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The Ionization Problem
Phan Thành Nam (Ludwig-Maximilians-Universität München, Germany)

The question: “How many electrons can a nucleus bind?" is
as old as quantum mechanics, but its rigorous answer based
on the many-body Schrödinger equation remains a difficult
challenge to mathematicians. Nevertheless, there has been re-
markable progress in this problem in the past four decades.
We will review the current understanding of the Schrödinger
equation and then turn to simplified models where the prob-
lem has been solved satisfactorily. We will also discuss the
connection to the liquid drop model, which is somewhat more
classical, but no less interesting.

1 Atomic Schrödinger equation

For us, an atom is a system of N quantum electrons of charge
−1 moving around a heavy classical nucleus of charge Z ∈
N and interacting via Coulomb force (we use atomic units).
The wave functions of N electrons are normalised functions
in L2(R3N) satisfying the anti-symmetry

Ψ(x1, . . . , xi, . . . , x j, . . . , xN)
= −Ψ(x1, . . . , x j, . . . , xi, . . . , xN), ∀i � j,

where xi ∈ R3 stands for the position of the i-th electron (we
will ignore the spin for simplicity). The Hamiltonian of the

system is

HN =

N∑
i=1

(
−1

2
∆xi −

Z
|xi|

)
+
∑

1�i< j�N

1
|xi − x j|

.

The self-adjointness of HN follows a famous theorem of Kato.
We are interested in the ground state problem

EN = inf
||Ψ||L2=1

〈Ψ,HNΨ〉.

By a standard variational method, we know that the minimiz-
ers, if they exist, are solutions to the Schrödinger equation

HNΨ = ENΨ.

The existence/nonexistence issue is related to the stability of
the system, namely whether all electrons will be bound, or
some of them may escape to infinity. Obviously, HN and EN

also depend on Z, but let us not include this dependence in the
notation.

It is natural to guess that there is a sharp transition when
N crosses the value Z + 1. Heuristically, if N < Z + 1, then
the outermost electron sees the rest of the system as a large
nucleus of the effective charge Z − (N − 1) > 0. Hence, this
electron will “prefer to stay” by the Coulomb attraction. On
the other hand, if N > Z + 1, then the outermost electron will
“prefer to go away” by the Coulomb repulsion.

Part of the above heuristic guess was justified by Zhislin
in 1960.
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Theorem 1. If N < Z + 1, then EN has a minimizer.

More precisely, he proved that if N < Z + 1, then
EN < EN−1. This strict binding inequality prevents any elec-
tron from escaping to infinity, thus ensuring the compactness
of minimising sequences for EN . On a more abstract level, if
N < Z + 1, then EN is strictly below the essential spectrum of
HN . In fact, the essential spectrum of HN is [EN−1,∞) due to
the celebrated Hunziker–van Winter–Zhislin (HVZ) theorem.

Thus, Zhislin’s theorem ensures the existence of all pos-
itive ions and neutral atoms. On the other hand, the nonexis-
tence of highly negative ions is much more difficult, and often
referred to as the “ionization conjecture”; see, e.g., [23, Prob-
lem 9] and [15, Chapter 12].

Conjecture 2. There exists a universal constant C > 0 (pos-
sibly C = 1) such that if N > Z+C, then EN has no minimizer.

Note that the above heuristical argument is purely clas-
sical and it is too rough to understand the delicate quantum
problem at hand. In 1983, Benguria and Lieb [1] proved that
if the anti-symmetry condition of the wave functions is ig-
nored, then the atoms with “bosonic electrons” always exist
as soon as N � tcZ with a universal constant tc > 1 (numeri-
cally tc ≈ 1.21, computed by Baumgartner). Thus the ioniza-
tion problem requires a deep insight, as the particle statistics,
more precisely Pauli’s exclusion principle, play an essential
role.

2 Known results

A rigorous upper bound to the question “How many electrons
can a nucleus bind?” was first derived by Ruskai [19] and Si-
gal [21] independently in 1982. They proved that there exists
a critical value Nc(Z) < ∞ such that if N > Nc(Z), then EN has
no minimizer. In these works, they applied certain inequalities
on classical point particles to the quantum problem via the ge-
ometric localization method. In particular, Sigal realized that
for every collection {xi}Ni=1 ⊂ R3 with N > 2Z + 1, the en-
ergy contributed by the farthest electron, xN says, is always
positive because of the triangle inequality

− Z
|xN |
+

N−1∑
i=1

1
|xi − xN |

� − Z
|xN |
+

N − 1
2|xN |

> 0.

This leads to the upper bound lim supZ→∞ Nc(Z)/Z � 2 in
[22].

Later, Lieb, Sigal, Simon and Thirring [13] found the fol-
lowing improvement: for every {xi}Ni=1 ⊂ R3 with N large, one
has

max
1� j�N


∑

1�i�N,i� j

1
|xi − x j|

− N + o(N)
|x j|

 � 0. (1)

Consequently, they obtained the asymptotic neutrality

lim
Z→∞

Nc(Z)
Z
= 1.

It is unclear whether one can improve the quantity N + o(N)
in (1) to N + O(Nα) with some constant 0 � α < 1.

In 1990, Fefferman and Seco [4], and Seco, Sigal and
Solovej [20], proved

Theorem 3. When Z → ∞, we have Nc(Z) � Z + O(Z5/7).

This bound was obtained by comparing it with the
Thomas–Fermi theory (that we will revisit below) and tak-
ing into account quantitative estimates for Scott’s correction
(studied by Huges, and by Siedentop and Weikard). There has
been no further improvement in the past three decades!

Instead of the asymptotics as Z → ∞, one may also be
interested in explicit bounds for all Z (in fact, 1 � Z � 118 for
realistic atoms in the current periodic table). The best known
result in this direction is

Theorem 4 ([12, 17]). For all Z � 1, Nc(Z) < min(2Z +
1, 1.22 Z + 3Z1/3).

Let us quickly explain Lieb’s proof of the bound 2Z + 1
in [12], since it is short and important. The starting point is
the following identity, which follows from the Schrödinger
equation 〈|xN |ΨN , (HN − EN)ΨN

〉
= 0.

The idea of “multiplying the equation by |x|” was also used
by Benguria on a simplified model. Then we decompose

HN = HN−1 − ∆N +

N−1∑
i=1

1
|xi − xN |

.

For the first (N − 1) electrons, we use the obvious inequality

HN−1 � EN−1 � EN .

For the N-th electron, we use the operator inequality

(−∆)|x| + |x|(−∆) � 0 on L2(R3)

(which is equivalent to Hardy’s inequality). Consequently,

Z >
N∑

i=1

〈
Ψ,

|xN |
|xi − xN |

Ψ

〉
=

1
2

N∑
i=1

〈
Ψ,
|xN | + |xi|
|xi − xN |

Ψ

〉
>

N − 1
2

Thus N < 2Z + 1. Here, we have used the symmetry of |Ψ|2
and the triangle inequality.

To get the bound in [17], we multiply Schrödinger’s equa-
tion with |xN |2 instead of |xN | and proceed similarly. In this
case, the operator (−∆)|x|2 + |x|2(−∆) on L2(R3) is not pos-
itive, but its negative part can be controlled using a special
property of the ground state. The key point is, instead of us-
ing the triangle inequality, we now have

Z � inf
{xi}Ni=1⊂R3

∑
1�i< j�N

|xi |2+|x j |2
|xi−x j |

(N − 1)
N∑

i=1
|xi|
+ O(N2/3) = βN + O(N2/3)

with the statistical value

β := inf
ρ probability
measure in R3



�
R3×R3

x2+y2

2|x−y|dρ(x)dρ(y)

∫
R3

|x|dρ(x)


.

It is nontrivial to compute β, but we can estimate it using the
inequality
�

R3×R3

x2 + y2

|x − y| dρ(x) dρ(y)

�

�

R3×R3

(
max(|x|, |y|) + min(|x|, |y|)2

|x − y|

)
dρ(x)dρ(y).

which is a consequence of (1). This gives β � 0.82, leading
to the bound 1.22 Z + 3Z1/3 (as β−1 � 1.22).
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3 Thomas–Fermi theory

Since the Schrödinger equation is too complicated, for prac-
tical computations one often relies on approximate models
which are nonlinear but dependent on less variables. In den-
sity functional theory, a popular method in computational
physics and chemistry, one replaces the N-body wave func-
tion Ψ with its one-body density

ρΨ(x) = N
∫
R3(N−1)

|Ψ(x, x2, . . . , xN)|2dx2 . . . dxN .

Clearly, ρΨ : R3 → [0,∞) and
∫
R3 ρΨ = N.

The oldest density functional theory was proposed by
Thomas and Fermi in 1927. In the Thomas–Fermi (TF) the-
ory, the ground state energy EN is replaced by its semiclassi-
cal approximation

ETF(N) = inf∫
ρ=N

{
CTF
∫
R3

(
ρ5/3(x) − Z

|x|ρ(x)
)
dx

+
1
2

∫
R3

∫
R3

ρ(x)ρ(y)
|x − y| dxdy

}

with a constant CTF > 0. The existence and properties of the
TF minimizers was studied by Lieb and Simon in [14]. In
particular, they proved

Theorem 5. ETF(N) has a minimizer if and only if N � Z.

By standard techniques, we find that the TF functional is
convex and rotation invariant. Therefore, if a minimizer ex-
ists, it is unique and radial. Moreover, it satisfies the TF equa-
tion

5
3

CTFρ(x)2/3 =
[
Z|x|−1 − ρ ∗ |x|−1 − µ

]
+

for some chemical potential µ � 0.
The existence of the TF minimizer is rather similar to

Zhislin’s theorem for the Schrödinger equation. The nonex-
istence is more challenging. The original proof of Lieb and
Simon is based on a clever use of the maximum principle.
Here we offer another proof, using a variant of the Benguria–
Lieb argument.

Proof of N � Z [18]. Assume that the TF equation has a ra-
dial solution ρ. Multiplying the equation with |x|kρ(x), k � 1,
we have the pointwise inequality
(
Z|x|−1 − ρ ∗ |x|−1 − µ

)
ρ(x)|x|k = 5

3
CTFρ(x)5/3|x|k � 0.

Then we integrate over {|x| � R}. Note that µ � 0. Moreover,
since ρ is radial, by Newton’s theorem we have

ρ ∗ |x|−1 =

∫
R3

ρ(y)
max(|x|, |y|)dy.

Consequently,

Z
∫
|x|�R
|x|k−1ρ(x) �

∫
|x|�R
|x|kρ(x)(ρ ∗ |x|−1)dx

�
1
2

�
|x|,|y|�R

(|x|k + |y|k)ρ(x)ρ(y)
max(|x|, |y|) dxdy.

On the other hand, by the AM-GM inequality,

|x|k + |y|k
max(|x|, |y|) �

(
1 − 1

k

) (
|x|k−1 + |y|k−1

)
.

Thus

Z
∫
|x|�R
|x|k−1ρ(x)dx

�

(
1 − 1

k

) (∫
|x|�R
|x|k−1ρ(x)dx

) (∫
|y|�R
ρ(y)dy

)
.

Taking R→ ∞ and k → ∞, we conclude that
∫
R3 ρ � Z. �

When N = Z, the TF minimizer has the perfect scaling
property:

ρTF
Z (x) = Z2ρTF

1 (Z1/3x), ∀x ∈ R3

where the function ρTF
1 is independent of Z. Moreover, it sat-

isfies the TF equation with chemical potential 0. Thus if we
denote the TF potential

ϕTF
Z (x) = Z|x|−1 − ρTF

Z ∗ |x|−1,

then the TF equation can be written as the nonlinear
Schrödinger equation

∆ϕTF
Z (x) = 4π

(5
3

CTF
)−3/2
ϕTF

Z (x)3/2.

This leads to the following Sommerfeld estimate [24, Theo-
rem 4.6].

Theorem 6. Denote ATF = (5CTF)3(3π2)−1 and ζ = (
√

73 −
7)/2. Then

ATF � ϕTF
Z (x)|x|4 � ATF −C

(
Z1/3|x|)−ζ , ∀x � 0 (2)

In particular, when |x| � Z−1/3, then the TF potential ϕTF
Z

is more or less independent of Z. This universality makes the
TF approximation much more useful than what can normally
be explained by its semiclassical nature. More precisely, the
standard semiclassical analysis ensures that the TF theory
gives a good approximation for the electron density in the dis-
tance |x| ∼ Z−1/3. However, we may expect that the TF theory
gives a good approximation for larger distances, possibly up
to |x| ∼ 1. We refer to [25] for a detailed discussion.

4 Hartree–Fock theory

Invented shortly after the discovery of the Schrödinger equa-
tion, the Hartree–Fock (HF) theory has been a very useful
computational method to describe electronic orbitals. In this
theory, one restricts N-body wave functions to Slater deter-
minants, or equivalently to their one-body density matrices
which are trace class operators on L2(R3) satisfying

0 � γ � 1, γ = γ2, Trγ = N.

The HF ground state energy is

EHF(N) = inf
Trγ=N

(
Tr((−∆ − Z|x|−1)γ)

+
1
2

�
R3×R3

ργ(x)ργ(y) − |γ(x; y)|2
|x − y| dxdy

)

where ργ(x) = γ(x; x) (the kernel of γ is defined properly via
the spectral decomposition).

The existence of Hartree–Fock minimizers when
N < Z+1 was proved by Lieb and Simon in 1977. The nonex-
istence was proved later by Solovej in 2003 [24].
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Theorem 7. There exists a universal constant C > 0 such
that if N > Z +C, then EHF(N) has no minimizer.

To explain the proof, let us go back to the heuristic ar-
gument discussed before. Assume that we have an efficient
method to separate m outermost electrons. Then these parti-
cles see the rest of the system as a big nucleus with the effec-
tive nuclear charge Z′ = Z − (N − m). Thus by the Benguria–
Lieb method, we may hope to get a bound like m < 2Z′ + 1.
Since Z′ is smaller than Z, the loss of the factor 2 becomes
less serious. If the procedure can be iterated to bring Z′ down
to order 1, then we can conclude that N − Z is of order 1.

In [24], this approach is carried out rigorously by studying
the screened nuclear potential

ΦHF
Z (x) =

Z
|x| −

∫
|y|�|x|

ρHF(y)
|x − y| dy.

This function will be compared with the corresponding TF
version

ΦTF
Z (x) =

Z
|x| −

∫
|y|�|x|

ρTF(y)
|x − y| dy.

Similar to the TF potential ϕTF
Z (x), ΦTF

Z (x) behaves as |x|−4

for |x| � Z−1/3. It turns out that this property holds true for
the HF screened potential as well. The key ingredient of the
analysis in [24] is

Theorem 8. There exist constants C > 0, ε > 0 such that for
all x � 0,

|ΦHF
Z (x) − ΦTF

Z (x)| � C(1 + |x|−4+ε).

This estimate can be proved by induction in |x|. First, for
|x| � Z−1/3+ε , it follows by the semiclassical approximation.
For longer distances, one repeatedly uses the Sommerfeld es-
timate (2) to get refined information for “inner electrons”, and
then controls the “outer electrons” in terms of the screened
potential. At the end of the day, the universality of the TF
potential makes a miracle happen!

Let us explain why Theorem 8 implies the ionization
bound. First, Theorem 8 implies that for |x| = r ∼ 1,∫

|y|�r

ρHF(y) − ρTF(y)
|x − y| dy � Cr.

We can replace x by νx with ν ∈ S 2, then average over ν and
use Newton’s theorem. This gives

Z′ :=
∫
|y|�r

(
ρHF(y) − ρTF(y)

)
dy � Cr.

The number of outermost electrons, namely
∫
|y|�r ρ

HF, can be
controlled by a constant time Z′, leading to the final bound
N − Z � C.

Clearly, this proof strategy requires an efficient way of
splitting the problem from the inside and the problem from
the outside. This can be done for the Hartree–Fock theory,
because the energy functional has been greatly simplified to
a one-body functional. For the N-body Schrödinger equation,
such a splitting would require a novel many-body localisation
technique which is not available at the moment.

5 Liquid drop model

Now let us turn to a related problem in the liquid drop model
which is somewhat more classical than the ionization conjec-

Figure 1. German stamp in 1979 honouring Otto Hahn (Wikipedia 2020)

ture. This model was proposed by Gamow in 1928 and further
developed by Heisenberg, von Weizsäcker and Bohr in the
1930s. Recently, it has gained renewed interest from many
mathematicians [3].

In modern language, a nucleus is described in this theory
by an open set Ω ⊂ R3 which solves the minimisation prob-
lem

EG(m) = inf
|Ω|=m

{
Per(Ω) +

1
2

∫
Ω

∫
Ω

1
|x − y|dxdy

}
.

Here m stands for the number of nucleons (protons and neu-
trons) and Per(Ω) is the perimeter in the sense of De Giorgi
(which is the surface area ofΩwhen the boundary is smooth).
The Coulomb term captures the electrostatic energy of pro-
tons.

It is generally assumed in physics literature that if a min-
imizer exists, then it is a ball. Consequently, by comparing
the energy of a ball of volume m with the energy of a union
of two balls of volume m/2, one expects the nonexistence of
minimizers if m > m∗ with

m∗ = 5
2 − 22/3

22/3 − 1
≈ 3.518.

Conjecture 9 ([2]). If m � m∗, then EG(m) is minimised by a
ball. If m > m∗, then EG(m) has no minimizer.

In particular, the nonexistence of minimizers for large m
is consistent with nuclear fission of heavy nuclei, which was
discovered experimentally by Hahn and Strassmann in 1938.

Mathematically, it is nontrivial to analyse EG(m) due to
the energy competition: among all measurable sets of a given
volume, a ball minimises the perimeter (by the isoperimetric
inequality) but maximises the Coulomb self-interaction en-
ergy (by the Riesz rearrangement inequality).

In 2014, Knüpfer and Muratov [9] proved the following

Theorem 10. There exist constants 0 < m1 < m2 such that:
(i) If m < m1, then EG(m) has a unique minimizer which is

a ball;
(ii) If m > m2, then EG(m) has no minimizer.

The proof in [9] uses deep techniques in geometric mea-
sure theory, including a quantitative isoperimetric inequality
proved by Fusco, Maggi and Pratelli in 2008. Independently,
the existence of small m was proved by Julin [10] and the
nonexistence of large m was proved by Lu and Otto [16]. In
2016, with Rupert Frank and Rowan Killip, we offered a new
proof of the nonexistence which also provides the quantitative
bound m2 � 8. Let us explain the short proofs in [10] and [5].
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Proof. Existence for m small [10]. Consider

D(Ω) := Per(Ω) +
1
2

∫
Ω

∫
Ω

1
|x − y|dxdy − Per(Ω∗)

− 1
2

∫
Ω∗

∫
Ω∗

1
|x − y|dxdy

whereΩ∗ is the ball centered at 0 with volume |Ω∗| = |Ω| = m.
We need to prove that if m is small, then D(Ω) > 0 unless Ω
is a ball. Denote

f = χΩ∗ − χΩ, V = f ∗ |x|−1.

By a quantitative isoperimetric inequality in [8], there exists a
universal constant ε0 > 0 such that after an appropriate trans-
lation of Ω, we have

Per(Ω) − Per(Ω∗) � ε0

∫
R3

f (x)
|x| dx = ε0V(0).

Note that by Hardy–Littlewood rearrangement inequality,
V(0) > 0 unless Ω is a ball. For the Coulomb terms, we can
write

1
2

∫
Ω

∫
Ω

1
|x − y|dxdy − 1

2

∫
Ω∗

∫
Ω∗

1
|x − y|dxdy

=
1
2

∫
R3

∫
R3

f (x) f (y)
|x − y| dxdy +

∫
R3

∫
R3

χΩ∗ (x) f (y)
|x − y| dxdy

=
1

8π

∫
R3
|∇V(x)|2dx +

∫
Ω∗

V(x)dx.

In the last equality we used −∆V = 4π f . This Poison equation
also shows that V is superharmonic in Ω∗ (as f � 0 in Ω∗),
and hence∫
R3

∫
R3

χΩ∗ (x) f (y)
|x − y| dxdy =

∫
Ω∗

V(x)dx � |Ω∗|V(0) = mV(0).

Thus in summary, if m < ε0 and Ω is not a ball, then

D(Ω) � (ε0 − m)V(0) > 0.

Nonexistence if m > 8 [5].
Assume that EG(m) has a minimizer Ω. We split Ω into two
parts, Ω = Ω+ ∪Ω−, by a hyperplane H and then move Ω− to
infinity by translations. Since Ω is a minimizer, we obtain

Per(Ω) +
∫
Ω

∫
Ω

1
|x − y|dxdy

� Per(Ω+) +
∫
Ω+

∫
Ω+

1
|x − y|dxdy

+ Per(Ω−) +
∫
Ω−

∫
Ω−

1
|x − y|dxdy

which is equivalent to

2H2(Ω ∩ H) �
∫
Ω+

∫
Ω−

1
|x − y|dxdy.

HereH2 is the two-dimensional Hausdorffmeasure. Next, we
parameterise:

H = Hν,� = {x ∈ R3 : x · ν = �}
with ν ∈ S 2, � ∈ R. The above inequality becomes

2H2(Ω ∩ Hν,�) �
∫
Ω

∫
Ω

χ(ν · x > � > ν · y)
|x − y| dxdy.

Integrating over � ∈ R and using Fubini’s theorem we get

2|Ω| �
∫
Ω

∫
Ω

[
ν · (x − y)

]
+

|x − y| dxdy.

Finally, averaging over ν ∈ S 2 and using∫
[ν · z]+

dν
4π
=
|z|
2

∫ π/2
0

cos θ sin θdθ =
|z|
4

with z = (x − y), we conclude that 2|Ω| � 1
4 |Ω|2, namely

|Ω| � 8. �

With Rupert Frank and Hanne Van Den Bosch, we used
the cutting argument in the liquid drop model to study the ion-
ization problem in the Thomas–Fermi–Dirac-von Weisäcker
theory in [6], and in the Müller density matrix functional
theory in [7]. In these theories, the standard Benguria–Lieb
method does not apply, but we can replace it by an appro-
priate modification of the minimizers, leading to an efficient
control of the number of particles “outside” in terms of par-
ticles “inside”. This enables us to employ Solovej’s bootstrap
argument to establish the uniform bound N − Z � C.

6 Related problems

The ionization problem is an example for a question that is
easy to find in physics textbooks, but difficult to answer math-
ematically. Below we list some related open problems for the
Schrödinger operator HN .

The main concept in the ionization problem is that in a
large atom, although most of electrons stay in the domain |x| ∼
Z−1/3, the binding property only depends on a few outermost
electrons in the region |x| ∼ 1. In fact, only this outer region is
relevant to chemical reactions in everyday life. Therefore, an
important quantity of an atom is its radius. To fix the notation,
we define the radius RΨ of a wave function Ψ by requiring∫

|x|�RΨ
ρΨ(x)dx = 1.

Conjecture 11 ([24]). There exist two universal constants
0 < R1 < R2 such that if N � Z and EN has a minimizer
Ψ, then R1 � RΨ � R2.

Another important quantity is the ionization energy IN =

EN−1 − EN .

Conjecture 12 ([15, 23]). There exists a universal constant
C > 0 such that if N � Z, then IN � C.

Conjecture 13 ([15]). The function N �→ IN is non-increasing
(equivalently N �→ EN is convex).

See [20] for partial results on Conjectures 11 and 12. A
consequence of Conjecture 13 is that if EN−1 > EN (namely
the nucleus can bind N electrons), then EN−2 > EN−1 (the
nucleus can bind N − 1 electrons). This “obvious fact” is still
not proved mathematically!

So far we have only focused on the ground state problem
for HN . Recall from the HVZ theorem that the essential spec-
trum of HN is [EN−1,∞). Conjecture 2 mainly concerns the
existence of eigenvalues below EN−1. Since the existence of
embedded eigenvalues is generally not expected, we have the
following stronger version of Conjecture 2.

Conjecture 14. There exists a universal constant C > 0 such
that if N > Z +C, then HN has no eigenvalue.

The last issue has been studied by Lenzmann and Lewin
in [11], who proved that HN has no eigenvalue if N > 4Z + 1.
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This question is related to the scattering theory of dispersive
PDEs with long-range interaction potentials, which is inter-
esting in its own right.
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