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Existence of weak solutions for the incompressible Euler equations
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Abstract

Using a recent result of C. De Lellis and L. Székelyhidi Jr. (2010) [2] we show that, in the case of periodic boundary conditions
and for arbitrary space dimension d � 2, there exist infinitely many global weak solutions to the incompressible Euler equations
with initial data v0, where v0 may be any solenoidal L2-vectorfield. In addition, the energy of these solutions is bounded in time.
© 2011

1. Introduction

Let Q = [0,2π ]d , d � 2, and L2
per(Q) be the space of Q-periodic functions in L2

loc(R
d ;Rd), i.e. u(x +2πl) = u(x)

for a.e. x ∈ R
d and every l ∈ Z

d . Then, as usual when dealing with periodic boundary conditions for fluid equations
(cf. for instance [1]), we define the space

Hm
per(Q) =

{
v ∈ L2

per(Q):
∑
k∈Zd

|k|2m
∣∣v̂(k)

∣∣2
< ∞, v̂(k) · k = 0 for every k ∈ Z

d, and v̂(0) = 0

}
,

where v̂ : Zd → C
d denotes the Fourier transform of v. We shall write H(Q) instead of H 0

per(Q) and Hw(Q) for the

space H(Q) equipped with the weak L2 topology.
Recall the incompressible Euler equations

∂tv + div(v ⊗ v) + ∇p = 0,

divv = 0,

where v⊗v is the matrix with entries vivj and the divergence is taken row-wise. A vectorfield v ∈ L∞((0,∞);H(Q))

is called a weak solution of these equations with Q-periodic boundary conditions and initial data v0 ∈ H(Q) if
∞∫

0

∫
Q

(v · ∂tφ + v ⊗ v : ∇φ)dx dt +
∫
Q

v0(x)φ(x,0) dx = 0

for every Q-periodic divergence-free φ ∈ C∞
c (Rd × [0,∞);Rd).
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Unlike in the case of Navier–Stokes equations, for which the existence of global weak solutions has been known
since the work [3] of J. Leray, the existence problem for weak solutions of Euler has remained open so far. In this
paper we show that the existence of weak solutions is a consequence of C. De Lellis’ and L. Székelyhidi’s work [2].
More precisely, we have

Theorem 1. Let v0 ∈ H(Q). Then there exists a weak solution v ∈ C([0,∞);Hw(Q)) (in fact, infinitely many) of the
Euler equations with v(0) = v0. Moreover, the kinetic energy

E(t) := 1

2

∫
Q

∣∣v(x, t)
∣∣2

dx

is bounded and satisfies E(t) → 0 as t → ∞.

Note that the condition v̂(0) = 0 in the definition of H(Q), i.e.
∫
Q

v dx = 0, is no actual constraint due to Galilean
invariance of the Euler equations.

Our proof of this theorem is very simple: Owing to [2], it suffices to construct a suitable so-called subsolution with
the desired initial data; we obtain such a subsolution by solving the Cauchy problem for the fractional heat equation

∂tv + (−�)1/2v = 0,

v(·,0) = v0,

which is not difficult since, owing to periodicity, we can work in Fourier space.
Although our solutions have bounded energy, they do not satisfy any form of the energy inequality. Indeed,

they exhibit an increase in energy at least at time t = 0, and this increase will be discontinuous (this follows from
e(v0, u0) > 1

2 |v0|2 in the proof below). If one requires, in contrast, that the energy be bounded at all times by the
initial energy, then existence of such weak solutions is not known for arbitrary initial data (but only for an L2-dense
subset of initial data, see [4]). In fact, it is impossible to deduce from Theorem 2 below such an existence theo-
rem, since for smooth initial data the existence of infinitely many weak solutions would contradict well-known local
existence results and weak–strong uniqueness, see [2, Section 2.3].

2. Preliminaries

Before we prove the result of this paper, we recall some notions from [2]. Let S d
0 denote the space of symmetric

trace-free d × d-matrices. Then the generalised energy e : Rd × S d
0 → R is defined by

e(v,u) = d

2
λmax(v ⊗ v − u),

where λmax denotes the largest eigenvalue. e is known to be non-negative and convex, and 1
2 |v|2 � e(v,u) for all v

and u with equality if and only if u = v ⊗ v − |v|2
d

Id (Id being the d × d unit matrix). The following is shown in [2]:

Theorem 2. Let ē ∈ C(Rd × (0,∞)) ∩ C([0,∞);L1
loc(R

d)) be Q-periodic in the space variable and such that
sup0�t<∞

∫
Q

ē(x, t) dx < ∞, and let (v̄, ū, q̄) be a smooth, Q-periodic (in space) solution of

∂t v̄ + div ū + ∇q̄ = 0,

div v̄ = 0 (1)

in R
d × (0,∞) such that

v̄ ∈ C
([0,∞);Hw(Q)

)
,

ū(x, t) ∈ S d
0

for every (x, t) ∈ Q × (0,∞), and

e
(
v̄(x, t), ū(x, t)

)
< ē(x, t)

for every (x, t) ∈ Q × (0,∞).
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Then there exist infinitely many weak solutions v ∈ C([0,∞);Hw(Q)) of the Euler equations with v(x,0) = v̄(x,0)

for a.e. x ∈ Q and

1

2

∣∣v(x, t)
∣∣2 = ē(x, t)

for every t ∈ (0,∞) and a.e. x ∈ Q.

Remark 3. In fact the way we stated Theorem 2 is slightly different from the original formulation in [2] (e.g. we use
periodic boundary conditions). However it is easy to convince oneself that the proof in [2] applies also to the present
situation with only minor modifications.

3. Proof of Theorem 1

By Theorem 2, it suffices to find suitable (v̄, ū, q̄) and ē.
Let us define v̄ and ū by their Fourier transforms as follows:

ˆ̄v(k, t) = e−|k|t v̂0(k), (2)

ˆ̄uij (k, t) = −i

(
kj

|k| ˆ̄vi(k, t) + ki

|k| ˆ̄vj (k, t)

)
(3)

for every k �= 0, and ˆ̄u(0, t) = 0. Note that ūij thus defined equals −Rj v̄i − Ri v̄j , where R denotes the Riesz
transform. Clearly, for t > 0, v̄ and ū are smooth. Moreover, ū is symmetric and trace-free. Indeed, the latter can be
seen by observing

d∑
i=1

(
ki

|k| ˆ̄vi(k, t) + ki

|k| ˆ̄vi(k, t)

)
= 2

|k|e
−|k|t k · v̂0(k) = 0

for all k �= 0 (for k = 0 this is obvious).
Next, we can write Eqs. (1) in Fourier space as

∂t
ˆ̄vi + i

d∑
j=1

kj
ˆ̄uij + iki

ˆ̄q = 0,

k · ˆ̄v = 0 (4)

for k ∈ Z
d , i = 1, . . . , d . It is easy to check that ( ˆ̄v, ˆ̄u,0) as defined by (2) and (3) solves (4) and hence (v̄, ū,0)

satisfies (1).
Concerning the energy, we have the pointwise estimate e(v̄, ū) � C(|v̄|2 + |ū|), and because of∫

Q

∣∣v̄∣∣2
dx =

∑
k∈Zd

| ˆ̄v|2 =
∑
k∈Zd

e−2|k|t |v̂0|2 � ‖v0‖2
L2(Q)

and, similarly,∫
Q

|u|dx � C

∫
Q

|u|2 dx � C‖v0‖2
L2(Q)

,

we conclude that supt>0 ‖e(v̄(x, t), ū(x, t))‖L1(Q) < ∞. Moreover, from the same calculation and the dominated
convergence theorem we deduce∥∥e

(
v̄(x, t), ū(x, t)

)∥∥
L1(Q)

→ 0

as t → ∞ as well as

v̄(t) → v0
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strongly in L2(Q) and

ū(t) → u0 := −(
Rj (v0)i + Ri (v0)j

)
ij

strongly in L1(Q). We claim that then

e(v̄, ū) ∈ C
([0,∞);L1(Q)

)
.

The only issue is continuity at t = 0. First, one can easily check that the map

(v,u) 
→ e

(
v√|v| , u

)

is Lipschitz continuous with Lipschitz constant, say, L; thus, using the inequality ||a|a − |b|b| � (|a| + |b|)|a − b|,
we have∫

Q

∣∣e(v̄, ū) − e(v0, u0)
∣∣ � L

∫
Q

(∣∣|v̄|v̄ − |v0|v0
∣∣ + |ū − u0|

)
dx

� 2L sup
t�0

∥∥v̄(t)
∥∥

L2

∥∥v̄(t) − v0
∥∥

L2 + L‖ū − u0‖L1 → 0

as t → 0. This proves the claim.
Therefore, ē defined by

ē(x, t) := e
(
v̄(x, t), ū(x, t)

) + min

{
t,

1

t

}

satisfies the requirements of Theorem 2 and, in addition,
∫
Q

ē dx → 0 as t → ∞. Theorem 2 then yields the desired
weak solutions of Euler. �
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