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Dynamics of Random Interfaces
and Hydrodynamic Limits
Fabio Lucio Toninelli (Technical University of Vienna, Austria)

1 Introduction

In this article, we will present a panorama of mathematical
results and open problems concerning the large-scale prop-
erties, both in space and time, of the dynamics of random
interfaces. This is a very broad field of research, whose mo-
tivation comes from physics [1], and which involves several
branches of mathematics, notably probabilities (Markov pro-
cesses) and analysis (deterministic and stochastic PDEs, cal-
culus of variations), but also combinatorics (random tilings
of the plane, Schur processes) and probabilistic algorithms
(Markov “Monte Carlo” chains). We will only focus on a few
selected aspects.

To introduce the topic, we would first like to take two ex-
amples from everyday life which illustrate the type of prob-
lems we are talking about. We will then move on to the math-
ematical modelling of such physical phenomena. As a first
example, let us imagine the growth of the snow cover in a
garden on a winter’s day. Although the trajectory of individ-
ual flakes is an essentially random process, if we look at the
landscape from a certain distance, we will get the impression
that the snow height profile grows in a manner that is reg-
ular enough to form a smooth surface. However, if you look
closer, you will notice a much more irregular and rough struc-
ture, on a larger scale than the typical size of the individual
flakes, because of the fact that the flakes do not spread out uni-
formly on the surface. Note that there are growth phenomena
that are of much greater practical importance to study, such
as the growth of bacterial colonies in biology or the epitaxial
growth of crystals by molecular jet deposition in solid-state
physics [1]. Our second example concerns the coexistence of
thermodynamic phases. For example, we imagine a container
at a temperature of 0° C containing ice cubes floating in wa-
ter. Although at this temperature both ice and water are in a
thermodynamically stable state, we can observe a temporal
evolution of the shape of the ice cubes (and thus of the wa-
ter/ice interface). Once again, the evolution appears regular
and deterministic on a large scale, and essentially random if
we observe the interface under the microscope. Note that this
second example is of a very different nature: if the former is
a growth phenomenon (the snow cover increases with time),
in the latter the water/ice interface is in a state of equilibrium
because water and ice are both stable at the particular tem-
perature of 0° C. This distinction between two very different
physical situations will have repercussions on the mathemati-
cal models that we will introduce in the following.

The aim of this research area is to understand both the
macroscopic (deterministic) evolution on a large scale and the
fluctuations around this macroscopic behaviour. Note that the
point of view of the mathematician working on these prob-

lems is to abstract from the microscopic details of physical
or specific biological systems and try to extract “universal”
types of behaviour.

Obviously, there is no way to study such physical phe-
nomena on the basis of the fundamental laws governing the
movement of water molecules or snow flakes. Following the
usual spirit of statistical physics, the idea is rather to introduce
strongly simplified mathematical models which, however, re-
tain the essential qualitative aspects of real systems. First of
all, the corresponding interface is usually modelled by a real-
valued (or, often, integer-valued) height function h(x), where
the spatial coordinate x takes its values in a d-dimensional
network x ∈ Zd. h(x) should be interpreted as the vertical co-
ordinate of the interface above point x. Note that this type of
description is already a huge simplification, not only because
physical space is not discrete, but also because any realistic
interface will have “overhangs” that prevent us from identify-
ing it with the graph of a function h. As to the dimension d, the
physically most intuitive case is that of d = 2, in which case
the height function describes a two-dimensional interface in
the usual three-dimensional space. However, it is interesting
to consider the case of any dimension, not only for the sake
of mathematical generality, but also because, for example, the
one-dimensional case d = 1 is very rich in physical applica-
tions. For example, in the case of a burning sheet of paper, the
combustion front is a one-dimensional interface that propa-
gates in a two-dimensional space (the sheet).

A second crucial simplification is to assume that the tem-
poral evolution of the height function h is a stochastic process,
and more particularly a time homogeneous Markovian pro-
cess. The interface will therefore be described by a random
function h(x, t), with t ≥ 0 being a continuous parameter that
designates time: the Markov property implies that the prob-
ability of transition from a configuration hA = {hA(x)}x∈Zd at
time tA to a configuration hB = {hB(x)}x∈Zd at time tB > tA de-
pends only on hA, hB and tB − tA, and not on the whole history
of the system between times 0 and tA, nor on the individual
values of tA, tB. Conceptually, it may seem very risky to re-
place the deterministic laws of physics by random laws of
evolution, but this corresponds exactly to the usual approach
of statistical physics to replace the Hamiltonian (determin-
istic) equations of a set of molecules by a stochastic process.
Since the “true” interactions between elementary components
(molecules, snow flakes...) of the physical system are essen-
tially local (i.e., of short range) in space, we will choose a
Markovian process whose elementary transitions are them-
selves local: for example, during an elementary transition
h �→ h′, the height at a certain point x changes from the value
h(x) to the value h′(x) = h(x) + n, n ∈ Z, while the other
values remain unchanged. We denote by c(h → h′) > 0 the
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Figure 1. A portion of the height profile of the simple exclusion model

infinitesimal transition rate, i.e., the probability of transition
between h et h′ in an infinitesimal time interval [0, δ] will be
given by c(h → h′)δ + O(δ2). To respect the local nature of
the physical interactions, it will be assumed that the transition
rate depends only on the configuration of h around point x,
rather than on the function h as a whole.

In order to make this discussion more concrete, we will
first describe the most canonical and best studied example of
stochastic interface evolution [9]: the one-dimensional sim-
ple exclusion process. In this model, the configurations of al-
lowed interfaces h = {h(x)}x∈Z are the following: each height
h(x) takes its values in Z and its gradients h(x)− h(x− 1) take
only the values +1 or −1. One can thus visualise such an in-
terface as a one-dimensional zigzag path in two-dimensional
space, as in Figure 1.

Now let us describe the associated Markov process. Tran-
sitions occur at real random times, and each is an elementary
transition of one of two types:
• If h(x−1) = h(x+1) = h(x)+1, i.e., if the height has a local

minimum in x, then we can have the transition h → h(x,+),
where h(x,+)(y) = h(y) for all y � x while h(x,+)(x) = h(x)+2
(the local minimum in x becomes a local maximum).
• Inversely, if h(x− 1) = h(x+ 1) = h(x)− 1 (local maximum

in x) then we can have the transition h → h(x,−), where
we let h(x,−) be the configuration where the height in x is
decreased by 2, while it is unchanged everywhere else.

We still have to specify the rates associated with these two
types of transitions. Given a real number p ∈ [0, 1], we will
assign the rate c(h → h(x,+)) := p to transitions that increase
the interface, and the rate c(h → h(x,−)) := 1 − p to those
that decrease it. The special case p = 1/2 is known as the
Symmetric Simple Exclusion Process (SSEP), the case p �
1/2 is the Asymmetric Simple Exclusion Process (ASEP) and
the special case p ∈ {0, 1}, where only transitions of one of the
two types are allowed, is known as Totally Asymmetric Simple
Exclusion (TASEP).

An equivalent description of the simple exclusion process
is as follows: each x has an independent random clock which
rings at random exponential time intervals of mean 1. If the
clock in x rings at time t, a coin is tossed which gives ∧ with
probability p and ∨ with probability 1− p. If we obtain ∧ and
the height function at time t has a local minimum in x, we then
perform the transition h �→ h(x,+), otherwise we do nothing;
analogously, if we get ∨ and the height function at time t has
a local maximum in x, we then perform the transition h �→
h(x,−), otherwise we do nothing. Note that, since the clocks at
two points x � x′ are independent, we will never (except with

zero probability) have two clocks ringing at the same instant
of time, and thus each transition changes the height h at a
single point x.

As we said at the very beginning of this note, we are in-
terested in the large-scale behaviour of interface dynamics.
There are several ways to understand the expression “large-
scale behaviour”. To understand this point, let us forget for
a moment about interface dynamics and think about a much
simpler probabilistic question: the asymptotic behaviour for
large N of the sum

S N =

N∑
i=1

Xi

of N independent and equally distributed random variables Xi

which, for simplicity, are assumed to have a finite variance

σ2 := E(X2
1) − (EX1)2 < ∞,

where E( f ) denotes the mean of a random variable f . The first
question is, what is the asymptotic behaviour of (1/N)S N , and
the well-known answer is the law of large numbers

lim
N→∞

S N

N
= E(X1),

where the convergence of the random variable S N/N towards
the deterministic quantity E(X1) is valid with probability 1.
Next, there is the question of what the fluctuations are of
S N/N around its deterministic limit: we will obtain the cen-
tral limit theorem

√
N
(S N

N
− E(X1)

)
N→∞⇒ N(0, σ2)

where N(0, σ2) is a random normal (i.e., Gaussian) centered
variable of varianceσ2 and “⇒” means that the law of the ran-
dom variable on the left tends towards the law of the random
variable on the right. If the central limit theorem describes
typical or “normal” fluctuations of S N/N at scale 1/

√
N, we

can also be interested in atypical deviations (say, deviations
of order 1). We will then have statements of the “large devia-
tions” type:

− lim
N→∞

1
N

log P
(∣∣∣∣∣

S N

N
− E(X1)

∣∣∣∣∣ ≥ δ
)
= I(δ)

for a certain function I(·) which depends on the law of vari-
ables Xi. Here, P(A) denotes the probability of an event A.
Although the evolution of a random interface is something
much more complicated than a sum of independent variables,
these three types of questions (law of large numbers, central
limit theorem, large deviations) are also very natural in this
context.

In this discussion, for interface dynamics, we will concen-
trate mainly on the first two questions (“law of large numbers”
and “fluctuations”). In the context of interface dynamics, but
more generally of out-of-equilibrium statistical physics, we
will rather speak of “hydrodynamic limit" than “law of large
numbers”.1 The question can be asked as follows. Suppose

1 The terminology of “hydrodynamic limit” comes from fluid dynamics: if
the motion of molecules is governed at the microscopic level by Hamilto-
nian equations with chaotic and essentially random behaviour, at the lab-
oratory scale we observe the deterministic evolution of a finite number
of macroscopic parameters (pressure, density, . . . ), described by partial
differential equations.
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that the initial condition of the dynamics, i.e., the configura-
tion h(·, 0) = {h(x, 0)}x∈Zd of height at time t = 0, approxi-
mates a limit height profile φ0 : Rd �→ R. More precisely, let
us assume that the initial profile h(·, 0) satisfies, for all u ∈ Rd,

lim
ε→0
εh(�ε−1u�, 0) = φ0(u). (1)

For example, for the simple exclusion process, given a func-
tion φ0 of Lipschitz constant inferior to 1, we could choose
h(x, 0) as being the nearest integer to

1
ε
φ0(εx)

and having the same parity as x (the latter condition ensures
that h(x, 0) − h(x − 1, 0) ∈ {−1,+1}). We say that a dynamic
admits a hydrodynamic limit if there is a deterministic func-
tion φ = φ(u, t), t ≥ 0, u ∈ Rd and an exponent γ ≥ 0 such
that

lim
ε→0
εh(�ε−1u�, ε−γt) = φ(u, t). (2)

Here, the convergence has to be interpreted as a convergence
in probability: for all δ > 0,

lim
ε→0
P
(
|εh(�ε−1u�, ε−γt) − φ(u, t)| ≥ δ

)
= 0.

As can easily be imagined, there will only be one choice for
the exponent γ that allows us to find a well-defined and not-
trivial hydrodynamic limit. For example, if γ is too small (e.g.,
γ = 0) we have φ(x, t) = φ(x, 0) for all t. In all the exam-
ples discussed in this note, this exponent is either γ = 1 or
γ = 2. In the first case, we will say that we have a hydro-
dynamic limit in the Eulerian (or hyperbolic) scale, while in
the second case we will speak of a diffusive scale. Basically,
the interface growth models (such as the example of snow-
fall) correspond to the Eulerian scale, while the interface dy-
namics models describing the motion of boundaries between
coexisting thermodynamic phases (such as the example of the
water/ice interface at 0° C) correspond to the diffusive scale.

Let us illustrate this fact by returning to the case of sim-
ple exclusion. Let us first take the case p = 1 (or more
generally p � 1/2). In this case, the growth of the inter-
face is intrinsically irreversible: only transitions where the
height increases are allowed. If we exclude the pathological
case where the macroscopic slope ρ of the interface is ±1,
we have a positive density r = (1 + ρ)/2 of points x with
h(x) − h(x − 1) = 1, and a positive density r = (1 − ρ)/2 of
points x with h(x) − h(x − 1) = −1. There will thus also be a
positive density of points x where h(·) has a local maximum
(resp. a local minimum). Since in a time of order 1 any lo-
cal minimum has a probability of order 1 of becoming a local
maximum, it is intuitive that after a time of order t, on av-
erage the height function increases by an amount of order t.
One must therefore choose γ = 1 to hope to obtain a non-
trivial hydrodynamic limit. The situation is very different for
the symmetric exclusion where p = 1/2: in this case, since
the positive and negative transitions tend to compensate each
other (just as ice cubes have no natural tendency to grow or
melt at 0° C), one must look at much longer time scales to see
a non-trivial evolution. The fact that γ = 2 is the right choice
requires a little more thought and we refer the reader to the
discussion in Section 2.

Since we mentioned the word “irreversible”, the following
observation should be made. Suppose that the height profile

{h(x)}x∈Z at time zero is random and in particular that each
gradient h(x)− h(x − 1) is independent and takes on the value
+1 with probability r and the value −1 with probability 1 − r,
for a certain r ∈ (0, 1). It is easy to verify that, both for the
simple symmetric and for the asymmetric exclusion, such a
distribution is invariant for the dynamics: the law of gradients
h(x, t) − h(x − 1, t) will be exactly the same at time t > 0. It
is thus a stationary state (or invariant measure: we will use
these two terms as synonyms). What distinguishes the sym-
metric case p = 1/2 from the asymmetric case is therefore
not the invariant measure, but the reversibility. Let us suppose
that at initial time (and thus for all times) the gradients are dis-
tributed according to the stationary measure, and compare the
law of the gradient process {h(x, t)−h(x−1, t)}x∈Z,t≥0 and that
of the process after time reversal, {h(x,−t)−h(x−1,−t)}x∈Z,t≥0.
It turns out that these two processes are governed by the same
law (i.e., the process is reversible) if and only if p = 1/2.

It’s natural to ask what kind of evolution will follow the
“hydrodynamic” profile φ(u, t). If, as for the simple exclusion,
we started from a Markovian evolution whose transition rates
depend only on the local gradients of the configuration h, we
can expect that ∂tφ(u, t) depends only on the spatial deriva-
tives of φ(u, t) at point u. In other words, we expect that φ
follows a PDE. More precisely, it turns out that:
• in the case γ = 2 the hydrodynamic PDE will be of the

parabolic type:

∂tφ(u, t) = µ
(∇φ(u, t))

d∑
i, j=1

σi, j
(∇φ(u, t))∂2

uiu j
φ(u, t) (3)

with µ(∇φ) > 0 a function which is named “mobility”
and (σi, j)i, j=1,...,d a symmetric and positive definite matrix
whose elements are the second derivatives of the surface
tension σ of the model. For the reader willing to under-
stand the physical meaning of µ and σ, we refer to the very
instructive discussion of [14];
• in the case of growth models where γ = 1, the PDE will be

of the “Hamilton–Jacobi” type

∂tφ(u, t) = v
(∇φ(u, t)). (4)

The function v(·), generally non-linear, describes the inter-
face growth rate as a function of the local slope ∇φ.

Note that, as a consequence of (2), the hydrodynamic
PDE must be invariant by reparameterisation φ(u, t)
�→ cφ(c−1u, c−γt) for all c > 0. Indeed, the two equations (3)
and (4) satisfy this property.

Let us return to our analogy with the sum of independent
random variables: after the law of large numbers, it is the turn
of fluctuations. For diffusive models such as the simple sym-
metric exclusion or its analogues in dimension d ≥ 1, let us
define the “height fluctuation field” as

ĥ(ε)(u, t) := ε1−d/2
{
h(�ε−1u�, ε−2t) − Eh(�ε−1u�, ε−2t)

}
. (5)

Although ĥ(ε) is not a sum of independent variables, its ran-
domness results from the cumulative effect of many random
events (the transitions of the dynamics in a time interval of
the order ε−2); it is therefore natural to expect a central limit
theorem, i.e., that ĥ(ε)(u, t) tends towards a Gaussian process
for ε → 0. More precisely, suppose for simplicity that the
initial condition is such that the profile φ0 (cf. (1)) is affine:
φ0(u) = ρ · u, ρ ∈ Rd, in such a way that the solution of the
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hydrodynamic equation (3) is simply φ(u, t) = φ0(u) = ρ · u.
Under fairly general assumptions, one would expect [13, 14]
that the fluctuation field (5) converges, in the sense of distri-
butions, towards the solution φ̂ of the following linear SPDE
(stochastic PDE):

∂tφ̂(u, t) = µ(∇φ)
d∑

i, j=1

σi, j(∇φ)∂2
uiu j
φ̂(u, t)

+
√

2µ(∇φ)Ẇ(u, t). (6)

This equation requires explanations. First of all, Ẇ(u, t) de-
notes the “space-time white noise”, i.e., a Gaussian random
function (more precisely, a random distribution) indexed by
the space u and the time t, of mean zero (EẆ(u, t) = 0) and
covariance

EẆ(u, t)Ẇ(v, s) = δ(t − s)δ(u − v).

Note, furthermore, that the equation is linear in φ̂, since
∇φ = ρ is a constant. For this reason, the solution φ̂(u, t) is
a Gaussian process. The origin of the equation (6) is quite
easy to understand intuitively: the first term, proportional to
the second derivatives, is obtained by writing the height func-
tion h as its hydrodynamic limit φ(u, t) plus fluctuations ĥ, and
by linearising the hydrodynamic PDE (3) around φ(·, ·). As for
the noise, to understand the choice of the factor √. . ., which
guarantees the correct stationary measure of the process (6)
when t → ∞, we refer to the discussion in [13, Sec. II.3.5]
done in a similar context.

The reader might expect that for growth models (such as
TASEP, for example), the fluctuation field also tends towards
the solution of a certain SPDE. However, this is not generally
the case, and indeed the mathematical (and even heuristic)
understanding of this question is still very incomplete. We are
going to explain a little more about this in Section 3.

The remainder of this paper is organised as follows.
In Section 2 we will discuss reversible interface dynamics,
which correspond to γ = 2 and generalise our elementary
example of symmetric simple exclusion. In Section 3 we dis-
cuss growth models. In particular, we will focus on the case
of d = 2, where there is a non-trivial relationship between
the interface fluctuations and the convexity properties of the
function v : Rd �→ R that appears in the PDE (4).

To conclude this introduction, it is important to make two
remarks:
• As is often the case in statistical physics, on the basis of

physical intuition, some phenomena are expected to be
qualitatively “universal”, i.e., independent of the models’
details. In our context, this is the case, for example, for the
convergence towards hydrodynamic PDEs of the type (3)–
(4), or the convergence of fluctuations towards the SPDE
(6) in the diffusive case. However, it is only in very specific
cases that mathematical proofs can be obtained. For exam-
ple, with respect to the convergence of the fluctuation field
to the solution of (6) for interface dynamics in dimension
d > 1, the reference [7] is essentially the only known result.
• Most of the known mathematical results in this area are

specific to the case of the spatial dimension d = 1. The
results in dimensions d ≥ 2 are much rarer and we will
mention some of the most recent ones.

2 Reversible interface dynamics

Until quite recently, the only example of reversible interface
dynamics in dimension d > 1 for which a hydrodynamic
limit of the type (2)–(3) was mathematically proven was the
Ginzburg–Landau type gradient model with symmetric and
convex potential [6]. This is a model of a very different na-
ture from simple exclusion, since the height variables take on
continuous real values and their evolution does not proceed
by discrete jumps, but follows a “Langevin” type dynamic.
This means that each height h(x) is subject to independent
Brownian noises, with a drift that depends on the differences
h(x)−h(y) for all y neighbouring x and that acts as a restoring
force that tends to flatten the interface by penalising large gra-
dients. The limit PDE obtained is of a very special type, since
the mobility coefficient µ(·) in (3) is constant. It is natural to
wonder if there are other examples of non-trivial dynamics
in dimension d > 1 where the mathematical proof of (2)–(3)
can be obtained, and in particular if we can find examples – if
possible somewhat closer in spirit to the simple exclusion –
with non-constant mobility µ(·).

To do this, take for a moment our example of simple
symmetric exclusion and suppose that the interface is de-
fined not on all Z but on a one-dimensional torus of size 1/ε,
which is supposed to be an even integer. In other words, the
height function is {h(x)}x=0,...,1/ε with the periodicity constraint
h(0) ≡ h(ε−1) and, as before, h(x) − h(x − 1) = ±1. Given the
height function h(·, t) at a time t, we calculate its average value
at time t + δ, with δ being infinitesimal. If the interface has a
local minimum (respectively a local maximum) at point x, i.e.,
if ∆h(x, t) = +2 (resp. = −2), then the height in x changes by
+2 (resp. by −2) with probability p×(δ+O(δ2)) = δ/2+O(δ2).
It can be easily deduced that

d
ds
E[h(x, t + s)|h(·, t)]

∣∣∣∣∣
s=0+
=

1
2
∆h(x, t), (7)

where E[. . . |h(·, t)] denotes the expectation conditioned to the
height configuration at time t. Thus, we have that the time
derivative of the height is proportional to the Laplacian of the
height itself. Now, if we define h̃(u, t) := εh(ε−1u, t) with u =
0, ε, 2ε . . . , 1, the same computation leads to

d
ds
E[h̃(u, t + s)|h̃(·, t)]

∣∣∣∣∣
s=0+
=
ε2

2
∆h̃(u, t), (8)

From there, one can be immediately convinced that the right
time scale is diffusive (γ = 2) and that the hydrodynamic
equation (3) of the simple symmetric exclusion will simply
be the heat equation:

∂tφ(u, t) =
1
2
∂2

uφ(u, t).

Indeed, it is not difficult to show convergence in the form (2),
see e.g. [9, Ch. 4]. The example of the simple symmetric ex-
clusion is instructive but very special: the time derivative of
the height is given by a linear operator (the Laplacian) applied
to the height itself, as shown in (7).

This type of miracle does not usually happen. Let us try
to generalise the simple symmetric exclusion model to the di-
mension d = 2. If the height profile of the one-dimensional
case is a zigzag path in the plane, the most natural two-
dimensional analogue is a discrete interface like in the Fig-
ure 2.
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Figure 2. A monotone two-dimensional interface: the height function is
(weakly) decreasing in x and y direction. Each level line is a zigzag path
as in figure 1. The different contour lines do not intersect.

rate = 1

Figure 3. The elementary transitions of the dynamics correspond to
adding or removing a unit cube.

There are several equivalent ways of interpreting this im-
age. It can be seen as a tiling of the plane with three types
of rhombus-shaped tiles, or as a monotone stack of cubes
(“monotone” in the sense that the height of a column of cubes
whose base coordinates are (x, y) is decreasing with respect
to x and y; it is therefore a plane partition), or as a perfect
matching of the hexagonal graph (the small segments des-
ignate the pairs of vertices that are matched). Note that any
section of this interface through a plane perpendicular to one
of the three axes gives a zigzag path, thus a height profile of
the one-dimensional simple exclusion. However, these one-
dimensional sections satisfy non-trivial non-intersection con-
straints and are therefore not independent.

A Markovian dynamic that naturally generalises the one-
dimensional symmetric simple exclusion to the two-dimen-
sional case is the one where the possible elementary transi-
tions correspond to adding or removing an elementary cube,
with transition rate 1: see Figure 3. Unfortunately, things are
not nearly as easy as they are for the one-dimensional sim-
ple exclusion. Let us try to repeat the same calculation as (7).
For that, for any vertex x of a rhombus, we note h(x) ∈ Z the
height of the vertex of the corresponding cube with respect to
the horizontal plane, as in Figure 2. We get

d
ds
E[h(x, t + s)|h(·, t)]

∣∣∣∣∣
s=0+
= Ax − Bx,

where Ax (resp. Bx) is 1 if the configuration around x at time
t is as in the drawing on the right (resp. left) side of Figure 3,
and 0 otherwise. There are two important differences as com-
pared to Eq. (7): firstly, we have not obtained a closed equa-
tion for the height function; secondly, the result is not given
by a discrete second-order operator applied to the height func-
tion, so it is not obvious a priori that the hydrodynamic equa-
tion (if it exists) is of the parabolic type.

n

rate = c(n)

Figure 4

Indeed, it is an open problem (probably very difficult) to
show that this dynamic admits a hydrodynamic limit: even
from the heuristic point of view, we cannot guess an exact ex-
pression for the mobility µwhich should appear in (3). We can
be less ambitious and hope to show at least that the right time
scale is diffusive. More precisely, consider the same tiling dy-
namics not in the whole plane, but in a two-dimensional do-
main of size 1/ε (e.g., a two-dimensional torus). The only in-
variant (and reversible) probability measure of this dynamic
is the uniform measure, which gives equal weight to any al-
lowed tiling of the domain. Given a small constant δ (say
δ = 1/100), we define the mixing time Tmix of the dynam-
ics as the smallest value of t such that, for any initial condi-
tion, the law of the process at time t is at a distance (in total
variation) at most δ from the invariant measure. It is reason-
able to ask how Tmix grows with the size 1/ε of the system.
If we interpret Markov dynamics as a probabilistic algorithm
(of the “Markov Chain Monte Carlo” type) that takes a tiling
η0 at step zero and outputs the tiling ηT at time T , then hav-
ing an upper bound Tmix ≤ N implies that the algorithm pro-
duces, after a simulation time N, an almost perfectly uniform
tiling (up to some δ). This kind of question about the speed
of convergence of probabilistic algorithms is very much stud-
ied in theoretical computer science. Coming back to our two-
dimensional interface dynamics, an important conjecture in
this domain is that Tmix is of order ε−2+o(1). Under certain as-
sumptions about the shape of the domain, this conjecture has
been proven recently [4,10]. The proof uses large-scale prop-
erties of uniform tilings of large planar domains, including the
fact that their height fluctuations are only logarithmic with re-
spect to the size of the domain. However, the issue is still far
from being solved:

Open problem. For the dynamics restricted to a hexagonal
domain of side 1/ε (like in Figure 2 where 1/ε = 3) show that
Tmix = O(ε−2+o(1)) for ε → 0. At present, the best rigorous
upper bound is of order ε−4+o(1).

Let us return to the problem of the hydrodynamic limit for
the dynamics of monotone two-dimensional interfaces. Since
this question is too difficult for the dynamics whose elemen-
tary updates are those of the Figure 3, we may ask whether
a change in the transition rules for the Markov process can
simplify things. For example, one could decide to allow more
general transitions where n cubes are added/removed at a
time, with a transition rate c(n). See Figure 4. In the recent
work [12], we showed, with some heuristic approximations,
that if we choose c(n) as being inversely proportional to n, the
time derivative of the average height h(x) is given by a dis-
crete second-order operator acting on h(·). This suggested the
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possibility of obtaining a hydrodynamic limit in the diffusive
time scale. In a later paper [11], we indeed succeeded in rig-
orously proving that for this dynamic there is a convergence
as in (2), where φ satisfies a non-linear parabolic PDE of the
type (3). The PDE is completely explicit and, in particular, the
mobility coefficient µ(·) is non-linear. A study of the hydrody-
namic PDE and the specific form of the mobility µ(·) shows
that the equation has remarkable analytical properties: in par-
ticular it contracts both the L1 and L2 distances between its
solutions (which is also true for the heat equation, but not for
any equation of the form (3)). We refer the reader to [12] for a
discussion of the relationship between these analytical prop-
erties and the fact that, for our particular choice of transition
rate c(n) ∝ 1/n, the stochastic process

t �→ V(t) :=
∑

x

(
h(1)(x, t) − h(2)(x, t)

)

has the property of being decreasing on average (more pre-
cisely, it is a supermartingale). Here, h( j)(·, t), j = 1, 2 denote
two height profiles who follow the Markovian dynamics with
two different initial conditions h( j)(·, 0), for which we assume
that h(1)(·, 0) ≥ h(2)(·, 0), while V(t) denotes their volume dif-
ference.

3 Models of interface growth

The mathematical study of one-dimensional interface growth
models, such as TASEP and its generalisations, has been ex-
tremely active for several years. A remarkable aspect is the
emergence of universal non-Gaussian distributions for height
fluctuations h(x, t) − h(x, 0) in the long time limit. More-
over, the asymptotic evolution of the fluctuation field is not
governed by a SPDE, but a stochastic process ("KPZ fixed
point") which is not yet fully understood. We are not going
to develop this topic, nor its links with the one-dimensional
Kardar–Parisi–Zhang (KPZ) equation (a highly singular non-
linear SPDE), or with the eigenvalue statistics of large random
matrices, among others, as these topics have already been the
subject of several recent review articles, e.g., [5].

Instead, we will talk about growth models in dimension
d = 2, a much less explored and known field, where new phe-
nomena emerge. We will start with a few generalities. Given a
Markovian growth model, such as TASEP for example, there
are very natural quantities associated with it. (We stress, how-
ever, that in general it is a major mathematical challenge to
prove that these quantities are well defined.) Suppose that the
initial condition of the dynamics is a deterministic affine pro-
file h(x) of slope ρ ∈ Rd, i.e., h(x) = x · ρ (one may have to
take the integer part if the height function is discrete). It is in-
tuitive (but it may be difficult to show in concrete examples!)
that:
• the law of gradients {h(x, t) − h(x′, t)}, with x ∈ Zd and x′

which takes its values among the 2d neighbors of x, tends
for t → ∞ towards a limit law πρ, stationary and invariant
by translations;
• there is an asymptotic growth rate v = v(ρ), i.e.,

lim
t→∞

1
t
(
h(x, t) − h(x, 0)

)
= v(ρ)

and the function v(·) is the same as in the hydrodynamic
PDE (4);

• the typical fluctuations of h(x, t)−h(x, 0) (measured for ex-
ample by their standard deviation) behave for large t like
tβ; β ∈ R is called the growth exponent;
• the typical fluctuations of h(x, t) − h(y, t) for t → ∞ and
|x− y| large behave like |x− y|α, with α ∈ R being called the
roughness exponent because the larger the exponent, the
greater the fluctuations in the asymptotic height profile, as
compared with an affine profile.

In the particular case of the dimension d = 2 we have the
following conjecture, which links the convexity properties of
v(·) to the exponents α, β:

Conjecture 1. Let λ1, λ2 be the eigenvalues of the Hessian
matrix D2v of v(·). If the product λ1λ2 is negative or null (so if
det(D2v) ≤ 0), then α = β = 0 and the growth of fluctuations
for t or |x − y| that tend to infinity is only logarithmic. If on
the other hand λ1λ2 > 0, then α and β are strictly positive and
universal exponents (i.e., independent of the particular values
of λi).

Note that λi are functions of the slope ρ and therefore the
sign of det(D2v) (and thus the values of the critical exponents)
could in principle depend on ρ.

Conjecture 1 is a fairly typical universality statement in
statistical physics: it is a fairly common fact that the mi-
croscopic models that describe a certain macroscopic phe-
nomenon (here, the growth phenomenon) are divided into a
small number (here, two) of “universality classes”. The mod-
els in the same class are characterised by the same “critical
exponents” (here, α and β) and the class a model belongs to is
determined by certain qualitative symmetries (here, the sign
of λ1λ2, thus the convexity properties of v(·)). A small note on
nomenclature: we will say that
• a growth model for which λ1λ2 > 0 belongs to the KPZ

universality class
• a growth model for which λ1λ2 ≤ 0 belongs to the

Anisotropic KPZ (or AKPZ) universality class.
The above conjecture, which may seem arbitrary at first
glance, is based on non-rigorous calculations by physicists
[1] and is convincingly confirmed by numerical simulations
of several growth models; we refer the reader to [15] for dis-
cussions and references. In the remainder of this section, our
goal is to give an example of models for each of the two uni-
versality classes and to discuss one or two recent mathemati-
cal results that shed some light on the conjecture.

To make the discussion more concrete, we discuss two
specific two-dimensional growth models. In order to make
the link with the discussion of the previous section easier,
suppose that the height profiles allowed for our interface are
again monotone discrete functions corresponding to rhombus
tilings of the plane, like in the Figure 2. In Section 2 our most
natural candidate for a reversible dynamic for this interface
was the Markovian process whose elementary transitions are
those of the Figure 3, with symmetric rates. On the other hand,
the natural candidate for a growth process is to allow only one
of these two types of transition, for example one that adds an
elementary cube, see Figure 5. This growth model is attractive
from several points of view:
• it is very easy to be numerically defined, visualised and

simulated;
• it is not difficult to show, by a super-additivity argument,
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rate = 0

rate = 1

Figure 5. If we allow only those transitions that add a cube, we obtain a
growth model that belongs to the KPZ universality class.

n

rate = 1

rate = 0

Figure 6. In the growth model studied in [2] we allow transitions that
add n cubes at a time and the transition rate does not depend on n.

that the limiting velocity v(·) exists, is convex, and that the
height profile satisfies a hydrodynamic limit as in (2) at Eu-
lerian scale γ = 1, where the limiting PDE is given by (4).

Two remarks: the convexity of v(·) implies that its Hessian
matrix will be positive definite and (assuming that its eigen-
values are strictly positive, which has not been rigorously
shown because v(·) is not explicitly known) we have a candi-
date for the KPZ universality class. Secondly, it is well known
that non-linear Hamilton–Jacobi equations of the type (4) de-
velop singularities in finite time; however, when v(·) is con-
vex, a natural way to obtain a (weak) solution defined globally
in time is through the Hopf–Lax variational formula. Indeed,
the super-additivity argument mentioned above gives the con-
vergence of the height profile precisely towards this solution!
Unfortunately, the mathematical study of this growth process
stops here: we have no idea of how the translation invariant,
stationary states πρ look like, there are no mathematical re-
sults on the critical exponents α, β (although they are known
with great precision on the basis of numerical simulations!),
nor an explicit expression for v(·). Indeed, we do not know
any mathematical result on stationary states or on critical ex-
ponents for any two-dimensional growth model of the KPZ
universality class.

As in the case of reversible dynamics, one may wonder
whether things change qualitatively if we modify the transi-
tion rules of the Markov process a little. One possibility is
generalising the growth process by allowing one, during each
transition, to add n ≥ 1 cubes at a time, as in the Figure 6.
Note that the transition rate is chosen here independently of
the value of n. This growth process was introduced in [2] and,
quite surprisingly, it turns out that (see [15] for precise bibli-
ographic references):
(i) the speed v(·) can be calculated explicitly and its Hes-

sian has two eigenvalues of opposite sign;
(ii) the critical exponents α and β are zero;
(iii) the stationary states πρ can be explicitly determined;
(iv) under certain restrictions on the initial height profile,

one can show convergence (in the sense of (2), with

γ = 1) to the viscosity solution of the PDE (4). (The
viscosity solution is a weak solution which simply re-
duces to the Hopf–Lax solution in the case of where v(·)
is convex.)

This growth model is therefore a representative of the An-
isotropic KPZ universality class. If the reader is confused by
the fact that an apparently minor detail of the growth pro-
cess (the possibility of adding only one cube at a time or sev-
eral) may change the qualitative properties of the behaviour
on a large scale, it can be reassuring that this is not intuitive
even for experts. Indeed, it is not generally easy to guess the
universality class of a growth model a priori, just by start-
ing from its definition. On the other hand, it is important to
mention that the “anisotropic” model we have just discussed
is not an isolated example in the literature. Indeed, there is a
whole class of growth models [2] that can be formulated in
terms of Schur processes, a combinatorial object introduced
by Okounkov and Reshetikhin in relation to plane partitions.
The specific model described above is a special case of this
class, and results (i)–(iv) have been rigorously demonstrated
for several others.

Without going into technical details, it should be pointed
out here that a peculiarity of the growth models of [2] (such
as the one in Figure s6) which makes them amenable to
mathematical analysis is that their stationary measures πρ
have the following determinantal property. Given n points
x1, . . . , xn of the plane and n colors c1, . . . , cn, where every
ci is one of the three colors of the tiles of a rhombus tiling, let
A = A(x1, c1; . . . ; xn, cn) be the event: “there is a rhombus of
colour ci at point xi, for all i ≤ n”. Then, the probability of A
is given by the determinant of an n×n matrix, whose elements
are Fourier coefficients of a certain explicit function, defined
on the two-dimensional torus [0, 1]2. This remarkable deter-
minantal property also extends to spatio-temporal correlations
in the sense that, under certain restrictions, the probability of
events of the type: “there is a rhombus of colour ci at point xi

and at time ti for all i ≤ n” is also given by a determinant.
In conclusion, it can be said that the mathematical under-

standing of the growth models of the Anisotropic KPZ class
is much more satisfactory than that of the models of the KPZ
class as a whole. However, there are two aspects that have
remained rather mysterious until very recently:
1. Firstly, for all models of the AKPZ class for which a rig-

orous study is possible, the proof that λ1λ2 ≤ 0 requires an
explicit and very unenlightening calculation of the second
derivatives of v(·), which must be done on a case-by-case
basis, and which is based on the explicit formula of v(·).
However, according to conjecture 1 formulated above, the
negativity of this product should be linked to qualitative
properties of the model.

2. In addition, it often happens that although the function v(ρ)
has a very complicated expression in terms of the slope
ρ, it can be rewritten as a very simple harmonic function
in terms of a natural complex variable z(ρ), introduced by
Kenyon and Okounkov [8] in the context of dimer models.

In a very recent work [3] we shed some light on these two
points and we understood that, for all the growth models of
the Anisotropic KPZ class known so far, the fact that λ1λ2 ≤ 0
and the harmonicity property of v(·) have a rather simple geo-
metrical origin. We give here the main steps of our reasoning:
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(1) First of all, one naturally associates a continuous family
F of probability measures π with these growth models
(this family includes the steady states πρ but also mea-
sures that are not invariant by translation). In general,
π ∈ F is not a stationary state of the Markov process.
However, if the initial condition is distributed according
to π(0) ∈ F , then at any time t > 0 , the law π(t) of the
interface still belongs to F .

(2) The second observation is that a typical height profile
{h(x)}x∈Z2 , which is randomly drawn according to π ∈ F ,
is close on a large scale to a minimizer φ0 of a functional
of the type ∫

R2
σ(∇φ)dx (9)

where σ(·) is a convex function (surface tension). More
explicitly, the fact that h(·) and φ0(·) are “close on a large
scale” means that, with probability 1,

lim
ε→0
εh
(�ε−1x�) = φ0(x).

The minimizers φ0 of (9) satisfy the associated Euler–
Lagrange equations:

div
(∇σ ◦ ∇φ0(x)

)
= 0,

where div denotes the divergence with respect to spatial
variables x ∈ R2, whereas ∇σ ◦ ∇φ0 denotes the gradient
of σ(ρ) with respect to its argument ρ, computed for ρ =
∇φ0(x).

(3) From these two facts it follows that, if the initial datum φ0
of the hydrodynamic PDE (4) is a solution to the Euler–
Lagrange equation, this is also the case for the solution
φ(·, t) at any time t > 0.

(4) This link between the Euler–Lagrange equation (involv-
ing σ) and the hydrodynamic equation (involving v) im-
plies a non-linear relationship between the Hessian D2v
of v(·) and the (positive definite) Hessian of σ. This re-
lation implies in turn that the determinant of D2v is not
strictly positive (this last step requires a few lines of com-
putations that we do not develop here).

This is therefore a rigorous first step, no longer based on ex-
plicit calculations for a specific model but on general analyti-
cal arguments, which sheds some light on conjecture 1. How-
ever, the road to its full justification remains very long: one
reason is that we barely know anything about the models of
the KPZ class, where v(·) is strictly convex or strictly concave,
and about their critical exponents α, β, which are supposed to
be universal.
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