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Professor Furstenberg, first we would like to congratu-
late you on being awarded the Abel Prize in mathemat-
ics for 2020, which you share with Gregory Margulis. 
You have received the Prize, and here we cite the Abel 
Committee, “for pioneering the use of methods from 
probability and dynamics in group theory, number the-
ory and combinatorics.’’ Can you first of all tell us when 
you became enamoured with mathematics, and when 
you discovered that you had an exceptional talent for 
mathematics? 
Perhaps I should say that I had a head start in mathemat-
ics – if you include adding and multiplying as mathemat-
ics. Let me give you the background story. I was born in 
Germany in 1935, and at roughly the age of five I came 
to the United States, my family having escaped Nazi Ger-
many shortly after the Kristallnacht in November, 1938.

I lived with an uncle who had a poultry farm. I went 
to a rural school, which I think had only four classrooms. 
When I was in the kindergarten, I was in the same class as 
the first grade and second grade pupils. So it was easy for 
me to get a little bit ahead of where I should have been, 
or where I might have been. That was one aspect. An-
other aspect was that I had a sister who was three years 
older than I was, and she always kept me ahead. When 
the class was learning addition, I was learning multiplica-
tion. When they were learning fractions, I was learning 
algebra. I was always a little bit ahead, and of course you 
feel good about things that you are better at than  most 
of the pupils in the class.
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When I was in high school, I really enjoyed the Eu-
clidean geometry that was taught there. I guess I enjoyed 
the challenge of geometry exercises. You are able to do 
things your way. You do not have to follow definite rules, 
it is about your own thinking. If it is clear and logical, you 
get to the right answer. I enjoyed that.

We learned about imaginary numbers when I was in 
high school. I thought I could make my name in math-
ematics if I proved that, when using imaginary numbers 
like √–––1, it was going to lead to some contradiction in 
mathematics. I filled pages and pages of calculations and 
of course it didn’t get anywhere, but it was a good experi-
ence just doing the calculations. I think it was a good ex-
perience to be a little frustrated when you want to show 
something, but it doesn’t work out. But still, you don’t 
feel bad about it. I think that it was pretty clear that I was 
enjoying mathematics. 

So you enjoyed problem solving? 
Yes, absolutely. I should mention a friend of mine who be-
came a prominent mathematician at Harvard – Shlomo  
Sternberg. He and I were in the same class at high school. 
Both of us heard about an interesting and challenging 
problem in Euclidean geometry: given a triangle, assume 
two of the angle bisectors have the same length. Prove 
that the triangle is isosceles. It is obviously trivial to do 
it the other way around. That is a rather difficult prob-
lem which I would have trouble doing today. Anyway, we 
came out each with our own solution to this after some 
time. 

Did the two of you announce that you had solved this 
problem? 
It so happened that the high school I went to was in the 
same building as Yeshiva College, and at that time there 
was a journal called Scripta Mathematica, which con-
tained articles about recreational and historical aspects 
of mathematics. It was a good journal at that time, but 
it no longer exists. At any rate, the editor of that journal 
was Professor Jekuthiel Ginsburg, and he had an office in 
the same building as our high school.

Shlomo and I plucked up our courage and went up to 
Professor Ginsburg and showed him that we had solved 
this problem. He took it upon himself to encourage our 
interest in mathematics. In particular, he encouraged me 
further. He gave me opportunities to advance in math-
ematics and, at the same time, earn money. Our financial 
situation at home was not that good. My mother was wid-
owed when we were on our way to the United States, and 
it was clear that I should be earning money to help out.
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What Professor Ginsburg did was to give me a job 
with the journal. I would help out with the graphics, I 
would translate articles written in French and German 
to English. In many ways he encouraged me, and I owe a 
lot to him. He communicated to me and to his students 
the innate beauty of abstract mathematical ideas. Over 
and beyond the mathematics I learned, I experienced the 
love of mathematics blended with human kindness, an 
experience I can only wish I could replicate for others. 
Anyway, with this background I think it is pretty clear 
that mathematics was a direction that I wanted to go into. 

While you were an undergraduate student at Yeshiva 
College you published three papers, two of which ap-
peared in American Mathematical Monthly. We will 
focus on one of these papers titled “On the infinitude 
of primes”. The paper is only half a page in length, but 
that belies its originality. Furthermore, perhaps this pa-
per gave you the motivation to further explore the in-
terplay between topology and dynamical systems on the 
one hand and number theory on the other hand? Could 
you elaborate on this? 
Let me just say that I was recently asked what made me 
think about putting a topology on the integers. I didn’t 
have the answer right away. Afterwards, I realised that 
at that time I had been learning about p-adic integers 
with the p-adic topology. So you could put a non-trivial 
topology on the integers, where integers which are nor-
mally very far away now are very close. For example, n! 
is very close to 0, and so on. So I had this topology on the 
integers in which all non-empty open sets were infinite. 
By looking at it carefully you could prove that there must 
be infinitely many primes; otherwise one could show that 
there exists a non-empty finite open set.

Let me be more explicit.  In our topology, two-sided 
infinite arithmetic progressions form the basis of the to-
pology; so they play the same role as open subintervals 
of the unit interval (0,1) in the usual topology. I hoped 
we could pursue the analogy further, and regard the set 
of integers also as a measure space with full measure 1.   
Assuming the measure is translation invariant (as on the 
unit interval), an arithmetic progression a + d Z would 
have measure 1 / d.

More generally, the measure of a “measurable” set 
would be its density.  So this idea of looking at something 
happening in the integers as taking place in a measure 
space came in a natural way from the early paper, “On 
the infinitude of primes”.

You graduated from Yeshiva College in 1955, having 
been awarded both a B.A. and an M.Sc. Then you went 
to Princeton University to study for your doctorate in 
mathematics, supervised by Salomon Bochner. Your 
Ph.D. thesis, “Prediction Theory”, was submitted in 
1958, and in 1960 an elaboration of your thesis was 
published in Princeton Annals of Mathematical Stud-
ies under the title “Stationary processes and prediction 
theory”.

What fascinated us greatly was that – as a by-prod-
uct or offshoot of that work, really – you proved Her-

mann Weyl’s celebrated equidistribution theorem by us-
ing dynamical systems. This was the first time that had 
ever been done, right?
As far as I know, yes. I didn’t know of a precedent for 
that. Looking at number theoretic issues dynamically, I 
think that was a first.  

Could you elaborate? 
As you said, it came about in a rather indirect way, in 
studying prediction theory. First of all, the idea of look-
ing at, say, the integers as a measure space leads to the 
next step of looking at it dynamically. In ergodic theory, 
one looks at a measure space with a transformation that 
preserves the measure. For the integers endowed with 
the density measure, translating a set by adding a con-
stant also preserves the measure. So the idea of thinking 
of something happening on the integers as of dynamical 
nature is not unnatural.

The motivation for me of working on prediction 
theory was related to my interest in harmonic analysis. 
Norbert Wiener, one of my mathematical heroes, had 
done some very profound work on Tauberian theorems 
in harmonic analysis. The latest thing that he had worked 
on was his prediction theory in a form closely related to 
harmonic analysis.  In his theory, the “future”, i.e., the 
next reading, was given as a random variable, that is, as a 
function defined almost everywhere on a measure space, 
not really well defined at specific points.

And so the question that arose, and that I wanted to 
answer, was: Suppose you’re given exactly a certain past, 
past meaning something that happened yesterday, the 
day before, and so on up to minus infinity, so to speak. 
This I called the past. Given the past you would like to 
say exactly what’s in the future, but you usually cannot 
say that. If, for example, what you are looking at is coin 
tossing, then all you could say is that with probability 
one half the next reading would be heads, and with prob-
ability one half it would be tails. So, going into the entire 
future, what you want to define is a stochastic process 
that will answer: What are the probabilities of what’s 
happening in the future given what you have had in the 
past. There are certain situations in which you can do this. 
That’s what is elaborated in my thesis.  

How does the ergodic theorem enter the picture? 
In fact, what I was doing was inverting the ergodic theo-
rem. Let me explain. The first step in my construction, 
and this is how prediction theory connects with station-
ary processes, is to look at the past and to associate with 
it a stationary process. In other words, you want to look 
at this as a typical sequence of some stationary process. 
A stationary process arises by evaluating the function at 
hand on a probability space on which there is a meas-
ure-preserving transformation, the latter representing 
change in time. So the statistics of the process today and 
tomorrow are the same as the statistics will be a week 
from now and the day after, and so on.

The point is that I found a method of going from the 
individual sequence to the process, which is inverting the 
ergodic theorem. In fact, if you apply the ergodic theorem 
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to stationary processes you can say in terms of expecta-
tions what is happening at almost every sample sequence. 
Our idea was to go from what I would like to be a sample 
sequence to the process of which it could be looked at 
as a typical sequence. This represents a reversed point of 
view. The idea is, you assume densities are defined in the 
past; let’s say it’s a plus one, minus one sequence. You no-
tice that plus ones occur, say, 2 / 3 of the time in the past, 
and minus ones occur 1 / 3 of the time, and they occur to-
gether 1 / 7 of the time, and so on, for every combination 
there is a well-defined frequency of occurrence. Knowing 
this you infer the statistics from the given sequence, and 
from this statistics you build the stationary process. 

Are there alternative ways of looking at this? 
Yes, there is a more constructive way of building the 
space on which the stationary process is defined. In fact, 
just take the sequence itself and look at all its translates, 
and then take the closure in the product, or Tychonoff, 
topology. That gives you a compact space. On that space 
you define a measure based on what is “happening”, so 
to speak, on the sequence you started with.

I mention this way of doing things because this has a 
precedent in Bochner’s approach to almost periodic se-
quences, or more generally, to almost periodic functions. 
What he did was to say that almost periodic functions 
have a certain property: if you look at the closure of the 
translates of one such function then you get a compact 
space in the strong topology. That it is compact in the 
weak topology is immediate, but that it is also compact 
in the strong topology turns out to characterise almost 
periodic functions. So this idea of embedding a single 
sample sequence in a whole family of sequences is due to 
Bochner, although I didn’t know it at the time I was his 
graduate student. 

Let’s go back to your thesis where you, as we mentioned 
already, were able to prove Hermann Weyl’s equidistri-
bution theorem by using dynamical arguments. We un-
derstand that this came as an offshoot, so to speak, of the 
main thrust of your thesis. At any rate, did this inspire 
you to look at other Diophantine approximation prob-
lems to see if you could solve these by using dynamics? 
Yes, it did encourage me to look for dynamical systems 
relevant for other number theoretic problems. You may 
ask: How did my prediction theory led me to such dy-
namical systems?

The basic idea is a little bit subtle and somewhat tech-
nical. For us, to predict is, given the past reading through 
yesterday, to produce a stochastic process, indexed by 
time 0, 1, 2, etc., representing in probabilistic terms what 
will happen today and in the future. Moving ahead one 
day in time, we want to produce another stochastic pro-
cess, also knowing today’s reading. The new “future sto-
chastic process” is just the old one, conditioned on to-
day’s reading and re-indexing 1, 2, 3 etc. to 0, 1, 2 etc. So, 
if a point in our probability space comprises a pair (two-
sided, past + future actualised sequence, future process) 
our dynamic transformation takes this point to the pair 
(shifted sequence, future process conditioned on 0-read-

ing). Dynamically this is a complex example of a skew 
product dynamical system.

Can you give us an example of a skew product? 
Our space is a two-torus (the surface of a doughnut) 
which is formed by moving a vertical circle along a circu-
lar path returning to its initial position. We think of this 
as a bundle of circles above a base circle. A classic exam-
ple named for Anzai and Kakutani describes a transfor-
mation of this torus whereby the base circle is rotated by 
a fixed angle, and the vertical circles move accordingly, 
each one rotated by an angle depending on its location 
on the base circle. For the example of Anzai–Kakutani 
you can show, using ideas from ergodic theory, that every 
orbit is equidistributed when the base circle is rotated by 
an angle α, an irrational multiple of π.

This is interesting. It gives you the equidistribution 
of n 2 α (mod 1), n ∈ Z, originally proved by Weyl by his 
methods of trigonometric series. So this gives a dynamic 
proof of Weyl’s theorem. That encouraged me to look 
in general at a sequence as a sample sequence of some 
dynamical system, and then study the dynamical system 
and see what you can say. 

Is it fair to say that this way of thinking gave you the 
idea of how to prove the Szemerédi theorem, which says 
that a subset of the integers with positive upper density 
has arithmetic progressions of arbitrary length? 
Yes, you are basically correct. Let me put it this way: 
looking at the integers as a measure space, where adding 
one to each integer is a measure preserving transforma-
tion, we’re given a set of positive measure, and I want 
to show that I can return several times to that set using 
the same number of steps. That I return once – in the 
standard probability space context – is the Poincaré re-
currence theorem, but what I want is what is now called 
multiple recurrence. Given any natural number n, there 
exists a number m such that I return to the given set n 
times using consecutively m steps. This phenomenon of 
repeated recurrence is the measure theoretic version of 
the Szemerédi Theorem.

This is a prime example of what is now called the 
correspondence principle. Something going on in the in-
tegers corresponds to something going on in a measure 
space. You prove the measure theoretic thing, and then 
you get the number theoretic thing. In my thesis this 
principle does not appear explicitly, but it is implicit. The 
idea of how to go from an explicit past to a process is 
basically the correspondence principle. That’s really the 
first time that the principle was used in a way that could 
be called a principle. 

It is noteworthy that Green and Tao in their proof of the 
celebrated result that the primes contain arithmetic pro-
gressions of arbitrary length, while making no explicit 
use of ergodic theory, are influenced in their approach 
by the novel methods you apply in proving Szemerédi’s 
theorem, specifically your correspondence principle. 

In 1981 you published a book titled “Recurrence in 
ergodic theory and combinatorial number theory”. It is 



Interview

48 EMS Newsletter December 2020

a marvellous book which has enthralled many, includ-
ing the two of us. It describes in exemplary clarity how 
one can apply dynamical systems – both topological 
and ergodic – to number theory and Diophantine ap-
proximations, thereby proving some highly non-trivial 
results. 

We will return to your proof of the multiple recur-
rence theorem, but first it might be useful that you tell 
us what an isometric extension is, and how this concept 
is the key building block in your proof from 1963 of the 
structure theorem of so-called distal flows in topologi-
cal dynamics. 
The Anzai–Kakutani example that I mentioned earlier 
will give a good illustration of what an isometric exten-
sion is. So, you have a big topological dynamical system 
on the two-torus, and a smaller one on the base circle. 
We say that the big system is an extension of the smaller 
one in the sense that looking at two coordinates (x,y) de-
scribing the torus, you now look at the first coordinate 
x which  parametrises the base circle. That x coordinate 
moves according to a certain rule; in our case, x goes to 
x + a, and the y goes to some other y. So sending (x,y) to 
x is a factoring of the big system to a smaller system. But 
it is factoring in a special way, which is an example of an 
isometric extension, in the sense that two points on the 
torus that sit over the same point of the base circle main-
tain a fixed distance from each other as the x coordinate 
moves. The big system is an example of a so-called distal 
system, meaning that if two points are distinct they don’t 
get closer than a certain amount, which depends upon 
where the points are.

Obviously, if a dynamical system is isometric, mean-
ing that distances are preserved under the dynamics 
– we assume the underlying space is a compact metric 
space – then the system is distal. For a time it was an 
open question if distality implies isometry, perhaps in a 
different, but compatible, metric. This is in fact correct if 
the space is zero-dimensional – in particular, if the space 
is the Cantor set – and was proved by Robert Ellis in 
1958. However, one can show that the Anzai–Kakutani 
example is distal, but not isometric, so the converse is not 
true. What you can show is that an isometric extension of 
a distal system is again distal.

So, to get examples of distal systems you take succes-
sive isometric extensions, even infinitely many, of a given 
distal system. These were the only examples of distal sys-
tems that I knew about, so I asked myself: Maybe that’s 
it, there are no other examples? I proved that fact, and 
that became the structure theorem for distal systems. 

Is there an analogous structure theorem for ergodic sys-
tems in the measure theoretic setting? 
That’s the crucial point in the proof of the ergodic version 
of the Szemerédi theorem! Firstly, you have something 
analogous to what I described in the topological setting, 
which you could call a distal ergodic system. Every ergod-
ic system has as its base a distal factor, which might just 
be a rotation. But that does not necessarily exhaust the 
whole system, because an ergodic system is not in general 
distal. The next – and final – step to get the ergodic system 

you are looking at is a so-called relatively weak mixing 
extension. The notion of weak mixing means that things 
get very mixed up, and there is a relative notion of that. 
So the most general ergodic system is obtained by a rela-
tive weak mixing extension of a distal system.

What is that good for? Well, in this way I can prove 
the Szemerédi theorem in its ergodic version using that 
structure, by proving it bit by bit: proving that it’s true 
for distal systems, which means it’s true for rotations and 
isometric extensions, and then showing that if it’s true for 
a given system, then it’s true for a weak mixing extension 
of that system. 

Could you tell us how you became aware of the Sze-
merédi theorem in the first place, as well as the origin of 
your proof of that theorem? 
That was sort of accidental. The year 1975 was the first 
year of the Institute for Advanced Studies at the He-
brew University in Jerusalem, and the application by the 
Mathematics Department to have a special year devoted 
to ergodic theory was accepted and funded. We invited 
ergodic theorists from around the world to attend, like 
Donald Ornstein, Daniel Rudolph, Jean-Paul Thou-
venot and many others. Then there was Konrad Jacobs, 
who was one of the early authors of a book on ergodic 
theory. But at that time he had stopped being interested 
in ergodic theory and had become interested in combi-
natorics instead, and so was not a member of our ergodic 
theory group.

Anyway, Jacobs was invited to visit, and he suggested 
to the organisers to give a colloquium talk on some as-
pects of combinatorics that he found exciting, including, 
as it turned out, the Szemerédi theorem. I was really not 
interested in the topic of his talk, but I felt that out of 
respect for the speaker, I should attend the lecture.

At that time I was basically aware of the correspond-
ence principle that we talked about, so hearing of Sze-
merédi’s theorem from Jacobs, it was natural to translate 
it into ergodic theoretic terms. Also, at that time I had in-
formation about what you can say about weakly mixing 
systems. It turns out that for weakly mixing systems, you 
have recurrence more or less in any pattern you want. In 
particular, you have recurrence along an arithmetic pro-
gression. So if the system is weakly mixing, you are fin-
ished. The other extreme case relative to weak mixing is 
rotation on a compact group. Again, it’s almost immedi-
ate that recurrence occurs along arithmetic progressions. 
What was needed to nail the proof was a structure theo-
rem, combining the two modes of behaviour. With the help 
of colleagues, Benjamin Weiss and Yitzhak Katznelson, I 
succeeded in proving the necessary structure theorem.

The story you have just told us seems to be an example 
of cross-fertilisation between different mathematical 
perspectives. Going to department colloquiums, even 
though the topic is vastly different from one’s own in-
terests, can open one’s eyes to see what one can do. 
Oh, yes, absolutely. I certainly learned a lesson from that. 
Actually, at my retirement there was a conference held 
in Jerusalem, and I was asked to speak on “Probability 
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in Mathematics”. I was thinking about my own career, 
and it struck me that I should really call my talk “The 
improbability of my mathematics”. There were so many 
things that came together in my mathematical life. For 
instance, had I not looked at distal systems, I wouldn’t 
have known how an appropriate structure theorem for 
ergodic systems might be formulated.

Incidentally, there was another accident that I should 
mention. I was in fact not going to be able to go to the 
colloquium talk by Konrad Jacobs. My youngest son had 
just been born a few months earlier, and at the time of 
the colloquium, I was to be assigned babysitter. Fortu-
nately, my eldest child, my daughter, happened to be free 
at that time, and she came and took my place. Had she 
not, I would not have heard this colloquium talk. 

Before we leave the subject of your ergodic proof of 
the Szemerédi theorem, we should emphasise that this 
has spawned a lot of generalisations due to many peo-
ple, including you and various co-authors. One of the 
most spectacular of these generalisations is your and 
Katznelson’s proof in 1991 of the density version of 
the Hales–Jewett theorem, which is a fundamental re-
sult in Ramsey theory. The proof is achieved by means 
of a significant extension of the ergodic techniques that 
you had pioneered in your proof of the Szemerédi theo-
rem, and the result did not seem to be available by any 
other means than ergodic theory. However, in 2012 a 
so-called Polymath group of mathematicians published 
a new proof avoiding ergodic theory arguments. That is, 
they do admit that some part of their proof is inspired 
by ergodic methods. Do you have any comments? 
It wasn’t unnatural that one would find a combinatorial 
proof for a combinatorial theorem. But I think that in 
every proof (as with Gowers’ proof of the original Sze-
merédi theorem), one decomposes the behaviour to a 
random component and a regular component.

You introduced another concept which has been im-
mensely important, namely that of a boundary. But per-
haps before we get there, could you say something about 
random walks and how it is related to the boundary 
concept? 
First let me give you an example of random walk in a 
group. Say I am given a bunch of m × m matrices and I 
attach a probability for each of those. I decide to start 
multiplying these matrices randomly according to that 
probability distribution. So I get the matrices X1, X1X2, 
X1X2X3, and so on, and it turns out that it is, with some 
restrictions, rather easy to show that the norms of this 
sequence grow exponentially. But I want to know what 
is happening qualitatively. What I am looking at is a ran-
dom walk inside a group of matrices and I want to look 
at some limiting behaviour. It’s no longer true that with 
probability one there is a specific limiting behaviour.

What behaviour is there then that can be called 
upon? It turns out that the rows of these product matri-
ces come closer and closer together as you go to infinity, 
and they tend to point in a certain direction. A different 
sequence of products of matrices would give you a differ-

ent direction, so you wind up with a random direction in 
projective space, basically. If you look at the special case 
of 2 × 2-matrices this is the only kind of boundary behav-
iour that you can talk about, in the sense that you can ask 
which point on the projective line does the sequence of 
products converge to.

In higher dimension it turns out that the sequence of 
products of matrices converges to a point in a so-called 
flag space of the right dimension – a line sitting in a plane, 
a plane sitting in a 3-space, and so on. In some sense, I 
can attach a flag space of dimension m – 1 to the group 
GLm(R) of m × m invertible matrices. So it makes sense 
to talk about a random walk converging to a point. What 
is nice about this is that for many groups (e.g. semi-sim-
ple Lie groups), this boundary has an explicit presenta-
tion as a homogeneous space of the group.

This is what  is called the Furstenberg boundary today? 
Can this boundary be characterised in another way? 
Yes, it can be characterised abstractly in terms of the 
notion of strong proximality. Proximality means that 
it is opposite to distality – the notion we already have 
encountered. So, we have a compact space on which the 
group acts in such a way that any two points will get 
as close together as you like under the action of some 
group element. If you think about it, that entails that any 
k points can come close together under the action of a 
group element.

Strong proximality means that if you have any meas-
ure on the compact space on which the group acts, it will 
converge to a point measure – a Dirac measure – under 
the action of some sequence of group elements. It’s not 
obvious that the two notions are different, but they are. 
Now the boundary of the group can be characterised as 
the universal strongly proximal action of the group. 

Margulis, with whom you share the 2020 Abel Prize, 
writes somewhere, and we quote: “I learned about 
Furstenberg’s work around 1974, and his boundary 
theory influenced me very much. In particular, my proof 
of the normal subgroup theorem concerning lattices in 
semi-simple Lie groups could not exist without that the-
ory. I also consider the proof of the normal subgroup 
theorem as my best proof ”. So he credits you for supply-
ing him with a crucial idea in his proof! 
I am very happy to hear that! I might actually give some-
one else credit here, namely the probabilist Monroe 
Donsker, who put me in contact with a friend of his – his 
name was Peter Ney – who was editing a book on ap-
plications of probability in various mathematical fields. 
He came to me once when I visited the University of 
Minnesota and said: “You should find an application of 
probability to algebra for Ney’s book”. So I thought of 
the boundary theory, and I thought that it seems intuitive 
that a lattice subgroup of a group should be very close 
qualitatively to the group itself. In fact, these two ought 
to have the same boundary.

Using this idea, I could prove a very special case of 
a theorem of Margulis – his superrigidity theorem. So 
in that way I interacted with Margulis. That you could 
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use the boundary to reflect, so to speak, properties of the 
group itself turned out to be useful. 

You mentioned to us before that Gelfand’s work on 
Banach algebras, and, in particular, on commutative 
C *-algebras, was an important inspiration for you at 
some point. Could you elaborate on that? 
There are two ways in which Gelfand’s theory comes in. 
One way of proving the correspondence principle is by 
using Gelfand’s proof that there exists an isometric iso-
morphism between an arbitrary commutative C *-algebra 
and an algebra of continuous functions on a certain com-
pact space, sometimes called the Gelfand space. Apply-
ing this to the algebra of bounded sequences produces 
the space in which the dynamics takes place.

In fact – it is sort of an anecdote but this really hap-
pened – I once gave a lecture on these things at Gelfand’s 
seminar at Rutgers University. Gelfand liked, when you 
put forth a theorem, to understand that theorem by him-
self. He did not want to listen to the lecturer explaining 
the theorem. I had put the correspondence theorem on 
the blackboard: so given something on the integers, then 
there’s a measure space, etc., etc. Gelfand turned to the 
class in the seminar and asked: “Why is this true?” He 
didn’t know either, but he wanted someone to explain 
it. Everybody gave up. And then I said: “It’s Gelfand’s 
C *-representation theorem; that’s how you get this.” 

The other thing I would mention that what Gelfand – 
who certainly was one of my mathematical heroes – did, 
was to algebraicise and then prove the Wiener Tauberian 
Theorem. This was one of the things I learned when I was 
a student at Princeton, and it made a deep impression on 
me. Gelfand gave this new and marvellous proof invok-
ing algebra, and, of course, at a certain point you need 
analysis. Now one might say that Gelfand’s theory is also 
the basis of my original way of getting the boundary of a 
group. In fact, there is a connection between boundaries 
and harmonic functions, and you somehow build an al-
gebra from harmonic functions by finding a certain way 
of multiplying these functions. The Gelfand space of that 
algebra is the boundary of the group.

Of course, what is important here is the connection 
between random walks and harmonic functions. In fact, 
you can look at harmonic functions by looking at proba-
bilistic questions on random walks, and vice versa, you 
can go from harmonic functions to random walks. 

In 1967 you introduced the notion of disjointness of 
ergodic as well as topological dynamical systems. This 
notion, which is akin to that of being coprime for in-
tegers, turned out to have applications to a wide range 
of areas, including signal processing and filtering ques-
tions in electrical engineering, the geometry of fractal 
sets, homogeneous flows and number theory. Could you 
comment on this?  
Let me answer your question in the following way. The 
notion of disjointness in dynamical systems arises in con-
nection with filtering. Specifically, filtering out noise from 
a signal consisting of a transmitted time series plus noise. 
Given that signal and noise have known stationary statis-

tical behaviour, when can noise be filtered out entirely? 
A sufficient condition is “disjointness” of the underlying 
dynamical systems generating the signal and the noise. 
This notion, while originating in the ergodic context, also 
applies to topological dynamical systems and gives in-
sight into the structure of various systems.

There is an incidental application to Diophantine ap-
proximation involving the dynamics of two transforma-
tions acting on a space; for example x → 2x (mod 1) and 
x → 3x (mod 1), where 2 and 3 are examples of “multipli-
catively independent” integers. The theorem states that 
when both operations are applied – so higher rank ac-
tions – then the orbits are either finite or dense.

The underlying intuition was that the two actions 
are fundamentally distinct, so that the invariant sets of 
each will also be different, so that a common invariant 
set would necessarily be degenerate – either finite or the 
whole space. My 1970 paper titled “Intersections of Can-
tor sets and transversality of semigroups” is an effort to 
make this precise. In differential and algebraic geometry, 
the notion of transversality relates to the dimension of 
the intersection of the two manifolds. In our context, 
Hausdorff dimension is expected to play a similar role, 
and a number of conjectures are raised in the paper. A 
partial result is obtained for which the underlying idea is 
the construction – based on a given fractal measure – of a 
stationary process of measure-valued random variables. 

You wrote a memoir titled “Ergodic theory and fractal 
geometry” in 2014, where you try to reignite interest in 
this subject. Can we ask you what the status of the con-
jectures you alluded to above is? 
Very recently one of my main conjectures was proved by 
two mathematicians, Meng Wu and, independently, Pablo 
Shmerkin. To illustrate the result they proved one has the 
following corollary: The inequality 

dim {2n α (mod 1) | n ∈ Z} + dim {3n α (mod 1) | n ∈ Z}  1

holds for all α in R except for a set of Hausdorff dimen-
sion 0. Here “dim” is box dimension, which is Hausdorff 
dimension of closure. Obviously, if α is rational then it is 
in the exceptional set. The details of the use of ergodic 
theory in the context of fractals and their dimensions ap-
pear in the monograph you referred to.

At any rate, there is current interest in that aspect, 
that is, the connection between ergodic theory and frac-
tal geometry. Actually, Wu’s proof makes use of the er-
godic theory of something called a CP process, which 
comes about naturally when you try to look at things as 
a kind of process. You’re zooming in at a fixed rate. Now, 
what are you seeing on your screen? How does this pic-
ture change? Instead of numbers changing, there are pic-
tures changing. And that could all be a stationary process. 
Every fractal generates some kind of stationary process 
which is interesting to look at. I am very happy about the 
current interest in all of this. 

As we emphasised at the outset of this interview, you 
were the first to build a bridge between dynamical sys-
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tems and number theory, in particular, combinatorial 
number theory and Diophantine approximations. This 
has spawned a lot of activity in this area, both among 
your colleagues and your students, and again their stu-
dents. You must be very pleased by this development? 
Certainly. One is proud of one’s children, but maybe in 
a sense even more proud of the grandchildren. It shows 
there’s a line going there. The same is true in mathemat-
ics: what your students can do, and what their students 
are doing, likewise with your colleagues, enables you to 
see and appreciate the ramifications of your work. The 
real prize, and what you really appreciate, is when people 
understand what you are doing and are continuing that. 

We still have bunches of other questions on our notepads, 
but perhaps this is the time we should end this interview. 
We would like to end by quoting Harish-Chandra: “I 
have often pondered over the roles of knowledge or ex-
perience, on the one hand, and imagination or intuition, 
on the other, in the process of discovery. I believe that 
there is a certain fundamental conflict between the two, 
and knowledge, by advocating caution, tends to inhibit 
the flight of imagination. Therefore, a certain naiveté, 
unburdened by conventional wisdom, can sometimes be 
a positive asset.”

It seems to us that you in your approach to math-
ematics embody what Harish-Chandra describes. 
I’m happy if you think of it this way! 

On behalf of the Norwegian and the European Math.
Societies, and from the two of us personally, we would 
like to thank you for this most interesting interview. We 
very much look forward to meeting you in person in 
Oslo at the next Abel Prize event. 
I am looking forward to that myself, among other reasons 
in order to put things on the blackboard so that people 
will really be able to understand the things we have been 
talking about abstractly. 

Due to the covid-19 pandemic, the prize ceremony for the Abel Prize 
2020 had to be postponed. The interview was conducted remotely, 
with Professor Furstenberg at home in Israel.


