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On May 15, 2021, the eminent Indian mathematician Mudumbai
Seshachalu Narasimhan passed away at his home in Bangalore.
His work in the field of geometry is internationally recognised,
having deep connections with different branches of mathematics
and theoretical physics. Narasimhan spent much of his career
at the Tata Institute of Fundamental Research (TIFR) in Mumbai,
where he was a key figure in the creation and development of
the internationally acclaimed modern Indian school of algebraic
geometry. After retiring from TIFR, from 1993 to 1999, Narasimhan
was Head of the Mathematics Section of the International Centre
for Theoretical Physics (ICTP) in Trieste, an institution created in
1964 by the Pakistani 1979 Nobel Laureate in Physics Abdus Salam.

1 Life and career

Narasimhan was born on 7 June 1932 in Thandarai, a small town
in Tamil Nadu (India), to a prosperous farming family. Although
their circumstances were somewhat reduced after his father passed
away when he was only thirteen, his family encouraged him to
do what he wanted. From a young age he showed a great in-
terest in mathematics and already in school he decided to become
a researcher, even before really knowing what that meant. He
completed his first university studies at Loyola College in Madras,
in the heart of British India. There, he had as a teacher the French
Jesuit Father Charles Racine, who was in contact with legendary
figures of mathematics such as Elie Cartan, Jacques Hadamard,
André Weil and Henri Cartan. Racine introduced him to modern
mathematics, unknown in India, and, in particular, to the great
French school. At Loyola College Narasimhan met C. S. Seshadri –
also deceased in 2020 – who would later become one of his main
collaborators.

Following his studies at Loyola College and on the advice
of Father Racine, Narasimhan moved in 1953 to the newly cre-
ated TIFR in Bombay to do his doctorate under the direction of
K. Chandrasekharan, one of the founders of the centre’s School of
Mathematics. There he was able to interact with first-rate math-
ematicians who came as visitors to teach courses of two or three
months. Among them was Laurent Schwartz – Fields medallist in

Figure 1. M. S. Narasimhan, ICMAT, Madrid, 2017

1950 – who would have a great influence on Narasimhan and
would be his mentor during his three-year stay in Paris in the late
1950s, where he would also coincide with Seshadri. In the initial
period of his stay in Paris he could not completely concentrate
on mathematics as he was hospitalised due to a sickness. How-
ever, he used that time to read the paper of Kodaira and Spencer
on deformations of complex structures which eventually played
a great role in his future work. During his time in France he also
collaborated with Japanese mathematician Takeshi Kotake, who
was also in Paris to work with Schwartz.

When he returned to TIFR in 1960, Narasimhan and Seshadri
started an intense collaboration that resulted in the famous Nara-
simhan–Seshadri theorem, published in 1965. A bit later, he began
his long and fruitful collaboration with S. Ramanan. Along with
Ramanan, who was his first student, Narasimhan’s student roster
includes other such illustrious names as N. Nitsure, R. Parthasarathy,
V. K. Patodi, M. S. Raghunathan, T. R. Ramadas and R. R. Simha, who
have made essential contributions to various areas of mathematics.
Narasimhan’s presence at TIFR was indeed a source of inspiration
to several generations of young mathematicians.

During his time at TIFR, Narasimhan had also important ad-
ministrative activity. In particular, he was the first Chairman of the
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National Board for Higher Mathematics, which was set up in 1983
by the Government of India, under the Department of Atomic
Energy, to foster the development of higher mathematics in the
country. Together with S. Ramanan, who acted as Secretary, Nara-
simhan undertook the task of setting it up in the initial years. He
was also a member of the Executive Committee of the Interna-
tional Mathematical Union (IMU) during the period 1983–1986,
as well as President of IMU’s Commission on Development of
Exchange.

After retiring from TIFR, Narasimhan was the Head of the ICTP
Mathematics Section from 1993 to 1999. In this position, he carried
out in particular important work in supporting young mathem-
aticians from developing countries. When he retired from ICTP, he
continued to be an adviser of ICTP and served as a member of its
Scientific Council. In 2020, he was awarded the Spirit of Abdus
Salam Award by the family of the ICTP founder at a ceremony
where numerous mathematicians from around the world showed
him their great admiration, respect and affection.

After his stay at the ICTP, Narasimhan spent three years at
SISSA (Trieste), before returning to India, where he continued his
mathematical activity at the Indian Institute of Science in Bangalore.

Narasimhan’s work earned him many prestigious awards, in-
cluding the Shanti Swarup Bhatnagar Prize (1975), Third World
Academy of Sciences Prize for Mathematics (1987), the Srinivasa
Ramanujan Medal (1989), the French Ordre National du Mérite
(1990), the Padma Bhushan Award by the President of India (1990),
the C. V. Raman Birth Centenary Award of the Indian Science Con-
gress (1994), and the 2006 King Faisal International Prize in Science
that he shared with Sir Simon Donaldson. He was also a Fellow
of the Indian National Sciences Academy, Indian Academy of Sci-
ences, the Royal Society of London and the Third World Academy
of Sciences.

Narasimhan was a great fan of detective novels, and literature
in general, in Tamil, English and French. He also liked Indian classical
music, as well as Western classical music.

Narasimhan was married to Sakuntala Narasimhan, a renowned
Indian classical music singer and journalist. The couple had a daugh-
ter, Shobhana Narasimhan, a physics researcher and professor at
the Jawaharlal Nehru Center for Advanced Scientific Research, and
a son, Mohan Narasimhan, who, after obtaining an MBA and hav-
ing worked in the US for several years, returned to India, where he
teaches martial arts.

2 Work

Narasimhan made important contributions in several areas of math-
ematics, including algebraic geometry, differential geometry, rep-
resentation theory of Lie groups and analysis. Here, we will focus
mostly on his work in algebraic geometry, and specially in the the-
ory of moduli spaces of vector bundles on Riemann surfaces, with

particular reference to works that are more familiar to the author.
For details, one can consult the Collected Papers of M. S. Nara-
simhan [10].

The theorem of Narasimhan and Seshadri
Upon his return to TIFR in 1960, Narasimhan embarked on an
intense collaboration with Seshadri that resulted in the famous
Narasimhan–Seshadri theorem, published in 1965. This theorem
captures the interconnection between various branches of geo-
metry, topology and theoretical physics, and was the basis for later
fundamental works by some of the greatest mathematicians of our
time such as Michael Atiyah, Raoul Bott, Simon Donaldson, Karen
Uhlenbeck, Shing-Tung Yau, Nigel Hitchin and Carlos Simpson,
among others.

The problem of classifying holomorphic vector bundles over
a compact Riemann surface X of genus g is a central one in algeb-
raic geometry. The set of equivalence classes of holomorphic line
bundles on X is given classically by the Picard group of X. For genus
g = 0 higher rank holomorphic vector bundles were classified by
Grothendieck (1957), and in a different fashion by earlier work of
Birkhoff (1909). The case of elliptic curves (g = 1) was solved by
Atiyah (1957).

For genus g ≥ 2 the problem is much harder. Inspired by some
remarks in the 1938 paper of A. Weil on “Généralisation des fonc-
tions abéliennes”, Narasimhan and Seshadri started looking in
1961–62 at unitary vector bundles. A unitary representation ρ of
dimension n of the fundamental group of X defines a holomorphic
vector bundle Eρ of rank n and degree 0, which is referred to as
a unitary vector bundle. This is called an irreducible unitary vector
bundle if ρ is irreducible. They showed that the infinitesimal deform-
ations of a unitary vector bundle Eρ as a holomorphic bundle can
be identified with the infinitesimal deformations of the representa-
tion ρ. From this, they deduced that the set of equivalence classes
of unitary vector bundles had a natural structure of a complex
manifold, and were able to compute the expected dimension.

A breakthrough came with the work of Mumford on Geometric
Invariant Theory. In the 1962 International Congress in Stockholm,
he introduced the notion of stability of a vector bundle on a com-
pact Riemann surface, and proved that the set of equivalence
classes of stable bundles of fixed rank and degree has a natural
structure of a non-singular quasi-projective algebraic variety, pro-
jective if the rank and degree are coprime. Let E be a holomorphic
vector bundle over X. Define the slope of E as

μ(E) = deg(E)
rank(E) .

The holomorphic vector bundle E is said to be stable if μ(F) < μ(E)
for every proper holomorphic subbundle F ⊂ E. One can similarly
define semistability replacing the strict inequality by ≤ for every
subbundle F ⊆ E.
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After they became aware of Mumford’s work, the relation with
unitary bundles was clear to them. Narasimhan and Seshadri proved
that an irreducible unitary bundle is stable. For arbitrary degree
they showed that the stable vector bundles on X are precisely the
vector bundles on X which arise from certain irreducible unitary
representations of suitably defined Fuchsian groups acting on the
unit disc and having X as quotient. The result that they proved in
[8] can be easily reformulated as saying that a holomorphic vector
bundle over X is stable if and only if it arises from an irreducible pro-
jective unitary representation of the fundamental group of X. From
this, one deduces that a reducible projective unitary representation
of the fundamental groups corresponds to a direct sum of stable
holomorphic vector bundles of the same slope (what is nowadays
referred as a polystable vector bundle). One can observe that the
projective unitary representations lift to unitary representations of
a certain central extension of the fundamental group of X.

The Narasimhan–Seshadri theorem has been a paradigm and
an inspiration for almost 60 years now for many important devel-
opments. The theorem was generalised by Ramanathan (1975) to
representations into any compact Lie group. The gauge-theoretic
point of view of Atiyah and Bott (1982), using the differential geo-
metry of connections on holomorphic bundles, and the new proof
of the Narasimhan–Seshadri theorem given by Donaldson (1983)
following this approach, brought new insight and new analytic
tools into the problem. In this approach a projective unitary repres-
entation of the fundamental group is the holonomy representation
of a unitary projectively flat connection.

The case of representations into a non-compact reductive
Lie group G required the introduction of new holomorphic ob-
jects on the Riemann surface X called G-Higgs bundles. These
were introduced by Hitchin (1987), who established a homeo-
morphism between the moduli space of reductive representation in
SL2(ℂ) and polystable SL2(ℂ)-Higgs bundles. This correspondence
was generalised by Simpson (1988) to any complex reductive Lie
group (and in fact, to higher dimensional Kähler manifolds). The
correspondence in the case of non-compact G needed an extra
ingredient – not present in the compact case – having to do with
the existence of twisted harmonic maps into the symmetric space
defined by G. This theorem was provided by Donaldson (1987)
for G = SL2(ℂ) and by Corlette (1988) for arbitrary G. It is per-
haps worth pointing out that this theorem is a twisted version
of an existence theorem of harmonic maps of Riemannian man-
ifolds proved by Eells–Sampson (1964) pretty much around the
same time as the theorem of Narasimhan and Seshadri. Corlette’s
theorem, which holds for any reductive real Lie group, can be
combined with an existence theorem for solutions to the Hitchin’s
equations for a G-Higgs bundle, given by the author in collabor-
ation with Bradlow, Gothen and Mundet i Riera (2003, 2009) to
prove the correspondence for any real reductive Lie group G. Earlier,
Simpson (1992) gave an indirect proof of this by embedding G in
its complexification.

There is another direction in which the Narasimhan–Seshadri
theorem has been generalised. This is by allowing punctures in the
Riemann surface. Here one is interested in studying representations
of the fundamental group of the punctured surface with fixed
holonomy around the punctures. These representations now re-
late to the parabolic vector bundles introduced by Seshadri (1977).
The correspondence in this case for G = Un was carried out by
Mehta and Seshadri (1980). A differential geometric proof mod-
elled on that of Donaldson for the parabolic case was given by
Biquard (1991). The case of a general compact Lie group has
been studied by Bhosle–Ramanathan (1989), Teleman–Woodward
(2003), Balaji–Seshadri (2015), Balaji–Biswas–Pandey (2017) and
others, under suitable conditions on the holonomy around the
punctures.

The non-compactness in the group and in the surface can be
combined to study representations of the fundamental group of
a punctured surface into a non-compact reductive Lie group G.
Simpson (1990) considered this situation when G = GLnℂ. Biquard
and Mundet i Riera in collaboration with the author (2020) exten-
ded this correspondence to the case of an arbitrary real reductive
Lie group G (including the case in which G is complex), establishing
a one-to-one correspondence between reductive representations
of the fundamental group of a punctured surface X with fixed
arbitrary holonomy around the punctures and polystable parabolic
G-Higgs bundles on X.

In 1972 Takemoto generalised Mumford’s stability to holo-
morphic vector bundles on a higher dimensional complex projective
variety. This was easily extended to any compact Kähler manifold
and, in this setup, the projectively flat condition of the theorem of
Narasimhan and Seshadri generalises to the Hermitian–Yang–Mills
equation, whose existence of irreducible solutions is equivalent to
Mumford–Takemoto stability of the bundle, as proved by Donald-
son (1986, 1987) in the algebraic case, and by Uhlenbeck and Yau
(1986) in the general Kähler situation.

In a very different direction, partial p-adic analogues of the
Narasimhan–Seshadri theorem and the Hitchin–Simpson corres-
pondence have been studied by Deninger–Werner (2005, 2010),
Faltings (2005, 2011), Ogus–Vologodsky (2007), as well as Abbes–
Gros (2016) and Xu (2017).

Collaboration with S. Ramanan
After his return to TIFR in 1960, Narasimhan also began his long and
fruitful collaboration with S. Ramanan. Together, they developed
over more than two decades the theory of moduli spaces of vector
bundles on Riemann surfaces.

Their first collaboration, however, was in the area of differential
geometry, proving the existence of universal connections. In a first
paper (1961) they proved that for the unitary group, namely the
Stiefel bundle over the Grassmannian, there was a natural homo-
geneous connection which could serve as a universal connection.
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They later generalised this result to all compact Lie groups and in
fact to all Lie groups (1963). This result has been extensively used
by physicists and geometers, for instance in Chern–Simons theory
and in the work of Quillen on superconnections.

After the work of Narasimhan and Seshadri, using Mumford’s
theory, Seshadri (1967) showed that on the set M(n,d) of semi-
stable vector bundles of rank n and degree d on X of genus g ≥ 2,
under a certain notion of equivalence introduced by Seshadri – what
later was called S-equivalence –, there is a natural structure of a nor-
mal projective variety. In [6] Narasimhan and Ramanan showed that
the smooth points of M(n,d) correspond precisely to the stable
vector bundles, except for the case n = 2, g = 2 in which case
M(2,0) is smooth. They also gave an explicit description ofM(2,0)
and M(2, 1) when g = 2. The explicit description of M(2, 1) had
also been given independently by Newstead (1968) using different
methods, and was later extended by Desale–Ramanan (1976) to
hyperelliptic curves. Later Narasimhan and Ramanan began study-
ing the case of genus g = 3 for which an earlier purely geometric
study by Coble was very helpful.

Their next joint endeavour was to study the geometry of the
moduli spaces M(n,d), in general, using the geometry of X. Nara-
simhan and Ramanan [7] proved an analogue for the moduli spaces
of vector bundles of the Torelli theorem regarding the Jacobian of X.
A significant difference is that, unlike the Jacobian, which can be
deformed into abelian varieties which are not necessarily Jacobians,
the deformations of the moduli spaces of fixed determinant are ob-
tained only from deformations of the Riemann surface. In [7] they
introduced and exploited the notion of Hecke correspondence. In
particular, when the genus is 2, this is a correspondence between
the moduli spaces M(2, 0) and M(2, 1) with fixed determinants

Figure 2. From left to right: M. S. Narasimhan, the author, C. S. Seshadri,
S. Ramanan and M. S. Raghunathan, Indian Institute of Science,
Bangalore, 2012

that they had explicitly described. The Hecke correspondence has
been extensively used in the study of moduli spaces and plays
a central role in the Geometric Langlands Programme.

They later looked at direct images of line bundles on etale
coverings of the Riemann surface, and described them as fixed-
point subvarieties of the moduli space of vector bundles under
a natural action given by tensoring by a line bundle of finite order.
Using the fixed point theorems, they were able to compute some
topological invariants of the moduli space. This provided a higher
rank generalisation of the Prym construction that has been recently
generalised tomoduli spaces of principal bundles and Higgs bundles
in joint work of the author with Ramanan (2019), and with Barajas
(2021).

Jointly with A. Beauville, Narasimhan and Ramanan (1989) gen-
eralised the Hitchin integrable system, given by the moduli space of
Higgs bundles, to the situation in which the Higgs field is twisted by
an arbitrary line bundle. This was extensively used by Ngô (2010) in
his proof of the fundamental lemma of the Langlands Programme.
A generalisation of this system twisting by a higher rank vector
bundle was given recently by Narasimhan in collaboration with
G. Gallego and the author [2]. This generalisation was motivated
by a problem in supersymmetric gauge theory, and made use of
ideas of Chen and Ngô (2020) in their study of the Hitchin fibration
for higher dimensional varieties. A generalisation of the results by
Beauville–Narasimhan–Ramanan for higher dimensional varieties
was given by Narasimhan and Hirshowitz (1994).

The Harder–Narasimhan filtration
Another seminal contribution of Narasimhan is his joint work with
G. Harder [3] on the computation of the cohomology of the moduli
space of vector bundles M(n,d) with n and d coprime. Their num-
ber theoretical approach, counting points over finite fields, was
based on theWeil conjectures that had just then been proved by De-
ligne (1974), and Siegel’s formula. Earlier, Harder (1970), using the
work by Newstead (1968) on the computation of the Betti numbers
for M(2, 1), had established a connection between the cohomo-
logy groups of the rank 2 moduli space and the Tamagawa number
of SL2(ℂ). This method, pursued by Desale–Ramanan (1975), led
to an explicit inductive formula for the Betti numbers of the moduli
spaces M(n, d) in the coprime situation. Later, Atiyah and Bott
(1983) used Yang-Mills theory to give an alternative computation
of the Betti numbers.

An important concept introduced in [3] is that of Harder–
Narasimhan filtration. Harder and Narasimhan proved that given
any vector bundle E there is a canonical filtration

0 = E0 ⊂ E1 ⊂ ⋯ ⊂ Ek = E

such that Ei/Ei−1 is semistable for i = 1,…, k, and

μ(Fi/Fi−1) > μ(Fi+1/Fi) for i = 1,…, k− 1.
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The Harder–Narasimhan filtration also played a central role in
the approach of Atiyah and Bott, using the differential geometry
of connections and holomorphic structures on vector bundles.

The notion of Harder–Narasimhan filtration has been extended
to principal bundles, Higgs bundles and other similar objects with
important applications. Analogues of this filtration have been used
extensively in numerous other contexts in algebraic geometry and
number theory.

Other contributions
There are many other important contributions of Narasimhan, some
of which would deserve a section of their own, but for lack of space
wewill just briefly describe some of them here. For a more complete
account we refer to [10].

It was in the mid 1950s that the first papers of Narasimhan
appeared. They were devoted to the study of the Laplace operator
on Riemannian manifolds (1956) and certain extensions of elliptic
operators (1957). After these, he wrote a paper giving a new ap-
proach to the construction of Green’s function of an open Riemann
surface (1960), and another paper studying the local properties of
variations of complex structures on a relatively compact subdomain
of an open Riemann surface (1961).

Together with T. Kotake, Narasimhan proved a theorem charac-
terising real analytic functions by Cauchy-type inequalities satisfied
with respect to powers of a linear elliptic operator with analytic
coefficients (1962). This result was used in the original proof of
the Atiyah–Bott fixed point theorem, and has been generalised
in several directions by many authors, including Lions–Magenes,
Bouendi–Goulaouic, Bouendi–Metvier and Bolly–Camus–Mattera.

Narasimhan and R. R. Simha [9] proved, using differential geo-
metric methods, that the set of isomorphism classes of complex
structures with ample canonical line bundle on a compact connec-
ted real analytic manifold has a natural structure of a Hausdorff
complex space.

Jointly with K. Okamoto [4], Narasimhan made an import-
ant contribution to the theory of representation of Lie groups.
It had been suggested by Langlands (1966) that, in analogy to the
Borel–Weil–Bott theorem for compact groups, the Harish-Chandra
discrete series of a real semisimple non-compact Lie group defining
a symmetric space of Hermitian type could be realised as square-
integrable harmonic forms in certain holomorphic vector bundles.
The work of Narasimhan and Okamoto was the first breakthrough
in the proof of this conjecture. Although Narasimhan did not pur-
sue this any further, his student Parthasarathy has contributed in
an important way to this field.

Narasimhan wrote two joint papers with H. Lange: the first
one (1983) on the study of maximal subbundles of rank two vector
bundles on curves, and a second one (1989) on squares of ample
line bundles on abelian varieties.

J.-M. Drezet and Narasimhan [1] proved that the moduli space
of vector bundles on a curve is locally factorial and determined
the Picard group, showing that this is isomorphic to the integers.
Their results enable one to define a generalisation of the Riemann
theta divisor of the Jacobian. The famous Verlinde formula gives
the dimension of the space of sections of powers of the theta line
bundle (generalised theta functions) on the moduli space. Tsuchiya–
Ueno–Yamada (1989) had proved factorisation theorem and the
Verlinde formula in the context of Conformal Field Theory. Nara-
simhan and Ramadas [5] gave an algebro-geometric proof of this in
the rank 2 case, which they extended also to parabolic bundles. In
a previous collaboration, Narasimhan and Ramadas (1979) studied
Yang–Mills theory on the product of the 3-sphere with the real line,
using topological and differential geometric techniques to identify
the configuration space as the base space of a principal bundle
with the gauge group as structure group.

In joint work with S. Kumar (1997), Narasimhan extended his
result with Drezet to the moduli space of principal bundles over
a compact Riemann surface with a simple, simply-connected con-
nected complex affine algebraic structure group. And with S. Kumar
and A. Ramanathan (1997), using the relation between principal
bundles and infinite Grassmanians, they elucidated the relation
between conformal blocks and generalised theta functions. This
enables one to compute the dimension of the space of generalised
theta functions using the Verlinde formula. This was also proved
by Beauville–Lazlo (1994) in the vector bundle case.

Narasimhan and M. Nori (1981) proved that there are only
finitely many smooth curves having a given abelian variety as the
Jacobian. I. Biswas and Narasimhan (1997) studied Hodge classes
of moduli spaces of parabolic bundles on general curves. With
Y. I. Holla (2001), Narasimhan proved a generalisation of a theorem
of Nagata on a ruled surface to the case of a bundle of flag varieties
associated to a principal bundle.

Narasimhan also worked on vector bundles on higher dimen-
sional varieties. He studied the moduli space M of stable vector
bundles of rank 2, vanishing first Chern class and second Chern
class c2 = 2 on complex projective 3-space. With A. Hirschowitz
(1982) he proved that M is rational. A compactification of M was
given by Narasimhan and G. Trautmann (1990) as the closure in the
moduli space of sheaves constructed by Maruyama (1978). Later,
Narasimhan and Trautmann (1991) computed the Picard group of
the compactification. With W. Decker and F.-O. Schreyer (1990),
he studied rank 2 vector bundles on projective 4-space, developing
a construction by Barth (1980) of irreducible rank 2 bundles with
first Chern class c1 = −1. G. Elencwajg and Narasimhan (1983)
wrote a paper on projective bundles on complex tori.

Jiayu Li and Narasimhan (1999) proved a correspondence re-
lating the existence of a Hermitian–Einstein metric on a rank 2
parabolic bundle over a Kähler surface to the stability of the para-
bolic bundle. This was related to work by Munari (1993) and
Biquard (1997).
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3 Some personal reminiscences

I first met Narasimhan quite soon after having completed my
doctoral thesis in 1991. From the very beginning, he was very
kind to me, and extremely generous in the exchange of ideas. In
those years, we mostly met in conferences in Europe, but thanks
to my collaboration with S. Ramanan, whom I had met soon
after Narasimhan, I started travelling regularly to India, where
we also met.

We were very lucky to have Narasimhan in Madrid on several
memorable occasions. In 2006 he participated in a panel, jointly
with Sir Michael Atiyah, Jean-Pierre Bourguignon, Philip Candelas,
José Manuel Fernández de Labastida, and Shing-Tung Yau on “New
Interactions between Geometry and Physics”, organised in the
context of a conference in honour of Nigel Hitchin for his 60th
birthday, that took place in Madrid soon after the International
Congress. In 2012, the Instituto de Ciencias Matemáticas (ICMAT) in
Madrid organised a conference in his honour for his 80th birthday,
and later in 2017 he was invited as a special guest for a conference
that ICMAT organised celebrating Ramanan’s 80th birthday. On
that occasion he participated in a special panel jointly with Antonio
Córdoba, Nigel Hitchin and S. Ramanan on “Mathematics in India
and Europe”. A photographic exhibition on “Kolam, an Ephemeral
Women’s Art of South India” by photographer and anthropologist
Claudia Silva was opened after the panel.

Over the years, we had many discussions on the possibility of es-
tablishing a scheme for mathematical collaboration between India
and Europe in our research field. There had been some bilateral
programmes between France and India, and we were contemplat-
ing the idea of bringing that to a larger context. It took a long time,
but eventually we established a collaboration programme involving
four nodes in Europe (Aarhus, Madrid, Oxford and Paris) and four
in India (Bangalore, Mumbai and two in Chennai). This was the
Indo-European Project on Moduli Spaces that was operating during

Figure 3. From left to right: M. S. Narasimhan, S. Ramanan, N. Hitchin and
A. Córdoba, ICMAT, Madrid, 2017

Figure 4. From left to right: Guillermo Barajas, Guillermo Gallego,
Gadadhar Misra and M. S. Narasimhan, Bangalore, 2020

the period 2013–2017, involving more than eighty mathematicians,
funded under the Marie Curie Programme by the European Com-
mission, and coordinated by ICMAT in Madrid. Narasimhan played
an important role in the gestation of this project.

In addition to discussing mathematics and scientific collabora-
tion, Narasimhan and I very much liked to enjoy a glass (or two!)
of good red wine, very often in company of our common friend
and collaborator Ramanan, and other good friends. My wife and
I were very fortunate to enjoy his great hospitality and that of his
wife Sakuntala and daughter Shobhana, at his home during our
many visits to Bangalore over the last few years.

I last saw Narasimhan in person in Bangalore in February 2020,
during an activity on Moduli Spaces organised at the International
Centre for Theoretical Sciences (ICTS). On that occasion we also
had the opportunity to have a very nice dinner, accompanied as
usual by good red wine, with our friend Gadadhar Misra and other
friends. After the ICTS meeting, I went to Chennai for a few days,
for a visit to the Chennai Mathematical Institute (CMI), where as
a matter of fact I also saw C. S. Seshadri for the last time. I had
actually met Seshadri in the late 1980s when I was still a graduate
student at Oxford, where he gave a talk on parabolic bundles,
a subject of great interest at the time in relation to Jones–Witten
theory and the Atiyah–Segal approach to topological quantum field
theory.

My students Guillermo Barajas and Guillermo Gallego also came
to the workshop at ICTS in February 2020, and after that, while
I was visiting the CMI, they went to the Indian Institute of Science
to discuss with Narasimhan for a week. As always Narasimhan
was extremely generous, spending a lot of time talking with them
and, together with Gadadhar Misra, entertaining them (Figure 4).
The last paper of Narasimhan, written jointly with Gallego and the
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author [2] appeared just a few days before his passing. The discus-
sions with Barajas were very useful in connection with a joint paper
of Barajas and the author (2021), which generalises to principal
bundles and Higgs bundles the Prym-type construction given by
Narasimhan and Ramanan (1975).

In addition to being a great mathematician, Narasimhan was
a wonderful human being. He was kind, generous and sympathetic,
and is very much missed by many people who loved him.
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