
Ann. I. H. Poincaré – AN 28 (2011) 653–676
www.elsevier.com/locate/anihpc

Global well-posedness for the KP-II equation on the background
of a non-localized solution

Luc Molinet a, Jean-Claude Saut b, Nikolay Tzvetkov c,∗

a Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083, Faculté des Sciences et Techniques,
Université François Rabelais Tours, Parc de Grandmont, 37200 Tours Cedex, France

b Université de Paris-Sud et CNRS, UMR de Mathématiques, Bât. 425, 91405 Orsay Cedex, France
c Département de Mathématiques, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France

Received 15 November 2010; received in revised form 8 April 2011; accepted 19 April 2011

Available online 7 May 2011

Abstract

Motivated by transverse stability issues, we address the time evolution under the KP-II flow of perturbations of a solution which
does not decay in all directions, for instance the KdV-line soliton. We study two different types of perturbations: perturbations that
are square integrable in R × T and perturbations that are square integrable in R

2. In both cases we prove the global well-posedness
of the Cauchy problem associated with such initial data.
© 2011

1. Introduction

1.1. Presentation of the problem

The Kadomtsev–Petviashvili (KP) equations

(ut + uxxx + uux)x ± uyy = 0 (1)

were introduced in [13] to study the transverse stability of the solitary wave solution of the Korteweg–de Vries equa-
tion

ut + ux + uux +
(

T − 1

3

)
uxxx = 0, x ∈ R, t ∈ R. (2)

Here T � 0 is the Bond number which measures surface tension effects in the context of surface hydrodynamical
waves. Actually the (formal) analysis in [13] consists in looking for a weakly transverse perturbation of the transport
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equation ut + ux = 0. This perturbation amounts to adding to the equation a non-local term, namely 1
2∂−1

x uyy . The
same formal procedure is applied to the KdV equation (2) yielding the KP equation of the form

ut + ux + uux +
(

T − 1

3

)
uxxx + 1

2
∂−1
x uyy = 0. (3)

By change of frame and scaling, (3) reduces to (1) with the + sign (KP-II) when T < 1
3 and the − sign (KP-I) when

T > 1
3 .

As far as the transverse stability of the KdV solitary wave (“1-soliton”) ψc(x − ct, y), where

ψc(x, y) = 3c

2
cosh−2

(√
cx

2

)
, (4)

is concerned, the natural initial condition associated to (1) should be u0 = ψc + v0 where v0 is either “localized” in x

and y, or localized in x and y-periodic. In any case this rules out initial data in Sobolev spaces like Hs(R2) or their
anisotropic versions Hs1,s2(R2), as was for instance the case considered in [4,28,29,9,10,12,27] for the KP-II equation
or in [17,14,11,31] for the KP-I equation.

Actually, it was proved in [18] that the Cauchy problem for the KP-I equation is globally well-posed for data which
are localized perturbations of arbitrary size of a non-localized traveling wave solution such as the KdV N -soliton or
the Zaitsev soliton (which is a localized in x and periodic in y solitary wave of the KP-I equation). The same result
has been proven in [6] for localized perturbations of small size using Inverse Scattering techniques.

No such result seems to be known for the KP-II equation for data of arbitrary size. The aim of the present paper
is to fix this issue. Observe that the results in [8] concern initial data localized in y and periodic in x, for instance
belonging to Hs(T × R) which excludes initial data of type ψc + v0 as above.

On the other hand, the Inverse Scattering method has been used formally in [1] and rigorously in [2] to study the
Cauchy problem for the KP-II equation with non-decaying data along a line, that is u(0, x, y) = u∞(x −vy)+φ(x, y)

with φ(x, y) → 0 as x2 + y2 → ∞ and u∞(x) → 0 as |x| → ∞. Typically, u∞ is the profile of a traveling wave
solution with its peak localized on a moving line in the (x, y) plane. It is a particular case of the N -soliton of the
KP-II equation discovered by Satsuma [22] (see the derivation and the explicit form when N = 1,2 in the Appendix
of [19]). As in all results obtained for KP equations by using the Inverse Scattering method, the initial perturbation of
the non-decaying solution is supposed to be small enough in a weighted L1 space (see [2, Theorem 13]).

As will be proven in the present paper, PDE techniques allow to consider arbitrary large perturbations of a
(smaller) class of non-decaying solutions of the KP-II equation.

We will therefore study here the initial value problem for the Kadomtsev–Petviashvili (KP-II) equation

(ut + uxxx + uux)x + uyy = 0. (5)

We will either consider periodic in y solutions or we will suppose that u = u(t, x, y), (x, y) ∈ R
2, t ∈ R, with initial

data

u(0, x, y) = φ(x, y) + ψ(x, y), (6)

where ψ is the profile of a non-localized (i.e. not decaying in all spatial directions) traveling wave of the KP-II equation
and φ is localized, i.e. belonging to Sobolev spaces on R

2. We recall (see [3]) that, contrary to the KP-I equation, the
KP-II equation does not possess any localized in both directions traveling wave solution. The background solution
could be for instance the line soliton (1-soliton) ψc(x −ct, y) moving with velocity c of the Korteweg–de Vries (KdV)
equation defined by (4). But it could also be the profile of the N -soliton solution of the KdV equation, N � 2. The
KdV N -soliton is of course considered as a two-dimensional (constant in y) object.

Solving the Cauchy problem in both those functional settings can be viewed as a preliminary (and necessary!)
step towards the study of the dynamics of the KP-II equation on the background of a non-fully localized solution, in
particular towards a PDE proof of the nonlinear stability of the KdV soliton or N -soliton with respect to transversal
perturbations governed by the KP-II flow. This has been established in [2, Proposition 17] by Inverse Scattering
methods and very recently by Mizumachi and Tzvetkov [15] who proved (by PDE techniques but using the Miura
transform for the KP-II equation) the L2 stability of the KP-II line soliton with respect to transverse perturbations.

We recall that it is established in [30] by Inverse Scattering methods and in [20,21] by PDE techniques which
extend to a large class of (non-integrable) problems, that the KdV 1-soliton is transversally nonlinearly unstable with
respect to the KP-I equation.
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The advantage of the PDE approach of the present paper compared to an Inverse Scattering one is that it can be
straightforwardly applied to non-integrable equations such as the higher order KP-II equations (see [25,26]).

1.2. Statement of the results

As was previously mentioned our main result is that the KP-II equation is globally well-posed for data of arbitrary
size in the two aforementioned functional settings.

Theorem 1.1. The Cauchy problem associated with the KP-II equation is globally well-posed in Hs(R × T) for any
s � 0. More precisely for every φ ∈ Hs(R×T) there is a global strong solution of (5) in C(R;Hs(R×T)) with initial
datum u(0, x, y) = φ(x, y). The solution is unique in C(R;Hs(R×T)) if s > 2. For s ∈ [0,2] the uniqueness holds in
the following sense. For every T > 0 there is a Banach space XT continuously embedded in C([−T ,T ];Hs(R × T))

and containing C([−T ,T ];H∞(R×T)) such that the solution u belongs to XT and is unique in this class. Moreover
the flow is Lipschitz continuous on bounded sets of Hs(R × T). Namely, for every bounded set B of Hs(R × T) and
every T > 0 there exists a constant C such that for every φ1, φ2 ∈ B the corresponding solutions u1, u2 satisfy

‖u1 − u2‖L∞([−T ,T ];Hs(R×T)) � C‖φ1 − φ2‖Hs(R×T).

Finally the L2-norm is conserved by the flow, i.e.∥∥u(t, ·)∥∥
L2(R×T)

= ‖φ‖L2(R×T), ∀t ∈ R.

We next state our result concerning localized perturbations.

Theorem 1.2. Let ψc(x−ct, y) be a solution of the KP-II equation such that for every σ � 0, (1−∂2
x −∂2

y )
σ
2 ψc : R2 →

R is bounded and belongs to L2
xL

∞
y (R2). Let s � 0 be an integer. Then for every φ ∈ Hs(R2) there exists a global

strong solution u of (5) with initial data φ + ψc. The uniqueness holds in the following sense. For every T > 0 there
is a Banach space XT continuously embedded in C([−T ,T ];Hs(R × T)) and containing C([−T ,T ];H∞(R × T))

such that the solution u belongs to XT and is unique in this class ψc(x − ct, y) + XT .

The spaces XT involved in the statements of the above results are suitable Bourgain spaces defined below.
Our proof is based on the approach by Bourgain to study the fully periodic case. We need however to deal with

difficulties linked to several low frequencies cases (see for example Lemma 3.4 below) which do not occur in the
purely periodic setting. Moreover in the proof of Theorem 1.2 one needs to make a use of the Kato type smoothing
effect for KP-II which was not present in previous works on the low regularity well-posedness of the KP-II equation.

Remark 1.3. As was previously noticed, the result of Theorem 1.2 holds (with the same proof) when we replace ψc

by the value at t = 0 of the N -soliton solution SN of the KdV equation which satisfies similar smoothness and decay
properties as ψc . This follows from the structure of the SN . For instance (see [5]) the 2-soliton of the KdV equation
written in the form

ut − 6uux + uxxx = 0

is

S2(x, t) = −12
3 + 4 cosh(2x − 8t) + cosh(4x − 64t)

(3 cosh(x − 28t) + cosh(3x − 36t))2
.

On the other hand, a priori one cannot take instead of ψc a function ψ which is non-decaying along a line {(x, y) |
x − vy = x0}, as for instance the line soliton of the KP-II equation which writes ψ(x − vy − ct). However, as was
pointed out to us by Herbert Koch the change of variables (X = x + vy − v2t, Y = y − 2vt) leaves invariant the KP-II
equation and transforms the line soliton to an independent of y object. Therefore our analysis applies equally well to
the line soliton.
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1.3. Organization of the paper

The second section is devoted to the proof of a bilinear estimate for localized functions in R
2 × Z. It is based on

Bourgain’s method in [4] who considers the case of functions in R × Z
2. We prove Theorem 1.1 in Section 3 as a

consequence of two bilinear estimates in Bourgain Xb,s spaces. Finally we prove Theorem 1.2 in Section 4 by a fixed
point argument in suitable Bourgain spaces, using in a crucial way the dispersive and smoothing properties of the
KP-II linear group.

1.4. Notations

We will denote ‖ · ‖Lp (resp ‖ · ‖Hs ) the standard norm in the Lebesgue space Lp (resp. the Sobolev space Hs ), the
domain being clear from the context. The Fourier transform on R

2
x,y × Rt (resp. Rx ) is denoted F or ˆ (resp. Fx ). We

will use the “Japanese bracket notation” 〈·〉 = (1+|· |2)1/2. The notation U(t) will stand for the (unitary in all Hs(R2)

or Hs(R×T) Sobolev spaces) KP-II group, that is U(t) = e−t (∂3
x+∂−1

x ∂2
y ). For (b, s) ∈ R×R, the norm of the Bourgain

space associated to U(t) is, for functions defined on R
2
x,y ×Rt (with the obvious modification that integration in η ∈ R

is replaced by summation in q ∈ Z for functions defined on Rx × Ty × Rt ): ‖u‖Xb,b1,s = ‖U(−t)u‖Hb,b1,s , where

‖u‖2
Hb,b1,s =

∫
R

2
ξ,η×Rτ

〈 〈τ 〉
〈ξ〉3

〉2b1

〈ζ 〉2s〈τ 〉2b
∣∣û(τ, ξ, η)

∣∣2
dτ dξ dη, ζ = (ξ, η),

that is

‖u‖2
Xb,b1,s =

∫
R

2
ξ,η×Rτ

〈 〈σ(τ, ξ, η)〉
〈ξ〉3

〉2b1

〈ζ 〉2s
〈
σ(τ, ξ, η)

〉2b∣∣û(τ, ξ, η)
∣∣2

dτ dξ dη,

where σ(τ, ξ, η) = τ − ξ3 + η2/ξ . For any T > 0, the norm in the localized version X
b,b1,s
T is defined as

‖u‖
X

b,b1,s

T

= inf
{‖w‖Xb,b1,s , w(t) = u(t) on (−T ,T )

}
.

For (b, s) ∈ R × R the space Zb,s is the space associated to the norm

‖u‖Zb,s = ∥∥〈σ 〉b− 1
2 〈ζ 〉s û∥∥

L2
ζ L1

τ
.

We define the restricted spaces Z
b,s
T similarly to above. The notation � is used for � C where C is an irrelevant

constant. For a real number s, s− means “for any r < s close enough to s”. If A,B ∈ R, we denote A∧B = min(A,B)

and A ∨ B = max(A,B). A ∼ B means that there exists c > 0 such that 1
c
|A| � |B| � c|A|. If S is a Lebesgue

measurable set in R
n, |S|, or mesS, denotes its Lebesgue measure. #S denotes the cardinal of a finite set S.

2. A bilinear estimate for localized functions in RRR
2 ×ZZZ

In this section we will prove the following crucial bilinear estimate for functions having some localizations related
to the KP-II dispersion relation in R

2 × Z. This is essentially a bilinear L4–L2 Strichartz estimate associated to the
linear KP-II group. We mainly follow the proof of Bourgain [4] that treats the case of functions in R × Z

2.

Proposition 2.1. Let u1 and u2 be two real valued L2 functions defined on R × R × Z with the following support
properties

(τ, ξ, q) ∈ supp(ui) ⇒ ξ ∈ Ii, |ξ | ∼ Mi,
〈
τ − ξ3 + q2/ξ

〉 ∼ Ki, i = 1,2.

Then the following estimates hold,

‖u1 
 u2‖L2 � (K1 ∧ K2)
1/2(|I1| ∧ |I2|

)1/2〈
(K1 ∨ K2)

1/4(M1 ∧ M2)
1/4〉‖u1‖L2‖u2‖L2 (7)

and if M1 ∧ M2 � 1 then
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‖u1 
 u2‖L2 � (K1 ∧ K2)
1/2(K1 ∨ K2)

1/4(M1 ∧ M2)
1/4

×
[
(M1 ∧ M2)

1/4
〈

(K1 ∨ K2)

(M1 ∨ M2)1−

〉
+ (|I1| ∧ |I2|)1/2

(K1 ∨ K2)1/4

]
‖u1‖L2‖u2‖L2 . (8)

2.1. Three basic lemmas

Before starting the proof of the proposition let us recall the three following basic lemmas that we will use inten-
sively.

Lemma 2.2. Consider a set Λ ⊂ Rξ × Zq . Let the projection of Λ on the ξ -axis be contained in a set I ⊂ R. Assume
in addition that for any fixed ξ0 ∈ I the cardinal of the set Λ ∩ {(ξ0, q), q ∈ Z} is bounded by a constant C. Then
|Λ| � C|I |.

Lemma 2.3. Let I and J be two intervals on the real line and f :J �→ R be a smooth function. Then

mes
{
x ∈ J : f (x) ∈ I

}
� |I |

infξ∈J |f ′(ξ)|
and

#
{
q ∈ J ∩ Z: f (q) ∈ I

}
� |I |

infξ∈J |f ′(ξ)| + 1.

Lemma 2.4. Let a �= 0, b, c be real numbers and I be an interval on the real line. Then

mes
{
x ∈ R: ax2 + bx + c ∈ I

}
� |I |1/2

|a|1/2

and

#
{
q ∈ Z: aq2 + bq + c ∈ I

}
� |I |1/2

|a|1/2
+ 1.

2.2. Proof of Proposition 2.1

According to [4, p. 320], we can suppose that ξ � 0 on the support of uj (τ, ξ, q) (see also [24, p. 460] for a detailed
discussion). We thus have to evaluate

∑
q∈Z

∫
R×R+

∣∣∣∣ ∑
q1∈Z

∫
R×R+

χ{ξ−ξ1�0}u1(τ1, ξ1, q1)u2(τ − τ1, ξ − ξ1, q − q1) dτ1 dξ1

∣∣∣∣
2

dτ dξ.

By the Cauchy–Schwarz inequality in (τ1, ξ1, q1) we thus get

‖u1 
 u2‖2
L2 � sup

(τ,ξ�0,η)

|Aτ,ξ,q |‖u1‖2
L2‖u2‖2

L2 (9)

where Aτ,ξ,q ⊂ R
2 × Z is the set

Aτ,ξ,q :=
{
(τ1, ξ1, q1): ξ1 ∈ I1, ξ − ξ1 ∈ I2, 0 < ξ1 ∼ M1, 0 < ξ − ξ1 ∼ M2,〈
τ1 − ξ3

1 + q2
1

ξ1

〉
∼ K1,

〈
τ − τ1 − (ξ − ξ1)

3 + (q − q1)
2

ξ − ξ1

〉
∼ K2

}
.

A use of the triangle inequality yields

|Aτ,ξ,q | � (K1 ∧ K2)|Bτ,ξ,q | (10)

where
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Bτ,ξ,q :=
{
(ξ1, q1): ξ1 ∈ I1, ξ − ξ1 ∈ I2, 0 < ξ1 ∼ M1, 0 < ξ − ξ1 ∼ M2,〈
τ − ξ3 + q2

ξ
+ 3ξξ1(ξ − ξ1) + (ξq1 − ξ1q)2

ξξ1(ξ − ξ1)

〉
� (K1 ∨ K2)

}
.

Let us now first prove (7) by bounding |Bτ,ξ,q | in a direct way. The measure of the projection of Bτ,ξ,q on the ξ1-
axis is bounded by (|I1| ∧ |I2) and for a fixed ξ1, using Lemma 2.4, the cardinal of its q1-section is bounded by
c(M1 ∧ M2)

1/2(K1 ∨ K2)
1/2 + 1. Therefore Lemma 2.2 and (9)–(10) yield the bound (7).

To prove (8) we divide Bτ,ξ,q into two regions by setting

B1
τ,ξ,q :=

{
(ξ1, q1) ∈ Bτ,ξ,q :

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣ � 1

}
(11)

and

B2
τ,ξ,q :=

{
(ξ1, q1) ∈ Bτ,ξ,q :

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣ � 1

}
. (12)

In the next lemma we estimate the size of the first region.

Lemma 2.5. For M1 ∧ M2 � 1, the following estimate holds∣∣B1
τ,ξ,q

∣∣ � (K1 ∨ K2)
1/2(M1 ∧ M2)

1/2.

Proof. Recall that ξ1 and ξ − ξ1 are non-negative real numbers and thus ξ ∼ ξ1 ∨ (ξ − ξ1). Note also that

(ξq1 − ξ1q)2

ξξ1(ξ − ξ1)
= ξ1(ξ − ξ1)

ξ

(
q1

ξ1
− q − q1

ξ − ξ1

)2

. (13)

From the definition of B1
τ,ξ,q we thus deduce that∣∣τ − ξ3 + q2/ξ + 3ξξ1(ξ − ξ1)

∣∣ � K1 ∨ K2 + M1 ∧ M2.

According to Lemma 2.4, the projection of B1
τ,ξ,q on the ξ1-axis is thus bounded by

(K1 ∨ K2 + M1 ∧ M2)
1/2

(M1 ∨ M2)1/2
� (K1 ∨ K2)

1/2

(M1 ∨ M2)1/2
+ (M1 ∧ M2)

1/2

(M1 ∨ M2)1/2
. (14)

We separate two cases:
(1) M1 ∧ M2 � K1 ∨ K2. Then from the definition of B1

τ,ξ,q and Lemma 2.3 we infer that for ξ1 fixed, the cardinal

of the q1-section of B1
τ,ξ,q is bounded from above by 〈M1 ∧ M2〉 ∼ M1 ∧ M2. We thus get by Lemma 2.2 that in the

considered case∣∣B1
τ,ξ,q

∣∣ � (K1 ∨ K2)
1/2(M1 ∧ M2)

(M1 ∨ M2)1/2
� (K1 ∨ K2)

1/2(M1 ∧ M2)
1/2.

(2) M1 ∧ M2 � K1 ∨ K2. In this case we subdivide once more:

(2.1) | q1
ξ1

− q−q1
ξ−ξ1

| � (K1∨K2)
1/2

(M1∧M2)
1/2 . Then again by (14), Lemmas 2.2 and 2.3, we have that in the considered case

∣∣B1
τ,ξ,q

∣∣ � (M1 ∧ M2)
1/2

(M1 ∨ M2)1/2

〈
(K1 ∨ K2)

1/2(M1 ∧ M2)

(M1 ∨ M2)1/2

〉
� (K1 ∨ K2)

1/2(M1 ∧ M2)
1/2.

(2.2) 1 � | q1
ξ1

− q−q1
ξ−ξ1

| � (K1∨K2)
1/2

(M1∧M2)
1/2 . Since

∣∣∣∣ ∂

∂q1

(
τ − ξ3 + q2/ξ + 3ξξ1(ξ − ξ1) + ξ1(ξ − ξ1)

ξ

(
q1

ξ1
− q − q1

ξ − ξ1

)2)∣∣∣∣ = 2

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣ (15)

it follows from Lemma 2.3 that the cardinal of the q1-section at fixed ξ1 is bounded by

2(K1 ∨ K2)
(M1 ∧ M2)

1/2

1/2
+ 1 � (K1 ∨ K2)

1/2(M1 ∧ M2)
1/2.
(K1 ∨ K2)
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According to (14), the projection of this region on the ξ1-axis is of measure less than a uniform constant and thus in
the considered case∣∣B1

τ,ξ,q

∣∣ � (K1 ∨ K2)
1/2(M1 ∧ M2)

1/2.

This completes the proof of Lemma 2.5. �
We now divide B2

τ,ξ,q into three regions by setting

B
2,1
τ,ξ,q :=

{
(ξ1, q1) ∈ B2

τ,ξ,q :

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣ <
(K1 ∨ K2)

1/2

(M1 ∧ M2)1/2

}
,

B
2,2
τ,ξ,q :=

{
(ξ1, q1) ∈ B2

τ,ξ,q :
(K1 ∨ K2)

1/2

(M1 ∧ M2)1/2
�

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣ <
(M1 ∨ M2)

1/2

(M1 ∧ M2)1/2

}

and

B
2,3
τ,ξ,q :=

{
(ξ1, q1) ∈ B2

τ,ξ,q : max

(
(K1 ∨ K2)

1/2

(M1 ∧ M2)1/2
,
(M1 ∨ M2)

1/2

(M1 ∧ M2)1/2

)
�

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣
}
.

Note that B
2,1
τ,ξ,q and B

2,2
τ,ξ,q may be empty.

Lemma 2.6. The following estimates hold whenever M1 ∧ M2 � 1

∣∣B2,1
τ,ξ,q

∣∣ � (K1 ∨ K2)
(M1 ∧ M2)

1/2

(M1 ∨ M2)1/2
(16)

and ∣∣B2,2
τ,ξ,q

∣∣ � (K1 ∨ K2)
1/2(M1 ∧ M2)

1/2. (17)

Proof. Assuming that B
2,1
τ,ξ,q is not empty, it follows from (13) and Lemma 2.4 that the measure of its projection on

the ξ1-axis can be estimated as

� (K1 ∨ K2)
1/2

(M1 ∨ M2)1/2
.

On the other hand, it follows from Lemma 2.3 that for a fixed ξ1 the cardinal of its q1-section is bounded by

� (M1 ∧ M2)
1/2(K1 ∨ K2)

1/2 + 1 � (M1 ∧ M2)
1/2(K1 ∨ K2)

1/2. (18)

This proves (16) in view of Lemma 2.2. Now coming back to (13) and using Lemma 2.4 we infer that the projection
of B

2,2
τ,ξ,q on the ξ1-axis is bounded by

1

(M1 ∨ M2)1/2

[
(K1 ∨ K2) + (M1 ∨ M2)

]1/2 � C

since B
2,2
τ,ξ,q is empty as soon as K1 ∨ K2 � M1 ∨ M2. On the other hand, it follows from (15) and Lemma 2.2 that

for a fixed ξ1 the cardinal of its q1-section is also bounded by (18). This leads to (17) thanks to Lemma 2.2. This
completes the proof of Lemma 2.6. �

We finally estimate the size of B
2,3
τ,ξ,q .

Lemma 2.7. For any 0 < ε � 1 it holds

∣∣B2,3
τ,ξ,q

∣∣ � Cε

(M1 ∧ M2)
1/2+ε/2

(M1 ∨ M2)1/2−ε/2
(K1 ∨ K2) + |I1| ∧ |I2|. (19)
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Proof. We subdivide B
2,3
τ,ξ,q by setting

B
2,3
τ,ξ,q (+∞) :=

{
(ξ1, q1) ∈ B

2,3
τ,ξ,q :

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣ � |K1 ∨ K2|
}

and

B
2,3
τ,ξ,q (L) :=

{
(ξ1, q1) ∈ B

2,3
τ,ξ,q :

∣∣∣∣q1

ξ1
− q − q1

ξ − ξ1

∣∣∣∣ ∼ L

}

where L = 2l , l0 � l � l1, with

l0 ∼ ln

(
max

(
M1 ∨ M2

M1 ∧ M2
,

K1 ∨ K2

M1 ∧ M2

))
, l1 ∼ ln(K1 ∨ K2).

In view of (15), for a fixed ξ1, the q1-section of B
2,3
τ,ξ,q (+∞) contains at most two elements and thus by Lemma 2.2,∣∣B2,3

τ,ξ,q (+∞)
∣∣ � |I1| ∧ |I2|. (20)

Now, in B
2,3
τ,ξ,q (L) it holds∣∣τ − ξ3 + q2/ξ + 3ξξ1(ξ − ξ1)

∣∣ � K1 ∨ K1 + (M1 ∧ M2)L
2

and thus from Lemma 2.4 we infer that the measure of the projection of this region on the ξ1-axis is bounded by

(K1 ∨ K2)
1/2

(M1 ∨ M2)1/2
+ (M1 ∧ M2)

1/2

(M1 ∨ M2)1/2
L.

Interpolating with the crude bound M1 ∧ M2 we obtain the bound[
(K1 ∨ K2)

1/2

(M1 ∨ M2)1/2
+ (M1 ∧ M2)

1/2

(M1 ∨ M2)1/2
L

]1−ε

(M1 ∧ M2)
ε.

On the other hand, for a fixed ξ1, by using again (15) and Lemma 2.3, we obtain that the cardinal of its q1-section is
bounded by

K1 ∨ K2

L
+ 1 � K1 ∨ K2

L
.

We thus get by Lemma 2.2,

∣∣B2,3
τ,ξ,q (L)

∣∣ �
[

(K1 ∨ K2)
1/2

(M1 ∨ M2)1/2
+ (M1 ∧ M2)

1/2

(M1 ∨ M2)1/2
L

]1−ε

(M1 ∧ M2)
ε (K1 ∨ K2)

L

� (M1 ∧ M2)
1/2+ε/2(K1 ∨ K2)

(M1 ∨ M2)1/2−ε/2Lε
,

where we used that in the considered case L � (K1∨K2)
1/2

(M1∧M2)
1/2 . A summation over L yields the claimed bound. This

completes the proof of Lemma 2.7. �
Now, using Lemmas 2.5–2.7, we get

|Bτ,ξ,q | � (K1 ∨ K2)
1/2(M1 ∧ M2)

1/2 + Cε

(M1 ∧ M2)
1/2(K1 ∨ K2)

(M1 ∨ M2)1/2−ε
+ |I1| ∧ |I2|,

and thus according to (9)–(10),

‖u1 
 u2‖L2 � Cε(K1 ∧ K2)
1/2(K1 ∨ K2)

1/4

×
[
(M1 ∧ M2)

1/4
〈

(K1 ∨ K2)
1/4

(M1 ∨ M2)1/4−ε

〉
+ (|I1| ∧ |I2|)1/2

(K1 ∨ K2)1/4

]
‖u1‖L2‖u2‖L2 .

This completes the proof of Proposition 2.1.
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Corollary 2.8. Let u1 and u2 be two real valued L2 functions defined on R × R × Z with the following support
properties

(τ, ξ, q) ∈ supp(ui) ⇒ |ξ | ∼ Mi,
〈
τ − ξ3 + q2/ξ

〉 ∼ Ki, i = 1,2.

Then the following estimates hold,

‖u1 
 u2‖L2(|ξ |∼M) � (K1 ∧ K2)
1/2(M1 ∧ M2 ∧ M)1/2

× 〈
(K1 ∨ K2)

1/4(M1 ∧ M2)
1/4〉‖u1‖L2‖u2‖L2 (21)

and if M1 ∧ M2 � 1 then

‖u1 
 u2‖L2(|ξ |∼M) � (K1 ∧ K2)
1/2(K1 ∨ K2)

1/4

×
[
(M1 ∧ M2)

1/4
〈

(K1 ∨ K2)

(M1 ∨ M2)1−

〉1/4

+ (M1 ∧ M2 ∧ M)1/2

(K1 ∨ K2)1/4

]
‖u1‖L2‖u2‖L2 . (22)

Proof. Rewriting the functions ui as ui = ∑
k∈Z

ui,k with

ui,k = uiχ{kM�ξ<(k+1)M},

we easily obtain by support considerations and the Minkowsky inequality that

‖u1 
 u2‖L2(|ξ |∼M) =
∥∥∥∥ ∑

k∈Z

∑
0�|q|�1

u1,k 
 u2,−k+q

∥∥∥∥
L2(|ξ |∼M)

�
∑

0�q�1

∑
k∈Z

‖u1,k 
 u2,−k+q‖L2 .

The desired result follows by applying Proposition 2.1 with |I1| = |I2| = M for each k ∈ Z, and then Cauchy–Schwarz
in k. �

A rough interpolation between (7) and (8) on one side and between (21) and (22) on the other side gives the
following bilinear estimates that we will use intensively in the next section.

Corollary 2.9. There exists β0 < 1/2 such that the following holds true. Let u1 and u2 be two real valued L2 functions
defined on R × R × Z with the following support properties

(τ, ξ, q) ∈ supp(ui) ⇒ |ξ | ∼ Mi � 1,
〈
τ − ξ3 + q2/ξ

〉 ∼ Ki, i = 1,2.

Then the following estimates hold,

‖u1 
 u2‖L2 � (K1K2)
β0(M1 ∧ M2)

1/2‖u1‖L2‖u2‖L2 (23)

and

‖u1 
 u2‖L2(|ξ |∼M) � (K1K2)
β0

[
(M1 ∧ M2)

1/4 + (M1 ∧ M2 ∧ M)1/2]‖u1‖L2‖u2‖L2 . (24)

Proof. Let us first prove (23). If M1 ∧ M2 � 1 then we can easily conclude by only using (7). If M1 ∧ M2 � 1 then
(8) gives

‖u1 
 u2‖L2 � (K1 ∧ K2)
1/2(K1 ∨ K2)

1/4(M1 ∧ M2)
1/4

×
(

1 + (K1 ∨ K2)
1/4

(M1 ∨ M2)1/4− + (M1 ∧ M2)
1/4

(K1 ∨ K2)1/4

)
‖u1‖L2‖u2‖L2 .

We now distinguish cases according to which terms dominate in the sum

1 + (K1 ∨ K2)
1/4

1/4− + (M1 ∧ M2)
1/4

1/4
.

(M1 ∨ M2) (K1 ∨ K2)
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If the first or the third term dominates then we get directly the needed bound. The only case we really need an
interpolation between (7) and (8) is when the second term dominates. In this case we interpolate with weight θ on the
bound (7) and weight 1 − θ on the second bound (8) and the conditions on θ to get the needed estimate are

θ > 0,
3

4
θ <

1

2
which of course can be achieved. Let us now turn to the proof of (24). Again, if M1 ∧ M2 � 1 then we can easily
conclude by only using (21). If M1 ∧ M2 � 1 then (22) gives

‖u1 
 u2‖L2(|ξ |∼M) � (K1 ∧ K2)
1/2(K1 ∨ K2)

1/4

×
[
(M1 ∧ M2)

1/4
(

1 + (K1 ∨ K2)
1/4

(M1 ∨ M2)1/4−

)
+ (M1 ∧ M2 ∧ M)1/2

(K1 ∨ K2)1/4

]
‖u1‖L2‖u2‖L2 .

Again, we distinguish cases according to which terms dominate in the sum

(M1 ∧ M2)
1/4 + (M1 ∧ M2)

1/4(K1 ∨ K2)
1/4

(M1 ∨ M2)1/4− + (M1 ∧ M2 ∧ M)1/2

(K1 ∨ K2)1/4
.

If the first or the third term dominates then we get directly the needed bound. If the second term dominates than we
interpolate with weight θ on the bound (21) and weight 1 − θ on the bound (22) and the conditions on θ to get the
needed estimate are

θ > 0, θ <
1

2
,

the first assumption being imposed in order to ensure the K1,K2 conditions and the second one for the M , M1 and
M2 conditions. This completes the proof of Corollary 2.9. �
3. Global well-posedness on RRR ×TTT

3.1. Two bilinear estimates in Xb,b1,s spaces

The local well-posedness result is a direct consequence of the following bilinear estimates combined with a stan-
dard fixed point argument in Xb,b1,s spaces.

Proposition 3.1. There exist β < 1/2 and 1/4 < b1 < 3/8 such that for all u,v ∈ X1/2,b1,s , the following bilinear
estimates hold∥∥∂x(uv)

∥∥
X−1/2,b1,s � ‖u‖X1/2,b1,s ‖v‖Xβ,0,s + ‖u‖Xβ,0,s ‖v‖X1/2,b1,s (25)

and ∥∥∂x(uv)
∥∥

Z−1/2,s � ‖u‖X1/2,b1,s ‖v‖Xβ,0,s + ‖u‖Xβ,0,s ‖v‖X1/2,b1,s , (26)

provided s � 0.

To prove this bilinear estimate we first note that by symmetry it suffices to consider ∂xΛ(u, v) where Λ(·,·) is
defined by

Fx

(
Λ(u,v)

) :=
∫
R

χ|ξ1|�|ξ−ξ1|(Fxu)(ξ1)(Fxv)(ξ − ξ1) dξ1.

The following resonance relation (see [4]) is crucial for our analysis:

|σ − σ1 − σ2| =
∣∣∣∣3ξξ1(ξ − ξ1) + (ξq1 − ξ1q)2

ξξ1(ξ − ξ1)

∣∣∣∣ � 3
∣∣ξξ1(ξ − ξ1)

∣∣, (27)

where

σ := σ(τ, ξ, q) := τ − ξ3 + q2/ξ, σ1 := σ(τ1, ξ1, q1),
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and σ2 := σ(τ − τ1, ξ − ξ1, q − q1). We start by giving an estimate for interactions of high frequencies in x whose
sum is not close to zero.

Lemma 3.2. There exists β < 1/2 such that∥∥∂xP�1Λ(P�1u,v)
∥∥

X−1/2,b1,s � ‖u‖X1/2,b1,s ‖v‖Xβ,0,s + ‖u‖Xβ,0,s ‖v‖X1/2,b1,s ,

provided s � 0 and 1/4 < b1 < 3/8.

Proof. By duality we have to prove that

I :=
∣∣∣∣
∫
R4

∑
(q,q1)∈Z2

Γ
τ,ξ,q
τ1,ξ1,q1

f (τ1, ξ1, q1)g(τ2, ξ2, q2)h(τ, ξ, q) dτ dτ1 dξ dξ1

∣∣∣∣
�

(‖f ‖X1/2,b1,s ‖g‖Xβ,0,s + ‖f ‖Xβ,0,s ‖g‖X1/2,b1,s

)‖h‖2 (28)

where

Γ
τ,ξ,q
τ1,ξ1,q1

:= χ{1�|ξ1|�|ξ−ξ1|, |ξ |�1}〈σ 〉−1/2
〈 〈σ 〉
〈ξ〉3

〉b1

|ξ |〈ζ 〉s〈ζ1〉−s〈ζ − ζ1〉−s .

For s � 0,

〈ζ 〉s � 〈ζ1〉s + 〈ζ − ζ1〉s . (29)

We therefore need to prove (28) only for s = 0. In addition, we obtain that thanks to (29) the estimate (28) holds with
the following left-hand side(‖f ‖X1/2,b1,s ‖g‖Xβ,0,0 + ‖f ‖X1/2,b1,0‖g‖Xβ,0,s + ‖f ‖Xβ,0,s ‖g‖X1/2,b1,0 + ‖f ‖Xβ,0,0‖g‖X1/2,b1,s

)‖h‖2.

The above refinement allows us to get tame estimates which provides the propagation of regularity in the proof of
Theorem 1.1. We will not further detail this (standard) aspect of the analysis in the sequel.

We can of course assume that f , g and h are non-negative functions in R
2 × Z. For any L2 function w of (τ, ξ, q)

and any (K,M) ∈ [1,+∞[×R
∗+ we define the following localized versions of w:

wK := wχ{〈σ 〉∼K}, wM := wχ{|ξ |∼M} and wK,M := wχ{〈σ 〉∼K, |ξ |∼M}. (30)

We now consider the dyadic level

D
K,K1,K2
M,M1,M2

:= {
(τ, ξ, q, τ1, ξ1, q1): |ξ | ∼ M, |ξ1| ∼ M1,

|ξ − ξ1| ∼ M2, 〈σ 〉 ∼ K, 〈σ1〉 ∼ K1, 〈σ2〉 ∼ K2
}
.

Denoting by J
K,K1,K2
M,M1,M2

the contribution of D
K,K1,K2
M,M1,M2

to (28), then clearly

I �
∑

K,K1,K2,M,M1�M2

J
K,K1,K2
M,M1,M2

(31)

where K,K1,K2,M,M1 and M2 describe the dyadic level 2N. From the resonance estimate (27) it follows that
D

K,K1,K2
M,M1,M2

is empty whenever max(K,K1,K2) � MM1M2. We thus have only to consider the three following contri-
butions:

• A. K � MM1M2,
• B. K1 � MM1M2 and K � MM1M2,
• C. K2 � MM1M2 and max(K,K1) � MM1M2.

Moreover, since M1 � M2, it is clear that either

• 1. M � M1 ∼ M2
or

• 2. M1 � M ∼ M2.
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We will now estimate all these contributions.
A.1. K � MM1M2 and M � M1 ∼ M2. In this case we can write K ∼ 2lMM2

2 with l ∈ Z+. Moreover one has
clearly K � M3. From (24) we thus have

I �
∑

K,K1,K2,M1,M�M2

MK−1/2(1 + Kb1/M3b1
)〈fM1K1 
 gM2,K2 , hM,K 〉

�
∑

K1,K2,M�M2, l∈Z+

(K1K2)
β0

(M
1/4
2 + M1/2)M1−3b1

2(1/2−b1)lM1/2−b1M
1−2b1
2

‖fM2,K1‖2‖gM2,K2‖2‖hM,2lMM2
2
‖2

�
∑

K1,K2,M�M2, l∈Z+

2−(1/2−b1)l(K1K2)
β0

[
M

−1/4
2 +

(
M

M2

)1−2b1
]
‖fM2,K1‖2‖gM2,K2‖2‖hM,2lMM2

2
‖2.

Here and in the sequel we use a slight abuse of notation by denoting still by I the contribution of the region of dyadic
values under consideration to I (see (31)). Summing over K1, K2, l and over M taking values � M2, we get for
β ∈ (β0,1/2),

I �
∑
M2

‖fM2‖Xβ,0,0‖gM2‖Xβ,0,0‖h‖2

and Cauchy–Schwarz in M2 yields

I �
(∑

M2

‖fM2‖2
Xβ,0,0

)1/2(∑
M2

‖gM2‖2
Xβ,0,0

)1/2

‖h‖2 � ‖f ‖Xβ,0,0‖g‖Xβ,0,0‖h‖2.

A.2. K � MM1M2 and M1 � M ∼ M2. In this case we can write K ∼ 2lM1M
2
2 with l ∈ Z+. We distinguish

between the cases K < M3 and K � M3.
(i) K < M3. Then according to (23), it holds

I �
∑

K1,K2
M1�M2, l�0

(K1K2)
β0

M
1/2
1 M2

2l/2M
1/2
1 M2

‖fM1,K1‖2‖gM2,K2‖2‖hM2,2lM1M
2
2
‖2

�
∑

K1,K2
M1�M2, l�0

2−l/2(K1K2)
β0‖fM1,K1‖2‖gM2,K2‖2‖hM2,2lM1M

2
2
‖2.

Summing over K1, K2 and applying Cauchy–Schwarz in (M1,M2) it leads to

I �
∑
l�0

2−l/2
(∑

M1

‖fM1‖2
Xβ,0,0

)1/2(∑
M2

‖gM2‖2
Xβ,0,0

)1/2( ∑
M1,M2

‖hM2,2lM1M
2
2
‖2

2

)1/2

,

provided β ∈ (β0,1/2) which leads to the needed bound.
(ii) K � M3. Then using (24) we have

I �
∑

K1,K2
M1�M2, l�0

(K1K2)
β0

M
1/2
1 M

1−3b1
2

2(1/2−b1)lM
1/2−b1
1 M

1−2b1
2

‖fM2,K1‖2‖gM2,K2‖2‖hM,2lMM2
2
‖2

�
∑

K1,K2
M1�M2, l�0

2−(1/2−b1)l(K1K2)
β0

(
M1

M2

)b1

‖fM1,K1‖2‖gM2,K2‖2‖hM,2lM1M
2
2
‖2.

Summing as in A.1, exchanging the role of M and M1 and using that b1 > 0 yields the needed bound.
B.1. K1 � MM1M2, K � MM1M2 and M � M1 ∼ M2. Then we can write K1 ∼ 2lMM2

2 with l ∈ N. We separate
again the cases K < M3 and K � M3 and use that K1 � K .
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(i) K < M3. Then we get using Corollary 2.9

I �
∑

K,K1,K2,M�M1,M2

MK−1/2(1 + Kb1/M3b1
)〈fM1K1 , ǧM2,K2 
 hM,K 〉

�
∑
K,K2

M�M2, l�0

(KK2)
β0

M1/2M(2l/2M1/2M2)

(2l/2M1/2M2)K1/2
‖fM2,2lMM2

2
‖2‖gM2,K2‖2‖hM,K‖2

�
∑
K,K2

M�M2, l�0

2−l/2K−(1/2−β0)

(
M

M2

)(
2l/2M1/2M2

)‖fM2,2lMM2
2
‖2K

β0
2 ‖gM2,K2‖2‖hM,K‖2.

Summing as in A.1 yields for β ∈ (β0,1/2),

I � ‖f ‖X1/2,0,0‖g‖Xβ,0,0‖h‖2.

Observe that in this case and in some places of the sequel we use that the localization assumptions in the bilinear
estimates established in the previous section are invariant under the transformation (τ, ξ, q) → (−τ,−ξ,−q).

(ii) K � M3. Then we have using Corollary 2.9

I �
∑
K,K2

M�M2, l�0

Kβ0
M1/2M1−3b1

2(1/2−b1)lM1/2−b1M
1−2b1
2 K1/2

× (
2l/2M1/2M2

)‖fM2,2lMM2
2
‖2K

β0
2 ‖gM2,K2‖2‖hM,K‖2

�
∑
K,K2

M�M2, l�0

2−(1/2−b1)lK−(1/2−β0)

(
M

M2

)1−2b1

× (
2l/2M1/2M2

)‖fM2,2lMM2
2
‖2K

β0
2 ‖gM2,K2‖2‖hM,K‖2.

This implies the result as above.
B.2. K1 � MM1M2, K � MM1M2 and M1 � M ∼ M2. Then one can write K1 ∼ 2lM1M

2
2 with l ∈ N and clearly

K � M3 ∼ M3
2 . Using Corollary 2.9, we obtain

I �
∑
K,K2

M1�M2, l�0

K−(1/2−β0)
(M

1/2
1 + M

1/4
2 )M2

2l/2M
1/2
1 M2

× (
2l/2M

1/2
1 M2

)‖fM1,2lM1M
2
2
‖2K

β0
2 ‖gM2,K2‖2‖hM,K‖2.

Next, we can write

(M
1/2
1 + M

1/4
2 )M2

2l/2M
1/2
1 M2

� 2−l/2
(

M
2b1
1

M
2b1
2

+ 1

M
1/2−2b1
1 M

2b1−1/4
2

)〈
K1

M3
1

〉b1

� 2−l/2
(

M
2b1
1

M
2b1
2

+ M
2b1−1/4
1

M
2b1−1/4
2

)〈
K1

M3
1

〉b1

and we can conclude as in the previously considered cases thanks to our assumptions on b1. Note that this is a case
where we need to introduce the additional factor in the Fourier transform restriction norm.

C.1. K2 � MM1M2, max(K,K1) � MM1M2 and M � M1 ∼ M2. Then we can write K2 ∼ 2lMM2
2 with l ∈ Z+.

Since M1 ∼ M2 this contribution can be treated exactly as the contribution of the case B.1 by exchanging the roles of
K1 and K2.

C.2. K2 � MM1M2, max(K,K1) � MM1M2 and M1 � M ∼ M2. Then we can write K2 ∼ 2lM1M
2
2 with l ∈ N.

In the considered case K � M3 and thus using Corollary 2.9, we get
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I �
∑
K,K1

M1�M2, l∈N

(KK1)
β0

M
1/2
1 M2

(2l/2M
1/2
1 M2)K1/2

‖fM1,K1‖2
(
2l/2M

1/2
1 M2

)‖gM2,2lM1M
2
2
‖2‖hM2,K‖2

�
∑
K,K1

M1�M2, l∈N

2−l/2K−(1/2−β0)K
β0
1 ‖fM1,K1‖2

(
2l/2M

1/2
1 M2

)‖gM2,2lM1M
2
2
‖2‖hM2,K‖2.

Summing as in A.2 case (i) yields the result. This completes the proof of Lemma 3.2. �
Let us now treat interactions of frequencies in x whose sum is closed to zero.

Lemma 3.3. There exists β < 1/2 such that∥∥∂xP�2Λ(u,v)
∥∥

X−1/2,b1,s � ‖u‖X1/2,b1,s ‖v‖Xβ,0,s + ‖v‖X1/2,b1,s ‖u‖Xβ,0,s ,

provided s � 0 and 1/4 < b1 < 3/8.

Proof. By duality it is equivalent to prove (28) with

Γ
τ,ξ,q
τ1,ξ1,q1

:= χ{|ξ1|�|ξ−ξ1|, |ξ |�1}〈σ 〉−1/2
〈 〈σ 〉
〈ξ〉3

〉b1

|ξ |〈ζ 〉s〈ζ1〉−s〈ζ − ζ1〉−s .

Again we can restrict our attention to the case s = 0. We proceed in a similar way as in the proof of Lemma 3.2.
The only difference is that here M describes the dyadic levels 2−N and M1, M2 describe the dyadic levels 2Z. We
distinguish between the region 1. |ξ1| ∼ |ξ2| and the region 2. |ξ | ∼ |ξ2|.

1. |ξ1| ∼ |ξ2|. In this region |ξ | � |ξ1|. We treat only the case |σ1| � |σ2| since, as |ξ1| ∼ |ξ2|, the case |σ2| � |σ1| is
similar. We subdivide this region in the two subregions |σ1| � |σ | and |σ1| < |σ |. In the first one, according to (7) we
infer that

I �
∑

K,K1,K2
M�1,M2

(K ∧ K2)
1/2(K ∨ K2)

1/4M1/2

K1/2−b1
‖fK1,M2‖2‖gK2,M2‖2‖hK,M‖2

�
∑

K,K1,K2
M�1,M2

(K1K2)
3/8Kb1−1/2M1/2‖fK1,M2‖2‖gK2,M2‖2‖hK,M‖2.

Summing in M , K2, K , K1, using that b1 < 1/2 and applying Cauchy–Schwarz in M2 implies the desired result.
Now in the subregion |σ1| < |σ | we know from the resonance relation (27) that |σ | � |ξ1||ξ2||ξ | and thus according

to (21)

I �
∑

K,K1,K2
M�1, M2>1

(K1 ∧ K2)
1/2(K1 ∨ K2)

1/4M
1/4
2 M

(MM2
2 )1/8K3/8−b1

‖fK1,M2‖2‖gK2,M2‖2‖hK,M‖2

+
∑

K,K1,K2
M�1, 0<M2�1

(K1 ∧ K2)
1/2(K1 ∨ K2)

1/4M

K1/2−b1
‖fK1,M2‖2‖gK2,M2‖2‖hK,M‖2

�
∑

K,K1,K2
M�1,M2

(K1K2)
3/8Kb1−3/8M7/8‖fK1,M2‖2‖gK2,M2‖2‖hK,M‖2

which can be summed in the same way as above for b1 < 3/8.
2. |ξ | ∼ |ξ2|. In this region |ξ1| � |ξ | and M , M1 and M2 describe only the dyadic levels 2−N. Since M1 � M ∼ M2,

it follows from (7) that
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I �
∑

K,K1,K2
M1�1, M2�1

(K1 ∧ K2)
1/2(K1 ∨ K2)

1/4M
1/2
1

K1/2−b1
‖fK1,M1‖2‖gK2,M2‖2‖hK,M2‖2

�
∑

K,K1,K2
M1�1, M2�1

K
3/8
1 K

3/8
2 Kb1−1/2M

1/2
1 ‖fK1,M1‖2‖gK2,M2‖2‖hK,M2‖2.

Summing in M1, K2, K , K1, using that b1 < 1/2 and applying Cauchy–Schwarz in M2 we obtain the desired result.
This completes the proof of Lemma 3.3. �

It remains to treat interactions between very low frequencies and high frequencies. For this purpose we define the
operators Λi , i = 0,1,2, by

Ft,x,y

(
Λi(u, v)

)
(τ, ξ, q)

:=
∫
R2

∑
q∈Z

χ{(τ,τ1,ξ,ξ1,q,q1)∈Ai }(Ft,x,yu)(τ1, ξ1, q1)(Ft,x,yv)(τ − τ1, ξ − ξ1, q − q1) dξ1 dτ1,

where

A0 := {
(τ, τ1, ξ, ξ1, q, q1) ∈ B: |σ | � |ξ ||ξ1||ξ − ξ1|

}
,

A1 := {
(τ, τ1, ξ, ξ1, q, q1) ∈ B: |σ1| � |ξ ||ξ1||ξ − ξ1| > max

(|σ |, |σ2|
)}

,

A2 := {
(τ, τ1, ξ, ξ1, q, q1) ∈ B: |σ2| � |ξ ||ξ1||ξ − ξ1| > |σ |},

with

B := {
(τ, τ1, ξ, ξ1, q, q1) ∈ R

4 × Z
2: |ξ1| � |ξ − ξ1|

}
.

Lemma 3.4. There exists β < 1/2 such that∥∥∂xΛ0(P�1u,P�2v)
∥∥

X−1/2,b1,s � ‖u‖X1/2,b1,s ‖v‖Xβ,0,s + ‖u‖Xβ,0,s ‖v‖X1/2,b1,s , (32)∥∥∂xΛ2(P�1u,P�2v)
∥∥

X−1/2,b1,s � ‖u‖X1/2,b1,s ‖v‖Xβ,0,s + ‖u‖Xβ,0,s ‖v‖X1/2,b1,s (33)

and ∥∥∂xΛ1(P�1u,P�2v)
∥∥

X−1/2,b1,s � ‖u‖X1/2,b1,s ‖v‖Xβ,0,s + ‖u‖Xβ,0,s ‖v‖X1/2,b1,s , (34)

provided 1/4 < b1 < 3/8.

Proof. By duality it is equivalent to prove (28) with

Γ
τ,ξ,q
τ1,ξ1,q1

:= χAi
χ{|ξ1|�1|, |ξ−ξ1|�2}〈σ 〉−1/2

〈 〈σ 〉
〈ξ〉3

〉b1

|ξ |〈ζ 〉s〈ζ1〉−s〈ζ − ζ1〉−s .

We thus proceed similarly to the previous propositions. The only difference is that here M1 describes the dyadic level
2−N and M , M2 describe the dyadic level 2N. Again, we only consider the case s = 0.

We first prove (32). Note that in A0 we have |ξ1| � 1, |ξ | ∼ |ξ2| � 2 and |σ | � |ξ ||ξ1||ξ2|. We can thus write
K ∼ 2lM1M

2
2 with l ∈ N. We distinguish between the two cases K < M3 and K � M3.

(i) K < M3. In this case we can write

I �
∑

K1,K2
M1�1, M2�1, l∈N

(K1 ∧ K2)
1/2〈(K1 ∨ K2)

1/4M
1/4
1

〉 M
1/2
1 M2

2l/2M
1/2
1 M2

‖fM1,K1‖2‖gM2,K2‖2‖hM2,2lM1M
2
2
‖2

�
∑

K1,K2
M �1, M �1, l∈N

2−l/2K
3/8
1 K

3/8
2 ‖fM1,K1‖2‖gM2,K2‖2‖hM2,2lM1M

2
2
‖2.
1 2
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Summing in K1, K2 and then applying Cauchy–Schwarz in (M1,M2) implies

I �
∑
l∈N

2−l/2
(∑

M1

‖fM1‖2
Xβ,0,0

)1/2(∑
M2

‖gM2‖2
Xβ,0,0

)1/2( ∑
M1,M2

‖hM2,2lM1M
2
2
‖2

2

)1/2

� ‖f ‖Xβ,0,0‖g‖Xβ,0,0‖h‖2,

provided β ∈ (3/8,1/2).
(ii) K � M3. Then we have for β ∈ (3/8,1/2),

I �
∑

K1,K2
M1�1, M2�1, l∈N

(K1 ∧ K2)
1/2〈(K1 ∨ K2)

1/4M
1/4
1

〉

× M
1/2
1 M

1−3b1
2

2(1/2−b1)lM
1/2−b1
1 M

1−2b1
2

‖fM1,K1‖2‖gM2,K2‖2‖hM2,2lM1M
2
2
‖2

�
∑

K1,K2
M1�1, M2�1, l∈N

2−(1/2−b1)l(K1K2)
3/8−βM

b1
1 M

−b1
2 ‖f ‖Xβ,0,0‖g‖Xβ,0,0‖h‖2.

A direct summing in l,K1,K2,M1 and M2 yields the desired result.
Let us now prove (33). In A2, we have |ξ1| � 1, |ξ | ∼ |ξ2| � 2 and |σ2| � |ξ ||ξ1||ξ2| > |σ |. We can thus write

K2 ∼ 2lM1M
2
2 with l ∈ N.

(i) K < M3. In this case we can write by using (7)

I �
∑
K,K1

M1�1, M2�1, l∈N

(K ∧ K1)
1/2(K ∨ K1)

1/4

× M
1/2
1 M2

2l/2M
1/2
1 M2K1/2

‖fM1,K1‖2
(
2l/2M

1/2
1 M2

)‖gM2,2lM1M
2
2
‖2‖hM2,K‖2

�
∑
K,K1

M1�M2, l∈N

2−l/2K−1/8K
3/8
1 ‖fM1,K1‖2

(
2l/2M

1/2
1 M2

)‖gM2,2lM1M
2
2
‖2‖hM2,K‖2.

Summing in K , K1 and then applying Cauchy–Schwarz in (M1,M2), it results for β ∈ (3/8,1/2),

I �
∑
l∈N

2−l/2
(∑

M1

‖fM1‖2
Xβ,0,0

)1/2(∑
M2

‖hM2‖2
2

)1/2( ∑
M1,M2

2lM1M
2
2 ‖gM2,2lM1M

2
2
‖2

2

)1/2

� ‖f ‖Xβ,0,0‖g‖X1/2,0,0‖h‖2.

(ii) K � M3. Then using that K2 � K we have

K/M3

K2/M
3
2

� 1

and thus we can proceed exactly as in the case K < M3, the obtained bound being

‖f ‖Xβ,0,0‖g‖X1/2,b1,0‖h‖2.

Let us finally prove (34). In this case we have

K1 � K + K2, K � M3, K1 � M1M
2
2 .

Thus using (28) and (7) we can write

I �
∑

K,K1,K2
M �1, M �1

K
1/2
2 K

1/4
1

M
1/2
1 M2

K1/2
‖fM1,K1‖2‖gM2,K2‖2‖h‖2
1 2
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(we simply neglect the h localizations). We now naturally split the sum into two contributions, the contribution of
M

1/2
1 M2 � 1 and M

1/2
1 M2 � 1. In the first case we can write for δ ∈ (0, b1 − 1/4) and ε > 0 such that b1 − δ − 1/4 −

2ε > 0,

I �
∑

K,K1,K2
M1�1, M2�1, M1M

2
2 �1

K
1/4
1

M
1/2
1 M2

K1/2K
1/2+b1−2ε

1

K
1/2+b1−ε

1 ‖fM1,K1‖2K
1/2−ε

2 ‖gM2,K2‖2‖h‖2

�
∑

K1,K2
M1�1, M2�1, M1M

2
2 �1

M
1/2
1 M2

K
1/2+δ

1 K
b1−δ−1/4−2ε

1

K
1/2+b1−ε

1 ‖fM1,K1‖2K
1/2−ε

2 ‖gM2,K2‖2‖h‖2

�
∑

M1�1, M2�1, M1M
2
2 �1

1

(M1M
2
2 )δ

‖fM1‖X1/2,b1,0‖gM2‖Xβ,0,0‖h‖2

�
∑

M2�1, l∈N

2−δl‖f2lM−2
2

‖X1/2,b1,0‖gM2‖Xβ,0,0‖h‖2

� ‖f ‖X1/2,b1,0‖g‖Xβ,0,0‖h‖2,

where β ∈ ]1/2 − ε,1/2[ and in the last inequality we use the Cauchy–Schwarz inequality in the M2 summation (at
fixed l). In the second case the argument is even easier since we do not use the lower bound on K1. Namely, we can
write for β ∈ (3/8,1/2),

∑
K,K1,K2

M1�1, M2�1, M1M
2
2 �1

K
1/2
2 K

1/4
1

M
1/2
1 M2

K1/2
‖fM1,K1‖2‖gM2,K2‖2‖h‖2

�
∑

M2�1, l∈N

2−l/2‖f2−lM−2
2

‖Xβ,0,0‖gM2‖Xβ,0,0‖h‖2 � ‖f ‖Xβ,0,0‖g‖Xβ,0,0‖h‖2.

This competes the proof of Lemma 3.4. �
Now (25) follows by combining Lemmas 3.2–3.4.

3.2. Proof of (26).

Since X−1/2+,0,s is continuously embedded in Zs and since in the proof of Lemmas 3.2–3.4, except in the case
A in Lemma 3.2 and in the proof of (32) in Lemma 3.4, we can keep a factor K0+ with hK , it remains to treat the
corresponding regions. Actually it is obvious to see that we can even restrict ourselves to the intersection of these
regions with the region |σ | � 2. By duality we have to prove

J :=
∣∣∣∣
∫
R4

∑
(q,q1)∈Z2

χ|ξ1|�|ξ−ξ1|Θ
τ,ξ,q
τ1,ξ1,q1

f (τ1, ξ1, q1)g(τ2, ξ2, q2)h(ξ, q) dτ dτ1 dξ dξ1

∣∣∣∣
� ‖f ‖L2(R2×T)‖g‖L2(R2×T)‖h‖L2(R×T)

where

Θ
τ,ξ,q
τ1,ξ1,q1

:= 〈σ 〉−1|ξ |〈ζ 〉s〈ζ1〉−s〈ζ − ζ1〉−s .

Again we can suppose that s = 0 and moreover we will not make use of the factors involving b1. Recall that in the
region A of Lemma 3.2 we have M,M1,M2 � 1 and we can write K ∼ 2lMM1M2 with l ∈ N. We separate the cases
M1 ∼ M2 and M ∼ M2.

A.1. K � MM1M2 and M � M1 ∼ M2. Then we can write K ∼ 2lMM2
2 with l ∈ Z+. From (27) and (24) we thus

have
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J �
∑

K1,K2
M�M2, l∈N

(K1K2)
β0

M
1/2
2 M

2lMM2
2

‖fM2,K1‖2‖gM2,K2‖2‖hMχ{〈σ 〉∼2lMM2
2 }‖2

�
∑

K1,K2
M�M2, l∈N

2−l/2(K1K2)
β0

(
M

M2

)1/2

‖fM2,K1‖2‖gM2,K2‖2‖hM‖2.

Summing over M � M2, K1, K2 and l and then applying Cauchy–Schwarz in M2 we get the desired result.
A.2. K � MM1M2 and M1 � M ∼ M2. We have

J �
∑

K1,K2
M1�M2, l∈N

M2

2lM1M
2
2

(hM2χ{〈σ 〉∼2lM1M
2
2 }, fK1,M1 
 gK2,M2)L2 . (35)

If K2 � K , we can easily conclude by using (24). We shall therefore suppose that K � K2. For fixed (ξ, q),

χ{〈σ 〉∼K} � χ{〈σ 〉∼K} 
τ

(
1

K
χ{|τ |�K}

)
.

Using that the function χ{|τ |�K} is pair, the L2 scalar product in (35) can be estimated by(
hM2χ{〈σ 〉∼2lM1M

2
2 }, fK1,M1 


(
gK2,M2 
τ

(
1

K
χ{〈σ 〉�2lM1M

2
2 }

)))
L2

.

We have that gK2,M2 
τ ( 1
K

χ{〈σ 〉�2lM1M
2
2 }) is of the form g′

M2,K+K2
with

∥∥g′
M2,K+K2

∥∥
2 �

(
K2

K

)1/2

‖gK2,M2‖2. (36)

Indeed the linear operator TK,K2 :v �→ 1
K

v(·)χ{〈·〉∼K2} 
 χ{〈·〉�K} is a continuous endomorphism of L1(R) and of
L∞(R) with

‖TK,K2v‖L∞(R) � sup
x∈R

1

K

∣∣∣∣
∫
R

v(y)χ{〈y〉∼K2} 
 χ{〈x−y〉�K} dy

∣∣∣∣ � K2

K
‖v‖L∞(R)

and

‖TK,K2v‖L1(R) � 1

K
‖v‖L1(R)‖χ{〈·〉�K}‖L1(R) � ‖v‖L1(R).

Therefore, by Riesz interpolation theorem TK,K2 is a continuous endomorphism of L2(R) with

‖TK,K2v‖L2(R)

(
K2

K

)1/2

‖v‖L2(R).

Applying (23) with (36) at hand we get

J �
∑

K1,K2
M1�M2, l∈N

K
β0
1 K

β0
2

M
1/2
1 M2

2lM1M
2
2

‖fM1,K1‖2
∥∥g′

M2,K+K2

∥∥
2‖hM2χ{〈σ 〉∼2lM1M

2
2 }‖L2

t,x,y

�
∑

K1,K2
M1�M2, l∈N

2−l/2K
β0
1 K

β0
2

(
K2

2lM1M
2
2

)1/2

‖fM1,K1‖2‖gM2,K2‖2‖hM2‖L2
x,y

� 2−l/2K
β0
1 K

β0
2 Kδ

2

(
M1M

2
2

)−δ‖fM1,K1‖2‖gM2,K2‖2‖hM2‖L2
x,y

.

By choosing δ ∈ (0,1/2 − β0), we can sum over K1, K2, M1, M2 and l which yields the needed bound.
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It remains to treat the part of the region A0 where |ξ1| � 1, |ξ2| � 2. We can write

J �
∑

K,K1,K2
M1�1, M2�1

K−1M2(hM2χ{〈σ 〉∼K}, fK1,M1 
 gK2,M2)L2 .

We now consider separately the contributions of the regions M1M
2
2 � 1 and M1M

2
2 > 1 to J . Let us denote by J1 the

contribution of M1M
2
2 � 1. Then we can write by using (23) for some β0 < β < 1/2

J1 �
∑

K,K1,K2
M1�1, M2�1, M1M

2
2 �1

M2M
1/2
1

K1/2
(K1K2)

β0‖hM2‖2‖fK1,M1‖2‖gK2,M2‖2

�
∑

M1�1, M2�1, M1M
2
2 �1

M2M
1/2
1 ‖h‖2‖fM1‖Xβ,0,0‖gM2‖Xβ,0,0

�
∑

l∈N, M2�1

2−l/2‖h‖2‖f2−lM−2
2

‖Xβ,0,0‖gM2‖Xβ,0,0

� ‖f ‖Xβ,0,0‖g‖Xβ,0,0‖h‖2,

where in the last inequality we used the Cauchy–Schwarz inequality for fixed l and then summing in a straightforward
way in l.

We next estimate the contribution of M1M
2
2 > 1. Denote by J2 this contribution to J . Since |σ | � |ξ ||ξ1||ξ2|, we

can write 〈σ 〉 ∼ 2lM1M
2
2 with l ∈ N. We only consider the case K � K2, the case K � K2 being simpler. Using (7)

and proceeding as in A.2 above, we obtain

J2 �
∑

K1,K2
M1�1, M2�1, l∈N, M1M

2
2 >1

(K1 ∧ K2)
1/2〈(K1 ∨ K2)

1/4M
1/4
1

〉

× M
1/2
1 M2

2lM1M
2
2

‖fM1,K1‖2
∥∥g′

M2,K+K2

∥∥
2‖hM2χ{〈σ 〉∼2lM1M

2
2 }‖2,

where again g′
M2,2lM1M

2
2 +K2

satisfies (36). Thus

J2 �
∑

K1,K2,2lM1M
2
2 �K2

M1�1,M2, l∈N, M1M
2
2 >1

(K1 ∧ K2)
1/2〈(K1 ∨ K2)

1/4M
1/4
1

〉

× M
1/2
1 M2

2lM1M
2
2

(
K2

2lM1M
2
2

)1/2(
2lM1M

2
2

)1/2‖fM1,K1‖2‖gM2,K2‖2‖hM2‖2.

We therefore obtain that for a suitable δ > 0 and β < 1/2,

J2 �
∑

M1�1,M2, M1M
2
2 >1

(
M1M

2
2

)−δ‖f ‖Xβ,0,0‖gM2‖Xβ,0,0‖hM2‖2

� ‖f ‖Xβ,0,0‖g‖Xβ,0,0‖h‖2,

where in the last inequality we write M1M
2
2 = 2q with q ∈ N, we apply the Cauchy–Schwarz in M2 and then we sum

in q . This completes the proof of Proposition 3.1. �
3.3. Global well-posedness

Let s � 0 and 1/4 < b1 < 3/8. Noticing that in all the estimates in Sections 3.1–3.2 we can keep a factor K0+
1 or

K0+
2 with fM1,K1 or gM2,K2 and that for any function v ∈ X1/2,s supported in time in ]−T ,T [,

‖v‖Xβ,0,s � T (1/2−β)−‖v‖X1/2,0,s , (37)
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we infer that the following restricted bilinear estimates hold:∥∥∂x(uv)
∥∥

X
−1/2,b1,s

T

� T ν‖u‖
X

1/2,b1,s

T

‖v‖
X

1/2,b1,s

T

(38)

and ∥∥∂x(uv)
∥∥

Z
−1/2,s
T

� T ν‖u‖
X

1/2,b1,s

T

‖v‖
X

1/2,b1,s

T

, (39)

with ν > 0. Estimates (38), (39) in conjugation with the linear estimate (see [7])∥∥∥∥∥ψ(t)

t∫
0

U
(
t − t ′

)
∂xF

(
t ′
)
dt ′

∥∥∥∥∥
X1/2,b1,s∩Z1/2,s

� ‖F‖X−1/2,b1,s∩Z−1/2,s ,

with ψ ∈ C∞
0 (R), lead to the well-posedness result by a standard fixed point argument in X

1/2,b1,s
T ∩ Z

1/2,s
T , T > 0

small enough, on the Duhamel formulation of (5):

u(t) = U(t)ϕ − 1

2

t∫
0

U
(
t − t ′

)
∂x

(
u2(t ′))dt ′. (40)

Also standard considerations prove that the time of existence T ∗ of the solution only depends on ‖ϕ‖L2 (see (29)).
The uniqueness statement for s > 2 follows from the Gronwall lemma. Next, from (40) and the fact that Hs(R×T) is
an algebra for s > 1 we infer that for s > 1, ∂−1

x u belongs to C([0, T ∗];Hs(R×T)) provided ϕ ∈ Hs
−1(R×T) where

‖ϕ‖2
Hs−1

=
∑
η∈Z

∫
Rξ

〈|ξ |−1〉2〈(ξ, η)
〉2s∣∣ϕ̂(ξ, η)

∣∣2
dξ.

Taking the L2 scalar product of (5) with ∂−1
x u it is then easy to check that the L2(R × T)-norm of such solutions is a

constant of the motion. The density of Hs
−1(R×T) in L2(R×T) combining with the continuity with respect to initial

data in L2(R × T) ensures that the L2-norm is a constant of the motion for our solutions (see [16] for details on this
point). This proves that the solutions exist for all time. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

We write the solution u of (5), (6) as

u(t, x, y) = ψc(x − ct, y) + v(t, x − ct, y)

where v(t, ., .) is an L2(R2) function. This v satisfies the equation(
vt − cvx + vxxx + vvx + ∂x(ψcv)

)
x

− vyy = 0, v(0, x, y) = φ(x, y). (41)

Our strategy is to perform a fixed point argument in some Bourgain’s type spaces on the Duhamel formulation of (41).
In the context of (41) some straightforward modifications taking into account the term cvx of the unitary group U(t)

and the Bourgain spaces should be done.
We will use in a crucial way the following linear estimates of Strichartz or smoothing type (see for instance [23])

injected in the framework of the Bourgain spaces.

Lemma 4.1. One has

‖v‖L4
txy

� ‖v‖Xb,0,0 (42)

and

‖vx‖L∞
x L2

ty
� ‖v‖Xb,0,0, (43)

provided b > 1/2.
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Proof. We only briefly recall the proof of (43), for (42) we refer to [28] for instance. By usual considerations (see [7])
it suffices to prove that∥∥∂x

(
U(t)ϕ

)∥∥
L∞

x L2
ty

� ‖ϕ‖L2
xy

. (44)

We first notice that

∂x

(
U(t)ϕ

)
(x, y) = c

∫
R2

(iξ)ei(xξ+yη)ei(ξ3+cξ−η2/ξ)t ϕ̂(ξ, η) dξ dη

and that, for any fixed η, ξ �→ ξ3 +cξ −η2/ξ is an increasing bijection from R
∗+ into R and from R

∗− into R. Therefore
splitting the ξ integral into two pieces corresponding to positive and negative values of ξ and after performing the
change of variables ξ �→ ξ3 + cξ − η2/ξ a short computation leads to

∥∥∂xU(t)ϕ
∥∥2

L2
ty

= c

∫
R2

∣∣ϕ̂(ξ, η)
∣∣2 ξ2

3ξ2 + c + η2/ξ2
dξ dη.

This yields (44). �
Lemma 4.2. For any s � 0, 0 < T � 1, b > 1/2 one has

∥∥∂x(ψcv)
∥∥

X
0,0,s
T

�
(

‖∂xψc‖Ws,∞ +
∑

|α|�s

∥∥∂α
x,yψc

∥∥
L2

xL∞
y

)
‖v‖

X
b,0,s
T

. (45)

Proof. We write ∂x(ψcv) as ∂xψcv + vxψc and we treat each term separately. Write

‖∂xψcv‖
X

0,0,s
T

= ‖∂xψcv‖L2
T Hs

xy

� ‖∂xψc‖Ws,∞‖v‖L∞
T Hs

� ‖∂xψc‖Ws,∞‖v‖
X

b,0,s
T

.

Further, we have

‖ψcvx‖X
0,0,s
T

�
( ∑

|α|�s

∥∥∂α
x,yψc

∥∥
L2

xL∞
Ty

)( ∑
|β|�s

∥∥∂β
x,yvx

∥∥
L∞

x L2
ty

)
.

This leads to (45) thanks to Lemma 4.1. �
Proposition 4.3. There exists ε0 > 0 such that the following bilinear estimate holds∥∥∂x(uv)

∥∥
X−1/2+2ε,b1,s � ‖u‖X1/2+ε,b1,s ‖v‖X1/2+ε,b1,s (46)

provided 1/4 < b1 < 3/8, s � 0 and 0 < ε < ε0.

Proof. We have that Proposition 2.1, Corollaries 2.8–2.9 and their proofs are still valid for functions of R
3. Since as

noticed in Section 3.2 we can always keep a factor K except in the cases |σ | � 2 dominant and |ξ | � 2, we deduce
that there exists ε0 > 0 such that∥∥Ftxy(χ{|σ |<max(〈σ1〉,〈σ2〉)}χ{|ξ |<2}ξ û ∗ v̂)

∥∥
X−1/2+2ε,b1,s � ‖u‖X1/2+ε,b1,s ‖v‖X1/2+ε,b1,s

provided 1/4 < b1 < 3/8, s � 0 and 0 < ε < ε0. It thus remains to treat this region |σ | � max(〈σ1〉, 〈σ2〉), |ξ | � 2. We
thus have to prove that

J :=
∣∣∣∣
∫
R6

Γ
τ,ξ,q
τ1,ξ1,η1

f (τ1, ξ1, η1)g(τ2, ξ2, η2)h(τ, ξ, η) dτ dτ1 dξ dξ1 dη dη1

∣∣∣∣ � ‖f ‖2‖g‖2‖h‖2

where
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Γ
τ,ξ,η
τ1,ξ1,η1

:= χ{1�|ξ1|�|ξ−ξ1|, |ξ |�2, |σ |�max(〈σ1〉,〈σ2〉)}

×
〈 〈σ 〉
〈ξ〉3 〉b1 |ξ |〈ζ 〉s〈ζ1〉−s〈ζ − ζ1〉−s

〈σ 〉1/2−2ε〈σ1〉1/2+ε〈 〈σ1〉
〈ξ1〉3 〉b1〈σ2〉1/2+ε〈 〈σ2〉

〈ξ−ξ1〉3 〉b1
(47)

with σ := σ(τ, ξ, η) := τ − ξ3 − cξ + η2/ξ , σ1 := σ(τ1, ξ1, η1) and

σ2 := σ(τ − τ1, ξ − ξ1, η − η1).

Notice that the crucial non-resonance relation (27) for σ , σ1 and σ2 still holds with the slight modification of the
definition of σ . We can of course assume that f , g and h are non-negative functions in R

3. We separate the domain
of integration into two regions.

1. 100|σ | � |ξ |3. By Plancherel and then Hölder inequality, using the Strichartz inequality (42), we infer that for
ε � 1,

J �
∫
R3

|ξ |1−3b1−3(1/2−2ε−b1)h(τ, ξ, η)

∫
R3

f (τ1, ξ1, η1)g(τ − τ1, ξ − ξ1, η − η1)

〈σ1〉1/2+ε〈σ2〉1/2+ε
dτ1 dξ1 dη1dτ dξ dη

�
∥∥∥∥Fτ,ξ,η

(
f

〈σ 〉1/2+ε

)∥∥∥∥
4

∥∥∥∥Fτ,ξ,η

(
g

〈σ 〉1/2+ε

)∥∥∥∥
L4

‖h‖L2 � ‖f ‖L2‖g‖L2‖h‖L2 .

2. 100|σ | � |ξ |3. Applying Cauchy–Schwarz in (τ1, ξ1, η1) and setting (τ2, ξ2, η2) := (τ − τ1, ξ − ξ1, η − η1) we
get

J �
∫
R3

I (τ, ξ, η)

[ ∫
R3

∣∣f (τ1, ξ1, η1)g(τ2, ξ2, η2)
∣∣2

dτ1 dξ1 dη1

]1/2

h(τ, ξ, η)dτ dξ dη, (48)

where, using the elementary inequality,∫
R

dθ

〈θ − a〉1+2ε〈θ − b〉1+2ε
� 1

〈a + b〉1+2ε

it holds, by the resonance relation,

I (τ, ξ, η) � |ξ |
〈σ 〉1/2−2ε

[ ∫
R2

( ∫
max(|σ1|,|σ2|)�|σ |

dτ1

〈σ1〉1+2ε〈σ2〉1+2ε

)
dξ1 dη1

]1/2

� |ξ |
〈σ 〉1/2−2ε

( ∫
R2∩{|ξξ1(ξ−ξ1)|�|σ |}

dξ1 dη1

〈σ1 + σ2〉1+2ε

)1/2

.

We perform the change of variables (ξ1, η1) �→ (ν,μ) with{
ν = 3ξξ1(ξ − ξ1),

μ = σ1 + σ2.

Noticing that ν ∈ [−3|σ |,3|σ |],

dξ1 dη1 = c
|ν|1/2 dν dμ

|ξ |3/2( 3
4ξ3 − ν)1/2|σ + ν − μ|1/2

and using the elementary inequality∫
R

dθ

〈θ − a〉1+2ε|θ − b|1/2
� 1

〈a + b〉1/2
,

we thus infer that
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I � |ξ |1/4

〈σ 〉1/2−2ε

[ 3|σ |∫
−3|σ |

+∞∫
−∞

|ν|1/2 dν dμ

〈μ〉1+2ε( 3
4ξ3 − ν)1/2|σ + ν − μ|1/2

]1/2

� |ξ |1/4

〈σ 〉1/2−2ε

[ 3|σ |∫
−3|σ |

|ν|1/2 dν

( 3
4ξ3 − ν)1/2〈σ + ν〉1/2

]1/2

.

By the definition of ν it holds |ν| � 3
8 |ξ |3, i.e. | 3

4ξ3 − ν| ∼ |ξ |3 and thus

I � |ξ |−1/2

〈σ 〉1/2−2ε

[ 3|σ |∫
−3|σ |

|ν|1/2 dν

〈σ + ν〉1/2

]1/2

� |ξ |−1/2〈σ 〉2ε � |ξ |−1/2+6ε � 1,

provided 0 < ε � 1/12. This concludes the proof of (46) by applying Cauchy–Schwarz in (τ, ξ, η) in (48). This
completes the proof of Proposition 4.3. �

For T � 1 and ε � 1, we have the following estimate (see [7,28])∥∥∥∥∥
t∫

0

U
(
t − t ′

)
F

(
t ′
)
dt ′

∥∥∥∥∥
X

1/2+ε,b1,s

T

� ‖F‖
X

−1/2+ε,b1,s

T

. (49)

Moreover, using [28, Theorem 3.1], we obtain that for some ν > 0,

‖F‖
X

−1/2+ε,b1,s

T

� T ν‖F‖
X

−1/2+2ε,b1,s

T

. (50)

Combining Proposition 4.3, Lemma 4.2 and the bounds (49), (50), we infer that the map

G :v �→ U(t)φ −
t∫

0

U
(
t − t ′

)
∂x

(
v2/2 + ψcv

)
dt ′

is a strictly contractive map in the ball of radius R := 2‖φ‖Hs of X
1/2+ε,b1,s
T provided T = T (R) > 0 is small enough.

Therefore there exists a unique local solution. Moreover, arguing as in Section 3.3 it is easy to check that the following
differential identity holds for our solutions:

1

2

d

dt

∫
R2

v2 = −1

2

∫
R2

∂x(ψc) v2

and thus∥∥v(t)
∥∥

L2 � exp
(
t‖ψx‖L∞

)‖φ‖L2 .

This leads to the global well-posedness result.
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