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Interview with Abel Laureate 2020 
Gregory Margulis 
Bjørn Ian Dundas (University of Bergen. Norway) and Christian Skau (Norwegian University of Science and 
Technology, Trondheim, Norway)

Professor Margulis, first and foremost we would like to 
congratulate you on being awarded the Abel Prize 2020, 
together with Professor Furstenberg, for your, and we 
quote the Abel Committee, “pioneering the use of meth-
ods from probability and dynamics in group theory, 
number theory and combinatorics.”
It’s a great honour. 

We will come back to the background story in a mo-
ment, but just to place your mathematics: you received 
the Wolf Prize mostly for your contributions to algebra. 
Your NSF grants emphasise analysis, and the Abel Prize 
focuses on probability and dynamics. So where should 
we place you? What sort of problems attract you? 
I mostly consider myself to be a geometer. Once I talked 
to Jacques Tits, and he said “I am a geometer and you are 
a geometer”. Somehow, I am a geometer in the sense that 
my mathematical thinking is mostly based on imagina-
tion and intuition. There are different types of geometers. 
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Let’s see if we can get back to geometry as we go along. 
Jacques Tits, of course, is a previous winner – in 2008 
actually – of the Abel Prize. You were born in Moscow 
in 1946. When did your interest in mathematics begin? 
Probably from an early age. My father was also a math-
ematician, but he was mostly interested in mathematical 
education and didactics, and he wrote his PhD, or candi-
date thesis, under the direction of Aleksandr Khinchin, 
who was a famous probabilist. But my father’s disserta-
tion was in didactics. He was, how can I put it, a candidate 
of pedagogical sciences. 

You played chess, and you were included in the so-called 
mathematical circles run by the Moscow State Univer-
sity. What was life like for you as a kid in Moscow in 
the 1950s and 1960s? 
It was okay. My family was relatively well off. My father 
worked at an educational institute, and his salary was rela-
tively high. From the time I was seven or eight, this was in 
1954, we had our own apartment, which was quite excep-
tional at that time. People usually lived in so-called com-
munal apartments. So one family occupied a room, and 
several families lived in one apartment. My family actu-
ally encouraged me to do mathematics. My father prob-
ably realised that I had some mathematical talent. From 
an early age, I was able to multiply double-digit numbers.   

So it was natural that you were included in these math-
ematical circles? 
Included is not the right word. Somehow it was no com-
petition. The mathematical circles probably started for 
me around seventh grade when I was 12 or 13 years old. 

Was it hard work being in the circles?   
No, the circles were okay. It was quite informal. I don’t 
remember many details, but it was run by students, some-
times by graduate students, from Moscow University, and 
we discussed various problems. And we were encouraged 
to solve them. There was also supervision by some more 
senior mathematicians. At that time, the mathematical 
Olympiads were connected to these mathematical circles. 

So it was expected that one participate in Olympiads? 
Yes, it was. It was in Moscow, I think it was in the so-
called City Olympiad. A little later it was for the entire 
country. Somehow, there was no competition to enter, 
but it was quite challenging for many. 

We can imagine that you actually did quite well in these 
Olympiads, didn’t you? 
Yes. 

And later, in 1962, at the age of 16, you participated in 
the International Mathematical Olympiad, where you 
won a silver medal. 
Yes. 

Let us talk about your early career as a research math-
ematician. You wrote your first mathematical paper 
before you were 20. And in 1968 you and your fellow 

student Kazhdan published a very influential paper. 
How did that play a role in your later life, for example, 
toward arithmeticity of lattices and so forth. 
Actually, my first paper was written while I was attending 
the Dynkin seminar. It was about positive harmonic func-
tions on nilpotent groups. Probably it has some influence 
even now. My joint paper with Kazhdan was about the 
existence of unipotent elements in non-uniform lattices, 
or what is also called the non-cocompact case. This was 
a conjecture by Selberg. But our paper was also directed 
towards a proof of the arithmeticity of non-uniform lat-
tices in semisimple Lie groups. So, actually, this paper 
with Kazhdan was the starting point towards the proof 
of arithmeticity.  

We will talk more about arithmeticity later. However, 
we will remark that the joint paper you wrote with 
Kazhdan  caused quite some excitement, and Armand 
Borel talked about it in a Bourbaki seminar. You were 
in the Dynkin seminar when you wrote the paper on 
positive harmonic functions on nilpotent groups. How-
ever, your undergraduate and PhD advisor was Yakov 
Sinai, who, by the way, was the Abel Prize Recipient in 
2014. 
Yes, it was Sinai. I attended the Sinai seminar on dynami-
cal systems. I did actually then publish two works which 
are related to dynamical systems. One of them was about 
Anosov systems on compact 3-manifolds and the condi-
tions on the fundamental groups this entailed. The other 
was about the counting of closed geodesics on compact 
manifolds of negative curvature. And this work was done 
because I attended and was inspired by this seminar. 
Sinai became my advisor in the third year of my under-
graduate studies, so around 1965. I finished my PhD the-
sis in 1970.

After you finished your PhD, you began to work at the 
Institute for Problems in Information Transmission. 
According to Dynkin, you had the luxury of spending 
most of your time there on your own research. Is that a 
fair assessment?  
Yes, that’s quite a fair assessment. I didn’t get a position 
at the Moscow University or the Steklov Institute, but 
the Institute for Problems in Information Transmission 
was one of the institutes of the Soviet Academy of Sci-
ences. By Soviet standards at that time, the Institute was 
relatively small, only 200 researchers, but by Western 
standards it would probably be considered a huge insti-
tution. My immediate boss was Roland Dobrushin, who 
was a famous probabilist and a mathematical physicist. 
There was also another group there, which was head-
ed by Mark Pinsker. He was famous for his work on 
information theory. In a sense, I was lucky to be there, 
because my most well-known and widely cited paper on 
expander graphs, published in 1973, was written under 
Pinsker’s influence. Expander graphs, which incidentally 
have many applications in computer science, were first 
defined by Pinsker. Their existence was first proved by 
Pinsker in the early 1970s. My paper gave the first explicit 
construction of an infinite family of expander graphs. The 
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work on expanders was in some sense done under pres-
sure or from a sense of duty. But I was mostly working 
on discrete subgroups of Lie groups, on arithmeticity and 
super-rigidity, and so on. It was done in parallel. All my 
own independent research was not, to put it mildly, quite 
related to the main direction of the Institute. 

We will get back in more detail to your work on lattices 
in Lie groups. But before that, if you were to rank the 
people in Moscow who influenced you the most when 
you embarked on your research career, who would you 
name?  
Sinai, of course, and then Piatetski-Shapiro, Kazhdan and 
Vinberg.

Did Piatetski-Shapiro make you aware of Selberg’s and 
his own conjectures about lattices in semisimple Lie 
groups? Did you get the problem from them? 
Yes, in a sense. It started with Selberg, and then with 
Piatetski-Shapiro. Selberg only stated the conjecture for 
non-uniform lattices. For uniform lattices he didn’t actu-
ally have the definition of an arithmetic subgroup. That 
was done by Piatetski-Shapiro. So this problem some-
how circulated, mostly thanks to Piatetski-Shapiro. I first 
proved the arithmeticity for non-uniform lattices by fol-
lowing the strategy which is essentially due to Selberg 
and Piatetski-Shapiro. You start with the unipotent ele-
ments and do various pieces of quite intricate work. For 
some special cases, the arithmeticity of non-uniform lat-
tices had been proved by Selberg. But in the general case, 
the proof is much more complicated and requires a lot of 
additional, non-trivial arguments. For me, it took quite 
a long time, something like two or three years, to write 
a detailed proof. Regarding the case of uniform lattices, 
there was no strategy before my work.

So it is fair to say that your strategies for proving the 
non-uniform case and the uniform case are vastly dif-
ferent? 
Yes, they are vastly different. For the non-uniform case 
there are these unipotent elements, and there are some 
kinds of building blocks which allow you to get the struc-
ture of arithmetic groups. For uniform lattices there are 
no such building blocks. For non-uniform lattices the 
method of proof is of algebraic and geometric nature, 
but for uniform lattices you have to use transcendental 
methods. 

Before we go on, could you explain to us what it means 
to say that a lattice is arithmetic?  
First, in Lie group theory a lattice G is a discrete sub-
group of a Lie group G with the property that the quo-
tient space G / G has finite invariant measure. Or, as we 
say, G has finite covolume. A lattice G is uniform (or 
cocompact) if the quotient G / G is compact, and non-uni-
form (or non-cocompact) otherwise. Consider the group 
SLn(R) of real invertible n × n-matrices with determinant 
1, and the subgroup SLn(Z) of matrices with integral 
coefficients. This is the standard example of an arithme-
tic subgroup. It’s a classical result that SLn(Z) has finite 

covolume in SLn(R). It probably goes back to Hermite 
and Minkowski.

Armand Borel and Harish-Chandra generalised this 
to semisimple Lie groups: G(Z) is a discrete subgroup 
which has finite covolume in G(R), where G is a semi-
simple Lie group. I proved that, under certain condi-
tions, any lattice in a semisimple (algebraic) Lie group 
G is arithmetic (precisely, the lattice must be irreducible 
and the real rank of the group must be greater than 1). 
However, one needs to extend the definition of arithme-
tic subgroups. One extension is that the subgroup G is 
commensurable with G(Z), i.e. the intersection of G and 
G(Z) has finite index in both G and G(Z). Another ex-
tension, which was actually due to Piatetski-Shapiro, is 
that, vaguely speaking, there is some construction which 
comes from maybe a bigger group that maps onto the 
original group with compact kernel. Selberg probably 
did not know about this definition.  

Can you give us the timeline of your proof of the arithme-
ticity of lattices in higher rank semisimple Lie groups?  
For non-uniform lattices, the crucial step was an announce-
ment in 1969. I wrote quite a long paper about this crucial 
step, which was finished in 1971, but because of some dif-
ficulties in getting it published, it did not appear before 
1975. As for getting the arithmeticity result from this cru-
cial step, that was finished in 1973. 

As for uniform lattices, the initial inspiration came in 
1969 or 1970, when I learned about Mostow’s fundamen-
tal work on strong rigidity. Thinking about it, I realised at 
some point that it would be possible to prove the arithme-
ticity of uniform higher rank lattices if one could prove a 
statement which is now called superrigidity. I believe, and 
this was confirmed by Mostow, that superrigidity was a 
new phenomenon which had not been discovered before. 
The first proof of superrigidity was based on a combina-
tion of methods from ergodic theory and algebraic group 
theory. One of the important ingredients was Oseledec’s 
multiplicative ergodic theorem. It involves methods 
which are actually quite far from the original formulation 

Full studio at the Norwegian Academy for the interview which was 
conducted remotely due to the covid-19 pandemic, with Professor 
Margulis on line from Yale.
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of arithmeticity. I was invited to give an address at the 
ICM Congress in Vancouver in 1974, but I was prevented 
from attending. Instead, I sent a report, later published 
in the Proceedings of that Congress, where I outlined a 
proof of arithmeticity in the uniform case.    

At the next ICM Congress in Helsinki in 1978 you re-
ceived the Fields Medal, but you were not allowed to 
attend, mostly due to the opposition of the top Soviet 
mathematical establishment at that time. Jacques Tits 
said in his citation of your work, and we quote: “Mar-
gulis has completely, or almost completely, solved a 
number of important problems in the theory of discrete 
subgroups of Lie groups, problems whose roots lie deep 
in the past and whose relevance goes far beyond that 
theory itself. It is not exaggerated to say that, on sev-
eral occasions, he has bewildered the experts by solving 
questions which appeared to be completely out of reach 
at the time. He managed that through his mastery of 
a great variety of techniques used with extraordinary 
resources of skill and ingenuity.’’
I am perhaps not the right person to comment on that. 
However, Dennis Sullivan told me that when Jacques 
Tits gave a presentation at Collège de France – or maybe 
it was at IHES at Bures – of my proof of the arithmetic-
ity of cocompact lattices, Armand Borel was extremely 
surprised that ergodic theory was a crucial ingredient in 
the proof. After all, the theorem was stated in arithmetic 
terms.

Could you comment on a later and quite different proof 
of the superrigidity theorem and its application to 
arithmeticity – both in the uniform and non-uniform 
case – using the work on boundaries by Furstenberg, 
with whom you share the Abel Prize? 
It seems strange now, but when I worked on superrigid-
ity I was not influenced by Furstenberg’s work, because 
I was essentially not familiar with it. It is indeed strange, 
because many ideas and methods introduced by Fursten-
berg are very similar in style to what I used. 

As I mentioned before, my proof of the uniform case 
is vastly different from my proof in the non-uniform case. 
For the uniform case, there are actually two parts in the 
proof. The first part is to prove the existence of equivari-
ant measurable maps and the second part is to show the 
rationality of these equivariant measurable maps. I did 
the first part for the uniform case, and using certain in-
tegrability estimates my argument could be extended to 
the non-uniform case. Actually, for that case I had to use 
arithmeticity, or at least the crucial statement in my proof 
of arithmeticity, to obtain these estimates. For the exist-
ence of equivariant measurable maps, Furstenberg gave 
a different proof that is not based on the multiplicative 
ergodic theorem, but is based on his boundary theory, 
which is, in a sense, quite related to the multiplicative 
ergodic theorem. One of the origins of the multiplica-
tive ergodic theory of Oseledec was previous work by 
Furstenberg and Kesten on products of random matrices 
dating back to 1960. 

Incidentally, let me relate a story which has some 
bearing on your question. Around 1970, Furstenberg vis-
ited Yale. At that time, Mostow was working on strong 
rigidity, and Furstenberg was working on applications of 
boundary theory to the theory of discrete subgroups of 
Lie groups. Furstenberg and Mostow were good friends, 
but somehow at that time they did not pay much atten-
tion to each other’s work. In retrospect it looks strange, 
because their works looked very closely related. Mos-
tow told me later on several occasions that Furstenberg 
probably could have proved superrigidity if he had been 
aware of the problem. I mentioned that in my talk during 
one of the workshops in honour of Furstenberg. Fursten-
berg was present and he immediately said something 
like: “I would never have been able to do that”. 

You are on record saying that you consider the proof 
of the so-called normal subgroup theorem as your best 
proof. Could you tell us what the normal subgroup the-
orem says, and also tell us why you think this proof is 
so good? 
The normal subgroup theorem says that if G is a con-
nected semisimple Lie group of rank at least 2 with no 
compact factors and with finite centre, and if G is an irre-
ducible lattice in G, then any normal subgroup N of G 
either belongs to the centre of G or has finite index in G. 
So a special case is, for example, SL3(R) of 3 × 3 matrices 
of determinant 1. Take a discrete subgroup G which has 
finite covolume. Then any normal subgroup of the lattice 
G is either central or has finite index in G. 

The general proof is divided into two parts. You have 
this irreducible lattice G and a normal subgroup N. Con-
sider the quotient G/N. First consider the case that G/N is 
an amenable group. This case can be treated using rep-
resentation theory arguments, in particular Kazhdan’s 
property T. Then consider the case when G/N is a non-
amenable group. Somehow I realised that one can use 
algebras of measurable sets. A crucial tool was one of the 
initial lemmas occurring in Furstenberg’s paper on his 
boundary theory. I cannot explain how I came upon the 
idea behind the second part of the proof – it was some 
sort of intuition. Also, the idea of subdividing the proof 
into two parts was quite new. Anyway, I consider it the 
best proof I have done because it is mostly based on in-
tuition. 

Were there any precursors, or did the statement of the 
normal subgroup theorem come out of the blue? 
The statement of the normal subgroup theorem was 
known to be true in certain cases, for example for SLn(Z). 
The proofs were done by algebraic methods. Maybe it 
was natural to assume that the statement was true in gen-
eral. However, the proof in the cocompact – or uniform 
– case was obtained partially by using measure theory, 
as I alluded to above. For example, one of the ingredi-
ents in the proof is the density point theorem in measure 
theory. So even though the theorem is stated in purely 
algebraic terms, the proof in the general case is mostly 
non-algebraic. 
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Another example where you prove results in algebra and 
Diophantine approximation by your sort of methods, 
which, to us at least, seem very surprising, is when you 
prove the Oppenheim conjecture. Could you explain to 
us what that is, and how we should think about it? 
The Oppenheim conjecture is actually a quite natural 
conjecture. There is a classical theorem called Meyer’s 
theorem which says that if you have an indefinite rational 
form Q in at least five variables, then it nontrivially rep-
resents zero over rational numbers. That is, you have a 
nonzero integral vector x such that Q(x) = 0.

Oppenheim – he was British and a student of Dick-
son’s in Chicago – worked on these rational forms in four 
variables. He published a paper in the Proceedings of the 
National Academy of Sciences in 1929, and there was a 
footnote where he formulated the conjecture. It can be 
considered as an analogue of Meyer’s theorem for irra-
tional forms: if you have an indefinite irrational form Q 
in at least five variables, then for every positive  there 
exists an integral vector x, such that the absolute value of 
Q(x) is less than . 

So the image of the set of all integral vectors is dense in 
R, is that what you say? 
More or less. It was later realised that the conjecture 
could be strengthened. There was a lot of work on using 
analytic number theory methods. I think that the main 
progress had been done by Davenport and his coauthors, 
starting from 1946 up until 1959, where they proved this 
when the number of variables is at least 21. But it was 
mostly analytic number theory methods.

Davenport realised that the conjecture could be stat-
ed not just for dimension at least 5; for irrational forms 
it could be stated for dimension at least 3. For dimension 
3 and 4 the statement of Meyer’s theorem is not true for 
rational forms, but for its analog for irrational forms it is 
true. Later, in the mid 70s, Raghunathan realised that the 
Oppenheim conjecture can be reformulated as a state-
ment in dynamical systems. Let’s say G is SL3(R) and 
G is SL3(Z), and if you take H to be SO(2,1), then any 
bounded orbit of H in G/G should be closed. Actually, the 
Oppenheim conjecture can be stated for a very special 
case: if you take the form Q(x, y, z) = x2 + y 2 – √–2 z2, then 
Q(Z3) should be dense in R. And the proof of this special 
case is not any simpler than the general case. 

You learned about this problem in Bonn, as we under-
stand? 
Yes, I visited Bonn for three months in ’79 from the 
beginning of July. I met Gopal Prasad, who was a student 
of Raghunathan’s, and he is now a well-known mathema-
tician.  

The proof was published in 1986, is that right? 
Yes, the proof was published in ’86. But I remember that 
I already gave some kind of oral presentation in ’84. 

Let’s move on to what we briefly touched upon before, 
namely expander graphs. You said that it was Pinsker 

who introduced you to this topic. Could you be more 
specific? But first tell us what an expander graph is!  
Intuitively, an expander graph is a finite, undirected 
graph in which every subset of the vertices that is not 
“too large” has a “large” boundary. This notion was first 
introduced by Mark Pinsker in his work on so-called con-
centrators. Pinsker’s original definition was not the same 
as the standard definition one can find in textbooks today. 
Vaguely speaking, a regular and undirected finite graph 
with n vertices is an expander graph if for any subset A 
of m vertices, where m is less than n/2, A has m(1 + ) 
neighbours for some (small) . Actually, the definition is 
not just for one graph, but for an infinite family of graphs. 
That the graph is d-regular means that each vertex has 
exactly d neighbours.

As I said earlier, this started with the work of Pinsker, 
who proved the existence of expander graphs by proba-
bilistic methods. In fact, almost all graphs which come 
from his construction are expander graphs. But there 
were no explicit constructions. I realised that by using 
some group theory, especially involving property (T), I 
could explicitly construct an infinite family of expander 
graphs. This was probably unexpected for people work-
ing in computer science.  

Later on you constructed even more examples of ex-
pander graphs, isn’t that correct?  
Yes, later on there were these graphs that came from 
using quaternions. This was in 1984 and at that time I 
was mostly interested in studying the girths of regular 
graphs, and finding upper estimates of the girth size. In 
graph theory, the girth of a graph is the length of the 
shortest cycle contained in the graph. There was some 
probabilistic construction due to Erdős and Sachs that 
gave an upper asymptotic estimate 2 log p n for the girth 
of a (p + 1)-regular graph with n vertices (this is simple), 
while the asymptotic lower estimate was log p n. Quite 
surprisingly, my explicit construction gave an asymptot-
ic lower estimate 4/3 log p n. I believe that up until now 
there hasn’t been any probabilistic construction which 
goes beyond log p n.
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At the same time as I studied these explicitly con-
structed graphs I realised, based on some deep work by 
Deligne, that they were also expander graphs. Slightly 
later and completely independently, Lubotzky, Phillips 
and Sarnak basically gave the same construction, but 
with some variations. They also used the work of Del-
igne, and they called these graphs which come from this 
construction Ramanujan graphs, because it is related to 
some Ramanujan conjecture. 

We have to talk about another problem that you solved, 
this was at the very beginning of the 80s, and we quote 
Mathematical Reviews: “Although it is not explicitly 
stated, this paper settles a long-standing problem of 
Banach on the uniqueness of invariant means on the n-
sphere”. We understand that this came to you in a flash, 
and it involves property (T) again. Could you tell us a 
wee bit about the story behind this? 
I believe I was at a conference in Poland in 1980, in May 
or June. I met Rindler, an Austrian mathematician, who 
mentioned this problem by Banach and Ruziewicz about 
invariant means for algebras for measurable sets and the 
reformulation of the problem due to Rosenblatt, who 
explained that it would follow from the statement about 
small almost invariant sets. I immediately realised that 
this statement can be deduced from property (T) for cer-
tain subgroups.

Okay, if you start in dimension 5, say SO(5), then it 
contains certain arithmetic lattices, or S-arithmetic lat-
tices, and it has property (T). I think – essentially around 
the same time – Dennis Sullivan gave another proof us-
ing a slightly different subgroup, but also using work by 
Rosenblatt.

Actually, the proof came to me almost immediately. 

Is this typical, does this happen to you from time to time 
that all of a sudden you see the answer? 
Maybe I had an answer before I had a question… 

Fair enough.  
This work became quite famous, but actually I didn’t 
spend much time on it. 

Can we ask you about your working style, because there 
is one thing that strikes us. Early in your career, you 
were the single author of nearly all of your papers, and 
then in the past thirty years, almost all of them have 
been joint papers. How do you explain that? 
When I was in Moscow, essentially all my papers were 
written by myself. One notable exception was the joint 
paper with Kazhdan. Actually, for me it was quite chal-
lenging to write up papers, so it took a lot of time. But 
when I moved to the United States and to Yale in 1991, 
it was a completely different environment. I started to 
work with many mathematicians, mostly younger than 
me. I also started to work with my graduate students.  

Was that fun, did you enjoy it? 
Yes, working with graduate students was fun. I did not 
have graduate students in Moscow, but after I moved to 

Yale I had several graduate students. It was a rewarding 
experience to work with them.  

We noticed that even last year, in 2019, you had a paper 
together with A. Mohammadi. So you are still working 
with younger fellows? 
A. Mohammadi was my graduate student, who finished 
more than ten years ago. I had joint papers with him 
when he was a graduate student, and then we had sev-
eral joint papers after that. Another graduate student of 
mine that I would like to mention is Dmitry Kleinbock. 
We have several joint papers. In 1995 I noticed a book 
in the maths department library by Sprindzuk, where 
he presents his proof of the Mahler Conjecture on tran-
scendental numbers and Diophantine approximations. I 
asked Dmitry to look at it and see if there are relations 
between the subject of Sprindzuk’s book and dynamics. 
Soon after, Dmitry gave a reformulation of the Baker–
Sprindzuk conjectures in dynamical terms. After that we 
realised that a modification of methods used in the proof 
of non-divergency for unipotent flows can be applied to 
prove the dynamical reformulation of the Baker–Sprind-
zuk conjectures. 

Now I am retired, and I had my last student finish this 
current year. 

A final question: How do you rank yourself on a scale 
from theory builder to problem solver? 
Probably I am more a problem solver than a theory 
builder. But I find this division rather artificial. 

That brings us to the end of the interview. We want to 
thank you on behalf of the Norwegian Mathematical 
Society and the European Mathematical Society. Also, 
the two of us would like to thank you personally for this 
very interesting interview. Thank you very much! 
Thank you! 
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