . . , 0) if X2 is uniform
on U, and for m1, . . . ,mk not all divisible by q if X2 is uniform on
Uq:

E


∣∣∣∣∣∣∣

N∑
n=N′+1

k∏
j=1

Xm j
n+ j

∣∣∣∣∣∣∣

2 ≤ O
(
(N − N′)Nε

)
,

for 1 ≤ N′ < N and ε > 0, the implied constant depending only on
k, ε, and on q if X2 is uniform on Uq. The bound is obtained from an
upper bound of the number of solutions of

∏k
j=1(n1 + j)m j

∏k
j=1(n2 + j)m j

∈ A

where A = {1} if X2 is uniform on U, A = (Q∗+)q if X2 is uniform
on Uq.

The convergence (1) corresponds to a law of large numbers sat-
isfied by the sums of the form

N∑
n=1

k∏
j=1

Xm j
n+ j. (2)

An open question concerns the existence of a central limit theorem
for such sums. To simplify the discussion, let us focus on the case
where X2 is uniform on the unit circle. It is not possible to have a cen-
tral limit theorem for the sum

∑N
n=1 Xn, because its L2 norm is equal

to n, whereas its L1 norm is o(
√

n), as recently proven by Harper [3].
This last result is called Helson’s conjecture (see [6]), and has been
previously discussed in several papers including [4] and [5]. How-
ever, central limit theorem may be true for other sums. In [1], Chat-
terjee and Soundararajan have proven a central limit theorem of sums
of the form

∑N
n=N′+1 Xn when 1 ≤ N′ < N and N′ sufficiently close

to N. Moreover, in [9], we have quite easily proven the following
result: if for all integers r ≥ 1, the number of non-trivial solutions

(n1, . . . , n2r) ∈ {1, . . . ,N}2r

of the diophantine equation

r∏
j=1

nj(nj + 1) =
r∏

j=1

nr+ j(nr+ j + 1)

is negligible with respect to the number of trivial solutions, i.e., o(Nr)
when N → ∞, then we have the central limit theorem:

1
√

N

N∑
n=1

XnXn+1 −→
N→∞

N1 + iN2√
2

whereN1 andN2 are two i.i.d. standard Gaussian variables. This fact
is obvious for r = 1 and we have proven that it is true for r = 2. More
precisely, we have checked that the number of non-trivial solutions
of

a(a + 1)d(d + 1) = b(b + 1)c(c + 1)

where 1 ≤ a < b ≤ c < d ≤ N is between δN −1 and N3/2+o(1), for an
explicit constant δ > 0. We have also proven that the infimum of the
ratio d/a for all the solutions is 3 + 2

√
2 (this very last result, with

elementary but quite difficult solution, may have been suitable for an
olympiad problem). We don’t know how to generalize our method to
r ≥ 3, or to other sums of the form (2), like

N∑
n=1

XnX−1
n+1

or
N∑

n=1

XnXn+1Xn+2 =

N∑
n=1

Xn(n+1)(n+2).

A natural generalisation of the sums of the form 2, using the multi-
plicativity of (Xm)m≥1, gives the following problem.

224*. Open Problem. Let (Xm)m≥1 be a random completely
multiplicative function, such that (Xp)p prime are i.i.d., uniform on
the unit circle. For which integer-valued polynomials P and Q do
we have the central limit theorem:

1
√

N

N∑
n=1

XP(n)X−1
Q(n) −→N→∞

N1 + iN2√
2
,

where N1,N2 are independent standard Gaussian variables? In
particular, does this central limt theorem occur for P(n) = n(n+1)
and Q(n) = 1?
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II (B) An Open Problem, by Joseph H. Silverman
(Mathematics Department, Brown University,
Providence, RI, USA)

225* A problem in (ostensibly elementary) number theory
Our problem is not new, dating back to a 2004 paper of Ailon
and Rudnick [2], but at the same time it is surprisingly new in the
sense that one can imagine it appearing in millenia-old mathemat-
ical works from Greece, India, or China, since it involves nothing
more than powers and greatest common divisors.

The initial version of the problem is simply stated: Are there
infinitely many integers n ≥ 1 such that

gcd(2n − 1, 3n − 1) = 1 ?

It is natural to replace 2 and 3 with arbitrary integers a and b,
although a small amount of care is needed to avoid degenerate sit-
uations such as a = b, and there is the issue that gcd(an −1, bn −1)
is always divsiible by gcd(a − 1, b − 1). With these caveats, a
first generalisation asks: Let a, b ∈ Z be non-zero multiplica-
tively independent integers, i.e., integers such that ambn � 1 for
all (m, n) � (0, 0). Are there infinitely many integers n ≥ 1 such
that

gcd(an − 1, bn − 1) = gcd(a − 1, b − 1) ?

More generally, one may allow a and b to be rational numbers by
defining the gcd of two rational numbers to be the gcd of their
numerators; and one may take a and b from a number field K by
defining

gcd
K

(α, β) := gcd(NK/Qα,NK/Qβ) for α, β ∈ K∗.

The best evidence says that there is an affirmative answer in a
strong sense for characteristic 0 function fields. To avoid exces-
sive notation, we state the result for polynomials: Let a(T ), b(T ) ∈
C[T ] be polynomials that are multiplicatively independent mod-
ulo C∗. Then not only are there infinitely many n ≥ 1 such that

gcd
(
a(T )n − 1, b(T )n − 1

)
= gcd

(
a(T ) − 1, b(T ) − 1

)
,

but there is also a non-zero polynomial c(T ) such that

gcd
(
a(T )n − 1, b(T )n − 1

)
divides c(T ) for all n ≥ 1.

The proof by Ailon and Rudnick [2] uses a theorem due variously
to Lang, Ihara, Serre and Tate [4], which says that an irreducible
algebraic curve in P2 has only finitely many points with root-of-
unity coordinates unless the curve is itself a translate of a torus.

Assuming that the Ailon–Rudnick question has an affirmative
answer, it is natural to ask how often the gcd is minimal. The fact
that

m | n =⇒ gcd(am − 1, bm − 1) | gcd(an − 1, bn − 1)

means that the minimal-gcd property for a composite n is con-
tingent on it being true for exponents that are factors of n. This
suggests restricting it to prime exponents, which leads to the next
question: What is the densisty (if it exists) of the set

{
p prime : gcd(ap − 1, bp − 1) = gcd(a − 1, b − 1)

}
?

Experiments suggest that the density is large, but they are incon-
clusive as to whether one should expect density 1, or density 1− δ
for some small δ = δ(a, b) > 0.

The strong result over function field raises the question of how
large gcd(2n − 1, 3n − 1) can be as n → ∞. The function field
bound is uniform in n, but there is no such bound for Q, since tak-
ing n = p−1 with p ≥ 5 prime, Fermat’s little theorem tells us that
gcd(2p−1−1, 3p−1−1) is divisible by p. Thus, any lower bound for
gcd(2n − 1, 3n − 1) must grow at least linearly as a function of n,
but this is far from the truth, since in fact any lower bound must
grow almost exponentially: There is a constant C = C(a, b) > 0
such that

log gcd(an − 1, bn − 1) ≥ nC/ log log n for infinitely many n ≥ 1.

Bugeaud, Corvaja, and Zannier [3] noted that this follows from
an analytic estimate of Adelman–Pomerance–Rumely [1, Propo-
sition 10] that was used to prove the validity of an almost-linear-
time primality test.

Thus there exists a subsequence of gcd(an−1, bn−1) that grows
almost exponentially in n. This raises the question of whether the
growth can be fully exponential. The answer is no, as proven by
Bugeaud, Corvaja, and Zannier [3]: Let a, b ∈ Z be non-zero and
multiplicatively independent. Then

lim
n→∞

log gcd(an − 1, bn − 1)
n

= 0.

The proof is an intricate application of Schmidt’s subspace theo-
rem, which in turn is a higher-dimensional version of Roth’s the-
orem on Diophantine approximation. As such, it is ineffective, in
the sense that one cannot write down an explicit n0(ε) such that
the fraction in the limit is smaller than ε for all n ≥ n0(ε). (We
mention in passing for function fields over finite fields, e.g., for
a(T ), b(T ) ∈ Fp[T ], the Bugeaud–Corvaja–Zannier limit is false,
even if one restricts n to lie in a fixed congruence class modulo p;
see [5].)

In fancier terms, the n-power map is an endomorphism of the
multiplicative group, the pair (a, b) is a point in G2

m(Q) whose
powers are Zariski dense, and gcd(an − 1, bn − 1) is a measure
of the arithmetic distance from (a, b)n to the identity (1, 1). This
viewpoint allows us to reformulate the Ailon–Rudnick question
for other (commutative) algebraic groups. Roughly speaking, for
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any algebraic variety V/Q, we fix a model over Z and define the
arithmetic distance between points P,Q ∈ V(Q) to be

gcdV (P,Q) :=
∏

p prime

(p-adic distance from P to Q)−1.

Then we ask: Let G/Q be a semi-abelian variety of dimension at
least 2, i.e., G is the extension of an abelian variety by a torus, and
let P ∈ G(Q) be a point generating a subgroup ZP that is Zariski
dense in G. Are there infinitely many n ≥ 1 such that

gcdV (nP,O) = gcdV (P,O) ?

Specialising to G = E1 × E2 a product of elliptic curves, we get
questions about gcd(An, Bn), where An and Bn are independent
elliptic divisibiilty sequences. In this setting, neither the Ailon–
Rudnick question nor the analogue of the Bugeaud–Corvaja–
Zannier limit is known, although the latter is a consequence of
Vojta’s conjecture applied to the blow-up of E1 × E2 at the iden-
tity.
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III (A) Solutions

211. Recall that a smooth function u : R2 → R is called har-
monic if

∆u(x, y) :=
∂2u
∂x2 (x, y) +

∂2u
∂y2 (x, y) = 0 , for any (x, y) ∈ R2.

Determine all harmonic polynomials in two real variables.

(Giovanni Bellettini, Dipartimento di Ingegneria
dell’Informazione e Scienze Matematiche, Siena, Italia, and

ICTP International Centre for Theoretical Physics,
Mathematics Section, Trieste, Italy)

Solution by the proposer. Let P(x, y) be a harmonic polynomial of
degree n ≥ 0 in the real variables x and y; since the cases n = 0
and n = 1 are trivial, we shall assume n ≥ 2. The first step is to show
that we can reduce to the case when the polynomial is homogeneous.
Indeed, we can always write P as the sum of its homogeneous com-
ponents:

P = P0 + · · · + Pn

where, for any i ∈ {0, . . . , n}, the polynomial Pi is homogeneous of
degree i, that is

Pi(λx, λy) = λiPi(x, y)

for any λ ∈ R and any (x, y) ∈ R2. Since ∆ acts linearly, we have

0 = ∆P = ∆P0 + · · · + ∆Pn.

We observe now that ∆Pi = 0 for any i = 0, . . . , n. Indeed,
let j, k ∈ {0, . . . , n}, 2 ≤ j < k, and suppose that 0 = ∆Pj + ∆Pk. Set
ψ j := ∆Pj, ψk := ∆Pk. By a direct computation, ψ j is a ( j − 2)-
homogenous polynomial and ψk is a (k−2)-homogenous polynomial.
For any λ ∈ R and any (x, y) ∈ R2 we then have

0 = ψ j(λx, λy) + ψk(λx, λy) = λ j−2ψ j(x, y) + λk−2ψk(x, y)

= λ j−2(λk− j + 1)ψ j(x, y).

Since this equality must be valid for any λ ∈ R, we deduce that ψ j

must be identically zero. This observation shows therefore that

∆Pi = 0 ∀i ∈ {2, . . . , n},

and hence we can always reduce to the case when our polynomial is
n-homogeneous, n ≥ 2,

Pn(x, y) = an,0 xn + an−1,1 xn−1y + · · · + a1,n−1 xyn−1 + a0,nyn.

We have to determine the n+1 coefficients an,0, an−1,1, . . . , a1,n−1, a0,n

in such a way that ∆Pn = 0. A direct computation shows that the
coefficient of the generic monomial x jyk of ∆Pn, with j + k = n − 2,
is given by

( j + 2)( j + 1)aj+2,k + (k + 2)(k + 1)aj,k+2. (3)

Using the expressions in (3), we obtain a homogeneous linear system
of (n − 1) equations in (n + 1) unknowns; it is not difficult to check
that the system has (maximal) rank n − 1. Therefore, the subspace of
solutions has dimension two. A possible choice of a basis generating
the n-homogeneous harmonic polynomials is given by

Re(zn) =
∑

k=0,...,n
k even

(
n
k

)
(−1)

k
2 xn−kyk, Im(zn) =

∑
k=0,...,n

k odd

(
n
k

)
(−1)

k−1
2 xn−kyk,

where z = x + iy ∈ C. Indeed, it is sufficient to check that Re(zn)
and Im(zn) do not have proportional coefficients, and to recall that
z ∈ C → zn ∈ C is entire holomorphic, so that Re(zn) and Im(zn) are
harmonic in R2. �

Also solved by Sotirios E. Louridas (Athens, Greece), George Mili-
akos (Sparta, Greece) and Socratis Varelogiannis (France)

212 Reaction-diffusion systems of the form

ut = Duxx + g(u) + µMu, (x, t) ∈ R × (0,∞),

where

u(x, t) ∈ Rn, gi(u) = riui

1 −
n∑

j=1

α ju j

, ri, αi > 0,

i = 1, . . . , n, µ > 0,

and D and M are constant n × n matrices such that D is positive-
definite diagonal and M has strictly positive off-diagonal elements
and zero column sums, arise in the modelling of the population
densities of n phenotypes of a species that diffuse, compete both
within a phenotype and with other phenotypes, and may mutate
from one phenotype to another. Denoting the Perron-Frobenius
eigenvalue of a matrix Q by ηPF[Q] and assuming that the n phe-
notypes spread together into an unoccupied spatial region at the
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µ-dependent speed

c(µ) := inf
β>0
ηPF

[
βD + β−1(diag(r1, . . . , rn) + µM)

]
,

which is determined by the linearisation of the reaction-diffusion
system about the extinction steady state u = (0, . . . , 0) ∈ Rn, prove
that spreading speed c(µ) is a non-increasing function of µ.

(Elaine Crooks, Department of Mathematics,
College of Science, Swansea University,

Swansea, UK)

Solution by the proposer. Let µ > µ0 > 0, denote the zero n×n matrix
by Z, and define

P := β̄2D + diag(r1, . . . , rn) − c(µ0)I,

where β̄ is such that the infimum in the definition of c(µ0) is attained
at β = β̄. Then

ηPF[P + µ0 M] = β̄ ηPF

[
β̄D + β̄−1(diag(r1, . . . , rn) + µ0 M

) − c(µ0)I
]

= 0,

and by the convexity of the Perron-Frobenius eigenvalue of a matrix
on its diagonal,

ηPF

[
1
µ

P + M
]
≤ µ0

µ
ηPF

[
1
µ0

P + M
]
+

(
1 − µ0

µ

)
ηPF[Z + M]

=
µ0

µ
ηPF

[
1
µ0

P + M
]
+

(
1 − µ0

µ

)
ηPF[M]

= 0,

since

ηPF[M] = 0 and ηPF

[
1
µ0

P + M
]
=

1
µ0
ηPF[P + µ0 M] = 0.

Hence
ηPF
[
P + µM

] ≤ 0,

which says that,

ηPF

[
β̄D + β̄−1(diag(r1, . . . , rn) + µM)

]
≤ c(µ0),

and so

c(µ) := min
β>0
ηPF

[
βD + β−1(diag(r1, . . . , rn) + µM)

]
≤ c(µ0).

�

Also solved by Mihály Bencze (Brasov, Romania), Jim Kelesis
(Athens, Greece), Sotirios E. Louridas (Athens, Greece), George
Miliakos (Sparta, Greece)

213. Consider the second-order PDE with non-constant coeffi-
cients,

uxx − x2uyy = 0.

Find at least one family of solutions.

(Jonathan Fraser, School of Mathematics and Statistics,
The University of St Andrews, Scotland)

Solution by the proposer. In the general form of a second-order PDE,

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = 0,

we have a = 1, b = 0 and c = −x2. Hence, the discriminant
b2 − ac = x2 implying that the equation is hyperbolic for x � 0.
The characteristic curves are given by

dy
dx
=

b
a
± 1

a

√
b2 − ac = ±x, =⇒ y = ±1

2
x2 + constant.

So the characteristic coordinates are

ξ = y +
1
2

x2, η = y − 1
2

x2

noting

ξx = x, ξy = 1, ηx = −x, ηy = 1.

Hence,

ux = xuξ − xuη,

uxx =
[
x(uξ − uη)

]
x

= (uξ − uη) + x(uξ − uη)x

= (uξ − uη) + x2(uξξ − 2uξη + uηη)

uy = uξ + uη,

uyy = uξξ + 2uξη + uηη.

Substituting into uxx − x2uyy = 0, we obtain

−4x2uξη + (uξ − uη) = 0 =⇒ uξη =
(uξ − uη)

4x2 .

Finally, we must replace the x in the equation by ξ and η. From their
definitions, we have

ξ − η = x2,

and so the canonical form of the equation is

uξη =
(uξ − uη)
4(ξ − η) .

It turns out that this equation can be solved by assuming a solution
of the form

u(ξ, η) = f (ξη) = f (t),

with t = ξη. Differentiating gives

uξ = η f ′, uη = ξ f ′, uξη = f ′ + ξη f ′′.

When these are substituted into the canonical form of the equation,
it reduces (greatly) to a single first-order ODE for g = f ′,

4tg′ + 5g = 0,

which can be solved and integrated to give

f = A(ξη)−1/4 + B.

Therefore the solution in terms of the original x, y variables is

u = A
[(

y + 1
2 x2
)
(y − 1

2 x2)
]−1/4

+ B = A
(
y2 − 1

4 x4
)−1/4

+ B.

This can be verified by direct differentiation. A solution exists only
in the regions above y = 1

2 x2 or below y = − 1
2 x2, i.e., above and

below the characteristics ξ = 0 and η = 0 emanating from (0, 0), as
shown in Figure 1.
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Figure 1. Illustration of the solution to the (almost) hyperbolic PDE
uxx − x2uyy = 0. The blue curves show lines of constant u (equally spaced
in value). Note u → ∞ approaching the critical characteristic y = 1

2 x2

(the thick red curve). The characteristics y = ξ− 1
2 x2 are shown in green,

and the characteristics y = η+ 1
2 x2 are shown in red (for η ≥ 0). Note that

the characteristics and solution curves are tangent along x = 0 where the
PDE is parabolic.

Note, there are in fact many other solutions. One for example is

u = a(ξ + η) = 2ay.

Another is
u = a(ξ2 + η2) + bξη

so long as b = 2a/5. In the coordinates x and y, this solution is

u(x, y) =
2a
5

(6y2 + x4) .

Infinitely many other analogous solutions can be constructed assum-
ing

u(ξ, η) =
n∑

j=0

ajξ
n− jη j ,

for all n > 0, and with an− j = aj for all j. It is just a matter of plug-
ging this form into the PDE and determining relations among the
coefficients aj. �

Also solved by Mihály Bencze (Brasov, Romania), Sotirios E.
Louridas (Athens, Greece), George Miliakos (Sparta, Greece) and
Socratis Varelogiannis (France)

214. Let u solve
(∆ + 2002 xy2)u = 1

on the triangle T = {(x, y) : 0 < x < 1, 0 < y < 1 − x} with zero
Dirichlet conditions:

u(x, 0) = u(0, y) = u(x, 1 − x) = 0.

What are the first 10 significant digits of u(0.1, 0.2)?

(Sheehan Olver, Department of Mathematics,
Imperial College, London, UK)

Solution by the proposer.

−0.00321203523532

should be accurate to 12 digits of relative accuracy.
This problem is motivated by a similar question recently posed

by A. Gopal and L. N. Trefethen on NADigest, 3 Dec 2018:

Let the domain be the L-shaped region in the (x, y)-plane consist-
ing of [0, 2]×[0, 2] minus its upper-right quarter. If u is harmonic
in this region with u = x2 on the boundaries, what is u(.99, .99)
to 8 digits?

The difficulty is that the solution has weak singularities at the cor-
ners, which limits accuracy of most numerical methods. They pro-
posed a solution based on using fundamental solutions with cleverly
chosen spacing near the corners [6], but this technique is not imme-
diately adaptable to Problem 1, where the fundamental solutions are
not known in closed form. Furthermore, the large factor introduces
oscillations into the solution and ill-conditioning into standard dis-
cretisations that make the problem challenging.

To solve Problem 1 we use a recently introduced method [3],
where we represent the solution in orthogonal polynomials on the
triangle and construct a sparse representation of the partial differen-
tial operator. This is close to prior work on p-finite element meth-
ods [1, 5], but with the added benefit of sparsity for variable coeffi-
cients. This sparsity allows us to use very high order approximations
and thereby resolve the solution to high accuracy, despite the corner
singularities and oscillations.

In detail, define

P(a,b,c)
n,k (x, y) := P(2k+b+c+1,a)

n−k (2x − 1)(1 − x)kP(b,c)
k (2y/(1 − x) − 1)

which are orthogonal with respect to the weight xayb(1 − x − y)c on
T (cf. for example [2]) and write

u(x, y) ≈ uN(x, y) = xyz
N∑

n=0

n∑
k=0

uN
n,kP(1,1,1)

n,k (x, y)

where z := 1 − x − y and the coefficients uN
n,k are to be determined.

The action of the Laplacian on this basis can be deduced in closed
form by employing recurrence relationships for the orthogonal poly-
nomials [4]. That is, the following recurrences (which follow from
manipulation of 1D Jacobi polynomial relationships) can be com-
bined to express d2

dx2

(
xyzP(1,1,1)

n,k

)
in terms of P(1,1,1)

n,k :

−(2k + 3)
d
dx

(
xyzP(1,1,1)

n,k

)
= y
(
(k + 1)(n − k + 1)P(0,1,0)

n+1,k

+ (k + 1)(n − k + 1)P(0,1,0)
n+1,k+1

)
,

(2k + 2)(2n + 3)yP(0,1,0)
n,k = (k + 1)(n + k + 2)P(0,0,0)

n,k

− (k + 1)(n − k)P(0,0,0)
n,k+1

− (k + 1)(n − k + 1)P(0,0,0)
n+1,k

+ (k + 1)(n + k + 3)P(0,0,0)
n+1,k+1,

(2k + 1)
d
dx

P(0,0,0)
n,k = (n + k + 2)(k + 1)P(1,0,1)

n−1,k ,

(2n + 4)(2k + 2)P(1,0,1)
n,k = (n + k + 4)(k + 2)P(1,1,1)

n,k

− (n − k + 1)(k + 2)P(1,1,1)
n−1,k

+ (k + 1)(n + k + 2)P(1,1,1)
n−1,k−1

− (k + 1)(n − k + 1)P(1,1,1)
n,k−1 .

The following can be combined to express d2

dy2

(
xyzP(1,1,1)

n,k

)
also in

terms of P(1,1,1)
n,k :

d
dy

(
xyzP(1,1,1)

n,k

)
= −(k + 1)xP(1,0,0)

n+1,k+1,

(2n + 3)xP(1,0,0)
n,k = (n − k + 1)

[
P(0,0,0)

n,k + P(0,0,0)
n+1,k

]
, (4)

d
dy

P(0,0,0)
n,k = (k + 1)P(0,1,1)

n−1,k−1,

(2n + 4)P(0,1,1)
n,k = (n + k + 4)P(1,1,1)

n,k + (n + k + 3)P(1,1,1)
n−1,k . (5)

Thus ∆
(
xyzP(1,1,1)

n,k

)
has a sparse expansion in P(1,1,1)

n,k , which can be
found in closed form.
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Figure 2. The solution (left). The sparsity of the discretisation LN for
N = 30 (right).

We similarly can construct a sparse expression for multiplication
by xy2, using the following:

(2n + 5)xP(1,1,1)
n,k = (n − k + 1)P(0,1,1)

n,k + (n − k + 1)P(0,1,1)
n+1,k ,

(2n + 4)P(0,1,1)
n,k = (n + k + 4)P(1,1,1)

n,k + (n + k + 3)P(1,1,1)
n−1,k ,

(2k + 3)(2n + 5)yP(1,1,1)
n,k = (k + 1)(n + k + 3)P(1,0,1)

n,k

− (k + 1)(n − k + 1)P(1,0,1)
n,k+1

− (k + 1)(n − k + 1)P(1,0,1)
n+1,k

+ (k + 1)(n + k + 5)P(1,0,1)
n+1,k+1,

(2n + 4)(2k + 2)P(1,0,1)
n = (n + k + 4)(k + 2)P(1,1,1)

n,k

− (n − k + 1)(k + 2)P(1,1,1)
n−1,k

+ (k + 1)(n + k + 2)P(1,1,1)
n−1,k−1

− (k + 1)(n − k + 1)P(1,1,1)
n,k−1 ,

(2k + 3)(2n + 5)zP(1,1,1)
n,k = (k + 1)(n + k + 3)P(1,1,0)

n,k

+ (k + 1)(n − k + 1)P(1,1,0)
n,k+1

− (k + 1)(n − k + 1)P(1,1,0)
n+1,k

− (k + 1)(n + k + 5)P(1,1,0)
n+1,k+1,

(2n + 4)(2k + 2)P(1,1,0)
n = (n + k + 4)(k + 2)P(1,1,1)

n,k

− (n − k + 1)(k + 2)P(1,1,1)
n−1,k

− (k + 1)(n + k + 2)P(1,1,1)
n−1,k−1

+ (k + 1)(n − k + 1)P(1,1,1)
n,k−1 .

Recurrence relationships induce an operator on matrix coefficients,
that is, there exists a block (N + 6) × N matrix LN so that

∆uN(x, y) = ∆


xyz
(
P(1,1,1)

0,0 , P(1,1,1)
1,0 , . . . , P(1,1,1)

N,N

)


uN
0,0
...

uN
N,N





=
(
P(1,1,1)

0,0 , P(1,1,1)
1,0 , . . . , P(1,1,1)

N+1,N+1

)
LN



uN
0,0
...

uN
N,N



Using this we arrive at a linear system:

LNuN = e0

where uN is best interpreted as a block-vector with blocks uN
n =(

uN
n,0, . . . , u

N
n,n

)�
, and LN is a block-matrix whose entries are deter-

mined by ∆
(
xyzP(1,1,1)

n,k

)
using the recurrences. This is a sparse linear

system, see the right-hand side of Figure 1, and can be solved effi-
ciently, either in O(N4) operations using a block-QR decomposition

or in O(N3) operations using sparse direct methods, as implemented
in UMFPack. The result was determined using N = 1000, which
matched the calculation with N = 999 to an absolute accuracy of
5.5 × 10−17. �
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Also solved by Mihály Bencze (Brasov, Romania) and Socratis Varel-
ogiannis (France)

215. Let u be an entire harmonic function in Rn, satisfying
u(x) ≥ −c(1 + |x|m) for some constants c > 0 and m ∈ N. Show
that u is a polynomial of degree less or equal to m.

(Gantumur Tsogtgerel, McGill University,
Department of Mathematics and Statistics,

Montreal, Canada)

Solution by the proposer. Let us first derive an upper bound on u. To
this end, let r > 0 and let

v(x) = u(x) + c(1 + rm).

Then v is harmonic, and v ≥ 0 in B(0, r), where B(0, r) ⊂ Rn is the
closed ball of radius r > 0, centred at the origin. Now, pick x ∈ Rn

with |x| = r/2, and invoke the mean value property to get

v(0) =
1

|B(0, r)|

∫
B(0,r)

v ≥ 1
|B(0, r)|

∫
B(x,r/2)

v =
|B(x, r/2)|
|B(0, r)| v(x),

where B(x, r/2) is the closed ball of radius r/2, centred at x. This
yields

u(x) ≤ v(x) ≤ 2nv(0) = 2n(u(0) + c + crm),

and since r was arbitrary, we conclude

u(x) ≤ 2n(u(0) + c + c2m|x|m), c ∈ Rn.

Combining it with the lower bound u(x) ≥ −c(1 + |x|m), we infer

|u(x)| ≤ A + B|x|m,

for some constants A and B. Finally, the standard derivative estimate

|∂αu(x)| ≤ M(n, |α|)
r|α|

sup
B(x,r)
|u|,

for harmonic functions finishes the job. �

Also solved by Mihály Bencze (Brasov, Romania), John N. Daras
(Athens, Greece), and Jim Kelesis (Athens, Greece)
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216. Let f : [0,∞)→ (0,∞) be a continuous function satisfying
f (x)→ 0 as x→ ∞, and let

Ω = {(x, y) ∈ R2 : x > 0, 0 < y < f (x)}.

Exhibit an unbounded function u in Ω, such that u ∈ Hk(Ω) for
all k ≥ 0. Here Hk(Ω) is the standard Sobolev space of functions
whose partial derivatives of all orders up to k are square integrable.

(Gantumur Tsogtgerel, McGill University,
Department of Mathematics and Statistics,

Montreal, Canada)

Solution by the proposer. Fix a nontrivial smooth “bump” function
ϕ : R→ [0,∞), supported in the interval (0, 1), and let

u(x, y) =
∞∑

n=1

nϕ(x − an), (x, y) ∈ Ω,

where {an} is an increasing sequence of numbers, to be determined
below. It is clear that u is well-defined and unbounded as long as {an}
grows sufficiently fast.

Let us compute the L2-norm of u. Assuming that {an} grows suf-
ficiently fast, we have

∫
Ω

|u|2 =
∞∑

n=1

n
∫ an+1

an

f (x)|ϕ(x−an)|2dx =
∞∑

n=1

n
∫ 1

0
f (t+an)|ϕ(t)|2dt,

which will be finite if we choose, e.g., an so large that f (x) < n−3 for
all x > an. It is not difficult to see that the same condition works for
the derivatives as well. �

Also solved by Mihály Bencze (Brasov, Romania), John N. Daras
(Athens, Greece) and Socratis Varelogiannis (France)

We would like for you to submit solutions to the proposed problems
and ideas on the open problems. Send your solutions by email to
Michael Th. Rassias, Institute of Mathematics, University of Zürich,
Switzerland, michail.rassias@math.uzh.ch.
We also solicit your new problems with their solutions for the next
“Solved and Unsolved Problems" column, which will be devoted to
Algebra.


