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The present column is devoted to Algebra.

As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.

Arthur Cayley (1821–1895)

I Six (plus one) new problems – solutions solicited

226. Let Cn stand for the space of complex column n-vectors,
and letMn stand for the space of complex n × n matrices.
The inner product 〈x|y〉 of x, y ∈ Cn is defined as

〈x|y〉 = x∗y (matrix product).

Therefore 〈x|y〉 is linear in y and conjugate linear in x.
Let A, B be n × m complex matrices. Write them as

A = [a1, . . . , am] and B = [b1, . . . , bm]

with aj, bj ∈ Cn ( j = 1, 2, . . . ,m).
Then it is immediate from the definition of matrix multiplication
that

A∗B =
[
〈aj|bk〉

]m
j,k=1
∈ Mm.

Show the following relation:

AB∗ =
m∑

j=1

ajb∗j ∈ Mn

where each product ajb∗j ( j = 1, . . . , n) is a rank-one matrix inMn.

(T. Ando, Hokkaido University, Sapporo, Japan)

227. Let p and q be two distinct primes with q > p and G a
group of exponent q for which the map fp : G → G defined by
fp(x) = xp, for all x ∈ G, is an endomorphism. Show that G is an
abelian group.

(Dorin Andrica and George Cătălin Ţurcaş,
Babeş-Bolyai University, Cluj-Napoca, Romania)

228. Let (G, ·) be a group with the property that there is an inte-
ger n ≥ 1 such that the map fn : G → G, fn(x) = xn is injective
and the map fn+1 : G → G, fn+1(x) = xn+1 is a surjective endomor-
phism. Prove that G is an abelian group.

(Dorin Andrica and George Cătălin Ţurcaş,
Babeş-Bolyai University, Cluj-Napoca, Romania)

229. Let A and B ∈ Matk(K) be two matrices over a field K. We
say that A and B are similar if there exists an invertible matrix
C ∈ GLk(K) such that B = C−1AC.
Let A and B ∈ GLk(Q) be two similar invertible matrices over
the field of rational numbers Q. Assume that for some integer l,
Al+1B = BAl. Then A and B are the identity matrices.

(Andrei Jaikin-Zapirain, Departamento de Matemáticas,
Universidad Autónoma de Madrid & Instituto de Ciencias

Matemáticas, CSIC-UAM-UC3M-UCM, Spain, and
Dmitri Piontkovski, Faculty of Economic Sciences, Moscow

Higher School of Economics, Russia)

230. We are trying to hang a picture on a wall. The picture has a
piece of string attached to it forming a loop, and there are 3 nails
in the wall that we can wrap the string around. We want to hang
the picture so that it does not fall down, but it will upon removal
of any of the 3 nails.

(Dawid Kielak, Mathematical Institute, University of Oxford,
UK)

231. Given a natural number n and a field k, let Mn(k) be the full
n × n matrix algebra over k. A matrix (ai j) ∈ Mn(k) is said to be
centrosymmetric if

ai j = an+1−i,n+1− j

for 1 ≤ i, j ≤ n. Let Cn(k) denote the set of all centrosymmet-
ric matrices in Mn(k). Then Cn(k) is a subalgebra of Mn(k), called
centrosymmetric matrix algebra over k of degree n. Centrosym-
mentric matrices have a long history (see [1, 5]) and applications
in many areas, such as in Markov processes, engineering problems
and quantum physics (see [2, 3, 4, 6]). In the representation the-
ory of algebras, a fundamental problem for a finite-dimensional
algebra is to know if it has finitely many nonisomorphic indecom-
posable modules (or in other terminology, representations). In our
case, the concrete problem on Cn(k) reads as follows.
Does Cn(k) have finitely many nonisomorphic indecomposable
modules? If yes, what is the number?

(Changchang Xi, School of Mathematical Sciences, Capital
Normal University, 100048 Beijing, China, and

College of Mathematics and Information Science, Henan Normal
University, 453007 Xinxiang, Henan, China)
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An additional interesting problem (not intimately connected
to algebra). Intervals of monotonic changes in the polynomial
are located between the roots of its derivative. A derivative of a
polynomial is also a polynomial, although of a lesser degree. Us-
ing these considerations, construct an algorithm for calculating the
real roots of the quadratic equation. Improve it to calculate the real
roots of the polynomial of the third, fourth and generally arbitrary
degree.

(Igor Kostin, Moscow, Russian Federation)
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II (A) Open problems, by Maxim Kontsevich (Institut des
Hautes Études Scientifiques, Bures-sur-Yvette,
France)

Consider the group ring A of a free finitely generated group (i.e.,
noncommutative Laurent polynomials) with coefficients in a field k
of characteristic zero. Denote by τ : A → k the “trace map” given
by the coefficient of monomial 1 ().

Theorem For any a ∈ A the following series is algebraic:

G = G(a) := exp
(
−
∑
n≥1

τ(an)
tn

n

)
= 1 + · · · ∈ k[[t]]

The rationale for the minus sign is that if we replace algebra
A by Mat(N × N, k) and τ by the usual trace, the resulting series
G = det(1 − at) is polynomial.

Example For a = x1 + x1
−1 + x2 + x2

−1 + · · · + xm + xm
−1 we have

G =
(
( f + 1)/2

)m
/
(
(m f + m − 1)/(2m − 1)

)m−1
,

f :=
√

1 − 4(2m − 1)t2.

In 2007 I found a ridiculous proof in three steps (basically no
progress afterwards):

(1) It is known that F := G′/G = −∑n≥1 τ(an)tn−1 is algebraic (see,
e.g., Corollary 6.7.2 in [10], I learned about it from a paper [6]
where it was rediscovered). This is a corollary of the theory
of algebraic formal languages developed by N. Chomsky and
M. Schützenberger in the 60s [4].

(2) Assume that all coefficients of a are integers (it is not a severe re-
striction), then it is easy to see that coefficients of G are integers
(it follows solely from the fact that the free group is torsion-
free).

(3) Then we have (a) G ∈ Z[[t]], (b) dG/dt = FG, i.e., G is a flat
section of a line bundle with connection on an algebraic curve
over Q. Property (a) implies that the p-curvature of this con-
nection is 0 for almost all primes p, thus fitting to the realm of
general Grothendieck–Katz conjecture. By a result of Yves An-
dré [1], [2] based on ideas of D. V. and G. V. Chudnovsky [5], or
by later results of J.-B. Bost [3], series G is also algebraic.

If we replace the free group by a finite group Γ, the resulting series G
is again algebraic, a fractional power of a polynomial. This follows
from the fact that after an extension of scalars k′ ⊃ k, the group
ring of the finite group is a direct sum of matrix algebras, and that
the canonical trace on the group algebra is proportional to the matrix
trace on each matrix algebra summand Mat(Ni × Ni, k′) rescaled by
Ni/|Γ| ∈ Q>0.

For a finitely-generated free abelian group, the series F can be
calculated by residue formula, and is holonomic, i.e., it satisfies a
non-trivial algebraic linear differential equation. Neveretheless, the
series G in this case is typically not holonomic, in particular not al-
gebraic. For nonhyperbolic groups the situation is much more tricky,
see [7] where it was shown that the analog of generating series F can
already be nonholonomic for the arithmetic group S L(4,Z).

232*. Find a purely combinatorial proof of algebraicity of G, not
based on results from number theory. In particular, what is an ad-
equate upper bound on the degree of the equation satisfied by G?
Is it true that the function G considered as a multi-valued function
is either 1 − ct for some constant c ∈ k, or it does not attain zero
value for t � 0? Also, is it true that the values of all branches of G
at t = 0 belong to the set {0, 1} ⊂ P1?
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II (B) Open problems on Iwahori–Hecke algebras,
by George Lusztig (Department of Mathematics,
M.I.T., Cambridge, USA)

Below we state four open problems (see (233*)–(236*)) on Iwahori–
Hecke algebras.

1. Let I be a finite set and let (mi j)(i, j)∈I×I be a symmetric matrix
whose diagonal entries are 1 and whose nondiagonal entries are in-
tegers ≥ 2 or ∞. Let W be the group with generators {si; i ∈ I} and
relations (si s j)mi j = 1 for any i, j such that mi j < ∞; this is a Coxeter
group. (Examples of Coxeter groups are the Weyl groups of simple
Lie algebras; these are finite groups. Other examples are the affine
Weyl groups which are almost finite.) For w ∈ W let |w| be the small-
est integer n ≥ 0 such that w is a product of n generators si, i ∈ I.
We assume that we are given a weight function L : W → N that is a
function such that L(w) > 0 for all w ∈ W − {1} and

L(ww′) = L(w) + L(w′)

for any w,w′ in W such that

|ww′| = |w| + |w′|.

(For example, w �→ |w| is a weight function.) Let A = Z[v, v−1]
where v is an indeterminate. Let H be the free A-module with basis
{Tw; w ∈ W}. There is a unique structure of associative A-algebra on
H for which

(Tsi + v−L(si))(Tsi − vL(si)) = 0

for i ∈ I and
TwTw′ = Tww′

for any w,w′ in W such that |ww′| = |w| + |w′|; this is the Iwahori–
Hecke algebra associated to W, L.

For c ∈ C − {0} let Hc = C ⊗ AH where C is viewed as an A-
algebra via the ring homomorphism A → C, v �→ c. Now Hc is also
referred to as an Iwahori–Hecke algebra.
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233*. Show that the algebras associated in [10] to a supercusp-
idal representation of a parabolic subgroup of a p-adic reductive
group are (up to extension by a group algebra of a small finite
group) of the form Hq where q is a power of p, with H associ-
ated to an affine Weyl group W and with L in the collection ΣW of
weight functions on W described in [4, §17], [5], [6].

For example, if W is of affine type F4, then ΣW consists of all
L whose values on {si; i ∈ I} are (1, 1, 1, 1, 1) or (1, 1, 1, 2, 2) or
(2, 2, 2, 1, 1) or (1, 1, 1, 4, 4); if W is of affine type G2, then ΣW con-
sists of all L whose values on {si; i ∈ I} are (1, 1, 1) or (1, 1, 3) or
(3, 3, 1) or (1, 1, 9).

The statement analogous to (233*) for groups with connected
centre over a finite field Fq instead of p-adic groups is known to
hold, without the words in parenthesis; in that case, W is a Weyl
group and ΣW consists of the weight functions on W described in [3,
p. 35].

2. There is a unique group homomorphism¯ : H → H such that

vnTwTw−1 = v−n

for n ∈ Z,w ∈ W; it is a ring isomorphism. Let

H≤0 =
∑
w∈W

Z[v−1]Tw ⊂ H.

For any w ∈ W there is a unique element cw ∈ H≤0 such that

c̄w = cw

and
cw − Tw ∈ v−1H≤0

(see [2], [7]). Then {cw; w ∈ W} is an A-basis of H. For x, y, z in W
we define fx,y,z ∈ A, hx,y,z ∈ A by

TxTy =
∑
z∈W

fx,y,zTz,

cxcy =
∑
z∈W

hx,y,zcz.

234*. Show that there exists an integer N ≥ 0 such that for any
x, y, z in W we have v−N fx,y,z ∈ Z[v−1].

(See [7, 13.4]) If W is finite this is obvious. If W is an affine Weyl
group, this is known.

We will now assume that (234*) holds. With N as in (234*), we
see that

v−Nhx,y,z ∈ Z[v−1]
for any x, y, z in W. It follows that for any z ∈ W there is a unique
integer a(z) ≥ 0 such that

hx,y,z ∈ va(z)Z[v−1]

for all x, y in W and

hx,y,z � va(z)−1Z[v−1]

for some x, y in W. Hence for x, y, z in W there is a well-defined
integer γx,y,z−1 such that

hx,y,z = γx,y,z−1 va(z) mod va(z)−1Z[v−1].

Let J be the free abelian group with basis {tw; w ∈ W}. For x, y in W
we set

txty =
∑
z∈W
γx,y,z−1 tz.

(This is a finite sum.)

235*. Show that this defines an (associative) ring structure on J
(without 1 in general).

Assume now that W is a Weyl group or an affine Weyl group and
L = ||. In this case, (235*) is known to be true and the ring J does
have a unit element.

More generally, assume that W is an affine Weyl group and
L ∈ ΣW (see (233*)); in this case there is a (conjectural) geomet-
ric description [8, 3.11], of the elements cw. From this one should
be able to deduce (235*) as well as the well-definedness of the C-
algebra homomorphism Hq → J in [7, 18.9], where Hq is as in
(233*) and J = C ⊗ J is independent of q. One should expect that
the irreducible (finite dimensional) J-modules, when viewed as Hq-
modules, form a basis of the Grothendieck group of Hq-modules.
(This is indeed so if L = ||.) This should provide a construction of the
“standard modules” of Hq which, unlike the construction in [5],[6],
does not involve the geometry of the dual group.

3. Assume that W is finite and that L = ||. Let C be a conjugacy class
in W; let Cmin be the set of all w ∈ C such that |w| is minimal. For
w ∈ C let Nw ∈ A be the trace of the A-linear map H → H,

h �→ v2|w|TwhTw−1 .

We have Nw ∈ Z[v2]. (Note that Nw|v=1 is the order of the centralizer
of w in W.) From [1] one can deduce that for w ∈ Cmin, Nw depends
only on C, not on w. We say that C is positive if Nw ∈ N[v2]. For
example, if C is an elliptic regular conjugacy class (in the sense of
[11]) then C is positive (see [9]). If W is of type An, the positive con-
jugacy classes are {1} and the class of the Coxeter element. In the
case where W is a Weyl group of exceptional type, a complete list of
positive conjugacy classes in W is given in [9].

236*. Make a list of all positive conjugacy classes in W, assum-
ing that W is a Weyl group of type Bn or Dn.
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III Solutions

218.
Determine the sum of the series

∞∑
n=1

ϕ(n)
2n − 1

,

where ϕ is the Euler’s totient function.

(Dorin Andrica, Babeş-Bolyai University,
Cluj-Napoca, Romania)

Solution by the proposer. Let (an)n ≥ 1 be a sequence of real num-
bers. From the equality

xn

1 − xn = xn + x2n + · · · + xkn + · · · , |x| < 1

we derive
∞∑

n=1

an xn

1 − xn =

∞∑
n=1

An xn, (1)

where
An =

∑
d|n

ad

and assuming that the power series in the right-hand side of (1) is
convergent for |x| < 1. This is the main idea of the so-called Lambert
series with the related identities.

Now, using the well-known Gauss’ identity
∑

d|n ϕ(d) = n, the
formula (1) yields

∞∑
n=1

ϕ(n)xn

1 − xn =

∞∑
n=1

nxn =
x

(1 − x)2 , |x| < 1. (2)

Setting x = 1
2 implies

∑∞
n=1

ϕ(n)
2n−1 = 2.

Also solved by George Miliakos (Sparta, Greece), Moubinool Omar-
jee (Paris, France), Richard G. E. Pinch (Gloucestershire, UK),
Rudolf Rupp (Nuremberg, Bavaria, Germany), Muhammad Thoriq
(Yogyakarta, Indonesia), Socratis Varelogiannis (France) and James
J. Ward (Galway, Ireland).

219a. Let ω(n) denote the number of distinct prime factors of a
non-zero natural number n.
(i) Prove that

∑
n≤x ω(n) = x log log x + O(x).

(ii) Prove that
∑

n≤x ω(n)2 = x(log log x)2 + O(x log log x).
(iii) Using (i) and (ii), prove that

∑
n≤x(ω(n) − log log x)2 =

O(x log log x).
(iv) Using (iii), prove that

∑
n≤x(ω(n) − log log n)2 =

O(x log log x).
(v) Using (iv), prove that ω(n) has normal order log log n, i.e.,

for every ε > 0,

#
{
n ≤ x : (1 − ε) log log n < ω(n)

< (1 + ε) log log n
} ∼ x (as x→ ∞).

a. Parts (i)–(v) of Problem 219 are extracted from a proof by Paul Turán
(1910–1976), published in 1934, of a theorem of G. H. Hardy (1877–
1947) and S. Ramanujan (1887–1920), published in 1917; see refer-
ences below:
[1] G. H. Hardy and S. Ramanujan, The normal number of prime fac-

tors of a number n. Quart. J. Math. 48 (1917), 76–92.
[2] P. Turán, On a Theorem of Hardy and Ramanujan. J. London Math.

Soc. 9(4) (1934), 274–276.

(Alina Carmen Cojocaru, Department of Mathematics, Statistics
and Computer Science, University of Illinois at Chicago, USA,

and Institute of Mathematics “Simion Stoilow” of the Romanian
Academy, Bucharest, Romania)

Solution by the proposer. In what follows, the letters p, p1, p2 denote
primes.
(i) Using the definition of ω(n) and Mertens’ theorem, we obtain
∑
n≤x

ω(n) =
∑
p≤x

[
x
p

]
= x
∑
p≤x

1
p
+ O(x) = x log log x + O(x).

(ii) As above, using the definition of ω(n) and Mertens’ theorem, we
obtain ∑

n≤x

ω(n)2 =
∑
n≤x

∑
p1 |n

∑
p2 |n

1 =
∑
p1≤x

∑
p2≤x

∑
n≤x

p1 |n, p2 |n

1

=
∑

p1 ,p2≤x
p1�p2

[
x

p1 p2

]
+
∑
p≤x

[
x
p

]

=
∑
p1 ,p2

p1 p2≤x

[
x

p1 p2

]
+ O(x log log x)

= x
∑
p1 ,p2

p1 p2≤x

1
p1 p2

+ O(x log log x).

Now observe that
∑

p≤
√

x

1
p


2

≤
∑
p1 ,p2

p1 p2≤x

1
p1 p2

≤

∑
p≤x

1
p


2

and, again by Mertens’ theorem,∑

p≤
√

x

1
p
= log log

√
x + O(1) = log log x + O(1).

Thus ∑
n≤x

ω(n)2 = x(log log x)2 + O(x log log x).

(iii) Expanding the square and using parts (i), (ii), we deduce that∑
n≤x

(
ω(n)− log log x

)2

=
∑
n≤x

ω(n)2 − 2(log log x)
∑
n≤x

ω(n) + (log log x)2
∑
n≤x

1

= O(x log log x).

(iv) First we relate the summand (ω(n) − log log n)2 to the summand
(ω(n) − log log x)2 and then we use (iii):∑

n≤x

(ω(n)− log log n)2

=
∑
n≤x

(ω(n) − log log x + log log x − log log n)2

�
∑
n≤x

(ω(n) − log log x)2 +
∑
n≤x

(
log

log x
log n

)2

� x log log x +
∑
n≤x

(
log

log x
log n

)2
.

We split the remaining sum over n ≤ x into sums over n ≤
√

x and√
x < n ≤ x, which we bound trivially.

(v) Let ε > 0 and, for any y < x, denote by N(y, x) the number of
natural numbers y < n ≤ x for which |ω(n) − log log n| ≥ ε log log n.
Using elementary observations and part (iv), we obtain

N(1, x) ≤
√

x + N(
√

x, x) ≤
√

x +
∑
n≤x

(
ω(n) − log log n
ε log log n

)2

�
√

x +
x log log x
ε2(log log x)2 = o(x).

We leave the proof of (vi) as a challenge to the reader.

Also solved by Mihaly Bencze (Romania) and Socratis Varelogiannis
(France).
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220. Using Chebyshev’s Theorem, prove that for any integer M
there exists an even integer 2k such that there are at least M primes
p with p+ 2k also prime. Unfortunately 2k will depend on M. If it
did not, we would have solved the Twin Prime Conjecture, namely,
there are infinitely many primes p such that p + 2 is also prime.

(Steven J. Miller, Department of Mathematics & Statistics,
Williams College, Massachusetts, USA)

Solution by the proposer. By Chebyshev’s theorem, there exist ex-
plicit positive constants A and B such that, for x > 30:

Ax
log x

≤ π(x) ≤ Bx
log x

.

Ignoring the lone even prime 2, the number of positive differ-
ences between the odd primes at most x is

(
π(x)−1

2

)
, or

(π(x) − 1)(π(x) − 2)/2 .

Looking at the lower and upper bounds for π(x), we get that the num-
ber of these differences is essentially at least A2 x2/ log2 x and basi-
cally at most B2 x2/ log2 x; however, there are only about x/2 odd
numbers which can be these differences.

Thus by the pigeonhole principle, at least one of these positive
odd differences must occur at least the average number of times, and
thus there is a difference that occurs essentially at least

(A2 x2/ log2 x)/(x/2) = 2A2 x/ log x .

The proof is completed by choosing x sufficiently large so that this
exceeds M.

Also solved by Mihaly Bencze (Romania), Efstathios S. Louridas
(Athens, Greece), George Miliakos (Sparta, Greece).

221. For any three integers a, b, c, with gcd(a, b, c) = 1, prove
that there exists an integer m such that

0 ≤ m ≤ 222002
c

1
1000 and gcd(a + mb, c) = 1.

(Abhishek Saha, School of Mathematical Sciences,
Queen Mary University of London, UK)

Solution by the proposer. We begin with an elementary lemma.

Lemma 1 For positive integers N, k, we have
∏
p|N

2 ≤ 22k
N

1
k .

Proof. We have
∏

p|N 2

N
1
k

≤
∏
p|N

2

p
1
k

≤
∏

p|N,p≤2k

2

p
1
k

≤
∏

p|N,p≤2k

2 ≤ 22k
�

We now begin the solution proper. Let a, b, c as in the problem.
We may assume without loss of generality that gcd(a, b) = 1 and
that c is squarefree. Indeed, if these conditions are not met, we can
replace a by a

gcd(a,b) , replace b by b
gcd(a,b) and replace c by its largest

squarefree divisor, so that this modified setup does satisfy the con-
ditions. Any integer m that satisfies the required conditions in this
modified setup will automatically satisfy it in the original setup.

Next, define Q = c/ gcd(b, c); note that Q is squarefree and
hence

∏
p|Q 2 =

∑
d|Q 1. Let X = 222002

Q
1

1000 . Using well-known prop-
erties of the Mobius function µ and the Euler totient function φ, we
have ∑

1≤m≤X
gcd(a+mb,Q)=1

1 =
∑

1≤m≤X

∑
d|Q

d|a+mb

µ(d) =
∑
d|Q
µ(d)

∑
1≤m≤X

m≡−ba mod (d)

1

=
∑
d|Q
µ(d)
(X

d
+ rd

)
,

where |rd | ≤ 1 for all d, leading to

∑
1≤m≤X

gcd(a+mb,Q)=1

1 ≥ X
∑
d|Q

µ(d)
d
−
∑
d|Q

1 = X
φ(Q)

Q
−
∏
p|Q

2

≥ X
∏
p|Q

(
1 − 1

p

)
−
∏
p|Q

2.

Now, using 1 − 1
p ≥

1
2 , putting in the bounds from the lemma (with

k = 2000), and substituting the value of X, we obtain that
∑

1≤m≤X
gcd(a+mb,Q)=1

1 ≥
(
23·22000 − 222000 )

Q
1

2000 > 1.

It follows that there exists some m (between 1 and X), such that

gcd
(
a + mb, c/ gcd(b, c)

)
= 1.

However, since gcd(a, b) = 1, this implies that gcd(a + mb, c) = 1.
This completes the solution of the problem.

Also solved by Socratis Varelogiannis (France).

222. Show that
∞∑

n=1

sin2(πδn)
n2 = 1

2π
2δ(1 − δ) for 0 ≤ δ ≤ 1,

∞∑
n=1

sin3(πδn)
n3 = 1

2π
3δ2( 3

4 − δ) for 0 ≤ δ ≤ 1/2,

∞∑
n=1

sin4(πδn)
n4 = 1

2π
4δ3( 2

3 − δ) for 0 ≤ δ ≤ 1/2.

Setting δ = 1/2, deduce the values of ζ(2) and ζ(4).

(Olof Sisask, Department of Mathematics,
Stockholm University, Sweden)

Solution by the proposer. Let f = 1[−δ/2,δ/2] be the indicator function
of the interval [− δ2 ,

δ
2 ] in

T = R/Z � [− 1
2 ,

1
2 ].

We use Fourier analysis on T; in particular, for n ∈ Z \ {0}, by defi-
nition and computation we have

f̂ (n) =
∫
T

f (x)e2πinx dx =
∫ δ/2

−δ/2
e2πinx dx =

1
2πin

(
eπinδ − e−πinδ

)

=
sin(πδn)
πn

.

Parseval’s identity
∑

n∈Z| f̂ (n)|2 =
∫
T
| f (x)|2 dx, which is easily veri-

fied, then yields

δ2 + 2
∞∑

n=1

sin2(πδn)
π2n2 = δ,

which is a rearrangement of our first identity.
For the third identity, we use the convolution identity f̂ ∗ f (n) =

f̂ (n)2 and Parseval to write

∑
n∈Z
| f̂ (n)|4 =

∑
n∈Z
| f̂ ∗ f (n)|2 =

∫
T

|( f ∗ f )(x)|2 dx, (�)

where, by definition of convolution followed by a simple computa-
tion (where we use that δ ≤ 1/2),

f ∗ f (x) =
∫
T

f (y) f (x − y) dx =


δ − |x| for |x| ≤ δ
0 elsewhere

.
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Thus ∫
T

|( f ∗ f )(x)|2 dx = 2
∫ δ

0
(δ − x)2 dx = 2

3δ
3,

and so (�) gives

δ4 + 2
∞∑

n=1

sin4(πδn)
π4n4 = 2

3δ
3.

Rearranging, we have the third identity.

For the second identity, note similarly that, by the convolution
identity and Fourier inversion formula g(x) =

∑
n ĝ(n)e−2πinx,

∑
n∈Z

f̂ (n)3 = f ∗ f ∗ f (0) =
∫
T

( f ∗ f )(x) f (x) dx =
∫ δ/2

−δ/2
(δ − x) dx

= 3
4δ

2

for 0 ≤ δ ≤ 1/2, whence

∞∑
n=1

sin3(πδn)
n3 = 1

2π
3δ2( 3

4 − δ).

To deduce the ζ-values, we take δ = 1/2 and note that

sin
(

1
2πn
)
=



0 if n is even,
1 if n ≡ 1 (mod 4),
−1 if n ≡ 3 (mod 4).

In particular, the first of our identities yields

∞∑
k=1

1
(2k − 1)2 =

1
8π

2.

Since
∞∑

k=1

1
(2k)2 =

1
4 ζ(2),

we see that

ζ(2) =
∞∑

n=1

1
n2 =

1
8π

2 + 1
4 ζ(2)

and, rearranging,

ζ(2) =
π2

6
.

In exactly the same manner we obtain

ζ(4) =
π4

90
.

Comment. The integrals computed above all have an additive combi-
natorial interpretation: in the case of the fourth-power denominators,
the integral measures how many solutions there are to

a1 + a2 = a3 + a4

in the interval [− δ2 ,
δ
2 ]. In the case of third-powers, the equation is

a1 + a2 + a3 = 0,

and in the case of squares it is simply

a1 = a2.

The reason for restricting to δ ≤ 1/2 in two of the cases is that these
solutions are easy to measure provided there is no ‘wrap-around’
when adding two variables.

Also solved by Mihaly Bencze (Romania) and Rudolf Rupp (Nurem-
berg, Bavaria, Germany).

223. Fix a prime number p, and an integer β ≥ 2. Consider the
function defined on x ∈ R by e(x) = exp(2πix). Given a coprime
residue class r mod pβ, consider the additive character defined on
integers m ∈ Z by m �→ e

(
mr
pβ

)
. Given a complex parameter s ∈ C

with�(s) > 1, consider the Dirichlet series defined by

D(s, r, pβ) =
∑
m≥1

e
(

rm
pβ

)
m−s.

Show that this series has an analytic continuation to all s ∈ C, and
moreover that it satisfies a functional equation relating values at s
to 1 − s.

(Jeanine Van Order, Fakultät für Mathematik,
Universität Bielefeld, Germany)

Solution by the proposer. The key idea is to express the additive
character as a certain linear combination of multiplicative (Dirichlet)
characters, to reduce to the well-known classical setting of Dirich-
let L-series and their functional equations. To be more precise, let χ
denote a primitive Dirichlet character modulo pβ, and let

τ(χ) =
∑

x mod pβ

(x,pβ )=1

χ(x)e
(

x
pβ

)

denote the corresponding Gauss sum. We claim that for any integer
n ≥ 1, we have ∑

χ mod pβ
χ primitive

χ(r)τ(χ)n = ϕ(pβ) Kln(r, pβ), (1)

where the sum runs over primitive Dirichlet characters χ mod pβ,
ϕ(pβ) denotes the Euler-phi function evaluated at pβ, and

Kln(r, pβ) =
∑

x1 ,...,xn mod pβ

x1 ···xn≡r mod pβ

e
(

x1 + · · · + xn

pβ

)

denotes the hyper-Kloosterman sum of dimension n and modulus pβ

evaluated at a coprime residue class r mod pβ. Indeed, let us write

ϕ�(pβ) = ϕ(pβ) − ϕ(pβ−1)

to denote the number of primitive Dirichlet characters χ mod pβ.
Note that by the Möbius inversion formula, we have for any inte-
ger m ≥ 1 prime to p the relation

∑
χ mod pβ
χ primitive

χ(m) =
∑
0≤x≤β

px |(m−1,pβ )

ϕ(px)µ
(

pβ

px

)
,

from which it is easy to derive the corresponding orthogonality rela-
tion

∑
χ mod pβ
χ primitive

χ(m) =



ϕ�(pβ) if m ≡ 1 mod pβ,
−ϕ(pβ−1) if m ≡ 1 mod pβ−1 but m � 1 mod pβ,
0 otherwise.

(2)

Now to show (1), we open up sums and switch the order of summa-
tion to find
∑
χ mod pβ
χ primitive

χ(r)τ(χ)n =
∑
χ mod pβ
χ primitive

∑

x1 ,...,xn mod pβ

χ(rx1 · · · xn)e
(

x1 + · · · + xn

pβ

)

= ϕ�(pβ)
∑

x1 ,...,xn mod pβ

x1 ···xn≡r mod pβ

e
(

x1 + · · · + xn

pβ

)
− ϕ(pβ−1)

∑
x1 ,...,xn mod pβ

x1 ···xn≡r mod pβ−1

x1 ···xn�r mod pβ

e
(

x1 + · · · + xn

pβ

)
.
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Here, we write r to denote the multiplicative inverse of the class
r mod pβ, so that rr ≡ 1 mod pβ. Let us now consider the second
sum in this latter expression, which after putting y := x1 · · · xn−1r is
the same as

∑
x1 ,...,xn mod pβ

x1 ···xn≡r mod pβ−1

x1 ···xn�r mod pβ

e
(

x1 + · · · + xn

pβ

)

=
∑

x1 ,··· ,xn−1 mod pβ

e
(

x1 + · · · + xn−1

pβ

) ∑
xn mod pβ

xn≡y mod pβ−1

xn�y mod pβ

e
(

xn

pβ

)

Notice that the inner sum in this latter expression can be
parametrised equivalently by xn = y + lpβ−1 for l ranging over in-
tegers 1 ≤ l ≤ p − 1, so that we have

∑

x1 ,··· ,xn−1 mod pβ

e
(

x1 + · · · + xn−1

pβ

) ∑
xn mod pβ

xn≡y mod pβ−1

xn�y mod pβ

e
(

xn

pβ

)

=
∑

x1 ,···xn−1 mod pβ

e
(

x1 + · · · + xn−1 + y
pβ

) p−1∑
l=1

e
(

lpβ−1

pβ

)

=
∑

x1 ···xn mod pβ

x1 ···xn≡r mod pβ

e
(

x1 + · · · + xn

pβ

) p−1∑
l=1

e
(

l
p

)
= −Kln(r, pβ)

via the well-known elementary identity
∑p−1

l=1 e
(

l
p

)
= −1. Hence, see

that
∑
χ mod pβ
χ primitive

χ(r)τ(χ)n =
(
ϕ�(pβ) + ϕ(pβ−1)

)
Kln(r, pβ)

= ϕ(pβ) Kln(r, pβ).

Let us now consider the series in question, which after using (1)
is equivalent to a sum over Dirichlet series L(s, χ) attached to each
Dirichlet character χ mod pβ,

∑
m≥1

e
(

rm
pβ

)
m−s =

∑
m≥1

Kl1(rm, pβ)m−s

= ϕ(pβ)
∑
χ mod pβ
χ primitive

χ(r)τ(χ)
∑
m≥1

χ(m)m−s

= ϕ(pβ)
∑
χ mod pβ
χ primitive

χ(r)τ(χ)L(s, χ).

Observe that we have for each L(s, χ) the asymmetric functional
equation

L(s, χ) = p−βsτ(χ)


ΓR( 1−s

2 )

ΓR
(

s
2

)
 L(1 − s, χ), (3)

i.e., after bringing gamma factors ΓR(s) = π−sΓ (s) over to the right-
hand side. Substituting this functional equation (3) for each L(s, χ)
then gives us

∑
m≥1

e
(

rm
pβ

)
m−s

= ϕ(pβ)p−βs

ΓR
(

1−s
2

)

ΓR
(

s
2

)

∑
χ mod pβ
χ primitive

χ(r)τ(χ)τ(χ)L(1 − s, χ)

= ϕ(pβ)pβ(1−s)


ΓR
(

1−s
2

)

ΓR
(

s
2

)

∑
χ mod pβ
χ primitive

χ(r)
∑
χ mod pβ
χ primitive

L(1 − s, χ).

Here, we use that

τ(χ)τ(χ) = τ(χ)τ(χ) = |τ(χ)|2 = pβ

for each primitive Dirichlet character χ mod pβ. Hence, we derive
the relation

ΓR

( s
2

)
D(s, r, pβ) = ϕ(pβ)pβ(1−s)ΓR

(
1 − s

2

) ∑
χ mod pβ
χ primitive

χ(r)L(1 − s, χ).

Observe that when�(s) < 0, we can open up the absolutely conver-
gent Dirichlet series on the right-hand side and use the orthogonality
relation (2) to see that

ΓR

( s
2

)
D(s, r, pβ)

= ϕ(pβ)pβ(1−s)ΓR

(
1 − s

2

)


ϕ�(pβ)

∑
m≥1

m≡r mod pβ

1
m1−s − ϕ(pβ−1)

∑
m≥1

m≡r mod pβ−1

m�r mod pβ

1
m1−s


.

Note that a similar discussion carries over to the more general set-
ting of Dirichlet series defined with respect to Kln(mr, pβ) instead of
Kl1(mr, pβ), as well as to additive twists of GLn(AQ)-automorphic
L-functions (see [1] for more details).
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We would like for you to submit solutions to the proposed problems
and ideas on the open problems. Send your solutions by email to
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Switzerland, michail.rassias@math.uzh.ch.

We also solicit your new problems with their solutions for the next
“Solved and Unsolved Problems” column, which will be devoted to
Probability Theory.


