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Abstract

We study flow-induced enhancement of the speed of pulsating traveling fronts for reaction–diffusion equations, and quenching
of reaction by fluid flows. We prove, for periodic flows in two dimensions and any combustion-type reaction, that the front speed
is proportional to the square root of the (homogenized) effective diffusivity of the flow. We show that this result does not hold in
three and more dimensions. We also prove conjectures from Audoly, Berestycki and Pomeau (2000) [1], Berestycki (2003) [3],
Fannjiang, Kiselev and Ryzhik (2006) [11] for cellular flows, concerning the rate of speed-up of fronts and the minimal flow
amplitude necessary to quench solutions with initial data of a fixed (large) size.
© 2011

1. Introduction and the main results

It is well known that the presence of a fluid flow can significantly increase mixing properties of diffusion. The study
of this phenomenon, sometimes called eddy diffusivity, has been the aim of a large body of mathematical and physical
literature. Questions of long time–large scale behavior are usually addressed via techniques of homogenization theory
(see, e.g., [14,21] and references therein). This approach is appropriate when one can wait a long time for mixing to
take effect. The presence of other processes, however, may introduce additional time scales to the problem. One such
process is reactive combustion, which happens on short time scales and therefore requires a different approach to the
study of combustive mixing.

The effects of flows on combustion have recently been studied by various authors, both qualitatively and quantita-
tively. The main effects are two-fold. A strong flow can speed up propagation of a reaction (such as a wind spreading
a fire) [1,3,5,7,13,15–17,23,25,30,32] but also extinguish it (the “try to light a match in the wind” effect) [8,9,11,18,
27,29,31]. The models used are reaction–advection–diffusion equations, in which the first phenomenon is manifested
by the enhancement of speed of their (pulsating) traveling front solutions, and the second by quenching of solutions
with (large) compactly supported initial data.

In the present paper we study both these effects for stationary periodic flows. We consider the reaction–advection–
diffusion equation

Tt + u(x) · ∇T = �T + f (T ) (1.1)
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for the (normalized) temperature T (t, x) ∈ [0,1] of a premixed combustible gas, with (t, x) ∈ R × R
d . The gas is

advected by a periodic incompressible (i.e., ∇ · u ≡ 0) mean-zero vector field u ∈ C1,δ(Rd) (also called flow). For the
sake of simplicity, we will assume that all periods of u are 1, that is, the cell of periodicity is the d-dimensional torus
T

d ≡ [− 1
2 , 1

2 ]d , with − 1
2 and 1

2 identified. The general periodic case is identical. The non-negative reaction function
f ∈ C1,δ([0,1]) accounts for the increase of temperature due to a chemical reaction such as burning, and is of the
combustion type. That is, there is θ ∈ [0,1) such that f (s) = 0 for s ∈ [0, θ ]∪{1}, f (s) > 0 for s ∈ (θ,1), and f is non-
increasing on (1−δ,1) for some δ > 0. If θ > 0, then f is an ignition reaction (with ignition temperature θ ), otherwise
f is a positive reaction. A special case of the latter is the Kolmogorov–Petrovskii–Piskunov (KPP) reaction [19] with
0 < f (s) � sf ′(0) for all s ∈ (0,1).

A pulsating traveling front in the direction of a unit vector e ∈ R
d is a solution of (1.1) of the form T (t, x) =

U(x · e − ct, x), with c ∈ R the front speed and U : R × R
d → [0,1] periodic in the second variable such that

lim
s→−∞U(s, x) = 1 and lim

s→+∞U(s, x) = 0, (1.2)

uniformly in x ∈ R
d . It is well known that under our assumptions on u and f , for each e ∈ R

d there is a unique
c∗
e (u,f ) > 0 such that a pulsating traveling front in direction e and with speed c exists if and only if c = c∗

e (u,f ) for
ignition reactions [28], resp. c ∈ [c∗

e (u,f ),∞) for positive reactions [2].
In both cases we will be interested in the fronts with the unique/minimal speeds c∗

e (u,f ). These are the most
physical ones because they determine the speed of spreading of solutions to the Cauchy problem for (1.1) with (large
enough) compactly supported initial data. An exact formula for c∗

e (u,f ) has been obtained for general reactions
in [10] (and for the special case of KPP reactions also earlier in [4]). Unfortunately, it is a complicated variational
expression and it is not obvious how to use it to obtain simple general estimates on c∗

e (u,f ).
Our goal is to derive simple estimates on the front speed c∗

e (u,f ), and use them to answer open questions from
[1,3,11] concerning speed-up of pulsating fronts and quenching of reaction by strong flows. We will provide such esti-
mates in two dimensions, in terms of the size of f and the effective diffusivity De(u) of the flow u (in the direction e).
The latter quantity can be found in a much simpler way than c∗

e (u,f ) using (1.5) and (1.6) below. It appears in the
homogenization theory which, as mentioned above, is applicable to the study of long time behavior of the solutions
of the related linear PDE

ψt + u(x) · ∇ψ = �ψ. (1.3)

Despite the fact that the presence of reaction introduces a short time scale to the model, we will be able to show by
other methods that in two dimensions (but not in three!), the effective diffusivity determines the front speed up to a
bounded factor.

The long time behavior of the solutions of (1.3) is governed by the effective diffusion equation

ψ̄t = ∇ · (D(u)∇ψ̄
)
, (1.4)

where the (x-independent positive symmetric) effective diffusivity matrix D(u) is obtained as follows. For any e ∈ R
d ,

let χe(x) be the periodic mean-zero solution of the cell problem

−�χe + u · ∇χe = u · e (1.5)

on T
d . Then D(u) is given by

e · D(u)e′ =
∫

Td

(∇χe + e) · (∇χe′ + e′)dx = e · e′ +
∫

Td

∇χe · ∇χe′ dx

for any e, e′ ∈ R
d . The effective spreading in the direction of a unit vector e ∈ R

d is now governed by the effective
diffusivity

De(u) ≡ e · D(u)e = 1 + ‖∇χe‖2
L2(Td )

. (1.6)

When the nonlinearity in (1.1) is weak (the reaction time scale is large) so that we have

Tt + u(x) · ∇T = �T + ε2f (T )
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with ε � 1, the long time–large space scaling t �→ t/ε2, x �→ x/ε gives

Tt + 1

ε
u

(
x

ε

)
· ∇T = �T + f (T ).

The homogenized version of this equation is

T̄t = ∇ · (D(u)∇T̄
) + f (T̄ ),

with the unique/minimal front speed in direction e depending on De(u) and f . Although the above approximation
holds only on certain space–time scales, it does suggest a relation between c∗

e (u,f ) on one hand and De(u) and f on
the other. Our main result confirms this relation in two dimensions:

Theorem 1.1. Let f be any combustion-type reaction. There are C1(f ),C2(f ) > 0 such that for any 1-periodic
incompressible mean-zero C1,δ flow u on R

2 and any unit vector e ∈ R
2,

C1(f )
√

De(u) � c∗
e (u,f ) � C2(f )

√
De(u). (1.7)

Remarks. 1. We have the following estimates on the constants in (1.7). From the results of [25] and monotonicity of
c∗
e (u,f ) in f it follows that

C2(f ) � C

√∥∥f (s)/s
∥∥∞

(
1 +

√∥∥f (s)/s
∥∥∞

)
(1.8)

for some C > 0. If mζ (f ) = min{f (s) | s ∈ [ζ,1 − (1−ζ )2

8 ]} > 0 (for each f as above there is such ζ ∈ (0,1)), then
from the proof of Theorem 1.1 it follows that

C1(f ) � Cζ

√
mζ (f )

1 + √
mζ (f )

(1.9)

for some Cζ > 0. We note that this estimate is optimal up to a constant for small mζ (f ) (due to (1.8)), but also for
large mζ (f ). Indeed, C1(f ) is uniformly bounded above in f for KPP reactions [25] and thus for all reactions.

2. In particular, Cj (mf ) ∼ √
m (j = 1,2) as m → 0 for any fixed f .

3. In the case of KPP reactions, this result has been proved in [23,25], which also implies the upper bound for
general reactions (see Remark 1). This case is considerably simpler due to the fact that c∗

e (u,f ) = c∗
e (u, f̃ ), where

f̃ (s) ≡ f ′(0)s and c∗
e (u, f̃ ) is the minimal front speed for the linear equation (1.1) with f̃ in place of f . (Fronts for

f̃ do not converge to 1 as x · e → −∞ but rather grow exponentially.)

The relation c∗
e (u,f ) ∼ C(f )

√
De(u) is analogous to that in the case of u ≡ 0 and constant diffusivity matrix

D > 0. Indeed, spatial scaling x �→ √
Dx shows that the unique/minimal front speed in the direction e for Tt =

∇ · (D∇T ) + f (T ) is C(f )
√

e · De (with C(f ) ≡ c∗
e (0, f ) independent of e). The problem with u �≡ 0, however, is

that the convergence of solutions of (1.3) to those of (1.4) occurs on large time scales, while solutions of (1.1) can be
effectively estimated using (1.3) on short time scales only. We will therefore study short time diffusivity for (1.3) in
Section 2 and relate it to De(u) in Theorem 2.1 below. The theorem, which applies in all dimensions, will be a key
step towards overcoming this problem for d = 2.

The restriction to two dimensions comes from Theorem 3.1 below, a relation between the speed and the width of a
front. It turns out, in fact, that this result and Theorem 1.1 are false in dimensions d � 3, and Theorem 5.1 shows that
the bounds in (1.7) cannot hold with flow-independent C1(f ) and C2(f ) for d � 3!

This raises an interesting question about large deviations of the stochastic process Xx
t from (2.1), corresponding

to (1.3). If Ie,u is the rate function for Z
x,e
t ≡ (x − Xx

t ) · e (i.e., limt→∞ t−1 ln PΩ(Z
x,e
t > ct) = −Ie,u(c) for c > 0

and any x), then Ie,u(c
∗
e (u,f )) = f ′(0) holds for KPP reactions. From [25] we know that in two dimensions we have

c∗
e (u,f )/

√
De(u) = 2

√
f ′(0)+O(f ′(0)3/4) for small f ′(0) and KPP f , with an (e, u)-independent error bound. This

means that Ie,u(c) ≈ c2/4De(u) for c �
√

De(u), in the sense of 4De(u)Ie,u(c)/c
2 → 1 as c/

√
De(u) → 0, uniformly

in e,u. That is, effective diffusivity De(u) yields a good approximation of the rate function Ie,u(c) for c �
√

De(u) in
two dimensions. However, Theorem 5.1 shows that this is not true for general flows in more dimensions. At this point
we do not know how to explain this difference.
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Fig. 1. Streamlines of the cellular flow ucell.

Motivated by a conjecture from [1,3] (see Corollary 1.3 below), we are particularly interested in the strong flow
asymptotics of the unique/minimal speed c∗

e (Au,f ) for

Tt + Au(x) · ∇T = �T + f (T ), (1.10)

with the flow profile u as above and flow amplitude A ∈ R large. A natural question is which flow profiles are able to
arbitrarily speed up fronts provided their amplitude is large enough (see [1,3,13,17,23,25,27,30,32]). Having proved
Theorem 1.1, this question in two dimensions becomes equivalent to the question of the asymptotics of De(Au). The
latter is much simpler since De(Au) can be computed via (1.5) and (1.6) with Au in place of u. In particular, it has
been proved in [6,12,25] (see, e.g., Proposition 1.2 in [25]) that in any dimension, lim supA→∞ De(Au) < ∞ when
the equation

u · ∇φe = u · e (1.11)

has a solution φe ∈ H 1(Td), and limA→∞ De(Au) = ∞ when (1.11) has no such solution. We therefore obtain the
following characterization.

Corollary 1.2. Let u(x) be a 1-periodic incompressible mean-zero C1,δ flow on R
2, let e ∈ R

2 be a unit vector and f

any combustion-type reaction.

(i) If (1.11) has a solution φe ∈ H 1(T2), then

lim sup
A→∞

c∗
e (Au,f ) < ∞. (1.12)

(ii) If (1.11) has no solutions in H 1(T2), then

lim
A→∞ c∗

e (Au,f ) = ∞. (1.13)

Remark. This result has been proved in [25] for KPP reactions but is new for general f .

Of particular interest have recently been both percolating and cellular flows. Percolating flows possess streamlines
(solutions of the ODE X′ = u(X)) joining x · e = −∞ and x · e = ∞, a special case being shear flows u(x) =
v(x2, . . . , xd)e1. Existence of such streamlines has obviously a strong effect on speed-up of fronts. Cellular flows, on
the other hand, possess only closed streamlines, a prototypical example being ucell(x) = ∇⊥(sin 2πx1 sin 2πx2) whose
streamlines are depicted in Fig. 1. Their effect on speed-up of fronts is therefore more subtle, with diffusion across a
thin boundary layer near the flow separatrices playing an important role. The interest in these flows stems from them
being ubiquitous in nature. They appear as a result of instabilities in fluids such as Rayleigh–Bénard instability in heat
convection, Taylor vortices in a Couette flow between rotating cylinders, or heat expansion driven Landau–Darrieus
instability.

Corollary 1.2 shows speed-up of fronts in the sense of (1.13) for both percolating and cellular flows but known
estimates on the effective diffusivity and Theorem 1.1 yield more precise asymptotics. For percolating flows
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0 < lim inf
A→∞

c∗
e (Au,f )

A
� lim sup

A→∞
c∗
e (Au,f )

A
< ∞ (1.14)

has been conjectured in [1] and later proved for all f in [17], and can also be recovered from Theorem 1.2 in [32] and
Theorem 1.1. The asymptotic c∗

e (Aucell, f ) ∼ A1/4 for the above cellular flow has also been conjectured in [1,3] and
obtained in [23] for KPP reactions, but the best result for general reactions has been A1/5 � c∗

e (Aucell, f ) � A1/4 for
e = e1 [17].

Using Theorem 1.1 and the estimate De(Au) ∼ A1/2 from [20], we now obtain the conjectured asymptotic from
[1,3] for general incompressible periodic cellular flows and all f . We also need to assume, as in [20], that the stream
function of the flow has only non-degenerate critical points (otherwise the result is not true in general). That is, there is
a periodic C2,δ function H : R

2 → R with only non-degenerate critical points such that u = ∇⊥H ≡ (−Hx2 ,Hx1) and
the complement of the level set H = 0 has only bounded connected components (flow cells). Notice that this allows
for almost arbitrary periodic geometry of the flow cells. We will call such u periodic non-degenerate cellular flows.

Corollary 1.3. Consider a 1-periodic non-degenerate cellular flow u on R
2, let e ∈ R

2 be a unit vector, and f any
combustion-type reaction. Then

0 < lim inf
A→∞

c∗
e (Au,f )

A1/4
� lim sup

A→∞
c∗
e (Au,f )

A1/4
< ∞. (1.15)

As mentioned above, we also address the closely related question of quenching of reaction by cellular flows.
Quenching occurs in the Cauchy problem for (1.1) with initial data T (0, x) = T0(x) when ‖T (t, ·)‖∞ → 0 as t → ∞.
This happens for ignition reactions when T0 is small in some sense so that T (τ, ·) becomes uniformly smaller than
the ignition temperature for some τ > 0 (and thus T solves (1.3) for t > τ by the maximum principle). But sometimes
even large initial data can be quenched with the help of enhanced diffusion due to mixing by strong flows.

It has been proved in [11] that the flow Aucell quenches initial data supported in a strip of width L provided the
amplitude A � L4 lnL. The authors also conjectured that the factor lnL can be removed (heuristically, the minimal
quenching amplitude should be such that c∗

e (Au,f ) ∼ L, i.e., A ∼ L4). We prove this conjecture for all periodic
non-degenerate cellular flows on R

2, which are also symmetric across the x2 axis (i.e., the stream function H is odd
in x1). We will call such periodic non-degenerate flows, which include ucell, symmetric.

Theorem 1.4. Consider a 1-periodic symmetric non-degenerate cellular flow u on R
2. There are γθ > 0 (independent

of u) and Cu,θ > 0 such that if f is an ignition reaction with ignition temperature θ > 0 and ‖f (s)/s‖∞ � γθ , then
initial data T0(x) ∈ [0,1] supported in [−L,L] × R are quenched whenever A � Cu,θL

4.

Remarks. 1. We note that the bound γθ on f is in fact necessary. It is easy to show that if f is large enough, then
even a single cell with Dirichlet boundary conditions can support the reaction for any A [11].

2. As in [11], scaling shows that ‖f (s)/s‖∞ � γθ can be replaced by the requirement that the period of u be
smaller than ‖f (s)/s‖1/2∞ γ

−1/2
θ .

The rest of the paper is organized as follows. In Section 2 we introduce our main technical tool, Theorem 2.1, relat-
ing short and long time diffusivity of (1.3) in any dimension. In Section 3 we prove Theorem 3.1, a relation between
the speed and the width of a front in two dimensions, and then Theorem 1.1. In Section 4 we prove Theorem 1.4 and
in Section 5 we provide a counterexample to Theorem 1.1 in three and more dimensions.

2. Short time diffusivity of periodic flows

In this section we show that there is a close relation between short- and long-time diffusivity of the parabolic
operator in (1.3). The results contained here are valid in any dimension.

Consider the stochastic process Xx
t starting at x ∈ R

d and satisfying the stochastic differential equation

dXx
t = √

2dBt − u
(
Xx

t

)
dt, Xx

0 = x, (2.1)
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where Bt is a normalized Brownian motion on R
d with B0 = 0 (defined on a probability space (Ω, B∞,PΩ)). By

Lemma 7.8 in [24], we have that if ψ solves (1.3) with ψ(0, x) = ψ0(x), then

ψ(t, x) =
∫

Rd

ψ0(y)kt (x, y) dy = EΩ

(
ψ0

(
Xx

t

))
, (2.2)

with kt (x, y) the fundamental solution for (1.3) and EΩ expectation with respect to ω ∈ Ω . That is, kt (x, ·) is the
density for Xx

t .
We also have that if T solves (1.1) with T (0, x) = T0(x) and ψ0(x) = T0(x) � 0, then by the comparison princi-

ple [26], for all t, x,

0 � ψ(t, x) � T (t, x) � et‖f (s)/s‖∞ψ(t, x). (2.3)

We will use this relation to obtain short time upper estimates on the solution of (1.1).
We start the study of short time diffusivity for (1.3) with noting that uniformly in x ∈ R

d ,

lim
t→∞ EΩ

( |(Xx
t − x) · e|2

2t

)
= De(u). (2.4)

This is based on the fact that

EΩ

(∣∣(Xx
t − x

) · e∣∣2) =
∫

Rd

∣∣(y − x) · e∣∣2
kt (x, y) dy =

∫

Rd

∣∣(√t y − x) · e∣∣2
td/2kt (x,

√
t y) dy

and the following estimates on kt (x, y):

td/2kt (x,
√

t y) → k∗
1(0, y) in L2

(
R

d
)

as t → ∞, uniformly in x;

0 � kt (x, y) � Ct−d/2e−|x−y|2/Ct for some u-dependent C > 0.

The first is the standard homogenization limit (see, e.g., [14,21]) with

k∗
t (x, y) ≡ 1√

det(D(u)) (4πt)d/2
e−(y−x)·D(u)−1(y−x)/4t

the fundamental solution of (1.4), the second is the Nash–Aronson estimate for mean-zero flows (see, e.g., [22]). The
limit (2.4) now follows from∫

Rd

|y · e|2k∗
1(0, y) dy =

∫

Rd

|√D(u) z · e|2
(4π)d/2

e−z2/4 dz =
∫

Rd

|z · √D(u) e|2
(4π)d/2

e−z2/4 dz = 2De(u).

The main result of this section is a lower bound on short time diffusivity for (1.3):

Theorem 2.1. There is C > 0 such that for any τ � 1, any 1-periodic incompressible mean-zero Lipschitz flow u and
any α > 0 there are x ∈ R

d and t ∈ [0, τ ] such that

PΩ

(∣∣(Xx
t − x

) · e∣∣ � α
√

τDe(u)
)
� 1 − Cα. (2.5)

Proof. We first note that if Ω̃ ≡ T
d × Ω is equipped with the product probability measure (i.e., the first coordinate

x ∈ T
d is uniformly distributed), then (2.4) gives

lim
t→∞ EΩ̃

( |(Xx
t − x) · e|2

2t

)
= De(u), (2.6)

where the expectation is with respect to (x,ω) ∈ Ω̃ . Then we have

Lemma 2.2. There is C̃ > 0 such that for any τ � 1 and u as in Theorem 2.1,

EΩ̃

(∣∣(Xx
τ − x

) · e∣∣2) � C̃τDe(u). (2.7)
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Proof. Let us first assume τ = 1. For x ∈ T
d , let X̃x

t ≡ Xx
t mod 1 ∈ T

d be the process corresponding to (1.3) on T
d .

We note that X̃x
t is uniformly distributed over T

d as a random variable on Ω̃ . Indeed, if B ⊆ T
d and ψ0(x) = χB(x),

then for each t � 0,

PΩ̃

(
X̃x

t ∈ B
) =

∫

Td

ψ(t, x) dx =
∫

Td

ψ(0, x) dx = |B|

because the evolution (1.3) preserves the total mass of ψ .
We next let Yx

t ≡ Xx
t − Xx

t−1 and Zx
t ≡ Yx

t · e. Then periodicity of u implies

Yx
t = X

Xx
t−1

1 − Xx
t−1 = X

X̃x
t−1

1 − X̃x
t−1

in law. Since the X̃x
t−1 for all t � 1 are identically distributed as random variables on Ω̃ , the same is true for the

increment displacements Yx
t as well as the Zx

t . In particular, for each t � 1,

EΩ̃

(∣∣Zx
t

∣∣2) = EΩ̃

(∣∣Zx
1

∣∣2)
. (2.8)

We also have (Xx
N − x) · e = ∑N

n=1 Zx
n for any N ∈ N and so by (2.6),

N∑
n,m=1

EΩ̃

(
Zx

nZx
m

) = 2NDe(u) + o(N). (2.9)

Since |EΩ̃ (Zx
nZx

m)| � EΩ̃ (|Zx
1 |2) is obvious from (2.8) and the Schwarz inequality, we will obtain (2.7) for τ = 1 if

we can show the existence of u-independent M ∈ N and γ > 0 such that
∣∣EΩ̃

(
Zx

nZx
m

)∣∣ � 2−γ |m−n|
EΩ̃

(∣∣Zx
1

∣∣2) (2.10)

whenever |m − n| � M + 1.
We denote ht (x, y) ≡ ∑

j∈Zd kt (x, y + j) the fundamental solution for (1.3) on T
d , with kt from (2.2). We then

have ∫

Td

ht (x, y) dy =
∫

Td

ht (x, y) dx = 1. (2.11)

By Lemma 5.6 in [9], there is M ∈ N such that for all u as above, ‖hM(·,·)− 1‖∞ � 1
2 . The maximum principle gives

‖ht (·,·) − 1‖∞ � ‖hs(·,·) − 1‖∞ for t � s and this together with (ht − 1) ∗ (hs − 1) = ht+s − 1 (from (2.11)) implies
for all m � M and γ ≡ (2M)−1,∥∥hm(·,·) − 1

∥∥∞ � 2−γ (m+1). (2.12)

As a final prerequisite, we note that∫

(Td )2

∑
j∈Zd

(y + j − x)kt (x, y + j) dx dy = 0. (2.13)

This can be obtained by taking the initial datum ψ0(x) = χTd (x) in (1.3) on R
d and evaluating

d

dt

∫

Rd

xψ dx =
∫

Rd

x�ψ − x∇ · (uψ)dx =
∫

Rd

uψ dx =
∫

Td

u(x)
∑
j∈Zd

ψ(t, x + j) dx = 0,

where we used integration by parts (with the Nash–Aronson estimate for ψ ), the fact that
∑

j∈Zd ψ(t, x + j) ≡ 1 and

u being mean-zero. Thus for each t � 0 (recall that T
d = [− 1

2 , 1
2 ]d ),

0 =
∫
d

xψ(t, x) dx =
∫

d d

xkt (x, y) dx dy =
∫

d d

(x − y)kt (x, y) dx dy
R R ×T R ×T
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because
∫

Rd ykt (x, y) dx = y. Now (2.13) follows from periodicity:

0 =
∫

(Td )2

∑
j∈Zd

(x + j − y)kt (x + j, y) dx dy = −
∫

(Td )2

∑
j∈Zd

(y − j − x)kt (x, y − j) dx dy.

In what follows we denote xe ≡ x · e for x ∈ R
d . For m − n � M + 1 we have by kt ∗ ks = kt+s ,

∣∣EΩ̃

(
Zx

nZx
m

)∣∣ =
∣∣∣∣

∫

T d×(Rd )4

(xn − xn−1)e(xm − xm−1)ekn−1(x, xn−1)k1(xn−1, xn)

× km−1−n(xn, xm−1)k1(xm−1, xm)dx dxn−1 dxn dxm−1 dxm

∣∣∣∣
=

∣∣∣∣
∫

(Td )5

∑
j,l∈Zd

(xn + j − xn−1)e(xm + l − xm−1)ehn−1(x, xn−1)k1(xn−1, xn + j)

× hm−1−n(xn, xm−1)k1(xm−1, xm + l) dx dxn−1 dxn dxm−1 dxm

∣∣∣∣.
Here we have used the fact that

∑
p,q∈Zd

(xm + p − xm−1 − q)ekm−1−n(xn, xm−1 + q)k1(xm−1 + q, xm + p)

=
∑
l∈Zd

(xm + l − xm−1)e
∑
q∈Zd

km−1−n(xn, xm−1 + q)k1(xm−1 + q, xm + l + q)

=
∑
l∈Zd

(xm + l − xm−1)ek1(xm−1, xm + l)
∑
q∈Zd

km−1−n(xn, xm−1 + q)

=
∑
l∈Zd

(xm + l − xm−1)ehm−1−n(xn, xm−1)k1(xm−1, xm + l)

(due to periodicity of u) and similarly
∑

p,q∈Zd

(xn + p − xn−1 − q)ekn−1(x, xn−1 + q)k1(xn−1 + q, xn + p)

=
∑
j∈Zd

(xn + j − xn−1)ehn−1(x, xn−1)k1(xn−1, xn + j).

The integral with respect to x can now be eliminated along with hn−1(x, xn−1) because
∫

Td hn−1(x, xn−1) dx = 1.
Notice that (2.13) gives

∫

(Td )2

∑
l∈Zd

(xm + l − xm−1)ek1(xm−1, xm + l) dxm−1 dxm = 0,

and so (2.12) and Schwarz inequality imply

2γ (m−n)
∣∣EΩ̃

(
Zx

nZx
m

)∣∣
= 2γ (m−n)

∣∣∣∣
∫

(Td )4

∑
j,l∈Zd

(xn + j − xn−1)e(xm + l − xm−1)ek1(xn−1, xn + j)

× [
hm−1−n(xn, xm−1) − 1

]
k1(xm−1, xm + l) dxn−1 dxn dxm−1 dxm

∣∣∣∣
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�
∣∣∣∣

∫

(Td )4

∑
j,l∈Zd

∣∣(xn + j − xn−1)e
∣∣2

k1(xn−1, xn + j)k1(xm−1, xm + l) dxn−1 dxn dxm−1 dxm

∣∣∣∣
1/2

×
∣∣∣∣

∫

(Td )4

∑
j,l∈Zd

∣∣(xm + l − xm−1)e
∣∣2

k1(xn−1, xn + j)k1(xm−1, xm + l) dxn−1 dxn dxm−1 dxm

∣∣∣∣
1/2

=
∣∣∣∣

∫

(Td )2

∑
j∈Zd

∣∣(xn + j − xn−1)e
∣∣2

k1(xn−1, xn + j) dxn−1 dxn

∣∣∣∣
1/2

×
∣∣∣∣

∫

(Td )2

∑
l∈Zd

∣∣(xm + l − xm−1)e
∣∣2

k1(xm−1, xm + l) dxm−1 dxm

∣∣∣∣
1/2

= EΩ̃

(∣∣Zx
n

∣∣2)1/2
EΩ̃

(∣∣Zx
m

∣∣2)1/2
.

Now (2.8) yields (2.10), finishing the proof for τ = 1. The general case is identical, this time with Yx
n being Xx

nτ −
Xx

(n−1)τ , the same γ , M and C̃, and 2N replaced by 2Nτ in (2.9) (one actually gets C̃ → 2 as τ → ∞). �
We will now prove (2.5) with C ≡ 10C̃−1/2 by contradiction. Assume that for some u there are τ � 1 and α > 0

such that for any x ∈ R
d and any t ∈ [0, τ ],

PΩ

(∣∣(Xx
t − x

) · e∣∣ < α
√

τDe(u)
)
> Cα. (2.14)

We first claim that (2.14) implies for the above C and each x ∈ R
d ,

PΩ

(
∀t ∈ [0, τ ]: ∣∣(Xx

t − x
) · e∣∣ <

4
√

τDe(u)

C

)
� 1

2
. (2.15)

Indeed, if this is not true, let x be such that the probability in (2.15) is less than 1
2 . This means that there is a subset

Ω ′ ⊆ Ω of measure more than 1
2 such that if tj (ω) � 0 is the first time the (almost surely continuous in t ) path

Xx
t = Xx

t (ω) hits the set

Hj ≡ {
y ∈ R

d
∣∣ ∣∣(y − x) · e∣∣ = 2jα

√
τDe(u)

}
,

then tj (ω) � τ for each ω ∈ Ω ′ and j = 0, . . . , � 2
Cα

�. Now the strong Markov property of the process Xx
t , the fact

that τ − tj ∈ [0, τ ], and (2.14) imply that for j = 0, . . . , � 2
Cα

� the following conditional probability satisfies

PΩ

(∣∣(Xx
τ − x

) · e∣∣ ∈ (
(2j − 1)α

√
τDe(u), (2j + 1)α

√
τDe(u)

) ∣∣ Btj

)
> CαχΩ ′(ω),

with Btj the σ -algebra corresponding to the stopping time tj . Thus

PΩ

(∣∣(Xx
τ − x

) · e∣∣ ∈ (
(2j − 1)α

√
τDe(u), (2j + 1)α

√
τDe(u)

))
>

Cα

2

for j = 0, . . . , � 2
Cα

�. Since Cα
2 (� 2

Cα
� + 1) > 1, this is a contradiction, thus proving (2.15).

Now (2.15) and the almost sure continuity of Xx
t in t show for each x ∈ R

d and each j � 1,

PΩ

(∣∣(Xx
τ − x

) · e∣∣ � 4j
√

τDe(u)

C

)
�

(
1

2

)j

.

That, however, means

EΩ̃

(∣∣(Xx
τ − x

) · e∣∣2) � 16τDe(u)

C2

∑
j�1

j2
[(

1

2

)j−1

−
(

1

2

)j]
= 96τDe(u)

C2
< C̃τDe(u),

contradicting (2.7). This finishes the proof of Theorem 2.1. �
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3. Pulsating front speed in 2D

We will now prove Theorem 1.1. The upper bound in (1.7) is immediate from the results in [25]. Indeed, the same
bound has been proved there for KPP reactions with C2(f ) = C

√
f ′(0)(1 + √

f ′(0)). One thus only needs to apply
this result to some KPP f̃ such that f � f̃ and ‖f (s)/s‖∞ = f̃ ′(0), and use the fact that c∗

e (u,f ) � c∗
e (u, f̃ ) due to

f � f̃ .
We will now prove the lower bound in (1.7) using Theorem 2.1 coupled with the following bound on the width of

the front in terms of its speed. We note that we can assume Tt > 0. This has been proved in [2] for all ignition reactions
(and also for positive reactions with f ′(0) > 0), and the lower bound in (1.7) for any ignition reaction f̃ � f proves
the lower bound for f because again c∗

e (u, f̃ ) � c∗
e (u,f ).

Theorem 3.1. There is C0 > 0 such that for any 1-periodic incompressible mean-zero C1,δ flow u on R
2, any unit

vector e ∈ R
2, and any combustion-type reaction f the following holds. If f � mχ[ζ,ξ ] for some m > 0 and 0 < ζ <

ξ < 1, ε ∈ (0, (ξ − ζ )/2), and T (t, x) is a pulsating front for (1.1) with speed c > 0 and Tt > 0, then there is z ∈ R

such that for any t ∈ R any connected set B with

B ⊆ {
x ∈ R

2
∣∣ x · e � z + ct + cC0

(
m−1 + ε−2) + 2 and T (t, x) � ζ + ε

} ≡ B+
t

or

B ⊆ {
x ∈ R

2
∣∣ x · e � z + ct − cC0

(
m−1 + ε−2) − 2 and T (t, x) � ξ − ε

} ≡ B−
t

satisfies diam(B) � 1
10 .

Remark. The above form of this result will be sufficient for our purposes. Its proof in fact shows that the set of x

such that T (t, x) � ζ + ε resp. T (t, x) � ξ − ε covers less than 1% of any unit square lying in the half-plane x · e �
z + ct + cC0(m

−1 + ε−2) + 2 resp. x · e � z + ct − cC0(m
−1 + ε−2) − 2 (and this bound decreases as C0 increases).

That is, for any t , outside of a spatial strip of width 2cC0(m
−1 + ε−2) + 4, values of T (t, ·) are mostly outside of

[ζ + ε, ξ − ε]. This yields a bound on the width of the front in terms of its speed.

Proof. Let T (t, x) = U(x · e − ct, x) with U(s, x) satisfying (1.2), so that

−cUs + u · ∇xU + u · eUs = �xU + Uss + 2e · ∇xUs + f (U). (3.1)

Integrating this over Γ ≡ R × Γ0 ≡ R × [0,1]2 and using 1-periodicity of U in x, (1.2), and u being incompressible
and mean zero, we get∫

Γ

f
(
U(s, x)

)
ds dx = c. (3.2)

Similarly, multiplying (3.1) by U and integrating over Γ yields

c

2
+

∫
Γ

|∇xU + eUs |2 ds dx =
∫
Γ

f
(
U(s, x)

)
U(s, x) ds dx.

The right hand side is bounded above by c thanks to (3.2) and so∫
Γ

f
(
T (t, x)

)
dt dx = 1, (3.3)

∫
Γ

∣∣∇xT (t, x)
∣∣2

dt dx � 1

2
. (3.4)

Let T̄ (t) ≡ ∫
Γ0

T (t, x) dx ∈ [0,1] so that T̄t > 0 because Tt > 0. Assume that T̄ (t) ∈ [ζ + ε
2 , ξ − ε

2 ] for some t .

Then the Poincaré inequality ‖T (t, ·) − T̄ (t)‖L2(Γ ) � C1‖∇xT (t, ·)‖L2(Γ ) for some C1 � 2 gives either ‖T (t, ·) −

0 0
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T̄ (t)‖L2(Γ0)
� ε

4 or ‖∇xT (t, ·)‖L2(Γ0)
� ε

4C1
. In the first case the set of x ∈ Γ0 with |T (t, x) − T̄ (t)| � ε

2 has measure

less than 1
2 and so

∫
Γ0

f (T (t, x)) dx � m
2 . Thus (3.3) and (3.4) show that the interval of all t with T̄ (t) ∈ [ζ + ε

2 , ξ − ε
2 ]

has length at most 2
m

+ 8C2
1

ε2 .

Assume now T̄ (t) � ζ + ε
2 and that there is a connected set B ⊆ {x ∈ Γ0 |T (t, x) � ζ +ε} with diam(B) � 1

10 (such
t form an interval due to Tt > 0). Projection of B on one of the axes (let us say x1) is then an interval I of length more
than 1

16 . If for each x1 ∈ I there is x2 ∈ [0,1] such that T (t, x1, x2) � ζ + 3ε
4 , then ‖∇xT (t, ·)‖L2(Γ0)

� ε
16 . If on the

other hand T (t, y, x2) � ζ + 3ε
4 for some y ∈ I and all x2 ∈ [0,1], then there is J ⊆ [0,1] of measure at least 1

2 such
that either T (t, x1, x2) � 5ε

8 for all (x1, x2) ∈ [0,1] × J or T (t, x1, x2) � 5ε
8 for each x2 ∈ J and some x2-dependent

x1 ∈ [0,1]. In the first case ‖T (t, ·) − T̄ (t)‖L2(Γ0)
� ε

8 , and the Poincaré inequality gives ‖∇xT (t, ·)‖L2(Γ0)
� ε

8C1
. In

the second case ‖∇xT (t, ·)‖L2(Γ0)
� ε

12 . In either case we have ‖∇xT (t, ·)‖L2(Γ0)
� ε

8C1
, so the interval of the t above

has length at most
32C2

1
ε2 .

The same is true for t such that T̄ (t) � ξ − ε
2 and there is a connected set B ⊆ {x ∈ Γ0 |T (t, x) � ξ − ε} with

diam(B) � 1
10 . Thus there is an interval [a, b] with b − a � 2

m
+ 72C2

1
ε2 such that for t � a connected subsets of

{x ∈ Γ0 | T (t, x) � ζ + ε} have diameter at most 1
10 and the same is true for t � b and connected subsets of {x ∈ Γ0 |

T (t, x) � ξ − ε}.
Finally, let z ≡ −c a+b

2 and C0 ≡ 36C2
1 , and assume that for some t a connected set B ⊆ B+

t contains a point x̃.
Then with �x̃� the integer part of x̃,

T (t, x) = U(x · e − ct, x) = U
(
x · e − ct, x − �x̃�) = T

(
t − �x̃� · e

c
, x − �x̃�

)
.

We have using x̃ ∈ B ,

t − �x̃� · e
c

�
√

2

c
− z

c
− C0

(
m−1 + ε−2) − 2

c
� a + b

2
− 36C2

1

(
m−1 + ε−2) � a

and so diam(B) = diam(B − �x̃�) � 1
10 by the statement in the last paragraph (in fact, to handle B not lying entirely

inside a square with integer corners, we need to consider Γ0 = [− 1
10 ,1 + 1

10 ]2, which only changes C0 by a fixed
factor). A similar argument takes care of sets B ⊆ B−

t , thus finishing the proof.
Notice that if B is not required to be connected in the proof, then one still obtains the bound 1

16 on the measures of
its projections on the axes. This proves the remark. �
Proof of Theorem 1.1. As mentioned above, we only need to prove the lower bound in (1.7) and only assuming

Tt > 0. For ζ ∈ (0,1) let ξ ≡ 1 − (1−ζ )2

8 and ε ≡ (1−ζ )2

8 , and pick Mζ ,αζ > 0 so that with C from Theorem 2.1,

ζ + ε

ξ − ε
+ 1 − (ξ − ε)e−Mζ

1 − (ζ + ε)
< 1 − Cαζ . (3.5)

This is possible because if ζ ′ > ζ + ε and 1 − (1−ζ ′)2

2 < ξ − ε (e.g., ζ ′ ≡ 1+7ζ
8 ), then

ζ + ε

ξ − ε
+ 1 − (ξ − ε)

1 − (ζ + ε)
<

ζ ′

1 − (1−ζ ′)2

2

+
(1−ζ ′)2

2

1 − ζ ′ = 1 − (1 + ζ ′2)(1 − ζ ′)
2(1 + 2ζ ′ − ζ ′2)

< 1.

Let us choose ζ so that f is strictly positive on [ζ, ξ ] and denote m ≡ mins∈[ζ,ξ ] f (s) > 0. It is sufficient to assume
that

m � Mζ ζ and f (s) � m

ζ
s for s ∈ [0,1]. (3.6)

Indeed, otherwise consider f̃ (s) ≡ min{f (s), m
ζ
s,Mζ s} (which satisfies (3.6) with m̃ ≡ mins∈[ζ,ξ ] f̃ (s) =

min{m,Mζ ζ } in place of m) instead of f and then use c∗
e (u, f̃ ) � c∗

e (u,f ). Note also that (1.9) for all mζ (f ) ∈
(0,Mζ ζ ) proves (1.9) for all mζ (f ) > 0 (with a different Cζ ). So let us assume (3.6).
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Let T be a pulsating front for (1.1) in direction e and with speed c∗
e (u,f ), assume z = 0 in Theorem 3.1 (otherwise

shift T in time by z/c∗
e (u,f )), and let τ ≡ Mζ ζ/m � 1. Theorem 2.1 and (3.5) show that there is x ∈ R

2 and t ∈ [0, τ ]
such that either

PΩ

((
Xx

t − x
) · e � −αζ

√
τDe(u)

)
>

ζ + ε

ξ − ε
(3.7)

or

PΩ

((
Xx

t − x
) · e � αζ

√
τDe(u)

)
>

1 − (ξ − ε)e−tm/ζ

1 − (ζ + ε)
. (3.8)

We now claim that

αζ

√
τDe(u) − 1

10
� c∗

e (u,f )t + 2c∗
e (u,f )C0

(
m−1 + ε−2) + 8. (3.9)

If so, then t � τ = Mζ ζ/m gives

C1
√

mDe(u) − C2m

C3 + C4m
� c∗

e (u,f )

with some ζ -dependent positive constants. Since De(u) � 1 by (1.6), this then gives C5
√

mDe(u) � c∗
e (u,f ) for

some C5 > 0 and all small enough m > 0, thus proving (1.7) and (1.9) for all mζ (f ) > 0.
It remains to prove (3.9), and it is sufficient to consider αζ

√
τDe(u) � 1

10 . Assume first (3.7). Due to spatial
periodicity of u we can assume for x, t from (3.7),∣∣x · e − c∗

e (u,f )t − c∗
e (u,f )C0

(
m−1 + ε−2) − 4

∣∣ � 1. (3.10)

We can also assume

T (t, x) � ζ + ε (3.11)

at the expense of changing (3.7) to

PΩ

((
Xx

t − x
) · e � 1

10
− αζ

√
τDe(u)

)
>

ζ + ε

ξ − ε
. (3.12)

This is because Theorem 3.1 shows that the largest connected set B of points satisfying (3.10) but not (3.11) and
containing x (if it is non-empty) has diam(B) < 1

10 (recall that z = 0). Hence almost sure continuity of Xx
t in t shows

for any β � − 1
10 ,

PΩ

((
Xx

t − x
) · e � β

)
� sup

y∈∂B
s∈[0,t]

PΩ

((
X

y
s − x

) · e � β
)
� sup

y∈∂B
s∈[0,t]

PΩ

((
X

y
s − y

) · e � β + 1

10

)
.

Let Γ be the union of all connected components of the set Γ ′ ≡ {y ∈ R
2 |T (0, y) � ξ − ε} lying entirely in

{y ∈ R
2 |y · e � −c∗

e (u,f )C0(m
−1 + ε−2)− 2}. Then by Theorem 3.1, each connected component of Γ has diameter

at most 1
10 and

Γ ⊇ Γ ′ ∩ {
y ∈ R

2
∣∣ y · e � −c∗

e (u,f )C0
(
m−1 + ε−2) − 3

}
. (3.13)

Let ψ solve (1.3) on the domain R
2 \ Γ with ψ(0, y) = T (0, y) for y ∈ R

2 \ Γ and ψ(s, y) = T (s, y) (� ξ − ε

because Tt > 0) for y ∈ ∂Γ . Then similarly to (2.2) and (2.3),

ψ(t, x) = EΩ

(
T

(
0,Xx

t

)
χσ>t + T

(
t − σ,Xx

σ

)
χσ�t

)
� EΩ

(
T

(
0,Xx

t

)
χσ>t + (ξ − ε)χσ�t

)
, (3.14)

with σ = σ(ω) ≡ infXx
s (ω)∈Γ s, and

0 � ψ(t, x) � T (t, x) � etm/ζψ(t, x). (3.15)

If (3.9) is violated, then (3.10) and (3.12) show that
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PΩ

(
Xx

t · e � −c∗
e (u,f )C0

(
m−1 + ε−2) − 3

)
>

ζ + ε

ξ − ε
,

so that (3.13) and (3.14) yield ψ(t, x) >
ζ+ε
ξ−ε

(ξ − ε) = ζ + ε. But this contradicts (3.11) and (3.15), so (3.9) is valid
and we are done in the case when (3.7) holds.

Let us now assume (3.8). Here one uses a similar argument with (3.10), (3.11), and (3.12) replaced by
∣∣x · e + c∗

e (u,f )C0
(
m−1 + ε−2) + 4

∣∣ � 1, (3.16)

T (0, x) � ξ − ε, (3.17)

PΩ

((
Xx

t − x
) · e � αζ

√
τDe(u) − 1

10

)
>

1 − (ξ − ε)e−tm/ζ

1 − (ζ + ε)
(3.18)

and Γ the union of all connected components of the set Γ ′ ≡ {y ∈ R
2 |T (t, y) � ζ + ε} lying entirely in {y ∈ R

2 |y ·
e � c∗

e (u,f )t + c∗
e (u,f )C0(m

−1 + ε−2) + 2}. Again each connected component of Γ has diameter at most 1
10 and

Γ ⊇ Γ ′ ∩ {
y ∈ R

2
∣∣ y · e � c∗

e (u,f )t + c∗
e (u,f )C0

(
m−1 + ε−2) + 3

}
. (3.19)

If (3.9) is violated, then (3.16) and (3.18) show

PΩ

(
Xx

t · e � c∗
e (u,f )t + c∗

e (u,f )C0
(
m−1 + ε−2) + 3

)
>

1 − (ξ − ε)e−tm/ζ

1 − (ζ + ε)
,

and so (3.19) and

ψ(t, x) = EΩ

(
T

(
0,Xx

t

)
χσ>t + T

(
t − σ,Xx

σ

)
χσ�t

)
� EΩ

(
T

(
0,Xx

t

)
χσ>t + (ζ + ε)χσ�t

)
(with ψ defined as above) yield

ψ(t, x) <
1 − (ξ − ε)e−tm/ζ

1 − (ζ + ε)
(ζ + ε) +

(
1 − 1 − (ξ − ε)e−tm/ζ

1 − (ζ + ε)

)
= (ξ − ε)e−tm/ζ .

This again contradicts (3.15), (3.17), and Tt > 0, so (3.9) is also valid when (3.8) holds. �
4. Quenching by cellular flows

Proof of Theorem 1.4. It is obviously equivalent to consider the problem on R×T with T0 supported in [−L,L]×T,
which is what we will do (here T = T

1). It has been proved in [20] that periodic non-degenerate cellular flows in two
dimensions have De(Au) ∼ A1/2 as A → ∞ (the special case of ucell has been treated earlier in [12]). It is therefore
enough to prove that a 1-periodic symmetric non-degenerate cellular flow u quenches solutions of (1.1) when

∥∥f (s)/s
∥∥∞ � γθ (4.1)

and T0 is supported in [−bθ

√
De(u), bθ

√
De(u) ] × T, with e = e1 = (1,0) and some bθ > 0. Having Theorem 2.1 at

hand, the proof is similar to that of Lemma 4.2 in [30].
Let us prove the last claim. We only need to consider large enough De(u) because solutions supported in [−b′

θ , b
′
θ ]

are quenched for any u provided (4.1) holds and b′
θ > 0 is small enough [29, Theorem 1.1(ii)]. By the comparison

principle, it is sufficient to consider initial data T0(x) ≡ χ[−L,L](x1) with L ≡ � θ2

64C

√
De(u) − θ

2 � and C from Theo-
rem 2.1 (then we can take bθ ≡ θ2(128C)−1 min{1,2b′

θ /3} and have bθ

√
De(u) � max{b′

θ ,L}). Let ψ be the solution
of (1.3) with initial datum ψ0 ≡ T0. We first claim that there is a continuous curve h : [0,1] → [0,1] × T such that
h1(0) = 0 and h1(1) = 1 (with the subscript 1 again denoting the first coordinate of a vector), and for all s ∈ [0,1] and
t � 1,

ψ
(
t, h(s)

)
� θ

4
. (4.2)

To this end we let φ be the solution of (1.3) with initial condition φ(0, x) ≡ χ[−K−2,K](x1) where K ≡ �8Lθ−1�.
Theorem 2.1 with
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α ≡ K + 2√
De(u)

� 8L + 4θ

θ
√

De(u)
� θ

8C

shows that there are τ � 1 and y ∈ [−1,0] × T such that

φ(τ, y) = PΩ

((
Xy

τ

)
1 ∈ [−K − 2,K]) � θ

8
.

The maximum principle for (1.3) implies that the connected component of the set
{
(t, x) ∈ [0, τ ] × R × T

∣∣∣ φ(t, x) � θ

8

}

containing (τ, y) must intersect
{
x ∈ R × T

∣∣∣ φ(0, x) � θ

8

}
= (

R \ [−K − 2,K]) × T.

Since by symmetry φ(t, x1, x2) = φ(t,−2 − x1, x2) for x1 � 0, this means that there is a curve h(s) joining {0} × T

and {K} × T such that for each s there is τs � τ with

φ
(
τs, h(s)

) = PΩ

((
Xh(s)

τs

)
1 ∈ [−K − 2,K]) � θ

8
. (4.3)

Lemma 2.1(iii) in [30] shows for any M ∈ N, t � 0, and any 1-periodic symmetric flow,

PΩ

(∣∣Xy
t

∣∣ � M
)
�

⌈ |y1|
M

⌉−1

.

Applying this with M = L, y = X
h(s)
τs and t − τs (for t � 1 � τs ) in place of t , we obtain using (4.3) for any t � 1

and s,

ψ
(
t, h(s)

) = PΩ

(∣∣Xh(s)
t

∣∣ � L
)
� θ

8
+

(
1 − θ

8

)⌈
K

L

⌉−1

� θ

8
+

(
1 − θ

8

)
θ

8
� θ

4

which is (4.2) (after reparametrization of h and restriction to s ∈ [0,1]).
Symmetry of u and ψ0 implies that (4.2) holds for h(s) extended to s ∈ [−1,1] by h(−s) = (−h1(s), h2(s)).

Finally, (4.2) applies to h(s) extended periodically (with period 2) onto R. The last claim holds because ψ(t, x) �
ψ(t, x + (2,0)) when x1 � −1 (and ψ(t, x) � ψ(t, x − (2,0)) when x1 � 1). This in turn follows because ψ(t, x) −
ψ(t, x + (2,0)) solves (1.3) with initial datum that is symmetric across x1 = −1 and non-negative on [−1,∞) × T,
and hence stays such by the symmetry of u across x1 = −1 (the latter is due to the symmetry of u across x1 = 0 and
periodicity).

This means that ‖ψ(t + 1, ·)‖∞ � ‖η(t, ·)‖∞ + θ
4 where η is the solution of (1.3) on the torus [−1,1] × T

(with −1 and 1 identified) with η(0, x) ≡ 1 and η(t, h(s)) = 0 for t > 0 and s ∈ [−1,1]. Then Lemma 2.3 in [30]
shows that there is a universal constant δ > 0 such that ‖ψ(t + 1, ·)‖∞ � 2e−δt + θ

4 . We let τθ ≡ 1
δ

ln 8
θ

+ 1 so that

‖ψ(τθ , ·)‖∞ � θ
2 . If now γθ ≡ τ−1

θ ln 2, then
∥∥T (τθ , ·)

∥∥∞ � eγθ τθ
∥∥ψ(τθ , ·)

∥∥∞ � θ.

The maximum principle then implies that for t � τθ the function T solves (1.3) with ‖T (t, ·)‖∞ � θ , and quenching
follows. �
5. A counterexample in 3D

In this last section we show that our main result, Theorem 1.1 does not hold in three and more dimensions. The
counterexample we provide also shows a breaking of symmetry in more dimensions. Specifically, despite the fact
that De(u) = D−e(u) for any e and u, it is not true that c∗

e (u,f )c∗−e(u,f )−1 is bounded by u-independent positive
constants when d � 3.
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Theorem 5.1. Assume d � 3, e = e1, and f is any KPP reaction. Then there is no C1 > 0 such that for any 1-periodic
incompressible mean-zero C1,δ flow u on R

d we have c∗
e (u,f ) � C1

√
De(u), and there is no C2 < ∞ such that for

any such u we have c∗
e (u,f ) � C2

√
De(u).

Proof. We will use the following two results from [32]:

lim
A→∞

c∗
e (Au,f )

A
= sup

w∈I
‖∇w‖2

2�f ′(0)‖w‖2
2

∫
Td (u · e)w2 dx

‖w‖2
2

,

lim
A→∞

√
De(Au)

A
= sup

w∈I

∫
Td (u · e)w dx

‖∇w‖2
,

where

I ≡ {
w ∈ H 1(

T
d
) ∣∣ u · ∇w = 0

}
.

We let e ≡ e1 and we will assume d = 3 since the general case is analogous. Let χ � 0 be a smooth characteristic
function of the unit disc in R

2 and for small R > 0 let χR(x2, x3) ≡ R2‖χ‖−1
1

∑
j,k∈Z2 χ(

x2−j
R

,
x3−k

R
). We will con-

sider the mean-zero periodic shear flows AuR(x) = (AuR(x2, x3),0,0) with A ∈ R and uR(x2, x3) ≡ χR(x2, x3) − 1.
In this case the elements of I are precisely the w ∈ H 1(T3) which are independent of x1 and the above formulae
become

lim
A→∞

c∗
e (AuR,f )

|A| = sup
w∈I ′

‖∇w‖2
2�f ′(0)‖w‖2

2

∫
T2 uRw2 dx2 dx3

‖w‖2
2

, (5.1)

lim
A→−∞

c∗
e (AuR,f )

|A| = sup
w∈I ′

‖∇w‖2
2�f ′(0)‖w‖2

2

∫
T2(−uR)w2 dx2 dx3

‖w‖2
2

, (5.2)

lim
A→±∞

√
De(AuR)

|A| = sup
w∈I ′

∫
T2 uRw dx2 dx3

‖∇w‖2
, (5.3)

where I ′ ≡ H 1(T2) and e = e1.

For (x2, x3) ∈ [− 1
2 , 1

2 ]2 = T
2 and r =

√
x2

2 + x2
3 let wR(x2, x3) = max{0,min{log 1

2R
, log 1

2r
}}. Taking w ≡ wR we

see that RHS of (5.3) �
√

log 1
R

for small R. On the other hand, −uR � 1 and so RHS of (5.2) � 1. This proves the
first claim.

Now let w̃R be the maximizer of the RHS of (5.3), which exists by [32], normalized by ‖∇w̃R‖2 = 1 and∫
T2 w̃R dx2 dx3 = 0. The Poincaré inequality then gives ‖w̃R‖2

2 � C̃ for some C̃ � 1. Let C ≡ max{C̃, (f ′(0))−1},
choose KR ∈ R so that ‖w̃R +KR‖2

2 = C, and define wR ≡ w̃R +KR . Then 1 = ‖∇wR‖2
2 = ‖wR‖2

2/C � f ′(0)‖wR‖2
2

(so wR enters in the RHS of (5.1)) and wR also maximizes the RHS of (5.3). Schwarz inequality, ‖wR‖2
2 = C,

uR = χR − 1, and the previous paragraph then imply

∫

T2

χRwR dx2 dx3 + √
C �

∫

T2

uRwR dx2 dx3 = RHS of (5.3) �
√

log
1

R
(5.4)

for small R. But then taking w ≡ wR in (5.1) and using Schwarz inequality,
∫

T2 χR dx2 dx3 = 1, and (5.4) gives

RHS of (5.1) � 1

C

∫

T2

χRw2
R dx2 dx3 − 1 �

(
∫

T2 χRwR dx2 dx3)
2

C
∫

T2 χR dx2 dx3
− 1 �

(
RHS of (5.3)

)2

for small R. This together with (5.4) proves the second claim and the proof is finished. �
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