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Abstract

We study the existence, uniqueness, and stability of self-similar expanders of the harmonic map heat flow in equivariant settings.
We show that there exist selfsimilar solutions to any admissible initial data and that their uniqueness and stability properties are
essentially determined by the energy-minimising properties of the so-called equator maps.
© 2011 . .

Résumé

On étudie l’existence, l’unicité et la stabilité de solutions auto-similaires issues d’une singularité, pour le flot gradient des
applications harmoniques, dans le cadre équivariant. On montre l’existence de telles solutions auto-similaires, et comment leurs
propriétés d’unicité et de stabilité sont étroitement reliées à la minimisation ou non de l’énergie de Dirichlet par l’application
équateur.
© 2011

1. Introduction

1.1. The harmonic map heat flow and its solutions

The harmonic map heat flow is defined as the negative gradient flow of the Dirichlet energy of maps between
manifolds. For a map u(x, t) from R

d ×[0,∞) to a manifold N , which we see as embedded in some Euclidean space
with second fundamental form Γ , this equation reads{

∂tu − �u = Γ (u)(∇u,∇u) on R
d × [0,∞),

u(t = 0) = u0.

Choosing u0 ∈ H 1 (finite energy data), Struwe [36], Chen [5], and Chen and Struwe [6] (see also Rubinstein, Sternberg
and Keller [30]) were able to build up weak solutions. In the critical dimension d = 2 the question of uniqueness of
weak solutions has been analysed by Freire [12], Topping [38], Bertsch, dal Passo and Van der Hout [1] and the
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second author of this paper [31]. On the other hand, the question of uniqueness is still open in the supercritical
dimensions d � 3 that we consider here. On the one hand, examples of non-uniqueness have been obtained by Coron
[8] and Hong [18]. On the other hand uniqueness can be obtained by working at the scaling of the equation: Koch and
Lamm [21] proved local well-posedness for data which are close in L∞ to a uniformly continuous map; Wang [40]
obtained local well-posedness for data small enough in BMO; finally Lin and Wang [22] showed uniqueness in
C([0, T ],W 1,n).

1.2. Equivariant setting

We shall assume that the target manifold is spherically symmetric, more precisely that it admits coordinates
(s,ω) ∈ R × S

n−1 in which its metric reads ds2 + g2(s) dω2
Sn−1 . We shall furthermore assume that the solution map is

equivariant, namely in these coordinates u(t, x) = (h(t, |x|),χ( x
|x| )), where χ is a k-eigenmap, see Section 2 for the

details. Then the above equation reduces to a scalar one:⎧⎨⎩ht − hrr − d − 1

r
hr + k

r2

[
gg′](h) = 0,

h(t = 0) = h0.

The archetype of such a situation is given by corotational maps into the d dimensional sphere, in which case g = sin,
k = 1, χ = Id , and the ansatz reads u(t, x) = (h(t, |x|), x

|x| ). The equator of the sphere corresponds to the solution
h ≡ π

2 ; it is a trivial solution of the harmonic map heat flow. In our more general equivariant framework, an equator
of a rotationally symmetric manifold is a lateral sphere of N with locally maximal diameter; it corresponds to the
constant in time solution of the harmonic map flow given by h ≡ s�, s� a local maximum of g2.

1.3. Obtained results: existence and uniqueness of self-similar solutions

We investigate the above equation with data of the type h0 ≡ s ∈ R; the expected solutions are self-similar, i.e. of
the type

h(x, t) = ψ

( |x|√
t

)
.

We first establish (in Theorem 2.3) the existence of such a self-similar profile for any s. The next question is that of
uniqueness; roughly speaking, we are able to prove the equivalence of the two following statements (see Theorems 2.2
and 2.3 for the details):

• For any given s, there exists a unique self-similar profile.
• The equator map h ≡ s� minimises the Dirichlet energy on the unit ball among all functions in the same equivari-

ance class and with prescribed value h = s� on the boundary of the ball.

This equivalence stated above can be established either by ODE, or variational methods; we follow both paths,
which yield complementary results. We would like to mention that parts of the above result were known to Angenent,
Ilmanen and Velazquez (unpublished work, announced in [19]). Also, Biernat and Bizon [2] obtained numerical and
analytical results for the above problem.

1.4. Implications for the uniqueness of solutions to the Cauchy problem

The self-similar solutions we consider are (locally in space) of finite energy; actually, they barely miss the condi-
tions for which uniqueness or local well-posedness was stated above, thus proving the optimality of our results.

Another non-uniqueness result for the harmonic map flow from R
3 to the sphere is due to Coron [8], see also

Hong [18]. These arguments are more indirect and lead to only two (genuinely) different solutions, as opposed to ours,
which yield a precise description of the non-unique solutions and a large number of genuinely different solutions.
Though Coron’s approach is very different from ours, both, interestingly enough, rely on the energy-minimising
properties of certain harmonic maps.
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Lastly, incoming self-similar solutions u(x, t) = v( x√−t
), t < 0 have drawn a lot of attention, since they provide

instances of singularity formation, or blow up, from smooth data: see Ilmanen [19], Fan [11] and Gastel [15]. A com-
bination of their results and ours yields, in some cases, non-unique continuations after the blow up time. Biernat and
Bizon [2] studied the question of continuation if the blow up forms along a certain profile which is numerically stable;
they gathered analytic and numerical evidence for unique continuation in that case.

1.5. Related results: wave maps and nonlinear heat equation

A result similar to the one above is known for the wave map equation: see Shatah [33], Cazenave, Shatah and
Tahvildar Zadeh [4], and the first author of the present article [16].

The equivalence stated above is also reminiscent of the situation for the nonlinear heat equation with power non-
linearity:{

∂tv − �v = |v|αv on R
d × [0,∞),

v(t = 0) = v0.

In the supercritical range, i.e. for α > 4
d−2 , the equation with self-similar data v0 = �

|x|α yields self-similar solutions

v(t, x) = t−1/αψ( r√
t
). With respect to the issue of uniqueness it turns out that there are deep analogies between this

equation and the harmonic map heat flow: the analog of the equator map is the stationary solution β

|x|2/α , with β =
( 2
α
(d − 2 − 2

d
))1/α , and it is stable if and only if self-similar solutions are unique: this is the case if α > 4

d−4−2
√

d−1
.

For this and related results we refer to [17,41,26,10,13,35,25,24].

1.6. Obtained results: stability of self-similar solutions

In Theorems 2.5, 2.6, and 2.7, we examine the stability of our self-similar solutions, with respect to small perturba-
tions of the data at time 0, and at time 1. We are not able to give a complete picture, but we can characterise to a large
extent stable and unstable settings. The methods employed are spectral (in particular the analysis of Sturm–Liouville
problems) for the linearised problem, and resort to nonlinear analysis for the full equation.

2. Statement of the results

2.1. The problem under study

We consider selfsimilar weak solutions of the harmonic map heat flow

∂tu − �u = Γ (u)(∇u,∇u) on R
d × [0,∞) (1)

from Euclidean space R
d into a smooth target manifold N .

We focus here on expanding selfsimilar solutions

u(x, t) = v

(
x√
t

)
, t > 0, x ∈ R

d

for a suitable map v : Rd → N . By the translation invariance of (1) these maps represent all solutions of (1) which are
selfsimilar in forward time-direction up to translations in space-time. Such solutions in the natural energy-space

(u,ut ) ∈ L∞
loc

([0,∞)
)
Ḣ 1

loc

(
R

d
) × L2

loc

(
R

d × [0,∞)
)

(2)

of (1) exist only in supercritical dimensions d � 3.
These self-similar maps correspond to data which are homogeneous of degree 0

u(t = 0)(x) = u0

(
x

|x|
)

, x ∈ R
d \ {0}. (3)

Our aim in the present article will be to understand the existence, uniqueness, and stability properties of the Cauchy
problem for (1) with homogeneous initial data.
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2.2. Geometric setting

We consider maps from a fixed Euclidean space R
d , d � 3, into a smooth rotationally symmetric target manifold

Nn without boundary. We introduce coordinates (s,ω) ∈ R × Sn−1 on N in which the metric is given by

ds2 + g2(s) dω2
n−1.

Here dω2
n−1 denotes the standard metric of the sphere S

n−1 and g shall be a smooth function, symmetric with respect
to each point p where g(p) = 0. For these special values p of the lateral coordinate which represent the poles of N , it
is necessary to assume that |g′(p)| = 1 in order to obtain a smooth manifold. The coordinate s and the function g are
of course periodic if N is compact.

Observe that the (intrinsic) diameter of the lateral sphere

Cs := {
(s,ω): ω ∈ S

n−1}, s ∈ R

is equal to π |g(s)|. We therefore call Cs� an equator of N if s� is a local maximum of g2. Similarly, we call a lateral
sphere whose diameter is locally minimal but positive a minimal sphere.

We consider for the moment both compact and non-compact target manifolds N , but we want to assume throughout
this work that

sup
s∈R

∣∣∣∣ d2

ds2

(
g2)(s)∣∣∣∣ + g2(s)

1 + s2
< ∞. (4)

For simplicity, we also exclude targets for which g′ has roots with multiplicity greater than one or for which the

function s 
→ d2

ds2 (g2)(s) is constant on an interval of positive length.

We consider maps from R
d to N with the following type of symmetry.

Definition 1. Let d,n ∈ N.

(i) We call a map χ : Sd−1 → S
n−1 a (k-)eigenmap, if χ is an eigenfunction of the negative Laplacian −�Sd−1 with

constant energy density

|∇χ |2 = k.

(ii) Let Nn be a rotationally symmetric manifold and let χ : Sd−1 → S
n−1 be an eigenmap. We say that a map

u : Rd → Nn is χ -equivariant if there exists a function h : [0,∞) → R such that

u(x) = Rχh(x) :=
(

h
(|x|), χ(

x

|x|
))

with respect to the rotationally symmetric coordinates introduced on N .

Eq. (1) becomes in equivariant coordinates

ht − hrr − d − 1

r
hr + k

r2
G(h) = 0 (5)

(where G := gg′), see Lemma 3.1. In particular for h ≡ s ∈ R the map Rχh is harmonic and thus a trivial solution of
the harmonic map flow if and only if G(s) = 0, i.e. if Cs is either a pole, a minimal sphere or an equator.

Let us remark that the spectrum of the negative Laplacian on the sphere S
d−1{

l(d − 2 + l): l ∈ N
}

contains no eigenvalues smaller than d − 1. An example of a (d − 1)-eigenmap is of course the identity id : Sd−1 →
S

d−1 with the corresponding equivariant maps being the corotational maps x 
→ (h(|x|), x
|x| ). The components of gen-

eral eigenmaps with eigenvalue λl = l(d −2+ l) are given by the restriction of l-homogeneous, harmonic polynomials
to the sphere, see [9, Chapter VIII].
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2.3. Equator maps and their minimising properties

Given any equator Cs� of N and any eigenmap χ , we define the corresponding equator map by

u� = u�
χ,s� := Rχh�

for the constant function h� ≡ s�. Note that this equator map and its properties depend both on the eigenmap χ and
on the value of s�.

Definition 2. Let Cs� be an equator of a rotationally symmetric manifold N and let χ be an eigenmap. We say that
the equator map u�

χ,s� is χ -energy-minimising if it minimises the Dirichlet energy

E
(
u,B1(0)

) = 1

2

∫
B1(0)

|∇u|2 dx

in the set

Fχ,s� := {
Rχh: h : [0,1] → R with h(1) = s�

}
of χ -equivariant functions with the same boundary data.

Notice that we do not demand that the equator map u�
χ,s� be energy-minimising in the larger class of maps

F = {
u ∈ H 1(B1,N): u|∂B1 = u�

χ,s�

∣∣
∂B1

}
.

We cannot exclude the possibility of symmetry breaking in the sense that

inf
v∈F

E(v,B1) < inf
v∈Fχ,s�

E(v,B1).

An example for such an occurrence in a related context of G-equivariant harmonic map was given by Gastel [14]
based on the analysis of singularities by Brezis, Coron and Lieb [3].

The following proposition provides a simple criterion to test whether or not a given equator map is χ -energy-
minimising.

Proposition 2.1. Let d � 3, let Nn be a smooth, rotationally symmetric manifold and let χ : Sd−1 → S
n−1 be a k-

eigenmap. Let Cs� be an equator of N and recall G := g · g′.

(i) If

−4kG′(s�
)
< (d − 2)2, (6)

the equator map is locally (i.e. for small perturbations) χ -energy-minimising.
(ii) If

−4kG′(s�
)
> (d − 2)2, (7)

the equator map u�
χ,s� is not (locally) χ -energy-minimising.

(iii) Suppose that

−4kG′(s) � (d − 2)2 for s ∈ [
s� − S, s� + S

]
where S := 2

√
k

d−2 · ‖g‖∞. Then u�
χ,s� is globally χ -energy-minimising.

Applying the above criterion to the case where the target manifold is the sphere S
d with the standard metric

ds2 + sin(s)2 dω2
d−1 and the maps are corotational, χ = Id , gives the well-known result: the equator map Rχ

π
2 is

energy-minimising if and only if d � 7.
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2.4. Existence and uniqueness results

We are able to prove existence of solutions to (1) for homogeneous data in essentially all cases; notice that we
are dealing with infinite energy solutions, thus the existence theorems by Chen [5] and Chen and Struwe [6] do not
apply here. The question of uniqueness is much more interesting; roughly speaking, we shall prove that solutions to
the Cauchy problem for (1) with homogeneous data are unique if and only if the equator map is energy-minimising.
More precise formulations of this idea are contained in the two following theorems.

We begin with a very general setting (N,χ), where the equator map is not χ -energy-minimising.

Theorem 2.2. Let d � 3, let Nn be a rotationally symmetric manifold such that (4) is satisfied and let χ : Sd−1 → S
n−1

be a fixed eigenmap. Assume that N has an equator map u�
χ,s� which is not χ -energy-minimising.

Then there exists a selfsimilar and χ -equivariant weak solution u ∈ H 1
loc(R

d ×[0,∞)) of the initial value problem
(1), (3) that is not constant in time for the initial data u0 = u�

χ,s� .

In the statement of our uniqueness result we will impose the following restrictions on the function g representing
the metric of N .

Condition (C1). Let Cs� be an equator of a compact, rotationally symmetric manifold N and let s1 < s� < s2 be the
local minima of g2 to the left and to the right of s�, i.e. the local minima of g2 such that g2|[s1,s

�] is increasing while
g2|[s�,s2] is decreasing.

We then demand that

G′(s�
) = min

s∈[s1,s2]
G′(s)

(recall G(s) := g′(s)g(s)).

For manifolds that contain a minimal sphere Cs0 we furthermore impose

Condition (C2). Let k be any given eigenvalue of −�Sd−1 . We say that a rotationally symmetric manifold N fulfils
condition (C2) (for k) if for each minimal sphere Cs0 of N

G′(s0) � d − 1

k
.

Conditions (C1) and (C2) are fulfilled for a wide variety of rotationally symmetric manifolds, in particular for
round spheres and for rotationally symmetric ellipsoids.

Theorem 2.3. Let d � 3, let Nn be a compact, rotationally symmetric manifold and let χ : Sd−1 → S
n−1 be an

eigenmap.

(i) There exists a selfsimilar and equivariant weak solution of (1) for any admissible initial data, i.e. for every map
u0(x) = (s,χ( x

|x| )), s ∈ R.
(ii) Assume that all equator maps of the manifold N are χ -energy minimising and that conditions (C1) and (C2) are

satisfied. Then the solution of (i) is unique in the class of all equivariant and selfsimilar weak solutions.
(iii) Assume that the manifold N has an equator Cs� such that

−4kG′(s�
)
> (d − 2)2,

i.e. such that the corresponding equator map is not even locally energy minimising. Then given any number
K ∈ N, there exists a neighbourhood UK of s� such that the initial value problem (1), (3) has at least K different
weak solutions which are χ -equivariant and selfsimilar for each initial data u0(x) = (s, x ) with s ∈ UK .
|x|
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Remark 2.4.

1. All solutions obtained in Theorems 2.2 and 2.3 satisfy the monotonicity formula of Struwe [37]. For (constant
in time) equivariant harmonic maps this follows since the maps are stationary harmonic (see Lin and Wang
[23, Lemma 7.4.1]). For more general selfsimilar solutions the monotonicity formula can be shown using the
asymptotics of solutions of (14) of Lemma 5.1 below.

2. We can replace assumption (C1) in statement (ii) by demanding that −4kG′(s) � (d − 2)2 for every s ∈ R which
is a weaker assumption in view of Proposition 2.1.

2.5. Stability at time t = 1

In the previous section, we characterised precisely the existence and uniqueness properties of self-similar solutions
to the harmonic map heat flow. Our aim now is to study their stability: we focus in this section on the effect of a
perturbation at time t = 1, and in the next on a perturbation occurring at time t = 0.

Let ψ be one of the self-similar profiles whose existence has been established, and consider a perturbation u =
Rχ [ψ( ·√

t
) + f ]. For data given at t = 1, the Cauchy problem becomes⎧⎨⎩ft − frr − d − 1

r
fr + k

r2

[
G

(
f + ψ

( ·√
t

))
− G

(
ψ

( ·√
t

))]
= 0,

f (t = 1) = f0.

(8)

By scaling invariance, it is of course equivalent to study the problem from t = 1 or any other positive time.
Suppose first that ψ is provided by Theorem 2.2. In the proof given in Section 4 we will construct ψ as the

minimiser of the functional

E(f ) :=
∞∫

0

[∣∣f ′∣∣2 + k

r2

(
g2(f ) − g2(s�

))]
rd−1er2/4 dr,

which is very reminiscent of the well-known monotonicity formula for the harmonic map heat flow [37]. Thus our
first stability result essentially corresponds to a forward time version of the monotonicity formula.

Theorem 2.5. Let ψ be given by Theorem 2.2, and let f solve (8). Then E(f (
√

t ·) + ψ) is a decreasing function of
time.

Even though E is only minimised at ψ , it is not clear to us to what extent E(f (
√

t ·) + ψ) controls f .
Consider now a general profile ψ , given by Theorem 2.3; we want to investigate linear stability. The linearised

version of (8) reads⎧⎨⎩ft − frr − d − 1

r
fr + k

r2
G′

(
ψ

( ·√
t

))
f = 0,

f (t = 1) = f0.

(9)

A spectral analysis of the above problem in self-similar variables will lead to the following result.

Theorem 2.6. Let ψ be given by Theorem 2.3, and let v be a solution of (9).

(i) If ψ is monotone, then∥∥v(t)
∥∥

L2(e
r2
4t rd−1dr)

� t
d
4 −1‖v0‖

L2(e
r2
4 rd−1dr)

. (10)

In particular for d � 4 the function t 
→ ‖v(t)‖
L2(e

r2
4t rd−1dr)

is decreasing.

(ii) If ψ has K local extrema, there exists γ > 0 and K linearly independent initial data v0 such that

‖v‖
L2(e

r2
4t rd−1dr)

� tγ+ d
4 −1.

In particular for d � 4 this corresponds to a growing norm.
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Estimate (10) is optimal; in fact, it is satisfied with equality for the solution v(t) := 1
2t

· x√
t
ψ ′( x√

t
) of (9) which we

obtain by differentiating (5) in time.

2.6. Stability at time t = 0

We focus in this section on the effect of a perturbation at time t = 0.
We start with the most simple type of self-similar solutions: the maps which are constant in time, mapping R

d onto
an equator or a minimal sphere. If u = Rχ(f + s�), the equation under study is⎧⎨⎩ft − frr − d − 1

r
fr + k

r2

[
G

(
f + s�

) − G
(
s�

)] = 0,

f (t = 0) = f0.

(11)

Theorem 2.7. Let d � 3, let Nn be a rotationally symmetric manifold such that (4) is satisfied and let χ : Sd−1 → S
n−1

be a fixed eigenmap. Suppose s� is such that G(s�) = 0; it corresponds to a constant solution of (1) given by u�
χ,s� .

Consider the perturbed equation (11).

(i) If

kG′(s�
)
> − (d − 2)2

4
,

this equation is linearly stable (in more precise terms: the Cauchy problem associated with the linear part of
Eq. (11) is globally well-posed in L2, and the L2 norm is decreasing).

(ii) If

k inf
R

G′ > − (d − 2)2

4
,

there exists a global weak solution f to the above equation, satisfying

‖f ‖2
L∞([0,∞),L2(Rd ))

+ ‖∇f ‖2
L2([0,∞),L2(Rd ))

� ‖f0‖2
2. (12)

(iii) If

G′(s�
)
> 0,

i.e. if s� is the coordinate of a pole or a minimal sphere, the above equation is globally well-posed in L∞ for
small data (in more precise terms: if f0 is small in L∞, there exists a solution f of (11) in L∞([0,∞),L∞),
which is unique in a small enough ball and depends continuously on f0).

Remark 2.8.

1. The weak solutions in (ii) do not share – even locally – the same functional setup as the Struwe solutions: whereas
the former give f ∈ L∞

t L2, the latter would roughly correspond to f ∈ L∞
t Ḣ 1.

2. Notice that the spaces (for the data as well as the solution) for which well-posedness is proved in (ii) and (iii) are at
the same scaling as the equation: their norms are invariant by the scaling which leaves the equation invariant. We
do not claim any optimality for these spaces: there should exist larger spaces in which the equation is well-posed.

3. The above theorem gives sufficient conditions on G′(s�) for various kinds of stability results to hold true. We ask
in Section 7.4 whether they are also necessary. The answer is shown to be yes for (i) and (ii).

For non-constant selfsimilar solutions we obtain the following stability result
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Theorem 2.9. In the setting which was just described, consider the perturbed equation for a self-similar profile: If
u(t) = Rχ [ψ( ·√

t
) + f ] solves (1) then f solves⎧⎨⎩ft − frr − d − 1

r
fr + k

r2

[
G

(
f + ψ

( ·√
t

))
− G

(
ψ

( ·√
t

))]
= 0,

f (t = 0) = f0.

Suppose that ψ is such that G′(ψ(r)) > 0 for all r > 0. Then the above equation is globally well-posed in L∞, namely,
for f0 small enough in L∞, there exists a solution u in L∞

t L∞, which is unique in a small enough ball, and depends
continuously on the data.

This theorem follows by the same arguments as Theorem 2.7(iii), thus we skip its proof.

Notation. The notation A � B means: there exists a constant C such that A � CB .

3. Preliminaries

3.1. Weak solutions of the harmonic map flow in the equivariant setting

Let Nn be a rotationally symmetric manifold, let g : R → R be the function describing the metric of N and let
χ :Sd−1 → Sn−1 be an eigenmap to eigenvalue k ∈ N. A short calculation shows that the Dirichlet energy of an
equivariant map v = Rχh is given by

E
(
v,BR(0)

) = 1

2

∫
BR(0)

|∇v|2 dx = cd

2

R∫
0

[∣∣h′∣∣2 + k

r2
g2(h)

]
rd−1 dr

for cd = |Sd−1| denoting the Hausdorff-measure of the d − 1 dimensional unit sphere.
In view of condition (4) the set of functions h which induce equivariant maps with locally finite energy can be

described by

Definition 3. Given d ∈ N and a ball BR = BR(0) ⊂ R
d we define

H 1
rad(BR) :=

{
h : [0,R] → R:

R∫
0

(∣∣h′∣∣2 + h2

r2

)
rd−1 dr < ∞

}
,

and set

H 1
rad

(
R

d
) :=

⋂
R>0

H 1
rad(BR).

Observe that the equivariant function Rχh : Rd → N is an element of H 1
loc(R

d) but not necessarily of H 1(Rd) if
h ∈ H 1

rad(R
d). Let us also remark that the global energies E(u(t),R

d) of solutions of the harmonic map heat flow (1)
are in general infinite.

Direct computations (see e.g. [16]) lead to the following characterisation of equivariant weak solutions of the
harmonic map heat flow.

Lemma 3.1. Consider a rotationally symmetric manifold Nn with metric described by g ∈ C1(R) and let χ :Sd−1 →
Sn−1 be a k-eigenmap.

(i) Let u be an element of the energy-space (2) of the form u = Rχh for a function h : R+
0 × R

+
0 → R. Then u is a

weak solution of (1) if and only if h solves the scalar partial differential equation
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ht −
[
hrr + d − 1

r
hr − k

r2
G(h)

]
= 0 on R

+
0 × R

+
0 (13)

in the sense of distributions.
(ii) Let u be an element of the energy-space (2) that is of the form u(x, t) = Rχh( x√

t
), t > 0, for some h : R+

0 → R.

Then u is a weak solution of (1) if and only if h solves the differential equation

h′′ +
(

d − 1

r
+ r

2

)
h′ − k

r2
G(h) = 0 on (0,∞). (14)

Remark that we can rewrite Eq. (14) in divergence-form as

d

dr

(
rd−1er2/4h′(r)

) = krd−3er2/4G(h). (15)

It can be easily checked that a selfsimilar map u(x, t) = Rχh( x√
t
) is an element of the energy-space if and only if

h ∈ H 1
rad(R

d) and

1∫
0

(
√

t)d−4

R/
√

t∫
1

∣∣h′∣∣2
rd+1 dr dt < ∞. (16)

At first glance the assumption h ∈ H 1
rad(R

d) imposes only a mild constraint on the behaviour of h near r = 0 while
the condition (16) seems to seriously restrict the allowed behaviour at infinity. We will see later that the converse is
true for solutions of Eq. (14). Indeed, the first derivative of each solution of (14) decays sufficiently fast for (16) to be
fulfilled, but most solutions of (14) blow up as r → 0 in such a way that h /∈ H 1

rad(R
d).

Let us finally remark that the trace of a selfsimilar map u(x, t) = Rχh( x√
t
) on the time slice R

d × {0} is given by

u(x,0) = (s,χ( x
|x| )) if h converges to s ∈ R as r → ∞.

3.2. Characterisation of energy-minimising equator maps

As remarked in [16], the criterion given in Proposition 2.1 is closely related to the value of the optimal constant in
the Hardy inequality.

Lemma 3.2. Let d � 3. Then CH = 4
(d−2)2 is the optimal constant such that the Hardy inequality

1∫
0

w2rd−3 dr � CH

1∫
0

∣∣w′∣∣2
rd−1 dr (17)

holds true for all w ∈ H 1
rad(B1) with w(1) = 0.

For a proof of this result we refer to [39].

Proof of Proposition 2.1. The proofs of (i) and (ii) follow directly from Hardy’s inequality, as can be seen in [16].
Let us therefore assume that

kG′(s) � − (d − 2)2

4
= −C−1

H for all s ∈ [
s� − S, s� + S

]
where S := √

kCH · ‖g‖∞ = 2
√

k
d−2 · ‖g‖∞. Using the quadratic Taylor expansion of g2 around s�, we find for these

values of s

k
[
g2(s) − g2(s�

)]
� −C−1

H

(
s − s�

)2
.

Remark that this estimate is trivially true if |s − s�| � S.
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The above Hardy inequality thus implies that for all h ∈ H 1
rad(B1) with h(1) = s�

1∫
0

[∣∣h′∣∣2 + k

r2

(
g2(h) − g2(s�

))]
rd−1 dr �

1∫
0

[∣∣(h − s�
)′∣∣2 − C−1

H

r2

(
h − s�

)2
]
rd−1 dr � 0

and thus that E(RχhB1) � E(u�,B1). �
4. The variational approach: proof of Theorem 2.2

We prove the first non-uniqueness result, Theorem 2.2 by variational methods. Contrary to the arguments used for
the proof of Theorem 2.3, we do not require any restrictions on the manifold N other than the general assumption (4).
Theorem 2.2 is thus valid also for a large class of non-compact rotationally symmetric target manifolds.

4.1. The variational problem

Let N be a rotationally symmetric manifold, χ an eigenmap and let Cs� be an equator of N . Assume that the
equator map u�

χ,s� is not χ -energy-minimising. According to the discussion in Section 3.1 we need to establish the

existence of a non-constant solution h ∈ H 1
rad(R

d) to Eq. (14) with limr→∞ h(r) = s� which satisfies condition (16).
We consider the set

F := {
f ∈ H 1

rad

(
R

d
)
: supp(f ) ⊂⊂ [0,∞)

}
and take its closure F with respect to the norm

‖f ‖2 :=
∫ (∣∣f ′∣∣2 + |f |2

r2

)
rd−1er2/4 dr.

Let us remark that condition (16) is trivially fulfilled for elements of F and that functions in F converge to zero as
r → ∞. In view of the divergence form (15) of Eq. (14) we consider the variational integral

E(f ) :=
∞∫

0

[∣∣f ′∣∣2 + k

r2

(
g2(s� + f

) − g2(s�
))]

rd−1er2/4 dr (18)

on the reflexive space (F ,‖ · ‖) (E is finite on F since g′(s�) = 0). We prove that this functional has the following
properties

1. E(·) is weakly lower semi-continuous and bounded from below on (F ,‖ · ‖).
2. If the equator map u�

s�,χ is not χ -energy-minimising, then

inf
f ∈F

E(f ) < 0 = E(0).

We therefore find that E achieves its global minimum for a function f ∈ F that is not identically zero. Consequently
s� + f is a non-constant solution of (14) that induces a selfsimilar weak solution of the harmonic map flow for initial
data u0 = u�

χ,s� different from the time-independent equator map.

It remains to prove the above claims about E.

4.2. Proof of claim 1

We use that C1 := sups∈R | d2

ds2 g2(s)| < ∞ by assumption (4) and estimate

g2(s� + f
) − g2(s�

)
� −min

(
C1f

2, g2(s�
))

.

Given any R > 0 and any f ∈ F , we thus obtain
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E(f ) =
∞∫

0

[∣∣f ′∣∣2 + k

r2

(
g2(s� + f

) − g2(s�)
)]

rd−1er2/4 dr

�
∞∫

0

∣∣f ′∣∣2
rd−1er2/4 dr − kC1

∞∫
R

f 2rd−3er2/4 dr − kg2(s�
) R∫

0

rd−3er2/4 dr

�
∞∫

0

∣∣f ′∣∣2
rd−1er2/4 dr − CR−2

∞∫
R

f 2rd−1er2/4 dr − C(R)

for a constant C(R) independent of f .
In the weighted space F the Hardy inequality

∞∫
0

f 2(1 + r2)rd−3er2/4 dr � C

∞∫
0

∣∣f ′∣∣2
rd−1er2/4 dr (19)

holds true for a universal constant C = C(d), see e.g. [39]. Choosing the number R > 0 in the above estimate large
enough, we thus obtain a uniform lower bound for E on F .

Remark that inequality (19) shows furthermore that an equivalent norm to ‖ · ‖ on F is given by |||f |||2 :=∫ |f ′|2rd−1er2/4 dr . The weak lower semi-continuity of E then follows from the estimate

∞∫
R

(
g2(s� + f

) − g2(s�
))

rd−3er2/8 � C1

R2
‖f ‖2

and the lemma of Fatou applied on finite intervals [0,R].

4.3. Proof of claim 2

In order to prove the second property of E, we define a family of weighted energies (Eλ)λ∈[0,1] on the space F by

Eλ(f ) :=
∞∫

0

[∣∣f ′∣∣2 + k

r2

(
g2(s� + f

) − g2(s�
))]

rd−1eλr2/4 dr.

Note the scaling

Eλ(h) = λ− d−2
2 · E1

(
h

( ·√
λ

))
= λ− d−2

2 · E
(

h

( ·√
λ

))
.

Since the equator map u� = u�
s�,χ is by assumption not energy-minimising, there exists a function h ∈ H 1

rad(B1) with
h(1) = 0 and

E
(
Rχ

(
s� + h

)
,B1

) − E
(
u�,B1

) = cd

2

1∫
0

[∣∣h′∣∣2 + k

r2

(
g2(s� + h

) − g2(s�
))]

rd−1 dr < 0.

Extending h by zero on [1,∞), we thus obtain that E0(h) < 0 and by continuity of λ 
→ Eλ(h) also Eλ(h) < 0 for
λ > 0 small. Consequently

inf
f ∈F

E(f ) = λ
d−2

2 inf
f ∈F

Eλ(f ) < 0

as claimed.
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5. Properties of the associated ordinary differential equation

5.1. Existence, uniqueness, and asymptotic behaviour

In this section we collect several important properties of solutions to the differential equation (14) characterising
selfsimilar solutions in the equivariant setting. We shall assume from now on that N is compact and thus in particular
that g, g′ and g′′ are bounded periodic functions on R.

We first show that the behaviour of arbitrary solutions h of (14) for r → ∞ can be described by

Lemma 5.1.

(i) Let h be any solution of (14). Then there exists a constant C = C(h) such that∣∣h′(r)
∣∣ � C

r3
for all r � 1.

(ii) This inequality holds true with a universal constant C = C(g, k) for all solutions h of (14) satisfying
limr→0 r · h′(r) = 0.

Proof. The quantity

V (r) = V (h)(r) := r2
∣∣h′(r)

∣∣2 − kg2(h(r)
)

(20)

is decreasing for any non-constant solution h of (14) with

V ′(r) = −r2
∣∣h′(r)

∣∣2
[

2(d − 2)

r
+ r

]
. (21)

The possible behaviour of F(r) := V (r) + kg2(h(r)) = r2|h′(r)|2 is thus constrained by

F ′(r) + rF (r) � 2kG′(h) · h′(r) � r

2
F(r) + C

r3
.

Integrating the above inequality we then obtain that

F(r) �
(
e1/4F(1) + C

) · e−r2/4 + C

r4
(22)

which leads to the desired estimate of statement (i). This estimate is independent of the solution h if rh′(r) → 0 as r →
0 since in this case 0 � V (0) � V (r) � F(r) − k‖g‖2∞ for every r > 0, and thus in particular |F(1)| � k‖g‖2∞. �

An important consequence of Lemma 5.1 is that each solution h of (14) converges as r → ∞ in such a way
that condition (16) is satisfied. In order to find selfsimilar solutions of the harmonic map heat flow we can therefore
concentrate on finding solutions of (14) that are elements of H 1

rad(R
d).

Proposition 5.2. Let s0 be a local minimum of g2 and let a ∈ R. Then there exists a solution ha ∈ C2((0,∞)) ∩
C0([0,∞)) of Eq. (14) such that

ha(0) = s0 and lim
r→0

r−γ
(
ha(r) − s0

) = a, (23)

where γ = 1
2 (

√
(d − 2)2 + 4kG′(s0) − (d − 2)). Additionally, r1−γ h′

a(r) → γ a as r → 0, and thus ha ∈ H 1
rad(R

d).
Assuming furthermore that condition (C2) is satisfied, this solution is uniquely determined by (23).

Let us remark that the solutions (ha) of (14) constructed in Proposition 5.2 induce a one-parameter family of
selfsimilar weak solutions of the harmonic map flow. In fact, as we will prove in Section 6, the only other solutions of
(14) which induce selfsimilar weak solutions of (1) are the constant functions h = s�, for Cs� an equator of N .

This proposition can be obtained by well-known methods in the theory of ordinary differential equations and is
presented in detail in [32, Appendix B.1]. Assumption (C2) is necessary only for the proof of the uniqueness aspect
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and implies that the exponent γ � 1. This allows us to apply a boundary point lemma such as Theorem 1.4 of [27]
to the rescaled difference f (r) = r1−γ (h1 − h2) of two solutions of (14). We obtain that if f (0) = f ′(0) = 0 then f

must identically vanish and thus the two solutions coincide.
A good way to analyse the behaviour of the solutions ha is to compare them with the corresponding solutions of

the equation

h′′ + d − 1

r
h′ − k

r2
G(h) = 0 (24)

which represents the harmonic map equation in the equivariant setting. We let h̄ be the solution of (24) determined by

h̄(0) = s0 and lim
r→0

r−γ
(
h̄(r) − s0

) = 1. (25)

The qualitative behaviour of these solutions was described by Jäger and Kaul in [20] for the special case of coro-
tational harmonic maps from R

d to Sd . Based on their methods we obtain the following result.

Proposition 5.3. Let N be a compact, rotationally symmetric manifold and let χ be a k-eigenmap. Given any local
minimum s0 of g2 we let s� > s0 be the local maximum of g2 to the right of s0. Then the behaviour of the solution h̄ of
(24) satisfying (25) can be described as follows.

(i) If −4kG′(s�) � (d − 2)2 and if condition (C1) is satisfied, then h̄ is increasing and converges to s� as r → ∞.
(ii) Otherwise h̄ still converges to a local extremum s̃ of g2 (not necessarily equal to s�). The convergence is monotone

if −4kG′(s) � (d − 2)2 in a neighbourhood of s̃, while h̄ oscillates around the level s = s̃ infinitely many times if
−4kG′(s̃) > (d − 2)2.

Noticing that the rescaled solution Ha(r) := ha(a
−1/γ r) solves⎧⎪⎨⎪⎩

H ′′
a (r) +

(
d − 1

r
+ r

2a1/γ

)
H ′

a(r) − k

r2
G

(
Ha(r)

) = 0,

lim
r→0

r−γ
(
Ha(r) − s0

) = 1

and using the continuous dependence of solutions of differential equations on the coefficients we obtain the following
lemma.

Lemma 5.4. Let (ha) be the family of solutions to Eq. (14) constructed in Proposition 5.2 and let h̄ be the solution of
(24) satisfying (25).

(i) Given any numbers R0 > 0 and ε > 0, there exists a0 > 0 such that

sup
a�a0

sup
r∈[0,R0]

∣∣ha

(
a−1/γ r

) − h̄(r)
∣∣ < ε.

(ii) The map R � a 
→ ha(R) is continuous for every R ∈ [0,∞].

Here we write for short ha(∞) for the limit limr→∞ ha(r) which exists according to Lemma 5.1. For the proof of
these results we refer once more to [32].

5.2. Comparison principles

Comparison principles and maximum principles are very valuable tools to analyse the behaviour of solutions of
differential equations. To study the properties of solutions of Eq. (14) for general settings, we use

Lemma 5.5. Let G ∈ C1((0,∞)) and ϕ ∈ C((0,∞)) be arbitrary fixed functions. We consider the differential operator

Tϕ(f ) := f ′′ +
(

d − 1

r
+ ϕ

)
f ′ − k

r2
· G(f ) (26)

on an interval I = [r1, r2] ⊂ (0,∞).
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(i) Suppose that G|(a,b) > 0 on some interval (a, b) ⊂ R. Then a non-constant function f ∈ C2(I, (a, b)) with
Tϕ(f ) � 0 cannot achieve a local maximum in the interior of I .

(ii) Suppose that G′|(c,d) > 0 on some interval (c, d) ⊂ R. Let f1 �= f2 be two functions in C2(I, (c, d)) with

Tϕ(f2) � Tϕ(f1) on I.

Assume that

c < f2(r1) � f1(r1) < d and f ′
2(r1) � f ′

1(r1).

Then

f2(r) < f1(r) and f ′
2(r) < f ′

1(r)

for all r ∈ I .

This lemma can be easily reduced to the classical maximum principle by the use of Taylor expansion, see the proof
of Proposition 5.6 below.

We remark that the condition G′ > 0 is violated for the non-linearity G = g · g′ of Eqs. (24) and (14) in a neigh-
bourhood of s� if Cs� is an equator of N . Using the above lemma, we can thus compare solutions of these equations
only as long as they map into an appropriate neighbourhood of a pole or a minimal sphere. In contrast, the follow-
ing comparison principle applies to general solutions of (14) if the considered setting satisfies the assumptions of
Theorem 2.3(ii).

Proposition 5.6 (Comparison principle). Let k ∈ N, let s1 < s2 and let G ∈ C1(R) be any given function. Assume that

4kθ � (d − 2)2 for θ := max
{−G′(s): s ∈ [s1, s2]

}
,

and furthermore that ϕ(r) � c · r for a constant c = c(ϕ) > 0. Then the following comparison principle holds true for
the operator Tϕ defined by (26).

Let h1 and h2 be two functions in C2((0,∞), [s1, s2]) such that

Tϕ(h1) � Tϕ(h2)

and assume that

h1(r0) � h2(r0) and h′
1(r0) � h′

2(r0) (27)

for some r0 > 0. Then either h1 and h2 coincide or

(i) h1(r) > h2(r) for all r > r0 and
(ii) limr→∞ h1(r) > limr→∞ h2(r).

Remark 5.7. By the characterisation of energy-minimising equator maps given in Proposition 2.1 the above com-
parison principle applies in particular to all solutions of (14) if the setting (N,χ) satisfies the assumptions of
Theorem 2.3(ii).

Proof of Proposition 5.6. Let h1 and h2 be as in the statement of Proposition 5.6 and assume that h1 �= h2. In order
to prove statement (i), we consider the rescaled difference

f1(r) := rη · (h1(r) − h2(r)
)

for η > 0 to be determined later. Observe that f1 satisfies the linear differential inequality

f ′′
1 +

(
d − 1 − 2η

r
+ ϕ

)
f ′

1 + aη(r)f1 � 0

for

aη(r) = η(η + 1)

2
− η

(
d − 1 + ϕ

)
− k · G′(ξ)

2
<

1
2

[
η2 − (d − 2)η + kθ

]
.

r r r r r
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Choosing η = d−2
2 in view of our assumption that 4kθ � (d −2)2 we have aη < 0. Thus, if we assume that f1 achieves

a positive local maximum at a point r1 � r0 a contradiction results; hence f1 is an increasing, positive function on
[r0,∞) and statement (i) follows.

For the second part of the proof we let η = d−2
2 be as above and consider

f2(r) :=
(

r

C + r

)η

· (h1(r) − h2(r)
)

for a (large) constant C which is chosen later on.
The first part of the proof implies that if r0 < 1 then

f ′
1(1) = η(h1 − h2)(1) + (h1 − h2)

′(1) � δ

for some δ = δ(h1, h2) > 0. For f2 defined as above, we thus find not only that f2(1) � 0, but also that

f ′
2(1) =

(
1

C + 1

)η

·
(

Cη

C + 1
(h1 − h2)(1) − (h1 − h2)

′(1)

)
�

(
1

C + 1

)η

·
(

Cδ

C + 1
− 1

C + 1
η(h1 − h2)(1)

)
� 0

for C sufficiently large. We can thus assume that f2(r0) � 0 and f ′
2(r0) � 0 for some r0 � 1. The function f2 satisfies

the inequality

f ′′
2 +

(
d − 1 − 2η

r
+ 2η

C + r
+ ϕ

)
f ′

2 + ãC(r)f2 � 0

where the coefficient ãC(r) may be estimated as

ãC(r) � (d − 3)η

r(C + r)
+ (

η − η2) 2C + r

(C + r)2r
− ϕ(r)

r

Cη

C + r
.

On the interval [1,∞) the dominating term in the above bound is −ϕ(r)
r

Cη
C+r

< 0 and thus ãC(r) < 0 if C is large
enough. The same argument as above implies that f2 is increasing and positive on [r0,∞). Therefore

lim
r→∞h1(r) − h2(r) = lim

r→∞f2(r) > 0

as claimed. �
6. The ODE approach: proof of Theorem 2.3

6.1. Proof of (i): existence of selfsimilar solutions

We begin with the proof of the existence statement. So let s ∈ R be any given number. If s is a local extremum
of g2 then the constant function hs ≡ s induces a selfsimilar solution to (1) for initial data u0(x) = (s,χ( x

|x| )). By
symmetry we may thus assume that G(s) > 0 and we denote by s0 < s < s� the local minimum respectively local
maximum of g2 to the left respectively right of s.

We claim that the image L([0,∞)) of the continuous function

L :a 
→ lim
r→∞ha(r)

contains the interval [s0, s
�). Then choosing as > 0 such that L(as) = s, we obtain that u(x, t) := Rχhas is a solution

of (1) for the considered initial data u0(x) = (s,χ( x
|x| )).

We first prove the corresponding claim for the continuous function

M : [0,∞) � a 
→ sup
r∈R

ha(r).

Let us first remark that since M(0) = s0, it is enough to show that to any given ε > 0 there is a number a = a(ε) > 0
such that M(a) > s� − ε.
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Let h̄ be the solution of (24) satisfying (25). By Proposition 5.3 the function h̄ converges to a local extremum of
g2 as r → ∞. Since the quantity V defined in (20) is decreasing also for solutions of (24), we find that

−kg2(s0) = V (0) > V (r) � −kg2(h̄(r)
)

(28)

for every r > 0 and thus that h̄(r) > s0 for every r > 0.
Consequently limr→∞ h̄(r) � s� and given any ε > 0 we may choose R > 0 with h̄(R) > s� −ε/2. Lemma 5.4 then

implies that M(a) � h̄a(Ra−1/γ ) � s� − ε for a large enough. This establishes the claim that [s0, s
�) ⊂ M([0,∞)).

It is now crucial to remark that ha is increasing if M(a) < s� according to Lemma 5.5. We thus find that L(a) =
M(a) for these values of a and the claim [s0, s

�) ⊂ L([0,∞)) follows.
This concludes the proof of the existence statement of Theorem 2.3.

6.2. Proof of (iii): multiplicity of solutions

We now give the proof of the non-uniqueness result stated in Theorem 2.3(iii). So let Cs� be an equator of a
rotationally symmetric manifold such that the equator map u�

s�,χ is not even locally energy minimising, i.e. such that

−4kG′(s�) > (d − 2)2. Let s0 < s� < s1 be the local minima of g2 to the left and to the right of s�. We can assume
without loss of generality that g2(s0) � g2(s1).

Let (ha)a�0 be the family of solutions to (14) with ha(0) = s0 constructed in Proposition 5.2 and let h̄ be the
solution to Eq. (24) satisfying (25). Since the inequality (28) is valid also for the functions ha we find that s0 <

ha, h̄ < s1 on (0,∞) for each a > 0. According to Proposition 5.3 the function h̄ thus converges to s� as r → ∞
while oscillating around the level s = s� infinitely many times.

We consider now the function

[0,∞) � a 
→ I (a) := #
{
r > 0: ha(r) = s�

}
(29)

counting the number of intersection points of the solutions ha with the level s = s� of the equator Cs� .
Lemmas 5.4, 5.1 and the above remark imply that I (a) = I (0) = 0 for a > 0 small enough while I (a) → ∞ as

a → ∞.
The number I (a) is however finite for each a ∈ [0,∞); in fact, we prove

Lemma 6.1. For any rotationally symmetric manifold N , any equator Cs� of N and for any k ∈ N there exists a
number R > 0 such that the following holds true.

(i) No solution h of (14) intersects the level s = s� more than once on the interval [R,∞).
(ii) If h(r) = s� for some r > R, then h cannot converge to s� as r → ∞.

Proof. The key idea is to compare a given solution h of (14) with supersolutions of an appropriate differential equation
for which the comparison principle is valid. So let N be any rotationally symmetric manifold, let Cs� be an equator of
N and let k ∈ N.

We set Θ := maxs∈R −G′(s) for the function G = g · g′ and choose D � d such that

4kΘ � (D − 2)2.

We claim that Lemma 6.1 holds true for R := 2
√

D − d.

So let h be a solution of (14) with h(r) = s� for some r � R. By symmetry we can assume that h′(r) < 0. The
claim is obviously true if h is decreasing on all of [r,∞). Suppose therefore that h achieves a local minimum at some
point (r0, h(r0)), r0 > R.

We now consider the solution f of

f ′′ + D − 1

r
f ′ − k

r2
G(h) = 0 (30)

with f (0) = s0 and limr→0 r−Γ (f (r)− s0) = 1, for Γ := 1
2 (

√
(D − 2)2 + 4kG′(s0)− (D−2)) > 0. As usual, s0 < s�

denotes the local minimum of g2 to the left of s�.
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We should remark here that (30) does not necessarily represent the harmonic map equation in a new geometric
setting since k is in general no eigenvalue of �SD−1 . Nonetheless the existence of f still follows from standard
methods. Furthermore the characterisation of solutions given by Proposition 5.3 remains valid for Eq. (30). The
solutions fa(r) = f (a1/Γ r), a > 0, of (30) are thus increasing on (0,∞) and converge to s� as r → ∞. Since
h(r0) < s� we find

h(r0) < fa(r0) and h′(r0) = 0 < f ′
a(r0)

for a large enough.
Since fa is an increasing solution of (30), it satisfies T̃r/4(fa) � 0 on all of (0,∞) for the operator

T̃r/4(f ) := f ′′ +
(

D − 1

r
+ r

4

)
f ′ − k

r2
G(f ).

On the other hand, let r1 ∈ (r0,∞] be the maximal number such that h is increasing on (r0, r1). By our choice of R and
the assumption that r0 > R we then find that T̃r/4(h) � 0 on (r0, r1). Since the operator T̃r/4 satisfies the assumptions
of the comparison principle, we find

h � fa < s� on (r0, r1).

However, according to Lemma 5.5 the function h cannot achieve a local maximum at r1 unless h(r1) > s�. Therefore
r1 = ∞ and h < s� on (r0,∞). Finally, the comparison principle implies limr→∞ h(r) < limr→∞ fa(r) = s�. �

The connection between the properties of the function I (·) defined in (29) and the existence of multiple solutions
to the initial value problem (1), (3) is given by

Lemma 6.2. The function I : [0,∞) → N0 defined in (29) has the following properties if N , χ and Cs� satisfy the
assumptions of Theorem 2.3(iii).

(i) I is subcontinuous2 on [0,∞) and if a0 is a point of discontinuity of I (·) then

lim
a→a0

I (a) = I (a0) + 1

and

lim
r→∞ha0(r) = s�.

(ii) For any n ∈ N0 there is number An > 0 with I (An) = n such that the corresponding solution hAn of (14)
converges to s� as r → ∞.

(iii) The union S2k ∪ S2k+1 of the sets

Sn :=
{

lim
r→∞ha(r): I (a) = n

}
, n ∈ N0,

is a neighbourhood of s� for every k ∈ N0.

As an immediate consequence of this lemma, we obtain the third statement of Theorem 2.3 for the neighbourhoods
UK of s� given by

UK :=
K−1⋂
n=0

(S2n ∪ S2n+1).

Proof of Lemma 6.2. We need to understand how the number of intersection points of the continuous family of
maps (ha) with the level s = s� can change as we vary the parameter a. So let a0 ∈ [0,∞) be any given number. Let
us first remark that no solution of (14) can be tangential to the level s = s� of the equator at any point r > 0; this

2 I.e. for every a0 ∈ [0,∞) and every sequence an → a0 we have I (a0) � limn→∞I (an).
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follows from the definition of an equator as a local maximum of g2 and since the quantity V introduced in (20) is
decreasing. In addition ha0(0) �= s� and we therefore find a neighbourhood of a0 > 0 on which I (·) � I (a0) and thus
I is subcontinuous.

Let us now assume that a0 is a point of discontinuity of I (·) and let ai → a0 be such that limi→∞ I (ai) =
lima→a0I (a) > I (a0). Let R > 0 be the number determined in Lemma 6.1 and recall that at most one of the zeros of
hai

− s� can be larger than R. In addition we can check that

‖ha0 − hai
‖C1([0,2R]) −→

i→∞ 0,

compare with Lemma 5.4 the corresponding remarks. If the distance between two distinct roots of hai
were to converge

to zero as i → ∞ we would therefore find a point 0 � r < R with ha0(r) = s� and h′
a0

(r) = 0. As remarked before
this is impossible.

The discontinuity of I at a0 must therefore be caused by roots of hai
− s� escaping to infinity in the sense that

hai
(ri) = s� for a sequence ri → ∞ as i → ∞.
By Lemma 6.1 all roots of hai

− s� different from ri must be strictly less than the constant R for i large enough.
Consequently I (ai) � I (a0) + 1 for i large.

Furthermore, Lemma 5.1 implies that∣∣∣ lim
r→∞hai

(r) − s�
∣∣∣ =

∣∣∣ lim
r→∞hai

(r) − hai
(ri)

∣∣∣ � C

2r2
i

−→
i→∞ 0.

Applying Lemma 5.4 we find that ha0 converges to s� as r → ∞ as claimed in (i).
A first consequence of statement (i) and the fact that I (a) → ∞ as a → ∞ is that I : [0,∞) → N0 is surjective.

Given any number n ∈ N0 we can thus define

An := max
{
a: I (a) = n

} ∈ (0,∞).

The function I is obviously discontinuous at An and we conclude that hAn tends to s� as r → ∞ by statement (i).
Finally, according to the first part of the proof, we can choose εn > 0 so small that the solutions ha intersect the

level s = s� at a point ra > R for all a ∈ (An,An + εn). Lemma 6.1 thus implies that limr→∞ ha(r) �= s� for all
a ∈ (An,An + εn). But of course

lim
r→∞ha(r) −→

a→An

s� = lim
r→∞hAn

again by Lemma 5.4.
The connected subset{

lim
r→∞ha(r): a ∈ (An−1,An−1 + εn−1)

}
⊂ In, n ∈ N

therefore contains an open interval of the form (s� − δn, s
�) (for n even) respectively (s�, s� + δn) (for n odd). Since

I0 = [s0, s
�] the final claim of Lemma 6.2 follows. �

6.3. Proof of (ii): uniqueness of solutions

Finally we turn to the proof of the uniqueness result stated in Theorem 2.3(ii). We first show

Lemma 6.3. Let N be rotationally symmetric and let χ be a k-eigenmap. Let s0 be a local minimum of g2 for which
condition (C2) holds true and let (ha) be the family of solutions to (14) with ha(0) = s0 constructed in Proposition 5.2.
Assume that condition (C1) holds true for the local maximum s� > s0 of g2 to the right of s0 and that −4kG′(s�) �
(d − 2)2. Then the map

L :a 
→ lim
r→∞ha(r)

is a continuous bijection from [0,∞) to [s0, s
�).

Proof. We observe first of all that ha(r) � s0 for every a � 0 and every r � 0 by inequality (28) (applied for solutions
of (14)). Recall now that the solution h̄ of the harmonic map equation (24) to initial data (25) is increasing on [0,∞)
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with limr→∞ h̄(r) = s�, see Proposition 5.3. The rescaled functions h̄a(r) := h̄(ra1/γ ) are thus supersolutions of (14)
and we find that ha � h̄a < s� by the comparison principle. We may furthermore apply the comparison principle to
conclude that two different solutions ha and hã do not intersect at any finite r > 0 nor converge to the same limit as
r → ∞. Thus L is increasing and Lemma 6.3 follows since we have already shown that [s0, s

�) ⊂ L([0,∞)). �
Remark 6.4. The above proof shows in particular that the solutions ha never reach the level s = s� of the equator and
thus that they are increasing by Lemma 5.5.

Let now N and χ be as in Theorem 2.3(ii).
Given any number s ∈ R we let s�

1 � s < s�
2 be the local maxima of g2 to the left and right of s and s0 the local

minimum of g2 in (s�
1, s�

2). We then need to show that the only solution of (14) in H 1
rad(R

d) with limit s is given
by hL−1(s) for the family (ha)a∈[−∞,∞] of solutions to (14) constructed in Proposition 5.2 with ha(0) = s0. Here L

stands for the bijection L : R ∪ {±∞} → [s�
1, s�

2] of Lemma 6.3 which we extend by L(−∞) := s�
1 and L(∞) := s�

2 .
Furthermore, we denote by h−∞ ≡ s�

1 and h∞ ≡ s�
2 the constant solutions of (14) which induce the corresponding

equator maps.
Since by assumption all equator maps are χ -energy-minimising Proposition 2.1 implies that −4kG′(s�) � (d −2)2

for every equator Cs� of N . By Lemma 6.3 we thus know that the above solution us is unique among all solutions
to (1), (3) induced by elements of the families (ha), ha(0) any local minimum of g2, of Proposition 5.2.

To conclude the proof of Theorem 2.3, we therefore only need to show that there are no selfsimilar, equivariant
solutions to (1), (3) other than those induced by these families (ha) of solutions to (14). This is achieved in the
following proposition which is valid for arbitrary compact manifolds and eigenmaps χ .

Proposition 6.5. Let N be any compact, rotationally symmetric manifold, χ a k-eigenmap and assume that condition
(C2) is valid. Then every solution h ∈ H 1

rad(R
d) to (14) is a member of one of the families (ha)−∞�a�∞ given in

Proposition 5.2 corresponding to the local minima of g2.

This result might be surprising since the condition imposed by h ∈ H 1
rad(R

d) is relatively mild. A priori, it does not
exclude functions with singularities at r = 0, but merely restricts the allowed blow-up rates.

As we will see below, most solutions of Eq. (14) are unbounded and can thus be described by

Lemma 6.6. Let N be compact, k ∈ N and let h be an unbounded solution of Eq. (14). Then there exist δ > 0 and
ε > 0 such that∣∣h′(r)

∣∣ >
δ

rd−1
for r ∈ (0, ε).

In particular h /∈ H 1
rad(R

d).

Proof. Let h be any unbounded solution of (14). Since N is compact, h must reach the level of a pole for some r0 > 0,
i.e. g(h(r0)) = 0. Let now

Ṽ (r) = Ṽ (h)(r) := r2(d−1) ·
[∣∣h′∣∣2 − k

r2
g2(h)

]
.

Obviously Ṽ (r0) � 0 and a short calculation shows that Ṽ is decreasing for any non-constant solution of (14). Given
any 0 < ε < r0, we can thus choose δ > 0 such that Ṽ |[0,ε] � δ2 > 0 and the claim follows. �

The behaviour of general solutions to (14) is furthermore restricted by

Lemma 6.7. Let N and χ be as in Proposition 6.5. Then for any solution h of (14) there exists ε = ε(h) > 0 such that
h|(0,ε) is monotonous.

Proof. For simplicity we give the details of the proof only for settings satisfying the assumptions of Theorem 2.3(ii).
In this case we can show the stronger result that solutions of (14) achieve at most one local extremum on all of (0,∞).
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So let N and χ be as in Theorem 2.3(ii) and let h be a solution of (14) that attains a local extremum, say a local
minimum, at some point (r0, h(r0)), r0 > 0. Then Lemma 5.5 tells us that G(h(r0)) > 0. We denote by s0 < h(r0) < s�

the local minimum respectively the local maximum of g2 to the left respectively right of h(r0). Let now (ha) be the
family of solutions to (14) with h(0) = s0. The functions ha are increasing for every a > 0 and ha(r0) tends to s� as
a → ∞. Choosing a > 0 large enough, we thus have s0 < h(r0) < ha(r0) and h′(r0) = 0 < h′

a(r0). By the comparison
principle we conclude that

h(r) < ha(r) < s� for all r � r0.

Therefore h we cannot achieve any local maximum and thus any local extremum at all after r0 according to Lemma 5.5.
The claim follows because r0 was chosen as an arbitrary extremal point of h. �

Remark 6.8. The proof of Lemma 6.7 for general settings makes use of the fact that the decreasing quantity V of (20)
is negative for bounded solutions of (14) and satisfies

V (r1) − V (r2) > �

for all local extrema 0 < r1 < r2 < 1 of h and a constant �(h) > 0; for details we refer to [32].

Finally, we conclude the proof of our main uniqueness result for selfsimilar solutions, Theorem 2.3(ii), by giving
the

Proof of Proposition 6.5. Let h ∈ H 1
rad(R

d) be any solution of (14). By Lemma 6.6 the function h is bounded. It can
therefore be extended continuously up to r = 0 according to Lemma 6.7. We analyse the properties of h based on the
value h(0) = limr→0 h(r). We begin with

Case 1. h(0) is a local minimum of g2.

Let s0 be any local minimum of g2 and let γ > 0 and (ha)a∈R be as in Proposition 5.2. We know that any solution
h of (14) with h(0) = s0 and limr→0 r−γ (h(r) − s0) = a ∈ R coincides with ha by the uniqueness statement of
Proposition 5.2.

So let us assume that there exists a solution h of (14) with h(0) = s0 for which r−γ (h(r) − s0) diverges as r → 0.
According to Lemma 6.7 and by symmetry, we may assume that h is increasing on a small interval (0, ε). We chose
b > s0 such that G′|[s0,b] > 0 and fix r0 ∈ (0, ε) with h(r0) < b. Following the arguments of the proof of statement
(i) of Theorem 2.3 we then find a0 > 0 with h(r0) < ha0(r0) and with ha0 |[0,r0] � b. According to Lemma 5.5 the
function ha0 is an upper bound for h on [0, r0] and thus limr→0r

−γ (h(r) − s0) � a0 < ∞. Since this quantity by
assumption diverges, there exists a number a > 0 with

0 � lim
r→0

r−γ
(
h(r) − s0

)
< a < lim

r→0
r−γ

(
h(r) − s0

)
.

But then h has to intersect the corresponding solution ha of (14) in points arbitrarily close to r = 0 in contradiction
to Lemma 5.5.

We conclude that the only solutions of (14) with h(0) = s0 are those of the family (ha)a∈R.

Case 2. h(0) is a local maximum of g2.

Let Cs� be an equator of N . We claim that the only solution of (14) with h(0) = s� is the constant map h∞ ≡ s�.
Indeed, let us assume that h is a non-constant solution of (14) with h(0) = s� and let r1 > 0 be such that g2(h(r1)) <

g2(s�). We set δ := g2(s�)−g2(h(r1)) > 0 and choose r0 ∈ (0, r1) such that g2(h(r)) � g2(s�)−δ/2 for all r ∈ [0, r0].
Since the quantity V (r) given by (20) is non-increasing we obtain that on (0, r0)(

rh′)2 − kg2(s�
) + kδ/2 � V (r) � V (r1) � −kg2(s�

) + kδ.
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Consequently∣∣h′(r)
∣∣ �

√
kδ/2

r

on (0, r0) and h cannot converge as r → 0, in contradiction to the assumption h(0) = s�.
Finally, we need to consider

Case 3. h(0) is no local extremum of g2.

We have assumed from the very beginning that g′ has no roots of multiplicity greater than one and thus find that
G(h(0)) �= 0. By symmetry we can focus on solutions h of (14) with G(h(0)) > 0.

Suppose h is decreasing on some interval (0, ε). We can then bound the second derivative of h on a small interval
(0, r0] ⊂ (0, ε) by

h′′ = k · G(h(0)) + o(1)

r2
−

(
d − 1

r
+ r

2

)
h′ � c

r2

for a constant c > 0 independent of r and for o(1) → 0 as r → 0.
Integrating the obtained inequality from r to r0 gives

h′(r) � −c

r
+ h′(r0) + c

r0
= −c

r
+ C(r0)

for every r ∈ (0, r0), which is obviously wrong for bounded functions h.
According to Lemma 6.7, we thus obtain that h is increasing on some interval (0, ε). Using the divergence form of

(14) given in (15) we then find for r ∈ (0, r0)(
er2/4rd−1h′)′ � crd−3

for a constant c > 0 and for r0 > 0 small enough.
Integrating from r/2 to r < r0 we find

er2/4rd−1h′(r) �
(

r

2

)d−1

er2/16h′
(

r

2

)
+ c

1 − 22−d

d − 2
rd−2 � c̃rd−2 > 0.

The resulting lower bound of h′(r) � c̃
r

on (0, r0) once more stands in contrast to the assumption that h is continuous
up to r = 0.

We conclude that h(0) is a local extremum of g2 for each bounded solution h of (14). Combined with cases 1 and
2 and the description of unbounded solutions of Lemma 6.6, we obtain Proposition 6.5. �

This concludes the proof of Theorem 2.3.

7. Stability from time t = 0: proof of Theorem 2.7

We study the stability properties of the constant in time solutions u(x, t) = Rχ(s�) of the harmonic map flow. That
is to say, we consider the Cauchy problem⎧⎨⎩ft − frr − d − 1

r
fr + k

r2

[
G

(
f + s�

) − G
(
s�

)] = 0,

f (t = 0) = f0,

(31)

where s� is such that G(s�) = 0.

7.1. Proof of (i): linear stability

The linearised version of the above equation is obviously

ft −
[
�f − kG′(s�)

2
f

]
= 0.
r
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Here and in the following � denotes the radial Laplacian on R
d , �f := frr + d−1

r
fr . By Hardy’s inequality (17), the

operator −� + c

r2 is positive on L2, or H 1, if c > − (d−2)2

4 . This suffices to prove (i).

7.2. Proof of (ii): weak solutions

The a priori estimate: Let us begin with a formal derivation of the a priori estimate on f , solving (31), which is at

the heart of the proof of (ii). Since by assumption k infG′ > − (d−2)2

4 , Taylor’s formula gives

k

r2

[
G(f + s�) − G(s�)

]
�

(
− (d − 2)2

4
+ ε

)
f

for some ε > 0. Thus, taking the scalar product of (31) with f in space, and integrating in time gives

‖f ‖2
L∞([0,∞),L2(Rd ))

+ ‖∇f ‖2
L2([0,∞),L2(Rd ))

� C‖f0‖2
2,

for some constant C by the same argument as in (i).
The rigorous proof : In order to turn the above a priori estimate into a rigorous proof, we make use of an approxi-

mation scheme. Let χ be a smooth function, zero in a neighbourhood of the origin, and equal to one outside a (larger)
bounded neighbourhood of the origin. Then let f ε solve⎧⎨⎩f ε

t − f ε
rr − d − 1

r
f ε

r + k

r2
χ

(
r

ε

)[
G

(
f ε + s�

) − G
(
s�

)] = 0,

f ε(t = 0) = f0.

It is clear that for ε > 0, the above equation has a unique solution f ε in L∞L2 ∩ L2Ḣ 1, which is, by the above
estimate, uniformly bounded in this space. Furthermore,∥∥f ε

t

∥∥
Ḣ−1(Rd )

�
∥∥�f ε

∥∥
Ḣ−1(Rd )

+
∥∥∥∥G(f ε + s�) − G(s�)

r2

∥∥∥∥
Ḣ−1(Rd )

.

Arguing by duality and using Hardy’s inequality gives∥∥∥∥G(f ε + s�) − G(s�)

r2

∥∥∥∥
Ḣ−1

= sup
‖ϕ‖

Ḣ1 �1

∣∣∣∣ ∫ G(f ε + s�) − G(s�)

r2
ϕ

∣∣∣∣
� sup

‖ϕ‖
Ḣ1 �1

∫ |f ε |
r

|ϕ|
r

� sup
‖ϕ‖

Ḣ1 �1

∥∥f ε
∥∥

Ḣ 1‖ϕ‖Ḣ 1 = ∥∥f ε
∥∥

Ḣ 1 .

Putting together the two above inequalities gives∥∥f ε
t

∥∥
L2([0,∞),Ḣ−1(Rd ))

�
∥∥f ε

∥∥
L2([0,∞),Ḣ 1(Rd )

which implies a uniform bound for f ε
t in L2Ḣ−1. By Aubin’s lemma (see for instance [34]), the set of functions which

is bounded in L2H 1, with time derivatives bounded in L2H−1, embeds compactly in L2L
2d

d−2 −δ

loc . Thus a subsequence

of f ε converges to a function f in L2L
2d

d−2 −δ

loc , where δ is positive and small.
We can now pass to the limit in the equation. The linear terms are of course easily handled. As for the nonlinear

term, the strong convergence of fε implies that

G
(
f ε + s�

) − G
(
s�

) → G
(
f + s�

) − G
(
s�

)
in L2L

2d
d−2 −δ

loc .

On the other hand, 1
r2 χ( r

ε
) converges strongly in L∞L

d
2 −δ

loc to 1
r2 as ε goes to zero. Thus,

1

r2
χ

(
r

ε

)[
G

(
f ε + s�

) − G
(
s�

)] → 1

r2

[
G

(
f ε + s�

) − G
(
s�

)]
in L2L

2d
d+2 −δ

loc

(for a new choice of δ), which concludes the proof.
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7.3. Proof of (iii): strong solutions if G′(s�) > 0

Let s� be such that G(s�) = 0 and G′(s�) > 0. We first need to introduce some new notations: set

c := kG′(s�
)
> 0, Hc := −� + c

r2
and J (x) := −kG(x + s�) − cx

x2

(so that J is a smooth and bounded function). This turns (31) into⎧⎨⎩ft + Hcf = f 2

r2
J (f ),

f (t = 0) = f0.

(32)

The necessary estimates will be provided by the following lemma:

Lemma 7.1. If r2F ∈ L∞
t L∞

x and f0 ∈ L∞, there exists a unique solution in L∞
t L∞

x to{
ft + Hcf = F,

f (t = 0) = f0.
(33)

Furthermore, it satisfies

‖f ‖L∞
t L∞

x
� ‖f0‖L∞

x
+ ∥∥r2F

∥∥
L∞

t L∞
x

.

With the help of this lemma, it is easy to solve (32) by Picard’s fixed point theorem: rewrite (32) via Duhamel’s
formula as

f (t) = e−tHcf0 +
t∫

0

e(s−t)Hc
f 2

r2
J (f )(s) ds := RHS(f ).

Lemma 7.1 easily gives the estimates∥∥RHS(f )
∥∥

L∞
t L∞

x
� ‖f0‖L∞ + ‖f ‖2

L∞
t L∞

x

and ∥∥RHS(f ) − RHS(f̃ )
∥∥

L∞
t L∞

x
� max

(‖f ‖L∞
t L∞

x
,‖f̃ ‖L∞

t L∞
x

)‖f − f̃ ‖L∞
t L∞

x
.

Thus the map RHS is a contraction on a small enough ball in L∞
t L∞

x which implies the existence of a unique fixed
point and thus of a solution of (32) in this small ball.

Proof of Lemma 7.1. 1. The uniqueness part follows by the maximum principle (see for instance Quittner and Souplet
[28, Proposition 52.4, p. 509]).

2. Assuming a priori the existence of a solution f in L∞L∞ to (33), let us prove the bounds. If F = 0, they follow
since the kernel of e−tHc is positive, and pointwise smaller than the kernel of et�, as is easily checked. Suppose now
that f0 = 0; by positivity of the kernel of e−tHc , it suffices to consider the case F � 0. Observe that

Hc

1

c
= 1

r2
.

Thus 1
c

is a constant solution of f̃t + Hcf̃ = 1
r2 , and

‖r2F‖L∞
x L∞

t

c
a supersolution for our problem. By the maximum

principle,

‖f ‖L∞
t L∞

x
�

‖r2F‖L∞
x L∞

t

c
.

3. It is now standard to obtain the existence result by combining these a priori bounds with an approximation
scheme. �
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7.4. Optimality of Theorem 2.7

We discuss for the statements (i) and (ii) to what extent they are optimal; in other words, for both of these statements
we examine whether the given sufficient condition is also necessary.

Statement (i) The assumption is clearly optimal, since for c < − (d−2)2

4 , any self-adjoint extension of −� + c

r2 has
an unbounded spectrum.

Statement (ii) This statement becomes wrong if G′(s�) < − (d−2)2

4 . This corresponds to the situation where Cs� is
an equator which is not locally energy-minimising.

As we saw in the proof of Theorem 2.3, there exist profiles ψ , such that h(r, t) = ψ( r√
t
) is a solution to the

equivariant harmonic map heat flow

ht − hrr − d − 1

r
hr + k

r2
G(h) = 0

with h(t = 0, r) = limr→∞ ψ = s�, and ψ �≡ s�. Consider the data h(r, ε) for such a solution h and let u be the
corresponding solution of the harmonic map flow. By taking ε small, this data can be made arbitrarily close to s� in
L2(Rd): denoting f = u− s� the difference, this means ‖f (t = 0)‖L2 arbitrarily small. However, the L2(Rd) distance
between h(r, t + ε) and s�, ‖f (t)‖2, goes to infinity as t goes to infinity: This contradicts (ii) since f (r, t + ε) is the
only solution to

ft − frr − d − 1

r
fr + k

r2

[
G

(
s� + f

) − G
(
s�

)] = 0

associated to the initial data f (r, ε). Indeed, this solution is smooth and decays fast (as can be verified since ψ

converges to the equator), and thus one can easily prove “weak–strong uniqueness”: any other solution satisfying the
energy inequality (12) has to agree with this one.

8. Stability from time t = 1: proofs of Theorems 2.5 and 2.6

In this section, the problem will be analysed in self-similar variables

σ := log(t), ρ = r√
t
.

Setting

w(ρ,σ ) = v
(
eσ/2ρ, eσ

) = v(r, t),

Eq. (5) becomes

∂σ w − ∂2
ρw −

(
d − 1

ρ
+ ρ

2

)
∂ρw + k

ρ2

(
gg′)(w) = 0. (34)

As we shall see, the operator in ρ can be made self-adjoint in L2(dμ) with

dμ(ρ) = e|ρ|2/4ρd−1 dρ.

8.1. Proof of Theorem 2.5

Eq. (34) can also be written as

∂σ w − ρ1−de− ρ2

4 ∂ρ

[
ρd−1e

ρ2

4 ∂ρw
] + k

ρ2
G(w) = 0.

Taking the scalar product with ∂σ w in L2(dμ) yields

∂σ E(w) = −‖∂σ w‖2
L2(dμ)

,

which gives the desired result.
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8.2. Proof of Theorem 2.6

In self-similar coordinates the linearised equation of the harmonic map flow (9) reads

∂σ w − ∂2
ρw −

(
d − 1

ρ
+ ρ

2

)
∂ρw + k

ρ2
G′(ψ(ρ)

)
w = 0. (35)

Recalling dμ(ρ) := e|ρ|2/4ρd−1 dρ, consider the weighted space

H := L2
rad(μ) :=

{
v : R → R:

∫
|v|2 dμ < ∞

}
and the corresponding Sobolev spaces Hk

rad(μ). This is of course equivalent to considering the radial elements of

L2(Rd , e|y|2/4 dy). The operator

Aw := −∂2
ρw −

(
d − 1

ρ
+ ρ

2

)
∂ρw + k

ρ2
G′(ψ(ρ)

)
w

defined on the dense subspace H 2
rad(μ) of the Hilbert space (H,‖ · ‖H ) is symmetric. The main step for the proof of

Theorem 2.6 is to show

Proposition 8.1. The operator A has a selfadjoint extension onto a dense subspace of H whose spectrum is discrete.
Furthermore, the number of eigenvalues less than one is equal to the number of local extrema of the function ψ

representing the original selfsimilar solution u(x, t) = Rχψ( x√
t
).

Theorem 2.6 immediately follows from this proposition by transforming back to the original coordinates.

Proof of Proposition 8.1. Let us first remark that the operator −� − ρ
2 ∂ρ = −∂2

ρ − ( d−1
ρ

+ ρ
2 )∂ρ is non-negative

since 〈(
−� − ρ

2
∂ρ

)
w,w

〉
L2(μ)

=
∫ ∣∣w′∣∣2

dμ

for every w ∈ H 2
rad(μ) ⊂ L2

rad(μ).
Since N is compact and smooth the function G′ is bounded from below. Recall furthermore that ψ(0) is the coor-

dinate of either a pole or a minimal sphere by Proposition 6.5. We thus find an interval [0,R0] on which G′(ψ(·)) > 0.
The multiplication operator w 
→ k

ρ2 G′(ψ(ρ))w is thus bounded from below in H by some constant γ . Conse-
quently, the same holds true for the operator A, i.e. we have that

〈Aw,w〉H � γ ‖w‖2
H

for every w ∈ H 2
rad(μ).

By the Friedrich’s extension theorem the operator A thus has a unique selfadjoint extension (still denoted by A)
onto a domain D(A) ⊂ L2

rad(μ) contained in the form domain of A, i.e. in H 1
rad(μ).

We now analyse the spectrum of this selfadjoint operator and begin by showing that it is discrete.
Let R0 be as above and let ϕ ∈ C∞

c ([0,∞), [0,1]) be such that supp(ϕ) ⊂ [0,R0] and ϕ ≡ 1 on [0,R0/2].
We decompose the operator A as

A = A0 + A1

for the bounded multiplication operator A1 :L2(μ) → L2(μ) given by

A1w := (1 − ϕ) · k

ρ2
G′(ψ(ρ)

)
w.

We show

Lemma 8.2. The operator A0 := A − A1 : D(A) → L2(μ) is a bijective unbounded operator with compact inverse.
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Proof. We consider the bilinear form

B(w1,w2) := 〈A0w1,w2〉L2(μ)

induced by A0. By the choice of ϕ, the definition of A and Hardy’s inequality (19) we can extend B(·, ·) to a bounded
and coercive bilinear form on all of H 1

rad(μ). The representation theorem of Riesz then implies the existence of an
isomorphism L from the dual space (H 1

rad(μ))∗ to H 1
rad(μ) such that

B(Lf,w) = 〈f,w〉
for every linear form f ∈ (H 1

rad(μ))∗.
Remark that by definition A0 and L−1 agree on D(A) and that the domain D(A) is nothing else than the image

of L2
rad(μ) ⊂ (H 1

rad(μ))∗ under L by the maximality of selfadjoint operators. Thus A : D(A) → L2
rad(μ) is a bijection

with inverse given by

A−1 = ι ◦ L|L2
rad(μ).

Here ι :H 1
rad(μ) → L2

rad(μ) denotes the inclusion map. Contrary to the inclusion maps of standard Sobolev spaces
on R

d , the map ι is compact. In fact, the compactness of this operator can be easily derived from the inequality∫
ρ2w2dμ � 16

∫ ∣∣w′∣∣2
dμ

which follows from

0 � d

∫
w2 dμ =

∫
d

dρ

(
ρd

)
eρ2/4w2 dρ = −

∫ (
w2eρ2/4)′

ρd dρ

= −2
∫

ww′ρ dμ − 1

2

∫
w2ρ2 dμ

� 2

(∫
w2ρ2 dμ

)1/2

·
(∫ ∣∣w′∣∣2

dμ

)1/2

− 1

2

∫
w2ρ2 dμ,

compare also [39]. The lemma follows since the inclusion map L2
rad(μ) ↪→ (H 1

rad(μ))∗ is of course continuous. �
As an immediate consequence of the above lemma we obtain that the spectrum of A−1

0 contains at most countably
many eigenvalues which cannot accumulate at any point different from zero. Therefore the spectrum of A0 is discrete.
Finally we need to remark that since A1 is bounded, Lemma 8.2 implies that A1 is relatively compact with respect to
A0. Thus the essential spectra of A = A0 + A1 and A0 agree and are thus empty, see e.g. [29].

To establish Proposition 8.1 we need to analyse the individual eigenvalues of A.
If λ ∈ R is an eigenvalue of A and if vλ ∈ L2

rad(μ) is a corresponding eigenfunction then vλ solves the equation

−v′′ −
(

d − 1

ρ
+ ρ

2

)
v′ + k

ρ2
G′(ψ(ρ)

)
v = E · v (36)

for E = λ.
The asymptotic behaviour of solutions of the above linear differential equation can be described by

Lemma 8.3. Let ψ ∈ H 1
rad(R

d) be any solution of (14) and let E ∈ R. Then the asymptotics of solutions of (36) can
be described as follows.

(i) Let γ1 < 0 < γ2 be the solutions of the equation γ 2 + (d − 2)γ − kG′(ψ(0)) = 0. Then each solution ϕ of (36)
satisfies

lim
ρ→0

(
ϕi(ρ) + ρ · ϕ′

i (ρ)
)
ρ−γi ∈ R \ {0}

for either i = 1 or for i = 2 and both behaviours occur in the family of all solutions of (36).
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(ii) Furthermore as ρ → ∞ we either have

lim
ρ→∞

(∣∣ϕ3(ρ)
∣∣ + ∣∣ρ−1 · ϕ′

3(ρ)
∣∣)eρ2/4ρd−2E = R \ {0} (37)

or

lim
ρ→∞

(∣∣ϕ4(ρ)
∣∣ + ∣∣ρ−1 · ϕ′

4(ρ)
∣∣)ρ2E = R \ {0} (38)

where again both types of behaviour occur.

One way to prove the above lemma is to study the asymptotics as s → ∞ of the functions s 
→ (v(e−s), d
ds

v(e−s)),
respectively of s 
→ (v(

√
s), d

ds
v(

√
s)). One can check that each of these functions satisfies a system of first order

differential equations for which Theorem 8.1 of [7] applies. This leads to the proof of the above lemma.
Given any E ∈ R we let vE be the solution of (36) that satisfies

vE(0) = 0 and lim
ρ→0

ρ−γ2
(
vE(ρ) + ρ · v′

E(ρ)
) = 1

where γ2 > 0 is the constant determined in Lemma 8.3.
Let us remark that vE is in general not an element of H . However, if E is an eigenvalue of A then vE ∈ H must be

(a multiple of) the corresponding eigenmap since other solutions of (9) are not square integrable (with respect to μ)
near the origin and thus certainly not in H . The multiplicity of each eigenvalue is thus one.

Furthermore we have the following connection between the properties of the solutions vE , E ∈ R, and the eigen-
values of A.

Lemma 8.4. For every E0 ∈ R the number of eigenvalues

nE0 := #{E < E0: E eigenvalue of A}
that are less than E0 coincides with the number

NE0 := #
{
ρ > 0: vE0(ρ) = 0

}
of zeros of the function vE0 on (0,∞).

Proof. We use methods known from the theory of Sturm–Liouville operators as presented in [29, Chapter XIII.3].
Let us first recall that A is bounded from below and that the eigenvalues

λ1 < λ2 < · · ·
are discrete and have multiplicity one.

Let now E0 ∈ R be any fixed number and let NE0 and nE0 be defined as above. We first show that

λNE0
< E0.

We denote by

0 = ρ0 < ρ1 < · · · < ρNE0

the zeros of vE0 . It may now be easily checked that the functions

1(ρi−1,ρi ) · vE0, i = 1, . . . ,NE0

span a NE0 dimensional subspace of the form domain H 1
rad(μ) of A on which

〈Av,v〉H � E0‖v‖2
H .

Consequently we find that λNE0
� E0.

Since the function E 
→ NE0 is subcontinuous (compare e.g. Lemma 6.2) we find that also the strict inequality
λNE0

< E0 is valid and thus that

nE0 � NE0 .

On the other hand, we show
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Claim. The map E 
→ NE is non-decreasing and if E0 is an eigenvalue then NE � NE0 + 1 for every E > E0.

Remark that since all eigenvalues of A have multiplicity one, this claim implies that

NE0 � nE0

and thus concludes the proof of Lemma 8.4.

Proof of claim. Let E0 ∈ R and let 0 = ρ0 < ρ1 < · · · < ρNE0
be the zeros of vE0 . We show on the one hand that all

functions vE , E > E0, have a zero in each interval (ρi−1, ρi). On the other hand we prove that if E0 is an eigenvalue
of A then there is a further zero of vE in the interval (ρNE0

,∞).
We begin by the proof of this second claim. So let E0 be an eigenvalue of A and assume that there exists some

E > E0 such that vE has no zero in (ρNE0
,∞). By symmetry it is enough to consider the case that vE > 0 and vE0 > 0

in this interval. We now consider the integral

I :=
∞∫

ρNE0

d

dρ

[(
vE · v′

E0
− v′

E · vE0

)
eρ2/4ρd−1]dρ.

Since vE0 is an eigenfunction of A and thus an element of L2(μ), Lemma 8.3 implies that for ρ � 1∣∣vE0(ρ)
∣∣ + ∣∣ρ−1v′

E0
(ρ)

∣∣ � C · e−ρ2/4 · ρ2E0−d .

Conversely all solutions of (36), and thus is particular vE , are bounded by∣∣vE(ρ)
∣∣ + ∣∣ρ−1v′

E(ρ)
∣∣ � C · ρ−2E

as ρ → ∞. We thus find that∣∣(vE(ρ)v′
E0

(ρ) − v′
E(ρ)vE0(ρ)

)
eρ2/4ρd−1

∣∣ � Cρ2(E0−E) −→
ρ→∞ 0

and therefore

I = −vE(ρNE0
)v′

E0
(ρNE0

) exp
(
ρ2

NE0
/4

)
ρd−1

NE0
< 0.

On the other hand, vE is a solution of (36) and thus a short calculation shows that

I =
∞∫

ρNE0

(E − E0)vEvE0 dμ > 0

which leads to a contradiction.
The same argument applied on the intervals (ρi−1, ρi), i = 1, . . . ,NE0 −1, shows that vE has a zero in the intervals

(ρi−1, ρi). The assumption that E0 is an eigenvalue is not needed for this part of the proof since we are integrating
over compact intervals and thus do not need to control the asymptotics of vE0 as ρ → ∞.

This concludes the proof of the above claim and thus of Lemma 8.4. �
In order to establish Proposition 8.1 we finally need to understand how the solution v1 of (36) for E = 1 is con-

nected with the function ψ representing the original selfsimilar solution of the harmonic map flow.
Since the harmonic map flow is invariant under translations, the maps

uε(x, t) := u(x, t + ε) = Rχψ

(
x√
t + ε

)
are solutions of (1) on R

d × (−ε,∞) for every ε ∈ R.
Consequently

d

dε

(
ψ

(
x√

))∣∣∣∣ = − 1

2t
· x√ ψ ′

(
x√

)

t + ε ε=0 t t
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solves the linearised equation (9). Working in selfsimilar coordinates, we thus find that the function

ρ 
→ ρ · ψ ′(ρ)

solves Eq. (36) for E = 1.
Since ρψ ′(ρ) = O(ργ2) as ρ → 0 for the constant γ2 > 0 of Lemma 8.3 the function v1 is equal to (a multiple

of) rψ ′(r). The number of zeros of v1 is thus given by the number of local extrema of ψ .
This concludes the proof of Proposition 8.1 and thus of our final result Theorem 2.6. �
Finally we would like to remark that the number of local extrema of a solution (14) coincides with the number of

times this solution intersects the level of the equator. Thus a selfsimilar solution of the harmonic map flow enjoys the
stability property of Theorem 2.6(i) if and only if it does not cross the equator.
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