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Multiplicative Functions in
Short Intervals, With Applications
Kaisa Matomäki (University of Turku, Finland)

The understanding of the behaviour of multiplicative func-
tions in short intervals has significantly improved during the
past decade. This has also led to several applications, in par-
ticular concerning correlations of multiplicative functions.

1 Introduction

Let us start by defining the key players. A function f : N→ C
is said to be multiplicative if f (mn) = f (m) f (n) whenever
gcd(m, n) = 1. We define the Liouville function λ : N →
{−1, 1} by λ(n) := (−1)k when n has k prime factors (counted
with multiplicity). For instance, λ(45) = λ(3 · 3 · 5) = (−1)3 =

−1. The function λ(n) is clearly multiplicative.
It is well known that the average value of λ(n) is 0, i.e.

lim
X→∞

1
X

∑
n≤X

λ(n) = 0. (1)

In other words, about half of the numbers have an odd number
of prime factors and half of the numbers have an even number

of prime factors. The result (1) is actually equivalent to the
prime number theorem, asserting that

lim
X→∞

|{p ≤ X : p ∈ P}|
X/ log X

= 1, (2)

where P denotes the set of prime numbers. In this article, the
letter p will always denote a prime.

It will be very convenient for us to use o(1) and O(1) no-
tations, so that A = o(B) means that |A|/B → 0 for X → ∞
and A = O(B) means that |A| ≤ CB for some constant C > 0
depending only on subscripts of O. In this notation (1) and (2)
can be written as ∑

n≤X

λ(n) = o(X) (3)

and ∑
p≤X

1 =
X

log X
+ o
(

X
log X

)
. (4)

Before discussing the Liouville function further, let us define
another important object: write ζ : C → C for the Riemann
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zeta function which is defined by

ζ(s) :=
∞∑

n=1

1
ns =

∏
p∈P

(
1 − 1

ps

)−1

for�s > 1, (5)

where �s denotes the real part of s. A series of the type∑
n∈N ann−s with an ∈ C is called a Dirichlet series. The ζ-

function can be analytically continued to the whole complex
plane apart from a simple pole at s = 1.

It is easy to see that ζ(s) has no zeros with �s > 1,
and furthermore for �s < 0 the only zeros are the “trivial
zeros” at negative even integers. The remaining zeros with
0 ≤ �s ≤ 1 are called the non-trivial zeros. One of the most
famous open problems in mathematics, the Riemann hypoth-
esis, asserts that all these non-trivial zeros satisfy�s = 1/2.

The zeros of the zeta function are closely related to the
behaviour of the Liouville function. This relation stems from
the fact that, for�s > 1

1
ζ(s)
=
∏
p∈P

(
1 − 1

ps

)
=

∞∑
n=1

λ(n)1n square-free

ns , (6)

where 1n square-free denotes the characteristic function of the set
of integers that are not divisible by a square of a prime.

The function µ(n) := λ(n)1n square-free is called the Möbius
function and its behaviour is very similar to that of the Liou-
ville function. Consequently, the zeros of ζ(s) correspond to
the poles of the Dirichlet series

∑
n∈N µ(n)n−s that is closely

related to the Liouville function.
One can show through (6) that (3) (and thus also the prime

number theorem (4)) is equivalent to the fact that the Riemann
zeta function has no zeros with �s = 1. The equivalence
with the prime number theorem stems from the fact that, for
�s > 1, one has

−ζ
′

ζ
(s) =

∞∑
k=1

∑
p∈P

log p
pks ,

so the zeros of the zeta-function also correspond to the poles
of a Dirichlet series that is closely related to the characteristic
function of the primes.

In general, the Liouville function is expected to behave
more or less randomly. In particular, we expect that it has so-
called square-root cancellation, i.e. one has, for all X ≥ 2,∑

n≤X

λ(n) = Oε(X1/2+ε) for any ε > 0. (7)

The conjecture (7) is in fact equivalent to the Riemann hy-
pothesis, and proving (7) even with X1/2+ε replaced by X1−δ

with a small fixed δ seems to be a distant dream which would
correspond to the Riemann zeta function having no zeros with
real part ≥ 1−δ for some fixed δ > 0. The best result currently
is that

∑
n≤X

λ(n) = O
(
X exp

(
− C(log X)3/5

(log log X)1/5

))
(8)

for some absolute constant C > 0. This follows from the
Vinogradov–Korobov zero-free region for the Riemann zeta
function that has been essentially unimproved for sixty years.

2 Short intervals

A natural question is whether the average of the Liouville
function is still o(1) if taken over short segments; one can

ask how slowly H can tend to infinity with X so that we are
guaranteed to have ∑

X<n≤X+H

λ(n) = o(H), (9)

so that in the segment (X, X +H] roughly half of the numbers
have an even and half of the numbers have an odd number of
prime factors.

The bound (8) together with the triangle inequality imme-
diately implies (9) when

H ≥ X exp
(
− C(log X)3/5

2(log log X)1/5

)
.

However, one can show this for much shorter intervals. In
1972, Huxley proved prime number theorem in short inter-
vals by showing that, for any ε > 0,

∑
X<p≤X+H

1 =
H

log X
+ o
(

H
log X

)
for H ≥ X7/12+ε.

Subsequently, in 1976 Motohashi [9] and Ramachandra [12]
independently showed that Huxley’s ideas also work in the
case of the Liouville function, showing that, for any ε > 0,
(9) holds for H ≥ X7/12+ε .

The proofs of these results are based on zero-density es-
timates for the Riemann zeta function, i.e. estimates that give
an upper bound for the number of zeta zeros in the rectangle

{
s ∈ C : �(s) ∈ [σ, 1] and |�(s)| ≤ T

}

for given σ ∈ (1/2, 1] and T ≥ 2.
Using the multiplicativity of λ(n) in a crucial way, (9) was

recently shown to hold for H ≥ X0.55+ε for any ε > 0 by
Teräväinen and the author [7]. However, this result is still very
far from what is expected to be true – random models suggest
that (9) holds in intervals much shorter than H = Xε.

One can ask what about (9) in almost all short intervals
rather than all (we say that a statement holds for almost all
x ≤ X if the cardinality of the exceptional set is o(X)). In this
case, the techniques based on the proof of Huxley’s prime
number theorem get one down to H ≥ X1/6+ε for any ε > 0;
whereas assuming the Riemann hypothesis, Gao has proved
it (in an unpublished work) for H ≥ (log X)A for certain fixed
A > 0.

All the results discussed so far, with the exception of the
very recent work [7], have their counterparts for the primes.
Given these similarities and the so-called parity phenonenom,
it is natural that until recently the problems for the primes and
for the Liouville function have been expected to be of equal
difficulty.

However, in the recent years this expectation has turned
out to be wrong; in [2], Radziwiłł and the author made a
breakthrough on understanding the Liouville function in short
intervals by proving the following.

Theorem 1. Let X ≥ H ≥ 2. Assume that H → ∞ with
X → ∞. Then ∑

x<n≤x+H

λ(n) = o(H) (10)

for almost all x ≤ X.

Note that H can go to infinity arbitrarily slowly here, e.g.
H = log log log log X, so this unconditionally improves upon
Gao’s result that was conditional on the Riemann hypothesis.
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While our method fundamentally fails for the primes, it
does work for more general multiplicative functions (see [2,
Theorem 1]):

Theorem 2. Let X ≥ H ≥ 2. Let f : N → [−1, 1] be multi-
plicative. Assume that H → ∞ with X → ∞. Then∣∣∣∣∣∣∣

1
H

∑
x<n≤x+H

f (n) − 1
X

∑
n≤X

f (n)

∣∣∣∣∣∣∣ = o(1)

for almost all x ≤ X.

For many applications, it is helpful to also have a result
for complex-valued functions, and such an extension can be
found in the recent pre-print [3], where we also extend our
result in other directions, as we will explain below.

3 Applications

Already in [2] we presented several applications of our gen-
eral theorem such as

Corollary 3. For any ε > 0, there exists a constant C = C(ε)
such that, for all large x, the interval (x, x + C

√
x] contains

xε-smooth numbers (i.e. numbers whose all prime factors are
≤ xε).

Corollary 4. There exists a constant δ > 0 such that the Li-
ouville function has ≥ δX sign changes up to X.

Starting from [4] our work [2] has led to several appli-
cations concerning correlations of multiplicative functions.
Chowla’s conjecture from the 1960s concerning correlations
of the Liouville function asserts that, whenever h1, . . . , hk are
distinct, one has∑

n≤X

λ(n + h1) · · · λ(n + hk) = o(X).

This is in line with the general philosophy that additive and
multiplicative structures are independent of each other.

Chowla’s conjecture can be equivalently stated as saying
that, for any k ≥ 1, each sign pattern (ε1, . . . , εk) ∈ {−1, 1}k
appears in the sequence (λ(n+1), . . . , λ(n+k))n∈N with density
1/2k.

Given the analogues between the primes and the Liou-
ville function, Chowla’s conjecture can be seen as a “Liou-
ville variant” of the notoriously difficult prime k-tuple conjec-
ture asserting an asymptotic formula for the number of prime
k-tuples (n + h1, . . . , n + hk) ∈ Pk.

Since already the twin prime conjecture that n and n + 2
are both primes infinitely often is completely open, a natural
starting point is to try to show that, for any h � 0, one has∑

n≤X

λ(n)λ(n + h) = o(X).

In [4] Radziwiłł, Tao and the author managed to show this for
almost all shifts h from a very short range, i.e.

Theorem 5. Let X ≥ H ≥ 2. Assume that H → ∞ with
X → ∞. Then

∑
|h|≤H

∣∣∣∣∣∣∣
∑
n≤X

λ(n)λ(n + h)

∣∣∣∣∣∣∣ = o(HX).

To prove this, we extended Theorem 1 to twists by linear
phases e(αn) where e(x) := e2πix. More precisely, we showed
that

Theorem 6. Let α ∈ R and let X ≥ H ≥ 2. Assume that
H → ∞ with X → ∞. Then∑

x<n≤x+H

λ(n)e(αn) = o(H)

for almost all x ≤ X.

Theorem 5 follows from Theorem 6 through Fourier an-
alytic techniques. Note that the case α = 0 of Theorem 6
corresponds to Theorem 1. Subsequently, Tao [14] used Theo-
rem 6 alongside a novel entropy decrement argument to prove
a logarithmically averaged variant of Chowla’s conjecture for
a fixed shift in the case k = 2:

Theorem 7. Let h � 0. Then
∑
n≤X

λ(n)λ(n + h)
n

= o(log X).

Both this and Theorems 5 and 6 have variants for much
more general multiplicative functions. Remarkably, Tao [13]
was able to utilise the general version of Theorem 7 to prove
the long-standing Erdős discrepancy problem from combina-
torics:

Theorem 8. For any f : N→ {−1, 1}, one has

sup
k,N∈N

∣∣∣∣∣∣∣
∑
n≤N

f (kn)

∣∣∣∣∣∣∣ = ∞.

Later Tao and Teräväinen [16, 17] managed to solve all
the odd order cases of the logarithmically averaged Chowla
conjecture (without needing Theorem 6).

Theorem 9. Let k be odd and h1, . . . , hk ∈ Z. Then
∑
n≤X

λ(n + h1) · · · λ(n + hk)
n

= o(log X).

(When k is odd, one can trivially dispose of the condition
about h j being distinct.)

The even cases k ≥ 4 of the logarithmic Chowla con-
jecture remain open. Tao [15] has shown that the complete
resolution is equivalent to two other conjectures, the logarith-
mically averaged Sarnak conjecture and the logarithmically
averaged local higher order uniformity conjecture for the Li-
ouville function.

Sarnak’s conjecture roughly asserts that, for a bounded
sequence a(n), one has

∑
n≤X

a(n)λ(n) = o(X)

whenever a(n) is of “low complexity”, whereas the higher
order uniformity conjecture is a vast generalisation of Theo-
rem 6 that allows α to depend on x and also replaces the linear
phase e(αn) by much more general nilsequences that are the
characters of the higher order Fourier analysis. The definition
of nilsequence is so involved that we do not give it here, but
instead we mention two special cases.

First, the higher order uniformity conjecture includes the
claim that the Liouville function is locally orthogonal to poly-
nomial phases. More precisely, for any k ∈ N it asserts that,
for almost all x ≤ X,

sup
P(y)∈Poly≤k(R→R)

∑
x<n≤x+H

λ(n)e
(
P(n)
)
= o(H), (11)
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where Poly≤k denotes the set of polynomials of degree at most
k. Secondly, the conjecture includes the claim that, for almost
all x ≤ X,

sup
α,β

∑
x<n≤x+H

λ(n)e
(�αn�βn) = o(H). (12)

The fact that the phase is allowed to depend on x makes
the problem much more difficult, and indeed in the recent
progress [5, 6] on this conjecture (in the range H ≥ Xε) the
main ingredient is to show that if, e.g., (11) failed for many x,
then the corresponding polynomials yielding the supremum
must be related to each other in certain way.

In [6] Radziwiłł, Tao, Teräväinen, Ziegler and the author
were able to establish the higher order uniformity conjecture
for H ≥ Xε; consequently for instance (11) and (12) hold for
almost all intervals of length H ≥ Xε.

Unfortunately, in order to deduce the logarithmic Chowla
conjecture, one would need to establish the higher order uni-
formity conjecture in much shorter intervals of length H ≤
(log X)ε.

However, the result in [6] still has some interesting ap-
plications: first, it yields a new averaged version of Chowla’s
conjecture (as a special case of a result for more general pat-
terns):

Corollary 10. Let k ∈ N. For H ≥ Xε,

∑
|h|≤H

∣∣∣∣∣∣∣
∑
n≤X

λ(n)λ(n + h) · · · λ(n + (k − 1)h)

∣∣∣∣∣∣∣ = o(HX).

Secondly, we obtain that the Liouville function has super-
polynomially many sign patterns. More precisely, if one
writes

s(k) =
∣∣∣∣{(ε1, . . . , εk) ∈ {−1, 1}k :

∃n :
(
λ(n + 1), . . . , λ(n + k)

)
= (ε1, . . . , εk)

}∣∣∣∣
for the number of sign patterns of length k, then

Corollary 11. For any A ≥ 1 there exists a constant δ = δ(A)
such that s(k) ≥ δkA for every k ∈ N.

The previous record [8] had A = 2.

4 Refinements and further applications

In a recent pre-print [3], Radziwiłł and the author revisited the
problem of multiplicative functions in short intervals. As ex-
plained above already, the work in [2] led to further progress
and many applications. However, there are certain drawbacks
in it as well. In [3], we extended the results to sparsely sup-
ported functions, improved the quantitative bounds and ex-
tended to the complex case with the correctly twisted main
term.

A key application of these new developments concerns the
distribution of norm forms in short intervals. Let us discuss
the simplest possible case, the characteristic function 1n∈N of
the set N of numbers that can be represented as a sum of two
squares. Then it is well known that 1n∈N is multiplicative and
furthermore

1pk∈N =


0 if p ≡ 3 (mod 4) and k is odd;
1 otherwise.

Hence 1p∈N = 0 for essentially half of the primes, which im-
plies that the density of N is asymptotically C/(log X)1/2, i.e.

∑
n≤X
n∈N

1 = C
X√

log X
+ o


X√

log X



for certain constant C > 0. In other words, the average gap
of two elements ofN is of size

√
log X/C. Consequently, one

cannot expectN to be regularly distributed in intervals shorter
than this.

In [2] we obtained a quantitative version of Theorem 2 but
even it is completely trivial for sparsely supported functions
such as f (n) = 1n∈N and so does not tell us anything about
the behaviour of 1n∈N in short intervals. But fortunately, the
method can be adapted to this situation and we proved

Theorem 12. As soon as h→ ∞ with X → ∞, one has∣∣∣∣
∑

x<n≤x+h(log X)1/2

1n∈N −Ch
∣∣∣∣ = o(h) (13)

for almost all x ≤ X.

Previously Hooley [1] and Plaksin [10,11] had shown that
there exist constants c1 and C1 such that, as soon as h → ∞
with X → ∞, one has, for almost all x ≤ X,

c1h ≤
∑

x<n≤x+h(log X)1/2

1n∈N ≤ C1h.

Their methods were based on an asymptotic formula for∑
n≤X

rK(n)rK(n + h),

where rK(n) are the coefficients of the Dedekind ζ-function
for K = Q(i) (rQ(i)(n) counts the number of representations of
n as a sum of two squares).

Such an asymptotic formula is known for K = Q(i) , but
is completely open for non-quadratic number fields. Hence
Hooley and Plaksin’s methods have no chance of generalising
to higher degree number fields.

In [3] we only use multiplicativity and get much more
general results: we say that an integer n is a norm-form of a
number field K overQ if n is equal to the norm of an algebraic
integer in K. In the case K = Q(i), the norm forms are simply
the sums of two squares. In [3] we have a much more general
version of Theorem 12 for norm forms of number fields of
any degree.

5 How do we attack short intervals?

Let us next discuss a common strategy for attacking arith-
metic questions in short intervals. We would like to show that∑

x<n≤x+H

λ(n) = o(H)

for almost all x ≤ X.
A typical way in analytic number theory to pick up the

condition x < n ≤ x + H is to use the contour integration
formula

1
2πi

∫ 1+i∞

1−i∞

ys

s
ds =


0 if y < 1;
1 if y > 1.

(14)

This formula follows by moving the integration far to the right
in case y < 1 and far to the left in case y > 1; in the second
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case we obtain the main term 1 from the residue of the pole at
s = 0.

Applying (14) twice (when x, x + H � N, but this small
technicality is easy to deal with), we have, for any x ≤ X and
H ≤ X,∑
x<n≤x+H

λ(n) =
∑
n≤2X

λ(n)
(
1 x+H

n ≥1 − 1 x
n≥1

)

=
1

2πi

∫ 1+i∞

1−i∞

∑
n≤2X

λ(n)
ns ·

(x + H)s − xs

s
ds + O(1).

(15)

Objects of the form

F(s) =
∑
n≤N

an

ns

are called Dirichlet polynomials and they are very important
tools in analytic number theory.

Recall that we aim to prove (10) only for almost all x ≤ X.
Thus it suffices to show that

∫ X

1

∣∣∣∣∣∣∣
∑

x<n≤x+H

λ(n)

∣∣∣∣∣∣∣
2

dx = o(H2X). (16)

Using (15) one can show that in the language of Dirichlet
polynomials this essentially reduces to the claim

∫ X/H

−X/H

∣∣∣N(1 + it)
∣∣∣2dt = o(1), (17)

where
N(s) :=

∑
X/2<n≤X

λ(n)
ns .

A fundamental tool for studying mean squares of Dirichlet
polynomials is the mean value theorem for Dirichlet polyno-
mials which gives that, for any complex coefficients an and
any T,N ≥ 2, one has
∫ T

−T

∣∣∣∣∣∣∣
∑

N/2<n≤N

an

n1+it

∣∣∣∣∣∣∣
2

dt = O


(T

N
+ 1
) 1

N

∑
N/2<n≤N

|an|2
 . (18)

Let us motivate this in the case of coefficients with |an| = 1
for all n in which case one simply gets the bound O(T/N +1).

The term O(T/N) reflects the expected average behaviour
– from a random model one expects that for a typical t one
has square-root cancellation, i.e. something like∑

N/2<n≤N

an

n1+it � N−1/2

leading in the mean square to O(T (N−1/2)2) = O(T/N).
On the other hand, the term O(1) reflects possible peaks

of the polynomial – for some values of t one might have∑
N/2<n≤N

an

n1+it � 1; (19)

surely this holds, e.g., if, for some t0, one has an = nit0 for
every n. At any rate, (18) is in general best possible.

If we now apply the mean value theorem (18) to the left
hand side of (17), we obtain the bound

O
(

X/H
X
+ 1
)
= O(1) (20)

which barely fails to produce the desired o(1); this bound O(1)
for the left hand side of (17) gives the trivial bound O(H2X)

for the left hand side of (16). Note that since this mean value
theorem argument did not utilise any properties of λ(n) except
that |λ(n)| ≤ 1, it had no chance of leading to o(H2X) for (16).

Now it is the second term on the left hand side of (20)
that is not o(1). In the case of an = λ(n), it is known that (19)
cannot happen; for any |t| ≤ N we have

∑
n≤N

λ(n)
n1+it = O

(
1

(log N)1000

)

by a known zero-free region for the Riemann zeta-function.
Hence there seems to be some hope.

Often when one deals with Dirichlet polynomials, it is
helpful if there is some bilinear structure, i.e. one can write
the relevant Dirichlet polynomial (in our case N(s)) as a prod-
uct of two or more Dirichlet polynomials. There are several
classical ways to obtain such a decomposition, such as the
identities of Vaughan and Heath-Brown.

These techniques work equally well for the primes and the
Liouville function, and this is one of the reasons why many
results are of similar quality in these two cases.

In our case, when we study very short intervals (such as
H = Xε and smaller), it is of benefit to have a decomposition
where one of the factors is very short.

Indeed, a crucial step in the proof is to use the multiplica-
tivity of λ(n) and take out a small prime factor utilising the
fact that almost all integers n ≤ X have a prime factor from
the interval (P,Q] as soon as log Q/ log P→ ∞ with X → ∞,

This can be done rigorously though, using either the
Turán-Kubilius inequality or a Ramáre type identity. The lat-
ter gives better quantitative results and we use it in our re-
search papers, but let us use the former here, which yields the
following.

Lemma 13. Let X ≥ H ≥ 2 and 3P ≤ Q ≤ H1/2. Then
∑

X<n≤X+H

λ(n) =
1∑

P<p≤Q 1/p

∑
m,p

X<mp≤X+H
P<p≤Q

λ(mp)

+ O


H(

log log Q
log P

)1/2

 .

Here ∑
P<p≤Q

1
p
= log

log Q
log P

+ O(1)

is a normalising factor corresponding to the average number
of representations that n has as mp with p ∈ (P,Q].

Note that utilising this idea that almost all integers n ≤ X
have a prime factor from (P,Q] as soon as log Q/ log P → ∞
with X → ∞ fundamentally fails in the case of primes, as
primes p > Q never have such a prime factor.

6 Intervals of length H ≥ Xε

In this section we sketch the proof of Theorem 1 in case H ≥
Xε. We start by applying Lemma 13 with

P = exp((log X)3/4) and Q = exp((log X)7/8)

so that
log

log Q
log P

=
1
8

log log X.
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Hence by Lemma 13 it suffices to show that, for almost all
x ≤ X, one has∑

P<p≤Q

∑
x<mp≤x+H

λ(mp) = o(H log log X). (21)

Note that here by multiplicativity λ(mp) = −λ(m). We split
the summation over p into dyadic ranges p ∈ (P1, 2P1], so
that we wish to show, for any P1 ∈ (P,Q],

∑
P1<p≤2P1

∑
x<mp≤x+H

λ(m) = o
(

H
log P1

)
;

summing this over P1 = 2 j with P < 2 j ≤ Q gives essentially
(21).

We can run a similar argument as in the previous section
but with N(s) replaced by

P1(s)M(s) :=
∑

P1<p≤2P1

1
ps

∑
X/(4P1)<m≤4X/P1

λ(m)
ms , (22)

so that we need to show that

I :=
∫ X/H

−X/H

∣∣∣P1(1 + it)M(1 + it)
∣∣∣2dt = o

(
1

(log P1)2

)
. (23)

Now (18) still fails to do this, but we have the additional ad-
vantage of having a bilinear structure. The known zero-free
region for the Riemann zeta-function yields

|P1(1 + it)| = O
(
(log X)−1000

)
(24)

for every |t| ≤ X. Using this we get that

I = O
(
(log X)−2000

∫ X/H

−X/H
|M(1 + it)|2dt

)
.

Now we are in the position to apply (18) to the polynomial
M(s), giving the bound

I = O
(
(log X)−2000

(
X/H
X/P1

+ 1
))
= O
(
(log X)−2000) (25)

since P1 ≤ H. Hence (23) follows.

7 Shorter intervals

When H ≤ exp((log X)2/3), a new issue arises: to make the
last step in (25) work, we need to have P1 ≤ H. However,
for such short P1(s), we do not know (24) for all |t| ≤ X any
more. Fortunately, in [2] we were able to develop an iterative
argument to rescue us.

Let us explain the rough idea. For simplicity, we pretend
that Lemma 13 implies that, for j = 1, 2, . . . , J, we have

N(s) = Pj(s)Mj(s) :=
∑

Pj<p≤2Pj

1
ps

∑
X/(4Pj)<m≤4X/P j

λ(m)
ms ,

with P1 = H, Pj+1 = Plog Pj

j for 1 ≤ j ≤ J − 1 and PJ =

exp((log X)3/4). For those t for which |P1(1 + it)| ≤ P−1/10
1 the

earlier argument works.
For those t for which |P1(1 + it)| > P−1/10

1 and |P2(1+it)| ≤
P−11/100

2 we note that 1 ≤ (|P1(1+it)|P1/10
1 )2k with k = �log P1�

and in this case it suffices to show that

Pk/5
1 P−11/50

2

∫ X/H

−X/H
|P1(1 + it)k M2(1 + it)|2dt = o

(
1

(log P2)2

)

which follows from the mean value theorem which is efficient
as M2(s)P1(s)k has length about X.

Now we are left with t, for which |P2(1 + it)| > P−11/100
2 .

Continuing the recursion, we are eventually left with t for
which |PJ−1(1 + it)| ≥ P−1/8

J−1 , say. But now PJ−1 is so large
that this can only happen rarely, and we can use (24) for PJ(s)
together with a large value theorem for Dirichlet polynomials.
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