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Metastability of Stochastic
Partial Differential Equations
and Fredholm Determinants
Nils Berglund (Université d’Orléans, France)

Metastability occurs when a thermodynamic system, such as
supercooled water (which is liquid even below freezing point),
lands on the “wrong” side of a phase transition, and re-
mains in a state which differs from its equilibrium state for
a considerable time. There are numerous mathematical mod-
els describing this phenomenon, including lattice models with
stochastic dynamics. In this text, we will be interested in
metastability in parabolic stochastic partial differential equa-
tions (SPDEs). Some of these equations are ill posed, and only
thanks to very recent progress in the theory of so-called sin-
gular SPDEs does one know how to construct solutions via a
renormalisation procedure. The study of metastability in these
systems reveals unexpected links with the theory of spectral
determinants, including Fredholm and Carleman–Fredholm
determinants.

1 Introduction

Put a water bottle in your freezer. If the water is pure enough,
when you take it out after a few hours you will find that the
water is still in its liquid state although at a negative tempera-
ture. One says that the water is supercooled. Shake the bottle
and you will see the water suddenly turn into ice.

Supercooled water is an example of a metastable state. In
such a state, a thermodynamic potential of a physical system,
such as its free energy, is minimised locally but not globally.
The transition to its stable state requires the system to jump
over an energy barrier, and this may take a long time if only
fluctuations due to thermal agitation play a role. Thus, the
transformation of supercooled water into ice is achieved by
nucleation, that is, by the appearance of ice crystals that grow
slowly,1 although the presence of impurities or an outside en-
ergy source can speed up the solidification process.

There are many mathematical models describing metasta-
bility phenomena. The first to have been studied were lattice
models such as the Ising model with a Metropolis-Hastings
type stochastic dynamics. See for instance [8] for an overview
of metastability results in lattice systems. Metastability also
occurs in continuous systems such as stochastic (ordinary)

1 A spherical crystal with radius r changes the system’s energy in two
ways: since the ice is more stable than the liquid water, the energy is
decreased by an amount proportional to the crystal volume, r3; however
the interface between the crystal and the surrounding water increases the
energy by a quantity proportional to the crystal’s surface, r2. For small
values of r, the second contribution dominates the first one, whereas the
opposite holds for large r. Therefore, the ice crystals grow rather slowly
as long as their size is smaller than a critical value, for which the volume
and the surface terms are comparable.

differential equations, which we will consider in Section 2,
and in stochastic partial differential equations that will be ad-
dressed in Section 3.

2 Reversible diffusions

The motion in Rn of a Brownian particle of mass m, sub-
jected to a force arising from a potential V , a viscous damping
force and thermal fluctuations can be described by Langevin’s
equation

m
d2xt

dt2 = −∇V(xt) − γ
dxt

dt
+ σ

dWt

dt
,

where Wt is a Brownian motion (see Appendix A), γ is a
damping coefficient and the positive parameter σ is related
to the temperature. We will assume in what follows that
V : Rn → R is a confining potential (bounded below and
converging to infinity quickly enough), and we are mainly in-
terested in the case of small σ. In order to simplify a number
of expressions we will write σ =

√
2ε.

When ε = 0, if the mass m is small compared with the
damping coefficient γ, the particle converges without oscillat-
ing to a local minimium of V . In that case, the motion is said to
be overdamped. For any ε and in the limit of very small m/γ,
one can show that after a change of variables the dynamics is
described by the simpler first-order equation

dxt

dt
= −∇V(xt) +

√
2ε

dWt

dt
, (1)

called an overdamped Langevin equation. Mathematically
speaking, this is an example of a stochastic differential equa-
tion (SDE) and its solution is also called a diffusion.

For instance, in dimension n = 1, if V(x) = 1
2 x2 equa-

tion (1) becomes
dxt

dt
= −xt +

√
2ε

dWt

dt
, (2)

and describes an overdamped harmonic oscillator subject to
thermal noise. Its solution is called an Ornstein–Uhlenbeck
process.

One way to describe the solutions of (1) is to determine
their transition probabilities pt(x, y). These are such that if a
particle starts from the point x at time 0, then the probability
Px{xt ∈ A} of finding it in a region A at time t > 0 is given by

Px {xt ∈ A} =
∫

A
pt(x, y) dy .

It is known that pt(x, y) satisfies the Fokker–Planck equation

∂t pt = ∇ · (∇V pt) + ε∆pt (3)
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Figure 1. A double-well potential. The local minima x� and y� are sepa-
rated by a saddle point at z�.

(where the operators ∇ and ∆ act on the variable y). The term
∇ · (∇V pt) transports pt by a distance proportional to −∇V,
while ε∆pt is a diffusion term that tends to spread the distribu-
tion of xt. In the case of the Ornstein–Uhlenbeck process (2)
one can check that

pt(x, y) =
1√

2πε(1 − e−2t)
exp
{
− (y − x e−t)2

2ε(1 − e−2t)

}
, (4)

that is, xt follows a normal law with expectation x e−t and
variance ε(1 − e−2t). Observe that when t tends to infinity this
law converges to a centred normal law with variance ε: the
smaller the temperature, the smaller the variance and the less
important the fluctuations of xt.

For general potentials V , one does not know how to solve
the Fokker-Planck equation (3). However, it is known that the
limit as t → ∞ of pt(x, y) is always equal to

π(y) =
1
Z

e−V(y)/ε ,

where Z is a normalising constant such that the integral of π(y)
is equal to 1. In fact,2 π(y) dy is also an invariant probability
measure of the process, that is,∫

Rn
π(x)pt(x, y) dx = π(y) ∀y ∈ Rn ,∀t > 0 .

Furthermore, one can prove that the diffusion (xt)t�0 is re-
versible with respect to π : its transition probabilities satisfy
the detailed balance condition

π(x)pt(x, y) = π(y)pt(y, x) ∀x, y ∈ Rn ,∀t > 0 . (5)

This condition is easy to verify for the transition probabili-
ties (4) of the Ornstein–Uhlenbeck process. From a physical
point of view, it means that if we reverse the direction of time,
the trajectories keep the same probabilities. Or, to put it an-
other way, if we were to film the system, and then play the
film backwards, we would be unable to tell the difference.

Metastability manifests itself in system (1) when V has
more than one local minimum. Let us consider the simplest

2 The invariance of π follows from the fact that π is in the kernel of the
Fokker-Planck operator on the right-hand side of equation (3), which is
equivalent to the condition ε∇·(e−V/ε ∇(eV/ε π)) = 0. The detailed balance
condition (5) follows from the fact that this operator is self-adjoint in L2

with weight eV/ε.

Figure 2. A trajectory xt of the SDE (1) in dimension 1 and for the po-
tential V(x) = 1

4 x4 − 1
2 x2. For most of the time, the trajectory keeps fluc-

tuating around the two local minima of V , x� = −1 and y� = 1, with oc-
casional transitions from one minimum to the other. In this simulation, a
relatively large ε was chosen to make transitions observable during the
extent of the simulation.

case when V is a double-well potential, meaning that V has
exactly two local minima at x� and y�, as well a saddle
point at z� (Figure 1). The two local minima represent two
metastable states of the system, since the solutions of the
SDE (1) remain in the neighbourhood of these points (Fig-
ure 2) for a long time.

The central question is then the following: let us sup-
pose the diffusion starts in the first local minimum x�, and
let Bδ(y�) be a ball with small radius δ centered in the second
minimum y�. For small ε, what is the behaviour of the first
time τ = inf{t > 0 | xt ∈ Bδ(y�)} for which xt visits Bδ(y�)?

Arrhenius’ Law and large-deviation theory
A first answer to this question was given at the end of the 19th
century by Jacobus van t’Hoff, then justified from a physical
viewpoint by Svante Arrhenius [1]: the mean value of τ (its
mathematical expectation) behaves like e[V(z�)−V(x�)]/ε. Thus,
it is exponentially large in the height of the potential barrier
between the two local minima of V . When ε tends to 0, the
mean transition time tends very quickly to infinity, reflecting
the fact that no transition is possible in the absence of thermal
fluctuations. Conversely, when ε increases, the mean transi-
tion time becomes shorter and shorter.

A rigorous version of this so-called Arrhenius law can be
deduced from the theory of large deviations, developed in the
SDE context by Mark Freidlin and Alexander Wentzell in the
years 1960–1970 [11]. The idea is the following: fix a time in-
terval [0,T ] and associate to every deterministic differentiable
trajectory γ : [0,T ]→ Rn the rate function

I[0,T ](γ) =
1
2

∫ T

0

∥∥∥∥∥
dγ
dt

(t) + ∇V(γ(t))
∥∥∥∥∥

2

dt . (6)

Observe that this function vanishes if and only if γ(t) sat-
isfies dγ

dt (t) = −∇V(γ(t)), which is Equation (1) with ε =
0. Otherwise, I[0,T ](γ) is strictly positive and measures the
“cost” of keeping xt close to γ(t). Indeed, the large-deviation
principle for diffusions states that the probability that this
happens is close (in a precise sense) to the exponential of
−I[0,T ](γ)/(2ε).

One can also estimate the probability p(T ) = Px� {τ � T }
of the diffusion starting from x� to reach the ball Bδ(y�) in
time T at most. For that, observe that, for all T1 ∈ [0, T ], the
rate function is bounded below by I[0,T1](γ), which can also
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be written as

I[0,T1](γ) =
1
2

∫ T1

0

∥∥∥∥∥
dγ
dt

(t) − ∇V(γ(t))
∥∥∥∥∥

2

dt

+ 2
∫ T1

0

dγ
dt

(t) · ∇V(γ(t)) dt .

The second term on the right-hand side can be integrated and
is equal to 2[V(γ(T1))−V(γ(0))]. Since the potential along any
trajectory γ connecting x� to Bδ(y�) reaches at least the value
V(z�), the large-deviation principle shows that p(T ) is at most
of order e−[V(z�)−V(x�)]/ε. Furthermore, one can construct a tra-
jectory from x� to Bδ(y�) with cost 2[V(z�)−V(x�)+R(T )],
where R(T ) is a term converging to 0 as T → ∞.3 The argu-
ment is concluded by comparing the system with a Bernoulli
process performing independent attempts of reaching Bδ(y�)
in time intervals [kT, (k + 1)T ], each with probability of suc-
cess equal to p(T ), whose expectation is equal 1/p(T ). The
errors made in comparing the two processes become negligi-
ble when ε→ 0.4

The Eyring–Kramers Law and potential theory
The Eyring–Kramers law, proposed in the 1930s [9, 14], is
more precise than Arrhenius’ law5, since it describes the pref-
actor of the mean transition time. Let us denote by Hess V(x)
the Hessian matrix of the potential V at x, which will always
be assumed to be non-singular (i.e., with nonzero determi-
nant). All eigenvalues of the matrix Hess V(x�) are positive,
whereas Hess V(z�) has a single negative eigenvalue that will
be denoted by λ−(z�).6

In this case, the Eyring–Kramers law states that

Ex� [τ] =
2π
|λ−(z�)|

√
| det Hess V(z�)|
det Hess V(x�)

e[V(z�)−V(x�)]/ε[1+R(ε)
]
,

(7)
where R(ε) is a remainder converging to zero when ε → 0.
There are at present several methods to prove this result. In the
following we will explain the method based on potential the-
ory, developed by Anton Bovier, Michael Eckhoff, Véronique
Gayrard and Markus Klein in the early 2000s [6], which is
generalisable to the case of stochastic PDEs (readers who are
not interested in these technical details are invited to go di-
rectly to section 3).

Let us fix two disjoint sets, A, B ⊂ Rn, with smooth
boundaries — think of neighbourhoods of the minima x� and
y� of the potential V . The basic observation is that Dynkin’s

3 For T sufficiently large, one connects points close to x� and z� in a time
(T − 1)/2 by a trajectory on which dγ

dt (t) = +∇V(γ(t)), with cost close to
2[V(z�) − V(x�)]. Then, one connects a point close to z� to Bδ(y�) in a
time (T − 1)/2 by a zero-cost deterministic trajectory. Finally, one uses
the remaining time 1 to connect these pieces of trajectory with straight
line segments of negligible cost.

4 The precise statement of this result is that the mean transition time Ex� [τ]
satisfies limε→0 ε logEx� [τ] = V(z�) − V(x�).

5 The Eyring–Kramers law was indeed proposed about three decades be-
fore the first proof of Arrhenius’ law.

6 Indeed, if Hess V(z�) had more negative eigenvalues, one would be able
to find a more economical path, in terms of maximal height, to go from
x� to y�. For example, in dimension 2, the stationary points of V at which
the Hessian has two negative eigenvalues are local maxima of V , whereas
we are interested in saddle points characterised by one positive and one
negative eigenvalues.

A B

hAB = 1 hAB = 0

hAB = constant

Figure 3. In the case V = 0, the equilibrium potential hAB describes the
electric potential of a capacitor formed by two conductors A and B at
potentials 1 and 0, respectively.

formula (or Itô’s formula for stopping times) allows us to ex-
press several probabilistic quantities of interest as solutions
of partial differential equations. For example, the function
wB(x) = Ex[τB], giving the expected value of the time to reach
B starting from x, satisfies the Poisson problem

(L wB)(x) = −1 x ∈ Bc ,

wB(x) = 0 x ∈ B ,
(8)

where L is the differential operator

L = ε∆ − ∇V · ∇ ,
called the generator of the diffusion (xt)t�0 (it is the adjoint in
L2 of the Fokker–Planck operator appearing in (3)).

The solution of the Poisson equation (8) can be repre-
sented in the form

wB(x) = −
∫

Bc
GBc (x, y) dy , (9)

where GBc is the Green function associated to Bc, solution of
(L GBc )(x, y) = δ(x − y) x ∈ Bc ,

GBc (x, y) = 0 x ∈ B .

Reversibility implies that GBc satisfies the detailed balance
relation

e−V(x)/εGBc (x, y) = e−V(y)/εGBc (y, x) ∀x, y ∈ Bc . (10)

In the case V = 0, Green’s function has an electrostatic inter-
pretation: GBc (x, y) is the value at x of the electric potential
generated by a unit electric charge at y when the region B is
occupied by a conductor at zero potential.

A second important quantity is the equilibrium potential
hAB(x) = Px{τA < τB}, also called committor: it gives the
probability, starting from x, of reaching the set A before reach-
ing B. It is an L -harmonic function that satisfies the Dirichlet
problem 

(L hAB)(x) = 0 x ∈ (A ∪ B)c ,

hAB(x) = 1 x ∈ A ,
hAB(x) = 0 x ∈ B .

The equilibrium potential also admits an integral expression
in terms of Green’s function, namely

hAB(x) = −
∫
∂A

GBc (x, y)eAB(dy) , (11)

where eAB is a measure concentrated in ∂A, called equilibrium
measure, defined by

eAB(dx) = (−L hAB)(dx) .
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Figure 4. The Dirichlet principle states that the capacity minimises the
distance to the origin, measured by the Dirichlet form, in the set HAB
of functions h with value 1 in A and 0 in B. This is due to the fact that
〈 f ,−L hAB〉π is constant for f ∈HAB.

The electrostatic interpretation of hAB is that it is the electric
potential of a capacitor made of two conductors in A and B at
potentials 1 and 0, respectively (Figure 3). Finally, the capac-
ity

cap(A, B) =
∫
∂A

e−V(x)/ε eAB(dx)

is the normalising constant ensuring that

νAB(dx) =
1

cap(A, B)
e−V(x)/ε eAB(dx)

is a probability measure on ∂A. In electrostatics, cap(A, B) is
the total charge in the capacitor (which is equal to its capacity
for a unit potential difference).

Combining the expressions (9) of wB and (11) of hAB with
the detailed balance relation (10) of the Green function, we
obtain∫
∂A
Ex[τB]νAB(dx) =

1
cap(A, B)

∫
Bc

e−V(x)/ε hAB(x) dx , (12)

which is a fundamental relation for the potential theoretic ap-
proach. Indeed, taking for A a small ball centred at x�, one
can prove (either using Harnack inequalities, or by a coupling
argument) that Ex[τB] changes very little in ∂A. The left-hand
side of (12) is, thus, close to the expected value Ex� [τB]. As
for the right-hand side, we start by observing that if B is a
small ball centred in y�, then hAB is close to 1 in the basin
of attraction of y�. Thus, Laplace’s method allows us to show
that
∫

Bc
e−V(x)/ε hAB(x) dx �

√
(2πε)n

det Hess V(x�)
e−V(x�)/ε . (13)

It remains to estimate the capacity, which can be done with
the help of variational principles. The Dirichlet form is the
quadratic form associated to the generator, and can be written
using an integration by parts (Green’s identity) as

E ( f , f ) = 〈 f ,−L f 〉π = ε
∫
Rn

e−V(x)/ε ‖∇ f (x)‖2 dx ,

where 〈 f , g〉π is the inner product with weight π(x). The
Dirichlet principle states that the capacity cap(A, B) is equal
to the infimum of the Dirichlet form over all functions with
value 1 in A, and 0 in B, and this infimum is attained at
f = hAB. This is a direct consequence of the fact that
〈 f ,−L hAB〉π = cap(A, B) for all f satisfying these same
boundary conditions, and the Cauchy–Schwarz inequality

(see Figure 4). In electrostatics, the Dirichlet form is inter-
preted as the electrostatic energy of the capacitor, which is
indeed minimal at the equilibrium state.

A lower bound for the capacity can be obtained with the
help of Thomson’s principle. Given a vector field ϕ : Rn →
Rn, we define the quadratic form

D(ϕ, ϕ) =
1
ε

∫
(A∪B)c

eV(x)/ε ‖ϕ(x)‖2 dx .

Thomson’s principle states that the inverse of the capacity is
the infimum of D over all divergence-free vector fields, whose
flux through ∂A is equal to 1.

Choosing appropriate test functions in both variational
principles (which can be guessed from the explicitly solvable
one-dimensional case), one obtains

cap(A, B) � |λ−(z�)|
2π

√
(2πε)n

| det Hess V(z�)| e
−V(z�)/ε .

Combining (13) and this last expression yields the Eyring–
Kramers formula (7).

3 Metastability in the Allen–Cahn equation

We would now like to quantify, in a way similar to what was
just done in the context of SDEs, the phenomenon of metasta-
bility in stochastic partial differential equations (SPDEs). We
shall consider the Allen–Cahn equation

∂tφ = ∆φ + φ − φ3 +
√

2εξ , (14)

which is a simple model for phase separation, for instance in
a mixture of ice and liquid water, or in an alloy. It is also one
of the simplest SPDEs displaying metastable behaviour.

The unknown φ(t, x) is a scalar field, where the space vari-
able x lies in the torus Td

L = (R/LZ)d of size L (we could work
on the unit torus provided we introduce a viscosity parameter
multiplying the Laplacian). The term ξ denotes a so-called
space-time white noise. Intuitively, ξ represents a Brownian
noise acting independently in each point of space, meaning
that

E
[
ξ(t, x)ξ(s, y)

]
= δ(t − s)δ(x − y) . (15)

Mathematically, ξ is a centred Gaussian random distribution
with covariance

E
[〈ξ, ϕ1〉〈ξ, ϕ2〉

]
= 〈ϕ1, ϕ2〉L2

for all pairs of test functions ϕ1, ϕ2 ∈ L2. Indeed, formally
replacing the test functions by Dirac distributions we recover
relation (15). Furthermore, if ϕT (t, x) = 1 when t ∈ [0, T ] and
x belongs to a set A ⊂ Td

L, and is otherwise equal to 0, then
WT = 〈ξ, ϕT 〉 is a Brownian motion.

We can consider (14) as an infinite-dimensional analogue
of the gradient diffusion (1) for the potential

V(φ) =
∫
Td

L

(1
2
‖∇φ(x)‖2 − 1

2
φ(x)2 +

1
4
φ(x)4

)
dx . (16)

Indeed, for all periodic functions ψ, the Gâteaux derivative of
V in the direction ψ is

lim
h→0

V(φ + hψ) − V(φ)
h

=

∫
Td

L

(∇φ(x) · ∇ψ(x) − φ(x)ψ(x) + φ(x)3ψ(x)
)

dx ,
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and an integration by parts of the term ∇φ · ∇ψ shows that
this derivative is equal to −〈∆φ + φ − φ3, ψ〉L2 which is, up to
a change of sign, exactly the inner product of the right-hand
side of (14) with ψ.

In the deterministic case ε = 0, the stationary solutions
of (14) are the critical points of V , among which only two
are local minima, and thus play the same role as x� and y� in
the case of diffusions: these are the solutions identically equal
to ±1 that we shall denote by φ�± . If φ represents a mixture
of ice and water, then φ�− and φ�+ represent pure ice and pure
water, respectively. Depending on the size L of the spatial do-
main, there can be additional critical points. In what follows,
in order to simplify the presentation, we shall concentrate our
attention on the case L < 2π. In this case there is only one
other critical point: the identically zero function that we shall
denote by φ�trans ,since it represents the transition state when
going from φ�− to φ�+ . It plays the same role as z� in the case
of diffusions.

Figure 5 illustrates the time evolution of a solution of (14)
in dimension 2.7 It presents a phenomenon of gradual phase
separation (in solid state physics, for example in phase sepa-
ration in an alloy, one speaks of spinodal decomposition), and
corresponds to a rather slow convergence towards one of the
equilibria φ�± . A difference with the one-dimensional case rep-
resented in Figure 2 is that here, one observes the coexistence
of the two phases for a long time. Only after an extended time
period (exceeding what is shown in Figure 5) does the system
approach a single pure phase, be it blue or red. This is due
to the fact that the initial condition, which is random and has
zero mean, causes the field to first approach the saddle point
φ�trans (that also has zero mean) before being attracted by φ�−
or φ�+ . Moreover, since we are in an infinite-dimensional sit-
uation, the system has plenty of “space” to evolve in before
converging towards an equilibrium.

If, unlike what is shown in Figure 5, we were to start the
simulation in one of the pure phases, say in φ�− , we would see
the system stay close to that state for a very long time, before
making a transition to the other state φ�+ . Then, after another
very long time period has ellapsed, we would see the system
return to the initial state, and so on. The mean value of the
field would then behave as illustrated in Figure 2. Therefore,
we are indeed dealing with a metastability phenomenon. A
natural question that arises when ε > 0 is the following: if we
start with an initial condition close to φ�− , what is the precise
asymptotics of the time needed to reach a small neighbour-
hood (in an appropriate norm) of the solution φ�+ ?

Dimension 1: Fredholm determinants
In the case of dimension d = 1, William Faris and Giovanni
Jona-Lasinio proved in [10] a large-deviation principle with
rate function (compare with the expression (6) for the rate

7 Animations can be found on the web pages www.idpoisson.fr/berglund/
simchain.html for dimension 1, and www.idpoisson.fr/berglund/simac.
html for dimension 2. See also the YouTube page tinyurl.com/q43b6lf.
Furthermore, one can find interactive simulations at the addresses
experiences.math.cnrs.fr/Equation-aux-Derivees-Partielles.html and
experiences.math.cnrs.fr/EQuation-aux-Derivees-Partielles-69.html.

Figure 5. Time evolution of a solution of the stochastic Allen–Cahn equa-
tion on a two-dimensional torus, illustrating the phenomenon of spinodal
decomposition, or slow phase separation. Red and blue colours represent
regions where the field φ is close to 1 and to −1, respectively, whereas
yellow corresponds to φ close to 0. The main effect of the noise in these
simulations is to make the regions of red and blue phases slightly granu-
lar. The interfaces between the two phases remain relatively smooth due
to the regularising effect of the Laplacian.

function of a diffusion)

I[0,T ](γ) =
1
2

∫ T

0

∫
TL

[∂γ
∂t

(t, x) − ∂
2γ

∂x2 (t, x)

− γ(t, x) + γ(t, x)3
]2

dx dt . (17)

Let τ be the first-hitting time of a ball B = {φ : ‖φ−φ�+‖L∞ < δ},
with small radius δ > 0 independent of ε. By a method similar
to the one discussed in section 2, one obtains that τ satisfies
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Arrhenius’ law

Eφ
�
− [τ] � e[V(φ�trans)−V(φ�−)]/ε .

What about the Eyring–Kramers law? If we want to extend
Expression (7), valid in finite dimension, to the present sit-
uation, we first need to determine what the analogues of the
Hessian matrices of V at the critical points are. An integra-
tion by parts shows that the expansion up to order 2 of the
potential around φ�trans = 0 is

V(φ) =
1
2
〈φ, [−∆ − 1]φ〉L2 + O(φ4) ,

and thus we can identify Hess V(φ�trans) with the quadratic
form −∆ − 1. A similar argument applied to φ�− shows that
Hess V(φ�−) can be identified with −∆ + 2.8 Taken separately,
these two operators do not have a well-defined determinant.
However, we can write their ratio as

det
(
(−∆ + 2)(−∆ − 1)−1) = det

(
1l + 3(−∆ − 1)−1) . (18)

This is a Fredholm determinant, an object generalising the
characteristic polynomial of a matrix to infinite-dimensional
operators9. To see that this determinant converges, let us ob-
serve that the eigenvalues λk of 3(−∆−1)−1 decrease like 1/k2

for large k. Hence, the logarithm of the determinant behaves
like the sum of log(1 + λk), that is, like the sum of the λk, i.e.,
the trace of 3(−∆−1)−1. By Riemann’s criterion this sum con-
verges, and one says that 3(−∆ − 1)−1 is trace class. In fact,
using two of Euler’s identities about infinite products, one can
obtain the explicit value

det
(
1l + 3(−∆ − 1)−1) = − sinh2(L/

√
2)

sin2(L/2)
.

The following theorem is a particular case of a result proved
in [5] (and also of a result in [2] obtained by a different ap-
proach.)

Theorem 3.1. For L < 2π, one has

Eφ
�
− [τ] =

2π
|λ−(φ�trans)|

e[V(φ�trans)−V(φ∗−)]/ε

√∣∣∣det
(
1l + 3(−∆ − 1)−1)∣∣∣

[1 + R(ε, δ)] ,

(19)
where λ−(φ�trans) = −1 is the smallest eigenvalue of −∆ − 1,
and R(ε, δ) converges to 0 as ε → 0. (The speed of this con-
vergence depends on L, it becomes slower as L gets closer
to 2π.)

Let us give an idea of the proof of this theorem. The first
step consists of a spectral Galerkin approximation. Let {ek}k∈Z
be a Fourier basis of L2(TL), and for a positive integer N
(called the ultraviolet cutoff parameter), let PN be the pro-
jection on the space HN generated by {ek}|k|�N . The projected
equation

∂tφN = ∆φN + φN − PN(φ3
N) +

√
2εPNξ

8 The values −1 et 2 are the second derivatives of the function φ �→ 1
4φ

4 −
1
2φ

2 at 0 and −1, respectively.
9 The nonzero roots of the characteristic polynomial cM(t) = det(t1l − M)

of a matrix M are the inverses of the roots of c̄M(s) = det(1l − sM). The
Fredholm determinant of −sM is the analogue of c̄M(s) when M is an
infinite-dimensional linear operator.

is equivalent to a finite-dimensional SDE of type (1), with V
the potential (16) restricted to HN . We can then apply the po-
tential theoretic approach discussed in section 2 above, care-
fully controlling the dependence of the error terms upon the
cutoff parameter N and then letting N → ∞.

A major difficulty is thus to get an estimate similar to (19)
for the Galerkin approximation, with an error term R(ε, δ) in-
dependent of N. A key idea of the proof consists in decom-
posing the potential V into a quadratic part and a higher-order
part. This allows for the interpretation of the capacity and of
the integral on the right-hand side of Relation (12) as expecta-
tions, under a Gaussian measure, of certain random variables
that can then be estimated with the help of probabilistic argu-
ments. Details of these computations can be found in [3, Sec-
tion 2.7].

Dimension 2: Carleman–Fredholm determinants
We will now consider the Allen–Cahn equation (14) on the
torus of dimension d = 2. It turns out that, unlike in the case
d = 1, the equation is no longer well posed! This is due to the
fact that space-time white noise is more singular in dimension
2 than in dimension 1. In [7], Giuseppe Da Prato and Arnaud
Debussche solved this problem by a renormalisation proce-
dure inspired by Quantum Field Theory. Instead of (14) they
considered, for δ > 0, the regularised equation

∂tφ = ∆φ + φ + 3εCδφ − φ3 +
√

2εξδ . (20)

Here ξδ is a regularisation of space-time white noise defined
as the convolution �δ ∗ ξ, where

�δ(t, x) =
1
δ4
�
( t
δ2
,

x
δ

)
,

for a test function � with integral 1. Consequently, �δ con-
verges to the Dirac distribution when δ converges to 0. Fur-
thermore, Cδ is a renormalisation constant that diverges like
log(δ−1) as δ tends to 0. Since ξδ is a function, and not a dis-
tribution, the so-called renormalised equation (20) admits so-
lutions for all values of δ > 0. Da Prato and Debussche then
showed that these solutions converge to a well-defined limit
when δ goes to 0.

At first sight, one might think that the stable equilibrium
states of equation (20) are located at ±

√
1 + 3εCδ, and thus go

to infinity as δ tends to 0 with ε fixed. In fact, this is not the
case – a first indication of this was the proof by Martin Hairer
and Hendrik Weber in [13] of a large-deviation principle with
rate function analogous to that of the one dimensional case
(see (17)). The key observation is that, as in dimension 1, this
rate function does not include any renormalisation countert-
erm. This implies the Arrhenius law

Eφ
�
− [τ] � e[V(φ�trans)−V(φ�−)]/ε ,

where V is the potential (16) without renormalisation term.
As before, τ is the transition time between the equilibria φ�−
and φ�+ , located at ±1, respectively. We can interpret this result
as indicating that the only role of the counterterm 3εCδφ is to
make the nonlinearity φ3 well defined.

What about the Eyring–Kramers law? It turns out that
the Fredholm determinant (18) does not converge. In fact,
3(−∆ − 1)−1 is no longer of trace class in dimension 2, since
its eigenvalues are proportional to 1/(k2

1 + k2
2) with k1 and k2
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two nonzero integers, and hence the sum of these eigenvalues
diverges like the harmonic series!

The solution to this problem consists, first of all, in work-
ing, as in dimension 1, with a spectral Galerkin approximation
with ultraviolet cutoff N. Instead of regularising the space-
time white noise by convolution, one can again consider its
spectral Galerkin projection ξN = PNξ, with a counterterm

3εCN =
3ε
L2 Tr(PN(−∆ − 1)−1)

that diverges as log(N) (the constant CN is the variance of the
truncated Gaussian free field10). The renormalised potential
can thus be written as

VN(φ) =
∫
T2

L

[1
2
‖∇φ(x)‖2 + 1

4
φ(x)4 − 1

2
(1 + 3εCN)φ(x)2

]
dx .

The crucial point is to observe that

VN(φ�trans) − VN(φ�−) =
L2

4
+

3
2

L2εCN .

The new term 3
2 L2εCN is exactly the one that will make the

prefactor converge. Indeed, the Eyring–Kramers formula in-
volves the factor

det
(
1l + 3PN(−∆ − 1)−1) e−3 Tr(PN (−∆−1)−1) ,

which does have a limit as N → ∞ (this follows from the fact
that its logarithm behaves like the sum of 1/(k2

1+k2
2)2). This is,

in fact, a known regularisation of the Fredholm determinant,
also called the Carleman–Fredholm determinant, sometimes
denoted det2(1l+3(−∆−1)−1). Unlike Fredholm’s determinant,
this modified determinant is well defined for operators whose
square is trace class, the so-called Hilbert–Schmidt operators,
which include 3(−∆ − 1)−1.

The following theorem combines results of [4] and [15].

Theorem 3.2. Let τ be the first-hitting time of a ball (in the
Sobolev norm Hs for some s < 0), centred at φ�+ . For L < 2π,
we have

Eφ
�
− [τ] =

2π
|λ−(φ�trans)|

e[V(φ�trans)−V(φ∗−)]/ε

√∣∣∣det2
(
1l + 3(−∆ − 1)−1)∣∣∣

[
1 + R(ε, δ)

]
,

(21)
where λ−(φ�trans) = −1 is the smallest eigenvalue of −∆ − 1,
and R(ε, δ) is an error term converging to 0 as ε → 0 (at a
convergence rate depending on L.)

This result confirms that the renormalisation procedure
does not displace the stationary states, since the theorem ap-
plies to the states φ�± located at ±1. However, the renormalisa-
tion procedure is necessary to get a finite prefactor for the
transition time, since the ratio of the spectral determinants
and the counterterm 3

2 L2εCN in the potential compensate each
other exactly.

4 Some open problems

A natural question to ask is whether an Eyring–Kramers law
exists for the Allen–Cahn equation in dimension d = 3 (in
dimension d = 4 one does not expect the existence of non-
trivial solutions to this equation). As shown by Martin Hairer

10 For more information about the Gaussian free field see the article of Rémi
Rhodes in the July 2018 issue of La Gazette des Mathématiciens.

in the widely noted paper [12]11, which earned him the Fields
Medal in 2014, the form of the renormalised equation is

∂tφ = ∆φ + φ +
[
3εC(1)

δ − 9ε2C(2)
δ

]
φ − φ3 +

√
2εξδ ,

where C(1)
δ and C(2)

δ diverge like δ−1 and log(δ−1), respectively.
The first counterterm comes from the same renormalisation
procedure as in dimension 2 (called Wick renormalisation),
and does not introduce any new difficulties. On the other hand,
the second counterterm is specific to dimension 3 and is at the
origin of numerous problems. In particular, contrary to what
happens in the case d = 2, the invariant measure of the Allen–
Cahn equation is singular with respect to the Gaussian free
field.

However, we can note that (−∆ − 1)−1 is Hilbert–Schmidt
in dimension 3 as well. As the second counterterm occurs
with a factor ε2, we expect that an Eyring–Kramers formula
analogous to (21) is still valid. With Ajay Chandra, Giacomo
Di Gesù and Hendrik Weber we managed to establish some
of the estimates needed to prove that result. However, so far
the lower bound on the capacity still resists our efforts.

Of course, it would be desirable to obtain Eyring–Kramers
formulas not just for the Allen–Cahn equation but also for
other SPDEs. An example is the Cahn–Hilliard equation de-
scribing phase separation in cases where the total volume of
each phase is conserved, like in mixtures of water and oil.
However, as in most mathematical models of metastable sys-
tems, these SPDEs remain based on a lattice dynamics: each
lattice point is characterised by its state, but remains fixed in
the same place. This is a good model for certain alloys or
for ferromagnetic materials, which have a crystalline struc-
ture with different types of atoms or spins attached to each
site. However, for a mixture of ice and liquid water there is no
underlying lattice. One of the great challenges in the theory
of metastability is to analyse models, taking into account the
fact that ice crystals can move through liquid water to form
larger crystals by agglomeration.

A Appendix: Brownian motion

Brownian motion is a mathematical model for the erratic
movement of a particle immersed in a fluid, under the effect
of collisions with the fluid’s molecules. It was first observed
by the naturalist Robert Brown in 1827, while studying pollen
grains under a microscope.

The first mathematical descriptions of Brownian motion
were proposed by the French mathematician Louis Bachelier
in 1901, for applications in finance, and by Albert Einstein in
1905. Variants of their approaches were developed by Marian
Smoluchowski in 1906 and by Paul Langevin in 1908. Ein-
stein’s computations allowed Jean Perrin to experimentally
estimate Avogadro’s number in 1909, a feat that earned him
the Nobel Prize in 1926.

11 For further details of the theory introduced by Martin Hairer, called the-
ory of regularity structures, the reader may consult the paper by François
Delarue in the January 2015 issue of La Gazette des Mathématiciens and
the paper of Bruned, Hairer and Zambotti published in the March 2020
issue of this Newsletter.
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Figure 6. Two realisations (one in red and one in blue) of a symmetric
random walk in Z, seen at different scales. From one plot to the next, the
horizontal scale is compressed by a factor of 5, while the vertical scale is
compressed by a factor of

√
5.

Let us consider the case of dimension 1 and assume that
the particle undergoes regular collisions, at time intervals ∆t.
Between two successive collisions, the particle travels a dis-
tance ∆x with equal probability 1

2 to the left or to the right.
Its position at time n∆t is thus given by S n∆x, where S n is a
sequence of integers such that the increments S n+1 − S n have
value 1 or −1, each with probability 1

2 . Furthermore, we as-
sume that each increment is independent from all previous
ones. The sequence S n is called a symmetric random walk
in Z (see Figure 6).

Since in practice the space and time intervals ∆x and ∆t
are very small, it seems relevant to let them converge to zero
in order to obtain a universal object. It turns out that this limit
is only interesting if ∆t is proportional ∆x2 (this is a conse-

quence of the Central Limit Theorem). This amounts to set-
ting

Wt := lim
n→∞

1
√

n
S �nt� .

This definition turns out to be equivalent to requiring that for
all t > s � 0 the increment Wt −Ws follows a centred normal
law, with variance t − s, and independent of the values of the
process up to time s.

Norbert Wiener showed in 1923 that the trajectories t �→
Wt are continuous (Wt is also known today as the Wiener
process). Other properties of Wt were established by sev-
eral mathematicians, including Raymond Paley, Antoni Zyg-
mund and Paul Lévy. In particular, we know that trajectories
of Brownian motion are nowhere differentiable. This poses a
problem for the definition of the SDE (1), which is solved by
defining its solutions to be those of the integral equation

xt = x0 −
∫ t

0
∇V(xs) ds +

√
2εWt ,

that can be studied using a fixed-point argument. The theory
was generalised by Kiyoshi Itô in the 1940s. His stochastic
calculus allows one to solve variants of (1) in which the noise
term is multiplied by a function of x. Some ideas at the ba-
sis of stochastic calculus were discovered independently by
Wolfgang Döblin and sent to the French Academy of Sciences
in a sealed envelope that was only opened in 2000.
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